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Abstract. In this paper, we propose a large deformation diffeomorphic metric
mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI)
data, specifically acquired via hybrid diffusion imaging (HYDI), denoted as
LDDMM-HYDI. We adopt the work given in Hosseinbor et al. (2012) and rep-
resent the q-space diffusion signal with the Bessel Fourier orientation reconstruc-
tion (BFOR) signal basis. The BFOR framework provides the representation of
mDWI in the q-space and thus reduces memory requirement. In addition, since
the BFOR signal basis is orthonormal, the L2 norm that quantifies the differ-
ences in q-space signals of any two mDWI datasets can be easily computed as
the sum of the squared differences in the BFOR expansion coefficients. In this
work, we show that the reorientation of the q-space signal due to spatial trans-
formation can be easily defined on the BFOR signal basis. We incorporate the
BFOR signal basis into the LDDMM framework and derive the gradient de-
scent algorithm for LDDMM-HYDI with explicit orientation optimization. Us-
ing real HYDI datasets, we show that it is important to consider the variation of
mDWI reorientation due to a small change in diffeomorphic transformation in the
LDDMM-HYDI optimization.

1 Introduction

In order to accurately reconstruct the diffusion signal and ensemble average propagator
(EAP), a thorough exploration of q-space is needed, which requires multiple b-value dif-
fusion weighted imaging (mDWI). MDWI can characterize more complex neural fiber
geometries when compared to single b-value techniques like diffusion tensor imaging
(DTI) or high angular resolution diffusion imaging (HARDI). Hybrid diffusion imaging
(HYDI) [12] is a mDWI technique that samples the diffusion signal along concentric
spherical shells in q-space, with the number of encoding directions increased with each
shell to increase the angular resolution with the level of diffusion weighting. Originally,
HYDI employed the fast Fourier transform (FFT) to reconstruct the EAP. However, the
recent advent of analytical EAP reconstruction schemes, which obtain closed-form ex-
pressions of the EAP, obviate the use of the FFT in HYDI. One such technique success-
fully validated on HYDI datasets is Bessel Fourier orientation reconstruction (BFOR)
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[9]. MDWI techniques like HYDI, however, have not been widely used by clinicians
and neuroscientists partially due to their relatively long acquisition times. In addition,
there is a lack of fundamental image analysis tools, such as registration, that can fully
utilize their information.

In the last decades, researchers have spent great efforts on developing registration
algorithms to align diffusion tensors derived from DTI and orientation distribution func-
tions (ODFs) derived from HARDI [e.g., [11,6]]. However, registration algorithms di-
rectly based on DWIs are few. The direct alignment of DWIs in q-space utilizes the
full diffusion information, is independent of the choice of diffusion models and their
reconstruction algorithms (e.g., tensor, ODF), and unifies the transformation to align
the local diffusion profiles defined at each voxel of two brains [3,13,15]. Dhollander et
al.[3] developed an algorithm that transforms the diffusion signals on a single shell of
q-space and preserves anisotropic as well as isotropic volume fractions. Yap et.al [13]
proposed to decompose the diffusion signals on a single shell of q-space into a series
of weighted diffusion basis functions, reorient these functions independently based on
a local affine transformation, and then recompose the reoriented functions to obtain the
final transformed diffusion signals. This approach provides the representation of the dif-
fusion signal and also explicitly models the isotropic component of the diffusion signals
to avoid undesirable artifacts during the local affine transformation. Zhang et al. [15]
developed a diffeomorphic registration algorithm for aligning DW signals on a single
shell of q-space.

Only recently, Dhollander et al. [4] aligned DWIs on multiple shells of q-space by
first estimating transformation using a multi-channel diffeomorphic mapping algorithm,
in which generalized fractional anisotrophy (GFA) images computed from each shell
were used as mapping objects, and then applying the transformation to DWIs in each
shell using the DWI reorientation method in [3]. This approach neglected possible influ-
ences of the DWI reorientation on the optimization of the spatial transformation. Hsu
et al. [10] generalized the large deformation diffeomorphic metric image mapping algo-
rithm [7] to DWIs in multiple shells of q-space and considered the image domain and
q-space as the spatial domain where the diffeomorphic transformation is applied to. The
authors claimed that the reorientation of DWIs is no longer needed as the transformation
also incorporates the deformation due to the shape differences in diffusion profiles in
q-space. It is a robust registration approach with the explicit consideration of the large
deformation in both the image domain and the q-space. However, its computational
complexity and memory requirement are high.

In this paper, we propose a new large deformation diffeomorphic metric mapping
(LDDMM) algorithm to align HYDI datasets, denoted as LDDMM-HYDI. In particu-
lar, we adopt the BFOR framework in representing the q-space signal. Unlike Hsu et al.
[10], the BFOR signal basis provides the representation of the q-space signal and thus
reduces memory requirement. In addition, since the BFOR signal basis is orthonormal,
the L2 norm that quantifies the differences in q-space signals can be easily computed
as the sum of the squared differences in the BFOR expansion coefficients. In this work,
we will show that the reorientation of q-space signal due to spatial transformation can
be easily defined on the BFOR signal basis. Unlike the work in [4], we will incorporate
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the BFOR signal basis into the LDDMM framework and derive the gradient descent
algorithm for solving the LDDMM-HYDI variational problem with explicit orientation
optimization. As shown below, the main contributions of this paper are:

1. to seek large deformation for aligning HYDI datasets based on the BFOR represen-
tation of mDWI.

2. to derive the rotation-based reorientation of the q-space signal via the BFOR signal
basis. This is equivalent to applying Wigner matrix to the BFOR expansion coeffi-
cients, where Wigner matrix can be easily constructed by the rotation matrix (see
Section 2.1).

3. to derive the gradient descent algorithm for the LDDMM-HYDI variational prob-
lem with the explicit orientation optimization. In particular, we provide a computa-
tionally efficient method for calculating the variation of Wigner matrix due to the
small variation of the diffeomorphic transformation (see Section 2.4).

4. to show that the LDDMM-HYDI gradient descent algorithm does not involve the
calculation of the BFOR signal bases and hence avoids the discretization in q-space.

2 Methods

According to the work in [9], the q-space diffusion signal, S(x,q), can be represented
as

S(x,q) =

Nb∑

n=1

NY∑

j=1

cnj(x)Ψnj(q) , (1)

where x and q respectively denote the image domain and q-space. Ψnj(q) is the nj-th
BFOR signal basis with its corresponding coefficient, cnj(x), at x. Ψnj(q) is given as

Ψnj(q) = jl(j)

(αnl(j)|q|
τ

)
Yj

( q

|q|
)
. (2)

Here, αnl is the nth root of the lth order spherical Bessel (SB) function of the first
kind jl. τ is the radial distance in q-space at which the Bessel function goes to zero.
Yj are the modified real and symmetric spherical harmonics (SH) bases as given in [9].

NY = (L+1)(L+2)
2 is the number of terms in the modified SH bases of truncation order

L, while Nb is the truncation order of radial basis. We refer readers to [9] for more
details.

Using the fact that the BFOR signal basis is orthonormal, the L2-norm of S(x,q)
can be easily written as

‖S(x,q)‖2 =

√∫

x∈R3

∫

q∈R3

S2(x,q)dqdx =

√√√√
∫

x∈R3

Nb∑

n=1

NY∑

j=1

cnj(x)2dx . (3)
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2.1 Rotation-Based Reorientation of S(x, q)

We now discuss the reorientation of S(x,q) when rotation transformation R is applied.
We assume that the diffusion profile in each shell of q-space remains in the same shell af-
ter the reorientation. However, its angular profile in each shell of q-space is transformed
according to the rotation transformation. Hence, we define

RS(x,q) = S
(
x, |q|R−1 q

|q|
)
.

According to the BFOR representation of S(x,q) in Eq. (1), we thus have

RS(x,q) =

Nb∑

n=1

NY∑

j=1

cnj(x)jl(j)

(αnl(j)|q|
τ

)
Yj

(
R−1 q

|q|
)
.

This indicates that the rotation reorientation of mDWI is equivalent to applying the
rotation transformation to the real spherical harmonics, Yj . According to the work in
[8], the rotation of Yj can be achieved by the rotation of their corresponding coefficients,
yielding

RS(x,q) =

Nb∑

n=1

( NY∑

j=1

( NY∑

j′=1

Mjj′cnj′(x)
))

jl(j)

(αnl(j)|q|
τ

)
Yj

( q

|q|
)
, (4)

where Mjj′ is the jj′th element of Wigner matrix M(R) constructed based on R (see
details in [8]). We can see that the same Wigner matrix is applied to cnj at a fixed n.
For the sake of simplicity, we rewrite Eq. (4) in the matrix form, i.e.,

RS(x,q) =
(
M(R) c(x)

)�
Ψ (q) ,

where M is a sparse matrix with Nb diagonal blocks of M(R). c is a vector that con-
catenates coefficients cnj′ in the order such that at a fixed n, cnj′ corresponds to M(R).
Ψ (q) concatenates the BFOR signal basis.

2.2 Diffeomorphic Group Action on S(x, q)

We define an action of diffeomorphisms φ : Ω → Ω on S(x,q), which takes into
consideration of the reorientation in q-space as well as the transformation of the spatial
volume in Ω. Based on the rotation reorientation of S(x,q) in Eq. (4), for a given
spatial location x, the action of φ on S(x,q) can be defined as

φ · S(x,q) = S
(
φ−1(x), R−1

φ−1(x)q
)

=
(
M
(
Rφ−1(x)

)
c
(
φ−1(x)

))�
Ψ (q) ,

where Rx can be defined in a way similar to the finite strain scheme used in DTI regis-
tration [1]. That is, Rx = (DxφD

�
x φ)

− 1
2Dxφ, where Dxφ is the Jacobian matrix of φ

at x. For the remainder of this paper, we denote this as

φ · S(x,q) =
((

M(Rx) c(x)
)�) ◦ φ−1(x) Ψ (q) , (5)

where ◦ indicates as the composition of diffeomorphisms.
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2.3 Large Deformation Diffeomorphic Metric Mapping for HYDIs

The previous sections equip us with an appropriate representation of HYDI mDWI
and its diffeomorphic action. Now, we state a variational problem for mapping HY-
DIs from one subject to another. We define this problem in the “large deformation”
setting of Grenander’s group action approach for modeling shapes, that is, HYDI vol-
umes are modeled by assuming that they can be generated from one to another via
flows of diffeomorphisms φt, which are solutions of ordinary differential equations
φ̇t = vt(φt), t ∈ [0, 1], starting from the identity map φ0 = Id. They are therefore
characterized by time-dependent velocity vector fields vt, t ∈ [0, 1]. We define a metric
distance between a target HYDI volume Starg and a template HYDI volume Stemp as
the minimal length of curves φt · Stemp, t ∈ [0, 1], in a shape space such that, at time
t = 1, φ1 · Stemp = Starg. Lengths of such curves are computed as the integrated
norm ‖vt‖V of the vector field generating the transformation, where vt ∈ V , where
V is a reproducing kernel Hilbert space with kernel kV and norm ‖ · ‖V . To ensure
solutions are diffeomorphic, V must be a space of smooth vector fields. Using the du-
ality isometry in Hilbert spaces, one can equivalently express the lengths in terms of
mt, interpreted as momentum such that for each u ∈ V , 〈mt, u ◦ φt〉2 = 〈k−1

V vt, u〉2,
where we let 〈m,u〉2 denote the L2 inner product between m and u, but also, with a
slight abuse, the result of the natural pairing between m and v in cases where m is
singular (e.g., a measure). This identity is classically written as φ∗

tmt = k−1
V vt, where

φ∗
t is referred to as the pullback operation on a vector measure, mt. Using the identity

‖vt‖2V = 〈k−1
V vt, vt〉2 = 〈mt, kV mt〉2 and the standard fact that energy-minimizing

curves coincide with constant-speed length-minimizing curves, one can obtain the met-
ric distance between the template and target volumes by minimizing

∫ 1

0 〈mt, kV mt〉2dt
such that φ1 · Stemp = Starg at time t = 1. We associate this with the variational
problem in the form of

J(mt) = infmt:φ̇t=kV mt(φt),φ0=Id

∫ 1

0
〈mt, kV mt〉2dt+ λ E(φ1 · Stemp, Starg), (6)

where λ is a positive scalar. E quantifies the difference between deformed template
φ1 · Stemp and target Starg. Based on Eq. (3) and (5), E is expressed in the form of

E =

∫

x∈Ω

∥∥(M(Rx) ctemp(x)
) ◦ φ−1(x)− ctarg(x)

∥∥2
2
dx . (7)

2.4 Gradient of J with Respect to mt

We now solve the optimization problem in Eq. (6) via a gradient descent method. The
gradient of J with respect to mt can be computed via studying a variation mε

t = mt +
εm̃t on J such that the derivative of J with respect to ε is expressed in function of
m̃t. According to the general LDDMM framework derived in [7], we directly give the
expression of the gradient of J with respect to mt as

∇J(mt) = 2mt + ληt , (8)

where

ηt = ∇φ1E +

∫ 1

t

[
∂φs(kV ms)

]�
(ηs +ms)ds , (9)
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Eq. (9) can be solved backward given η1 = ∇φ1E. ∂φs(kV ms) is the partial derivative
of kV ms with respect to φs.

In the following, we discuss the computation of ∇φ1E. We consider a variation of φ1

as φε
1 = φ1 + εh and denote the corresponding variation in M(Rx) as M(Rε

x). Denote
ĉ(x) = M(Rx)ctemp(x) for the simplicity of notation. We have

∂E

∂ε

∣∣∣
ε=0

=

∫

x∈Ω

∂
∥∥(M(Rε

x)ctemp(x)) ◦ (φε
1)

−1(x)− ctarg(x)
∥∥2
2

∂ε

∣∣∣
ε=0

dx (10)

= 2

∫

x∈Ω

〈
ĉ(x) ◦ φ−1

1 − ctarg(x),∇�
x ĉ(x) ◦ φ−1

1

∂(φε
1)

−1

∂ε

∣∣∣
ε=0

〉
dx

︸ ︷︷ ︸
term (A)

+ 2

∫

x∈Ω

〈
ĉ(x) ◦ φ−1

1 − ctarg(x),

(
∂M(Rε

x)ctemp(x)

∂ε

∣∣∣
ε=0

)
◦ φ−1

1

〉
dx

︸ ︷︷ ︸
term (B)

.

As the calculation of Term (A) is straightforward, we directly give its expression, i.e.,

Term (A) = −2

∫

x∈Ω

〈(
Dxφ1

)−�∇xĉ(x)
(
ĉ(x)−ctarg

(
φ1(x)

))
det
(
Dxφ1

)
, h
〉
dx .

(11)
This term is similar to that in the scalar image mapping case. It seeks the optimal spatial
transformation φt in the gradient direction of image ĉ(x) weighted by the difference
between the template and target images.

The computation of Term (B) involves the differential of M(Rx) with respect to
rotation matrix Rx and the variation of Rε

x with respect to the small variation of φε
1.

Let’s first compute the derivative of M(Rx) with respect to rotation matrix Rx. Ac-
cording to the work in [2], the analytical form of this derivative can be solved us-
ing the Euler angle representation of Rx but is relatively complex. Here, we consider
Wigner matrix M(Rx) and the coefficients of the BFOR signal basis ctemp(x) to-
gether, which leads to a simple numeric approach for computing the derivative of
ĉ(x) = M(Rx)ctemp(x) with respect to rotation matrix Rx, i.e., ∇Rx ĉ(x). Assume

R̃x = eδUR, where δU =

⎡

⎣
0 −δμ3 δμ2

δμ3 0 −δμ1

−δμ2 δμ1 0

⎤

⎦ is a skew-symmetric matrix param-

eterized by δμ =
[
δμ1 δμ2 δμ3

]�
. From this construction, δU is the tangent vector

at Rx on the manifold of rotation matrices and R̃x is also a rotation matrix. Based on
Taylor expansion, we have the first order approximation of M(R̃x)ctemp(x) as

M(R̃x)ctemp(x) ≈ ĉ(x) +∇�
Rx

ĉ(x)δμ .

Hence, we can compute ∇Rx ĉ(x) as follows. Assume δU1, δU2, δU3 to be skew-
symmetric matrices respectively constructed from [δμ1, 0, 0]

�, [0, δμ2, 0]
�, [0, 0, δμ3]

�.
We have

∇Rx ĉ(x) ≈

⎡

⎢⎣

(
M(eδU1)ĉ(x)− ĉ(x)

)�
/δμ1(

M(eδU2)ĉ(x)− ĉ(x)
)�

/δμ2(
M(eδU3)ĉ(x)− ĉ(x)

)�
/δμ3

⎤

⎥⎦ . (12)
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It is worth noting that this formulation significantly reduces the computational cost
for ∇Rx ĉ(x). Since δμ is independent of spatial location x, M(eδU1), M(eδU2), and
M(eδU3) are only calculated once and applied to all x.

We now compute the variation of Rε
x with respect to the small variation of φε

1. This
has been referred as exact finite-strain differential that was solved in [5] and applied to
the DTI tensor-based registration in [14]. Here, we directly adopt the result from [14]
and obtain

∂Rε
x

∂ε

∣∣∣
ε=0

= −Fx

3∑

i=1

[
ri × (Dxh

�)i
]
, (13)

where Fx = −R�
x

(
trace

(
(Dxφ1D

�
x φ1)

1/2
)
Id− (Dxφ1D

�
x φ1)

1/2
)−1

Rx. × denotes

as the cross product of two vectors. (A)i denotes the ith column of matrix A. ri =
(R�

x )i.
Given Eq. (12) and (13), we thus have

Term (B) = −2

∫
x∈Ω

〈
ĉ(x) ◦ φ−1

1 − ctarg(x),
(
∇Rx ĉ

�(x)Fx

3∑
i=1

[
ri × (Dxh

�)i
] )

◦ φ−1
1

〉
dx

(14)

= −2

∫
x∈Ω

ω�
x

3∑
i=1

[
ri × (Dxh

�)i

]
dx

= −2

∫
x∈Ω

3∑
i=1

〈ωx × ri,∇xhi〉 dx ,

where

ω�
x =

(
∇Rx ĉ

(
ĉ
(
x
)− ctarg

(
φ1(x)

)))�
Fx det

(
Dxφ1

)
, (15)

and h =
[
h1 h2 h3

]�
. Dxh is approximated as

Dxh=

⎡

⎣
∇xh

�
1

∇xh
�
2

∇xh
�
3

⎤

⎦ ≈ 1

2Δd

⎡

⎣
h1,xX+ − h1,xX− h1,xY + − h1,xY − h1,xZ+ − h1,xZ−

h2,xX+ − h1,xX− h2,xY + − h2,xY − h2,xZ+ − h2,xZ−

h3,xX+ − h3,xX− h3,xY + − h3,xY − h3,xZ+ − h3,xZ−

⎤

⎦ ,

where {xX+,xX−,xY+,xY+,xZ+,xZ−} are the neighbors of x in x, y, z directions,
respectively. Δd is the distance of these neighbors to x. Here, term (B) seeks the spatial
transformationφt such that the local diffusion profiles of the template and target HYDIs
have to be aligned.
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In summary, we have

∂E

∂ε

∣∣∣
ε=0

≈ −2

∫

x∈Ω

〈(
Dxφ1

)−�∇xĉ(x)
(
ĉ(x)− ctarg

(
φ1(x)

))
det
(
Dxφ1

)
, h
〉
dx

(16)

− 1

Δd

∫

x∈Ω

3∑

k=1

⎧
⎨

⎩

〈
ωx × rk,

⎡

⎣
hk,xX+

hk,xY +

hk,xZ+

⎤

⎦
〉

−
〈
ωx × rk,

⎡

⎣
hk,xX−

hk,xY −

hk,xZ−

⎤

⎦
〉⎫⎬

⎭ dx.

Therefore, ∇φ1E can be obtained from Eq. (16).

2.5 Numerical Implementation

We so far derive J and its gradient ∇J(mt) in the continuous setting. In this section,
we elaborate the numerical implementation of our algorithm under the discrete setting.
Since HYDI DW signals were represented using the orthonormal BFOR signal bases,
both the computation of J in Eq. (6) and the gradient computation in Eq. (16) do not
explicitly involve the calculation Ψ (q). Hence, we do not need to discretize the q-space.
In the discretization of the image domain, we first represent the ambient space, Ω, using
a finite number of points on the image grid, Ω ∼= {(xi)

N
i=1}. In this setting, we can

assume mt to be the sum of Dirac measures, where αi(t) is the momentum vector at xi

and time t. We use a conjugate gradient routine to perform the minimization of J with
respect to αi(t). We summarize steps required in each iteration during the minimization
process below:

1. Use the forward Euler method to compute the trajectory based on the flow equation:

dφt(xi)

dt
=

N∑

j=1

kV (φt(xi), φt(xj))αj(t) . (17)

2. Compute ∇φ1(xi)E based on Eq. (16).
3. Solve ηt = [ηi(t)]

N
i=1 in Eq. (9) using the backward Euler integration, where i

indices xi, with the initial condition ηi(1) = ∇φ1(xi)E.
4. Compute the gradient ∇J(αi(t)) = 2αi(t) + ηi(t).
5. Evaluate J when αi(t) = αold

i (t) − ε∇J(αi(t)), where ε is the adaptive step size
determined by a golden section search.

3 Experiments

In this section, we first illustrate the mapping results of HYDI datasets using LDDMM-
HYDI and then evaluate the influence of the reorientation on the optimization of the
diffeomorphic transformation, which is often neglected in existing DWI-based regis-
tration algorithms (e.g., [3,4]). Seven HYDI datasets used in this study consisted of 6
shells corresponding to b-values of 0, 300, 1200, 2700, 4800, and 7500 s/mm2. We
refer readers to [12] for more details on the HYDI acquisition. In our experiments, we
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A. subject 1 template b = 300 b = 1200 b = 2700 b = 4800 b = 7500

deformed
template

B. subject 2 template b = 300 b = 1200 b = 2700 b = 4800 b = 7500

deformed
template

C. subject 3 template b = 300 b = 1200 b = 2700 b = 4800 b = 7500

deformed
template

Fig. 1. Illustration of the LDDMM-HYDI mapping results. The first row of panels (A-C) illus-
trates the subject image, template image, the diffusion profiles at individual shells with b=300,
1200, 2700, 4800, and 7500 s/mm2 in q-space, respectively. The second row of panels (A-C)
illustrates the deformed template image after the LDDMM-HYDI mapping, the diffusion profiles
at individual shells with b=300, 1200, 2700, 4800, and 7500 s/mm2 in q-space, respectively.
Red, blue, and green contours in the last five columns respectively illustrate the diffusion profiles
of the subject, template, and deformed template. The closer the green contour to the red contour,
the better the alignment. Note that the profile of diffusion weighted signals is shown in this figure.
It is orthogonal to the fiber orientation.
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represented HYDI DW signals using the BFOR signal basis with upto the fourth order
modified SH bases and upto the sixth order spherical Bessel function. The correspond-
ing BFOR expansion coefficients were used in the LDDMM-HYDI optimization.

Figure 1 shows the LDDMM-HYDI mapping results of three subjects. The last five
columns respectively illustrate the geometric shapes of the diffusion signals at five
shells of q-space in the brain regions with crossing fibers. Red, blue, and green contours
respectively represent the shape of the diffusion signals from the subject, template, and
deformed template. Visually, the diffusion profile at each shell can be matched well
after the mapping. Table 1 lists the squared difference in the diffusion signals of the
subjects and the template before and after the LDDMM-HYDI mapping at individual
shells in q-space, suggesting the significant improvement in the alignment of DWIs after
the mapping (p < 0.05).

We next evaluated the mapping accuracy of the LDDMM-HYDI algorithms with and
without the computation of Term (B) in Eq. (10) during the optimization, where Term
(B) seeks the diffeomorphic transformation such that the local diffusion profiles of the
template and target HYDIs can be aligned. For this, we first computed the diffusion
probability density functions (PDFs) of water molecules, i.e., the ensemble average
propagator (EAP), using Fourier transform [9]. Then, we calculated the symmetrized
Kullback-Leibler (sKL) divergence between the deformed template and target PDFs
[6] in major white matter tracts. The smaller sKL metric indicates the better alignment
between the deformed template and target images. The major white matter tracts eval-
uated in this study include corpus callosum (CC), corticospinal tract (CST), internal
capsule (IC), corona radiata (CR), external capsule (EC), cingulum (CG), superior lon-
gitudinal fasciculus (SLF), and inferior fronto-occipital fasciculus (IFO). Table 2 lists
the values of the mean and standard deviation of the sKL metric for each major white
matter tract among six subjects when the LDDMM-HYDI algorithms with and without
the Term (B) computation were respectively employed. These results suggest that the
LDDMM-HYDI algorithm with the explicit orientation optimization (Term (B) com-
putation) significantly improves the alignment in the major white matter tracts when
compared to that without the explicit orientation optimization (p < 0.05).

Last, we generated the mDWI atlas by averaging the corresponding BFOR coeffi-
cients across seven subjects. For visualizing the neural fiber organization of this atlas,
we constructed the EAP image based on the method in [9]. Figure 2 shows the diffusion
profiles of this atlas at three layers of the EAP space.

Table 1. Evaluation of the LDDMM-HYDI mapping accuracy. The first row lists the squared
difference in the diffusion signals of subjects and the template at each shell, while the second row
lists that between subjects and the deformed template after the LDDMM-HYDI mapping. The
numbers listed are the average and standard deviation values across six subjects.

b=300 b=1200 b=2700 b=4800 b=7500
before LDDMM-HYDI 7.676(0.800) 5.475(0.318) 2.988(0.135) 2.533(0.071) 2.629(0.109)
after LDDMM-HYDI 2.675(0.143) 2.681(0.150) 1.775(0.071) 1.626(0.044) 1.516(0.047)
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A. Atlas B. p = 5µm C. p = 10µm D. p = 15µm

0 3.2× 105 0 6.4× 104 0 3.2× 104

Fig. 2. HYDI atlas in the ensemble average propagator (EAP) space. Panel (A) shows the at-
las in terms of zero displacement probability (Po), a scalar image defined in [9] based on
EAP. Panels (B-D) respectively illustrate the diffusion profiles of the atlas at three given radii
(p = 5, 10, 15µm) in the EAP space. The color indicates the values of EAP.

Table 2. Table lists the mean and standard deviation values of the symmetrized Kullback-Leibler
(sKL) divergence of the diffusion probability density functions (PDFs) between the deformed
template and target HYDIs in each major white matter tract. The second and third columns show
the results obtained from the LDDMM-HYDI with and without the Term (B) computation. *
denotes statistical significance indicating that the alignment obtained from the LDDMM-HYDI
with the Term (B) computation is better than that obtained from the LDDMM-HYDI without the
Term (B) computation at a significance level of 0.05. Abbreviation: CC-corpus callosum; CST-
corticospinal tract; IC- internal capsule; CR-corona radiata; EC-external capsule, CG-cingulum,
SLF-superior longitudinal fasciculus, and IFO-inferior fronto-occipital fasciculus.

LDDMM-HYDI with Term (B) LDDMM-HYDI without Term (B)
CST 0.598(0.265) 0.676(0.305)*
CC 0.407(0.180) 0.452(0.202)*
IC 0.425(0.189) 0.446(0.200)*
CR 0.368(0.163) 0.429(0.191)*
EC 0.476(0.212) 0.488(0.218)*
CG 0.504(0.223) 0.566(0.252)*
SLF 0.409(0.187) 0.527(0.241)*
IFO 0.518(0.229) 0.543(0.240)*

4 Conclusion

In this paper, we proposed the LDDMM-HYDI variational problem based on the BFOR
signal basis representation of DWIs. We derived the gradient of this variational problem
with the explicit computation of the mDWI reorientation and provided a numeric algo-
rithm without a need of the discretization in q-space. Our results showed that the ex-
plicit orientation optimization is necessary as it improves the alignment of the diffusion
profiles of HYDI datasets.



158 J. Du et al.

Acknowledgments. The work was supported by the Young Investigator Award at the
National University of Singapore (NUSYIA FY10 P07), the National University of Sin-
gapore MOE AcRF Tier 1, Singapore Ministry of Education Academic Research Fund
Tier 2 (MOE2012-T2-2-130), and NIH grants (MH84051, HD003352, AG037639, and
AG033514).

References

1. Alexander, D., Pierpaoli, C., Basser, P., Gee, J.: Spatial transformation of diffusion tensor
magnetic resonance images. IEEE Trans. on Medical Imaging 20, 1131–1139 (2001)

2. Cetingul, H., Afsari, B., Vidal, R.: An algebraic solution to rotation recovery in hardi from
correspondences of orientation distribution functions. In: 2012 9th IEEE International Sym-
posium on Biomedical Imaging (ISBI), pp. 38–41 (May 2012)

3. Dhollander, T., Van Hecke, W., Maes, F., Sunaert, S., Suetens, P.: Spatial transformations of
high angular resolution diffusion imaging data in Q-space. In: MICCAI CDMRI Workshop,
pp. 73–83 (2010)

4. Dhollander, T., Veraart, J., Van Hecke, W., Maes, F., Sunaert, S., Sijbers, J., Suetens, P.:
Feasibility and advantages of diffusion weighted imaging atlas construction in Q-space.
In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892,
pp. 166–173. Springer, Heidelberg (2011)

5. Dorst, L.: First order error propagation of the procrustes method for 3d attitude estimation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 221–229 (2005)

6. Du, J., Goh, A., Qiu, A.: Diffeomorphic metric mapping of high angular resolution diffusion
imaging based on riemannian structure of orientation distribution functions. IEEE Transac-
tions on Medical Imaging 31(5), 1021–1033 (2012)

7. Du, J., Younes, L., Qiu, A.: Whole brain diffeomorphic metric mapping via integration of
sulcal and gyral curves, cortical surfaces, and images. NeuroImage 56(1), 162–173 (2011)

8. Geng, X., Ross, T.J., Gu, H., Shin, W., Zhan, W., Chao, Y.P., Lin, C.P., Schuff, N., Yang, Y.:
Diffeomorphic image registration of diffusion mri using spherical harmonics. IEEE Transac-
tions on Medical Imaging 30(3), 747–758 (2011)

9. Hosseinbor, A.P., Chung, M.K., Wu, Y.C., Alexander, A.L.: Bessel fourier orientation re-
construction (bfor): An analytical diffusion propagator reconstruction for hybrid diffusion
imaging and computation of q-space indices. NeuroImage 64, 650–670 (2013)

10. Hsu, Y.C., Hsu, C.H., Tseng, W.Y.I.: A large deformation diffeomorphic metric mapping
solution for diffusion spectrum imaging datasets. NeuroImage 63(2), 818–834 (2012)

11. Raffelt, D., Tournier, J.D., Fripp, J., Crozier, S., Connelly, A., Salvado, O.: Symmetric diffeo-
morphic registration of fibre orientation distributions. NeuroImage 56(3), 1171–1180 (2011)

12. Wu, Y.C., Alexander, A.L.: Hybrid diffusion imaging. NeuroImage 36(3), 617–629 (2007)
13. Yap, P.T., Shen, D.: Spatial transformation of dwi data using non-negative sparse representa-

tion. IEEE Transactions on Medical Imaging 31(11), 2035–2049 (2012)
14. Yeo, B., Vercauteren, T., Fillard, P., Peyrat, J.M., Pennec, X., Golland, P., Ayache, N., Clatz,

O.: Dt-refind: Diffusion tensor registration with exact finite-strain differential. IEEE Trans-
actions on Medical Imaging 28(12), 1914–1928 (2009)

15. Zhang, P., Niethammer, M., Shen, D., Yap, P.-T.: Large deformation diffeomorphic registra-
tion of diffusion-weighted images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.)
MICCAI 2012, Part II. LNCS, vol. 7511, pp. 171–178. Springer, Heidelberg (2012)


	Diffeomorphic Metric Mapping of Hybrid DiffusionImaging Based on BFOR Signal Basis
	1 Introduction
	2 Methods
	2.1 Rotation-Based Reorientation of
	2.2 Diffeomorphic Group Action on
	2.3 Large Deformation Diffeomorphic Metric Mapping for HYDIs
	2.4 Gradient of
	2.5 Numerical Implementation

	3 Experiments
	4 Conclusion
	References




