
Multi-layer Deformation Estimation

for Fluoroscopic Imaging

J. Samuel Preston1, Caleb Rottman1, Arvidas Cheryauka2, Larry Anderton2,
Ross T. Whitaker1, and Sarang Joshi1

1 Scientific Computing and Imaging (SCI) Institute, University of Utah
{jsam,crottman,whitaker,sjoshi}@sci.utah.edu

2 GE Healthcare
{arvi.cheryauka,larry.anderton}@med.ge.com

Abstract. Accurate estimation of motion in fluoroscopic imaging se-
quences is critical for improved frame interpolation/extrapolation, track-
ing of surgical instruments, and Digital Subtraction Angiography (DSA).
The projection of multiple transparent objects undergoing multiple com-
plicated deformations in 3D onto a single 2D view makes this motion es-
timation problem quite challenging and ill-suited to existing techniques
used in medical image analysis. We propose a novel method for jointly
decomposing the observed image into a set of additive layers each as-
sociated with its corresponding smooth nonlinear deformation, which
together model the non-smooth motion observed in the projection im-
ages across several frames. A total variation based regularization penalty
is used to incorporate the known structure of the input frames for well
posedness of the layer separation problem. We present the use of this
model for frame interpolation and artifact reduction in DSA. Results are
included from synthetic and real clinical datasets.

1 Introduction

Registration and motion estimation are a mainstay of modern medical image
analysis, used for comparison and analysis of structures between patients or
across multiple timepoints, motion prediction for treatment planning, and mo-
tion compensation for improved reconstruction and denoising, among other ap-
plications. Estimating a dense deformation field representing correspondences
between image locations is an under-constrained problem, but correspondences
modeling image differences due to motion, growth, and inter-subject variability
of biological structures has been shown to be well-modeled by smooth deforma-
tion fields [12]. Fluoroscopic imaging is an important tool commonly used for
diagnosis and interventional procedures. Motion estimation from fluoroscopic
imaging is needed for accurate frame interpolation or motion extrapolation.
This provides opportunities for lower framerates by reducing the exposure of
the patient to ionizing radiation. In addition, Digital Subtraction Angiography
(DSA) is a common technique for analyzing the vascular structure for diagnosis
as well as interventional procedures [8]. In DSA, a radiographic contrast agent
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is injected into a blood vessel, and then a pre-contrast frame (or mask) is sub-
tracted from all the subsequent frames. Ideally, the resulting subtraction would
only show the intensity change due to the injected contrast. In practice, normal
physiological motion due to breathing and heartbeat as well as other patient
motion introduces artifacts in the subtracted images, and so motion estimation
between the mask and current frames is needed to suppress these artifacts.

Unlike standard 3D image based deformation estimation problems in which
each point in the reference image is assumed to map to a single point in the
target image, fluoroscopic imaging techniques generate a projection of a three-
dimensional object onto a two-dimensional imaging plane. This results in a mo-
tion estimation problem in which smooth motion of the true 3D object projects
on to a non-smooth motion in the acquired image, and the intensity of each pixel
at one timepoint contributes to the intensity of multiple dispersed locations in
another timepoint. A ‘true’ motion model for this situation would reconstruct the
3D scene and smooth 3D motion field associated with each frame of the imaging
sequence. This has been studied in scenes with opaque objects as structure from
motion, which is still a difficult and open area of research. As we are primarily
interested in estimating realistic deformations and frames as seen from the same
viewpoint as the original series, we propose instead to model the motion as a
number of additive layers each undergoing a smooth transformation. To achieve
our goals, these layers need not represent a segmentation of objects in the scene –
they must only separate overlapping objects where contradictory motion violates
a smooth-deformation model. The sum of smoothly deforming layers can then
accurately describe the motion in the original frames. Our method will jointly
estimate these layers and corresponding deformations.

2 Background

While there has been extensive work on layer-based representations of 3D scenes
in the computer vision community, the vast majority have assumed opaque ob-
jects, segmenting the optical flow field into regions undergoing similar trans-
formations and estimating a set of deformations and unique pixel assignments
( [18,19], etc. ). In cases where transparency or reflections are considered, layer
extraction models use only two layers, and even then only in constrained situa-
tions such as linear or repetitive motion, or with pairs of images obtained with
different compositing functions [13, 16, 17].

Estimation of multiple motions at each point has been studied via the double
optical flow constraint proposed in [14] which estimates two motion vectors at
each point. Other similar formulations and extensions attempt regularize these
fields into consistent motion models or increase the number of motions captured
at each point [7, 10, 11, 15]. These formulations do not attempt layer extraction
(estimation of the layer intensities) and cannot be used to generate interpolated
or motion compensated frames.

In applications to X-ray imaging, Close et al. [6] propose an ad hoc hi-
erarchical algorithm for layer extraction in analysis of angiographic stenosis.
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This formulation assumes linear transformation of layers, and the sequential layer
estimation and removal seems error prone. Chen et al. [4] propose a method for
two layer extraction with one layer being static and the availability of dual-
energy X-rays, which is a far more constrained situation than we wish to model.
Auvray et al. [1] attempt motion compensation for denoising of fluoroscopic
sequences using the three-frame motion constraint of [10]. Although this formu-
lation is derived in terms of translational motion, it is used to solve for nonlinear
motion. Also, although multiple motion layers are estimated, only two motions
may occur at any point. Further, only motions and regions of influence are
modeled, not the actual layer intensities. This greatly constrains the type of
prediction or compensation for which this technique can be used.

3 Methods

Focusing on data from fluoroscopic imaging provides both simplifications and
complications when compared to working with video sequences with transparency
and reflections, a case often studied in the literature. With the exception of ob-
jects completely attenuating the imaging signal (a case we will ignore), we can
assume that all objects are ‘translucent’, such that we do not have to consider
occlusions. Also, unlike a video sequence in which a panning of the camera to
follow a moving object may create one ‘layer’ whose extent is much larger than
the area captured by a single frame, we assume the object being imaged stays
mostly within the field of view, with relatively small portions moving in and
out of frame. However, unlike much of the work on video analysis, we will not
assume that layer motions can be described by a homographies or even low-order
polynomial parameterizations. Further, we will not assume a ‘dominant’ motion
between frames, and will therefore avoid a hierarchical motion decomposition.

3.1 Frame Generation Model

We are interested in modeling a time series of fluoroscopic imaging frames as
a number of superimposed layers each undergoing a smooth deformation. For a
scene with multiple objects, we will model the X-ray intensity at the detector
as β exp(−∑

i μidi), where μi is the attenuation coefficient, di is the thickness
of the ith object, and β is a constant representing the maximum transmission
value. Assuming a log-transformed image (although in practice clinical data may
have some approximation applied), our model subtracts the contribution of each
layer from M , a maximum observed image intensity. This produces layers where
zero values are be interpreted as the absence of an object.

Assume we are given a series of F frames acquired at evenly spaced time
intervals, and that we wish to represent this series with N layers. The frames
will be indexed by time, where the first frame occurs at time t0 and frame
F occurs at time tT, with T = F − 1. These input frames will be labeled
I0(x) . . . IT(x). We will model each layer {Ln}n=0...N−1 as undergoing its own
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smooth deformation φn(x, t), t ∈ [t0, tT] using the standard large deforma-
tion model [3, 5], where φ(x, t) is defined via the time-varying velocity field

vn(x, t), φ(x, t) = φ(x, t0) +
∫ t

t0
v(φ(x, s), s) ds, where φ(x, t0) = x. Smooth-

ness of the deformation φ is enforced by penalizing
∫ tT
t0

‖v(x, t)‖2V dt, where

‖v‖2V =< Lv,v >2 for smooth velocity field v, and L is a differential operator
penalizing non-smoothness. Under reasonable smoothness assumptions the de-
formation φ(x, t) is guaranteed to be diffeomorphic, guaranteeing the existence
of φ−1(x, t). Following [3] we will use the notation φt,s(x) = φ(φ−1(x, tt), ts)
for the deformation moving the point x at time tt to its location at time ts.
Going forward we will also drop explicit mention of the spatial parameter x for
notational convenience. The model for frame t is then

It = M −
N−1∑

n=0

Ln
t +N (0, σ2), (1)

where Ln
t = Ln ◦ φn

t,0 and N (0, σ2) represents the corruption of the ideal image
by additive zero-mean Gaussian noise. Although this is not technically correct
for our log-transformed photon count model, we assume the process is sufficiently
close to a Gaussian model.

3.2 Layer Gradient Penalty

Our method jointly estimates both the layers and the deformations. Even with
the smoothness constraint on the deformations imposed by the large deforma-
tion model this is an extremely underconstrained problem. In order to formulate
a well posed estimation problem, some assumptions regarding the properties of
the layers must be made. We wish to separate overlapping objects in the input
frames into different layers in our model. Reducing the number of edges in layer
images will help with this goal, as the overlapping of transparent objects intro-
duces an edge which will appear in multiple layers if proper separation has not
been achieved. A natural choice would be to impose a total variation penalty
on the layer images. Such a penalty encourages sparsity of gradients within an
image, and more importantly for our application, encourages sparsity of gra-
dients across the layer images. Even with the ‘smooth layers’ constraint, the
formulation permits ambiguous solutions for even simple motion as shown in
Figure 1. This shows a small object moving to the right between two timepoints.
Solution (a) is the ‘expected’ solution, however we see that solution (b) may
actually be the optimal solution given the tradeoff between deformation1 and
gradient penalties. In order to improve this situation we note that other infor-
mation is available which can improve the solution. Consistent motion across

1 A pure translation will not be penalized by our smoothness penalty, however in
realistic 2D scenes a pure translation would be uncommon, so for purposes of this
example we can associate increased size of deformation with increasing smoothness
penalty.
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Fig. 1. A 1D example of two possible solutions accounting for the movement of a small
object with two layers. Note that a larger deformation is required in case (a), and more
edges are required in case (b).

multiple frames can remove ambiguity. We can also use the frame data to im-
prove the layer smoothness penalty. We know that if there is an edge in a frame,
that edge should exist in at least one layer. Further, if some location contains no
edge in a frame, no edge should exist at that location in any layer at that time.
Observe that this is violated in Figure 1 (b). However, as our goal is to separate
objects into different layers, we do not want to force every edge into every layer.
Consider the following penalty

∫

Ω

‖∇Ln‖2 −∇Ln · n0 dx, (2)

where n0 represents the normals of the pseudo-attenuation frame M − I0 taken
with a ‘cutoff’ regularization based on parameter ε:

n0 =

{
− ∇I0

‖∇I0‖2
if ‖∇I0‖2 ≥ ε,

0 if ‖∇I0‖2 < ε.
. (3)

This looks like a standard TV penalty on the layer Ln except where an edge
occurs in the frame I0. Here the penalty is eliminated if the gradient in the layer
aligns (in the same direction) with the gradient of the frame, and is doubled if
they align in opposite directions. Also note that this value is always nonnegative,
as ∇Ln · n0 takes its maximum value when n0 = ∇Ln

‖∇Ln‖2
, resulting in zero

penalty. It is also zero if ∇Ln is zero, meaning there is no penalty for a layer
not representing an edge in I0. Of course, noise in the frame will cause incorrect
estimates of the normals. It will be important for our results to have nonzero
normals only where true edges in the frame exist. To ensure this, we will calculate
normals from Ī0, a denoised version of frame I0. As we desire sparse gradients,
a standard total variation based denoising method is employed. We note that a
penalty very similar to (2) is proposed in [9] for the purposes of denoising, where
the normals used are estimates the ‘true’ normals of the image being denoised,
and are approximated by the normals of the TV-denoised image.

The undeformed layers are estimated at time t0, and therefore equation (2)
only makes sense for the normals of frame I0. We do not wish to bias our so-
lution to the configuration of objects observed at t0, so we propose a version
incorporating all frames
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T∑

t=0

∫

Ω

‖∇Ln‖2 −∇Ln · ñt dx, (4)

where ñt represents the normals of the denoised version of M − It taken after
deforming it to time t0, once again with cutoff ε:

ñt =

{
− ∇(̄It◦φt,0)

‖∇(̄It◦φt,0)‖2
if ‖∇(̄It ◦ φt,0)‖2 ≥ ε,

0 if ‖∇(̄It ◦ φt,0)‖2 < ε.
. (5)

As standard numerical solutions of TV denoising do not result in perfectly uni-
form image regions, the parameter ε is chosen to ignore very small gradients, in
our case approximately one percent of the input image intensity range.

3.3 Energy Formulation

We will formulate the estimation as an energy minimization problem. Given the
current constraints, the energy will have the form

Etotal = Edata + λLElayer + λvEdef , (6)

where Edata is the data attachment term, Elayer is the layer gradient penalty, and
Edef enforces the deformation smoothness constraints. The constants λL and λv

control the tradeoff between the goals pursued by the different terms. We can
now explicitly state the penalty terms. The data term will come directly from
the frame generation equation (1)

Edata =
T∑

t=0

‖Ît − It‖22, (7)

where Ît is the estimated frame at time tt; Ît = M−∑N−1
n=0 Ln

t . The layer gradient
penalty, as outlined above, is

Elayer =

N−1∑

n=0

T∑

t=0

∥
∥
∥‖∇Ln‖2 −∇Ln · ñt

∥
∥
∥
1
, (8)

and the deformation smoothness, again as discussed above, is

Edef =

N−1∑

n=0

∫ tT

t0

∥
∥vn

t

∥
∥2
V
dt, (9)

where ‖ · ‖V is dependent on our choice of L. In this work we will use L = ∇2,
the Laplacian operator. Note that we also should normalize for the number of
frames, but for brevity we have absorbed this in our constants λL and λv. Our
problem is then formulated as

arg min
{Ln}n,{vn

t }n,t

Etotal ({It}t, {Ln}n, {vn
t }n,t) . (10)
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3.4 Residual Layers

Although the smooth deformation of layers described above can adequately de-
scribe the motion caused by breathing, heartbeat, and other deformations of 3D
anatomy, there are some important cases for fluoroscopic imaging which violate
this model. Specifically, the introduction of new objects such as tools during
interventional procedures or contrast agents during angiography are not han-
dled by our model. In order to accommodate these cases, additional layers with
specific properties meant to model these situations are introduced.

We will look at the case of a radiographic contrast medium introduced into the
vascular system to increase the contrast between blood vessels and surrounding
tissue, thereby exposing vessel blockages, leaks, and abnormalities . The contrast
enters the frame as a large dark object, and spreads rapidly from frame to frame.
In order to model the contrast, we introduce a ‘residual’ layer which accounts for
inter-frame changes not well modeled by a deformation. Based on the observed
properties of contrast, we model it as a smooth contiguous object. The layer
should also be sparse, containing mostly zero values. We therefore estimate a
layer at each timepoint which is not subject to deformation, and impose a TV
penalty and L1 penalty on this layer. The model for our estimated frame is then
Î = M − ∑N−1

n=0 Ln
t − bt, where bt is the residual layer at tt, t ∈ {0 . . .T}, and

we introduce a new term to the energy minimization

Eres = λTV

T∑

t=0

∥
∥‖∇bt‖2

∥
∥
1
+ λL1

T∑

t=0

∥
∥bt

∥
∥
1
. (11)

again accounting for normalization over the number of frames in the constants
λTV and λL1 .

3.5 Discretization and Solution

Since the time interval between frames is arbitrary in our formulation, we choose
unit temporal spacing, t0 = 0, t1 = 1, . . . , tT = T. We expect small deformations
between subsequent frames, so our discretization of a time-varying velocity field
v(x, t) will match the frame times such that there is one piecewise-constant (in
time) velocity field vt(x) corresponding to each frame It, t ∈ {0 . . .T− 1}. Euler
integration in time will be used for generating φ from v, and bilinear interpolation
is used for deformation of images and composition of deformations. For reverse-
time integration, the small-deformation approximation v−1 = −v will be used.

In order to optimize the layer gradient penalty (8), we use a primal-dual
strategy based on [20]. This choice is based on properties of the regularized
primal variation as ∇Ln

t → 0 with ∇It �= 0, which could force some portion
of ∇It into each layer. Noting that ‖∇Ln‖2 = ∇Ln · ∇Ln

‖∇Ln‖2
and choosing a

dual variable pns.t. ‖pn‖2 ≤ 1 approximating ∇Ln

‖∇Ln‖2
for n ∈ {0 . . .N − 1}, we

rewrite (8) as

Elayer =

N−1∑

n=0

T∑

t=0

∥
∥
∥∇Ln · (pn − ñt

)∥∥
∥
1
. (12)
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This transforms the minimization (10) in to a max/min problem. When including
a residual layer in our formulation, we also introduce a dual variable qt for each
residual image bt in order to solve the total variation penalty. The L1 penalty
is solved using a ‘shrinkage’-based [2] L1 update on bt.

A multiscale algorithm is used to ensure correct deformations are found even
in cases of large movements of small structures such as vessels. At each scale
level Īt is computed from the appropriately downsampled version of It, and ñt

is then calculated from Īt via equation (5). The algorithm iteratively updates
each {Ln}n, {pn}n, and {vn

t }n,t (and {qt}t and {bt}t if using residual layers),
taking appropriate gradient descent steps on the primal variables, and gradient
ascent steps on the dual variables followed by reprojection onto their constraints,
repeating until convergence.

4 Results

We first present results on a synthetic dataset meant to approximate a fluo-
roscopic image sequence of a contrast-enhanced vessel structure (see the first
column of Figure 2). This is included to highlight characteristics of solutions
this algorithm produces. Results are then presented on the clinical angiogra-
phy dataset the synthetic data was meant to approximate (see first column of
Figure 3). Finally results are presented for the DSA application using the defor-
mation with residual model on a clinical dataset (Figure 5 (a) and (b)). Values
for the λ constants were determined experimentally. The synthetic and clinical
data frames are 256×256 and 512×512 pixels, respectively. Optimization was
run on a NVIDIA Tesla C1060. Each gradient descent iteration on the clinical
data at the finest scale level takes approximately 310 ms. Results presented were
run for 4000 iterations at each scale level to ensure convergence.

The synthetic data is generated from four layers; a static ‘rib’, a slowly mov-
ing ‘diaphragm’, and two ‘vessel’ layers representing a vessel tree undergoing
a nonlinear deformation with branches overlapping from the imaged viewpoint.
Although the data is generated from four layers, experimental results reveal
that three layers are sufficient to capture the independent motion of different
structures, and additional layers do not improve the result.

The results in Figure 2 are a representative example of the solutions found by
our algorithm. While the results are not correct from a segmentation perspec-
tive, in a given region any objects displaying contradictory motion are separated.
Note that the diaphragm object has been removed from the upper portion of L0,
allowing the vessel to cross the diaphragm boundary. While we employ a total
variation based regularization on the layers in order to help separate objects
and estimate coincident motions, we do not typically want the highly denoised
results shown in columns (b) and (c). In fact, we see areas at the tips of the
vessel structure where fine detail has been obliterated by the de-noising proper-
ties of the estimation. If the set of estimated deformations are consistent with
the motion of the imaged objects, it is possible to re-estimate only the layer
intensities given these fixed deformations. In this case very little regularization
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(a) (b) (c) (d)

I0 L0
0 est @ t0 re-est @ t0

I1 L1
0 est @ t1 re-est @ t1

I2 L2
0 est @ t2 re-est @ t2

Fig. 2. Results of layer and deformation estimation on synthetic dataset. Column
(a) shows the input frames. Column (b) shows each layer at t0. Column (c) shows
the estimated frame at each timepoint. Column (d) show the reconstruction with re-
estimated layers.

is necessary in the intensity estimation, and the resulting layers preserve the
noise texture and much of the fine detail of the original images, as shown in
column (d). By temporal interpolation we can use our layer model to generate
intermediate frames, as shown in Row (a) of Figure 4 where the re-estimated
layers have been used.

Figure 3 shows results on a clinical angiography dataset. A Three-layer model
has again been chosen based on experimental results. Note the separation of the
most prominent vessel from the diaphragm. Once again, we show initial denoised
layers as well as re-estimated layers. Row (b) of Figure 4 shows an interpolated
frame between times t0 and t1. Note the crossing of vessels in the upper portion of
the image.

Figure 5 shows the results of using a residual layer and two deforming lay-
ers to estimate the motion and contrast between two frames of an angiographic
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(a) (b) (c) (d)

I0 L0
0 est @ t0 re-est @ t0

I1 L1
0 est @ t1 re-est @ t1

I2 L2
0 est @ t2 re-est @ t2

Fig. 3. Results of layer anddeformation estimation on clinical dataset.Column (a) shows
the input frames. Column (b) shows each layer at t0. Column (c) shows the estimated
frame at each timepoint. Column (d) show the reconstruction with re-estimated layers.

sequence to diagnose stent placement for treatment of an abdominal aortic
aneurysm, and compares against static subtraction and elastic registration.

In this paper we proposed a model of dynamic X-ray images that consists of a
set of superimposed, smoothly deforming layers, that combine additively to de-
scribe the spatio-temporal behavior of projected 3D motion. We also described
an estimate procedure and demonstrated the feasibility of this technique for
motion modeling in fluoroscopic imaging. We observed that this process should
not be considered as a conventional segmentation problem; the estimated layers
need not be a segmentation of physical objects in the scene in order to accurately
represent the observed sequence. The estimation of such a layered model is in-
herently difficult. It is under constrained and there are many feasible solutions,
even for simple examples. To address this challenge we propose regularizing the
problem with a set of both general and application-specific penalties or models.
For this we have introduced a novel penalty of gradients in the layers which forces
layer edges to align with those in the observations. Also, we have introduced a
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(a)

(b)

est @ t0 est @ t0.5 est @ t1

Fig. 4. Frame interpolation using estimated layers and deformations. Row (a) shows
results on synthetic data from Figure 2, and row (b) on clinical data from Figure 3.
The center frame is estimated between t0 and t1.

(a) (b) (c)

(d) (e) (f)

Fig. 5. DSA Results. (a) and (b) show initial (mask) frame and current frame, respec-
tively. (c) show static subtraction. (d) is the estimated current frame (from layered
registration) without residual layer. (e) shows DSA using frame (d). (f) shows subtrac-
tion using simple elastic registration between frames.

layer with a dynamic contrast model, and shown its effectiveness in correcting
the motion artifacts in digital subtraction angiography.

The authors would like to acknowledge the support from GE Healthcare,
which made this explorational research possible.
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