Planning-Based Method for Communication
Protocol Negotiation in a Composition
of Data Stream Processing Services

Pawel Stelmach, Pawel Swiatek, Lukasz Falas, Patryk Schauer, Adam Kokot,
and Maciej Demkiewicz

Institute of Informatics, Wroctaw University of Technology
Wyb. Wyspiariskiego 27, 50-370 Wroctaw, Poland
{pawel.stelmach,pawel.swiatek,lukasz.falas,patryk.schauer,
adam.kokot ,maciej.demkiewicz}@pwr.wroc.pl

Abstract. Data streaming is often used for video and sensor data deliv-
ery, nowadays gaining in popularity along with the development of mobile
devices. In this paper we briefly describe a platform for automated com-
position of distributed data stream processing services. It decreases the
complexity of composite service building process from the users point of
view by introducing automation mainly in appropriate service selection
and their communication protocols negotiation. This paper is focused
on automated negotiation of communication protocols, which will be
further used to transfer data among services. Data stream processing
services are designed independently, often with many possible communi-
cation methods and not pointing directly to other services. With the use
of the platform, they can be loosely coupled, forming a composite service
od-demand. We present several approaches to communication protocol
negotiation in a composition of data stream processing services and in-
troduce planning-based approach. Finally, we discuss consequences of
various approaches on an example composite service from image pro-
cessing domain.

Keywords: Service Oriented Architecture, data stream processing ser-
vices, service management.

1 Introduction

With the development of Internet more and more applications are available
via Web. Also, they no longer have to be monoliths but developers outsource
many functions to web services. This service orientation became more popular
over the recent decade with the SOA paradigm (Service Oriented Architecture),
which introduced a way to build large distributed systems. It uses standards, like
WS-* for SOAP-based web services and WSDL for their description. However,
the Web Service standard is based on request and result behaviour. After that
the service is expected to stop working, waiting for the next request. This seems
natural, however, the need for continuous access to ever-changing data, like video

A. Kwiecieni, P. Gaj, and P. Stera (Eds.): CN 2013, CCIS 370, pp. 531 2013.
© Springer-Verlag Berlin Heidelberg 2013

532 P. Stelmach et al.

feeds or sensor data, requires a different kind of service, one that puts more strain
on the Internet transporting capabilities. Such streaming services can deliver
audio/video surveillance, stock price tracing, sensor data [I], etc. With time we
have introduced specialized middleware for data stream processing [2/3], chang-
ing video format or colour, calculating on-line whether a patient did not have a
heart attack and more.

Distributed stream processing, adding more intermediary services forwarding
the stream from one peer to another, is growing in popularity [2/45], especially
in eHealth, rehabilitation and recreation fields where distributed measurement
data acquisition is natural [6/12] or in computational science and meteorologi-
cal applications, where there are multiple data sources and multiple recipients
interested in the processed data stream [7].

In this paper we describe the ComSS Platform (COMposition of Streaming
Services) that is a result of ongoing work in the area of Future Internet [§]. It
offers management over compositions of any data stream processing services,
provided that they are compatible (that is each two services communicating
have to be able to communicate via a common protocol). The communication
negotiation is of extreme importance and is reflected in negotiation process that
takes place during creation of a distributed data stream processing service. Many
papers, which take on the subject of composition of services, often refer to ser-
vices in the WS-* standard [9] or consider stream processing services [TO/IT],
but still treat them similarly to WS-* service, omitting their unique character-
istics (namely the flexibility in various formats and communication protocols
employment).

2 Platform Description

2.1 Platform Overview

The main goal of the platform is to manage data stream processing composite
services (also called streaming services). Provided the designer of such services
would like to utilize the platform automated management capabilities, he can
delegate the all tasks of assembling, disassembling or monitoring of such services
to the platform simply by using its basic services.

The ComSS Platform consists of several autonomous software components
but also requires atomic streaming services to implement specific communication
libraries for control purposes (see Fig. [l for reference).

The basic scenario for the ComSS Platform is to create a new composite
streaming service given a graph of atomic services (composite service plan).
It is assumed that those services have been implemented using the provided
framework (Fig. [[l1) and are registered in the service registry (Fig. [112). The
platform searches for appropriate atomic streaming services to fulfil the user
composite service request and forwards them information on neighbour services
(Fig. M4), with which they will have to negotiate the communication protocol.
Streaming services start negotiating (Fig. [Il5) and create new service instances
to handle the new composite service request.

Planning-Based Method for Communication Protocol Negotiation 533
® lSOAP

I—‘—\
C Re U9 D
ComSS Platform Components T

. e —
GUI for Configuration Component for Composite - -
and Monitoring Data Stream Processing Service Registry
Service Management

Communication with Data
Stream Processing Services

Fig. 1. ComSS Platform overview

2.2 Framework for Data Stream Processing Service

Part of the effort to make the streaming service composable lies with the ser-
vice designer himself. He has to follow conventions for the service design and
implement necessary libraries for control, negotiation and communication.

Using the framework provided with the ComSS Platform allows him to focus
on implementation of the data stream processing algorithms alone (Fig. [2]).

~ 1~

Service Control Service Control
Module - Module
Negotiation
Negotiation Module * " = R Em o == o == s —‘ Negotiation Module
Service Instances Service Instances
Metadata Metadata
Data Stream
— — —— - O——] Streaming Module —c —_——— P ——— O—— Streaming Module —c ——
Data Stream Data Stream
Processing Processing
\ Methods / \ Methods /
Service A Service B

Fig. 2. Overview of the Data Stream Processing Service Framework

It should be noted that in contrast to the Web Services using the SOAP
protocol, data stream processing services are not limited to one single protocol
or format — most popular uses, and completely different protocols, are video
stream processing and sensor data stream processing.

In the basic scenario of creating a new composite streaming service a request
for a new service instance is sent via the Web Service interface (Fig. [2]). Before

534 P. Stelmach et al.

that, in the negotiation phase, the framework communicates with streaming
services indicated by the ComSS Platform as neighbour services. If the service
responds that it knows the requested protocol and gives an address and opens
a port for communication, then a new atomic streaming service instance can be
generated.

Then, when all services are ready to communicate first messages are sent to
the streaming interface. The role of the streaming module is to receive the data
stream and prepare it for processing and send it to the next service afterwards.

2.3 Negotiation as a Part of Composite Service Creation Process

Modules responsible for negotiation are: Signalization Supervisor (in the ComSS
Platform) and Service Signalization Module (part of Service Control Module of
the streaming service framework). Former is a part of Platform Core and the
latter is part of atomic service application. There are two types of communi-
cation inside the ComSS Platform: signalization (between core component and
atomic services) and negotiation (between pairs of services). The composite ser-
vice request is a fundament for these two types of communication. The service
composition plan is used to establish which what services are neighbours in the
sense of the composition and what negotiation requests to send to each of them.
Secondly, some negotiation approaches may use the information on the order of
services in the composition to maximize the chance for success. In our model
negotiation information is distributed directly to services and then among pairs
of neighbours. Services don’t need to use core component to mediate between
them. In distributed systems minimizing traffic through the central point it is
often an important feature.
The composite service creation procedure is as follows:

— User forwards the request to the Create Interface.

— Request correctness is verified through Composite Service Graph validation.

— The Service Management Component (SMC) requests a list of descriptions
of all atomic services in a composite service request.

— SCM Communication Module connects to each of the atomic services (sig-
nalling unit).

— SCM Communication Module forwards to each of the atomic services a re-
quest stating that their resources have to be reserved.

— The Service Control Module in each atomic service (AS) verifies the type of
request and its correctness.

— After all Atomic Services confirm the reservation then SCM sends each of
them a list of services they should start negotiating with.

— AS Service Control Module (sender) starts negotiations with recipient ser-
vices, providing them a list of types and formats in which it is able to transmit
(this list can vary depending on the received request, the list is sorted by
priority).

— AS Service Control Module (receiver) selects the data type and format it
can receive and sends back this information to the inquiring AS.

Planning-Based Method for Communication Protocol Negotiation 535

— AS Service Control Module (sender) confirms the determination of the type
and format of the recipient and communicates the outcome of negotiations
to the SCM communication module.

— SCM Communication Module collects the answers from the AS.

— SCM sends to the User a confirmation along with information on the newly
established composite service.

3 Motivation

Author of the atomic streaming services is unaware of what composite services
will be built using them. With the ComSS Platform he can register his services
and their capabilities: location, type of processing if offers, what kind of input
data it can process — what format, codec etc. Provided with this information,
the ComSS Platform can automatically determine how to connect services in
a composite service requested by the user.

In most papers on streaming services composition authors neglect the unique
nature of streaming services, namely that they can accept a specific data stream
in various forms: with different coding and format. Some services are capable
of converting those formats (for a cost) while other cannot, and offer simple
processing or monitoring capabilities on a range of formats, incapable of their
modification. Using services with conversion capabilities offers more flexibility
but also can increase processing costs over more simple versions of services.
However, using only processing services can lead to bottlenecks in service com-
positions where two services cannot communicate due to incompatibility in the
format of the data stream.

In this work it assumed that a service composition has been defined either
automatically or by hand and now this service has to be physically initiated.
In order to do this, appropriate resources have to be reserved, service instances
created and communication among atomic services directed to other services
ports, suitable of processing a given format.

A simple, greedy approach used to date can lead to rejection of service com-
position request due to incompatibility of formats among some atomic services.
In the next section a planning-based approach is presented to guarantee that if
there exists a feasible solution than a communication between atomic services
can be established. What is more, this solution will be optimal due to both
processing and communication cost.

4 Communication Negotiation

4.1 AI Planning in Negotiation

Typically Al Planning is used in service composition. In this situation all services
and a sequence in which they are connected are already defined, but — as stated
in the previous section — an incorrect choice of streamed data formats can lead
to incompatibility of services in the sequence.

536 P. Stelmach et al.

The proposed approach is in opposition to currently implemented greedy ap-
proach, where each atomic service can determine its own communication with
another service. We suggest that formats and communication protocols were
defined centrally in the ComSS Platform and then propagated to all services.

The approach we describe is based on backward search. Below you can see
both the main body of the algorithm as well the recursive plan search procedure
in a form of pseudocode. In this approach a general goal is defined based on user
format requirements and while iterating through all services (starting from the
last), a temporary goal format is defined, based on the input format of currently
selected service. The algorithm utilizes information on the user input and output
format requirements (Fi,,Fout) — which are based on the format of the external
source data stream that will be transferred to the composite web service and
the format of the goal of the data stream that the composite service will deliver
the stream to. Finally, the algorithm is not a service composition algorithm and
thus it is limited to the services and their order defined prior to the negotiation.

The algorithm gives the guarantee that appropriate formats, ensuring com-
munication at each step of the data stream processing will be selected if possible
and that the selection will minimize both the processing and transport cost.

— Input:
F, — format of the external input data stream,
Fous — format of the data stream to be delivered on the output,
AS — a set of atomic services, which communication formats have to be

negotiated; those services comprise the composite.
— Output:
Optimal plan determining communication formats for each of the services
in a composite service.

. P=0
AS + sortServicesInIncreasingOrder
Plans = findPlans(P, Fout, Fin, AS)
if Plans = @ then ”Communication cannot be established”
else
foreach Plan in Plans
Q = calculate PlanQuality(Plan)
if Q > Qmax then Qmax = Q and P, = Plan
end foreach
10. ”Optimal plan is Py ax with quality Qmax”
11. end if

R

The above algorithm comprises of two parts. Firstly, it initializes the search for
valid plans that, with the services in AS, transform the input data stream with
format Fj, to the output data stream of format Fi,;. Secondly, it determines the
quality of each of the plans, selecting the plan with the best quality. The quality
is calculated based on the processing cost of each service and cost of transporting
data stream between them. The former takes in to consideration that converting
the format usually leads to increased processing cost and the latter takes into
account that some formats can decrease the volume of data, thus decreasing the
cost of transport of such data.

Planning-Based Method for Communication Protocol Negotiation 537

Algorithm: Plans Backwards Search

— Input:
P — current plan to achieve the goal format Fy,t,
Feurrent — current goal format, for selecting appropriate input formats of
a service,
Fi, — format of the input data stream,
AS — the remaining web services, which formats have to be established.
— Output: Valid plans determining communication formats for each of the

services in the current AS
Plans = findPlans(P, Feurrent, Fin, AS) :

1. as= ASlast; AS = AS\ as; Plans = @
2. V = generateVersionsOf(as) such that eachv € V' : vout = Feurrent
3. if V # @ then foreachv € V
4. if AS == @ and vi, == Fi, then Plans := Plans U (P Uv)
5. else if AS #0©
6. Plans* = findPlans(P U v, Feyrrent = Vin, Fin, AS)
7. if Plans* # @ then Plans := Plans U Plans*
8. end if
9. end foreach
10. end if

11. return Plans

The algorithm above takes the last atomic service in AS and will establish
possible format transformations. A service as can be treated as a container for
multiple abstract services that each can take one input format and generate one
output format. Each of whose abstract versions of service as has its own pro-
cessing cost. In (step 2) only those abstract versions of the service are generated
which output format is equal to the current goal format Feyrrent.

If there are versions that meet the requirements and there are still services
left in AS (step 6) then each version is considered separately in an alternative
plan searched recursively.

The procedure stops if no services are left in AS and returns a valid plan only
if the last version can take as an input the format defined in Fj,.

All valid plans are returned and compared in the main body of the algorithm.

4.2 Example and Comparison to Greedy Approach

The differences of various approaches will be briefly described using examples of
negotiation procedure in those approaches and possible outcomes.

The current implementation does not enforce any order of negotiation re-
quests thus it can provide unexpected results. Below we show two most popular
approaches: forward and backward negotiation requests propagation and their
outcomes, compared to the planning-based approach.

In Fig.[Bland Fig.] we observe that each service is provided with information
about services it has to negotiate the communication format with. In contrast, in

538 P. Stelmach et al.

Fig. Bl we see that requests are not typical negotiation requests but the planner
enforces the format on each service (in any order). Additionally, both forward
and backward negotiation are extended with initial pre-configuration phase in
which appropriate services (first and last in the composition) are configured
with information about requested input and output stream, thus preventing the
situations when the service would choose a format incompatible with the request.

Configure: 0 3, Configure:
gure: </ Negotiate: @ Negotiate: @Negotiate' </ E fg d outgoi
- Enforced ingoin . . . - Enforced outgoing
stream: 2 9o l(D -A->B l -B->C l -¢c->D stream: 2
1,234
—aSl
2_, 1
o
2 2 1 ? X o X ?
Service Control Service Control Service Control
Module Module Module
2
- - X —
—>
2
Service A Service B Service C Service D
Fig. 3. Example of forward negotiation without planning
Configure: " " Configure:
R Negotiate: Negotiate: Negotiate:
- Enforced ingoing g - Enforced outgoing
stream: 2 ", l “A->B l@ -B>C l@ -C->D @*slream:Z [
Y <
<
o 1,2é3,4 3 2,3,4
2 2 —> —_—
Service Control Service Control
Module Module
- 1
—- 0 — 2 =
2 3%
%4
Service A Service B Service C Service D

Fig. 4. Example of backward negotiation without planning

In Figure Bl we observe forward propagation of negotiation requests. Service
A negotiates with service B. It sends formats in which it can communicate with
service B. Notice that service A cannot transform the input format and following
the requirement from external data source it limits its formats list. Service B
responds with a format from its list that is on service A’s list. Here, the negotia-
tion is trivial but typically service B would select a format it “prefers” — usually
higher in a static rank. Now service B has its input format set to “2”, but con-
sidering that it is capable of converting it, it is not limiting its output format.
Following the next negotiation request service B sends all its output formats
to service C and service C responds with the same list limited to the formats
in can process. Service B selects format and relays its decision to service C. Next,

Planning-Based Method for Communication Protocol Negotiation 539

Planning 2 - ; ; X===== 2
phase mm e 3 3 3 3 3 > 2
X ===== 4

Enforce:

Enforce: Enforce:

-B->C (format: 3) D (format: 3)

-D ->External output
(format: 2)

phase

-A->B (format: 2)

N Enforce
Signalling o l ~External input > A (format: Ol “A->B (format: 2) Ol B> C (format: 3) @l -C > B (format: 3)
2 -C->
o

Service A Service B Service C Service D

Fig. 5. Example of negotiation with planning

service C sends to service D a limited list of formats, which has no common
format with service D and service D has to report an error. Please note that if
a different format were negotiated between services B and C then the negotiation
would end in success. However, neither service B nor C had any knowledge that
could point the negotiation in that direction.

In Figure @] we observe the inverse of the previous process. Following the ini-
tial configuration of the first and last service in the composition, the negotiation
starts with service D. It relays its formats to service C and then service C to ser-
vice B etc. The simple change in direction of negotiation resulted in negotiation
success. However, were it not for the initial configuration of service A, services
B and A would negotiate a different format (“1” had the priority) and the final
verification with the external source would end in failure.

The planning-based approach in Fig. [allows for analysis of possible con-
nections and enforces the communication for each service pair. Additionally, it
allows for selection of optimal formats from the both processing and transport
cost point of view. In this example there was only one valid solution, but if ser-
vice D could process format “1” on the input then there would be two possible
solutions: one transporting the data through services B, C and D in format “1”
and another in format “3”.

5 Conclusions and Further Work

Research presented in this paper describes the communication negotiation phase
during construction of a composite data stream processing service. A ComSS
Platform has been briefly described as an example of a tool that delivers such
capability, relaying negotiation requests in accordance with the composite service
structure.

In this work a planning-based approach to negotiation was presented. This
approach extends basic capabilities of the ComSS Platform and limits negotia-
tions in the atomic services. As a result, more calculations have to be performed
centrally, but — as presented in examples — the proposed negotiation approach
guarantees not only finding a valid result if one exists but also the solution is
optimal with regard to data stream processing and transport time.

540 P. Stelmach et al.

Future work will focus on testing all approaches on real streaming data and
real processing services, showing typical cost of communication plans negotiated
— both calculation cost and processing and transfers costs.

Acknowledgments. The research presented in this paper has been co-financed
by the European Union as part of the European Social Fund and within the
European Regional Development Fund programs no. POIG.01.01.02-00-045/09
& POIG.01.03.01-00-008,/08.

References

1. Gu, X., Yu, P.S., Nahrstedt, K.: Optimal component composition for scalable
stream processing. In: Proceedings of 25th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS 2005, pp. 773-782 (June 2005)

2. Chen, L., Reddy, K., Agrawal, G.: Gates: a grid-based middleware for processing
distributed data streams. In: Proceedings of 13th IEEE International Symposium
on High performance Distributed Computing, 2004, pp. 192-201 (June 2004)

3. Schmidt, S., Legler, T., Schaller, D., Lehner, W.: Real-time scheduling for data
stream management systems. In: Proceedings of 17th Euromicro Conference on
Real-Time Systems (ECRTS 2005), pp. 167176 (July 2005)

4. Gu, X., Nahrstedt, K.: On composing stream applications in peer-to-peer environ-
ments. IEEE Trans. Parallel Distrib. Syst. 17(8), 824-837 (2006)

5. Rueda, C., Gertz, M., Ludascher, B., Hamann, B.: An extensible infrastructure for
processing distributed geospatial data streams. In: 18th International Conference
on Scientific and Statistical Database Management, 2006, pp. 285-290 (2006)

6. Swiatek, P., Klukowski, P., Brzostowski, K., Drapata, J.: Application of wearable
smart system to support physical activity. In: Advances in Knowledge-based and
Intelligent Information and Engineering Systems, pp. 1418-1427. IOS Press (2012)

7. Liu, Y., Vijayakumar, N., Plale, B.: Stream processing in data-driven computa-
tional science. In: 7th IEEE/ACM International Conference on Grid Computing,
pp. 160-167 (September 2006)

8. Grzech, A., Juszczyszyn, K., Swiatek, P., Mazurek, C., Sochan, A.: Applications
of the future internet engineering project. In: 2012 13th ACIS International Con-
ference on Software Engineering, Artificial Intelligence, Networking and Parallel
Distributed Computing (SNPD), pp. 635-642 (August 2012)

9. Swiatek, P., Stelmach, P., Prusiewicz, A., Juszczyszyn, K.: Service composition in
knowledge-based soa systems. New Generation Computing 30, 165-188 (2012)

10. Riabov, A., Liu, Z.: Planning for Stream Processing Systems. In: Proceedings of
the National Conference on Artificial Intelligence (2005)

11. Riabov, A., Liu, Z.: Scalable Planning for Distributed Stream Processing Systems.
In: Proceedings of ICAPS (2006)

12. Brzostowski, K., Drapata, J., Grzech, A., Swigtek, P.: Adaptive Decision Support
System For Automatic Physical Effort Plan Generation—Data-Driven Approach.
Cybernetics and Systems: An International Journal 44(2-3), 204-221 (2013)

	Planning-Based Method for Communication
Protocol Negotiation in a Composition
of Data Stream Processing Services

	1 Introduction
	2 Platform Description
	2.1 Platform Overview
	2.2 Framework for Data Stream Processing Service
	2.3 Negotiation as a Part of Composite Service Creation Process

	3 Motivation
	4 Communication Negotiation
	4.1 AI Planning in Negotiation
	4.2 Example and Comparison to Greedy Approach

	5 Conclusions and Further Work
	References

