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Abstract. Transient queue analysis is needed to model the influence
of time-dependent flows on congestion in computer networks. It may be
applied to the networks performance evaluation and the analysis of the
transmissions quality of service. However, the exact queuing theory gives
us only few practically useful results, concerning mainly M/M/1 and
M/M/1/N queues. The article presents potentials of three approaches:
Markovian queues solved numerically, the diffusion approximation, and
fluid-flow approximation. We mention briefly a software we implemented
to use these methods and summarise our experience with it.

Keywords: diffusion approximation, fluid flow approximation, Markov
chains, transient states.

1 Introduction

Transient queue analysis is needed to model time-dependent flows and the dy-
namics of changes of router queues in computer networks. It is needed in stability
analysis of Internet connections, It helps to predict packet loss probability and
queueing delays which are the major factors of the quality of service. Further-
more, efficient modelling tools are indispensable for coping with large network
topologies typical for modern Internet.

The use of analytical models known in queueing theory is limited to M/M/1
and M/M/1/N single queues and even there the solution is complex. Transient
states of these models were investigated more than half a century ago. Chapman-
Kolmogorov equations (first-order linear differential equations) define state prob-
abilities p(n, t;n0) of n customers present in the system at time t if n = n0 at
time t = 0. If we apply the Laplace transform to make these equations algebraic
ones, solve them and then find the original functions of the solutions in time
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domain, we obtain [1]:

p(n, t;n0 = i) = e(λ+μ)t
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where λ is input flow intensity, μ is service intensity (i.e. 1/μ is mean service
time), � = λ/μ is server utilisation factor, a = 2μ

√
� and Ik(x) is the modified

Bessel function of the first type and order k. Similarily, transient distributions for
the limited queue M/M/1/N were derived [2, 3]. Some simplifications of the solu-
tion (1) were proposed, e.g. the generating function of the distribution p̄(n, s;n0)
may be replaced by expressions having simpler originals in time domain [4] or
Bessel funcions may be replaced by easier to compute functions, [5].

These results do not fit well to the problem of modelling IP routers, where the
incoming streams are not Poisson and the size of packets is not exponentially
distributed. Note that the solution (1) refers to transient states but it is assumed
that the model parameters, λ in particular, are constant. Hence, in case of time
dependent flows we should make them piecewise constant. We need models treat-
ing constantly changing non-Poisson flows and assuming general distributions of
service times. We need also the possibility to include in these models the de-
scription of self similarity of flows. The models should also be scalable to meet
very large topologies characteristic to the Internet.

In the sections below we describe our experience with three approaches:
Markovian queues solved numerically, diffusion approximation, and fluid-flow
approximation.

2 Markov Models Solved Numerically

Markov models are essential for the evaluation of the performance of computer
networks. The models support the design of new communication protocols, mech-
anisms for regulating the intensity of Internet transmissions and mechanisms to
ensure the quality of transmission services. However, they are not scalable: the
number of states is growing very rapidly with the complexity of a modelled ob-
ject: each state of the Markov chain corresponds to one state of the system. It
is necessary to construct and solve the system of equations defining the prob-
ability of states – the number of equations equals the number of states. The
existing solvers as e.g. Markovian solver in QNAP, XMARCA, PEPS, PEPSY,
PRISM consider only steady state Markov chains and solve algebraic systems of
equations.

Theoretically, for any continuous time Markov chain the Chapman-Kolmo-
gorov equations with transition matrix Q

dπ(t)

dt
= π(t)Q , (2)
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have the analytical transient solution:

π(t) = π(0)eQt , (3)

where π(t) is the probability vector and π(0) is the initial condition. However,
it is not easy to compute the expression eQt where Q is a large matrix, see e.g.
[6]. It may be done by its expansion to Taylor’s series

eQt =

∞∑
k=0

(Qt)k

k!
, (4)

but the task is numerically unstable, especially for large Q. Additionally, to
consider λ(t), we should make the parameters of the model piecewise constant
in small intervals and apply the solution (3) at each of these intervals.

We are developping our own package Olymp. It is a library generating transi-
tion matrices of continuous time Markov chains (CTMC), solving them. Olymp
uses Java language to define network nodes and the interactions between them.
Due to the potentially very large sizes of the models’ transition matrices, their
generation is parallelized, and they can be compressed on-the-fly using a ded-
icated compression based on finite-state automata. Olymp has a quite differ-
ent approach to represent CTMC in the comparison to typical model checkers.
A move to another state involves a transfer of a token. A node that sends the
token initiates the move asynchronously, in moments of time that adhere to
an exponential distribution. A node that receives the token can accept it vali-
dating the move. The negotiation can be thought of as for example an agreed
transfer of a packet between these two nodes or as a synchronisation on a sig-
nal, distributed to the network by a clock node. At the moment we are able
to generate and solve Markov chains of the 150 million of states. The method
of solution used is one of projection methods based on Krylov subspace with
Arnoldi process to project the exponential of a large matrix approximately onto
a small Krylov subspace, see [7]; the transition matrix is then small and the com-
putation of the expression (3) with the use of uniformization method and Padé
approximations is much easier, [8–11]. This approach is supplemented by direct
numerical solution of large systems of ordinary differential equations (ODE) us-
ing uniformization, i.e. discretization of the CTMC, that is replacing the CTMC
by a DTMC (a discrete-time Markov chain) and a Poisson process.

We are increasing the size of tractable Markov chains by several orders through
the use of a GPU-CPU (graphical processing unit) and a better design of compu-
tational algorithms for parallel computing and optimization of memory usage,
[12]. GPU capabilities go far beyond the computer graphics. It is well known
that a potential computational power of GPUs is much greater than that of con-
temporary CPUs (in a sense of the performance measured by number of floating
point operations per second). Thus, it is possible to shorten the time of com-
putations. Due to the enormous amount of the data to be processed, methods
must be developed to store vectors and matrices with intelligent management of
memory.
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3 Diffusion Approximation

This approach is merging states of the considered queueing system and thus
needs much less computations than the Markov models. We present here the
principles of the method following [13] where steady-state solution of a single
G/G/1/N model was given and then extended to the network of queues in [14].
We supplemented these results with semi-analytical, semi-numerical transient
state solution [15] given for constant model parameters but it could be applied
also in case of time-dependent parameters if we only make them constant within
small intervals, as demonstrate numerical results below.

Let A(x), B(x) denote the interarrival and service time distributions at a ser-
vice station and a(x) and b(x) be their density functions. The distributions are
general but not specified, the method requires only the knowledge of their two
first moments. The means are denoted as E[A] = 1/λ, E[B] = 1/μ and variances
are Var[A] = σ2

A, Var[B] = σ2
B . Denote also squared coefficients of variation

C2
A = σ2

Aλ
2, C2

B = σ2
Bμ

2. N(t) represents the number of customers present in
the system at time t.

Diffusion approximation replaces the process N(t) by a continuous diffusion
process X(t), the incremental changes dX(t) = X(t + dt) − X(t) of which are
normally distributed with the mean βdt and variance αdt, where β, α are coef-
ficients of the diffusion equation

∂f(x, t;x0)

∂t
=

α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
. (5)

This equation defines the conditional pdf of X(t):

f(x, t;x0)dx = P [x ≤ X(t) < x+ dx | X(0) = x0] .

The both processes X(t) and N(t) have normally distributed changes; the choice
β = λ−μ, α = σ2

Aλ
3+σ2

Bμ
3 = C2

Aλ+C2
Bμ ensures that the parameters of these

distributions grow at the same rate with the length of the observation period. In
the case of G/G/1/N station, the process evolves between barriers placed at x =
0 and x = N . When it comes to x = 0, it remains there for a time exponentially
distributed with the parameter λ and then it returns to x = 1; when it comes to
x = N , it remains there for a time which is exponentially distributed with the
parameter μ and then to x = N − 1. These are not typical bordary conditions
for differential equations, therefor we developed a special method to solve the
Equation (5): the function f(x, t;x0) is expressed by a superposition of density
functions of the diffusion process with the absorbing barriers x = 0 and x = N ,
[15]. The solution is obtained in terms of the Laplace transform of f(x, t;x0) and
then inverted numerically.

We studied the errors of this heuristic approach with the use of a wide range
numerical examples. An example is given below. Consider a G/G/1/30 queue
(in fact, it is M/M/1/30 queue, as we assume C2

A = C2
B = 1) with the input rate

λ(t) varying in time as presented in Fig. 1. It represents a typical TCP flow with
additive increases and multiplicative decreases in case of packet losses, the range
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of time is [0, 100] time units. In computations, the values of diffusion parameters
are changed each 0.5 time unit. Figs. 2–3 present results of the diffusion model
compared with the simulation results (in the latter case it is the average of 500
thousands independent runs). The mean queue is presented both in linear and
logarithmic scales, to see better the differences for very small values.

However, when the traffic is different from Poisson and the service times have
nonexponential distributions, the errors of the approximation are growing: Fig. 4
presents some exemplary errors for G/G/1/100 station (� = 0.75) as a function
of C2

A, C2
B (transient state, t = 100, at the beginning the queue was empty). The

errors of the approximation increase with C2
A, C2

B.
In our method the density function of the diffusion process is obtained in

form of its Laplace transform which is then inverted numerically with the use
of Stehfest algorithm [16]. In this algorithm a function f(t) is obtained from its
transform f̄(s) for any fixed argument t as

f(t) =
ln 2

2

N∑
i=1

Vi f̄

(
ln 2

t
i

)
, (6)

where Vi are known constants and N is an even integer and depends on a com-
puter precision; we used N = 20.

The algorithm brings some numerical difficulties, the inversion requires com-
putation of hiberbolic sinus function with arguments that may exceed double-
precision floating-point number exponent size which for 64-bit double permits
only maximum positive value of 308. That often happens when maximum queue’s
buffer N is big (like 100). Possible solution would be to use 80-bit extended pre-
cision double which permits maximal positive exponent of 4932.

The method may be applied to a network of queueus of any topology [14]
although in case of transient states the computations of the time-dependent
flows evry small time-interval is of course time consuming. We tested it on an
examplary network of 1000 stations.

4 Fluid-Flow Approximation

This approximation method assumes a much simpler flow model determining the
mean values of traffic intensity and service times of network stations. In contrary
to diffusion approximation, it is based only on first-order ordinary linear differen-
tial equations, so that the values are obtained in a much shorter calculation time.
Therefore it is suited for modeling transient states of large TCP/IP networks,
in particular the Internet. However it is quite difficult to analyze Internet-scale
topology manually, thus we prepared a tool that is easily adaptable for analysis
of different cases.

Mathematical model implemented in our software, that is already adapted
to TCP congestion window mechanism and RED algorithm in routers, was pre-
sented in [17, 18]. A modelled network V is described by characteristic values
of routers (instantaneous and average queue length and discard probability per
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Fig. 1. Input traffic intensity λ(t) in the studied example
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Fig. 2. Numerical example: mean number of customers (linear scale) as a function of
time; diffusion approximation and simulation results
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Fig. 3. Numerical example: mean number of customers (logarithmic scale) as a function
of time; diffusion approximation and simulation results
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Fig. 4. G/G/1/100 station with � = 0.75, relative error of the mean queue as a function
of C2

A, C2
B ; at t = 100, at the beginning the queue was empty

router) and flows (congestion window size and round trip time on the whole path
of an individual flow) traversing network nodes.

The main parameter of a network node v is its mean queue length qv; with
the transmission capacity Cv, the time change of qv is defined as

dqv(t)

dt
=

N∑
i=1

Wi(t)

Ri(qv(t))
− 1(qv(t) > 0) · Cv (7)

where Wi is the congestion window of i-th TCP connection (one of N) crossing
this node, Ri is the round trip time (RTT) of this connection. Following the TCP
Reno policy, for each flow the size W of its congestion window (8) is increasing
in average by 1 every RTT (the arrival of a new acknowledgement) or is divided
by 2 with the intensity of losses. The loss factor is calculated on the basis of
matrix B which stores the drop probabilities of particular routers for each TCP
flows, [19].

dW i(t)

dt
=

1

Ri(q(t))
− Wi(t)

2
· Wi(t− τ)

Ri(q(t− τ))
·

·
⎛
⎝1−

∏
j∈V

(1−Bij)

⎞
⎠ . (8)

Round Trip Time (9) depends heavily on total queue delay and network topol-
ogy, to be more precisely, on a total propagation delay (Tpi) of the i flow route,
which consists of K nodes. Total queue delay is computed as the sum of quo-
tients of instantaneous queue length q and transmission capacity C of the routers
on the route from source to destination. In our small model modification the total
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propagation delay is not a global flow parameter, but the sum of the links delays,
where a single link is a connection between two network nodes that belongs to
one flow path.

Ri(q(t)) =

K∑
j=1

qj(t)

Cj
+

K−1∑
j=1

Tpj . (9)

Our software implementation allows to model large IP networks having thou-
sands of nodes and thousands of flows, divided however into several categories,
which consist of flows with identical route and starting parameters. In case of
collection data of large topology we save the results in cumulative binary files,
that are converted to plot files when needed. The timing results for such an ex-
emplary topology was presented in [19].

The main drawback of our program was the necessity to manually defining the
structure of nodes and flows topologies in text file. Thus, the more complex the
network for analysis was, the more time was needed to create the configuration
file with input parameters and flows routes. To eliminate the manual definition of
flows paths, we recently implemented a converter that import the topology from
network topology generator and produce a configuration file for our program.
We decided to choose aSHIIP generator [20, 21] because of its ability to generate
hierarchical network topologies, typical for the actual Internet networks.

Our converter parses the output file from the aSHIIP program to obtain the
number of nodes, number of network layers and the directed graph that illus-
trates the network topology. The next step assumes to construct the flows routes
based on selected options (categorization, partition method, total number of
flows). Thus, we determine the border routers – the nodes that are entries points
of the network – with the flag defining the node as source or destination. Then,
we randomly pick out a pair of source and destination routers and perform the
Dijkstra algorithm with the use of Fibonacci Heap (implementation is based on
code [22] and [23]) on each source node. There are however some cases, where
generated number of paths is less then required by the user. It is due to the
fact that the generated hierarchical topology is a directed graph, hence it may
happen that it is not possible to find a path – the existing links do not provide
two-way connections between necessary nodes. The next and final step involves
generation of the starting parameters values i.e. for a router: the maximum size
of buffer, initial queue size, transmission capacity, weight parameter and proba-
bilities for RED mechanism; and for flow: the initial window size, usually set to
one. During the computations of the settings, the number of layers, clustering
and node degree are taken into consideration. The phase ends with saving the
settings to a configuration file, that is used as an input to our implementation
of fluid flow approximation model.

In our next publication we will present the results of sample topology gener-
ated by aSHIIP and processed by our tool as described above.
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5 Conclusions

Each of three approaches presented above has its highlights and drawbacks.
Markovian models are flexible but have frequently enormous state space and
therefore are time and space consuming. Fluid flow approximation is the sim-
plest but it may be easily applied to very large configurations. Diffusion approxi-
mation is somewhere between. We believe that each of the methods has its place
in the panoply of tools needed in performance evaluation and we develop appro-
priate software tools. We may also use simulation models. In this purpose we
have developed an extension of OMNET++ (a popular simulation tool written
in C++, [24]) allowing simulation of transient state models. In particular, ran-
dom generators were modified to make possible the changes of their parameters
as a function of time, a new software was added to collect the statistics of mul-
tiple runs and to aggregate them. We used this module to validate the diffusion
approximation results. Basically, the simulation run in a transient state investi-
gation should be repeated sufficient number of times (e.g. 500 thousands in our
examples) and the results for a fixed time should be averaged. As the number of
repetitions is high, the estimation of the errors is easy (confidence interval) on
the basis of normal distribution. However, the number of repetitions is related
to the value of the investigated probabilities and in case of rare events it should
be high; this fact increases considerably the simulation time: typically in some
of our examples, 5 min of computation on a standard PC station for a diffusion
model is compared to 24 hours of simulations on the same machine.
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