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Abstract. In recent years energy market has changed. Consumers in
many countries are free to buy energy from any of the available providers.
This requires continuous reading from a huge number of energy meters to
evaluate the amount of energy being bought from a particular provider.
In this paper we present a fault-tolerant distributed stream processing
system for continuous meter readings. The main goal of the system is
to store the readings in a stream data warehouse for further analysis.
We focus on modeling of the data stream intensity in order to estimate
the size of buffers in a network of components composing the system. We
present both the mathematical model of the intensity and the simulation
results to prove the correctness of the theoretical analysis.
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1 Introduction

These days it becomes more common to process continuous data streams [1]. It
may have application in many domains of our life such as: computer networks
(e.g. intrusion detection), financial services, medical information systems (e.g.
patient monitoring), civil engineering (e.g. highway monitoring) and more.

Thousands or even millions of energy meters located in households or factories
can be sources of meter-reading streams. Continuous analysis of power consump-
tion may be crucial to efficient electricity production. Unlike other media such as
water or gas, electricity is hard to store for further use. That is why a prediction
of energy consumption may be very important. Real-time analysis of the media
meter readings may help manage the process of energy production in the most
efficient way.

There are many systems for processing continuous data streams and they are
still being developed [2–6]. Various system processing stream data can also be
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found in [7–9]. In [10] the fault tolerant Borealis system is presented. This is
a dedicated solution for applications where a low latency criterion is essential.
Another system facing infinite data streams is described in [11]. Authors of the
work deal with sensors producing data continuously, transferring the measured
data asynchronously without pooling. They proposed a Framework in Java for
Operators on Remote Data Streams (Fjords).

In our research we have focused on processing data originating from a radio-
based measurement system [12, 13]. We carried research on efficient recovery
of interrupted ETL jobs and proposed a few approaches [14, 15] based on the
Design-Resume algorithm [16].

Based on the previous experience, we have focused on fault-tolerance and high
availability in a distributed stream processing environment. In [17] we proposed
a new set of modules increasing the probability that a failure of one or more
modules will not interrupt the processing of endless data streams. Then we
prepared a simple model [18–21] of data sources to estimate the amounts of data
to be processed, useful in the configuration of the environment. In this paper we
want to present a more advanced analysis of the intensity of the stream readings
to be able to configure buffers of the network components properly.

In Section 2 we define the problem we want to solve. Sections 2.2, 2.3 and 2.4
contain a detailed description of the analysis we propose with the verification of
the proposed model. In the last section we summarize the paper.

2 The Problem

Our research is based on a telemetric network designed for remote and automatic
reading of media consumption meters. Meters of energy, water and gas transmit
data to collecting nodes. In most cases wireless media is used; however, other
experimental approaches are also tested (modulated transmission on AC power
lines). Data from collecting nodes is sent to a local telemetric server. The data
gathered in the telemetric server can be processed further, e.g. to predict media
consumption based on historical data. To make such prediction possible, it is
necessary to transfer the data from all of the telemetric servers (also called
data stream sources) into the stream data warehouse. However, a data source
can be also a single collecting node (not only a server). The difference in this
case is that a collecting node is too simple device to buffer large amounts of
data. A collecting node can be compared to a LAN switch, which only transfers
data from one point to another. The data sources (collecting nodes, servers) are
distributed geographically, what increases the probability of failures caused by
external factors (e.g. local black-outs). Moreover, the data transmission process
becomes a continuous ETL process.

The goal of the research is to assure continuity of the ETL process reading
data from stream sources with the shortest possible delay between measuring and
storing the data in the warehouse. If it is possible, we want to assure successful
recovery of the interrupted processing without any stream data loss.
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The system presented in Fig. 1 consists of : stream data sources (e.g. telemet-
ric server or collecting node), remote stream buffers (RBF), remote persistent
stream integrators (RIF), ETL modules, a module for error detection and stream
integration (FTI). Our research is based on the following configuration: 4 inde-
pendent stream sources, 6 RBF modules, 4 RIF modules, 3 ETL process replicas,
an error detection module and a data warehouse server. The sources transmit
data to RBF buffering modules, which communicate with RIF integrating mod-
ules offering persistent buffering. At this stage a replicated extraction1 process
appears. Outputs of the extraction process are connected to an FTI detecting
module. The FTI is responsible for not loading of the improperly processed data
(malformed during processing or transmitting). At the end of the modules chain
there is a stream data warehouse and the systems using it. There are multi-
ple connections between the modules. They are intended to provide redundant
processing of all the data streams.

Stream

sources

RBF RIF ETL FTI SDW

Buffers Integrators ETL Detector Stream DW

Fig. 1. Layered structure of the distributed system

2.1 Data Source Characteristics

A data source in our system is a single collecting node or optionally a local
telemetric server. We assume that the source transmits data from associated
media consumption meters and it has no ability to buffer any historical data. It
means that there is no possibility to re-read already retrieved tuples from such
a source. As a result, any interruption of the transmission from such a source
leads to loss of a part of the data stream without any chance of recovering it.
We assume that each source stamps the tuples keeping ascending stamp order.
Consistency of stamping among all the sources in the system is not required;
however, it is desirable for data analysis.

When a data source is a complex module such as a server, it can backup data
received from meters on a disk to avoid data loss in case of transmission failures.
Unfortunately, such a case is quite rare. To reduce system load simple collect-
ing nodes are used. Then we have to assure that there is always a connection
between the source and any receiver module, which is always ready to receive
data incoming from the source. In our system RBF modules are used as receiver
modules, and their buffers configuration is discussed in the following section.

1 In this case extraction means a complete ETL process: Extraction + Transformation
+ Loading.
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To configure the target RBF layer properly we have to prepare a mathematical
description of such a source.

The analysed data source gathers measurements from particular meters (e.g.
meters in blocks of flats, a large factory). The data can be trasmitted in one
of the two modes: on-demand or asynchronous. In on-demand mode, the trans-
mission is initiated by the collecting node and then selected meters sent out
current values. This mode requires bidirectional communication between meters
and a collecting node. It makes the communication easier to handle but unfor-
tunately increases costs of such device. In asynchronous mode transmission goes
in only one direction and meters can transmit data at any time. The collecting
node (the source we analyse) must always be ready to handle incoming data
stream.

2.2 Model Definition

Assume that there are N meters in the distributed system, and each meter
transmits a reading approximately every T seconds. In other words it means
that in each generation period (Fig. 2) each meter will transmit one reading.
The probability that a meter transmits a reading in a particular time slot equals
p = t/T . The total number of slots is ns = T/t. The question is: how many
readings will be transmitted in any number of time slots of size t?

Fig. 2. Distribution of measures in a data source. The period T repeats.

Each meter is independent, so the reading events are independent also.
Continuing the analysis presented in [18] the probability of k readings in any
single slot t is

(
N
k

)
pk(1 − p)N−k. Based on it we can define two recursive

functions:

P= (N, p, ss, k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
N
k

)
pk(1− p)N−k for ss = 1

k∑
i=0

P= (N, p, 1, i) · P= (N, p, ss − 1, k − i) for ss > 1

(1)
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P≤ (N, p, ss, k) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k∑
i=0

P= (N, p, 1, i) for ss = 1

k∑
i=0

P= (N, p, 1, i) · P≤ (N, p, ss − 1, k − i) for ss > 1

. (2)

Both P= and P≤ functions define the probability that having N meters, in
a sequence of ss time slots we will observe exactly (P=) or no more than (P≤)
k readings. The results obtained for both functions are presented in Figs. 3 and 4.

Fig. 3. Function P≤ for N = 105, p = 1
600

and ss = 1, 2, 5, 10

Although the definition of functions P= and P≤ is correct, their evaluation
in the abovementioned recursive form is extremely complicated. That is why we
propose another approach. We can make use of the hypergeometric distribution.
The easiest way to understand this distribution is in terms of urn models. Sup-
pose you are to draw n marbles without replacement from an urn containing
N marbles in total, m of which are white. The hypergeometric distribution de-
scribes the distribution of the number of white marbles drawn from the urn. It
is defined as follows:

PH(X = k) = fH(k;N,m, n) =

(
m
k

) (
N−m
n−k

)
(

N
n

) . (3)

Our model requires to be modified a little. Unchanged remain: generation period
Tg, number of time slots ns and the number of meters N . In a single generation
period we still can observe up to N readings, but it may happen that all readings
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Fig. 4. Function P= for N = 105, p = 1
600

and ss = 1, 2, 5, 10

occur in a single time slot, and in the remaining ns−1 slots there are no readings
at all. Assume that in a single generation period (urn) we have N · ns events
(marbles). We have N reading events (white marbles) and N · (ns − 1) empty
events (black marbles). We always drawN ·ss marbles. The probability of getting
exactly k readings in a sequence of ss time slots equals:

PH(X = k) = fH(k;N · ns, N,N · ss) (4)

where k ≤ N and 0 < ss ≤ ns.
In Figure 5 the results obtained for PH probability function are compared to

the results for recursive P= function. The figure proves that both functions can
be used interchangeably if needed. Moreover to simplify computations the hyper-
geometric distribution can be approximated using other distributions. Assume
that X ∼ H(m,N, n)2 and p = m/N . Then:

1. If n = 1, then X is a Bernoulli distribution with parameter p.
2. If N and m are much greater than n, and p is not too close to 0 or 1, then
P (X ≤ x) ≈ P (Y ≤ x), where Y has binomial distribution with parameters
n and p.

3. If n is big, N and m are much greater then n, and p is not too close to 0
or 1, then

P (X ≤ x) = Φ

(
x− np√
np(1− p)

)
(5)

where Φ is a cumulative distribution function of the standard normal distri-
bution with parameters μ = np and σ2 = np(1− p).

2 H(m,N, n) defines hypergeometric distribution having probability function defined
as fH(k;N,m,n).
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Fig. 5. Comparison of PH and P= functions for N = 105, p = 1
600

and ss = 1, 2, 5, 10

Presented computations make it possible to evaluate the number of readings
we can expect in a particular number of time slots if we have N meters, genera-
tion period Tg and a single time slot is ts long. But how to compute the number
of readings in case of various meter types and various generation periods?

To answer the question we need to divide all the meters into groups having
the same generation period (Table 1). This way we obtain a set of meter groups
Ψ , which elements are pairs ψi = (Ni, Tgi) for each 0 < i ≤ |Ψ |.

Table 1. Example of meter groups

Group Meter Cardinality Generation Std. dev.
type N period Tg Tg

ψ1 electricity 100 000 10 min 1 s
ψ2 water 50 000 60 min 2 s
ψ3 gas 50 000 24 h 5 s

For each ψi group we need to evaluate parameters of the distribution as de-
scribed earlier in this section. This way each group will be described by the
distribution of the random variable Xi ∼ N(μi, σ

2
i ). Knowing that the sum of

any number of random variables having normal distribution still has a normal
distribution we obtain a final distribution for all the meters:

X =

|Ψ |∑
i=1

Xi ∼ N

⎛
⎝

|Ψ |∑
i=1

μi,

|Ψ |∑
i=1

σ2
i

⎞
⎠ . (6)
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2.3 Model Verification

To verify our model we conducted a few experiments. Firstly, we evaluated a the-
oretical distribution of the the groups of meters mentioned in Sect. 2.2. Secondly,
we simulated the behaviour of our system and compared it with the theoretical
results.

According to Equation (5) a computation of the distribution for each group
of meters goes as follows:

μi(ss) = np = n · m

NH
= ss ·Ni · Ni

Ni · ns
= ss ·Ni · Ni

Ni · Tgi

ts

= ss · Ni · ts
Tgi

(7)

σ2
i (ss) = np(1− p) = n · m

NH
·
(
1− m

NH

)
= ss · Ni · ts

Tgi
·
(
1− ts

Tgi

)
. (8)

After substitution we obtain three groups with the following distribution param-
eters:

X1 ∼ N(166.67; 166.39) (σ = 12.9) for ψ1 group,
X2 ∼ N(13.89; 13.89) (σ = 3.73) for ψ2 group,
X3 ∼ N(0.58; 0.58) (σ = 0.76) for ψ3 group,

The sum of the X1, X2, X3 random variables gives in a result a random vari-
able X ∼ N(181.13; 180.85) with σ = 13.45. The random variable X expresses
the number of readings in a single time slot in a stream being the sum of three
streams described in Table 1.

For the meter groups defined above we ran a simulation process. It started
in the worst possible case in which all 200 000 meters generated the first mea-
surement in the first second of work. Each meter works with a generation period
Tg drawn according to the parameters of the group distribution. This way the
moment of generation spreads in time as the simulation runs.

During the simulation we registered a histogram of the number of readings
in a single slot. Based on it we prepared a plot of the probability function. In
the first stage of the simulation histograms were collected for every 10 000 time
slots. After exceeding 1 million of time slots histograms covered 100 000 slots
(10 times more). Figure 6 presents the obtained simulation results compared with
the theoretical curve. Simulation results where caught in the following points of
time: 100 000 time slots, 200 000, 500 000, 1 million, 2 millions, 5 millions. As
you can see for the first stage (100 000 slots) the probability function has quite
irregular shape with at least three local peaks. At the beginning of the simulation
all of the meters transmit the first reading in the first time slot. Further in
the simulation the readings spread slowly according to their factory parameters
distribution. We did not analyse the cause of the local peaks in details, but it
results from the distribution of the factory parameters of the simulated meters.
Going further the shape changes and after 1 million of slots it starts to look like
a typical bell curve. Since then the simulation results are more and more similar
to the shape of theoretical curve. The peak is the same as the computed above
random variable X ∼ N(181.13; 180.85).
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Fig. 6. Comparison of the theoretical readings distribution with the simulation results

We performed a similar calculation not for a single slot, but for a sequence of
consecutive 30 times slots (ss = 30). Then we rescaled the results for a single slot
and the obtain results we gathered in Fig. 7. As can be seen the results for the
sequence of slots are similar. The only difference is that after rescaling to a single
slot, the expected number of meters in a single slot is more precise. The expected
value remains unchanged and is still μ ≈ 181.13. But the standard deviation σ
decreased from 13.45 to only 2.46. The final distribution for a sequence of 30 time
slots can be computed from Equations (7) and (8). In this case it is: μ = 5434.03,
σ2 = 5425.58 and σ = 73.66.

2.4 Edge Condition

Having the verified data distribution model we can try to answer the question
stated at the beginning of Sect. 2.2: how many readings will be transmitted in
any number of time slots t? We know the parameters of the random variable
distribution. We know it is the normal distribution with parameters μ and σ.
For normal distribution the density function is:

f(x) =
1

σ
√
2π
e−

(x−μ)2

2σ2 . (9)

As the input parametr we take pk denoting the possibility, that more than k read-
ings will be received in the analysed period of time (number of time slots). We
want to compute the smallest value of k for which the probability of receiving
more than k readings is less than pk. It leads to the following inequality:

pk ≥ 1

σ
√
2π

+∞�
k+1

e−
(x−μ)2

2σ2 dx (10)
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Fig. 7. Comparison of the theoretical readings distribution with the simulation results.
Computation for 30 time slots scaled for a single slot.

The computed k(pk) is a base for setting the size of the buffers in RBF modules.
Unfortunately there is no analytical solution for the Equation (10) due to the
integration it includes. However, the result can be evaluated using numerical
methods.

We can use the cumulative distribution function for the normal distribution
based on the error function, after converting the distribution N(μ, σ2) to the
standard normal distribution N(0, 1). Then we get:

F (x) =
1

2

(
1 + erf

(
x− μ

σ
√
2

))
(11)

where erf(x) is the error function. The error function can be approximated using
Taylor series:

erf(x) =
2√
π

∞∑
n=0

(−1)nx2n+1

(2n+ 1)n!
=

=
2√
π

(
x− x3

3
+
x5

10
− x7

42
+

x9

216
− · · ·

)
. (12)

In this case the solution is such a k, for which the following inequality is satisfied:

1− pk ≥ 1

2

(
1 + erf

(
k − μ

σ
√
2

))
. (13)

3 Summary and Conclusions

In this paper we presented briefly the distributed stream processing system we
work on. Our goal was to focus on the problem of modeling the intensity of
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streams being processed in order to be able to configure system component
properly. Firstly, we described data sources using mathematical rules. Basics of
this description are included in [18–21]. Secondly, we tried to prepare a mathe-
matical model which could be used to estimate the distribution of the number
readings for a group of meters. Then the model was extended for various groups.

Obtained equations needed verification. We have built a simulation environ-
ment in which we conducted experiments. We measured how the number of
readings in time periods changes. Based on the gathered data we were able to
compare the simulation results with our theory. As described in the paper sim-
ulation results are very similar to the theoretical calculations.

Based on this we are able to estimate a safe buffer size, knowing the high-
est possible number of readings that can be received in a given time. Knowing
the parameters of the distribution (σ and μ) and assuming the value of probabil-
ity pk small enough, we can find using the Equation (13) the number of readings
that with probability pk will not be exceeded.

This work lets us configure the second layer of the components network (Fig. 1)
of our system. Further research needs to be done, to analyse behaviour of the
other parts of the network. This is going to be the next stage of our research.
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