
Comparison of CHOKe and gCHOKe Active
Queues Management Algorithms

with the Use of Fluid Flow Approximation

Adam Domański1, Joanna Domańska2, and Tadeusz Czachórski2

1 Institute of Informatics, Silesian Technical University
Akademicka 16, 44-100 Gliwice, Poland

adamd@polsl.pl
2 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences

Baltycka 5, 44-100 Gliwice, Poland
{joanna,tadek}@iitis.gliwice.pl

Abstract. In the article we examine a model of TCP connection with
Active Queue Management in an intermediate IP router. We model a sys-
tem where CHOKe or gCHOKe are the AQM policy. We use the fluid
flow approximation technique to model the interactions between the set
of TCP/UDP flows and two variants of the CHOKe algoithms. The ob-
tained results confirm the superiority of these algorithms over a standard
RED algorithm.

Keywords: active queue management, TCP flow control, RED.

1 Introduction

Congestion control mechanisms in TCP/IP networks are one of the most im-
portant topics in the field of today Internet and their modeling remains a vital
problem. The development of new AQM (Active Queue Management) routers
allow to improve the performance of Internet applications.

In recent years a number of analytical models of AQM in IP routers was
presented, e.g. [1–5] in open-loop scenario, because of the difficulty in analyzing
AQM mathematically inside the whole closed loop of TCP congestion control.
This paper extends a nonlinear dynamic model of TCP proposed earlier [6, 7] to
analyze the AQM systems with RED. Here, we use a similar model to investigate
the performance of CHOKe or gCHOKe mechanisms.

The models based on fluid flow approximation, e.g. [8], are able to capture the
dynamics of TCP flows [9] and allow to analyze networks with a large number
of flows. The article describes the use of this method to compare routers hav-
ing different active queue management principles (classical RED, CHOKe and
gCHOKe) and transmitting TCP/UDP flows. The model allows to study not
only the steady-state behavior of the network, but also the transient one when
a set of TCP flows start or finish transmission. We focus on transient average
router queue length for different AQM strategies.

A. Kwiecień, P. Gaj, and P. Stera (Eds.): CN 2013, CCIS 370, pp. 363–371, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



364 A. Domański, J. Domańska, and T. Czachórski

The rest of this article is organized as follows. The Section 2 introduces two
variants of CHOKe algorithm. The Section 3 describes the fluid flow model of
AQM router supporting TCP/UDP flows. The Section 4 presents the obtained
results. The conclusions are presented in Sect. 5.

2 The CHOKe Algorithm and Its Variant – gCHOKe

The CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for un-
responsive flows), [10] is a stateless AQM algorithm slightly similar to RED
(Random Early Drop), proposed not only to control TCP packets but also to
prevent uncontrollable UDP connections to monopolize the links [11]. It uses
incoming packages to punish streams with the highest demand for bandwidth.

Similarly to the RED mechanism, there are two threshold values: Minth and
Maxth. At the arrival of a new package, the new walking average queue length
is calculated. If the average queue length is less than Minth, the packet is placed
in the buffer. When the average queue length is greater than Minth, CHOKe
pulls randomly one packet from the FIFO buffer a (“CHOKe victim”) and verifies
whether it belongs to the same stream as an incoming packet.

If the both packets belong to the same stream, they are removed (this situation
is called “CHOKe hit”). Otherwise, the randomly selected packet is returned to
the buffer and the arrived packet is placed into the queue with probability P . This
probability is calculated in the same manner as in the case of RED algorithm.
The event is called “CHOKe miss”.

The geometric CHOKe algorithm (gCHOKe) [12] is a modification of the
CHOKe having an additional, configurable parameter maxcomp ∈ [1, . . . ,∞).
This parameter determines the maximum number of successful comparisons. As
previously, the algorithm compares the incoming packet with a random packet
drawn from the queue. The comparison is successful when both packages are from
the same stream. The comparison ends when: the comparison is unsuccesfull or
the number of comparisons exceeds maxcomp. In this case all matching packets
(plus the incoming ones) are removed from the queue. If the first match is not
successful, the random packet (“CHOKE victim”) comes back to the queue. The
arriving packet is placed into the queue with probability of P (see Fig. 1). Hence,
CHOKe is a special case of gCHOKe algorithm (maxcomp = 1).

3 The Fluid-Flow Model of TCP/UDP Streams

This section presents a fluid flow model of a TCP connection having a bottleneck
router with AQM policy. The router transmits also UDP packets, [8]. This model
ignores the TCP timeout mechanisms and allows to obtain the average value of
key network variables. This model is based on the following nonlinear differential
equations:

dW (t)

dt
=

1

R(t)
− W (t)W (t −R(t))

2R(t−R(t))
p(t−R(t)) (1)



Comparison of CHOKe and gCHOKe 365

Fig. 1. Diagram of the gCHOKe algorithm

dq(t)

dt
=

W (t)

R(t)
N(t)− C (2)

where:

W – expected TCP congestion window size (packets),
q – expected queue length (packets),
R – round-trip time q/C + Tp [s],
C – link capacity [packets/s],
Tp – propagation delay [s],
N – number of TCP sessions at the router,
p – packet drop probability.

The maximum values of q and W depend on the buffer capacity and maximum
window size. The dropping probability p depends on the AQM queue algorithm.
The first term on the right side of the Equation (1) represents the rate of increase
of congestion window due to incoming acknowledgements, the second represents
the rage with which the congestion window decreases due to packet losses. The
Equation (2) gives the speed of router queue changes due to incoming and leaving
flows of packets.

The traffic composed of TCP and UDP streams has been considered in [13].
For this model a single router supports N TCP sessions. Each TCP stream is



366 A. Domański, J. Domańska, and T. Czachórski

a TCP-Reno connection and each UDP sender is a CBR (Constant Bit Rate)
source. The total rate of UDP sessions is denoted by λ, it is assumed that the
rate λ is associated at equal intensity λ/N with each TCP connection. Fluid-flow
equations of TCP and UDP mixed traffic become:

dW (t)

dt
=

1

R′(t)
− W (t)W (t−R′(t))

2R′(t−R′(t))
p(t−R′(t)) (3)

dq(t)

dt
=

W (t)

R′(t)
N(t)− (C − λ) (4)

where R′ = round-trip time = q/(C − λ) + Tp [s].
In RED AQM mechanism, at arrival of each packet, the average queue size

x is calculated as an exponentially weighted moving average using the following
formula: xi = (1− α)xi−1 + αqinst where qinst is the current queue length. Then
the RED drop function is applied: there are two thresholds Minth and Maxth;
if x < Minth the packet is admitted, for Minth < x < Maxth the packet is
dropped with probability pRED growing linearly from 0 to pmax

pRED = pmax
x−Minth

Maxth −Minth
(5)

and if x > Maxth the packet is dropped.
The CHOKe algoritm pulls from the FIFO buffer “CHOKe victim” and if

the package is from the same stream as an incoming packet, we drop it. So
prabability pCHOKe depends on the number of packets of a stream i relative to
the total buffer occupancy, pCHOKe = qi/q. Probability pCHOKE depends also
on the buffer occupancy and the number of streams. For simplicity, the model
assumes that the number of packets belonging to a single stream in the queue is
the same for all streams, qi = q/N . It follows that the probability of packet loss
is inversely proportional to the number of the streams, pCHOKe = 1/N .

Geometric CHOKE repeats the selection of “CHOKe victim” until the packet
has been drown from another stream or the number of draws exceeds maxcomp.
For each incoming packet we can drop 1, 2, 3, . . . ,maxcomp packets. If we assume
that the probability of selecting a package of the same stream in one selection is
1
N then

pgCHOKe =
1

N
+

1

N2
+ · · ·+ 1

Nn
=

n∑

k=1

1

Nk
(6)

where n = maxcomp. Using the sum of a geometric sequence:

Sn = a+ aq + · · ·+ aqn−1 = a
1− qn

1− q
(7)

we can write:
pgCHOKe = Sn − a+ qk . (8)

In our case a = 1 and q = 1
N , hence

pgCHOKe =
1− 1

nk

1− 1
n

− 1 +
1

nk
=

nk + nk−1 − n−1 − 1

nk −Nk−1
. (9)



Comparison of CHOKe and gCHOKe 367

4 Numerical Results

Computations were made with the use of PyLab (Python numeric computation
environment) [14] which is a combination of Python, NumPy, SciPy, Matplotlib,
and IPython. The graphs shown below present transient system behavior, the
time axis is drawn in seconds.

We assume the following parameters of the AQM buffer: Minth = 10,
Maxth = 15, buffer size (measured in packets) = 20, weight parameter
α = 0.007, and the parameters of TCP connection:

– transmission capacity of AQM router: C = 0.075,
– propagation delay for i-th flow: Tpi = 2,
– initial congestion window size for i-th flow (measured in packets): Wi = 1.

The obtained mean queue lengths for TCP connections and various AQM policies
are presented in Table 1.

Table 1. The obtained mean AQM queue lengths Q

Algorithm Nb of streams Nb of packets
CHOKE 1 7.98664081264
CHOKE 2 8.63146812018
CHOKE 5 10.0998514529
CHOKE 10 11.0167546717
CHOKE 11 11.7731309893

RED 1 8.57089136683
RED 2 9.05376778822
RED 5 10.3805817389
RED 10 11.1549893996
RED 11 11.7731309893

gCHOKe (maxcomp = 2) 1 7.88714079539
gCHOKe (maxcomp = 5) 1 7.81053339265
gCHOKe (maxcomp = 10) 1 7.78926315534
gCHOKe (maxcomp = 2) 2 8.61223411769
gCHOKe (maxcomp = 5) 2 8.60737680727
gCHOKe (maxcomp = 10) 2 8.61023081937
gCHOKe (maxcomp = 2) 10 11.0059435834
gCHOKe (maxcomp = 5) 10 11.0108325703
gCHOKe (maxcomp = 10) 10 11.0108321896

Figures 2, 3, 4, present the queue behavior in the case of two flows and re-
spectively RED, CHOKe and gCHOKe queues. The size of congestion window
increases until the buffer reaches the Minth value. Algorithm drows “CHOKe
victim” and the probability of removing the package is equal to 1

2 (probability of
removing the packet by RED mechanism is much smaller). Packets are dropped
and the size of congestion window decreases causing a slow decrease of the queue
length – this pattern is repeated periodically.



368 A. Domański, J. Domańska, and T. Czachórski

Fig. 2. RED queue, 2 TCP/UDP flows

Fig. 3. CHOKe queue, 2 TCP/UDP flows



Comparison of CHOKe and gCHOKe 369

Fig. 4. gCHOKe queue (maxcomp = 10), 2 TCP/UDP flows

Fig. 5. gCHOKe queue (maxcomp = 10), 10 TCP/UDP flows



370 A. Domański, J. Domańska, and T. Czachórski

Comparing the behavior of the CHOKe algorithm with the RED algorithm
one can see that the CHOKe algorithm works better in the case of aggressive
(stealing most of the bandwidth) streams. When the number of streams grows,
the importance of the choke algorithm decreases. The probability of selecting
a good victim decreases and the packets are removed by the RED mechanism.
Comparing the results shown in Table 1 one can see that the differences between
the obtained average queue length for CHOKe and for RED algorithms decreases
when the number of streams increases.

In our tests of gCHOKe algorithm we assumed that the maximum number
of draws can not exceed the Minth parameter. Figures 3 and 4 show that com-
pared to CHOKe algorithm, gCHOKe brings a slight improvement. The average
buffer occupancy is also slightly reduced (Table 1). When the number of streams
increases, the influence of algorithm becomes invisible (Fig. 5).

5 Conclusions

This article confirms the advantage of CHOKe algorithm over standard RED for
aggressive streams. The use of the choke algorithm is insignificant in the case
of a large number of streams with the similar intensity. It confirms also the ad-
vantage of the algorithm in presence of mixed TCP/UDP traffic. Unfortunately,
weaknesses of the model (UDP data closely associated with the TCP streams)
could not allow us to show the advantages of the gCHOKe algorithm in shaping
the intensified traffic of UDP datagrams. Our future work will concern this issue.

Acknowledgements. This research was partially financed by Polish Ministry
of Science and Higher Education project no. N N516479640.

References

1. Liu, C., Jain, R.: Improving explicit congestion notification with the mark-front
strategy. Computer Networks 35(2-3) (2000)

2. Domańska, J., Domański, A., Czachórski, T.: The Drop-From-Front Strategy in
AQM. In: Koucheryavy, Y., Harju, J., Sayenko, A. (eds.) NEW2AN 2007. LNCS,
vol. 4712, pp. 61–72. Springer, Heidelberg (2007)

3. Augustyn, D.R., Domański, A., Domańska, J.: Active Queue Management with non
linear packet dropping function. In: 6th International Conference on Performance
Modelling and Evaluation of Heterogeneous Networks HET-NETs (2010)

4. Augustyn, D.R., Domański, A., Domańska, J.: A Choice of Optimal Packet Drop-
ping Function for Active Queue Management. In: Kwiecień, A., Gaj, P., Stera, P.
(eds.) CN 2010. CCIS, vol. 79, pp. 199–206. Springer, Heidelberg (2010)

5. Domańska, J., Domański, A., Czachórski, T.: Implementation of modified AQM
mechanisms in IP routers. Journal of Communications Software and Systems 4(1)
(March 2008)

6. Hollot, C.V., Misra, V., Towsley, D., Gong, W.-B.: On Designing Improved Con-
trollers for AQM Routers Supporting TCP Flows. In: IEEE INFOCOM (2002)



Comparison of CHOKe and gCHOKe 371

7. Rahme, S., Labit, Y., Gouaisbaut, F.: An unknown input sliding observer for
anomaly detection in TCP/IP networks. In: Ultra Modern Telecommunications
& Workshops (2009)

8. Misra, V., Gong, W.-B., Towsley, D.: Fluid-based Analysis of a Network of AQM
Routers Supporting TCP Flows with an Application to RED. In: ACM SIGCOMM
(2000)

9. Yung, T.K., Martin, J., Takai, M., Bagrodia, R.: Integration of fluid-based analyt-
ical model with Packet-Level Simulation for Analysis of Computer Networks. In:
SPIE (2001)

10. Pan, R., Prabhakar, B., Psounis, K.: CHOKe, A stateless AQM scheme for ap-
proximating fair bandwidth allocation. IEEE INFOCOM, 942–952 (2000)

11. Hollot, C.V., Misra, V., Towsley, D.: A control theoretic analysis of RED.
IEEE/INFOCOM (2001)

12. Eshete, A., Jiang, Y.: Generalizing the CHOKe flow protection. Computer Network
Journal (2012)

13. Wang, L., Li, Z., Chen, Y.-P., Xue, K.: Fluid-based stability analysis of mixed
TCP and UDP traffic under RED. In: 10th IEEE International Conference on
Engineering of Complex Computer Systems (2005)

14. www.scipy.org

www.scipy.org

	Comparison of CHOKe and gCHOKe ActiveQueues Management Algorithmswith the Use of Fluid Flow Approximation
	1 Introduction
	2 The CHOKe Algorithm and Its Variant – gCHOKe
	3 The Fluid-Flow Model of TCP/UDP Streams
	4 Numerical Results
	5 Conclusions
	References




