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Abstract. A generalized approach to Ping-Pong protocol analysis is
introduced. The method is based on investigation of the density operator
describing joint systems of communicating parties and an eavesdropper.
The method is more versatile than approaches used so far as it permits
on incorporation of different noise models in a unified way and make
use of well grounded theory of quantum discrimination in estimation of
eavesdropper’s information gain. As the proof of the method usefulness
an example of its application to the analysis of the protocol execution
over depolarizing and dephasing channels is given.
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1 Introduction

In the last two decades, we have witnessed several scientific discoveries which
permitted to utilize quantum mechanical principles to enhance our abilities to
compute and communicate [1]. Exploiting quantum nature of composite sys-
tems is of particular relevance in developing quantum technology for efficient
computation [2–4] and secure communication [5] exceeding classical limits [6].
Non-locality and entanglement are the most prominent signatures of non-classi-
cality [7]. In particular, entanglement of shared quantum states is the vital ele-
ment for the success of Quantum Key Distribution (QKD) and Quantum Direct
Communication (QDC) protocols, including the quantum dense information cod-
ing [8, 9] and quantum teleportation of states [10]. QKD schemes provide cryp-
tographically secure keys [7] which are subsequently used to protect classical
telecommunication links with methods known from classic cryptography [11]. In
contrary, QDC protocols do not require prior key agreement and their security
results from the laws of quantum mechanics [12].

The so called Ping-Pong protocol has attracted a lot of attention as it is
asymptotically secure in lossless channels [13]. The theoretical success of the
protocol has been closely followed by the experimental implementation and the
proof on concept installation has been realized in the laboratory [14]. It has
been also shown that protocol variants based on higher dimensional systems and
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exploiting dense information coding also share features of the seminal version
when some improvements are introduced [15, 16].

The Ping-Pong protocol, similarly to other QDC protocols, operates in two
modes: a message mode is designed for information transfer and a control mode
is used for eavesdropping detection. Although the Ping-Pong protocol is asymp-
totically secure in perfect quantum channels, the situation looks worse in noisy
environments when legitimate users tolerate some level of transmission errors
and/or losses. If that level is too high compared to the quality of the channel,
then an eavesdropper can peek some fraction of signal particles hiding himself
behind accepted Quantum Bit Error Rate (QBER) threshold [17, 18]. But the
possibility to intercept some part of the message without being detected renders
the protocol insecurity. To cope with this problem an additional purely classical
layer has been proposed [19]. However, estimation of security improvement of-
fered by that layer heavily depends on observed QBER. Unfortunately the used
so far methods of the protocol analysis do not offer mathematical apparatus
capable to estimate QBER in noisy channels. The purpose of the following text
is to fill in this gap.

The proposed method is based on the investigation of the properties of the
density matrix describing the joint system of the communicating parties. This
is in contrast with previous approaches in which probability distribution ob-
served by the eavesdropper has been derived by manipulations on state vectors.
The introduced approach is more general as it permits on easy incorporation
of different models of noise in a unified way and make use of quantum states
discrimination theory achievements [20–22] in estimation of eavesdropper’s in-
formation gain and calculation of QBER observed by the receiver. As the proof
of concept the example of method application to the analysis of the protocol
operation over depolarizing channel is given.

2 Ping-Pong Protocol New Description

Let us consider the seminal version of the Ping-Pong protocol [13] in which the
message and control mode are executed only in computational basis. The com-
munication process is started by Bob, the recipient of information, who prepares
an EPR pair

|φ+〉 = (|0B〉|0A〉+ |1B〉|1A〉) /
√
2 . (1)

At the same time eavesdropping Eve controls her own system, which is initially
described by state |χE〉. As the states of Bob and Eve are separated, the density
matrix of the whole system reads

ρ
(0)
BAE = ρ

(0)
BA ⊗ ρ

(0)
E = |φ+〉〈φ+| ⊗ |χE〉〈χE| . (2)

Next Bob sends a signal qubit A to Alice. This qubit on its way can be influenced
by two factors: quantum noise because of channel imperfection and malicious
activities of Eve who may entangle it with the system controlled by herself. Let
us assume, that Eve is positioned close to Alice, so her action takes place on the
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qubit modified by the noise. The density matrix of the system just before signal
qubit enters environment controlled by Alice reads

ρ
(1)
BAE = (NBA ⊗ IE)

(
ρ
(0)
BA ⊗ ρ

(0)
E

)
= ρ

(1)
BA ⊗ ρ

(0)
E , (3)

where it was explicitly highlighted that noise operator N acts only on the EPR
pair (I denotes identity operation). Before signal qubit enters Alice’s environ-
ment, Eve can entangle it with her own system

ρ
(2)
BAE = (IB ⊗ EAE) ρ

(1)
BAE , (4)

where entangling operator EAE acts only on qubit A of the EPR pair and system
possessed by Eve. At that point of protocol execution Alice can select a control
mode or continue in information mode.

In the former case she measures received qubit in computational basis, i.e.
performs von Neumann measurement using projectors Mx,A = IB ⊗ |xA〉〈xA| ⊗
IE, x = 0, 1. Probability that she finds qubit under investigation in state |x〉
(measures ±1) is given by

pA (x) = Tr
(
ρ
(2)
BAEMx,A

)
. (5)

After measurement the state of the whole system collapses to

σx
(2)
BAE =

Mx,Aρ
(2)
BAEMx,A

Tr
(
ρ
(2)
BAEMx,A

) . (6)

Subsequently Bob measures his qubit in computational basis using projectors
My,B = |yB〉〈yB| ⊗ IA ⊗ IE, y = 0, 1. Probability that Bob finds his qubit in
state |y〉 provided that Alice has found his qubit in state |x〉 is given by

pB|A (y|x) = Tr
(
σx

(2)
BAEMy,B

)
. (7)

It follows that errors in control mode appear with probability

PEC = pB|A (1|0) pA (0) + pB|A (0|1) pA (1) . (8)

In information mode, Alice encodes classic bit μ applying (μ = 1) or not (μ = 0)
operator ZA to the possessed qubit. The system state after encoding is given by

ρμ
(3)
BAE = (IB ⊗ Zμ

A ⊗ IE) ρ(2)BAE

(
IB ⊗ (Zμ

A)
† ⊗ IE

)
. (9)

The qubit A is sent back to Bob after encoding operation. Eve’s task is to
discriminate between states ρμ

(3)
AE = TrB

(
ρμ

(3)
BAE

)
with maximal confidence.

The system states after reception by Bob of a qubit A travelling back from Alice
and in the absence of Eve measurements are given by

ρμ
(4)
BAE = (NBA ⊗ IE) ρμ(3)

BAE , (10)
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so Bob has to distinguish the states

ρμ
(4)
BA = TrE

(
ρμ

(4)
BAE

)
. (11)

When Eve performs measurements, the same quantum discrimination strategy
is used but Bob is unconscious that measured states are of the form

τμ,α
(4)
BA = TrE

⎛
⎝(NBA ⊗ IE) Mα,Eρμ

(3)
BAEMα,E

Tr
(
ρμ

(3)
BAEMα,E

)
⎞
⎠ . (12)

The analysis of the protocol should determine Eve’s information gain IE and
probability of erroneous Bob’s decoding QBER as a functions of probability of
error observed in control mode PEC and, optionally, parameters describing noise
operator N .

3 Active Eavesdropping in the Noiseless Case

Ping-pong protocol active eavesdropping in perfect quantum channels has been
analysed many times and protocol properties for this scenario are well known.
The aim of this section is to show, that generalized approach presented in the
previous section gives the same results. In the considered case noise operator is
reduced to identity (N = I) and the most general entangling operation can be
described as [13]

EAE|0A〉|χE〉 → a|0A〉|0E〉+ b|1A〉|1E〉 (13)
EAE|1A〉|χE〉 → c|0A〉|2E〉+ d|1A〉|3E〉 (14)

where map’s coefficient are not independent: |a|2 + |b|2 = 1, |c|2 + |d|2 = 1,
|a| = |d|, |b| = |c|. After some tedious calculations one gets PEC = |b|2 and
states accessible to Eve take form

ρμ
(3)
AE =

1

2
[ |a|2 |0A〉|0E〉〈0A|〈0E|+ (−1)μa∗b|1A〉|1E〉〈0A|〈0E|+
+ (−1)μab∗|0A〉|0E〉〈1A|〈1E|+ |b|2 |1A〉|1E〉〈1A|〈1E|+
+ |c|2 |0A〉|2E〉〈0A|〈2E|+ (−1)μdc∗|1A〉|3E〉〈0A|〈2E|+
+ (−1)μcd∗|0A〉|2E〉〈1A|〈3E|+ |d|2 |1A〉|3E〉〈1A|〈3E| ] . (15)

At this point Holevo bound is usually used to estimate Eve’s information gain

IHE = S

(
1

2
ρ0

(3)
AE +

1

2
ρ1

(3)
AE

)
− 1

2
S
(
ρ0

(3)
AE

)
IHE − 1

2
S
(
ρ1

(3)
AE

)
= H (PEC) (16)

where S (·) denotes von Neumann entropy and H (·) – entropy of a binary source.
This result is in perfect agreement with data presented in literature [13, 15, 16].
However, the above estimate is an overkill in the considered scenario as it implic-
itly assumes that Eve has infinite number of ρμ

(3)
AE states and she can perform
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a series of collective measurements. In practice, Eve can only mount an individ-
ual attack in which she has single copy of ρμ

(3)
AE for the given value of μ and

she can perform only one measurement. It seems that unambiguous discrimina-
tion [20] is the most reasonable approach in such situation, although some other
strategies are possible [21]. Eve’s information gain is then equal to

IE = Ps log2 N , (17)

where Ps is a probability of successful measurement and N denotes the number
of discriminated states. In the considered protocol version N = 2 and the upper
bound on Ps is given by [22]

Pmax
s = 1− F (ρ0, ρ1) (18)

where F (ρ0, ρ1) = Tr
∣∣√ρ0

√
ρ1
∣∣ denotes fidelity, Tr |A| =

∑
k |λk| where λk

are eigenvalues of A and it was assumed that states ρμ are equally probable.
Using (18) to states ρμ

(3)
AE specified in (15) one gets

F (ρ0, ρ1) = (1− 2PEC)
2 (19)

what leads to the following expression for an upper bound on Eve’s information
gain in individual attacks

IE = 4PEC (1− PEC) . (20)

The comparison of bounds (20) and (16) is shown on Fig. 1. It follows that in
both cases undetectable attack (PEC = 0) provides Eve no information, and
an attack providing maximal information (I = 1 bit) is detectable by control
mode with probability 1/2. It is also visible that collective attacks provide only
slight advantage compared to the individual ones.
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Fig. 1. Comparison of the eavesdropper’s information upper bounds in collective (IHE )
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4 Passive Eavesdropping in a Noisy Channel

Let us consider situation in which Eve does not entangle with a signal qubit i.e.
EAE = IA ⊗ IE. Such assumption results in separation of the system controlled
by Eve, so it is not taken into account in further expressions.

Any interaction with the environment observed from the perspective of the
principal system only can be given in operator sum (Kraus) representation [1]
as

Nρ →
∑
k

EkρE
†
k (21)

provided that
∑

k EkE
†
k = I. Such an approach hides details of the interaction of

the system under investigation with the environment. However, these details are
not of immediate relevance in analysis of many quantum information processing
related tasks. In such situations Kraus representation proved to be useful because
it provides a unified description of many, seemingly different, physical processes.

A depolarizing channel used to model white noise [1]. is described by the
following operators in the single qubit case

E0 =

√
1 + 3r

2
I , Ek =

√
1− r

2
σk , (22)

where k = 1, 2, 3, σk are Pauli matrices and r denotes channel reliability. As
the noise affects only travelling qubit, the Kraus operators for the investigated
system can be obtained by simple extension [23]

EBAk = IB ⊗ Ek . (23)

With the help Equation (23) the map describing noise operator NBA can be
constructed and the quantities given by (8) and (11) are easy to find numerically.
If Bob uses unambiguous discrimination, the bits are lost (measurement fails)
with a probability [22]

QLOSS = 1− Pmax
s = F

(
ρ0

(4)
BA, ρ1

(4)
BA

)
. (24)

On the other hand, if Bob uses minimum error discrimination the observed bit
error rate is equal to [24]

QBER =
1

2

(
1− 1

2
Tr

(∣∣∣ρ0(4)BA − ρ1
(4)
BA

∣∣∣
))

. (25)

Quantities QBER and QLOSS as a function of control mode failure probabil-
ity (8), which is a parameter directly accessible to communicating parties, are
shown on Fig. 2. Both QBER and QLOSS do not scale linearly with PEC.
Moreover, the functional form of the the obtained scaling heavily depends on
parameters of the noise model used, thus the correct modelling of noise is of
prime importance in the estimation of the protocol operation over non-perfect
quantum channels.
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Fig. 2. Probabilities of a particle loss (QLOSS) or an erroneous decoding (QBER)
as a function of control mode failure probability (PEC) in protocol operation over
depolarizing channel
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Fig. 3. Probabilities of a particle loss (QLOSS) or an erroneous decoding (QBER) as
a function of dephasizig channel reliability r (see (26) for explanation)

To emphasize the above stated thesis, let us consider protocol operation over
dephasing channel, which is described by the following Kraus operators [1]

E0 =

[
1 0
0
√
1− r

]
, E1 =

[
0 0
0
√
r

]
(26)

where parameter r → 0 for weak coupling and short interaction time and r → 1
for strong coupling and/or long interaction time. Using definition (26) one can
find that probability of error occurrence in control mode given by expression (8)

PEC ≡ 0 (27)
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independent of r. On the other hand probabilities of bit loss (24) or its detection
error (25) are non-zero and vary, depending on r value, in a range similar to the
observed one for the depolarizing channel (see Fig. 3). It follows that some kinds
of channel imperfections are not well detected by control mode, what implies,
that it cannot universally (i.e. independent of occurring noise model) be used
for estimation of QBER and/or QLOSS observed in information mode.

5 Conclusion

The usefulness of the general method based on density operator analysis for
Ping-Pong protocol operation has been presented. As the proof of concept the
example of its application to the analysis of the protocol execution over depo-
larizing and dephasing channels has been given. The analysis of a more com-
plicated case of an active eavesdropping is left for future research. Although
the method is more cumbersome than approach used so far, it is more versatile
as it permits on incorporation of different models of noise in a unified way and
make use of a well grounded theory of quantum discrimination in estimation of
eavesdropper’s information gain.
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