
Evaluation and Development Perspectives
of Stream Data Processing Systems

Marcin Gorawski1,2, Anna Gorawska2, and Krzysztof Pasterak2

1 Wroclaw University of Technology, Institute of Computer Science,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Marcin.Gorawski@pwr.wroc.pl
2 Silesian University of Technology, Institute of Computer Science,

Akademicka 16, 44-100 Gliwice Poland
{Marcin.Gorawski,Anna.Gorawska,Krzysztof.Pasterak}@polsl.pl

Abstract. The following paper describes some common aspects of
stream data processing systems. The paper consists of two main parts
– first showing the short description, tests results and conclusions of an
implemented system – the AGKPStream, while the second part focuses
on proposed solutions, created upon experiences gained during develop-
ment of mentioned system, as well as knowledge collected during learning
about some concepts of a StreamAPAS system. The first discussed is-
sue is a tuple construction – basic data representation. It concerns tuple
time model, tuple schema and a tuple decorator. Afterwards, the stream
query and scheduling problems are described.

Keywords: stream data processing, tuple, tuple time model, tuple
schema, joined tuples decorator, stream query, stream schedulers.

1 Introduction

Designing a system for events monitoring, which is efficient and scalable is a ma-
jor interest in recent studies. Processing multiple data connected with critical
events is a crucial issue. The increasing number of data generated by on-line
sources created unpredictable data streams processing a challenging problem
that cannot be solved using traditional data bases. Therefore it is highly proba-
ble that the paradigm of data stream processing will became an important part
of managing such data volumes.

The Data Stream Processing Management System (DSMS) assumes that data
sources, called data streams, produce data continuously in an unpredictable mat-
ter. Data streams are considered to be open-ended and theoretically unbounded
in size. The system does not have any control over data volumes arrival order
and structure (schema), since DSMS is usually connected to remote sources and
sinks. Moreover, once a tuple is taken from a data stream it is processed and
then archived or discarded. Unless there is a data warehouse [1–10] storing his-
torical data it is almost impossible to retrieve the processed tuple. Data stream
processing systems are considered to support rapidly changing data sources.

A. Kwiecień, P. Gaj, and P. Stera (Eds.): CN 2013, CCIS 370, pp. 300–311, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Evaluation and Development Perspectives of Stream 301

Detailed description of the data stream processing paradigm can be found in
[11, 12, 3, 13–17].

Main aspects of the stream data system described in this paper concern tuple
time model, tuple schema and tuple decorator. Next discussed issues are stream
queries and scheduling policies.

First part of the paper shows main ideas of a prototype Data Stream Man-
agement System called AGKPStream. The goal of the research is to assure con-
tinuity of reading data from the stream sources. Minimization of delay between
measuring and storing the data is main criteria of evaluation. If it is possible, we
want to assure successful recovery of the interrupted processing without losing
any stream data. Next part is dedicated to presentation of new ideas, which are
planned to be implemented in a forthcoming system [18–24].

2 Implemented Aspects of Stream Data Processing
Systems

The AGKPStream system is based on the data stream processing paradigm.
Therefore, all fundamental ideas and conditions consistent with this model had
to be met. This part focuses on several interesting aspects of the AGKPStream
system, which results from applying mentioned paradigm. Similarly to previously
described system, a StreamAPAS system allows user to define temporal data
analysis as well as positive/negative tuples processing. Some of further mentioned
aspects are also described in [25, 26].

During all tests presented in Sect. 2, three main metrics were measured. First,
a tuple response time, represents the time interval between tuple departure and
arrival time. Next metric is a tuple slowdown [11], which is a ratio between
tuple response time and ideal tuple response time (i.e. the time tuple would
be processed by the system without waiting in queues). This metric illustrates
how big delay each tuple is experiencing during processing. Algorithm used to
measure ideal processing time can be found in [20]. The last tested metric was
memory usage calculated by measuring both the number of tuples present in the
system and total system memory consumption.

2.1 Tuple Time Model

The AGKPStream system adopts a temporal tuple time model. Each tuple con-
tains, apart from data (attributes), two timestamps – the beginning and the end
of tuples life time, determining the slice of time, where event described by tuple
is valid. There were some operators, which had to store their input tuples in
internal data structures. Those structures were cleaned each time new tuple was
taken by those operators. During such cleaning operation the remove condition
was based on the tuples life time – tuples with end timestamp value less than
current system time were deleted.

The temporal tuple time model was satisfying for the AGKPStream system
applications. It is worth noticing that the simplicity of the selected model dis-
tinguishes it among other time models. The biggest asset to the temporal time



302 M. Gorawski, A. Gorawska, and K. Pasterak

model is that, according to [25, 26], it reduces the amount of transmitted data
doubly.

2.2 Tuple Schema

In the AGKPStream system, a tuple schema was assigned to the stream. Each
tuple contained data, but proper interpretation of them could be obtained only
when the tuple was stored or read from the particular stream. As a consequence,
an isolated tuple could not be used (or even its existence was indefinite) without
a stream. The only way to properly extract the desired attributes value was to
address tuples attribute using name taken from the schema.

Tuple schemas for all streams were calculated before appropriate data pro-
cessing. When the first tuple arrived to the system, all streams already knew
their schemas. Due to such strategy, all query defining and system configuration
errors are detected before the data processing start.

Other advantage is the construction of a projection operator. It was intended
to trim tuple schemas. Since all schema calculations were performed before data
processing, i.e. in the system’s initialization phase, projection operator simply
set trimmed input schema to its output stream before the first tuple arrived
to the system. After that, its work was equal to sending input tuples to the
output. They contain untrimmed data indeed, although the view of that data
was trimmed by the schema located in the stream. Besides all these advantages,
schema-in-stream strategy had also some disadvantages, such as complications
of union operator (detailed description can be found at [11]).

2.3 Tuple Decorator

A joined tuples decorating mechanism was implemented in the AGKPStream
system and was used as a part of join operators algorithm. The idea was to
substitute two input tuples with a single output tuple of mentioned operators
without any data copying. In the case of multiple subsequent joins, the final
structure of the output tuple was formed by a number of decorators, pointing
each other.

The attribute mapping in a tuples decorator was based on a simple strategy
of finding first matching pattern. The method is current until the condition
of unique attribute names in each decorated tuple is preserved, however, this
assumption cannot be always assured. Therefore, the AGKPStream system had
been provided with an attributes name prefix mechanism, which was based on
the origin of the tuple (i.e. a tuples source). That strategy allowed to ensure that
each attribute of the two joined tuples would be unique (unless join operation
was performed over two copies the same tuple).

The aim of performed tests of join operators, was to verify the thesis which
assumes that using a joined tuples decorator instead of a simple data copying
approach to newly created output tuple is better in the issue of memory us-
age, due to limitation of total tuple number. Furthermore, the secondary aim
was to show the differences between other metrics (such as tuple response time or



Evaluation and Development Perspectives of Stream 303

tuple slowdown). This chart (Fig. 1) clearly shows that using the joined tuples
decorating mechanism visibly reduces total memory usage of tested cross-join
query. In addition, the amplitude of changes is significantly less in contrast to
the copying and creating new tuple strategy. Therefore it has positive influence
on the stability of the system.

Fig. 1. Joined tuples strategies: total tuple count in system vs. system work time [ms]

The following charts (Fig. 2 and 3) reflect the results of comparison between
those two joining strategies with respect to measured tuple response time and
tuple slowdown.

Fig. 2. Joined tuples strategies: tuple response time [ms] vs. system work time [ms]

Tuple slowdowns in both strategies are comparable, in favor of decorating
strategy. However, the amplitude changes more visibly than in the copying strat-
egy, which is quite balanced after the initial peak. Thus, it is hard to point a
better strategy with respect to tuples slowdown optimization.

In all considered and tested implementations of join operator (i.e. cross-join,
equi-join and theta-join), the tuple decorating strategy consumes less memory
than corresponding copying technique. Therefore, in case of memory usage op-
timization, it is suggested to use joined tuples decoration strategy.



304 M. Gorawski, A. Gorawska, and K. Pasterak

Fig. 3. Joined tuples strategies: tuple slowdown vs. system work time [ms]

Test results of two other metrics have not shown which of these compared
strategies were better. In each of tested join operator implementations, tuple
response time and tuple slowdown have had different dependences.

2.4 Queries

The AGKPStream system allows to define and create stream queries only before
system’s start. It was done during manual editing of multiple configuration files.

Each stream query is processing tuples in separation of the other queries,
both with respect to scheduling algorithms and operator sharing. Furthermore,
each stream query can have multiple inputs and outputs. As the result of such
structure, defining query is more like defining whole query plan, where individual
queries interlace with each other due to operator and stream sharing. In the
AGKPStream system, each stream query has a local scheduler, which controls
work of operators contained in this query. There is also a global scheduler, which
controls all queries in the system.

This solution had many disadvantages. For example, when two similar queries
(i.e. queries that had a nonempty set of identical operators) were registered in
the system, the redundancy of operators and streams occurred (in the whole
query plan, there was more than one element, which had been performing the
same operations). However, there was a possibility of manual optimization of
such query plan, by creating a double-output query, where data collected from
each input would be identical as in two regular queries. Such joined query should
not contain any redundant operators nor streams, although the end user skills
need to be involved in an optimization process.

2.5 Schedulers

There were six schedulers implemented in the AGKPStream system. They could
be divided into categories: simple schedulers (FIFO, Round Robin) [27, 28] and
priority schedulers (Greedy, HR, HNR, MTIQ) [11, 27, 28]. Detailed information



Evaluation and Development Perspectives of Stream 305

on their algorithms was described in [29]. We distinguish two levels of scheduling
policies: contained operator-level and query-level scheduling. Each query had
a local scheduler, while all queries were controlled by a global scheduler.

The aim of performed tests was to choose the best priority scheduler of all
four tested strategies (Greedy, HR, HNR, MTIQ). All of them were based on
Round Robin scheduling policy. Three metrics were measured: tuple response
time, tuple slowdown and memory usage (showed as total tuple count and total
memory usage). Undoubtedly, the best priority scheduler was MTIQ according
to Fig. 4–7. It is probably caused by simplicity of priority counting algorithm.
The three remaining priority schedulers (Greedy, HR, HNR) were determin-
ing operator priority by performing complex calculations over selected operator
statistics (such as selectivity and cost), which were often derived by expensive
recursive floating point operations. The MTIQ scheduling strategy used stream
tuple count. This statistic’s value is simply actual buffer size.

3 Proposed Solutions

In the previous part, several aspects of the data stream processing AGKPStream
system was presented. The analysis presented in Sect. 2 led to conclusions and
ideas presented in following paragraphs.

3.1 Tuple Time Model

Knowledge of tuples life time was required in the AGKPStream system all of
the time. When a new tuple arrived to the system, its end timestamp had to be
known. The impossibility of changing that value and also lacks of such informa-
tion in real life causes some difficulties for a certain area of applications. E.g.
real-time traffic monitoring systems, where the character of events described by
tuples is not determined (especially in terms of tuple life time). The need for
creating more universal system led to development of different, more flexible
tuple time model.

In the following system it is proposed to implement a punctuation-negative
tuple time model, which assumes an existence of two kinds of tuples: regular data
tuples and special punctuation tuples. The first one contain data, determined by
proper schema. The punctuation tuples inform the system about groups of data
tuples, which are outdated and have to be deleted from system. This model com-
bines the features of punctuation model with the negative tuples model (signed
tuples model).

In such model, operators would perform their data structure cleaning only
when a punctuation tuple arrives (in the previous system, cleaning was done
before processing each tuple). Moreover, there is no need for knowing the moment
of tuple deactivation, i.e. tuple end timestamp is set when a new tuple is created,
because it is determined by creation of the other – punctuation tuple. In graphical
representation, such tuples (data and punctuation) can be described as points.
In temporal model, tuples could be represented as lines.



306 M. Gorawski, A. Gorawska, and K. Pasterak

Fig. 4. Priority schedulers: tuple response time [ms] vs. system work time [ms]

Fig. 5. Priority schedulers: tuple slowdown vs. system work time [ms]

Fig. 6. Priority schedulers: total tuple count in system vs. system work time [ms]

Fig. 7. Priority schedulers: total memory usage [MB] vs. system work time [ms]



Evaluation and Development Perspectives of Stream 307

3.2 Tuple Schema

In the previous section, a tuple schema realization in the AGKPStream system
was described. Even though it had advantages mentioned in Sect. 2.2, such ap-
proach complicates the system. Checking validity of each stream and operator
(with respect to tuple schema) with such precision led to unexpected difficulties.

The proposed solution reduces checking mechanisms for operators and streams
in favor of increasing their fault tolerance. In consequence each operator should
adjust to input data (with reasonable limits), e.g. when it needs to extract nonex-
istent attribute, it is better not to throw exception and stop the whole system,
but to attempt to process that tuple as precisely as possible.

3.3 Tuple Decorator

Basing on experiences gained during creating and testing the AGKPStream sys-
tem, joined tuples decorating strategy seems to be the most promising approach.
Therefore, it is planned to implement this mechanism in the forthcoming stream
data processing system.

In order to overcome problems connected with the proper tuple attributes
addressing, it is proposed to extend each tuple with a special field, determining
its source, called tuple origin (in the AGKPStream system, each attribute had
special prefix). Moreover, tuple decorator ought to map tuple origin values to
the decorated tuple pointers. Thus, when decorator is given a full attribute
name (i.e. attribute name preceded by origin value), requested attribute value
will be extracted from origin defined tuple, which is also solution for ambiguous
attribute name in joined tuples problem. Furthermore, an origin based tuple
mapping mechanism is flexible for multiple tuples being decorated, instead of
only two tuples limit in the AGKPStream system.

3.4 Queries

In the forthcoming system, it is planned to introduce a different stream query
model. First of all, proposed model ought to handle dynamic query registration
and removal. Each stream query should have one output – representing user
desired data. As input data for queries, it is assumed that each system’s source
(input stream, which is connected to the system) as well as actual running query
results could be used. In terms of scheduling, it is planned to apply one global
scheduler to all operators working in the system.

To solve operator and stream redundancy problem, a dynamic query merging
and a splitting mechanism is intended to be used. The aim of such operation
is to provide a query plan without redundant elements, but containing shared
operators and streams [30]. In the AGKPStream system, similar result could be
obtained only manually, but in future system it ought to be a regular procedure.

Two basic query operations should be defined. The result of merging two
stream queries is a query, where all operators and streams are unique. It means
that for each pair of identical elements in these two merged queries, the final



308 M. Gorawski, A. Gorawska, and K. Pasterak

query will contain only one of them. It is also important to define when two
elements (operators, streams) are identical. In the AGKPStream system, oper-
ators were distinguished by name. There was no such mechanism for streams.
The forthcoming system will assume that two operators are identical while per-
forming the same operations on the same data streams. Therefore two streams
are identical when they are connecting identical operators.

On the other hand, when a stream query is no longer needed it should be
removed from the query plan. The result of splitting one query with a query
pattern are two separate queries. When a primary query contains some shared
elements, they ought to be split into two separate copies of the same element,
each in one of result queries. When removing an unnecessary query from a query
plan, a primary query becomes query plan, while removed query is a query
splitting pattern. One of the result queries is a new structure of a query plan,
while the other is equal to the splitting pattern and is no longer used.

Currently developed system will implement query merging and splitting mech-
anism using a special stream attribute called sharing factor. It is simply the
number of queries sharing that stream. Each query merging operation incre-
ments this value (only in affected elements) and each split operation decrements
it. When sharing factor is equal to 0 it means that no queries share this stream
and it could be removed from the query, also with operator connected to its
output. When new element is inserted to the query, its sharing factor is equal
to 1.

3.5 Schedulers

In the future, it is planned to limit the number of complex priority scheduler
statistics and instead of them use simpler one. Most of all it is the stream size and
optionally tuple wait time (time which each tuple has to wait to be processed)
that will be used. These values do not require any calculations in order to obtain
expected data. It is planned to test many different priority ratios, which can be
obtained from these statistics.

In the AGKPStream system, each stream query had its own local scheduler.
In the forthcoming system that strategy cannot be applied because of sharing
query elements – it is impossible to determine clear borders between particular
queries. Thus, it is proposed to apply only one global scheduler to all operators
contained in query plan (which was mentioned in the previous part).

Different scheduling policies are considered, but each is based on simple statis-
tics. The general rule is to call operator with the highest priority. Quite similar
strategy is to creating a group of operators which are called periodically (like in
Round Robin strategy). Operators which belong to such group are chosen from
all operators and the choice is based on priority. It is also possible to split all
working operators to many groups and to call all of them, but the frequency of
calls depends on group priority, which depends on included operators priority.



Evaluation and Development Perspectives of Stream 309

4 Conclusions

In this paper we introduce interesting aspects of data stream processing that are
connected to the prototype AGKPStream system or the StreamAPAS system
[25]. Described ideas are the result of tests and conclusions drawn from men-
tioned systems. Although in the AGKPStream temporal model was satisfying,
in the forthcoming work we consider punctuation-negative tuple time model as
more suitable and flexible. Described measurements of joined tuples decorating
mechanism performance in comparison to the results of copying and creating
strategy shows that using tuple decorator has positive influence on system’s
efficiency. Disadvantage of the AGKPStream system was that queries were al-
lowed to be defined only in system’s initialization phase. A new system ought to
handle dynamic query registration and removal. Mentioned features will make
continuous system more flexible and efficient. With this motivation in mind it
is likely that the forthcoming system will be more advanced than the previous
one, e.g. by applying the distributed model [18, 19, 31, 21, 22] instead of a single
application. In further future, it is also planned to include presented ideas in
development of the stream data warehouse [1, 7, 22, 8, 23, 24]. Applying data
stream processing mechanism is also being considered in addition to problems
which descriptions can be found in [32–36, 29, 37–39].

References

1. Abhirup, C., Ajit, S.: A Partition-based Approach to Support Streaming Updates
over Persistent Data in an Active Data Warehouse. In: Proceedings of the 2009
IEEE International Symposium on Parallel & Distributed Processing, IPDPS 2009,
pp. 1–11. IEEE Computer Society, Washington, DC (2009)

2. Gorawski, M.: Extended Cascaded Star Schema and ECOLAP Operations for
Spatial Data Warehouse. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS,
vol. 5788, pp. 251–259. Springer, Heidelberg (2009)

3. Gorawski, M.: Time complexity of page filling algorithms in Materialized Aggre-
gate List (MAL) and MAL/TRIGG materialization cost. Control and Cybernet-
ics 38(1), 153–172 (2009)

4. Gorawski, M., Gorawski, M.: Balanced spatio-temporal data warehouse with
RMVB, STCAT and BITMAP indexes. In: PARELEC 2006: International Sym-
posium On Parallel Computing In Electrical Engineering, pp. 43–48 (2006)

5. Gorawski, M., Malczok, R.: Indexing Spatial Objects in Stream Data Warehouse.
In: Nguyen, N.T., Katarzyniak, R., Chen, S.-M. (eds.) Advances in Intelligent
Information and Database Systems. SCI, vol. 283, pp. 53–65. Springer, Heidelberg
(2010)

6. Gorawski, M., Marks, P.: Checkpoint-based resumption in data warehouses. In:
Software Engineering Techniques: Design for Quality. IFIP, vol. 227, pp. 313–323.
Springer, US (2006)

7. Gorawski, M., Marks, P.: Resumption of data extraction process in parallel data
warehouses. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.)
PPAM 2005. LNCS, vol. 3911, pp. 478–485. Springer, Heidelberg (2006)

8. Gorawski, M., Morzy, T., Wrembel, R.: Special Issue on: Techniques of Advanced
Data Processing and Analysis Introduction. Control and Cybernetics 38(1) (2009)



310 M. Gorawski, A. Gorawska, and K. Pasterak

9. Kozielski, S., Wrembel, R. (eds.): New Trends in Data Warehousing and Data
Analysis. Annals of Information Systems, vol. 3. Springer, US (2009)

10. Morzy, T.: Extraction, Transformation, and Loading Processes. In: Data Ware-
houses and Olap: Concepts, Architectures and Solutions, pp. 88–110 (2007)

11. Brian, B., Shivnath, B., Mayur, D., Rajeev, M., Dilys, T.: Operator scheduling in
data stream systems. VLDB J. 13(4), 333–353 (2004)

12. Gorawski, M.: Advanced Data Warehouses. Habilitation, Studia Informatica
30(3B). Pub. House of Silesian Univ. of Technology (2009)

13. Gorawski, M., Chrószcz, A.: Synchronization Modeling in Stream Processing. In:
Morzy, T., Härder, T., Wrembel, R. (eds.) Advances in Databases and Information
Systems. AISC, vol. 186, pp. 91–102. Springer, Heidelberg (2013)

14. Gorawski, M., Malczok, R.: Towards stream data parallel processing in spatial
aggregating index. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski,
J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 209–218. Springer, Heidelberg (2008)

15. Gorawski, M., Malczok, R.: Answering Range-Aggregate Queries over Objects Gen-
erating Data Streams. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.)
DASFAA 2010. LNCS, vol. 5982, pp. 436–439. Springer, Heidelberg (2010)

16. Gorawski, M., Marks, P.: Distributed stream processing analysis in high availability
context. In: Proceedings of the Second International Conference on Availability,
Reliability and Security, ARES, pp. 61–68 (2007)

17. Roger, S.B., Jonathan, G., Mohamed, H.A., Hong, M.: Consistent Streaming
Through Time: A Vision for Event Stream Processing. In: Third Biennial Con-
ference on Innovative Data Systems Research, CIDR 2007, Asilomar, CA, USA
(2007)

18. Gorawski, M.: Architecture of Parallel Spatial Data Warehouse: Balancing Algo-
rithm and Resumption of Data Extraction. In: Proceedings of the 2005 conference
on Software Engineering: Evolution and Emerging Technologies, pp. 49–59. IOS
Press, Amsterdam (2005)

19. Gorawski, M., Chroszcz, A.: Optimization of operator partitions in stream data
warehouse. In: Proceedings of the ACM 14th international workshop on Data Ware-
housing and OLAP, pp. 61–66. ACM, New York (2011)

20. Gorawski, M., Gorawski, M.: Modified R-MVB tree and BTV algorithm used in
a distributed spatio-temporal data warehouse. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 199–208.
Springer, Heidelberg (2008)

21. Gorawski, M., Marks, P.: Towards reliability and fault-tolerance of distributed
stream processing system. In: DEPCOS-RELCOMEX 2007 International Confer-
ence on Dependability of Computer Systems, pp. 246–253. IEEE Computer Society,
Washington, DC (2007)

22. Gorawski, M., Marks, P., Gorawski, M.: Collecting data streams from a distributed
radio-based measurement system. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.)
DASFAA 2008. LNCS, vol. 4947, pp. 702–705. Springer, Heidelberg (2008)

23. Waas, F., Wrembel, R., Freudenreich, T., Theile, M., Koncilia, C., Furtado, P.: On-
Demand ELT Architecture for Right-Time BI: Extending the Vision. International
Journal on Data Warehousing and Mining (to appear, 2013)

24. Wrembel, R.: A Survey of Managing the Evolution of Data Warehouses.
IJDWM 5(2), 24–56 (2009)

25. Gorawski, M., Chroszcz, A.: StreamAPAS: Query Language and Data Model. In:
Proceedings of the Third International Conference of Complex, Intelligent and
Software Intensive Systems, CISIS 2009, pp. 75–82. Springer, Heidelberg (2009)



Evaluation and Development Perspectives of Stream 311

26. Gorawski, M., Chrószcz, A.: Query Processing Using Negative and Temporal Tu-
ples in Stream Query Engines. In: Szmuc, T., Szpyrka, M., Zendulka, J. (eds.)
CEE-SET 2009. LNCS, vol. 7054, pp. 70–83. Springer, Heidelberg (2012)

27. Mohamed, A.S., Panos, K.C., Alexandros, L., Kirk, P.: Efficient scheduling of het-
erogeneous continuous queries. In: Proceedings of the 32nd International Confer-
ence on Very Large Data Bases, VLDB 2006, pp. 511–522. Endowment (2006)

28. Timothy, M.S., Bradford, P., Zhu, Y., Luping, D., Elke, A.R.: An Adaptive Multi-
Objective Scheduling Selection Framework for Continuous Query Processing. In:
Proceedings of the 9th International Database Engineering & Application Sympo-
sium, IDEAS 2005, pp. 445–454. IEEE Computer Society, Washington, DC (2005)

29. Jestratjew, A., Kwiecien, A.: Performance of HTTP Protocol in Networked Control
Systems. IEEE Trans. Industrial Informatics 9(1), 271–276 (2013)

30. Patroumpas, K., Sellis, T.: Subsuming multiple sliding windows for shared stream
computation. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS,
vol. 6909, pp. 56–69. Springer, Heidelberg (2011)

31. Gorawski, M., Marks, P.: Fault-tolerant distributed stream processing system. In:
International Workshop on Database and Expert Systems Applications – DEXA,
pp. 395–399 (2006)

32. Gorawski, M., Malczok, R.: AEC Algorithm: A Heuristic Approach to Calculating
Density-Based Clustering Eps Parameter. In: Yakhno, T., Neuhold, E.J. (eds.)
ADVIS 2006. LNCS, vol. 4243, pp. 90–99. Springer, Heidelberg (2006)

33. Gorawski, M., Malczok, R.: Towards automatic Eps calculation in density-based
clustering. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006.
LNCS, vol. 4152, pp. 313–328. Springer, Heidelberg (2006)

34. Gorawski, M., Marks, P.: Towards automated analysis of connections network in
distributed stream processing system. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.)
DASFAA 2008. LNCS, vol. 4947, pp. 670–677. Springer, Heidelberg (2008)

35. Gorawski, M., Lorek, M., Gorawska, A.: CUDA Powered User-Defined Types and
Aggregates. In: International Workshop on Engineering Object-Oriented Parallel
Software (IEEE AINA_EOOPS-2013). IEEE CS (to appear, 2013)

36. Jestratjew, A., Kwiecień, A.: Using Cloud Storage in Production Monitoring Sys-
tems. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 226–235.
Springer, Heidelberg (2010)

37. Kwiecień, A., Sidzina, M.: Dual Bus as a Method for Data Interchange Transaction
Acceleration in Distributed Real Time Systems. In: Kwiecień, A., Gaj, P., Stera,
P. (eds.) CN 2009. CCIS, vol. 39, pp. 252–263. Springer, Heidelberg (2009)

38. Kwiecień, A., Opielka, K.: Industrial Networks in Explosive Atmospheres. In:
Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 367–378.
Springer, Heidelberg (2011)

39. Skrzewski, M.: Analyzing Outbound Network Traffic. In: Kwiecień, A., Gaj, P.,
Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 204–213. Springer, Heidelberg (2011)


	Evaluation and Development Perspectives
of Stream Data Processing Systems

	1 Introduction
	2 Implemented Aspects of Stream Data Processing Systems
	2.1 Tuple Time Model
	2.2 Tuple Schema
	2.3 Tuple Decorator
	2.4 Queries
	2.5 Schedulers

	3 Proposed Solutions
	3.1 Tuple Time Model
	3.2 Tuple Schema
	3.3 Tuple Decorator
	3.4 Queries
	3.5 Schedulers

	4 Conclusions
	References




