
Client-Side Processing Environment Based
on Component Platforms and Web Browsers

Adam Piórkowski and Przemysław Szemla

AGH University of Science and Technology,
Faculty of Geology, Geophysics and Environment Protection,

Department of Geoinformatics and Applied Computer Science,
al. A. Mickiewicza 30, 30-059 Kraków, Poland
pioro@agh.edu.pl,pszemla@geol.agh.edu.pl

http://www.geoinf.agh.edu.pl

Abstract. Distributed processing is an important issue of numerical
calculations, in particular concerning the problems of time-consuming
calculations. Solving this problem requires appropriate software, which
is more complicated than the implementation in parallel environments.
This article presents a proposal of distributed processing solution based
on web browsers. This method, unlike the commonly used, does not
require installing any software on the compute nodes. This is achieved
through the distribution and execution of the code in the container,
which is a web browser.

Keywords: parallel computing, distributed computing, numerical com-
puting, client-side processing, web browsers, component technologies,
clusters, domain decomposition.

1 Introduction

Distributed processing is an important method of resolving time-consuming
calculations. In the past decades, methods of implementation of distributed pro-
cessing have changed many times. The basic method of implementation of dis-
tributed computing is the design of remote processes, communicating through
network mechanisms, for example network protocols such as TCP/IP are be-
ing commonly used for that purpose. Unfortunately, this method has significant
drawbacks:

– for every application you need to implement a network connection layer,
– there is a full set of distributed settings required – often the static allocation

of resources requires creating a new solution for every problem.

PVM (Parallel Virtual Machine) and MPI (Message Passing Interface) are the
next methods of communication in parallel and distributed systems. A charac-
teristic feature is the strong binding of a program that uses these technologies
[1,2].

A. Kwiecień, P. Gaj, and P. Stera (Eds.): CN 2013, CCIS 370, pp. 21–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.geoinf.agh.edu.pl


22 A. Piórkowski and P. Szemla

The next approach is to create components that allow for distributed pro-
cessing. Examples of such environments are CORBA (Common Object Request
Broker Architecture) and DCOM (Distributed Component Object Model). Both
the environments can help to implement a network communication, but are asso-
ciated with a particular execution platform (system and hardware). Also in this
case, the calculation for a specific problem requires a dedicated system [3,4,5].

Another approach allows for a hardware and a system independence. Compo-
nent environments (Java ME, .NET Framework) allow for providing of mecha-
nisms for calling methods of objects (Java RMI, .NET Remoting). This solution
has many advantages, however, it still needs to install software on the computing
nodes [6,7].
There are special distributed computing environments [8]. Examples of solutions
are the environments: openSSI, XtreemOS and Apache Hadoop [9,10,11].

Distributed processing, as well as parallel processing, requires the ability to
decompose the problem. The basic decomposition methods for parallel process-
ing are the functional and the domain decomposition. Functional decomposition
requires the ability to implement various functions in the nodes. Domain de-
composition usually performs the same code on different nodes, sharing data
between these nodes. This approach, although more difficult to implement, al-
lows for much greater scalability than functional decomposition.

The research on distributed computing in component environments and on
the calculations in the network [6,7], both on server- and client-side [12,13], has
resulted in the concept of system that processes data in browsers (as containers).
Therefore, this solution does not require any software installation on the compute
nodes. Due to using component environments a code can be run on any computer.
Data transmission is performed by using the serialization mechanisms specific to
those environments. The idea of applet client-side computing is also a topic of
the research [14], but the way of decomposition of numerical problem is different
than described in this article.

2 The Concept of the Solution

Flexible environment for numerical computations should meet the demands:

– Portability of code,
– Dynamic adjoining nodes to the system,
– A minimum of complicated configuration of nodes.

Code portability feature can be achieved using technologies such as Java Com-
ponent VM, NET Framework and Mono. There are environments for different
hardware platforms for these technologies.

Dynamic adjoining nodes to the system is an important feature. Static as-
signment of nodes can be a cause of problems if one node fails. The system is
waiting for a result that nodes had to provide. If the system can dynamically
add computational units, overcoming this problem is available (Fig. 1). Minimum
complicated configuration is another challenge. The best solution involves that



Client-Side Processing Environment 23

Server

ETHERNET

Clients

Mobile client Mobile client

Mobile client

Wireless connection Wireless connection

Mobile client

Mobile client

Fig. 1. Schema of the network for the proposed system

a client should only report to the system access to participate in the calculation.
Other activities, such as the transfer of input and output data and executable
code should not occupy his attention.

The proposed solution that satisfies these assumptions is the client-side ap-
plication, in particular an applet executed inside the container, which is a Web
browser (Fig. 2). The use of Java-applet or MS Silverlight (Moonlight for Linux,
Mac) allows to run precompiled and managed code in browser [13]. Attaching
nodes to the system can be made at any time, by user actions or service (e.g.
screensaver). Once connected, the system should maintain connections to ob-
jects. By using browser system should not require any configuration at the client
side.

The scheme should have an object interface, that allows for easy consolidation
of its classes with classes of a numerical problem solution. An analogy to the
Parallel. For loop (.NET 4.0) can be used – Distributed.For. Such a loop would
allow for the automatic division of the data domains to computational units in
the system. This applies only to numerical problems that allow for the proper
domain decomposition (Fig. 3).



24 A. Piórkowski and P. Szemla

Serialized

object

Client

Deserialized 

object

Client’s web browser

Server

Fig. 2. Web browser as a container for an applet with code

 

 

 
 

 

SERVER 

 

Fig. 3. Schema of the domain decomposition

3 Principles of Implementation

The loading of the numerical code at the client side takes place at the applet
downloading. Next the data should be passed. The way of passing data is to



Client-Side Processing Environment 25

use serialization feature for component objects (Fig. 2). After deserialization the
application can start processing the data at the range pointed by server for the
current node. The output values are returned to the server. The action’s scenario
is shown on the Fig. 4. The first version of presented solution was implemented
for Java VM environment.

Client-side Server-side

Request for the applet

Data request

Send the object

Request for the computation range

Send the applet

Send the range

Using RMI

Using RMI

Return a result

Save a result

Calculate the task 

Using RMI

Fig. 4. Action schema

3.1 Implementation of a Server

The server of an application is a three-threaded [15]:

– starting thread – it initiates a connection with RMI register,
– programmer’s thread – the code written by a programmer that uses a solution

for an implementation of own numerical problem,
– main thread – it controls the programmer’s thread.

The Figure 5 shows a class diagram a server of solution [15]. There are four parts
of server:



26 A. Piórkowski and P. Szemla

– server package – it implements two of the threads mentioned above,
– program package – it contains a code of numerical calculations, it uses the

DistributedFor function, that allows to divide a problem into domains based
on parts of input data, the reduce class merges the parts of solution delivered
by nodes,

– common package – this package is shared by the server and the client, it
contains an implementation of ICalculation interface, used for calculations,

– distributed package – it provides all interfaces and abstract classes, e.g. IRe-
duce, ICalculation and ACalculation.

server

ServerMain Server MainThread

common

program

IServer

Program
Control

Input

Reduce

Output

Calculations

distributed

DistributedFor

ACalculation FromToStep

IReduce

ICalculation

Serializable

Remote

Runnable Runnable

Serializable

RMIConfig

Fig. 5. Class diagram of a server

3.2 Implementation of a Client

The main code of calculations is realized as a self-signed applet (Swing technol-
ogy). It contains the client package, also shares common and distributed packages,
excluding DistributedFor class and IReduce interface.

At the start of connection the applet takes the calculation class, takes the
current state and data of this class by deserialization of server data and gets the
range of calculations (From, To, Step). Next the processing is performed and the
results are uploaded back to the server. This procedure is repeated for the next
range for calculations.



Client-Side Processing Environment 27

4 Tests

To assess a performance of proposed solution the tests have been carried out
[15]. 8 PC (Intel i7 Core 2600, 4 GB DDR3, 1333 MHz) were used as client nodes
and the ninth PC as a web server. The Gigabit Ethernet connection with switch
was used. As a test algorithm a median filter with mask of 101×101 for gray
scale images was implemented (as an example of time-consuming calculations).
The tests were performed for two images:

– Picture A of 1920×1200,
– Picture B of 1200×900.

The results of tests are presented in the table (Table 1) and on the plot (Fig. 6).

Table 1. Execution time of distributed image processing [s] (and speedup)

Serial 1 node 2 nodes 4 nodes 8 nodes

Pic A, 1920×1200 381 391 (102 %) 197 (51 %) 103 (27%) 65 (17%)
Pic B, 1200×900 150 151 (101 %) 77 (51 %) 42 (28%) 22 (14%)

381 391

197

103
65

150 151

77
42

22

0

50

100

150

200

250

300

350

400

450

serial 1 node 2 nodes 4 nodes 8 nodes

ti
m

e 
[s

]

Picture A

Picture B

Fig. 6. The results of tests

The results of tests proved that proposed solution is an effective way of par-
allelization. There was a very small network overhead in case of Picture B,
estimated as a comparison of serial mode and calculations on a single node,
although the transmitted data after decompression was not negligible. An im-
portant factor was the speed of the network. The proposed solution can process
in different environments, so the network overhead should be taken into account.
The problem of network speed in cluster computations was considered in [16].



28 A. Piórkowski and P. Szemla

5 Conclusions and the Future Work

The proposed solution meets the conditions of flexible environment for client-
side distributed numerical calculations. This way of processing enables to set
a distributed environment that contains a dynamic number of nodes, that are
based on different hardware and software platforms. Numerous problems and
applications can be processed at the client side. It is also possible to provide
computational services by individual clients. The future work involves the im-
plementation for MS .NET framework and MS Silverlight. Although Java based
applets will most likely be a very common solution due to mobile market pene-
tration, MS Silverlight allows to easier implementation using provided interfaces,
especially a compression of transmitted data stream. It reduces a network over-
head [17,18]. Further improvements (like compression of input data) should allow
to reach better efficiency because in case of Picture B processing, simple extrap-
olation of the measured data for current implementation shows less improvement
in execution time in case of 16 processes and significant drop in efficiency for
larger numbers. For 8 nodes the speedup is 17 % instead 12.5 %. Another prob-
lem is memory allocation – we tested max. 2 GB of input data – such amount of
data needs changes in VM configuration. More detailed and extensive testing is
needed to accurately assess the solution.

An important issue is the use of the proposed method in real numerical prob-
lems. The research on algorithms for distributing task for distributed systems
involves time-consuming algorithms used in Geophysics.

The ray tracing technique can easily and accurate simulate the seismic wave
propagation in geological medium and can provide synthetic times of first ar-
rivals. This data can then be easily used in further calculations, like solving the
inverse problem. However, precise ray tracing algorithms are time consuming.
To reduce computational time the parallel approach is recommended [19]. An-
other interesting time-consuming problem is the calculation of water percolation
through a soil resulting from local differences of piezometric pressure distribution
[20].

Inversion of seismic tomography data using stochastic method is common
computational problem [21,22]. During calculation many velocity distribution
were tested by comparing received and estimated travel times of seismic waves.
Additional computational problem is a long time for estimation travel times.

The proposed solution is not limited to use in Geophysics. It can be also used
for solving time-consuming numerical problems in other domains, like simulation
of energy production and distribution for electricity market [23].

Acknowledgments. This work was co-financed by the AGH – University of
Science and Technology, Faculty of Geology, Geophysics and Environmental Pro-
tection, Department of Geoinformatics and Applied Computer Science as a part
of statutory project.



Client-Side Processing Environment 29

References

1. Sunderam, V.S.: PVM: A Framework for Parallel Distributed Computing. Concur-
rency: Practice and Experience 2(4), 315–339 (1990)

2. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press (1994)

3. Object Management Group. The Common Object Request Broker: Architecture
and Specification. OMG Document, Ver. 2.0 (1995)

4. Onderka, Z.: The Efficiency Analysis of the Object Oriented Realization of the
Client-Server Systems Based on the CORBA Standard. Schedae Informaticae 20,
181–194 (2011)

5. Onderka, Z.: DCOM and CORBA Efficiency in the Wireless Network. In: Kwiecień,
A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 448–458. Springer, Hei-
delberg (2012)

6. Kowal, A., Piorkowski, A., Danek, T., Pieta, A.: Analysis of selected component
technologies efficiency for parallel and distributed seismic wave field modeling.
In: Proceedings of the 2008 International Conference on Systems, Computing Sci-
ences and Software Engineering (SCSS), part of the International Joint Conferences
on Computer, Information, and Systems Sciences, and Engineering, CISSE 2008,
Bridgeport, Connecticut, USA. Innovations and Advances in Computer Sciences
and Engineering, pp. 359–362. Springer (2010)

7. Piorkowski, A., Pieta, A., Kowal, A., Danek, T.: The Performance of Geother-
mal Field Modeling in Distributed Component Environment. In: Sobh, T., et al.
(eds.) Innovations in Computing Sciences and Software Engineering. Proceedings of
the 2009 International Conference on Systems, Computing Sciences and Software
Engineering (SCSS), part of the International Joint Conferences on Computer,
Information, and Systems Sciences, and Engineering (CISSE 2009), Bridgeport,
Connecticut, pp. 279–283. Springer (2010)

8. Czerwinski, D.: Numerical performance in the grid network relies on a Grid-
Appliance. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160,
pp. 214–223. Springer, Heidelberg (2011)

9. http://hadoop.apache.org/
10. Krauzowicz, Ł., Szostek, K., Dwornik, M., Oleksik, P., Piórkowski, A.: Numerical

Calculations for Geophysics Inversion Problem Using Apache Hadoop Technology.
In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 440–447.
Springer, Heidelberg (2012)

11. Kim, H., Kim, W., Lee, K., Kim, Y.: A Data Processing Framework for Cloud
Environment Based on Hadoop and Grid Middleware. In: Kim, T.-H., Adeli, H.,
Cho, H.-S., Gervasi, O., Yau, S.S., Kang, B.-H., Villalba, J.G. (eds.) GDC 2011.
CCIS, vol. 261, pp. 515–524. Springer, Heidelberg (2011)

12. Piorkowski, A., Plodzien, D.: Efficiency Analysis of the Server-Side Numerical Com-
putations. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39,
pp. 225–232. Springer, Heidelberg (2009)

13. Szatan, P., Piorkowski, A., Danek, T., Pieta, A.: Client side web-based simulations
of geophysical phenomena. Mineralia Slovaca 43, 187 (2011)

14. Jin, H., Sullivan, G.F., Masson, G.M.: Distributed Applet-Based Certifiable Pro-
cessing in Client/Server Environments. In: Proceedings of the the 7th Symposium
on the Frontiers of Massively Parallel Computation (FRONTIERS 1999), p. 44.
IEEE Computer Society, Washington, DC (1999)

http://hadoop.apache.org/


30 A. Piórkowski and P. Szemla

15. Szemla, P.: Web based environment for distributed calculations. Engineering The-
sis, WGGiOS, AGH (2013)

16. Wrzuszczak-Noga, J., Borzemski, L.: Comparison of MPI Benchmarks for Different
Ethernet Connection Bandwidths in a Computer Cluster. In: Kwiecień, A., Gaj, P.,
Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 342–348. Springer, Heidelberg (2010)

17. Piorkowski, A.: Methods of creating database applications in.NET environment. In:
Kwiecien, A. (ed.) Computer Networks 2007, Computer Networks – Applications
and Uses, vol. 2, pp. 195–202. WKiL, Warsaw (2007)

18. Flak, J., Gaj, P., Tokarz, K., Wideł, S., Ziębiński, A.: Remote Monitoring of Ge-
ological Activity of Inclined Regions – The Concept. In: Kwiecień, A., Gaj, P.,
Stera, P. (eds.) CN 2009. CCIS, vol. 39, pp. 292–301. Springer, Heidelberg (2009)

19. Szostek, K., Leśniak, A.: Parallelization of the seismic ray trace algorithm. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011,
Part II. LNCS, vol. 7204, pp. 411–418. Springer, Heidelberg (2012)

20. Onderka, Z., Schaefer, R.: Markov chain based management of large scale dis-
tributed computations of earthen dam leakages. In: Palma, J.M.L.M., Dongarra,
J. (eds.) VECPAR 1996. LNCS, vol. 1215, pp. 49–64. Springer, Heidelberg (1997)

21. Dwornik, M., Pięta, A.: Parallel Implementation of Stochastic Inversion of Seismic
Tomography Data. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski,
J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 353–360. Springer, Heidelberg
(2012)

22. Danek, T., Slawinski, M.A.: Bayesian inversion of VSP traveltimes for linear inho-
mogeneity and elliptical anisotropy. Geophysics 77(6), R239–R243 (2012)

23. Pałka, P.: Multilateral negotiations in distributed, multi-agent environment. In:
Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS,
vol. 6923, pp. 80–89. Springer, Heidelberg (2011)


	Client-Side Processing Environment Basedon Component Platforms and Web Browsers
	1 Introduction
	2 The Concept of the Solution
	3 Principles of Implementation
	3.1 Implementation of a Server
	3.2 Implementation of a Client

	4 Tests
	5 Conclusions and the Future Work
	References




