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Preface

The 2012 edition of the Multi-Agent-Based Simulation (MABS) Workshop was
the 13th occurrence of a series that began in 1998. The MABS workshop se-
ries aims to bring together researchers interested in multi-agent systems and
researchers coming from the social sciences, and to provide them with the op-
portunity to discuss theories and applications for developing new approaches
to deal with complex social systems. The scientific focus of MABS lies on the
confluence of the social sciences and multi-agent systems, with a strong applica-
tion/empirical vein, and its emphasis is placed on (a) exploratory agent-based
simulation as a principled way of undertaking scientific research in the social
sciences and (b) using social theories as an inspiration to new frameworks and
developments in multi-agent systems. Thanks to this truly inter-disciplinary ap-
proach, complex engineering problems related to agent-based systems can be
addressed, and the resulting solutions can be applied in areas as diverse as eco-
nomics, management, organization science and to the social sciences in general.

The excellent quality of this workshop has been recognized since its inception
and its proceedings have been regularly published in Springer’s Lecture Notes in
Artificial Intelligence series. More information about the MABS workshop series
may be found at the site http://www.pcs.usp.br/∼mabs.

MABS 2012 was hosted at the 11th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2012), which was held in Valencia,
Spain, during June 4–8, 2012. In this edition, 35 submissions from 15 countries
were received, from which we selected 15 for presentation (near 43% acceptance).
The papers presented in the workshop were revised, and eventually extended and
reviewed again, and 11 papers were selected for this volume.

We are very grateful to the participants who provided a lively atmosphere of
debate during the presentation of the papers and during the general discussion
about the challenges that the MABS field faces. We are also very grateful to all
the members of the Program Committee and the additional reviewers for their
hard work. Thanks are also due to Elisabeth Sklar (AAMAS 2012 Workshop
Chair), to Wiebe van der Hoek and Lin Padgham (AAMAS 2012 General Co-
chairs), to Vincent Conitzer and Michael Winikoff (AAMAS Program Co-chairs),
and to Vicente Botti (AAMAS 2012 Local Organizing Committee Chair).

December 2012 Francesca Giardini
Frédéric Amblard
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Cognition and Agents’ Behaviors

Effects of Combined Human Decision-Making Biases on Organizational
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Silvia Berlinger and Friederike Wall

Swarming Estimation of Realistic Mental Models . . . . . . . . . . . . . . . . . . . . . 43
H. Van Dyke Parunak, Sven Brueckner, Elizabeth A. Downs, and
Laura Sappelsa

Revisiting the El Farol Problem: A Cognitive Modeling Approach . . . . . . 56
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Simulating Social Behaviour Implementing

Agents Endowed with Values and Drives

Gennaro Di Tosto and Frank Dignum

Utrecht University
Department of Information and Computing Sciences

The Netherlands
{g.ditosto,f.p.m.dignum}@uu.nl

Abstract. We present a working model of agent’s social behaviour based
on drives and values. Drives represent internal needs of the agents; values
are used to prioritise them. Discussed in the context of a simulation sce-
nario centred around smoking behaviour in public places, the designed
system proves itself useful to tackle issues where agents face conflicting
decision’s choices, or where agent’s behaviour has negative side-effects
for other agents.

1 Introduction

In recent years a majority of European countries enacted a ban against smoking
in public places like coffee-bars and restaurants. The ban targeted Environmental
Tobacco Smoke (ETS) and was intended to protect people from the damage of
second-hand smoke.

National reports about compliance with this legislation indicate that the ef-
fects of the smoking ban are far from being homogeneous. Italy, for example,
among the first countries to introduce a law against ETS, provides an example
of widespread compliance, achieved immediately after the enactment of the ban.
On the other extreme, in the Netherlands, consistent violations have been docu-
mented; consequently, prohibitions have been relaxed and exceptions have been
created for all venues smaller than 70 square meters who do not have employees
other than the owners.

To explain the different fates of the smoking-ban policy across Europe it
is necessary to investigate the complex dynamics of drives and motivation that
affect the actions people take. The action an agent takes to satisfy one drive may
affect the levels of other drives and may elicit a response from nearby agents.
Thus we can see an agent’s drives as having a constantly-changing balance, and
a group of agents as having a complex web of drives. Many factors play a role in
this web; assuming the smoking-ban as a case study, we can select factors that
pertain to smoking and environment and, using these factors, consider how drives
change and are satisfied or not, and how the above affects overall compliance
with the law when it is introduced.

The varied justification and formalisation of the law in different countries al-
lows us to consider how different considerations and representations of values

F. Giardini and F. Amblard (Eds.): MABS 2012, LNAI 7838, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 G. Di Tosto and F. Dignum

might contribute to the explanation of the stronger or weaker acceptance of
the norm and the consequent individual compliance. In framing the ban around
different values—i.e. Public health, in the case of Italy, vs. better working con-
ditions, in the Netherlands—legislators have created distinct cultural environ-
ments in which the norm operates. The values around which they structure the
legislation can be seen as implicit motivation.

In other words, with the introduction of an anti-smoking law, different values
are at stake in different settings. The relative weight of these values in the setting,
both at the level of the individual and within a larger group, can be regarded as
a contributing factor, and may explain the lesser degree of acceptance of the law
compared to the acceptance in other seemingly similar settings, like cinemas or
restaurants. Particularly connected to the coffee-bar setting are certain values
regarding the authority that is accepted, like freedom or autonomy. On the level
of behaviour, values include health, care for others (with respect to their health),
economic interest (in some countries, e.g. The Netherlands, bar keepers claim
their clientele dramatically dropped after the new law went into effect), but also,
and importantly: joy or pleasure. The actions agents take to satisfy the drives
associated with pleasure in our model derive from the particular structure we
use to represent agents’ values.

2 The Model

We wanted to give an explicit representation to the implicit motivations of the
agent, in this case drives and values, and implement them in a computational
model to show how these low-level forces can generate higher-level behavioural
patterns that can be used to study a different number of social issues. We selected
one related to smoking behaviour because of its illustrative features and current
relevance in the European context.

2.1 Values

Values are dispositions to choose one state of the world over another. While for-
mally it is possible to reduce values to an order over a set of alternative outcomes
[4], the task to include them in the deliberation cycle of a BDI (Beliefs-Desires-
Intentions) agent is less straightforward, mainly due to the overlap between the
concept of value and other relevant mental constructs, like: beliefs, goals and
desires, and norms.

Miceli and Castelfranchi [5] define values as a special kind of evaluation. Such
an evaluation ‘consists of an assumption of agent E (Evaluator) about X’s power
(means, properties, capabilities, skills) to reach a certain goal G.’ An evaluation
informs the agent that the entity X (be it a tool, another agent, an institution,
etc.) is a good means to reach a specific end. What happens with values is that
the notion of the goal against which we are evaluating X disappears, hence X
becomes “good” in itself, and the agent holding the value pursues it through
terminal goals, instead of as a means for something else.
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In this perspective values are implicit evaluations: they are still susceptible of
practical reasoning considerations, but they become absolute in the psychology of
an agent. The notion of value can thus become a principle to organise the reasons
an agent has to argue, justify or refute the outcomes of a decision-making process
in complex scenarios [8,9].

When considered part of the life of a group and its members, values possess
a prescriptive power. E.g. communicating that something has a value will in-
directly affect the mind of a social agent. If norms mandate specific actions or
states of the world (i.e. goals), values give the agents a reason for pursuing the
goal (i.e. because it is “good”). Previous works have explored the connection
between norms and agents’ preferences proposing design principles to represent
different personalities in normative reasoning [2] and different cultural effects at
the population level [1].

2.2 Drives

Drives are a tool to represent the agent internal state. Although they lack the
representational content proper of goals, drives can be useful to express agents’
motivations. More precisely, drives tell us what an agent need—when a drive
is out of balance the agent has a need to satisfy. Implementing drives with an
activation level and a threshold, they can act as triggers for agent’s actions: if
the level falls below the threshold an alarm sets off, and the agent has the need
to select from his actions’ repertoire the response capable to obtain the changes
in the environment that will bring his drive back to a safe state, i.e. his need is
satisfied.

Most physiological drives respond to this description: when an organism feels,
e.g., hunger it will look for food, the ingested food will bring its energy level
up and its body will stop signalling hunger for some time. But other agent’s
needs can be adapted and implemented in this way. It’s the case of social drives,
like affiliation and belonging, or recognition and prestige, which, although more
complex to be connected to a single body signal or feeling, are nonetheless fun-
damental sources of motivation for the agents’ behaviour. Hence in the following
we are going to abstract from the level of the body and we are going to treat all
implicit sources of motivation—both individual and social needs—as drives.

Drives’ Update Function. A drive is identified by an update function, which
is used to determine its activation level:

Dlevel = tanh(β(α1x1 + . . .+ αnxn − k))

where:

αixi are the features (x) of the agent’s behaviour and/or his environment
connected to the satisfaction of the drive, and their relative strength (α);

β determines the speed and direction of change of the drive’s level;
k is a constant factor consumed every time unit.
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The shape of the faction also ensures that the every factor xi will only have a
marginal effect on the updated level.

A drive is further characterised by a threshold, Dthreshold = [−1, 1], which
is responsible for signalling the presence of a need to the agent every time that
Dlevel < Dthreshold.

Much like we can talk about achievement goals and maintenance goals [3], we
can here distinguish between achievement drives and maintenance drives, or in
the terminology adopted by Ron Sun and colleagues, achievement-oriented and
avoidance-oriented drives [7]. The difference in the two types of drives is in how
they are affected by agent’s inaction. Achievement drives are used to represent
dynamics in the internal state of the agent that tend to move away from an
equilibrium point, unless the agent performs some action that is able to increase
the activation level of the drive. Maintenance or avoidance-oriented drives work
in the opposite way: in its natural state the drive is already satisfied. It is only
when the agent acts or some change in the world’s state occurs that the level of
the drive decreases. An example of the first kind of drive would be, again, hunger;
in the present model we would talk about achievement drives when β > 0. An
example of avoidance-oriented drives would be safety, and in this model it would
mean that β < 0.1

Conflicting Drives. Motivations derived from one drive can lead an agent to
perform actions that are detrimental to another one of his drives. Many ani-
mals have to escape predators (safety drive) and get enough rest (sleep drive).
Although generally humans have evolved past this problem, an example of con-
flicting drives might be found in the need to resist a delicious cake (hunger drive)
and the goal to lose weight (prestige drive). The conflict between drives is cap-
tured by the model connecting the drives update function to different features of
the state of the world brought about by the agent actions. The trade-off between
connected drives is then reached inspecting the agents’ values: the action pro-
moting values that are relatively more important for the agent will be selected
for execution, which in turn will feedback at the level of the drives changing
their activation level accordingly (see Figure 1).

Drives’ Satisfaction and Side-Effects. Just as one agent can have conflicting
drives whose needs he has to compromise, in a multi-agent system the state of
the world realised by one agent acting to satisfy his needs might, and often will,
have side-effects for other agents in the same environment.

Side-effects are computed by linking the same behavioural or environmental
feature x to the drives of two (or more) agents. Side-effects can be both positive
or negative, and together they capture the complexity of cooperation and conflict
in social interactions.

1 In order to allow the drive activation level to change over time, it must hold that
β �= 0.
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Fig. 1. Agents will compromise drive satisfaction if they can bring about a state of the
world that is in line with their values

3 Simulation Scenario

To assess the performances of the developed model we are going to deploy and
test it in the context of a simulation scenario. The scenario will centre around
the dynamic of smoking behaviour in public places, like pubs and restaurants.
The overall behaviour of the individual agents will be regulated by the level of
four basic drives and the agents, who differ from each other in regard to their
attitude towards smoking, will have to act in order to keep the highest number
of drives in check. Output from two cultural groups, defined by the ordering
of the agents’ values, will be presented and used to analyse the features of the
model.

The scenario explores a convivial situation and it assumes that all agents’
actions, on top of directly affecting the agent’s state, also carry a social mean-
ing, consequently altering his affiliation with the rest of the agent. In simulating
smoking behaviour we further assume the population to be divided in two sub-
groups, the smoker and the non-smokers, with conflicting interests. As described
by Opp, “being exposed to smokers is an externality for many non-smokers.
. . . Non-smokers may control the externality by choosing the ‘exit’ option and
changing places or by ‘voice’, such as asking the smoker to refrain from smoking
or expressing anger for the annoyance. In this situation, a non-smoker P will
have a preference that the smoker O will stop smoking.” [6, pp. 133–134].

3.1 Implemented Drives and Values

We can capture this dynamic in the model by endowing the agents with a first
pair of drives: (a) nicotine, controlling the need to smoke and (b) tolerance,
that measures agents’ dissatisfaction. The first drive has a negative side-effect on
the tolerance of the other agents (smoking is an externality). And since the agents
have two different preferences regarding smoking, they have different thresholds
for the same drives: smokers have an extremely low threshold for tolerance and
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they will never feel the need to voice their dissatisfaction; non-smokers have an
extremely low threshold for nicotine and they will never feel the need to light
up a cigarette.

Agents in the present scenario have also two conflicting drives : (a) affiliation,
controlling their sense of belonging and (b) comfort, a drive affected by the
characteristics of the location of the agent. In our case, the agent’s home is the
location better suited to satisfy the need for comfort, but it is also the place
where is less likely to meet other people. This way the agent decision to go out
with friends is always made at the expenses of the comfort drive (and vice versa).

Since, as we said, all agents’ actions carry a social meaning, we let the af-
filiation drive be conditionally affected also by choices made in the attempt to
satisfy the nicotine or the tolerance drive. Smoking when in presence of a group
of smokers, other than increasing the nicotine level, generates a positive feed-
back on the affiliation drive. As well as voicing disappointment against smokers
in a group composed mainly of non-smokers generates a positive feedback on the
affiliation drive of non-smoking agents.

The agents attitude towards smoking, and consequently the thresholds for the
nicotine and tolerance drives, are derived from the values held by the agents and
from those values’ relative strength. Values and their strength is also used to
guide the agents’ decision-making every time their behaviour impacts on con-
flicting drives and their related needs. In the present scenario the agents hold
the following values:

1. health: the realised benefits of healthy behaviours, together with the aware-
ness of the risks associated with the negative consequences of being exposed
to the unhealthy behaviour of others.

2. hedonism: the general attitude to discount future consequences in favour of
present rewards.

3. individualism: represents the extent to which agents identify with the group;
how much the agents let their own behaviour be affected by shared ways of
life.

4. equality: represents the importance agents attribute to differences in power,
together with tendency to comply with the rules and obligations associated
with the assigned roles.

The relative strength of the value of health and hedonism is responsible for
the agents’ attitude toward smoking: if hedonism is stronger than health, the
agent will possess a positive attitude and, with a given percentage, he will be a
smoker. In the cases where health is the stronger value the agents will belong to
the non-smoking part of the population.

The relationship between the remaining two values is used experimentally to
create two agents’ cultures that are tested separately in the simulated model.

3.2 Agent’s State and Simulation Cycle

Besides the four drives, their activation’s levels and their thresholds, the values
and their strength, an agent is described by three individual variables:
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Algorithm 1. Simulation’s main cycle
Result: Update agents’ location, behaviour, and social response.
begin

for a ∈ agentList do
if a.Affiliation.inNeed() == a.Comfort.inNeed() then

if a.Individualism.strength > a.Equality.strength then
a.location = AtHome;

else
a.location = ToThePub;

end

else
if a.Affiliation.inNeed() then

a.location = ToThePub;
end
if a.Comfort.inNeed() then

a.location = AtHome;
end

end

end
for a ∈ agentList do

a.Behaviour = a.Nicotine.inNeed() ? Smoking : NonSmoking;
if a.location == ToThePub then

if a.Affiliation.inNeed() then
if a.isASmoker() then

a.venue = a.Nb > 1 ? Outside : Inside;
else

a.venue = a.Ns > 0.5 ? Outside : Inside;
end

else
a.venue=Inside;

end

end

end
for a ∈ agentList do

if a.location==ToThePub and a.venue==Inside then
if a.Tolerance.inNeed() then

if a.Individualism.strength > a.Equality.strength or
!a.Affiliation.inNeed() then

target = findSmokingAgent();
a.Response = Voice;
target.Response = Reproached;

end

end

end

end
updateEnvironmentalVariables();
for a ∈ agentList do

for d ∈ a.Drives do
d.update();

end

end

end
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1. A location: every agent can be either AtHome or ToThePub, meaning that he
could be alone in his house and free to adopt the behaviour that he prefers;
or in a public venue, possibly in the company of other agents.

2. A behaviour: either Smoking or NonSmoking, depending on the level of the
nicotine drive and, depending on his affiliation’s needs and whether he is in
a public venue, he can decide to so either Inside—where other agents can
react in a negative way at the presence of smokers—or Outside—meaning
an outdoor venue, a place less comfortable, but where the other agents even-
tually present would not complain about Environmental Tobacco Smoke.

3. A response: depending on the location of the agent, his attitude on smok-
ing, and the activation level of the tolerance drive, this variable could assume
the value Voice, Reproached, or null. That is, a non-smoking agent can de-
cide to voice his disappointment and ask a smoker to stop.

There is then a list of environmental factors resulting from the sum of the
choices of the individual agents, which are monitored during the simulation and
used, together with the above variables, to update the activation level of the
agents’ drives. These are:

Na The number of agents in my environment, weighted against the size of the
whole population and the number of venues accessible to the agents.

Ns The number of smokers, weighted against the number of agents in my envi-
ronment.

Nv The number of complaining agents (voicing), relative to the number of agents
in the same venue.

Nr The number of reproached agents, also relative to the total agents in the
venue.

Nb The times an agent is being blamed by voicing agents.

Each simulation cycle an updated value for the three individual variables is
computed by every agent in random order, the environmental variables updated
and the level of the agents’ drives consequently adjusted. The details are provided
by Algorithm 1.

4 Results

To demonstrate the performance of the implemented model, in this section we
present the output of three different simulations obtained exploring the space of
the parameters of the drives’ update function discussed in Subsection 2.2.

Results come from populations of 60 agents. We noticed that they are robust
to changes in population’s size. The number selected allows for a clearer graph-
ical output. All the populations contain a group of agents labelled as smokers,
determined by the value of hedonism being relatively more strong than the value
of health and by a fixed percentage p = 0.8; all the rest are non-smokers. Smok-
ers never voice disappointment: their Dthreshold for tolerance is set to −1.0. In
a similar fashion, non-smokers never feel the need for smoking: their Dthreshold
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Fig. 2. Behavioural output (above) and average activation level of the four drives
(below) for an agent population (N = 60) divided in smokers (s) and non-smokers (n),
and where Equality.strength > Individualism.strength (Egalitarian culture).

for nicotine is set to −1.0. Agents have their drives’ activation level set up at a
random value at the beginning of the simulations. All the other parameters are
set up according to the following table:

β k αi xi threshold

Nicotine 0.1 0.8 1.5 Smoking 0.0
Tolerance -0.01 0.4 6.0 Ns 0.2
Comfort -0.1 0.4 0.9 InThePub 0.4
Comfort 0.9 Outside

Comfort 1.1 Nb

Affiliation 0.01 0.4 3.0 Na 0.5

Where nicotine and affiliation are implemented as achievement-oriented drives,
while tolerance and comfort are avoidance-oriented. The absolute values of β
ensures that nicotine and comfort, as needs, are experienced with a higher fre-
quency by the agents. Nicotine is also a costly reward to abstain from. Con-
versely, affiliation and tolerance work at a much lower speed, giving the time to
the agents to absorb changes in the (social) environment.

Defining parameters according to these criteria determines a behavioural pat-
tern that is able to address a higher number of agents’ needs. Controlling also
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for the strength of the values of individualism and equality, which are more di-
rectly associated with updating the agents’ location and social response, it is
possible to visualise the feedback between the individual drives and how the
same structural asymmetry in the agents’ preferences—as recalled previously
from Opp—can generate different results when associated with a different moti-
vational state.
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Fig. 3. Behavioural output (above) and average activation level of the four drives
(below) for an agent population (N = 60) divided in smokers (s) and non-smokers (n),
and where Individualism.strength > Equality.strength (Individualistic culture)

The results in Figure 2, where equality as a value is more important, leads to
a behavioural pattern that can be characterised as gregarious, catering to the af-
filiations drives of the agents, but to the expenses of the non-smoking sub-group,
which, regardless of their being vocal are not able to get rid of the annoyances of
second-hand smoke, i.e. their tolerance activation level never reaches the thresh-
old.

In the case of a stronger individualism value, Figure 3 shows a different pat-
tern, in which the location of the agents changes more rapidly every simulation
cycle, the number of complaining non-smoker tend to decrease over time, but the
contrasting needs of the two sub-groups of agents plays out differently, with the
tolerance level of the non-smokers improving at the expenses of the affiliation
level of the smokers.
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Fig. 4. Different initialization of the drives’ update functions. Others variables as in
Fig. 3.

Figure 4, finally, illustrates the performances of the system under extreme
circumstances. The results are produced initialising the parameters with the set
up of the following table:

β k αi xi threshold

Nicotine 0.2 0.8 0.7 Smoking 0.0
Tolerance -0.2 0.02 1.0 Ns 0.2
Comfort -0.2 0.1 0.9 InThePub 0.0
Comfort 0.9 Outside

Comfort 0.1 Nb

Affiliation 0.2 0.8 0.5 Na 0.5

Although less realistic, the displayed pattern is still logical and for this harsh
definition of the parameters the algorithm still try to satisfy the agents’ needs
by keeping them home most of the time and moving them to a public venue
only when the comfort activation level is well above the threshold. The brief
interaction in the venue are not enough to satisfy the agents’ need for affiliation,
whilst giving the opportunity to the non-smoking agents to immediately reproach
the smokers. The randomisation of the initial value of Dlevel here has been
avoided to make the result more evident.
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5 Conclusions

The system has proved to be responsive to changes in the motivational state of
the agents. This feature is important for linking individual preferences to social
outcomes. We have shown through our simulation how a structural asymmetry
in the motivational state of the agent can produce significant changes in the
overall social response of the system. This feature appears promising and pushes
us to investigate the possibility of applying this model to the study of norma-
tive behaviour where not only different individual interests might be at stake,
but higher social constructs are in play, such as obligation, permission, and pre-
scription. Our model will allow us to go back to the analysis made by Opp and
address in our framework the difference he highlights between personal interest
of the agent, which in our case was covered by the negative feedback between
nicotine and tolerance drives, and a regulatory interest of the agent, which in
turn would require the implementation of elements of normative reasoning that
should be grounded in the dynamics of values and drives we presented.
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Abstract. In this paper we develop an operational, quantitative method
for the propagation of public perception. The model is presented as an
extension of the culture-sanctioned social metric framework. We use the
technique to model an extended version of the Spanish Steps flower sell-
ing scam, where a seller manipulates the belief of the clients and the
public perception to pressure the clients to buy overpriced flowers.

1 Introduction

Humans are social beings. Even when pursuing selfish goals, they need to con-
sider the impact of their actions on their public and peer perception. A simple
model would only consider public perception as an output of the actions of the
agents, for instance, a measure of their popularity. The reality, however, is dif-
ferent: the public perception is also an input into the actions of the agents: a
“popular” agent can get away with actions which are out of reach to an “unpop-
ular” one. Sometimes the belief of public perception is sufficient to affect actions
- an agent which only believes itself to be popular will act as if it would be
popular in reality.

The objective of this paper is to develop an operational, quantitative model for
the propagation of public perception. It is part of our ongoing work with regards
to modeling autonomous robots acting in social and cultural contexts [9,8,3].
The goal is to have a model which has explanatory power (why did the human
act the way it did?), predictive power (how do we expect the human to act in a
given situation?), and decision making power (how should a robot act in a given
social setting?).

In [3] we have introduced the Spanish Steps scam, a scenario where the behav-
ior of the participating humans can only be explained if we allow that they are
simultaneously considering a number of factors, including financial gain or loss,
loss of time and public and peer perceptions of dignity and politeness. We de-
veloped a modeling theory called the culture-sanctioned social metrics (CSSM)
which allows us to perform an explanatory and predictive simulation of this
scenario and other scenarios. CSSMs provide a relatively high-detail model of
the social behavior: in its spirit, this technique falls close to the KIDS (Keep it
Descriptive Stupid) approach advocated by Edmonds and Moss [6].

F. Giardini and F. Amblard (Eds.): MABS 2012, LNAI 7838, pp. 13–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The simulations where CSSMs had been deployed, however, up to this point
were always considering a single interaction of several minutes at a time. How-
ever, the public perception can evolve over longer time frames spanning multiple
interactions. Some of the most intriguing questions of public perception model-
ing are how the knowledge of individual actions propagates in space and time,
how interactions at different spatio-temporal locations affect each other through
the public perceptions and how does the general public (such as a crowd of
bystanders) forms and forgets a public perception.

The work described in this paper extends the CSSM model towards the mod-
eling of the propagation of public perception across multiple social interactions.
For a concrete example, we will use an extended version of the Spanish Steps sce-
nario which follows the interaction of a seller with multiple clients over a longer
period of time. We make an effort to realistically model the public perception as
provided by the ever changing crowd at a tourist attraction.

The remainder of this paper is organised as follows. The mechanism of the
Spanish Steps scenario for an isolated instance of single seller/single client case
is outlined in Section 2. Then, in Section 3 we discuss the mechanisms for mul-
titasking from the point of view of the seller: how can the seller interleave the
actions of multiple selling scenarios? How does the knowledge and beliefs propa-
gate among the clients of the same seller? We show the results of an experimental
study in Section 4 and discuss related work in Section 5.

2 The Analysis of an Isolated Spanish Steps Scenario

The Spanish Steps scenario is a flower selling scam perpetrated in many touristic
sites across Italy, such as the Spanish Steps in Rome1. The intention of the seller
is to pressure a client (typically a woman or a romantic couple) to purchase a
rose at an inflated price:

– The seller offers a bouquet of flowers to the client. The client declines to
purchase.

– The seller offers a single flower, relying on gestures implying that it is a gift.
If the client refuses to take the flower, he repeats the offer several times,
pushes the flower into the client’s hands, or inserts it into her bag.

– The seller waits for 15-60 seconds several steps away from the client, who
assumes that the interaction had concluded.

– The seller approaches the client and requests payment.
– The client attempts to return the flower. The seller refuses to take it. The

action concludes by either the client paying or by escalating her verbal efforts
to return the flower until the seller decides to take it back.

Let us now consider the ways in which this scenario can turn out. Real world
observations of the scenario show that the scam sometimes succeeds i.e. the
seller is able to make a sale and sometimes it fails: the client escalates her efforts

1 A closely related scam is perpetrated by water-sellers in traditional costume in the
Sultanahmet area in Istanbul.



Modeling the Propagation of Public Perception 15

to return the flower until the seller, begrudgingly, accepts it. A purely rational
model centered on financial gain cannot explain the cases when the client buys
the flower, well knowing that she is cheated. It also does not explain the cases
when, in other situations, the seller abandons his high pressure selling tactic and
accepts the return of the flower.

In our recent work, we argued that the participants in such transactions do
not consider only tangible values such as financial worth, but also a number of
culture-sanctioned social metrics (CSSMs), such as politeness and dignity, seen
from the perspective of the self, significant peers, or the public at large. These
values are not fully independent (one would give up politeness when confronted
with a large financial loss) but they are not linearly convertible into each other.

An important point of the theory is that the impact of the actions on the
CSSMs do not depend only on the action itself, but also on the public perception
as seen by the players. These public perceptions or, more exactly, the beliefs of
the players about them are critical in the personal calculus of the social values.
For instance, it is not considered undignified to expose a scammer, but one looses
face if he reneges on a publicly accepted transaction.

A model of the Spanish Steps scam using this model is described in [3]. The
critical step is the manipulation of the public perception, such that the client
will perceive herself as reneging on an accepted transaction. If this happens, then
escalating the return of the flower will become very expensive in terms of dignity
and politeness. The public knowledge of the crowd is critical to the success of
the scam. The scam would never succeed in an empty street - as it relies on the
reluctance of the client to lose dignity and perception of politeness by making a
scene in public. Ironically, the best strategy of the client also relies on the public
perception - if the client commands the sympathy of the crowd, she can escalate
her efforts to return the flowers.

In this section, we describe the way in which an individual instance of the
Spanish Steps scenario can be modeled and analyzed in the CSSM framework.
The participants are the seller, the client and the general public. We will consider
the client to be one member of a romantic couple, who also needs to consider
the peer values from the point of view of his partner. We need to consider the
action-state graph (with its associated detail variables), the culture-sanctioned
social metrics and beliefs and public perceptions of the agents.

2.1 The Action-State Graph

The unfolding of the Spanish Steps scam can be relatively well separated in
discrete steps, allowing us to draw an action-state graph as shown in Figure 1.
This graph is not a full description of the interaction, only an aid in organizing
our representations. Being in a certain node does not fully represent the state of
the scenario - we need also to consider a number of detail variables. For instance,
S6 is a state where the client holds the flower and had just attempted to return
it to the seller. The details of this state include the judgment by the seller and
the client of the current situation, as well as their emotional state. If the client
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believes that the public assumes that she had already accepted the transaction,
she will be more reluctant to force the return.

Similarly, the actions represented by the edges of the graph are also
parametrized by detail variables. In our model, A7, A9, and A16 are
parametrized by their “loudness” x which determines how many onlookers will
overhear the transaction and their “offensiveness” y which will determine how
the action will impact the values of the actor and target of the action. The action
A14 is parametrized with the waiting time t it involves.
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Fig. 1. The action-state graph of the Spanish Steps scam. The states marked with
CC allow for the change of clients.

2.2 Culture-Sanctioned Social Metrics

Our modeling technique assumes that the agents explicitly maintain a vector of
metrics, separated in two classes. Concrete metrics such as financial worth or
time are easily measurable and come with their native measurement units (e.g.
dollar or euro for financial worth, seconds or minutes for time). The second class
of metrics are intangibles, which we model with culture-sanctioned social metrics
(CSSMs). We say that a culture sanctions a metric if (a) has a name for it, (b)
provides an (informal) algorithm for its evaluation, (c) expects its members to
continuously evaluate these metrics for themselves and salient persons in their
environment and (d) provides rules of conduct which depend on these metrics.

To model the Spanish Steps scenario we used two concrete metrics: the
financial worth W and the time T and two CSSMs: the dignity D and
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the politeness P . Both sides consider the metrics from the perspective of
the self and the public; the client also considers a peer (the other member
of the romantic couple). With these assumptions, the vector of metrics for
the client is {W c, T c, Dc, Dc

p, D
c
r, P

c, P c
p , P

c
r } while the vector of the seller is

{W s, T s, Ds, Ds
p, P

s, P s
p }.

2.3 Beliefs and Public Perceptions

Every action of an actor impacts the metrics of his own and his interaction
partner. The change in a specific metric, by a specific action, in specific circum-
stances is given by the action impact function (AIF). Let us now investigate
mathematical form of AIF. In the first approximation, the AIF depends on the
detail parameters of the action. Let us consider action A16 (client attempts re-
turn), which is characterized by the loudness x and offensiveness y. Obviously,
the higher these values, the stronger the effect on the dignity of the seller and
the politeness and dignity of the client.

However, the impact also depends on the beliefs of the public perception of the
scene. For a given level of loudness and offensiveness, it is less of a loss of dignity
to be offensive with a crooked merchant than with an honest one. Similarly,
one looses more dignity when reneging an agreed-upon transaction compared to
correcting a misunderstanding.

As the agents do not have direct access to the public perception, we need
to model the impact of public perception through their beliefs. Our modeling
approach relies on the use of the Dempster-Shafer theory of evidence [15,16].
Events witnessed by the public are acting as evidence and are integrated using
the Dempster-Shafer conjunctive merge. While we will use the belief component
of the Dempster-Shafer model for our belief in public perception values, we will
also retain the plausibility component which helps us estimate the uncertainty
associated with a belief.

To model observed behavior of the real world players in the Spanish Steps
scenario, we need to consider at least the following beliefs:

Bc
gift the client’s belief that seller intends the flower to be a gift

Bc
agr and Bs

agr the client’s and, respectively, sellers belief that the general public
thinks that a transaction had been agreed upon.

Bsc
agr the sellers estimate of Bc

agr

We consider a number of other beliefs in the scenario involving the periodic
interaction of seller over longer span of time. These beliefs include

- Bc
dec the client’s belief that the seller is deceptive, being a function of past

experiences.

- Bw
dec the client’s belief that the crowd perceives the seller as deceptive, depen-

dent upon the visual or verbal communication with other agents in the crowd
and by the cultural understanding of the place
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Naturally, beliefs are not orthogonal: a certain action can be evidence or counter-
evidence against more than one belief. Furthermore, the way in which beliefs
propagate between the agents depend on many factors, including the temporal
and spatial aspects of the scenario. Clients who are in close proximity have a
higher probability of information sharing. A tourist who had spent some time
in the location has a better knowledge about the seller’s deception than a newly
arrived crowd member.

3 Multitasking

The seller in the Spanish Steps scam can not execute more than one action at
a time, even if it involves multiple clients. Furthermore, basic rules of social in-
teraction, such as the necessity to maintain physical proximity and eye contact
prevent the seller from arbitrarily switching between clients. However, the Span-
ish Steps scam has certain states where switching away from a client is possible,
and in some cases, such as state S7, even desirable. Exploiting these states, the
seller can handle multiple simultaneous transactions, each in a specific state.

As the seller interacts physically with the clients, the clients will necessarily
be in close physical proximity, and they will also likely be paying attention to
the seller. Thus, we can make the assumption that the events unfolding in the
parallel threads will be known to all the participants, and influence their beliefs.

To model the actions of the seller, we have designated some of the states
in the state-action graph in Figure 1 as change client (CC) states. These are
states where the seller has the possibility to either start a new interaction, by
approaching a new client, or to resume the interaction with an existing client.
Naturally, all the terminal states of the graph are CC states - in this case the
interaction is terminated and the seller does not need to return to the client.
State S7/CC, however, is not a terminal state: the seller will need to return to
the client holding the flower.

Fig. 2-a shows the flow of three instances of the scenario where transitions are
only made at terminal states. We call this a serial interaction. A serial interaction
is not equivalent to three separate scenarios. While there is no overlap between
the scenarios, there is a leak of information from one scenario to the next. This
happens through two mechanisms: (a) through the clients in the later scenarios
directly witnessing the outcomes of the previous scenarios, and (b) through the
impact of the scenarios on the public perception.

Fig. 2-b shows an example where the seller interleaves the interaction with
three different clients. In this case, the close physical proximity guarantees that
the clients are aware of the unfolding of the scenario with the other clients.
One would think that more information would help the clients, but this is not
necessarily the case: the received information can actually be deceptive. The
seller can actually derive an advantage from multitasking, beyond the purely
time saving aspect. Let us consider the case of client C3 when entering the
scenario, at state S1. For the sake of simplicity, let us consider that C3 had
witnessed the evolution of the scenario of C1 and C2. In the scenario described
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in Fig. 2-a, C3 had seen the complete unrolling of the scenario two times. She
knows that the single flower offered is not a gift, as she had seen the seller ask
money for it on two different occasions. Thus C3, although she might choose to
buy a bouquet of flowers, if she feels like it, will not fall for the scam, by not
accepting the single flower from the seller. Her best choice is to take the path

S4
A7(10)−−−−→ S3

A8−−→ TN1 out of the scenario.
In the scenario described in Fig. 2-b however, what C3 had seen is that the

clients C1 and C2 accepted the single flower and had not been asked for money.
This information would encourage C3 to accept the flower, and reach state S7 in
the scenario. Note that the client will still be able to escape without paying by

escalating the return efforts on the path of the repeated iterations of S8
A16(x)−−−−→

S9
A17−−→ S8 with increasing values of the parameter x. However, this will be vastly

more expensive in terms of time, dignity and politeness.
If the seller does not interleave the clients, his best choice is to pause between

the instances for a sufficiently long time such that the client C3 would not have
witnessed the previous scenario. Alternatively, the seller might choose a client
who had recently arrived to the scene. One way to achieve this is to move to
a different location, to make sure that the bystanders have not witnessed the
previous scenario.

4 Experimental Study

In the following we will describe a series of experiments which model the prop-
agation of the public perception across multiple instances of the Spanish Steps
scenario. The CSSM model had been implemented in the YAES simulation envi-
ronment [4]. The Dempster-Shafer model had been implemented using the JDS
library [17]. The simulation had been connected to a visual representation based
on OpenWonderLand [18].

We have traced the model in three different scenarios. Each of them represent
the activities of a seller enacting the Spanish Steps scam with three different
clients C1, C2 and C3. The three experiments are described in Table 1.

Experiment 1 is an example of a serial interaction with no breaks between
the scenarios. As soon as the seller finishes a scenario, he immediately chooses
the next client and starts the next scenario. Experiment 2 is a serial interaction
with breaks (delays) between the scenarios. To model the effect of the break,
we have applied the Ebbinghaus forgetting curve to all the beliefs of the agents
(essentially pulling the Dempster-Shafer values towards ignorance).

4.1 Bgift and Ds
p

In Experiment 1 the seller was successful with the first client, as he succeeded to
raise Bgift from 0.5 to 0.8. The second and third clients, however, had witnessed
this interaction, thus their own Bgift values had started from much lower values.
In the case of C3, for instance, the Bgift value starts at 0.3. This is so low
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Table 1. Experiments

Clients Actions Transaction

Experiment 1: Serial without breaks

C1
A1−−→
t0

S1
A4−−→
t1

S3
A5−−→
t2

S4
A10−−−→
t3

S7
A15−−−→
t4

S8
A19−−−→
t5

S10
A20−−−→
t6

TP2
A24−−−→
t7

CC pass

C2
A1−−→
t8

S1
A4−−→
t9

S3
A5−−−→
t10

S4
A10−−−→
t11

S7
A15−−−→
t12

S8
A16(0.2,0.2)−−−−−−−−−−→

t13
S9

A17−−−→
t14

S8
A16(0.4,0.4)−−−−−−−−−−→

t15

S9
A18−−−→
t16

TN2
A24−−−→
t17

CC

fail

C3
A1−−−→
t18

S1
A4−−−→
t19

S3
A5−−−→
t20

S4
A7(0.6,0.3)−−−−−−−−−→

t21
S3

A6−−−→
t22

S5
A9(0.5,0.5)−−−−−−−−−→

t23
S6

A11−−−→
t24

TN1 fail

Experiment 2: Serial with breaks

C1
A1−−→
t0

S1
A4−−→
t1

S3
A5−−→
t2

S4
A10−−−→
t3

S7
A15−−−→
t4

S8
A19−−−→
t5

S10
A20−−−→
t6

TP2
A14(20)−−−−−−−→

t7
TP2

A24−−−→
t8

CC

pass

C2
A1−−→
t9

S1
A4−−−→
t10

S3
A5−−−→
t11

S4
A10−−−→
t12

S7
A15−−−→
t13

S8
A16(0.1,0.1)−−−−−−−−−−→

t14
S9

A17−−−→
t15

S8
A19−−−→
t16

S10

A20−−−→
t17

TP2
A14(30)−−−−−−−→

t18
TP2

A24−−−→
t19

CC

pass

C3
A1−−−→
t20

S1
A4−−−→
t21

S3
A5−−−→
t22

S4
A10−−−→
t23

S7
A15−−−→
t24

S8
A19−−−→
t25

S10
A20−−−→
t26

TP2 pass

Experiment 3: Interleaved

C1
A1−−→
t0

S1
A4−−→
t1

S3
A5−−→
t2

S4
A10−−−→
t3

S7
A24−−−→
t4

CC hold

C2
A1−−→
t5

S1
A4−−→
t6

S3
A5−−→
t7

S4
A10−−−→
t8

S7
A24−−−→
t9

CC hold

C3
A1−−−→
t10

S1
A4−−−→
t11

S3
A5−−−→
t12

S4
A10−−−→
t13

S7
A24−−−→
t14

CC hold

C1
A15−−−→
t15

S8
A19−−−→
t16

S10
A20−−−→
t17

TP2
A24−−−→
t18

CC revisited/pass

C2
A15−−−→
t19

S8
A16(0.3,0.3)−−−−−−−−−−→

t20
S9

A17−−−→
t21

S8
A19−−−→
t22

S10
A20−−−→
t23

TP2
A24−−−→
t24

CC revisited/pass

C3
A15−−−→
t25

S8
A16(0.3,0.3)−−−−−−−−−−→

t26
S9

A17−−−→
t27

S8
A16(0.3,0.3)−−−−−−−−−−→

t28
S9

A18−−−→
t29

TN2 revisited/fail

that it allows the client to reject the offered single flower with high loudness
and offensiveness values, which terminates the interaction (unsuccessfully for
the seller) at state TN1.

Fig. 3a and Fig. 3b show the evolution of Bgift and the seller’s public dignity
Ds

p for Experiment 1.
In the second experiment, the seller performs the same scam, but this time

he takes a break between the individual clients. This break guarantees that the
clients did not see the unfolding of the previous scenarios, and the public percep-
tion had also returned to neutral. This is a result of both the gradual turnover
of people in the crowd of the tourist attraction, and the natural forgetting of
the individuals. As a result, all the clients are essentially starting from a neu-
tral point. In Experiment 2 the seller had been successful in scamming all three
clients. Naturally, we can have instances where a client would be able to avoid
being scammed in this case as well, by escalating the loudness and offensiveness
of her return efforts. However, even if she avoids the scam, the client will loose
significant amount of dignity and politeness CSSMs, because she does not have
the favorable support of the public. Fig. 3c and Fig. 3d show the evolution of
Bgift and Ds

p for Experiment 2. Note, however, that taking long breaks is not an
efficient way for the seller to maximize his profit Ws.

Experiment 3 shows an example of interleaved scenario. In this case, the
clients are in close proximity, and aware of each other. However, up to state S7
neither they, nor the general public will be aware of the full flow of the scenario,
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thus they will actually have a higher Bgift then the two previous cases. On the
other hand, once the seller starts to ask the clients for money, this information is
quickly propagated to the remaining clients and the public perception as well. As
a result, the public perception will gradually shift against the seller, eventually
reaching the point where, in our experiment, client C3 can avoid being scammed,
without significant loss of politeness and dignity. Fig. 3e and Fig. 3f show the
evolution of Bgift and the seller’s public dignity Ds

p for Experiment 3.

4.2 Bc
dec and Bw

dec

Fig. 4a and 4b shows the modeled values of of Bc
dec of clients and the evolution

of Bw
dec for Experiment 1.

In Experiment 1, client C1 recognizes the seller’s deception after time t=5,
which raises Bc

dec to 0.5. As until time t5 the Bw
dec value is zero, C1 is not aware

of the deception (which will be the ultimate cause of her buying the flower.
Clients C2 and C3 recognize the seller’s deception through the increase of their
respective value of Bw

dec to 0.3. At time t=12 client C2 already has Bw
dec ≈ 0.5

and Bc
dec ≈ 0.5, which helps him reject those transactions in which the seller

was loud and offensive.
Similarly, when the seller approaches client C3, she already knows about the

deception with Bw
dec ≈ 0.7, acquired from information from surrounding envi-

ronment. This helps her reject the offer of the gift and avoid any communication
with the seller. However, we can observe that the Bc

dec of client C3 decreases
by 0.05 due to the fact that client had no personal interaction with the seller
due to which the decision was solely based upon the information gathered from
environment.

In Experiment 2, the seller waited 20 minutes before approaching the next
client. This delay helps the seller to lower the Bw

dec. Although the client C2 has
high Bc

dec as shown in Fig. 4c, he does not have sufficient Bw
dec (0.3) as shown

in Fig. 4d to reject the offer publicly. The client C1 has no prior knowledge of
seller’s deception till time step t3 but after time step t7 this Bc

dec is not taken
into consideration by other client’s Bw

dec.
In Experiment 3, C1, C2 and C3 are not aware of the deception, having

Bc
dec = 0 and Bw

dec = 0 until t=15 when the seller is asking C1 for money.
Although C1 had witnessed the interaction of the seller with other clients, he
had not seen any evidence of deception. Without having the support of the crowd
in marking the seller as deceptive, C1 has no argument to reject the payment
asked by seller. On the other hand, seeing this, C2 and C3 are rapidly raising
their Bc

dec and Bw
dec values. Client C2 estimates Bw

dec ≈ 0.3 when asked for
the money. However, she judges this as an insufficent support for the crowd to
escalate the effort to return the flower. On the other hand, C3 will have a value
Bw

dec ≈ 0.7 when asked for the money at t=23 as shown in Fig. 4e. This gives her
sufficient confidence on the crowd’s support to turn down the seller’s offer. Thus,
by the end of this interaction, the crowd became aware of the seller’s deception.
This is also depicted by the loss of the seller dignity Ds

p as shown in the Fig. 3f.
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Fig. 3. Non-interleaving without breaks (top row), Non-interleaving with breaks (mid-
dle row), Interleaving clients (bottom row)
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5 Related Work

Modeling the information propagation in human societies is a research area which
had gathered a significant momentum in recent years. One foundation of this mo-
mentum is the development of network science [2] which provides a theoretical
foundation for many of the information propagation models. From a practi-
cal point of view, computer supported social networks such as Facebook and
Google+ have made available large amounts of statistical data, and the financial
motivation to analyze it. Well documented examples of information propagation
such as the organization of political demonstrations through instant messaging
and Twitter had underscored the power and importance of this type of commu-
nication. There is relatively less work concerning the more traditional way of
propagation of information through direct sensory perception which is the case
of our paper.

The literature being very large, we can only consider several representative
examples. Kottonau and Pahl-Wostl [10] studied the evolution of political atti-
tudes in response to political campaigns - while in earlier work they studied the
problem of new product diffusion. C. Motani et al. [13] implemented a virtual
wireless social network based on the information spread in real social network
such as a marketplace. Gruhl et al. [7] and Adar et al. [1] analyzed the person-to-
person information flow over blog space topic sharing. Recent analysis of Twitter
followers by Cha et al. [5] had shown that the influence of user on the topic can
be gained by a concerted effort over a long period of time and a large number
of followers are not an assurance to fame.

A significant amount of research had been directed towards the epidemic
propagation of information in social networks [14,11,12]. In these papers, the
information spread is modeled as virus infection in computer networks.
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8. Khan, S.A., Singh, T., Bölöni, L.: Soldiers, robots and local population - modeling
cross-cultural values in a peacekeeping scenario. In: Proc. of the 21th Behavior
Representation in Modeling & Simulation (BRIMS) Conference (March 2012)

9. Khan, S.A., Singh, T., Parker, S., Bölöni, L.: Modeling human-robot interaction
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Effects of Combined Human Decision-Making

Biases on Organizational Performance
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Abstract. As extensive experimental research has shown individuals
suffer from diverse biases in decision-making. In our paper we analyze
the effects of decision-making biases of managers in collaborative deci-
sion processes on organizational performance. The analysis employs an
agent-based simulation model which is based on the NK model. In the
simulations, managerial decisions which are based on different levels of
organizational complexity and different incentive systems suffer from bi-
ases known from descriptive decision theory. The results illustrate how
biases in combination with each other and in different organizational
contexts affect organizational performance. We find that, contrary to
intuition, some combinations of biases significantly improve organiza-
tional performance while these biases negatively affect organizational
performance when they occur separately. This might evoke considera-
tions whether decision-making should be as rational as possible.

Keywords: Agent-Based Simulation, Decision-Making, Organization.

1 Introduction

According to Simon humans suffer from bounded rationality [1] and, in partic-
ular, experience severe difficulties solving complex decision problems.

We know from descriptive decision theory that human decision-making be-
havior is influenced by several biases such as the recency effect [2],the status quo
bias [3], and the anchor effect [4]. The recency effect tells us that individuals are
more likely to remember information received at a later time than information
received previously. The status quo bias refers to the tendency to overweight
the current performance state. According to the anchor effect individuals set a
mental anchor on which they strongly rely.

A prominent research method to show the effect of biases is the experiment. In
experimental research, biases are usually analyzed under controlled laboratory
conditions. For example, Kahneman and Tversky [5] experimentally explored
the effects of framed information by providing different formulations of decision
problems to some test groups. The study indicates that the formulation is a
significant concern for the choices made by the test subjects. However, it is
a challenge to isolate the various biases from each other in order to examine
the impact of the biases in specific situations and to analyze how biases in
combination with each other affect decision-making.

F. Giardini and F. Amblard (Eds.): MABS 2012, LNAI 7838, pp. 27–42, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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An alternative way to analyze decision-making behavior are agent-based sim-
ulations [6–8]. Using this method it is possible to simulate a broad range of
constellations of decision-making processes in organizations as well as human
behavior in various characteristics and under various, though controlled condi-
tions. In particular, agent-based simulation allows for mapping the organizations
which encapsulate the delegation of decisional competencies and collaborative
decision-making. Furthermore, this method allows for representing further ele-
ments of organizational design like incentive systems and coordination mecha-
nisms. Both elements serve to align individual decision-making with the overall
objective of the organization.

However, it is rather unlikely that a decision-maker in an organization suffers
from one distinct bias only; instead we have to assume that several biases occur
simultaneously. This leads us to the compelling research question of this paper:
How do biases in combination with each other on the individual decision-makers
site affect the achievement of the overall organizational objective?

In particular, we analyze the effects of some prominent decision-making bi-
ases on the performance of collaborative organizations. To control biases in
different combinations and on different levels of complexity of collaborative
decision-making we use an agent-based simulation based on the NK model [9, 10].
Furthermore, we vary the reward structure: given that decision-makers seek to
maximize their individual utility in terms of compensation, we provide them
different incentives and, by that, shape the decision-makers perspective when
making their choices.

The remainder of the paper is organized as follows: The subsequent section
presents the agent-based simulation model including the organizational struc-
ture with collaborative decision-making and the decision-making biases under
investigation. In Section 3 the main results of our simulations are presented
and discussed. The final section gives some concluding arguments and refers to
further research work.

2 Agent-Based Simulation Model

The agent-based simulation model is based on the NK model as introduced by
Kauffman [9, 10]. This model has been adopted to the analysis of organizations
by many management scholars, e.g. [11–14], and used for analyzing decision--
making with imperfect information [15]. However, to the best of our knowledge,
the NK model has not yet been used for analyzing managerial decision-making
against the background of distinct decision-making biases. In our simulation
model the structure of the decision-making organization includes departments,
competencies of decision-makers, and incentive systems. With respect to the or-
ganizational structure our model is similar to Siggelkow and Rivkin [13]. Beyond
that, our decision-makers suffer from biases which we regard to be the distinctive
feature of our model.

In prior research human biases have been modeled and implemented in several
ways like in [16] who analyses the anchoring effect of consumer price negotia-
tions within the bargaining-zone model (the bargaining zone is the difference
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between the buyer’s and seller’s reservation prices). Kant and Thiriot [17] de-
scribe a cognitive decision agent model, where the decision-makers are modeled
in a multi-agent system. In this model the authors use agents with one specific
bias for each agent for a simulation of a small experimental financial market. Fur-
thermore, An [18] gives an overview of how to model human decisions in coupled
human and natural systems within agent-based models, in which environmental
consequences affecting future human decisions and behavior are analyzed. How-
ever, as far as collaborative decision-making is concerned, to the very best of our
knowledge, agent-based modeling has not yet been applied. In order to represent
biases we use findings from descriptive decision theory. We focus our study on
three biases: the recency effect, the status quo bias and the anchor effect. All
three biases have in common that they do not directly relate to human problems
in estimating probabilities of uncertain events; instead these biases rather relate
to decision-makers’ preferences and perceptions of information. Thus, the very
core of our simulation model is that collaborative decision-making processes with
different combinations of biased decision-making managers is investigated on the
basis of the NK model.

2.1 Organizational Structure

The organization in our model experiences a ten-dimensional binary decision
problem d as in [15]. Thus, the managers make decisions di ∈ {0, 1} with
i = 1, . . . , 10. As the simulation is based on Kauffman’s NK model [9], the
organizational performance corresponds to the fitness of the NK model. Within
this model there exists a fitness landscape in which agents seek to improve their
performance by moving from “fitness valleys” to higher “fitness peaks”. In our
model, N defines the number of decisions which the organizations have to make
and N = 10. K denotes the level of interactions between the decisions. K can
range from 0 to N − 1. In case of K = 0, the N decisions are uncorrelated in the
fitness landscape and the landscape has one single peak. In case of K = N − 1
the interactions among decisions are raised to maximum and each decision af-
fects the fitness (performance) of all other decisions. Each decision di provides a
contribution Ci with 0 ≤ Ci ≤ 1. Ci depends on the single decision di, but with
regard to the level K of interactions of the ten-dimensional decision problem
also on other decisions dji with j = 1, . . . ,K. For simplicity, in our model the
level K of interactions is the same for all decisions di. Hence, the performance
contribution Ci is given by Ci = fi(di; d

1
i , . . . , d

K
i ). The value of fi is randomly

drawn from a uniform distribution from the unit interval, i.e., U [0, 1] to the
overall performance V (d). The overall organizational performance V (d) results
from

V (d) =
1

N

N∑
i=1

Ci =
1

N

N∑
i=1

fi(di; d
1
i , . . . , d

K
i ). (1)

An organization consists of a main office and two departments. Each department
has primary control over a subset of the ten decisions. In our model department 1
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has the control over the first five decisions and department 2 controls the second
five decisions.

In our model, the decision makers aim at improving performance. In par-
ticular, the timeline of the search process for higher levels of performance is
segmented into periods and in each period the decision makers seek for a con-
figuration that promises a higher performance than achieved in the previous
period, i.e. with the the current configuration d. In each period a department
head makes decisions in her/his “own” subset of decisions and chooses the best
of three partial configurations available in that period. In particular, each de-
partment head discovers two alternative partial configurations and, hence, has
three options to choose from, (1) the status quo, (2) an alternative with one place
of the binary problem space changed and (3) another alternative configuration
where two places of the binary problem space are altered.

Our model incorporates a rather decentral mode of coordination: Each depart-
ment head chooses the partial configuration that promises the highest individual
utility independent of the other department’s choices. Furthermore, the main of-
fice does not intervene in decision-making. Consequently, the ten-dimensional
configuration that is chosen and implemented in a period is the result of the
two departmental choices. Hence, the role of the main office is limited to regis-
tering the departmental and the organizational performance realized at the end
of each period and to compensating the department heads according to their
performance.

As mentioned previously, the department heads seek to maximize compen-
sation according to the incentives given. The incentive structure in our model
corresponds to the model of Siggelkov and Rivkin [13]: Each department head is
rewarded according to a linear incentive system. The incentive mode is controlled
by the parameter INCr. If INCr is set to 0 only the departmental performance
P own
r is rewarded while while the residual performance P residual

r is considered
in decision-making in case that INCr � 0. If INCr = 1, organizational perfor-
mance is rewarded. Hence, the ranking of configuration d by department r is
based on the value base Br(d) given by

Br(d) = P own
r (d) + INCr ∗ P residual

r (d) (2)

However, in case of cross-departmental interactions, choices of one department
may affect the contributions of decisions the other department is in charge of
and vice versa. Hence, it depends on the interaction structure whether a depart-
ment head solely has control over the departmental performance (the “self”
structure in our simulation model) or whether the other department’s deci-
sions affect the departmental performance (the “full”-interdependent structure),
and, consequently, also the manager’s compensation. In our model, we simu-
late two interaction structures of decisions, i.e. the “self”-contained and the
“full”-interdependent structure. The “self”-contained structure represents the
case where intradepartmental interactions among decisions are maximal intense
while no cross-departmental interdependencies exist. The self-contained struc-
ture is mapped in Table 1. An “x”-entry indicates that contribution Ci is affected
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by decision dj , an “-” indicates that no effect of decision dj on contribution Ci

exists. In the self-contained structure there are interactions between the “own”
decisions only. In the “full”-interdependend structure all decisions affect the
performance contributions of all other decisions as can be seen in Table 2, i.e.,
cross-departmental interactions are maximal.

Table 1. Self-contained structure

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
C1 x x x x x - - - - -
C2 x x x x x - - - - -
C3 x x x x x - - - - - P own

C4 x x x x x - - - - -
C5 x x x x x - - - - -

C6 - - - - - x x x x x
C7 - - - - - x x x x x
C8 - - - - - x x x x x P residual

C9 - - - - - x x x x x
C10 - - - - - x x x x x

Table 2. Full-interdependent structure

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
C1 x x x x x x x x x x
C2 x x x x x x x x x x
C3 x x x x x x x x x x P own

C4 x x x x x x x x x x
C5 x x x x x x x x x x

C6 x x x x x x x x x x
C7 x x x x x x x x x x

C8 x x x x x x x x x x P residual

C9 x x x x x x x x x x
C10 x x x x x x x x x x

2.2 Human Biases

The choices of the department heads described in the previous section are also
affected by decision-making biases. As mentioned previously we selected three
different biases known from descriptive decision theory for our current analysis
as mentioned above: the recency effect, the status quo bias, and the anchor effect.

In our model the heads of the two departments might suffer from all of these
biases. However, the intensity of the biases may vary. Furthermore, our model
allows for providing to the managers different parameters characterizing the
biases, but for the sake of simplicity every manager gets the same parameters
in the same weights and combinations, i.e., suffers from the same biases with
the same intensities. Each department head makes one choice in each period. In
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each period each department head discovers two alternative configurations of the
partial decision vector he/she is in charge of. For simplification, we assume that
the managers get to know these three configurations at random order. The biases
come into effect when a department head compares the two newly discovered
configurations and the status quo with each other. In particular, the department
heads make their choices based on a perceived rather than the actual value base
for compensation. The perception B̃ of the actual value base B for compensation
(see formula 2) resulting from a certain configuration d is given by

B̃r(d, n) = Br(d) ∗ (1− ((xmax −Xn,d) ∗ α) + q + (γ ∗A) (3)

The perceived value base for compensation is influenced by several parameters
which are used to map the biases under investigation: α ∈ {0, 0.05, 0.1, 0.15, 0.2}
is used to represent the recency effect. In our model the recency effect is repre-
sented in that the decision-maker perceives an option the less favorable the earlier
he/she gets to know of that option. The incoming order at point of time n of
a configuration d is mapped with Xn,d ∈ {1, 2, 3}. xmax denotes the maximum
order of incoming configurations for rating and is set to xmax = 3, because there
are three options in each decision-making period. By multiplying the actual order
of the configuration for rating by the recency effect α with ((xmax−Xn,d)∗α) we
are able to assign the adequate weighting to the configuration depending on the
actual order. This means that an option which is shown to the decision-maker
at last is weighted higher than an option incoming with number two or one (in
this order).

For mapping the status quo effect we introduce the q parameter, with q ∈
{0, 0.05, 0.1, 0.15, 0.2}. If the configuration under assessment does not correspond
with the status quo, q is set to zero; otherwise q influences the rating of the
configuration. This means, if the configuration shown to the manager-agent is
the status quo it is weighted with the bias strength.

The anchor effect is mapped by inserting γ, with γ ∈ {0, 0.05, 0.1, 0.15, 0.2}. It
is weighted on the value base for compensation A of the very first configuration,
that the managers know within the adaptive walk: The organization is randomly
thrown in the performance landscape; in our model the randomly assigned ini-
tial position serves as an anchor for decision-making and, hence, influences the
subsequent decisions in the search process. By adding (γ ∗A) to the base a more
or less intensive anchor effect is revealed corresponding to the level of intensity
of γ.

In order to investigate the combined biases we consider a simple additive
coherence of them and, hence, we get the term (1 − ((xmax − Xn,d) ∗ α) +
q + (γ ∗A)) as indicated in formula 3. Finally, by multiplying the resulting bias
intensity by the actual value for compensation related to the configurationsBr(d)
(corresponding to formula 3) that the department heads consider in a period it
is possible to simulate the combined effects of the biases in decision-making on
organizational performance.
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3 Results and Interpretation

3.1 Parameter Settings

In our simulations artificial organizations are observed for 300 periods while
searching for higher levels of organizational performance. The simulation starts
from a randomly assigned initial position in the performance landscape. For each
setting of parameters 1000 landscapes are generated with 5 search cycles on each.
As mentioned above, our organizations either have a “self”-contained structure
or show “full” cross-departmental interactions. With respect to the incentive
scheme, in principle, INCr could take all values in the interval from 0 to 1.
However, in order to be clear and concise we find it helpful to restrict the results
presented below to the most relevant reward systems. Therefore, we present
results for INCr = 0 where only departmental performance is rewarded and for
INCr = 1 meaning that firm-wide is rewarded. Furthermore, decision-makers
are rewarded either on the basis of their departmental or on the basis of the
firmwide performance (i.e., INCr = 0 or INCr = 1, respectively). The decision-
making biases are simulated at various levels of intensity. For simplification we
simulate bias-intensities between 0% and 20% in order to analyze different levels
of distorted perceptions. Thus, bias-intensities range from 0 to 0.2 in steps of
0.05 for all biases under investigations. For examining the impact of the decision-
making biases in combination with each other, we combine two of them.

3.2 Combination of the Recency Effect and the Status Quo Bias

Table 3 reports final performances for the combinations simulated under different
interaction structures and incentives given (as far as single values are concerned
the most interesting ones, as discussed below, are set in italics). We start our
analysis with a self-contained organization by combining the recency effect with
the status quo bias.

Fig. 1. Recency & status quo, self-contained, departmental incentives
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In case that neither the recency effect nor the status quo bias are effective,
i.e., α = 0 and q = 0 (see Table 3), organizations achieve a high level of per-
formance if departmental incentives are given. By intensifying the status quo
bias the final performance decreases. However, the effects of the status quo bias
on the final performance are apparently compensated by the recency effect (see
Figure 1). Even for high levels of the status quo bias, the final performance in-
creases continuously to a level achieved without any biases if the recency effect
is more intense. In some combinations of bias intensities the final performance
is even higher than without any biases. For α = 0.05 and q = 0.1, performance
is highest. Almost the same performance level was achieved by setting α = 0.1
and q = 0.15, which yields nearly the same performance as if no biases occur. If
the recency effect is effective only, the decrease in final performance is marginal.
Figure 2 shows similar results for organizations that reward firm performance
(i.e., INCr = 1). The status quo bias causes a decrease in performance, whereas
performance apparently increases with a more intense recency effect. In particu-
lar, performance is highest when α = 0.05. But both effects in combination with
each other lead to a much better performance at q = 0.2 with α = 0.1 (Table 3).

Fig. 2. Recency & status quo, self-contained, firmwide incentives

Using the same parameters as above but in the full-interdependent structure
we revealed the following results: As shown in Figures 3 and 4 performance
decreases when status quo bias is effective only. In contrast, the recency effect
increases performance as long as its intensity is lower than α = 0.15. Beyond
that level of intensity final performance decreases. A higher level of intensity
can be achieved by combining recency effect with status quo bias (see Figure 3).
In this parameter constellation the departments are rewarded only on the basis
of departmental performance. Performance is highest at α = 0.15 with q = 0
and at α = 0.15 with q = 0.1 (see Table 3). Even for α = 0.2 with q = 0.2 the
simulation shows higher performance levels than without any biases.

In case of firmwide incentives the beneficial effect of the recency bias in case
of a status quo bias seems to be even more relevant: For example, in the full-
interdependent structure in case that no recency effect is effective the losses of
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Fig. 3. Recency & status quo, full-interdep., departmental incentives

high status quo biases at a 0.2 level go up to more than 6 points of percentage
compared to the situation of no status quo bias. With increasing recency effects
these losses disappear.

Fig. 4. Recency & status quo, full-interdep., firmwide incentives

Results indicate, that if managers are strongly influenced by the status quo
bias, the adaptive walks do not lead to high performance levels. A high influence
of the status quo bias in isolated conditions was found in [19], too. However, if
managers underlie a strong status quo bias in combination with a strong recency
effect, it is apparently possible to compensate the status quo bias or even achieve
a higher performance level than without any biases.

In a way these results are not as surprising as they might appear at a first
glance. In particular, hill-climbing algorithms are rather prone to inertia in case
of highly rugged fitness landscapes: Then, the fitness landscape has many local
maxima and the organizations are likely to stick to local maxima. With a sta-
tus quo bias sticking to a current position is even more likely, since the status
quo configuration is relatively overestimated compared to the alternative. The
recency effect serves as a kind of countermeasure since it assures that eventually
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other alternatives than the status quo are overestimated. In this way, the recency
effect increases the diversity of search.

In general, from analyzing these four constellations we can state, that biases
may enfold beneficial effects and that performance depends on the way in which
the status quo bias and the recency effect occur in combination with each other.

3.3 Combination of the Anchoring Effect and the Status Quo Bias

In our study we also analyzed the combined effects of the anchor effect and
the status quo bias. As shown in Table 3 the anchor effect apparently does not
enhance or mitigate the status quo bias, neither in the self-contained nor in the
full-interdependent structure and regardless of the incentives given. For a given
level of status quo bias our simulations yield similar levels of performance for all
levels of the anchoring effect. Put the other way round, our study reveals a clear
trend to lower performance if the status quo bias is intensified independendly
of the anchoring effect. Results are illustrated in Figure 5 and Figure 6 for a
self-contained structure and in Figure 7 and Figure 8 for a full-interdependent
structure. By giving departmental incentives as well as firmwide incentive the
results show that the status quo bias has a strong influence at every level of
anchoring effect. A similar trend is found by Samuelson and Zeckhauser in [3]
for diverse economic phenomena like the difficulty of changing public policies,
preferred types of marketing techniques, and for the nature of competition in
markets.

Fig. 5. Anchor & status quo, self-contained, departmental incentives

3.4 Combination of the Anchoring Effect and the Recency Effect

Finally, we investigated the recency and the anchor effect in combination with
each other for the self-contained and the full-interdependent structure. Figures
9 and 10 show the results for departmental and firmwide incentives respectively
in a self-contained structure. The plots show rather scattered patterns though
at quite low performance differences as can also be seen in Table 3.
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Table 3. Effects of biases in organizations with decentral coordination mode

departmental incentives firmwide incentives
self-contained

status quo
recency 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

0 0.97001 0.95763 0.94221 0.92511 0.90749 0.96968 0.94475 0.91366 0.87884 0.84901
0.05 0.96911 0.97025 0.97184 0.96000 0.94474 0.97134 0.96929 0.97081 0.94595 0.91525
0.1 0.96950 0.97019 0.97031 0.97100 0.96932 0.97044 0.96802 0.96955 0.97075 0.97135
0.15 0.96876 0.96989 0.96895 0.96904 0.97059 0.96838 0.96901 0.96789 0.96819 0.97058
0.2 0.96975 0.96915 0.96941 0.96969 0.96835 0.96878 0.96823 0.96847 0.96972 0.96722

full-interdependent
status quo

recency 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

0 0.87904 0.87420 0.86641 0.85680 0.84794 0.89469 0.87883 0.86383 0.84821 0.83166
0.05 0.89223 0.88823 0.88042 0.87343 0.86759 0.89685 0.89705 0.89788 0.88312 0.86633
0.1 0.89314 0.89250 0.88938 0.88560 0.87935 0.89298 0.89572 0.89552 0.89674 0.89693
0.15 0.89673 0.89401 0.89520 0.89353 0.88985 0.89640 0.89629 0.89528 0.89517 0.89506
0.2 0.89423 0.89389 0.89478 0.89469 0.89256 0.89410 0.89726 0.89336 0.89511 0.89413

self-contained
status quo

anchor 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

0 0.96838 0.95813 0.94342 0.92517 0.90903 0.96968 0.94475 0.91366 0.87884 0.84901
0.05 0.96708 0.95696 0.94157 0.92712 0.90810 0.96891 0.94445 0.91279 0.88182 0.85124
0.1 0.96774 0.95812 0.94268 0.92579 0.90809 0.96994 0.94522 0.91212 0.88075 0.84883
0.15 0.96925 0.95769 0.94240 0.92535 0.90747 0.96998 0.94536 0.91243 0.88096 0.84852
0.2 0.96985 0.95817 0.94145 0.92728 0.90937 0.96741 0.94409 0.91262 0.87959 0.84809

full-interdependent
status quo

anchor 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

0 0.88188 0.87541 0.86650 0.85720 0.85121 0.89469 0.87883 0.86383 0.84821 0.83166
0.05 0.88281 0.87529 0.86669 0.85567 0.84982 0.89551 0.87971 0.86477 0.84716 0.83164
0.1 0.88135 0.87355 0.86540 0.85793 0.84839 0.89570 0.88013 0.86447 0.84637 0.83273
0.15 0.88088 0.87570 0.86783 0.85795 0.84801 0.89441 0.88115 0.86370 0.84658 0.83004
0.2 0.88090 0.87598 0.86684 0.85760 0.84673 0.89422 0.88090 0.86472 0.84613 0.83173

self-contained
recency

anchor 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

0 0.96838 0.97059 0.97084 0.96910 0.96839 0.96968 0.97134 0.97044 0.96838 0.96878
0.05 0.96708 0.96910 0.97114 0.96776 0.96988 0.96891 0.96965 0.96967 0.96875 0.96881
0.1 0.96774 0.96971 0.96886 0.97066 0.96912 0.96994 0.96971 0.97100 0.96897 0.96767
0.15 0.96925 0.96960 0.96969 0.96947 0.96973 0.96998 0.96939 0.97019 0.96889 0.96732
0.2 0.96985 0.96971 0.96983 0.97105 0.97069 0.96741 0.97001 0.96850 0.96925 0.96943

full-interdependent
recency

anchor 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

0 0.88188 0.89027 0.89473 0.89383 0.89375 0.89469 0.89685 0.89298 0.89640 0.89410
0.05 0.88281 0.89162 0.89296 0.89600 0.89425 0.89551 0.89394 0.89712 0.89564 0.89489
0.1 0.88135 0.88947 0.89370 0.89500 0.89368 0.89570 0.89649 0.89450 0.89750 0.89481
0.15 0.88088 0.89091 0.89225 0.89739 0.89684 0.89441 0.89595 0.89591 0.89465 0.89594
0.2 0.88090 0.89051 0.89462 0.89430 0.89504 0.89422 0.89673 0.89560 0.89639 0.89372

The confidence intervals vary between 0.006 and 0.007 for a confidence level of 0.001.
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Fig. 6. Anchor & status quo, self-contained, firmwide incentives

Fig. 7. Anchor & status quo, full-interdep., departmental incentives

Fig. 8. Anchor & status quo, full-interdep., firmwide incentives
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Fig. 9. Anchor & recency, self-contained, departmental incentives

Fig. 10. Anchor & recency, self-contained, firmwide incentives

Figures 11 and 12 show the results for departmental and firmwide incentives
respectively for the full-interdependent structure. In case of firmwide incentives
we find a similar pattern like in the self-contained interaction structure for both
reward structures: The levels of performance achieved are rather independent
from the intensities of the recency effect and from the anchoring effect. If de-
partmental incentives are given in a full-interdependent interaction structure
matters change with respect to the recency effect. Apparently, here the recency
effect enfolds a productive effect: For all levels of the anchoring effect, the orga-
nizational performance increases with a more intense recency effect.

However, an interesting question is why the constellation of full-interdepen-
dent interactions combined with departmental incentives appears to be particu-
larly sensitive to the recency effect. We argue that in this situation the reward
structure generates an inadequate myopia: The incentive system lets the depart-
ment heads focus only on the departmental performance of their choices while the
choices also might have (negative or positive) cross-departmental effects. Thus,
the organization likely is to suffer from a lower speed of performance enhance-
ments as opportunities are missed (i.e., positive external effects are ignored) and
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Fig. 11. Anchor & recency, full-interdep., departmental incentives

Fig. 12. Anchor & recency, full-interdep., firmwide incentives

bad alternatives are choosen (i.e., negative external effects are ignored). In this
situation the recency effect induces more diversity in the search process and, by
that, apparently increases final performance achieved.

4 Conclusion

The results suggest that, contrary to intuition, human decision-making biases do
not necessarily reduce the overall performance achieved in collaborative decision-
making processes. Instead, we found that in some constellations decision-making
biases enfold beneficial effects. Of course, this puts claims for decision-making as
rational as possible into perspective. Furthermore, our simulations reveal that de-
cision-making biases partially compensate each other. The recency effect appears
to compensate the status quo bias. With regard to the adaptive search processes
this result might be explained as follows. The status quo bias on its own obviously
even aggravates the well-known problem of adaptive search processes to stick
to the local maximum in the performance landscape and, by that, to lead to
inertia. In contrary, the recency effect has the potential to generate diversity
in the search process in that eventually the status quo might be under-valued
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compared to a newly found alternative. These considerations indicate that the
“right” combination of decision-making biases is of crucial relevance. However,
we also found that organizational characteristics like the incentive system or the
interaction structure among decisions might affect the effects of the decision-
making biases in an organization.

Hence, the findings show that it might be a promising approach to analyze
more into detail how the sequence of information provided to managers affects
decision-making. Another issue relates to the underlying model structure: The
NK model which serves as basis for our results involves certain assumptions,
e.g., about the nature of the decision problem (binary decision problem) and
performance contributions (drawn from a uniform distribution) which, of course,
do not hold universally. These limitations as induced by the simulation approach
chosen could be overcome in further research. Moreover, a combination with
experimental research to the simulation method might be a further interesting
approach. Furthermore, our model encapsulates three selected decision-making
biases. Beyond these, for example, framing effects could be integrated in order
to analyze the effect of the representation of information on decision-making in
combination with other decision-making biases.
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W. (1989)

[3] Samuelson, W., Zeckhauser, R.: Status quo bias in decision making. Journal of
Risk and Uncertainty 1(1), 7–59 (1988)

[4] Tversky, A., Kahneman, D.: Judgment under uncertainty: Heuristics and biases.
Science 185(4157), 1124 (1974)

[5] Kahneman, D., Tversky, A.: The framing of decisions and the psychology of choice.
Science, New Series 211(4481), 453–458 (1981)

[6] Bonabeau, E.: Agent-based modeling: methods and techniques for simulating hu-
man systems. Proceedings of the National Academy of Sciences of the United
States of America 99(suppl. 3), 7280–7287 (2002)

[7] Moss, S.: Editorial introduction: Messy systems - the target for multi agent
based simulation. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI),
vol. 1979, pp. 1–14. Springer, Heidelberg (2001)

[8] Van Dyke Parunak, H., Savit, R., Riolo, R.L.: Agent-based modeling vs. Equation-
based modeling: A case study and users’ guide. In: Sichman, J.S., Conte, R.,
Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 10–25. Springer,
Heidelberg (1998)

[9] Kauffman, S.: The origins of order: Self-Organization and Selection in Evolution,
vol. 209. Oxford University Press, New York (1993)

[10] Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged
landscapes. Journal of Theoretical Biology 128(1), 11–45 (1987)

[11] Rivkin, J., Siggelkow, N.: Balancing search and stability: Interdependencies among
elements organizational design. Management Science, 290–311 (2003)



42 S. Berlinger and F. Wall

[12] Siggelkow, N., Levinthal, D.: Temporarily divide to conquer: Centralized, decen-
tralized, and reintegrated organizational approaches to exploration and adapta-
tion. Organization Science, 650–669 (2003)

[13] Siggelkow, N., Rivkin, J.: Speed and search: Designing organizations for turbulence
and complexity. Organization Science, 101–122 (2005)

[14] Chang, M.-H., Harrington, J.E.: Agent-Based Models of Organizations. Handbook
of Computational Economics: Agent-Based Computational Economics, vol. 2, ch.
26, pp. 1273–1337. Elsevier (2006)

[15] Wall, F.: The (beneficial) role of informational imperfections in enhancing organ-
isational performance. In: LiCalzi, M., Milone, L., Pellizzari, P. (eds.) Progress in
Artificial Economics: Computational and Agent-Based Models. Lecture Notes in
Economics and Mathematical Systems, vol. 645. Springer (2010)

[16] Kristensen, H., Gärling, T.: Anchoring induced biases in consumer price negotia-
tions. Journal of Consumer Policy 23(4), 445–460 (2000)

[17] Kant, J.D., Thiriot, S.: Modeling one human decision maker with a multi-
agent system: the codage approach. In: Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006,
pp. 50–57. ACM, New York (2006)

[18] An, L.: Modeling human decisions in coupled human and natural systems: Review
of agent-based models. Ecological Modelling (2011)

[19] Masatlioglu, Y., Ok, E.: Rational choice with status quo bias. Journal of Economic
Theory 121(1), 1–29 (2005)



F. Giardini and F. Amblard (Eds.): MABS 2012, LNAI 7838, pp. 43–55, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Swarming Estimation of Realistic Mental Models 

H. Van Dyke Parunak1, Sven Brueckner1, Elizabeth A. Downs2, and Laura Sappelsa3 

1 Soar Technology, 3600 Green Court, Suite 600,  
Ann Arbor, MI 48105 USA 

2 Jacobs Technology, 3520 Green Court, Suite 250,  
Ann Arbor, MI 48105 USA 

3 Analytic Services, Inc., 2900 South Quincy Street,  
Suite 800, Arlington, VA 22206 

{van.parunak,sven.brueckner}@soartech.com, 
liz.downs@jacobs.com, laura.sappelsa@anser.org 

Abstract. Researchers have explored many formalisms to model how people 
think about their world. We describe an application that requires modeling how 
people forecast events in the real world. The naïve assumption is that they use 
formalisms that model how the world actually evolves. These formalisms are at 
variance with empirical psychological results. We present a more realistic alter-
native, the Narrative Space Model (NSM), describe a swarming agent algorithm 
to fit its parameters from observed data, and present some early results.  

Keywords: Mental models, cognition, formal reasoning, narrative space model. 

1 Introduction 

In much agent research, software agents represent people, and the agent’s internal 
code is based on a model of how people think. Some models, such as threshold-based 
decision rules (common in studies of opinion dynamics) and stochastic choices fitted 
to empirical data [25], make no claims to cognitive realism, though the former can be 
grounded in decision field theory [2]. Others, including utility maximization [12] and 
stochastic learning automata [16], assume that humans routinely apply axiomatically 
grounded theories to their daily decisions. Simon’s “bounded rationality” [17] tem-
pers this claim by observing that people do not have the processing power required to 
find true optima, but systems that invoke this approach (e.g., [5]) typically modify the 
amount of data to which they apply classical reasoning (such as utility maximization), 
and not the reasoning mechanisms themselves. 

Our application, aggregation of forecasts from multiple experts, requires modeling 
how people form individual judgments. “Obvious” models of cognition are not ade-
quate. We have devised an alternative, the Narrative Space Model (NSM), that other 
researchers may find useful. We show how swarming agents can fit a narrative space 
(NS) to observed data. The NSM may also be useful as a more realistic framework for 
agents intended to model human cognition. 
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Section 1 introduces our application. Section 2 summarizes the obvious candidates 
for modeling agents’ cognition, and Section 3 summarizes research that shows their 
inadequacy. Section 4 describes the NSM. Section 5 tells how we fit it to observed 
data, and Section 6 discusses some fitted examples. Section 7 concludes. 

2 Model-Based Forecast Aggregation 

In many domains (e.g., intelligence analysis, business planning, and economic fore-
casting), human judgments are the most accessible, and sometimes the only, data on 
which to base decisions. The opinions of many people are often more accurate than 
those of a few [20]. One theory explaining this observation is that different people 
have different mental models of the domain, and the weight assigned to a given judg-
ment in the aggregation should reflect how complementary its underlying model is to 
the models underlying other judgments [13].  

To use this insight in aggregating forecasts, we must estimate forecasters’ internal 
models from their forecasts. For example, “Will Bashar al-Assad remain President  
of Syria through 31 January 2012? (Yes/No)” A forecast consists of assigning a  
number to each possible response, such that the larger number corresponds to the 
outcome that the forecaster deems more likely, and the difference between the num-
bers reflects the forecaster’s certainty in that estimate. Forecasters can update their 
forecasts over time. Table 1 summarizes a series of forecasts against this question 
from one forecaster. We wish to estimate the internal model that generates such data. 

We assume a structural Ansatz that could generate numerical forecasts, then fit the 
Ansatz to the data. At first, we assumed that a mental model should look like a formal 
model of how the world evolves, perhaps with fewer variables to reflect bounded 
rationality. We considered a number of forms that deal in turn with state variables, 
states, and statements about the world.  

We describe the state of the world by a 
vector of state variables v = {v0 = t, v1, …, 
vn }. In some cases, we want to remove 
time from the concept of state, and then we 
work with u = v\{v0}. For now we assume 
that this vector is of finite length and its 
elements are non-negative real numbers 
(for which we use the siglum ℜ), though 
our framework generalizes naturally. The 
state of the world s(t) is an element of ℜn+1.  

There are at least four traditional ma-
thematical approaches to reasoning over 
such a system. Each has a distinctive repre-
sentation, inference mechanism, and se-
mantics. 

A differential equation expresses the rate 
of change of state variables as a function of 
the current value of the state vector. Inference is by integration over time, which re-
covers the value of the state variables as a function of time. Differential equations 

Table 1. Example forecasts 

Date Forecast [1] 
2011-11-10  {0.35,0.65} 
2011-12-02  {0.3,0.7} 
2011-12-19  {0.3,0.7} 
2011-12-28  {0.4,0.6} 
2012-01-04  {0.45,0.55} 
2012-01-08  {0.6,0.4} 
2012-01-11  {0.65,0.35} 
2012-01-16  {0.7,0.3} 
2012-01-17  {0.75,0.25} 
2012-01-23 {0.8,0.2} 
2012-01-29  {0.85,0.15} 
2012-01-30  {0.95,0.05} 
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(and difference equations for discrete time) are the most natural way to model a phys-
ical process, and they incorporate time as a first-class concept that can be quantified 
by how rapidly variables converge. In modeling social, political, and economic sys-
tems, differential equations are usually represented graphically by feedback diagrams 
such as those prominent in system dynamics [18]. 

Markov models manipulate, not state variables, but world states. To make this ap-
proach more tractable, the vi are sometimes restricted to finite domains (for example, 
by binning the underlying values in ℜ+). Given a finite set of state variables, this bin-
ning yields a finite number of mutually exclusive, collectively exhaustive (MECE) 
world states. A discrete time, finite state Markov process1 operates on a vector N 
(“now”) indicating the probability that the world is in each possible state, by way of a 
matrix M whose elements express the probability that at the next time step the world 
will transition from the state indexed by the row to the state indexed by the column. 
Thus each row sums to 1. The matrix product M x N yields a new vector of state 
probabilities S’. This formalism requires MECE states: the system is in only one state 
at a time, and it is meaningless to talk about conditional probabilities between states.2 
A Markov process is a natural way to capture a causal semantics. 

To avoid the Markovian explosion of states, we can deal with statements λi about 
the world rather than states of the world. A statement is a mapping from the power set 
of v to {True, False} (or to a degree of belief). A statement is true of all states of the 
world in which its variables match.3 Thus this representation is the coarsest of the 
three that we have considered: statements represent sets of states, while states 
represent sets of assignments to variables. Because each statement can apply to mul-
tiple states of the world, we have no guarantee of statistical independence. In principle 
we must reason about the joint distribution of all statements, but domain-specific 
conditional constraints remove many conditioning links. Two traditional reasoning 
formalisms exploit such constraints, in different ways.  

Formal logics deal with entailment relations among statements. They can handle 
only very limited subsets of 2v, specifically those that support such relations. The 
inference mechanism is theorem proving. 

Statements are objects of belief, and so are naturally manipulated by Bayesian me-
chanisms. Bayesian approaches capture domain constraints among statements graphi-
cally, either in a directed graph (a “Bayesian belief network,” where each node 
records the probability of a statement conditioned on the probabilities of its parent 
statements) or an undirected graph (a Markov random field, where conditionality 
                                                           
1 If the state space is defined over u instead of v, the Markov process is reversible. 
2 There are two caveats to this statement. 

1. Bayesian approaches view the time series of statements synchronically, and define con-
ditional probabilities over the sequence, working with v rather than u. In this case, su-
perscripting the Markov step, the conditional probability p(si+1|si) is just the Markov 
transition probability pi, i+1. Reversible chains require more complicated approaches [3]. 
The mathematics can be aligned, but the semantics of conditional probability are quite 
different from those of transition probabilities.  

2. The restriction to single states is classical; a quantum model could consider coexisting 
states in an evolving but unobserved system [22], a possibility we defer for now. 

3 More complex calculi than subsetting over vi are possible. We retain the simpler representa-
tion of statements for expository clarity. 
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constraints are represented by adjacency and graph connectedness). The correspond-
ing inference mechanism consists of various techniques for fitting the conditional 
probability tables that describe the relationship among linked statements. Logical 
reasoning is a reduced case of such reasoning [23], in which the nature of the state-
ments permits particularly constrained conditional probability tables. 

3 What People Do Not Do 

Scientists and engineers model the world in terms of these mathematical structures, 
and naturally assume that people use some version of one or another of them in rea-
soning subjectively about how the world will evolve. In fact, the Bayesian formalism 
has long been characterized as “subjective probability” [9], because it defines proba-
bility in terms of “degree of belief.” In spite of this characterization, there is persua-
sive evidence that most people do not manipulate their degrees of belief following 
Bayesian principles, or any of the other formalisms that we have discussed. We do not 
claim that people do not know how to perform the computations required in each of 
these formalisms, but simply observe that they do not do so in making routine judg-
ments, even if they know how to do so with pencil and paper.  

An important empirical challenge to structuring mental models as sets of differen-
tial equations (or the related difference equations or system dynamics models) is evi-
dence that people do not reason effectively about feedback loops, that is, systems in 
which current values of variables affect future values of those same variables. The 
parade example of this failure is the beer game [19], a role-playing exercise involving 
a supply chain linking the production of a commodity (cases of beer in the canonical 
example) to consumers through a chain of distributors. Each link in the chain is 
represented by a human decision-maker, who receives orders from her customer (the 
adjacent link closer to the consumer) and formulates orders to her supplier (the adja-
cent link closer to the manufacturer). Players are rewarded for having sufficient in-
ventory to respond to orders, and penalized for carrying excess inventory. All data in 
the system is visible to all the participants, and a simple set of difference equations 
would allow players to optimize their orders. But in fact, players regularly over-
respond to changes in the level of demand, swinging between zero inventories that 
cost them sales and excess stocks that cost them a carrying charge. People do not use 
differential or difference equations to reason about how the world will change. 

Human reasoning does have parallels to the inferencing process involved in Mar-
kov process models. Research on the “simulation heuristic” suggests that people think 
in terms of a series of putatively causal links in estimating the likelihood of a future 
event [11]: “Well, given where we are now, event A could make X true, which would 
allow B to happen, making Y true, and enabling C, which would result in the event 
we’re considering.” But these transitions are between statements about the world, not 
between mutually exclusive, collectively exhaustive (MECE) states of the world.  
A statement is a hyperplane through state space, asserting values for some state  
variables but leaving others unspecified. If the unspecified variables have multiple 
values, one can recover many states consistent with a single statement, violating the 
MECE condition. In addition, one can generate many related statements at different 
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levels of specificity by leaving more and more variables undefined. For example, “al-
Assad is assassinated,” “al-Assad is dead,” and “al-Assad is no longer president of 
Syria” are all different statements, but describe intersecting regions of state space. As 
a result, the independence axioms that permit calculations over transition probabilities 
in a Markov process are not admissible. Without such axioms, one cannot invoke the 
sum or product rules of conventional probability to interpret the numbers that people 
associate with individual transitions, or with the likelihood of a final outcome. 

People also do not generally reach judgments through rigorous logical analysis. 
They can simultaneously hold mutually contradictory beliefs (such as whether Osama 
bin Laden is alive or dead), if those beliefs are related to a common underlying con-
cept (i.e., that officials are involved in a cover-up) [24]. Further evidence is found in 
the logically sloppy nature of natural language. In English, people regularly interpret 
the conditional conjunction “if” as though it were equivalent to “if and only if.” 

Humans don’t integrate differential equations, iterate Markov processes, or  
prove theorems when they forecast events. The probabilistic calculus that underlies  
a Bayesian system fares no better. Extensive studies [10] demonstrate that they rou-
tinely violate standard, rudimentary rules of probability. For example: people don’t 
recognize 

• that P(A,B)  ≤ P(A), especially given a persuasive story that focuses attention 
on factors relevant to B; 

• that if P(A|B) > P(A|~B), then P(B|A) > P(B|~A). 
• that the variance of a sample decreases as the size of the sample increases;  
• that if A causes B, then B is diagnostic of A; 
• that base rate rate information should impact probability estimates; 
• that dependence among probabilities matters. Even while commenting on 

people’s weakness in probabilistic reasoning, Heuer [8] (pp. 156-157) advo-
cates simply multiplying the probabilities of different characteristics of a 
scenario to get the probability of the overall scenario, without considering 
that those characteristics may be causally linked. 

Remarkably, these effects persist even among experimental subjects with extensive 
expertise in formal methods [10]! Apparently, the formal methods are overwhelmed 
by strong, innate mechanisms of the human psyche. People can learn to manipulate 
formal methods in conscious “paper and pencil” reasoning, but their intuitive res-
ponses are usually very different from the formal methods that they have learned. 
Psychologists disagree about the reason for quantitative shortcomings [7], but the fact 
remains that probabilistic reasoning is a poor model of human cognition. 

If one is building an agent to solve some problem (e.g., optimize a factory, or max-
imize profit in an on-line auction), these algorithms are excellent choices. But if one 
is constructing an agent to model what a person might do, these algorithms will  
be inaccurate. Whether these inaccuracies lead to problems in system-level behavior 
is an open question: in highly-constrained environments, system-level effects may  
be relatively independent of agent decision rules [15]. But a responsible modeler  
will be aware of the fiction involved in assuming that her agents are (for example) 
optimizing their utilities or computing beliefs based on conditional probabilities.  
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4 The Narrative Space Model 

The psychological literature shows that people apply a number of heuristics in reason-
ing under uncertainty. In forecasting what will happen, they tend to think causally, 
rather than statistically [21], a tendency that would suggest an underlying model with 
a strong temporal component, such as differential equations and Markov processes as 
opposed to logic or conditional probabilities. However, experiments [11] show that 
people do not follow either of these models completely. The “atoms” that they assem-
ble into temporal sequences are neither the changing values of state variables (as in a 
differential equation) nor MECE states (as in a Markov model). Instead, they are 
statements about the world, as in a Bayesian analysis. But the analysis is not Baye-
sian. Humans do not manipulate conditional probabilities, but cling to temporal se-
quencing. The dominant calculus in human reasoning appears to be the narrative, a 
sequence of statements about the world [6]. 

This hypothesis suggests that we express forecasters’ mental models in terms of a 
space of possible narratives: statements (as in a logical or Bayesian representation) 
with transition weights between them (as in a Markov model) (Fig. 1).  

• Dashed and dotted circles indicate statements that imply alternative out-
comes to the forecasting question. For example, statements f and i might 
imply a “yes” answer to the al-Assad question, while statements h and j 
might imply a “no” answer. 

• Dashed lines indicate inhibitory links: if one narrative trajectory has pro-
duced the node at the tail of a dashed arrow (e.g., b), it is less likely that the 
same user will also entertain a trajectory containing the node at the head of 
the arrow (in this case, e).  

• The weight of the transition between two statements indicates how likely a 
given modeler is to move from the first to the second in her narrative. Fig. 1 
does not represent these weights. 

We call this graph (without weights on the edges) a 
“narrative space.” Any trajectory through this space 
corresponds to a narrative that a user with the asso-
ciated model could entertain. When we furnish a 
narrative space with transition probabilities, it be-
comes a “narrative generator,” since we can sample 
it to generate a wide range of narratives.  

An “outcome” in such a system is also a state-
ment. Such a statement may appear as a node in 
the narrative generator. However, it may also be 
implied by other nodes. For example, if an out-
come consists of {v1 = 0, v2 = 0}, this outcome is 
implied by any statement that includes these assignments. Thus, in general, there is no 
single “outcome” node, but rather a set of nodes that imply various outcomes, as sug-
gested by the dashed and dotted noted in Fig. 1. 

 

 

Fig. 1. A Narrative Space  
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Experiments show that the structure of a narrative carries more impact in subjec-
tive probability assessments than do formal probabilistic computations [4]. Given a 
narrative generator, some outcomes have few supporting narratives, and the transi-
tions in these narratives are weak, yielding a low score. Conversely, if a statement 
implying an outcome is reachable by many alternative narratives, or narratives with 
strong transitions, the forecaster will tend to assign it a high score. The number that a 
forecaster assigns to an outcome is not an estimate of its probability in the real world, 
such as might be produced by one of the mathematical paradigms we reviewed, but 
rather a weighted count of the number of narratives generated by the forecaster’s 
narrative generator that are compatible with the designated outcome.  

To use a narrative generator to make forecasts, we sample trajectories from a des-
ignated “start” node to statements that imply outcomes. Repeated sampling leads to 
different outcomes. The numbers that a forecaster assigns to different outcomes are 
the proportion of samples that reach statements implying each outcome. 

Fig. 2 is an example narrative space (NS), an abbreviation of a fuller model con-
structed by an experienced political analyst for the al-Assad question. The shaded 
node toward the top left is the start node, the shaded node at the upper right is an out-
come node corresponding to a “no” answer, and the shaded node at the lower right is 
an outcome node for “yes.” In addition, there is a default edge (not drawn) from every 
internal node to the lower-right outcome node, reflecting the possibility that the “no” 
node has not been reached when the problem expires. The question marks on the 
edges are place-holders for the transition weights that we fit as described in Section 5. 
Our fitting software takes as input an XML representation of the NS and a series of 
forecasts by a given forecaster, and replaces the “????” elements with transition 
weights. 

 

Fig. 2. Example Narrative Space (abbreviated) 
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Each node in Fig. 2 is a statement, and an arrow from one statement to another in-
dicates that a trajectory following the arrow is a segment of a reasonable narrative. 
For example, the trajectory across the top of the figure generates the following narra-
tive: “There is a division in the top leadership of the Syrian government. An internal 
coup takes place, removing al-Assad.”  

Fig. 2 is greatly abbreviated. The actual NS for this problem (Fig. 3) has 59 inter-
nal nodes and seven outcome nodes describing different ways that al-Assad might be 
removed. The labels reflect what is in the mind of the analyst who generates the 
graph, but how do we know where a forecaster is in this graph? There are three clues. 

1. We maintain a log of news events that are relevant to each forecasting ques-
tion, indexed to the node in the network that they attest. For example, one 
node in the full NS is labeled “Arab league refers crisis to UN,” and on 24 
January 2012, our log identified a news item stating that this had happened. As 
outlined in the next section, we use these news items to weight the fitting of 
transition probabilities to specific trajectories. News items provide a semantic 
link between forecasters and the graph, since we link news items to the graph 
and forecasters can adjust their forecasts based on news items. 

2. Apart from the labels on nodes, the topology of transitions and inhibitory links 
gives the space an overall structure that favors certain narratives. Of the 182 
transitions in Fig. 3, 59 (one for each internal node) go to “Yes” and are not 
drawn in the graph. If we apply our fitting process (Section 6) to a uniform 
forecast (0.5 yes, 0.5 no), paying no attention to news items, 49 of the transi-
tions to “Yes” and 31 of the other transitions receive a probability of less than 
0.1, pruning the graph by 44%. The reduced graph shows a limited set of story 
 

 

Fig. 3. Full Narrative Space for al-Assad question 
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beginnings and story endings, reflecting the default mental model of the expert 
who constructed the original graph. However, in the presence of evidence, 
some transitions that drop out of this “neutral” graph return, as we will illu-
strate in Section 7. 

3. Our application requires distinguishing forecasters based on their underlying 
mental models, not deriving an exact representation of each model. Any model 
whose structure reflects the underlying narrative space, on which events can be 
localized, and that transforms forecasts into a signal characterizing the forecas-
ter, serves our purpose. The NSM satisfies these requirements. 

5 Probability Estimation in Narrative Spaces (PENS) 

We characterize a given forecast by a set of transition weights in the NS that gene-
rates it. This set of weights is the forecast’s “spectrum.” Our algorithm for probability 
estimation in narrative spaces (PENS) is based on swarming agents. 

PENS begins by starting at each outcome node and recursively marking all incom-
ing links with the outcome states accessible along it.  

For each question q and forecaster u, we have a series of forecasts ߠ෠ሾ௤,௧,௨ሿ issued at 
times t. Each forecast in ߠ෠ሾ௤,௧,௨ሿ is a tuple that assigns a probability to each outcome. 
We use the polyagent construct [14] to generate a set of edge weights γij in the follow-
ing way. For clarity, we restrict the discussion to forecasts made by a single user. 

Each forecast is represented by a separate avatar agent at the start node that issues 
ghost agents for each outcome at a rate proportional to the forecast for that outcome. 
These ghosts move through the graph selecting randomly among the outgoing edges 
from each node that are labeled with their destination. Each ghost lays down phero-
mone tagged with the forecast time to mark the trajectory it is exploring, which cor-
responds to a possible narrative. Let ߁ሾ௤,௧,௨ሿ be the set of transition probabilities γij 
proportional to the final pheromone strengths on each link, generated from ߠ෠ሾ௤,௧,௨ሿ. By 
construction, if ghosts without a preference for outcome move through the graph from 
Start and choose transitions according to ߁ሾ௤,௧,௨ሿ, they will arrive at the outcome 
nodes in the proportions specified by ߠ෠ሾ௤,௧,௨ሿ.  

At each node, a ghost chooses among outgoing edges that lead to its designated 
outcome, based on a roulette wheel over the value of a weighting function 

,ሺ0݊݅ܯ  ଵݓ ൅ ଶݓ ∑ ߮௧ᇲ௧ᇲஸ௧ ൅ ݓଷ ∑ ௧ᇲ௧ᇲஸ௧ߝ െ  ௧ᇲሻ (1)ߙସݓ 

• ߮௧ᇲ
 is the pheromone deposited by previous ghosts from an avatar 

representing a forecast made at time t’. Each ghost attends to ghost phero-
mone from its own and all earlier avatars. Earlier avatars represent earlier 
forecasts by the same user on the same question, favoring generators that dif-
fer as little as possible from earlier ones.  

௧ᇲߝ •
 is event pheromone from a node that has been confirmed by a news 

event. 
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௧ᇲߙ •
 is inhibitory pheromone resulting from inhibitory links terminating at the 

destination node, and heuristically, its weight w4 can be set equal to the 
weight w2 of the ghost pheromone. 

• w1 provides for equal choice among links in the case where there is no phe-
romone in place; its magnitude relative to the other weights determines the 
degree to which ghosts respond to pheromones (favored by small w1) vs. 
simply following the structure of the graph (favored by large w1) 

Ghosts from a forecaster’s first forecast favor destination statements that are marked 
as having occurred, but otherwise choose uniformly among eligible outgoing edges. 
As a forecaster makes subsequent forecasts, ghosts from those forecasts weight their 
choices of outgoing edges based on pheromone from ghosts of previous forecasts, and 
also take into account nodes marked by more recent news reports.  

6 Examples 

We consider three narrative generators that result from applying the PENS algorithm 
to Fig. 3. First, we fit a neutral forecast (50% assigned to each outcome), in the ab-
sence of any event information (w3 in (1) set to 0, other weights to 1). Then we turn 
on event information, and fit the first forecast in Table 1, then all the forecasts in that 
table. In all cases, we delete edges with a weight < 0.1. 

Fitting a homogeneous forecast with no event information reveals the “natural” to-
pology of the graph, taking into account divergent and convergent paths and the effect 
of inhibitory links. The NS identifies nine possible starting statements for a narrative 
about al-Assad’s fall. The intrinsic topology of the space favors only five of these, but 
with roughly equal probabilities. In addition, of the seven possible outcome nodes 
representing al-Assad’s removal, two (exile and death) are not reachable in this neu-
tral generator. The most likely narrative is that civil war erupts, leading to al-Assad’s 
being seriously injured, but not sidelined by the time the deadline arrives. 

An interesting difference between the neutral generator and the NS concerns a 
node in the NS representing the statement, “Government ends violence against protes-
tors.” Fig. 4 shows a fragment of Fig. 3 that involves this statement. The statement is 
part of several narratives in which it is preceded by UN action or an Arab league 
monitoring mission, and leads either to changes in the existing Syrian government or 
to a new government. Of particular interest is the inhibitory link between “Syria does 
not adhere to terms of deal” and “Government ends violence ….” The focal statement 
is part of a credible narrative only in a world in which diplomatic activities are promi-
nent and Syria is going along with them. 

The generator from a homogeneous forecast with no events does not include this 
node. Multiple paths lead from Start rather directly to “Syria accepts Arab league 
deal,” but also to “Syria does not adhere to terms of deal,” and the inhibitory link 
represses transitions to “Government ends violence ….” 
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Fig. 4. Narrative neighborhood of “Government ends violence…” 

The generator from the entire series of forecasts in Table 1, with event weighting 
turned on, also does not include “Government ends violence ….” This generator sup-
ports only narratives starting with “human rights violations,” followed most strongly 
by “International pressure on Syrian government increases.” These two nodes are the 
second and third most highly attested in the log of news events, at 68 and 59 out of 
421 events. (The node most often attested in the news, “al-Assad remains defiant” at 
70 references, is buried deeply in the graph, but does form part of this generator.) 
Though the generator supports trajectories including diplomatic efforts, the fourth 
most attested statement (55 events) is “Syria does not adhere to terms of deal,” strong-
ly activating the inhibitory link and repressing “Government ends violence….”  

However, the generator fit to the first forecast in Table 1 does support narratives 
that include “Government ends violence ….” At the time of the first forecast (10 Nov 
2011), only three nodes in the NS had associated events in the event log: “human 
rights violations reported,” “international pressure on syrian government increases,” 
and “sanctions and travel bans.” All three events reinforce narratives beginning with 
human rights violations, so this generator, like the generator from all of Table 1, sup-
ports only narratives that start in this way (suppressing the other four starting state-
ments from the uniform forecast). However, at this time no events attest “Syria does 
not adhere to terms of deal,” so “Government ends violence” remains active. 

Thus the PENS algorithm is able to distinguish the intrinsic non-uniform topology 
of a NS, and generate distinct spectra that are a function of the forecast itself, the 
history of previous forecasts by a given forecaster, and known events that occurred 
during the forecast period. These spectra enable us to characterize the uniformity or 
diversity of the underlying models held by each of our forecasters. 
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7 Conclusion 

Axiomatically sound procedures, such as differential equations, Markov processes, 
formal logics, and Bayesian inference, are wonderful tools for implementing agents 
that solve problems for us. They are completely unrealistic as models of what happens 
in peoples’ minds. In some cases (such as modeling how people make forecasts), the 
narrative space model is a promising candidate. It can be fit to observed forecasts with 
a swarming algorithm, characterizing and distinguishing the mental models that dif-
ferent forecasters use. 

The relevance of this study to agents is in using swarming agents to estimate a psy-
chological construct. However, it may also be useful in implementing software agents 
whose behavior is intended to mimic realistic human reasoning, as in social simula-
tions. Our insights suggest that reliance on axiomatically sound reasoning procedures 
will yield unrealistic agents, and that alternative formalisms (such as the NSM) may 
be a preferable basis for agents whose purpose is to behave like people. 
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Abstract. Decentralized market economies are complex systems that
involve large numbers of heterogeneous participants. A good abstraction
of this scenario is illustrated by the El Farol problem. In this problem,
there is a bar with a fixed capacity and a given number of participants
need to choose between either stay at home or go to the bar. However,
if the attendance is above or equals the capacity of the bar, it becomes
too crowded and the participants who attended did not have fun. In this
paper we provide insight into the behaviour of the participants in those
decentralized market economies scenarios by using a cognitive modelling
approach in the El Farol problem. In three computer experiments we
investigate, compare, and discuss a number of features of our agent-based
model namely the relationship between beliefs and strategies, emotions
of cognitive agents, as well as other aspects of market dynamics.

1 Introduction

Traditional economic theories tend to assume that agents are rational in the
sense that they form expectations rationally and are able to make optimal de-
cisions [10]. In other words, agents are considered to be able to correctly form
probabilistic assessments, calculating which of the alternative courses of action
maximize their expected utility (e.g. [26, 6]). On the other hand, observations
regarding the behaviour of agents in real life scenarios, together with behavioral
economics [14] findings constitute evidence that agents are not fully rational
(e.g. [17, 11]). Agents do not always have enough time or the cognitive ability to
process all the related information with accuracy, that is to say that they have
bounded rationality.

A good example of a scenario in which agents have bounded rationality and
need to make decisions essentially based on inductive reasoning and, therefore,
cognitive agents might be used is illustrated by the El Farol problem [1]. In this
problem, there is a bar with a fixed capacity and a certain number of people need
to periodically and independently choose between two actions, namely go the bar
or stay at home. However, if the number of people who go the bar is above or
equals its capacity the bar becomes too crowded and those who attended did not
have fun. In this problem agents generally make use of a strategy that provides
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them with a forecast for the next attendance that ultimately indicates whether
the best action is to stay at home or go the bar. The only information available
is the historical attendance and there is no communication between agents. In
the context of those scenarios, unlike traditional economic theories, agents are
somewhat forced to be heterogeneous in the sense they have to employ, for
instance, different strategies or mechanisms for creating predictions about the
next attendance. Nevertheless, as a strategic environment, the result heavily
depends on the choice made by other agents.

The El Farol problem offers a rich set of possibilities for investigation as well as
an interesting dynamics with respect to the behaviour of agents both in terms of
micro and macro perspectives. It is important to stress that the interest in the El
Farol problem is not new. On the contrary, a variety of different approaches have
been proposed (e.g. [5, 19, 20]). For instance, Cross et al. [9] tried to incorporate
minimal psychological factors to the El Farol, and observe whether they are able
to reproduce some statistical regularities that are often found in real market
data across different markets and periods of time, known as stylized facts [7].
Interestingly, despite its simplicity, their model was able to simulate a small
number of fundamental phenomena.

In this paper we employ a cognitive modeling approach to observe the be-
haviour of agents in the context of the El Farol problem. It means that artificial
agents will be empowered with mechanisms similar to or inspired in those used
by humans. Therefore, the behaviour of artificial agents tends to be closer to the
behaviour of humans in a similar scenario. In three computer experiments we
investigate, compare, and discuss a number of features of our agent-based model
namely the relationship between beliefs and strategies, emotions of cognitive
agents, as well as other aspects of market dynamics.

The paper is organized as follows. In Section 2 we briefly present the cognitive
emotion theories concepts related to our work. In Section 3 we present our agent-
based model. In Section 4 we detail the experimental setup of our computer
experiments and show our results, while in Section 5 we discuss our results.
Finally, in Section 6 we conclude the paper and point out some future directions.

2 Cognitive Emotion Theories

Cognitive emotion theories (e.g. [15, 27]) rely on the assumption that emotions
are mental states elicited as a result of the evaluation or appraisal of stimuli
of all kinds (e.g. actions, events) and can be computed in terms of cognitions
(beliefs) and motives (desires). Beliefs are mental states in which one holds a
particular proposition to be true, whereas desires represent the motives or future
states that one wants to accomplish.

The Belief-Desire Theory of Emotions (BDTE) is a cognitive emotion the-
ory consisted of propositions, beliefs, desires, new beliefs, and two hard-wired
comparator mechanisms, namely the Belief-Belief Comparator (BBC) and the
Belief-Desire Comparator (BDC) [27]. The conceptual framework of the BDTE
is the same as the belief-desire theory of action which inspired the BDI (belief-
desire-intention) approach to artificial agents [3].
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A proposition p is represented as a tuple 〈S,B,D〉 where S is the mental
language expressing the proposition p, B and D are quantities representing,
respectively, the agent’s degree of belief and desire regarding proposition p. The
strength of a belief in a proposition p at time t, defined as b(p,t), is a value
∈ [0.0, 1.0], where 1.0 denotes certainty that p, 0.5 maximal uncertainty, and 0.0
certainty that not p. Similarly, the strength of a desire about a proposition p at
time t, defined as d(p,t), might be a value, for instance, ∈ [−100,+100]. Positive
values denote desire in favor of p, negative values denote desire against p, and
0 denotes indifference. A new belief is the belief or fact in a proposition that
agents receive basically through its sensors (e.g. vision and hearing in the case
of a human agent). It is defined as a tuple 〈S,B, ∗〉, where * denotes that the
desire is irrelevant for new beliefs.

The Belief-Belief Comparator (BBC) compares each newly acquired belief to
all pre-existing beliefs, looking for either a match or a mismatch. A match means
that a pre-existing belief was confirmed by the newly acquired belief, whereas a
mismatch means that a pre-existing belief was disconfirmed. As a result, BBC
yields either a belief-confirmation signal or a belief-disconfirmation signal. Simi-
larly, the Belief-Desire Comparator (BDC) compares each newly acquired belief
to all pre-existing desires, looking for either a match or a mismatch. A match
means that a desire was “fulfilled”, whereas a mismatch means that a desire
was “frustrated”. As a result, BDC yields either a desire-fulfillment signal or a
desire-frustration signal.

BDTE defines emotions as products or signals produced by the BBC and
BDC. Additionally, defining whether agents experience non neutral emotions
(e.g. happiness, unhappiness) depends on the desire of agents regarding p. An
agent would be happy about p at time t, if she/he is currently certain that p
happens, and has a desire in favor of p, i.e. d(p, t) > 0. On the other hand,
surprise is elicited only based on beliefs. Formally, surprise can be defined as a
peculiar state of mind, usually of brief duration, caused by unexpected events, or
proximally the detection of a contradiction or conflict between newly acquired
and pre-existing beliefs (e.g. [24, 22]). Therefore, an agent would experience
surprise regarding p, if at time t−1 she/he had some belief that p will happen, but
receives the new belief that actually non p happens. In Table 1 we summarize how
the emotions we use in this work are computed from a qualitative perspective.

However, the BDTE does not clearly define how to compute surprise. There-
fore, in the context of artificial surprise for artificial agents two models can
be stressed namely the model proposed by Macedo and Cardoso [23, 21] and
the model proposed by Lorini and Castelfranchi (e.g. [18]). Both models were
mainly inspired by a cognitive-psychoevolutionary model of surprise proposed
by Meyer et al. A detailed description of the similarities and differences of the
models, written by Macedo, Cardoso, Reisenzein, Lorini, and Castelfranchi, can
be found at [22]. The model proposed by Macedo and Cardoso offers a straight-
forward and easy way of computing artificial surprise that we consider to be
the most appropriate for this work. Macedo and Cardoso claim that the rela-
tion between the subjective probability and the intensity of surprise about an
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Table 1. Belief-desire theory of emotions, qualitative formulation (adapted from [27]).
The notation is as follows: Bel(p, t) stands for “believes p at time t”, Certain(p, t)
stands for “firmly believes p at t”, Des(p, t) stands for “desires p at t”, and Des(¬p, t)
stands for “desires not-p at t, ¬ is aversive against p at t”.

Emotion if Belief at t Desire at t Belief at t−1

happy(p, t) Certain(p, t) Des(p, t)
unhappy(p, t) Certain(p, t) Des(¬p, t)
surprised(p, t) Certain(p, t) (irrelevant) Bel(¬p, t−1)

event Eg from a set of mutually exclusive events {E1, ..., En} can be described
by Surprise(Eg) = log2(1 + P (Eh) − P (Eg)) where Eh is the event with the
highest subjective probability in the set.

For calculating non neutral emotions we rely on the BDTE [27], whereas for
calculating surprise we rely on the artificial surprise model proposed by Macedo
and Cardoso [23]. Similar to Table 1, in Table 2 we summarize how the emotions
we use in this work are computed from a qualitative perspective.

Table 2. Belief-desire theory of emotions, quantitative formulation (adapted from [27]).
The b(p, t) represents the strength of belief in p at time t, with 1 denoting certainty that
p, 0.5 maximal uncertainty, and 0 certainty that not-p. d(p, t) represents the direction
and strength of the desire for p at time t, with values > 0 denoting positive desire, 0
indifference, and values < 0 aversion against p. Happiness(p, t), Unhappiness(p, t) are
the emotion intensities, ranging from 0 (absence of the emotion) to some maximum
number, in this work 100. Regarding the calculation of surprise, P (Eh) is the highest
subjective probability attributed to an event from a set of mutually exclusive events,
and P (Eg) is the subjective probability of the event that actually happened [23].

Emotion Intensity in function of d
and b

for domain subset (else emotion
intensity = 0)

Happiness(p, t) b(p, t) = 1 & d(p, t) > 0
Unhappiness(p, t) b(p, t) = 1 & d(p, t) < 0
Surprise(p, t) log2(1 + P (Eh)− P (Eg))

3 Agent-Based Model

We distinguish two main aspects related with our agent model we used: (i)
empowering agents with the BDTE; and, (ii) providing the agents with ways
for dealing with information, for representing preferences, and for learning and
evolving. These aspects are described in more detail as follows.

Firstly, our model was developed in the JABM (Java Agent Based Modeling)
[25] that is a powerful Java API for developing agent-based simulation models
using a discrete-event simulation framework. Therefore, we empowered JABM
artificial agents with the Belief-Desire Theory of Emotions (BDTE). It included
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the implementation of the underlying mechanisms for dealing with propositions,
beliefs, desires, new beliefs, with the BBC and BDC comparators, and also with
the model proposed by Macedo and Cardoso. Additionally, inspired in the highly
sophisticated, complex and dynamic human memory mechanism (see [8, 2] for
an extensive review), we empowered agents with two different memory systems
namely short-term memory and long-term memory as well as with the processes
of encoding, storing (including forgetting), and retrieving memories. Therefore,
agents are able to deal with previous knowledge with respect to whether the
current strategy succeeded or failed and use such knowledge to calculate its
current belief in the strategy.

Secondly, in designing the artificial agents we addressed the following three
main design questions (e.g. [16].

The first question is how artificial agents deal with information. Consistent
with the classical El Farol problem definition [1], agents receive only endogenous
information that is the only information available is the historical attendance.

The second question includes all issues related to how to represent the pref-
erences of artificial agents. The first issue is the definition of not only which
strategies will be available for agents to forecast the next attendance but also
the specification of all parameters related to those strategies. Agents have avail-
able six strategies commonly used in the context of the El Farol problem, namely
noise trader strategy (NT), simple moving average strategy (SMA), exponential
moving average strategy (EMA), opposite strategy (OPS), same strategy (SAS),
and lagged strategy (LAS). The NT generates a uniformly distributed forecast
between 0 and 100. The SMA generates a forecast using a simple moving average
with a given window size, uniformly chosen between 2 and 100. The EMA gener-
ates a forecast using a moving average with a given window size in which recent
values referring to the attendance gain more weight as opposed to old values.
The OPS generates a forecast that is the opposite of the last week, whereas the
SAS generates a forecast that is the same of the last week. Last but not least,
the LAS generates a forecast that is exactly the same as a given past week,
uniformly chosen between 1 and 5. The second issue is the definition of whether
agents will use a fixed strategy or if they will be allowed to change from the cur-
rent strategy to a new strategy based on some criteria. Agents have available two
different scenarios. In the first, agents use a fixed strategy (henceforth referred
to as FS ) that means that once the strategy is defined, before the beginning of
the experiment, the artificial agent will use this strategy until the end. In the
second, agents can change from the current strategy to a new strategy (hence-
forth referred to as CS ) based on their belief regarding whether they believe the
strategy works or not, as we will explain in details later in this section.

The third design question refers to how artificial agents learn from mistakes
and evolve. For each round, one of the strategies mentioned earlier is used by
agents to predict whether the bar will be crowded or not and therefore indicates
to them if the best action is either to stay at home or go the bar. Therefore, a
strategy succeeds when it indicates the correct action or, in other words, if the
strategy predicted that the bar will be crowded (or not) and it turned out to be
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crowded (or not) the action indicated by the strategy was the correct (wrong)
one. Therefore, when a strategy succeeds (fails) an agent increases (decreases) its
belief in the correctness of the strategy, based on a Bayesian process. According
to the BDTE, the previous scenario can be modelled as follows. S that is the
mental language expressing the proposition p is defined as “My strategy works”,
and the strength of a belief in the proposition p at time t, defined as b(p,t), is
a value ∈ [0.0, 1.0], where 1.0 denotes certainty that the strategy really works,
0.5 denotes maximal uncertainty that is the agent does not know whether the
strategy works or not, and 0.0 denotes certainty that the strategy does not
work. The b(p,t) is calculated considering the experience of the agent in using
the current strategy in a given number of last rounds, that is its memory size
(henceforth referred to as MS ). For example, suppose the unlikely scenario in
which an agent is using a strategy that worked in the last 100 rounds. In this
case, the b(p,t) would be close to 1.0, meaning that the agent “firmly believes”
its strategy works.

Practically, on the one hand, a b(p, t) > 0.5 means that the agent has some
degree of belief in the fact that its current strategy works and so it makes sense
to a “rational” agent to maintain using the current strategy. On the other hand,
a b(p,t) < 0.5 means that the agent has some degree of belief in the fact that its
current strategy does not work and so it makes sense changing to a new strategy.
Finally, in the context of our experiments, if b(p,t) == 0.5 the agent maintain
using the current strategy. In this context, for the CS scenario, we defined a
belief threshold (henceforth referred to as BT ) of 0.5 by which the agent must
change its current strategy. Therefore, an agent only changes its current strategy
if and only if b(p,t) < 0.5. Additionally, when an agent starts using a strategy
its initial b(p,t) = 0.5.

It is also important to present some underlying concepts we employed, namely
the concept of global belief in the strategy, global surprise, and cumulative hap-
piness. Global belief in the strategy (henceforth referred to as GBS ) is the sum
of all b(p,t) and that is the “global belief that the strategy works”. Global sur-
prise (henceforth referred to as GSu) is the sum of all surprise “felt” by agents
that is the “global surprise felt by agents with respect to whether their strategy
works or not”. Cumulative happiness (henceforth referred to as CuH ) is the cu-
mulative sum of all happiness “felt” by agents. An agent “feel” happiness when
its strategy works or, in other words, when it indicates the correct action. We
assume all agents “firmly desire” the strategy to work that is to say, according
to the BDTE, that each agent has a d(p,t) = +100. In Table 3 we summarize the
acronyms used throughout the paper, describe its meanings, and explain how we
compute each of them.

To illustrate how CuH, GBS, and GSu work, consider the following example.
Assume that there are two groups of agents namely G1 and G2. G1 consists of
59 agents using a fixed strategy that indicates the action go to the bar, whereas
G2 consists of 41 agents using a fixed strategy that indicates the action stay
at home. In this context, the attendance would be 59 and therefore the right
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action to take would be go to the bar. Therefore, for each round all agents of G1
would “feel” happiness, while all agents of G2 agents would “feel” unhappiness.
Practically, in the first round, CuH = 590, in the second round, CuH = 1180
(590+590) and so forth. It is worth noting that this is the scenario that provides
optimal results in terms of CuH and that such optimal values are used by us
as references for calculating and plotting the results of CuH throughout the
paper. Additionally, the b(p, t) of all agents of G1 would be close to 1.0, while
the b(p, t) of all agents of G2 agents would be close to 0.0. GBS in this example
tends to its maximum possible value that is 59. Regarding GSu, for all agents
the surprise(p, t) would be 0.0 and consequently GSu would be also 0.0.

Table 3. Summary of the main acronyms, meanings, and its respective forms of cal-
culation

Acronym Meaning Calculation

CuH Cumulative happiness Cumulative sum of all happiness
(i.e. its strategy worked)

GBS Global belief in the strategy Sum of the individual b(p, t) of all
agents

GSu Global surprise Sum of the individual
surprise(p, t) “felt” by all agents

4 Experiments and Results

We conducted three computer experiments to explore how the cognitive agents
we modelled behave in the context of the El Farol problem. In Table 4 we sum-
marize the features of the experiments. The experiments are defined in terms
of the Strategies, and Fixed Strategy (FS) or Changing Strategy (CS ) scenario.
For all experiments memory size (MS ) is 100, BT = 0.5, initial b(p,t) = 0.5, d(p,
t) = +100, number of rounds is 2000 and, consistent with the seminal paper on
the El Farol [1], the number of agents is 100 and the capacity is of 60. Due to
the nature of the experiments, we run E1 five times so that we have five different
configurations concerning the distribution of the strategies. Conversely, we run
E2 and E3 just one time.

In the context of the CS scenario, the basic algoritm for changing a strategy
is as follows. At the start of the simulation, each agent needs to select a strategy.
During the simulation, if and only if b(p, t) < BT an agent needs to change its
current strategy by selecting one of the remaining strategies. When an agent
has tested all the strategies, he/she changes to the strategy selected at the start
of the simulation, creating a cycle. All strategies have the same probability of
being selected.
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Table 4. Experiments are defined as follows: Strategy(ies): noise trader strategy
(NT), simple moving average strategy (SMA), exponential moving average strategy
(EMA), opposite strategy (OPS), same strategy (SAS), and lagged strategy (LAS); and
FS/CS: fixed strategy (FS) or changing strategy (CS) scenario. For all experiments,
number of rounds is 2000, belief threshold (BT ) is 0.5, initial belief in strategy (b(p,t))
= 0.5, d(p, t) = +100, capacity of the bar is 60, the number of agents is 100, and
memory size (MS) is 100. We run E1 five times, E2 and E3 one time.

Exp. Strategy(ies) FS/CS

1 NT, SMA, EMA, OPS, SAS, LAS FS
2 NT, SMA, EMA, OPS, SAS, LAS CS
3 NT FS

We show and compare the results of our experiments both over time and in
general. All outliers were removed and in some situations we smoothed and mag-
nified the data in order to make the presentation clearer and the understanding
easier. Such modifications are clearly indicated in graphics, otherwise the data
is in its original scale.

We first show in Figure 1 the results regarding the attendance. In Figure 2
we show the results regarding CuH (cumulative happiness). GBS (global belief
in strategy) and GSu (global surprise) “felt” by agents are shown in Figures 3
and 4, respectively.

We can see in Figure 1 that the attendances of E1 are quite similar, while the
attendance of E2 (red) resembles the attendance of E3 (green). Additionally, E1
exhibits more volatile attendances than E2 and E3. Regarding CuH (cumulative
happiness), we can see in Figure 2 that E1 has values that are considerably lower

Fig. 1. Attendance of all experiments
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Fig. 2. CuH (cumulative happiness): original scale (left), zoomed in (center), boxplot
(right). Gray area indicates runs of E1.

Fig. 3. GBS (global belief in strategy): zoomed in (left), SMA=100 and zoomed in
(center), boxplot (right). Gray area indicates runs of E1.

Fig. 4. GSu (global surprise): original scale (left), SMA=10 and zoomed in (center),
boxplot (right)

when compared to E2 and E3. Similarly, we can see in Figure 3 that GBS values
of E1 are lower than E2 values that are, in their turn, higher than E3 values. In
terms of GSu (global surprise), we can see in Figure 4 that GSu oscillates in a
narrow range between 0 and 30 for all experiments.
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5 Discussion

In analyzing the results we were especially interested in observing the relation-
ship between beliefs and strategies that is the belief in strategies (GBS ), emo-
tions of cognitive agents namely happiness (CuH ) and surprise (GSu), as well
as other aspects of market dynamics.

First of all, we need to bear in mind that there is an inherent relationship
between memory size (MS ), belief in strategy (b(p,t)) and consequently the
global belief in strategy (GBS ), and global surprise (GSu). The memory size
(MS ) is used to store the experience in using the strategy, specifically whether the
action indicated by the strategy proved to be right or wrong. Practically, the MS
refers to a given number of last rounds which the agent is able to “remember”, as
we mentioned earlier in Section 3. Such knowledge is latter retrieved so that the
belief in strategy (b(p,t)) can be calculated and consequently its global sum that
is the global belief in strategy (GBS ). Additionally, according to the artificial
surprise model proposed by Macedo and Cardoso, surprise varies from 0.0 to
1.0 and the closer the b(p,t) is to the point of maximal uncertainty, that means
a belief in strategy (b(p,t)) equals 0.5, the lower is the individual surprise and
consequently its global value (GSu).

From the results we can draw the following conclusions.
First, in all experiments, agents need to create a belief with respect to whether

the current strategy works or not. Therefore there are only two mutually exclu-
sive outcomes about the proposition. For instance, assume the outcome “strategy
works” referred to as O1 and the outcome “strategy does not work” referred to
as O2, and an agent that has a b(p,t) = 0.7 in O1 and therefore a comple-
mentary belief of 0.3 in O2. On the one hand, if the strategy succeeded, the
surprise “felt” by the agent would be 0 (Surprise(Eg) = log2(1 + 0.70− 0.70)),
according to the artificial surprise model proposed by Macedo and Cardoso. On
the other hand, if the strategy failed, the surprise “felt” by the agent would be
approximately 0.48 (Surprise(Eg) = log2(1 + 0.70− 0.30)). As expected and in
accordance with the nature of the El Farol problem, considering the fact that
it is a strategic environment in which there is no dominant strategy, we did not
find high GBS values and consequently GSu values are relatively low.

Second, not surprinsingly and in accordance with the literature, we can ob-
serve that E3 (green) has “better” results in terms of attendance, CuE, and
“good” results in terms of GSu. Attendance oscillates in a narrow range around
the capacity of the bar. Higher CuE values means that agents in E3 agents are
“feeling” higher happiness than those of E1 and E2. Last but not least, a lower
GSu can be considered good because agents are not “feeling” surprised about
the actions they choose to take. It means that agents are happier if all use a noise
trader strategy (NTS) rather than trying to forecast the next attendance by us-
ing a “technical” strategy such as a simple moving average (SMA). However, in
real life, it is difficult to imagine a scenario in which a cognitive agent may use
a noise strategy to generate the next attendance, just “ignoring” the historical
attendance, specifically when we consider the fact that humans intuitively try
to discover patterns and predict things, even in random sequences [29, 28].
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Third, as we briefly pointed out earlier, regarding GBS, the higher values are
found in E1, while the lowest values are found in E1. Interestingly, it means that
in E1 some agents have a degree of belief that is lower than 0.5. In such situation,
we can expect a cognitive agent to change from its current strategy, that he/she
believes that is not working (b(p, t) < 0.5), to a new strategy, instead of maintain
using it. Therefore, despite the results of E3, the scenario illustrated by E2 as
well as its results are more realistic ones.

Nevertheless, it is important to bear in mind that our results were obtained in
a particular given setting, with specific configurations, for example, in terms of
memory size, belief threhold, process for increasing and decreasing beliefs, and
set of strategies available. Perhaps with other configurations the results might
be different than ours. This means that, although we do not know which are the
preferences of agents and, as expected, we need to make assumptions, relying on
some assumptions, such as using the same memory size for all agents, might be a
drawback of our approach, especially with respect to yielding results as realistic
as possible.

6 Conclusion and Future Work

In this paper, consistent with findings from behavioral economics research and
with real life observations, as well as departing from traditional economic theo-
ries, we take into account the fact that agents are actually heterogeneous, have
bounded rationality, and are not fully rational. In this context, we provided non-
trivial insights into the behaviour of agents in such scenarios by using a cognitive
modelling approach in the El Farol problem. In three computer experiments we
investigated, compared, and discussed a number of features of our agent-based
model, specifically the relationship between beliefs and strategies, the emotions
of happiness and surprise of cognitive agents, as well as other aspects of market
dynamics.

We consider that the current work opens up a novel set of possibilities. We
envision at least three future works. First, we could enhance the current work
by incorporating more realistic findings with respect to how humans use both
memory and past experience in decision-making. For instance, Kahneman and
Tversky [13] pointed out that in revising their beliefs, people tend to overweight
recent information and underweight prior information, while Griffin and Tversky
[12] reported that people update their beliefs based on the “strength” and the
“weight” of new evidence, where strength refers to aspects such as the salience
and extremity, and weight refers to statistical informativeness such as the sample
size. Second, we are interested in testing several processes for increasing and
decreasing beliefs, as well as introducing new forms of forgetting (e.g. decay
functions), in order to investigate if the results are similar to those we found in
the current work. Third, we are interested in applying the ideas and concepts
presented in this work to minority games [4] and ultimately to artificial financial
markets as well as to compare our results to other cognitive approaches in the
same context.
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Abstract. The challenge in developing agents for incomplete information 
games resides in the fact that the maximum utility decision for given informa-
tion set is not always ascertainable. For large games like Poker, the agents’ 
strategies require opponent modeling, since Nash equilibrium strategies are 
hard to compute. In light of this, simulation systems are indispensable for accu-
rate assessment of agents’ capabilities. Nevertheless, current systems do not ac-
commodate the needs of computer poker research since they were designed 
mainly as an interface for human players competing against agents. In order to 
contribute towards improving computer poker research, a new simulation sys-
tem was developed. This system introduces scientifically unexplored game 
modes with the purpose of providing a more realistic simulation environment, 
where the agent must play carefully to manage its initial resources. An evolu-
tionary simulation feature was also included so as to provide support for the 
improvement of adaptive strategies. The simulator has built-in odds calculation, 
an agent development API, other platform agents and several variants support 
and an agent classifier with realistic game indicators including exploitability es-
timation. Tests and qualitative analysis have proven this simulator to be faster 
and better suited for thorough agent development and performance assessment. 

Keywords: Poker, Simulation, Opponent Modeling, Game Theory, Incomplete 
Information Games, Exploitability, Agent Validation, Gamblers ruin. 

1 Introduction 

Games research is a popular subfield of AI research since there are many games that 
were and still are an interesting challenge for AI. Classic games such as chess or 
checkers served as a test-bed to solve many defying problems and significant results 
were achieved – a computer program defeated human experts [5, 10]. 

Because games have a limited set of well-defined rules, studying them allows for 
easy testing of a new approach, making it possible to accurately measure its degree of 
success. This is done by comparing results of many games played against programs 
based on other approaches or against human players, meaning that games have a well-
defined metric for measuring the development progress. It is then possible to deter-
mine with more accuracy whether the solution is optimal to solve a given problem. 
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Also, the fact that games have a “recreational dimension” and great importance for 
the entertainment industry today motivates further research in this domain. 

1.1 Incomplete Information Games 

Incomplete information games (IIG) have indistinguishable game states. This means 
that for a given information set there is a least two possible game states. As the agent 
does not know the actual game state (only possible states) it usually uses a mixed 
strategy: it assigns a probability to each possible action by the opponent. The proba-
bility of each action depends both on the probability of reaching an advantageous 
game state and on the strategy the agent assumes that the opponent is using – oppo-
nent modeling. For large games such as Poker, with 1018 possible information sets it is 
currently unfeasible to create a best response strategy1. For this reason, when con-
structing opponent models, the agents use abstracted information sets – treating a 
group of information sets the same way, reflecting on an equal strategy for all of 
them. This way, it is possible to reduce the complexity of the game to compute ab-
stracted best response strategies [9]. 

1.2 Why Poker? 

Poker caught the interest of the AI research community on the last decade. This IIG 
presents a radically different challenge when compared to other games like Chess, 
where both players are always aware of the full state of the game. This means that in 
Chess it is possible to somehow understand the opponent’s strategy by observing the 
pieces movement. Conversely, Poker’s game state is hidden: each player can only 
see his/her cards and the community cards2. Thus, it is much more difficult to under-
stand players’ strategies since the only chance to observe the game state is at the end 
of the game and only if the players choose to display their cards. Poker is also a sto-
chastic game, i.e. it admits the element of chance since the players’ cards are ran-
domly dealt. 

1.3 Simulation System Scope 

New Computer Poker developments are made through the implementation of software 
agents. A Poker agent is software that replaces a human in the task of playing Poker, 
by taking decisions without any intervention. Since playing Poker can be considered a 
repetitive task for a human player, the development of agents allows professional 
players to be rewarded for their effective know-how of the game and not by their 
physical endurance or patience. This is true, because most lucrative players are usual-
ly the ones that play more carefully and more games. 

It is important to measure the level of competitiveness of a Poker agent to check if 
its results improved compared to those of past approaches. This is usually done 

                                                           
1 Best response strategy – strategy that maximizes utility against a given opponent. 
2 Community card – visible card that is shared by all players. 
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through simulation systems that run a series of games following the rules of Poker. 
However certain features can be introduced in the simulated environment to speed-up 
the simulation; for instance, by introducing table seat permutation [24] the variance of 
the results can be reduced, therefore resulting in less iterations. 

Current simulation systems (see subsection 3.1) are not suited for research projects 
because they present problems such as being slow or having an architecture that does 
not easily support the creation of new agents. They also do not explore important 
aspects of the game like bankroll3 management, which is considered essential by 
Poker professionals. The importance of bankroll management can be explained by the 
gamblers ruin theorem [8]. This theorem states that even if players use a strategy that 
has positive expected value4, they will still be very likely to be bankrupt if they raise 
the stakes5 when they win but do not lower them when they lose. 

1.4 New Simulation System Goals 

In order to overcome the limitations found in previously developed Poker simulators, 
a new simulator has been created which aims to integrate the most important features 
present in other simulators with new features that will certainly lead Computer Poker 
research into new directions. The requirements of the new simulation system are: 

─ An easily expandable architecture to support the creation of new agents or the in-
troduction of new game variants. This includes an agent development API. 

─ New game modes such as ring, which allow researchers to explore the paradigm of 
bankroll management. 

─ Evolutionary simulation of Poker games which encourages studies about strategy 
evolution through the principle of natural selection. This feature is not known to be 
natively supported by any Poker simulator. 

─ A set of validation tools that allow for a quick and precise assessment of the agent 
capabilities to predict their performance in different real-life environments. 

1.5 Structure 

This paper is a revised version of [17] and is organized as follows. Section 2 briefly 
introduces this paper’s background by presenting the Computer Poker domain. Sec-
tion 3 describes recent related work on Computer Poker by enumerating the most 
relevant agents and simulation systems currently in use. Section 4 shows how Poker 
players were modeled in the current simulator. Section 5 presents the overall architec-
ture of the system and its key features. Section 6 describes the agent assessment me-
thodology used by this system. Section 7 compares this system against previously 
developed systems through benchmark tests and a qualitative analysis. Finally, some 
conclusions and future research recommendations are discussed in section 8. 

                                                           
3 Bankroll – amount of money that a given player reserved for playing Poker. 
4 Expected value – average amount of money won per play. 
5 Stake – amount of betted money per game. 
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2 Background 

Poker is a generic name for hundreds of games with similar rules [16], called variants. 
This work is mainly focused on the Texas Hold’em variant, which is probably the 
most popular nowadays. Hold’em rules also have specific characteristics that allow 
for new developed approaches to be adapted to other variants with reduced effort [1]. 
The game is based upon the concept of players betting that their current hand6 is 
stronger than the hands of their opponents. All bets throughout the game are placed in 
the pot and, at the end of the game, the player with the highest ranked hand wins. 
Alternatively, it is also possible to win the game by forcing the opponents to fold their 
hands by making bets that they are not willing to match. Thus, since the opponents’ 
cards are hidden it is possible to win the game with a hand with lower score. This is 
done by convincing the opponents that one’s hand is the highest ranked one. 

2.1 Rules of Texas Hold’em 

Texas Hold’em Poker is a community card Poker variant. In each game there is a 
minimum bet and at the start two cards are dealt for every player – pocket cards. A 
dealer player is assigned and marked with a dealer button. The dealer position rotates 
clockwise from game to game. After that, the player on the left of the dealer position 
posts the small blind (half of the minimum bet) and the player on his left posts the big 
blind (minimum bet). The first player to act is the one on the left of the big blind. 

The game is composed of four rounds: Pre-Flop, Flop, Turn and River. The partic-
ipants play in turns and they can match the highest bet (Call), increase that bet (Raise) 
or forfeit the game and lose the pot (Fold). A player wins if he/she is the last standing 
player or if he/she has the highest ranked card after the last round (River). This Poker 
variant has two sub-variants with a small difference in their rule set. These are called 
Limit and No Limit Texas Hold’em. The main difference between them is the exis-
tence of a bet value limit. 

2.2 Hand Score 

A Poker hand is a set of five cards that define the player’s score. Let Δ be the set of 
all cards, Φ the set of pocket cards and Ω the set of community cards so that Φ,  
Ω ⊆ Δ. Thus, the score function can be defined as ݏ: ሾΔሿହ ՜   and a player’s score R 
is such that: ܴ ൌ maxሺሼݏሺݔሻ: ݔ א ሾΦ ׫ Ωሿହሽሻ (1)

The possible hand ranks are (from stronger to weaker): Straight Flush (sequence of 
same suit), Four of a Kind (4 cards with same rank), Full House (Three of a Kind + 
Pair), Flush (5 cards with same suit), Straight (sequence), Three of a Kind (3 cards 
with same rank), Two Pair, One Pair (2 cards with same rank) and Highest Card (not 
qualifying to other ranks). Examples of each rank are demonstrated in table 1.  
                                                           
6 Hand – best possible set of player and community cards.  
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Table 1. Examples of Poker hand scores 

Royal Flush A♠ K♠ Q♠ J♠ T♠ Straight Flush 8♥ 7♥ 6♥ 5♥ 4♥ 

Four of a Kind 7♣ 7♦ 7♥ 7♠ 8♠ Full House A♣ A♠ A♥ Q♥ Q♦ 

Flush A♦ J♦ 8♦ 5♦ 3♦ Straight A♣ 2♣ 3♠ 4♠ 5♠ 

Three of a Kind 7♣ 7♦ 7♥ A♣ 3♦ Two pairs 3♣ 3♠ 7♠ 7♥ Q♠ 

One pair 2♠ 2♣ 8♣ 7♣ 3♥ High Card A♥ T♥ 4♦ 3♣ 2♣ 

3 Related Work 

In order to build the system described in this paper, several Poker simulators  
were tested and analyzed so as to identify the lacking features. This system was also 
designed to provide tools to support agent validation, and thus the most relevant ap-
proaches on agent creation were studied. Finally, some methods for efficient probabili-
ty calculation in Poker were consulted, since agents’ decisions must be taken rapidly. 

3.1 Poker Simulation Systems 

A Poker Simulator is any software whose purpose is to test agents against other 
agents or human players, in order to predict the agent’s success at long term. A brief 
description of the main simulators is presented next. 

AAAI Competition Server. The AAAI Poker Server is an application made to simu-
late thousands of games between poker agents. This application is used to determine 
the winner of the Annual Poker Bot Competition organized by University Of Alberta 
[24]. This simulator is very simple and lacks personalization options. 

Poker Academy. One of the best resources for testing a Poker agent is the simulation 
software named Poker Academy [7]. In this simulator it is possible to compete against 
the best agents developed by the Computer Poker Research Group at the University of 
Alberta. It was launched in December 2003 as a tool for professional player training. 
Poker Academy provides a Java based API (named the Meerkat API) that allows 
Computer Poker researchers to plug in their own custom agents. The program also 
keeps track of all the hands played and can display comprehensive charts and analysis 
of the player statistics over time. A problem of Poker Academy is that it is misfit for 
extensive simulations, because of the heavy user interface that results in low simula-
tion speeds. Another problem is that it is not possible to start a simulation without a 
human player, which means that in each simulation there will always be an additional 
ghost player that the user must configure to always fold his hands, adulterating for 
this reason the simulation results. 

Meerkat Open Testbed. Open Meerkat Poker Testbed [15] is an open source imple-
mentation of the Meerkat API for running Poker games. It imitates the Poker Academy 
simulator; however it is much faster because it has a light weighted user interface. This 
application supports Fixed/No-Limit cash games with automatic rebuy. It generates 
bankroll evolution plots, implements seat permutation to reduce game variance (replay 
games with same cards but with different seat order) and generates game logs. It also 
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shows an online bankroll evolution chart. The main problem of this simulator is that it 
currently only supports cash games and between 2, 3, 4 or 6 players. Another problem 
is that it only presents one plot type: the evolution of the players’ chips through time. 

Other Simulation Systems. One of the recent trends to develop Poker agents is the 
use of evolutionary computation [12], i.e., algorithms based on the biological prin-
ciple of natural selection. Until now, there is no known Poker simulation system that 
natively supports evolutionary simulation. 

3.2 Current Poker Agents 

First approaches to build Poker agents were rule-based, which involves specifying the 
action that should be taken for a given information set [2]. The next approaches were 
based on simulation techniques like [3], i.e. generating random instances in order to 
obtain a statistical average and decide the action. These approaches led to the creation 
of agents that were able to defeat weak human opponents. 

The great breakthrough in Computer Poker research was the discovery of the 
Counter Factual Regret Minimization Algorithm (CFR) in [23]. The CFR algorithm 
allows for the computation of a Nash Equilibrium strategy in large games like Poker 
through self-play7.  This could be done before through linear programming methods 
(like Simplex) but CFR is much faster because the processing time is proportional to 
the number of information sets instead of to the number of game states (about 6 orders 
of magnitude less). Several approaches based on CFR, like Restricted Nash Response 
[10] and Data-biased response [11] backed the first victories against Poker experts up.  

Other recent methodologies were based on pattern matching [21, 22], Monte Carlo 
Search Tree algorithm [4], reinforcement learning [18] and case based reasoning [13]. 
More recent works are described in the reviews [14, 19]. 

Despite all the breakthroughs achieved, there is no known approach in which the 
agent has reached a level similar to a competent human player.  

3.3 Poker Hand Odds Calculation 

Evaluating the odds of a hand consists of measuring its quality in a round of the game. 
By evaluating the hand it is possible to determine the probability of winning or losing 
the current game. Using this knowledge the agent can decide to either fold the hand or 
play it, based on the probability of success and the risk level [20]. The process to 
calculate the winning probability of a hand is described on Figure 1. 

 

Fig. 1. Poker hand odds calculation process 

The key parts of this process are the calculation of the value of a hand and the de-
termination of the opponents’ possible hands. 
                                                           
7 Self-play – an agent playing against itself or against an agent with an equal strategy. 
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Calculating the value of a hand (corresponding to the s function in equation 1) is 
not trivial in Poker. The best known solution is the TwoPlusTwo Evaluator which is 
based on the usage of pre-computed tables [20] which can quickly provide the value 
of the hand. The high speed of this method is very relevant since the number of possi-
ble opponent hands is usually very high. The drawback of this evaluator is that the 
pre-computed table is heavy in memory usage. 

There are other processes to calculate the odds of a hand based on the Hand 
Strength algorithm. The hand strength is the probability of the current hand being the 
best if the game reaches a showdown8 with all remaining players. Using section 2.2 
terminology, the hand strength (HS) for a given number of opponents n is given by: ܴ݁݉ܽ݅݊ ൌ ሾΔ\Φሿହ ݄݀ܽ݁ܣ ൌ |ሼsሺxሻ ൐ ܴ ׷ ݔ א ܴ݁݉ܽ݅݊ሽ| ܶ݅݁݀ ൌ |ሼsሺxሻ ൌ R ׷  x א Remainሽ| ݄݀݊݅݁ܤ ൌ |ሼsሺxሻ ൏ ܴ ׷ ݔ  א ܴ݁݉ܽ݅݊ሽ| ܵܪ௡ ൌ ൭ ݄݀ܽ݁ܣ ൅ ܶ݅݁݀ 2ൗ݄݀ܽ݁ܣ ൅ ܶ݅݁݀ ൅ ൱௡݄݀݊݅݁ܤ

 

(2)

The main problem of Hand Strength is that it does not address the possibility of the 
hand improving in subsequent rounds of the game, which is possible because in Poker 
new cards are revealed at the start of every round. This issue is addressed by the Hand 
Potential Formula [20] which sums up possible hand strengths in subsequent rounds. 
Another issue is that Hand Strength only works for sets of at least 5 cards. An alterna-
tive to this is the Chen Formula [6], that computes the relative value of pocket hands. 

4 Texas Hold’em Player Modeling 

The simulation system described in this paper uses a multi-agent architecture where 
an agent represents a Poker player. Many types of agents were created for this simula-
tion platform, each one of them deployed by an object class. The way each class re-
lates to others is depicted in the following UML class diagram (Figure 2). 

 

Fig. 2. Poker Agents class model 

                                                           
8 Showdown – last round of Poker where players show their cards and the winner is decided. 
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Poker Agent – it is an abstract class based on the Meerkat API [7] that represents 
any agent on the system. The class contains a set of abstract methods that represent 
the events that each agent has to answer to during the simulation. Thus, to create an 
agent that works in this system it is necessary to extend this class. Agents must im-
plement a set of methods corresponding to events of the game: 

• pocketCards(Card[], Seat) – occurs when the agent receives its pocket cards. 
• observeAction(GameInfo) – the main routine of the agent. It is called when the 

agent is requested to perform an action. 
• actionEvent(Seat, Action) – A player in a given seat has performed an action. 
• winEvent(Seat, Amount, Card[]) – A player in a given seat has won an amount of 

chips with a given hand. 
• showdownEvent(Seat, Card[]) – player in a given seat has shown his cards. 
• gameOverEvent() – the current game is now over. 

HumanAgent – this agent extends the class PokerAgent and redirects the game 
events to a graphical user interface (GUI). This GUI is controlled by a human player. 
Thus, this class represents a form of interaction between human and artificial players. 

SocketAgent – the socket agent is responsible for communicating with external 
agents developed for other simulation platforms. This way, any external agent from 
Poker Academy [7] or AAAI Server [24] can be used in this simulator with no need 
of re-writing, using the new PokerAgent class. The communication process is demon-
strated in Figure 3. When a SocketAgent receives a request, it chooses the correct 
translator and then sends a translated request via sockets to an external application 
that is linked to the external agent. The external agent then sends the response all the 
way back to the SocketAgent and then the SocketAgent plays accordingly.  

Game SocketAgent Choose
Translator

Translate
Request External AgentExternal Socket

ApplicationRequest

Response

Response

 

Fig. 3. Communication between the Socket Agent and the External agent 

IEvolutionary – this optional interface adds three methods to any class that inhe-
rits from PokerAgent. These methods allow the agent to participate in evolutionary 
simulations. The methods of this interface are briefly presented below: 

─ ReproduceAsexually – this method should return a new child agent created by the 
current one, with upgraded parent features; 

─ ReproduceSexually – this method should return a new agent created by crossing 
characteristics from both this agent and another one; 

─ Fitness – this method returns a number that measures the level of adaptation of the 
agent to the current environment. The fitness could be for instance the average ex-
pected value against all opponents. 
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5 Simulation System Architecture 

This section describes both the overall architecture of the simulation system and its 
novel features. 

5.1 Overview 

The architecture of the simulator is depicted in Figure 4. 

 

Fig. 4. Poker Simulation System Architecture 

The simulator is composed of the following components: 

─ Hand Rank Server – a server that is used to calculate the rank of the Poker hands 
based on the algorithms described in section 2.2; 

─ Simulation Server/Poker Simulation Library – the application that is responsible 
for simulating Poker games; 

─ Logging database – all agent moves are registered in a database for future profiling 
and result analysis; 

─ Poker Agent – this entity represents an abstract Poker agent (see Section 4); 
─ Poker Library – definition of general Poker data structures; 
─ Poker Statistics library – calculates statistical indicators and thus validates agents; 
─ Poker GUI – user-friendly GUI to allow humans to play against the agents. 

5.2 Hand Rank Server 

The hand rank server is a process that runs concurrently with the simulation server 
and that evaluates Poker hands for all agents. This was created to save memory since 
the fastest hand evaluating algorithm – TwoPlusTwo Evaluator [20] – must load a 266 
MB table. If each agent were to load the table individually it would be problematic in 
terms of memory usage, especially on the evolutionary simulation module where 
thousands of agents might be needed. 
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The hand ranking server uses a simple UDP communication protocol to provide 
different measures that evaluate the chance of winning: hand rank; hand strength; 
hand potential; effective hand strength and Chen formula. Table 2 presents the com-
mands that can be sent to the server (The <Hand> is a string composed of 5 to 7 cards 
like ‘AsAd7s4d2c’). Already computed results can be optionally saved by the hand 
ranking server in a private database in order to speed up future requests. 

Table 2. Hand Ranking Server Commands 

Command Description 

RANK <Hand> Retrieves the rank of the hand. 

HS <Hand> <NO> Retrieves the hand’s strength. <NO> = remaining adversaries. 

HP <Hand> <NO> Retrieves the hand’s potential. 

EHS <Hand> <NO> Retrieves the effective hand strength. 

CHEN <Card> <Card> Retrieves the relative value of a hand with 2 cards. 

5.3 Logging Database 

The simulator has a database that contains records of all moves made by registered 
players, if the logging option is set. Figure 5 presents the class model of the database 
that was subsequently converted to a relational database model. 

 

Fig. 5. Game moves database class model 

The database uses a data warehouse model which will help researchers process the 
raw data. This produces some intentional redundancy in the data, namely the link 
between the Player and the Game classes that can be used to facilitate game analysis, 
reporting and data mining. The model is composed by the following classes: 

─ Action – represents an action in a given game performed by a player. This class 
represents the star table and thereby a key aspect of the simulator database. An ac-
tion presents the full state of the game table when it took place, instead of only 
containing the action type and the value; 

─ Game – represents a game which is a set of actions; 
─ Player – represents a registered player in the game; 
─ Simulation – represents a simulation run on a date and time. It is a set of consecu-

tive games; 
─ Room – some simulation modes described in Subsection 5.4 require the concept of 

room/table i.e. the occurrence of games in parallel in the same simulation. 
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The used format is also helpful for case based reasoning agents, because of the pres-
ence of redundancy on the action table that aids the computation of approximate in-
formation sets [13]. 

5.4 Poker Simulation Module (Poker Simulation Library) 

This module is responsible for performing the simulation itself. When the simulation 
starts the user will be asked which players will be part of the game, which simulation 
mode to use and which Poker rules. The class diagram on Figure 6 shows the entity 
structure of the simulation module. The existence of simulation modes is one of the 
innovative aspects of the system and five different modes were considered. 

Simple Tournament – a simple tournament is a set of games that only ends when 
only one player remains. This kind of simulation allows testing the capabilities of the 
agent to manage its cash and the blind increase in order to win the tournament and 
avoid the gamblers ruin theorem [8]. 

Full Tournament – this mode is similar to a simple tournament but with several 
gaming tables. 

Cash Games – the common type of simulation that is used to validate Poker 
Agents. It consists of a finite set of games with static blinds9 and player money reset 
at the beginning of each game. To reduce the variance of the results, table seat permu-
tations is used – for each game positions are switch and the same cards are dealt, so 
everyone has equal chances. This type of simulation allows players to be tested on the 
long run, always on equal footing. 

Ring Games – this mode is similar to what happens in online casinos. The agent 
starts with a given amount of chips and must manage it in order to survive. In addi-
tion, the agent should choose the table that contains opponents that are more suscepti-
ble to its strategy and tables with blinds that do not present a risk of quickly losing all 
cash. 

Evolutionary Cash Games – this mode is similar to cash games simulation. How-
ever, in this mode, from time to time, natural selection is applied. This means that the 
agents with less fitness will be discarded and the other agents will reproduce, creating 
child agents that contain characteristics of both parents. 

 

Fig. 6. Poker simulation module 

 

                                                           
9 Blinds – minimum bets placed by two players at the start of the game. 
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Fig. 8. Evolutionary simulation module 

6 Agent Assessment 

After performing the simulations, the statistics module can be used to analyze the 
results. Three types of statistics were included: 

Bankroll evolution – the evolution of the player cash during the simulation. This 
statistic shows the evolution of the agents’ profit during a simulation. 

Player indicators evolution – several indicators used by Poker experts are availa-
ble in evolution plots and described on table 3. 

Exploitability analysis – the exploitability is the agent’s utility against a best re-
sponse agent. A best response agent is the average best possible strategy against one’s 
own strategy. Calculating a best response can be done using CFR. Since Poker is a 
very large game, abstraction is needed to perform this operation in a timely manner. 

This simulator provides exploitability computation by following the next steps: 

─ Selection of the level of card abstraction (0 to 100). The results are more accurate 
for lower levels of abstraction. 

─ Selection of the level of action sequence abstraction (0 to 100). 
─ Selection of the number of iterations for CFR and for final simulation. 
─ Computation of the best response strategy using the CFR algorithm with a desired 

level of abstraction; 
─ Final simulation and computation of the exploitability level. 

Table 3. Player statistical indicators 

Indicator Description Round 

VPIP Percentage of games where the player puts money in the pot. Pre-Flop 

PFR Number of Raises / (Number of Calls + Number of Folds) Pre-Flop 

AF Number of Raises / Number of Calls Flop 
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7 Tests and Simulator Evaluation 

The developed simulator was tested against other simulators in speed and features. 

7.1 Benchmark Tests 

In order to compare the speed of this simulator against previously developed simula-
tors, a benchmark test was performed. The test consisted in repeating for 1.000 tries a 
simulation of 100.000 cash games, with 4 players without table permutation (since 
Poker Academy does not support it). The results are shown in table 4. 

Table 4. Benchmark test results for 1.000 tries with 100.000 games and 4 players 

Simulator Average Time (seconds) Std. Deviation (seconds) 

Open Meerkat Test Bed [6] 43,0 6,3 

Poker Academy [5] 660,3 48,7 

This Simulator 27,7 1,8 

 
As can be observed, the simulator described in this paper is the fastest one. The 

results were very close to the Open Meerkat Testbed, however the Poker Academy 
simulator was much slower. This was due to the heavy user interface present in the 
Poker Academy software that slowed down the simulation process. 

7.2 Qualitative Comparision 

Table 5 summarizes the comparision between the main Poker simulators. The 
simulator described in this paper presents almost every feature of the other two.  

Table 5. Poker Simulators Comparision table 

Feature This Simulator Open Meerkat Poker Academy Is Key Feature? 

2D visualizer Yes, Simple No Yes No 

Agent Development API Yes Yes Yes Yes 

Bankroll Analysis Simple Simple Complete Yes 

Card Rank Computation Yes No Partially Yes 

Database support Yes No ? No 

Evolutionary Simulation Yes No No Yes 

Expansible Architecture Yes Yes No Yes 

Exploitability Yes No No Yes 

Human players Yes No Yes No 

Logging Yes Yes Yes Yes 

Online play No No Yes No 

Pre-developed agents No Yes, Simple Yes Yes 

Simulation Speed Fast Fast Slow Yes 

Table seat permutation Yes Yes No Yes 

Former agent support Yes No No No 
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The only missing features are online play and pre-developed agents. Despite this 
simulator not providing pre-developed agents, this can be balanced by the “Former 
Agent Support feature“ which allows the use of agents developed for other platforms. 

8 Conclusions 

This paper presented a new system for Poker simulation that is scalable, fast and able 
to lead Computer Poker research to unexplored paths. The key features of this system 
are the possibility of performing evolutionary simulations, tournament simulation and 
support for external agents. Also, this simulation system provides access to an exten-
sive database that could be easily used for data-mining and better opponent modeling 
profiling in the future. Moreover, there could be significant improvement of agents’ 
performance in real-life environments by analyzing the comprehensive statistical 
indicators generated by the system. 

This simulator is in final stages of development, with some extensive testing 
already done. Performance tests demonstrated that this simulator is faster than all the 
others it was tested against. The qualititative analysis also shows that this simulator 
outperforms previously developed simulators in terms of research aiding features and 
proper agent assessment. In future work this simulating system shall be used to help 
the development and test of Poker agents in order to allow them to participate in the 
annual Computer Poker Competition as well as in games against human players. 
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Abstract. Empirical game-theoretic analysis (EGTA) is a promising
methodology for studying complex strategic scenarios through agent-
based simulation. One challenge of utilizing this methodology is that it
can require tremendous amounts of computation. Constructing the pay-
off matrix for a game of even moderate complexity entails significant data
gathering and management concerns. We present EGTAOnline, an exper-
iment management system that simplifies the application of the EGTA
methodology to large games. We describe the architecture of EGTAOn-
line, explain why such a tool is practically important, and discuss avenues
of research that are suggested through the use of EGTAOnline.

1 Introduction

Fromuniversity-operated clusters toAmazonEC2 (aws.amazon.com), researchers
increasingly have access to large pools of machines to aid in computational exper-
imentation. Large-scale computing is increasingly available and inexpensive, yet
human capital costs remain quite high. Researchers wishing to exploit available
computational resources typically must learn the technologies for distributing and
scheduling the computation, as well as tools for managing the copious amounts of
data being created (Sheutz and Harris, 2012). Learning how to leverage distributed
computing is often orthogonal to one’s researchgoals, leading to a tradeoff between
convenience and limitations on problem scale.

It is hard to quantify how these human capital costs impinge on research pro-
duction. We can see only what research was produced, not what research might
have been conducted had convenient tools been available. Experimenters may
unduly limit the scope of studies, for example by capping problem instances at
the size tractable for their desktop computers. Such restrictions may detract from
the real-world relevance of computational investigations, or otherwise diminish
the value of published studies.

Scope limitations can significantly weaken conclusions in the analysis of em-
pirical games : game-theoretic models induced from simulations of multiagent
interactions. In contrast to other forms of agent-based modeling, empirical game-
theoretic analysis (EGTA) addresses the question of strategy selection by com-
paring the payoffs obtained when agents play different configurations of strategies
in simulation. As for any game model, an empirical game maps strategy profiles

F. Giardini and F. Amblard (Eds.): MABS 2012, LNAI 7838, pp. 85–100, 2013.
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(joint strategy configurations) of the agents (players, in game theory terminol-
ogy) to payoff values representing the utility accrued by the respective agent
for playing its strategy in that profile. The space of profiles grows exponentially
with the numbers of players and strategies, pushing the construction of games of
even moderate complexity beyond the reach of a typical desktop computer. Even
if a single computer were fast enough to conduct the vast amounts of necessary
simulation, the researcher may still experience data management concerns as
storing all the observation data in memory will quickly impinge on the resources
required to run further simulation, bringing the process of data acquisition to a
grinding halt. As such, some mechanism for managing the distribution of game
simulations and the retrieval of observations is needed.

We present EGTAOnline, an experiment management system designed to
make studying large empirical games, derived from agent-based simulations,
more convenient. Our current implementation of EGTAOnline strives to make
the most common aspects of employing the empirical game-theoretic analysis
methodology available through simple web forms, while supporting more com-
plex functionality through a JSON (www.json.org) API.

Following a review of related efforts, we present the EGTA methodology
and detail how the EGTAOnline architecture supports the application of this
methodology. Afterwards, we discuss how EGTAOnline supports iterative exper-
imentation through data reuse, and how the scheduling API enables automated
game refinement, leading to new areas of research. Finally, we describe the usage
of our system to date.

2 Related Work

Many previous efforts have aimed to take advantage of distributed computing
for agent-based simulation. One thread of discussion centers on agent-level paral-
lelism and how to efficiently distribute a multi-agent based simulation (MABS)
over multiple compute nodes. Riley and Riley (2003) presented a system for
distributed execution of MABS that limits the effect of varying network and
system loads on simulation by ensuring that agents are always given sufficient
time to think, extending the causal ordering constraints of an earlier parallel and
distributed discrete-event simulation environment. Mengistu et al. (2008) identi-
fied several architectural issues in designing MABS for grid computing, including
threading and communication overhead, and presented middleware to address
some of these challenges. Alberts et al. (2012) demonstrated that the parallelism
afforded by modern graphics cards can be useful for simulations with millions
of agents, as may be necessary when simulating biological systems. In contrast,
simulation-level parallelism, as employed for example by Bononi et al. (2005),
distributes simulation runs, possibly with differing run-time parameters, across
multiple compute nodes. EGTAOnline likewise applies parallelism at the simula-
tion level, and exploits the flexibility of specifying different run-time parameters
to simulate multiple strategy profiles in parallel. Game simulation is particularly
amenable to the exploitation of simulation-level parallelism as profile observa-
tions are independent and the number of profiles to observe is tremendous.

www.json.org
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EGTAOnline builds on a tradition of tool-building in the computational game
theory community. McKelvey et al. (2006) described Gambit, a collection of
game-specification tools and analysis algorithms. GAMUT (Nudelman et al.,
2004) offers functions for generating random instances from an extensive set of
game classes. Both of these toolkits support analytically specified games, whereas
EGTAOnline is built to address the construction of game models from simula-
tion data. EGTAOnline was also inspired by two existing systems, developed
by Jordan et al. (2007) and Collins et al. (2009), that provided web interfaces
for scheduling simulations of a supply chain management game. Our current
system was motivated in part by scheduling and data management issues that
arose while conducting EGTA studies of the equity premium in financial markets
(Cassell and Wellman, 2012) and wireless access point selection (Cassell et al.,
2011). It became clear that an experiment manager with the capabilities de-
scribed here would have greatly facilitated that work.

3 Empirical Game-Theoretic Analysis

Empirical game-theoretic analysis (Wellman, 2006) applies the analytical tools
of game theory to games that are constructed from empirical observations of
strategic play. These observations may come from real-world data or from agent-
based simulation. The EGTAOnline system supports development of empirical
game models induced from simulation.

Formally, a normal-form game Γ is specified by the tuple 〈I, {Si}, u(·)〉. In this
description, I is the set of players of the game and Si is the set of strategies that
player i ∈ I may play. A profile of Γ , s =

(
s1, . . . , s|I|

)
, assigns a strategy to each

player. Players may adopt a mixed strategy, a probability distribution over play-
ing each of the strategies in their strategy set. When one or more players adopt
a mixed-strategy, the joint-strategy selection is referred to as a mixed-strategy
profile, and is otherwise referred to as a pure-strategy profile. The function u(·)
maps a pure-strategy profile of Γ to the payoff each player receives for playing its
assigned strategy in the profile,

(
u1(s), . . . , u|I|(s)

)
. This description implies an

|I|-dimensional payoff matrix, where entries are payoff vectors in IR|I|, indexed
by the corresponding profile. Player utilities for a mixed-strategy profile are cal-
culated by taking the expectation of payoffs achieved under the pure-strategy
profiles that can be realized under that mixed-strategy profile.

We can often achieve a more compact game model by exploiting symmetry
in the set of players. A role-symmetric game is a tuple Γ = 〈{Ij}, {Sj}, u(·)〉,
where the set of players are partitioned into roles such that players in role j
all have the strategy set Sj . Role symmetry also constrains u(·) such that if
two players in a role swap strategies, then their entries in the payoff vector are
swapped and all other payoff entries are unaffected. As such, a player’s payoff
may depend only on its strategy choice, role membership, and how many players
of each role play each strategy, being invariant to which of the players within a
given role play those strategies. Role-symmetric games provide a natural model
for many settings where agents can be partitioned into meaningful categories,
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such as buyers and sellers in a market, or attackers and defenders in a security
game. Assuming role symmetry is without loss of generality, as a game with
no symmetry can be expressed by assigning each player its own role. At the
other end of the spectrum, a fully symmetric game is one where all players have
the same role. Between these two extremes are games with multiple roles, and
multiple players in some or all roles.

Game models are used to predict agent behavior through the specification of
a solution concept, a rule for calculating the probability that each pure-strategy
profile will be played. The solution concept that is predominantly adopted in
game-theoretic analysis is the Nash equilibrium. A Nash equilibrium is a (po-
tentially mixed-strategy) profile such that no player can improve their payoff
through unilaterally switching to a new strategy.

Vorobeychik and Wellman (2008) describe simulation-based games in terms
of an oracle O that returns sample payoff observations such that, for any profile
s, E [O(s)] = u(s). In other words, a simulator can function as an oracle for
some underlying game if the expected payoffs to each player in simulation are
consistent with the payoff function u(·) for the game being simulated. The sim-
ulator may be noisy, necessitating repeated sampling to achieve accurate payoff
estimates.

Figure 1 illustrates the basic EGTA procedure. Sets of heuristic strategies—
one for each role—induce a space of profiles. We feed selected pure-strategy
profiles to the game simulator, which outputs the observed payoff each agent
received for playing its specified strategy in the profile. This output is used to
update the payoff estimates for that profile in the empirical game model. At
any point, we may choose to refine our game model by taking more samples of
certain profiles, or adding more strategies and thus expanding the profile space,
possibly using game-theoretic analysis of the current game model to inform these
decisions. Once we have finished refining the empirical game model, we report
the findings of our game-theoretic analysis.

Strategy Sets

Profile Space

Select

Profile Simulator Payoff Data
Empirical 

Game

Analysis

Refine?
No

End
More samples

More strategies

Fig. 1. Basic flow diagram of the iterative EGTA process
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4 EGTAOnline

EGTAOnline is an experiment manager for simulation-based game studies. It
provides researchers with distributed simulation scheduling and a robust data
storage solution. Users of EGTAOnline can take advantage of the parallel and
distributed computation afforded by a large cluster without having to learn the
details of scheduling jobs onto the cluster. Users also benefit from a database
management system for storing observation data without having to learn a
database query language. As such, barriers to constructing large simulation-
based games are dramatically reduced.

Figure 2 illustrates the role of EGTAOnline in the iterative EGTA process.
The following subsections present the primary conceptual entities of EGTAOn-
line and how they support the construction of empirical games.
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Fig. 2. Supporting the EGTA process with EGTAOnline

4.1 Simulators

To use EGTAOnline, researchers must write a simulator program that acts as
an oracle, taking as input a pure-strategy profile s to sample, and outputting an
observation. An observation must include a vector of payoffs and may include
statistics about the simulation. This statistical information can be useful in sta-
tistical procedures, such as the use of control variates (Lavenberg and Welch,
1981) for reducing variance in payoff estimates. These statistics may also record
variables that resulted from agent interaction, enabling analysis of the impact
of strategic choices on non-payoff variables. The exchange of simulator input
and output is conducted through a simple, file-based protocol, accommodat-
ing simulators developed with any programming language or simulation plat-
form. A simulator program differs from the mathematical concept of a simulator
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described by Vorobeychik and Wellman (2008), as multiple simulators can be
derived from a single simulator program through the specification of run-time
parameters, or through specifying different assignments of players to roles. As
such, a researcher can upload a single simulator program and perform multiple
independent experiments.

4.2 Schedulers

Once a simulator program has been registered with EGTAOnline, the experi-
menter may create one or more schedulers for that simulator program. Schedulers
translate user-specified requirements of the sampling process into simulation jobs
that are scheduled onto a cluster. Specifically, schedulers take as input:

1. running requirements, such as memory and time, that the simulator needs
to take an observation,

2. sampling information, such as maximum number of observations to gather
per profile, and number of observations to gather per job request.

3. c, a configuration of run-time parameters to use with the simulator program,
and

4. {s}, the collection of profiles to sample.

It is generally inconvenient to specify the set of profiles to sample through direct
enumeration. EGTAOnline therefore provides facilities to define combinations of
profiles generated according to a specified pattern. The current implementation
supports schedulers based on three particularly useful patterns.

The first, subgame, generates profiles defining a subgame by specifying a par-
tition of players into roles {Ij}, and restricted strategy sets S′

j ⊆ Sj for each
role j. Subgame schedulers construct the profile space associated with {Ij} and
{S′

j} by generating the set of all symmetric assignments of strategies in Sj to
players in Ij , for each role j, and taking the cartesian product of these sets.

The deviation pattern expands on a base set of profiles generated by a sub-
game scheduler by considering single-player deviations to alternative strategies.
Users specify a partition of players into roles, and for each role j, two disjoint,
restricted strategy sets: the base set S′

j and deviation set S′′
j . The deviation

scheduler uses the base sets {S′
j} to generate profiles defining the full subgame

over these strategies, as described above. To the subgame induced by {Ij} and
{S′

j} are added any profiles that can be reached through one player switching
to a strategy in its role’s deviating strategy set, S′′

j . This scheduler supports
incrementally searching for payoff-improving strategy deviations, without con-
structing the exponentially larger subgame induced by adding these strategies
to the base strategy sets.

The final scheduling pattern, reduction, generates profiles defining subgames
(and optionally, deviations) for approximations based on reducing the effective
number of players in the game. These approximations require exponentially fewer
profiles than the corresponding full-player version of the game. EGTAOnline
supports two types of reduction. In the hierarchical reduction (Wellman et al.,
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2005), each player controls the strategy played by multiple agents in simulation
of a corresponding full game profile. For example, we may approximate an 8-
player symmetric game with a 4-player game in which each player specifies the
strategy to be played by two agents in simulation. In the deviation-preserving
reduction (Wiedenbeck and Wellman, 2012), each player controls one agent, but
models the remaining players as proportionally controlling the remaining agents.
This reduction is so named because it emphasizes preserving single-player devi-
ation incentives—precisely those incentives which are important for establishing
a Nash equilibrium—while still aggregating payoffs over many agents. Though
profiles for either reduction scheduler are selected from a game with a reduced
number of players, the profile objects that are stored in the database represent
the assignment of strategies to agents in the unreduced game. For example, when
a 2-player hierarchical reduction of a 4-player symmetric game requires a profile
where one player, controlling two agents, plays strategy s1 and the other player,
also controlling two agents, plays strategy s2, the profile that is requested of the
simulator and stored in the database is (s1, s1, s2, s2). Consequently, observa-
tions gathered under a reduction scheduler may also be used in larger reduced
game models, as well as in unreduced game models.

When constructing either reduction for games with multiple roles, each role
may reduce the number of players at different rates. This feature can be useful
when the strategy choices of players in a specific role have a greater impact on
outcomes than the choices of players in other roles. If we were modeling the home
buying market, for example, we may assume that changes in lending strategy by
banks have a greater impact on outcomes than changes in the borrowing strategy
adopted by individual home buyers, and thus want to approximate the banks’
strategic choices more precisely than those of borrowers.

To enable arbitrary profile sampling behavior, EGTAOnline allows users to
specify generic schedulers. Profiles to sample, and the number of samples re-
quested, are passed to these schedulers through a JSON API. Users can write
scripts with complex logic determining which profiles to sample, then send an
HTTP request to update the scheduler accordingly. This feature, combined with
the ability to request game representations through the JSON API, provides the
flexibility necessary to support automated refinement of game models, discussed
further in Section 6.

4.3 Simulations

A simulation object in EGTAOnline summarizes the state of a simulation job
that has been scheduled on the cluster. A simulation job can request multiple
observations be taken for a single profile, amortizing the overhead of scheduling
on the cluster. Simulation objects record the current status of a job and any
associated error messages. Errors can be caused by system problems, such as loss
of network connectivity, failures in running the simulator, or any programmer-
defined error. When a simulation returns with an error, the data gathered for
that simulation is marked as invalid. Simulator programmers are encouraged to
supply an informative error message whenever a state is reached that invalidates
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the observation data. This allows the user to detect and address error states that,
while too rare to show up in preliminary testing, manifest themselves when many
observations must be gathered.

4.4 Profiles

An EGTAOnline profile object associates a collection of observation objects with
the pure-strategy profile, simulator program, and configuration of run-time pa-
rameters that generated those observations. An observation object stores payoff
and feature data for each player in the associated profile, as well as any other
statistics, that were recorded during a single run of the simulator. Distinguishing
profile objects by simulator program and configuration enables consistent main-
tenance of observation data from many experiments. Different configurations of
a simulator program correspond to different experimental setups, and as such,
require separate profile object sets. Conversely, when a profile object already
exists for a given simulator program, configuration, and strategy assignment,
any new data is associated with that profile object. Thus, profiles can be in the
sampling set of multiple schedulers, and associated with multiple games, allow-
ing observational data to be included in all relevant analysis contexts—a topic
we revisit in Section 5.

4.5 Games

A game object provides filtered views onto the current data. A game object
defines a space of relevant profiles, based on a simulator program, configuration,
partition of players into roles, and a strategy set for each role. When users request
a representation of the game object, profile objects that match the specified
criteria are collected and sent to the user in one of three available levels of
detail. These profile objects carry with them all the associated observational
data currently available, or summary statistics of the same.

5 Data Reuse

Gathering simulation data is a costly enterprise, particularly when many thou-
sand different scenarios must be simulated, as in the construction of some empir-
ical game models. As such, we would like to maximize the value of the previously
gathered data through extensive reuse. Data reuse is a natural consequence of the
iterative EGTA process (Figures 1 and 2), as game analysis and refinement de-
cisions are made on an ever-expanding set of observations. This aspect of EGTA
contrasts with many other applications of MABS. MABS studies typically ob-
serve fixed, but potentially adaptive, agent behavior in a particular simulated
scenario. Although such studies may examine several different scenarios through
a parameter sweep, the data from different scenarios are not analyzed together.
Game-theoretic analysis, however, is based on comparing the outcomes of sce-
narios that differ by agent strategy selection.



EGTAOnline: An Experiment Manager for Simulation-Based Game Studies 93

Through the use of game objects, EGTAOnline makes it easy to compare ob-
servations in multiple game-theoretic contexts. EGTAOnline accomplishes this
by defining what it means to be comparable—sharing the same partition of play-
ers into roles, simulator program, and configuration. Consider two game objects
differing only in their strategy sets. By the definition provided above, the obser-
vations associated with these two game objects are comparable. Thus, if both
game objects specify a single role with a strategy set that includes A, then ob-
servations of the profile where all players play A will be present in both game
objects. Similarly, if we create a third game object that has as its strategy set the
union of the strategies present in the first two game objects, it will contain all of
the observations present in the other two game objects. Even though this larger
game object subsumes the data from the other two, it is not always the preferred
view of the data. Since most game analysis is super-linear in the number of pro-
files, game objects that restrict the strategy sets to only those currently under
consideration take less time to assemble, download, and analyze.

As EGTAOnline provides a persistent data store, it is also easy to reexamine ex-
periments long after they were originally conducted. If a new strategy is proposed
for a particular scenario, testing whether it disrupts previous findings leverages all
the previously gathered observations. Using a deviation scheduler, we can select
profiles that correspond to unilateral deviations to the new strategy and determine
whether such deviations refute previous equilibrium candidates. If the new strat-
egy is a beneficial deviation, subsequent exploration still benefits from previously
gathered observations as the profile space induced by adding this strategy to play-
ers’ strategy sets contains the space of previously sampled profiles.

In previous work, we presented two procedures where such data reuse can be ex-
tremely valuable (Cassell and Wellman, 2012).We described an equilibrium search
technique that iterates through increasingly fine-grained game reductions, estab-
lishing a restricted set of promising strategies in smaller game abstractions to
reduce the space of profiles needed to identify equilibria in more fine-grained ab-
straction. Since reduced-game profiles are represented in EGTAOnline in terms of
their unreduced game constituents, each iteration of this search benefits from the
data gathered in previous steps. If we are applying this technique to a symmetric
gamewithN players and are contemplating sampling the profiles of ann-player hi-
erarchical reduction of this game, where n dividesN , then for each positive integer
n′ that divides n, any profile in the n′-player hierarchical reduction corresponds to
an unreduced game profile that has a counterpart in the n-player reduction, and
thus observations of such profiles can be reused. As such, if all smaller reductions
have already been explored, the number of previously unobserved profiles of the
n-player reduction is given by the recursive relation

f(n,m) =

(
n+m− 1

m− 1

)
−

∑
n′|n

f(n′,m),

where m is the number of strategies.1

1 Similar data reuse relationships can be constructed for role-symmetric hierarchical
reductions and symmetric deviation preserving reductions.
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Figure 3 demonstrates the fraction of profiles that are covered by smaller
reductions,

∑
n′|n f(n

′,m)/
(
n+m−1
m−1

)
, for selected values of n and m. We can see

that this fraction depends on the number of strategies as well as the divisors
of n, but not explicitly on N , the number of players in the unreduced game.
Consequently, when n is prime, this value decreases as n increases, whereas the
relationship is non-monotonic for composite values of n. For small values of m,
the prospect of performing another iteration of the equilibrium search with a
more fine-grained reduction is much less daunting, since 40–60% of the space
may have been explored in earlier steps. Furthermore, this level of data reuse
between steps increases the likelihood that the equilibrium candidates identified
in each step are close to those identified in previous steps.
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Fig. 3. Fraction of unreduced-game profile space for an n-player reduction that is
covered by smaller reductions

A second task that benefits from convenient data reuse is the estimation of
expectations of non-payoff variables. In this context, reuse takes the form of
deriving multiple interpretations of data from a single empirical game model.
We may wish to know, for example, which of several possible configurations of
strategies lead to the highest expected price volatility in financial markets. When
we restrict our attention to pure-strategy profiles, this task may be as simple as
comparing the sample averages of the variable of interest for each profile under
consideration. For mixed-strategy profiles, estimating the expectation of a non-
payoff variable requires weighting our observations by the probability that the
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associated pure-strategy profile is realized under the specified mixed-strategy
profile. For a game Γ and a distribution σ specifying the probability that each
pure-strategy profile is played, we can estimate the conditional expectation of a
non-payoff variable V under σ by

E [V | σ] =
∑
s∈Γ

V̄sσ(s),

where V̄s is the sample average of V when simulating the pure-strategy profile s
and σ(s) is the probability that s is realized under σ. By storing the observations
of V with the profile that was played during the observation, we can calculate
and compare expectation estimates of V under different distributions of pure-
strategy profile realizations without additional simulation. As with the addition
of a new strategy, if a new solution concept is proposed, and thus different
distributions over pure-strategy profiles are predicted, we can use all of our
previously gathered observations in constructing the new estimate.

6 Automated Game Refinement

Typically, the game refinement step of the EGTA methodology requires human
intervention. A researcher defines an experiment, performs the required sim-
ulation, and analyzes the resulting empirical game model. At this point, the
researcher either reports findings or sets up another experiment, repeating the
previous steps. In theory, these decisions could be made algorithmically, espe-
cially when future experiments are uniquely determined by the outcome of anal-
ysis. Practically though, interacting with EGTAOnline through submitting web
forms is not optimized for computer-to-computer interaction.

To make automating the game refinement step simpler, EGTAOnline provides
API access to its basic control functions. This API allows researchers to construct
complex scripts that interact with EGTAOnline through HTTP requests. We
describe two applications of automated game refinement and how they would be
implemented with EGTAOnline.

6.1 Exploration of Profile Space

A common application of game-theoretic analysis is identifying Nash equilibria
of a game. Though the problem of finding all Nash equilibria of an arbitrary
game requires having observations of every profile, finding and validating a sin-
gle equilibrium can often be accomplished through observations of a smaller
space. Jordan et al. (2008) examined several algorithms to tackle the problem
of exploring a game’s profile space to quickly identify a Nash equilibrium. The
authors treat identifying a Nash equilibrium as a search problem where each step
identifies the next profile to sample. These algorithms are designed to sample
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profiles sequentially, focusing on identifying the single best profile to sample at
any point in time. With EGTAOnline, several profiles may be sampled in parallel
with little added cost. As such, extra information can be gathered in every step,
and individual profile selection may be suboptimal.

One profile selection algorithm proposed by Jordan et al. is Minimum-Regret-
First-Search (MRFS), which uses estimates of regret to guide search. The regret
of a profile s, denoted ε (s), is the maximum improvement in payoff that a player
can achieve through unilateral deviation. The key concept behind MRFS is that
for every profile s, at any step in our search, we have a lower bound on the regret
of s, ε̂(s), defined to be the maximum payoff improvement thus far observed from
evaluating profiles in D(s), the set of profiles that can be reached through a single
player deviating from s. Once all profiles in D(s) have been evaluated, the value
of ε (s) is confirmed. If the confirmed regret of a profile is zero, it is a Nash
equilibrium.

At each step, MRFS chooses to sample a previously unobserved deviation from
the profile s with the lowest unconfirmed regret bound. The profile to sample, s̄,
is chosen with the function select-deviation, which attempts to predict which
profile is likely to provide the greatest benefit to the deviating player. After s̄
has been sampled, the regret bounds of s̄ and all profiles in D(s̄) are updated to
reflect this new data.

Algorithm 1 presents a modification of MRFS to take advantage of paral-
lel profile sampling. The Minimum-Regret-First-Search with Parallel Sampling
(MRFSPS) schedules k profiles to be sampled in every step. It achieves this by
replacing select-deviation with select-multi-deviations. When the pro-
file s has more than k unobserved deviating profiles, the k deviating profiles
most likely to increase ε̂(s) are chosen for sampling. If the target profile s has
no more than k unobserved deviating profiles, all deviating profiles are selected,
and the profile with the next lowest unconfirmed regret is considered. The algo-
rithm continues in this manner until k profiles have been selected for sampling,
scheduling them to be sampled in parallel.

This algorithm is just one of several possible modifications to MRFS to take
advantage of parallel sampling. Other algorithms discussed by Jordan et al.
(2008), can also be modified to benefit from this capability. The comparison
of these variants in terms of steps required to find a Nash equilibrium is left for
future work.

6.2 Sequential Estimation of Empirical Games

Analyzing simulation-based games presents an added challenge over analytically
specified games. Given the stochastic nature of simulation, how does one ensure
that equilibria identified for an empirical game model are good approximations of
equilibria of the game described by the simulator? Since EGTAOnline maintains
the full history of observations and sampling decisions, we can pose the question
of whether all deviations from a candidate equilibrium are statistically worse, to
some level of significance. Posing the problem this way, validating a Nash equi-
librium is a form of simulation optimization (Ólafsson and Kim, 2002), which
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Algorithm 1. Minimum-Regret-First-Search with Parallel Sampling

Select first profile to sample at random, and add this profile to Queue
while Queue is not empty do

� ← ∅
P ← ∅
while |P| < k and � does not contain all profiles in Queue do

Select from Queue the lowest ε̂(s) profile s not already in �
if s is confirmed then

Remove s from Queue
ε(s) ← ε̂(s)

else
� ← � ∪ {s}
P ← P ∪ select-multi-deviations(s,k − |P|)

end if
end while
Sample all s̄ ∈ P in parallel
for s̄ ∈ P do

Insert s̄ into Queue if previously unevaluated
Update ε̂(ŝ) for ŝ ∈ {s̄} ∪ D(s̄) in Queue

end for
end while

seeks to identify the best of several competing designs of a system or product
through simulation. As such, we may appeal to the literature on optimal comput-
ing budget allocation (Chen and Lee, 2011), or the broader range of sequential
estimation techniques (Ghosh et al., 1997), to decide how many additional sam-
ples of each profile to request at any decision point, as a function of statistical
and strategic analysis of our accumulated game data. Figure 4 demonstrates how
to conduct this sequential sampling procedure using EGTAOnline.

Confirming approximate Nash equilibria carries additional challenges not faced
by more conventional sequential analysis problems. After gathering additional
samples, payoff estimates for the game are updated, and thus equilibria candi-
dates need to be recomputed. Vorobeychik (2010) demonstrates that regret in a
simulation-based game almost surely converges to the regret in the underlying
game as more observations are gathered, allaying concerns about the stability of
the set of equilibria candidates. In other words, if an equilibrium candidate ceases
to be a candidate after taking additional observations, then it is unlikely to be
an equilibrium of the game that our simulator is modeling. Another challenge of
using sequential techniques for this task is that our metric of interest, empirical
regret, is unlikely to be well approximated by a simple distribution, constraining
us to complicated, non-parametric procedures. To the best of our knowledge,
the construction of optimal sequential sampling procedures for EGTA remains
an open question.
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Fig. 4. Sequential sampling procedure to ensure statistical significance

7 In Production

We developed EGTAOnline to address a perceived need for robust sampling in-
frastructure to support the EGTA methodology. One way to assess if we have
achieved our goal is to observe how the system is used by practitioners of the
methodology, and how heavily they use the system. Though we are currently
exploring options for sharing EGTAOnline, to this point users have been lim-
ited to our lab and some direct collaborators. Over the last seventeen months
of use, approximately 8 million observations were recorded for 300, 000 pro-
files. Many of these observations were generated for experiments detailed by
Cassell and Wellman (2012), Wellman et al. (2012), and Dandekar et al. (2012).
Our database currently has eleven distinct simulator programs registered, with
multiple versions of some of these simulators. Schedulers (108) and games (95)
significantly outnumber registered simulator programs (26), and have been used
for exploring different simulator configurations and different profile spaces. Users
are free to modify or delete schedulers and games, making these numbers signifi-
cant underestimates of the number of the experiments that have been carried out
thus far. There is considerable variety among the experiments conducted so far,
ranging from explorations of the TAC Supply Chain Management game, where
the simulation requires the parallel cooperation of multiple compute nodes, to
an introduction-based routing protocol (Frazier et al., 2011), where role symme-
try and hierarchical reduction are exploited. Though EGTAOnline in its current
form has not been in use for very long, users are already taking advantage of its
robust data storage system and high throughput.

8 Discussion

Creating large empirical game models through agent-based simulation carries
many computational challenges. This does not mean, however, that we should
not study large games. Many naturally occurring games, such as the stock mar-
ket, are massive, and may be poorly modeled through analytical means or with
small empirical game models. Though we have the raw computation to begin
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modeling and analyzing the strategic implications of these massive social sys-
tems, the lack of convenient tools can make significant exploration a daunting
task.

EGTAOnline is part of an ongoing effort to provide the necessary software
infrastructure to make constructing and analyzing large simulation-based games
more commonplace. Though new features are planned, we have demonstrated
that EGTAOnline already supports the complex simulation and analysis work-
flows necessary for the application of the EGTA methodology. EGTAOnline also
makes substantial data reuse practical, limiting duplication of effort and support-
ing iterative approaches to game exploration and experimentation. Additionally,
our system opens new avenues of research through support for parallel profile
sampling and automated game refinement, setting the stage for the development
of intelligent agents that manage the iterative process of scheduling profiles to
be sampled and analyzing the results.

References

Alberts, S., Keenan, M.K., D’Souza, R.M.: Data-parallel techniques for simulating
a mega-scale agent-based model of systemic inflammatory response syndrome on
graphics processing units. Simulation 88(8), 895–907 (2012)

Bononi, L., Bracuto, M., D’Angelo, G., Donatiello, L.: Concurrent replication of par-
allel and distributed simulations. In: 19th Workshop on Principles of Advanced and
Distributed Simulation, Monterey, CA, pp. 234–243 (2005)

Cassell, B.-A., Wellman, M.P.: Asset pricing under ambiguous information: An empir-
ical game-theoretic analysis. Computational and Mathematical Organization The-
ory 18, 445–462 (2012)

Cassell, B.-A., Alperovich, T., Wellman, M.P., Noble, B.: Access point selection under
emerging wireless technologies. In: Sixth Workshop on the Economics of Networks,
Systems, and Computation, San Jose, CA (2011)

Chen, C.-H., Lee, L.H.: Stochastic Simulation Optimization: An Optimal Computing
Budget Allocation. World Scientific Publishing Co., Singapore (2011)

Collins, J., Ketter, W., Pakanati, A.: An experiment management framework for TAC
SCM agent evaluation. In: IJCAI 2009 Workshop on Trading Agent Design and
Analysis, Pasadena, California, pp. 9–13 (2009)

Dandekar, P., Goel, A., Wellman, M.P., Wiedenbeck, B.: Strategic formation of credit
networks. In: 21st International Conference onWorld Wide Web, Lyon, France (2012)

Frazier, G., Duong, Q., Wellman, M.P., Petersen, E.: Incentivizing responsible net-
working via introduction-based routing. In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 277–293.
Springer, Heidelberg (2011)

Ghosh, M., Mukhopadhyay, N., Sen, P.K.: Sequential Estimation. John Wiley & Sons
(1997)

Jordan, P.R., Kiekintveld, C., Wellman, M.P.: Empirical game-theoretic analysis of the
TAC supply chain game. In: Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems, Honolulu, pp. 1188–1195 (2007)

Jordan, P.R., Vorobeychik, Y., Wellman, M.P.: Searching for approximate equilibria in
empirical games. In: Seventh International Conference on Autonomous Agents and
Multiagent Systems, Estoril, Portugal, pp. 1063–1070 (2008)



100 B.-A. Cassell and M.P. Wellman

Lavenberg, S.S., Welch, P.D.: A perspective on the use of control variables to increase
the efficiency of monte carlo simulations. Management Science 27(3), 322–335 (1981)

McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software tools for game
theory. Technical report, Version 0.2006.01.20 (2006),
http://econweb.tamu.edu/gambit/

Mengistu, D., Davidsson, P., Lundberg, L.: Middleware support for performance im-
provement of MABS applications in the grid environment. In: Antunes, L., Paolucci,
M., Norling, E. (eds.) MABS 2007. LNCS (LNAI), vol. 5003, pp. 20–35. Springer,
Heidelberg (2008)

Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the GAMUT: A
comprehensive approach to evaluating game-theoretic algorithms. In: Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, New York,
pp. 880–887 (2004)
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Abstract. We propose a new method for creating alternative scenarios
for the evolution of a financial time series over short time periods. Using
real order book data from the Chi-X exchange, along with a number
of agents to interact with that data, we create a semi-synthetic time
series of stock prices. We investigate the impact of using both simple,
limited intelligence traders, along with a more realistic set of traders.
We also test two different hypotheses about how real participants in
the market would modify their orders in the alternative scenario created
by the model. We run our experiments on 3 different stocks, evaluating
a number of financial metrics for intra- and inter-day variability. Our
results using realistic traders and relative pricing of real orders were
found to outperform other approaches.

1 Introduction

The behaviour of stock prices over short horizons is an important consideration
for both market participants and regulators, as the former need to be confident
in their ability to place and execute their orders, while the latter need to ensure
a smoothly functioning market. Currently, estimating the range of prices that
could arise in the short term is predominantly focused on analysing past data
and fitting statistical models to specific time series from which they come. This
approach is based on the assumption that past market conditions are likely to
be repeated at some point in the future. However, it is very restrictive, as it does
not allow for scenarios that have not previously occurred [23], or have occurred
only very rarely (such as large, rapid intra-day movements). Unfortunately, this
restriction is highly problematic, because such infrequent, rapid intra-day move-
ments denote one of the largest market risks.

Agent-based modelling is a well established method for creating alternative
scenarios in a financial market, the first work on this being conducted 3 decades
ago [6]. The agent-based approach seeks to program the behaviour of individual
traders, and their interaction gives rise to changes in the intra-day behaviour of
orders and prices. Agent-based modelling offers many more parameters that can
be altered to generate different scenarios. It also facilitates the study of emergent
properties of traders’ interactions and particular classes of traders in isolation.

� The views expressed in this paper are the authors’ and are not necessarily those of
the Bank of England.
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Agent-based modelling has, so far, been used primarily for stock market sim-
ulation with a focus on longer time frames than intra-day behaviour. A key
challenge for agent-based models is to demonstrate that the resulting price dy-
namics are indeed consistent with known empirical facts. Such ‘stylised facts’
may include volatility clustering and ‘fat tails’ in distributions of financial re-
turns (Engle and Russell [21]).

In this paper, we seek to combine realistic data and an agent-based model to
achieve a simulation that exploits real world data. We start with 3 high quality
data sets from the Chi-X exchange and rebuild the order book so that we can
pause the market at any time and examine the bids and offers for the stock,
along with any order executions and cancellations. We then add different classes
of agents to interact with this ‘live’ order book, so that the evolution of the stock
price is modified by the interaction with our agents.

In particular, in this paper we introduce and empirically compare a class of
almost zero-intelligence traders, along with a class of traders that is based on
more realistic behaviour and compare their impact on the stock price. We also
experiment and report on two different ways of incorporating real data into
the model: absolute and relative pricing. The former assumes that if traders
in the real market were participating in the synthetic market, they would have
submitted their orders at exactly the same prices they had originally. The latter
method assumes that traders would have shifted the price of their orders by the
difference between the stock price in the synthetic market and in the real market.

We empirically evaluate the behaviour of the stock price resulting from the
model for 3 of the most frequently traded stocks on the Chi-X exchange (Arcelor
Mittal, Deutsche Bank and GDF Suez). We do this by comparing the ranges of
maximum, minimum and closing prices produced by multiple runs of the model,
and running tests for fat tails and volatility clustering of the returns distribution.

This paper contributes to the existing literature on agent-based modelling of
financial markets in two ways: Firstly, it introduces the concept of semi-synthetic
modelling, which combines past data and agents in a single simulation, and
intuitively should be closer to the real market than a pure agent-based model.
Secondly, whereas existing studies have longer horizons, we focus on short-term
behaviour of stock prices and study the returns at the transaction level. Our
interest in short-term market behaviour is motivated by the rapid intra-day drop
and recovery in the US equities market, during the May 6, 2010 ‘Flash Crash’,
which created concerns about short term prioprietary trading behaviour [12].

The rest of this paper is organised as follows: Section 2 introduces the experi-
mental framework employed in this study and describes the two classes of traders
that we compare, along with the two ways of handling the real order book data.
Section 3 presents the research questions and gives some detail about the stocks
we study. Section 4 then presents the results of batch runs of our model. Section
5 suggests potential weaknesses of our study. Section 6 summarises related work
in the area of agent-based modelling of markets. Section 7 concludes.
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2 Agent-Based Simulation with ORder Book Data
(ABSORBD)

Our model aims to replicate the activity of a single day on the Chi-X exchange.
The two main types of orders are market orders, where a trader can buy or sell a
particular amount of stock at the best price available at the moment, or a limit
order, where the trader specifies a price above which she is unwilling to buy, if
she submits a bid, or a price under which she is unwilling to sell, if she submits
an offer for a stock. If a limit order isn’t executed immediately in its entirety,
it enters the order book, where bids and offers are prioritised by price, then by
time, in the case of tie breaks.

2.1 Stylised Facts

In agent-based models of financial markets, it is standard practice to measure the
validity of the model by investigating whether the stock price exhibits particular
characteristics, known as the ‘stylised facts’. There are a number of ways to
replicate these characteristics, a summary of which is presented in Section 6.

While the literature about stylised facts, which commenced with Mandelbrot
[17], was initially concerned with characteristics of markets at longer time scales,
Engle and Russell [21] demonstrated that these characteristics also apply to
the intra-day level. This paper studies the behaviour of prices at a very high
frequency, namely the change in price between two subsequent transactions. We
evaluate our model based on the following two widely used stylised facts, also
illustrated in Figure 1:

1. Fat tails. This means that, when plotting the distribution of returns of the
financial asset, the probability of very high or very low returns is higher than
that implied by a normal distribution with the same mean and standard
deviation. The degree of ‘fat-tailedness’ is called kurtosis, and is the fourth
moment of the distribution. The normal distribution has a kurtosis of 3, and
a distribution with a kurtosis above 3 is called leptokurtic, or fat-tailed.

2. Volatility clustering. This means that a large change in the asset price (over
a minute, for example) is more likely to be followed by a large change, and
the same is true for small changes in the asset price. The time series for which
this is true are called ‘heteroscedastic’ (i.e. of differing variability), and we
can test whether a series is heteroscedastic with the Engle ARCH-LM test.

2.2 Synthetic Trader Behaviour

In our model, we create alternative scenarios for the evolution of a stock price
over a day by recreating the order book for a single stock with real orders and
then adding synthetic traders who also submit orders. We investigate the impact
of agent behaviour on the stock price and other market characteristics, described
in 2.1. In particular, we implement 2 different classes of synthetic traders and
compare their impact on the market.
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Fig. 1. Fat-tails and volatility clustering, two of the most common characteristics of
financial time series

Our first class of traders consists of homogeneous ‘Limited Intelligence’ (LI)
traders, similar to those proposed by LiCalizi and Pelizzari [15] and in the physics
literature, for example by Maslov [18]. LI traders’ decisions are unaffected by the
stock price and only take into account their budget constraints when determining
whether to submit a trade. We call these limited, as opposed to zero intelligence
traders, as they don’t place orders at prices that are worse than are available
in the prevailing market and they stop when they have reached their cash limit.
Although their trading behaviour would not arise from any meaningful strat-
egy, is useful to implement as a baseline against which to compare it to other
behaviours.

In our model, LI traders become active after a certain amount of trading
activity in the market, which varies for each trader. When a particular trader
becomes active, she decides whether to submit a bid or an offer for the stock,
with X% and (100-X)% probability respectively. If she is still within her budget,
she continues with her order and detemines the price and size randomly: The
order price is uniformly distributed in the range of Y% below or above the best
bid or offer respectively, while the size (in shares) is uniformly distributed within
the limits [1,Z].

Our second class of traders is based on more realistic trader behaviour. Kir-
ilenko et al. [12] study the composition of the E-mini S&P 500 stock index futures
market, and identify 6 major categories of market participants:
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1. Intermediaries, who usually post prices on both sides of the order book and
try to maintain their position throughout the day, making their income from
the difference between their bid and offer prices.

2. High Frequency Traders, who have a relatively low net position throughout
the day, compared to their activity. They are similar to intermediaries, but
have much higher trading activity and much shorter holding periods.

3. Fundamental Buyers, who try to build a long position during the day.
4. Fundamental Sellers, who try to build a short position during the day.
5. Opportunistic Traders, who may behave as intermediaries at times, or as

fundamental traders at times when they see significant directional moves.
6. Small Traders, who show very limited trading activity.

We implement all of these categories (except the Small Traders, who have very
little, if any, effect on the stock price) in our second class and will refer to the
traders as Kirilenko (KI) traders collectively. Our first class comprises 1000 LI
traders. Our second class consists of 394 KI traders, distributed as shown in in
Table 1. These numbers were chosen based on the classification in [12] and to
produce the empirical features in 2.1.

Table 1. Trader Information

Trader type Number

Intermediary 40
HFT 4

Opportunistic 150
Fundamental Buyer 100
Fundamental Seller 100

2.3 Handling of Real Order Book Data

As we are adding synthetic traders to interact with our full order book data
from the Chi-X exchange, we have to make some assumptions about how the
real traders would have reacted to the modified stock prices. As the order book
only provides anonymous trading data, we cannot identify individual trading
strategies, and hence we need to make assumptions as to how they would have
interacted with either LI or KI traders.

To do so, we consider two approaches. For our first method (referred to as the
absolute pricing method), we assume that if the ‘real’ traders (i.e. the traders
that submitted the orders in our dataset) were participants in our synthetic
market, they would have submitted their orders at exactly the same price, in-
dependently of what happened to the stock price during the day. Then, in our
hybrid model, real traders recreate the historical environment by repeating their
original actions, and their decisions are unaffected by the additional trading
activity of the synthetic agents.
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The secondmethod (labelled the relative pricing method) assumes that traders
submit orders with prices that are relative to the prevailing stock price. So if
the price in the synthetic stock market is higher, the orders read in from the
real dataset will also be higher by the same relative amount. With this con-
figuration, even traders from the original dataset become reactive, albeit in an
unsophisticated way. This is perhaps a more realistic assumption about how
market participants would react to seeing different stock prices.

3 Experimental Setup

As we are creating a semi-synthetic model, it seems reasonable to aim for a
market where approximately half of the trades come from the real dataset, with
the other half coming from our synthetic market participants. Since this precise
split cannot be achieved in every run, we allow for runs where the number of
trades in which at least one of the traders is synthetic is at least 30%. We adjust
the number of traders and frequency with which they visit the market, in order
to achieve this split.

3.1 Dataset Description

This paper uses full order book data for 3 stocks from the Chi-X exchange on
3/1/2011, for which some detail is presented in Figure 2 and Table 2. These
datasets are very detailed and contain every order to buy or sell a stock that
was submitted to the exchange, the size of those orders, the time of submission
and any executions or cancellations.

Table 2. Company information about the 3 stocks in our study

Company Value(bil.)

GDF Suez 59
Arcelor Mittal 44
Deutsche Bank 35

3.2 Research Questions

In order to study the validity of our semi-synthetic model, we measure the impact
on 5 inter- and intra-day variability measures:

– Closing, maximum and minimum prices observed over the day
– Kurtosis and volatility clustering.

These metrics are then used in our research questions, in order to investigate
the impact of our design choices. These are as follows:
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Fig. 2. The evolution of the stock prices for the 3 companies studied (on 3/1/2011)

1. What is the effect on the market metrics mentioned above, of using absolute
and relative pricing?

2. What is the effect on the market metrics mentioned above, of using simple
(LI) and realistic (KI) traders?

In particular, for the first 3 metrics, we use a separate dataset of 60 points
of coarse-grained (daily) data around our trading day from Yahoo! Finance,
in order to construct boxplots of the difference between the closing, maximum
and minimum prices and the starting price of the day. We then produce similar
boxplots from 60 simulation runs for each design choice and compare the results
of each batch run.

In more detail, the summary output of the coarse-grained, real dataset is
compared to the summary outputs of separate batch runs where we use:

1. Absolute pricing and LI traders

2. Relative pricing and LI traders

3. Absolute pricing and KI traders

4. Relative pricing and KI traders

To measure volatility clustering, we use the Engle ARCH-LM test for conditional
heterscedasticity, whose null hypothesis is that a particular return distribution
exhibits no ARCH effects(i.e. volatility is constant throughout the day). We
study which of the four options mentioned above will produce runs in which this
null hypothesis is rejected (and thus, there is clustering of volatility).
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4 Results and Discussion

As space does not allow us to include all the results of our simulation, Table
3 and the boxplots in Figure 4 give us summary information, while Figure 3
demonstrates four typical runs, which allow us to zoom in on the data. We see
that in the second graph of Figure 3, we have an almost constant upward trend
and we find that all runs that use absolute pricing and LI traders result in
either upward or downward trends throughout the day. This is because of the
homogeneous construction of the traders, and leads to stock price moves that
are similar in nature (but not in amplitude). This also means that the volatility
is more constant throughout the day, compared to the other methods.

Figure 4 shows the variability of the runs, in terms of the difference between
the starting and closing, minimum and maximum prices of the day. We see that
using absolute pricing greatly constrains the range of maximum, minimum and
closing prices we observe in our runs, whereas it seems that using either LI or
KI traders and relative pricing produces results that are reasonably close to the
range of real prices. We see that our batch runs that use KI traders, however,
produce daily maxima that are significantly higher than that we observe in the
real dataset. So the combination of relative pricing and KI traders must give
rise to higher intra-day volatility, something which we confirm by looking at the
individual runs.
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Fig. 3. Four sample stock runs, using absolute or relative pricing and LI traders(top)
and absolute or relative pricing and KI traders(bottom)
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Fig. 4. Variation of the percentage difference between starting prices and closing, maxi-
mum and minimum prices observed in real data and in runs of our semi-synthetic model
for GDF Suez(top), Arcelor Mittal(middle) and Deutsche Bank(bottom)

Next, investigate the two market characteristics often observed in the real
markets, namely fat tails and volatility clustering. The distribution of returns
from our model has fatter tails than the normal distribution, as the kurtosis is
much higher than 3, using either LI or KI traders, and under either absolute or
relative pricing. The relative order book pricing/KI traders combination, how-
ever, produces time series with higher kurtosis, as we can see in Table 3. We
have already noted that this combination produces a more volatile stock price,
and the aggressive nature of some of the traders also causes price jumps, and
thus higher kurtosis.
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Table 3. Summary kurtosis information

GSZp MTa DBKd

Real Order book data 29.0 10.1 8.8
with LI traders (abs) 45.2 13.0 35.1
with LI traders (rel) 43.5 13.0 43.5
with KI traders (abs) 36.9 15.3 32.3
with KI traders (rel) 81.3 152 99.7

We also test for volatility clustering, using the ARCH-LM test proposed by
Engle [10]. For 3 of the 4 options, with high probability, the test rejects the
hypothesis that the time series of returns exhibits no ARCH effects. Therefore,
the time series must exhibit differing volatility at various points in the trading
day, which is what we observe in real markets also. For the combination of relative
pricing and LI traders, however, we have some runs in which the hypothesis is
not rejected, which means there is no sufficient evidence that volatility varies
throughout the day. We have already mentioned that this result comes from the
homogeneous construction of LI traders, and the end result is a time series that
doesn’t meet the volatility clustering requirement.

4.1 Answers to Research Questions

Regarding the effect of absolute pricing, our results indicate that using this
assumption for the behaviour of traders in the real dataset produces a very
narrow range of prices and thus cannot be used in a model that aims to create
alternative scenarios for the short-term behaviour of a stock price. Using relative
pricing, on the other hand, allows the price in the simulated market to drift away
from the price in the real market and thus the model can create a reasonable
range of prices.

Regarding the effect of simple (LI) traders, their homogeneity is problem-
atic, as although batch runs (with relative pricing) produce reasonable ranges
of prices, we also see unrealistic stock price behaviour, with constant upward or
downward trends. In addition, the time series of stock prices in many simulation
runs fails the volatility clustering requirement that we need to show similar-
ity to real financial time series. Using realistic (KI) traders with relative pricing
produces reasonable ranges again, but also meets the volatility clustering require-
ment. While the price ranges do not match up exactly with the ranges produced
from the real dataset (particularly with regards to the maximum prices observed
in the day), our results demonstrate that of the four combinations tested, rel-
ative pricing with KI traders produces simulation runs that are closest to real
financial time series overall, taking into account the range of prices produced in
the simulation, as well as the presence of fat tails in the returns distribution and
of volatility clustering in the prices.
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5 Limitations and Threats to Validity

The categories of traders mentioned in Kirilenko et al. [12] provide only a high
level description of the strategies followed. As such, there is a degree of flexibility
in implementing these strategies for our synthetic agents and we have had to
select what we believe are sensible values for a number of parameters.

In addition, we have only tested the semi-synthetic model on the intra-day
stock prices of 3 companies. Also, our dataset only covered a single trading day,
and both these factors limit the degree to which we can generalise our results.

6 Related Work

Research regarding the simulation of financial markets using agent-based mod-
elling can be traced back 30 years ago to the work of Cohen et al. [6], who
proposed a model for a stock exchange. Cohen evaluated the impact of vari-
ous stabilising policies on price, volatility and liquidity. He also introduced the
concept of heterogeneous trading agents and an architecture for the limit order
book, ideas which have been replicated in many forms since.

More recently, a variety of approaches have been suggested, each drawing
from a wide and varied literature, including Finance, Economics, Mathematics,
Statistics and Physics. The aims of these approaches vary, from trying to imple-
ment ‘rational’ models of trader behaviour to reproducing particular statistical
features of markets. More details can be found in the surveys of LeBaron [13]
and Chakraborti et al. [2]. Cristelli et al. [8] studied the commonalities, strengths
and deficiencies of existing models and proposed additional questions to be con-
sidered in future models.

The Santa Fe Artificial Stock Market ([19,1,14]), is one of the best-known
examples of agent-based financial markets. Santa Fe agents make trading deci-
sions based on binary market descriptors, and their strategies evolve in order
to maximize profitability. The papers above also deal with the rate of evolution
of the strategies, and how this gives rise to different regimes; the rational ex-
pectations regime and a more complex regime, where bubbles and crashes may
appear. Other evolutionary approaches can be found in Chen and Yeh [4], Lux
and Schornstein [16] and Pereira et al. [20].

Another strand of research in the agent-based modelling of financial markets
literature attempts to recreate market characteristics by giving agents more real-
istic strategies, similar to the second class of traders implemented in this paper.
This was initially attempted by Kim and Markowitz [11] and has been studied
more recently by Westerhoff and Reitz [22] and Chiarella and Iori [5].

In this literature, a model is generally validated by showing that the time
series of asset prices it produces exhibits certain stylised facts, or common char-
acteristics of financial markets [14,5,16]. In this paper, we examined fat tails in
the distribution of returns and volatility clustering, which are the properties that
the vast majority of agent-based models try to explain through their specifica-
tion [3]. A review of these stylised facts can be found in Cont [7], while Chen [3]
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identifies a total of 30 of these statistical properties of financial time series that
are replicated through agent-based models.

7 Conclusions

In this paper we have introduced semi-synthetic agent-based modelling, a new
concept in the area of agent-based modelling of financial markets. Intuitively, a
model for a stock market that is partially based on real order book data and
partially based on agents should be closer to the real market than a pure agent-
based model, in terms of simulated price dynamics. Our tests generate realistic
runs of daily trading, when assuming that traders from the real markets (i.e. the
traders that had submitted the orders in the real dataset) would have submitted
their orders to buy or sell stocks not as suggested in the dataset, but shifted by
the difference between the price they see in the simulated market and the price
they had seen on the real market. If, in contrast, traders would have submitted
their orders at exactly the same price, simulations that use both simple and
realistic trading agents to interact with the real orders yield price dynamics
which closely mimic those observed during the actual trading day, which is not
useful when seeking to investigate alternative possible scenarios.

We investigated the effect of using homogeneous, limited intelligence traders
compared to more varied, realistic traders, for the synthetic part of our model.
Using realistic traders gave us the closest match with real markets, in terms
of the market characteristics we measured. Using almost random traders gave
us good results with regards to the range of prices achieved, but studying in-
dividual runs showed that the homogeneity of these traders gives rise to price
behaviour not normally associated with intra-day price dynamics (constant up-
ward or downward trends, as well as atypical volatility).

We believe that these results are promising, as they show that from a limited
dataset (one trading day, in particular), we can generate thousands of realistic
alternative scenarios. We hope that by extending this research, it will be possible
to identify potential problems, like intra-day booms and crashes, and consider
the impact from a range of policy measures.

In the future, we plan to evaluate methods for parameter selection for the
synthetic agents in our model. Our goal is to produce realistic alternative trading
scenarios, so our objectives will include matching particular moments in the
simulated and real time series. The simulated method of moments has already
been used for this purpose, but as we plan to evaluate multiple objectives, we
believe multi-objective evolutionary algorithms, such as NSGA-II [9], would also
be promising methods for parameter selection.

Future work will extend our results by using datasets with more companies
and multiple trading days, in order to provide a more complete picture of the
behaviour of our model. In particular, we are interested in studying the effect of
the dynamics of the underlying trading day on the time series that results from
the hybrid model.
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Abstract. The exploration of agent-based social simulation models with
a systematic analysis over its parameter space leads to a common prob-
lem. It takes too much time to get enough results for a significant analysis
of the data generated by the simulation runs over those models. In this
paper we show how one can minimise this problem by using grid com-
puting. That is, constructing a social simulation model, designing an
experiment and distributing the experiment over a computer grid, run-
ning a social simulation model with different parameter combinations in
parallel. We supply a working example using the MASON framework
and the JPPF framework.

Keywords: agent-based, social simulation, grid computing, experiment
exploration, social simulation tools.

1 Introduction

In the exploration of social simulation models we encounter a common prob-
lem which is deeply related to the analysis of the effects of different parameter
combinations. The problem is that if a model parameter space is big enough,
running simulations over that space is very demanding and takes a huge amount
of time. The models are often executed on a single machine and the runs are ex-
ecuted sequentially. We can have a machine with multiple cores but the parallel
execution of the simulations over the models is restricted to the number of the
cores a processor has. We intend to show how one can eliminate such a problem
by setting up a simple computer grid using multiple machines.

In this case, a grid is simply a set of networked loosely coupled computers
acting together to perform very large tasks [14].

Considering a single machine as a processing unit, it is easy to see that more
processing units can reduce the time necessary to run through the parameter
space of a social simulation experiment. As an example, if one has ten processing
units available in the grid, these can be used to process ten simulations over a
model in the same time it would take to run a single simulation in a single
processing unit, roughly in one tenth of the time. We say roughly because the
performance gain is not linear [17]. This is specially true when we deal with grid
systems as we will discuss later. The benefits of using a grid system are clearly
expressed in [19].
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We want show how it is possible to reduce the time taken in the exploration of
the simulation parameter space by executing different parameter configurations
in parallel using a computer grid.

When we have models that encompass a multiplicity of parameters, we want
to explore them and analyse the results over the possible combinations of the
parameter values. For simple models, the problem does not reside in the time
consumed in the execution of a simulation run, but rather in the time consumed
on the exploration of sometimes huge parameter spaces. Tools like NetLogo [20]
allow for the execution of multiple runs in a single machine but, like described
before, this is limited by the number of cores a machine possesses. Other tools like
MASON [11] are more efficient than NetLogo. In this case, MASON is optimized
for running in a single thread efficiently, using one core of a machine (we can
however run multiple simulations in multiple threads just like in NetLogo).

The purpose of this paper is to identify a simple way to exploit a grid
system for agent-based simulation models without the need for a deep un-
derstanding of grid computing. We present a simple implementation using the
discrete-event agent-based framework MASON [11] and JPPF (Java Parallel
Processing Framework) [5]. We chose MASON as this is a very simple platform
to develop agent-based models in Java, yet, out-of-the-shelf examples of simula-
tion models deployed in grid systems, are not available for this framework.

The paper is organised as follows. In section 2, we describe available implemen-
tations of agent-based simulation models coupled with grid systems. Although
not within the scope of this work, we also discuss some approaches on parame-
ter space exploration and agent-based simulation optimisation. Section 3 offers
both a simple formal and informal explanation on how the simulation experi-
ments are distributed using a grid environment. In this section we then discuss
the expected speedup enhancements from the parallel exploration of simulation
experiments. We also show empirical results for the distribution of simple tasks
in a small grid, allowing the reader to visualise the discussed concepts within a
real scenario. Finally, in section 4, we present some details about the concrete
implementation presented in this paper. We wrap up with some conclusions and
supply some additional resources for the described implementation.

2 Related Work

This section describes some of the related work regarding the usage of grid
computing to execute agent-based simulation models as well as some aspects of
parameter space exploration.

In this paper we provide and discuss a simple implementation for agent-based
simulation experiment distribution in a grid environment, using the MASON
framework [11], similar work exist for other platforms. For Repast [6] for in-
stance, some efforts have been made to provide some grid computing templates.
Examples of such efforts are the work of Chen et al. [4] and Gulyas et al. [9]. In
the first approach, simulation components are distributed in a grid through the
usage of a High-Level Architecture Grid (HLA-Grid). In this approach, simula-
tion components, such as agents or environments, are decoupled and processed
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within the grid system. The work in [9] describes an effort to conceive different
templates for distributed agent-based simulations. The templates are not running
models executed within a grid system, but rather different methods to distribute
the simulation models themselves, similarly to what is done in [4]. Nevertheless,
this work provides interesting insights on complex systems simulation on the
grid, as well as simulation partitioning.

Alternative ways to distribute simulation models comprehend for instance the
usage of platforms where agents are intrinsically distributed. Examples of such
platforms are for instance JADE [2] or ZASE [21].

Another interesting related subject is on how to design agent-based exper-
iments and how to organise and explore the simulation parameter space. Re-
garding parameter space exploration, in [18], Terano deals with huge parameter
spaces from a social simulation point of view. This work presents an inverse sim-
ulation approach to deal with model parameter definition. Instead of designing
the simulation experiments with a starting set of parameters and consequently
analysing the simulation results, a target global function defining a desired out-
come is used to find the necessary initial parameters for the intended result. A
similar approach is explored by Stonedah in [16]. These two approaches ([18,16])
are exactly the opposite from the simulation approach presented in this paper
but present interesting insights on alternative ways to explore parameter spaces.

Finally, although in this paper we present performance results for the grid
system being used in our implementation, these are empirical and used as com-
plementary to the understanding of grid environments without dwelling much on
technical details. Regarding the performance of multi-agent simulation models
in grid systems, the work in [13,12] describes a way to support efficient execution
of large-scale multi-agent-based systems on a Grid environment. This is done ei-
ther by performance prediction, in the case of [13], where a model of agent-based
application performance is developed, or performance optimisation [12], where
a simulation model based on JADE [2] is optimised in terms of agent placement
within the system distributed nodes.

3 Parallel Exploration of the Parameter Space

In this section we describe how we can explore parameter spaces using a com-
puter grid. We start by presenting an informal overview over the parallel explo-
ration process and then formalize the concepts presented. Finally we present a
comprehensive empirical analysis of the performance gains one can get from the
usage of a grid system to execute social simulation experiments.

3.1 Parallel Exploration Process Overview

A grid of computers executes working units called Jobs. Jobs have multiple
independent tasks that can be executed separately. The job tasks can then be
executed in parallel, by assigning them to different machines in the grid for
execution.
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So, we have to create agent-based model instances as tasks and create jobs by
coupling multiple model instances (tasks). The next step is to submit the jobs
to the grid and wait for results. Sending a job to the grid will distribute the
execution of the tasks (the model instances) across the available grid machines.
All of this is made using the JPPF framework and we discuss it latter when
dealing with the working example.

We can explain the parallel exploration process informally as follows (see
figure 1):

1. identify the social simulation experiment parameter space P (set of param-
eters considered and the respective domain for each parameter);

2. take the parameter space and divide it into c unique configurations in which
a configuration is a set of parameter values (one value for each parameter);

3. construct grid jobs with r tasks. Each task is a configured agent-based model
in which the model parameter values are drawn from the parameter space
configurations. We consider the same configuration for one job, r is then the
number of runs to be executed for each parameter configuration;

4. submit the jobs to the grid.
5. collect the results of the different simulation runs. The grid should be con-

sidered as a black box where we submit jobs and collect results when these
are available;

Fig. 1. Parameter space parallel exploration process overview

We propose the construction of grid jobs with r model instances with the same
parameter configuration, where r is the number of runs we want to execute for
each parameter configuration (as previously described in figure 1). This assures
that we are coupling together model instances with the same expected execution
time. The ideal number of jobs to be submitted at the same time to the grid
depends on the machines available, there is no magic number for it as we can
have an infinite number of possible grid configurations. We provide an empirical
performance analysis for a small computer grid to make an assessment of the
expected performance, the results can however be extrapolated for other grid
configurations.
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3.2 Formalising the Parallel Exploration Process

We can now formally describe the simple parallelism process that can reduce the
time taken in the exploration of social simulation models. One can construct an
experiment and distribute its executions over different parameter configurations
in the following manner. Consider an experiment E = (M,P ) where M is an
executable social simulation model and P is the parameter space of the model.
The parameter space P is of the form P = P1 × P2 × . . . × Pn where Pk is the
range of all possible values we want to consider for parameter k.

A model M behaves like a function M : C → M , with C ⊆ P . M behaves
like a function taking a set of parameter values which we will call configuration
C = (v1, v2, . . . , vn) where vk ∈ Pk. The model execution over the configuration
changes the state of this model which we can later analyse to extract results.

We define a grid task as a function Tk : M ×Ck → RTk
where M is a simula-

tion model and Ck is one of the |P | possible configurations of the experiment’s
parameter space P . RTk

is an entity representing the results produced by the
task equivalent to executing the M over Ck.

A job is a work unit in a grid composed of tasks and it is defined as Jk =
{Tk1, Tk2, . . . , Tkr}. In this case a set of r tasks with the same configuration.

Consider now a grid G = {gs, g1, g2, . . . , gm} where m is the number of ma-
chines in that grid and gs represents the grid server. We submit a job Jk to a grid
server gs, the grid server automatically decomposes Jk in its elementary r tasks
(one task for each run over the parameter configuration Ck) and distributes each
task Tk to each available machine g ∈ G with g �= gs, balancing the workload
between the different machines.

A grid job submission can then be denoted as Jφk : Jk × gs → Rk where Jk
is the job being submitted to the grid, gs is a grid server that receives the job
submission and Rk is the set of results produced by executing the Jk job tasks
over the same configuration Ck. In summary a job execution is the computation
of r runs over the same parameter configuration. A job execution is done by
submitting it to the grid, waiting for the task executions and collecting the
results.

An experiment E is then distributed by creating a set of jobs J where |J | =
|P |, being |P | the number of configurations present in the parameter space P .
From the total set of jobs J we create a set of |J | job submissions Jφ and execute
them to get our social simulation experiment results.

3.3 Performance Gains

The gains in performance one can get from using multiple processing units to
execute instructions in parallel depend on the structure of the system. We can
however have a general idea of how this process works.

To help us understand the general concept of parallel computation consider-
ing multiple processing units, we can refer to Amdahl’s Law [10]. Simply put,
Amdahl’s Law states that if you enhance a fraction of code f by a speed-up S,
the overall speedup (or performance gain in terms of speed) is:
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Speedupenhanced(f, S) =
1

(1− f) + f
S

(1)

Note that f is the portion of your code that can be executed in parallel and S
is the speedup ratio analogous to the number of processing units available to
distribute the code execution.

This law has also important corollaries that state that:

– When f is small, optimisations will have little effect.
– As S approaches infinity, speedup is bound by 1/(1− f).

When talking about a computer grid, the concept of speedup enhancement is
similar but we have to take into account that the processing units are not cen-
tralised in the same machine but rather distributed over multiple heterogeneous
machines and connected to the grid server by the means of an existing computer
network. This configuration introduces communication overheads proportional
to the number of machines contained within the grid.

Adding multiple machines would improve the time it takes to deploy a com-
plete social simulation experiment exploration (as we are adding more processing
units to the system) but adding more machines not only speeds up the explo-
ration of a social simulation parameter space, but also adds more communication
overhead to the system.

The speedup ratio we get from Amdahl’s Law is an empirical measure of
parallel performance. This can be described more generally as:

Speedupenhanced(S) =
ΘE1

ΘES
(2)

where ΘE1 is the time it takes to run an entire experiment on a single processing
unit and ΘES is the time it takes to run an entire experiment on S processing
units. We reduce the time required to execute an entire experiment by running
our tasks in parallel, distributing them across the S processing units.

As an example, consider a simple experiment with a parameter space con-
sisting of exactly one configuration Ci (which is executed r times). With one
parameter configuration, we perform a job submission Jφi which submits a job
Ji with r tasks. If we consider a task as the most basic unit that can be executed
in parallel, we can say that our experiment can be totally executed in parallel.
With S = r we can execute every task concurrently. We can define our grid as
G = {gs, g1, g2, . . . , gr} where gs is the grid server and gk is a grid node with
1 ≤ k ≤ r. Given a job submission, the job leaves the grid when all de tasks are
executed. Moreover, the time it takes to complete a job in the grid is equivalent
to the maximum execution time of the tasks within that job [7]. To calculate the
speedup from the usage of a grid we then instantiate the terms from equation 2
as:

ΘE1 =

r∑
k=1

ΘTik
, ∀Tik ∈ Ji (3)
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ΘES = max(ΘTik
), ∀Tik ∈ Ji (4)

where ΘE1 is the time we need to execute all the r tasks in a single processor,
ΘES is the time it takes to execute all the tasks in the grid with S processing
units available and ΘTik

is the time it takes to execute the task Tik in a single
processing unit.

The expression is not yet complete as we have to take into account the network
communication overheads (as previously described). The overheads considered
are:

– the job submission from the client gc to the grid server gs (denoted as Lgcgs);
– the task delivery from the grid server gs to a grid node gn (Lgsgn);
– the task result delivery from a grid node gn to the server gs (Lgngs);
– the result delivery from the server gs to the client gc (Lgsgc).

We can now rewrite the previous term ΘES accordingly as:

ΘES = Lgcgs +ΔL+ Lgsgc (5)

with

ΔL = max(Lgsgk +ΘTik
+ Lgkgs) (6)

where ΘTik
is the time it takes to execute the task Tik at the grid node gk. Note

that each task is executed at exactly one grid node.
Substituting the terms in equation 2 we get the speedup enhancement expres-

sion for the execution of a single grid job Ji with r tasks and r processing units
available:

Speedupenhanced(r) =

∑r
k=1 ΘTik

Lgcgs +ΔL+ Lgsgc

, ∀Tik ∈ Ji (7)

In summary, the limits for the speedup gains in a given grid are closely related
to the maximum time of execution of each model instance (which may not be
constant) plus the communication overheads of job submission, task distribution
and result collection. To have a better idea on how to analyse the performance
of a computer grid the reader should refer to [7].

3.4 Grid Performance Test

To help on the visualisation of the previously discussed grid performance gains,
we perform a simple experiment. We consider the submission of a single job
to the grid and vary the number of tasks within the job. We measure the job
execution time at the client (this time includes the communication overheads)
and observe how the number of tasks being executed at the grid affect the grid
performance.

The experiment consists in creating “dummy” grid tasks that just wait 1000
milliseconds and then terminate. With all the tasks taking exactly one second to
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be executed, we submit a single job to the grid assigning an increasing number of
tasks to this job. We use this to analyse the behaviour of the grid for a different
numbers of tasks to be executed in parallel. Each job submission configuration
is repeated for 50 independent runs.

In figure 2 we can see the average job execution time in the grid, versus the
time it would take to execute all the job tasks sequentially. The grid used is
composed of two 8-core and seven dual-core computers.

Fig. 2. Average job execution time (in ms) for different numbers of tasks within this
job. Each task takes exactly 1000 milliseconds to be executed. We measure the time it
takes to execute the job in the grid (in blue) and also display the time it would take
to execute all the tasks sequentially (in red).

As we can see in figure 2 and 3, if a job has few tasks, the execution time
does not improve much. This is due to the load balance done by the grid server.
The grid distributes the tasks in groups to avoid the excess of communication
flooding the grid (which is particularly useful if this grid is a shared resource
with multiple distinct clients submitting jobs at any given time). What this
means is that the grid may choose for example to send a group of four tasks to
a machine with only two processing units. As such, some tasks will be executed
sequentially in this case. In figure 3 we can see the speedup ratio observed for this
grid. The speedup is roughly optimal when we maintain 128 tasks in the grid.
This experiment is useful to observe the limitations of the grid. This basically
dictates that for the submission of various grid jobs in parallel, with each job
containing 50 runs for the same experiment configuration, the performance would
not improve if we submit more than two / three jobs at the time (for the grid
used in this example).

As we discussed previously, when dealing with the performance gains in a
grid, the execution time of a job is bound by the maximum execution time of
the tasks within that job. As the user has to perform multiple runs for each
parameter configuration, the best approach is to organize the experiment with
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Fig. 3. Speedup ratio observed for different numbers of tasks in a single job submission
to a grid with 30 processing units. These processing units correspond to two 8-core and
seven dual-core computers.

jobs that correspond to parameter configurations and tasks that represent runs
of such configurations. Packing multiple runs for the same configuration in the
same job is an elegant solution, as the expected task execution time is similar.
Packing different configurations within the same job could cause situations like
a group of very fast executing tasks being stalled by a long execution task. This
is, tasks representing social simulation models that terminate very fast being
stalled by other tasks containing a configuration that causes the enclosed model
to take much more time to terminate its execution.

4 Combining MASON with JPPF: A Working Example

In this section we briefly describe the two technologies considered for the parallel
execution of simulation runs and explain how to combine them. The working
example code provided respects the structural properties presented.

4.1 JPPF Overview

Java Parallel Processing Framework (JPPF) [5], is an open-source, Java-based,
framework for parallel computing. Basically it allows us to construct a grid
with no effort. A grid is composed by one or more grid servers that handle job
requests and manage the workload. Connected to those servers are the grid nodes.
These are computers added to the system in a plug-and-play fashion. Finally,
we have the grid clients which create and submit jobs to the grid servers. This
framework provides facilities that enable us to deployment simple agent-based
MASON models to be executed in parallel.

We focus on two basic elements: the first is a self-contained MASON agent-
based model (by self-contained we mean that this model has everything that
it needs to be executed anywhere on the grid once it is configured properly);
the second is the JPPF grid client that allows us to submit a social simulation
experiment to the grid.
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4.2 Self-contained MASON Models

MASON is a multi-agent simulation toolkit designed to support large numbers of
agents efficiently on a single machine [11]. As MASON models are fully separated
from visualisation, one can easily run a model without the graphical interface
layer. MASON models are written in Java but with special attention to efficiency
issues. This framework is elegant and simple enough to fit the purpose of this
paper: to show how one can use models that usually run in a single machine and
submit multiple model instances to a grid.

Fig. 4. UML diagram describing the fundamental elements of the MASON framework.
These elements are encapsulated in a Java Runnable to be submitted as a grid job,
allowing the parallel exploration of social simulation parameter spaces.

MASON provides two essential building blocks for any model which is a Sim-
State class that represents the discrete event simulator itself and a Steppable
interface which we extend to create our agents (see figure 4). To create a self-
contained simulation model we developed a simple MASON model by extending
the referred building blocks and implement Runnable interface from Java (mak-
ing the model suitable for execution in a thread, for instance) putting all the
code necessary for the model to be executed in the “run” method. Finally, we
want this model to be configurable prior to its deployment to the grid, so we
create a method to accomplish that task and receive all the parameters necessary
to the model prior to its execution. The basic UML overview over the developed
MASON model can be seen in figure 4.

4.3 Creating a Grid Client

To submit multiple jobs as described in the previous section we developed a JPPF
grid client experiment runner. The experiment runner performs the following
tasks:
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1. scan through the parameter space;
2. create multiple MASON model instances with the various parameter values;
3. assign the model instances to grid tasks;
4. construct grid jobs containing those tasks;
5. submit the jobs to the grid;
6. collect the results;

Figure 5 shows the UML model for the developed grid client. This diagram
depicts the fundamental elements for a JPPF grid client and how these are
combined with the self-contained MASON model.

Fig. 5. UML diagram depicting the fundamental elements that allow the creation of
grid clients and how one can integrate the self-contained MASON model to submit
simulation models as grid jobs

The working example provided contains examples of both sequential (block-
ing) job submission and parallel (non-blocking) job submission. A blocking grid
job submission is one where we submit a job and wait for its completion before
submitting the next. A non-blocking submission is one where we may submit
multiple jobs to the grid and collect the results asynchronously.

4.4 Context-Switching Model

This section describes the model included in the working example provided with
this paper. An agent-based model of social context switching described by [1].
This model deals with the exploration of the influence of different network topolo-
gies. This choice resides on the simplicity of the model which makes it suitable to
demonstrate the usefulness of using a simple grid system to enhance the speed of
parameter space exploration. In this model a society of agents engages in a very
abstract game: the consensus game. Each agent has to make a choice towards one
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of two possible options which are basically arbitrary. The objective of the game
is to reach a global consensus being the option that gets collectively selected,
irrelevant. What is important is that overall agreement is achieved. The results
we observe from this model are for instance the overall speed of convergence
toward one of the two choices.

In the approach presented in [1], agents have the chance of changing the
option when they have an interaction with another agent in their neighbourhood
(context), by playing the majority game: agents keep track of their previous
interactions and choose the option that they have seen most often in the past.
This game resembles a simple binary voter model and can thus be easily related
to existing literature [8,3].

In most target phenomena, social agents will be involved in several relations
simultaneously. This concept is applied in the model on the study of dynamic
consequences of the topological structures underlying social simulations, so opt-
ing for a “first order approach, actors and relations between them are a given
problem. The agents are embedded in multiple relations represented as static so-
cial networks and they switch contexts (see figure 6) with some frequency which
is treated as a probabilistic parameter of the model. In this case the agents are
only active in one context at a time and can only perform encounters with avail-
able neighbours from the context they are currently in. The behaviour of the
agents in this simple model can be described as follows:

Fig. 6. Example of context switching considering two contexts for social agent denoted
by the number 1. In this case, these contexts are created by two distinct physical spaces.
Common nodes in both neighbourhoods (like agent 2) represent the same social actor
being able to travel between both distinct contexts, representing an acquaintance of
actor 1 in both of them. The dashed circle represents the scope of each context.

1. choose an available neighbour from the current context (neighbourhood of
the network structure where the agent is currently located);

2. check the current option of the selected partner and increment the memory
for the number of individuals “seen” with that option;

3. check for the option that has the majority and switch to it if the current
opinion differs;
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4. switch to a random distinct context (located in another network) with a
probability ζc, which is a parameter of the model related to each social
context c.

The described context-switching model was constructed using the MASON
framework. For the working example provided, there is both an example to play
with the model alone with a simple graphic user interface and an example of a
grid client. The MASON model provided uses pre-generated networks, created
using the tool B-have Workbench (see [15]).

The provided example code package can serve as a starting point to dis-
tribute other social simulation models. In this case we create grid tasks contain-
ing context switching model instances and jobs that encompass multiple tasks.
We submit the jobs to the grid and collect the results which are the number of
encounters necessary to achieve consensus. The parameter space is constructed
by combining all the parameters necessary for the model to run.

For example, if we have two social contexts, we need to provide the switching
probability for each of those contexts, ζc1 and ζc2. If we want to span the prob-
ability from 0 to 1 with an increment of 0.05, we construct a parameter space
ζc1 × ζc2 taking that value range into account. We then submit one job for each
parameter configuration, collecting the results upon each job execution.

5 Conclusions

We have shown how one can use MASON and JPPF to take advantage of par-
allel computing technology to perform social simulation model parameter explo-
ration. There is no requirement for advanced knowledge on parallel computing
to easily implement a grid with the resources available. The approach we de-
scribe is perhaps not adequate for models with very complex agent architectures
with the need for scalability (agents with complex cognitive architectures for
instance). Platforms enabling agents to be distributed by nature (such as JADE
[2]) could be more desirable in that case. Nevertheless, our approach has proven
advantages when dealing with simple agent-based parameter exploration.

We have described a simple approach to distribute social simulation experi-
ments, executing tasks representing runs over the same model configuration in
parallel. This method clusters tasks with similar expected execution times. This
minimises the chances of creating jobs that enclose tasks with a high variance in
the task execution time. Such a phenomenon would lead to jobs containing very
fast tasks being stalled by long execution tasks.

We also provide a working example code package (refer to the section Re-
sources) from which one can understand the basic mechanics of submitting agent-
based model instances to a grid and collecting the results. As an example we
use a simple social simulation model that measures the number of encounters to
achieve global arbitrary consensus in multiple social contexts.
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6 Resources

The working example package can be found at: http://labmag.ul.pt/guess/
resources/parallel/
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Abstract. This article proposes a methodology to model and simulate
complex systems, based on IRM4MLS, a generic agent-based meta-model
able to deal with multi-level systems. This methodology permits the en-
gineering of dynamic multi-level agent-based models, to represent com-
plex systems over several scales and domains of interest. Its goal is to
simulate a phenomenon using dynamically the lightest representation
to save computer resources without loss of information. This methodol-
ogy is based on two mechanisms: (1) the activation or deactivation of
agents representing different domain parts of the same phenomenon and
(2) the aggregation or disaggregation of agents representing the same
phenomenon at different scales.

Keywords: agent-based, simulation, multi-scales, IRM4MLS.

1 Introduction

Today, more and more engineering projects try to cope with complex systems.
Complexity can come from the number of represented entities, their structure,
or the fact that information is coming from difference sources and is incomplete.

Agent-based modeling is a very powerful and intuitive framework to study
such systems. However, the limitations of this approach lead to the development
of multi-level agent-based modeling (MAM). It is defined by [13, p. 1] as: “Inte-
grating heterogenous ABMs, representing complementary points of view, so called
levels (of organization, observation, analysis, granularity, ... ), of the same sys-
tem. Integration means, of course, these ABMs interact but also they can share
entities such as environments and agents”. From an engineering point of view,
MAM reduces the complexity of the problem, so it becomes easier to implement.

F. Giardini and F. Amblard (Eds.): MABS 2012, LNAI 7838, pp. 130–142, 2013.
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In complex systems simulations, it is generally necessary to find a compromise
between the quality of simulations (amount of information or realism) and their
resource consumption (used CPU and memory).

A way to deal with this compromise is to use different models, more or less
detailed or treating different aspects of the same phenomenon and that are
(dis)activated at run-time, according to the context. This article proposes a
methodology to engineer and validate such simulations, based on IRM4MLS, a
MAM meta-model proposed by [15,14].

The next section presents recent works in the domain of multi-resolution or
multi-level modeling. Section 3 introduces a generic agent-based meta-model
IRM4MLS. Then, section 4 shows some possibilities offered by IR4MLS to model
complex systems in which different domains interact. Section 5 explains how to
construct models with dynamic change of level of detail (LOD), i.e., switch-
ing scales or domains of interest. Section 6 gives a tool to measure the quality
of multi-level models endowed with dynamic changes of resolution. Finally, we
expose the conclusions and perspectives of our work in section 7.

2 Related Works

In this section, multi-modeling approaches, dealing with models at different
scales in an engineering context, are presented.

Multi-Resolution modeling [6] is the joint execution of different models of the
same phenomenon within the same simulation or across several heterogeneous
systems. It can inspire our approach if different models can be considered as
different levels. Consistency represents the amount of essential information lost
when crossing different models and it is an adapted tool to test the quality of
this approach.

The High Level Architecture [19] (HLA) is a general purpose architecture
for distributed computer simulation systems. Using HLA, computer simulations
can interact (communicate data and synchronize actions) with other computer
simulations regardless of the computing platforms. The interaction between sim-
ulations is managed by a Run-Time Infrastructure (RTI). [18] developed HLA-
Repast, a unified agent-based simulation framework, in which concurrent mod-
ules with their own temporality can use global variables through centralized
services.

Holonic multi-agent systems (HMAS) can be viewed as a specific case of multi-
level multi-agent systems (MAS). The most obvious aspect being the hierarchical
organization of levels. However, from a methodological perspective, differences
remain. Most of holonic meta-models focus on organizational and methodological
aspects while MAM is process-oriented. HMAS meta-models have been proposed
in various domains, e.g., ASPECTS [8] or PROSA[22]. Even if MAM and HMAS
structures are close, the latter is too constrained for the target application of
this work.

[16] present a framework to dynamically change the level of detail in agent-
based simulation. That is to say, represent only what is needed during simulation,
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to save CPU resources and keep the consistency of the simulation. But this frame-
work is limited because levels form a merged hierarchy, without the possibility of
having two levels at the same scale and communication between levels is not ex-
plicitly defined.

The possibility for agents to exist in several levels simultaneously is a way to
make simulations benefit of a higher power of representation. It permits to 1)
simulate nested entities, 2) create agents with concurrent psychological trends
and 3) model complex systems implying various domains.

It is possible to model the coexistence of nested entities at different scales.
Agents present in different levels can be seen as “gate” between these levels.
For example, [17], give the example of cell membrane elements that are the
“gates” between the inside and the outside of the cell, i.e., between two scales
and exposed to the influences of two different environments.

An agent existing at different levels simultaneously can fulfill a global objective
while following its own goals. In [21], authors decompose, with the MASQ model,
agents into two bodies: a physical one (individual) and a social one (collective)
to do this.

Levels can have different temporal dynamics, independently of other levels.
It allows to optimize the execution of complex agents by (dis)activating their
bodies at run-time to use the lightest representation [20].

Readers interested in a more comprehensive presentation of MAM should refer
to [9,13].

3 IRM4MLS

IRM4MLS is a MAM meta-model proposed by [15,14]. It relies on the influ-
ence/reaction model [7] and its extension to temporal systems, IRM4S [10]. An
interesting aspect of IRM4MLS is that any valid instance can be simulated by
a generic algorithm. The main aspects of this meta-model are presented in this
section.

A IRM4MLS model is characterized by a set of levels, L, and relations between
levels. Two types of relations are considered: influence (agents in a level l are
able to produce influences in a level l′ �= l) and perception (agents in a level l
are able to perceive the state of a level l′ �= l). These relations are respectively
formalized by two digraphs, 〈L,EI〉 and 〈L,EP 〉 where EI and EP are sets of
edges, i.e., ordered pairs of elements of L. The dynamic set of agents at time t
is denoted A(t). ∀l ∈ L, the set of agents in l at t is Al(t) ⊆ A(t). An agent
acts in a level if a subset of its external state belongs the state of this level.
An agent can act in multiple levels at the same time. Environment is also a
top-class abstraction. It can be viewed as a tropistic agent with no internal state
that produces “natural” influences in the level (Fig. 2).

The scheduling of each level is independent: models with different temporali-
ties can be simulated without temporal bias. On an other hand, only the relevant
processes are permitted to execute during a time-step. A major application of
IRM4MLS is to allow microscopic agents (members) to aggregate and form-up
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Fig. 1. Central Concepts of IRM4MLS (cardinalities are specifed the UML way)

lower granularity agents (organizations). It can be useful to create multiple levels
at the same scale to represent different domain parts of the same phenomenon.
In the following, we consider that two levels are at the same scale if they have
the same spatial and temporal extents.

4 Multi-level, Single Scale Simulation

In this section we give a framework to improve the integration of agents located
in different levels (not necessary at different scales) simultaneously. Then, we
show how to take advantage of this concept to simulate complex systems while
optimizing the use of computer resources.

4.1 “One Mind, Several Bodies”

In our approach, inspired by [17], agents can be present in several levels at the
same time. We propose to decompose agents in a “central” unsituated part and
a set of n “peripheral” parts, each situated in a given level. Thus, we call spir-
itAgent the unsituated part of the agent which contains its internal state, its
decision processes and that cannot act in a level. BodyAgents in levels l ∈ L are
the situated part of the agent which contains its external state and the possible
actions in its level, like perception of the environment.

spiritAgent

conceptualAgent

bodyAgent level

environment

0..n

1

0..n

1

0..n 11 1..n

1..n

1

1

1

Fig. 2. Class diagram of central Concepts of IRM4MLS with separation of situated-
or-not agent parts

ConceptualAgents stand for common agents in classical simulation. Spir-
itAgents only contain the internal state of the agent and its decision module.
BodyAgents have to be situated in one and only one level. They contain the
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external state of the agent specific to a level, and an action module that indi-
cates: 1) what are the available actions at a given time and 2) what are their
results in term of produced influences. The perception process must be in this
action module. Levels contain inactive objects that support agent actions. The
only use of Environments is to produce the natural influences of the level (like
the gravity force in a physical level).

To obtain valid simulations with such models, a spiritAgent has to be able
to access the external state of its conceptualAgent contained in its bodyAgent
when it is active (during the execution of its level). Thus, we can consider the
several steps of the life cycle of agents. Each time a bodyAgent is active, 1) it
perceives its level (and others perceptible from this one), 2) it sends a part of
these perceptions and the possible actions to the spiritAgent, 3) the spiritAgent
modifies its internal state and 4) indicates the most appropriate action to be
accomplished by the bodyAgent, 5) the bodyAgent accomplishes this action
which produces influences in direction of its levels and others possibly influenced
by this one.

4.2 Level Temporality

In this section we explain the possibility to attribute a different temporality to
each level and how to adapt it to our models. IRM4MLS uses the framework of
timed event systems [25]. The scheduling is distributed between levels with no
constraint on the scheduling mode (step wise or discrete events). This approach
seems more adapted to our problems than the agent one [24] or the system
one [11].

Our goal to give to agents the longest possible life cycle which stay coherent
with the rest of the simulation. This is done to minimize the computer resources
allocated to the agents updating process. [15] propose an algorithm adapted to
IRM4MLS which manage the coupling between levels with different temporal
dynamics. This is made to apply easily the proposed methods above.

Fig. 3. Example of Multi-Level MAM with different temporalities

The Figure 3 illustrates different constraints which fix the life cycle of agents
in a same level. The frequency of a level is expressed in Hertz, indicating how
many times a second, it is necessary to execute the updating process of the
dynamic state of a level. Let imagine that all functions of an agent possess a
minimal frequency beyond which their simulation is not realistic anymore. If a
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level permits to its agents to dispose of functions with different frequencies, it
adopts the higher one, to keep a correct simulation of the functions with this
frequency. Therefore, in the example of Fig. 3, the frequency of the level N1 is
equal to 60Hz because the diagnostic function of the modeled vehicles needs this
minimal frequency.

The other constraint comes from the interactions between levels. If we continue
with the previous example, let say that N2 level needs a minimal frequency
equal to 20Hz, this frequency could be allocated to N2. However if the N1

level is influenced by N2 and has to calculate the reaction induced by these
influences at a frequency higher than 20Hz (logically less or equal to 60 Hz),
it can be necessary to allocate a higher frequency to N2. Thus, it is necessary
to dynamically modify the frequency of a level N and adapt it to the changing
needs of the simulation and return it back to its minimal frequency, defined
during the implementation phase.

5 Dynamic Change of Level of Detail (LOD)

In this section we give a methodology to apply dynamic changes of LOD in
a simulation. First we present the hierarchical level graph, which indicates the
links between levels and the dis/aggregation functions attached to change the
LOD of simulated entities. Finally, we specify when and in which conditions
dis/aggregation functions can be applied. In the next part, we give a method to
test the quality of the dis/aggregation mechanisms exposed here by measuring
the whole consistency of simulations.

5.1 Hierachical Level Graph

Relations between levels are respectively formalized by a digraph, 〈L,EH〉 where
EH are sets of edges, i.e., ordered pairs of elements of L. This digraph whose
vertices are levels, is called the hierarchical level graph. This graph indicates how
levels are nested and which couple of levels treats different domain of interest of
the same phenomenon.

A simple edge represents an inclusion link between two levels. For example, an
(l1, l2) edge signifies that l2 has higher spatial or temporal extents than l1. Then
the bodyAgents situated in l1 can be aggregated and the resulting aggregate can
be instantiated in l2. We note that l1 ≺ l2.

A pair of symmetric edges means there is a complementarity link between two
levels. For example, the (l1, l3) and (l3, l1) edges mean that l1 and l3 are at the
same scale. Thus a spiritAgent can control several bodyAgents simultaneously
present and activated in l1 and l3. We note that l1 ≡ l3.

A loop on a vertex indicates levels whose bodyAgents can adopt a similar be-
haviour. For example, a (l1, l1) edge means that the spiritAgent, of some bodyA-
gents situated in l1, can be aggregated to form a single spiritAgent which will
control these unchanged bodyAgents in l1. These bodyAgents will have the same
behaviour when confronted to similar situations, but will keep their autonomy.

The following rules have to be applied if we want to obtain a coherent model.
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Rule 1. Inclusion and Complementarity links are transitive.
l1 ≺ l2 ∧ l2 ≺ l3 → l1 ≺ l3, l1 ≡ l2 ∧ l2 ≡ l3 → l1 ≡ l3.

Rule 2. A level cannot be included in itself by a direct or transitive way. This
rule is translated by the fact that if we delete all pairs of symmetric edges, there
should not be directed cycles in the hierarchical level graph.
�l1 ∈ L ∧ l1 ≺ l1

Rule 3. Two distinct levels cannot share simultaneously an inclusion and a
complementarity link, directly or by a transitive way.
l1 ≺ l2 → l1 �≡ l2, l1 ≡ l2 → l1 �≺ l2.

Each edge which is not part of a symmetric pair of edges is labelled with one or
more aggregation function names. An aggregation function name can be placed
on several edges.

l1 l2l3
FAg2, FAg3

FAg1

Fig. 4. An example of Hierarchical Level Graph

The (l1, l1) edge, labelled FAg1, indicates that the spiritAgents controlling
some bodyAgents present in l1 can aggregate themselves to form a single spir-
itAgent controlling all these bodyAgents, through the FAg1 function. The (l1, l2)
edge, labelled FAg2, FAg3, means that the spiritAgents controlling some bodyA-
gents present in l1 can aggregate themselves to form a single spriritAgent con-
trolling a single aggregated bodyAgent situated in l2, through the FAg2 or FAg3

function. These two functions concerns different combination of bodies. And the
symmetric pair of edges between l1 and l3, with no label, represents the fact that
some spiritAgents can control simultaneously bodyAgents situated in these two
levels.

5.2 Dis/Aggregation Functions

Content. As shown before, there are two types of aggregation. The first one
deals with the aggregation of spiritAgents and the second one with the aggre-
gation of spiritAgents and their associated bodyAgents. The first type of aggre-
gation is used to represent a set of agents with the same internal state, that
leads to agents which act similarly in the same situation but which can be place
in several situations. The aggregation of several bodyAgents without the aggre-
gation of their spiritAgent is impossible because a body cannot be controlled
simultaneously by several concurrent spirits.
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Once the hierarchical level graph is fixed, the modeler has to indicate every
class of bodyAgent that he decides to place in levels and which class of spiritA-
gent control these bodyAgents. For each aggregation function the modeler has to
precise how many agents have to be merged, the class of aggregated and aggre-
gate agents and how to generate internal and/or external state of the aggregate
agent.

In this article we don’t give any indication to set the decision module or the
action module of aggregate agents or not but we focus on how to aggreagte in-
ternal and external states of agents, respectively contained in spiritAgents and
bodyAgents. Each aggregation function can be divided into several subfunctions.
These subfunctions can be of two types. First type: a subfunction takes the same
variable in each agents concerned (spiritAgents or bodyAgents) and aggregates
them to obtain a single value to place it in the aggregated agent state. For ex-
ample, a agent representing a platoon of vehicles has the mean position of all
vehicle agents. Second type: a subfunction similar to the first does an aggre-
gation on several variables contained in the agents to aggregated but produces
only one value. This can be illustrated by the platoon agent described above. It
only possesses one variable in its internal state called “priority” whose value is
generated with the compound of the “stamina” and “speed” variables of each
vehicle agents in the platoon. Some variables of the agents to be aggregated can
be ignored to construct an aggregate.

Notation. An aggregation function consists in creating a composite agent from
several agents. Here is the general form of an aggregation function FAg using for
argument n conceptualAgent class, cta (class to aggregate), endowed of an inter-
val, [mini,maxi], indicating how many instances of these classes are necessary to
accomplish this aggregation. For each conceptualAgent class it is precised if the
aggregation implies bodyAgents in addition of spiritAgent with the indication
of a level li where the bodyAgents are situated. The class of the agent produced
by the aggregation, AAC (Aggregate Agent Class), is the output of FAg with its
level l if the aggregation concerns bodyAgents. If the aggregation only concerns
spiritAgents l = li = ∅.

FAg(
∏
i∈n

〈[mini;maxi]ctai, li〉) = (AAC, l) (1)

For example, let consider the FAg2 function described in the hierarchical graph
below. Let FAg2 aggregates one bodyAgent of class Leader and at least 4 to 9
bodyAgents of class Follower all situated in l1 level and their linked spiritA-
gents to create a bodyAgent of class Platoon situated in l2 level and its linked
spiritAgent. Then:

FAg2(〈[1; 1], Leader, l1〉, 〈[4; 9], Follower, l1〉) = (Platoon, l2) (2)

Aggregation subfunctions have quite the same notation than aggregation func-
tions. It is not necessary to precise the number of concerned agents anymore. But
variables, in concerned agents, which will be mixed together have to be known.
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For example the subfunction described in the previous subsection can be noted
like this:

fAg2,1

(
(Leader.stamina, Leader.speed, l1),

(Follower.stamina, Follower.speed, l1)
)

= (Crowd.priority, l2)
(3)

Disaggregation and Memorization Functions. Each aggregation function
possesses its disaggregation function and eventually a memorization function.
A disaggregation function permits to create several instances of the aggregated
agents from the aggregate agent. A memorization function can be used to store
some information. Each memorization function is associated to a disaggregation
one to generate several agents representing the initial aggregated agents taking
into account the last state of the aggregated agents and the system evolution
since the aggregation. Here, nbi indicates the number of agents of each class
involved in the aggregation.

FDisag(AAC, l, FMemorization(
∏

i∈n〈nbi, ctai, li〉)) = (
∏

i∈n〈nbi, ctai, li〉) (4)

These two functions are divided in subfunctions in a similar way than the ag-
gregation function. Let take a platoon endowed of the two position variables, X
and Y , representing the position variable x and y of all the vehicles constituting
it. The memorization function store positions of all these vehicles. Memorization
is not active during the execution of the platoon agent. After the platoon agent
have moved in (X ′, Y ′) position, it can be disaggregated by recreating the vehi-
cles agents, calculating the value of their x and y variables with X ′ and Y ′ and
applying the memorized repartition.

5.3 Dis/Aggregation Tests

[16] explains how to decide when agents should be aggregated. He uses an affinity
function which measure the similarity of internal and external states of agents.
When the similarity is more important than a given threshold he links the two
agents. Linked agents with the higher similarity value are aggregated together.

We can use a similar mechanism to decide when to use an aggregation func-
tion, but in our case we need one utility function Aff by aggregation function
FAg. If there are several aggregation functions which concern the same spiritA-
gents or bodyAgents in the same levels, it is necessary to decide when apply one
instead of another. There are three possibilities. 1) The choice of FAg is done
after measuring the affinity of agent groups with all Aff and the aggregate are
instantiated each time, choosing the group with the higher affinity, until there
is no group. 2) It is also possible to impose an order to test different FAg. All
groups with a high affinity for one FAg are aggregated, then the next FAg is
tested until there is no more FAg. 3) The choice of FAg can be done by a mix
of the two previous methods. An partial order is defined on FAgs space. And if
there is no precedence link between different FAg, we apply the first method to
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aggregate agents considering that the model FAg only contains these FAg after
that we continue following the established order.

6 Measuring Consistency

[6] uses the notion of consistency to measure the quality of simulations deal-
ing with models of different resolution. “Consistency between a high-resolution
model M and a low-resolution model M’ is the comparison between the pro-
jected state of an aggregate of high-resolution entities which evolved in M, and
the projected state of the same aggregate initially controlled by M’ ”.

It is more intuitive to base the comparison on the evolution of the more
detailed model instead of the aggregate model because it has a higher resolution
and possesses more significant information.

High-resolution
inputs

High-resolution
model : M

High-resolution
outputs

Aggregate
function

Aggregate
function

Aggregated
high-resolution

outputs

Low-resolution
inputs

Low-resolution
model : M’

Low-resolution
outputs

The models are
consistent if these
are approximately
equal

Fig. 5. Weak consistency, according to [6]

Before modeling the system, it is necessary to locate the significant simula-
tion elements. These elements can be in the internal (spiritAgent) or external
(bodyAgent) states of agents or in their environment. Once these elements are
identified, several simulations are launched with the same parameters (initial
state and execution time) using only the most detailed levels, carrying the more
information but the most expensive one. At the end of the simulations execution
a mean state of the identified elements is recorded. The same process is done
with the model using dynamic change of LOD. Then the dissimilarity is measure
between these two recording to calculate the consistency.
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detailled state
at time t

detailled state
at time t+n

evolution of M

aggregated state
at time t

FAg Mem

aggregated state
at time t+n

evolution of M’

FDisagFAg

Global system
is consistent if
this differents states
are equivalent

Fig. 6. Strong consistency, according to [6]

7 Conclusion and Perspectives

This article introduces a methodology and theoretical tools to engineer and
validate multi-level agent based simulations with dynamic change of LOD.

It is applied in the european project InTrade1. This project deals with logis-
tic in european container ports endowed with Autonomous Intelligent Vehicles
(AIV). Partners involved in this project work at different scales and use sim-
ulation tools adapted to it (SCANeRstudio or Flexsim Container Terminal 2).
The agent-based platform MadKit3 is used to make models coexist in a single
simulation. Results are visualized with SCANeRstudio or Flexsim CT.

An interesting perspective of this work would be to find better ways (cheaper
or more realistic) to decide when simulated entities should be (dis)aggregated. It
is closely related to the emergence detection and reification problem [5]. Twomain
approacheshave been proposed to tackle this issue: a statistical one (e.g., [1,2,12,23])
and a symbolic one [4,3]. It would be interesting to integrate them.

Another perspective is the integration of organizational concepts, such as Sys-
tems of Systems (SoS), in our methodology. It would allow to explicitly represent
system or group level properties such as goals or missions.
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Abstract. Testing a multi-agent based model is a tedious process that
involves generating very many simulation runs, for example as a result of
a parameter sweep. In practice, each simulation run must be inspected
manually to gain complete confidence that the agent-based model has
been implemented correctly and is operating according to expectations.
We present MASTER, a tool which aims to semi-automatically detect
when a simulation run has deviated from “normal” behaviour. A sim-
ulation run is flagged as “suspicious” when certain parameters traverse
normal bounds determined by the modeller. These bounds are defined
in reference to a small series of actual executions of the model deemed
to be correct. The operation of MASTER is presented with two case
studies, the first with the well-known “flockers” model supplied with the
popular MASON agent-based modelling toolkit, and the second a skin
tissue model written using another toolkit—FLAME.

1 Introduction

Multi-agent based modelling and simulation is an increasingly popular form of
paradigm that is helping scientists, industrialists and policy makers develop their
understanding of natural systems, make forecasts, and predict the impact of po-
tential future changes [17], [3], [4], [8]. The need for rigorous model testing and
testing tools is becoming ever greater, since model errors can have potentially
disastrous consequences, including financial loss [16] and incorrect scientific con-
clusions [5]. One barrier to the thorough testing of simulation models is the time
that must be spent manually inspecting a potentially enormous number of sim-
ulation executions for potential errors, which may have been produced as the
result of common verification procedures such as parameter sweeps.

This paper presents MASTER (Multi-Agent based Simulation TestER). MAS-
TER is a testing framework that aims to semi-automatically detect “suspicious”
simulation runs that may indicate a fault in the implementation of a multi-agent
based model. MASTER works by observing a series of simulation runs believed
by the modeller to represent the “normal” behaviour of the model. The modeller
then specifies a set of assertions that place bounds on which particular simulation
properties of the model may deviate from those already observed. In addition, a
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series of so-called “facts” about the model may also be specified—states of the
simulation which should never occur. MASTER then monitors further, poten-
tially extensive, simulation executions of the model—automatically flagging up
executions that deviate from normal behaviour or violate some specified fact.
The end result is a smaller set of simulation runs, flagged up as suspicious, to
be further examined by the modeller.

The MASTER framework was originally written for use with the MASON
agent-based modelling toolkit [12], but has since been extended for FLAME [10].
This paper describes the use of MASTER with the simple flockers model supplied
with MASON. Results are also presented showing the detection of suspicious runs
when the code of the flockers model is randomly mutated to introduce small
faults. A further case study is presented with a real-world skin tissue model [17]
written for FLAME. White noise is injected into key statistics collated from the
model, the presence of which is identified by MASTER.

The contributions of this paper are therefore as follows:

1. A technique for semi-automatically identifying “suspicious” simulation runs of
an agent-based model, using past simulation data and modeller annotations

2. An implementation of this technique into a tool, MASTER
3. An investigation into the capabilities of the technique with two case stud-

ies, the first with the flockers model and the second with a real-world skin
tissue model.

The remainder of this paper is organized as follows. Section 2 describes our tech-
nique for identifying suspicious simulation runs for multi-agent based models,
implemented into the MASTER tool. Section 3 then presents the usage of MAS-
TER with the well-known flockers model provided with the MASON Java-based
agent modelling and simulation toolkit. Section 4 then presents results when
MASTER is used with a real-world skin tissue model. Section 5 then presents
related work while Section 6 closes with concluding remarks and avenues for
future work.

2 The Technique Implemented by MASTER

In normal software testing practice, test cases are evaluated with respect to a
specification of a system. However, agents tend to perform actions in a prob-
abilistic or non-deterministic manner, meaning that—given exactly the same
circumstances—an agent may choose do something different from one simulation
to the next; while the interaction of agents can give rise to complex emergent be-
haviours, which by their nature are unpredictable and hard to specify precisely.
When a specification is not present, a system is evaluated by a software tester
who has a detailed knowledge of the system’s requirements and which behaviours
constitute correct or incorrect behaviour. However, the manual evaluation of long
simulation runs is a time-consuming and laborious process.

For a model of any reasonable complexity, generating and evaluating all possi-
ble simulation runs is an intractable task. The approach taken by the MASTER
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framework is to capture data from a small set of simulation runs believed to ade-
quately represent the principal “behaviours” of a model. Following this, a much
larger number of simulations can then be run and automatically checked for
similarity with those previously observed model executions. A deviation from
“normal” behaviour may indicate that the simulation run has exposed a pre-
viously undetected fault in the underlying code of the model. The extent of
the deviation at which a simulation run is deemed to be “suspicious” is speci-
fied by the modeller. Furthermore, the modeller can specify “hard” constraints
about a model that are independent of observed model executions—e.g., an agent
should never move off the bounds of the grid representing the world in which
they inhabit.

The various stages involved in using MASTER are depicted in Figure 1 and
can be summarised as follows:

1. Capturing is where information regarding “normal” operation of a model in
simulation is recorded from a series of sample executions. The modeller must
specify what information is to be captured.

2. Observation Generation is where so-called “observations” are created by re-
lating data obtained during capturing with modeller-specified assertions that
place bounds on that data. These bounds relate the degree to which certain
attributes may deviate in future simulation runs from the values already
observed for them.

3. Testing involves repeated execution of new simulation runs checking for vi-
olations of observations and additional modeller-specified facts. Violating
simulations are flagged up to the modeller for further investigation.

In much the same way that a tester must write a test class in an xUnit testing
framework (such as JUnit [1] for testing Java classes), MASTER requires the
tester to extend a common interface to specify the types of information that
needs to be captured from normal model behaviour, along with the formulation of
“fact” and “observation” assertions. Unlike JUnit, however, MASTER does not
require the tester to write specific scenarios in which the assertions will be tested.
Instead, each assertion statement is evaluated against a set of simulation runs
and evaluated to see if it holds or not. These simulation runs may be generated as
a result of a parameter sweep of a model, or from random starting configurations.

MASTER is written in Java for the testing of models written using either
MASON [12] or FLAME [10]. The following sections explain each step involved
in using MASTER in detail, with the testing of the simple MASON agent
class SpatialAgent shown in Figure 2. SpatialAgent implements MASON’s
Steppable interface, which simply involves implementing the step method to
move the agent to a new (x, y) co-ordinate at each time step of the simulation.

Capturing. Recording every piece of information about a model’s execution
over several simulations quickly leads to a situation where an enormous quantity
of data must be managed. Simulations consist of several time steps, usually in-
volving many different agents all in different states. The capturing stage involves
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CapturingNormal simulation runs

Tester specified
attributes
to capture

Captured information

Observation Generation
Tester specified
normal bounds

Observations

TestingFurther simulation runs Tester specified facts

Information about
cases that violate any
observation or fact

Fig. 1. The process behind MASTER. The “Capturing” stage involves recording spec-
ified information over a number of example simulation runs exhibiting “normal” be-
haviour. The “Observation Generation” stage is the process of combining recorded
information and tester-specified bounds of deviation with respect to that information.
The final “Testing” stage is where new simulation runs are evaluated against observa-
tions and “facts”—additional hard constraints specified by the tester.

public class SpatialAgent implements Steppable {

private int x, y;

public SpatialAgent(int x, int y) {

this.x = x; this.y = y;

}

public void step(SimState state) {

x = state.random.nextInt(100);

y = state.random.nextInt(100);

}

}

Fig. 2. A simple agent for demonstrating testing with MASTER. At each simulation
time step, the agent moves to randomly-chosen co-ordinates.
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the tester writing code using the MASTER framework to track and capture spe-
cific types of data only. This reduces the quantity of data to be stored, managed,
and the cost of later analysis. It also allows for richer types of information to be
collated other than just raw agent state information. For example, the tester can
specify that a computed value such as distance travelled by a particular agent
be captured, by tracking the co-ordinates of that agent over different time steps.

In order to track specific data values in simulation using MASTER, the tester
must write a tracker class that extends MASTER’s abstract Tracker class. A
tracker describes how raw values are captured from the state of a particular
agent. An example tracker for a SpatialAgent can be seen in Figure 3. It is
called “XMinTracker”, and captures the minimum x co-ordinate value of the
particular agent attached to the tracker at a time step of the simulation. Raw x
co-ordinates are obtained using MASTER’s Reflector, which uses Java’s reflec-
tion mechanism the access the private instance variables of an agent. Information
regarding what is to be accessed is specified using a “locator”. A locator is sim-
ply an object that describes the sequence of method calls or instance variables
required to retrieve some desired information about an agent (or set of agents).

public class XMinTracker extends Tracker {

SpatialAgent agentBeingTracked;

Locator locator;

int min;

public XMinTracker(SpatialAgent spatialAgent) {

agentBeingTracked = spatialAgent;

locator = new Locator("x");

}

public boolean capture() {

int x = Reflector.retrieveInt(agentBeingTracked, locator);

if (x < min)

min = x;

return true;

}

public Infolet getInfolet(long step) {

return new XMinInfolet(locator, step, min);

}

}

Fig. 3. Tracker code to capture the minimum x co-ordinate value of a spatial agent
over the course of a simulation

Note that the MASTER tracker code is kept entirely separate from the
MASON agent code. MASTER does not require special hooks to be inserted
into MASON code in order to test it. Trackers must be attached to a simulation
so that data can be captured. In attaching a tracker, the tester must specify
the number of time step intervals for which the data will be captured using the
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capture method. That is, an interval of 5 would lead to data being captured
from SpatialAgent after every 5th call by MASON to the agent’s step method.

Data captured by a tracker is made available after the simulation has finished
via Infolet objects. A specific Infolet class is implemented for each tracker to
simply return the data captured and the time step that it was captured for (the
creation of this class is currently a manual process, but is a step which can
be automated in future). MASTER is capable of writing Infolet objects to a
text file using the JSON (JavaScript Object Notation) common data interchange
format. This is an alternative to binary serialization of objects, and allows for
human-readability of information, as well as enabling the captured data to be
imported easily into other tools for other types of analysis.

Observation Generation. The second stage in MASTER involves the gener-
ation of “observations” for later use in the testing phase. An observation is an
assertion relating new simulation data to that already captured in the prior cap-
turing phase. The assertion specifies when data from the new simulation should
be regarded as “suspicious”; for example if certain values are over some defined
boundary, or represent outliers (e.g., are a certain number of standard deviations
from an established mean), or are found to be significantly different from those
previously obtained—established using some statistical test.

Observations are written as classes that extend MASTER’s Observation

class. An example can be seen in Figure 4, XLessThanObservation, which asserts
that all x co-ordinate values for SpatialAgents are less than the observed min-
imum value from the simulations examined during capturing—denoted by the
variable observedMin. The assertion code is found in the check method, which
takes a “target”—in this case a SpatialAgent. The target variable could also
refer to an entire MASON SimStep object, so that all agent data from a partic-
ular simulation state is accessible. As for Infolet objects, observations may be
saved to text files in JSON form.

Testing. The testing phase of MASTER involves taking new simulation runs
and checking each simulation step against each observation and fact. Observa-
tions and facts may be scheduled for checking at intervals rather than at every
individual time step. The underlying algorithm for the testing phase can be seen
in Figure 5.

If a simulation is found to violate an observation or fact, information is
recorded, according to a violation handler, about the simulation and the vio-
lation that occurred. This includes the initial configuration of the model, the
states of each agent present in the initial time step, any environmental parame-
ters, and the random seed used. This allows the entire simulation to be recreated,
and visually inspected if necessary, to allow the tester to understand the nature
of the violation and to undertake any debugging steps that may be required.
MASTER provides handlers that write violation information to a file or the
console, or the tester can provide their own handler that overrides the provided
violation handling interface.
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public class XLessThanObservation extends Observation {

int observedMin;

Locator locator;

public XLessThanObservation(int observedMin) {

this.observedMin = observedMin;

this.locator = new Locator("x");

}

public Result check(Object target) {

int x = Reflector.retrieveInt(target, locator);

if (x < observedMin)

return Result.newSuccess();

else

return Result.newFailure(x);

}

}

Fig. 4. Example code for an observation. The check method is responsible for asserting
whether the data from some current simulation (passed into the method as the target
object) is violated or not.

step ← 1
While (step ≤ maxStep)

Run the simulation step
Obtain all observations and facts scheduled for step
For Each observation or fact

Check for a violation
If violation

Report all violation details to violation handler
End If

End For Each
step ← step+ 1

End While

Fig. 5. Algorithm used in the testing phase

3 Case Study 1: Flockers Model

The “Flockers” model in MASON simulates a number of agents exhibiting co-
ordinated movement with one another, as seen with natural flocks of birds or
shoals of fish. Each flocker agent takes into account local spatial information
when deciding which co-ordinates to move to in the next time step; including the
direction and momentum of the flockers around it, the need to avoid colliding
with other Flockers, coupled with a small degree of random movement. The
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model also includes optional “dead” flockers, that do not move, but which the
live flockers try to avoid colliding with.

In order to evaluate MASTER, an experiment was performed with the Flock-
ers model using Mutation Analysis [9]. Mutation Analysis inserts small syntactic
changes to program code, which are designed to mimic typical errors made by
programmers—for example, “off by one” errors, where a branching predicate in
an if statement is changed from x > y to x >= y. A “mutant” is a piece of pro-
gram code that has had exactly one syntactic change made to it. The mutant is
said to be “killed” when it produces different output from the original program
with the same input. The use of Mutation Analysis allows us to artificially inject
errors into models, resulting in potentially faulty simulation runs. The effective-
ness of MASTER can then be analysed by comparing the number of facts and
observations violated by the mutated model simulations.

A special case of mutant is the equivalent mutant. An equivalent mutant occurs
when a syntactic change cannot result in a change of output [9]. An example
of an equivalent mutant is shown below. The mutation changes the relational
operator of the inner-nested if statement from “equals” to “greater than or
equals”. Since i can never be greater than 10 as specified in the condition,
there is never any difference in the behaviour of the program, despite the minor
change that has been made. In general, detection of equivalent mutants is an
undecidable problem.

if (i <= 10) {

...

if (i == 10) {

...

}

}

Original program code

if (i <= 10) {

...

if (i >= 10) {

...

}

}

Equivalent mutant

The original flockers model was sampled 30 times, in which data for the at-
tributes listed in Table 1 were captured for each flocker in the tracking phase.
The model was run with 40 flockers (with each flocker set to being a non-moving
“dead” flocker with a probability of 0.1), for 1500 time steps. The Flockers model
was mutated automatically using the MuJava tool [13], resulting in several hun-
dred mutants, of which forty were selected at random. Each mutated model was
then run again to check for observation violations. The attributes listed in Ta-
ble 1 triggered a violation if they were over two standard deviations from the
recorded mean for that property in the previous tracking phase. The purpose of
this observation is to trap outlying behaviour of the model.

Each mutated model was run 50 times to obtain an average. The average
number of property violations for each mutant can be seen in Figure 6. Each
mutant is assigned a unique identification number, with the original non-mutated
model assigned an ID of 0 and appearing as the left-most bar in the chart.

The average number of property violations per mutant recorded in Figure 6
correlates well with visual observations comparing original model behaviour with
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Fig. 6. Average number of observation violations for each mutant of the Flockers model.
Violations (outlier values) for the original model appear as bar #0. The dotted line is
plotted across the graph to show how the average number of violations for each mutant
compares to the original, non-mutated model.

Table 1. Flocker attributes captured during tracking for the flockers model. With the
exception of “distance travelled” each attribute is accessed directly from each individual
flocker—i.e., from an instance variable or an accessor method of each flocker object.

Property Description

Position The X and Y co-ordinates of each flocker.

Momentum The X and Y momentum values of each flocker. High momentum values encourage
a flocker to keep travelling in the same direction.

Avoidance The X and Y avoidance values of each flocker. High avoidance values encourage
a flocker to keep a minimum distance from other flockers.

Cohesion The X and Y cohesion values of each flocker. High cohesion values encourage a
flocker to towards the local area containing the majority of flockers.

Consistency The X and Y consistency values of each flocker. High consistency values encour-
age a flocker to move similarly to other nearby flockers.

Orientation The orientation value (in radians) of each flocker. The orientation value repre-
sents the direction the flocker is facing.

No. of neighbours The number of neighbours throughout the simulation that are close enough to
a flocker such that the information regarding those neighbours factor into its
cohesion, avoidance and consistency calculations.

Distance travelled The last position of each flocker is stored in order for the distance travelled by
each flocker to be computed and tracked.
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mutated model behaviour, as recorded in Table 2. Moving from left to right in
Figure 6, the first 16 mutants up to #28—apart from #569—are recorded in
Table 2 as having no visually detectable difference in behaviour (i.e., potentially
“equivalent” mutants). The first 10 mutants up to and including mutant #427
in the graph Figure 6 show little difference in terms of observation violations
(outlying statistics) when compared with the non-mutant #0, the original model.

4 Case Study 2: Skin Tissue Model

The skin tissue model [17] is written using the FLAME multi-agent based mod-
elling and simulation environment [10], and is designed to simulate colonies
of skin cells on a laboratory culture plate. The simulation begins with a few

Table 2. Visual descriptions of each simulation for each model after a mutant has been
applied

Mutant Difference

28 No visual difference detectable
30 No visual difference detectable
43 No visual difference detectable
47 Flockers show a strong preference to flying towards the right of the screen
86 Flockers gradually disappear

104 Flockers arrange into up to three evenly-spaced horizontal bands
109 Flockers tend to move in horizontally aligned formations
138 Flockers move to the left only
141 Flockers move vertically only
142 Flockers move vertically only
157 Flockers move downwards only
172 No visual difference detectable
196 Flockers attract one another, causing “piles” of flockers to develop
201 Flockers attract one another, causing “piles” of flockers to develop
213 Flockers move downwards only
239 Flockers do not flock
295 Flockers do not flock consistently together as normal
300 No visual difference detectable
337 No visual difference detectable
356 Flockers stabilise to move consistently along the X axis
358 Flockers stabilise to move consistently along the Y axis
361 Flockers stabilise to move consistently along the Y axis
369 Flockers do not flock, moving as individuals or pairs
427 No visual difference detectable
460 No visual difference detectable
491 No visual difference detectable
497 No visual difference detectable
505 No visual difference detectable
539 Flockers move downwards only, avoiding each other
546 No visual difference detectable
562 Flockers move mostly normally, with occasional erratic turns
569 Flockers move mostly normally, but do not form large groups moving together
578 No visual difference detectable
608 Flockers gradually disappear
621 Flockers gradually disappear
655 Flockers move mostly only horizontally to the right only
661 Flockers move mostly only vertically to the bottom of the screen only
666 Flockers move in normal patterns, but slowly and jerkily
754 Flockers move in almost the same direction all of the time
766 Flockers move mostly vertically only
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Fig. 7. Average number of observation violations for the skin tissue model for various
levels of noise. Violations (outlier values) for the original model appear as noise level 0
(“none”). The dotted line is plotted across the graph to show how the average number
of violations for each model with noise compares to the original model without noise.

randomly-seeded individual cells, which form the epicentre of a colony. In each
time step of the model, cells progress through the cell cycle and divide, producing
new cells. Colonies grow outwards from the initial cell, eventually covering the
entire plate. One important aspect of the model is the so-called “differentiation”
of a skin cell from one type to another (e.g., to a “corneocyte” skin cell found
in the upper-most layers of skin tissue). In the model, cells change type based
on the distance from the centre of the skin cell colony of which they are a part.
For the purposes of evaluating MASTER, a function was introduced into the
model which applied a random proportion of noise to this distance property,
thus introducing a source of potential simulation error into the model.

In evaluating MASTER, the model was run for 1000 time steps, with 50 runs
performed for tracking and 10 repetitions with three proportional noise levels
(low, medium and high). Six skin cells were initially seeded for each simulation
run at random locations on the culture plate. In tracking and testing, the dis-
tance attribute before a cell makes its first differentiation into another skin cell
type is monitored. Figure 7 shows the number of observation violations that
occurred when the distance attribute strayed over two standard deviations from
the mean found for the property during the tracking step. Low levels of noise
(up to 1% of proportional noise applied to the attribute during testing) result
in little difference from the original model without noise, but many violations
occur with higher levels of noise (± 10-100%) and as such are easily detected by
MASTER.
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5 Related Work

MASTER is a tool for testing the results of whole simulation runs of multi-agent
based models. While there has been work on testing agent-based systems, there
has been little work that specifically addresses testing of agents designed for
simulation.

SUnit, for example, is an existing testing framework for multi-agent systems
(MAS), based heavily upon the JUnit framework, that provides an approach for
the testing of individual agent behaviour. JAT [6] is similar to SUnit, but uses
“mock” agents to send messages to the “agents under test”, and then compares
the resulting replies against the expected responses. Nguyen et al. [15] propose
“eCat”, which follows a “goal-oriented” approach in which means-end scenarios
are described, such that a series of actions (e.g., message passes between agents)
should result in a particular goal being achieved, for example a final message
containing a given piece of information. Zhang et al. [18] make use of design
artefacts, in this case from the Prometheus design process, to generate the test
data. The data takes the form of “test plans” which describe the various condi-
tions required to evoke a particular behaviour and the predicted outcomes. This,
along with a focus on message passing style agents, leads to an “agent-centric”
testing approach, where the behaviour of each agent is examined in isolation from
other agents and their environment, ensuring that the agent responds correctly
to particular messages and percept information.

VOMAS, proposed by Niazi et al. [14], is one tool for validating and verify-
ing multi-agent based simulations. Agents are grouped together by an “overlay”
agent. The agents of this overlay are then able to define constraints describ-
ing unusual behaviour, and report violations of these if they occur. This val-
idation may relate to both spatial data, i.e. the exact positioning or relative
distance of the agents in the simulation under test, and non-spatial data, such
as the edges in a graph of connected agents in a social simulation. However, it
is not clear how the constrains for the overlay agents are derived, other than
from subject matter experts, who provide these during the design of the overlay
MAS. Rather than relying on such experts, the MASTER approach attempts
to determine the boundaries for these normal values semi-automatically based
upon human-approved runs—using some user-specified tolerance outlier formula.
MASTER then allows the use of “facts” to allow such expert knowledge to also
be incorporated—if there are known domain-specific constraints.

MASTER differentiates itself from the discussed works by both allowing the
user to determine the appropriate level of testing, such as applying agent-specific
or simulation wide as facts or observations, and reducing reliance on subject area
experts, by determining “normal” boundaries from user-approved runs.

6 Conclusions and Future Work

This paper has described a technique for semi-automatically detecting anoma-
lous behaviour in simulations of multi-agent based models. This technique has
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been implemented into a prototype tool called MASTER. MASTER involves
capturing sample data from simulation runs confirmed by a tester to be behav-
ing “normally”. Testing of further simulation runs is then directed at comparing
whether those simulations have deviated from those witnessed previously auto-
matically. This removes some reliance on expert users, who may otherwise need
to manually examine or analyse data produced from a simulation. This allows
users to more thoroughly examine the behaviour of their model and ensure,
for example, how variation of parameters may affect some emergent behaviour,
improving the understanding of the given agent-based simulation.

Future work intends to incorporate of statistical analysis and more sophisti-
cated anomaly detection routines, such as those provided by the libAnomaly [2]
library [11], since presently with MASTER, the tester must specify a method
for calculating bounds over captured data from “normal” behaviour, which
quantifies the ranges to which future behaviour should be compared against.
The idea behind anomaly detection systems is similar in principle to that be-
hind MASTER—compare current system behaviour against a representation of
normal behaviour. Anomaly detection has been successfully applied to detect
malicious JavaScript code on websites, which could harm a user’s system [7].

Acknowledgements. This work was funded by the EPSRC grant EP/G009600–
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