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Abstract. In this talk, we examine static analysis techniques for continuous-time
dynamical systems. Continuous time systems arise in many domains including
engineered control systems, physical and biological systems. They are increas-
ingly of interest to the static analysis community, due to the focus on hybrid
(cyber-physical) systems that capture discrete programs interacting with a contin-
uous external environment. We examine two types of properties that are typically
verified: reachability and stability, and explore parallels between commonly used
static analysis approaches and a variety of approaches to prove/disprove reacha-
bility and stability properties.

1 Introduction

Static analysis refers to a broad class of techniques that reason about the correctness of
systems in the presence of uncertainties [10]. The key defining characteristics of static
analysis techniques include (a) reasoning collectively about a large, often infinite set
of system behaviors using abstract domains to represent sets of states, and (b) sound-
ness guarantees on the results of the analysis. Static analysis has witnessed a creative
explosion of techniques that focus on reasoning about programs. Abstract interpreta-
tion has been successful in providing a convenient common framework for designing,
implementing and comparing various static analysis techniques [4].

In this talk, we examine parallels between the world of discrete-time computer pro-
grams and continuous-time systems defined by Ordinary Differential Equations (ODEs).
The mathematical theory of differential equations provides us a framework for rea-
soning about these systems [9]. Continuous-time systems arise in a wide variety of
engineering disciplines (control systems), physics and biology. The study of continu-
ous systems in the formal verification community has a long history due to the intense
interest in hybrid dynamical systems that model discrete programs interacting with a
continuous external environment [17,8]. We explore two classes of techniques for the
static analysis of continuous time and hybrid systems: (a) flowpipe construction ap-
proaches that use repeated forward propagation over time, and (b) automatic synthesis
of positive invariants and Lyapunov functions.

Flowpipe construction techniques characterize the behavior of continuous-time and
hybrid systems in the presence of uncertainties due to the initial state and input sig-
nals. Flowpipe construction techniques compute conservative approximations of the
time trajectories of ODEs using numerical domains such as intervals, octagons, convex
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polyhedra and Taylor models. We examine the capabilities of flowpipe construction
tools such as HyTech [7], Checkmate [3], D/Dt [1], Phaver [5], SpaceEx [6] and
Flow* [2].

Another class of deductive techniques derive proofs of unreachability in the form
positive invariants and stability proofs using Lyapunov functions. We examine proof
rules for for invariance and stability of ODEs, and the use of these rules to synthesize
invariants and Lyapunov functions [16,14,12,11]. Tools such as KeYmaera support au-
tomatic invariant synthesis [13], while the SOSTools package supports the automatic
synthesis of Lyapunov functions [15]. We examine some of the successes and existing
shortcomings of these approaches in our talk.
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