
Static Analysis by Abstract Interpretation

of Numerical Programs and Systems,
and FLUCTUAT

Eric Goubault

CEA LIST
CEA Saclay, Nanoinnov, 91191 Gif-sur-Yvette CEDEX, France

eric.goubault@cea.fr

This invited lecture is a survey of our work over the last 12 years or so1, dealing
with the precise analysis of numerical programs, essentially control programs
such as the ones found in the aerospace, nuclear and automotive industry.

Our approach is now based on a rather generic abstract domain, based on
“zonotopes” or “affine forms” [7], but with some specificities. For instance, our
zonotopic domain provides a functional abstraction [16,13], i.e. an abstraction
of the input-output relationships between values of variables, allowing for test
generation and modular verification [21]. Also, our domain deals with the real
number and the finite precision (for instance, floating-point or fixed-point) se-
mantics [14,17]. It is used in practice in FLUCTUAT [20,9,4] to prove some
functional properties of programs, generate (counter-) examples, identify the
discrepancy between the real number and the finite precision semantics and its
origin etc.

Our work is building over methods from abstract interpretation of course [8],
but also over methods from applied mathematics, most notably from the “guar-
anteed computations” or “interval” community (affine arithmetic [7] and more
general Taylor models for instance), from optimization and game theory, and
from control theory (with policy iteration for instance [11] or quadratic invari-
ants, as in [2]). In some ways, this interplay between numerical mathematics
and abstract interpretation makes the calculations in the abstract much like a
perturbed numerical scheme, which has its own stability and convergence prop-
erties, related to the stability and convergence of the concrete numerical scheme
we are trying to prove. Similarly, we can think of our finite-precision abstract
semantics as some form of a deformation of the semantics in the real numbers,
i.e. the proofs we are providing are deformations of proofs in the real numbers.

Many extensions of this zonotopic abstract domain have been designed over
the years: constrained affine forms [12], under-approximations [15] and more
recently, “imprecise probabilistic” analyzes [5,1], where we consider that inputs
of the program under analysis can be given by (non-deterministic) ranges as well
as probability or sets of probability distributions.

1 With a first publication at a previous SAS [18]. Acknowledgments are due to all my
colleagues in the MeASI team over these last years and in particular for this talk,
Olivier Bouissou, Tristan Legall, Matthieu Martel, Sylvie Putot, Franck Védrine and
Sarah Zennou.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 E. Goubault

On the application side, we have become interested not only in certifying
control software [20], potentially as part of an hybrid system [6] but also in
characterizing the algorithmic error [9] (or “method” error) very early on in
the software development phase, and not only the implementation error, due to
finite-precision arithmetics. Recent applications of our static analyzes include
“sensitivity” analysis, uncertainty propagation (in parametric models such as
the ones found in robust control, or due to uncertain errors on inputs) and
generating correct “optimal” fixed-point formats for programs [22].

Among the future directions of our work are the links with proof theory and
program provers and the analysis of scientific computing codes, such as finite
element methods for solving partial differential equations. As a matter of fact,
proof-theoretic approaches, similar in spirit, have been introduced slightly later
(such as [3]) and make it possible, combining it with our work, to make precise
the notion of “perturbation of a proof” from real numbers to finite-precision
implementations. This latter notion has actually been, implicitely at least, in-
troduced long ago [25,24] for the study of important numerical schemes such
as conjugate gradient or Lanczos methods, see [23] for a modern account. This
might explain that our interest in embedded systems codes has gradually moved
towards more general “cyber-physical systems” and, in parallel, towards scien-
tific computing, which presents a real challenge to static analyzers, both on the
numerical, and on the alias analysis part. One of the consequences is that we
would then have to integrate our numerical domains in static analyzers deal-
ing with concurrent programs, using our own methods [19,10]. In the realm of
parallel computing, the issues concerning floating-point computations are of big
concern, since in general, programs do compute a lot more numerical expressions,
with even lower control on their order of evaluation, and run on hardware archi-
tectures with complicated semantics (GPUs, weak-memory models on multicore
systems etc.).
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2. Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite re-
laxation to compute accurate numerical invariants in static analysis. Logical Meth-
ods in Computer Science 8(1) (2012)
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