
Francesco Logozzo
Manuel Fähndrich (Eds.)

 123

20th International Symposium, SAS 2013
Seattle, WA, USA, June 2013
Proceedings

Static AnalysisLN
CS

 7
93

5
AR

Co
SS

Lecture Notes in Computer Science 7935
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Francesco Logozzo Manuel Fähndrich (Eds.)

Static Analysis

20th International Symposium, SAS 2013
Seattle, WA, USA, June 20-22, 2013
Proceedings

13

Volume Editors

Francesco Logozzo
Manuel Fähndrich
Microsoft Research
One Microsoft Way, 98052 Redmond, WA, USA
E-mail: {logozzo, maf}@microsoft.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38855-2 e-ISBN 978-3-642-38856-9
DOI 10.1007/978-3-642-38856-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939600

CR Subject Classification (1998): D.2.4-5, D.2.7, D.3.1-2, D.3.4, F.3.1-3, F.4.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Static analysis is increasingly recognized as a fundamental tool for program
verification, bug detection, compiler optimization, program understanding, and
software maintenance. The series of Static Analysis Symposia has served as the
primary venue for the presentation of theoretical, practical, and application ad-
vances in the area.

This year’s symposium, the 20th International Static Analysis Symposium
(SAS 2013), was held during June 20–22, 2013, in Seattle and co-located with
ACM’s PLDI Conference. Three workshops were affiliated with SAS 2013: NSAD
2013 (The 5thWorkshop on Numerical and Symbolic Abstract Domains) on June
19, SASB 2013 (The 4th Workshop on Static Analysis and Systems Biology) on
June 19, and TAPAS 2013 (The 4th Workshop on Tools for Automatic Program
Analysis) on June 19.

We received 78 abstract and in the end 56 complete paper submissions. Each
submission was reviewed on average by 3.2 Program Committee members. The
committee decided to accept 23 papers. This year, for the first time, SAS invited
the submission of virtual machine artifacts in support of submitted papers. We
received 22 such VMs. Out of the 23 accepted papers, 11 have associated VMs.
During the review process we used the VMs only in order to lend additional
support to papers, not to detract from their acceptance. The VMs are archived
on http://staticanalysis.org/ as a scientific record of the state of the art at this
point in time and they will hopefully serve as a comparison base for future
research.

We were able to secure three invited talks by Eric Lippert (Coverity) on
the “Psychology of C# Analysis,” Eric Goubault (CEA) on “Static Analysis by
Abstract Interpretation of Numerical Programs and Systems,” and FLUCTUAT,
and Sriram Sankaranarayanan (University of Colorado) on “Static Analysis in
the Continuously Changing World.”

We would like to thank the ProgramCommittee and all the external reviewers
for their participation in the reviewing process.

We are grateful for the generous sponsorship by Microsoft Research. Our
thanks go out to David Schmidt and Hans Boehm for organizing the co-location
with PLDI, to Manuel Hermenegildo for help with hosting the VMs, and to the
EasyChair team for the use of their very handy system.

June 2013 Manuel Fähndrich
Francesco Logozzo

Organization

Program Committee

Elvira Albert Complutense University of Madrid, Spain
Anindya Banerjee IMDEA Software Institute, Spain
John Boyland University of Wisconsin-Milwaukee, USA
Wei-Ngan Chin National University of Singapore
Mila Dalla Preda University of Bologna, Italy
Werner Dietl University of Washington, USA
Isil Dillig College of William and Mary, USA
Manuel Fähndrich Microsoft Research, USA
Arie Gurfinkel Software Engineering Institute, Carnegie

Mellon University, USA
Nicolas Halbwachs CNRS/VERIMAG, France
Atsushi Igarashi Graduate School of Informatics, Kyoto University,

Japan
Franjo Ivancic NEC Laboratories America, Inc., USA
Ranjit Jhala UC San Diego, USA
Francesco Logozzo Microsoft Research, USA
Ana Milanova Rensselaer Polytechnic Institute, USA
Antoine Miné CNRS and Ecole Normale Supérieure, France
Mooly Sagiv Tel Aviv University, Israel
Helmut Seidl TU München, Germany
Hongseok Yang University of Oxford, UK
Enea Zaffanella University of Parma, Italy

Additional Reviewers

Amato, Gianluca
Apinis, Kalmer
Arenas, Puri
Balakrishnan, Gogul
Berdine, Josh
Bjorner, Nikolaj
Bouaziz, Mehdi
Correas Fernández, Jesús
Costea, Andreea
Dal Lago, Ugo
Deutch, Daniel

Di Giusto, Cinzia
Dillig, Thomas
Dor, Nurit
Flores Montoya, Antonio E.
Gabbrielli, Maurizio
Garoche, Pierre-Loic
Genaim, Samir
Gherghina, Cristian
Gori, Roberta
Habermehl, Peter
Herz, Alexander

VIII Organization

Hill, Patricia
Huch, Frank
Jeannet, Bertrand
Jin, Wesley
Joshi, Pallavi
Kahlon, Vineet
Karbyshev, Aleksandr
Kincaid, Zachary
Kinder, Johannes
Kong, Soonho
Kovács, Máté
Le, Duy Khanh
Le, Quang Loc
Lin, Anthony
Mador-Haim, Sela
Manevich, Roman
Mastroeni, Isabella
Mauborgne, Laurent
Mauro, Jacopo

Monniaux, David
Naumann, David
Petter, Michael
Ranzato, Francesco
Rinetzky, Noam
Rodŕıguez Carbonell, Enric
Román-Dı́ez, Guillermo
Schwoon, Stefan
Sharma, Asankhaya
Simon, Axel
Singh, Rishabh
Soffia, Stefano
Suenaga, Kohei
Sun, Chao
Tasiran, Serdar
Thai, Trinh Minh
Trung, Ta Quang
Zanardini, Damiano

Table of Contents

Static Analysis by Abstract Interpretation of Numerical Programs and
Systems, and FLUCTUAT (Invited Talk) . 1

Eric Goubault

Static Analysis in the Continuously Changing World (Invited Talk) 4
Sriram Sankaranarayanan

Abstract Interpretation over Non-lattice Abstract Domains 6
Graeme Gange, Jorge A. Navas, Peter Schachte,
Harald Søndergaard, and Peter J. Stuckey

Localizing Widening and Narrowing . 25
Gianluca Amato and Francesca Scozzari

The Abstract Domain of Segmented Ranking Functions 43
Caterina Urban

Symbolic Automata for Static Specification Mining 63
Hila Peleg, Sharon Shoham, Eran Yahav, and Hongseok Yang

Predicate Abstraction for Relaxed Memory Models 84
Andrei Marian Dan, Yuri Meshman, Martin Vechev, and Eran Yahav

On Solving Universally Quantified Horn Clauses . 105
Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko

From Concrete Examples to Heap Manipulating Programs 126
Subhajit Roy

Local Shape Analysis for Overlaid Data Structures 150
Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu

Quantified Data Automata on Skinny Trees: An Abstract Domain
for Lists . 172

Pranav Garg, P. Madhusudan, and Gennaro Parlato

Static Validation of Dynamically Generated HTML Documents
Based on Abstract Parsing and Semantic Processing 194

Hyunha Kim, Kyung-Goo Doh, and David A. Schmidt

Byte-Precise Verification of Low-Level List Manipulation 215
Kamil Dudka, Petr Peringer, and Tomáš Vojnar

X Table of Contents

Abstract Semantic Differencing for Numerical Programs 238
Nimrod Partush and Eran Yahav

Precise Slicing in Imperative Programs via Term-Rewriting and
Abstract Interpretation . 259

Raghavan Komondoor

Automatic Synthesis of Deterministic Concurrency 283
Veselin Raychev, Martin Vechev, and Eran Yahav

Witnessing Program Transformations . 304
Kedar S. Namjoshi and Lenore D. Zuck

Formal Verification of a C Value Analysis Based on Abstract
Interpretation . 324

Sandrine Blazy, Vincent Laporte, André Maroneze, and
David Pichardie

Efficient Generation of Correctness Certificates for the Abstract
Domain of Polyhedra . 345

Alexis Fouilhe, David Monniaux, and Michaël Périn

Static Provenance Verification for Message Passing Programs 366
Rupak Majumdar, Roland Meyer, and Zilong Wang

Verification as Learning Geometric Concepts . 388
Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and
Aditya V. Nori

Interpolation-Based Verification of Floating-Point Programs
with Abstract CDCL . 412

Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, and
Daniel Kroening

Concise Analysis Using Implication Algebras for Task-Local Memory
Optimisation . 433

Leo White and Alan Mycroft

Automatic Verification of Erlang-Style Concurrency 454
Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

Contextual Locking for Dynamic Pushdown Networks 477
Peter Lammich, Markus Müller-Olm, Helmut Seidl, and
Alexander Wenner

Author Index . 499

Static Analysis by Abstract Interpretation

of Numerical Programs and Systems,
and FLUCTUAT

Eric Goubault

CEA LIST
CEA Saclay, Nanoinnov, 91191 Gif-sur-Yvette CEDEX, France

eric.goubault@cea.fr

This invited lecture is a survey of our work over the last 12 years or so1, dealing
with the precise analysis of numerical programs, essentially control programs
such as the ones found in the aerospace, nuclear and automotive industry.

Our approach is now based on a rather generic abstract domain, based on
“zonotopes” or “affine forms” [7], but with some specificities. For instance, our
zonotopic domain provides a functional abstraction [16,13], i.e. an abstraction
of the input-output relationships between values of variables, allowing for test
generation and modular verification [21]. Also, our domain deals with the real
number and the finite precision (for instance, floating-point or fixed-point) se-
mantics [14,17]. It is used in practice in FLUCTUAT [20,9,4] to prove some
functional properties of programs, generate (counter-) examples, identify the
discrepancy between the real number and the finite precision semantics and its
origin etc.

Our work is building over methods from abstract interpretation of course [8],
but also over methods from applied mathematics, most notably from the “guar-
anteed computations” or “interval” community (affine arithmetic [7] and more
general Taylor models for instance), from optimization and game theory, and
from control theory (with policy iteration for instance [11] or quadratic invari-
ants, as in [2]). In some ways, this interplay between numerical mathematics
and abstract interpretation makes the calculations in the abstract much like a
perturbed numerical scheme, which has its own stability and convergence prop-
erties, related to the stability and convergence of the concrete numerical scheme
we are trying to prove. Similarly, we can think of our finite-precision abstract
semantics as some form of a deformation of the semantics in the real numbers,
i.e. the proofs we are providing are deformations of proofs in the real numbers.

Many extensions of this zonotopic abstract domain have been designed over
the years: constrained affine forms [12], under-approximations [15] and more
recently, “imprecise probabilistic” analyzes [5,1], where we consider that inputs
of the program under analysis can be given by (non-deterministic) ranges as well
as probability or sets of probability distributions.

1 With a first publication at a previous SAS [18]. Acknowledgments are due to all my
colleagues in the MeASI team over these last years and in particular for this talk,
Olivier Bouissou, Tristan Legall, Matthieu Martel, Sylvie Putot, Franck Védrine and
Sarah Zennou.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 E. Goubault

On the application side, we have become interested not only in certifying
control software [20], potentially as part of an hybrid system [6] but also in
characterizing the algorithmic error [9] (or “method” error) very early on in
the software development phase, and not only the implementation error, due to
finite-precision arithmetics. Recent applications of our static analyzes include
“sensitivity” analysis, uncertainty propagation (in parametric models such as
the ones found in robust control, or due to uncertain errors on inputs) and
generating correct “optimal” fixed-point formats for programs [22].

Among the future directions of our work are the links with proof theory and
program provers and the analysis of scientific computing codes, such as finite
element methods for solving partial differential equations. As a matter of fact,
proof-theoretic approaches, similar in spirit, have been introduced slightly later
(such as [3]) and make it possible, combining it with our work, to make precise
the notion of “perturbation of a proof” from real numbers to finite-precision
implementations. This latter notion has actually been, implicitely at least, in-
troduced long ago [25,24] for the study of important numerical schemes such
as conjugate gradient or Lanczos methods, see [23] for a modern account. This
might explain that our interest in embedded systems codes has gradually moved
towards more general “cyber-physical systems” and, in parallel, towards scien-
tific computing, which presents a real challenge to static analyzers, both on the
numerical, and on the alias analysis part. One of the consequences is that we
would then have to integrate our numerical domains in static analyzers deal-
ing with concurrent programs, using our own methods [19,10]. In the realm of
parallel computing, the issues concerning floating-point computations are of big
concern, since in general, programs do compute a lot more numerical expressions,
with even lower control on their order of evaluation, and run on hardware archi-
tectures with complicated semantics (GPUs, weak-memory models on multicore
systems etc.).

References

1. Adjé, A., Bouissou, O., Goubault-Larrecq, J., Goubault, E., Putot, S.: Analyzing
probabilistic programs with partially known distributions. In: VSTTE (2013)

2. Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite re-
laxation to compute accurate numerical invariants in static analysis. Logical Meth-
ods in Computer Science 8(1) (2012)

3. Boldo, S., Filliâtre, J.C.: Formal Verification of Floating-Point Programs. In: 18th
IEEE International Symposium on Computer Arithmetic (June 2007)

4. Bouissou, O., Conquet, E., Cousot, P., Cousot, R., Ghorbal, K., Lesens, D., Putot,
S., Turin, M.: Space software validation using abstract interpretation. In: DASIA
(2009)

5. Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of
p-boxes to affine arithmetic. Computing 94(2-4), 189–201 (2012)

6. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: HybridFluctuat:
A static analyzer of numerical programs within a continuous environment. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 620–626. Springer,
Heidelberg (2009)

Static Analysis by Abstract Interpretation 3

7. Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graph-
ics. In: Proceedings of SIBGRAPI (1993)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL,
pp. 238–252 (1977)

9. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards
an industrial use of FLUCTUAT on safety-critical avionics software. In: Alpuente,
M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer,
Heidelberg (2009)

10. Fajstrup, L., Goubault, É., Haucourt, E., Mimram, S., Raussen, M.: Trace spaces:
An efficient new technique for state-space reduction. In: Seidl, H. (ed.) ESOP 2012.
LNCS, vol. 7211, pp. 274–294. Springer, Heidelberg (2012)

11. Gawlitza, T.M., Seidl, H., Adjé, A., Gaubert, S., Goubault, E.: Abstract interpre-
tation meets convex optimization. J. Symb. Comput. 47(12), 1416–1446 (2012)

12. Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope
intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 212–226. Springer, Heidelberg (2010)

13. Goubault, E., Gall, T.L., Putot, S.: An accurate join for zonotopes, preserving
affine input/output relations. In: Proceedings of NSAD 2012, 4th Workshop on
Numerical and Symbolic Abstract Domains. ENTCS, vol. 287, pp. 65–76 (2012)

14. Goubault, É., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

15. Goubault, E., Putot, S.: Under-approximations of computations in real numbers
based on generalized affine arithmetic. In: Riis Nielson, H., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 137–152. Springer, Heidelberg (2007)

16. Goubault, E., Putot, S.: A zonotopic framework for functional abstractions. CoRR
abs/0910.1763 (2009), http://arxiv.org/abs/0910.1763

17. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011)

18. Goubault, É.: Static analyses of the precision of floating-point operations. In: Cousot,
P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 234–259. Springer, Heidelberg (2001)

19. Goubault, E., Haucourt, E.: A practical application of geometric semantics to static
analysis of concurrent programs. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 503–517. Springer, Heidelberg (2005)

20. Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static analysis of the accuracy
in control systems: Principles and experiments. In: Leue, S., Merino, P. (eds.)
FMICS 2007. LNCS, vol. 4916, pp. 3–20. Springer, Heidelberg (2008)

21. Goubault, E., Putot, S., Védrine, F.: Modular static analysis with zonotopes. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 24–40. Springer,
Heidelberg (2012)

22. Menard, D., Rocher, R., Sentieys, O., Simon, N., Didier, L.S., Hilaire, T., Lopez, B.,
Goubault, E., Putot, S., Védrine, F., Najahi, A., Revy, G., Fangain, L., Samoyeau,
C., Lemonnier, F., Clienti, C.: Design of fixed-point embedded systems (defis)
french anr project. In: DASIP, pp. 1–2 (2012)

23. Meurant, G.: The Lanczos and Conjugate Gradient Algorithms: From Theory to
Finite Precision Computations (Software, Environments, and Tools). SIAM (2006)

24. Paige, C.C.: The computation of eigenvalues and eigenvectors of very large sparse
matrices. Ph.D. thesis (1971)

25. Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford University Press (1965)

http://arxiv.org/abs/0910.1763

Static Analysis in the Continuously Changing World

Sriram Sankaranarayanan�

University of Colorado, Boulder, CO.
firstname.lastname@colorado.edu

Abstract. In this talk, we examine static analysis techniques for continuous-time
dynamical systems. Continuous time systems arise in many domains including
engineered control systems, physical and biological systems. They are increas-
ingly of interest to the static analysis community, due to the focus on hybrid
(cyber-physical) systems that capture discrete programs interacting with a contin-
uous external environment. We examine two types of properties that are typically
verified: reachability and stability, and explore parallels between commonly used
static analysis approaches and a variety of approaches to prove/disprove reacha-
bility and stability properties.

1 Introduction

Static analysis refers to a broad class of techniques that reason about the correctness of
systems in the presence of uncertainties [10]. The key defining characteristics of static
analysis techniques include (a) reasoning collectively about a large, often infinite set
of system behaviors using abstract domains to represent sets of states, and (b) sound-
ness guarantees on the results of the analysis. Static analysis has witnessed a creative
explosion of techniques that focus on reasoning about programs. Abstract interpreta-
tion has been successful in providing a convenient common framework for designing,
implementing and comparing various static analysis techniques [4].

In this talk, we examine parallels between the world of discrete-time computer pro-
grams and continuous-time systems defined by Ordinary Differential Equations (ODEs).
The mathematical theory of differential equations provides us a framework for rea-
soning about these systems [9]. Continuous-time systems arise in a wide variety of
engineering disciplines (control systems), physics and biology. The study of continu-
ous systems in the formal verification community has a long history due to the intense
interest in hybrid dynamical systems that model discrete programs interacting with a
continuous external environment [17,8]. We explore two classes of techniques for the
static analysis of continuous time and hybrid systems: (a) flowpipe construction ap-
proaches that use repeated forward propagation over time, and (b) automatic synthesis
of positive invariants and Lyapunov functions.

Flowpipe construction techniques characterize the behavior of continuous-time and
hybrid systems in the presence of uncertainties due to the initial state and input sig-
nals. Flowpipe construction techniques compute conservative approximations of the
time trajectories of ODEs using numerical domains such as intervals, octagons, convex

� The research presented was performed in collaboration with Ashish Tiwari, Aditya Zutshi,
Erika Ábraham and Xin Chen. We gratefully acknowledge the support of the US National
Science Foundation (NSF) under award numbers CNS-0953941 and CPS-1035845.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 4–5, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Static Analysis in the Continuously Changing World 5

polyhedra and Taylor models. We examine the capabilities of flowpipe construction
tools such as HyTech [7], Checkmate [3], D/Dt [1], Phaver [5], SpaceEx [6] and
Flow* [2].

Another class of deductive techniques derive proofs of unreachability in the form
positive invariants and stability proofs using Lyapunov functions. We examine proof
rules for for invariance and stability of ODEs, and the use of these rules to synthesize
invariants and Lyapunov functions [16,14,12,11]. Tools such as KeYmaera support au-
tomatic invariant synthesis [13], while the SOSTools package supports the automatic
synthesis of Lyapunov functions [15]. We examine some of the successes and existing
shortcomings of these approaches in our talk.

References
1. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Hei-
delberg (2002)

2. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-
linear hybrid systems. In: Proc. RTSS 2012, pp. 183–192. IEEE (2012)

3. Chutinan, A., Krogh, B.: Computing polyhedral approximations to flow pipes for dynamic
systems. In: Proceedings of IEEE CDC. IEEE Press (1998)

4. Cousot, P., Cousot, R.: Abstract Interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. ACM Principles of Programming
Languages, 238–252 (1977)

5. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past hyTech. In: Morari, M.,
Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)

6. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A.,
Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)

7. Henzinger, T.A., Ho, P.: HYTECH: The Cornell hybrid technology tool. In: Antsaklis, P.J.,
Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, pp. 265–293. Springer,
Heidelberg (1995)

8. Lunze, J., Lamnabhi-Lagarrigue, F. (eds.): Handbook of Hybrid Systems Control: Theory,
Tools and Applications. Cambridge University Press (2009)

9. Meiss, J.D.: Differential Dynamical Systems. SIAM Publishers (2007)
10. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer (1999)
11. Papachristodoulou, A., Prajna, S.: On the construction of lyapunov functions using the sum

of squares decomposition. In: IEEE CDC, pp. 3482–3487. IEEE Press (2002)
12. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2),

143–189 (2008)
13. Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems (Sys-

tem description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

14. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In:
Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidel-
berg (2004)

15. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS: Sum of squares op-
timization toolbox for MATLAB (2004)

16. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid systems.
Formal Methods in System Design 32(1), 25–55 (2008)

17. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer
(2009)

Abstract Interpretation over

Non-lattice Abstract Domains

Graeme Gange, Jorge A. Navas, Peter Schachte,
Harald Søndergaard, and Peter J. Stuckey

Department of Computing and Information Systems,
The University of Melbourne, Victoria 3010, Australia

{gkgange,jorge.navas,schachte,harald,pstuckey}@unimelb.edu.au

Abstract. The classical theoretical framework for static analysis of pro-
grams is abstract interpretation. Much of the power and elegance of that
framework rests on the assumption that an abstract domain is a lattice.
Nonetheless, and for good reason, the literature on program analysis
provides many examples of non-lattice domains, including non-convex
numeric domains. The lack of domain structure, however, has negative
consequences, both for the precision of program analysis and for the ter-
mination of standard Kleene iteration. In this paper we explore these
consequences and present general remedies.

1 Introduction

The goal of static analysis is to automatically infer useful information about
the possible runtime states of a given program. Because different information
is pertinent in different contexts, each analysis specifies the abstraction of the
computation state to use: the abstract domain of the analysis.

Where the abstract domain has certain desirable properties, the abstract in-
terpretation framework of Cousot and Cousot [1,2] provides an elegant generic
analysis algorithm. Under certain reasonable assumptions, the method is guar-
anteed to terminate with a sound abstraction of all possible program states. In
particular, the abstract interpretation framework requires that the abstract do-
main be a lattice, and that the functions that specify how program operations
affect the abstract program state be monotone.

In this paper, we focus on a class of abstract domains that do not form
lattices; in particular they may not provide least upper bound and greatest
lower bound operations. Such abstract domains are commonly proposed in the
literature because they strike a balance, providing more detail than is offered by
simpler lattice domains, while being computationally more tractable than more
complex lattice domains. The reader will find several examples in Section 4.

The common response to the lack of meets and joins is to arbitrarily choose
suitable but ad hoc lower and upper bound operators to use instead (we call
them “quasi-meets” and “quasi-joins”). However, as we show, this begets other
problems, such as lack of associativity of upper and lower bound operators, and

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 6–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Abstract Interpretation over Non-lattice Abstract Domains 7

a lack of monotonicity, with repercussions for termination. We pinpoint some
inevitable consequences of straying from the classical abstract interpretation
framework and exemplify these, together with example-specific solutions.

The reader is expected to be familiar with basic concepts in order theory and
abstract interpretation. In Section 2 we refresh some of these concepts, to fix our
terminology and to define a notion of quasi-lattice. In Sections 3.2 and 3.3 we
prove that non-lattice domains fail to preserve many principles of reasoning that
we have come to depend upon in the implementation of abstract interpretation,
and we discuss the ensuing problems. In Section 4 we briefly present some of the
non-lattice domains found in the literature on program analysis, and show how
the problems manifest themselves. In Section 5 we catalogue various remedies.
Section 6 concludes.

Contributions: In this paper we

– study the impact of using quasi-lattice abstract domains, in particular the
effect on precision and termination;

– identify quasi-lattice domains in the literature on program analysis and use
these to exemplify the issues that the general study lays bare; and

– outline modifications to classical abstract interpretation that are sufficient
to guarantee soundness and termination, while maintaining reasonable pre-
cision of analysis.

2 Lattices and Quasi-lattices

An important aim of this paper is to facilitate a discussion of “non-lattice-ness”
and its consequences. The program analyses discussed in the paper are not new;
they only serve to exemplify the phenomena we want to discuss. In this section we
first recapitulate well-known concepts from order theory, then introduce a kind
of “almost-but-not-lattice” with properties that are found in several recently
proposed abstract domains.

Definition 1 (Ultimately cyclic and stationary sequences). Let N �
�0, 1, 2 . . .� and X be a set. An ω-sequence (or just sequence) of X-elements
�x0, x1, . . .� � �xi � i � N� is a total mapping s from N to X with s�i	 � xi. The
sequence is ultimately cyclic iff
k,m � N �n � N : n � k xn � xm�n. In this
case we refer to �xk, . . . , xk�m�1� as the sequence’s ultimate cycle. The sequence
is ultimately stationary iff it has an ultimate cycle of size 1. In this case we refer
to the cycle’s single element as the sequence’s final element. ��

Definition 2 (Bounded poset). Consider a binary relation �, defined on a
set D. The relation is a partial order iff it is

1. reflexive: �d � D : d� d
2. transitive: �d1, d2, d3 � D : d1 � d2 � d2 � d3 d1 � d3
3. antisymmetric: �d1, d2 � D : d1 � d2 � d2 � d1 d1 � d2

8 G. Gange et al.

A set equipped with a partial order is a poset. If the poset �D,�� has a least
element � and a greatest element � (that is, elements �,� � D such that for all
d � D, �� d� �) then D is bounded. Two elements x, y � D are comparable iff
x� y or y � x; otherwise they are incomparable. ��

Definition 3 (Chain). A sequence �xi � X � i � N� is a chain iff �j, k � N :
xj � xk � xk � xj , that is, all elements are comparable. ��

Definition 4 (Monotonicity). Let �D,�� be a poset. A function f : D D
is monotone iff �x, y � D : x� y � f�x	� f�y	. ��

Note that the composition of monotone functions is monotone.

Definition 5 (Upper and lower bounds). Let �D,�� be a bounded poset.
For any X � D we say that y � D is an upper bound (lower bound) of X , written
X � y (y �X) iff �x � X : x � y (�x � X : y � x). An upper-bound operator
U : P�D	 D is a function which assigns to each set X some upper bound
U�X	. A lower-bound operator is defined analogously. Given a set X � D, a
least upper bound of X is an element z � D which satisfies two conditions:

(a) z is an upper bound of X , and
(b) for each upper bound y of X , z � y.

Dually, a greatest lower bound z of X satisfies

(a) z is a lower bound of X , and
(b) for each lower bound y of X , y � z.

A minimal upper bound of X is an element z satisfying

(a) z is an upper bound of X , and
(b) for each upper bound y of X , y � z � y � z.

A maximal lower bound is defined dually. We let lower�X 	 denote the set of
lower bounds of X . ��

We follow Nielson et al. [12] in putting no further requirements on an upper
bound operator U . It is well-known that, in general, a least upper bound of X
may not exist, but when it does, it is unique. We write the least upper bound
as
�
X . Similarly, when it exists, the greatest lower bound of X is denoted

�
X .

As usual, we define x� y �
�
�x, y� and x� y �

�
�x, y�, and we refer to these

operations as “join” and “meet”, respectively.
Infinite chains do not, in general, have least upper bounds.1

Definition 6 (Chain-complete poset). The poset �D,�� is chain-complete
iff every chain C � D has a least upper bound

�
C. ��

1 An infinite chain in D may not even have a minimal bound in D [5], witness the
chain �x � Q � x2 � 2�.

Abstract Interpretation over Non-lattice Abstract Domains 9

Definition 7 (Continuity). A function f : D D is continuous iff
�
�f�x	 �

x � C� � f�
�
C	 for all non-empty chains C � D. ��

Definition 8 (Complete lattice). A complete lattice L � �D,�� is a poset
�D,�� such that each X � D has a least upper bound

�
X and a greatest lower

bound
�
X . ��

Note that a complete lattice is bounded, by definition.

Definition 9 (Lattice). A lattice L � �D,�� is a poset �D,�� such that, for
all x, y � D,

�
�x, y� and

�
�x, y� exist. A lattice which is a bounded poset is a

bounded lattice. ��

Given a lattice �D,��, the meet � and the join � have many desirable algebraic
properties. In particular, they are monotone, idempotent, commutative and as-
sociative. It follows that, since a least upper bound exists for each 2-element set,
a least upper bound exists for each finite set X � D.

Definition 10 (Quasi-lattice). A quasi-lattice �Q,�, ��, ��� is a bounded
poset �Q,�� satisfying the following conditions:

1. �� is an upper-bound, and �� a lower-bound, operator on Q.

2. For all x, y � Q, ���x, y� is a minimal upper bound of �x, y�.

3. For all x, y � Q, ���x, y� is a maximal lower bound of �x, y�.
4. �Q,�� has a “butterfly”, that is, for some a, b � Q, the set �a, b� has a

minimal, but no least, upper bound in Q. ��

We refer to the �� and �� operations as “quasi-join” and “quasi-meet”, respec-

tively. Again, we define x �� y � ���x, y� and x �� y � ���x, y�. Note that ��
and �� are idempotent and commutative, by definition. Requirements 2 and 3
guarantee that, given two comparable elements, �� returns the larger, and �� the
smaller. It also ensures that various absorption laws hold, such as x �� x � x,
�x �� y	 �� y � y, and x �� �x �� y	 � x. Note that �� over-approximates each of
its elements, that is, �� is conservative in the sense of abstract interpretation.
It is therefore a sound replacement for the missing join. In contrast, �� is not a
conservative replacement for meet. Hence it will not play a significant role in the
rest of the paper. Abstract domains usually capture conjunction (or intersection
of sets of runtime states) without precision loss; but not so disjunction.

�

a b

c d

�

Fig. 1. A “butterfly”

Consider the bounded poset whose Hasse dia-
gram is shown in Figure 1. It is not a lattice since
it has a “butterfly”; namely, there is no least up-
per bound of �a, b� (in fact, for some a, b, c, d, this
structure is embedded in any bounded poset which
is not a lattice). It is, however, a quasi-lattice, for
several different choices of upper-bound operator.
Nevertheless, each choice has shortcomings, as we
now show.

10 G. Gange et al.

Theorem 1. In a quasi-lattice �Q,�, ��, ���, �� and �� are neither monotone
nor associative.

Proof. We show this for �� only; the case of �� is similar. Let �x, y� � Q be a
set for which no least upper bound exists, and let m and m� be distinct minimal
upper bounds for the set. Let u � x �� y. We have either (1) m � u or m� � u
(or both), or we have (2) m,m�, u are pairwise incomparable. In case (1) we can
assume, without loss of generality, that m � u. Note that in this case, u � m�.
Hence, whether we are in case (1) or (2), u � m�.

Now, to see that �� is not monotone, note that while y � m� (Rule 2), we also
have

�x �� y	 � u � m� � �x ��m�	.

To see that �� is not associative, note that

�x ���y ��m�		 � m� �� �u ��m�	 � ��x �� y	 ��m�	. ��

Definition 11 (Fixed point). A fixed point of a function f : D D is an
element x � D such that f�x	 � x. The set fp�f	 of fixed points of f is �x � D �
f�x	 � x�. ��

Theorem 2 (From the Knaster-Tarski fixed point theorem). Let L be
a complete lattice and let f : L L be monotone. Then fp�f	 is a non-empty
complete lattice, and

�
fp�f	 is the least fixed point of f .

We denote the least fixed point of f by lfp�f	.
Kleene iteration is a procedure which, given x � D and function f : D D,

computes the sequence iterf �x 	 � �f
j �x 	 � j � N� but stops as soon as a final

element (a fixed point of f) is reached; if iterf �x 	 is not ultimately stationary, the
process does not terminate. If f is monotone and there is no infinite ascending
chain in D then iterf ��	, where � is the least element of D, is an ultimately
stationary chain whose final element is lfp�f 	.

Abstract interpretation is concerned with the approximation of program se-
mantics, expressed as fixed points of “semantic” functions. There are essentially
two fixed point approximation approaches, one based on Galois connections, and
one based on “widening” [3].

Definition 12 (Galois connection). Let �D,�D� and �X,�X� be posets, and
let α : D X and γ : X D be monotone functions. Then �D,α, γ,X� is a
Galois connection between D and X iff:

d�D γ�x	 � α�d	�X x for all d � D and x � X ��

The intuition is that γ�x	 expresses an abstract property x in concrete terms
(that is, γ provides the “meaning” of x) whereas α�d	 expresses the concrete
property d as best as it can, given X ’s more limited expressiveness. We can
naturally express the fact that x approximates (or is an abstraction of) d by
d�D γ�x	, or alternatively by α�d	�X x, and when these two characterisations
coincide, we have a Galois connection.

Abstract Interpretation over Non-lattice Abstract Domains 11

We can also express the fact that a function g : X X approximates f :
D D point by point: For all x � X , we have

f�γ�x		 � γ�g�x		

An important result [2] states that for a chain-complete poset D (as well as
for a complete lattice D) and Galois connection �D,α, γ,X�, if the monotone
g : X X approximates the monotone f : D D then lfp�f	 �D γ�lfp�g		,
that is, g’s least fixed point is a sound approximation of f ’s.

Widening-based approaches to fixed point approximation are based on the
following concept.

Definition 13 (Widening). Let �D,�� be a bounded poset, a widening oper-
ator ∇ : D �D D satisfies the following two conditions:

1. � x, y � D : x � �x∇ y	 � y � �x∇ y	.
2. For any increasing chain x0 � x1 � x2 � . . . the alternative chain defined as

y0 � x0 and yk�1 � �yk ∇ xk�1	 stabilizes after a finite number of steps.

In general, a widening operator is not commutative and it is not necessarily
monotone. In practice it is common to combine the Galois connection approach
with the widening approach, by resorting to the use of a widening operator only
after a while, to enforce or accelerate convergence. We discuss this point further,
in the context of non-lattice domains, in Section 5.2.

3 The Use of Quasi-joins

There are important consequences of the absence of lattice properties. Here we
discuss three important ramifications.

3.1 Impact on Predictability of Analysis

A “join node” in a control flow graph may be at the confluence of edges that
come from many different nodes. In lattice-based analysis this is where a least
upper bound operation is used to combine the incoming pieces of information.
Commonly, this is computed through repeated use of a binary join operation �.
In the lattice context, the order in which these binary join operations are applied
is irrelevant—any order will produce the least upper bound.

In non-lattice-based analysis, the absence of a � forces us to define a proxy,��, which produces an upper bound, and ideally, a minimal one. However, as
shown by Theorem 1, a minimal upper bound operation is not associative. In
other words, different orders of application of �� may lead to different results,
and in fact, some may be less precise than others.

The order in which the elements are combined depends on quirks of the anal-
ysis implementation, details that rightly should have no bearing on the result.
One consequence is unpredictable analyses: insignificant changes to a program
(or to the analyzer itself) may have significant consequences for analysis results.

12 G. Gange et al.

3.2 Impact on Precision

A brute-force approach to attacking the order-dependency problem is to exhaus-
tively consider all possible orders of �� applications, choosing the best one. In

this way we may hope to synthesize �� from ��.
Alas, this is not possible. Perhaps surprisingly, it turns out that in a quasi-

lattice, one may not calculate a minimal upper bound of a finite set X by per-
forming a sequence of binary quasi-joins, in spite of the fact that each quasi-join
produces a minimal upper bound. The next theorem expresses this precisely.

Theorem 3. There exists some finite bounded poset �D,�� for which a minimal-
upper-bound operator U : P�D	 D cannot be obtained through repeated appli-
cation of a (any) binary minimal upper bound �� : D2 D.

�

abc abd acd bcd

a b c d

�

Fig. 2. A quasi-lattice
with 10 elements

Proof. The proof is by construction. Consider a
bounded poset representing containment of ele-
ments within triples. The Hasse diagram for the
case that has four atoms is shown in Figure 2. Note
that, for each 3-element set �x, y, z�, there is a least
upper bound xyz. Hence, for this least upper bound
to be produced via repeated use of a quasi-join ��,
it would have to be the case that, for any triple xyz,
one of �x ��y	, �x �� z	, and �y �� z	 is xyz. Consider,
however, the triple-containment poset over six ele-
ments a–f . In this case, there are

�
6
3

�
� 20 distinct

triples. However, there are only
�
6
2

�
� 15 pairs of

elements. So there must be some triple x�y�z� such
that, for all pairs of elements a, b, a �� b � x�y�z�.
Then computing x� �� y� �� z� must yield �, rather
than the minimal upper bound x�y�z�. ��

It follows that it is impossible to automatically synthesize a generalized minimal
upper bound operator from primitive quasi-joins.

The lesson from this section and the previous one is that, in the non-lattice
based case, a �� is not a suitable substitute for a minimal upper bound operator.
Such an operator needs to be carefully crafted for the non-lattice domain at
hand.

3.3 Impact on Termination

With quasi-lattices, including the concrete examples we turn to in Section 4,
we have structures which are almost lattices, but lack a monotone upper-bound
operation ��. We now show that this lack of monotonicity has ramifications for
the usual approach of solving recursive dataflow equations via Kleene iteration,
even when the quasi-lattice is finite.

Abstract Interpretation over Non-lattice Abstract Domains 13

Theorem 4. For any quasi-lattice Q with binary upper-bound operation ��, there
are elements x � Q and monotone functions f : Q Q for which Kleene
iteration of g � λy . x �� f�y	 fails to terminate.

Proof. From Theorem 1 we know that �� is not monotone. Hence there are
x, y, y� � Q such that

y � y�, x �� y � x �� y�

Either �x �� y�	 � �x �� y	, or else x �� y and x �� y� are incomparable. Define the
function f : Q Q as follows:

f�v	 �

�
y if v � x �� y�

y� otherwise

f is monotone, since:

f�v	 � f�v�	 � f�v	 � y� � f�v�	 � y � v � x �� y� � v� � x �� y� � v � v�

Note that f�x �� y�	 � y, and f�x �� y	 � y�. Now consider Kleene iteration of g.
Assuming f�x ���	 � y, we observe the sequence of values:

��, x �� y, x �� y�, x �� y, x �� y�, . . .�

This sequence will alternate between the two values indefinitely. The same os-
cillation occurs if we instead assume f�x ���	 � y�. ��

f

p0 p1 p2

Fig. 3. A loop involving
repeated use of monotone
function f

At first the construction in the proof of Theorem 4
may seem artificial. However, Kleene iteration of
functions of the form λy . x � f�y	 captures ex-
actly how one usually solves dataflow equations for
simple loops, of the form shown in Figure 3. The
proof of the theorem therefore gives us a recipe
for constructing programs whose non-lattice-based
analysis will fail to terminate, unless some remedial
action is taken. Section 4 illustrates this for three
concrete examples of non-lattice domains.

4 Examples of Non-lattice Abstract Domains

In this section, we review some recent abstract domains from the literature
which do not form a lattice. In each case we sketch the abstract domain and the
resulting analysis. (We necessarily skip many details—the reader is referred to
the cited papers for detail.) In each case we show how the phenomena identified
in Sections 3.2 and 3.3 play out for the domain.

14 G. Gange et al.

4.1 Wrapped Intervals (W-intervals)

Navas et al. [11] describe an abstract domain for reasoning about arithmetic
operations over fixed-width machine integers. Where unbounded integers can
be seen to sit on an infinite number line, fixed-width integers exist on a fixed-
size number circle. One approach to handling machine arithmetic is to select a
fixed wrapping point on the number circle, and represent values as intervals in
the range �vmin, vmax�. For example, Regehr and Duongsaa [13] perform bounds
analysis in a sound, wrapping-aware manner (dealing also with bit-wise oper-
ations) but as their analysis uses conventional intervals, precision is lost when
sets of values cross the selected wrapping point.

Example 1 (Traditional intervals lose precision over machine arithmetic). Con-
sider the interval x � �0, 2� over 4-bit unsigned integers. The feasible values for
x � 1 are �15, 0, 1�; however, as both 0 and 15 are contained in this set, the
resulting interval is �. ��

A natural alternative is to let intervals “wrap” [8,11,15]. The wrapped intervals
(or w-intervals) of Navas et al. [11] still approximate a set of values as a single
interval. However, there is no fixed wrapping point; a wrapped interval can begin
or end at any point on the number circle.

More formally, a w-interval is either an empty interval, denoted �, a full
interval, denoted �, or a delimited interval �x, y�, where x, y are w-width bit-
vectors. Let B be the set of all bit-vectors of size w, and let bk denote k copies
of bit b � �0, 1� in a row. Then, the concretization function is defined as:

γ��	 � �

γ�x, y� �
�
�x, . . . , y� if x � y
�0w, . . . , y� � �x, . . . , 1w� otherwise

γ��	 � B

c

b

a

Fig. 4. The dashed interval is the
minimal upper bound of �a, b, c�

In the case of Example 1, the corresponding
wrapped interval is �15, 1�, which succinctly
represents the set of feasible values �15, 0, 1�.
Unfortunately, while there is a partial order-
ing � over the set of wrapped intervals, there
is no longer a unique upper bound for any pair
of intervals; accordingly, the domain clearly is
not a lattice. In fact, using the upper bound�� given in [11], this domain is a quasi-lattice.
Therefore, by Theorem 1, �� is neither associa-
tive nor monotone.

Example 2 (Quasi-join over the wrapped intervals is not associative). In the
context of 4-bit unsigned arithmetic, consider the three w-intervals a � �13, 2�,
b � �6, 10�, and c � �3, 5�. These are shown in Figure 4. Consider that we apply
the binary quasi-join �� as follows: �a �� b	 �� c � �6, 2� �� �3, 5� � �6, 5� � �.

Abstract Interpretation over Non-lattice Abstract Domains 15

x � �0, 1�

x � x� 8

p0

p1

p2

0

�0, 1�

�8, 9�

1

�0, 9�

�8, 1�

2

�8, 1�

�0, 9�

3

�0, 9�

�8, 1�

Fig. 5. Non-terminating analysis of wrapped intervals over 4-bit integers; column i
shows the interval for x in round i

However, the minimal upper bound can be obtained as a �� �b �� c	 � �13, 2� ��
�3, 10� � �13, 10�. ��

Example 3 (Any minimal quasi-join over wrapped intervals is non-monotone).
Consider again the domain of intervals over 4-bit integers, with x � �0, 1�, y �
�8, 9�, x� � �0, 9� and y� � �8, 1�. Clearly, x � x� and y � y�. Assume we
have a quasi-join �� which selects a minimal upper bound. The two candidates
for x �� y are �0, 9� and �8, 1�. Assume we let x �� y � �0, 9�. Then we have
x �� y � �0, 9� � �8, 1� � y� � x �� y�. Similarly, if x �� y � �8, 1�, we have
x �� y � �8, 1� � �0, 9� � x� � x� �� y. ��

Given that �� is non-monotone, we can construct an instance where the analysis
in the form of Kleene iteration does not terminate.

Example 4 (Analysis with w-intervals does not terminate when �� is used as
the join operator). Figure 5 shows an example for bit-width w � 4. Recall from
Example 3 that there are two equally good representations of the interval �0, 1���
�8, 9�; namely �0, 9� and �8, 1�. Assume we pick �0, 9�; the other case is symmetric.
In round 1, we compute p2 � �0, 9� 8 � �8, 1�. At the beginning of round 2, we
compute p1 � �0, 1� �� �8, 1� � �8, 1� (since �0, 1�� �8, 1�), and p2 then becomes
�0, 9�. Since �0, 1� is also contained in �0, 9�, p1 becomes �0, 9� in round 3, and
we return to the state observed in round 1. The analysis will forever oscillate
between the states shown in columns 1 and 2. ��

4.2 Donut Domains

Most numerical domains are restricted to convex relations between variables;
however, it is often useful to allow limited forms of non-convex reasoning. Donut
domains [6] are constructed as the set difference of two convex domains �A1,�1�
and �A2,�2� (relative to a given concrete powerset domain). We first consider
an idealized form of donut domains. An abstract value �x1, x2	 � A1!A2 is inter-
preted according to the concretization function:

γ�x1, x2	 � γ1�x1	!γ2�x2	

16 G. Gange et al.

Fig. 6. The pair of intervals �x, y � ��2,�1	
 and �x, y � �1, 2	
 has four minimal upper
bounds (with respect to the inclusion ordering). In each case, the convex hull remains
the same, but the hole component can exclude either of the rectangular regions between
the two squares, or one of the two corner rectangles.

x1 is an over-approximation of the set of reachable states, and x2 is an under-
approximation of the set of unreachable states. Assuming a suitable normaliza-
tion operation, this induces a partial order over the abstract values:

�x1, x2	 � �y1, y2	 iff γ�x1, x2	 � γ�y1, y2	

This partial order clearly does not form a lattice, as there may be many minimal
upper bounds of a given pair of elements.

Example 5 (The donut domain of intervals does not have a least upper bound).
Consider computing the least upper bound of a � �x, y � �1, 2�	 and b � �x, y �
��2,�1�	. Four minimal upper bounds are illustrated in Figure 6. All the min-
imal upper bounds are of the form �x, y � ��2, 2�	 � "p�x, y	 for some “hole”
constraint p. For example, p�x, y	 may be �x � ��2, 2�	 � �y � ��1, 1�	, or we
could have �x � ��2, 1�	��y � ��1, 2�	. Even though all four choices are minimal
with respect to �, the concretization of the rectangular bounds shown in the
centre is larger than that of the square bounds shown to the right. ��

Given that this ordering lacks a least upper bound, any precise quasi-join will
necessarily suffer the same precision and non-termination problems present in
other non-lattice domains.

Example 6 (Any minimal quasi-join for the donut domain over intervals is non-
associative). Consider again the intervals discussed in Example 5. Assume the
quasi-join chooses the upper-left square p � �x � ��2, 1�	 � �y � ��1, 2�	 as the
hole. Then �a �� b	 �� p has no hole, where the minimal upper bounds have the
non-empty holes �x � �1, 2�	 � �y � ��2, 1�	 and �x � ��1, 2�	 � �y � ��2,�1�	.
For any other minimal choice made by ��, we can select p similarly such that
�a �� b	 �� p is strictly larger than a �� �b �� p	. ��

We now turn our attention to the formulation of donut domains presented
in [6]. Given the difficulty, in general, of computing a minimal convex under-
approximation of the complement of a pair of donuts, it is unsurprising that a
simplified join is presented instead. The authors first define a slightly different
ordering over abstract values. They define

�x1, x2	 �1�2 �y1, y2	 � x1 �1 y1 �
�
γ1�x1	 � γ2�x2	 # γ1�y1	 � γ2�y2	

�

Abstract Interpretation over Non-lattice Abstract Domains 17

A1 A0 A2 A0

Fig. 7. The two donut objects �A1, A0� and �A2, A0� have identical concretizations,
but are incomparable under the ordering 1�2

The bracketed component of this definition is precisely the partial order used
above; �1�2 is then a subset of �. We suspect a misprint has crept in here, since
otherwise, for some donut domains, there are values with identical concretization
which are incomparable under �1�2. An example of this is given in Figure 7. The
donut objects �A1, A0� and �A2, A0� are built from octagons;A0 can be expressed
as x � 0, A1 as �4 � y � 4� x � y 4, and A2 as �4 � y � 4� x � �y 4.

The join is defined as �x1, x2	 ��1�2 �y1, y2	 � �x1 �1 y1, �x1, x2	�̆�y1, y2		,
where

�x1, x2	�̆�y1, y2		 � �α��γ2�x2	 $ γ2�y2		 � �γ2�x2	 $ γ1�y1		 � �γ2�y2	 $ γ1�x1			

The first component of the quasi-join is simply the join over A1. �̆ computes
the complement by taking the intersection of each hole with the complement of
the other value. Note that this only reasons about existing holes, and does not
synthesize additional holes from gaps between the convex hulls; in the case of
Example 6, ��1�2 simply takes the convex hull of the pair. Once the complement
is computed, it is mapped back to A2 by �α; this differs from α2 in that �α
under-approximates the set of concrete states, rather than over-approximates.
The definition of �α is left unspecified; it is assumed to select one of the possibly
many convex under-approximations of the complement.

As the previous paragraph illustrates, the donut domain, with the operations
provided in [6], is not a quasi-lattice. The domain could, however, be turned into
a quasi-lattice, by providing precise (minimal) upper bound operations, as these
do exist. In any case, we can construct a non-terminating instance for donut
domains in a similar manner as for wrapped intervals.

Example 7 (Analysis with the donut domain over intervals does not terminate).
Figure 8 shows a non-terminating example for donut domains. We start with the
constraint x, y � ��2, 5��"�x, y � �2, 4		. At the beginning of round 1, given this
definition of �1�2, there are two minimal choices of hole. Assume we pick the hole
in the top-right. This gives us the value �x, y � ��5, 5�, x, y � �2, 4		. Applying
f , we get p2 � �x, y � ��5, 5�, x, y � ��4,�2		. Notice that this contains p0. In
round 2, we then get p1 � �x, y � ��5, 5�, x, y � ��4,�2		. Then p2 � �x, y �
��5, 5�, x, y � �2, 4		. This again contains p0, so round 3 returns to the state
observed in round 1. As for the case of wrapped intervals, the analysis oscillates
forever between the states observed in rounds 1 and 2. ��

18 G. Gange et al.

x, y � ��2, 5	
x � �2, 4
 � y � �2, 4

x � �x
y � �y

p0

p1

p2

0 1 2 3

Fig. 8. Non-terminating analysis of the donut domain over intervals; column i shows
the possible values for �x, y
 in round i. The top entry in round 1 illustrates the two
minimal upper bounds.

4.3 Segmentations for Array Content Analysis

Cousot, Cousot and Logozzo [4] propose a novel approach to the analysis of
array-processing code. The idea (a further development of work by Gopan, Reps
and Sagiv [7], and by Halbwachs and Péron [9]) is to summarise the content of an
array by using “segmentations”. These are compact descriptions that combine
information about the order of indices with summary information about the
content of delineated array segments. More precisely, a segmentation is of the
form

�e11 . . . e
1
m1
� P1 �e

2
1 . . . e

2
m2
� P2 % % %Pn�1 �e

n
1 . . . enmn

�

where each e is an index expression and Pj is a description that applies to
every array element between index ej�1 and index ej . The lumping together
(between a pair of curly brackets) of several index expressions indicates that
these expressions are aliases, that is, ej1 � ej2 � % % % � ejmj

. In our examples,
index expressions will be constants or program variables, but they could be more
complex. Unless otherwise indicated, the interval from ej to ej�1 is assumed to
be definitely non-empty. To indicate that it may be empty, the curly brackets
surrounding ej�1 are followed by a ‘?’. As examples of what segmentations tell
us about index relations, a segmentation of form �0�..�s�?..�t�?..�N� tells us
that 0 � s � t & N , whereas one of form �0 s�..�u�?..�t N� tells us that
0 � s � u & t � N .

Segmentation unification is the process of, given two segmentations with
“compatible” extremal segment bounds (in general for the same array), modi-
fying both segmentations so that they coincide. By “compatible” we mean that
the first and last segment bounds have a non-empty intersection.

Segmentation unification is a key operation since it is the core of the join.
Sec 11.4 of [4] states the problem of segmentation unification admits a partially
ordered set of solutions, but in general, not forming a lattice.

Abstract Interpretation over Non-lattice Abstract Domains 19

0..�s�?..�t�?..�N�

s � 0, u � t, t � N

p0

p1

p2

0

�0�..�s�?..�t�?..�N�

�0 s�..�u�?..�t N�

1

�0�..�s�?..�N�

�0 s�..�t N�

2

�0�..�s�?..�t�?..�N�

�0 s�..�u�?..�t N�

Fig. 9. Non-terminating analysis with array segmentations; column i shows the seg-
mentation in round i

For instance, unifying �0�..�a�..�b�..�c� with �0�..�b�..�a�..�c� results in two
incomparable minimal solutions: �0�..�a�..�c� and �0�..�b�..�c� .

The authors describe a greedy pseudo-algorithm that scans left-to-right, keep-
ing a point-wise consistent subset of the ordering. They also describe a 2 look-
ahead approach (in contrast with the greedy 1 look-ahead algorithm) which takes
the next segment into account when unifying. As we should expect, both of these
quasi-joins are non-monotone.

Example 8 (1 look-ahead segment unification is non-monotone). Let segment
A � �0�..�s�..�t�..�N�, B � �0�..�u�..�s�..�N�, and B� � �0�..�s�..�N�. Clearly,
B �B�. However, we have A ��B � �0�..�N�, and A ��B� � �0�..�s�..�N�. ��

The 2 look-ahead algorithm is also clearly non-monotone, such as in the case
where A � �0�..�a�..�b�..�N� and B � �0�..�b�..�c�..�N�. (In this case, the 1
look-ahead algorithm would see that �a� and �b� do not match, discarding both,
then again for �b� and �c�, returning the segmentation �0�..�N�).

In both cases, we can construct a non-terminating instance following the struc-
ture of Theorem 4. We present only an example for the 1 look-ahead algorithm;
the 2 look-ahead case can be constructed in a very similar fashion.

Example 9 (Analysis with the array segmentation domain does not terminate
using the 1 look-ahead unification algorithm). Figure 9 shows an example over
variables �s, t, u�. Initially, we have 0 � s � t & N . Reaching p2, we have the seg-
mentation �0 s� . . . �u�? . . . �t N�. Unifying at p1, the �t� and �u� partitions are
discarded, yielding �0� . . . �s�? . . . �N�. Since t is not in the current segmentation,
u is omitted in the next round, and we reconstruct the original segmentation. It
is interesting to note that this oscillates between two comparable values. ��

This domain does not satisfy the quasi-lattice conditions using either of the
described �� definitions. For example, using the 1 look-ahead algorithm, we have
x � �0�..�s�..�t�..�N�� y � �0�..�t�..�N�, but x �� y � �0�..�N� � y. However,
a related quasi-lattice could be constructed by using a more precise �� which
selects amongst the set of minimal upper bounds.

20 G. Gange et al.

5 Abstract Interpretation over Bounded Posets

We have seen that, even for a domain satisfying the relatively strict quasi-lattice
requirements, being a non-lattice has negative consequences for predictability,
precision and termination of Kleene iteration. We now consider abstract inter-
pretation over abstract domains that are only required to be bounded posets.

5.1 Non-associative Quasi-joins

The lack of associativity of a quasi-join cannot of itself compromise the total
correctness of the abstract interpretation algorithm. However, we have seen that
it can cause a loss of precision. It also means that different fixed point algorithms
may lead to different results, further complicating the design of an abstract
interpretation framework.

Usually analysis frameworks will define a generalized quasi-join operation in
terms of a binary quasi-join:

	

�x1, . . . , xn� � �% % % �x1 �� x2	 �� x3 % % % 	 �� xn

and similarly for �� (if this operation is needed). Because quasi-joins are not
associative, clearly the ordering of the xi is important. Theorem 3 shows us
that in some cases no ordering will produce a minimal upper bound, so it is
preferable to specify a generalized quasi-join operation directly. For example, in
the case of the wrapped interval domain, Navas et al. [11] present a generalized
quasi-join operation defined in terms of a binary quasi-join that produces the
minimal upper bound with a complexity of O�n log�n		, where n is the number
of w-intervals. The generalized quasi-join can compute the minimal solution by
first ordering the w-intervals lexicographically. Then, it repeatedly applies the
binary quasi-join to the ordered sequence while keeping track of the largest gap
which is not covered by the application of the binary quasi-joins. We refer to [11]
for details about the algorithm.

5.2 Non-monotone Quasi-joins

As discussed in Section 3.3, in abstract interpretation, we often wish to find the
least fixed point of a function defined in terms of abstract operations (transfer
functions) and joins. When using quasi-lattices, and hence quasi-joins, we may
find ourselves seeking the least fixed point of a non-monotone function. In that
setting, Theorem 2 does not apply, so we do not know whether a least fixed
point exists, or, if it does, how to compute it. As we have seen, standard Kleene
iteration may not terminate. We now show, however, that a generalized Kleene
iteration algorithm will produce a sound result, under reasonable assumptions.

Theorem 5. Let C be a complete lattice and f : C C be continuous. Let A
be a bounded poset with least element �, and let γ : A C be given. If the (not
necessarily monotone) g : A A approximates f , that is,

�y � A : f�γ�y		 � γ�g�y		 (1)

Abstract Interpretation over Non-lattice Abstract Domains 21

and the sequence g' � ��, g��	, g2��	, . . .� is ultimately cyclic, then for every y
in the ultimate cycle of g', lfp�f	 � γ�y	.

Proof. Let Y � �y0, . . . , ym�1� be the ultimate cycle of g' and let x0 �
�

0�i�m

γ�yi	, We then have:

f�x0	 � f�γ�yi		 for all 0 � i & m, by monotonicity of f
� γ�g�yi		 for all 0 � i & m, by (1)
� γ�yi�1 mod m	 for all 0 � i & m

Hence f�x0	 �
�

0�i�m γ�yi	 � x0. Clearly �C � x0, so by monotonicity of

f , and the transitivity of �, fk��C	 � x0 for all k � N. As f is continuous,
lfp�f 	 � x0 , so for each y � Y , lfp�f	 � γ�y	. ��

This has two important ramifications for use in abstract interpretation:

1. Kleene iteration will not cycle (repeat) before finding a sound approximation
of the true set of concrete states; and

2. In a finite abstract domain, it will reach this result in finite time.

Thus Kleene iteration can safely be used for abstract interpretation over bounded
poset abstract domains, as long as we generalize the loop detection algorithm to
detect cycles of cardinality greater than one. We can use the fact that any ulti-
mately cyclic sequence must include a subsequence xi, xi�1 such that xi � xi�1

to reduce the overhead of the loop check. Also, since every element of the ulti-
mate cycle is a sound approximation, we are free to return a cycle element e for
which γ�e	 has minimal cardinality. We assume we are supplied with a function
better�x1, x2	 that returns the xi for which γ�xi	 has the smaller cardinality.

Algorithm 6 (Generalised Kleene Iteration)

procedure ult cycle(g)
result (�
repeat

prev (result
result (g�result	

until prev � result
while prev � result do

result (g�g�result		
prev (g�prev	

end while
next (g�result	
while prev � next do

result (better�result , next	
next (g�next	

end while
return result

end procedure

22 G. Gange et al.

The repeat loop searches for the beginning of an ultimate cycle while repeatedly
applying g. Note that the until condition is a strict inequality and hence, if there
is a fixed point (that is, prev � result) the loop will also terminate. The first
while loop iterates until it completes the ultimate cycle.2 By Theorem 5, any
solution obtained from any element in this cycle is a sound approximation of the
least fixed point. The second while loop then chooses the most precise member
of the cycle using the better function.

This algorithm performs very similarly to Kleene iteration in cases where
the Kleene sequence is an ascending chain. In other cases it is costlier. Where
performance is preferred to precision, the final while loop can safely be omitted.

A more efficient, but even less precise, algorithm can be had by forcibly en-
suring that the Kleene sequence is increasing by defining

g��x	 � x �� g�x	.

Then the standard Kleene iteration algorithm can be used on g�. Note that where
the Kleene sequence for g is an ascending chain, all of these approaches yield the
same result at approximately the same cost.

Example 10 (Forced climbing on wrapped intervals). Consider the program given
in Example 1. After round 1, we have p1 � �0, 9�, p2 � �8, 1�. Where previously
we compute the updated value of p1 as �0, 1� �� �8, 1�, we now compute p1 ��0, 9� �� �0, 1� �� �8, 1� � �. The updated value of p2 also becomes �, and we have
reached a fixed point. ��

Where the abstract domain is infinite, or just intractably large, another mecha-
nism must be used to hasten termination, at the cost of some loss of precision. As
has been previously observed [14], widening may be used to ensure termination:

The widening technique can be useful even outside abstract interpreta-
tion. For example, in a normal dataflow analysis, we can use it to make
sure that the series of abstract values computed for a given program point
by the analysis iterations is an ascending chain, even if the transfer func-
tions are not monotone.

However, care must be taken. In many cases, widening is used periodically dur-
ing Kleene iteration, giving up precision only when convergence appears too
slow. If this is done for Kleene iteration over a non-monotone function, it is
possible that the progress that is ensured by the occasional widening step is
lost in successive non-widening steps, leading to an infinite loop. That is, if the
underlying function is not monotone, applying widening occasionally will not
make it monotone. For example, if g�x	 � y, g�y	 � z, g�z	 � x, and x∇y � z,

2 This part exploits Floyd’s “tortoise and hare” principle [10], and requires only two
values at a time to be remembered. However, it requires more applications of g than
are strictly needed. If computation of g is expensive, it may be preferable to use a
hash table to store values returned by g, and to simplify the loop body so that g is
called just once per iteration.

Abstract Interpretation over Non-lattice Abstract Domains 23

and the widening operation is applied on odd steps, then the Kleene sequence
�x, x∇g�x	 � z, g�z	 � x, . . .� is not ultimately stationary. Thus to ensure ter-
mination, perhaps after a finite number of non-widening steps, widening must
be performed at each step. Alternatively some other measure must be taken be-
tween widening steps (such as taking the quasi-join with the previous result) to
ensure the function is monotone.

6 Conclusion

In the pursuit of increased precision, it is tempting to step outside the lattice-
based framework of abstract interpretation. In the absence of a join operation,
the obvious response is to seek a “quasi-join” which provides minimal upper
bounds. We have shown, however, that such a quasi-join cannot always be gen-
eralized to a “minimal-upper-bound operation”. This means that the precision
of analysis results depends on arbitrary and insignificant design decisions that
should be immaterial to the analysis. Equally, even a small semantics-preserving
change to the surface structure of a subject program may have great impact on
precision. Finally, the quasi-join’s inevitable lack of monotonicity easily leads to
non-termination of Kleene iteration.

We have exemplified these phenomena with three recently proposed non-
lattice abstract domains. Usually when such domains are proposed, their propo-
nents provide remedial tricks that overcome the problems we discuss, including
non-termination of analysis. In particular, widening may be used to ensure ter-
mination. We have argued that, even so, care must be exercised if widening
is interleaved with non-widening steps. Finally we have provided strategies for
adapting standard Kleene iteration to the context of non-monotone functions
defined on bounded posets, including forced climbing, widening, and the use of
a generalised, loop-checking variant of Kleene iteration.

Acknowledgments. We wish to thank the anonymous reviewers for many in-
sightful suggestions. This work was supported through ARC grant DP110102579.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the Fourth Annual Symposium on Principles of Programming Languages, pp.
238–252. ACM (1977)

2. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Pro-
ceedings of the Sixth Annual Symposium on Principles of Programming Languages,
pp. 269–282. ACM (1979)

3. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrow-
ing approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

24 G. Gange et al.

4. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: Proceedings of the 38th Annual
Symposium on Principles of Programming Languages, pp. 105–118. ACM (2011)

5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity (1990)

6. Ghorbal, K., Ivančić, F., Balakrishnan, G., Maeda, N., Gupta, A.: Donut do-
mains: Efficient non-convex domains for abstract interpretation. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 235–250. Springer,
Heidelberg (2012)

7. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array op-
erations. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 338–350. ACM (2005)

8. Gotlieb, A., Leconte, M., Marre, B.: Constraint solving on modular integers. In:
Proceedings of the Ninth International Workshop on Constraint Modelling and
Reformulation (September 2010)

9. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
SIGPLAN Notices 43, 339–348 (2008)

10. Knuth, D.E.: The Art of Computer Programming, 2nd edn., vol. 2. Addison-Wesley
(1981)

11. Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Signedness-agnostic pro-
gram analysis: Precise integer bounds for low-level code. In: Jhala, R., Igarashi, A.
(eds.) APLAS 2012. LNCS, vol. 7705, pp. 115–130. Springer, Heidelberg (2012)

12. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999)

13. Regehr, J., Duongsaa, U.: Deriving abstract transfer functions for analyzing embed-
ded software. In: LCTES 2006: Proceedings of the 2006 ACM SIGPLAN/SIGBED
Conference on Language, Compilers, and Tool Support for Embedded Systems, pp.
34–43. ACM (2006)

14. Sălcianu, A.: Notes on abstract interpretation (2001),
http://www.mit.edu/~salcianu (Unpublished Manuscript)

15. Sen, R., Srikant, Y.N.: Executable analysis using abstract interpretation with cir-
cular linear progressions. In: Proceedings of the Fifth IEEE/ACM International
Conference on Formal Methods and Models for Codesign, pp. 39–48. IEEE (2007)

http://www.mit.edu/~salcianu

Localizing Widening and Narrowing

Gianluca Amato and Francesca Scozzari

Dipartimento di Economia
Università “G. d’Annunzio” di Chieti-Pescara

{gamato,fscozzari}@unich.it

Abstract. We show two strategies which may be easily applied to stan-
dard abstract interpretation-based static analyzers. They consist in 1)
restricting the scope of widening, and 2) intertwining the computation
of ascending and descending chains. Using these optimizations it is pos-
sible to improve the precision of the analysis, without any change to the
abstract domains.

1 Introduction

In abstract interpretation-based static analysis, the program to analyze is typi-
cally translated into a set of equations describing the abstract program behavior,
such as: ⎧⎪⎪⎨⎪⎪⎩

x1 = Φ1(x1, . . . , xn)

...

xn = Φn(x1, . . . , xn)

(1)

Each index i ∈ {1, . . . , n} represents a control point of the program and each Φi

is a monotone operator. The variables in the equations range over an abstract do-
main A, which is a poset whose elements encode the properties we want to track.
The analysis aims at computing the least solution of this system of equations.

In theory, it is possible to find the (exact) least solution of the system with
a Kleene iteration, starting from the least element in An. However, in practice,
many abstract domains have infinite ascending chains, therefore this procedure
may not terminate. In other cases, domains may have very long finite ascending
chains that would make this procedure impractical. The standard solution to
these problems is to use widening, which ensures the termination of the analysis
in exchange of a certain loss in precision.

Widening has been extensively studied, and we can find in the literature
many different widenings for the most common abstract domains. Furthermore,
many domain-independent techniques have been developed to improve widening
precision, such as delayed widening, widening with threshold [9] and lookahead
widening [17]. There are alternatives to the use of widening, such as acceleration
operators [16] and strategy/policy iteration [11,15]. However, acceleration only
works for programs with restricted linear assignments, while strategy/policy it-
eration is restricted to template domains [26]. Therefore, widening is the only
general applicable mechanism.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 25–42, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 G. Amato and F. Scozzari

Using widening in the Kleene iteration, we still get an ascending chain which
stabilizes on a post-fixpoint of Φ. It is common practice to improve the precision
of the analysis continuing the iteration, taking this post-fixpoint as a starting
point for a descending chain. Every element of the latter is an over approximation
of the least fixpoint, therefore it is possible to stop the sequence at any moment
without losing correctness. Sometimes a narrowing operator may be used, with
the same purpose.

While widening and ascending chains have been extensively studied, little
attention has been devoted to descending chains. One of the few papers, if not
the only one, which tackles the subject is [20]. Nonetheless, descending chains
(with or without narrowing) are often needed to get a decent precision.

In this paper we propose two strategies for improving the way standard ab-
stract interpretation-based static analyzers are engineered. The first improve-
ment regards widening and ascending chains. The second improvements regards
descending chains, in particular the way ascending and descending chains may
be intertwined.

1.1 Improving Widening

Widening is defined by Cousot and Cousot [12] as a binary operation � : A ×
A → A over an abstract domain A, with the property that, given a sequence
x0, . . . , xi, . . . of abstract elements, the sequence y0 = x0, yi+1 = yi � xi is
eventually constant.

It is possible to select a set of widening points W ⊆ {1, . . . , n} among all the
control points of the program and replace, for each i ∈ W , the i-th equation in
the system (1) with

xi = xi � Φi(x1, . . . , xn) .

When W is admissible, i.e., every loop in the dependency graph of the system
of equations contains at least one element in W , then any chaotic iteration
sequence terminates. The choice of the set W of widening points may influence
both termination and precision, thus should be chosen wisely.

Bourdoncle’s algorithm [10] returns an admissible set of widening points.
When the equations are generated by a control-flow graph, this set contains
all the loop junction nodes. For structured programs, these widening points are
exactly the loop heads of the program. This means that, if i ∈ W , the corre-
sponding equation is

xi = xin ∨ xback ,

where the control points i, in and back are, respectively, the head of the loop, the
input to the loop and the tail of the loop. The standard application of widening
yields the equation

xi = xi � (xin ∨ xback) .

We believe that this is a source of imprecision, and show that, under certain
conditions, it is possible (and generally better) to replace this equation with

xi = xin ∨ (xi � xback) . (2)

Localizing Widening and Narrowing 27

i = 0
while (i <10) {

j = 0
while (j <10)

j = j+1
i = i+1

}
// Invariant: i = 10

i = 0

i < 10

j = 0

j < 10

j = j + 1

i = i+ 1

1

2

true
3

false

4

5

6

true
7

false

8

9

10

x1 = [0, 0]× [−∞,∞]

x2 = x1 ∨ x10

x3 = x2 ∧ ([−∞, 9]× [−∞,∞])

x4 = x2 ∧ ([10,∞]× [−∞,∞])

x5 = first(x3)× [0, 0]

x6 = x5 ∨ x9

x7 = x6 ∧ ([−∞,∞]× [−∞, 9])

x8 = x6 ∧ ([−∞,∞]× [10,∞])

x9 = x7 + ([0, 0]× [1, 1])

x10 = x8 + ([1, 1]× [0, 0])

Fig. 1. The example program nested

The last equation suggests that, when a junction node is entered from outside
the loop, widening is replaced by least upper bound, and when a junction node
is entered from inside the loop, widening is performed only on values generated
inside the loop. We call localized widening the use of widening according to Eq. 2.
Localized widening is mostly useful in the case of nested loops, where xin does
not change while analyzing the inner loop.

Consider the program in Figure 1 and the corresponding system of equations.
Bourdouncle’s algorithm outputs the set of widening pointsW = {2, 6}. Consider
the trace of the analysis given in Figure 2, which is limited to the ascending chain
and uses a recursive iteration strategy with the standard widening on the interval
domain.

In the result, both x2 and x6 have infinite upper bounds for i. The problem is
that, the second time we enter the inner loop, the new value of x6 is computed
as

x6 � (x5 ∨ x9) = {i = 0, j ≥ 0} � ({i ∈ [0, 9], j = 0} ∨ {i = 0, j ∈ [1, 10]})
= {i = 0, j ≥ 0} � {i ∈ [0, 9], j ∈ [0, 10]}
= {i ≥ 0, j ≥ 0} .

If we compute the descending sequence starting from here, we get x2 = {i ≥ 0}
and x6 = {i ≥ 0, j ∈ [0, 10]}. Note that, while for j we got optimal bounds,
the analysis cannot determine that i = 10 at the end of the loops. The problem
is that the descending iteration cannot improve the upper bound for i for the
variable x5, since i is not used in the inner loop. This is a well known problem,
and [20] gives a detailed presentation of the issue.

28 G. Amato and F. Scozzari

outer loop inner loop

x2 = {i = 0}
x5 = {i = 0, j = 0}

x6 = {i = 0, j = 0}
x9 = {i = 0, j = 1}

x6 = {i = 0, j ≥ 0}
x9 = {i = 0, j ∈ [1, 10]}

x6 = {i = 0, j ≥ 0}
x10 = {i = 1, j ≥ 0}

x2 = {i ≥ 0}
x5 = {i ∈ [0, 9], j = 0}

x2 = {i ≥ 0}
x5 = {i ∈ [0, 9], j = 0}

x6 = {i ≥ 0, j ≥ 0}
x9 = {i ≥ 0, j ∈ [1, 10]}

x6 = {i ≥ 0, j ≥ 0}x10 = {i ≥ 1, j ≥ 10}

x2 = {i ≥ 0}

Fig. 2. Trace of the analysis (only the ascending chain) for the program in Figure 1
using standard widening. Boxed values are final values. Solid arrows depict the order
of execution, while dashed arrows show which input values are used to compute a new
value.

If we use localized widening as described in Eq. 2, the second time we enter
the inner loop the new value of x6 is computed as:

x5 ∨ (x6 � x9) = {i ∈ [0, 9], j = 0} ∨ ({i = 0, j ≥ 0} � {i = 0, j ≥ 1})
= {i ∈ [0, 9], j = 0} ∨ {i = 0, j ≥ 0}
= {i ∈ [0, 9], j ≥ 0} .

At the end of the ascending chain we get x2 = {i ≥ 0}, x6 = {i ∈ [0, 9], j ≥ 0}
and x10 = {i ∈ [1, 10], j ≥ 10}. This is enough to obtain, after the descending
chain, the required result x2 = {i ∈ [0, 10]} and x6 = {i ∈ [0, 9], j ∈ [0, 10]}.

1.2 Improving Descending Sequences

The way ascending and descending sequences interact has never been fully clar-
ified. The standard technique is to first compute an over approximation of the

Localizing Widening and Narrowing 29

least solution of the equations with an ascending chain, and later refine the so-
lution with a descending sequence. However, in the presence of nested loops,
other choices are possible. In particular, when using a recursive strategy for the
ascending sequence [10], it seems natural to intertwine ascending and descending
sequences.

Consider again the program in Figure 1. Using either a recursive or an iter-
ative strategy with the standard widening, the ascending chain determines the
following invariants for the loops:

x2 = {i ≥ 0} x6 = {i ≥ 0, j ≥ 0}

As shown in the previous section, precision may be partially recovered using a
descending iteration, obtaining:

x2 = {i ≥ 0} x6 = {i ≥ 0, j ∈ [0, 10]}

However, it is possible to view the nodes inside the dashed rectangle in Figure 1
as if they were a single node, with input edge 5 and output edge 8. The abstract
transformer for the new node is obtained performing a standard analysis of the
inner loop, comprised of both ascending and descending chain. In this case, we
have the following results:

x0
2 = ⊥ x1

2 = {i = 0} x2
2 = {i ∈ [0,∞]}

x0
5 = ⊥ x1

5 = {i = 0, j = 0} x2
5 = {i ∈ [0, 9], j = 0}

x0
8 = ⊥ x1

8 = {i = 0, j = 10} x2
8 = {i ∈ [0, 9], j = 10}

where the values for x8 are computed by considering the dashed rectangle as a
whole. Every time it is considered, the analysis of the inner loop starts from the
beginning, independently from the results of previous iterations. The last row
is the fixpoint of the ascending chain (of the outer loop). Then, the descending
chain (of the outer loop) begins:

x↓0
2 = {i ∈ [0,∞]} x↓1

2 = {i ∈ [0, 10]}
x↓0
5 = {i ∈ [0, 9], j = 0} x↓1

5 = {i ∈ [0, 9], j = 0}
x↓0
8 = {i ∈ [0, 9], j = 10} x↓1

8 = {i ∈ [0, 9], j = 10}

In this case, we are able to prove that in the head of the outer loop i ∈ [0, 10],
since in the ascending chain we do not lose the information that i ∈ [0, 9] holds
in the inner loop.

If we look at the entire procedure without considering the abstraction given
by the dashed rectangle, it happens that ascending and descending sequences are
intertwined. While an ascending sequence is going on in the outer loop, either an
ascending or descending sequence is going on in the inner loop. We call localized
narrowing this strategy of intertwining ascending and descending chains. Here
we use the term narrowing broadly, to mean not only the standard narrowing
operator [13] but any procedure producing a descending chain.

30 G. Amato and F. Scozzari

1.3 Plan of the Paper

Localized widening and narrowing may improve precision, but it is not com-
pletely clear whether they may be applied without compromising correctness
and termination.

In Section 2, we show that localized widening is correct and terminates for any
iteration strategy. In Section 3, we show that localized narrowing is correct and
guarantees termination. Section 4 shows that localized widening and narrowing
may improve precision not only w.r.t. standard abstract interpretation, but even
when compared to other optimizations.

2 Localized Widening

We now formalize the treatment of widening presented in Section 1.1. We show
the conditions that allow to replace the standard widening with the localized
one and prove the correctness of the resulting analysis.

In the following, we denote with Φ a system of equations as in (1), where each
variable xi ranges over a poset A, and each Φi : A

n → A is a monotone function.
With an abuse of notation, we denote with Φ = (Φ1, . . . , Φn) the function Φ :
An → An obtained as the product of the Φi’s.

2.1 Preliminaries

We use the standard definition of widening, as appeared for the first time in [12].

Definition 1 (Widening [12]). A widening for the poset A is a binary oper-
ator � : A×A → A such that:

1. x ≤ x � y,
2. y ≤ x � y,
3. for every sequence (xi)i∈ω, the sequence y0 = x0, yi+1 = yi�xi is eventually

constant.

In [14] a different definition of widening is introduced, where the convergence of
the sequence (yi) is ensured only if the sequence (xi) is ascending. Note that,
every widening �̃ satisfying [14] may be transformed in a widening � satisfying
[12] by defining

x� y = x�̃(x ∨ y) . (3)

Definition 2 (Dependency graph). The dependency graph of the system of
equations Φ is a directed graph with nodes {1, . . . , n} and an edge i → j iff xi

occurs in Φj .

Localizing Widening and Narrowing 31

Example 1. The dependency graph for the system in Figure 1 is:

1 2 3

4

5 6

7

8

9

10

The nodes in the dependency graph correspond to the edges in the control-flow
graph.

We recall from [10] the definitions of hierarchical ordering and weak topological
ordering.

Definition 3 (Hierarchical ordering [10]). A hierarchical ordering of a set
S is a well-parenthesized permutation of this set without two consecutive “(”.

In other words, a hierarchical ordering is a string over the alphabet S augmented
with left and right parenthesis. The elements between two matching parentheses
are called a component and the first element of a component is called the head.
The innermost component containing an element l is denoted by comp(l), and its
head is denoted by head(l), when they exist. The set of heads of the components
containing the element l is denoted by ω(l).

Example 2. For the dependency graph in Example 1, two hierarchical orderings
are 1 2 3 4 5 6 7 8 9 10 and 1 (2 3 5 (6 7 9) 8 10) 4. In the second ordering, the
heads are 2 and 6 and we have head(7) = 6 and head(3) = 2.

A hierarchical ordering induces a total ordering, that we denote by �, corre-
sponding to the permutation of the elements.

Definition 4 (Weak topological ordering [10]). A weak topological order-
ing of a directed graph (w.t.o. for short) is a hierarchical ordering of its nodes
such that for every edge u → v, either u ≺ v or v � u and v ∈ ω(u).1

Example 3. For the graph given in Example 1, a possible weak topological or-
dering is 1 (2 3 5 (6 7 9) 8 10) 4.

Every weak topological ordering of the dependency graph of Φ determines a
set of admissible widening points (the set of all the heads) and two iteration
strategies for solving the equations in Φ: an iterative and a recursive strategy.

In the recursive strategy, we apply the equations in the order given by the
w.t.o., but every time we enter a new component, we loop within that component
until all its values are stabilized. The iterative strategy is similar, but with the
ordering obtained by removing all parentheses except the ones for the outermost
component.

1 In [10], the first condition was u ≺ v ∧ v /∈ ω(u). However, the second conjunct is
implied by the first one.

32 G. Amato and F. Scozzari

2.2 Localizing Widening

In the following, assume given a system Φ, its dependency graph and an associ-
ated weak topological ordering. An admissible set of widening points is implicitly
defined as the set of all the heads in the weak topological ordering.

Definition 5 (Loop join node). A loop join node is a node l ∈ [1, n] in the de-
pendency graph of Φ such that l is the head of a component and Φl(x1, . . . , xn) =
xv1 ∨ · · · ∨ xvm for some {v1, . . . , vm} ⊆ [1, n].

Given a loop join node l, let {vi1, . . . , vir} and {vb1, . . . , vbs} be the partition of
{v1, . . . , vm} such that vij /∈ comp(l) and vbj ∈ comp(l). Elements of the two sets

are called input nodes and back nodes respectively. We define xin
i = xvi

1
∨· · ·∨xvi

r

and xback
i = xvb

1
∨ · · · ∨ xvb

s
.

Example 4. Nodes 2 and 6 in the system in Figure 1 are loop join nodes.

Intuitively, the above definition allows us to distinguish between join nodes gen-
erated by while loops and join nodes generated by if statements. In the first case,
we separate the edges coming from inside the loop, denoted by xin

i , and the edges
coming from outside the loop, denoted by xback

i . Note that the conditions on in-
put and back nodes, i.e., vij /∈ comp(l) and vbj ∈ comp(l), are equivalent to vij ≺ l

and l � vbj .

Definition 6. We denote by Φ∨ a new system of equations derived from Φ and
such that, for each head node i, the i-th equation is replaced as follows:

– if i is a loop join node, by xi = xin
i ∨ (xi � xback

i);
– if i is not a loop join node, by xi = xi � Φi(x1, . . . , xn).

The idea is that any input coming from outside of a component does not need
to be guarded by the widening. In fact, either the input does not belong to any
loop (and therefore it has a constant value after the first iteration) or it belongs
to a loop, and therefore it is already guarded by another outer widening which
ensures that it will not increase forever. This reasoning works, however, only
assuming that all the head nodes are widening nodes.

Example 5. If Φ is the system in Figure 1 whose heads are 2 and 6, we have
that Φ∨ is the same as Φ but for the following equations: x2 = x1 ∨ (x2 � x10),
x6 = x5 ∨ (x6 � x9).

We can now prove that localized widening guarantees termination, using any
fair iteration sequence. First of all, we clarify what we mean with fair iteration
sequence.

An iteration sequence starting from D ∈ An is a possibly infinite sequence
(Xj) with elements Xj ∈ An such that:

– X0 = D.
– Xj for j > 0 is obtained from Xj−1 by applying one of the equations in Φ∨.

Localizing Widening and Narrowing 33

In the following we denote with δ(j) the equation chosen to compute Xj.

Definition 7 (Enabled equation). Given an iteration sequence (Xj), we say
that equation i is enabled in step k when

– either i has never been chosen before, i.e., {l ∈ [1, k − 1] | δ(l) = i} = ∅;
– or let m = max{l ∈ [1, k − 1] | δ(l) = i} the last choice of i: there is

l ∈ [m, k − 1] with δ(l) = u, u → i is an edge in the dependency graph,
X l > X l−1.

An equation is enabled when its execution may produce a new value. An equation
is not enabled when its execution cannot produce a new value, that is Xj

i =
Φ∨
i (X

j). A fair iteration sequence is an iteration sequence where some enabled
equations are eventually executed.

Definition 8 (Fair iteration sequence). A fair iteration sequence starting
from D ∈ An is an iteration sequence (Xj) starting from D such that, for any
step j, there exists j′ ≥ j such that the equation δ(j′) is enabled.

The sequence terminates when it is not possible to choose any equation. It is
immediate to see that both the iterative and recursive strategies compute fair
iteration sequences. Moreover, any work-list based iteration sequence is fair.

Theorem 1. Given a system of equations Φ and D ∈ An a pre-fixpoint of Φ,
any fair iteration sequence starting from D over Φ∨ terminates on a post-fixpoint
of Φ greater than D.

There is one peculiarity when we use localized widening we should be aware of.
While not specified in the definition, in the standard application of widening in
the form xi = xi �Φi(x1, . . . , xn), it is always the case that Φi(x1, . . . , xn) ≥ xi.
This does not hold anymore with localized widening. Some libraries of abstract
domains, such as PPL [8] or APRON [23], implement widening under the as-
sumption that the second argument is bigger then the first one. In this case, the
same trick of Eq. 3 may be used: it is enough to replace x � y with x � (x ∨ y).

3 Localized Narrowing

Looking from a different perspective, what localized widening does is to decouple
the analysis of the inner components from the analysis of the outer components.
Each component is analyzed almost as if it were a black box. We say “almost”
because every time the black box is entered, we remember the last value of the
variables and continue the analysis from that point: we are still computing a
fixpoint using a chaotic iteration strategy.

However, we can push further the idea of the black box, as we have shown
in Section 1.2. This allows to intertwine ascending and descending sequences in
order to reach better precision and generally pursuing different strategies which
do not follow in the umbrella of chaotic iteration. In this section, we are going
to formalize and generalize the example given in Section 1.2.

34 G. Amato and F. Scozzari

3.1 More on w.t.o. and Dependency Graphs

First of all, we make an assumption to simplify notation: we consider only sys-
tems of equations with a join regular w.t.o., according to the following definition.

Definition 9 (Join regular w.t.o.). A w.t.o. for the dependency graph of the
system of equations Φ is join regular iff all the heads of the components are loop
join nodes.

The reason why we use join regular w.t.o. is that, as shown for localized widen-
ing, it is possible to separate the information coming from outer components
from the information coming from inner components, giving better chance of
optimizations. If in the head node i we have the equation xi = Φi(xa, xb) and Φi

is not a join, it is not clear whether it is possible to separate the contribution of
xa and xb.

We could easily extend the algorithm to work on non join regular graphs,
along the lines of Definition 6, which chooses the right widening to be applied.
However, we think it is not a particularly heavy restriction, since systems of
equations used in static analysis generally come out from flow graphs or labelled
transition systems, and may be rewritten in such a way that the only equations
with more than one variable in right-hand side are of the form xi = xv1∨· · ·∨xvn ,
therefore allowing a join regular w.t.o.

The recursive algorithm we are going to present works on the components of
the w.t.o. In order to iterate over components and nodes, it uses the concepts of
segments and top-level elements.

Definition 10 (Segment). A segment is a set S ⊆ [1, n] such that there exists
a well-parenthesized substring of the w.t.o. which contains exactly the elements
in S.

Example 6. Consider the w.t.o. 1 (2 3 5 (6 7 9) 8 10) 4 from Example 3. Some of
the possible segments are {6, 7} and {3, 5, 6, 7, 9, 8}, while {5, 6, 7} and {3, 6, 7, 9}
are not segments, because the substring 5 (6 7 is not well-parenthesized and
{3, 6, 7, 9} does not come from a substring.

Intuitively, a segment corresponds to a piece of a program which is syntactically
correct, where loops are not broken apart. It is immediate to see that every
component C is a segment. Moreover, if C is a component with head h, then
C \ {h} is a segment. Finally, the entire [1, n] is a segment.

Definition 11 (Top-level elements). A top-level element of a segment S is
an element t ∈ S such that ω(t) ∩ S ⊆ {t}.

Example 7. Consider the w.t.o. 1 (2 3 5 (6 7 9) 8 10) 4 from Example 3. The
top-level elements of the segment {3, 5, 6, 7, 9, 8} are 3, 5, 6 and 8.

Localizing Widening and Narrowing 35

Algorithm 1. Analysis based on localized narrowing

The algorithm requires a system of equations Φ with a join regular w.t.o. and a global
map x : [1, n]→ A to keep track of the current value of the variables.

Require: S is a segment in the w.t.o. of Φ
1: procedure Analyze(S)
2: for all j ← tl(S) do � extracted in w.t.o.
3: if j is head of a component then
4: AnalyzeComponent(comp(j))
5: else
6: xj ← Φj(x1, . . . , xn)
7: end if
8: end for
9: end procedure

Require: C is a component in the w.t.o. of Φ
10: procedure AnalyzeComponent(C)
11: i← head of the component C
12: input← ∨{xl | l → i, l /∈ C} � Input from outer components
13: 〈 initialize candidateInv ≥ input 〉
14: repeat � Start of ascending phase
15: xi ← candidateInv
16: Analyze(C \ {i})
17: candidateInv ← xi �

∨{xl | l→ i, l ∈ C} � Widening with back edges
18: until candidateInv ≤ xi � End of ascending phase
19: while 〈 eventually false condition 〉 do � Start of descending phase
20: xi ← Φi(x1, . . . , xn)
21: y ← x
22: Analyze(C \ {i})
23: x← x ∧ y
24: end while � End of descending phase
25: end procedure

3.2 The Algorithm

Algorithm 1 is the formalization and generalization of the procedure illustrated in
Section 1.2. It depends on a system of equations Φ with a join regular w.t.o. and
on a global map x : [1, n] → A which contains the initial value and keeps track of
the current value of variables. There are two procedures mutually recursive. The
procedure AnalyzeComponent has a parameter which is a component of the
w.t.o., and calls Analyze to analyze the equations which are part of the com-
ponent, with the exception of the head. The head is analyzed directly within
AnalyzeComponent, using widening to ensure convergence. The procedure
Analyze takes as input a segment of the w.t.o., and iterates over the top-level el-
ements, either executing equations directly, or calling AnalyzeComponent for
nested components. The entry point of the algorithm is the procedure Analyze.
To analyze the entire system of equations, we call Analyze([1, n]) with x ini-
tialized to ⊥.

36 G. Amato and F. Scozzari

The procedure AnalyzeComponent depends on a policy, which initializes
candidateInv : the value for candidateInv may be chosen freely, subject to the
condition candidateInv ≥ input , where input is the join of all edges coming into
the join node from the outer components. It starts with an ascending phase,
where all the nodes on the component are dealt with, either directly, or with
a recursive call for nodes which are part of a nested component. Then it fol-
lows a descending phase where the ∧ operator is used to refine the result. The
lines 21 and 23 are used to enforce that x is descending. Termination of the de-
scending phase is ensured by the condition in line 19 which should be eventually
false. A typical check is obtained by performing a given number of descending
steps before giving up. A narrowing operating could be used instead to enforce
termination.

3.3 Initialization Policies

Let us consider some of the possible initialization policies. The simplest one is
the Restart policy, given by

candidateInv ← input � Restart policy (4)

With this policy, every time Analyze is called on a component, all the results of
the previous analyses are discharged and the analysis starts from the beginning.
This is exactly the behavior we have shown in Section 1.2.

When the outer component is in the ascending phase, this is mostly a waste,
since each time AnalyzeComponent is called with an input value which is
bigger than the previous one. Hence, even the resulting invariant should be bigger
than the one previously computed. We use “should” since non-monotonicity
of widening makes this statement potentially false. Nonetheless, it is probably
better for efficiency reasons not to start the analysis from the beginning. To this
purpose, we can use the Continue policy, which joins the new input with the
previous invariant.

candidateInv ← xi ∨ input � Continue policy (5)

Were not for the intertwining of ascending and descending sequences, this would
correspond to the use of localized widening. The Continue policy has a different
drawback. When the outer component is in the descending phase, successive
inputs generally form a descending chain. Starting from the last invariant may
preclude a more precise result to be found. The Hybrid policy tries to balance
efficiency and precision.

if input = oldinputi then � Hybrid policy
return

else if input < oldinputi then
candidateInv ← input

else
candidateInv ← xi ∨ input

end if
oldinputi ← input

(6)

Localizing Widening and Narrowing 37

i = 0
while (TRUE) {

i = i+1
j = 0
while (j <10) {

// Inv: 0 ≤ i ≤ 10
j = j+1

}
i f (i >9) i = 0

}

i = 0
while (i <4) {

j = 0
while (j<4) {

// Inv: i ≤ j + 3
i = i+1
j = j+1

}
i = i−j+1

}

i = 0
while (TRUE) {

// Inv: i ≥ 0
j = 0
while (j <10) {

j = j+1
}
i = i+11− j

}

Fig. 3. From left to right: programs hybrid, hh from [20] and nested2

This policy needs a global map oldinput : H → A, where H is the set of loop
heads, to keep track of old input values.

The Hybrid policy behaves either as the Restart or Continue policy, ac-
cording to the relation between the new input and the old one. The program
hybrid in Figure 3 is an example where the Hybrid strategy is more precise
then the Continue strategy. At the end of the ascending phase of the outer
loop, the inner invariant is 1 ≤ i, 0 ≤ j < 10. At the second iteration of the
outer descending phase, the inner loop is called with input 1 ≤ i ≤ 10, j = 0.
However, this is joined with the previous invariant, and since i is not used in
the inner loop, the improvement in precision is lost. With the Hybrid strategy,
when the inner loop is called with input 1 ≤ i ≤ 10, j = 0, since it is smaller
then the previous input 1 ≤ i, j = 0, the analysis starts from the beginning, and
the invariant of the inner loop is updated.

Since the combination of ascending and descending sequences is not something
commonly considered, Algorithm 1 requires a correctness proof.

Theorem 2. Algorithm 1 terminates and the global map x resulting from the
call to Analyze([1, n]) is a post-fixpoint of the set of equations Φ.

Note that, differently from the case of standard iteration strategies, we are not
sure that the post-fixpoint resulting from Analyze([1, n]) is greater than the
original value of x. If we want to find a solution bigger than a given D ∈ An,
we may modify the algorithm accordingly, or insert the lower bound in the
equations.

4 Related Works

In the abstract interpretation literature, many efforts have been devoted to im-
prove the precision of the analysis by modifying the standard procedure of an
ascending chain with widening followed by a descending chain.

Some frameworks propose a complete departure from the model of iterative
sequences, such as the acceleration operators [16] and the strategy/policy iter-
ation [11,15]. These are not compatible with localized widening and narrowing.

38 G. Amato and F. Scozzari

Other proposals refine the model of iterative sequences, and can be applied to-
gether with our optimizations. We recall the main ones, comparing them with
our results.

Gopan and Reps’ guided static analysis [18] is a technique were standard
program analysis is applied to a sequence of program restrictions, which are
essentially obtained by removing some edges from the control-flow graph of the
program. Each restriction is analyzed starting from the result of the previous
restrictions, until the original program is analyzed. Due to non-monotonicity of
widening, this procedure may improve precision, especially in the case where
loops contain different phases. In guided static analysis, the analyzer is treated
as a black box, and therefore it may be immediately replaced with an analyzer
implementing localized widening and narrowing. Henry at al. [21] enhance guide
static analysis by combining it with path-focusing [24], in order to avoid merging
infeasible paths. This optimization helps in finding precise disjunctive invariants,
avoiding the use of disjunctive completion. The basic idea is to exploit an SMT-
solver to find feasible paths, which are gradually discovered and analysed.

Guided static analysis and the strategies we propose try to fix complemen-
tary defects of standard iterative sequences. Guided static analysis focuses on
improving analysis of loops whose behavior evolves along time, while localization
improves results of nested loops.

Similar arguments hold for Monniaux and Le Guen’s stratified static analy-
sis by variable dependency [25]. The idea is similar to guided static analysis in
that restrictions of the program are considered, but in this case the restriction
is not on the edges of the control-flow graph, but on the variables. Successive
approximations of the program are considered, where later approximations con-
sider more variables than former ones. The result of an approximation is used
within the successive approximations to restrict the results. If in a program node
it turns out that i ≥ 0, then the same should hold for all the successive approxi-
mations. This approach requires to modify the standard abstract interpretation
procedure to use results from the previous restrictions, but the modifications
may also be applied immediately to our localized strategies.

Halbwachs and Henry [20] propose a procedure to improve the result of static
analysis which consists in successive static analysis phases. After each phase,
the result of some special nodes are chosen, and another analysis is restarted
from that point. As for guided static analysis, the standard analysis procedure
is considered as a black box, and therefore can be combined with localization.

While localized narrowing seems to be more precise, we believe that combining
localized widening with the optimizations in [20] is not worth, and we would
obtain essentially the same results of localized widening, since both proposals
essentially improve the result of nested loops. For an experimental comparison,
see Section 4. We think, however, that localized widening is simpler to implement
and may be easily integrated with other techniques.

Finally, localization may directly exploit any improvement to the design and
implementation of widening operators (such as delayed widening, widening with

Localizing Widening and Narrowing 39

threshold [9], lookahead widening [17], etc. . .), since we use standard definitions
for widening, although applied in a different way.

4.1 Examples and Experiments

We have performed three different experiments to validate our techniques, and
we plan to make more in the future. In these experiments we have used three
tools: Interproc, Pagai and our prototype Jandom

2.
Jandom implements both localized widening and narrowing, and is the suc-

cessor of our previous analyzer Random [7,3]. Random implements many nu-
merical abstract domains, included the recent parallelotopes [6] and template
parallelotopes [4,2,5,1].

Interproc [22] performs inter-procedural analysis of a simple imperative
language. It support standard abstract interpretation analysis, policy iteration
for intervals and guided static analysis. Pagai [21] is a path-sensitive static
analyzer. It implements several different techniques, such as lookahead widening,
guided static analysis, path focusing, and the optimizations to narrowing in [20].

As a first experiment, we tried to understand whether localized widening or
narrowing was in use in other analyzers (apart from Random and our proto-
type). Therefore, we tried the program nested in Figure 1, and the programs in
Figure 3 in Interproc and Pagai, using standard abstract interpretation over
the domain of closed polyhedra. In Interproc we used delayed widening with 4
delays and a two step descending sequence. None of the two analyzers, with this
standard settings, were able to prove the optimal invariant. After this experi-
ment, and given the current literature, we are confident that localized narrowing
and widening have never been implemented before.

Later, we used Pagai on the same programs, but selecting different known op-
timization techniques, and comparing the results with that of localized widening
and narrowing. The aim was not to provide a full evaluation, but to give an idea
of the kind of programs that may benefit from localization or other techniques.
Table 1 reports the result of the comparison, using the domains of strict con-
vex polyhedra. The results show that localized narrowing with the hybrid policy
proves the required invariant for all the programs, but this is hardly surprising
since programs were chosen ad-hoc. Lookahead widening and guided static anal-
ysis do not work very well with this examples, but this was expected since the
aim of these optimizations is different than ours. The optimized narrowing in
[20] behaves better, since it was developed to improve precision on nested loops
too.

As a rough evaluation of the overhead of our strategies, we count the number
of times that the widening and narrowing operators are executed. It happens
that, for all the programs in Table 1, using the localized widening only, we
execute 8 widenings and 4 narrowings, using the localized narrowing with the
continue policy we execute 8 widenings and 8 narrowings, and using the localized
narrowing with the hybrid policy, we execute 11 widenings and 8 narrowings.

2 https://github.com/jandom-devel/Jandom

https://github.com/jandom-devel/Jandom

40 G. Amato and F. Scozzari

Table 1. Results of the comparison (loc widening=localized widening, con-
tinue=localized narrowing with continue policy, hybrid=localized narrowing with hy-
brid policy, guided=guided static analysis, lookahead=lookahead widening, narrow-
ing=optimized narrowing in [20])

program loc widening continue hybrid guided lookahead narrowing

nested yes yes yes no no yes
nested2 no yes yes no yes no
hybrid no no yes no no yes
hh yes no yes no no yes

Finally, we implemented localized widening in Pagai. As a testament of the
simplicity of the idea, the core of the implementation, which is everything but
user-interface, only required to modify one line of code. This was possible since
Pagai puts a widening on each head node, as required in Theorem 1. Using
Pagai we executed the benchmarks of the Mälardalen WCET research group
[19], which contains programs such as sorts, matrix transformations, fft, simple
loops, etc. . .We compare the result of standard abstract interpretation with and
without localized widening.

We analyzed a total of 114 functions. In 29 of these we improved the results
of the analysis. In particular, there are a total of 379 head nodes, and for 164
of them we improved the result. In no case we got worse results than standard
widening. This improvement was obtained by reducing at the same time the
number of iterations. With the standard widening the analysis took a total of
19522 ascending steps and 23415 descending steps, while with localized widening
we had 19363 ascending steps and 22528 descending steps. Nonetheless, the
analysis with localized widening took 5.25 seconds, against 4.49 seconds of the
classic analysis. We argue that it took more time despite a reduction in the
number of steps since the join operator is more costly than widening.

We also compared the results of localized widening and the refined narrowing
in [20]. For the 379 heads nodes, we got more precise results in 91 cases, worse
results in 2 cases, while we had incomparable results in other 2 cases.

Overall, the results of localized widening are excellent, because it can improve
precision even considerably without incurring in performance penalties.

More evaluations should be performed on localized narrowing. Potentially it
can improve precision much more than localized widening alone. However, the
performance penalty it may incur is bigger. Also, its implementation is more
difficult, and that is why we have not performed a similar comparison in Pagai

as for localized widening.

5 Conclusions

We have shown two strategies for improving precision of abstract interpretation.
Localized widening is simple, effective and has negligible computational cost.
Therefore, can be easily implemented in already existent abstract analyzers. Lo-
calized narrowing is more complex, potentially slower but generally more precise

Localizing Widening and Narrowing 41

than localized widening. More experiments should be conducted to check the
power and applicability of the latter.

References

1. Amato, G., Lipton, J., McGrail, R.: On the algebraic structure of declarative pro-
gramming languages. Theoretical Computer Science 410(46), 4626–4671 (2009)

2. Amato, G., Parton, M., Scozzari, F.: Deriving numerical abstract domains via
principal component analysis. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS,
vol. 6337, pp. 134–150. Springer, Heidelberg (2010)

3. Amato, G., Parton, M., Scozzari, F.: A tool which mines partial execution traces to
improve static analysis. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund,
K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS,
vol. 6418, pp. 475–479. Springer, Heidelberg (2010)

4. Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component
analysis. Journal of Symbolic Computation 47(12) (2012)

5. Amato, G., Scozzari, F.: Observational completeness on abstract interpretation.
Fundamenta Informaticae 106(2-4), 149–173 (2011)

6. Amato, G., Scozzari, F.: The abstract domain of parallelotopes. In: Midtgaar-
dand, J., Might, M. (eds.) The Fourth International Workshop on Numerical and
Symbolic Abstract Domains (NSAD 2012). ENTCS, vol. 287, pp. 17–28. Elsevier
(November 2012)

7. Amato, G., Scozzari, F.: Random: R-based Analyzer for Numerical Domains. In:
Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 375–382.
Springer, Heidelberg (2012)

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

9. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: A static analyzer for large safety-critical software. In: Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation (PLDI 2003), San Diego, California, USA, 2003, June 7–14,
pp. 196–207. ACM Press (2003)

10. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

11. Costan, A., Gaubert, S., Goubault, É., Martel, M., Putot, S.: A policy iteration
algorithm for computing fixed points in static analysis of programs. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer,
Heidelberg (2005)

12. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, Paris,
France, pp. 106–130. Dunod (1976)

13. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
1977: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pp. 238–252. ACM Press, New York (1977)

14. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrow-
ing approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

42 G. Amato and F. Scozzari

15. Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy
iteration. ACM Transactions on Programming Languages and Systems 33(3), 1–48
(2011)

16. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear rela-
tion analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

17. Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)

18. Gopan, D., Reps, T.: Guided static analysis. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)

19. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The Mälardalen WCET bench-
marks – past, present and future. In: Lisper, B. (ed.) Proc. 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010), Brussels, Bel-
gium, pp. 137–147. OCG (July 2010)

20. Halbwachs, N., Henry, J.: When the decreasing sequence fails. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 198–213. Springer, Heidelberg
(2012)

21. Henry, J., Monniaux, D., Moy, M.: PAGAI: A path sensitive static analyser. Elec-
tronic Notes in Theoretical Computer Science 289, 15–25 (2012)

22. Jeannet, B.: Interproc Analyzer for Recursive Programs with Numerical Variables.
In: INRIA (2004), Software and documentation are available at the following URL:
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi (accessed: April 3,
2013)

23. Jeannet, B., Miné, A.: APRON: A library of numerical abstract domains for
static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661–667. Springer, Heidelberg (2009)

24. Monniaux, D., Gonnord, L.: Using bounded model checking to focus fixpoint it-
erations. In: Yahav, E. (ed.) SAS 2012. LNCS, vol. 6887, pp. 369–385. Springer,
Heidelberg (2011)

25. Monniaux, D., Le Guen, J.: Stratified static analysis based on variable dependen-
cies. In: Massé, D., Mauborgne, L. (eds.) Proceedings of the Third International
Workshop on Numerical and Symbolic Abstract Domains, NSAD 2011. ENTCS,
vol. 288, pp. 61–74. Elsevier (December 2012)

26. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear sys-
tems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

The Abstract Domain of Segmented

Ranking Functions

Caterina Urban

École Normale Supérieure - CNRS - INRIA, Paris, France
urban@di.ens.fr

Abstract. We present a parameterized abstract domain for proving pro-
gram termination by abstract interpretation. The domain automatically
synthesizes piecewise-defined ranking functions and infers sufficient con-
ditions for program termination. The analysis uses over-approximations
but we prove its soundness, meaning that all program executions
respecting these sufficient conditions are indeed terminating.

The abstract domain is parameterized by a numerical abstract do-
main for environments and a numerical abstract domain for functions.
This parameterization allows to easily tune the trade-off between pre-
cision and cost of the analysis. We describe an instantiation of this
generic domain with intervals and affine functions. We define all abstract
operators, including widening to ensure convergence.

To illustrate the potential of the proposed framework, we have im-
plemented a research prototype static analyzer, for a small imperative
language, that yielded interesting preliminary results.

1 Introduction

Static analysis has made great progress since the introduction of Abstract In-
terpretation [10,12]. Most results in this area are concerned with the verification
of safety properties. The verification of liveness properties (and, in particular,
termination) has received considerable attention recently.

The traditional method for proving program termination is based on the syn-
thesis of ranking functions, which map program states to elements of a well-
founded domain. Termination is guaranteed if a ranking function that decreases
during computation is found. In [14], Patrick Cousot and Radhia Cousot pro-
posed a unifying point of view on the existing approaches to termination, and
introduced the idea of the computation of a ranking function by abstract in-
terpretation. We build our work on their proposed general framework, and we
design and implement a suitable parameterized abstract domain for proving
termination of imperative programs by abstract interpretation.

The domain automatically synthesizes piecewise-defined ranking functions
through backward invariance analysis. The analysis does not rely on assump-
tions about the structure of the analyzed program: for example, is not limited to
simple loops, as in [22]. The ranking functions can be used to give upper bounds
on the computational complexity of the program in terms of execution steps.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 43–62, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

44 C. Urban

Moreover, the domain infers sufficient conditions for program termination. The
analysis uses over-approximations but we prove its soundness, meaning that all
program executions respecting these sufficient conditions are indeed terminat-
ing, while a program execution that does not respect these conditions might not
terminate.

We employ segmentations to handle disjunctions arising in static program
analysis, as proposed in [15] for array content analysis. The analysis automati-
cally partitions the space of values for the program variables by means of abstract
environments. A segment is a pair of an abstract environment and an abstract
function. During the analysis (similarly to other partitioning approaches in static
analysis [19,24]), segments are split by tests, modified by assignment and joined
when merging control flows. Widening limits the number of segments of a ranking
function to a maximum given as a parameter of the analysis.

The segmented ranking functions abstract domain is parameterized by the
choice of the abstract environments (e.g. intervals, as in Section 3.1) and the
choice of the abstract functions (e.g. affine functions, as in Section 3.2). This
parameterization allows a wide range of instantiations of the domain making it
possible to easily tune the trade-off between analysis precision and cost.

Motivating Example. To illustrate the potential of segmentations, let us consider
the following program annotated with numbered labels to denote control points:

while 1(x ≥ 0) do
2x := −2x+ 10

od3

The program terminates if we consider variables with integer values (if we admit
non-integer values, for x = 10

3 the program is not terminating). However, it does
not have a linear ranking function. As a result, well-known methods to synthesize
ranking functions like [22,5], would not be capable to guarantee its termination.

Figure 1 illustrates the details of our backward invariance analysis. We will
map each program control point to a function f ∈ Z �→ N of the (integer-valued)
variable x, representing an upper bound on the number of execution steps before
termination. We denote by 2[x ≥ 0] the function obtained from the test x ≥ 0
applied to the function at program point 2. Similarly, 3[x < 0] denotes the
function obtained from the test x < 0 applied to the function at program point 3.

The analysis is performed backwards starting with the totally undefined func-
tion ⊥ at each program point. The first iteration begins from the total function
f(x) = 0 at program point 3. The test x < 0 enforces loop exit: it splits the
domain of the function and enforces termination in 1 step. At program point 1,
the function 3[x < 0] is unmodified by the join with the yet totally undefined
function 2[x ≥ 0]. At program point 2, the assignment x := −2x+10 propagates
the function increasing its value to 2. Then, the test x ≥ 0, since it does not
need to split further the function domain, just propagates the function increas-
ing again its value to 3. Finally, a second iteration starts joining once more the
functions 3[x < 0] and 2[x ≥ 0] at program point 1.

The Abstract Domain of Segmented Ranking Functions 45

1st iteration 2nd iteration . . . 5th/6th iteration

3 ⊥ f(x) = 0 f(x) = 0 . . . f(x) = 0

3[x < 0] ⊥ f(x) =

{
1 x < 0

⊥ x ≥ 0
f(x) =

{
1 x < 0

⊥ x ≥ 0
. . . f(x) =

{
1 x < 0

⊥ x ≥ 0

1 ⊥ f(x) =

{
1 x < 0

⊥ x ≥ 0
f(x) =

⎧⎪⎨⎪⎩
1 x < 0

⊥ 0 ≤ x ≤ 5

3 x > 5

. . . f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 x < 0

5 0 ≤ x ≤ 2

9 x = 3

7 4 ≤ x ≤ 5

3 x > 5

2 ⊥ f(x) =

{
⊥ x ≤ 5

2 x > 5
f(x) =

⎧⎪⎨⎪⎩
4 x ≤ 2

⊥ 3 ≤ x ≤ 5

2 x > 5

. . . f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4 x ≤ 2

8 x = 3

6 4 ≤ x ≤ 5

2 x > 5

2[x ≥ 0] ⊥ f(x) =

{
⊥ x ≤ 5

3 x > 5
f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊥ x < 0

5 0 ≤ x ≤ 2

⊥ 3 ≤ x ≤ 5

3 x > 5

. . . f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⊥ x < 0

5 0 ≤ x ≤ 2

9 x = 3

7 4 ≤ x ≤ 5

3 x > 5

Fig. 1. Motivating Example Analysis. The analysis starts from f(x) = 0 at program
point 3. At program point 1, the functions 3[x < 0] (obtained from the test x < 0) and
2[x ≥ 0] (obtained from the test x ≥ 0) are joined.

In this particular case, there is no need for convergence acceleration and the
analysis is rather precise: at the sixth iteration, a fix-point is reached providing
the following ranking function f ∈ Z �→ N as loop invariant at program point 1:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 x < 0

5 0 ≤ x ≤ 2

9 x = 3

7 4 ≤ x ≤ 5

3 x > 5

Unlike [22,5], our method is not impaired from the fact that the program does
not have a linear ranking function.

Our Contribution. In summary, this paper proposes a new abstract domain for
proving termination of imperative programs. We introduce the family of param-
eterized abstract domains of segmented ranking functions (Section 3). We also
describe the design (Section 3.3) and implementation (Section 4) of a particular
instance of these generic domains based on affine functions.

46 C. Urban

Outline of the Paper. Section 2 introduces the syntax and concrete semantics of
our language. In Section 3 we define the segmented ranking functions abstract
domain. We describe the implementation of our prototype static analyzer, in
Section 4. Finally, Section 5 discusses related work and Section 6 concludes and
envisions future work.

2 Concrete Termination Semantics

In the following, we briefly recall some results presented in a language indepen-
dent way in [14]. Then, we tailor these results for a small imperative language.

2.1 Termination Semantics

We consider a programming language with non-deterministic programs. We de-
scribe the small-step operational semantics of a program by means of a transition
system 〈Σ, τ〉. Σ is the set of all program states, and τ ⊆ Σ×Σ is the transition
relation: a binary relation describing the transitions between a state and its pos-
sible successors during program execution. Let βτ denote the set of final states:
βτ � {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 �∈ τ}. The program trace semantics generated
by a transition system 〈Σ, τ〉 is the set of all infinite traces over the states in Σ
and all finite traces that end with a final state in βτ .

The traditional method for proving program termination is based on ranking
functions, mapping program states to elements of a well-founded domain (e.g.,
ordinals in O). Termination is guaranteed if a ranking function that decreases
during computation is found.

In [14], Patrick Cousot and Radhia Cousot prove the existence of a most pre-
cise ranking function that can be expressed in fix-point form by abstract inter-
pretation of the program trace semantics. This function1 vτ ∈ Σ ��→ O associates
to each program state definitely leading to a final state in βτ (i.e. a program
state such that all traces to which it belongs end up at a final state in βτ), an
ordinal in O representing an upper bound on the number of remaining program
execution steps to termination. Otherwise stated, vτ is a partial function which
domain dom(vτ) is the set of states leading to program termination: any trace
starting in a state s ∈ dom(vτ) must terminate in at most vτ (s) execution steps,
while a trace starting in a state s �∈ dom(vτ) might not terminate.

Let us define a computational partial order �:

v1 � v2 � dom(v1) ⊆ dom(v2) ∧ ∀x ∈ dom(v1) : v1(x) ≤ v2(x).

Its related join operator is:

v1 � v2 � λρ.

⎧⎪⎨⎪⎩
v1(ρ) if ρ ∈ dom(v1) \ dom(v2)

sup{v1(ρ), v2(ρ)} if ρ ∈ dom(v1) ∩ dom(v2)

v2(ρ) if ρ ∈ dom(v2) \ dom(v1)

1 A ��→ B is the set of partial maps from a set A to a set B.

The Abstract Domain of Segmented Ranking Functions 47

Then, the ranking function vτ is computed by fix-point iteration2 starting from
the totally undefined function ∅̇:

vτ � lfp�∅̇ φτ

φτ (v) � λs.

{
0 if s ∈ βτ

sup{v(s′) + 1 | 〈s, s′〉 ∈ τ} if s ∈ p̃re(dom(v))

The idea is to extract the well-founded part of the transition relation τ : start-
ing from the states in βτ and, through a backward computation based on the
inverse of the transition relation τ , mapping all the states definitely leading to
a final state to their ordinal rank. In case of a non-deterministic transition sys-
tem 〈Σ, τ〉, using p̃re ensures that we take into account all the possibly infinite
choices made at each execution step, eliminating all traces potentially branching
(through local non-determinism) to non-termination.

The next example is taken from [14].

Example 1. Let us consider the following trace semantics:

The fix-point iterates for the corresponding ranking function are:

0

0

1 0

0

2
1 0

0

2
1 0

0

��

Note that the computational order � does not coincide (see [12,13] for further
discussion) with the approximation order �. The order � is defined as follows:

v1 � v2 � dom(v1) ⊇ dom(v2) ∧ ∀x ∈ dom(v2) : v1(x) ≤ v2(x).

Its corresponding join operator is:

v1 � v2 � λρ ∈ dom(v1) ∩ dom(v2). sup{v1(ρ), v2(ρ)}.

The partial orders coincide only when the functions have the same domain:

Lemma 1. dom(v1) = dom(v2) ⇒ (v1 � v2 ⇔ v1 � v2).

2 p̃re(X) � {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 ∈ τ ⇒ s′ ∈ X}.

48 C. Urban

X ∈ X , n, n1, n2 ∈ I

A ::= X | n | [n1, n2] | ? | − A | A1 �A2 � ∈ {+,−, ∗, /}
B ::= true | false | ? | !B | B1 ∨ B2 | B1 ∧B2 | A1 �� A2 ��∈ {<,≤,=, �=, >,≥}
S ::= X := A | if B then S1 else S2 fi | while B do S od | S1;S2

Fig. 2. Syntax

The termination semantics vτ is sound and complete to prove termination of a
program P with initial states in I:

Theorem 1. A program P , with trace semantics generated by a transition sys-
tem 〈Σ, τ〉, terminates for all traces starting from initial states in I ∈ ℘(Σ) if
and only if there exists v ∈ Σ ��→ O such that vτ � v ∧ I ⊆ dom(v).

Proof. See [14]. ��

2.2 A Small Imperative Language

In the following, we give a denotational definition of vτ ∈ Σ ��→ O for a simple
imperative language. We consider a small sequential non-deterministic program-
ming language with no procedures, no pointers and no recursion. Let X be a
finite set of variables and let I be a set of values, where I ∈ {Z,Q,R}. In Figure 2,
we define inductively the syntax of programs.

An environment ρ ∈ X �→ I maps each variable in X to a value in I. Let E
denote the set of all environments. The semantics of an arithmetic expression A
is a function A�A� ∈ E �→ ℘(I) mapping an environment to the set of all possible
values for the expression in the given environment. Similarly, the semantics of a
boolean expression B is a function B�B� ∈ E �→ ℘({T,F}) mapping an environ-
ment to the set of all possible truth values for the expression in the environment.
We need power-sets because we also consider non-deterministic arithmetic and
boolean expressions (cf. Figure 2). Non-determinism comes in handy to model
program input and to approximate non-linear expressions.

Let L be a finite set of labels. The initial and final labels of a program are de-
noted by i and e, respectively. A state s ∈ L×E is a pair consisting of a program
control point l ∈ L and an environment ρ ∈ E . LetΣ denote the set of all program
states. The program initial states belong to Σi � {s ∈ Σ | ∃ρ ∈ E : s = 〈i, ρ〉}
while Σe � {s ∈ Σ | ∃ρ ∈ E : s = 〈e, ρ〉} is the set of program final states. The
semantics of a statement S is a function S�S� ∈ (Σ ��→ O) �→ (Σ ��→ O) mapping
a partial function from states to ordinals into a partial function from states to
ordinals with greater value. The program semantics vτ ∈ Σ ��→ O is computed
backwards, starting from the partial function λs(s ∈ Σe). 0 and propagating it
towards the initial states by means of S�S�.

Note that we can redefine vτ ∈ Σ ��→ O = (L × E) ��→ O in an isomorphic way
by point-wise lifting to L of the partial function from environments to ordinals:
vτ ∈ L �→ (E ��→ O). In a similar way, we can redefine the statement semantics:

The Abstract Domain of Segmented Ranking Functions 49

S�X := A�v � λρ. sup{v(ρ[X �→ n]) + 1 | ∀n ∈ A�A�ρ : ρ[X �→ n] ∈ dom(v)}
S�if B then S1 else S2 fi�v � (λρ(ρ ∈ dom(v1) ∧ F �∈ B�B�ρ). v1(ρ))

� (λρ(ρ ∈ dom(v2) ∧ T �∈ B�B�ρ). v2(ρ)) � (v1 � v2)

where v1 � λρ(ρ ∈ dom(S�S1�v) ∧ T ∈ B�B�ρ). (S�S1�v)(ρ) + 1

v2 � λρ(ρ ∈ dom(S�S2�v) ∧ F ∈ B�B�ρ). (S�S2�v)(ρ) + 1

S�while B do S od�v � lfp�∅̇ φ

where φ � λx. (λρ(ρ ∈ dom(v1) ∧ F �∈ B�B�ρ). v1(ρ))

� (λρ(ρ ∈ dom(v2) ∧ T �∈ B�B�ρ). v2(ρ)) � (v1 � v2))

v1 � λρ(ρ ∈ dom(S�S1�x) ∧ T ∈ B�B�ρ). (S�S1�x)(ρ) + 1

v2 � λρ(ρ ∈ dom(v) ∧ F ∈ B�B�ρ). v(ρ) + 1

S�S1;S2�v � S�S1�(S�S2�v)

Fig. 3. Concrete Semantics

S�S� ∈ (E ��→ O) �→ (E ��→ O) is defined by induction on the syntax of programs
in Figure 3. In this form, we can consider vτ ∈ L �→ (E ��→ O) as an invariance
semantics: to each program control point l ∈ L, it associates a partial function
in E ��→ O representing the program ranking function in that particular program
point. Loop semantics requires the computation of a loop invariant as the least
fix-point of a monotonic function φ ∈ (E ��→ O) �→ (E ��→ O). However, such a
fix-point is usually not computable.

In the next section, we will present a decidable abstraction of vτ by means of
piecewise-defined functions computed through backward invariance analysis.

3 An Abstract Domain Functor for Termination

We derive an approximate program semantics by abstract interpretation [10,12].
We look for v#τ ∈ L �→ V# mapping each program point l ∈ L to an abstraction
of the program ranking function in that specific program point.

In particular, we abstract the ranking functions in E ��→ O by piecewise-defined
ranking functions in V#. To this end, we introduce the family of segmented
ranking functions abstract domains V(E,P), parameterized by the environments
abstract domains E and the functions abstract domains P. Adopting an OCaml
terminology, each V is an abstract domain functor: a function mapping the pa-
rameter abstract domains E and P into a new abstract domain V(E,P). V can
be applied to various implementations of E and P yielding the corresponding
implementations of V(E,P), with no need for further programming effort.

In the following, in order we present the family of environments abstract
domains E, the family of functions abstract domains P, and the family of pa-
rameterized abstract domains of segmented ranking function V(E,P). We also

50 C. Urban

describe the design of particular instances, based on intervals and affine func-
tions, of each one of these abstract domains.

To ensure the soundness of our abstraction, throughout the rest of the paper
we will continue to maintain a strict separation between approximation and
computational orders (as we already did in Section 2).

3.1 Environments Abstract Domain

The environments abstract domain E abstracts sets of concrete environments in
℘(E). The abstract properties ρ# ∈ E# are called abstract environments. The
concretization function γE ∈ E# �→ ℘(E) maps an abstract property to the set
of concrete environments having that abstract property.

In case E is a non-relational domain, ℘(E) = ℘(X �→ I) is abstracted to
X �→ ℘(I), and we have E# � X �→ B#, where the abstract domain B abstracts
properties of values in I with concretization function γB ∈ B# �→ ℘(I).

Intervals Abstract Domain. In the literature, numerous environments ab-
stract domains have already been proposed (e.g., the numerical abstract domains
of intervals [9], octagons [21], and convex polyhedra [16]).

In the following, as a simple example of non-relational environments abstract
domain, we will consider the intervals abstract domain [9]. The abstract prop-
erties in B# are empty (⊥B) or non-empty ([a, b]) intervals with bounds in
I ∪ {−∞,+∞}. We denote the abstract partial order by �B, the join opera-
tor by �B, the meet operator by �B and the widening operator by �B.

As for the abstract transformers for assignments and tests, we recall that our
program concrete semantics is defined backwards (cf. Section 2), and we will see
(in Section 3.4) that the program abstract semantics is computed backwards as
well. Consequently, we consider backward assignment and test transfer functions,
denoted by ASSIGNB and FILTERB, respectively. The primitive ASSIGNB re-
turns an abstraction of a set of environments that can lead to another given
abstraction of a set of environments by an assignment X := A. The primitive
FILTERB filters out environments that do not verify a boolean expression B.

Example 2. Let us consider the ranking function at program point 2 in the sec-
ond iteration column of Figure 1. The test x ≥ 0 is applied to each segment of
the function, yielding the function 2[x ≥ 0]. In particular, we consider one of the
segments on which such function is defined: the segment represented by the envi-
ronment ρ# ≡ x �→ [−∞, 2]. The result of FILTERB for x ≥ 0 on ρ# is x �→ [0, 2].

Let us consider now the assignment x := −2x + 10 applied segment-wise to
the ranking function at program point 1 in the last column of the table. In par-
ticular, the result of ASSIGNB on the segment represented by the environment
x �→ [4, 5] is the segment represented by x �→ [3, 3] (recall that we consider the
space of values for the variable x to be the set of integers Z). ��

The Abstract Domain of Segmented Ranking Functions 51

3.2 Functions Abstract Domain

The functions abstract domain P is itself a functor P(E), parameterized by the
environment abstract domain E. It abstracts partial functions E ��→ O from envi-
ronments to ordinals by natural-valued partial functions of the I-valued variables
in X . Let n denote |X |. The abstract properties of P belong to E# ×F#, where
F# � {⊥F} ∪ {f# | f# ∈ In �→ N} ∪ {�F}. The bottom function ⊥F denotes
the totally undefined function, and the top function �F, abstracts all functions
mapping environments to infinite ordinals.

The concretization function γP ∈ (E# × F#) �→ (E ��→ O) depends on the
value of the variables in X according to an abstract environment ρ# ∈ E#:

γP(〈ρ#,⊥F〉) = ∅̇
γP(〈ρ#, f#〉) = λρ ∈ γE(ρ

#). f#(ρ(x1), . . . , ρ(xn))

γP(〈ρ#,�F〉) = ∅̇
We define the abstract approximation preorder �P, in such a way that
〈ρ#1 , f#

1 〉 �P 〈ρ#2 , f#
2 〉 ⇔ γP(〈ρ#1 , f#

1 〉) � γP(〈ρ#2 , f#
2 〉), as follows:

〈ρ#1 , f#
1 〉 �P 〈ρ#2 , f#

2 〉 � ρ#2 �E ρ#1 ∧ f#
1 �F f#

2

where

f#
1 �F f#

2 � ∀ρ ∈ γE(ρ
#
1 �E ρ#2) : f

#
1 (ρ(x1), . . . , ρ(xn)) ≤ f#

2 (ρ(x1), . . . , ρ(xn)).

Theorem 2. 〈ρ#1 , f#
1 〉 �P 〈ρ#2 , f#

2 〉 ⇔ γP(〈ρ#1 , f#
1 〉) � γP(〈ρ#2 , f#

2 〉).
The result proves that γP is monotonic.
We also define a computational partial order �P:

〈ρ#1 , f#
1 〉 �P 〈ρ#2 , f#

2 〉 � ρ#1 �E ρ#2 ∧ f#
1 �F f#

2 .

Lemma 2.

(ρ#1 �E ρ#2 ∧ ρ#2 �E ρ#1) ⇒ (〈ρ#1 , f#
1 〉 � 〈ρ#2 , f#

2 〉 ⇔ 〈ρ#1 , f#
1 〉 � 〈ρ#2 , f#

2 〉).
Finally, in addition to a join operator �P, P is equipped with backward assign-
ment and test abstract transformers ASSIGNP and FILTERP. In the following,
we will define these operators for the affine functions abstract domain.

Affine Functions Abstract Domain. As an example of functions abstract
domain, we instantiate the functor P with the intervals environment abstract
domain E described above, and as abstract properties f# ∈ F# we choose affine
functions of the form:

y = f(x1, . . . , xn) = m1x1 + · · ·+mnxn + q

where x1, . . . , xn are variables in X , y �∈ X is a special variable not included in
X , and m1, . . . ,mn, q are constants.

The operators of the affine functions abstract domain include the join operator
�P, and the abstract property transformers ASSIGNP for backward assignments
and FILTERP for backward tests.

52 C. Urban

Join. The join operator �P, given two partial functions 〈ρ#1 , f#
1 〉 and 〈ρ#2 , f#

2 〉,
determines ρ# ≡ ρ#1 �E ρ#2 and then computes f# ≡ f#

1 �F f#
2 within ρ#.

Let ρ# ≡ {x1 �→ [a1, b1], . . . , xn �→ [an, bn]}, f#
1 ≡ y = f1(x1, . . . , xn) and

f#
2 ≡ y = f2(x1, . . . , xn). The operator �F basically reuses the join of polyhedra

[16]; it transforms f#
1 and f#

2 into two set of constraints of the form:

{a1 ≤ x1 ≤ b1, . . . , an ≤ xn ≤ bn, 0 ≤ y ≤ fi(x1, . . . , xn)}

for i = 1, 2. Then, it computes their convex hull:

{a1 ≤ x1 ≤ b1, . . . , an ≤ xn ≤ bn, 0 ≤ y ≤ f(x1, . . . , xn)}

and transforms it back to 〈ρ#, f#〉, where f# ≡ y = f(x1, . . . , xn). In case the
convex hull contains more than one constraint on y (except for the constraint
0 ≤ y), we are in presence of several not comparable choices for f#. In such
situation, we prefer a deterministic behavior for �F, and we choose f# = �F.

Example 3. Let us consider the abstract functions

f#
1 ≡ y = f1(x1, x2) = −1

2
x2 + 2

f#
2 ≡ y = f2(x1, x2) = −1

2
x1 + 2

within the environment ρ# ≡ {x1 �→ (−∞, 4], x2 �→ (−∞, 4]}. Their join is the
convex hull of the sets of constraints {x1 ≤ 4, x2 ≤ 4, 0 ≤ y ≤ − 1

2x2 + 2}
and {x1 ≤ 4, x2 ≤ 4, 0 ≤ y ≤ − 1

2x1 + 2}. Thus f#
1 �F f#

2 = f# where
f# ≡ y = f(x1, x2) = − 1

2x1 − 1
2x2 + 4 (see Figure 4). ��

In the particular case where f#
1 ≡ ⊥F or f#

2 ≡ ⊥F, their join f#
1 �F f#

2 is

f# ≡ ⊥F. In all the other cases, f#
1 �F f#

2 is f# ≡ �F.
The following result proves the soundness of the join operator �P.

Theorem 3. γP(〈ρ#1 , f#
1 〉) � γP(〈ρ#2 , f#

2 〉) � γP(〈ρ#1 , f#
1 〉 �P 〈ρ#2 , f#

2 〉).

Assignments. In order to handle assignments X := A, the abstract domain P
is equipped with an operation to substitute an arithmetic expression A for a
variable X within an abstract function f#. Given 〈ρ#, f#〉 ∈ E# × F#, the
backward abstract transformer ASSIGNP, applies the assignment independently
to ρ#, by means of ASSIGNE, and to f#. Let f# ≡ f(x1, . . . , X, . . . , xn). The
transformer ASSIGNF has to take into account the assignment X := A and
increase the value of f#: the result is the function f(x1, . . . , A, . . . , xn) + 1.

Example 4. Let consider again the ranking function at program point 1 in the
last column of Figure 1. The result of the assignment x := −2x + 10, on the
segment represented by the environment x �→ [4, 5] and the function f(x) = 7,
is represented by ρ# ≡ x �→ [3, 3] and f# ≡ f(−2x+ 10) = 7 + 1 = 8. ��

The Abstract Domain of Segmented Ranking Functions 53

x1

x2

4 4

(a)

x1

x2

4 4

(b)

x1

x2

4 4

(c)

Fig. 4. Example of join of two abstract functions of two variables. The function
f1(x1, x2) = − 1

2
x2 + 2 (shown in (a)) is joined with f2(x1, x2) = − 1

2
x1 + 2 (shown

in (b)), within the environment {x1 �→ (−∞, 4], x2 �→ (−∞, 4]}. The result is the
function f(x1, x2) = − 1

2
x1 − 1

2
x2 + 4 (shown in (c)).

Example 5. Let us consider f(x) = 2x + 1 within the environment x �→ [4, 6],
and the assignment x := x+ 1. The result of the assignment is 〈ρ#, f#〉, where
ρ# ≡ x �→ [3, 5] and f# ≡ f(x+ 1) + 1 = 2(x+ 1) + 1 + 1 = 2x+ 4. ��

In case of a non-linear expression A, the limited expressiveness of the domain
forces the assignment to be approximated using non-determinism and taking into
account all possible outcomes of the resulting non-deterministic assignment.

Note that the assignment abstract transformer ASSIGNP is not sound due to
the over-approximation introduced by the environments transformer ASSIGNE.

Example 6. Let us consider ρ# ≡ x �→ [2, 3] and f# ≡ f(x) = x + 1, and
the assignment x := x + [1, 2]. The result of the assignment is 〈ρ̄#, f̄#〉, where
ρ̄# ≡ x �→ [0, 2] and f̄# ≡ f(x + [1, 2]) ≡ f̄(x) = x + 4. It is not sound
because S�x := x + [1, 2]�γP(〈ρ#, f#〉) �� γP(〈ρ̄#, f̄#〉): in fact, the domain of
γP(〈ρ̄#, f̄#〉), that is {x �→ 0, x �→ 1, x �→ 2}, is not included in the domain of
S�x := x+ [1, 2]�γP(〈ρ#, f#〉), that is {x �→ 1}. ��

However, in the next section, we will exploit ASSIGNP to define ASSIGNV, for
the abstract domain V(E,P), and we will prove the soundness of such trans-
former, despite the fact that it uses an unsound ASSIGNP.

Tests. The test abstract transformer FILTERP, given 〈ρ#, f#〉 ∈ E# × F#,
simply narrows the domain of f#, represented by the environment ρ#, by means
of the environments transformer FILTERE.

3.3 Segmented Ranking Functions Abstract Domain

The segmented ranking functions abstract domain V(E,P) introduces segmen-
tations into P: it abstracts ranking functions in E ��→ O by piecewise-defined
abstract ranking functions belonging to:

54 C. Urban

V# � {(E# ×F#)k | k ≥ 0}.

An abstract property v# ∈ V# has the form v# ≡ 〈ρ#1 , f#
1 〉 . . . 〈ρ#k , f#

k 〉, where
ρ#1 , . . . , ρ#k are non-overlapping abstract environments forming a partition of the
space of values for the program variables in X .

Let ⊥V denote the totally undefined function.
The concretization function γV ∈ V# �→ (E ��→ O) is defined as follows3:

γV(v
#) = γV(〈ρ#1 , f#

1 〉 . . . 〈ρ#k , f#
k 〉) =

⋃̇
i

γP(〈ρ#i , f#
i 〉)

As in [15], the abstract domain V(E,P) relies on a segmentation unification al-

gorithm: given two functions v#1 and v#2 , it modifies their segments so that they
form a common refined partition of the space of values for each program variable.
The abstract order �V applies such segmentation unification and then compares
the abstract ranking functions. First, their domains are compared considering
the number of segments 〈ρ#, f#〉 in which each of the functions is defined (i.e.

in which f# �= ⊥F and f# �= �F). Then, if v
#
2 is defined on less segments than

v#1 , the functions are compared piecewise using the functions order �P.

Theorem 4. v#1 �V v#2 ⇔ γV(v
#
1) � γV(v

#
2)

The result shows that γV is monotonic.
We define as well a computational partial order �V that also exploits the

segmentation unification algorithm. Then, it compares the domains of the func-
tions v#1 and v#2 (as �V does) and, if v#1 is defined on less segments than v#2 , it
compares the functions piecewise using the partial order �P.

Note that, the approximation order �V and the computational order �V co-
incide when the functions are defined on the same segments.

Let �V denote the join operator, �V the widening operator, and let ASSIGNV

and FILTERV denote the backward assignment and test transfer functions, re-
spectively. In the following, we will define these operators and prove their sound-
ness for an instance of V(E,P) with intervals and affine functions.

Segmented Affine Ranking Functions Abstract Domain As an example
of segmented ranking functions abstract domain, we apply the functor V to the
interval environments abstract domain E (described in Section 3.1) and to the
affine functions abstract domain P(E) (described in Section 3.2). The abstract
properties v# ∈ V# are piecewise-defined affine ranking functions.

In this case, since the segments are determined by abstract intervals with
constant bounds, the segmentation unification algorithm is rather simple: the
unification simply introduces new bounds consequently splitting intervals in both
segmentations. An example of segmentation unification is illustrated in Figure 5.

3 ∪̇ joins partial functions with disjoint domains: (f1∪̇f2)(x) � f1(x), if x ∈ dom(f1),
and (f1∪̇f2)(x) � f2(x), if x ∈ dom(f2), where dom(f1) ∩ dom(f2) = ∅.

The Abstract Domain of Segmented Ranking Functions 55

x

y

4

3

(a)

x

y

2

1

(b)

x

y

2 4

1

3

(c)

Fig. 5. Example of segmentation unification. The segmentation shown in (a) is joined
with the one shown in (b). The resulting segmentation is depicted in (c).

Join. As the order �V, also the join operator �V depends on the segmentation
unification algorithm. After the unification, the abstract ranking functions are
joined piecewise by means of the abstract functions join operator �P.

The next result proves the soundness of �V.

Theorem 5. γV(v
#
1) � γV(v

#
2) � γV(v

#
1 �V v#2)

We now define another join operator �V that we will use in the following to join
two functions v#1 and v#2 , the segmentations of which have different lower and
upper bounds. Where both segmentation are defined, �V applies the segmenta-
tion unification algorithm and then joins the ranking functions piecewise using
the join operator �P. To the resulting segmented function, segments are added,
where only one of the functions is defined.

Example 7. Let us consider the abstract piecewise-defined ranking functions
v#1 ≡ 〈x �→ [2, 4], y = 2〉 and v#2 ≡ 〈x �→ (−∞, 4], y = −x + 4〉 represented in
Figure 6a and Figure 6b, respectively. Their join is the piecewise-defined ranking
function v# ≡ 〈x �→ (−∞, 2), y = −x+ 4〉〈x �→ [2, 4], y = 2〉 of Figure 6c. ��

Assignments. The backward assignment abstract transformer ASSIGNV, given
a segmented function v#, applies piecewise the transformer ASSIGNP and then
joins the resulting segments using the join operator �V. In this way, it refines
the segmentation of the function so as to avoid overlapping segments.

Example 8. Let us consider v# ≡ 〈x �→ [−∞, 9],⊥F〉〈x �→ [10,+∞], y = 0〉
and the assignment x := x + [0, 2]. The result of the assignment on v# is
〈x �→ [−∞, 9],⊥F〉 �V 〈x �→ [8,+∞], y = 1〉. That is the segmented function
〈x �→ [−∞, 7],⊥F〉〈x �→ [8, 9],⊥F〉〈x �→ [10,+∞], y = 1〉.

The following result proves the soundness of ASSIGNV.

Theorem 6. S�X := A�γV(v#) � γV(ASSIGNV(X := A, v#)).

56 C. Urban

x
2 4

(a)

x
4

(b)

x
2 4

(c)

Fig. 6. Example of join of partial piecewise-defined ranking functions. v#1 (shown in
(a)) is joined with v#2 (shown in (b)). The result v# is shown in (c).

We omit the proof due to space limits. Intuitively, as we have seen in the pre-
vious section, the transformer ASSIGNP is unsound because it introduces over-
approximations. In particular, over-approximations are more likely to appear
because of non-determinism (cf. Example 8). However, since the resulting seg-
ments are joined by means of �V, we recover from the unsoundness of ASSIGNP.
In fact, by definition of �V, the possible overlaps are handled with the sound join
operator �P and this yields a sound backward assignment transformer ASSIGNV.

Tests. The transformer FILTERV for backward tests simply applies piecewise
the transformer FILTERP.

In the following (cf. Figure 8), we will exploit FILTERV and the operator �V

to define the abstract counterpart of the concrete semantics for the if statement,
and the abstract counterpart φ# ∈ V# �→ V# of φ ∈ (E ��→ O) �→ (E ��→ O), as
defined in Figure 3 for the while statement. The soundness of these operators
relies on an argument similar to the one we used to justify ASSIGNV.

Widening. The widening operator �V prevents the number of pieces of an ab-
stract ranking function from growing indefinitely. First, to avoid infinite chains,
it performs a segmentation unification that keeps only the bounds occurring in
the first segmentation. Then, it widens the functions piecewise (basically reusing4

the widening on polyhedra) and toward the adjacent segments (cf. Example 9).

Example 9. Let us consider the widening between the segmented functions v#1
and v#2 represented in Figure 7a and Figure 7b, respectively. The operator �V

keeps only the segmentation of v#1 . Thus, the segments 〈x �→ (−∞, 3),⊥F〉 and
〈x �→ [3, 5), y = 5〉 of v#2 , are joined into a single segment 〈x �→ (−∞, 5), y = 5〉.
Then, 〈x �→ (−∞, 5), y = 5〉 is widened toward 〈x �→ [5, 10), y = 3〉: both
segments are considered as sets of constraints (as we have seen for the definition
of the operator �F of Section 3.2) and their convex-hull

{x ≤ 10, 0 ≤ y, y ≤ 3, y ≤ −2

5
x+ 7}

4 In a similar way as the join of polyhedra was reused to define �F in Section 3.2.

The Abstract Domain of Segmented Ranking Functions 57

x

5 10

(a)

x

3 5 10

(b)

x

5 10

(c)

Fig. 7. Example of widening of abstract piecewise-defined ranking functions. The result
of widening v#1 (shown in (a)) with v#2 (shown in (b) is shown in (c).

is shrunk by the constraint x < 5 originating from the first segment:

{x < 5, 0 ≤ y ≤ −2

5
x+ 7}.

The resulting widened segmented function is

v# ≡ 〈x �→ (−∞, 5), y = −2

5
x+ 7〉〈x �→ [5, 10), y = 3〉〈x �→ [10,+∞), y = 1〉

represented in Figure 7c. ��

Note that this widening does not respect the traditional definition [10], since the

property γV(v
#
1) � γV(v

#
2) � γV(v

#
1 �Vv

#
2) does not always hold.

However, we are able to prove the following weaker result (that will be decisive
for the soundness of the iterations with widening):

Lemma 3. (X �V Y = X) ⇒ Y �V X

Proof. When X �V Y = X , we have Y �V X . Moreover, since the widening
force the segmentation of X on Y , having X �V Y = X means that X and Y
are defined on the same segments. In this case, as we have already observed, the
orders �V and �V coincide, and we have Y �V X . ��

3.4 Abstract Termination Semantics

We now use the operators of V(E,P) to define the statement abstract semantics
S#�S� ∈ V # �→ V # by induction on the syntax of programs in Figure 8.

The program abstract semantics r#τ ∈ L �→ V# is computed through backward
invariance analysis, starting from the program final control point e ∈ L with the
constant function equals to 0. The ranking function is then propagated towards
the program initial control point i ∈ L taking assignments and tests into account
with widening around loops [4]. The upward iteration sequence with widening

58 C. Urban

S#�X := A�v � ASSIGNV(X := A, v)

S#�if B then S1 else S2 fi�v � FILTERS(B,S#�S1�v) �V FILTERS(¬B,S#�S2�v)

S#�while B do S od�v � lfp#
�V

⊥V
φ#

where φ# � λx. FILTERS(¬B, v) �V FILTERS(B,S#�S�x)

S#�S1;S2�v � S#�S1�(S#�S2�v)

Fig. 8. Abstract Semantics

X0 = ⊥V

Xi+1 = Xi �V φ#(Xi)

is ultimately stationary and we prove that its limit lfp#
�V

⊥V
φ# is a sound over-

approximation of lfp�∅̇ φ:

Lemma 4. lfp�∅̇ φ � γV(lfp
#�V

⊥V
φ#)

Proof. Follows from the soundness of the function φ# and Lemma 3. ��

Finally, thanks to the soundness of all abstract operators, with the following re-
sult we establish the soundness of the program semantics r#τ for proving program
termination for initial states in I.

Theorem 7. Let v# be such that r#τ �V v# ∧ I ⊆ dom(γV(v
#)). Then, a pro-

gram P , with trace semantics described by a transition system 〈Σ, τ〉, terminates
for all traces starting from initial states in I ∈ ℘(Σ).

4 Implementation

We have implemented a research prototype static analyzer, based on our abstract
domain of segmented ranking functions. It is written in OCaml on top of the
Apron library [20], and we have used it to analyze programs written in the small
non-deterministic imperative language presented in Section 2.2.

To improve precision, we avoid trying to compute a ranking function for the
non-reachable states: our tool runs an iterated forward and backward invariance
analysis to over-approximate the reachable states definitely leading to final states
[11]. Then, it runs the backward analysis to infer the ranking function, intersect-
ing its domain at each step with the states identified by the previous analysis.

The analysis proceeds by structural induction on the program syntax, iterating
loops until an abstract fix-point is reached. In case of nested loops, a fix-point
on the inner loop is computed for each iteration of the outer loop, following [4].

The Abstract Domain of Segmented Ranking Functions 59

To illustrate the expressiveness of our domain, we consider more examples,
besides the one shown in Section 1.

Example 10. Let us consider the following program:

while 1(x1 ≥ 0 ∧ x2 ≥ 0) do

if 2(?) then
3x1 := x1 − 1

else
4x2 := x2 − 1

fi

od5

The presence of the test within the loop does not impair our method.
We run our analysis delaying widening of 2 iterations, and we obtained the

following loop invariant at program point 1:

f(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x1 < 0

1 x2 < 0

3 0 ≤ x1 < 1 ∧ 0 ≤ x2 < 1

5 0 ≤ x1 < 1 ∧ 1 ≤ x2 < 2

5 1 ≤ x1 < 2 ∧ 0 ≤ x2 < 1

2x1 + 3 2 ≤ x1 ∧ 0 ≤ x2 < 1

2x2 + 3 0 ≤ x1 < 1 ∧ 2 ≤ x2

2x1 + 2x2 + 3 1 ≤ x1 ∧ 1 ≤ x2

Note how the ranking function, since its value represents an upper bound on
the number of steps to termination, also provides information on the program
computational complexity. ��

Example 11. Let us consider the following program:

while 1(x < 10) do
2x := 2x

od3

Such program always terminates if and only if x > 0.
Our tool, with delayed widening of 2 iterations, is able to provide the following

loop invariant:

f(x) =

{
3 5 ≤ x < 10

1 10 ≤ x

60 C. Urban

We can see that even when the analysis fails to prove whole program termination,
it can still infer useful sufficient conditions for termination.

Besides, in this case, if we assume that the variable x takes values in Z, it
is sufficient to further delay the widening, to obtain the most precise ranking
function:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

9 x = 1

7 x = 2

5 3 ≤ x ≤ 4

3 5 ≤ x ≤ 9

1 10 ≤ x

��

5 Related Work

Termination analysis has attracted increased interest over the years (cf. [8]).
Proving termination of programs is necessary for ensuring the correct behavior
of systems, especially those for which unexpected behavior can be catastrophic.

The first results in this field date back to [26] and [18]. In the recent past,
despite the undecidability of termination, termination analysis has benefited
from many research advances and powerful termination provers have emerged.

Many results are developed on the basis of the transition invariants method in-
troduced in [23]. In particular, the Terminator prover [7] is based on an algorithm
for the iterative construction of transition invariants. This algorithm search for
counterexamples (i.e. single paths of a program) to termination, computes a
ranking function for each one of them individually (as in [22]), and combines
them into a single termination argument. Our approach differs in that it aims to
prove termination for all program paths at the same time, without resorting to
counterexample-guided analysis. Moreover, it avoids the cost of explicit checking
for the well-foundedness of the termination argument. The approach presented
in [25] shares similar motivations, but prefers loop summarization to iterative
fix-point computation with widening, as considered in this paper.

Among the methods based on transition invariants, we also recall the strat-
egy, proposed in [3], based on the indirect use of invariants to prove program
termination (and liveness properties). On the other hand, our approach infers
ranking functions directly as invariants.

In [2], the invariants are pre-computed as in [3], but each program point is
assigned with a ranking function (that also provides information on the program
computational complexity), as in our technique.

Finally, in the literature, we found only few works that have addressed the
problem of automatically finding preconditions to program termination. In [6],
the authors proposed a method based on preconditions generating valid ranking
functions. Our approach somehow goes the other way around, using the compu-
tation of ranking functions to infer sufficient condition for termination.

The Abstract Domain of Segmented Ranking Functions 61

6 Conclusions and Future Work

In this paper, we presented a family of parameterized abstract domains for prov-
ing termination of imperative programs. These domains automatically synthesize
piecewise-defined ranking functions through backward invariance analysis.

We also described the design and implementation of a particular instance
of these generic abstract domains based on intervals and affine functions. We
have seen that the piecewise-definition of the functions allows us to overcome
the non-existence of a linear ranking function for a program (cf. Section 1). Our
invariance analysis is not limited to simple loop (cf. Example 10) and, even when
it fails to prove whole program termination, it can still infer useful information
as sufficient conditions for termination (cf. Example 11).

As might be expected, the implemented domain has a limited expressiveness
that translates into an imprecision of the analysis especially in the case of nested
loops (and, in general, of programs with non-linear complexity). For this reason,
we would like to consider the possibility of structuring computations as suggested
by [14]. It also remains for future work to design more abstract domains, based
on non-linear functions as exponentials [17] or polynomials. In addition, we plan
to extend our research to proving other liveness properties.

We are interested as well in exploring further the possible potential of our
approach in the termination-related field of automatic cost analysis [1].

Finally, another line of research would be proving definite non-termination by
abstraction of the potential termination semantics proposed in [14].

Acknowledgments. We are deeply grateful to Patrick Cousot, Radhia Cousot,
Antoine Miné, Xavier Rival, Jérôme Feret, Damien Massé and the anonymous
referees for all their useful comments and helpful suggestions.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. J. Autom. Reasoning 46(2), 161–203 (2011)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional Rankings, Pro-
gram Termination, and Complexity Bounds of Flowchart Programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010)

3. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.W.: Variance
Analyses from Invariance Analyses. In: POPL, pp. 211–224 (2007)

4. Bourdoncle, F.: Efficient Chaotic Iteration Strategies with Widenings. In: FMPA,
pp. 128–141 (1993)

5. Bradley, A.R., Manna, Z., Sipma, H.B.: The Polyranking Principle. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005)

6. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving Condi-
tional Termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 328–340. Springer, Heidelberg (2008)

62 C. Urban

7. Cook, B., Podelski, A., Rybalchenko, A.: TERMINATOR: Beyond Safety. In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidel-
berg (2006)

8. Cook, B., Podelski, A., Rybalchenko, A.: Proving Program Termination. Commun.
ACM 54(5), 88–98 (2011)

9. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Pro-
grams. In: Proceedings of the Second International Symposium on Programming,
pp. 106–130 (1976)

10. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL,
pp. 238–252 (1977)

11. Cousot, P., Cousot, R.: Abstract Interpretation and Application to Logic Programs.
J. Log. Program. 13(2&3), 103–179 (1992)

12. Cousot, P., Cousot, R.: Abstract Interpretation Frameworks. J. Log. Comput. 2(4),
511–547 (1992)

13. Cousot, P., Cousot, R.: Higher Order Abstract Interpretation (and Application to
Comportment Analysis Generalizing Strictness, Termination, Projection, and PER
Analysis. In: ICCL, pp. 95–112 (1994)

14. Cousot, P., Cousot, R.: An Abstract Interpretation Framework for Termination.
In: POPL, pp. 245–258 (2012)

15. Cousot, P., Cousot, R., Logozzo, F.: A Parametric Segmentation Functor for Fully
Automatic and Scalable Array Content Analysis. In: POPL, pp. 105–118 (2011)

16. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: POPL, pp. 84–96 (1978)

17. Feret, J.: The Arithmetic-Geometric Progression Abstract Domain. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 42–58. Springer, Heidelberg (2005)

18. Floyd, R.W.: Assigning Meanings to Programs. In: Proceedings of Symposium on
Applied Mathematics, vol. 19, pp. 19–32 (1967)

19. Jeannet, B.: Dynamic Partitioning in Linear Relation Analysis: Application to the
Verification of Reactive Systems. Formal Methods in System Design 23(1), 5–37
(2003)

20. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for
Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661–667. Springer, Heidelberg (2009)

21. Miné, A.: The Octagon Abstract Domain. HOSC 19(1), 31–100 (2006)
22. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear

Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

23. Podelski, A., Rybalchenko, A.: Transition Invariants. In: LICS, pp. 32–41 (2004)
24. Rival, X., Mauborgne, L.: The Trace Partitioning Abstract Domain. ACM Trans-

actions on Programming Languages and Systems 29(5) (2007)
25. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop Summariza-

tion and Termination Analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011)

26. Turing, A.: Checking a Large Routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, pp. 67–69 (1948)

Symbolic Automata for Static Specification Mining

Hila Peleg1, Sharon Shoham2, Eran Yahav3, and Hongseok Yang4

1 Tel Aviv University, Israel
2 Tel Aviv-Yaffo Academic College, Israel

3 Technion, Israel
4 University of Oxford, UK

Abstract. We present a formal framework for static specification mining. The
main idea is to represent partial temporal specifications as symbolic automata –
automata where transitions may be labeled by variables, and a variable can be
substituted by a letter, a word, or a regular language. Using symbolic automata,
we construct an abstract domain for static specification mining, capturing both
the partialness of a specification and the precision of a specification. We show in-
teresting relationships between lattice operations of this domain and common op-
erators for manipulating partial temporal specifications, such as building a more
informative specification by consolidating two partial specifications.

1 Introduction

Programmers make extensive use of frameworks and libraries. To perform standard
tasks such as parsing an XML file or communicating with a database, programmers
use standard frameworks rather than writing code from scratch. Unfortunately, a typical
framework API can involve hundreds of classes with dozens of methods each, and often
requires sequences of operations to be invoked on specific objects to perform a single
task (e.g., [14,6,12,3,13]). Even experienced programmers might spend hours trying to
understand how to use a seemingly simple API [6].

Static specification mining techniques (e.g., [10,7,2,15]) have emerged as a way to
obtain a succinct description of usage scenarios when working with a library. However,
although they demostrated great practical value, these techniques do not address many
interesting and challenging technical questions.

In this paper, we present a formal framework for static specification mining. The
main idea is to represent partial temporal specifications as symbolic automata, where
transitions may be labeled by variables representing unknown information. Using sym-
bolic automata, we present an abstract domain for static specification mining, and show
interesting relationships between the partialness and the precision of a specification.

Representing Partial Specifications Using Symbolic Automata. We focus on gener-
alized typestate specifications [11,7]. Such specifications capture legal sequences of
method invocations on a given API, and are usually expressed as finite-state automata
where a state represents an internal state of the underlying API, and transitions corre-
spond to API method invocations.

To make specification mining more widely applicable, it is critical to allow mining
from code snippets, i.e., code fragments with unknown parts. A natural approach for

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 63–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

64 H. Peleg et al.

mining from code snippets is to capture gaps in the snippets using gaps in the specifi-
cation. For example, when the code contains an invocation of an unknown method, this
approach reflects this fact in the mined specification as well (we elaborate on this point
later). Our symbolic automaton is conceived in order to represent such partial informa-
tion in specifications. It is a finite-state machine where transitions may be labeled by
variables and a variable can be substituted by a letter, a word, or a regular languages in
a context sensitive manner — when a variable appears in multiple strings accepted by
the state machine, it can be replaced by different words in all these strings.

An Abstract Domain for Mining Partial Specifications. One challenge for forming an
abstract domain with symbolic automata is to find appropriate operations that capture
the subtle interplay between the partialness and the precision of a specification. Let us
explain this challenge using a preorder over symbolic automata.

When considering non-symbolic automata, we typically use the notion of language
inclusion to model “precision” — we can say that an automaton A1 overapproximates
an automaton A2 when its language includes that of A2. However, this standard ap-
proach is not sufficient for symbolic automata, because the use of variables introduces
partialness as another dimension for relating the (symbolic) automata. Intuitively, in a
preorder over symbolic automata, we would like to capture the notion of a symbolic
automaton A1 being more complete than a symbolic automaton A2 when A1 has fewer
variables that represent unknown information. In Section 4, we describe an interesting
interplay between precision and partialness, and define a preorder between symbolic
automata, that we later use as a basis for an abstract domain of symbolic automata.

Consolidating Partial Specifications. After mining a large number of partial specifi-
cations from code snippets, it is desirable to combine consistent partial information to
yield consolidated temporal specifications. This leads to the question of combining con-
sistent symbolic automata. In Section 7, we show how the join operation of our abstract
domain leads to an operator for consolidating partial specifications.

Completion of Partial Specifications. Having constructed consolidated specifications,
we can use symbolic automata as queries for code completion. Treating one symbolic
automaton as a query being matched against a database of consolidated specifications,
we show how to use simulation over symbolic automata to find automata that match the
query (Section 5), and how to use unknown elimination to find completions of the query
automaton (Section 6).

Main Contributions. The contributions of this paper are as follows:

– We formally define the notion of partial typestate specification based on a new
notion of symbolic automata.

– We explore relationships between partial specifications along two dimensions:
(i) precision of symbolic automata, a notion that roughly corresponds to contain-
ment of non-symbolic automata; and (ii) partialness of symbolic automata, a notion
that roughly corresponds to an automata having fewer variables, which represent
unknown information.

Symbolic Automata for Static Specification Mining 65

– We present an abstract domain of symbolic automata where operations of the do-
main correspond to key operators for manipulating partial temporal specifications.

– We define the operations required for algorithms for consolidating two partial spec-
ifications expressed in terms of our symbolic automata, and for completing certain
partial parts of such specifications.

Related Work. Mishne et. al [7] present a practical framework for static specification
mining and query matching based on automata. Their framework imposes restrictions
on the structure of automata and they could be viewed as a restricted special case of the
formal framework introduced in this paper. In contrast to their informal treatment, this
paper presents the notion of symbolic automata with an appropriate abstract domain.

Weimer and Necula [14] use a lightweight static analysis to infer simple specifi-
cations from a given codebase. Their insight is to use exceptional program paths as
negative examples for correct API usage. They learn specifications consisting of pairs
of events 〈a, b〉, where a and b are method calls, and do not consider larger automata.

Monperrus et. al [8] attempt to identify missing method calls when using an API by
mining a codebase. They only compare objects with identical type and same containing
method signature, which only works for inheritance-based APIs. Their approach deals
with identical histories minus k method calls. Unlike our approach, it cannot handle
incomplete programs, non-linear method call sequences, and general code queries.

Wasylkowski et. al [13] use an intraprocedural static analysis to automatically mine
object usage patterns and identify usage anomalies. Their approach is based on iden-
tifying usage patterns, in the restricted form of pairs of events, reflecting the order in
which events should be used.

Gruska et. al [5] considers limited specifications that are only pairs of events. [1] also
mines pairs of events in an attempt to mine partial order between events. [12] mine spec-
ifications (operational preconditions) of method parameters to detect problems in code.
The mined specifications are CTL formulas that fit into several pre-defined templates
of formulas. Thus, the user has to know what kind of specifications she is looking for.

Shoham et. al [10] use a whole-program analysis to statically analyze clients using
a library. Their approach is not applicable in the setting of partial programs and partial
specification since they rely on the ability to analyze the complete program for complete
alias analysis and for type information.

Plandowski [9] uses the field of word equations to identify assignments to variables
within conditions on strings with variable portions and regular expression. Ganesh et.
al [4] expand this work with quantifiers and limits on the assignment size. In both cases,
the regular language that the assignments consist of does not allow variables, disal-
lowing the concept of symbolic assignments of variables within the branching of the
automata for the regular language. In addition, while word equations allow all predi-
cate arguments to have symbolic components, the equation is solved by a completely
concrete assignment, disallowing the concept of assigning a symbolic language.

2 Overview

We start with an informal overview of our approach by using a simple File example.

66 H. Peleg et al.

1 void process(File f) {
2 f.open();
3 doSomething(f);
4 f.close();
5 }

(a) (b)

Fig. 1. (a) Simple code snippet using File. The methods open and close are API methods,
and the method doSomething is unknown. (b) Symbolic automaton mined from this snippet.
The transition corresponding to doSomething is represented using the variable X. Transitions
corresponding to API methods are labeled with method name.

(a) (b)

Fig. 2. Automata mined from programs using File to (a) read after canRead check; (b) write

2.1 Illustrative Example

Consider the example snippet of Fig. 1(a). We would like to extract a temporal speci-
fication that describes how this snippet uses the File component. The snippet invokes
open and then an unknown method doSomething(f) the code of which is not avail-
able as part of the snippet. Finally, it calls close on the component. Analyzing this
snippet using our approach yields the partial specification of Fig. 1(b). Technically,
this is a symbolic automaton, where transitions corresponding to API methods are
labeled with method name, and the transition corresponding to the unknown method
doSomething is labeled with a variable X. The use of a variable indicates that some
operations may have been invoked on the File component between open and close,
but that this operation or sequence of operations is unknown.

Now consider the specifications of Fig. 2, obtained as the result of analyzing similar
fragments using the File API. Both of these specifications are more complete than the
specification of Fig. 1(b). In fact, both of these automata do not contain variables, and
they represent non-partial temporal specifications. These three separate specifications
come from three pieces of code, but all contribute to our knowledge of how the File
API is used. As such, we would like to be able to compare them to each other and to
combine them, and in the process to eliminate as many of the unknowns as possible
using other, more complete examples.

Our first step is to consolidate the specifications into a more comprehensive specifi-
cation, describing as much of the API as possible, while losing no behavior represented
by the original specifications.

Next, we would like to eliminate unknown operations based on the extra information
that the new temporal specification now contains with regard to the full API. For in-
stance, where in Fig. 1 we had no knowledge of what might happen between open and
close, the specification in Fig. 3(a) suggests it might be either canRead and read,
or write. Thus, the symbolic placeholder for the unknown operation is now no longer
needed, and the path leading through X becomes redundant (as shown in Fig. 3(b)).

Symbolic Automata for Static Specification Mining 67

(a) (b)

Fig. 3. (a) Automaton resulting from combining all known specifications of the File API, and
(b) the File API specifications after partial paths have been subsumed by more concrete ones

X �→ open
Y �→ close

(a) (b)

Fig. 4. (a) Symbolic automaton representing the query for the behavior around the method read
and (b) the assignment to its symbolic transitions which answers the query

We may now note that all three original specifications are still included in the speci-
fication in Fig. 3(b), even after the unknown operation was removed; the concrete paths
are fully there, whereas the path with the unknown operation is represented by both the
remaining paths.

The ability to find the inclusion of one specification with unknowns within another
is useful for performing queries. A user may wish to use the File object in order to
read, but be unfamiliar with it. He can query the specification, marking any portion he
does not know as an unknown operation, as in Fig. 4(a).

As this very partial specification is included in the API’s specification, there will be
a match. Furthermore, we can deduce what should replace the symbolic portions of the
query. This means the user can get the reply to his query that X should be replaced by
open and Y by close.

Fig. 5 shows a more complex query and its assignment. The assignment to the vari-
able X is made up of two different assignments for the different contexts surrounding
X: when followed by write, X is assigned open, and when followed by read, X is
assigned the word open,canRead. Even though the branching point in Fig. 3(b) is not
identical to the one in the query, the query can still return a correct result using contexts.

2.2 An Abstract Domain of Symbolic Automata

To provide a formal background for the operations we demonstrated here informally, we
define an abstract domain based on symbolic automata. Operations in the domain cor-
respond to natural operators required for effective specification mining and answering
code search queries. Our abstract domain serves a dual goal: (i) it is used to represent
partial temporal specification during the analysis of each individual code snippet; (ii) it
is used for consolidation and answering code search queries across multiple snippets

In its first role — used in the analysis of a single snippet — the abstract domain can
further employ a quotient abstraction to guarantee that symbolic automata do not grow

68 H. Peleg et al.

(*,X,read) �→ open,canRead
(*,X,write) �→ open
Y �→ close
Z �→ close

(a) (b)

Fig. 5. (a) Symbolic automaton representing the query for the behavior around read and write
methods and (b) the assignment with contexts to its symbolic transitions which answers the query

without a bound due to loops or recursion [10]. In Section 4.2, we show how to obtain
a lattice based on symbolic automata.

In second role — used for consolidation and answering code-search queries — query
matching can be understood in terms of unknown elimination in a symbolic automata
(explained in Section 6), and consolidation can be understood in terms of join in the
abstract domain, followed by “minimization” (explained in Section 7).

3 Symbolic Automata

We represent partial typestate specifications using symbolic automata:

Definition 1. A deterministic symbolic automaton (DSA) is a tuple 〈Σ,Q, δ, ι, F,Vars〉
where:

– Σ is a finite alphabet a, b, c, . . .;
– Q is a finite set of states q, q′, . . .;
– δ is a partial function from Q× (Σ∪Vars) to Q, representing a transition relation;
– ι ∈ Q is an initial state;
– F ⊆ Q is a set of final states;
– Vars is a finite set of variables x, y, z,

Our definition mostly follows the standard notion of deterministic finite automata. Two
differences are that transitions can be labeled not just by alphabets but by variables,
and that they are partial functions, instead of total ones. Hence, an automaton might get
stuck at a letter in a state, because the transition for the letter at the state is not defined.

We write (q, l, q′) ∈ δ for a transition δ(q, l) = q′ where q, q′ ∈ Q and l ∈ Σ ∪Vars.
If l ∈ Vars, the transition is called symbolic. We extend δ to words over Σ ∪Vars in the
usual way. Note that this extension of δ over words is a partial function, because of the
partiality of the original δ. When we write δ(q, sw) ∈ Q0 for such words sw and a state
set Q0 in the rest of the paper, we mean that δ(q, sw) is defined and belongs to Q0.

From now on, we fix Σ and Vars and omit them from the notation of a DSA.

3.1 Semantics

For a DSA A, we define its symbolic language, denoted SL(A), to be the set of all
words over Σ ∪ Vars accepted by A, i.e.,

SL(A) = {sw ∈ (Σ ∪ Vars)∗ | δ(ι, sw) ∈ F}.

Symbolic Automata for Static Specification Mining 69

(a) (b)

Fig. 6. DSAs (a) and (b)

Words over Σ ∪ Vars are called symbolic words, whereas words over Σ are called
concrete words. Similarly, languages over Σ ∪ Vars are symbolic, whereas languages
over Σ are concrete.

The symbolic language of a DSA can be interpreted in different ways, depending
on the semantics of variables: (i) a variable represents a sequence of letters from Σ;
(ii) a variable represents a regular language over Σ; (iii) a variable represents different
sequences of letters from Σ under different contexts.

All above interpretations of variables, except for the last, assign some value to a vari-
able while ignoring the context in which the variable lies. This is not always desirable.
For example, consider the DSA in Fig. 6(a). We want to be able to interpret x as d when
it is followed by b, and to interpret it as e when it is followed by c (Fig. 6(b)). Motivated
by this example, we focus here on the last possibility of interpreting variables, which
also considers their context. Formally, we consider the following definitions.

Definition 2. A context-sensitive assignment, or in short assignment, σ is a function
from (Σ ∪ Vars)∗ × Vars × (Σ ∪ Vars)∗ to NonEmptyRegLangOn(Σ ∪ Vars).

When σ maps (sw1, x, sw2) to SL, we refer to (sw1, sw2) as the context of x. The
meaning is that an occurrence of x in the context (sw1, sw2) is to be replaced by SL
(i.e., by any word from SL). Thus, it is possible to assign multiple words to the same
variable in different contexts. The context used in an assignment is the full context
preceding and following x. In particular, it is not restricted in length and it can be
symbolic, i.e., it can contain variables. Note that these assignments consider a linear
context of a variable. A more general definition would consider the branching context
of a variable (or a symbolic transition).

Formally, applying σ to a symbolic word behaves as follows. For a symbolic word
sw = l1l2 . . . ln, where li ∈ Σ ∪ Vars for every 1 ≤ i ≤ n,

σ(sw) = SL1SL2 . . .SLn

where (i) SLi = {li} if li ∈ Σ; and (ii) SLi = SL if li ∈ Vars is a variable x and
σ(l1...li−1, x, li+1...ln) = SL.

Accordingly, for a symbolic language SL, σ(SL) =
⋃
{σ(sw) | sw ∈ SL}.

Definition 3. An assignment σ is concrete if its image consists of concrete languages
only. Otherwise, it is symbolic.

If σ is concrete then σ(SL) is a concrete language, whereas if σ is symbolic then σ(SL)
can still be symbolic.

70 H. Peleg et al.

(a) (b)

Fig. 7. DSA before and after assignment

In the sequel, when σ maps some x to the same language in several contexts, we
sometimes write σ(C1, x, C2) = SL as an abbreviation for σ(sw1, x, sw2) = SL for
every (sw1, sw2) ∈ C1 × C2. We also write ∗ as an abbreviation for (Σ ∪ Vars)∗.

Example 1. Consider the DSA A from Fig. 6(a). Its symbolic language is {axb, axc}.
Now consider the concrete assignment σ : (∗, x, b∗) �→ d, (∗, x, c∗) �→ e. Then
σ(axb) = {adb} and σ(axc) = {aec}, which means that σ(SL(A)) = {adb, aec}.
If we consider σ : (∗, x, b∗) �→ d∗, (∗, x, c∗) �→ (e|b)∗, then σ(axb) = ad∗b and
σ(axc) = a(e|b)∗c, which means that σ(SL(A)) = (ad∗b)|(a(e|b)∗c).

Example 2. Consider the DSA A depicted in Fig. 7(a) and consider the symbolic as-
signment σ which maps (∗ab, x, ∗) to g, and maps x in any other context to x. The
assignment is symbolic since in any incoming context other than ∗ab, x is assigned x.
Then Fig. 7(b) presents a DSA for σ(SL(A)).

Completions of a DSA. Each concrete assignment σ to a DSA A results in some “com-
pletion” of SL(A) into a language over Σ (c.f. Example 1). We define the semantics
of a DSA A, denoted �A�, as the set of all languages over Σ obtained by concrete
assignments:

�A� = {σ(SL(A)) | σ is a concrete assignment}.

We call �A� the set of completions of A.
For example, for the DSA from Fig. 6(a), {adb, aec} ∈ �A� (see Example 1). Note

that if a DSA A has no symbolic transition, i.e. SL(A) ⊆ Σ∗, then �A� = {SL(A)}.

4 An Abstract Domain for Specification Mining

In this section we lay the ground for defining common operations on DSAs by defining
a preorder on DSAs. In later sections, we use this preorder to define an algorithm for
query matching (Section 5), completion of partial specification (Section 6), and consol-
idation of multiple partial specification (Section 7).

The definition of a preorder over DSAs is motivated by two concepts. The first is
precision. We are interested in capturing that one DSA is an overapproximation of an-
other, in the sense of describing more behaviors (sequences) of an API. When DFAs
are considered, language inclusion is suitable for capturing a precision (abstraction) re-
lation between automata. The second is partialness. We would like to capture that a
DSA is “more complete” than another in the sense of having less variables that stand
for unknown information.

Symbolic Automata for Static Specification Mining 71

(a) (b)

(c) (d)

Fig. 8. Dimensions of the preorder on DSAs

4.1 Preorder on DSAs

Our preorder combines precision and partialness. Since the notion of partialness is less
standard, we first explain how it is captured for symbolic words. The consideration of
symbolic words rather than DSAs allows us to ignore the dimension of precision and
focus on partialness, before we combine the two.

Preorder on Symbolic Words

Definition 4. Let sw1, sw2 be symbolic words. sw1 ≤ sw2 if for every concrete assign-
ment σ2 to sw2, there is a concrete assignment σ1 to sw1 such that σ1(sw1) = σ2(sw2).

This definition captures the notion of a symbolic word being “more concrete” or “more
complete” than another: Intuitively, the property that no matter how we fill in the un-
known information in sw2 (using a concrete assignment), the same completion can
also be obtained by filling in the unknowns of sw1, ensures that every unknown of
sw2 is also unknown in sw1 (which can be filled in the same way), but sw1 can
have additional unknowns. Thus, sw2 has “no more” unknowns than sw1. In partic-
ular, {σ(sw1) | σ is a concrete assignment} ⊇ {σ(sw2) | σ is a concrete assignment}.
Note that when considering two concrete words w1, w2 ∈ Σ∗ (i.e., without any vari-
able), w1 ≤ w2 iff w1 = w2. In this sense, the definition of ≤ over symbolic words is a
relaxation of equality over words.

For example, abxcd ≥ ayd according to our definition. Intuitively, this replationship
holds because abxcd is more complete (carries more information) than ayd.

Symbolic Inclusion of DSAs. We now define the preorder over DSAs that combines
precision with partialness. On the one hand, we say that a DSA A2 is “bigger” than A1,
if A2 describes more possible behaviors of the API, as captured by standard automata
inclusion. For example, see the DSAs (a) and (b) in Fig. 8. On the other hand, we say
that a DSA A2 is “bigger” than A1, if A2 describes “more complete” behaviors, in terms
of having less unknowns. For example, see the DSAs (c) and (d) in Fig. 8.

However, these examples are simple in the sense of “separating” the precision and
the partialness dimensions. Each of these examples demonstrates one dimension only.

72 H. Peleg et al.

We are also interested in handling cases that combine the two, such as cases where A1

and A2 represent more than one word, thus the notion of completeness of symbolic
words alone is not applicable, and in addition the language of A1 is not included in the
language of A2 per se, e.g., since some of the words in A1 are less complete than those
of A2. This leads us to the following definition.

Definition 5 (symbolic-inclusion). A DSA A1 is symbolically-included in a DSA A2,
denoted by A1 � A2, if for every concrete assignment σ2 of A2 there exists a concrete
assignment σ1 of A1, such that σ1(SL(A1)) ⊆ σ2(SL(A2)).

The above definition ensures that for each concrete language L2 that is a completion
of A2, A1 can be assigned in a way that will result in its language being included in
L2. This means that the “concrete” parts of A1 and A2 admit the inclusion relation, and
A2 is “more concrete” than A1. Equivalently: A1 is symbolically-included in A2 iff for
every L2 ∈ �A2� there exists L1 ∈ �A1� such that L1 ⊆ L2.

Example 3. The DSA depicted in Fig. 6(a) is symbolically-included in the one depicted
in Fig. 6(b), since for any assignment σ2 to (b), the assignment σ1 to (a) that will yield
a language that is included in the language of (b) is σ : (∗, x, b∗) �→ d, (∗, x, c∗) �→ e.
Note that if we had considered assignments to a variable without a context, the same
would not hold: If we assign to x the sequence d, the word adc from the assigned (a) will
remain unmatched. If we assign e to x, the word aeb will remain unmatched. If we as-
sign to x the language d|e, then both of the above words will remain unmatched. There-
fore, when considering context-free assignments, there is no suitable assignment σ1.

Theorem 1. � is reflexive and transitive.

Structural Inclusion. As a basis for an algorithm for checking if symbolic-inclusion
holds between two DSAs, we note that provided that any alphabet Σ′ can be used in
assignments, the following definition is equivalent to Definition 5.

Definition 6. A1 is structurally-included in A2 if there exists a symbolic assignment σ
to A1 such that σ(SL(A1)) ⊆ SL(A2). We say that σ witnesses the structural inclusion
of A1 in A2.

Theorem 2. Let A1, A2 be DSAs. Then A1 � A2 iff A1 is structurally-included in A2.

The following corollary provides another sufficient condition for symbolic-inclusion:

Corollary 1. If SL(A1) ⊆ SL(A2), then A1 � A2.

Example 4. The DSA depicted in Fig. 9(a) is not symbolically-included in the one de-
picted in Fig. 9(b) since no symbolic assignment to (a) will substitute the symbolic
word axbg by a (symbolic) word (or set of words) in (b). This is because assignments
cannot “drop” any of the contexts of a variable (e.g., the outgoing bg context of x). Such
assignments are undesirable since removal of contexts amounts to removal of observed
behaviors.

Symbolic Automata for Static Specification Mining 73

(a) (b)

(c)

Fig. 9. Example for a case where there is no assignment to either (a) or (b) to show (a) � (b) or
(b) � (a), and where there is such an assignment for (a) so that (a) � (c)

On the other hand, the DSA depicted in Fig. 9(a) is symbolically-included in the
one depicted in Fig. 9(c), since there is a witnessing assignment that maintains all the
contexts of x: σ : (a, x, b∗) �→ d, (a, x, cf∗) �→ h, (a, x, cg∗) �→ eh∗e, (bya, x, ∗) �→
d, (∗, y, ∗) �→ zd. Assigning σ to (a) results in a DSA whose symbolic language is
strictly included in the symbolic language of (c). Note that symbolic-inclusion holds
despite of the fact that in (c) there is no longer a state with an incoming c event and
both an outgoing f and an outgoing g events while being reachable from the state 1.
This example demonstrates our interest in linear behaviors, rather than in branching
behavior. Note that in this example, symbolic-inclusion would not hold if we did not
allow to refer to contexts of any length (and in particular length > 1).

4.2 A Lattice for Specification Mining

As stated in Theorem 1, � is reflexive and transitive, and therefore a preorder. How-
ever, it is not antisymmetric. This is not surprising, since for DFAs � collapses into
standard automata inclusion, which is also not antisymmetric (due to the existence of
different DFAs with the same language). In the case of DSAs, symbolic transitions are
an additional source of problem, as demonstrated by the following example.

Example 5. The DSAs in Fig. 10 satisfy � in both directions even though their sym-
bolic languages are different. DSA (a) is trivially symbolically-included in (b) since the
symbolic language of (a) is a subset of the symbolic language of (b) (see Corollary 1).
Examining the example closely shows that the reason that symbolic-inclusion also
holds in the other direction is the fact that the symbolic language of DSA

74 H. Peleg et al.

(a) (b)

Fig. 10. Equivalent DSAs w.r.t. symbolic-inclusion

(b) contains the symbolic word axb, as well as the concrete word adb, which is a com-
pletion of axb. In this sense, axb is subsumed by the rest of the DSA, which amounts
to DSA (a).

In order to obtain a partial order we follow a standard construction of turning a pre-
ordered set to a partially ordered set. We first define the following equivalence relation
based on �:

Definition 7. DSAs A1 and A2 are symbolically-equivalent, denoted by A1 ≡ A2, iff
A1 � A2 and A2 � A1.

Theorem 3. ≡ is an equivalence relation over the set DSA of all DSAs.

We now lift the discussion to the quotient set DSA/≡, which consists of the equiva-
lence classes of DSA w.r.t. the ≡ equivalence relation.

Definition 8. Let [A1], [A2] ∈ DSA/≡. Then [A1] � [A2] if A1 � A2.

Theorem 4. � is a partial order over DSA/≡.

Definition 9. For DSAs A1 and A2, we use union(A1, A2) to denote a union DSA for
A1 and A2, defined similarly to the definition of union of DFAs. That is, union(A1, A2)
is a DSA such that SL(union(A1, A2)) = SL(A1) ∪ SL(A2).

Theorem 5. Let [A1], [A2] ∈ DSA/≡ and let union(A1, A2) be a union DSA for A1

and A2. Then [union(A1, A2)] is the least upper bound of [A1] and [A2] w.r.t. �.

Corollary 2. (DSA/≡,�) is a join semi-lattice.

The ⊥ element in the lattice is the equivalence class of a DSA for ∅. The � element is
the equivalence class of a DSA for Σ∗.

5 Query Matching Using Symbolic Simulation

Given a query in the form of a DSA, and a database of other DSAs, query matching
attempts to find DSAs in the database that symbolically include the query DSA. In
this section, we describe a notion of simulation for DSAs, which precisely captures
the preorder on DSAs and serves a basis of core algorithms for manipulating symbolic
automata. In particular, in Section 5.2, we provide an algorithm for computing symbolic
simulation that can be directly used to determine when symbolic inclusion holds.

Symbolic Automata for Static Specification Mining 75

5.1 Symbolic Simulation

Let A1 and A2 be DSAs 〈Q1, δ1, ι1, F1〉 and 〈Q2, δ2, ι2, F2〉, respectively.

Definition 10. A relation H ⊆ Q1 × (2Q2 \ {∅}) is a symbolic simulation from A1 to
A2 if it satisfies the following conditions:

(a) (ι1, {ι2}) ∈ H;
(b) for every (q, B) ∈ H , if q is a final state, some state in B is final;
(c) for every (q, B) ∈ H and q′ ∈ Q1, if q′ = δ1(q, a) for some a ∈ Σ,

∃B′ s.t. (q′, B′) ∈ H ∧ B′ ⊆ {q′2 | ∃q2 ∈ B s.t. q′2 = δ2(q2, a)};

(d) for every (q, B) ∈ H and q′ ∈ Q1, if q′ = δ1(q, x) for x ∈ Vars,

∃B′ s.t. (q′, B′) ∈ H ∧ B′ ⊆ {q′2 | ∃q2 ∈ B s.t. q′2 is reachable from q2}.

We say that (q′, B′) in the third or fourth item above is a witness for ((q, B), l), or an
l-witness for (q, B) for l ∈ Σ ∪ Vars. Finally, A1 is symbolically simulated by A2 if
there exists a symbolic simulation H from A1 to A2.

In this definition, a state q of A1 is simulated by a nonempty set B of states from A2,
with the meaning that their union overapproximates all of its outgoing behaviors. In
other words, the role of q in A1 is “split” among the states of B in A2. A “split” arises
from symbolic transitions, but the “split” of the target of a symbolic transition can be
propagated forward for any number of steps, thus allowing states to be simulated by
sets of states even if they are not the target of a symbolic transition. This accounts
for splitting that is performed by an assignment with a context longer than one. Note
that since we consider deterministic symbolic automata, the sizes of the sets used in
the simulation are monotonically decreasing, except for when a target of a symbolic
transition is considered, in which case the set increases in size.

Note that a state q1 of A1 can participate in more than one simulation pair in the
computed simulation, as demonstrated by the following example.

Example 6. Consider the DSAs in Fig. 9(a) and (c). In this case, the simulation will be

H = { (0, {0}), (1, {1}), (2, {2, 6, 9}), (3, {3}), (4, {4, 10}), (5, {7}), (6, {12})
(7, {11}), (8, {8}), (9, {13}), (10, {15}), (1, {16}), (2, {17}), (4, {18}),
(7, {20}), (8, {19}), (3, {18}), (5, {20}), (6, {19}) }.

One can see that state 2 in (a), which is the target of the transition labeled x, is “split”
between states 2, 6 and 9 of (c). In the next step, after seeing b from state 2 in (a), the
target state reached (state 3) is simulated by a singleton set. On the other hand, after
seeing c from state 2 in (a), the target state reached (state 4), is still “split”, however this
time to only two states: 4 and 10 in (c). In the next step, no more splitting occurs.

Note that the state 1 in (a) is simulated both by {1} and by {16}. Intuitively, each of
these sets simulates the state 1 in another incoming context (a and b respectively).

Theorem 6 (Soundness). For all DSAs A1 and A2, if there is a symbolic simulation H
from A1 to A2, then A1 � A2.

76 H. Peleg et al.

Our proof of this theorem uses Theorem 2 and constructs a desired symbolic assignment
σ that witnesses structural inclusion of A1 in A2 explicitly from H . This construction
shows, for any symbolic word in SL(A1), the assignment (completion) to all variables
in it (in the corresponding context). Taken together with our next completeness theorem
(Theorem 7), this construction supports a view that a symbolic simulation serves as a
finite representation of symbolic assignment in the preorder. We develop this further in
Section 6.

Theorem 7 (Completeness). For al DSAs A1 and A2, if A1 � A2, then there is a
symbolic simulation H from A1 to A2.

5.2 Algorithm for Checking Simulation

A maximal symbolic simulation relation can be computed using a greatest fixpoint al-
gorithm (similarly to the standard simulation). A naive implementation would consider
all sets in 2Q2 , making it exponential.

More efficiently, we obtain a symbolic simulation relation H by an algorithm that
traverses both DSAs simultaneously, starting from (ι1, {ι2}), similarly to a computation
of a product automaton. For each pair (q1, B2) that we explore, we make sure that if
q1 ∈ F1, then B2 ∩ F2 �= ∅. If this is not the case, the pair is removed. Otherwise, we
traverse all the outgoing transitions of q1, and for each one, we look for a witness in the
form of another simulation pair, as required by Definition 10 (see below). If a witness is
found, it is added to the list of simulation pairs that need to be explored. If no witness is
found, the pair (q1, B2) is removed. When a simulation pair is removed, any simulation
pair for which it is a witness and no other witness exists is also removed (for efficiency,
we also remove all its witnesses that are not witnesses for any other pairs). If at some
point (ι1, {ι2}) is removed, then the algorithm concludes that A1 is not symbolically
simulated by A2. If no more pairs are to be explored, the algorithm concludes that there
is a symbolic simulation, and it is returned.

Consider a candidate simulation pair (q1, B2). When looking for a witness for some
transition of q1, a crucial observation is that if some set B′

2 ⊆ Q2 simulates a state
q′1 ∈ Q1, then any superset of B′

2 also simulates q′1. Therefore, as a witness we add the
maximal set that fulfills the requirement: if we fail to prove that q′1 is simulated by the
maximal candidate for B′

2, then we will also fail with any other candidate, making it
unnecessary to check.

Specifically, for an a-transition, where a ∈ Σ, from q1 to q′1, the witness is (q′1, B
′
2)

where B′
2 = {q′2 | ∃q2 ∈ B2 s.t. q′2 = δ2(q2, a)}. If B′

2 = ∅ then no witness exists. For
a symbolic transition from q1 to some q′1, the witness is (q′1, B

′
2) where B′

2 is the set of
all states reachable from the states in B2 (note that B′

2 �= ∅ as it contains at least the
states of B2). In both cases, if q′1 is a final state, we make sure that B′

2 contains at least
one final state as well. Otherwise, no witness exists.

In order to prevent checking the same simulation pair, or related pairs, over and
over again, we keep all removed pairs. When a witness (q′1, B′

2) is to be added as a
simulation pair, we make sure that no simulation pair (q′1, B

′′
2) where B′

2 ⊆ B′′
2 was al-

ready removed. If such a pair was removed, then clearly, (q′1, B′
2) will also be removed.

Moreover, since B′
2 was chosen as the maximal set that fulfills the requirement, any

Symbolic Automata for Static Specification Mining 77

other possible witness will comprise of its subset and will therefore also be removed.
Thus, in this case, no witness is obtained.

As an optimization, when for some simulation pair (q1, B2) we identify that all the
witnesses reachable from it have been verified and remained as simulation pairs, we
mark (q1, B2) as verified. If a simulation pair (q1, B′

2) is to be added as a witness for
some pair where B′

2 ⊇ B2, we can automatically conclude that (q1, B′
2) will also be

verified. We therefore mark it immediately as verified, and consider the witnesses of
(q1, B2) as its witnesses as well. Note that in this case, the obtained witnesses are not
maximal. Alternatively, it is possible to simply use (q1, B2) instead of (q1, B′

2). Since
this optimization damages the maximality of the witnesses, it is not used when maximal
witnesses are desired (e.g., when looking for all possible unknown elimination results).

Example 7. Consider the DSAs depicted in Fig. 9(a) and (c). A simulation between
these DSAs was presented in Example 6. We now present the simulation computed by
the above algorithm, where “maximal” sets are used as the sets simulating a given state.

H = {(0, {0}), (1, {1}), (2, {1, ..., 12, 21}), (3, {3}), (4, {4, 10, 21}), (5, {7}),
(6, {12}), (7, {11}), (8, {8}), (9, {13}), (10, {13, ..., 20}), (1, {16}),
(2, {16, ..., 20}), (3, {18}), (4, {18}), (5, {20}), (6, {19}), (7, {20}), (8, {19})}.

For example, the pair (2, {1, ..., 12, 21}) is computed as an x-witness for (1, {1}), even
though the subset {2, 6, 9} of {1, ..., 12, 21} suffices to simulate state 2.

6 Completion Using Unknown Elimination

Let A1 be a DSA that is symbolically-included in A2. This means that the “concrete
parts” of A1 exist in A2 as well, and the “partial” parts of A1 have some completion in
A2. Our goal is to be able to eliminate (some of) the unknowns in A1 based on A2. This
amounts to finding a (possibly symbolic) assignment to A1 such that σ(SL(A1)) ⊆
SL(A2) (whose existence is guaranteed by Theorem 2).

We are interested in providing some finite representation of an assignment σ derived
from a simulation H . Namely, for each variable x ∈ Vars, we would like to represent
in some finite way the assignments to x in every possible context in A1. When the set
of contexts in A1 is finite, this can be performed for every symbolic word (context)
separately as described in the proof of Theorem 6. However, in this section we also
wish to handle cases where the set of possible contexts in A1 is infinite.

We choose a unique witness for every simulation pair (q1, B2) in H and every tran-
sition l ∈ Σ ∪ Vars from q1. Whenever we refer to an l-witness of (q1, B2) in the rest
of this section, we mean this chosen witness. The reason for making this choice will
become clear later on.

Let x ∈ Vars be a variable. To identify the possible completions of x, we identify
all the symbolic transitions labeled by x in A1, and for each such transition we identify
all the states of A2 that participate in simulating its source and target states, q1 and
q′1 respectively. The states simulating q1 and q′1 are given by states in simulation pairs
(q1, B2) ∈ H and (q′1, B′

2) ∈ H respectively. The paths in A2 between states in B2 and
B′

2 will provide the completions (assignments) of x, where the corresponding contexts

78 H. Peleg et al.

will be obtained by tracking the paths in A1 that lead to (and from) the corresponding
simulation pairs, where we make sure that the sets of contexts are pairwise disjoint.

Formally, for all q1, q′1, x with δ(q1, x) = q′1, we do the following:

(a) For every simulation pair (q1, B2) ∈ H we compute a set of incoming contexts,
denoted in(q1, B2) (see computation of incoming contexts in the next page). These
contexts represent the incoming contexts of q1 under which it is simulated by
B2. The sets in(q1, B2) are computed such that the sets of different B2 sets are
pairwise-disjoint, and form a partition of the set of incoming contexts of q1 in A1.

(b) For every (q′1, B′
2) ∈ H which is an x-witness of some (q1, B2) ∈ H , and for

every q′2 ∈ B′
2, we compute a set of outgoing contexts, denoted out(q′1, B

′
2, q

′
2) (see

computation of outgoing contexts). These contexts represent the outgoing contexts
of q′1 under which it is simulated by the state q′2 of B′

2. The sets out(q′1, B′
2, q

′
2) are

computed such that the sets of different states q′2 ∈ B′
2 are pairwise-disjoint and

form a partition of the set of outgoing contexts of q′1 in A1.
(c) For every pair of simulation pairs (q1, B2), (q

′
1, B

′
2) ∈ H where (q′1, B

′
2) is an

x-witness, and for every pair of states q2 ∈ B2 and q′2 ∈ B′
2, such that q2 “con-

tributes” q′2 to the witness (see computation of outgoing contexts), we compute the
set of words leading from q2 to q′2 in A2. We denote this set by lang(q2, q

′
2). The

“contribution” relation ensures that for every state q2 ∈ B2 there is at most one
state q′2 ∈ B′

2 such that lang(q2, q′2) �= ∅.
(d) Finally, for every pair of simulation pairs (q1, B2), (q

′
1, B

′
2) ∈ H where (q′1, B

′
2)

is an x-witness of (q1, B2), and for every pair of states q2 ∈ B2 and q′2 ∈ B′
2,

if in(q1, B2) �= ∅ and out(q′1, B
′
2, q

′
2) �= ∅ and lang(q2, q

′
2) �= ∅, then we de-

fine σ(in(q1, B2), x, out(q
′
1, B

′
2, q

′
2)) = lang(q2, q

′
2). For all other contexts, σ is

defined arbitrarily.

Note that in step (d), for all the states q2 ∈ B2 the same set of incoming contexts is used
(in(q1, B2)), whereas for every q′2 ∈ B′

2, a separate set of outgoing contexts is used
(out(q1, B′

2, q
′
2)). This means that assignments to x that result from states in the same

B2 do not differ in their incoming context, but they differ by their outgoing contexts,
as ensured by the property that the sets out(q′1, B

′
2, q

′
2) of different states q′2 ∈ B′

2 are
pairwise-disjoint. Assignments to x that result from states in different B2 sets differ in
their incoming context, as ensured by the property that the sets in(q1, B2) of different
B2 sets are pairwise-disjoint. Assignments to x that result from different transitions
labeled by x also differ in their incoming contexts, as ensured by the property that A1

is deterministic, and hence the set of incoming contexts of each state in A1 are pairwise
disjoint. Altogether, there is a unique combination of incoming and outgoing contexts
for each assignment of x.

Computation of Incoming Contexts: To compute the set in(q1, B2) of incoming con-
texts of q1 under which it is simulated by B2, we define the witness graph GW =
(QW , δW). This is a labeled graph whose states QW are all simulation pairs, and
whose transitions δW are given by the witness relation: ((q′1, B′

2), l, (q
′′
1 , B

′′
2)) ∈ δW

iff (q′′1 , B
′′
2) is a l-witness of (q′1, B

′
2).

To compute in(q1, B2), we derive from GW a DSA, denoted AW (q1, B2), by setting
the initial state to (ι1, {ι2}) and the final state to (q1, B2). We then define in(q1, B2)

Symbolic Automata for Static Specification Mining 79

to be SL(AW (q1, B2)), describing all the symbolic words leading from (ι1, {ι2}) to
(q1, B2) along the witness relation. These are the contexts in A1 for which this witness
is relevant.

By our particular choice of witnesses for H , the witness graph is deterministic and
hence each incoming context in it will lead to at most one simulation pair. Thus, the
sets in(q1, B2) partition the incoming contexts of q1, making the incoming contexts
in(q1, B2) of different sets B2 pairwise-disjoint.

Computation of Outgoing Contexts: To compute the set out(q′1, B
′
2, q

′
2) of outgoing

contexts of q′1 under which it is simulated by the state q′2 of B′
2, we define a contribu-

tion relation based on the witness relation, and accordingly a contribution graph GC .
Namely, for (q1, B2), (q

′′
1 , B

′′
2) ∈ H such that (q′′1 , B

′′
2) is an l-witness of (q1, B2), we

say that q2 ∈ B2 “contributes” q′′2 ∈ B′′
2 to the witness if q2 has a corresponding l-

transition (if l ∈ Σ) or a corresponding path (if l ∈ Vars) to q′′2 . If two states q2 �= q′2 in
B2 contribute the same state q′′2 ∈ B′′

2 to the witness, then we keep only one of them in
the contribution relation.

The contribution graph is a labeled graph GC = (QC , δC) whose states QC are
triples (q1, B2, q2) where (q1, B2) ∈ H and q2 ∈ B2. In this graph, a transition
((q1, B2, q2), l, (q

′′
1 , B

′′
2 , q

′′
2)) ∈ δC exists iff (q′′1 , B

′′
2) is an l-witness of (q1, B2) and q2

contributes q′′2 to the witness. Note that GC refines GW in the sense that its states are
substates of GW and so are its transitions. However, unlike WC , GC is nondeterministic
since multiple states q2 ∈ B2 can have outgoing l-transitions.

To compute out(q′1, B
′
2, q

′
2) we derive from GC a nondeterministic version of our

symbolic automaton, denoted AC(q
′
1, B

′
2, q

′
2), by setting the initial state to (q′1, B′

2, q
′
2)

and the final states to triples (q1, B2, q2) where q1 is a final state of A1 and q2 is a final
state in A2. Then out(q′1, B

′
2, q

′
2) = SL(AC(q

′
1, B

′
2, q

′
2)). This is the set of outgoing

contexts of q′1 in A1 for which the state q′2 of the simulation pair (q′1, B
′
2) is relevant.

That is, it is used to simulate some outgoing path of q′1 leading to a final state.
However, the sets SL(AC(q

′
1, B

′
2, q

′
2)) of different q′2 ∈ B′

2 are not necessarily dis-
joint. In order to ensure disjoint sets of outgoing contexts out(q′1, B

′
2, q

′
2) for different

states q′2 within the same B′
2, we need to associate contexts in the intersection of the

outgoing contexts of several triples with one of them. Importantly, in order to ensure
“consistency” in the outgoing contexts associated with different, but related triples, we
require the following consistency property: If δW ((q1, B2), sw) = (q′1, B

′
2) then for

every q′2 ∈ B′
2, {sw} · out(q′1, B′

2, q
′
2) ⊆

⋃
{out(q1, B2, q2) | q2 ∈ B2 ∧ (q′1, B

′
2, q

′
2) ∈

δC((q1, B2, q2), sw)}.
This means that the outgoing contexts associated with some triple (q′1, B′

2, q
′
2) are a

subset of the outgoing contexts of triples that lead to it in GC , truncated by the corre-
sponding word that leads to (q′1, B

′
2, q

′
2).

Note that this property holds trivially if out(q′1, B′
2, q

′
2) = SL(AC(q

′
1, B

′
2, q

′
2)), as

is the case if these sets are already pairwise-disjoint and no additional manipulation is
needed. The following lemma ensures that if the intersections of the out sets of differ-
ent q′2 states in the same set B′

2 are eliminated in a way that satisfies the consistency
property, then correctness is guaranteed. In many cases (including the case where A1

contains no loops, and the case where no two symbolic transitions are reachable from
each other) this can be achieved by simple heuristics. In addition, in many cases the

80 H. Peleg et al.

simulation H can be manipulated such that the sets SL(AC(q
′
1, B

′
2, q

′
2)) themselves

will become pairwise disjoint.

Lemma 1. If for every (q′1, B
′
2, q

′
2) ∈ QC , out(q′1, B

′
2, q

′
2) ⊆ SL(AC(q

′
1, B

′
2, q

′
2)),

and for every (q′1, B′
2) ∈ QW ,

⋃
q′2∈B′

2
out(q′1, B′

2, q
′
2) =

⋃
q′2∈B′

2
SL(AC(q

′
1, B

′
2, q

′
2)),

and the consistency property holds then the assignment σ defined as above satisfies
σ(SL(A1)) ⊆ SL(A2).

Example 8. Consider the simulation H from Example 6, computed for the DSAs from
Fig. 9(a) and (c). Unknown elimination based on H will yield the following assignment:
σ(a, x, b(f |g)) = d, σ(a, x, cg) = eh∗e, σ(a, x, cf) = h, σ(bya, x, (b|c)(f |g)) =
d, σ(b, y, ax(b|c)(f |g)) = zd. All other contexts are irrelevant and assigned arbitrar-
ily. The assignments to x are based on the symbolic transition (1, x, 2) in (a) and on
the simulation pairs (1, {1}), (1, {16}) and their x-witnesses (2, {2, 6, 9}), (2, {17})
respectively. Namely, consider the simulation pair (q1, B2) = (1, {1}) and its wit-
ness (q′1, B′

2) = (2, {2, 6, 9}). Then B2 = {1} contributed the incoming context
in(1, {1}) = a, and each of the states 2, 6, 9 ∈ B′

2 = {2, 6, 9}, contributed the outgoing
contexts out(2, {2, 6, 9}, 2) = b(f |g), out(2, {2, 6, 9}, 6) = cg, out(2, {2, 6, 9}, 9) =
cf respectively. In this example the out sets are pairwise-disjoint, thus no further ma-
nipulation is needed. Note that had we considered the simulation computed in Exam-
ple 7, where the x-witness for (1, {1}) is (2, {2, . . .12, 20}), we would still get the
same assignment since for any q �= 2, 6, 9, out(2, {2, . . .12, 20}, q) = ∅. Similarly,
(1, {16}) contributed in(1, {16}) = bya and the (only) state 17 ∈ {17} contributed
out(2, {17}, 17) = (b|c)(f |g). The assignment to y is based on the symbolic transition
(9, x, 10) and the corresponding simulation pair (9, {13}) and its y-witness (10, {15}).

7 Consolidation Using Join and Minimization

Consolidation consists of (1) union, which corresponds to join in the lattice over equiv-
alence classes, and (2) choosing a “most complete” representative from an equivalence
class, where “most complete” is captured by having a minimal set of completions.

Note that DSAs A, A′ in the same equivalence class do not necessarily have the same
set of completions. Therefore, it is possible that �A� �= �A′� (as is the case in Exam-
ple 5). A DSA A is “most complete” in its equivalence class if there is no equivalent
DSA A′ such that �A′� ⊂ �A�. Thus, A is most complete if its set of completions is
minimal.

Let A be a DSA for which we look for an equivalent DSA A′ that is most complete. If
�A� itself is not minimal, there exists A′ such that A′ is equivalent to A but �A′� ⊂ �A�.
Equivalence means that (1) for every L′ ∈ �A′� there exists L ∈ �A� such that L ⊆ L′,
and (2) conversely, for every L ∈ �A� there exists L′ ∈ �A′� such that L′ ⊆ L.
Requirement (1) holds trivially since �A′� ⊂ �A�. Requirement (2) is satisfied iff for
every L ∈ �A� \ �A′� (a completion that does not exist in the minimal DSA), there
exists L′ ∈ �A′� such that L′ ⊆ L (since for L ∈ �A� ∩ �A′� this holds trivially).

Namely, our goal is to find a DSA A′ such that �A′� ⊂ �A� and for every L ∈
�A� \ �A′� there exists L′ ∈ �A′� such that L′ ⊆ L. Clearly, if there is no L′ ∈ �A�
such that L′ ⊆ L, then the requirement will not be satisfied. This means that the only

Symbolic Automata for Static Specification Mining 81

completions L that can be removed from �A� are themselves non-minimal, i.e., are
supersets of other completions in �A�.

Note that it is in general impossible to remove from �A� all non-minimal languages:
as long as SL(A) contains at least one symbolic word sw ∈ (Σ ∪ Vars)∗ \ Σ∗, there
are always comparable completions in �A�. Namely, if assignments σ and σ′ differ only
on their assignment to some variable x in sw (with the corresponding context), where
σ assigns to it Lx and σ′ assigns to it L′

x where Lx ⊃ L′
x, then L = σ(SL(A)) =

σ(SL(A)\{sw})∪σ(sw) ⊃ σ′(SL(A)\{sw})∪σ′(sw) = σ′(SL(A′)) = L′. Therefore
L ⊃ L′ where both L,L′ ∈ �A�. On the other hand, not every DSA has an equivalent
concrete DSA, whose language contains no symbolic word. For example, consider a
DSA Ax such that SL(Ax) = {x}, i.e. �Ax� = 2Σ

∗ \ {∅}. Then for every concrete
DSA Ac with �Ac� = {SL(Ac)}, there is Lx ∈ �Ax� such that either Lx ⊃ SL(Ac), in
which case Ax �� Ac, or SL(Ac) ⊃ Lx, in which case Ac �� Ax. Therefore, symbolic
words are a possible source of non-minimlaity, but they cannot always be avoided.

Below we provide a condition which ensures that we remove from �A� only non-
minimal completions. The intuition is that non-minimality of a completion can arise
from a variable in A whose context matches the context of some known behavior. In
this case, the minimal completion will be obtained by assigning to the variable the
matching known behavior, whereas other assignments will result in supersets of the
minimal completion. Or in other words, to keep only the minimal completion, one needs
to remove the variable in this particular context.

Example 9. This intuition is demonstrated by Example 5, where the set of completions
of the DSA from Fig. 10(b) contains non-minimal completions due to the symbolic
word axb that co-exists with the word adb in the symbolic language of the DSA. Com-
pletions resulting by assigning d to x are strict subsets of completions assigning to x a
different language, making the latter non-minimal. The DSA from Fig. 10(a) omits the
symbolic word axb, keeping it equivalent to (b), while making its set of completions
smaller (due to removal of non-minimal completions resulting from assignments that
assign to x a language other than d).

Definition 11. Let A be a DSA. An accepting path π in A is redundant if there exists
another accepting path π′ in A such that π � π′. A symbolic word sw ∈ SL(A) is
redundant if its (unique) accepting path is redundant.

This means that a symbolic word is redundant if it is “less complete” than another
symbolic word in SL(A). In particular, symbolic words where one can be obtained
from the other via renaming are redundant. Such symbolic words are called equivalent
since their corresponding accepting paths π and π′ are symbolically-equivalent.

In Example 9, the path 〈0, 1, 6, 7〉 of the DSA in Fig. 10(b) is redundant due to
〈0, 1, 2, 3〉. Accordingly, the symbolic word axb labeling this path is also redundant.

An equivalent characterization of redundant paths is the following:

Definition 12. For a DSA A and a path π in A we use A \ π to denote a DSA such that
SL(A \ π) = SL(A) \ SL(π).

Lemma 2. Let A be a DSA. An accepting path π in A is redundant iff π � A \ π.

82 H. Peleg et al.

(a) (b)

(u) (m)

Fig. 11. Inputs (a) and (b), union (u) and minimized DSA (m)

Theorem 8. If π is a redundant path, then (A \ π) ≡ A, and �A \ π� ⊆ �A�, i.e. A \ π
is at least as complete as A.

Theorem 8 leads to a natural semi-algorithm for minimization by iteratively identifying
and removing redundant paths. Several heuristics can be employed to identify such
redundant paths.

In fact, when considering minimization of A into some A′ such that SL(A′) ⊆
SL(A), it turns out that a DSA without redundant paths cannot be minimized further:

Theorem 9. If A ≡ (A \ π) for some accepting path π in A then π is redundant in A.

The theorem implies that for a DSA A without redundant paths there exists no DSA
A′ such that SL(A′) ⊂ SL(A) and A′ ≡ A, thus it cannot be minimized further by
removal of paths (or words).

Fig. 11 provides an example for consolidation via union (which corresponds to join
in the lattice), followed by minimization.

8 Putting It all Together

Now that we have completed the description of symbolic automata, we describe how
they can be used in a static analysis for specification mining. We return to the example in
Section 2, and emulate an analysis using the new abstract domain. This analysis would
combine a set of program snippets into a typestate for a given API or class, which can
then be used for verification or for answering queries about API usage.

Firstly, the DSAs in Fig. 1 and Fig. 2 would be mined from user code using the
analysis defined by Mishne et. al [7]. In this process, code that may modify the object
but is not available to the analysis becomes a variable transition.

Secondly, we generate a typestate specification from these individual DSAs. As
shown in Section 2, this is done using the join operation, which consolidates the DSAs
and generates the one in Fig. 3(b). This new typestate specification is now stored in our
specification database. If we are uncertain that all the examples which we are using to

Symbolic Automata for Static Specification Mining 83

create the typestate are correct, we can add weights to DSA transitions, and later prune
low-weight paths, as suggested by Mishne et. al.

Finally, a user can query against the specification database, asking for the correct
sequence of operations between open and close, which translates to querying the
symbolic word open ·x · close. Unknown elimination will find an assignment such that
σ(x) = canRead · read, as well as the second possible assignment, σ(x) = write.

The precision/partialness ordering of the lattice captures the essence of query match-
ing. A query will always have a � relationship with its results: the query will always be
more partial than its result, allowing the result to contain the query’s assignments, as
well as more precise, which means a DSA describing a great number of behaviors can
contain the completions for a very narrow query.

Acknowledgements. The research was partially supported by The Israeli Science Foun-
dation (grant no. 965/10). Yang was partially supported by EPSRC. Peleg was partially
supported by EU’s FP7 Program / ERC agreement no. [321174-VSSC].

References
1. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code:

from usage scenarios to specifications. In: ESEC-FSE 2007, pp. 25–34 (2007)
2. Alur, R., Cerny, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java

classes. In: POPL (2005)
3. Beckman, N.E., Kim, D., Aldrich, J.: An empirical study of object protocols in the wild. In:

Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 2–26. Springer, Heidelberg (2011)
4. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length con-

straints: what decidable? In: Haifa Verification Conference (2012)
5. Gruska, N., Wasylkowski, A., Zeller, A.: Learning from 6,000 projects: Lightweight cross-

project anomaly detection. In: ISSTA 2010 (2010)
6. Mandelin, D., Xu, L., Bodik, R., Kimelman, D.: Jungloid mining: helping to navigate the

API jungle. In: PLDI 2005, pp. 48–61 (2005)
7. Mishne, A., Shoham, S., Yahav, E.: Typestate-based semantic code search over partial pro-

grams. In: OOPSLA 2012: Proceedings of the 27th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications (2012)

8. Monperrus, M., Bruch, M., Mezini, M.: Detecting missing method calls in object-oriented
software. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 2–25. Springer, Heidel-
berg (2010)

9. Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings of the
Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006 (2006)

10. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using automata-based
abstractions. In: ISSTA 2007 (2007)

11. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing software
reliability. IEEE Trans. Software Eng. 12(1), 157–171 (1986)

12. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. In: Autom.
Softw. Eng., vol. 18 (2011)

13. Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: FSE 2007, pp.
35–44 (2007)

14. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In: Halbwachs,
N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. TACAS, pp. 461–476. Springer, Heidelberg
(2005)

15. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented component
interfaces. In: ISSTA 2002 (2002)

Predicate Abstraction for Relaxed Memory Models

Andrei Marian Dan1, Yuri Meshman2, Martin Vechev1, and Eran Yahav2

1 ETH Zurich
{andrei.dan,martin.vechev}@inf.ethz.ch

2 Technion
{yurime,yahave}@cs.technion.ac.il

Abstract. We present a novel approach for predicate abstraction of programs
running on relaxed memory models. Our approach consists of two steps.

First, we reduce the problem of verifying a program P running on a memory
model M to the problem of verifying a program PM that captures an abstraction
of M as part of the program.

Second, we present a new technique for discovering predicates that enable ver-
ification of PM . The core idea is to extrapolate from the predicates used to verify
P under sequential consistency. A key new concept is that of cube extrapolation:
it successfully avoids exponential state explosion when abstracting PM .

We implemented our approach for the x86 TSO and PSO memory models
and showed that predicates discovered via extrapolation are powerful enough to
verify several challenging concurrent programs. This is the first time some of
these programs have been verified for a model as relaxed as PSO.

1 Introduction

One approach for efficiently utilizing multi-core architectures, used by major CPU
designs (e.g., [27,28,20]), is to define architectural relaxed (weak) memory models
(RMMs) [14]. Some of those relaxations can be modeled using one or more per-
processor FIFO buffers, where a store operation adds values to the buffer and a flush
operation propagates the stored value to main memory. Programs running under those
models exhibit unique caveats and verifying their correctness is challenging.

The Problem. Given a program P , a specification S and a memory model M , we would
like to answer whether P satisfies S under M , denoted as P |=M S.

Unfortunately, even for finite-state programs, automatic verification under relaxed
memory models is a hard problem. The problem is either undecidable or has a non-
primitive recursive complexity for stronger models such as x86 TSO and PSO (see [4]
for details). It is therefore natural to explore the use of abstraction for verification of
such programs.

Predicate abstraction [16] is a widely used approach for abstract interpretation [9].
Since predicate abstraction has been successfully applied to verify a wide range of
sequential and concurrent programs (e.g., [6,13,15]), we are interested in the question:

how to apply predicate abstraction to programs running on relaxed models?

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 84–104, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Predicate Abstraction for Relaxed Memory Models 85

Given a program P and a vocabulary (set of predicates) V = {p1, . . . , pn} with
corresponding boolean variables V̂ = {b1, . . . , bn}, standard predicate abstraction
(e.g. [16,6]) constructs a boolean program BP(P, V) that conservatively represents
the behaviors of P using only boolean variables from V̂ . When considering predicate
abstraction in the context of relaxed memory models, two key challenges need to be
addressed: (i) soundness: the boolean program must faithfully abstract the behaviors of
P running on model M ; (ii) predicate discovery: there should be a mechanism for au-
tomatically discovering predicates that enable successful verification of P running on
memory model M .

Soundness. Under sequential consistency (SC), predicate abstraction is sound and we
know that BP(P, V) |=SC S implies P |=SC S. Unfortunately, we observed this does
not hold for relaxed memory models (see Section 2.2).

Intuitively, the problem is as follows: under sequential consistency, a shared variable
has only one value — the value stored in main memory. Predicates used for predicate
abstraction can therefore refer to that shared value and relate it to the values of other
shared variables or thread-local variables. In contrast, for a program running on a re-
laxed model, threads may observe different values for the same shared variable as they
have their own local buffered copies. This means that in a relaxed model, one cannot
directly apply classic predicate abstraction, as the variables used in predicates are as-
sumed to refer to a single value at a time.

Predicate Discovery. A key challenge with predicate abstraction is to discover a set of
predicates that enable verification. Following classic abstraction refinement, one would
start with a program that is to be verified on a particular relaxed model together with an
initial set of predicates. Then, proceed to iteratively apply refinement until we find a set
of predicates under which the program verifies (or the process times out).

We take a different approach to predicate discovery for programs running on RMMs.
In our approach, we first obtain the predicates that enable verification of the program on
sequential consistency (SC). Then, we automatically extrapolate from these SC predi-
cates to produce a new set of predicates that can be used as a basis for verification on
the relaxed model.

Our Approach. Given a program P , a specification S and a memory model M , our
approach consists of the following steps:

1. verify under SC: find a set of predicates V , sufficient to verify P under sequential
consistency, i.e., a set V such that BP(P, V) |=SC S.

2. reduce to SC: automatically construct a new program PM such that if PM |=SC S
then P |=M S. The program PM contains an abstraction of the store buffers used
in M .

3. discover new predicates: automatically compute a new set of predicates VM that are
used for predicate abstraction of PM . This is a challenging step and the key idea is
to leverage the verification of P under SC. We present two approaches: predicate
extrapolation which discovers new predicates based on the predicates in V and cube
extrapolation which discovers new predicates based on both V and BP(P, V).

86 A.M. Dan et al.

4. construct a new boolean program: given the new program PM and the new pred-
icates VM , automatically construct a boolean program BP(PM , VM) such that
BP(PM , VM) |=SC S ensures that PM |=SC S, which in turn guarantees that
P |=M S. Here, cube extrapolation enables us to build BP(PM , VM) without suf-
fering from the usual problem of exponential search.

5. check: whether BP(PM , VM) |=SC S.

Main Contributions

– We provide a novel approach for predicate abstraction of programs running on re-
laxed memory models, extrapolating from the predicate abstraction proof of the
same program for sequential consistency.

– One of our insights is that the predicates used to verify P under SC can be automat-
ically extrapolated to discover new predicates for verification of the program with
M encoded in it, PM . We present two approaches for discovering new predicates
called predicate extrapolation and cube extrapolation.

– We instantiated our approach for the x86 TSO and PSO memory models. We im-
plemented our approach and applied it to verify several challenging concurrent
algorithms (both finite and infinite-state) under these models. We show that ex-
trapolation is powerful enough to verify these algorithms and in particular, cube
extrapolation enables verification of Lamport’s Bakery algorithm, which otherwise
(without cube extrapolation) times out when building the boolean program.

2 Overview

In this section, we give an informal overview of our approach using simple examples.

2.1 Motivating Example

Fig. 1 shows an implementation of an infinite state alternating bit protocol (ABP) with
two concurrent threads. We use capitalized variable names to denote global shared vari-
ables, and variable names in lowercase to denote local variables. In this program, global
shared variables Msg and Ack have an initial value 0. We use this algorithm as our il-
lustrative example, additional examples are discussed in Section 6.

Specification. When executing on a sequentially consistent memory model, this pro-
gram satisfies the invariant:

((lRCnt = lSCnt) ∨ ((lRCnt+ 1) = lSCnt))

Here, the local variable lRCnt is the local counter for the receiver thread containing
the number of received messages. Similarly, local variable lSCnt is the local counter
for the sender thread containing the number of sent messages.

Predicate Abstraction under Sequential Consistency. A traditional approach to predi-
cate abstraction is shown in Fig. 2(a). To verify that ABP satisfies its specification under
SC, we instantiate predicate abstraction with the following predicates:

(Msg = 0), (Ack = 0), (lSSt = 0), (lAck = 0)
(lMsg = 0), (lRSt = 0), (lRCnt = lSCnt), ((lRCnt+ 1) = lSCnt)

Predicate Abstraction for Relaxed Memory Models 87

initially: Msg = Ack = 0
Sender (thread 0):

1 lAck = Ack;
2 if ((lAck = 0 & lSSt = 0)

| (lAck != 0 & lSSt != 0))
3
4 if (lSSt != 0) lSSt = 0;
5 else lSSt = 1;
6 lSCnt++;
7 Msg = lSSt;
8 goto 1;

Receiver (thread 1):

1 lMsg = Msg;
2 if ((lMsg = 0 & lRSt != 0)

| (lMsg = 0 & lRSt != 0))
3
4 lRSt = lMsg;
5 lRCnt++;
6 Ack = lRSt;
7
8 goto 1;

Fig. 1. An alternating bit protocol example with two threads

The result of predicate abstraction using these predicates is a concurrent boolean
program that conservatively represents all behaviors of the original ABP program. In
Fig. 2(a), this boolean program is denoted as the oval named Boolean Program B.

In the worst case, the construction of the concurrent boolean program, following
standard predicate abstraction techniques (e.g., [16,6,15]) involves an exponential num-
ber of calls to an underlying theorem prover. A critical part of the construction of the
boolean program is searching the “cubes” — conjunctions of predicates — that imply
a certain condition. This search is exponential in the number of predicates.

An Informal Overview of PSO. In the partial-store-order (PSO) memory model, each
thread maintains a private buffer (a sequence) for each global variable. When the thread
writes to a global variable, the value is enqueued into the buffer for that variable.
Non-deterministically, the values can be dequeued from the buffer and written to main
memory. When the thread reads from a global variable, it first checks if the buffer is
empty and if so, it reads as usual from main memory. Otherwise, it reads the last value
written in the buffer. The model is further equipped with a special fence instruction
which can be executed by a thread to empty all buffers for that thread and write the
most recent value in each buffer to the corresponding shared location. In our exam-
ple, thread 0 maintains one buffer, the buffer for global variable Msg and thread 1
also maintains one buffer, the buffer for global variable Ack. For instance, the store
Msg = lSST leads to the value of lSST being enqueued into the private buffer for
thread 0. This value can be flushed to main memory at any point in the execution, non-
deterministically.

An Informal Overview of TSO. In the total-store-order (TSO) memory model, each
thread maintains a single private buffer for all global variables. Similarly to PSO, values
stored to global variables are first written to the buffer, and then are non-deterministically
flushed to main memory. A fence instruction empties the thread’s private
buffer.

The challenges we address are: (i) how to verify programs such as ABP under relaxed
memory models such as x86 TSO and PSO, and (ii) how to deal with the exponential
complexity of standard predicate abstraction in our setting of RMM.

88 A.M. Dan et al.

(a) (b)

Fig. 2. Predicate abstraction: (a) classic algorithm, (b) with predicate extrapolation and cube ex-
trapolation. Here, a rectangle shape represents an algorithm, while an oval shape represents input-
output information (data).

2.2 Standard (Naive) Predicate Abstraction under RMM Is Unsound

initial: X=Y=0
Thread 0:

1 X = Y+1
2 fence(X)

Thread 1:

1 Y = X+1
2 fence(Y)

assert(X �=Y)
Fig. 3. Unsoundness example

We now consider the following scheme for pred-
icate abstraction: (i) construct a boolean program
directly from the program of Fig. 3 using standard
predicate abstraction; (ii) execute the boolean pro-
gram using PSO semantics. This scheme is simple,
but unfortunately, it is unsound. We now show that
following this scheme, we can produce a boolean
program that successfully verifies our assertion.
This is unsound because we know the existence
of an assertion violation, namely the one shown
in Fig. 4(a).

To capture the assertion breach, we need to keep track of the relationship between X

and Y . Consider the predicates:

P1 : X = Y, P2 : X = 1, P3 : Y = 1, P4 : X = 0, P5 : Y = 0

Each Pi has been assigned a boolean variable Bi (with a buffer for each thread) where
the effect of a thread writing to X or Y will write to a local buffer of X = Y of that
thread, and the effect of flushing X or Y will also flush the buffer associated with
X = Y . Unfortunately this approach is insufficient. The problem is shown in Fig. 4(b).
When thread 0 updates X to 1, and thread 1 updates Y to 1, the predicate X = Y will
be updated to false in both (denoted as F) and stored in the store buffer of each thread

Predicate Abstraction for Relaxed Memory Models 89

(a) Concrete (b) Predicate Abstraction
Thread 0 Thread 1 Global Thread 0 Thread 1 Global
(X,Y) (X,Y) (X,Y) (X=Y,X=1,Y=1,X=0,Y=0) (X=Y,X=1,Y=1,X=0,Y=0) (X=Y,X=1,Y=1,X=0,Y=0)

(0,0) (0,0) (0,0) (T, F, F, T, T) (T, F, F, T, T) (T, F, F, T, T)
T0: X = Y+1 (1,0) (0,0) (0,0) (F, T, F, F, T) (T, F, F, T, T) (T, F, F, T, T)
T1: Y = X+1 (1,0) (0,1) (0,0) (F, T, F, F, T) (F, F, T, T, F) (T, F, F, T, T)
T0: flush(X) (1,0) (1,1) (1,0) (F, T, F, F, T) (F, T, T, F, F) (F, T, F, F, T)
T1: flush(Y) (1,1) (1,1) (1,1) (F, T, F, F, T) (F, T, T, F, F) (F, T, T, F,F)

Fig. 4. (a) an error trace for Fig. 3 under PSO. Thread i are values observed by thread i, Global
are the values in global memory. (b) Values of predicates in a boolean program corresponding to
the program of Fig. 3 under PSO semantics.

(since neither of the two threads can see the update of the other). When the value of X is
flushed from the buffer of thread 0, our setting flushes the value of the predicate X = Y

(F) to main memory. Similarly, when Y is flushed in thread 1, the value of X = Y (F) is
flushed. The main memory state after these two flushes is inconsistent, as it has X = 1

set to T, Y = 1 set to T and X = Y set to F.

2.3 Predicate Abstraction for Relaxed Memory Models

In Fig. 2(b), we illustrate the ingredients and flow of our approach for solving the verifi-
cation problem under relaxed memory models. The figure contains two approaches for
adapting predicate abstraction to our setting called Predicate Extrapolation and Cube
Extrapolation (which includes Predicate Extrapolation). Next, we discuss the steps of
our approach.

Step 1: Verify P under SC. The first step is to verify the program P under sequential
consistency using standard predicate abstraction as outlined earlier in Fig. 2(a). Once
the program is verified, we can leverage its set of predicates as well as its boolean
program in the following steps.

Step 2: Construct the reduced program PM . This step is named “Reduction” in
Fig. 2(b). To enable sound predicate abstraction of a program P under a relaxed mem-
ory model M , we first reduce the problem into predicate abstraction of a sequentially
consistent program. We do so, by constructing a program PM that conservatively rep-
resents the memory model M effects as part of the program.

The key idea in constructing PM is to represent an abstraction of the store buffers
of M as additional variables in PM . Since the constructed program PM represents
(an abstraction of) the details of the underlying memory model, we can soundly apply
predicate abstraction to PM . The formal details of the reduction for x86 TSO and PSO
are discussed later in the paper. Here, we give an informal description.

For PSO, it is sufficient to consider a program PPSO where every global variable
X in P is also associated with: (i) additional k local variables for each thread t:
x1 t, . . . , xk t, representing the content of a local store buffer for this variable in each
thread t, (ii) a buffer counter variable xcnt t that records the current position in the store
buffer of X in thread t.

The x86 TSO model maintains a single local buffer per process. This buffer is up-
dated with stores to any of the global variables. However, we need additional

90 A.M. Dan et al.

variables to capture information about which global variable is stored in the buffer. The
lhs variables contain the index of which global variable is addressed for each buffer
element. The other variables are similar to PSO: (i) k local variables for each thread t:
lhs1 t, . . . , lhsk t, representing the index of the global variable stored at a local store
buffer in each thread t, (ii) k local variables for each thread t: rhs1 t, . . . , rhsk t, rep-
resenting the value content of a local store buffer in each thread t, (iii) a buffer counter
variable cnt t that records the current position in the store buffer of thread t.

Step 3: Discover new predicates for PM After verifying P under SC and constructing
PM , the remaining challenge is to discover a sufficient set of predicates for verifying
that PM satisfies a given specification. One of our main insights is that for buffered
memory models such as x86 TSO and PSO, the predicates (and boolean program) used
for verifying P under SC can be automatically leveraged to enable verification of PM .
This step corresponds to the “Extrapolate” box. This step takes as input the set of pred-
icates V that were successful for verifying P under SC and outputs a new set VM .

Predicates for the motivating example. Next, we illustrate via our running example
how to generate new predicates under PSO (the process under x86 TSO is similar).

Consider again the ABP algorithm of Fig. 1 and the 8 predicates listed earlier in
Section 2.1. Following the structure of the additional variables in PM , we can intro-
duce additional predicates by cloning each predicate over a global variable X into new
predicates over store-buffer variables x1 t, . . . , xk t. For example, assuming k = 1, in
addition to Msg = 0, we introduce Msg 1 t0 = 0.

To keep track of the buffer size for each buffered variable, we introduce additional
predicates. For instance, for a global variable Msg, to register possible values for
Msg cnt t0, assuming k = 1, we introduce Msg cnt t0 = 0 and Msg cnt t0 = 1.
Note that we do not introduce predicates such as Msg cnt t1 = 0 and Msg 1 t1 = 0
as thread 1 always accesses Msg via main memory. Another predicate we could have
added is Msg 1 t0 = Msg. This predicate is not needed for the verification of ABP,
however, we observe that such predicates can greatly reduce the state space of the model
checker. In Section 5, we discuss rules and optimizations for generating new predicates
for the PSO memory model and in [10] we present the details for the x86 TSO model
(which are similar).

Finally, to ensure soundness, we add a designated flag overflow to track when the
buffer size grows beyond our predetermined bound k. Overall, with a bound of k = 1,
from 8 predicates used for sequential consistency we generate 15 predicates for PSO:

(Msg=0), (Ack=0), (lSSt=0), (lAck=0), (lMsg=0), (lRSt=0), (lRCnt= lSCnt),
((lRCnt+ 1) = lSCnt), (Msg cnt t0 = 0), (Msg cnt t0 = 1), (Ack cnt t1 = 0),
(Ack cnt t1 = 1), (Msg 1 t0 = 0), (Ack 1 t1 = 0), (overflow = 0)

Cube Search Space. A critical part of the predicate abstraction algorithm is finding the
weakest disjunction of cubes that implies a given formula (see [13,6] for details). This
is done by exploring the cube search space, typically ordered by cube size. Because
the search is exponential in the number of predicates, most previous work on predicate
abstraction has bounded the cube space by limiting the maximal cube size to 3.

The translation of SC predicates to PSO predicates implies a polynomial (in the
buffer limit k, number of threads and number of shared variables) growth in the number

Predicate Abstraction for Relaxed Memory Models 91

of predicates. Unfortunately, since cube search space is exponential in the number of
predicates, exploration of the PSO cube space can sometimes be prohibitively expensive
in practice.

For example, for ABP running on sequential consistency, the total number of cubes
is 38 = 6561. Here, 8 is the maximal sized cube which is the same as the number
of predicates. And 3 means that we can use the predicate directly, its negation or the
predicate can be absent. However, for PSO, the total number of cubes is 315 exceeding
14 million cubes! If we limit cube size to 4, the SC cube search space becomes bounded
by Σ4

i=12
i
(
8
i

)
= 288, and the PSO cube space to be explored becomes bounded by

Σ4
i=12

i
(
15
i

)
= 25630.

The situation is worsened as the cube space is explored for every abstract trans-
former computation. Further, while in previous work, which mostly targets sequential
programs, limiting the cube size to 3 seemed to work, with concurrency, where one
needs to capture correlations between different threads, it is possible that we need a
cube size of 4 or greater. As the number of predicates increases, directly exploring
cubes of size 4 or more, even with standard optimizations, becomes infeasible (our
experiments confirm that).

Reducing the PSO Cube Space using SC Cubes. One of our main insights is that we
can leverage the boolean program (the proof) under sequential consistency to simplify
reasoning under relaxed memory models. Technically, we realize this insight by using
the cubes from the boolean program under SC in order to guide the search in the cube
space under the weak memory model.

In Fig. 2(b), this step is denoted under Cube Extrapolation where in addition to the
steps in Predicate Extrapolation, we also extract the cubes that appear in the boolean
program of P under SC.

For example, for ABP, we examine the boolean program BP(ABP, V) where V are
the eight predicates listed earlier in Section 2.1, and observe the following cubes:

c1 = (lSSt = 0) ∧ (lAck = 0)
c2 = (lSSt = 0) ∧ ¬(lAck = 0)
c3 = (lMsg = 0) ∧ ¬(lRSt = 0)
c4 = ¬(lSSt = 0) ∧ ¬(lAck = 0)
c5 = ¬(lSSt = 0) ∧ (lAck = 0)

Since these cubes do not use the two global variables Msg and Ack, it stands to reason
that the same cubes would be obtained from the PSO cube space exploration, which is
indeed the case.

In this simple example, the above cubes from the predicate abstraction under SC
could be used directly for the predicate abstraction under PSO, without needing to
search for these cubes. Of course, there are cases where SC cubes do contain buffered
variables (such as Msg or Ack) and in that case we need to extrapolate from these
cubes in order to obtain useful cubes under PSO (see Section 5).

Building the Boolean Program. An enabling factor with cube extrapolation is that it
changes the way we build the boolean program. We no longer require exponential search
over the cube search space. In Section 4, we show how to use the cubes under SC as
constraints over the cube space to reduce the size of the cube space to be explored under

92 A.M. Dan et al.

[[X = r]]tk [[r = X]]tk [[fence]]tk [[flush]]tk

if xcnt t = k then
abort(“overflow”)

xcnt t = xcnt t + 1

if xcnt t = 1 then
x1 t = r

...
if xcnt t = k then
xk t = r

if xcnt t = 0 then
r = X

if xcnt t = 1 then
r = x1 t

...
if xcnt t = k then

r = xk t

� for each
X ∈ Gvar
generate:

assume (xcnt t = 0)

� end of generation

while * do
� for each X ∈ Gvar generate:
if xcnt t > 0 then

if * then
X = x1 t

if xcnt t > 1 then
x1 t = x2 t

...
if xcnt t = k then

x(k−1) t = xk t

xcnt t = xcnt t − 1

� end of generation

Fig. 5. PSO Translation Rules: each sequence of statements is atomic

the weak memory model. Technically, the idea is to lift the cubes under SC to buffered
counterparts by a translation similar to the way in which we extrapolated predicates
under SC (described above).

We can then pack the extrapolated cubes as new predicates provided to the predicate
abstraction procedure for the weak memory model, and limit cube size to 1. Limiting
the maximal cube size to 1 turns the process of cube search from exponential to linear
(in the number of predicates and cubes obtained from extrapolation). This is key to
making predicate abstraction tractable for relaxed memory models.

In Fig. 2(b), to reduce clutter, both Predicate Extrapolation and Cube Extrapolation
lead to the same Predicate Abstraction box. However, it is important to note that the
process of predicate abstraction for Cube Extrapolation does not perform exponential
search while the process for predicate extrapolation does. As we will see in the exper-
imental results, Predicate Extrapolation is sufficient for simpler programs, while Cube
Extrapolation is necessary for more complex programs.

Step 4: Model checking. Once the boolean program is built (either via Predicate or
Cube Extrapolation), the final step is to model check the program. This step is exactly
the same as in the standard case of traditional predicate abstraction shown in Fig. 2(a).

3 Reduction

In this section, we describe a translation that transforms a program running on a relaxed
memory model into a program with no weak memory model effects. The basic idea
is to translate the store buffers in the semantics into variables that are part of the pro-
gram. This translation enables us to leverage classic program analysis techniques such
as predicate abstraction. Further, because the translation is parametric on the size of the
buffer, it allows us to tailor the abstraction to the buffer size required by the particular
concurrent algorithm. We show the process for the PSO memory model, the process for
x86 TSO is similar and is shown in [10].

Predicate Abstraction for Relaxed Memory Models 93

Reduction: PSO to SC. The reduction takes as input a thread identifier (whose state-
ments are to be handled), as well as a bound on the maximum buffer size k for the
per-variable buffer. Here, k denotes the maximum number of writes to global variables
without a fence in-between the writes. While the translation presented here uses a fixed
k for all global variables, we can easily use different k’s for different variables.

The translation considers in turn every statement that involves global variables. We
introduce a translation function, which takes as input a statement, a thread identifier,
and a bound on the maximum buffer size and produces a new statement as output:

[[]] ∈ Stmt× Thread× N → Stmt

As a shorthand we write [[S]]tk for [[S, t, k]]. [[S]]tk denotes the statement obtained from
translating statement S in thread t with buffer bound k.

To perform the translation, the entries of the per-variable buffer are translated into
thread-local variables and a local counter is introduced to maintain its depth. That is,
for each global variable X and thread t, we introduce the following local variables:

– buffer content variables: x1 t,...,xk t, where k is the maximum size of the buffer.
– a buffer counter variable: xcnt t.

Fig. 5 presents the translation of the three program code statements and the memory
subsystem statement (flush). In the translation, the newly generated sequence of state-
ments is atomic.

Store to a global variable [[X = r]]tk: The store to a global variable X first checks if we
are about to exceed the buffer bound k and if so, the program aborts. Otherwise, the
counter is increased. The rest of the logic checks the value of the counter and updates
the corresponding local variable. The global variable X is not updated and only local
variables are involved.

Load from a global variable [[r = X]]tk: The load from a global variable X checks the
current depth of the buffer and then loads from the corresponding local variable. When
the buffer is empty (i.e., xcnt t = 0), the load is performed directly from the global
store. We do not need to check whether the buffer limit k is exceeded as that is ensured
by the global store.

Fence statement [[fence]]tk: For each shared variable X , the fence statement waits for
the buffer of X to be empty (flush instructions to be executed). The fence has no effect
on X .

Flush action [[flush]]tk: The flush action is translated into a loop with a non-deterministic
exit condition (we use ∗). New statements are introduced for each global variable X .
If the buffer counter for the variable is positive, then it non-deterministically decides
whether to update the global variable X or to continue the iteration. If it has decided
to update X , the earliest write (i.e. x1 t) is stored in X . The contents of the local vari-
ables are then updated by shifting: the content of each xi t is taken from the content
of the successor x(i+1) t where 1 ≤ i < k. Finally, the buffer count is decremented.
The composite statement inside the while loop is generated for each global variable.
To ensure a faithful translation of the flush action, the whole newly generated state-
ment is placed after each statement of the resulting program. The atomic statements are
translated directly, without change (not shown in the figure).

94 A.M. Dan et al.

The translation extends naturally to a sequence of statements and to programs with
n concurrent threads: [[P]]k = [[S]]1k ‖ · · · ‖ [[S]]nk , leading to the following theorem:

Theorem 1 (Soundness of Translation). For a given program, P and a safety specifi-
cation S, if P �|=pso S then there exists a k ∈ N such that [[P]]k �|=sc S.

From the theorem it follows that if [[P]]k |=sc S then P |=pso S. When we successfully
verify the program with a given k, it is guaranteed that no execution of the program
ever requires a buffer of size larger than k. If the program does have an execution
which exceeds k, then during verification we will encounter overflow and can attempt
a higher value of k. That is, if we verify the program for a certain bound k, then the
algorithm is correct for any size of the buffer greater or equal to k. In our experience,
most concurrent algorithms exhibit low values for k as typically they use fences after a
small number of global stores.

4 Predicate Abstraction for Relaxed Memory Models

In this section we describe how predicate abstraction is used to verify concurrent
programs running on relaxed memory models. The central point we address is how
to discover the predicates necessary for verification under the relaxed model from the
predicates and the proof that was successful for verification of the program under
sequential consistency (SC).

4.1 Predicate Abstraction

Predicate abstraction [16] is a special form of abstract interpretation that employs carte-
sian abstraction over a given set of predicates. Given a program P , and vocabulary (set
of predicates) V = {p1, . . . , pn} with corresponding boolean variables V̂ = {b1, . . . ,
bn}, predicate abstraction constructs a boolean program BP(P, V) that conservatively
represents behaviors of P using only boolean variables from V̂ (corresponding to predi-
cates in V). We use [bi] to denote the predicate pi corresponding to the boolean variable
bi. We similarly extend [b] to any boolean function b.

Next we explain how to construct BP(P, V). A literal is a boolean variable or its
negation. A cube is a conjunction of literals, the size of a cube is the number of literals
it contains. The concrete (symbolic) domain is defined as formulae over the predicates
p1, . . . , pn. The abstract domain is a disjunctions of cubes over the variables b1, . . . , bn.
The abstraction function α maps a formula ϕ over predicates from V to the weakest
disjunction of cubes d such that [d] ⇒ ϕ.

The abstract transformer of a statement st w.r.t. a given vocabulary V can be com-
puted using weakest-precondition computation and performing implication checks us-
ing a theorem prover:

bi = choose(α(wp(st, pi)), α(wp(st,¬pi,)))

where

choose(ϕt, ϕf) =

⎧⎨⎩1, ϕt evaluates to true;
0, only ϕf evaluates to true;
�, otherwise.

Predicate Abstraction for Relaxed Memory Models 95

Different predicate abstraction techniques use different heuristics for reducing the
number of calls to the prover.

Input: Vocabulary V , Statement st, Maximum cube size k
Output: Abstract transformer for st over predicates from V

function COMPUTETRANSFORMER(V, st, k)
for each p ∈ V do

ψ+
p = ψ−

p = false

ϕ+ = wp(st, p)

ϕ− = wp(st,¬p)
for each i = 1 . . . k do

cubes+ = BUILDBOUNDEDCUBES(V, i, ψ+
p)

if cubes+ = ∅ then break
ψ+

p = COMPUTEAPPROX(cubes+ , ϕ+, ψ+
p)

for each i = 1 . . . k do
cubes− = BUILDBOUNDEDCUBES(V, i, ψ−

p)

if cubes− = ∅ then break
ψ−

p = COMPUTEAPPROX(cubes− , ϕ−, ψ−
p)

ψ(p) = choose(ψ+
p , ψ−

p)

Input: RMM predicates Vrmm , RMM cubes Crmm, Statement
st,
Output: Abstract transformer for st over predicates from
Vrmm ∪ Crmm

function COMPUTETRANSFORMER(Vrmm , Crmm, st)
for each p ∈ Vrmm do

ψ+
p = ψ−

p = false

ϕ+ = wp(st, p)

ψ+
p = COMPUTEAPPROX(Vrmm ∪ Crmm, ϕ+, ψ+

p)

ϕ− = wp(st,¬p)

ψ−
p = COMPUTEAPPROX(Vrmm ∪ Crmm, ϕ−, ψ−

p)

ψ(p) = choose(ψ+
p , ψ−

p)

(a) (b)

Fig. 6. Computing abstract transformers: (a) classical predicate abstraction; (b) using extrapola-
tion. COMPUTEAPPROX is shown in Fig. 7.

function COMPUTEAPPROX(cubes,ϕ, ψ)
for each c ∈ cubes do

if c⇒ ϕ then
ψ = ψ ∨ c

return ψ

Fig. 7. Predicate abstraction - helper function

Fig. 6 (a) shows a standard predicate abstraction algorithm in the spirit of [6]. The
algorithm takes as input a statement st and a set of predicates (vocabulary) V . It then
computes an abstract transformer for st using combinations of predicates from V .
The algorithm works by computing an update formula ψ(p) for every predicate p.
The update formula is constructed as a choice between two sub-formulae, ψ+

p which
holds when p should be set to true, and ψ−

p which holds when p should be set to
false.

The function BUILDBOUNDEDCUBES builds cubes of size i over predicates from V ,
checking that cubes of size i are not subsumed by previously generated cubes in ψ+

p or
ψ−
p . This function is standard, and we do not list it here due to space restrictions.
There are other algorithms that can be used here, such as the Flanagan&Qadeer’s [15],

or the one of Das et al. [11]. However, our focus is not on these optimizations, but on
leveraging information from the verification of the SC program to discover the new
predicates for verification under the relaxed memory model.

96 A.M. Dan et al.

4.2 Predicate Extrapolation: From Predicates under SC to Predicates under
Relaxed Model

Given a program which successfully verified under SC, our first approach to verifying
the program under x86 TSO or PSO is to:

– Reduce the program as described in Section 3. That is, given a statement st of the
original program, obtain a new statement stpso or sttso from the translation.

– Compute Vpso = EXTRAPOLATEPSO(V) for PSO as discussed in Section 5, or for
TSO: Vtso = EXTRAPOLATETSO(V) (the TSO extrapolation is discussed in [10]
and is similar to PSO). This extrapolates from the set of input predicates under SC
and derives new predicates under x86 TSO or PSO.

– Invoke COMPUTETRANSFORMER(Vpso, stpso, k) to build the abstract transformer
under PSO. Similarly, invoke COMPUTETRANSFORMER(Vtso, sttso, k) for x86
TSO. Here, k is the appropriate buffer bound. The function COMPUTETRANS-
FORMER is shown in Fig. 6 (a).

That is, with this approach, the entire predicate abstraction tool chain remains the same
except we change the input to the function for computing abstract transformers to be
the new predicates Vpso and the new statement stpso.

4.3 Cube Extrapolation: From SC Proof to PSO Predicates

As we will see in our experimental results, predicate extrapolation is effective only in
some cases. The problem is that on more complex programs, the cube search space in-
creases significantly meaning the function COMPUTETRANSFORMER as described in
Fig. 6 (a) times out. Next, we discuss another approach for computing abstract trans-
formers under the relaxed memory model.

Core Idea. The core idea is that cubes generated during SC predicate abstraction cap-
ture invariants that are important for correctness under SC, but the same relationships
between variables can be extrapolated to relationships between variables in the re-
laxed setting. Based on this observation, we extrapolate from these cubes similarly to
the way we extrapolated from the predicates under SC. We use the function Cpso =
EXTRAPOLATEPSO(C) where C denotes the cubes under SC. The newly generated
extrapolated cubes Cpso are then used as predicates for the verification.

The key point is that the cube search over Cpso is now limited to cubes of size 1! The
steps are as follows:

– Compute Vpso = EXTRAPOLATEPSO(V)
– Compute Cpso = EXTRAPOLATEPSO(C)
– Invoke COMPUTETRANSFORMER(Vpso, Cpso, st) as shown in Fig. 6 (b) and taking

as input extrapolated predicates and extrapolated cubes together with the statement.

The process for the x86 TSO model is identical.

Search vs. Extrapolation. In contrast to the standard COMPUTETRANSFORMER of
Fig. 6 (a), the algorithm of Fig. 6 (b) does not perform exhaustive search of the cube
space. In particular, it does not take as input the parameter k. That is, our new way of
building transformers is based on extrapolating from a previous (SC) proof.

Predicate Abstraction for Relaxed Memory Models 97

5 Extrapolating Predicates: SC to PSO

In this section, we elaborate on how the function predspso = EXTRAPOLATEPSO
(predssc) operates. The operation EXTRAPOLATETSO(predssc) for TSO is similar
and is discussed in [10]. The function EXTRAPOLATEPSO computes the ingredients,
that is, the new predicates predspso, using which the final abstraction is built. We dis-
cuss the core reasons for introducing the new predicates. This reasoning is independent
of predicate abstraction and can be used with other verification approaches.

Any abstraction for store buffer based RMMs such as PSO must be precise enough to
preserve the following properties: (i) Intra-thread coherence: If a thread stores several
values to shared variable X , and then performs a load from X , it should not see any
value it has itself stored except the most recent one. (ii) Inter-thread coherence: A thread
Ti should not observe values written to shared variable X by thread Tj in an order
different from the order in which they were written. (iii) Fence semantics: If a thread Ti

executes a fence when its buffer for variable X is non-empty, the value of X visible to
other threads immediately after the fence should be the most recent value Ti wrote.

Thread 1:

1 X=0;
2 X=1;
3 l1=X;
4 fence;
5 assert (X = l1);

Fig. 8. Intra-thread coherence
example

Fig. 8 shows a simple example in which a single thread
stores two values into a shared variable X and then loads
the value of X into l1. To successfully verify this pro-
gram, the abstraction we use must be precise enough to
capture intra-thread coherence.

5.1 Generic Predicates

For a shared variable X , if we use a buffer with a max
size of 1, our translation adds the predicates: X cnt t1 =
0, X cnt t1 = 1 indicating the last location of the buffer
for X which has been written to by thread 1, but not
yet flushed. These predicates serve multiple purposes:
(i) track the store buffers size; (ii) provide knowledge during store and load oper-
ations on where to write/read the value of X . (iii) preserve Intra-thread coherence in
the abstraction.

Another predicate we generate is: overflow = 0. This predicate supplements the
previously described predicates, giving indication of when the number of subsequent
stores to a shared variable X , without a fence or a flush in between these stores, exceeds
the limit k of our abstraction. This is crucial to ensure soundness of the abstraction.

The general extrapolation rule, which is independent of the verified program and of
the input SC predicates predssc, is:

Rule 1. For a buffer size bound k, add the following predicates to predspso:

– {V cnt T = i | 1 ≤ i ≤ k,V ∈ Gvar,T ∈ Thread}
– overflow = 0

5.2 Extrapolating from predssc

We now describe how to extrapolate from the predicates in the set predssc in order to
compute new predicates that become part of predspso. The rule below ensures that the
SC executions of the new program can be verified.

98 A.M. Dan et al.

Rule 2. Update the set predspso to contain the set predssc

Next, we would like properties on the values of a shared variable X captured by predi-
cates in predssc to also be captured for the buffered values of X . For example if predssc
contains X = 0, we add the predicate X 1 t1 = 0 for a buffer of X for thread T1. This
can be seen in the example of Fig. 8 where we need to track that the buffered value of
X is 0 at line 1. We summarize these observations in the following rule:

Rule 3. Update predspso to contain the set
⋃

psc∈predssc
lift(psc)

Here, lift(psc) generates from each SC predicate a set of PSO predicates where the
original variables are replaced with buffered versions of the variables (for each buffered
version of a variable and their combination).

In addition to the above rules, adding a predicate X 1 t1 = X ensures that the
shared value of X and the buffered value of X are in agreement (when the predicate
is set to true). This reduces the time and space of model checking. Following similar
reasoning, the predicate X 1 t1 = X 2 t1 is also added.

Rule 4. For V ∈ Gvar, T ∈ Thread and k the buffer bound, update predspso to
contain the sets:

– {V (i− 1) T = V i T | 2 ≤ i ≤ k}
– {V i T = V | 1 ≤ i ≤ k}

The above rules add both: generic predicates that are independent of predssc as well as
predicates that are extrapolated from predssc. But these rules may sometimes generate
a larger set of predicates than necessary for successful verification. We now describe
several optimizations that substantially reduce that number.

Rule 5 Read-only shared variables. If a thread t never writes to a shared variable X
do not extrapolate the SC predicates referencing X to their PSO counterparts for t.

Rule 6 Predicates referencing a shared variable more than once. Replace all occur-
rences of the shared variable with the same buffered location.

For example, for X≤Y ∧ 0≤X , where X is referred to more than once, we gener-
ate the new predicate X 1 t1≤Y ∧ 0≤X 1 t1, but we do not generate the predicate
X 1 t1≤Y ∧ 0≤X 1 t2. The intuition is that the SC predicate captures information
regarding the value of X at some point in the execution and when extrapolating the
predicate to PSO, we need to capture that information regarding the shared value of X
or its buffered value, yet the mixture of the two is redundant. Similarly for Y 2 ≤ Y 1,
we do not necessarily need to generate the predicate Y 2 1 t2 ≤ Y 1 1 t1.

Rule 7 Predicates referencing different shared variables. For a predicate referencing
more than one shared variable, if it can be guaranteed that a fence will be executed
between every two shared location writes , restrict to generating predicates that relate
to one buffered location at most.

In summary, EXTRAPOLATEPSO is computed by applying the above seven rules for
the predicates in V and C (both obtained from the verification under SC).

Predicate Abstraction for Relaxed Memory Models 99

6 Experimental Evaluation

We implemented predicate abstraction based on predicate extrapolation (PE) and cube
extrapolation (CE) as outlined earlier in our tool called CUPEX. Then, we thoroughly
evaluated the tool on a number of challenging concurrent algorithms. All experiments
were conducted on an Intel(R) Xeon(R) 2.13GHz with 250GB RAM. The key question
we seek to answer is whether predicate extrapolation and cube extrapolation are precise
and scalable enough to verify all of our (relaxed) programs.

6.1 Prototype Implementation

CUPEX works in two phases. In the first phase, given an input program, it applies ab-
straction and produces a boolean program. In the second phase, the boolean program is
verified using a three-valued model checker for boolean programs. To reduce the cube
search space, CUPEX uses optimizations such as bounded cube size search and cone
of influence. For every assignment statement in the original program, it updates only
the boolean variables corresponding to predicates which contain the assigned variable
from the statement (subject to aliasing). The search in the cube space is performed in
increasing cube size order, thus we find the weaker (smaller) cubes first. CUPEX uses
Yices 1.0.34 as the underlying SMT solver.

The second phase relies on a three-valued model checker to verify the boolean pro-
gram. Our model checker uses 3-valued logic for compact representation, and handles
assume statements in a number of clever ways, performs partial concretization of as-
sume conditions and merges states after updates.

6.2 Results

We evaluated CUPEX on the following concurrent algorithms: Dekker’s mutual exclu-
sion algorithm [12], Peterson’s mutual exclusion algorithm [26], Szymanski mutual
exclusion algorithm [29], Alternating Bit protocol (already discussed in Section 2), an
Array-based Lock-Free Queue (here, we verified its memory safety), Lamport’s Bakery
algorithm [24] and the Ticket locking algorithm [3]. The first three algorithms are finite-
state, while the last four are infinite-state. For each algorithm, we evaluated our tool for
x86 TSO and PSO models. We ran tests with buffer bounds ranging from k ∈ 1 . . . 3.
For each k, we tested various fence configurations. We present in the result tables values
for k = 1, obtained for the minimal fence configurations which successfully verified.

Meaning of table columns. Our results are summarized in Table 1 and Table 2. The
meaning of most table columns is self explanatory, but we elaborate on the following
columns of Table 1:

– Build Boolean Program (i) # input preds: number of initial input predicates. For
x86 TSO and PSO, these are obtained by extrapolating from the predicates in the
input preds column of the corresponding SC program. (ii) # SMT calls: total
number of calls (in thousands) to the SMT solver required to build the boolean
program (BP). (iii) time: time in seconds that it took to build the boolean program.
We use T/O for timed out (keeps running after 10 hours). (iv) # cubes used: total

100 A.M. Dan et al.

Table 1. Results for Predicate Extrapolation

Build Boolean Program Model check
algorithm memory # input # SMT time # cubes cube # states memory time

model preds calls (K) (sec) used size (K) (MB) (sec)

Dekker
SC 7 0.7 0.1 0

1
14 6 1

PSO 20 26 6 0 80 31 5
TSO 18 22 5 0 45 20 3

Peterson
SC 7 0.6 0.1 2

2
7 3 1

PSO 20 15 3 2 31 13 3
TSO 18 13 3 2 25 11 2

ABP
SC 8 2 0.5 5

2
0.6 1 0.6

PSO 15 20 4 5 2 3 1
TSO 17 23 5 5 2 3 1

Szymanski
SC 20 16 3.3 1

2
12 6 2

PSO 35 152 33 1 61 30 4
TSO 37 165 35 1 61 31 5

number of cubes in the boolean program whose size is greater than 1, that is, these
are cubes composed of 2 or more input predicates. (v) cube size: maximum cube
size found in the boolean program. For instance, cube size 4 means that there exist
cubes which combine 4 input predicates.

– Model check (i) # states: total number of states (thousands) explored by the under-
lying three-valued model checker.

Table 2 contains two additional columns in the Build Boolean Program column:
(i) method used to build the boolean program: PE , CE or, for SC programs where no
new predicates are generated, Trad (Traditional). (ii) # input cubes: These are obtained
by extrapolating from the cubes in the # cubes used column of the corresponding SC
program. These cubes are then added to the initial # input preds and CE is performed.

6.3 Observations

Sequential Consistency. We assume that the predicates for the original SC program are
provided by the programmer or inferred using existing SC verification tools such as
[17]. For our benchmarks we manually provided the SC predicates, since we focus on
the relaxed memory verification.

Predicate Extrapolation. We first focus on the results of Table 1. Here, PE was quick
enough to verify all programs under x86 TSO and PSO. For example for Dekker’s algo-
rithm, even though there was a significant increase in the number of predicates (7 input
predicates required to verify the program under SC yet under PSO, 20 predicates were
needed), the newly generated predicates were precise enough to prove the program. A
similar pattern can be observed for Peterson, ABP and Szymanski. For all four algo-
rithms, a small cube size (at most 2) was sufficient for verification. Furthermore, the
number of cubes of size 2 that are used in the boolean program is fairly small. Over-
all, these four programs require a small cube size to verify, at most 2, leading to quick
building of the boolean program. For these programs, CE was unnecessary.

Predicate Abstraction for Relaxed Memory Models 101

Table 2. Results for Predicate Extrapolation and Cube Extrapolation

Build Boolean Program Model check
algorithm memory method # input # input # SMT time # cubes cube # states memory time

model preds cubes calls (K) (sec) used size (K) (MB) (sec)

Queue

SC Trad 7 - 20 5 50

4

1 2 1

PSO
PE

15
- 5,747 1,475 412 1 4 1

CE 99 98 17 99 11 6 2

TSO
PE

16
- 11,133 2,778 412 12 4 1

CE 99 163 31 99 12 7 2

Bakery

SC Trad 15 - 1,552 355 161

4

20 8 2

PSO
PE

38
- - T/O - - - -

CE 422 9,018 1,773 381 979 375 104

TSO
PE

36
- - T/O - - - -

CE 422 7,048 1,386 383 730 285 121

Ticket

SC Trad 11 - 218 51 134

4

2 2 1

PSO
PE

56
- - T/O - - - -

CE 622 15,644 2,163 380 193 123 40

TSO
PE

48
- - T/O - - - -

CE 622 6,941 1,518 582 71 67 545

Cube Extrapolation. Next, we discuss the results of Table 2. We first observe that for
Queue, under PSO, PE required around 6 million calls to the SMT solver and took a
little over 24 minutes to complete in building the boolean program. Indeed, the combi-
nation of increased cube size (4) together with 15 initial input predicates significantly
affected the running time for building the boolean program. Interestingly, we observe
that CE, was able to reduce the number of calls to the SMT solver by a factor of 60 and
reduce the running time by a factor of 80. Importantly, CE was precise enough to verify
the program. Here we see that CE generated 99 new cubes which were extrapolated
from the 50 SC cubes. The final program used exactly these 99 cubes, meaning that CE
did not generate redundant cubes.

For both Bakery and Ticket, the benefits of CE are even more startling. With PE,
building the boolean program fails under both x86 TSO and PSO due to a time out.
However, CE massively reduced the number of SMT calls enabling successful gen-
eration of the boolean program. The set of cubes CE returned was fairly close to the
set of cubes used during the boolean program verification. For instance, in Bakery un-
der PSO, 422 input cubes were generated out of which 381 were used in the boolean
program (fairly close to ideal).

It is worth noting that in all benchmarks we experimented on, the minimal fence
placement required was different for x86 TSO and PSO.

Discussion. Next we note two observations from our approach which we encountered
experimentally and which we believe are interesting items for future work.

First, when we directly applied CE to the Ticket algorithm, it took hours to verify for
PSO. To solve this problem, we hypothesized that given a safety property, which does
not reference buffered values, we may allow inconsistent values at buffered locations,
and that inconsistency would be resolved when those values are flushed and before an

102 A.M. Dan et al.

error state is reached. Therefore, to enable quicker verification, we first applied CE as
usual, and then automatically removed all predicates referencing buffered values from
the resulting cubes found in the boolean program after CE. Such a reduction preserves
soundness while abstracting the proof. We note that although this approach worked for
Ticket under PSO, when we tried it under x86 TSO this additional pass introduced too
much imprecision and the program failed to verify (the table reports results for Ticket
on PSO using this additional pass and on x86 TSO without this pass).

Second, for the Queue algorithm our initial successful SC proof was insufficient to
extrapolate from. Portions of the program where the boolean program under SC lost
precision due to abstraction were amplified by the extrapolation. For instance, where
the SC proof used a predicate Tail < Head which was unknown through parts of the
SC proof with no adverse effects, the extrapolated proof propagated this uncertainty
causing an error state to be reached. Adding Tail ≤ Head strengthened the SC proof
and enabled successful extrapolation (this is the result we report in the Table).

Summary. For cubes of small size, 2 or less, with PE, CUPEX builds the boolean program
quickly and is precise enough to verify the program. For larger cube sizes, PE takes too
long to build the boolean program or times out. However, CUPEX with CE enables us to
build the boolean program in reasonable time and critically, is precise enough to verify
the program both for x86 TSO and PSO.

7 Related Work

There has been almost no work on automatically verifying infinite-state concurrent pro-
grams running on relaxed memory models. We briefly survey some of the more closely
related work.

Model Checking for Relaxed Memory Models. The works of [25,21,22,19] describe
explicit-state model checking under several memory models. In [7], instead of working
with operational memory models and explicit model-checking, they convert programs
into a form that can be checked against an axiomatic model specification. These ap-
proaches do not handle infinite-state programs. The work in [23] focuses on programs
that are finite-state under SC but infinite-state under x86 TSO and PSO and suggests an
abstraction to deal with the issue. Unfortunately, it also cannot handle general infinite-
state programs (i.e., the program must be finite-state under SC).

The works of [2,5] present a code-to-code transformation which encodes the relaxed
memory semantics into the program. Our approach goes beyond this transformation
and tackles the difficulty of verifying the newly obtained relaxed program. These new
programs are more difficult to verify because of the complexity added by the encoded
semantics. Our approach solves this problem by learning from the proof under sequen-
tial consistency.

The work of [1] builds on [23] and handles infinite state programs (on x86 TSO) by
applying both predicate abstraction and store buffers abstraction. Their approach dis-
covers predicates via traditional abstraction refinement and does not reuse information
from the proof under SC, while in our approach we present a technique which leverages
an existing proof under SC in order to derive a new proof for a more relaxed program.

Predicate Abstraction for Relaxed Memory Models 103

Further, we also handle a memory model (PSO) that allows for more behaviors and
complexity than x86 TSO.

Lazy abstraction. The work of [18] introduces the concept of adjusting the level of
abstraction for different sections of the verified program’s state space. This is achieved
by applying on-the-fly refinement for search-tree sub-graphs. Their approach does not
construct a boolean program during verification. However, encoding the weak memory
semantics in the code and extrapolating from the SC proof are concepts applicable for
extending lazy abstraction to relaxed memory models. The backwards counter-example
analysis phase, which requires costly calls to the theorem prover, may in part be avoided
by anticipating in each branch of the search tree which predicates are required.

8 Conclusion and Future Work

We introduced a novel approach for predicate abstraction of concurrent programs run-
ning on relaxed memory models such as x86 TSO and PSO. The essence of our ap-
proach is extrapolation: learning from an existing proof of the program under sequential
consistency in order to obtain a proof for a more relaxed version of the program.

We implemented our extrapolation approach and successfully applied it to automati-
cally verify several challenging concurrent algorithms for both x86 TSO and PSO. This
is the first time some of these programs have been verified for a model as relaxed as
PSO.

As future work, we plan to investigate how these techniques apply to other relaxed
models, both hardware models such as Power, as well as software programming models
such as [8].

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Automatic fence inser-
tion in integer programs via predicate abstraction. In: Miné, A., Schmidt, D. (eds.) SAS 2012.
LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg (2012)

2. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak mem-
ory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

3. Andrews, G.R.: Concurrent programming - principles and practice. Benjamin/Cummings
(1991)

4. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for
weak memory models. In: POPL (2010)

5. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in tso analysis. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115. Springer,
Heidelberg (2011)

6. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C
programs. In: PLDI (2001)

7. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of concurrent
data types on relaxed memory models. In: PLDI (2007)

8. Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming with revisions and isola-
tion types. In: OOPSLA (2010)

104 A.M. Dan et al.

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In: POPL (1977)

10. Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed memory
models. Tech. rep

11. Das, S., Dill, D.L., Park, S.: Experience with Predicate Abstraction. In: Halbwachs, N., Peled,
D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidelberg (1999)

12. Dijkstra, E.: Cooperating sequential processes, TR EWD-123. Tech. rep., Technological Uni-
versity, Eindhoven (1965)

13. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate abstraction for
shared-variable concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg (2011)

14. Dubois, M., Scheurich, C., Briggs, F.A.: Memory access buffering in multiprocessors. In:
ISCA (1986)

15. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL (2002)
16. Graf, S., Saı̈di, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)

CAV 1997, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
17. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A constraint-based verifier for multi-

threaded programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 412–417. Springer, Heidelberg (2011)

18. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL (2002)
19. Huynh, T.Q., Roychoudhury, A.: Memory model sensitive bytecode verification. Form.

Methods Syst. Des. (2007)
20. IBM. Power ISA v.2.05. (2007)
21. Jonsson, B.: State-space exploration for concurrent algorithms under weak memory order-

ings. SIGARCH Comput. Archit. News (2008)
22. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In: FMCAD

(2010)
23. Kuperstein, M., Vechev, M., Yahav, E.: Partial-coherence abstractions for relaxed memory

models. In: PLDI (2011)
24. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Commun. ACM

(1974)
25. Park, S., Dill, D.L.: An executable specification and verifier for relaxed memory order. IEEE

Trans. on Computers 48 (1999)
26. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3) (1981)
27. Sarkar, S., Sewell, P., Nardelli, F.Z., Owens, S., Ridge, T., Braibant, T., Myreen, M.O., Al-

glave, J.: The semantics of x86-cc multiprocessor machine code. In: POPL (2009)
28. SPARC International, Inc. The SPARC architecture manual (version 9). Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA (1994)
29. Szymanski, B.K.: A simple solution to Lamport’s concurrent programming problem with

linear wait. In: ICS (1988)

On Solving Universally Quantified Horn Clauses

Nikolaj Bjørner1, Ken McMillan1, and Andrey Rybalchenko1,2

1 Microsoft Research
2 Technische Universität München

Abstract. Program proving can be viewed as solving for unknown re-
lations (such as loop invariants, procedure summaries and so on) that
occur in the logical verification conditions of a program, such that the
verification conditions are valid. Generic logical tools exist that can solve
such problems modulo certain background theories, and therefore can be
used for program analysis. Here, we extend these techniques to solve for
quantified relations. This makes it possible to guide the solver by con-
straining the form of the proof, allowing it to converge when it otherwise
would not. We show how to simulate existing abstract domains in this
way, without having to directly implement program analyses or make
certain heuristic choices, such as the terms and predicates that form
the parameters of the abstract domain. Moreover, the approach gives
the flexibility to go beyond these domains and experiment quickly with
various invariant forms.

1 Introduction

Many problems of inference in program verification can be reduced to relational
post-fixed point solving [13,4]. That is, to prove correctness of a program, we
apply the rules of a program proof system to obtain purely logical proof subgoals.
These subgoals are called the verification conditions or VC’s. Proving validity
of the VC’s implies correctness of the program. The VC’s generally contain
auxiliary predicates such as inductive invariants, that must be inferred. Leaving
these auxiliary predicates undefined (that is, as symbolic constants) the problem
of inference becomes a problem of solving for unknown relations satisfying a set
of logical constraints. In the simplest case, this is an SMT (satisfiability modulo
theories) problem.

procedure π(ref a : int array, N : int):
var i : int := 0;
while i < N invariant P (a, i,N) do

a[i] := 0;
i := i+ 1;

done
assert ∀0 ≤ j < N. a[j] = 0;

Consider, for example, the
simple procedure on the left.
The procedure sets elements
0 . . .N − 1 of array a to zero in
a loop. We want to prove that
on return, these array elements
are in fact zero (leaving aside
the question of array over-run).
The loop is annotated with an

invariant P (a, i,N), an unknown predicate which we wish to discover in order
to prove correctness.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 105–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

106 N. Bjørner, K. McMillan, and A. Rybalchenko

The verification conditions of this program are the following three logical
formulas:

i = 0 =⇒ P (a, i,N) (1)

P (a, i,N) ∧ i < N =⇒ P (a[i ← 0], i+ 1, N) (2)

P (a, i,N) ∧ ¬(i < N) =⇒ ∀0 ≤ j < N. a[i] = 0 (3)

These are just the three proof obligations of the Hoare logic rule for while loops
translated into logic. They say, respectively, that invariant P (a, i,N) is initially
true, that it is preserved by an iteration of the loop, and that it implies the
post-condition of the loop on exit. Note in particular that P (a[i ← 0], i+ 1, N)
is just the weakest precondition of P (a, i,N) with respect to the loop body. The
notation a[i ← 0] means “array a with index i updated to 0”.

The problem of proving the program thus reduces to finding an interpretation
of the unknown predicate (or relation) P that makes the VC’s valid. In the
simplest case (technically, when the background theory is complete) a program
proof is a satisfying assignment for the VC’s. In our example, one solution is:

P (a, i,N) ≡ ∀0 ≤ j < i. a[j] = 0.

Of course this does not mean that we can in practice solve the VC’s using existing
SMT solvers. The VC’s are valid when they are true with the free variables
a, i,N universally quantified. SMT solvers generally cannot produce models for
arbitrary quantified formulas.

There are specialized solvers, however, that can take advantage of the fact
that the VC’s fit a particular pattern. We will use the notation φ[X] to stand for
a formula or term with free variables X . Our VC’s have the form ∀X.B[X] =⇒
H [X]. We will call B[X] the body of the VC and H [X] the head. Our unknown
relations such as P occur only in a limited way in these formulas: as the head,
or as a conjunct of the body. Thus, supposing P,Q are our unknown relations,
we could have ∀x. x < 0 ∧ P (x) =⇒ Q(x) or ∀x, y. P (x) ∧ Q(x, y) =⇒ x < y
as VC’s, but not ∀x, y. x < y =⇒ P (x)∨Q(x). Another way to say this is that
our VC’s are constrained Horn clauses.

Alternatively, we can view the VC’s as a Constraint Logic Program (CLP) [20].
In our example, (1) and (2) are the clauses of the program. The VC (3) can be
viewed as a safety property to be proved of the program, or its negation can be
considered a goal, an answer to which would be a counterexample to program
correctness. In fact, numerous schemes for capturing program semantics in CLP
have been proposed [7,10,22].

A number of tools exist for solving constrained Horn clauses modulo dif-
ferent theories, or equivalently proving CLP programs. For example, QARMC
can solve such problems modulo rational linear arithmetic. It uses a technique
based on predicate abstraction [12] and Craig interpolation [26] that was gen-
eralized to trees [15]. Bjørner and Hoder describe a technique for the same the-
ory that is an extension of property-driven reachability analysis [17]. A system
called Duality [30] uses an extension of the IMPACT algorithm [27] to solve

On Solving Universally Quantified Horn Clauses 107

i = 0 =⇒ ∀j. P (a[j], i) (4)

∀j. P (a[j], i) ∧ i < N =⇒ ∀j. P (a[i← 0][j], i+ 1) (5)

∀j. P (a[j], i) ∧ ¬(i < N) =⇒ ∀0 ≤ j < N. a[j] = 0 (6)

Fig. 1. VC’s generated for array initialization, with quantified invariant

problems in the combined theory of integer linear arithmetic and arrays, using
an interpolating decision procedure for these theories [29]. Likewise, the Eldarica
tool [32,19] takes as input constrained Horn clauses over Presburger arithmetic.
The Spacer tool [24] combines CEGAR (counter example guided abstraction
refinement) with 2BMC (bounded model checking based model checking) for
solving Horn clauses.

Tools based on CLP include CiaoPP [16] which takes an abstract interpre-
tation approach and TRACER [21] that uses a hybrid of symbolic execution,
interpolation and abstract interpretation.

The advantage of such solvers is that they abstract away from particular pro-
gramming languages and program proof systems. We can apply these solvers so
long as we have a VC generator that produces VC’s as (generalized) Horn for-
mulas. Moreover, as we will see, they give us considerable flexibility to generate
VC’s in a way that guides or constrains the solution.

In this paper, we will consider such techniques, and show that by writing
the VC’s in an appropriate form, we can convey domain knowledge about the
problem in a way that can simulate the effect of various abstract domains, with-
out having to design and implement a custom program analysis, and without
having to specify many of the parameters of these domains, as they can be in-
ferred automatically by the solver. This makes it possible to experiment rapidly
with various analyses. Based on this experience, one could then implement a
custom analysis (say, using parameters of the abstract domain discovered by the
solver for a class of programs) or simply apply the Horn solvers directly if their
performance is adequate.

In particular, in this paper we will show that the process of solving for program
proofs can be guided by choosing the logical form of the unknown assertions. To
obtain universally quantified invariants in this way, we extend Horn solvers to
handle quantified predicates. That is, we allow an unknown predicate P to appear
in a VC as ∀X.P (t[X]), where t[X] is a vector of terms with free variables
X . This allows us to replace the invariant P (a, i) in our example with, say,
∀j. P (j, a[j], i, N). This tells us, in effect, that we have to write the invariant as
a formula universally quantified over j, using just the terms j, a[j], i and N .
This new invariant assertion gives us the VC’s shown in Figure 1, with quantified
predicates.

One solution for these VC’s is:

P (j, x, i, N) ≡ 0 ≤ j < i =⇒ x = 0

108 N. Bjørner, K. McMillan, and A. Rybalchenko

Notice that substituting this definition into ∀j. P (j, a[j], i, N) gives us ∀j. 0 ≤
j < i =⇒ a[j] = 0, exactly the invariant we obtained previously.

The advantage of using this formulation of the problem is that it constrains
the space of solutions in a way that causes the solver to converge, whereas with
the more general formulation it may not converge. Another way to say this is
that we have provided a restricted language for the inductive invariant. This
restriction thus takes the heuristic role of an abstract domain, even though the
solver itself may not be based on abstract interpretation. Note, though, that it
is a rich abstract domain, since it does not restrict the Boolean structure of P
or the set of arithmetic terms or relations that may occur in P .

We will show experimentally that, solving for quantified invariants in this
form, we can simulate the effect of different abstract domains, such as the array
segmentation domain of [6] and the Fluid Updates array abstraction of [9]. That
is, we can induce a Horn clause solver to produce inductive proofs in a language at
least as rich as these abstract domains, without implementing a custom program
analysis, and without providing abstract domain parameters such as the segment
boundary terms or data abstractions. Rather, we simply write the invariants to
be solved for in an appropriate form. Moreover, quantified predicates provide us
flexibility to solve problems that cannot be solved in these domains.

Related Work. Quite a variety of approaches have been taken to generation
of quantified inductive invariants. Here, we will survey some of these methods
and compare them to the present one. One line of work is based on interpolants.
Quantification is used for interpolants describing unbounded ranges of arrays
[23]; and in more recent work [2] by leveraging Model Checking Modulo The-
ories. Super-position theorem provers work directly with clauses corresponding
to quantified formulas and this has been leveraged for extracting quantified in-
variants [28], [18]. Common to these approaches, and different from the current
work, is that they aim to produce quantified invariants directly. The shape of
quantification is left mostly unrestricted. In contrast, the current work takes as
starting point a template space of quantified invariants and reduces the problem
to quantifier-free invariant generation. A number of abstract interpretation meth-
ods have domains that represent universally quantified facts [14,11,5,31]. Here,
we aim to avoid the explicit construction of abstract post operators, widenings
and refinement procedures needed in these approaches. The constraint-based
approach of [25] synthesizes a class of universally quantified linear invariants of
array programs. We synthesize a broader class of invariants, without hints as to
the index terms occurring in the invariants. In principle, however, a constraint-
based linear invariant generator can be a back-end solver in our procedure.

There also exist solving techniques that support existential quantification in
Horn clauses, i.e., a quantifier alternation in the form of forall/exists [3]. This
approach computes witnesses to existential quantification in form of Skolem
relations. The method also relies on a back-end Horn clause solver, however,
an abstraction refinement loop is used to iteratively discover required witnesses.

On Solving Universally Quantified Horn Clauses 109

That is, in contrast to the method presented here, [3] calls the back-end solver
repeatedly.

2 Preliminaries

We use standard first-order logic over a signature Σ of function and predicate
symbols of defined arities. Generally, we use a, b, c for constants (nullary function
symbols), f, g for functions, P,Q,R for predicates, x, y, z for individual variables,
t, u for terms. When we say a formula is valid or satisfiable, this is relative to
a fixed background theory T . A subset of the signature ΣI ⊆ Σ is considered
to be interpreted by the theory. The vocabulary of a formula φ (the subset of Σ
occurring in it) is denoted L(φ). The variables occurring free in φ are denoted
V (φ). We will write φ[X] and t[X] for a formula or term with free variables X .
If P is a predicate symbol, we will say that a P -formula is a formula of the form
P (t1, . . . , tn). If R is a set of symbols, we say φ is R-free when L(φ) ∩R = ∅.

3 The Quantified Relational Post-fixed Point Problem

We now give a precise definition of the problem to be solved.

Definition 1. A constrained Horn clause (in the sequel CHC) over a vocabulary
of predicate symbols R is a formula of the form ∀X.B[X] ⇒ H [X] where

– The head H [X] is either a P -formula, or is R-free, and
– The body B[X] is a formula of the form ∃Y. φ∧ψ1∧· · ·ψk where φ is R-free

and ψi is a P -formula for some P ∈ R.

The clause is called a query if the head is R-free, else a rule. A rule with body
True is a fact.

Definition 2. A relational post-fixed point problem (RPFP) is a pair (R, C),
where R is a set of predicate symbols (called the nodes) and C is a set of CHC’s
over R.

An RPFP is satisfiable if there is an interpretation of the predicate symbols
R, such that each constraint in C is true under the interpretation. Thus, an
interpretation provides a solution to an RPFP. We are here interested in effective
ways to establish satisfiability of RPFPs and will search for interpretations that
can be expressed as formulas using the existing vocabulary. We call the resulting
solutions symbolic solutions, explained next.

We will refer to Σ \ R as the background vocabulary. A symbolic relation is
a term of the form λ.x̄. φ[x̄] where x̄ is a vector of distinct variables, such that
L(φ) ⊆ Σ \ R (that is, φ is over only the background vocabulary). A symbolic
relational interpretation σ over R is a map from symbols in R to symbolic
relations of the appropriate arity. If ψ is a formula, we write ψσ to denote ψ
with σ(R) substituted for each R ∈ R and β-reduction applied. For example, if
ψ is R(a, b) and σ(R) is λx, y. x < y, then ψσ is a < b.

110 N. Bjørner, K. McMillan, and A. Rybalchenko

Definition 3. A symbolic solution of RPFP (R, C) is a symbolic relational in-
terpretation over R such that, for all C ∈ C, Cσ is valid (relative to theory T).

A subtle point worth noting here is that a solution of an RPFP depends on the
interpretation of the background symbols. If the background theory is complete
(meaning it has a unique model up to isomorphism) then this gives a unique
interpretation of R. We can therefore think of an RPFP as a special case of an
SMT problem. If T is incomplete, however (say it includes uninterpreted function
symbols) then the symbolic solution effectively gives an interpretation of R for
each theory model. This allows us to leave aspects of the program semantics
(say, the heap model) incompletely defined, yet still prove the program correct.

3.1 Refutations and Derivation Trees

If a solution of the VC’s corresponds to a proof of the program, one might ask
what corresponds to a counterexample (that is, a proof the program is incorrect).
One way to view this is that a set of rules has a minimal model, that is, a
least interpretation of the predicate symbols by set containment that satisfies
the rules. An RPFP is satisfiable exactly when the minimal model of its rules
satisfies all of its queries. The minimal model of the rules is the set of ground
facts that can be derived from ground instances of the rules by unit resolution.
An RPFP can thus be refuted (proved unsatisfiable) by a ground derivation of
False.

As an example, consider the following RPFP:

x = y =⇒ P (x, y) (7)

P (x, y) ∧ z = y + 1 =⇒ P (x, z) (8)

P (x, y) ∧ P (y, z) =⇒ Q(x, z) (9)

Q(x, z) =⇒ x+ 2 ≤ z (10)

We can think of these formulas as the VC’s of a program with two procedures,
P and Q. Procedure P is recursive and either returns its input (7) or calls
itself and returns the result plus one (8). Procedure Q calls P twice (9). The
query represents a specification that Q increments its argument by at least two
(10). The program does not satisfy this specification, which we can prove by
the following ground derivation. First, from (7), setting x = y = 0, we derive
the ground fact P (0, 0). Then from (9), setting x = y = z = 0, we obtain
P (0, 0) ∧ P (0, 0) =⇒ Q(0, 0). Resolving with P (0, 0), we derive Q(0, 0). Then
from (10), setting x = z = 0, we obtain Q(0, 0) =⇒ False. Resolving with
Q(0, 0), we obtain False. This refutation can also be thought of as an execution
of the program that does not satisfy the specification.

We can discover a refutation by constructing a derivation tree, by a process
that is essentially logic program execution. A derivation tree is obtained by start-
ing with a query and successively unifying R-predicates in bodies with heads of
rules until we reach facts. In our example, we might obtain the derivation tree

On Solving Universally Quantified Horn Clauses 111

)

(a) (b)

(c)

Fig. 2. Deriving a refutation (a) Derivation tree. Arrows represent unification steps.
(b) Constraint tree. (c) Resulting ground refutation.

of Figure 2(a). Extracting the constraints from these clauses, we obtain the con-
straint tree shown in Figure 2(b). If these constraints are satisfiable, substituting
the satisfying assignment into the derivation tree gives us a ground derivation of
False, as shown in Figure 2(c). On the other hand, showing satisfiability of the
RPFP is equivalent to proving unsatisfiability of all possible derivation trees.
This view will be useful later when we discuss quantifier instantiation.

3.2 Solving RPFP’s

A variety of techniques can be applied to solve RPFP’s symbolically or pro-
duce refutations. For example, ARMC [13] applies predicate abstraction [12].
Given a set P of atomic predicates, it synthesizes the strongest map from R
to Boolean combinations (alternatively cubes) over P that solves the problem.
The predicates are derived from interpolants for unsatisfiable derivation trees.
Various other methods are available [30,17] but all synthesize the solution in
some manner from solutions of finite unwindings of the clause set.

All these methods may diverge by producing an infinite sequence of approx-
imations to a solution. For example, in our array initialization example above,
we may first consider just one iteration of the loop, deriving an approximation
of the loop invariant P (i, a,N) that involves the predicate a[0] = 0. Then we
consider two iterations of the loop, obtaining a[1] = 0 and so on ad infinitum.
In short, we need some way to tell the tool that the invariant must involve a
quantifier.

3.3 Quantified Predicates

To do this, we will allow our symbolic program assertions to contain quanti-
fiers. We say that a ∀P -formula is a formula of the form ∀Y.P (t). We extend
constrained Horn clauses to quantified Horn clauses as follows:

Definition 4. A quantified Horn clause (in the sequel QHC) over a vocabulary
of predicate symbols R is a formula of the form ∀X.B[X] ⇒ H [X] where

– The head H [X] is either a ∀P -formula, or is R-free, and

112 N. Bjørner, K. McMillan, and A. Rybalchenko

– The body B[X] is a formula of the form ∃Y. φ∧ψ1∧· · ·ψk where φ is R-free
and ψi is a ∀P -formula for some P ∈ R.

The only difference from the previous definition is that we use ∀P -formulas in
place of P -formulas. This allows us to express VC’s such as those in our second
version of the array initialization problem (4–6).

We first observe that a universal quantifier in the head of a rule poses no
difficulty, as it can simply be shifted to prenex position. That is, the formula

∀X. B[X] =⇒ ∀Y.P (t)

is equi-valid to

∀X,S. B[X] =⇒ P (t)〈S/Y 〉

where S is a set of fresh variables. The difficulty lies, rather, in the ∀P -formulas
that occur as conjuncts in the body B[X]. We can think of these formulas as
representing an infinity of groundings.

As a result, derivation trees are now infinitely branching. Consider, for exam-
ple, this rule:

(∀y. P (x, y)) =⇒ Q(x)

The rule requires an infinite set of tuples P (x, y) to derive a single tuple Q(x).
One can also easily construct cases where the only feasible derivation tree has
infinite height. For example, in the theory of arithmetic:

x = 0 =⇒ P (x)

P (x) =⇒ P (x+ 1)

(∀0 ≤ y. P (y)) =⇒ Q

A derivation of Q requires an infinite set of subtrees corresponding to P (0), P (1),
P (2), . . ., where the derivation of P (k) is of height k+1. Thus, the height of the
derivation of Q is ω.

A similar example illustrates that finite quantifier instantiation is incomplete
for establishing satisfiability of RPFP’s. Consider the system below.

P (0, 1)

P (x, y) =⇒ P (x, y + 1)

P (x, y) =⇒ P (x+ 1, y + 1)

(∀x . P (x, y)) =⇒ Q(y) (11)

Q(x) =⇒ False

It exploits that compactness does not hold for the theory of natural numbers.
It is satisfiable with symbolic solution P (x, y) ≡ x < y, Q(y) ≡ False; yet
every finite instantiation P (a1, y) ∧ . . . P (an, y) =⇒ Q(y) of the quantified

On Solving Universally Quantified Horn Clauses 113

clause (11) produces a stronger system that is unsatisfiable. We have yet to en-
counter applications from program analysis where this source of incompleteness
is significant.

The approach we will take to quantifiers is the same as is typically taken in
SMT solvers: we will replace a universally quantified formula by a finite set of
its instances. Say that an instantiation of a formula ∀Y. P (t) is P (t)〈S/Y 〉 for
some vector of terms S. We can show:

Theorem 1. Let Π be a quantified RPFP and let Π ′ be an unquantified RPFP
obtained by shifting quantifiers in the heads of the rules to prenex position and
replacing each ∀P formula in a body by a finite conjunction of its instantiations.
Then a solution of Π ′ is also a solution of Π.

Proof. A conjunction of instantiations of a universal formula φ is implied by φ .
Thus, the body of a QHC in the instantiated Π ′ is implied by the corresponding
body in Π . Since the bodies are on the left-hand side of the implications, it
follows that the constraints in Π ′ imply the corresponding constraints in Π . A
solution of Π ′ is thus a solution of Π . �.

This means that if we replace any ∀P -formula with a finite instantiation, any
proof of the program we obtain is valid. However, a counterexample may not be
valid. By adding one more instance, we may find the counterexample ruled out.
Thus, finite instantiation is a conservative abstraction.

In this paper we will consider a simple syntactic approach to generate finite
instantiations, relying on Theorem 1. It uses pattern-matching heuristics to in-
stantiate the universals in the QHC bodies. The resulting problem Π ′ can then
be solved by any of the available RPFP solvers. Any solution of Π ′ is also a
solution of Π and thus implies correctness of the program. This approach has
the advantage that it leaves the solver itself unchanged. Thus, we can apply any
available solver for unquantified Horn clauses.

4 Trigger-Based Quantifier Instantiation

The syntactic approach can be applied as a pre-processing step on the RPFP.
It operates in a matter that is inspired by quantifier instantiation in SMT
solvers [8]. We begin with the theory of equality and uninterpreted functions, and
then extend to cover the theory of arrays. For the programs we have analyzed
here, it was sufficient to treat arithmetical symbols +,× as uninterpreted.

4.1 Theory of Equality

Trigger-based instantiation [8] is a method for instantiating universal quantifiers.
The current goal of the prover is a set of literals whose satisfiability is to be
determined. Quantifiers in the current goal are annotated by triggers, that is,
terms containing all the quantified variables. Amatch is any variable substitution
that takes a trigger to an existing ground term from the current goal, modulo
the set of asserted equalities in the current goal.

114 N. Bjørner, K. McMillan, and A. Rybalchenko

i0 = 0 =⇒ P (a0[k0], i0) (12)

∀j1. P (a1[j1], i1) ∧ i1 < N1 =⇒ P (a1[i1 ← 0][k1], i1 + 1) (13)

∀j2. P (a2[j2], i2) ∧ ¬(i2 < N2) =⇒ 0 ≤ k2 < N2 =⇒ a2[k2] = 0 (14)

Fig. 3. VC’s generated for array initialization, after shifting head quantifiers to prenex

The intuition behind trigger-based instantiation as stated in [8] is that an
instance of a universal is likely to be relevant if it contains many terms that
can be proved equal to existing terms. Here, unlike in [8], we wish to find such
instances in advance of doing any actual deduction. Thus we will produce an
over-approximation of the equality relation, considering terms equal if they may
be proved equal in some propositional case. Moreover, we wish to produce enough
instantiations to make all of the derivation trees unsatisfiable. Thus the proofs
we are considering are proofs of unsatisfiability of the constraints in these trees.
For this reason, we will consider two terms possibly equal if two instances of
these terms may be inferred to be equal in some derivation tree.

To discover instantiations of ∀P -formulas in quantified clauses we build a
structure called an E-graph [8]. The E-graph is a term DAG with an equivalence
relation over the nodes. It provides a compact representation of a collection of
terms that might be generated by instantiating axioms of the theory of equality.
We produce instantiations by matching terms containing bound variables against
terms represented in the E-graph.

Consider, for example, our array initialization problem of Figure 1. For now,
we consider the array operators ·[·] and ·[· ← ·] to be uninterpreted functions.
We begin by shifting head quantifiers to prenex (introducing fresh variables ki)
to obtain the QHC’s of Figure 3. We also rename the bound variables so they
are distinct.

The E-graph we obtain from these formulas is shown in Figure 4. It contains
all of the terms occurring outside of ∀P -formulas. It merges the terms i0, 0 and
a2[k2] into an equality class, due to the presence of equalities in the formulas.
Then we try to match certain terms within ∀P -formulas called triggers with
terms represented in the E-graph, to produce instantiations of the variables.
We never match bare variables, hence the matched terms must always agree on
at least the top-level function symbol. In practice, we use array select terms
as triggers. The process of matching triggers against the E-graph to produce
instantiations is called E-matching. The exact set of matching terms we produce
from the E-graph is a heuristic choice.

In the example, we can match a2[j2] with the E-graph term a2[k2], using the
unifier j2 = k2. We use this assignment to instantiate the quantifier in (14). This
gives us the instance P (a2[k2], i2). We now merge the arguments of P in this
term with corresponding arguments in the heads of the rules. Thus, we merge
a2[k2] with a1[i1 ← 0][k1] and with a0[k0], and we merge i2 with i1 +1 and i0 in
the E-graph. We do this because these terms might be unified in the construction

On Solving Universally Quantified Horn Clauses 115

+

Fig. 4. Starting E-graph for formulas of Figure 3. Dashed lines represent equality
classes.

of a derivation tree. In principle this merge might give us new matches, but in
this case no new matches result. In particular, there is no match for a1[·], so we
still have no instances of P in the body of rule (13), leaving the instantiated
system unsolvable.

4.2 Theory of Arrays

To solve this problem, we need to attach semantics to the array operations select
and store. In particular, we need to take into account that a[x ← y][z] may equal
a[z] (in the case when x �= z). We do this by adding the axioms of the array
theory to the mix. These are:

∀a, i, d. a[i ← d][i] = d
∀a, i, j, d. (i = j) ∨ a[i ← d][j] = a[j]

The trigger associated with the first axiom is a[i ← d][i]. The second axiom
contains the sub-term a[i ← d][j] that contains all the bound variables and we
use it as a trigger. In our example, this trigger matches the term a1[i1 ← 0][k1]
in the E-graph, producing the instance (i1 = k1) ∨ a1[i1 ← 0][k1] = a1[k1].
This contributes the term a1[k1] to the E-graph, which then matches a1[j0]
to give the instance P (a1[k1], i1). Adding this instance, we merge a1[k1] with
a1[i1 ← 0][a0] and i1 with i1 + 1 in the E-graph. This results in no further
matches, so instantiation terminates. Note that matching with the first axiom
never produces new terms, so we need not consider it. The final E-graph after
quantifier instantiation is shown in Figure 5.

Now, replacing the ∀P -formulas with the obtained instantiations, we have the
instantiated problem Π ′ shown in Figure 6. This problem has a solution, for
example, the same solution we obtained for the original quantified problem:

P (j, x, i, N) ≡ 0 ≤ j < i =⇒ x = 0

One can verify this solution by plugging in the definition of P and checking
validity of the resulting quantifier free formulas with an SMT solver.

As a side-remark we note that trigger-based quantifier instantiation becomes a
complete decision procedure for the existential theory of non-extensional arrays

116 N. Bjørner, K. McMillan, and A. Rybalchenko

+

Fig. 5. Final E-graph for formulas of Figure 1

i0 = 0 =⇒ P (a0[k0], i0) (15)

P (a1[k1], i1) ∧ i1 < N1 =⇒ P (a1[i1 ← 0][k1], i1 + 1) (16)

P (a2[k2], i2) ∧ ¬(i2 < N2) =⇒ 0 ≤ k2 < N2 =⇒ a2[k2] = 0 (17)

Fig. 6. VC’s generated for array initialization example, after instantiation

if we also add the two terms a[i ← d], a[j] as a joint trigger (called multi-pattern)
to the second array axiom. But it is well recognized that this axiom is irrelevant
for verification conditions from programs (where the same array does not get
updated in two different ways), so we disregard this trigger in our experiments.

4.3 Algorithm

Figure 7 shows a high-level algorithm for trigger-based instantiation, based on
standard techniques for E-matching [8]. We start by shifting quantifiers, then
collect the ∀P -formulas from the bodies, adding axioms of the theory. These are
the universal formulas to be instantiated. Then we build an E-graph, merging
terms based on equalities in the formulas. We then enter a loop, instantiating
the quantified formulas using the E-graph. Each time an instance matches the
head of a rule, we merge the corresponding arguments in the E-graph. Finally,
for each ∀P -formula in a rule C, we gather the instances that are expressed
using the variables of C (thus if the instance contains a variable from another
constraint, we reject it as irrelevant). The conjunction of these instances replaces
the ∀P -formula.

In principle, we may have a matching loop. For example, suppose we have the
quantified formula ∀y. P (g(y), g(f(y))) in P and associated trigger g(y) and a
term g(a) in the E-graph. We can then obtain an infinite sequence of instan-
tiations: First y is instantiated with a producing the grounding P (g(a), g(f(a))).
TheE-graph is updated with the term g(f(a)) terms g(a), g(f(a)), g(f(f(a))), . . .
Though we have not seen this in practice, it would be possible to terminate such
loops by putting a bound on term size.

As in SMT solvers, the trigger-based instantiation approach is heuristic. It
may or may not generate the instances needed to obtain a proof. Moreover, we

On Solving Universally Quantified Horn Clauses 117

Algorithm Trigger-instantiate
Input: a set of QHC’s C
Output: instantiations of C

Shift head quantifiers in C to prenex position.
Let P be the set of ∀P -formulas in C.
Let Q be P with the array theory axioms added.
Let E be an empty E-graph.
Add the ground terms of C to E.
For every ground equality x = y in C, merge x and y in E.
Let I be the empty set of formulas.
Repeat:

Let G be the instances of Q obtained by E-matching with E.
Add G to I.
Add the ground terms of G to E.
For every instance G ∈ G of some formula ∀Y. P (t) in P , do

For every head P (u) of a rule in C, do
Merge t with u in E. (*)

Until no change in I.
For each formula φ in P , where φ occurs in QHC C ∈ C do

Let Iφ be the set of instances ψ of φ in I s.t. V (ψ) ⊆ V (C)
Substitute ∧Iφ for φ in C

Return C.

Fig. 7. Trigger-based instantiation algorithm

must view the counterexamples (i.e., derivation trees) generated by the solver as
suspect, since they contain only a finite subset of the instances of the universals.
We will observe in Section 5, however, that a reasonably precise analysis can be
obtained with these fairly simple heuristics.

In fact, in our experiments, we have found a more restrictive instantiation
policy to be adequate. That is, we only instantiate variables with existing terms
(not all terms represented in the E-graph) and we instantiate each QHC in iso-
lation. Reducing the number of irrelevant instances in this way tends to improve
the solver performance.

In summary we have the following variants and restrictions of Algorithm
Trigger-instantiate:

Inter vs. intraprocedural: The algorithm takes a set C of Horn clauses as
input. In one extreme take C as the entire set of clauses to be checked for
satisfiability. In the other extreme process each clause Ci by setting C to
{Ci} and invoke the instantiation algorithm.

Instantiation vocabulary: The E-graph represents potentially an infinite
number of terms. For example, if a and f(a) are merged in E, then E
encodes that f(f(a)) = a. Each of the terms f(a), f(f(a)), f(f(f(a))),
etc. can be used as representatives for a. Different instances of Algorithm
Trigger-instantiate are obtained by bounding the number of representatives

118 N. Bjørner, K. McMillan, and A. Rybalchenko

admitted for each match. Since the algorithm uses may equality, it becomes
highly incomplete if only a single match is admitted.

Instantiation depth: SMT solvers manage quantifier instantiations using a
priority queue of instances. An instantiation is heavy if it uses terms that
were constructed by a long sequence of instantiations. Lighter (younger)
terms are preferred. Likewise, our pre-processing instantiation can cut off
instantiations based on a maximal weight.

5 Applications

We now consider some applications of quantified RPFP solving. We will observe
that by choosing our symbolic invariants appropriately, we can simulate the ef-
fect of some abstract domains from the literature. In this way, we can avoid
implementing a custom analysis. As we sill see, we can also avoid the prob-
lem of tuning the parameters of the abstract domain, since the values of these
parameters can be extracted automatically.

5.1 Simulating Array Segmentation Abstractions

Cousot, Cousot and Logozzo describe an array segmentation functor for analyz-
ing programs that manipulate arrays [6]. This is a parametrized class of abstract
domains that characterize the contents of an array. An abstract array is divided
into segments, that is, consecutive subsets of the array elements that are divided
by symbolic index expressions. The elements in each segment are characterized
by a chosen abstract domain on data. Both the segment boundary expressions
and the data domain may depend on scalar variables in the program.

As an example, the following expression represents an array that contains
a segment of zeros for indices 0 . . . i − 1 and a segment of arbitrary values for
indices ≥ i:

{0} 0 {i}? T {A.Length}?

The symbol T stands for the top element of the data domain. The question marks
indicate that the preceding segment may be empty. This abstract array can be
expressed in logical form as

∀x. 0 ≤ i ≤ A.Length∧ (0 ≤ x < i =⇒ A[x] = 0)

In fact, any abstract array can be expressed by a predicate in integer linear
arithmetic of the form ∀x. P (x,A[x],v) where A is the array and v are the
scalar variables of the program, provided the data domain is expressible in the
logic. Now suppose we decorate a program with symbolic invariants of this form,
for every arrayA in the program. It follows that if the array segmentation functor
can prove the program for some value of its parameters, then the resulting RPFP
has a solution, thus we can in principle prove the program using an RPFP solver.

On Solving Universally Quantified Horn Clauses 119

public Random(int Seed) {
Contract . Requ ires (Seed != Int32 . MinValue) ;
int num2 = 161803398 − Math . Abs(Seed) ;
this . SeedArray = new int [5 6] ;
this . SeedArray [5 5] = num2 ;
int num3 = 1 ;
// Loop 1
for (int i = 1 ; i < 55 ; i++) {

int index = (21 ∗ i) % 55 ;
this . SeedArray [index] = num3 ; // (∗)
num3 = num2 − num3 ;
i f (num3 < 0) num3 += 2147483647;
num2 = this . SeedArray [index] ;

}
Contract . Assert (Contract . Fo r a l l (// (∗∗)

0 , this . SeedArray . Length − 1 , i => a [i] >= −1));
// Loop 2
for (int j = 1 ; j < 5 ; j++) {

// Loop 3
for (int k = 1 ; k < 56 ; k++) {

this . SeedArray [k] −= this . SeedArray [1 + (k + 30) % 5 5] ;
i f (this . SeedArray [k] < 0)

this . SeedArray [k] += 2147483647;
} }
Contract . Assert (Contract . Fo r a l l (0 , // (∗∗∗)

this . SeedArray . Length , i => a [i] >= −1));
}

Fig. 8. Motivating example for Array Segmentation Functor

As a motivating example, consider the program from [6], shown in Figure 8.
When the array this.SeedArray is created, it is implicitly initialized to all
zero. After the first loop, we must prove that all the elements of array but the
last are ≥ −1 (this is the semantics of Contract.Forall). We decorate Loop 1
with a symbolic invariant ∀x. P (x, this.SeedArray[x],v), where v contains the
program’s integer variables. We then generate the verification conditions for the
loop. The VC’s are encoded into integer arithmetic. Since the actual program
variables are bit vectors, we must test each integer operation for overflow. This
gives us an RPFP Π with one unknown predicate P . We instantiate Π using
trigger-based instantiation to get the quantifier-free problem Π ′. We then used
Duality to solve Π ′ for P , obtaining the following inductive invariant for the
loop:

∀x.

⎛⎜⎝ (num2 ≥ −2147483648∨ num2 ≤ 2147483647)

∧(0 ≤ num3+ 1)

∧(0 ≤ this.SeedArray[x] + 1 ∨ 0 ≤ x− 55)

⎞⎟⎠

120 N. Bjørner, K. McMillan, and A. Rybalchenko

The first conjunct of this invariant is equivalent to True. The second says that
the scalar num3 is ≥ −1 while the third says that the array value is ≥ −1 for all
all indices < 55. Note, this applies to negative indices as well, though it would
be a run-time error to access these.

Notice that we obtained this result using a generic solver, without implement-
ing a custom analysis. Notice also that the segment boundary 55 and the data
predicate 0 ≤ this.SeedArray[x] + 1 were generated in the solving process, so
we did not have to provide these as a parameter of the abstraction. The run-time
of the tool was 0.3 seconds. This is undoubtedly slower than the custom analysis
of [6]. On the other hand, it might be fast enough for some applications. The
method can similarly solve for an inductive invariant of the second loop.

A more significant advantage to this approach is the flexibility it provides to
experiment with abstractions. For example, suppose we need an invariant that
relates the values of corresponding elements of two arrays a and b. We could
use the symbolic invariant ∀x. P (x, a[x], b[x],v). Or suppose we need to relate
distant elements of the arrays. We could then use two quantifiers, expressing the
desired invariant in the form ∀x, y, (x, a[x], y, b[y],v). This would allow us to
express the fact, for example, that a is the reverse of b, as follows: ∀x, y. 0 ≤ x <
N ∧y = N−x =⇒ a[x] = b[y]. To implement this using the array segmentation
functor would be a significant manual effort, as we would have to implement a
component abstract domain that names array segments with a corresponding
segment unification procedure, introduce auxiliary variables to represent array
segment values and introduce the appropriate terms and relations, including the
relation y = N −x, into the scalar abstraction. Here, we simply change the form
of the symbolic invariant that annotates the program. The necessary terms and
predicates can be synthesized by the Horn solvers.

5.2 Simulating the Fluid Updates Abstraction

The Fluid Updates method of Aiken, Dillig and Dillig [9] provides a richer ab-
stract domain for arrays. The abstraction can symbolically represent pair-wise
points-to relations between arrays. A points-to relation is represented by a triple
a[x] → φ → b[y], where a and b are symbolic terms representing locations and
containing parameters x and y, and φ is a may- or must-condition for a[x] to point
to b[y]. For example, to write that all the elements of the array pointed to by a
up to i− 1 are zero, we would write a must relation (∗a)[j] → 0 ≤ j < N → ∗0,
where we think of the constant zero as a pointer to a zero object.

We can express all such relationships logically using predicates of the form
∀x, y. P (x, a[x], b[y],v), where a[x] and b[y] are location terms and v contains
scalar program variables. For example, the must relationship

a[x] → 0 ≤ x < N ∧ y = N − x → b[y]

says that element x of array a must point to element N − x of array b. This can
be expressed as

∀x, y. 0 ≤ x < N ∧ y = N − x =⇒ pto(a[x], b[y])

On Solving Universally Quantified Horn Clauses 121

where pto represents the points-to relation. The corresponding may relationship
is

∀x, y. pto(a[x], b[y]) =⇒ 0 ≤ x < N ∧ y = N − x.

In the case where b[x] is ∗t for some integer-valued term t, the relation pto
becomes simply equality over integers.

Using this scheme, we can capture the information available in the Fluid
Updates abstraction by simply decorating the program with symbolic invariants
of the form ∀x, y. P (x, a[x], b[y],v), for any pairs of location terms a[x] and b[y]
we wish to track. We can, if desired, narrow down the pairs tracked using any
available points-to analysis.

To test this idea, we constructed the VC’s manually for the set of synthetic
test programs used in [9]. We used the quantifier instantiation procedure of sec-
tion 4 in the intraprocedural mode, with the restrictive instantiation policy. No
matching loops were observed. Table 1 shows the performance we obtained solv-
ing these instantiated VC’s using the Horn solving engine of Z3 [17], ARMC [13],
and Duality, compared to the results of [9]. Run times should be considered ap-
proximate as machine speeds may differ slightly. A question mark indicates the
tool could not process the problem. In Duality, we used a recent interpolation
technique that handles linear rational arithmetic [1]. It is slower, but has better
convergence behavior than the proof-based method of [29]. Integer arithmetic
and the theory of arrays are handled by eager axiom instantiation. We observe
that each tool is able to solve most of the problems, though the performance
is not always as good as the Fluid Updates method. All tools fail for one case
(init even). This requires a divisibility constraint in the invariant, which none
of the tools supports. All the other problems can be solved by at least one
tool. Thus, using generic Horn solvers, we obtain results similar to what can be
obtained using a specialized abstract domain.

Again, however, we observe that using symbolic invariants gives us flexibility
not available in an analysis tool implementing a particular abstract domain.
Consider, for example, the following simple fragment:

var i : int := 0;
while i < N do

c[i] := a[i] - b[i];
i := i+ 1;

done
assert ∀0 ≤ j < N. c[j] = a[j]− b[j];

To prove the assertion, we must track the values in three arrays. To extend Fluid
Updates to handle this case would require modifying the tool. To handle this
example using symbolic invariants, we simply decorate the loop with the pred-
icate ∀x. P (x, a[x], b[x], c[x], i, N) and solve for P . If we need to relate distinct
indices in the arrays, we can simply add another quantifier.

122 N. Bjørner, K. McMillan, and A. Rybalchenko

Table 1. Performance on synthetic array benchmarks. Run times in seconds.

example [9] Z3 Horn ARMC Duality

init 0.01 0.06 0.15 0.72
init non constant 0.02 0.08 0.48 6.60
init partial 0.01 0.03 0.14 2.60
init partial BUG 0.02 0.01 0.07 0.03
init even 0.04 TO ? TO
2Darray init 0.04 0.18 ? TO
copy 0.01 0.04 0.20 1.40
copy partial 0.01 0.04 0.21 1.80
copy odd 0.04 TO ? 4.50
reverse 0.03 0.12 2.28 8.50
reverse BUG 0.04 0.01 0.08 0.03
check swap 0.12 0.41 3.0 40.60
check double swap 0.16 1.37 4.4 TO
check strcpy 0.07 0.05 0.15 0.62
check strlen 0.02 0.07 0.02 0.20
check strlen BUG 0.01 0.07 ? 0.03
check memcpy 0.04 0.04 0.20 16.30
find 0.02 0.01 0.08 0.38
find first nonnull 0.02 0.01 0.08 0.39
array append 0.02 0.04 1.76 1.50
merge interleave 0.09 0.04 ? 1.50
alloc fixed size 0.02 0.02 0.09 0.69
alloc nonfixed size 0.03 0.03 0.13 0.42

5.3 Proving Termination

Using the generic Horn solver at the back-end allows one to prove termination
of array manipulating problem without constructing a specialized termination
checker for programs over arrays.

For example, our approach proves termination of the following program.

void main () {

int i, n, x, a[n];

for(i = 0; i < n; i++) {

a[i] = 1;

}

x = read_int();

while (x > 0) {

for(i = 0; i < n; i++) x = x-a[i];

}

}

Here, termination of the while loop depends on the values stored in the array.
We trigger termination proving by requiring that the restriction of the transition
relation of the program with the quantified invariants, which needs to be inferred

On Solving Universally Quantified Horn Clauses 123

accordingly, is disjunctively well-founded. After the quantifier instantiation step,
ARMC [13] proves termination of all loops in 1.7 sec.

6 Conclusion

Program proving can be reduced to solving a symbolic relation post-fixed point
problem. We decorate the program with suitable symbolic invariants (which may
be loop invariants, procedure summaries, and so on) yielding the verification
conditions which can then be solved to produce a program proof. Generic solvers
exist to solve these problems modulo various background theories.

We observed that by adjusting the form of the desired proof, we can guide
the solver to produce a proof when it would otherwise fail. In particular, we
extended RPFP solvers to handle quantified symbolic invariants. This allows
us to solve for invariants within a restricted domain by choosing the form of
the invariant, chiefly its quantifier structure. This allows us to simulate existing
abstract domains using a generic solver, without having to directly implement
these domains or make certain heuristic choices, such as the terms and predicates
that form the parameters of the abstract domain. Moreover the approach gives
the flexibility to go beyond these domains and experiment quickly with various
invariant forms. It also allows us to guide the proof search by using alternative
proof decompositions, without changing the underlying solver.

One view of this approach is as a way of rapidly prototyping program analyses.
If the performance of the prototype is adequate, we may simply apply the generic
logical solver. If not, we may use the results as a guide to a more efficient custom
implementation.

We observed that the primary difficulty in solving for quantified symbolic
invariants is in quantifier instantiation. We apply simple trigger-based heuris-
tics, similar to those used in SMT solvers, but adapted to our purpose. These
heuristics were found adequate in some cases, but clearly more work is needed
in this area, perhaps applying model-based quantifier instantiation methods,
or judiciously leveraging quantifier elimination methods when they are avail-
able, or controlling instantiation using an abstraction refinement methodology.
This remains for future work, as does the question of synthesizing quantifier
alternations.

Finally, we have here explored only a small part of the space of possible ap-
plications of such methods. For example, properties involving the shape of heap
data structures can in principle be expressed, for example, using a reachability
predicate. It remains to be seen whether relational fixed point solving techniques
could be applied to generate invariants in rich domains such as this.

Acknowledgements. This research was supported in part by ERC project
308125 VeriSynth.

124 N. Bjørner, K. McMillan, and A. Rybalchenko

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: CAV (2013)

2. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18
2012. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012)

3. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified Horn
clauses. In: CAV (2013)

4. Bjørner, N., McMillan, K.L., Rybalchenko, A.: Program verification as Satisfiability
Modulo Theories. In: SMT (2012)

5. Cousot, P.: Verification by abstract interpretation. In: Dershowitz, N. (ed.) Veri-
fication (Manna Festschrift). LNCS, vol. 2772, pp. 243–268. Springer, Heidelberg
(2004)

6. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL (2011)

7. Delzanno, G., Podelski, A.: Model Checking in CLP. In: Cleaveland, W.R. (ed.)
TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3) (2005)

9. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

10. Flanagan, C.: Automatic software model checking using clp. In: Degano, P. (ed.)
ESOP 2003. LNCS, vol. 2618, pp. 189–203. Springer, Heidelberg (2003)

11. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,
pp. 191–202 (2002)

12. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

13. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI (2012)

14. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: Necula, G.C., Wadler, P. (eds.) POPL, pp. 235–246. ACM
(2008)

15. Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free Horn clauses over
LI+UIF. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 188–203. Springer,
Heidelberg (2011)

16. Hermenegildo, M., Puebla, G., Bueno, F., López-Garćıa, P.: Program development
using abstract interpretation (and the ciao system preprocessor). In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 127–152. Springer, Heidelberg (2003)

17. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

18. Hoder, K., Kovács, L., Voronkov, A.: Case studies on invariant generation using a
saturation theorem prover. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part
I. LNCS, vol. 7094, pp. 1–15. Springer, Heidelberg (2011)

19. Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verifi-
cation toolkit for numerical transition systems - tool paper. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 247–251. Springer, Heidelberg
(2012)

On Solving Universally Quantified Horn Clauses 125

20. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Pro-
gram. 19(20), 503–581 (1994)

21. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Tracer: A symbolic execution
tool for verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 758–766. Springer, Heidelberg (2012)

22. Jaffar, J., Santosa, A.E., Voicu, R.: Modeling Systems in CLP. In: Gabbrielli, M.,
Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 412–413. Springer, Heidelberg
(2005)

23. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

24. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.: Automatic Abstraction in
SMT-Based Unbounded Software Model Checking. In: CAV (2013)

25. Larraz, D., Rodŕıguez-Carbonell, E., Rubio, A.: SMT-Based Array Invariant Gen-
eration. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 169–188. Springer, Heidelberg (2013)

26. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1)
(2005)

27. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

28. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

29. McMillan, K.L.: Interpolants from Z3 proofs. In: FMCAD (2011)
30. McMillan, K.L., Rybalchenko, A.: Computing relational fixed points using inter-

polation. Technical Report MSR-TR-2013-6, Microsoft Research (2013),
http://research.microsoft.com/apps/pubs/?id=180055

31. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisi-
ble invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 82–97. Springer, Heidelberg (2001)

32. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause ver-
ification. In: CAV (2013)

http://research.microsoft.com/apps/pubs/?id=180055

From Concrete Examples to Heap Manipulating
Programs

Subhajit Roy

Computer Science and Engineering Department,
Indian Institute of Technology Kanpur

subhajit@cse.iitk.ac.in

Abstract. Data-structure manipulation is not just a perplexing ordeal
for newbies, but also a tedious errand for seasoned programmers. Even af-
ter a programmer gets the "hang of things", programming complex pointer
manipulations (like reversing a linked list) still makes one reach for a note-
book to draw some box-and-arrow diagrams to work out the low-level
pointer jugglery. These diagrams are, not surprisingly, used as a basic tool
to introduce heap manipulations in introductory programming courses.

We propose a synthesis technology to automatically create programs
that manipulate heap data-structures from such diagrams. The program-
mer is needed to provide a set of concrete examples of her high-level
strategy for the low-level manipulations to be discharged automatically.
We plan the synthesis task as a sequence of "fast" stages, making it us-
able in an integrated development environment. We envisage that such
a tool will be useful to programmers as a code-assist comfortably tucked
away in their favorite integrated development environment.

1 Introduction

Conjuring data-structure manipulations is a perplexing ordeal — irrespective of
the years of professional experience tucked away in one’s Curriculum Vitae. Con-
sider the task of reversing a linked list: it is easy to guess that such a task will re-
quire constructing a loop that visits each node in the list, each iteration of the loop
flipping the “next” pointers till the last node is encountered; however, wording the
same effectively using low-level pointer manipulations still remains a challenge.

Most often, our intuition of pointer jugglery is built on visualizing heap data-
structures as box-and-arrow diagrams. Such diagrams, introduced in our Pro-
gramming 101 classes, remain a potent weapon in our armory while warring
complex data-structures.

Let us attempt to conjure box-and-arrow diagrams for the above problem of
reversing a linked list. With the initial state as a “correct” linked list (of, say, five
nodes), the desired program should produce a reversed list of the same nodes
(for the final state). As we are interested in an iterative algorithm, the desired
program should attempt to reverse these links starting from the head node. It
is also trivial to guess that the program would typically require four iterations
to get the job done; Figure 1 illustrates our expectation of the state of the list
at the end of each iteration.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 126–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

From Concrete Examples to Heap Manipulating Programs 127

xa

b

next

c

next

d

next

e

next

null

next

a

b

nextnext

c

d

next

e

next

null

next

a

b

nextnext

c

next

d

e

next

null

next

a

b

nextnext

c

next

d

next

e

null

next

a

b

nextnext

c

next

d

next

e

next

null
xe

a

null

next

b

next

c

next

d

next

next

Fig. 1. State changes caused by an iterative program for reversing a linked list (Pro-
gram variables are shown in boxes, heap nodes by ellipses, the labels on the arrows
indicate the fields and “null” is indicated by a double circle)

Consider the similar case for the depth-first traversal of a binary search
tree (Figure 2). It is very clear that the pointer x should visit the nodes of
the tree in the order [a,b,c,d,e,f] (at the entry of each recursive call that is
made), but writing down the exact piece of code, with the correct null-checks
for the base case, needs a careful programmer.

Bottom line: data-structure manipulations are complex, but box-and-arrow
diagrams come as a surprisingly intuitive instrument in planning any jugglery
with the heap pointers. Wouldn’t it be nice if the encoding of these high-level in-
tuitions, designed using these diagrams, into the corresponding low-level pointer
manipulations — that would sweat its way through a jungle of get-field and
set-field operations — could be materialized automatically?

Fig. 2. State changes caused by a recursive program while performing a depth-first
traversal of a binary tree (Program variables are shown in boxes, heap nodes by ellipses,
the labels on the arrows indicate the fields; any field for a heap cell that is not shown
must be assumed as set to “null”)

128 S. Roy

0 tmp1 = x
1 ---
2 tmp2 = tmp1.next
while(not (tmp2 == null)) {

3 tmp0 = tmp2.next
4 tmp2.next = x
5 x = tmp2
6 tmp2 = tmp0
7 ---
}

8 ---
9 tmp1.next = tmp0

Fig. 3. A program from Synbad that
reverses a singly linked list; the miss-
ing statements (—) are statements that
Synbad was able to optimize away
from the frame that the user provided

formal parameter: x
0 --
1 --
2 if (x != null) tmp0 = x.left
3 --
4 if (tmp0 != null)

tmp1 = recursive_call(tmp0)
5 if (x != null) tmp0 = x.right
6 if (tmp0 != null)

tmp1 = recursive_call(tmp0)
7 if (x != null) return(tmp1)

Fig. 4. Generated program (Tree Traver-
sal): either (a) Figure 2 is provided, or (b)
the counterexample (Figure 9) is added to
Figure 7

In this paper, we propose a tool — Synbad (Program SYNthesizer from
Box and Arrow Diagrams) — that synthesizes programs from a sequence of
such box-and-arrow diagrams. Synbad is able to synthesize both iterative and
recursive programs for heap manipulation tasks.

Figure 3 shows the program that Synbad synthesizes for reversing the linked
list. Note that with high-level examples — involving only the interesting vari-
able x — Synbad automatically materializes the jugglery involving x, and three
temporary variables (tmp0, tmp1 and tmp2) that is necessary to enforce the de-
sired state changes. Similarly, for the recursive tree traversal (described by Fig-
ure 2), Synbad generates the procedure1 shown in Figure 4.

We envisage that Synbad will be appreciated by seasoned programmers as
a code-assist comfortably tucked away within their favorite IDE. This tool may
also serve as a guide to students en route to mastering the art of data-structure
manipulations. We have a committed goal to make this device still easier for such
Programming 101 students by augmenting the tool with additional heuristics and
a knowledge-base of data-structure manipulating programs in the future.

The power of “box and arrow” diagrams for capturing a data-structure ma-
nipulation was also exploited by Singh et al. for their Storyboard Programming
Tool (SPT) [1,2]. Synbad primarily distinguishes itself from SPT in the way
the program specification is captured: SPT feeds from abstract box and arrow
diagrams, where parts of the data structure is abstracted away with summary
nodes, with formal fold/unfold functions describing the summary nodes; Syn-
bad , however, attempts to serve the group of impatient programmers at their
IDEs who may be ready to scratch in a set of concrete examples within their
IDE, but would shy away from providing detailed, formal descriptions. To be

1 The synthesized procedure is supposed to have a default return statement at the end
of the procedure (not shown in the figure) that returns “null”.

From Concrete Examples to Heap Manipulating Programs 129

usable in an IDE environment, Synbad also needs to respond quickly; most of
the programs we synthesized were discharged in less than 30 seconds. Section 2
provides a more detailed comparison of these two tools.

Synbad also attempts to materialize “optimal” programs: in our current im-
plementation the optimal program is defined by the smallest possible program
which accomplishes the desired task; however, our algorithm can be tuned to any
definition of optimality that can be measured over static program properties (like
size of the program, number of temporaries, number of pointer dereferences etc.).
To meet the deadlines set by the patience of frantic programmers at their IDE,
we break this search for the optimal program into simpler, “quick” phases rather
than tackling it as one massive activity. As examples are an underspecification,
we also attempt to drive refinement by drawing from ideas in the domain of
automatic test case generation.

Following are the contributions of this paper:
– We propose an inductive synthesis algorithm to generate iterative and re-

cursive programs from concrete box and arrow diagrams.
– We purport an algorithm to fragment the synthesis activity into multiple

simple phases, to generate solutions within reasonable time. The phases in
Synbad accomplish the following tasks:
• Generate a program that satisfy the concrete examples;
• Optimize the above program;
• Produce runs from automatically generated test inputs to enable selec-

tion of counterexamples to drive refinement.

2 Let’s Meet Synbad

Synbad essentially needs the following information to perform its task:
– Program structure

• program frame: the program frame specifies program features like the
number of loops, approximate number of statements within the loop and
outside, and the number and approximate positions of the recursive calls.
The frame restricts the search space, forcing the solver to “mould” the
solution into a program having the desired form;

• input/output variables: the variables that are used to specify the
program state at a different points of execution;

• number and types of temporary variables: the maximum num-
ber of temporary variables (of each type: pointer and integer) that the
synthesized program is allowed to employ.

– A set of examples describing the user intent (Synbad provides a graphical
frontend to enter the box-and-arrow diagrams for the examples); for each
example, Synbad accepts the following descriptions:
• pre-conditions and post-conditions: the input and final state of the

heap and of the input/output variables;

130 S. Roy

����� ���	�
�
�������� �� ������

���� �������� ���������� ���������
����� ����� ������

���� ����� ��� �� �� �� ��
���������

������� �!�� �������
���� ��� �"� "� �������

(a) The specifications for a program
to reverse a singly linked list

#������� �&�'���
�������� �� ������

���� �������� � �������� ��������
����� ��$�� ������� ������������

���(��������
���� ����� ��� �� �� �� ��
���������

������� �!�� ���(����
���� ����

(b) Specification for the tree traversal routine

Fig. 5. Specification of program templates

• intermediate states: intermediate program states can be specified to
describe the generated program more succinctly; as it also constrains the
search space, Synbad is able to discharge the synthesis faster;

• print-buffer: the programmer has an option of requesting Synbad to
place print statements such that the generated program emits a certain
output; as will be illustrated later, certain tasks can be expressed com-
pletely only if such a specification mechanism is provided.

– Additional hints
• Synbad can be provided additional hints for certain program points,

like what statements to use and the type of predicates to employ. These
hints not only allow a finer control over the to-be-generated program,
but it also speeds up the synthesis.

Once fed with the above specification, Synbad moves as follows:
1. Synbad produces a candidate program that meets the provided specifica-

tion. Additionally, it produces a set of test inputs, along with the results of
the test runs on the generated program.

2. The programmer either
(a) accepts the program, or
(b) produces a counterexample (possibly from the set of test runs presented);

in this case, the specification is modified by adding the counterexample
to the set of examples. Synbad moves to step (1) to reattempt the
synthesis taking the counterexample under consideration.

This process continues till the programmer either accepts the program, or Syn-
bad declares the specification unsatisfiable. Let us, now, present a couple of
examples to illustrate how Synbad operates.

Reversing a Linked-list. Figures 1 and 5a form the specification provided
for the task of reversing a singly-linked list. The program frame is summarized
as (3,5,2): for iterative programs, it corresponds to the number of statements
in the header, loop-body and the tail sections of the program2 (see Figure 6a).
2 At this point of time, Synbad can generate programs with only a single loop. How-

ever, our algorithm is general enough to generate looping structure of any depth.

From Concrete Examples to Heap Manipulating Programs 131

<head> [3]
while (...) {

<loop> [5]
}
<tail> [2]

(a) Frames for iterative programs: this
program frame will be summarized as
(3,5,2)

...
3 recursive_call
...
5 recursive_call
...
9 recursive_call
...
12 return

(b) Frames for a recursive programs: this
frame will be summarized as (3,5,9,2)

Fig. 6. Specification of Program Frames

The input/output variables, fields, and number of temporaries are described
next. The specification, then, declares that the examples will be described using
the five heap nodes (named {a,b,c,d,e}). Next, it declares that only a single
example is provided and that an iterative algorithm is desired. We defer the
description of the hints to section 5.

The program generated by Synbad for the above specification is shown in
Figure 3. All temporary variables are assumed to be initialized to null at the
entry to the function. An important fact to be noted is that though the program-
mer had provided loose bounds for the sizes of the head, loop-body and the tail
sections, the program generated by Synbad is the smallest program possible —
this is due to the optimization phase built into Synbad (details in section 3.2).

Note that we needed to provide very high-level descriptions of the program states
involving the heap nodes and the interesting program variables — the intricate
program states involving the not-very-interesting program variables and tempo-
raries involved in the low-level pointer manipulations were completely left out!
All of that was automatically planned out by Synbad.

x

d

a

b

left

e

right

c

left right

Fig. 7. State changes caused by a recursive program while performing a depth-first
traversal of a binary tree (Program variables are shown in boxes, heap nodes by ellipses,
the labels on the arrows indicate the fields; any field for a heap cell that is not shown
must be assumed as set to “null”)

132 S. Roy

formal parameter: x
0 --
1 --
2 if (x != null) tmp0 = x.left
3 --
4 if (tmp0 != null)

tmp1 = recursive_call(tmp0)
5 if (tmp0 != null) tmp0 = x.right
6 if (tmp0 != null)

tmp1 = recursive_call(tmp0)
7 if (x != null) return(tmp1)

Fig. 8. Generated program (Tree Traversal): when
only Figure 7 is provided

Fig. 9. Counterexample for
the program in Figure 8

Traversing a Binary Tree. Figures 7 and 5b form the specification of a
recursive program for depth-first traversal of a binary tree. The specification
mentions that the program would require two recursive calls to do the job and
the pointer variable x touches each of the nodes in the intermediate states. The
specification (Figure 5b) also lays out the program frame and the participating
entities (variables, temporaries, fields, heap nodes). The program frame for a
recursive program is summarized (see Figure 6b) as the positions of the recursive
calls followed by the number of statements in the trailing section (till the return
statement is reached).

In this case, Synbad produces the program shown in Figure 8: once again
Synbad is able to identify the low-level details — including the formal/actual
parameters, return values and guards for the recursive calls.

After synthesizing the program, Synbad goes about generating test-inputs for
the program: in fact, one of these test-inputs (Figure 9) generated by Synbad
exemplifies a problem with the generated program — the program does not seem
to work correctly on binary trees that are not full (see the guard at line 5 in
Figure 8). Adding the counterexample (Figure 9) to the set of examples makes
Synbad spell out the “correct” program (Figure 4).

Why did Synbad fail in its first attempt? In this example, the user specified
a full binary tree: at all program points, the predicates (x.left! = null) and
(x.right! = null) always shared the same value, befooling Synbad into guessing
a false invariant (x.left == null) ⇔ (x.right == null). This induced Synbad
into assuming that these predicates are interchangeable, preventing the inference
of the right conditionals. The counterexample provided a binary tree that is not
full, thus breaking the false invariant and drawing out the desired program.

However, if the user had specified the example shown in Figure 2 at the onset,
Synbad would have brought forth the “correct” program in its very first attempt.
This points out a weakness of inductive synthesis: the produced programs are
“correct” only with respect to the provided examples. Good examples from the
user is essential for the synthesis to be successful — we discuss more on the
adequacy of examples in section 5.

From Concrete Examples to Heap Manipulating Programs 133

Let us, now, attempt to generate the programs for preorder and inorder traver-
sals. The careful reader will realize that the program description essentially re-
mains the same (as in Figure 2), the only difference being the order in which
a print statement (or any operation that processes the visited nodes) process
the nodes. This is accomplished by the description of the print-buffer : Figure 10
illustrates how a different specification of the order in which the nodes should
be printed gives different programs.

Synbad Versus SPT. The Storyboard Programming Tool (SPT) [1] accepts a
storyboard, composed of a set of scenarios (input-output pairs as box and arrows
describing operations on an abstract data-structure), a set of fold and unfold
operations (describing the structure of the summary nodes) and a skeleton of
the looping structure of the desired program. While the storyboard framework
attempts to synthesize programs from a more formal abstract box and arrow
examples riding the power of abstract interpretation, Synbad attempts at in-
ductive synthesis with concrete examples.

SPT and Synbad serve orthogonal goals: While SPT works with a specifica-
tion provided as abstract scenarios, Synbad would appeal to frenzied program-
mers on an IDE who would like to provide concrete examples and refine those on
demand. Though SPT advocates supplementing concrete examples along with
the abstract scenarios, it does not perform well when only concrete examples
are provided: the authors have remarked that when SPT was provided concrete
examples alone, SPT either synthesizes undesired manipulations or times out
(section 6 in [1]). Via Synbad we attempt to assert that, at least for the domain
of data-structure manipulations, concrete examples are also a powerful mode of
user-interaction. Synbad suits users who would like to draw out the concrete
states of a manipulation rather than structuring an abstract description.

A bonus of concrete examples is the easy creation of a visual front-end. Syn-
bad leverages the ease of specifying concrete examples to provide a graphical
frontend where the programmers can simply “draw” the program specification.

An important consideration that influenced the design of Synbad was an
objective to produce an optimal program — the current implementation at-
tempts to produce the smallest program; however, our algorithm can be tuned
to any definition of optimality that is measurable over a set of static program
properties (like size of the program, number of temporaries, number of pointer
dereferences). SPT, on the other hand, makes no such attempt: for example, the
program produced by SPT in (Figure 7 in [1]) has a dead assignment “head.next
= head” (the authors also mention it in section 2.3 of [1]).

The use of abstraction makes it difficult for SPT to use off-the-shelf SMT
solvers (the authors resort to the sketch solver [3,4] to solve their constraints)
as their constraint system requires the computation of a least fixpoint solution.
Synbad, on the other hand, easily uses an off-the-shelf SMT solver to solve
its constraints: rather than overwhelming the solver for the optimal program at
the very onset, it first generates “simple” constraints and iteratively refines the
constraints while cleverly exploiting previous (unoptimized) solution in its search

134 S. Roy

Specifying Heap Nodes a.value = 101; b.value = 102; c.value = 103;
d.value = 104; e.value = 105

For preorder traversal print-buffer = [103, 102, 104, 101, 105]
frame: (4, 6, 0)

For inorder traversal print-buffer = [101, 102, 103, 104, 105]
frame: (2, 6, 0)

(a) User-provided specifications

formal parameter: x
0 --
1 if (x != null) tmp1 = x.value
2 if (x != null) print tmp1
3 if (x != null) tmp0 = x.left
4 if (tmp0 != null)

tmp0 = call(tmp0)
5 if (x != null) tmp0 = x.right
6 if (tmp0 != null)

tmp0 = call(tmp0)
7 if (x != null) return(tmp0)

formal parameter: x
0 --
1 if (x != null) tmp0 = x.left
2 if (tmp0 != null)

tmp0 = call(tmp0)
3 if (x != null) tmp1 = x.value
4 if (x != null) tmp0 = x.right
5 if (x != null) print tmp1
6 if (tmp0 != null)

tmp0 = call(tmp0)
7 if (x != null) return(tmp0)

(b) Preorder and Inorder tree traversals synthesized (left and right respectively)

Fig. 10. Describing tree traversals using the print-buffer specification

for the optimal program. This allows Synbad to have impressive run-times of
less than 30 seconds for most of our benchmarks.

Finally, while SPT is limited to generating only iterative programs, Synbad
is capable of generating recursive programs as well. Handling recursive programs
is challenging as the execution trace of a recursive program grows exponentially
with the size of the concrete example. Also, the the tool needs to handle storing
(restoring) of the state of local variables at each recursive call (return). Synbad
also provides interesting mechanisms like specification of print-buffers and hints
about commands to be used to enable effective synthesis.

However, we must caution the reader that it is not fair to compare the run-
times of these two tools as the specification provided to these tools vary signifi-
cantly. While, SPT is provided abstract input-output examples with no interme-
diate states (in most of the cases), Synbad is provided concrete examples, not
only of the input and output states, but also of intermediate states inside each
loop iteration or recursive call invocation. Hence, Synbad surfs through a much
smaller search space than what SPT needs to cover. For instance, for reversing a
singly linked list, SPT takes 1m49sec on “an Intel Core-i7 1.87GHz CPU with
4GB of RAM” (as reported in [1]), Synbad accomplishes the task in less than
7 seconds (for the best frame), and even produces the most compact program
in another 18.1 seconds. Similarly, for reversing a doubly linked list, SPT takes
3min47sec (as reported in [1]), while Synbad takes only 32 seconds. We as-
sert that such intermediate states (shown in Figure 1, 2 and 7) are easy for the
programmers to provide (Synbad makes it still easier via a graphical frontend).

From Concrete Examples to Heap Manipulating Programs 135

Our results for Synbad (reported above) were produced on a laptop running
Intel Core i7 1.73 GHz with 8 GB RAM.

We feel that SPT and Synbad serve orthogonal goals: while SPT would be
appreciated by careful programmers who are willing to write formal abstract
configurations, Synbad will be loved by frenzied programmers chased by close
deadlines who would prefer to draw concrete examples on a visual canvas.

3 The Synthesis Algorithm

The overview of our synthesis algorithm is presented in Figure 11; we illustrate
the algorithm in this section.

Program State. The entities of a program are given in terms of a set of program
variables λV , heap nodes λH , and fields λF of these heap nodes. The program
variables λV : λV I ∪ λV T , where λV I are the set of all program identifiers and
λV T are the temporaries.

The state (Si) of the program at a point i in an execution captures values of
each program entity (variable and heap nodes):

S: V ×H
The maps V and H define the values for the integer/pointer variables v ∈ λV

and the heap nodes h ∈ λH via all their possible fields f ∈ λF .
V : λV → λH

H: (λH × λF) → λH

The map Υ returns the type of each program entity; at present Synbad
supports only two types: integer and pointer.

The Synthesis Problem. Each example provided by the user corresponds to
an execution of the to-be-synthesized program. We view the synthesis problem as
inferring this execution as a linear transition system — via a sequence of states

Search exact
match

Search approx
match

Search
brute-force

Level B
(relax predicates,

dst args)

Level C
(relax predicates,

src and dst
arguments)

Level A
(relax predicates)

Level D
(relax all)

Synthsize
program

(unconstrained
guards)‘

First-level
search

Synthesize
Program

Optimize

Interpret
Program

Generate
Test

Cases

Counterexamples

User Interaction

Fig. 11. An eagle’s view of our synthesis algorithm

136 S. Roy

(nodes), realizable by a sequence of appropriate statements/commands (edges).
All loops in the program frame are unrolled and all recursive calls inlined to
produce these transition systems — one for each example provided. Some of the
states are constrained (either partially or fully) via specifications of the box-
and-arrow diagrams. The state transition from Si to Si+1 is constrained by the
semantics of commands that appear along the edge (Si → Si+1).

Additionally, we use a set of guard variables gi ∈ G for each transition (Si →
Si+1) that allow the command on the transition to be “switched off”: if the guard
variable is true, the command on the edge (Si → Si+1) has the appropriate
semantics; if false, then Si = Si+1.

These boolean guard variables for the transitions provide a lot of advantages:
– they allow us to split the complex task of synthesizing the commands and

the branch predicates into simpler phases;
– by bounding the number of guard variable that are active, we speed up the

SMT solver (constraining the search to a smaller number of transitions).

3.1 Generating Programs

Each example (provided by the user) is “explained” by an execution trace of the
program; the state of a program after executing i steps (from the initial state)
in the transition system is given by:

Si : Vi ×Hi

The heap node pointed to by a variable v ∈ λV after i steps is given by Vi(v)
and that pointed to by a field f ∈ λF of a heap node h ∈ λH is given by Hi(h, f).

The function π maps points in the execution trace to static program points
in the to-be-synthesized program. In other words, it maps the dynamic instance
of each instruction (and the corresponding program points) to their static coun-
terparts.

For each example, Synbad encodes the primary constraint as:

Φ ∧
n∏

i=1

((gi =⇒ Tπ(i)) ∧ (¬gi =⇒ Tskip)) (1)

where Φ is the state specifications (provided as box and arrow diagrams) and
there exists n steps in the execution trace. The constraint enforces the specifi-
cation Φ and, then, attempts to explain it as a sequence of guarded transitions;
the guard variables gi allow the corresponding transition function Tπ(i) to be
switched on or off. Table 1 describes the transition function for each program
statement3.

For iterative programs, at all points in the transition system where the loop
entry condition is evaluated (say 1 . . . δ), the loop entry condition is satisfied for
all but the last instance (when the loop is exited); we encode this condition as:

(

δ−1∏
i=1

(gi = true)) ∧ (gδ = false) (2)

3 In Table 1, rn is the transition identifier where the corresponding call returns; cn is
the transition identifier where the call corresponding to this return is made.

From Concrete Examples to Heap Manipulating Programs 137

Table 1. Semantics of program statements for synthesis

Cmd Precondition ∀v ∈ V : Vi+1(v) ∀(h, f) ∈ (H,F) :
Hi+1(h, f)

Tasgn(x, y)
[x = y]

Υ (x) = Υ (y)

{
Vi(y) if v = x

Vi(v) otherwise
Hi(h, f)

Tgetfld((x, y, g)
[x = y.g]

Vi(y) �= null
Υ (x) =

Υ (〈Vi(y), g〉)
Υ (y) =pointer

{
Hi(Vi(y), g) if v = x

Vi(v) otherwise
Hi(h, f)

Tsetfld(x, g, y)
[x.g = y]

Vi(x) �= null
Υ (y) =

Υ (〈Vi(x), g〉)
Υ (x) =pointer

Vi(v)

⎧⎪⎨⎪⎩
Vi(y) if h = Vi(x)

∧g = f

Hi(h, f) otherwise

Tskip

[skip]
none Vi(v) Hi(h, f)

Tcall(x, y : z, rn)
[x = call(y : z, rn)]

Υ (y) = Υ (z)

{
Vi(y) if v = z

init otherwise
Hi(h, f)

Tret(y : x, cn)
[ret(y : x, cn)]

Υ (y) = Υ (x)

{
Vi(y) if v = x

Vcn(v) otherwise
Hi(h, f)

Tprnt(x)
[print x]

Υ (x) =integer Vi(v) Hi(h, f)

prntbufi+1 =

{
prntbufi.append(Vi(x)) if Tprnt(x)

prntbufi otherwise

For recursive programs, the guards corresponding to the body of a call invocation
are determined by the state of the guard to the statement where the function
call is made; for example, if the guard for a function call is false, none of the
statements within the body of this call can execute:

(

n∏
i=1

(gi =⇒ gcall(i))) (3)

Synbad generates a program as a sequence of guarded commands. Hence, to
synthesize the complete program, Synbad needs to identify both the program
statements as well as the guard predicates corresponding to each of these state-
ments. To allow for an efficient search, Synbad tackles this task in two stages:

Search with Unconstrained Guards. In this stage, Synbad essentially en-
forces constraint (1) (along with (2) for iterative programs and (3) for recur-
sive programs) to generate a solution ϕ1 (let ϕ1[cmdi], ϕ1[srci], ϕ1[dsti] and
ϕ1[prdi] refer to the command type, source arguments, destination arguments
and guarded predicate for the ith guarded command within the solution ϕ1).

138 S. Roy

Table 2. Semantics of predicate template for synthesis of the branch and loop
conditions

predicate (t) Precondition γi(t)

(true) none true

(false) none false

(x = null) Υ (x) =pointer

{
true if Vi(x) = null

false otherwise

(x = y) Υ (x) = Υ (y)

{
true if Vi(x) = Vi(y)

false otherwise

(x > y) Υ (x) = Υ (y)
Υ (x) = Integer

{
true if Vi(x) > Vi(y)

false otherwise

(x < y) Υ (x) = Υ (y)
Υ (x) = Integer

{
true if Vi(x) < Vi(y)

false otherwise

For the negated forms, the γ functions returns the negated values from that of
their direct form: γi(¬t) = ¬(γi(t))

Note that the guard variables are free to assume any value as long as the trace
satisfies the specified examples. Often, the values assumed by the guard variables
in this solution cannot be enforced by any set of guard predicates, implying that
the solution does not correspond to a “realizable” program. But, at the same time,
we observed that the command types synthesized in this solution are same, or
at least “close” (spatially) to that of a realizable program. We use this solution
to stiffen our search space for the second stage.

Search for the Complete Program. For the search for a complete candidate
program (statements and guards), Synbad enforces the following constraints on
the guard variables so as to generate realizable guard predicates:

– predicates corresponding to the guarded commands: each guard gi should be
explained by a predicate (γπ(i)) at the respective program point π(i):

n∏
i=1

gi = γπ(i) (4)

– loop-entry predicates: say for δ iterations of the loop, for each iteration
1 . . . δ − 1, the loop predicate should evaluate to true; for the last iteration,
the guard should evaluate to false:

(
δ−1∏
i=1

gi = γπ(i) = true) ∧ (gδ = γπ(δ) = false) (5)

The semantics of the predicates can be found in Table 2.
Enabled with the above solution ϕ1, Synbad makes three attempts at syn-

thesizing a solution ϕ2 that yields a realizable program:

From Concrete Examples to Heap Manipulating Programs 139

1. Exact Match: In this attempt, Synbad tries to synthesize guard predicates
meeting the constraints (4) and (5) while assuming that the solution ϕ2 has
exactly the same sequence of command (types) as ϕ1:

k∏
i=1

(ϕ1[cmdi] = ϕ2[cmdi]) (6)

where ϕ1[cmdi] refers to the command type corresponding to the ith guarded
command within the solution ϕ1 and the program has k guarded commands
(i.e. the user specified the program frame to have k statements).

2. Approximate Match: If the above attempt fails, Synbad tries to syn-
thesize guard predicates meeting the constraints (4) and (5) while assuming
that the sequence of command types in solution ϕ2, though not an exact
match, is close to the sequence of command types in ϕ1; closeness is defined
as “most of the time, the type of the command at i in ϕ2 appears near i in
ϕ1”. To establish our notion of closeness, we define the following score for
each program location i:

closeness(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5 ϕ2[cmdi] = ϕ2[cmdi−1]

0 ϕ2[cmdi] = ϕ2[cmdi]

5 ϕ2[cmdi] = ϕ2[cmdi+1]

10 otherwise

(7)

We set GETFLD as the missing neighbors of the first and the last statements.
In our current implementation, we naively assume an uniform probability dis-
tribution among the above four outcomes: thus, we get an expected closeness
score of 5 for each statement. We use this closeness score for all statements
in ϕ2 to restrict the search space, facilitating a faster search:

k∑
i=1

closeness(i) ≤ 5k (8)

when the program has k guarded commands.
3. Brute-Force Search: If an approximate match fails as well, we resort to a

brute-force search by dropping the constraint (8).

Understandably, the brute-force search is much more expensive than approxi-
mate match, which in turn is more expensive than exact match. Our experience
with Synbad showed that mostly a solution is obtained with exact match, a few
cases requiring an approximate match, while almost none permeate to brute-
force search.

3.2 Optimizing the Program

The program synthesized in the above phase is most often inefficient — contain-
ing dead and faint code, and circuitous manipulations. This phase aims for the
smallest program that meets the specification. For the purpose of optimization,
among all programs that satisfy the specifications, Synbad attempts to search
for the program that has the maximum number of guard predicates γi set to the
constant predicate “(false)”. Alongside, it also attempts to simplify the guard

140 S. Roy

and loop-entry predicates: simplicity can be measured by the number of vari-
ables involved in a predicate: (true) is a simpler than (x == null), which is
simpler than (x == y).

To achieve the same, Synbad defines the following cost function on predicates:

predicate_cost(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

1

5

10

if γi = ”(false)”

if γi = ”(true)”

if γi = ”(x = null)”

otherwise

Synbad attempts to minimize the following optimization score4:

opt_score =

k∑
i=1

predicate_cost(i) + predicate_cost(l) (9)

when the program has k guarded commands; l is the predicate guarding entry
to the loop.

We run optimizations at four levels, each time striving for a lower opt_score
than the previous solution. Each level is designed to allow a controlled transfor-
mation of the candidate program:

Level A (Relax Predicates). In this level, Synbad enforces the command
types and arguments from the solution ϕ2 while attempting to improve opt_
score. Given an unoptimized solution ϕu (in this case ϕu = ϕ2), the following
constraints are imposed while deriving an optimized solution ϕo:

k∏
i=1

(ϕo[cmdi] = ϕu[cmdi]) (10)

k∏
i=1

(ϕo[srci] = ϕu[srci]) (11)

k∏
i=1

(ϕo[dsti] = ϕu[dsti]) (12)

when the program has k guarded commands.

Level B (Relax Predicates and Destination Arguments). Synbad, in this
level, relaxes the destination arguments, i.e. it does not enforce constraint (12).

Level C (Relax Predicates, Destination Arguments and Source Argu-
ments). Now, Synbad relaxes even the source arguments to the commands
by dropping constraint (11), while constraining only the command types to the
synthesized program.

4 For an alternate measure for optimality, we simply need to define op_score differ-
ently.

From Concrete Examples to Heap Manipulating Programs 141

0 x.next = y
1 tmp0 = x.next
2 tmp1 = tmp0.value
3 tmp1 = y.value
while (...) {

4 x = tmp0
5 tmp0 = y
6 tmp0 = x.next
}

7 y.next = tmp0
8 x.next = y

(a) Search with unre-
stricted guards

0 ---
1 if (!(y == null))

tmp2 = y.value
2 if (!(y == x))

tmp0 = x.next
3 if (!(tmp0 == null))

tmp1 = tmp0.value
while (tmp2 > tmp1) {

4 if (!(x == tmp0))
x = tmp0

5 if (!(tmp1 == tmp2))
tmp0 = tmp0.next

6 if (!(tmp1 > tmp2))
tmp1 = tmp0.value

}
7 y.next = tmp0
8 if (!(y == x))

x.next = y

(b) Search with approximate
matching

0 ---
1 tmp2 = y.value
2 tmp0 = x.next
3 tmp1 = tmp0.value
while (tmp2 > tmp1)

{
4 x = tmp0
5 tmp0 = tmp0.next
6 tmp1 = tmp0.value
}

7 y.next = tmp0
8 x.next = y

(c) Final program after opti-
mizations

Fig. 12. Inserting a node in a sorted linked list: the variable y points to the node to
be inserted and the variable x points to the list head

Level D (Relax All). Finally Synbad drops all the above constraints — even
constraint (10) — allowing the synthesis to conjure a completely new program,
but having a still lower opt_score. However, if a command has already been
identified as a skip statement, we fix it perennially.

As the amount of change allowed by an optimization level (and hence its po-
tency) increases, the search tends to be more expensive. These optimization can
be stopped at any of the levels, yielding a program that meets all the specifi-
cations. While experimenting with Synbad, we discovered that level D is often
very expensive and almost never achieves any additional improvement over level
C (see section 6). It may be a good option to discard level D if Synbad is
employed in IDE environments.

Example 1. Figure 12 shows some of the steps in how a program gets synthe-
sized by Synbad. Figure 12a shows how the search with unrestricted guards
simply synthesizes the commands without the guards. In this case, search for
the predicates with an exact match fails. Figure 12b shows how approximate
matching generates a candidate program. Interestingly, though these programs
differ significantly, the command types in the corresponding lines are almost the
same. Note that Figure 12b is very inefficient. The optimization pass transforms
this program to Figure 12c: it is able to change many of the guard predicates to
the constant predicate (true).

142 S. Roy

4 Refinement Using Counterexample Generation

After producing the program, Synbad simulates the execution of the program on
a set of test cases which are then presented to the programmer. The
programmer may exhibit her discontent with the synthesized program by se-
lecting an appropriate test case (as a counterexample) to be added to the set of
examples to invoke Synbad with.

The test case generator in Synbad requires the following from the user:

– a set of pre-conditions to seed test case generation;
– a sanity_check() function to assert that a generated input is valid i.e.

the input data-structure generated meets all the required assumptions (for
example, that a linked list is acyclic);

– a bound on the number of heap nodes generated.

The routine starts off by priming its variable and heap maps according to the
preconditions; any entity (variable or heap cell) that is unspecified is set to
undefined. Synbad, then, starts off an interpreter on the program. At any
point that an undefined entity is used, its value is initialized as follows:

– if the entity is of integer type: it is set to a random integer value
– if the entity is of pointer type: Synbad carries out a systematic search

along all the following:
• the entity set to null
• the entity set to an existing node
• if the bound on the number of nodes is not reached yet, then the entity

set to a new node with all its fields set to undefined (the set of existing
nodes is updated accordingly)

The user has an option of restricting the search to a smaller subset of the
above.

0 tmp3 = y.value
1 tmp2 = x.value
2 ---
3 ---

while (not (tmp3 < tmp2)) {
4 x = x.next
5 tmp0 = x.next
6 tmp2 = tmp0.value

}
7 y.next = tmp0
8 x.next = y

Fig. 13. Inserting an element in a sorted
linked list (fails on short lists): the variable
y points to the node to be inserted and the
variable x points to the list head

0 tmp2 = x.next
1 skip
while (tmp1 == null) {

2 x.next = tmp1
3 tmp1 = x
4 x = tmp2.next
5 x.next = tmp2
}
6 tmp2.next = tmp1

Fig. 14. Reversal of a (short)
linked list of 3 nodes: the variable
x points to the list head

From Concrete Examples to Heap Manipulating Programs 143

a

x

f

y

[a.value = ?][f.value = ?]

[f.next = null] [f.next = ?]

(a) Initialization

a

x

f

y

[a.value = ?][f.value = 105]

[f.next = null] [f.next = ?]

(b) tmp3=y.value executed

a

x

f

y

[a.value = 101][f.value = 105]

[f.next = null] [f.next = ?]

(c) tmp2=x.value executed

a

x

f

y

[a.value = 101][f.value = 102]

[f.next = null] [a.next = b]

b

[b.value = ?]

[b.next = ?]

next

(d) x = x.next executed

af

y

[a.value = 101][f.value = 102]

[f.next = null] [a.next = b]

b

[b.value = ?]

[b.next = null]

next next

x tmp0

(e) tmp2 = tmp0.value executed

Fig. 15. Counterexample generation from test-input creation

Synbad also mirrors the same change on the input that was used to run this
test case. A sanity check is performed on this corresponding input state (by
calling sanity_check() on this structure); if it passes, the interpreter continues
with the newly assigned value, else this newly created structure is discarded; this
process continues till a sane structure is generated.

Synbad is bound to terminate as only a bounded number of new nodes can
be generated. In the current implementation of Synbad, we require manual
inspection of the results of these tests; in the future, we plan to allow the user
to provide a check_test() function to automatically report for failures.

Example 2. Figure 13 shows a case where Synbad generated a program to insert
a node in a sorted linked list from an example list of five nodes; note that this
program would fail on short lists. Let us see how Synbad is able to generate a
counterexample:
– Figure 15(a): The test case generation phase is primed with x and y pointing

to heap nodes (named a and f respectively). Note that all fields except
f.next were left unspecified by the user.

– Figure 15(b): As the program statement “tmp3 = y.value” is executed,
y.value is found to have an undefined value (shown as ?); being an in-
teger it is assigned a random value (105 in this case). The same is then
assigned to tmp3.

– Figure 15(c): The program statement “tmp2 = x.value” is executed. A ran-
dom value (101) is assigned to a.value and tmp2.

– Figure 15(d): On executing “x = x.next”, x.next is found to be undefined.
Hence, the interpreter makes a non-deterministic choice, in this case creating
a new node b. The variable x is then updated to point to the new node.

144 S. Roy

– Figure 15(e): On executing “tmp0 = x.next”, x.next is again found to be
undefined. The interpreter makes a non-deterministic choice, setting x.next
to null in this case. tmp0 is accordingly set to null as well.

– On executing “tmp2 = tmp0.value”, the program raises a “null pointer ex-
ception”, thus providing a counterexample.

5 Discussion

Adequacy of Examples Examples form an under-specification; at the same
time, they also turn out to be the easiest to provide. The performance of any
device drawing on examples as a means of specification must care about the
quality of examples provided to it. We developed a few suggestions that are
useful towards providing examples for Synbad :
– Size of the heap-structure: the number of nodes in the data-structure is

an important concern. One useful guideline is to ensure that the number of
nodes is greater than the number of variables (input/output + temporary).
For example, for reversing a linked list, the total number of variables is
four (Figure 5a): if we select an example with just three nodes, Synbad
synthesizes an incorrect program (Figure 14). The reason is that with the
large number of variables available with respect to the number of nodes, the
loop was deemed unnecessary.

– Complexity of the heap-structure: As discussed in section 2, if pro-
vided a full binary tree as an example, Synbad guesses a false invariant
(x.left == null) ⇔ (x.right == null). Hence, when providing examples,
non-symmetrical graphs are generally better choices over symmetrical ones.

Programmer Hints. As synthesis is a compute intensive activity, hints pro-
vided by the programmer go a long way in helping a synthesis tool move quicker
through its search space. Programmers have an option to help Synbad by
asserting any subset of the following:
– command type (at a program point);
– type of the guarded predicate (at a program point);
– data-type for the variables within the guard predicates (at a program point).

For example, in Figure 5a, the specification asserts that for the predicate guard-
ing the entry to the loop5, the variables participating in the predicate are of
pointer types. No other hint (for command type or type of the guarded predi-
cate for any program point) is provided in this case.

6 Implementation and Experiments

We have implemented Synbad in Python using the Z3 SMT solver [5]. We have
used Synbad to generate a variety of iterative and recursive programs on a
laptop running quad-core Intel i7 1.73 GHz with 8 GB RAM. Table 3 describes
each task and the time taken by Synbad to synthesize a program:
5 Specified by ’lp’; for other statements, the statement number is provided instead.

From Concrete Examples to Heap Manipulating Programs 145

– Task: describes the task
– Entities: these columns describe the number of entities specified by the

user: input/output variables (Var), temporaries (Tmp), fields (Flds) and
heap nodes (HN). For all these entities (except HN), the type of the entity
is listed (p: pointer, i: integer)

– R/I: whether the user desires an iterative (I) or a recursive (R) implementa-
tion; for iterative programs, the loop bound and for the recursive programs
the recursion depth is provided

– Frame: the frame of the program specified by the user is summarized in this
column (see Figure 6a and 6b)

– E: the number of examples provided
– Hints: any hints provided to Synbad is specified
– Timings: the time taken by Synbad is detailed:

• Tgen: the time taken to generate a program that satisfies the specifica-
tions

• Topt: the total time taken to optimize the generated program
• Thl: the time taken by the last level of optimization (level D)
• Oeff : the highest optimization level where any improvement in the pro-

gram is noticed
• Teff : the effective time taken (total time from the invocation of Synbad

to where the last improvement was seen)
The total time taken by Synbad is Tgen + Topt while Teff gives the time
where Synbad is involved in activities that turn out fruitful.

Optimization Levels. Overall, Synbad is quick: it is able to produce a pro-
gram in less than a minute for most of the tasks. Moreover, the effective time
(i.e. time till when the last improvement in the program is seen) is less than 20
seconds for most of the tasks. This implies that Synbad is able to produce the
optimal program very fast, but then loses time in a vain attempt to optimize it
further. The examination of the column (Oeff) sheds more light into this mat-
ter: most of the times, the optimal program is produced in the very first level
of optimization (level A). Also, the highest level of optimization (level D) takes
a significant fraction of the time (Thl) and seldom brings about any further im-
provement in the program. This hints at a possibility of dropping out the level
D optimizer; however, the caveat is that, in doing so, we would lose the assertion
that Synbad always produces the optimal program. Another possibility (when
used inside an IDE) is to flash the program to the user without invoking the level
D optimizer. Meanwhile, this optimizer (level D) could run in the background; in
the rare cases that an improvement is actually noticed, a message can be flashed
to the user to enable replacing the generated code segment by the optimal one.

A Tight Frame. The task RL (in Table 3) shows the effect of providing a loose
frame. As the frame size increases, Synbad is made to work harder at both
generating and optimizing the program. For the most loose frame, even the level
C optimizer needed to kick in. For recursive programs (see task IT), the situation

146 S. Roy

is still worse: the performance drops very rapidly as the frame is loosened. This
is not surprising considering the fact the frame needs to be recursively inlined
for synthesizing recursive programs.

Programmer Hints. The task PG illustrates the effect of programmer hints:
as more hints are provided, Synbad is more efficient at its job.

7 Related Work

Researchers have employed examples [6,7,8,9], traces [10,11,12], to a partial pro-
gram with “holes” [3,4,13,14] to capture user intent. [15,16] describe systems that
efficiently synthesize loop-free programs from a given set of components. [17] al-
lows a programmer to provide templates for the looping structure of programs,
form of the loop invariants etc. as a scaffold to generate iterative programs that
can satisfy the scaffold. Even functional programming has received attention:
[18,19] suggest techniques for synthesis of recursive functional programs.

Synbad also uses this Programming-By-Example (PBE) paradigm to capture
user-intent. For Synbad, the user has the option of controlling the operation of
the synthesized programs at various granularity — from just the input-output
pairs to a full (high-level) trace. However, to allow Synbad to respond in rea-
sonable time, we always invoke Synbad with intermediary states provided, like
those at the beginning (or end) of each loop iteration and at the beginning (or
end) of each recursive call.

The Sketch tool [3,4,13,14] uses a counterexample guided loop to synthesize
its programs. As a program sketch enjoys the luxury of formal assertions, the
sketch tool employs a automatic verifier to generate a counterexample that can
be used to refine the solution. In the absence of formal specifications, Synbad
employs the user as an oracle to verify the solution (similar to [16]). To ease out
the process, Synbad automatically generates runs over automatically generated
test cases that are presented to the user; this scheme is suggested in [16], though
the authors (in [16]) use test-input generation like techniques to generate distin-
guishing inputs (to single out a program among all programs that have different
semantics but that pass on the provided examples).

The counterexample generation phase of Synbad shares some ideas with
CUTE [20] that performs concolic execution: a concrete execution serving as
a test run alongside a symbolic execution to generate new test inputs. However,
unlike CUTE, Synbad does not perform concolic execution; Synbad employs
random testing, with an ability to perform a lazy, non-deterministic initialization
of heap cells.

The optimization problem in Synbad resembles the goal of superoptimization
[21,22,23]: deriving the most efficient sequence of loop-free instructions for a task.
Most often compilers employ a brute-force search over the available machine
instructions to meet this goal. Synbad performs this search in a controlled,
phased manner — cheaper to expensive — reducing the “cost” of the program
fragment with each optimization level. It unleashes a brute-force search in the
last level (level D) but with a clear goal of beating an already optimized program.

From Concrete Examples to Heap Manipulating Programs 147

T
ab

le
3.

S
y
n
ba

d
at

w
or

k

T
as

k
E
nt

it
ie

s
R

/I
F
ra

m
e

E
H

in
ts

T
im

in
gs

(s
ec

)
V

ar
T

m
p

F
ld

s
H

N
T
g
e
n

T
o
p
t

T
h
l

O
e
f
f

T
e
f
f

1p
3p

1p
5

I
(4

)
(2

,4
,1

)
1

lp
:(
*,

*,
pt

r)
6.

2
18

.1
16

.2
A

7.
1

(R
L
)

R
ev

er
si
ng

a
lin

ke
d

lis
t

1p
3p

1p
5

I
(4

)
(2

,5
,1

)
1

lp
:(
*,

*,
pt

r)
15

.5
25

.7
22

.3
A

17
.6

1p
3p

1p
5

I(
4)

(3
,5

,2
)

1
lp

:(
*,

*,
pt

r)
32

.1
24

.6
18

.5
C

37
.5

(I
S)

In
se

rt
el

em
en

t
in

so
rt

ed
lin

ke
d

lis
t

2p
1p

,2
i

1p
,1

i
6

I(
3,

0)
(3

,3
,2

)
2

lp
:(
*,

*,
in

t)
10

.4
11

.8
4.

3
A

15
.5

1p
,1

i
1p

,2
i

1p
,1

i
5

I(
5)

(1
,3

,0
)

1
lp

:(
*,

*,
pt

r)
,

2:
(P

R
T

,*
,
in

t)
4.

1
2.

9
1.

0
A

5.
1

(P
G

)
P

ri
nt

al
l
el

em
en

ts
gr

ea
te

r
th

an
’n

’
in

a
lin

ke
d

lis
t

1p
,1

i
1p

,2
i

1p
,1

i
5

I(
5)

(1
,3

,0
)

1
lp

:(
*,

*,
pt

r)
7.

5
4.

6
3.

3
A

7.
9

1p
,1

i
1p

,2
i

1p
,1

i
5

I(
5)

(1
,3

,0
)

1
-

10
.9

5.
2

3.
9

A
11

.2
(D

L
)

D
el

et
e

a
no

de
fr

om
lin

ke
d

lis
t

1p
,1

i
2p

,1
i

1p
,1

i
5

I(
3)

(3
,2

,2
)

1
lp

:(
*,

*,
in

t)
3.

6
4.

5
1.

7
A

5.
1

1p
1p

,1
i

2p
,1

i
5

R
(2

)
(2

,6
,1

)
1

-
15

.3
35

.1
22

.5
A

15
.3

(I
T

)
In

or
de

r
B

in
ar

y
T
re

e
T
ra

ve
rs

al
1p

1p
,1

i
2p

,1
i

5
R

(2
)

(3
,7

,1
)

1
-

20
.6

48
.8

30
.5

�
A

24
.6

1p
1p

,1
i

2p
,1

i
5

R
(2

)
(3

,7
,2

)�
1

-
14

6.
7

80
.2

54
.2

A
15

7.
4

(P
T

)
P

re
or

de
r

B
in

ar
y

T
re

e
T
ra

ve
rs

al
1p

1p
,1

i
2p

,1
i

5
R

(2
)

(4
,6

,0
)

2
-

13
.0

46
.9

30
.5

�
A

19
.6

(D
D

)
D

el
et

e
a

no
de

fr
om

a
do

ub
ly

-li
nk

ed
lis

t
1p

,1
i

2p
,1

i
2p

,1
i

5
I(

3)
(1

,2
,4

)
1

lp
:(
*,

*,
in

t)
2.

9
4.

9
1.

5
A

5.
7

(R
D

)
R

ev
er

se
a

do
ub

ly
-l
in

ke
d

lis
t

1p
,0

i
4p

,0
i

2p
,0

i
5

I(
4)

(2
,6

,2
)

1
lp

:(
*,

*,
pt

r)
31

.7
65

2.
7

59
6.

0
D

38
0.

5
(T

S)
Se

ar
ch

B
ST

(e
le

m
en

t
al

w
ay

s
pr

es
en

t)
1p

,1
i

0p
,1

i
2p

,1
i

9
I(

3)
(1

,3
,0

)
1

-
1.

9
2.

7
1.

2
A

2.
5

(O
T

)
P
os

to
rd

er
tr

av
er

sa
lo

f
B

in
ar

y
T
re

e
1p

1p
,1

i
2p

,1
i

5
R

(2
)

(2
,4

,2
)

1
-

19
.8

28
.0

17
.3

A
21

.3
(P

A
)

P
re

or
de

r
bi

na
ry

tr
ee

tr
av

er
sa

l
(a

sy
m

m
et

ri
c

ex
am

pl
e)

1p
1p

,1
i

2p
,1

i
5

R
(2

)
(4

,6
,0

)
1

-
20

.3
47

.5
30

.5
*

A
26

.6

N
ot

e:
fo

r
al

lt
he

ab
ov

e
ta

sk
,S

y
n
ba

d
w

as
pr

ov
id

ed
bo

x
an

d
ar

ro
w

di
ag

ra
m

s
at

th
e

be
gi

nn
in

g
(o

r
en

d)
of

ea
ch

lo
op

it
er

at
io

n
an

d
re

cu
rs

iv
e

ca
ll

in
vo

ca
ti
on

Sp
ec

ia
lc

as
es

:
�

a
ti
m

eo
ut

of
30

s
w

as
us

ed
fo

r
th

e
SM

T
so

lv
er

fo
r

th
is

ca
se

�
ti
m

eo
ut

of
th

e
so

lv
er

w
as

in
cr

ea
se

d
to

30
0s

fo
r

th
is

ca
se

148 S. Roy

8 Conclusions and Future Work

Our experience with Synbad strengthened our belief that heap manipulations
can be described with concrete examples — a form of specification that is dear to
most users. We intend to integrate Synbad within a programming IDE. Another
important direction of work is towards still reducing the amount of specification
demanded from the user. We intend to investigate as to if a good program frame
and number of temporaries can be guessed by Synbad by examining the box
and arrow diagrams.

References

1. Singh, R., Solar-Lezama, A.: Synthesizing data structure manipulations from sto-
ryboards. In: ESEC/FSE 2011, pp. 289–299. ACM, New York (2011)

2. Singh, R., Solar-Lezama, A.: SPT: Storyboard programming tool. In: Madhusu-
dan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 738–743. Springer,
Heidelberg (2012)

3. Solar Lezama, A.: Program Synthesis By Sketching. PhD thesis, EECS Depart-
ment, University of California, Berkeley (December 2008)

4. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009)

5. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: POPL 2011, pp. 317–330. ACM, New York (2011)

7. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Communications of the ACM (2012)

8. Harris, W.R., Gulwani, S.: Spreadsheet table transformations from examples. In:
PLDI 2011, pp. 317–328. ACM, New York (2011)

9. Singh, R., Gulwani, S.: Learning semantic string transformations from examples.
Proc. VLDB Endow. 5(8), 740–751 (2012)

10. Biermann, A.W., Baum, R.I., Petry, F.E.: Speeding up the synthesis of programs
from traces. IEEE Trans. Comput. 24(2), 122–136 (1975)

11. Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers,
B.A., Turransky, A.: Watch what I do: programming by demonstration. MIT Press,
Cambridge (1993)

12. Lau, T., Domingos, P., Weld, D.S.: Learning programs from traces using version
space algebra. In: K-CAP 2003, pp. 36–43. ACM, New York (2003)

13. Solar-Lezama, A., Rabbah, R., Bodík, R., Ebcioğlu, K.: Programming by sketching
for bit-streaming programs. In: PLDI 2005, pp. 281–294. ACM, New York (2005)

14. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: ASPLOS-XII, pp. 404–415. ACM, New York
(2006)

15. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI 2011, pp. 62–73. ACM, New York (2011)

16. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: ICSE 2010, pp. 215–224. ACM, New York (2010)

From Concrete Examples to Heap Manipulating Programs 149

17. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: POPL 2010, pp. 313–326. ACM, New York (2010)

18. Armando, A., Smaill, A., Green, I.: Automatic synthesis of recursive programs:
The proof-planning paradigm. Automated Software Engg. 6(4), 329–356 (1999)

19. Banerjee, D.: A methodology for synthesis of recursive functional programs. ACM
Trans. Program. Lang. Syst. 9(3), 441–462 (1987)

20. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/FSE-13, pp. 263–272. ACM, New York (2005)

21. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In:
ASPLOS-XII, pp. 394–403. ACM, New York (2006)

22. Bansal, S., Aiken, A.: Binary translation using peephole superoptimizers. In: OSDI
2008, pp. 177–192. USENIX Association, Berkeley (2008)

23. Massalin, H.: Superoptimizer: a look at the smallest program. In: ASPLOS-II,
pp. 122–126. IEEE Computer Society Press, Los Alamitos (1987)

Local Shape Analysis for Overlaid Data Structures�

Cezara Drăgoi1, Constantin Enea2, and Mihaela Sighireanu2

1 IST Austria
cezarad@ist.ac.at

2 Univ Paris Diderot, Sorbonne Paris Cite, LIAFA CNRS UMR 7089, Paris
{cenea,sighirea}@liafa.univ-paris-diderot.fr

Abstract. We present a shape analysis for programs that manipulate overlaid
data structures which share sets of objects. The abstract domain contains Sepa-
ration Logic formulas that (1) combine a per-object separating conjunction with
a per-field separating conjunction and (2) constrain a set of variables interpreted
as sets of objects. The definition of the abstract domain operators is based on a
notion of homomorphism between formulas, viewed as graphs, used recently to
define optimal decision procedures for fragments of the Separation Logic. Based
on a Frame Rule that supports the two versions of the separating conjunction, the
analysis is able to reason in a modular manner about non-overlaid data structures
and then, compose information only at a few program points, e.g., procedure re-
turns. We have implemented this analysis in a prototype tool and applied it on
several interesting case studies that manipulate overlaid and nested linked lists.

1 Introduction

Automatic synthesis of valid assertions about heap-manipulating programs, such as
loop invariants or procedure summaries, is an important and highly challenging prob-
lem. In this paper, we address this problem for sequential programs manipulating over-
laid and nested linked lists. The term overlaid refers to the fact that the lists share some
set of objets. Such data structures are often used in low-level code in order to organize
a set of objects with respect to different criteria. For example, the network monitoring
software Nagios (www.nagios.com) groups sets of tasks in nested lists, according to
the user that spawned them, but also in two lists of pending and, respectively, executed
tasks. These structures are overlaid because they share the objects that represent tasks.

We propose an analysis based on abstract interpretation [10], where the elements
of the abstract domain are formulas in NOLL [13], a fragment of Separation Logic
(SL) [17]. The main features of NOLL are (1) two separating conjunction operators, the
per-object separation ∗ and the per-field separation ∗w, (2) recursive predicates indexed
by set variables, which are interpreted as the set of all heap objects in the data structure
described by the predicate, and (3) constraints over set variables, which relate sets of
objects that form different data structures. The analysis has as parameter the set of
recursive predicates used in the NOLL formulas. Although per-object separation can be
expressed using per-field separation and constraints on set variables, we prefer to keep

� This work was supported in part by the Austrian Science Fund NFN RiSE, by the ERC Ad-
vanced Grant QUAREM, and by the French ANR Project Veridyc.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 150–171, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Local Shape Analysis for Overlaid Data Structures 151

both versions for two reasons: (i) the formulas are more concise and (ii) as a design
principle, the analysis should introduce per-field separation only when it is necessary,
i.e., when it detects overlaid data structures.

The main characteristics of the analysis are (1) compositionality: we define a frame
rule for NOLL, which allows to reason locally, on a subset of allocated objects and con-
sidering only a subset of their fields and (2) abstract domain operators based on graph
homomorphism, used recently in optimal decision procedures for SL fragments [9,13].

The frame rule for SL with only per-object separation [17] states that, in order to
compute the effect of a program P on the input specified by a formula φ, one has to split
φ into φi ∗σ, where φi describes all the heap objects reachable from program variables
read in P without being written before, compute the post-condition φo of P on φi and
then, infer that the effect of P on φ is φo ∗σ. Programs with overlaid data structures can
be usually partitioned in blocks, e.g. procedures, that manipulate just one non-overlaid
data structure at a time. Thus, for the sake of compositionality, only the description
of this data structure should be considered when computing the effect of some block.
Having both the per-field and the per-object separation, the frame rule we define refines
the decomposition of φ into (φi ∗w σ1) ∗σ2, where φi describes the list segments in the
heap built with fields accessed in P, which start in variables read in P. As before, if φo

represents the effect of P on φi then the post-condition of P on φ is (φo ∗w σ1)∗σ2.
The constraints on set variables are important to define a precise local analysis. They

are used to relate heap regions accessed in different blocks of the program. For example,
consider a program that traverses a list segment L1 and then, another list segment L2,
these list segments being overlaid. In a local analysis that considers only one list seg-
ment at a time, the constraints on set variables are used to preserve the fact that some
heap objects, materialized on the list segment L1, belong also to L2. This information
may be used when fields of these heap objects are accessed.

The elements of the abstract domain are existentially-quantified disjunctions of NOLL
formulas that use only (separating) conjunctions. To obtain efficient abstract domain
operators, we use a graph representation for NOLL formulas. Each disjunction-free for-
mula ϕ is represented by a graph where nodes correspond to variables of ϕ and edges
correspond to atoms of ϕ that describe (nested) list segments.

The definition of the order relation � between the abstract domain values uses the
entailment relation |= between NOLL formulas. One can prove [9,13] that ϕ1 |= ϕ2

whenever there exists an homomorphism from the graph representations of ϕ2 to the one
of ϕ1. Assuming that atoms describe only singly-linked lists, an homomorphism from a
graph G1 to a graph G2 maps edges of G1 to (possibly empty) paths of G2 such that the
paths of G2 associated to two distinct edges of G1 do not share edges. If atoms include
recursive predicates that describe nested list segments, the homomorphism maps edges
of G1 to more general sub-graphs of G2 that represent unfoldings of these predicates.
Comparing to the previous approaches for proving entailments of SL formulas, which
are based on inference rules, the homomorphism approach has the same precision but it
is more efficient because, intuitively, it defines also a strategy for applying the inference
rules. We introduce an effective procedure for checking graph homomorphism, which
is based on testing membership in languages described by tree automata.

152 C. Drăgoi, C. Enea, and M. Sighireanu

The widening operator � is based on two operations: (1) a fold operator that “rec-
ognizes” data structures used in the program, if they are describable by one of the pred-
icates parametrizing the analysis and (2) a procedure that uses graph homomorphism
in order to identify the constraints which are true in both of its arguments (implicitly, it
tries to preserve the predicates discovered by fold). More precisely, given two graphs G1

and G2, the widening operator searches for a maximal sub-graph of G1 which is homo-
morphic to a sub-graph of G2 (and thus weaker) and a maximal sub-graph of G2 which
is homomorphic to a sub-graph of G1. All these graphs should be disjoint. If all edges
of G1 and G2 are included in these sub-graphs then the widening returns the union of
the two weaker sub-graphs. Otherwise, it returns a disjunction of two graphs or, if the
number of nodes which correspond to existential variables is greater than some fixed
bound, it applies the operator fold which replaces unfoldings of recursive predicates by
instantiations of these predicates. Folding the same set of nodes in two different list
segments introduces the per-field separation although the initial formula may use only
the per-object separation.

The analysis is implemented in a prototype tool that has been successfully applied
on some interesting set of benchmarks that includes fragments from Nagios.

Related Work: There are many works that develop static analyses based on SL, e.g.,
[2,7,6,8,11,12,14,16,19,20]. Most of them, except the work in [16], are not precise
enough in order to deal with overlaid data structures. The abstract domain operators
defined in [7,20] can be seen as instantiations of the operators based on graph homomor-
phism introduced in this paper (provided that the definition of the graph homomorphism
is adapted to the respective logics). In [16], overlaid data structures are described using
the classical conjunction, instead of the per-field separation as in our work. The anal-
ysis is defined as a reduced product of several sub-analyses, where each sub-analysis
“observes” a different set of fields. The reduction operator, used to exchange informa-
tion between the sub-analyses, is called at control points, which are determined using
a preliminary data-flow analysis. The same data-flow analysis is used to anticipate the
updates on the set variables. In our work, compositionality is achieved using the frame
rule and thus, it avoids the overhead of duplicate domain operations and calls to the re-
duction operator. Moreover, the updates on the set variables are determined during the
analysis and thus, they can produce more precise results. Static analyses for reasoning
about the size of memory regions are introduced in [15]. They are based on combining
a set domain, that partitions the memory into (not necessarily) disjoint regions, and a
numerical domain, that is used to relate the cardinalities of the memory regions. The
abstract domain defined in this paper can be seen as an instance of a set domain.

2 Overview

Our running example is extracted from the network monitoring software Nagios which
uses a task manager to store pending and executed tasks, grouped or linked according to
different criteria. The implementation given in Fig. 1 wraps tasks in objects of type Task
composed of a field op, which stores a description of the task, a field succ, which links
the tasks spawned by the same user, and fields next and prev, which link pending or
executed tasks. A task manager is implemented by an object of type Manager containing

Local Shape Analysis for Overlaid Data Structures 153

typedef struct Task {
char* op;
struct Task* succ;
struct Task* prev, *next;

} Task;

typedef struct NestedList {
int user;
struct NestedList* nextu;
Task* tasks;

} NestedList;

typedef struct Manager {
NestedList* tab;
Task* todo;
Task* log;

} Manager;

Task* lookup(int user,char* str,
NestedList* tab)

{ ... return ret; }

Task* add(Task* x,Task* log)
{ x->prev = NULL;

x->next = log;
return x;

}
Task* cut(Task* x,Task* todo)
{

Task* tmp = x->next;
if (tmp != NULL) tmp->prev = x->prev;
if (x->prev == NULL) return tmp;
else
{ x->prev->next = tmp;
return todo; }

}
void execute(int user,char* str,Manager* man)
{

Task* x = lookup(user,str,man->tab);
if (x != NULL && (x->prev != NULL || x==man->todo))
{ man->todo = cut(x,man->todo);
man->log = add(x,man->log); }

}

Fig. 1. Task manager

a field tab, which stores the tasks of each user using a NestedList object, a field todo
which is used to access the pending tasks, and a field log, which points to the list of
executed tasks. Each element of type NestedList has an integer field encoding the user
id and a field tasks pointing to the list of tasks spawned by the user. To specify the lists
pointed to by the fields of an object of type Manager, we use the following SL formula:

ϕ � nllα(tab,NULL,NULL)∗w
(
dllβ(todo,NULL)∗sllγ(log,NULL,NULL)

)
∧ α(Task) = β∪ γ, (1)

where nllα(tab,NULL,NULL) describes a list of lists pointed to by tab and ending in
NULL, where all the inner lists end also in NULL, dllβ(todo,NULL) describes1 a doubly-
linked list from todo to NULL, and sllγ(log,NULL,NULL) describes a list of objects with
two fields next and prev such that prev points always to NULL (this is a common way to
factorize one type declaration in order to represent both doubly-linked and singly-linked
lists). In general, the list segments described by these predicates can be empty. (For a
formal definition of these predicates, we defer the reader to Sec. 4.) The set variables
α, β, and γ are interpreted as the set of heap objects in the list segments described by
the corresponding predicates. Also, α(Task) is interpreted as the set of heap objects of
type Task in the interpretation of α. To simplify the notation, we represent an object of
type Manager by three pointer variables tab, todo, and log. The per-field separation
∗w allows the list of lists to share objects with the other two lists.

Such formulas have an equivalent graph representation, which is more intuitive and
easier to work with. For example, Fig. 2 shows the graph representation of ϕ.
In nllα(tab,NULL,NULL), the first two arguments represent the start and, resp., the end
of the list of NestedList objects. Therefore, this atom is represented by an edge from
tab to NULL labeled by nllα (actually, the edge label contains also the third argument

1 This predicate is actually a shorthand for the formula todo �→ {(prev,NULL)} ∗w

dllβ(todo,u
′)∗w u′ �→ {(next,NULL)}, where dllβ is the recursive predicate defined in Ex. 1,

page 159, and u′ an existential variable.

154 C. Drăgoi, C. Enea, and M. Sighireanu

Pre-condition ϕ of execute:
Pre-condition ϕpre

of lookup: Post-condition ϕpost of lookup:

todo NULL

tab

log

α(Task) = β∪ γ

dllβ

sllγ

nllα2

1

1

tab

NULL

α(Task) = β∪ γ

2 nllα

tab u′ v′

w′

ret

NULL

α1(Task)∪α2(Task)
∪{u′}∪α3 ∪α4 = β∪ γ

nllα1 nextu

nllα2

tasks

lsα3

lsα4

2

2

2

2

2

2

Formula ϕret after returning from lookup:
An unfolding of
dllβ(todo,NULL)

: A disjunct ψ from the postcondition of execute:

tab u′ v′

w′

x

NULL

todo

log

NULL

α1(Task)∪α2(Task)
∪{u′}∪α3 ∪α4 = β∪ γ

nllα1

dllβ

sllγ

nextu nllα2

tasks

lsα3

lsα4

2

1

1

2 2

2

2

2

todo

t ′

x

NULL

2
dllβ1

2 next2
prev

2
dllβ2

tab u′ v′

w′

log

NULLtodo

NULL

α1(Task)∪α2(Task)
∪{u′}∪α3 ∪α4 = β′ ∪ {log}∪ γ

nllα1

dllβ′ sllγ

nextu nllα2

tasks

lsα3

lsα4 prev

next

2

1

1

1 1

2 2

2

2

2

Fig. 2. Graph representations of formulas in the analysis of execute (the square nodes have type
NestedList and the circle nodes have type Task)

NULL but we have omit it for simplicity). Any two edges labeled by the same integer
(resp., different integers) represent per-object (resp., per-field) separated atoms.

We define an abstract domain, denoted ASL, which is parametrized by a set of (re-
cursive) predicates as above and contains disjunctions of formulas as in (1).

Next, we focus on the analysis of the procedure execute, which moves a task from
the list of pending tasks, pointed to by todo, to the list of executed tasks, pointed to by
log. To check that the task pointed to by x belongs to the todo list, it tests if x equals
the head of this list or if the prev field is not NULL. Given the precondition ϕ in (1), the
analysis proves that, at the end of the procedure, the property ϕ remains true, i.e., all
the data structures are preserved.

The procedure starts by calling lookup in order to search for an object of type Task.
The analysis we define is compositional in two ways. First, each procedure is analyzed
on its “local heap”, i.e., the heap region reachable from the actual parameters of the
call. Second, we restrict the local heap to paths that use only fields accessed by the
procedure. For example, the procedure lookup accesses only the fields nextu, tasks,
and succ and consequently, it is analyzed on a sub-formula ϕpre of ϕ that contains only
nllα(tab,NULL,NULL)∧α(Task) = β∪ γ. The constraint on set variables is included

Local Shape Analysis for Overlaid Data Structures 155

because it constrains a set of objects in the local heap of lookup. The graph represen-
tation of ϕpre is given in Fig. 2.

The post-condition of lookup computed by the analysis contains several disjuncts;
one of them, denoted ϕpost , is given in Fig. 2. This graph represents an unfolding of the
list segment described by nllα(tab,NULL,NULL), where u′, v′, and w′ are existentially
quantified variables (by convention, all the existential variables are primed). Edges la-
beled by fields, e.g., the edge from u′ to v′ labeled by nextu, represent values of fields.
The term {u′} in the constraint on set variables is interpreted as the singleton contain-
ing the object u′. The output parameter ret points to an object in some inner list of the
nested list segment pointed to by tab. The inner lists are described by the predicate ls.

The abstract value reached when returning from the call to lookup, ϕret , is given in
Fig. 2. It is obtained from ϕ by replacing the sub-formula ϕpre with ϕpost (we consider
two copies of the node labeled by NULL for readability).

We now consider the if statement in execute. The abstract element where we as-
sume that x!=NULL is true is obtained from ϕpost by adding the constraint x �= NULL∧x∈
α4 (the object pointed to by x belongs to α4 only if x �= NULL; otherwise, the interpre-
tation of α4 is /0). To compute the abstract element where we assume that x->prev !=
NULL, we need to materialize the prev field of x. For this, we use the fact that the set
constraints imply that x ∈ β∪ γ and we compute a disjunction of three graphs where
we unfold either the predicate dllβ(todo,NULL) (with x as the first element or as some
element different from the first one) or sllγ(log,NULL,NULL) (with x as some arbitrary
element). Only one graph satisfies x->prev != NULL and this graph contains the un-
folding of dllβ(todo,NULL) given in the second row of Fig. 2. With this unfolding, the
set variable β is replaced by β1 ∪{t ′} ∪β2. Note that the node labeled by x in this un-
folding is the same as the node labeled by x in the unfolding of nllα(tab,NULL,NULL).

If we continue on the branch of the if statement where x!=NULL and x->prev!=NULL
are true then, we analyze the call to cut starting from a precondition that contains only
the sub-formula describing the unfolding of dllβ(todo,NULL) and the constraint on
the set variables. This is because cut accesses only the fields prev and next, and the
list sllγ(log,NULL,NULL) is per-object separated from the doubly-linked list. A simi-
lar analysis is done for the call to add. One of the disjuncts from the post-condition of
execute, denoted by ψ, is given in Fig. 2 (local variables have been projected out and,
for simplicity, we abstract the unfolding of dllβ′).

The analysis proves that the data structures are preserved by a call to execute, i.e.,
its postcondition implies ϕ in (1). This is because there exists an homomorphism from
ϕ to every disjunct in the post-condition. Intuitively, the homomorphism maps nodes of
ϕ to nodes of the disjunct, labeled by at least the same set of program variables, and
edges e of ϕ to sub-graphs of the disjunct, that represent unfoldings of the predicate
labeling e. For example, this is the case for the disjunct ψ in Fig. 2. Concerning the
constraints on set variables, the edge mapping defines a substitution Γ for set variables
of ϕ to terms over variables of ψ, e.g., α is substituted by the union of all set variables
in the unfolding of nllα(tab,NULL,NULL), i.e., α1 ∪α2 ∪{u′} ∪α3 ∪α4 ({u′} is also
considered because some field of u′ is explicit in this unfolding). If Λ1 and Λ2 are the
constraints over set variables in ψ, resp., ϕ, then Λ1 implies Λ2[Γ].

156 C. Drăgoi, C. Enea, and M. Sighireanu

3 Programs

We consider strongly typed imperative programs. The types used in the program are
references to record types belonging to some set T . A record type contains a set of
fields, each field being a reference to a record type. We suppose that each field has a
unique name and we denote by Flds the set of field names. Let τ be a typing function,
that maps each variable into a type in T and each field into a function type over T .

Program Configurations: We use a classical storage model, where a program config-
uration is a pair C = (S,H), where S represents the stack of program variables and H
represents the heap of dynamically allocated objects. To give a formal definition, we
consider three additional countable sets which are pairwise disjoint and disjoint from
Flds: a set Loc of addresses (called also locations), a set Vars of program variables
x,y,z, and a set Vars′ of “primed” variables x′,y′,z′ that do not appear in the program
but only in assertions where they are implicitly existentially quantified. We assume that
all these elements are typed by τ to records in T . For simplicity, we also assume that
NULL is an element of Vars mapped always to a distinguished location � ∈ Loc. Then,

S ∈ Stacks= [(Vars∪Vars′)→ Loc] H ∈ Heaps= [Loc×Flds ⇀ Loc]

C ∈ Configs= Stacks×Heaps

We consider that S and H are well typed, e.g., if S(x)= � then τ(x) = τ(�). For simplicity,
the constant NULL and the location � are typed by τ in any record in T .

The set of locations l for which H(l, f) is defined, for some f , is called the set of
locations in C, and it is denoted by Loc(C). The component S (resp. H) of a heap C is
denoted by SC (resp. HC).

Programs: Aside the definition of record types, programs are collections of proce-
dures. The procedures are written in a classical imperative programming language that
contains memory allocation/deallocation statements (new/free), field updates (x-> f :=
. . .), variable assignments (x := y/x := y-> f), call statements (call Proc(�x)), and com-
posed statements like sequential composition ;, if-then-else, and while loops. The
formal meanings of the basic statements (not containing ;, conditionals, loops, and pro-
cedure calls) are given in terms of functions from 2Configs to 2Configs, where Configs
contains a special value C⊥ that corresponds to a memory fault.

4 Assertion Language

The language we consider for writing program assertions, that describe sets of program
configurations, is the logic NOLL [13] enriched with existential quantifiers and disjunc-
tion (to simplify the notation, we use primed variables instead of existential quantifiers).

Syntax: The logic NOLL is a multi-sorted fragment of Separation Logic [17]. It is de-
fined over two sets of variables LVars = Vars∪Vars′ and SetVars, called location vari-
ables and set variables, respectively. We assume that the typing function τ associates a
sort, resp., a set of sorts, to every variable in LVars, resp., SetVars. A variable in LVars
is interpreted as a location in Loc while a variable in SetVars is interpreted as a set of
locations in Loc. The syntax of NOLL is given in Fig. 3.

Local Shape Analysis for Overlaid Data Structures 157

E,F,Ei ∈ LVars location variables �E ∈ LVars+ tuple of location variables
f , fi ∈ Flds field names α ∈ SetVars set variable

R ∈ T sort P ∈ P list segment predicate

Φ ::= Π∧Σ∧Λ | Φ∨Φ NOLL formulas

Π ::= E = F | E �= F | Π∧Π pure formula
Σ ::= true | emp | E �→ {(f1,E1), . . . ,(fk,Ek)} | Pα(�E) | Σ∗Σ | Σ∗w Σ spatial formula

Λ ::= E ∈ t | E �∈ t | t = t ′ | t ∩ t ′ = /0 | Λ∧Λ sharing formula

t ::= {E} | α | α(R) | t ∪ t ′ set terms

Fig. 3. Syntax of NOLL formulas

The atoms of NOLL are either (1) pure, i.e., (dis)equalities between location vari-
ables, (2) spatial, i.e., the predicate emp denoting the empty heap, points-to constraints
E �→ {(f1,E1); . . . ;(fk,Ek)}, saying that the value stored by the field fi of E equals Ei,
for any 1 ≤ i ≤ k, or predicate applications Pα(�E), or (3) sharing, i.e., membership and
inclusion constraints over set terms. The predicates P in Pα(�E) are used to describe re-
cursive data structures starting or ending in locations denoted by variables in �E . The set
variable α is interpreted as the set of all locations in the data structure defined by P.

NOLL includes two versions of the separating conjunction: the per-object separating
conjunction ∗ expresses the disjointness between two sets of heap objects (of record
type) while the per-field separating conjunction ∗w expresses the disjointness between
two sets of heap cells, that correspond to fields of heap objects.

The values of the set variables can be constrained in a logic that uses the classical set
operators ∈, ⊆, and ∪.

Semantics: The formal semantics of NOLL formulas is given by a satisfaction relation
|= between pairs (C,J), where C = (S,H) is a program configuration and J : SetVars →
2Loc interprets variables in SetVars to finite subsets of Loc, and NOLL formulas. Sample
clauses of the definition of |= appear in Fig. 4. Given Φ1 and Φ2, Φ1 |= Φ2 iff for any
(C,J), if (C,J) |= Φ1 then (C,J) |= Φ2.

Two spatial atoms are object separated, resp. field separated, if their least common
ancestor in the syntactic tree of the formula is ∗, resp. ∗w.

Recursive Predicates for Describing (Nested) List Segments: In the following, we
consider a set of predicates P that describe nested list segments and have recursive
definitions of the following form:

Pα(in,out, �nhb) � (in = out) ∨
(∃u′,�v′,α′,�β. Σ(in,u′,�v′, �nhb,�β)∗w Pα′(u′,out, �nhb)∧TΣ ∩α′ = /0)

(2)

where in,out,u′ ∈ LVars, �nhb,�v′ ∈ LVars∗, α′ ∈ SetVars, �β ∈ SetVars∗, Σ is a spatial
formula, and TΣ is a set term, defined as the union of (1) the location variables appearing
in the left of a points-to constraint, except u′, and (2) the set variables in�β.

A predicate Pα(in,out, �nhb) defines possibly empty list segments starting from in and
ending in out. The fields of each element in this list segment and the nested lists to which
it points to are defined by Σ. The parameters �nhb are used to define the “boundaries”
of the nested list segment described by P, in the sense that every location described
by P belongs to a path between in and some location in out ∪ �nhb (this path may be

158 C. Drăgoi, C. Enea, and M. Sighireanu

(C,J) |= emp iff Loc(C) = /0
(C,J) |= E = F iff SC(E) = SC(F)

(C,J) |= E �→ ∪i∈I{(fi,Ei)} iff dom(HC) = {(SC(E), fi) | i ∈ I}, ∀i ∈ I.HC(SC(E), fi) = SC(Ei)

(C,J) |= Pα(�E) iff (C,J) ∈ [[Pα(�E)]] and J(α) = Loc(C).

(C,J) |= E ∈ t iff SC(E) ∈ [t]SC,J

(C,J) |= t ⊆ t ′ iff [t]SC,J ⊆ [t ′]SC ,J

(C,J) |= ϕ1 ∗ϕ2 iff there exist program heaps C1 and C2 s.t. C =C1 ∗C2,
(C1,J) |= ϕ1, and (C2,J) |= ϕ2

(C,J) |= ϕ1 ∗w ϕ2 iff there exist program heaps C1 and C2 s.t. C =C1 ∗w C2,
(C1,J) |= ϕ1, and (C2,J) |= ϕ2

Separation operators over program configurations:

C =C1 ∗C2 iff Loc(C) = Loc(C1)∪Loc(C2) and Loc(C1)∩Loc(C2) =∅,
HC1 = HC |Loc(C1),H

C2 = HC |Loc(C2), and SC = SC1 = SC2

C =C1 ∗w C2 iff dom(HC) = dom(HC1)∪dom(HC2) and dom(HC1)∩dom(HC2) =∅,
HC1 = HC |dom(HC1),H

C2 = HC |dom(HC2), and SC = SC1 = SC2

Interpretation of a set term t, [t]S,J :

[{E}]S,J = {S(E)}, [α]S,J = J(α), [α(R)]S,J = J(α)∩LocR, [t ∪ t ′]S,J = [t]S,J ∪ [t ′]S,J .

Fig. 4. Semantics of NOLL formulas (the set of program configurations satisfying P(�E) is denoted
by [[P(�E)]], dom(F) denotes the domain of the function F , and LocR denotes the set of elements
in Loc of type R)

(C,J) ∈ [[Pα(in,out, �nhb)]] iff there exists k ∈ N s.t. (C,J) ∈ [[Pk
α(in,out, �nhb)]]

(C,J) ∈ [[P0
α(in,out, �nhb)]] iff S(in) = S(out) and J(α) = /0

(C,J) ∈ [[Pk+1
α (in,out, �nhb)]] iff S(in) �= S(out) and

there exists ρ : {u′}∪�v′ → Loc and ν : {α′}∪�β → 2Loc s.t.

(C[S �→ S∪ρ],J∪ν) |= Σ(in,u′,�v′, �nhb,�β)∗w Pk
α′(u′,out, �nhb)∧TΣ ∩α′ = /0

and J(α) = ν(α′)∪ [TΣ]ρ,ν.

Fig. 5. Semantics of list segments predicates (S∪ρ denotes a new mapping K : dom(S)∪dom(ρ)→
Loc s.t. K(in) = ρ(x), ∀x ∈ dom(ρ) and K(y) = S(y), ∀y ∈ dom(S))

defined by more than one field). The constraint TΣ ∩α = /0 expresses the fact that the
inner list segments are disjoint. We assume several restrictions on the definition of Pα:
(1) τ(in) = τ(out) = τ(u′), and τ(in) �= τ(v′), for every v′ ∈ �v′; this is to ensure that the
nesting of different predicates is bounded, and (2) the predicate P does not occur in Σ.

For any predicate Pα, Flds0(Pα) is the set of all fields used in points-to constraints of
Σ. Also, Flds(Pα) = Flds0(Pα)∪

⋃
Qβ in Σ Flds(Qβ). If Σ has only points-to constraints

then Pα is a 1-level predicate. For any n ≥ 2, if Σ contains only m-level predicates with
m ≤ n− 1 and at least one (n− 1)-level predicate then Pα is a n-level predicate.

To simplify the presentation of some constructions, we may use less expressive pred-
icates of the form (Σ contains no points-to constraints having u′ on the left side):

Pα(in,out, �nhb) � (in = out)∨ (∃u′,�v′,α′,�β.Σ(in,u′,�v′, �nhb,�β)∗Pα′(u′,out, �nhb)) (3)

Local Shape Analysis for Overlaid Data Structures 159

Example 1. The predicates used in the analysis from Sec. 2 are defined as follows:
nllα(x,y, z) � (x = y)∨

(
∃u′,v′,α′,β.x �→ {(nexth,u′), (tasks,v′)}∗lsβ(v′, z)∗nllα′ (u′,y, z)

)
,

where lsα(x,y) � (x = y)∨
(
∃u′,α′.x �→ {(succ,u′)}∗lsα′ (u′,y)

)
dllα(x,y) � (x = y)∨

(
∃u′,α′. (x �→ {(next,u′)}∗u′ �→ {(prev,x)})∗w dllα′ (u′,y)∧ x �∈ α′)

sllα(x,y, z) � (x = y)∨
(
∃u′,α′.x �→ {(next,u′), (prev, z)}∗sllα′ (u′,y, z)

)
5 Abstract Domain

We define an abstract domain parametrized by a set of predicates P , denoted by
ASL(P), whose elements are NOLL formulas over P represented as sets of graphs.
We define the order relation � between two sets of graphs and a widening operator � .
We assume that the definitions in P are not mutually recursive.

5.1 Abstract Domain Elements

Each disjunct ϕ of an ASL(P) element is represented by a labeled directed multi-graph
G[ϕ], called heap graph [13].

Given ϕ = Π∧Σ∧Λ, every node of G[ϕ] represents a maximal set of equal location
variables (according to Π) and it is labeled by the location variables in this set. If Π
contains both E �= F and E = F then G[ϕ] is the bottom element ⊥. We also assume
that nodes are typed according to the variables they represent.

The set of edges in G[ϕ] represent spatial or disequality atoms different from true
and emp. An atom E �= F is represented by an unlabeled edge from the node labeled
by E to the node labeled by F , called a disequality edge. An atom E �→ {(f ,F)} is
represented by an edge labeled by f from the node of E to the node of F , called a
points-to edge. An atom Pα(E,F,�B), where E,F ∈ LVars and �B ∈ LVars∗, is represented
by an edge from the node of E to the node of F labeled by (Pα, �NB), where �NB is the
sequence of nodes labeled by �B; such an edge is called a predicate edge. A spatial edge
is a points-to or a predicate edge. The spatial formula true is represented by a special
node labeled by true. A heap graph that does not contain this node is called precise. The
object separated spatial constraints are represented in G[ϕ] by a binary relation Ω∗ over
edges. The sharing constraints of ϕ are kept unchanged in G[ϕ].

Formally, G[ϕ] = (V,E,π, �,Ω∗,Λ), where V is the set of nodes, E is the set of edges,
π is the node typing function, � is the node labeling function, and Ω∗ is a symmetric
relation over edges in E . The set of all heap graphs is denoted by H G .

In the following, V (G), denotes the set of nodes in the heap graph G; we use a similar
notation for all the other components of G. For any node n ∈V (G), PVarsG(n) denotes
the set of all program variables labeling the node n in G, i.e., PVarsG(n) = �(n)∩Vars.
A node n is called anonymous iff PVarsG(n) = /0.

The concretization of an ASL(P) element Φ is defined as the set of models of Φ.
Remark 1. In the elements of ASL(P), the disjunction is used only at the top most level.
In practice, this may be a source of redundancy and inefficiency and some specialized
techniques have been proposed in order to deal with disjunctive predicates, e.g., [8]
and inner-level disjunction, e.g., [1,16]. For example, [16] allows disjunctions under
the level of the field separated formulas instead of the top-most level. These techniques
can be embedded in our framework, by adapting the graph homomorphism approach
for defining the order relation between ASL(P) elements.

160 C. Drăgoi, C. Enea, and M. Sighireanu

5.2 Order Relation

The order relation between abstract elements, denoted by �, over-approximates the
entailment (i.e., if Φ1 � Φ2 then Φ1 |= Φ2) and it is defined using the graph homomor-
phism approach [9,13], extended to disjunctions of existentially quantified formulas.

Given two elements ϕ1 = Π1 ∧Σ1 ∧Λ1 and ϕ2 = Π2 ∧Σ2 ∧Λ2 of ASL, ϕ1 � ϕ2 iff
G[ϕ1] =⊥ or there exists an homomorphism from G[ϕ2] to G[ϕ1] defined as follows.

Let G1 and G2 be two heap graphs such that G1 is not precise. An homomorphism
from G1 to G2 is a mapping h : V (G1)→V (G2) such that the following conditions hold.
The constraints imposed by ∗ and ∗w are expressed using the function used : E(G1)→
2E(G2)×2Flds

, defined meanwhile edges of G1 are mapped to sub-graphs of G2.

node labeling preservation: For any n ∈V (G1), PVarsG1(n)⊆ PVarsG2(h(n)).
disequality edge mapping: For any disequality edge (n,n′) ∈ E(G1), there exists a

disequality edge (h(n),h(n′)) in E(G2).
points-to edge mapping: For any points-to edge e = (n,n′) ∈ E(G1) labeled by f ,

there exists a points-to edge e′ = (h(n),h(n′)) labeled by f in E(G2). We define
used(e) = (e′, f).

predicate edge mapping: Let e = (n,n′) be an edge in G1 representing a predicate
Pα(in,out, �nhb) as in (3) (the extension to predicate definitions as in (2) is straight-
forward). We assume that � is a partial order on the predicates in P which is an
(over-approximation of) the semantic entailment |= 2.
It is required that either h(n) = h(n′) or there exists an homomorphism he from the
graph representation of a formula that describes an unfolding of Pα to a sub-graph
G2(e) of G2. Formulas that describe unfoldings of P are of the form:

ψ := φ[E0,E1]∗φ[E1,E2]∗ . . .∗φ[En−1,En], (4)

where E0 = E , En = F , n ≥ 1, and for any 0 ≤ i < n, φ[Ei,Ei+1] is the formula

Σ(Ei,Ei+1,u′,�v′, �nhb,�β) or P′
αi
(Ei,Ei+1, �nhb) with P′

α � Pα.

If φ[Ei,Ei+1] is of the form P′
αi
(Ei,Ei+1, �B′), then he must match the edge corre-

sponding to φ[Ei,Ei+1] with exactly one edge of G2(e). That is, if m and m′ are
the nodes labeled by Ei, resp., Ei+1, then G2(e) contains an edge (he(m),he(m′))

labeled by (P′
αi
, �NB′), where �NB′ are the nodes labeled by the variables in �B′.

Above, we have reduced the definition of the homomorphism for n-level predicate
edges to the definition of the homomorphism for (n − 1)-level predicate edges.
For 1-level predicates, the sub-formula Σ contains only points-to constraints and
the definition above reduces to matching points-to edges and checking the order
relation between predicates in P .
We define used(e) as the union of used(e′) for any edge e′ in the graph represen-
tation of ψ. If e′ is a points-to edge then used(e′) is defined as above. If e′ is the
edge representing some formula φ[Ei,Ei+1] of the form P′

αi
(Ei,Ei+1, �nhb) and e′′

the edge associated to e′ by he then used(e′) = {(e′′, f) | f ∈ Flds0(Pα)}, where
Flds0(Pα) denotes the set of fields used in points-to constraints of Σ.

2 For the set of predicates we have used in our experiments, |= can be checked syntactically.

Local Shape Analysis for Overlaid Data Structures 161

separating conjunctions semantics: The semantics of ∗w requires that, for any two
spatial edges e1 and e2 in G1, used(e1)∩used(e2) = /0. The semantics of ∗ requires
that for any two edges e1 and e2 s.t. (e1,e2) ∈ Ω∗(G1), we have that (e′1,e

′
2) ∈

Ω∗(G2), for any edge e′1 in used(e1) and any edge e′2 in used(e2).
entailment of sharing constraints: Based on the mapping of edges in E(G1) to sub-

graphs of G2, we define a substitution Γ for set variables in Λ(G1) to terms over
variables in Λ(G2). Let α be a variable in Λ(G1). If α is not bound to a spatial atom
then Γ(α) = α. Otherwise, let α be bound to a spatial atom represented by some
edge e ∈ E(G1). Then, Γ(α) is the union of (1) the set variables bound to spatial
atoms denoted by predicate edges in used(e) and (2) the terms {x}, where x labels
the left-end of a points-to edge in used(e). It is required that Λ(G1)[Γ]⇒ Λ(G2).

If both G1 and G2 are precise then we add the following constraints: (1) predicate or-
dering � is the equality relation, (2) every edge of G2 belongs to the image of used, and
(3) the paths of G2 associated by h to predicate edges of G1 can not be interpreted into
lasso-shaped or cyclic paths in some model of G2. Also, by convention, there exists no
homomorphism from a precise heap graph to one which is not precise.

The order relation is extended to general ASL elements as usual: Φ1 � Φ2 iff for
each disjunct ϕ1 of Φ1 there exists a disjunct ϕ2 in Φ2 such that ϕ1 � ϕ2.

The complexity of our procedure for finding a homomorphism is NP time. It extends
the unique mapping induced by program variables in a non-deterministic way to the
anonymous nodes.

5.3 An Effective Homomorphism Check for Predicate Edges

In order to check that some predicate edge of G1 is homomorphic to a sub-graph of
G2, we define an effective procedure based on tree automata. For the simplicity of the
presentation, we consider that predicates in P have the following form:

P(in,out, �nhb) � (in = out) ∨ (∃u′,v′.
in �→ {(f ,u′),(g,b1),(h,v′)} ∗R(v′,b2,�b) ∗ P(u′,out, �nhb)),

(5)

where b1,b2,�b ⊆ �nhb, f ,h,g ∈ Flds, and R ∈ P .

Such predicates describe nested list segments where every two consecutive elements
are linked by f , the g field of every element points to some fixed location b, and the
h field of every element points to a list segment described by R. Note that the results
below can be extended to predicates describing doubly-linked list segments like in (2)
or cyclic nested list segments.

Essentially, we model heap graphs by (unranked) labeled trees and then, for each
recursive predicate P, we define a (non-deterministic) top-down tree automaton that
recognizes exactly all the heap graphs that describe unfoldings of P. The fact that some
predicate edge e of G1 is homomorphic to a sub-graph of G2 reduces to the fact that the
tree-modeling of the sub-graph of G2 is accepted by the tree automaton corresponding
to the predicate labeling e.
Tree Automata: A tree over an alphabet Σ is a partial mapping t : N∗ → Σ such that
dom(t) is a finite, prefix-closed subset of N∗. Let ε denote the empty sequence. Each
sequence p ∈ dom(t) is called a vertex and a vertex p with no children (i.e., for all i ∈N,
pi �∈ dom(t)) is called a leaf.

162 C. Drăgoi, C. Enea, and M. Sighireanu

A (top-down) tree automaton is a tuple A = (Q,Σ, I,δ), where Q is a finite set of
states, I ⊆ Q is a set of initial states, Σ is a finite alphabet, and δ is a set of transition

rules of the form q
f−→ (q1, . . . ,qn), where n ≥ 0, q,q1, . . . ,qn ∈ Q, and f ∈ Σ.

A run of A on a tree t over Σ is a mapping π : dom(t)→ Q such that π(ε) ∈ I and for

each non-leaf vertex p ∈ dom(t), δ contains a rule of the form q
t(p)−→ (q1, . . . ,qn), where

q = π(p) and qi = π(pi), for all i such that pi ∈ dom(t). The language of A is the set of
all trees t for which there exists a run of A on t.

Tree-modeling of Heap Graphs: Note that the minimal heap graphs that are homo-
morphic to a predicate edge have a special form: nodes with more than one incoming
edge have no successors. Such heap graphs are transformed into tree-shaped graphs
with labeled nodes by (1) moving edge labels to the source node and (2) introducing
copies of nodes with more than one incoming edge (i.e., for every set of edges E ′ hav-
ing the same destination n, introduce |E ′| copies of n and replace every edge (m,n) by
(m,nm), where nm is a copy of n). We also replace labels of predicate edges of the form
(Pα, �NB) with (P,�B), where �B is a tuple of variables labeling the nodes in NB.

Given a finite set of variables V , let ΣV = 2Flds∪V ∪{(P,�B) | P ∈ P ,�B ∈ V +}. The
tree-modeling of a heap graph G is the tree t[G] over ΣV isomorphic to the tree-shaped
graph described above; V is the set of variables labeling nodes of the graph.

Tree Automata Recognizing Unfoldings of Recursive Predicates: The definition of
the tree-automata associated to a predicate P as in (5), denoted AP, follows its recursive
definition. I(AP) = {qP

0} and the transition rules in δ(AP) are defined as follows:

qP
0

{in, f ,g,h}−−−−−−→(qP
rec,q

P
g ,q

P
h) qP

rec
{ f ,g,h}−−−−−→(qP

rec,q
P
g ,q

P
h) qP

h
h−→qR

0

qP
0

{in,out}−−−−−→ε qP
rec

(P′,�B)−−−−→qP
rec, with P′(E,F,�B)� P(E,F,�B) qP

g
b−→ε

qP
rec

out−−→ε Rules(R)[ϒ]

where qR
0 is the initial state of AR, the tree automaton for R, and Rules(R)[ϒ] denotes

the set δ(AR) where variables are substituted by the actual parameters v′, b2, and�b.

6 Widening

We describe the widening operator � , which satisfies the following properties: (1) it
defines an upper bound for any two elements of ASL, i.e., given Φ1,Φ2 ∈ ASL, Φ1 �
Φ1� Φ2 and Φ2 � Φ1� Φ2, and (2) for any infinite ascending chain Φ1 � Φ2 � . . . �
Φn � . . . in ASL, there exists a finite chain Φ�

1 � . . .�Φ�
k in ASL such that Φ�

1 =Φ1,
Φ�

i = Φ�
i−1� Φi+1, for every 2 ≤ i ≤ k, and Φ�

k =Φ�
k � Φk+1. The widening operator

is used to ensure the termination of fixed point computations over elements of ASL.
We define ϕ1� ϕ2, for any ϕ1 and ϕ2 two disjunction-free formulas in ASL. The

extension to disjunctions is straightforward. The widening operator is parametrized
by a natural number K such that ϕ1� ϕ2 returns a set of heap graphs with at most
max(annon(ϕ1),K) anonymous nodes, where annon(ϕ1) is the number of anonymous
nodes in G[ϕ1]. Therefore, an infinite ascending chain is over-approximated by a finite
one, whose elements have at most as many anonymous nodes as either the first element
of the infinite ascending chain or the parameter K, depending on which one is bigger.

Local Shape Analysis for Overlaid Data Structures 163

Widening Operator Description: Intuitively, the result of ϕ1� ϕ2 should preserve the
properties which are present in both ϕ1 and ϕ2. To this, each graph Gi = G[ϕi], i ∈
{1,2}, is split into three sub-graphs G+

i , G−
i , and G�

i such that:

– the sets of spatial edges in these sub-graphs form a partition of the set of spatial
edges in Gi;

– there exists an homomorphism h→ from the sub-graph G+
1 to G−

2 and an homomor-
phism h← from G+

2 to G−
1 ;

– G+
1 and G+

2 are maximal.

Here, a heap graph G′ is called a sub-graph of a heap graph G if it contains only a subset
of the nodes and edges in G, for each node n, the labeling of n in G′ is a subset of the
labeling of n in G such that PVarsG(n) �= /0 implies PVarsG′(n) �= /0, and the Ω∗ and Λ
components of G′ are also subsets of the corresponding components of G.

The two tuples of sub-graphs are called an homomorphism induced partition.

Example 2. Let G1 and G2 be the graphs pictured in the first row of Fig. 7. The tuples
of sub-graphs (G+

1 ,G
−
1 ,G

�
1) and (G+

2 ,G
−
2 ,G

�
2) given in the second row of Fig. 7 define

homomorphism induced partitions for G1 and, resp., G2. These partitions correspond to
the homomorphisms hi j : G+

i → G−
j , which map the node labeled by y (resp., z) in G+

i

to the node labeled by y (resp., z) in G−
j , for all 1 ≤ i �= j ≤ 2.

If G�
1 = /0 and G�

2 = /0 then each spatial edge of G1 is homomorphic to a sub-graph
of G2 or vice-versa. In this case, the result of the widening is the graph defined as the
union of G+

1 and G+
2 , i.e., the weakest among the comparable sub-graphs. The union

operator
⊎

is parametrized by the two homomorphisms h→ and h← in order to (1)
merge nodes which are matched according to these homomorphisms, (2) identify the
object separated spatial constraints in the union of the two sub-graphs, and (3) compute
the union of the sharing constraints. In this case, the number of anonymous nodes in
ϕ1� ϕ2 is bounded by the number of anonymous nodes in ϕ1.

Otherwise, the widening operator tries to return two graphs G′
1 and G′

2, each of them
being obtained from G1 resp. G2, by replacing the sub-graph G−

i with its weaker version
G+

j , where i, j ∈ {1,2} and i �= j. However, to preserve the bound on the number of
anonymous nodes, this operation is possible only if the number of anonymous nodes in
G′

1 and G′
2 is smaller than max(annon(ϕ1),K).

Example 3. In Fig. 7, if K = 3 then G1� G2 has two disjuncts. The first one, G′
1, is

obtained from G1 using the homomorphism h21: (1) the graph G−
1 is replaced by G+

2 ,
and (2) the sharing constraints β=α1∪α2 become α= β, where β is the set of locations
in the doubly-linked list defined by dllβ. The second disjunct, G′

2, is obtained similarly
from G2 using h12.

Operator fold: If the above condition on the number of anonymous nodes is not sat-
isfied then, we apply an operator called fold on each of the two graphs. Given a heap
graph G and some b ∈ N, fold builds a graph F with at most b anonymous nodes, ob-
tained from G by replacing edges used by non-empty unfoldings of recursive predicates
with predicate edges (labeled with fresh set variables). Moreover, nodes in F without
incident edges are removed. The graph F is homomorphic to G and fold also returns
the homomorphism h from F to G. The operator fold may fail to obtain a graph with at
most b anonymous nodes in which case it returns �.

164 C. Drăgoi, C. Enea, and M. Sighireanu

The object/field separation between predicate edges copied from G to F is preserved.
Two predicate edges in F are object separated if (1) they replace two unfoldings in G
that contain disjoint sets of nodes and any two predicate edges from the two unfoldings
are object separated in G or (2) one of them, denoted by e1, replaces an unfolding in G,
the other one, denoted by e2, is copied from G, and all the edges from the unfolding are
object separated from e2 in G. Otherwise, the predicate edges are field separated.

G1� G2 �
let (G+

1 ,G−
1 ,G�

1) and (G+
2 ,G−

2 ,G�
2)

be an homomorphism induced partition
of G1 and G2

let π = (h→,h←)

if (G�
1 = /0 ∧ G�

2 = /0) then
return G+

1
⊎π G+

2 ;
else

G′
1 =
(
G+

1
⋃

G�
1

) ⊎h← G+
2 ;

G′
2 =
(
G+

2
⋃

G�
2

) ⊎h→ G+
1 ;

bound= max(annon(ϕ1),K);
if (annon(G′

1)≤ bound

∧annon(G′
2)≤ bound) then

return G′
1 ∨G′

2;
else

for each 1 ≤ i ≤ 2 do
bi = bound−annon(G+

i
⋃

G−
i);

(Fi,hi) = fold(G�
i ,bi);

G′
i =
(
G+

i
⋃

G−
i

) ⊎hi Fi;
return G′

1� G′
2;

Fig. 6. The definition of �

Another important property of fold is to
maintain relations between sets of locations
that correspond to unfoldings of recursive
predicates, replaced by predicate edges. For
any sub-graph G′ of G representing the un-
folding of a recursive predicate, let TG′ be the
set term defined as the union of all set vari-
ables labeling edges in G′ and all location
variables, which are the source of at least one
points-to edge in G′. Based on the equalities
between location variables in G, the sharing
constraints Λ(G), and the inference rule “if
t1 = t ′1 and t2 = t ′2 then t1 ∪ t2 = t ′1 ∪ t ′2”, for
any set terms t1, t ′1, t2, and t ′2, fold generates
new equalities between (unions of) set terms
TG′ or between (unions of) set terms TG′ and
set variables labeling edges copied from G to
F . Once a predicate edge e in F replaces the
unfolding of a recursive predicate G′, the set
term TG′ is substituted by the set variable la-
beling e. Similarly, fold generates constraints
of the form t ∩ t ′ = /0 with t and t ′ set terms,
and constraints of the form x ∈ t or x �∈ t.

In the definition of � , the argument of fold is the graph G�
i where anonymous nodes

that are incident to edges in G+
i or G−

i are labeled by ghost program variables so they
are preserved in the output of fold. Then, the graph G′

i is defined by replacing the sub-
graph G�

i of Gi with the one returned by fold, i.e., Fi. This replacement is written as
the union of the sub-graph G+

i
⋃

G−
i with Fi, where the homomorphism hi is used to

merge nodes which are associated by hi and to identify the object separated constraints.
Finally, the widening operator is called recursively on the new graphs. Notice that, the
widening operator contains at most one recursive call. The first execution of � recog-
nizes unfoldings of recursive predicates and, if needed, eliminates enough anonymous
nodes in order to make the recursive call succeed.

Example 4. In Fig. 7, if K = 0 then bound = 1 because G1 contains one anonymous
node. The computation of � based only on

⊎
doesn’t satisfy the bound on the number

of anonymous nodes because G�

2 contains two anonymous nodes labeled by v′ and u′.
Therefore, we apply fold(G�

2 ,1) and the result is the graph F2 given on the third row of
Fig. 7. The graph F2 is obtained from G�

2 by replacing the sub-graph of G�
2 that consists

of all edges labeled by succ with a predicate edge labeled by lsδ and the sub-graph of

Local Shape Analysis for Overlaid Data Structures 165

First input of widening G1 = G[ϕ1]: Second input of widening G2 = G[ϕ2]:

x y z

w′

β = α1 ∪α2

prev
1,2

next
1,2

succ
1,2

lsα1

1 lsα21

dllβ
2

x u′ v′

y z

w′

α = β1 ∪β2

prev
1-3

prev
1-3

prev
1-3

next
1-3

next
1-3

next
1-3

succ
1-3

succ
1-3

succ
1-3

dllβ1

2 dllβ23

lsα
1

G�
1 :

x y

prev
1,2

next
1,2

succ
1,2

G+
1 :

y zdllβ
2

G−
1 :

y z

w′

lsα1

1
lsα2

1

G�
2 :

x u′ v′ y

prev
1-3

prev
1-3

prev
1-3

next
1-3

next
1-3

next
1-3

succ
1-3

succ
1-3

succ
1-3

G+
2 :

y zlsα
1

G−
2 :

y z

w′

dllβ1
2

dllβ2
3

F2 = fold(G�
2) : G′

2 = (G+
2 ∪G−

2)
⊎

F2 : G1� G2 :

x y

γ = δ

dllγ

lsδ

x

y z

w′

γ = δ∧α = β1 ∪β2

dllβ2

2 dllβ13

lsα
1

dllγ
4

lsδ
1

x y

z

γ = δ∧α = β

dllβ
2

lsα
1

dllγ
4

lsδ
1

Fig. 7. Steps in the computation of � (the object separated edges are defined by Ω∗ = {(e,e′) |
the integers labeling e are included in the integers labeling e′ or vice-versa})

G�
2 that consists of all edges labeled by next and prev with a predicate edge labeled by

dllγ. The set terms which correspond to these two unfoldings are {x}∪{u′}∪{v′} and
respectively, {x}∪{u′} ∪ {v′}. Since they contain exactly the same location variables
the equality γ = δ is added to the sharing constraints of the output graph. Also, because
all the edges incident to u′ and v′ are included in the two unfoldings, these two nodes are
removed. The two edges of F2 are field separated because the corresponding unfoldings
share some node. Since G�

1 has no anonymous nodes, fold(G�
1 ,1) = G�

1 and G′
1 =(

G+
1

⋃
G−

1

) ⊎hi F1 = G1.
The second column in the last row of Fig. 7 shows the graph G′

2 obtained by replacing
in G2, G�

2 with F2. Finally, G1� G2 equals G1� G′
2, which is given in the bottom right

corner of Fig 7. Notice that the computation of G1� G′
2 requires only the union.

Operator
⊎h: Formally,

⊎h replaces in a given graph G, a sub-graph G′ by another
graph G′′ s.t. h is an homomorphism from G′′ to G′. For example,

(
G+

1
⋃

G�

1

) ⊎h← G+
2

replaces the sub-graph G−
1 of G1 with the graph G+

2 (h← is an homomorphism from G+
2

to G−
1). The result of

⊎h on G, G′, G′′, and h is the heap graph (V,E,π, �,Ω∗,Λ), where:

– V is obtained from V (G \G′)∪V (G′′), where V (G \G′) is the set of nodes in G,
which have at least an incident edge not included in G′, by merging every m ∈V (G)
with one of the nodes in h−1(m), provided that h−1(m) �= /0;

– for any n ∈V , the set of variables �(n) is the union of the label of n in G, �(G)(n),
and the label of n in G′′, �(G′′)(n);

166 C. Drăgoi, C. Enea, and M. Sighireanu

– E = (E(G)\E(G′))∪E(G′′);
– Ω∗ is defined from Ω∗(G) and Ω∗(G′′) as follows: (e,e′) ∈ Ω∗ iff either (i) (e,e′) ∈

Ω∗(G), (ii) (e,e′) ∈ Ω∗(G′′), or (iii) e ∈ E(G), e′′ ∈ E(G′′), and for any edge e′ in
the sub-graph of G to which e′′ is mapped by the homomorphism h, (e,e′)∈ Ω∗(G);

– Λ is the union of (1) the constraints Λ(G′′) in G′′ and (2) the constraints Λ(G) in
G where every set term t, denoting all the locations in some heap region described
by a sub-graph of G′ associated by the homomorphism h to an edge e′′ of G′′, is
replaced by the set variable α in the label of e′′. Note that Λ contains only set
variables which appear in labels of E .

Operator
⊎π: Given (G+

1 ,G
−
1 ,G

�
1) and (G+

2 ,G
−
2 ,G

�
2) two homomorphism induced

partitions of G1 and resp., G2, and π = (h→,h←), G+
1

⊎π G+
2 is defined similarly to

G+
1

⊎h← G+
2

3 except for the fact that the constraint on set variables is defined as the
conjunction of all the constraints which appear in both G+

1
⊎h← G+

2 and G+
2

⊎h→ G+
1 .

Complexity: The search for homomorphism induced partitions is done in linear time in
the size of the input graphs. The correspondence between anonymous nodes in h← and
h→ is chosen arbitrarily (in practice, they are chosen according to some heuristics). In
order to obtain a more precise result, one should enumerate an exponential number of
such mappings. Given an arbitrary but fixed order relation on the recursive predicates,
the complexity of the operator fold which replaces predicate unfoldings with predicate
edges according to this order is PTIME. In our implementation, the operator fold is
parametrized by a set of order relations among recursive predicates (in practice, we
have used a small number of such order relations) and it enumerates all of them until it
succeeds to eliminate the required number of anonymous nodes.

7 Abstract Transformers

In this section, we describe the abstract transformers associated with intra-procedural
statements (in Sec. 7.1) and procedure calls and returns (in Sec. 7.2).

7.1 Intra-procedural Analysis

For any basic statement C, which does not contain a procedure call, the analysis uses
an abstract transformer [[C]]� : H G → 2H G that, given a heap graph G ∈ H G , it re-
turns either � meaning that a possible memory error has been encountered, or a set of
heap graphs representing the effect of the statement C on G. The transformers [[C]]� are
defined as the composition of three (families of) functions:

materialization →x, f : transforms a heap graph, via case analysis, into a set of heap
graphs where the value of the field f stored at the address pointed to by the program
variable x is concretized. It returns � if it can not prove that x is allocated in the
input.

symbolic execution �: expresses the concrete semantics of the statements in terms of
heap graphs, e.g., for an assignment x := y, it merges the nodes labeled by x and y.

3 In G+
1

⊎h← G+
2 , G−

1 is replaced by G+
2 .

Local Shape Analysis for Overlaid Data Structures 167

consistency check →#: takes the graphs from the output of the symbolic execution and
checks if their concretization is empty or if they contain garbage. All graphs with
empty concretization are removed and if garbage is detected then the result is �.

Materialization →x, f : The relation →x, f for dereferencing the field f of the object
pointed to by x is defined by a set of rewriting rules over ASL elements. When the value
of f is characterized by a predicate edge that starts or ends in a node labeled by x then
the rules are straightforward. If the sharing constraints imply that x belongs to the list
segment described by some predicate edge (which is not incident to a node labeled by
x) and this list segment uses the field f then, we use the following rules:

G →x, f unfoldMiddle(G,e,x)

if e is a predicate edge in G labeled by Pα such that Λ(G)⇒ x ∈ α
and f ∈ Flds0(Pα)

G →x, f unfoldMiddle(G,e,)

if e is a predicate edge in G labeled by Pα such that Λ(G)⇒ x ∈ α
and f ∈ Flds(Pα)\Flds0(Pα)

The function unfoldMiddle(G,e,ξ) concretizes the fields of an arbitrary object in the
list segment described by e, that has the same type as the nodes incident to e. Sup-
pose that e starts in the node n, labeled by y1, and ends in the node n′, labeled by
y2. For simplicity, suppose that e is labeled by a predicate Pα defined as in (3). Then,
unfoldMiddle replaces the edge e with the graph representation of Pα′(y1,u′1, �nhb)∗w

Σ(u′1,u′2,�v′, �nhb,�β) ∗w Pα′′(u′2,y2, �nhb). If ξ is a program variable and the formula Σ in
the definition of Pα contains a points-to constraint of the form in �→ {(f ,w)}, for some
w ∈ LVars, i.e., the direction of f is from x to y then, the node labeled by ξ is merged
with the node labeled by u′1. Otherwise, the node labeled by ξ is merged with the node
labeled by u′2. Finally, the constraints TΣ ∩α′ = /0, TΣ ∩α′′ = /0, α′ ∩α′′ = /0 are added
to Λ(G) and all occurrences of α in Λ(G) are substituted with α′ ∪TΣ ∪α′′.

In general, the output of →x, f depends on the (dis)equalities which are explicit in
the input heap graph (e.g., an equality x1 = x2 is explicit if there exists a node labeled
by both x1 and x2). In order to make explicit all the (dis)equalities which are implied
by the input graph, (e.g., ls(x,y)∗ ls(x,z)∗ y �→ {(f , t)} implies x = z), one can use the
normalization procedure introduced in [13], based on SAT solvers.

7.2 Inter-procedural Analysis

We consider an inter-procedural analysis based on the local heap semantics [18]. The
analysis explores the call graph of the program starting from the main procedure and
proceeds downward, computing for each procedure Proc, a set of summaries of the
form (ϕi,Φo), where ϕi and Φo are ASL elements, ϕi disjunction-free. Essentially, ϕi

is an abstract element built at the entry point of the procedure Proc by the transformer
associated to call Proc(�x), which describes the part of the heap reachable from the
actual parameters�x. Then, Φo is the abstract element obtained by analyzing the effect of
Proc on the input described by ϕi. The transformer associated to the return statement
takes a summary (ϕi,Φo) of Proc and returns a set of heap graphs obtained from the
ones associated to the control point of the caller that precedes the procedure call by

168 C. Drăgoi, C. Enea, and M. Sighireanu

replacing the graph ϕi with each of the graphs in Φo. The important operations for the
inter-procedural analysis are the computation of the local heap at the procedure call and
the substitution of the local heap with the output heap at the procedure return.

These operations are more difficult in the presence of cutpoints, i.e., locations in the
local heap of the callee which are reachable from local variables of other procedures in
the call stack without passing through the actual parameters. For simplicity, we define
the call transformer such that it returns � whenever it detects cutpoints. This is still
relevant, because in practice most of the procedure calls are cutpoint-free.

Frame Rules: We follow the approach in Gotsman et al. [14] and define these trans-
formers based on a frame rule for procedure calls. The fragment of NOLL without ∗w

and sharing constraints satisfies the following frame rule [14]:

φ |= φcallσ∗φ1 φretσ∗φ1 |= φ′ {φcall}Proc(�x){φret}
{φ}Proc(�xσ){φ′}

where σ is the substitution from formal to actual parameters. Intuitively, this means that
it is possible to analyze the effect of Proc(�x) on a part of the heap, φcall , while holding
the rest of the heap φ1 aside, to be added to the heap φret that results from executing
Proc. In general, φcallσ and φ1 can be chosen arbitrarily but, in order to be precise,
φcallσ should contain all the heap locations reachable from the actual parameters.

In the following, we extend this frame rule to work for both per-object and per-field
separating conjunction. Given a disjunction-free NOLL formula ϕ, T [ϕ] denotes the set
term which is the union of all set variables in ϕ and all location variables which are on
the left side of a points-to constraint. Then, the following holds:

φ |= (φcallσ∗w φ1)∗φ2 (φret σ∗w φ1)∗φ2 ∧Λ |= φ′ {φcall}Proc(�x){φret}
{φ}Proc(�xσ){φ′}

where σ is the substitution from formal to actual parameters and

Λ � T [φret]∩T1 = /0 with T1 a set term over variables in φ1 s.t. φ |= T [φcallσ]∩T1 = /0.

The formula Λ expresses the fact that if all heap locations in the interpretation of T1 are
disjoint from the ones included in the local heap of Proc then, they will remain disjoint
from all the locations in the output of Proc.

Computing the Local Heap: To compute φcall , we proceed as follows (as before, this
is important only for precision). For any procedure Proc, Flds(Proc) denotes the set
of fields accessed by Proc, which consists of (1) the fields f such that x-> f appears in
some expression and (2) all the fields of the type RT such that Proc contains a free
statement over a variable of type RT . This set of fields can be computed easily from
the syntactic tree of Proc. Given an ASL element φ, a spatial edge in φ is called a
Proc-edge iff it is a points-to edge labeled by some f ∈ Flds(Proc) or a predicate edge
labeled by Pα with Flds(Pα)∩Flds(Proc) �= /0.

The set of spatial edges in φcall is the union of (1) the subgraph Gr of φ that contains
all the Proc-edges which are reachable from the actual parameters using only Proc-
edges and (2) all the Proc-edges e such that the set of locations characterized by e is
not disjoint from the set of locations characterized by Gr, according to φ (e.g., if e is a

Local Shape Analysis for Overlaid Data Structures 169

Table 1. Experimental results on an Intel Core i3 2.4 GHz with 2GB of memory (3×dll means
3 instances of the predicate dll over 3 disjoint sets of pointer fields)

program size spec NOLL analysis – max time (sec)
#fun #lines P #iter #graphs #anon (K)

list-dio 5 134 2×dll 5 16 3 <3

many-keys 4 87 3×dll 3 8 2 <1

cache 4 88 dll 3 5 2 <1

nagios-event 4 90 nll, 2×ls 3 5 2 <2

nagios-task 4 112 nll,dll,sll,ls 5 8 3 <2

nagios-queue 4 101 nll,dll,ls 3 5 2 <2

predicate edge labeled by Pα then φ �⇒ α∩T [Gr] = /0). The pure and sharing constraints
in φcall are all the pure and the sharing constraints in φ that contain variables from the
spatial constraints in φcall .

8 Experiments

We have implemented our inter-procedural analysis in the plugin CELIA [3,5] of the
FRAMA-C platform [4] for C program analysis. The domain ASL has been imple-
mented as a C library which takes as input a set of predicates defined in the logic ACSL
of FRAMA-C. To reduce the number of disjuncts in a formula, we define an heuristic
for choosing when to replace pairs of disjuncts G1, G2 by their widening G1� G2.

We have considered two classes of programs. The first class contains the examples
from [16] which manipulate (i.e., create, find, add, delete) doubly linked lists (DLL):
(list-dio) manipulates two overlaid, circular DLL per-object separated from a third
circular DLL; (many-keys) manipulates three overlaid and circular DLL; (cache) ma-
nipulates one circular DLL with a pointer to the last added cell. The second class of
examples is extracted from the Nagios data structures and work on nested linked lists
(NLL) combined with singly (SLL) or doubly linked lists: (nagios-event) manipu-
lates an NLL where all the nested cells are shared with a SLL, (nagios-task) is the
example considered in the overview, and (nagios-queue) manipulates an NLL where
some of the nested list cells are shared with a DLL.

Table 1 presents the results of our analysis on the above benchmark. Column P indi-
cates the set of predicates used by the analysis for each example. The last five columns
gives collected informations about the analysis, e.g., the number of widening points,
the maximal number of graphs in the abstract values and the maximal size of these
graphs, and the maximal time for the analysis of included functions. For the first three
examples, the comparison with the execution times reported in [16] raises the follow-
ing comments. The experiments have been done on different hardware configurations
and the set of recursive predicates supported in [16] does not include predicates for
describing nested lists, but predicates for describing tree data structures.

The precision and the efficiency of our analysis depends on several factors. One
factor is the choice of an adequate set P of recursive predicates. The set P should be

170 C. Drăgoi, C. Enea, and M. Sighireanu

expressive enough to describe all the data structures manipulated by the program and,
for efficiency, it should be minimal and not contain unused predicates (such predicates
may slow down the fold procedure used in the widening operator). The scalability of our
analysis also depends on the modularity of the input program: if the code is structured
in functions that deal with one non-overlapped list at a time then the analysis is more
efficient. However, this does not have an influence on the precision of the analysis.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model checking
c programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 268–283.
Springer, Heidelberg (2001)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: On inter-procedural analysis of programs
with lists and data. In: PLDI, pp. 578–589. ACM (2011)

4. CEA. Frama-C Platform, http://frama-c.com
5. Celia plugin, http://www.liafa.univ-paris-diderot.fr/celia
6. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL, pp. 247–260. ACM

(2008)
7. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant checkers.

In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401. Springer,
Heidelberg (2007)

8. Chin, W.-N., Gherghina, C., Voicu, R., Le, Q.L., Craciun, F., Qin, S.: A specialization calcu-
lus for pruning disjunctive predicates to support verification. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 293–309. Springer, Heidelberg (2011)

9. Cook, B., Haase, C., Ouaknine, J., Parkinson, M.J., Worrell, J.: Tractable reasoning in a
fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 235–249. Springer, Heidelberg (2011)

10. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL. ACM (1977)

11. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer,
Heidelberg (2006)

12. Dudka, K., Müller, P., Peringer, P., Vojnar, T.: Predator: A verification tool for programs
with dynamic linked data structures - (competition contribution). In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 545–548. Springer, Heidelberg (2012)

13. Enea, C., Saveluc, V., Sighireanu, M.: Compositional invariant checking for overlaid and
nested linked lists. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp.
129–148. Springer, Heidelberg (2013)

14. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with separated heap ab-
stractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260. Springer, Heidelberg
(2006)

15. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes.
In: POPL, pp. 239–251. ACM (2009)

16. Lee, O., Yang, H., Petersen, R.: Program analysis for overlaid data structures. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 592–608. Springer, Heidelberg
(2011)

http://frama-c.com
http://www.liafa.univ-paris-diderot.fr/celia

Local Shape Analysis for Overlaid Data Structures 171

17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS,
pp. 55–74. IEEE Computer Society (2002)

18. Rinetzky, N., Bauer, J., Reps, T.W., Sagiv, S., Wilhelm, R.: A semantics for procedure local
heaps and its abstractions. In: POPL, pp. 296–309. ACM (2005)

19. Toubhans, A., Chang, B.-Y.E., Rival, X.: Reduced product combination of abstract do-
mains for shapes. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 375–395. Springer, Heidelberg (2013)

20. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scalable
shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 385–398. Springer, Heidelberg (2008)

Quantified Data Automata on Skinny Trees:

An Abstract Domain for Lists

Pranav Garg1, P. Madhusudan1, and Gennaro Parlato2

1 University of Illinois at Urbana-Champaign, USA
2 University of Southampton, UK

Abstract. We propose a new approach to heap analysis through an ab-
stract domain of automata, called automatic shapes. Automatic shapes
are modeled after a particular version of quantified data automata on
skinny trees (QSDAs), that allows to define universally quantified prop-
erties of programs manipulating acyclic heaps with a single pointer field,
including data-structures such singly-linked lists. To ensure convergence
of the abstract fixed-point computation, we introduce a subclass of
QSDAs called elastic QSDAs, which forms an abstract domain. We eval-
uate our approach on several list manipulating programs and we show
that the proposed domain is powerful enough to prove a large class of
these programs correct.

1 Introduction

The abstract analysis of heap structures is an important problem in program
verification as dynamically evolving heaps are ubiquitous in modern program-
ming, either in terms of low level pointer manipulation or in object-oriented
programming. Abstract analysis of the heap is hard because abstractions need
to represent the heap which is of unbounded size, and must capture both the
structure of the heap as well as the unbounded data stored in the heap. While sev-
eral data-domains have been investigated for data stored in static variables, the
analysis of unbounded structure and unbounded data that a heap contains has
been less satisfactory. The primary abstraction that has been investigated is the
rich work on shape analysis [25]. However, unlike abstractions for data-domains
(like intervals, octagons, polyhedra, etc.), shape analysis requires carefully cho-
sen instrumentation predicates to be given by the user, and often are particular
to the program that is being verified. Shape analysis techniques typically merge
all nodes that satisfy the same unary predicate, achieving finiteness of the ab-
stract domain, and interpret the other predicates using a 3-valued (must, must
not, may) abstraction. Moreover, these instrumentation predicates often require
to be encoded in particular ways (for example, capturing binary predicates as
particular kinds of unary predicates) so as to not lose precision.

For instance, consider a sorting algorithm that has an invariant of the form:

∀x, y. ((x →∗
next y ∧ y →∗

next i) ⇒ d(x) ≤ d(y))

which says that the sub-list before pointer i is sorted. In order to achieve a shape-
analysis algorithm that discovers this invariant (i.e., captures this

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 172–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Quantified Data Automata on Skinny Trees 173

invariant precisely during the analysis), we typically need instrumentation pred-
icates such as p(z) = z →∗

next i, s(x) = ∀y.((x →∗
next y ∧ y →∗

next i) ⇒ d(x) ≤
d(y)), etc. The predicate s(x) says that the element that is at x is less than or
equal to the data stored in every cell between x and i. These instrumentation
predicates are clearly too dependent on the precise program and property being
verified.

In this paper, we investigate an abstract domain for heaps that works without
user-defined instrumentation predicates (except we require that the user fix an
abstract domain for data, like octagons, for comparing data elements).

We propose a radically new approach to heap analysis through an abstract
domain of automata, called automatic shapes (automatic because we use au-
tomata). Our abstract domain are modeled after a particular kind of automata,
called quantified data automata, that define, logically, universally quantified
properties of heap structures. In this paper, we restrict our attention to acyclic
heap structures that have only one pointer field ; our analysis is hence one that
can be used to analyze properties of heaps containing lists, with possible aliasing
(merging) of them, especially at intermediate stages in the program. One-pointer
acyclic heaps can be viewed as skinny trees (trees where the number of branching
nodes is bounded).

Automata, in general, are classical ways to capture an infinite set of objects
using finite means. A class of (regular) skinny trees can hence be represented
using tree automata, capturing the structure of the heap. While similar ideas
have been explored before in the literature [14], our main aim is to also represent
properties of the data stored in the heap, building automata that can express
universally quantified properties on lists, in particular those of the form∧

i ∀x. (Guardi(p, x) ⇒ Datai(d(p), d(x)))

where p is the set of static pointer variables in the program. The Guardi formulas
express structural constraints on the universally quantified variables and the
pointer variables, while the Datai formulas express properties about the data
stored at the nodes pointed to by these pointers. In this paper, we investigate
an abstract domain that can infer such quantified properties, parameterized by
an abstract numerical domain Fd for the data formulas and by the number of
quantified variables x.

The salient aspect of the automatic shapes that we build is that (a) there
is no requirement from the user to define instrumentation predicates for the
structural Guard formulas; (b) since the abstraction will not be done by merging
unary predicates and since the automata can define how data stored at multiple
locations on the heap are related, there is no need for the user to define carefully
crafted unary predicates that relate structure and data (e.g., the unary predicate
s(x) defined above that says that the location x is sorted with respect to all
successive locations that come after x but before i). Despite this lack of help
from the user, we show how our abstract domain can infer properties of a large
number of list-manipulating programs adequately to prove interesting quantified
properties.

174 P. Garg, P. Madhusudan, and G. Parlato

The crux of our approach is to use a class of automata, called quantified data
automata on skinny trees (QSDA), to express a class of single-pointer heap
structures and the data contained in them. QSDAs read skinny trees with data
along with all possible valuations of the quantified variables, and for each of them
check whether the data stored in these locations (and the locations pointed to
by pointer variables in the program) relate in particular ways defined by the
abstract data-domain Fd.

We show, for a simple heap-manipulating programming language, that we
can define an abstract post operator over the abstract domain of QSDAs. This
abstract post preserves the structural aspects of the heap precisely (as QSDAs
can have an arbitrary number of states to capture the evolution of the program)
and that it soundly abstracts the quantified data properties. The abstract post
is nontrivial to define and show effective as it requires automata-theoretic oper-
ations that need to simultaneously preserve structure as well as data properties;
this forms the hardest technical aspect of our paper. We thus obtain an effective
sound transfer function for QSDAs. However, it turns out that QSDAs are not
complete lattices (infinite sets may not have least upper-bounds), and hence do
not form an abstract domain to interpret programs. Furthermore, typically, in
each iteration, the QSDAs obtained would grow in the number of states, and it
is not easy to find a fixed-point.

Traditionally, in order to handle loops and reach termination, abstract do-
mains require some form of widening. Our notion of widening is founded on the
principle that lengths of stretches of the heap that are neither pointed to by
program variables nor by the quantified variables (in one particular instantia-
tion of them) must be ignored. We would hence want the automaton to check
the same properties of the instantiated heap no matter how long these stretches
of locations are. This notion of abstraction is also suggested by our earlier work
where we have shown that such abstractions lead to decidability; in other words,
properties of such abstracted automata fall into decidable logical theories [10,18].
Assume that the programmer computes a QSDA as an invariant for the pro-
gram at a particular point, where there is an assertion expressed as a quantified
property p over lists (such as “the list pointed to by head is sorted”). In order
to verify that the abstraction proves the assertion, we will have to check if the
language of lists accepted by the QSDA is contained in the language of lists that
satisfy the property p. However, this is in general undecidable. However, this in-
clusion problem is decidable if the automata abstracts the lengths of stretches as
above. Our aim is hence to over-approximate the QSDA into a larger language
accepted by a particular kind of data automata, called elastic QSDA (EQSDA)
that ignores the stretches where variables do not point to, and where ”merging”
of the pointers do not occur [10, 18].

This elastification will in fact serve as the basis for widening as well, as it
turns out that there are only a finite number of elastic QSDAs that express
structural properties, discounting the data-formulas. Consequently, we can com-
bine the elastification procedure (which over-approximates a QSDA into an
elastic QSDA) and widening over the numerical domain for the data in order to

Quantified Data Automata on Skinny Trees 175

obtain widening procedures that can be used to accelerate the computation for
loops. In fact, the domain of EQSDAs is an abstract domain and a complete
lattice (where infinite sets also have least upper-bounds), and there is a nat-
ural abstract interpretation between sets of concrete heap configurations and
EQSDAs, where the EQSDAs permit widening procedures. We show a unique
elastification theorem that shows that for any QSDA, there is a unique elastic
QSDA that over-approximates it. This allows us to utilize the abstract transfer
function on QSDAs (which is more precise) on a linear block of statements, and
then elastify them to EQSDAs at join points to have computable fixed-points.

We also show that EQSDA properties over lists can be translated to a decid-
able fragment of the logic Strand [18] over lists, and hence inclusion checking
an elastic QSDA with respect to any assertion that is also written using the
decidable sublogic of Strand over lists is decidable. The notion of QSDAs and
elasticity are extensions of recent work in [10], where such notions were devel-
oped for words (as opposed to trees) and where the automata were used for
learning invariants from examples and counter-examples.

We implement our abstract domain and transformers and show, using a suite
of list-manipulating programs, that our abstract interpretation is able to prove
the naturally required (universally-quantified) properties of these programs.
While several earlier approaches (such as shape analysis) can tackle the correct-
ness of these programs as well, our abstract analysis is able to do this without
requiring program-specific help from the user (for example, in terms of instru-
mentation predicates in shape analysis [25], and in terms of guard patterns in
the work by Bouajjani et al [5]).

Related Work. Shape analysis [25] is the one of the most well-known tech-
nique for synthesizing invariants about dynamically evolving heaps. However,
shape analysis requires user-provided instrumentation predicates which are of-
ten too particular to the program being verified. Hence coming up with these
instrumentation predicates is not an easy task. In recent work [5,6,12,21], several
abstract domains have been explored which combine the shape and the data con-
straints. Though some of these domains [6,21] can handle heap structures more
complex than singly-linked lists, all these domains require the user to provide a
set of data predicates [12] or a set of structural guard patterns [5] or predicates
over both the structure and the data constraints [6, 21]. In contrast, the only
assistance our technique requires from the user is specifying a numerical domain
over data formulas and the number of universally quantified variables.

For singly-linked lists, [20] introduces a family of abstractions based on a set
of instrumentation predicates which track uninterrupted list segments. However
these abstractions only handle structural properties and not the more-complex
quantified data properties. Several separation logic based shape analysis tech-
niques have also been developed over the years [3, 4, 9, 13]. But they too mostly
handle only the shape properties (structure) of the heap.

Our automaton model for representing quantified invariants over lists is in-
spired by the decidable fragment of Strand [18] and can track invariants with
guard constraints of the form y ≤ t or t ≤ y for a universal variable y and some

176 P. Garg, P. Madhusudan, and G. Parlato

term t. These structural constraints on the guard are very similar to array par-
titions in [8,11,15]. However, our automata model is more general. For instance,
none of these related works can handle sortedness of arrays which requires quan-
tification over more than one variable.

Techniques based on Craig’s interpolation have recently emerged as an orthog-
onal way for synthesizing quantified invariants over arrays and lists [1,17,22,26].
These methods use different heuristics like term abstraction [26] or introduction
of existential ghost variables [1] or finding interpolants over a restricted lan-
guage [17,22] to ensure the convergence of the interpolant from a small number
of spurious counter-examples. The shape analysis proposed in [24] is also counter-
example driven. [24] requires certain quantified predicates to be provided by the
user. Given these predicates, it uses a CEGAR-loop for incrementally improving
the precision of the abstract transformer and also discovering new predicates on
the heap objects that are part of the invariant.

Automata based abstract interpretation has been explored in the past [14]
for inferring shape properties about the heap. However, in this paper we are
interested in strictly-richer universally quantified properties on the data stored in
the heap. [2] introduces a streaming transducer model for algorithmic verification
of single-pass list-processing programs. However the transducer model severely
constrains the class of programs it can handle; for example, [2] disallows repeated
or nested list traversals which are required in sorting routines, etc.

In this paper we introduce a class of automata called quantified skinny-tree
data automata (QSDA) to capture universally quantified properties over skinny-
trees. The QSDA model is an extension of recent work in [10] where a similar
automata model was introduced for words (as opposed to trees). Also, the au-
tomata model in [10] was parameterized by a finite set of data formulas and was
used for learning invariants from examples and counter-examples. In contrast,
we extend the automata in [10] to be instantiated with a (possibly-infinite) ab-
stract domain over data formulas and develop a theory of abstract interpretation
over QSDAs.

2 Programs Manipulating Heap and Data

We consider sequential programs manipulating acyclic singly-linked data struc-
tures. A heap structure is composed of locations (also called nodes). Each loca-
tion is endowed with a pointer field next that points to another location or it
is undefined, and a data field called data that takes values from a potentially
infinite domain D (i.e. the set of integers). For simplicity we assume a special
location, called dirty , that models an un-allocated memory space. We assume
that the next pointer field of dirty is undefined. Besides the heap structure, a
program also has a finite number of pointer variables each pointing to a location
in the heap structure, and a finite number of data variables over D. In our pro-
gramming language we do not have procedure calls, and we handle non-recursive
procedures calls by inlining the code at call points. In the rest of the section we
formally define the syntax and semantics of these programs.

Quantified Data Automata on Skinny Trees 177

〈prgm〉 ::= pointer p1, . . . , pk; data d1, . . . , d�; 〈pc stmt〉+

〈pc stmt〉 ::= pc : 〈stmt〉;

〈stmt〉 ::= 〈ctrl stmt〉 | 〈heap stmt〉

〈ctrl stmt〉 ::= di :=〈data expr〉 | skip | assume(〈pred〉)

| if 〈pred〉 then 〈pc stmt〉+ else 〈pc stmt〉+ fi

| while 〈pred〉 do 〈pc stmt〉+ od

〈heap stmt〉 ::= new pi | pi := nil | pi := pj

| pi := pj → next | pi → next := nil | pi → next := pj

| pi → data := 〈data expr〉

Fig. 1. Simple programming language

Syntax. The syntax of pro-
grams is defined by the
grammar of Figure 1. A
program starts with the
declaration of pointer vari-
ables followed by a dec-
laration of data variables.
Data variables range over
a potentially infinite data
domain D. We assume a language of data expressions built from data variables
and terms of the form pi → data using operations over D. Predicates in our lan-
guage are either data predicates built from predicates over D or structural pred-
icates concerning the heap built from atoms of the form pi == pj , pi == nil,
pi → next == pj and pi → next == nil, for some i, j ∈ [1, k]. Thereafter, there
is a non-empty list of labelled statements of the form pc :〈stmt〉 where pc is the
program counter and 〈stmt〉 defines a language of either C-like statements or
statements which modify the heap. We do not have an explicit statement to free
locations of the heap: when a location is no longer reachable from any location
pointed by a pointer variable we assume that it automatically disappears from
the memory. For a program P , we denote with PC the set of all program coun-
ters of P statements. Figure 2(a) shows the code for program sorted list-insert
which is a running example in the paper. The program inserts a key into the
sorted list pointed to by variable head.

Semantics. A configuration C of a program P with set of pointer variables PV
and data variables DV is a tuple 〈pc, H, pval , dval 〉 where

– pc ∈ PC is the program counter of the next statement to be executed;
– H is a heap configuration represented by a tuple (Loc, next, data) where (1)

Loc is a finite set of heap locations containing special elements called nil and
dirty , (2) next : Loc �→ Loc is a partial map defining an edge relation among
locations such that the graph (Loc, next) is acyclic, and (3) data : Loc �→ D
is a map that associates each non-nil and non-dirty location of Loc with a
data value in D;

– pval : P̂V → Loc, where P̂V = PV ∪ {nil, dirty}, associates each pointer
variable of P with a location in H . If pval (p) = v we say that node v is
pointed by variable p. Furthermore, each node in Loc is reachable from a
node pointed by a variable in PV . There is no outgoing (next) edge from
location dirty and there is a next edge from the location pointed by nil to
dirty (henceforth we use PV everywhere instead of the P̂V);

– dval : DV → D is a valuation map for the data variables.

Figure 2(b) graphically shows a program configuration which is reachable at
program counter 8 of the program in Figure 2(a) (as explained later we encode
the data variable key as a pointer variable in the heap configuration). The tran-

sition relation of a program P , denoted
stmt−−−→P for each statement stmt of P , is

178 P. Garg, P. Madhusudan, and G. Parlato

defined as usual. The control-flow statements update the program counter, pos-
sibly depending on a predicate (condition). The assignment statements update
the variable valuation or the heap structure other than moving to the next pro-

gram counter. Let us define the concrete transformer F
 = λC.{C′ | C stmt−−−→P C′}.
The concrete semantics of a program is given as the least fixed point of a set of
equations of the form ψ = F
(ψ).

To simplify the presentation of the paper, we assume that our programs do
not have data variables. This restriction, indeed, does not reduce their expres-
siveness: we can always transform a program P into an equivalent program P ′

by translating each data variable d into a pointer variable that will now point
to a fresh node in the heap structure, in which the value d is now encoded by
d → data. The node pointed by d is not pointed by any other pointer, further,
d → next points to dirty . Obviously, wherever d is used in P will now be replaced
by d → data in P ′.

3 Quantified Skinny-Tree Data Automata

In this section we define quantified skinny-tree data automata (QSDAs, for
short), an accepting mechanism of program configurations (represented as spe-
cial labeled trees) on which we can express properties of the form∧

i ∀y1, . . . , y�. Guardi ⇒Datai, where variables yi range over the set of locations
of the heap, Guardi represent quantifier-free structural constraints among the
pointer variables and the universally quantified variables yi, and Datai (called
data formulas) are quantifier-free formulas that refer to the data stored at the
locations pointed either by the universal variables yi or the pointer variables,
and compare them using operators over the data domain. In the rest of this
section, we first define heap skinny-trees which are a suitable labeled tree encod-
ings for program configurations; we then define valuation trees which are heap
skinny-trees by adding to the labels an instantiation of the universal variables.
Quantified skinny-tree data automata is a mechanism designed to recognize valu-
ation trees. The language of a QSDA is the set of all heap skinny-trees such that
all valuation trees deriving from them are accepted by the QSDA. Intuitively,
the heap skinny-trees in the language defined by the QSDA are all the program
configurations that verify the formula

∧
i ∀y1, . . . , y�.Guardi ⇒ Datai.

Let T be a tree. A node u of T is branching whenever u has more than one
child. For a given natural number k, T is k-skinny if it contains at most k
branching nodes.

Heap Skinny-Trees. Let PV be the set of pointer variables of a program P
and Σ = 2PV (let us denote the empty set with a blank symbol b). We associate
with each P configuration C = 〈pc, H, pval , dval〉 with H = (Loc, next, data),
the (Σ × D)-labeled graph H = (T, λ) whose nodes are those of Loc, and where
(u, v) is an edge of T iff next(v) = u (essentially we reverse all next edges). From
the definition of program configurations, since all locations are required to be
reachable from some program variable, it is easy to see that T is a k-skinny tree

Quantified Data Automata on Skinny Trees 179

pointer head, cur , prev, tmp;
data key;

1: cur := head;
2: while (cur! = nil∧

cur → data < key) do
3: prev := cur ;
4: cur := cur → next;

od
5: new tmp;
6: tmp → data := key;
7: tmp → next := cur ;
8: if (prev ! = nil) then
9: prev → next := tmp;

else
10: head := tmp;

fi

head

2

prev

6

cur

9

tmp 8

(a)

(b)

(c) (d)

nil

$

dirty

$

key 8

({dirty}, $)

({nil}, $) ({key}, 8)

({cur}, 9)
({tmp}, 8)({prev}, 6)

({head}, 2)

({dirty},−, $)

({nil},−, $) ({key},−, 8)

({cur},y2, 9)

({tmp},−, 8)({prev},y1, 6)

({head},−, 2)

Fig. 2. (a) sorted list-insert program P ; (b) shows a P configuration at program
counter 8; (c) is the heap skinny-tree associated to (b); (d) is a valuation tree of (c)

where k = |PV |. The labeling function λ : Loc → (Σ × D) is defined as follows:
for every u ∈ Loc, λ(u) = (S, d) where S is the set of all pointer variables p such
that pval (p) = u, and d = data(u). We call H the heap skinny-tree of C.

Heap skinny-trees are formally defined as follows.

Definition 1 (Heap Skinny-Trees). A heap skinny-tree over a set of pointer
variables PV and data domain D, is a (Σ ×D)-labeled k-skinny tree (T, λ) with
Σ = 2PV and k = |PV |, such that:

– for every leaf v of T , λ(v) = (S, d) where S �= ∅;
– for every p ∈ PV , there is a unique node v of T such that λ(v) = (S, d) with

p ∈ S and some d ∈ D;
– for a node v of T such that λ(v) = (S, d), if nil∈ S then v is one of the

children of the root of T ; if v is the root of T then S = {dirty}. ��

Figure 2(c) shows the heap skinny-tree corresponding to the program configura-
tion of Figure 2(b). Note that though the program handles a singly linked list,
in the intermediate operations we can get trees. However they are special trees
with bounded branching. This example illustrates that program configurations
of list manipulating programs naturally correspond to heap skinny-trees. It also
motivates why we need to extend automata over words introduced in [10] to
quantified data automata over skinny-trees. We now define valuation trees.

Valuation Trees. Let us fix a finite set of universal variables Y . A valuation
tree over Y of a heap skinny-treeH is a (Σ×(Y ∪{−})×D)-labeled tree obtained
from H by adding an element from the set Y ∪ {−} to the label, in which every
element in Y occurs exactly once in the tree. We use the symbol ‘−’ at a node v
if there is no variable from Y labeling v. A valuation tree corresponding to the
heap skinny-tree of Figure 2(c) is shown in Figure 2(d).

180 P. Garg, P. Madhusudan, and G. Parlato

Quantified skinny-tree data automata are a mechanism to accept skinny-trees.
To express properties on the data present in the nodes of the skinny-trees,
QSDAs are parameterized by a set of data formulas F over D which form a
complete-lattice F = (F,�F ,�F ,�F , false, true) where �F is the partial-order
on the data-formulas, �F and �F are the least upper bound and the greatest
lower bound and false and true are formulas required to be in F and correspond
to the bottom and the top elements of the lattice, respectively. Also, we assume
that whenever α �F β then α ⇒ β. Furthermore, we assume that any pair of for-
mulas in F are non-equivalent. For a logical domain as ours, this can be achieved
by having a canonical representative for every set of equivalent formulas. Let us
now formally define QSDAs.

Definition 2 (Quantified Skinny-Tree Data Automata). A quantified
skinny-tree data automaton (QSDA) over a set of pointer variables PV (with
|PV | = k), a data domain D, a set of universal variables Y , and a formula
lattice F , is a tuple A = (Q,Π,Δ, T , f) where:

– Q is a finite set of states;
– Π = Σ × Ŷ is the alphabet where Σ = 2PV and Ŷ = Y ∪ {−};
– Δ = (Δ0, Δ1, . . . , Δk) where, for every i ∈ [1, k], Δi : (Q

i × Π) �→ Q is a
partial function and defines a (deterministic) transition relation;

– T : Q → 2PV ∪Y is the type associated with every state q ∈ Q;
– f : Q → F is a final-evaluation. ��

A valuation tree (T, λ) over Y of a program P , where N is the set of nodes of T ,
is recognized by a QSDA A if there exists a node-labeling map ρ : N �→ Q that
associates each node of T with a state in Q such that for each node t of T with
λ(t) = (S, y, d) the following holds (here λ′(t) = (S, y) is obtained by projecting
out the data values from λ(t)):

– if t is a leaf then Δ0(λ
′(t)) = ρ(t) and T (ρ(t)) = S ∪ {y} \ {−}.

– if t is an internal node, with sequence of children t1, t2, . . . , ti then
• Δi ((ρ(t1), . . . , ρ(ti)), λ

′(t)) = ρ(t);

• T (ρ(t)) = S ∪ {y} \ {−} ∪
(⋃

j∈[1,i] T (ρ(tj))
)
.

– if t is the root then the formula f(ρ(t)), obtained by replacing all occurrences
of terms y → data and p → data with their corresponding data values in
the valuation tree, holds true.

A QSDA can be thought as a register automaton that reads a valuation tree in
a bottom-up fashion and stores the data at the positions evaluated for Y and
locations pointed by elements in PV , and checks whether the formula associated
to the state at the root holds true by instantiating the data values in the formula
with those stored in the registers. Furthermore, the role of map T is that of
enforcing that each element in PV ∪Y occurs exactly once in the valuation tree.

A QSDA A accepts a heap skinny-tree H if A recognizes all valuation trees
of H. The language accepted by A, denoted L(A), is the set of all heap skinny-
trees H accepted by A. A language L of heap skinny-trees is regular if there is

Quantified Data Automata on Skinny Trees 181

a QSDA A such that L = L(A). Similarly, a language L of valuation trees is
regular if there is a QSDA A such that L = Lv(A), where Lv(A) is the set of
all valuation trees recognized by A.

QSDAs are a generalization of quantified data automata introduced in [10]
which handle only lists, as opposed to QSDAs that handle skinny-trees. We
now introduce various characterizations of QSDAs which are used later in the
paper.

Unique Minimal QSDA. In [10] the authors show that it is not possible
to have a unique minimal (with respect to the number of states) quantified
data automaton over words which accepts a given language over linear heap
configurations. The proof gives a set of heap configurations over a linear heap-
structure that is accepted by two different automata having the same number
of states. Since QSDAs are a generalization of quantified data automata, the
same counter-example language holds for QSDAs. However, under the assump-
tion that all data formulas in F are pairwise non-equivalent, there does exist a
canonical automaton at the level of valuation trees. In [10], the authors prove
the canonicity of quantified data automata, and their result extends to QSDAs
in a straight forward manner.

Theorem 1. For each QSDA A there is a unique minimal QSDA A′ such that
Lv(A) = Lv(A′).

We give some intuition behind the proof of Theorem 1. First, we introduce a
central concept called symbolic trees. A symbolic tree is a (Σ × (Y ∪ {−}))-
labeled tree that records the positions of the universal variables and the pointer
variables, but does not contain concrete data values (hence the word symbolic).
A valuation tree can be viewed as a symbolic tree augmented with data values at
every node in the tree. There exists a unique tree automaton over the alphabetΠ
that accepts a given regular language over symbolic trees. It can be shown that
if the set of formulas in F are pairwise non-equivalent, then each state q in the
tree automaton, at the root, can be decorated with a unique data formula f(q)
which extends the symbolic trees with data values such that the corresponding
valuation trees are in the given language of valuation trees.

Hence, a language of valuation trees can be viewed as a function that maps
each symbolic tree to a uniquely determined formula, and a QSDA can be
viewed as a Moore machine (an automaton with output function on states) that
computes this function. This helps us separate the structure of valuation trees
(the height of the trees, the cells the pointer variables point to) from the data
contained in the nodes of the trees. We formalize this notion by introducing
formula trees.

Formula Trees. A formula tree over pointer variables PV , universal variables Y
and a set of data formulas F is a tuple of a Σ×(Y ∪{−})-labeled tree (or in other
words a symbolic tree) and a data formula in F . For a QSDA which captures
a universally quantified property of the form

∧
i ∀y1, . . . , y�.Guardi ⇒ Datai,

182 P. Garg, P. Madhusudan, and G. Parlato

the symbolic tree component of the formula tree corresponds to guard formulas
like Guardi which express structural constraints on the pointers pointing into
the valuation tree. The data formula in the formula trees correspond to Datai
which express the data values with which a symbolic tree (read Guardi) can be
extended so as to get a valuation tree accepted by the QSDA. In our running
example, consider a QSDA with a formula tree which has the same symbolic tree
as the valuation tree in Figure 2(d) (but without the data values in the nodes)
and a data-formula ϕ = y1 → data ≤ y2 → data ∧ y1 → data < key ∧ y2 →
data ≥ key. This formula tree represents all valuation trees (including the one
shown in Figure 2(d)) which extend the symbolic tree with data values which
satisfy ϕ.

By introducing formula trees we explicitly take the view of a QSDA as an
automaton that reads symbolic trees and outputs data formulas. We say a for-
mula tree (t, ϕ) is accepted by a QSDA A if A reaches the state q after reading t
and f(q) = ϕ. Given a QSDA A, the language of valuation trees accepted by A
gives an equivalent language of formula trees accepted by A and vice-versa. We
denote the set of formula trees accepted by A as Lf (A). A language over formula
trees is called regular if there exists a QSDA accepting the same language.

Theorem 2. For each QSDA A there is a unique minimal QSDA A′ that
accepts the same set of formula trees.

4 A Partial Order over QSDAs

In the previous section we introduced quantified skinny-tree data automata as
an automaton model for expressing universally quantified properties over heap
skinny-trees. In this section, we first establish a partial order over the class of
QSDAs and then show that QSDAs do not form a complete lattice with respect
to this partial order. This motivates us to introduce a subclass of QSDAs called
elastic QSDAs which we show, in Section 6, form a complete lattice and can be
to compute the semantics of programs. The partial order over EQSDAs with
respect to which they form a lattice is the same as the partial order over QSDAs
we introduce in this section.

Given a set of pointer variables PV and universal variables Y , let QF be
the class of all QSDAs over the lattice of data formulas F . Clearly QF is a
partially-ordered set where the most natural partial order is the set-inclusion
over the language of QSDAs. However, QSDAs are not closed under unions.
Thus, a least upper bound for a pair of QSDAs does not exist with respect to
this partial order. So we consider a new partial-order on QSDAs which allows
us to define a least upper bound for every pair of QSDAs.

If we view a QSDA as a mapping from symbolic trees to formulas in F , we
can define a new partial-order relation on QSDAs as follows. We say A1 � A2

if Lf (A1) ⊆ Lf(A2), which means that for every symbolic tree t if (t, ϕ1) ∈
Lf(A1) and (t, ϕ2) ∈ Lf (A2) then ϕ1 �F ϕ2. Note that, whenever A1 � A2

implies that L(A1) ⊆ L(A2). QSDAs, with respect to this partial order, form a
lattice. Unfortunately,QSDAs do not form a complete lattice with respect to this

Quantified Data Automata on Skinny Trees 183

above defined partial order (infinite sets of QSDAs may not have least upper-
bounds). Consequently, we invent a subclass of QSDAs called elastic QSDAs
(or EQSDAs) which we show form a complete lattice with respect to the above
defined partial order. We also show that EQSDAs form an abstract domain
by establishing an abstraction function and a concretization function between
a set of heap skinny-trees and EQSDAs and showing that they form a Galois-
connection. Even though QSDAs do not form a complete-lattice, we describe
next a sound abstract transformer over QSDAs, a variant of which we use in
Section 6 for abstracting the semantics of programs over EQSDAs.

5 Abstract Transformer over QSDAs

In this section we describe an abstract transformer over QSDAs which soundly
over-approximates the concrete transformer over heap skinny-trees. We will later
use a variant of this transformer when we compute the semantics of programs
abstractly over EQSDAs.

Given aQSDAA, the concrete transformer F
 guesses a pre-state accepted by
A (which involves existential quantification), and then constrains the post-state
with respect to this guessed pre-state according to the semantics of the state-
ment. For instance, consider the statement pi := pj. Given a QSDA accepting
a universally quantified property ∀y1, . . . , y�.ψ, its strongest post-condition with
respect to this statement is the formula: ∃p′i.∀y1, . . . , y�.ψ[pi/p′i] ∧ pi = pj. Note
that, an interpretation of the existentially quantified variable p′i in a model of
this formula gives the location node pointed to by variable pi in the pre-state,
such that the formula ∀y1, . . . , y�.ψ was satisfied by the pre-state. However it
is not possible to express these precise post-conditions, which are usually of
the form ∃∗∀∗ψ, in our automaton model. So we over-approximate these precise
post-conditions by a QSDA which semantically moves the existential quantifiers
inside the universally quantified prefix – ∀y1 . . . y�.∃p′i.ψ[pi/p′i] ∧ pi = pj. The
existential quantifier can now be eliminated using a combination of automata
based quantifier elimination, for the structure, and the quantifier elimination
procedures for the data-formula lattice F . In the above example, intuitively,
the abstract post-condition QSDA guesses a position for the pointer variable pi
for every valuation of the universal variables, such that the valuation tree aug-
mented with this guessed position is accepted by the precondition QSDA. More
generally, the abstract transformer computes the most precise post-condition
over the language of valuation trees accepted by a QSDA, instead of computing
the precise post-condition over the language of heap skinny-trees. In fact, we
go beyond valuation trees to formula trees; the abstract transformer evolves the
language of formula trees accepted by a QSDA by tracking the precise set of
symbolic trees to be accepted in the post-QSDA and their corresponding data
formulas.

We assume that the formula lattice F supports quantifier-elimination. We
encourage the reader to keep in mind numerical domains over the theory of
integers with constants (0, 1, etc.), addition, and the usual relations (like<,≤,=)

184 P. Garg, P. Madhusudan, and G. Parlato

Table 1. Abstract Transformer F �
f over the language of formula trees. The abstract

transformer over QSDAs F �(A) = A′ where A′ is the unique minimal QSDA such
that Lf (A′) = (F �

f) Lf (A). The predicate update and the set label are defined below.

Statements Abstract Transformer F �
f on a regular language over

formula trees

pi := nil λLf .
{
(t′, ϕ′) | ϕ′ =

⊔{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,
update(t, pi := nil, t′)}}

pi := pj λLf .
{
(t′, ϕ′) | ϕ′ = (pi → data = pj → data) �⊔{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,

update(t, pi := pj , t
′)}}

pi := pj → next λLf .
{
(t′, ϕ′) | ϕ′ =

⊔{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,
update(t, pi := pj → next, t′)}�{pi → data = v → data | v ∈ label(t′, pi)}

}
pi → next := nil λLf .

{
(t′, ϕ′) | ϕ′ =

⊔{ϕ | (t, ϕ) ∈ Lf , update(t, pi → next := nil, t′)}}
pi → next := pj λLf .

{
(t′, ϕ′) | ϕ′ =

⊔{ϕ | (t, ϕ) ∈ Lf , update(t, pi → next := pj , t
′)}}

pi → data := λLf .
{
(t, ϕ′) | ϕ′ = ∃d.(ϕ[v1 → data/d, . . . , v� → data/d] �

data expr
�{v → data = data expr[v1 → data/d, . . . , v� → data/d] | v ∈ V }),

V = {v1, . . . , v�} = label(t, pi), (t, ϕ) ∈ Lf

}
assume ψstruct λLf .

{
(t′, ϕ′) | (t′, ϕ′) ∈ Lf , t′ |= ψstruct

}
assume ψdata λLf .

{
(t′, ϕ′) | ϕ′ = ϕ � ψdata , (t

′, ϕ) ∈ Lf

}
new pi λLf .

{
(t′, ϕ′) | ϕ′ = (y → data = pi → data)�⊔{∃d1d2.ϕ[pi → data/d1, y → data/d2] | (t, ϕ) ∈ Lf ,

update(t, new{y} pi, t
′)}, y ∈ Y

}⋃ {
(t′, ϕ′) | ϕ′ =

⊔{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,

update(t,new{−} pi, t
′)}}

as an example of the formula lattice. Table 11 gives the abstract transformer F �
f

which takes a regular language over formula trees Lf and gives, as output, a set
of formula trees. We know from Theorem 2 that for any regular set of formula
trees there exists a unique minimal QSDA that accepts it. We show below
(see Lemma 2) that for a QSDA A, the language over formula trees given by

(F �
f) Lf(A) is regular. Hence, we can define the abstract transformer F � as F � =

λA.A′ where A′ is the unique minimal QSDA such that Lf(A′) = (F �
f) Lf (A).

In Table 1, label(t, pi) is the set of pointer and universal variables which label
the same node in t as variable pi. The predicate update(t, stmt , t′) is true if sym-
bolic trees t and t′ are related such that the execution of statement stmt updates
precisely the symbolic tree t to t′. As an example, the abstract transformer for
the statement pi := nil in the first row of Table 1 states that the post-QSDA

maps the symbolic tree t′ to the data-formula ϕ′ where ϕ′ is the join of all for-
mulas of the form ∃d.ϕ[pi → data/d] where ϕ is the data-formula associated
with symbolic tree t in the pre-QSDA such that update(t, pi := nil, t′) is true.
1 The abstract transformer defined in Table 1 assumes that there are no memory errors
in the program. It can be extended to handle memory errors.

Quantified Data Automata on Skinny Trees 185

We now briefly describe the predicate update(t, new{ŷ} pi, t
′), where ŷ ∈

Y ∪{−}, which is used in the definition of the transformer for the new statement
and is slightly more involved. The statement new pi allocates a new memory lo-
cation. After the execution of this statement, pointer pi points to this allocated
node. Besides, the universal variables also need to valuate over this new node
apart from the valuations over the previously existing locations in the heap. The
superscript {y} in the predicate update(t, new{y} pi, t

′) tracks the case when vari-
able y ∈ Y valuates over the newly allocated node (analogously, the superscript
{-} tracks the case when no universal variable valuates over the newly allocated
node). Hence, if update(t, new{y} pi, t

′) holds true then the symbolic trees t and
t′ agree on the locations pointed to by all variables except pi and the universal
variable y; both these variables point, in t′, to a new location v which is not in
t and a new edge exists in t′ from the root to v.

An important point to note is that the abstract transformer for the statement
pi → next (i.e., the predicate update(t, pi → next := pj , t

′)) assumes that the
program does not introduce cycles in the heap configurations.

From the construction in Table 1 it can be observed that given a language of
valuation trees obtained uniquely from a language of formula trees, F �

f applies
the most-precise concrete transformer on each valuation tree in the language, and
then constructs the smallest regular language of valuation trees (or equivalently
formula trees) which approximates this set. As we have already discussed, the
abstract transformer by reasoning over valuation/formula trees (and not heap
skinny-trees) leads to a loss in precision. To regain some of the lost precision,
we define a function Strengthen which takes a formula language Lf and finds a
smaller language over formula trees, which accepts the same set of heap trees.
Here t �y stands for a Π\{y} -labeled tree which agrees with t on the locations
pointed to by all variables except y.

Strengthen = λy.λLf .
{
(t′,ϕ′) | ϕ′ = ϕ′′ � φ, (t′, ϕ′′) ∈ Lf ,

φ =
�

{∃d.ϕ[y → data/d] | (t, ϕ) ∈ Lf , t �y= t′ �y}
}

We now reason about the soundness of the operator Strengthen. Fix a y ∈ Y .
Consider aQSDAA with a language over formula trees Lf and consider all sym-
bolic trees t such that t �y= t′ �y. This implies that the trees t have the pointer
variables pointing to the same positions as t′ and have the same valuations for
variables in Y \{y}. Since our automaton model has a universal semantics, any
heap tree accepted by A should satisfy the data formulas annotated at the final
states reached for every valuation of the universal variables. If we look at a fixed
valuation for variables in Y \{y} (which is same as that in t′) and different valua-
tions for y, any heap tree accepted should satisfy the formula ∃d.ϕ[y → data/d]
for all such (t, ϕ) ∈ Lf . Hence the Strengthen operator can safely strengthen
the formula ϕ′′ associated with the symbolic tree t′ to ϕ′′ � φ. It can be shown
that for a given universal variable y and a regular language Lf , the language
over formula trees (Strengthen) y Lf is regular. In fact, the QSDA accepting the
language (Strengthen) y Lf(A) for a QSDA A can be easily constructed. The

186 P. Garg, P. Madhusudan, and G. Parlato

abstract transformer F �
f can thus be soundly strengthened by an application of

Strengthen at each step, for each variable y ∈ Y .
It is clear that the abstract transformer F �

f in Table 1 as well as the function
Strengthen are monotonic. We now show that the language over formula trees
given by (F �

f)Lf (A) is a regular language for any QSDA A. This helps us to

construct the abstract transformer F � : QF → QF . Finally, we show that this
abstract transformer is a sound approximation of the concrete transformer F
.

Lemma 1. The abstract transformer F �
f is sound with respect to the concrete

semantics.

Lemma 2. For a QSDA A, the language (F �
f) Lf(A) over formula trees is

regular.

From Lemma 2 and Theorem 2, it follows that there exists a QSDA A′ such that
A′ = (F �)A. The monotonicity of F �, with respect to the partial order defined

in Section 4 over QSDAs, follows from the monotonicity of F �
f . The soundness

of F � can be stated as the following theorem.

Theorem 3. The abstract transformer F � is sound with respect to the concrete
transformer F
.

Hence F � is both monotonic, and sound with respect to the concrete transformer
F
. In the next section we introduce elasticQSDAs, a subclass of QSDAs, which
form an abstract domain and we use the above defined transformer F � over
QSDAs to define an abstract transformer over elastic QSDAs. Note that the
abstract transformer F �, in general, might require a powerset construction over
the input QSDA, very similar to the procedure for determinizing a tree automa-
ton. Hence the worst-case complexity of the abstract transformer is exponential
in the size of the QSDA. However our experiments show that this worst-case is
not achieved for most programs in practice.

6 Elastic Quantified Skinny-Tree Data Automata

As we saw in Section 4, a least upper bound might not exist for an infinite set of
QSDAs. Therefore, we identify a sub-class of QSDAs called elastic quantified
skinny-tree data automata (EQSDAs) such that elasticQSDAs form a complete
lattice and provide a mechanism to compute the abstract semantics of programs.

Let us denote the symbol (b,−) ∈ Π indicating that a position does not con-
tain any variable by b. AQSDAA = (Q,Π,Δ, T , f) whereΔ = (Δ0, Δ1, . . . , Δk)
is called elastic if each transition on b in Δ1 is a self loop i.e. Δ1(q1, b) = q2 im-
plies q1 = q2.

We first show that the number of states in a minimal EQSDA is bounded for
a fixed set PV and Y . Consider all skinny-trees where a blank symbol b occurs
only at branching points. Since the number of branching points is bounded and
since every variable can occur only once, there are only a bounded number of

Quantified Data Automata on Skinny Trees 187

such trees. Consider any minimal EQSDA. Consider all states that are part of
the run of the EQSDA on the trees of the kind above. Clearly, there are only
a bounded number of states in this set. Now, we argue that on any tree, the
run on that tree can only use these states. For any tree t, consider the tree t′

obtained by removing the nodes of degree one marked by blank. The run on
tree t will label common states of t and t′ identically, and the nodes that are
removed will be labeled by the state of its child, since blank transitions cannot
cause state-change. Since in any minimal automaton, for any state, there must
be some tree that uses this state, we know that the number of state is bounded.

We next show the following result that every QSDA A can be most pre-
cisely over-approximated by a language of valuation trees (or equivalently for-
mula trees) that can be accepted by an EQSDA Ael. We will refer to this
construction, which we outline below, as elastification. This result is an exten-
sion of the unique over-approximation result for quantified data automata over
words [10]. Using this result, we can show that elastic QSDAs form a complete
lattice and there exists a Galois-connection 〈α, γ〉 between a set of heap skinny
trees and EQSDAs. This lets us define an abstract transformer over the abstract
domain EQSDAs such that the semantics of a program can be computed over
EQSDAs in a sound manner.

LetA = (Q,Π,Δ, T , f) be aQSDA such thatΔ = (Δ0, Δ1, . . . , Δk) and for a
state q let Rb(q) := {q′ | q′ = q or ∃q′′.q′′ ∈ Rb(q) and Δ1(q

′′, b) = q′} be the set
of states reachable from q by a (possibly empty) sequence of b-unary-transitions.
For a set S ⊆ Q we let Rb(S) :=

⋃
q∈S Rb(q).

The set of states of Ael consists of sets of states of A that are reachable by the
following transition function Δel (where Δi(S1, . . . , Si, a) denotes the standard
extension of the transition function of A to sets of states):

Δel
0 (a) = Rb(Δ0(a))

Δel
1 (S, a) =

⎧⎪⎨⎪⎩
Rb(Δ1(S, a)) if a �= b

S if a = b and Δ1(q, b) is defined for some q ∈ S

undefined otherwise.

Δel
i (S1, . . . , Si, a) = Rb(Δi(S1, . . . , Si, a)) for i ∈ [2, k]

Note that this construction is similar to the usual powerset construction except
that in each step we apply the transition function of A to the current set of states
and take the b-closure. However, if the input letter is b on a unary transition,
Ael loops on the current set if a b-transition is defined for some state in the set.

It can be argued inductively, starting from the leaf states, that the type for all
states in a set is the same. Hence we define the type of a set S as the type of any
state in S. The final evaluation formula for a set is the least upper bound of the
formulas for the states in the set: f el(S) =

⊔
q∈S f(q). We can now show that

Ael is the most precise over-approximation of the language of valuation trees
accepted by QSDA A.

Theorem 4. For every QSDA A, the EQSDA Ael satisfies Lv(A) ⊆ Lv(Ael),
and for every EQSDA B such that Lv(A) ⊆ Lv(B), Lv(Ael) ⊆ Lv(B) holds.

188 P. Garg, P. Madhusudan, and G. Parlato

The proof of Theorem 4 is similar to the proof of a similar theorem in [10]
for the case of words. The above theorem can also be stated over a language of
formula trees in the same way, that Ael is the most precise over-approximation
of the language of formula trees accepted by QSDA A.

We can now show that EQSDAs form a complete lattice (QF el,�,�,�,⊥,�).
The partial order on EQSDAs is the same as the partial order on QSDAs. For
EQSDAs A1 and A2, A1 � A2 if Lf(A1) ⊆ Lf (A2), meaning that for every
symbolic tree t if (t, ϕ1) ∈ Lf(A1) and (t, ϕ2) ∈ Lf(A2) then ϕ1 �F ϕ2. Given
EQSDAsA1 andA2 and a symbolic tree t such that (t, ϕ1) ∈ Lf (A1) and (t, ϕ2) ∈
Lf(A2), the meetA1�A2 is theEQSDA that maps t to the unique formulaϕ1�F
ϕ2, and can be realized using a product construction. Themeet forEQSDAs,A1�
A2, is obtained by constructing aQSDAwhichmaps the symbolic tree t to the for-
mula ϕ1 �F ϕ2 followed by its unique elastification to obtain an EQSDA. We can
also similarly compute � and � for an infinite number of EQSDAs— we build a
product automaton,which canpotentially have infinitelymany states, but because
of the restriction that these are EQSDAs, we can show that the number of states
of this product automaton is also bounded as above.

We can now view the space of EQSDAs as an abstraction over sets of heap
skinny trees. Let us define an abstraction function α : H → QF el and a con-
cretization function γ : QF el → H such that (H, α, γ,QF el) form a Galois-
connection. Note that, abstract interpretation [7] requires that the abstraction
function α maps a concrete element (a language of heap skinny-trees) to a unique
element in the abstract domain and that α be surjective; similarly γ should be an
injective function. Also note that given a regular language of heap skinny-trees
there might be several QSDAs (and thus EQSDAs) accepting that language.
In such a case defining a surjective function α is not possible. Therefore, we first
restrict ourselves to a set of EQSDAs in QF el where each EQSDA accepts a
different language. Under this assumption, we define an α and a γ as follows: for
a set of heap configurations H , α(H) =

�
{A | H ⊆ L(A)} and γ(A) = L(A).

Note that both α and γ are order-preserving; α is surjective and γ is an injec-
tive function. Also for a set of heap configurations H , H ⊆ γ(α(H)) and for an
EQSDA A, A = α(γ(A)). Hence (H, α, γ,QF el) forms a Galois-connection.

Theorem 5. Let (H,⊆) be the class of sets of heap skinny-trees and (QF el,�)
be the class of EQSDAs (accepting pairwise inequivalent languages) over data
formulas F , then (H, α, γ,QF el) forms a Galois-connection.

Let us define the abstract transformer over EQSDAs as F �
el : QF el → QF el =

Fel ◦ F � where Fel is the elastification operator which returns the most precise
EQSDA over-approximating a language of valuation trees accepted by a QSDA.
The soundness of F �

el follows from the soundness of F � (and the fact that Fel is
extensive, i.e., Fel(A) ' A). Similarly its monotonicity follows from the mono-
tonicity of F � and the monotonicity of Fel. The semantics of a program can be
thus computed over the abstract domain QF el as the least fix-point of a set of
equations of the form ψ = F �

el(ψ). Since the number of states in an EQSDA is
bounded (for a given set of program variables PV and universal variables Y),

Quantified Data Automata on Skinny Trees 189

this least fix-point computation terminates (modulo the convergence of the data
formulas in the formula lattice F in which case termination can be achieved by
defining a suitable widening operator on the data formula lattice).

6.1 From EQSDAs to a Decidable Fragment of STRAND

In this section we show that EQSDAs can be converted to formulas that fall in
a decidable fragment of first order logic, in particular the decidable fragment of
Strand over lists. Hence, once the abstract semantics has been computed over
EQSDAs, the invariants expressed by the EQSDAs can be used to validate
assertions in the program that are also written using the decidable sublogic
of Strand over lists. We assume that the assertions in our programs express
quantified properties over disjoint lists, like sortedness of lists, etc. and properties
relying on mutual sharing or aliasing of list-structures are not allowed.

Given an EQSDA A and for every pointer variable p, we construct a QSDA

over words that are projections of trees accepted by A and where the first node
is p. A key property in the decidable fragment of Strand is that universal
quantification is not permitted to be over elements that are only a bounded
distance away from each other. In other words universally quantified variables
are only allowed to be related by elastic relations. As a result, we can safely
elastify the constructed QSDA over words and obtain an EQSDA over words
expressing quantified properties in the decidable sublogic of Strand. [10] de-
tails the translation from an EQSDA over words to a quantified formula in the
decidable fragment of Strand over lists. The formula, thus obtained, can be
used to validate assertions in the program and thus prove the program correct.

7 Experimental Evaluation

We implemented the abstract domain over EQSDAs presented in this paper,
and evaluated it on several list-manipulating programs. We now first present
the implementation details followed by our experimental results. Our prototype
implementation along with the experimental results and programs can be found
at http://web.engr.illinois.edu/~garg11/qsdas.html.

Implementation Details. Given a program P we compute the abstract seman-
tics of the program over the abstract domain QF el over EQSDAs. A program is
a sequence of statements as defined by the grammar in Figure 1. In addition to
those statements, a program is also annotated with a pre-condition and a bunch
of assertions. The pre-condition formulas belong to the decidable fragment of
Strand over lists and can express quantified properties over disjoint lists (alias-
ing of two list-structures is not allowed), like sortedness of lists, etc. Given a
pre-condition formula ϕ, we construct the EQSDA which accepts all the heap
skinny-trees which satisfy ϕ. This EQSDA precisely captures the set of initial
configurations of the program. Starting from these configurations we compute
the abstract semantics of the program over QF el. The assert statements in the
program are ignored during the fix-point computation. Once the convergence
of the fix-point has been achieved, the EQSDAs can be converted back into

http://web.engr.illinois.edu/~garg11/qsdas.html

190 P. Garg, P. Madhusudan, and G. Parlato

Table 2. Experimental results. Property checked — List: the return pointer points to
a list; Init: the list is properly initialized with some key; Max: returned value is the
maximum of all data values in the list; Gek: the list (or some parts of the list) have
data values greater than or equal to a key k; Sort: the list is sorted; Last: returned
pointer is the last element of the list; Empty: the returned list is empty.

Programs #PV #Y #DV Property #Iter Max. size Time (s)
checked of QSDA

init 2 1 1 Init, List 4 19 0.0
add-head 2 1 1 Init, List - 11 0.1
add-tail 3 1 1 Init, List 4 29 0.1
delete-head 2 1 1 Init, List - 10 0.0
delete-tail 4 1 1 Init, List 5 51 0.5
max 2 1 1 Max, List 4 19 0.1
clone 4 1 1 Init, List 4 44 0.7
fold-clone 5 1 1 Init, List 5 57 3.2
copy-Ge5 4 1 0 Gek, List 9 53 2.6
fold-split 3 1 1 Gek, List 4 33 0.3
concat 4 1 1 Init, List 5 44 0.7
sorted-find 2 2 2 Sort, List 5 38 0.3
sorted-insert 4 2 1 Sort, List 6 163 5.8
bubble-sort 4 2 1 Sort, List 5/18 191 42.8
sorted-reverse 3 2 0 Sort, List 5 43 1.5
expressOS-lookup-prev 3 2 1 Sort, List 6 73 2.2

gslist-append 4 0 1 List 8 3 0.0
gslist-prepend 2 0 1 List - 3 0.0
gslist-last 3 0 0 Last, List 3 7 0.0
gslist-free 3 0 0 Empty, List 1 3 0.0
gslist-position 4 0 0 List 3 13 0.0
gslist-reverse 3 0 0 List 3 5 0.0
gslist-custom-find 3 1 1 Gek, List 4 29 0.1
gslist-nth 3 0 1 List 3 7 0.0
gslist-remove 4 0 1 List 4 10 0.0
gslist-remove-link 5 0 0 List 4 16 0.0
gslist-remove-all 5 1 1 Gek, List 5 51 0.6
gslist-insert-sorted 5 2 1 Sort, List 6 279 27.4

decidable Strand formula over lists (as described in Section 6.1) and the
Strand decision procedure can be used for validating the assertions.

We recall that the abstract transformer F �
el is a function composition of the

abstract transformer F � over QSDAs and the unique elastification operator
Fel. So that we are as precise as possible, for every statement in the program
we apply the more precise transformer F � (and not F �

el). However, we apply
the elastification operator Fel at the header of loops before the join to ensure
convergence of the computation of the abstract semantics. The intermediate
semantic facts (QSDAs) in our analysis are thus not necessarily elastic.

Our abstract domains are parameterized by a quantifier-free domain F over
the data formulas. In our experiments, we instantiate F with the octagon

Quantified Data Automata on Skinny Trees 191

abstract domain [23] from the Apron library [16]. It is sufficient to capture the
pre/post-conditions and the invariants of all our programs.

Experimental Results. We evaluate our abstract domain on a suite of list-
manipulating programs (see Table 2). For every program we report the number
of pointer variables (PV), the number of universal variables (Y), the number
of data variables (DV) and the property being checked for the program. We
also report the number of iterations required for the fixed-point to converge,
the maximum size of the intermediate QSDAs and finally the time taken, in
seconds, to analyze the programs.

The names of the programs in Table 2 are self-descriptive, and we only describe
some of them. The program copy-Ge5, from [5], copies all those entries from a
list whose data value is greater than or equal to 5. Similarly, the program fold-

split [5] splits a list into two lists – one which has entries whose data values are
greater than or equal to a key k and the other list with entries whose data value
is less than k. The program expressOS-lookup-prev is a method from the
module cachePage in a verified-for-security platform for mobile applications [19].
The module cachePage maintains a cache of the recently used disc pages as a
priority queue based on a sorted list. This method returns the correct position in
the cache at which a disc page could be inserted. The programs in the second part
of the table are various methods adapted from the Glib list library which comes
with the GTK+ toolkit and the Gnome desktop environment. The program
gslist-custom-find finds the first node in the list with a data value greater
or equal to k and gslist-remove-all removes all elements from the list whose
data value is greater or equal to k. The programs gslist-insert-sorted and
sorted-insert insert a key into a sorted list.

All experiments were completed on an Intel Core i5 CPU at 2.4GHz with
6Gb of RAM. The number of iterations is left blank for programs which do not
have loops. bubble-sort program converges on a fix-point after 18 iterations
of the inner loop and 5 iterations of the outer loop. The size of the intermediate
QSDAs depends on the number of universal variables and the number of pointer
variables and largely governs the time taken for the analysis of the programs. For
all programs, our prototype implementation computes their abstract semantics
in reasonable time. Moreover we manually verified that the final EQSDAs in
all the programs were sufficient for proving them correct (this validity check for
assertions can be mechanized in the future). The results show that the abstract
domain we propose in this paper is reasonably efficient and powerful enough to
prove a large class of programs manipulating singly-linked list structures.

Acknowledgements. This work is partially supported by NSF CAREER award
#0747041.

References

1. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18
2012. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012)

192 P. Garg, P. Madhusudan, and G. Parlato

2. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: POPL, pp. 599–610 (2011)

3. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

4. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011)

5. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: On inter-procedural analysis
of programs with lists and data. In: PLDI, pp. 578–589 (2011)

6. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL,
pp. 247–260 (2008)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL,
pp. 238–252 (1977)

8. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL, pp. 105–118 (2011)

9. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separa-
tion logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 287–302. Springer, Heidelberg (2006)

10. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Learning Universally Quantified
Invariants of Linear Data Structures. In: CAV (2013) (to appear)

11. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: POPL, pp. 338–350 (2005)

12. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL, pp. 235–246 (2008)

13. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion
synthesis. In: PLDI, pp. 256–265 (2007)

14. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 424–440. Springer, Heidelberg (2011)

15. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI, pp. 339–348 (2008)

16. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661–667. Springer, Heidelberg (2009)

17. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

18. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures
and data. In: POPL, pp. 611–622 (2011)

19. Mai, H., Pek, E., Xue, H., King, S.T., Madhusudan, P.: Verifying security invariants
in ExpressOS. In: ASPLOS, pp. 293–304 (2013)

20. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and
canonical abstraction for singly-linked lists. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 181–198. Springer, Heidelberg (2005)

21. McCloskey, B., Reps, T., Sagiv, M.: Statically inferring complex heap, array, and
numeric invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337,
pp. 71–99. Springer, Heidelberg (2010)

Quantified Data Automata on Skinny Trees 193

22. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

23. Miné, A.: The octagon abstract domain. In: WCRE, pp. 310–319 (2001)
24. Podelski, A., Wies, T.: Counterexample-guided focus. In: POPL, pp. 249–260

(2010)
25. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)
26. Seghir, M.N., Podelski, A., Wies, T.: Abstraction refinement for quantified array

assertions. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 3–18.
Springer, Heidelberg (2009)

Static Validation of Dynamically Generated

HTML Documents Based on Abstract Parsing
and Semantic Processing

Hyunha Kim1,�, Kyung-Goo Doh1,�, and David A. Schmidt2,��

1 Hanyang University, Ansan, South Korea
hhkim@plasse.hanyang.ac.kr, doh@hanyang.ac.kr
2 Kansas State University, Manhattan, Kansas, USA

das@ksu.edu

Abstract. Abstract parsing is a static-analysis technique for a program
that, given a reference LR(k) context-free grammar, statically checks
whether or not every dynamically generated string output by the pro-
gram conforms to the grammar. The technique operates by applying an
LR(k) parser for the reference language to data-flow equations extracted
from the program, immediately parsing all the possible string outputs to
validate their syntactic well-formedness.

In this paper, we extend abstract parsing to do semantic-attribute
processing and apply this extension to statically verify that HTML docu-
ments generated by JSP or PHP are always valid according to the HTML
DTD. This application is necessary because the HTML DTD cannot be
fully described as an LR(k) grammar. We completely define the HTML
4.01 Transitional DTD in an attributed LALR(1) grammar, carry out ex-
periments for selected real-world JSP and PHP applications, and expose
numerous HTML validation errors in the applications. In the process,
we experimentally show that semantic properties defined by attribute
grammars can also be verified using our technique.

Keywords: static analysis, string analysis, abstract parsing, HTML val-
idation.

1 Introduction

Most HTML documents viewed from the web are dynamically generated by
scripts that mix dynamic input with static structure. As a result, many dynami-
cally generated documents are grammatically malformed, and some even contain
user-supplied attacks that exploit the malformedness [18, 19]. HTML validation
tools are provided at the W3C site, but the tools are impractical or impossible

� This work was supported by the Engineering Research Center of Excellence Program
of Korea Ministry of Education, Science and Technology(MEST) / National Research
Foundation of Korea(NRF) (Grant 2012-0000469).

�� Research partially supported by National Science Foundation Project, NSF CNS-
1219746.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 194–214, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Static Validation of Dynamically Generated HTML Documents 195

to use with scripts that dynamically generate HTML. Therefore, our goal is to
validate, in advance of execution, the syntactic and semantic properties of the
HTML documents generated dynamically by an application.

Since HTML-document structure is context-sensitive, we wish to employ pars-
ing theory and semantic-analysis techniques from compiling theory to do vali-
dation. Abstract parsing does this [7, 8]: It extracts from a script a set of flow
equations that overapproximate the documents (strings) that the script might
generate, and it solves the equations in the domain of LR-parse stacks, which
encodes the documents’ context-free structure.

In this paper, we explain how we employ abstract parsing to validate JSP and
PHP scripts. When our implementation is applied to a standard suite of JSP
and PHP programs, we found it to be sound, precise (it yields very few false
positives — false indications of errors), and reasonably efficient.

1.1 Motivating Examples

We show two HTML-generated PHP scripts, the first generating syntactically
invalid HTML, the second generating semantically invalid HTML:

Validating Syntactic Structure. The following code shows a portion of a
PHP program that generates one of two different HTML pages depending on
the value of a conditional expression isset($ POST["mode"]) determined at
run-time.

<body>
<table>
<tr><th>
...

<?php
if (isset($_POST["mode"])) {
echo "<tr>";
$result = DB_query(...);
while($fruit = DB_fetch_array($result) {

echo "<td>" . $fruit . "</td>";
}
echo "</table>";

}
?>

...

If the conditional evaluates to true, the program always generates a syntactically
valid page. <table> is required to be paired with </table>, which is the case in
the generated page. It is acceptable that <tr> has no matching </tr>, because
the HTML definition allows that </tr> be omitted. However, if the conditional
evaluates to false, </table> is missing in the generated page, making the page
syntactically invalid.

Validating Semantic Properties. The following PHP program fetched from
DiscountCategories.php in WEBERP always generates a form element if the
conditional in the first line is true. In the form, a table is built using data
retrieved from a database and contains a submit button.

196 H. Kim, K.-G. Doh, and D.A. Schmidt

if (isset($_POST[’selectchoice’])) {
echo ’<form id="update" method="post" action=" ... "’;
echo ’<div>’; echo ’<input type="hidden" name="FormID" value="...">’’;
$sql = "SELECT DISTINCT discountcategory FROM stockmaster WHERE discountcategory <>’’";
$result = DB_query($sql, $db);
if (DB_num_rows($result) > 0) {
echo ’<table class="selection"><tr><td>’;
echo ’<select name="DiscCat" onchange="ReloadForm(update.select)">’;
while ($myrow = DB_fetch_array($result)){

echo ’... <option selected="selected" value="..."> ...’;
}
echo ’</select></td>’;
echo ’<td><input type="submit" name="select" value="’._(’Select’).’" /></td>

</tr></table>
’;
}
echo ’</div></form>’;

}

However, when nothing is retrieved from the database, the second conditional is
false, no submit button is generated, and the result is a useless form that never
transmits data. (When there is nothing to submit, no form should be generated.)

Our abstract-parsing technique will analyze and detect both forms of errors
— both the syntax and semantics of the dynamically generated documents can
be predicted prior to run-time.

1.2 Contributions

The contributions of this paper are

– We extend abstract-parsing with an implementation of semantic-attribute
processing, which makes it amenable to a wide range of static-analysis prob-
lems on document-generating scripts.

– We define a complete LALR(1) attribute grammar for the HTML 4.01 DTD
Transitional definition, a nontrivial task.

– We statically validate JSP and PHP programs that dynamically generate
HTML documents, by submitting the HTML attributed grammar to the ab-
stract parser equipped with semantic processing. The implementation stati-
cally validates all the features that W3C HTML Validator does dynamically,
as well as semantic properties. Our earlier work shown in [7] was only able
to validate a subset of HTML, essentially XHTML, the part definable in
LALR(1) grammar.

The paper’s next section summarizes abstract-parsing methodology (c.f. [7]),
and Section 3 explains semantic processing, extending earlier work [8]. Section 4
explains the difficulties and our achievement of defining precisely an attributed
grammar for the HTML DTD. Sections 5 and 6 present our work and our re-
sults of validating syntactic and semantic properties of scripts that dynamically
generate HTML. Section 7 examines related research in the field, and Section 8
concludes.

Static Validation of Dynamically Generated HTML Documents 197

r = ’]’

x = ’[’ . r

while ...

x = ’[’ . x . r

print x

R =]

X0 = [·R
X1 = X0 �X2
X2 = [·X1 · R
X3 = X1 · !

(Read . as an infix string-append operation.)

Fig. 1. Sample program and its data-flow equations

2 Fundamentals of Abstract Parsing

This section is a summary of [7], improved to support modular definitions. We
present abstract parsing with an example: Say that a script must generate an
output string that conforms to this grammar,

S → [] | [S] | S S

where S is the only nonterminal. (HTML, XML, and SQL are such bracket
languages.) The grammar can be difficult to enforce even for simple programs,
like the one in Figure 1, left column. Say this program must print only well-
formed S-phrases.

Figure 1’s right column shows the data-flow equations extracted from the pro-
gram. Previous approaches have used type checking [3, 6, 17], regular expressions
[4, 5, 12, 13], and language inclusion [14, 16, 15, 17], but all of these fail at some
point to track precisely the context-free structure implicit in the string-valued
document. For example, a standard regular-expression analysis solves the flow
equations in the domain of regular expressions, determining that X3’s values
conform to the regular expression, [∗ · [·] ·]∗, which does not validate the
demand. (It is possible to “jazz up” such an analysis [16, 15], but at some point,
context-free structure is lost.)

We validate the desired property by solving the flow equations in Figure 1
in the domain of LR-parse stacks — X3’s meaning is the set of parse stacks of
the strings that might be denoted by x. Our technique simultaneously unfolds
and LR-parses the strings defined by X3, computing parse stacks that express
structure in both the flow equations and the reference grammar. (Of course, a
script might generate infinitely many different strings, and therefore the analysis
might compute an infinite set of parse stacks. We finitely approximate an infinite
set of parse stacks by exploiting a key feature of LR-parse theory, described in
Section 2.2.)

First, let’s understand the parser for the example grammar: Figure 2 gives
the LALR(1)-parse-controller and parse of the string, [[][]]. The controller’s
transitions are coded as shift/reduce rewriting rules, which parse the string. The
current state, [si], of the parse appears at the top of the parse stack, s0 :: s1 ::
· · · :: [si]. Input symbols, i, are supplied to parse state s in the format, [i ↪→ s].
The parser starts from the stack, [s0] and consumes the input string symbol by
symbol, generating the parse in the Figure.

198 H. Kim, K.-G. Doh, and D.A. Schmidt

Input symbols label the transitions and ! denotes end of input:

]

.Ss0

S .[]
S .[S]

S .S S

s1 S [.].S][S
S .[]
S .[S]

S .S Ss6

S .[]
S .[S].S SS

.S SS
.S !, S [S.]

s3

.S SS
S .[]
S .[S].S SS

S [S].
s4

!,],[,

S [.]
s2 !,],[,

S S

S

S
s5 .SSS !,],[,

[

]
[

[

[

Shift transitions:
[[↪→ s0]⇒ s0 :: [s1]
[[↪→ s1]⇒ s1 :: [s1]
[] ↪→ s1]⇒ s1 :: [s2]
[[↪→ s3]⇒ s3 :: [s1]
[] ↪→ s3]⇒ s3 :: [s4]
[[↪→ s6]⇒ s6 :: [s1]

Reduce transitions:
si :: sj :: [� ↪→ s2]⇒ [� ↪→ S ↪→ si]
si :: sj :: sk :: [� ↪→ s4]⇒ [� ↪→ S ↪→ si]
si :: sj :: [� ↪→ s5]⇒ [� ↪→ S ↪→ si]
si :: [! ↪→ s6]⇒ si :: finished
where � ∈ {[,], !} and
[� ↪→ S ↪→ s0]⇒ s0 :: [� ↪→ s6]
[� ↪→ S ↪→ s1]⇒ s1 :: [� ↪→ s3]
[� ↪→ S ↪→ s3]⇒ s3 :: [� ↪→ s5]
[� ↪→ S ↪→ s6]⇒ s6 :: [� ↪→ s5]

parse stack input sequence

[s0] [[][]]!

[[↪→ s0] [][]]! (ready for shift transition)
s0 :: [s1] [][]]!

s0 :: [[↪→ s1]][]]!

s0 :: s1 :: [s1]][]]!

s0 :: s1 :: [] ↪→ s1] []]!

s0 :: s1 :: s1 :: [s2] []]!

s0 :: s1 :: s1 :: [[↪→ s2]]]! (ready for reduce transition)
s0 :: [[↪→ S ↪→ s1]]]! (reduce S → [])
s0 :: s1 :: [[↪→ s3]]]!

s0 :: s1 :: s3 :: [s1]]]!

s0 :: s1 :: s3 :: [] ↪→ s1]]!

s0 :: s1 :: s3 :: s1 :: [s2]]!

s0 :: s1 :: s3 :: s1 :: [] ↪→ s2] !

s0 :: s1 :: [] ↪→ S ↪→ s3] ! (reduce S → [])
s0 :: s1 :: s3 :: [] ↪→ s5] !

s0 :: [] ↪→ S ↪→ s1] ! (reduce S → SS)
s0 :: s1 :: [] ↪→ s3] !

s0 :: s1 :: s3 :: [s4] !

s0 :: s1 :: s3 :: [! ↪→ s4]
[! ↪→ S ↪→ s0] (reduce S → [S])
s0 :: [! ↪→ s6]
s0 :: finished

Fig. 2. Disambiguated LALR(1) parser for S → [] | [S] |S S, where S S is made left
associative

Static Validation of Dynamically Generated HTML Documents 199

Our abstract parsing technique will apply the shift/reduce transition rules
to the flow equations in the right column of Figure 1. To validate that the
program prints only S-structured phrases at X3, we must evaluate the start
stack, [s0], and (the string(s) denoted by) X3. We portray this as the function
call, X3[s0] — we treat the program-flow equations in Figure 1 as functions
defined in combinator notation, where we apply a function to the state used to
parse it.

Starting from X3[s0], we use the flow equation, X3 = X1, to generate this
calculation:

X3[s0] = (X1 · !)[s0]
= X1[s0]⊕ !

The first line says that the value of X1 · ! must be parsed starting from [s0].
The second line says that the string value of X1 is parsed first and the resulting
parse stack, say, s0 :: si :: · · · :: [sj], is then used to parse !. (This will be
s0 :: si :: · · · :: ![sj]. The ⊕ operator is defined precisely below; for now, read
E1(s) ⊕ E2 as “E1(s) generates a parse stack whose top state is passed as the
argument to E2, which extends the stack.”)

The call, X1[s0], generates this equation:

X1[s0] = X0[s0] ∪X2[s0]

That is, the union of the parses of strings at X0 and X2 from s0 must be
computed. (Important: this computes a set of parse stacks, which must be finitely
approximated in the implementation.) We consider first X0[s0]:

X0[s0] = ([· R)[s0] = [[s0]⊕R = [[↪→ s0]⊕R
= (s0 :: [s1]) ⊕R = s0 :: (R[s1])

and R[s1] =][s1] = [] ↪→ s1] = {s1 :: [s2]}
so, X0[s0] = s0 :: (R[s1]) = {s0 :: s1 :: [s2]}

That is, the parse of [· R from [s0] generates the stack, s0 :: s1 :: [s2], which is
one transition step from reducing S → [] (which occurs when the next input
symbol is encountered and is verified in S’s follow set).

The ⊕ is a “continuation operator”: For parse stack, st, and combinator ex-
pression, E, define st⊕E = tail(st) :: E[head(st)]. That is, stack st’s top state
feeds to E. (More generally, for a set of stacks, S, define S ⊕ E = {tail(st) ::
E[head(st)] | st ∈ S}.)

Next,
X2[s0] = ([·X1 · R)[s0] = [[↪→ s0]⊕ (X1 · R)

= (s0 :: [s1]) ⊕ (X1 ·R) = s0 :: (X1 ·R)[s1]
= s0 :: (X1[s1]⊕R)

The call to parse X1’s string from [s1] generates X1[s1] = X0[s1]∪X2[s1] which
in turn generates calls to X0[s1] and X2[s1]. Here is the list of residual equations
generated from the initial call, X3[s0]:

X3[s0] = X1[s0]⊕ !

X1[s0] = X0[s0] ∪X2[s0]
X0[s0] = {s0 :: s1 :: [s2]}
R[s1] = {s1 :: [s2]}

X2[s0] = s0 :: (X1[s1]⊕R)
X1[s1] = X0[s1] ∪X2[s1]
X0[s1] = {s1 :: s1 :: [s2]}
X2[s1] = s1 :: (X1[s1]⊕R)

200 H. Kim, K.-G. Doh, and D.A. Schmidt

These equations will be solved by a least-fixed point calculation in the domain
of sets of parse stacks. (That is, the meaning of each Xi[sj] computes to a set of
stacks.)

More equations can and will be generated, in demand-driven fashion, during
the fixed-point calculation. To show how this proceeds, we will solve the mutually
recursive equations for X1[s0], X2[s0], X1[s1], and X2[s2], in stages:

X10[s0] = X20[s0] = X10[s1] = X20[s1] = ∅
X11[s0] = {s0 :: s1 :: [s2]}
X21[s0] = ∅
X11[s1] = {s1 :: s1 :: [s2]}
X21[s1] = s1 :: (X11[s1]⊕R)

= s1 :: s1 :: s1 :: R[s2]
where R[s2] = [] ↪→ s2]
= s1 :: s1 :: s1 :: [] ↪→ s2]
= s1[] ↪→ S ↪→ s1]
= s1 :: s1 :: [] ↪→ s3]
= {s1 :: s1 :: s3 :: [s4]}

X22[s0] = s0 :: (X11[s1]⊕R)
= s0 :: s1 :: s1 :: R[s2]
= {s0 :: s1 :: s3 :: [s4]}

X12[s1] = {s1 :: s1 :: [s2], s1 :: s1 :: s3 :: [s4]}
X22[s1] = s1 :: (X12[s1]⊕R)

= {s1 :: s1 :: s1 :: R[s2],
s1 :: s1 :: s1 :: s3 :: R[s4]}

= {s1 :: s1 :: s3 :: [s4]}
X13[s0] = {s0 :: s1 :: [s2], s0 :: s1 :: s3 :: [s4]}
X23[s0] = s0 :: (X12[s1]⊕R)

= {s0 :: s1 :: s3 :: [s4]}
At this point, the equations converge. Note that

X1[s0] = {s0 :: s1 :: [s2], s0 :: s1 :: s3 :: [s4]}
signifying that the parses of the value of x in the loop body come either from
[] or from [· S ·], where S represents a parse of some S-structured string. For
this reason, we have

X3[s0] = X1[s0]⊕ !

= {s0 :: s1 :: ![s2], s0 :: s1 :: s3 :: ![s4]}
= {s0 :: finished}

This validates that the strings printed at the hot spot must be S-phrases. The
algorithm that generates the residual equations and simultaneously solves them
is a worklist algorithm like those used for demand-driven data-flow analysis
[2, 9, 11].

2.1 Simplifying the Calculation: Higher-Order Parse States

It is disappointing that the calculation of X0[s0] yields {s0 :: s1 :: [s2]} and
not the nonterminal, S, since the assignment x = ’[’ . r assigns the string,
’[]’, to x. The issue, of course, is that a lookahead symbol, �, is required to
validate the reduction of ’[]’ to S. This is formalized in the transitions stated
in Figure 2:

si :: sj :: [� ↪→ s2] ⇒ [� ↪→ S ↪→ si], if � ∈ {[,], !}
[� ↪→ S ↪→ s0] ⇒ s0 :: [� ↪→ s6]

If we make the current parse state “higher order” by parameterizing it on the
lookahead symbol, we can simplify the situation — we use this variation of the
above reduction transition:

Static Validation of Dynamically Generated HTML Documents 201

Conditional reduce transitions:
si :: sj :: [s2]⇒ [SF ↪→ si]
si :: sj :: sk :: [s4]⇒ [SF ↪→ si]
si :: sj :: [s5]⇒ [SF ↪→ si]
where F = {[,], !}

Lookahead application transitions:
[� ↪→ SF ↪→ s0]⇒ s0 :: [� ↪→ s6] if � ∈ F
[� ↪→ SF ↪→ s1]⇒ s1 :: [� ↪→ s3] if � ∈ F
[� ↪→ SF ↪→ s3]⇒ s3 :: [� ↪→ s5] if � ∈ F
[� ↪→ SF ↪→ s6]⇒ s6 :: [� ↪→ s5] if � ∈ F

Reworked abstract parse of example program:

X0[s0] = {s0 :: s1 :: [s2]} = {[SF ↪→ s0]}
R[s1] = {s1 :: [s2]}
R[s2] = {[] ↪→ s2]}
R[s4] = {[] ↪→ s4]}
X1[s0] = X1[s0]⊕ ! = {s0 :: s1 :: [s2], s0 :: s1 :: s3 :: [s4]} = {[SF ↪→ s0]}
X2[s0] = s0 :: (X1[s1]⊕R) = {s0 :: s1 :: s3 :: [s4]} = {[SF ↪→ s0]}
X1[s1] = X0[s1] ∪X2[s1] = {[SF ↪→ s1]}
X2[s1] = s1 :: (X1[s1]⊕R) = {[SF ↪→ s1]}
X3[s0] = X1[s0]⊕ ! = ![SF ↪→ s0] = [! ↪→ SF ↪→ s0] = {s0 :: [! ↪→ s6]}

= {s0 :: finished}

Fig. 3. Reformatted transition rules and reworked example

si :: sj :: [s2] ⇒ [SF ↪→ si],where F = {[,], !}
[SF ↪→ si] is actually an abbreviation for λ� ∈ F . [� ↪→ S ↪→ si].

The new rule reduces s0 :: s1 :: [s2] before the lookahead symbol arrives,
conditionally on the value of the lookahead. The accompanying transition rule
does application and validation:

[� ↪→ SF ↪→ s0]⇒ s0 :: [� ↪→ s6], if � ∈ F

Using the new rules, we calculate that

X0[s0] = {[SF ↪→ s0]}
That is, X0 generates an “S-typed” string and supplies it to s0, conditional on
the arrival of the lookahead symbol.

Figure 3 presents the higher-order variants of the reduction rules from Figure
2 and recalculates the abstract parse of the example program, producing more
intuitive answers.

2.2 Finite Convergence by Stack Folding

The previous example converged in finitely many calculation steps, but in gen-
eral, an infinite set of parse stacks can be computed, e.g.,

x = ’[’

while ...

x = x . ’[’

x = x . ’]’

X0 = [

X1 = X0 �X2
X2 = X1 · [
X3 = X1 ·] · !

202 H. Kim, K.-G. Doh, and D.A. Schmidt

At conclusion, x holds zero or more left brackets and an S-phrase. The analysis
confirms this:

X0[s0] = s0 :: [s1]
X1[s0] = {s0 :: si1 :: [s1] | i ≥ 0}
X2[s0] = {s0 :: si1 :: [s1] | i > 0}
X3[s0] = {(s0 :: si1 :: [s1])⊕]⊕ ! | i ≥ 0}

= {s0 :: si1 :: [! ↪→ s2] | i ≥ 0}
= {[! ↪→ S ↪→ s0]} ∪ {s0 :: si1 :: [! ↪→ S ↪→ s1] | i ≥ 0}
= {s0 :: finished} ∪ {s0 :: sj1 :: [! ↪→ s3] | j > 0}

Since we want a finitely convergent analysis, we bound the infinite sets by “fold-
ing” their stacks so that no state repeats in a stack. Thus, the worklist algorithm
calculates

X0[s0] = s0 :: [s1]
X1[s0] = {s0 :: s∗1 :: [s1]}
X2[s0] = {s0 :: s+1 :: [s1]}
X3[s0] = {s0 :: finished , s0 :: s∗1 :: [! ↪→ s3]}

Since the set of parse-state names is finite, folding produces a finite set of finite-
sized stacks (that contain cycles). This works because each parse stack is a finite
path through the LR-parser’s finite-state controller, and folding a parse stack
generates a (smallest) subgraph of the automaton that covers the path. Indeed,
the subgraph can be represented by a regular expression, because it is a viable
prefix [10] of the LR-parse.

Stack folding lets us generalize the abstract-parsing technique to arbitrary
LALR(k) grammars with good success in practice.

3 Abstract Semantic-Processing

We now build on the proposal in [8] to implement a useful form of semantic pro-
cessing. Since we can parse dynamically generated strings, we can predict their
semantics as well by incorporating syntax-directed-translation (synthesized-
attribute) techniques from compiling theory. For the bracket language,

S → [] | [S] | S S

we might wish to track the depth at each point in a string as well as the height
of each completed S-phrase. For example, for (α)[[(β)][]], the depth at α is
0, the depth at β is 2, the height of [] is 1, and the height of the entire string is
2. The depth and height attributes typify the semantical information one must
collect to validate HTML semantic properties, so we develop this example in
detail.

Figure 4 gives a Madsen-Watt-style attribute grammar that defines depth and
height, along with modified transition rules that compute the attributes, and also
a calculation of the example string. All parse states are annotated with a depth
attribute, d, since all parse points within the string possess depth. Nonterminals,
S, are annotated with a height attribute, h, since a well-formed S-phrase has

Static Validation of Dynamically Generated HTML Documents 203

Semantic attributes : depth, d (inherited), annotates all parse states;
height, h (synthesized), annotates s3, s5, s6.

attributes rules :
→ ↓ 0 S ↑ d

↓ d S ↑ 1→ []

↓ d S ↑ h+ 1→ [↓ d S ↑ h]

↓ d S ↑ max(h, h′) → ↓ d S ↑ h ↓ d S ↑ h′

Attributed Shift transitions:

[[↪→ sd0]⇒ sd0 :: [sd+1
1]

[[↪→ sd1]⇒ sd1 :: [sd+1
1]

[] ↪→ sd1]⇒ sd1 :: [sd−1
2]

[[↪→ sd3]⇒ sd3 :: [sd+1
1]

[] ↪→ sd3]⇒ sd3 :: [sd−1
4]

[[↪→ sd6]⇒ sd6 :: [sd+1
1]

Attributed reduce transitions:
si :: sj :: [l ↪→ s2]⇒ [l ↪→ S1 ↪→ si]

si :: sj :: shk :: [l ↪→ s4]⇒ [l ↪→ Sh+1 ↪→ si]

si :: s
h
j :: [l ↪→ sh

′
5]⇒ [l ↪→ Smax(h,h′) ↪→ si]

si :: [! ↪→ sh6]⇒ shi :: finished
where l ∈ {[,], !} and

[l ↪→ Sh ↪→ sd0]⇒ sd0 :: [l ↪→ sd,h6]

[l ↪→ Sh ↪→ sd1]⇒ sd1 :: [l ↪→ sd,h3]

[l ↪→ Sh ↪→ sd3]⇒ sd3 :: [l ↪→ sd,h5]

[l ↪→ Sh ↪→ sd6]⇒ sd6 :: [l ↪→ sd,h5]
(Read ! as symbol of end of string)

parse stack (top lies at right) input sequence (front lies at left)

[s00] [[][]]!

[[↪→ s00] [][]]! (ready for shift transition)
s00 :: [s11] [][]]!

s00 :: [[↪→ s11]][]]!

s00 :: s11 :: [s21]][]]!

s00 :: s11 :: [] ↪→ s21] []]!

s00 :: s11 :: s21 :: [s12] []]!

s00 :: s11 :: s21 :: [[↪→ s12]]]! (ready for reduce transition)
s00 :: [[↪→ S1 ↪→ s11]]]! (reduce S → [])

s00 :: s11 :: [[↪→ s1,13]]]!

s00 :: s11 :: s1,13 :: [s21]]]!

s00 :: s11 :: s1,13 :: [] ↪→ s21]]!

s00 :: s11 :: s1,13 :: s21 :: [s12]]!

s00 :: s11 :: s1,13 :: s21 :: [] ↪→ s12] !

s00 :: s11 :: [] ↪→ S1 ↪→ s1,13] ! (reduce S → [])

s00 :: s11 :: s1,13 :: [] ↪→ s1,15] !

s00 :: [] ↪→ S1 ↪→ s11] ! (reduce S → SS)

s00 :: s11 :: [] ↪→ s1,13] !

s00 :: s11 :: s1,13 :: [s14] !

s00 :: s11 :: s1,13 :: [! ↪→ s14]
[! ↪→ S2 ↪→ s00] (reduce S → [S])

s00 :: [! ↪→ s0,26]

s0,20 :: finished

Fig. 4. S → []|[S]|S S, annotated with depth and height concrete semantic attributes

204 H. Kim, K.-G. Doh, and D.A. Schmidt

height: the height attributes are attributes of parse states, s3, s5, s6, since these
states are reached by transitions labelled by S.

As noted earlier, an LR(1) state has form, [�1 ↪→ �0 ↪→ s], where s is the parser
state, �0 the input, and �1 the lookahead. When a reduce transition occurs, the
corresponding semantic rule is computed. For the example bracket language,
[[][]], the computed result is height = 2, as expected.

Of course, precision of semantic attributes can be affected by stack folding,
but as demonstrated in the following sections, loss of precision has not been a
significant problem in practice.

4 Attributed LR(1) Grammar for the HTML DTD

The W3C recommends every HTML document be validated according to the
DTD (Document Type Definition). But the commonly used standard, HTML
4.01 Transitional DTD [1], cannot be defined in LALR(1); indeed, some parts
are not LR(k) and are even ambiguous. We now review trouble spots in the
HTML DTD and explain how we handled them with a synthesized-attribute-
based LALR(1)-grammar.

4.1 Unordered Occurrences of Elements

In a HEAD element, its contents, TITLE, ISINDEX and BASE, may appear in any
order, with the restrictions that TITLEmust appear once, and ISINDEX and BASE

may appear once or none:

<!ELEMENT HEAD O O (%head.content;) +(%head.misc;) >
<!ENTITY % head.content "TITLE & ISINDEX? & BASE?">
<!ENTITY % head.misc "SCRIPT|STYLE|META|LINK|OBJECT" -- repeatable head elements -->
<!ELEMENT TITLE - - (#PCDATA) -(%head.misc;) -- document title -->
<!ELEMENT ISINDEX - O EMPTY -- single line prompt -->
<!ELEMENT BASE - O EMPTY -- document base URI -->

The tag inclusion +(%head.misc;) indicates that elements in head.misc can
appear in HEAD. However, the declarations of TITLE, ISINDEX, and BASE prevent
elements in head.misc from propagating inside head.content. The TITLE ele-
ment excludes head.misc, and the ISINDEX and BASE elements have their bodies
empty. Due to the unorderedness of head.content, a LALR(1)-grammatical ex-
pansion would grow exponentially, so we utilized synthesized attributes instead:
An attribute tag for each of three elements counts the occurrences of its ele-
ment and checks if the number of occurrences falls within the boundaries. The
synthesized-attribute LALR(1) grammar is defined in Figure 5.

4.2 Tag Inclusion and Exclusion

Tag inclusion, +(A), which is an SGML feature, signifies that element A may
appear anywhere within its defining element. There are only two occurrences of
tag inclusion in HTML DTD, one of which is the following:

Static Validation of Dynamically Generated HTML Documents 205

production semantic rules

head → head◦?

contents { (t, b, i) = contents.count;
check t == 1 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ i ≤ 1; }

head•?

contents → contents1
content { contents.count = contents1 .count +++ content.count }

contents → content { contents.count = content.count }
content → title { content.count = (1,0,0) }
content → base { content.count = (0,1,0) }
content → isindex { content.count = (0,0,1) }
content → misc { content.count = (0,0,0) }

where the attribute count is (t,b,i):
head◦ is start tag of HEAD element
head• is end tag of HEAD element

t is the number of TITLE elements
b is the number of BASE elements
i is the number of ISINDEX elements

and (t1, b1, i1)+++(t2, b2, i2) = (min(2, t1 + t2),min(2, b1 + b2),min(2, i1 + i2))

Fig. 5. Attribute grammar for head elements

<!ELEMENT BODY O O (%flow;)* +(INS|DEL) >
<!ELEMENT (INS|DEL) - - (%flow;)* -- inserted text, deleted text -->

That is, INS and DEL elements may appear anywhere in BODY element. This is
not directly definable in LALR(1), so we manually expanded the grammar by
adding production rules for INS and DEL to every nested element.

The tag exclusion, -(A), which is another SGML feature, signifies that the
element A cannot appear in the defining element. For example, consider the
following declaration of anchor element A:

<!ELEMENT A - - (%inline;)* -(A)>

-(A) indicates that the element A cannot be nested. A simple-minded con-
struction of LALR(1) grammar for tag exclusion results in an exponentially
large number of productions, and thus we chose to use synthesized attributes in
Figure 6.

4.3 Validation of Attributes in an HTML Element

Attributes1 in each HTML element have to be validated according to the ATTLIST
declaration, where for each attribute, defined are its name, its type, and whether
it is required or implied. We employed synthesized-attribute semantic processing
to validate attributes in an HTML element. A global environment for attributes
are constructed from element declarations. We get the necessary information
about the attributes from the global environment as follows:

– defined(n◦) : the set of all attribute names in n◦

1 The reader should be careful not to confuse HTML “attributes” with the synthesized
attributes used by the abstract parser.

206 H. Kim, K.-G. Doh, and D.A. Schmidt

production semantic rules

a → a◦
inlines { check name(a◦) /∈ inlines.names }
a• { a.names = { name(a◦) } ∪ inlines.names }

inlines → inlines1
inline { inlines.names = inlines1.names ∪ inline.names }

inlines → inline { inlines.names = inline.names }

n → n◦
some { n.names = { name(n◦) } ∪ some.names }
n•?

name(a◦) : element name of a◦ = a

Fig. 6. Attribute grammar for Tag exclusion

– well-typed(a,n◦) : the value of attribute a in n◦ is well-typed
– required(n◦) : the set of all required attribute names in n◦, where ∀n◦. required(n◦)
⊆ defined(n◦)

For example, consider the following attribute definition of PARAM:

<!ELEMENT PARAM - O EMPTY>
<!ATTLIST PARAM
id ID #IMPLIED
name CDATA #REQUIRED
value CDATA #IMPLIED
valuetype (DATA|REF|OBJECT) DATA
type %ContentType; #IMPLIED>

– defined(param◦) = {id,name,value,valuetype,type}
– well-typed(valuetype,param◦) = true

if the value of valuetype in param◦ is among {DATA,REF,OBJECT}
– required(param◦) = {name}

Semantic rules for validating attributes in an element are defined as follows:

production semantic rules

n → n◦ { check ∀a ∈ parsed(n◦). a ∈ defined(n◦);
check ∀a ∈ parsed(n◦). well-typed(a,n◦);
check ∀a ∈ required(n◦). a ∈ parsed(n◦) ; }
where parsed(n◦) is the set of parsed attribute names in n◦

Each semantic rule for the production n → n◦ asserts the following for attributes
in n◦:

– every parsed attribute name is declared
– every parsed attribute value is well-typed
– every required attribute is present

5 Experiments: Static HTML Validation

Applying abstract parsing enhanced with attribute grammars, we implemented
a static validator for JSP and PHP scripts. The architecture of our platform is

Static Validation of Dynamically Generated HTML Documents 207

Fig. 7. Architecture of static HTML validator

shown in Figure 7. Java Servlets, JSP pages and PHP scripts are converted to sets
of flow equations, and the LALR(1) grammar for HTML 4.01 Transitional DTD
is given to ocamlyacc, generating its parsing table. A lexical specification is given
to ocamllex, generating a scanner. Semantic rules are given to the semantic-
action generator, emitting semantic actions. All of these are forwarded to the
static validator, which is a generic abstract parser equipped with a semantic-
attribute processor. The static validator analyzes all the documents generated
by the input program. When a validation error occurs, the original position of
the source that causes the error is returned. The entire implementation is written
in Objective Caml.

We experimented with our static validator on a suite of JSP programs (the
same one as Møller and Schwarz [15]) and PHP programs. The experiment was
done with Mac OS X 10.8.2 Mountain Lion with Intel Core 2 Duo processor
(2.56GHz) and 8GB memory. The results are summarized in Table 1.

The execution time measured is the total time used to validate each set of
valid programs after all errors found are fixed manually. The average running
time for each program is approximately one second except one case (WebChess,
in PHP) averaged close to 5 seconds. Building the LALR(1) parse table takes
only a few seconds and is not counted in the analysis time.

The details of detected errors are summarized in Table 2. The errors are
classified into three groups: tag matching, misplaced element, and attributes.
There are some false positives (only in PHP programs) that are all due to the
lack of path-sensitive analysis. The number of false positives is shown inside
parentheses.

5.1 Tag Matching

Missing matched tag errors are abundant. Examples are with no
matching (unmatched start/end tag) and <h3> followed by </h2>

(mismatched tags). More serious errors are “improperly nested tags” as follows:

208 H. Kim, K.-G. Doh, and D.A. Schmidt

Table 1. Summary of experimental results

program Files SLOC Errors FP Time

JSP

Pebble 117 41,893 36 0 118.0s
Bookstore1 6 919 8 0 6.2s
Bookstore2 7 532 5 0 7.0s
Bookstore3 11 753 5 0 11.0s
Bookstore4 6 279 3 0 6.0s
Bookstore5 7 249 6 0 7.1s
Bookstore6 8 1,960 1 0 7.9s
JSP Chat 14 920 21 0 16.1s
JPivot 7 635 0 0 7.0s

JSTL Book 53 1,457 18 0 52.7s

PHP

Schoolmate 65 6,470 149 0 62s
FaqForge 19 940 68 0 10s
WebChess 24 2,906 11 2 106s

HGB 20 645 92 0 27s
WEBERP 572 183,511 600 54 590s

Table 2. Classification of errors in JSP and PHP programs

categories errors
JSP PHP

A B C D E total F G H I J total

tag
matching

unmatched start/end tag 3 16 2 2 0 23 4 57 2(2) 14 145(16) 268(18)
mismatched tags 0 0 1 0 0 1 0 0 0 0 1 3

improperly nested tags 0 9 6 2 0 17 0 0 0 0 4 38

misplaced
element

no TITLE in HEAD 0 0 0 0 0 0 0 0 0 2 38 40
misplaced </head> 0 0 0 0 0 0 0 0 0 1 2 3
misplaced <body> 0 0 0 0 0 0 1 0 0 0 4 5
misplaced </body> 0 0 0 0 0 0 1 0 0 0 2 3
misplaced </html> 0 0 0 0 0 0 0 0 0 0 2 2

illegal appearance of blocks in P 16 0 0 0 0 16 0 0 3 0 5 40
illegal appearance of blocks in FONT 0 0 0 0 0 0 0 0 0 3 0 3

illegal appearance of NOFRAMES 0 0 1 0 0 1 0 0 0 0 0 2
illegal appearance of LINK 0 0 0 0 0 0 0 0 2 0 0 2
illegal appearance of META 0 0 0 0 0 0 0 0 0 0 7 7
improperly closed FORM 0 0 0 0 0 0 1 3 0 5 4 13

illegal appearance of HTML before HTML 0 0 0 0 0 0 0 0 0 0 1 1
illegal appearance of TABLE before BODY 0 0 0 0 0 0 0 1 0 0 0 1

no TR in TABLE 0 1 1 0 0 2 0 0 0 0 0 4
missing TR outside TD or TH 2 0 0 0 0 2 0 0 0 3 13(6) 20(6)

missing TD or TH in TR 4 0 1 0 0 5 0 1 0 0 13(3) 24(3)
missing both TR and TD(or TH) 0 0 0 0 0 0 1 1 0 6 41 49
improperly missing <tbody> 4 1 0 0 0 5 0 0 0 0 0 10

no OPTIONs in SELECT 0 0 0 0 0 0 31 0 1 0 282(29) 314(29)
nonstandard element name 0 0 0 2 0 2 20 0 1 0 0 25

attributes
missing required attributes 5 1 6 9 0 21 24 3 1 6 14 90
using undefined attributes 1 0 3 3 0 7 15 1 0 26 2 58

misc. lexical errors 1 0 0 0 0 1 0 2 0 0 10 14
total 36 28 21 18 0 103 98 69 10(2) 66 590(54) 1039(56)

A = Pebble, B = Bookstore, C = JSP Chat, D = JSTP Book, E = JPivot,
F = Schoolmate, G = FaqForge, H = WebChess, I = HGB, J = WEBERP.

m(n) means that n of m errors are false positives
blocks = block-level elements

Static Validation of Dynamically Generated HTML Documents 209

– <p> ... </p>

– <tr><form><td> ... </td></form><tr>

These should have been generated respectively as follows:

– <p> ... </p>
– <tr><td><form> ... </form></td><tr>

5.2 Misplaced Element

Block-level elements, such as TABLE, FORM, DIV, and UL, in P element are detected
as errors, e.g., <p><table> ... </table></p>.

Errors related to TABLE elements are also found. According to TABLE DTD, a
TABLE element should contain at least one TBODY or TR element and a TR element
should contain at least one TD or TH element. The followings are the detected
example patterns that violate the DTD:

– <table> text : both TR and TD are missing
– <table><td> text : TR is missing
– <table><tr> text : TD is missing

The correct pattern should have been: <table><tr><td> text. The requirement
is: If TABLE element contains either THEAD or TFOOT, TBODY element cannot be
omitted. Errors in Pebble 2.6.2 have the following common pattern:

– <table><thead> ... </thead> <tr> ... </table>

which should have been written as follows:

– <table><thead> ... </thead> <tbody> <tr> ... </table>

According to the HTML DTD, a SELECT element must contain at least one
OPTION. The following program excerpted from WEBERP violates this when
the loop is not executed:

$result = execute_query("SELECT ... ");

echo "<select>";

while($result) {

... echo "<option> ...";

}

echo "</select>"

Some programs carefully avoid this by filtering out empty data as follows:

if (DB_num_rows($result) == 0) then {

...

} else {

echo "<select>";

while($result) {

... echo "<option> ...";

}

echo "</select>"

}

210 H. Kim, K.-G. Doh, and D.A. Schmidt

Our tool falsely decides this situation is an error due to its ignorance of condi-
tional expressions.

5.3 Attributes in HTML Elements

Our tool detected multiple misuses of attributes in HTML elements. The TD

element has an undefined attribute background as follows:

– <td class=’b’ width=10 background=’./images/left.gif’>

The TEXTAREA has no required attributes rows and cols:

– <textarea name=’task’>

6 Static Validation of Semantic Properties

Additional semantic requirements, beyond those described in the DTD, are abun-
dant in the HTML specification and listed in natural language. We carefully
chose several critical semantic properties and specified them in an attributed
LALR(1) grammar and then supplied the grammar to our static analyzer based
on attributed-abstract parsing.

The semantic errors found are classified in Table 3. False positives here are
also due to the lack of path-sensitive analysis. We examine the table in detail in
the following subsections.

Table 3. Classification of semantic errors in PHP programs

errors WebChess HGB WEBERP total

non-unique id attribute 0 8 1(1) 9(1)

unmatched id and name in a single element 0 0 4 4

href or hrefs refer undefined identifier 0 0 0 0

unsubmittable FORM field 10(7) 4(4) 26 40(11)

6.1 Properties of Element Identifiers

According to the HTML 4.01 Specification, element identifiers must have the
following properties:

– the value of id attribute must be unique in a document
– the values of id and namemust be the same when both appear in an element’s

start tag
– the values of href and hrefs attributes should refer to defined identifiers in

the same document

Static Validation of Dynamically Generated HTML Documents 211

production semantic rules

element → element◦ { if element◦(id) is given then
check element◦(id) /∈ element.idset(id);
if element◦(name) is given then

check element◦(id) == element◦(name);
element.idset = element.idset ∪ {element◦(id)};

if element◦(href) is given then
element.hrefset = element.hrefset ∪ {element◦(href)};

if element◦(hrefs) is given then
element.hrefset = element.hrefset ∪ element◦(hrefs); }

contents

element•?

document → { html.idset = ∅; html.hrefset = ∅; }
html

{ check ∀id ∈ html.hrefset, id ∈ html.idset }

Fig. 8. Attribute grammar for checking properties of element indentifiers

Figure 8 shows an attribute grammar for checking the above properties.
Errors found in HGB are all from header.php originate from eight redundant

uses of the same value, tl, as follows:
// hgb/header.php
<?php if($block === false){ ?>
<div align=center>
Admin HOME || Spam Filter ||
IP Blocker || Change Password ||
Sign out

Properties || About ||
Read me || <a id=tl target="_blank" ...

An error found in AccountGroups.php of WEBERP is a false positive: Two
conditional branches share the same value AccountGroups of id, but only one
branch of the two will be executed, i.e., if one is executed, the other isn’t. Since
our analyzer does not take into account the meaning of conditional, it announces
an error.

// WEBERP/AccountGroups.php
...

} elseif (isset($_GET[’delete’])) {
...
if ($myrow[’groups’]>0) {
echo ’...
<form method="post" id="AccountGroups"

action="’ . htmlspecialchars($_SERVER[’PHP_SELF’], ENT_QUOTES, ’UTF-8’) . ’"> ...’;
}

}
...
if (!isset($_GET[’delete’])) {

echo ’<form method="post" id="AccountGroups"
action="’ . htmlspecialchars($_SERVER[’PHP_SELF’], ENT_QUOTES, ’UTF-8’) . ’">’;

6.2 Submission of FORM Fields

A FORM field only transfers its data when one of the following conditions is true:

– it contains at least one INPUT element whose type is submit or image,
– it contains one and only INPUT element whose type is text,
– it contains a BUTTON element whose name is submit.

212 H. Kim, K.-G. Doh, and D.A. Schmidt

Another way of transferring data is to use the submit() function of JavaScript.
An attribute grammar for validating FORM data submission is defined as follows:

production semantic rules

form → form◦ { form.submittable = false; form.textcount = 0; }
contents
form• { check contents.submittable ∨ contents.textcount == 1 }

input → input◦ { if input◦(disabled) �= true ∧ input◦(type) ∈ { submit, image } then
input.submittable =true;

if input◦(disabled) �= true ∧ input◦(type) = text then
input.textcount = min(2, input.textcount+ 1); }

button → button◦ { if button◦(disabled) �= true ∧ button◦(type) = submit then
button.submittable =true; }

...

submittable is a synthesized attribute becoming true when one of the first and
third conditions above is true. textcount is also a synthesized attribute counting
the number of text elements. Note that the domain of these attribute values are
finite. The value of textcount is one of 0, 1, and 2.

Eleven errors are classified as false positives because all use JavaScript func-
tion submit() to submit FORM field data and JavaScript code itself is not ana-
lyzed by the tool. For instance,

print("<script language=’JavaScript’>
function schoolInfo() {
document.admin.page2.value=1;
document.admin.submit();

} ... </script>");
...

print("...
<form name=’admin’ action=’./index.php’ method=’POST’>

School
...
<input type=’hidden’ name=’page2’ value=’$page2’>
<input type=’hidden’ name=’logout’>
<input type=’hidden’ name=’page’ value=’$page’>

</form> ...");

Three hidden input fields are submitted by function schoolInfo(), the first link
of A in FORM. However, if JavaScript is unsupported or disabled in a web browser,
the submission would not be working, hence they might well be classified as true
positives. An additional analysis of JavaScript would remedy this problem.

7 Related Research

Because of the popularity of HTML-document generators there exist a variety
of approaches for static validation.

Minamide’s initial efforts used data-flow equations to approximate the docu-
ments generated from PHP programs and then treats the equations as a gram-
mar, matching it against an HTML/XHTML grammar [13]. However, since the
language inclusion problem for context-free grammar is undecidable, nesting
depth of elements must be bounded, making the approach miss errors.

Static Validation of Dynamically Generated HTML Documents 213

Later, Minamide’s and Møller’s groups independently developed sound meth-
ods of validating dynamically generated XML documents based on balanced
grammars [12, 14], but their methods are difficult to generalize to HTML fea-
tures such as tag omission and inclusion/exclusion. Some improvement has been
made by Nishiyama and Minamide, who translate a subclass of the SGML DTD
(including HTML) into a regular hedge grammar, avoiding undecidability [16].
However, this method does not support start tag omission and tag inclusion, and
the translation to support exclusion causes exponential blowup of the grammar.

Recently, Møller and Schwarz developed an HTML validation algorithm [15]
that is a generalization of the core algorithm for SGML parsing to work on
context-free-grammar representation of documents. The approach is stated
sound, precise, and efficient, and handles tag omissions and inclusions/exclusions;
it is comparable to our work, limited to the extent of JSP validation. The com-
parison of JSP experimental results of ours and theirs (what is in the paper)
reveals that ours finds more errors in J2EE Bookstore. We also located errors
(in 4 pages from Bookstore 2) that are not mentioned in their paper, as follows:

– bookcashier.jsp : unmatched at line 32
– bookcatalog.jsp :

• improperly nested tag <p> at line 62 and </p> at line 66
• unmatched at 117 line

– booldetails.jsp : improperly nested tag <p> at line 60 and </p>

at line 73
– bookshowcart.jsp : unmatched </td> at line 143

Extending the SGML parsing algorithm to handle semantic-attribute processing
remains to be seen. Interestingly, our tool found no errors in JPivot,whereasMøller
and Schwarz’s tool found errors in 2 pages out of 3. The possible explanationmight
be that our tool skipped one JSP page that generates documents through XSL
transformation, which our JSP-to-Java translator has yet to handle.

8 Conclusion

We have demonstrated the utility of marrying parsing, semantic processing, and
data-flow analysis in the form of attributed abstract parsing, which can pre-
dict, parse, and semantically process with surprising accuracy the documents
dynamically generated by scripts. The application domain described here, JSP
and PHP scripts that generate HTML documents that conform with the HTML
4.01 Transitional DTD, demonstrates the feasibility of the approach.

Acknowledgements. We thank anonymous referees for valuable suggestions
and comments.

References

[1] HTML 4.01 Transitional DTD W3C Recommendation (December 24, 1999),
http://www.w3.org/TR/html4/loose.dtd

http://www.w3.org/TR/html4/loose.dtd

214 H. Kim, K.-G. Doh, and D.A. Schmidt

[2] Agrawal, G.: Simultaneous demand-driven data-flow and call graph analysis. In:
Proc. International Conference on Software Maintenance, Oxford (1999)

[3] Brabrand, C., Møller, A., Schwartzbach, M.I.: The <bigwig> project. ACM
Transaction on Internet Technology 2 (2002)

[4] Choi, T.-H., Lee, O., Kim, H., Doh, K.-G.: A practical string analyzer by the
widening approach. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279,
pp. 374–388. Springer, Heidelberg (2006)

[5] Christensen, A.S., Møller, A., Schwartzbach, M.I.: Static analysis for dynamic
XML. In: Proc. PLAN-X 2002 (2002)

[6] Christensen, A.S., Møller, A., Schwartzbach, M.I.: Extending Java for high-level
web service construction. ACM TOPLAS 25 (2003)

[7] Doh, K.-G., Kim, H., Schmidt, D.A.: Abstract parsing: static analysis of dynam-
ically generated string output using LR-parsing technology. In: Palsberg, J., Su,
Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 256–272. Springer, Heidelberg (2009)

[8] Doh, K.-G., Kim, H., Schmidt, D.A.: Abstract LR-parsing. In: Agha, G., Danvy,
O., Meseguer, J. (eds.) Talcott Festschrift. LNCS, vol. 7000, pp. 90–109. Springer,
Heidelberg (2011)

[9] Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for demand-driven
interprocedural data flow analysis. ACM TOPLAS 19, 992–1030 (1997)

[10] Hopcroft, J., Ullman, J.: Formal Languages and their Relation to Automata. Ad-
dison Wesley (1969)

[11] Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:
Proc. 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering
(1995)

[12] Kirkegaard, C., Møller, A.: Static analysis for Java Servlets and JSP. In: Yi, K.
(ed.) SAS 2006. LNCS, vol. 4134, pp. 336–352. Springer, Heidelberg (2006)

[13] Minamide, Y.: Static approximation of dynamically generated web pages. In: Proc.
14th International Conference on World Wide Web, pp. 432–441 (2005)

[14] Minamide, Y., Tozawa, A.: XML validation for context-free grammars. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 357–373. Springer, Hei-
delberg (2006)

[15] Møller, A., Schwarz, M.: HTML validation of context-free languages. In: Hofmann,
M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 426–440. Springer, Heidelberg
(2011)

[16] Nishiyama, T., Minamide, Y.: A translation from the HTML DTD into a regu-
lar hedge grammar. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS,
vol. 5148, pp. 122–131. Springer, Heidelberg (2008)

[17] Thiemann, P.: Grammar-based analysis of string expressions. In: Proc. ACM SIG-
PLAN International Workshop on Types in Languages Design and Implementa-
tion, pp. 59–70 (2005)

[18] Wassermann, G., Su, Z.: The essence of command injection attacks in web appli-
cations. In: Proc. 33rd ACM Symp. POPL, pp. 372–382 (2006)

[19] Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: Proc. ACM PLDI, pp. 32–41 (2007)

Byte-Precise Verification of Low-Level List
Manipulation�

Kamil Dudka, Petr Peringer, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. We propose a new approach to shape analysis of programs with linked
lists that use low-level memory operations. Such operations include pointer arith-
metic, safe usage of invalid pointers, block operations with memory, reinterpre-
tation of the memory contents, address alignment, etc. Our approach is based
on a new representation of sets of heaps, which is to some degree inspired by
works on separation logic with higher-order list predicates, but it is graph-based
and uses a more fine-grained (byte-precise) memory model in order to support
the various low-level memory operations. The approach was implemented in the
Predator tool and successfully validated on multiple non-trivial case studies that
are beyond the capabilities of other current fully automated shape analysis tools.

1 Introduction

Dealing with programs with pointers and dynamic linked data structures belongs among
the most challenging tasks of formal analysis and verification due to a need to cope with
infinite sets of reachable program configurations having the form of complex graphs.
This task becomes even more complicated when considering low-level memory oper-
ations such as pointer arithmetic, safe usage of pointers with invalid targets, block op-
erations with memory, reinterpretation of the memory contents, or address alignment.
Despite the rapid progress in the area of formal program analysis and verification, fully
automated approaches capable of efficiently handling sufficiently general classes of
dynamic linked data structures in the form used in low-level code are still missing.

In this paper, we propose a new fully automated approach to formal verification of
list manipulating programs designed to cope with all of the above mentioned low-level
memory operations. Our approach is based on a new representation of sets of heaps,
which is to some degree inspired by works on separation logic with higher-order list
predicates [1], but it is graph-based and uses a much more fine-grained memory model.
In particular, our memory model allows one to deal with byte-precise offsets of fields
of objects, offsets of pointer targets, as well as object sizes. Together with the new
heap representation, we propose original algorithms for all the operations needed for
a use of the new representation in a fully automated shape analysis. As our experiments
show, these algorithms allow our analysis to successfully handle many programs on
which other state-of-the-art fully automated approaches fail (by not terminating or by
producing false positives or even false negatives).

� This work was supported by the Czech Science Foundation (project P103/10/0306), the Czech
Ministry of Education (project MSM 0021630528), the EU/Czech IT4Innovations Centre of
Excellence project CZ.1.05/1.1.00/02.0070, and the BUT FIT project FIT-S-12-1.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 215–237, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

216 K. Dudka, P. Peringer, and T. Vojnar

In particular, we represent sets of heap graphs using the so-called symbolic memory
graphs (SMGs) with two kinds of nodes: objects and values. Objects represent allocated
memory and are further divided into regions representing individual memory areas and
list segments encoding linked sequences of n or more regions uninterrupted by exter-
nal pointers (for some n ≥ 0). Values represent addresses and other data stored inside
objects. Objects and values are linked by two kinds of edges: has-value edges from ob-
jects to values and points-to edges from value nodes representing addresses to objects.
For efficiency reasons, we represent equal values by a single value node. We explicitly
track sizes of objects, byte-precise offsets at which values are stored in them, and we
allow pointers to point to objects with an arbitrary offset, i.e., a pointer can point inside
as well as outside an object, not just at its beginning as in many current analyses.

We are capable of handling possibly cyclic, nested (with an arbitrary depth), and/or
shared singly- as well as doubly-linked lists (for brevity, below, we concentrate on
doubly-linked lists only). Our analysis can fully automatically recognise linking fields
of the lists as well as the way they are possibly hierarchically nested. Moreover, the
analysis can easily handle lists in the form common in system software (in particular,
the Linux kernel), where list nodes are linked through the middle of them, pointer arith-
metic is used to get to the beginning of the nodes, pointers iterating through such lists
can sometimes safely point to unallocated memory, the forward links are pointers to
structures while the backward ones are pointers to pointers to structures, etc.

To reduce the number of SMGs generated for each basic block of the analysed pro-
gram, we propose a join operator working over SMGs. Our join operator is based on
simultaneously traversing two SMGs while trying to merge the encountered pairs of ob-
jects and values according to a set of rules carefully tuned through many experiments to
balance precision and efficiency (see Section 3.2 for details). Moreover, we use the join
operator as the core of our abstraction, which is based on merging neighbouring objects
(together with their sub-heaps) into list segments. This approach leads to a rather easy to
understand and—according to our experiments—quite efficient abstraction algorithm.
In the abstraction algorithm, the join is not applied to two distinct SMGs, but a single
one, starting not from pairs of program variables, but the nodes to be merged. Further,
we use our join operator as a basis for checking entailment on SMGs too (by observing
which kind of pairs of objects and values are merged when joining two SMGs). In or-
der to handle lists whose nodes optionally refer to some regions or sub-lists (which can
make some program analyses diverge and/or produce false alarms [16]), our join and
abstraction support the so-called 0/1 abstract objects.

Since on the low level, the same memory contents can be interpreted in different
ways (e.g., via unions or type-casting), we incorporate into our analysis the so-called
read, write, and join reinterpretation. In particular, we formulate general conditions on
the reinterpretation operators that are needed for soundness of our analysis, and then
instantiate these operators for the quite frequent case of dealing with blocks of nullified
memory. Due to this, we can, e.g., efficiently handle initialization of structures with
tens or hundreds of fields commonly allocated and nullified in practice through a single
call of calloc, at the same time avoiding false alarms stemming from that some field
was not explicitly nullified. Moreover, we provide a support for block operations like
memmove or memcpy. Further, we extend the basic notion of SMGs to support pointers

Byte-Precise Verification of Low-Level List Manipulation 217

having the form of not just a single address, but an interval of addresses. This is needed,
e.g., to cope with address alignment or with list nodes that are equal up to their incoming
pointers arrive with different offsets (as common, e.g., in memory allocators).

We have implemented the proposed approach in a new version of our tool Preda-
tor [7]. Predator automatically proves absence of various memory safety errors, such as
invalid dereferences, invalid free operations, or memory leaks. Moreover, Predator can
also provide the user with the derived shape invariants. Due to SMGs provide a rather
detailed memory model, Predator produces fewer false alarms compared with other
tools, and on the other hand, it can discover bugs that may be undetected by other state-
of-the-art tools (as illustrated by our experimental results). In particular, Predator can
discover out-of-bound dereferences (including stack smashing or buffer overflows) as
well as nasty bugs resulting from dealing with overlapping blocks of memory in op-
erations like memcpy. We have successfully validated the new version of Predator on
a number of case studies, including various operations on lists commonly used in the
Linux kernel as well as code taken directly from selected low-level critical applications
(without any changes up to adding a test environment). In particular, we considered the
memory allocator from the Netscape portable runtime (NSPR), used, e.g., in Firefox,
and the lvm2 logical volume manager. All of the case studies are available within the
distribution of Predator. To the best of our knowledge, many of our case studies are out
of what other currently existing fully automated shape analysis tools can handle.

Related Work. Many approaches to formal analysis and verification of programs with
dynamic linked data structures have been proposed. They differ in their generality, level
of automation, as well as the formalism on which they are based. As said already above,
our approach is inspired by the fully automated approaches [1,17] based on separation
logic with higher-order list predicates implemented in two well-known tools, namely,
Space Invader and SLAyer [2]. Compared with them, however, we use a purely graph-
based memory representation. In fact, a graph-based representation was used already
in the older version of our tool Predator [7]. However, that representation was a rather
straightforward graph-based encoding of separation logic formulae, which is no more
the case for the representation proposed in this paper. Our new heap representation is
much finer, which on one hand complicates its formalization, but on the other hand, it
allows us to treat the different peculiarities of low-level memory manipulation. More-
over, somewhat surprisingly, despite our new heap representation is rather detailed, it
still allowed us to propose algorithms for all the needed operations such that they are
quite efficient. Indeed, the new version of Predator is much faster than the old one
while at the same time producing fewer false positives. Compared with Space Invader
and SLAyer, Predator based on the new memory representation and new algorithms is
not only faster, but also terminates more often, avoids false positives and, in particular,
is able to detect additional classes of program errors that the other tools silently ignore
(as illustrated in the section on experiments).

Both Space Invader and SLAyer provide some support for pointer arithmetic, but its
systematic description is (to the best of our knowledge) not available, and moreover,
the support seems to be rather basic as illustrated by our experimental results. The same
is the case with some other fully automated tools for verification of programs with
dynamic linked data structures based on other formalisms, such as Forester [9] based

218 K. Dudka, P. Peringer, and T. Vojnar

on automata. A support for pointer arithmetic in combination with separation logic
appears in [5], which is, however, highly specialised for a particular kind of linked lists
with variable length entries used in some memory allocators.

As for the memory model, probably the closest to our work is [11], which uses the
so-called separating shape graphs. They support tracking of the size of allocated mem-
ory areas, pointers with byte-precise offsets wrt. addresses of memory regions, dealing
with offset ranges, as well as multiple views on the same memory contents. A major
difference is that [11] and the older work [6], on which [11] is based, use the so-called
summary edges annotated by user-supplied data structure invariants to summarize parts
of heaps of an unbounded size. This approach is more general in terms of the supported
shapes of data structures but less automatic because the burden of describing the shape
lies on the user. We use abstract objects (list segments) instead, which are capable of
encoding various forms of hierarchically nested lists (very often used in practice) and
are carefully designed to allow for fully automatic and efficient learning of the concrete
forms of such lists (the concrete fields used, the way the lists are hierarchically nested,
their possible cyclicity, possibly shared nodes, optional nodes, etc.). Also, the level
of nesting is not fixed in advance—our list segments are labelled by an integral nest-
ing level, which allows us to represent hierarchically nested data structures as flattened
graphs. Finally, although [11] points out a need to reinterpret the memory contents upon
reading/writing, the corresponding operations are not formalized there. One of our con-
tributions is thus also a definition of read/write reinterpretation operators in a way that
can be used by a fully automatic shape analysis algorithm.

A graph-based abstraction of sets of heap configurations is used in [12] too. On one
hand, the representation allows one to deal even with tree-like data structures, but on the
other hand, the case of doubly-linked lists is not considered. Further, the representation
does not consider the low-level memory features covered by our symbolic memory
graphs. Finally, the abstraction and join operations used in [12] are more aggressive
and hence less precise than in our case.

The work [10], which is based on an instantiation of the TVLA framework [14],
focuses on analysis of Linux-style lists, but their approach relies on an implementation-
dependent way of accessing list nodes, instead of supporting pointer arithmetics, unions,
and type-casts in a generic way. Finally, the work [15] provides a detailed treatment
of low-level C features such as alignment, byte-order, padding, type-unsafe casts, etc.
in the context of theorem proving based on separation logic. Our reinterpretation opera-
tors provide a lightweight treatment of these features designed to be used in the context
of a fully automated analysis based on abstraction.

2 Symbolic Memory Graphs

We encode sets of program configurations using the so-called symbolic memory graphs
(SMGs) together with a mapping from global (static) and local (stack) variables to
nodes of the SMGs. In particular, SMGs have a form of node- and edge-labelled di-
rected graphs. Below, we start by an informal description of SMGs, followed by their
formalisation. For an illustration of the notions discussed below, we refer the reader to
Fig. 1, which shows how SMGs represent cyclic Linux-style DLLs (with a head node

Byte-Precise Verification of Low-Level List Manipulation 219

without any data part, other nodes including the head structure as well as custom data,
and with the next/prev pointers pointing inside list nodes, not at their beginning). Some
more examples illustrating the notion of SMGs, including its use for encoding various
low-level Linux-style lists, can be found in [8].

2.1 The Intuition behind SMGs

...

hfo nfo pfolist_head custom_record
next
prev

next
prev

next
prev

hfo,lst

hfo,fst0,ptr0,reg

pfo,ptr
ptr

nfo,ptr

Fig. 1. A cyclic Linux-style DLL (top) and its SMG (bottom),
with some SMG attributes left out for readability.

An SMG consists of two
kinds of nodes: objects and
values (in Fig. 1, they are
represented by boxes and
circles, respectively). Ob-
jects are further divided
to regions and (doubly-
linked) list segments (DLSs)1.
A region represents a con-
tiguous area of memory al-
located either statically, on
the stack, or on the heap.
Each consistent SMG contains a special region called the null object, denoted #, which
represents the target of NULL. DLSs arise from abstracting sequences of doubly-linked
regions that are not interrupted by any external pointer. For example, in the lower part of
Fig. 1, the left box is a region corresponding to the list head from the upper part of the
figure whereas the right box is a DLS summarizing the sequence of custom record
objects from the upper part. Values are then used to represent addresses and other data
stored in objects. All values are abstract in that we only distinguish whether they repre-
sent equal or possibly different concrete values. The only exception is the value 0 that is
used to represent sequences of zero bytes of any length, which includes the zeros of all
numerical types, the address of the null object, as well as nullified blocks of any size.
Zero values are supported since they play a rather crucial role in C programs. In the
future, a better distinction of values can be easily added.

SMGs have two kinds of edges: namely, has-value edges leading from objects to
values and points-to edges leading from addresses to objects (cf. Fig. 1). Intuitively, the
edges express that objects have values and addresses point to objects. Has-value edges
are labelled by the offset and type of the field in which a particular value is stored within
an object. Note that we allow the fields to overlap. This is used to represent different
interpretations that a program can assign to a given memory area in order not to have to
recompute them again and again. Points-to edges are labelled by an offset and a target
specifier. The offset is used to express that the address from which the edge leads may, in
fact, point before, inside, or behind an object. The target specifier is only meaningful for
list segments to distinguish whether a given edge represents the address (or addresses)
of the first, last, or each concrete region abstracted by the segment. The last option is

1 Our tool Predator supports singly-linked list segments too. Such segments can be viewed as
a restriction of DLSs, and we omit them from the description in order to simplify it.

220 K. Dudka, P. Peringer, and T. Vojnar

used to encode links going to list nodes from the structures nested below them (e.g., in
a DLL of DLLs, each node of the top-level list may be pointed from its nested list).

A key advantage of representing values (including addresses) as a separate kind of
nodes is that a single value node is then used to represent values which are guaranteed
to be equal in all concrete memory configurations encoded by a given SMG. Hence,
distinguishing between equal values and possibly different values reduces to a simple
identity check, not requiring a use of any prover. Thanks to identifying fields of objects
by offsets (instead of using names of struct/union members), comparing their addresses
for equality simplifies to checking identity of the address nodes. For example, (x ==
&x->next) holds iff next is the first member of the structure pointed by x, in which
case both x and &x->next are guaranteed to be represented by a single address node
in SMGs. Finally, the distinction of has-value and points-to edges saves some space
since the information present on points-to edges would otherwise have to be copied
multiple times for a single target.

Objects and values in SMGs are labelled by several attributes. First, each object is
labelled by its kind, allowing one to distinguish regions and DLSs. Next, each object
is labelled by its size, i.e., the amount of memory allocated for storing it. For DLSs,
the size gives the size of their nodes. All objects and values have the so-called nesting
level which is an integer specifying at which level of hierarchically nested structures
the object or value appears (level 0 being the top level). All objects are further labelled
by their validity in order to allow for safe pointer arithmetic over freed regions (which
are marked invalid, but kept as long as there is some pointer to them).

Next, each DLS is labelled by the minimum length of the sequence of regions repre-
sented by it.2 Further, each DLS is associated with the offsets of the “next” and “prev”
fields through which the concrete regions represented by the segment are linked for-
ward and backward. Each DLS is also associated with the so-called head offset at which
a sub-structure called a list head is stored in each list node (cf. Fig. 1). The usage of
list heads is common in system software. They are predefined structures, typically con-
taining the next/prev fields used to link list nodes. When a new list is defined, its node
structure contains the list head as a nested structure, its nodes are linked by pointers
pointing not at their beginning but inside of them (in particular, to the list head), and
pointer arithmetic is used to get to the beginning of the actual list nodes.

Global and stack program variables are represented by regions like heap objects and
can thus be manipulated in a similar way (including their manipulation via pointers,
checking for out-of-bounds accesses leading to stack smashing, etc.). Regions corre-
sponding to program variables are tagged by their names and hence distinguishable
whenever needed (e.g., when checking for invalid frees of stack/global memory, etc.).

2.2 Symbolic Memory Graphs

Let B be the set of Booleans, T a set of types, size(t) the size of instances of a type
t ∈ T, ptr ∈ T a unique pointer type3, K = {reg, dls} the set of kinds of objects

2 Later, in Section 4, special list segments of length 0 or 1 are mentioned too.
3 We assume size(ptr) to be a constant, which implies that separate verification runs are needed

for verifying a program for target architectures using different address sizes.

Byte-Precise Verification of Low-Level List Manipulation 221

(distinguishing regions and DLSs), and S = {fst, lst, all, reg} the set of points-to
target specifiers. A symbolic memory graph is a tuple G = (O, V, Λ,H, P) where:

– O is a finite set of objects including the special null object #.
– V is a finite set of values such that O ∩ V = ∅ and 0 ∈ V .
– Λ is a tuple of the following labelling functions:

• The kind of objects kind : O → K where kind(#) = reg, i.e., # is formally
considered a region. We let R = {r ∈ O | kind(r) = reg} be the set of regions
and D = {d ∈ O | kind(d) = dls} be the set of DLSs of G.

• The nesting level of objects and values level : O ∪ V → N.
• The size of objects size : O → N.
• The minimum length of DLSs len : D → N.
• The validity of objects valid : O → B.
• The head, next, and prev field offsets of DLSs hfo, nfo, pfo : D → N.

– H is a partial edge function O×N×T ⇀ V which defines has-value edges o of,t−−→v
where o ∈ O, v ∈ V , of ∈ N, and t ∈ T. We call (of, t) a field of the object o that
stores the value v of the type t at the offset of .

– P is a partial injective edge function V ⇀ Z×S×O which defines points-to edges
v of,tg−−→o where v ∈ V , o ∈ O, of ∈ Z, and tg ∈ S such that tg = reg iff o ∈ R.
Here, of is an offset wrt. the base address of o.4 If o is a DLS, tg says whether the
edge encodes pointers to the first, last, or all concrete regions represented by o.

We define the first node of a list segment such that the next field of the node points in-
side the list segment (and the last node such that the prev field of the node points inside
the list segment). As already mentioned, the all target specifier is used in hierarchically
nested list structures where each nested data structure points back to the node of the par-
ent list below which it is nested. Fig. 2 illustrates how the target

Fig. 2. An SMG and its possible concreti-
sation for the case when the DLS d repre-
sents exactly two regions (only important
attributes are shown).

specifier affects the semantics of points-to
edges (and the corresponding addresses): The
DLS d is concretized to the two regions r1
and r2, and the nested abstract region r′ to the
two concrete regions r′1 and r′2. Note that if r′

was not nested, i.e., if it had level(r′) = 0, it
would concretise into a single region pointed
by both r1 and r2.

Let G = (O, V, Λ,H, P) be an SMG with
a set of regions R and a set of DLSs D.
We denote a DLS d ∈ D of minimum
length n, for which len(d) = n, as an
n+ DLS. We use ⊥ to denote cases where
H or P is not defined. For any v ∈ V for
which P (v) �= ⊥, we denote by of(P (v)),
tg(P (v)), and o(P (v)) the particular items
of the triple P (v). Further, for o ∈ O, we
let H(o) = {H(o, of, t) | of ∈ N, t ∈

4 Note that the offset can even be negative, which happens, e.g., when traversing a Linux list.

222 K. Dudka, P. Peringer, and T. Vojnar

T, H(o, of, t) �= ⊥}. We let A = {v ∈ V | P (v) �= ⊥} be the set of all addresses
used in G. Next, a path in G is a sequence (of length one or more) of values and objects
such that there is an edge between every two neighbouring nodes of the path. An object
or value x2 ∈ O∪V is reachable from an object or value x1 ∈ O∪V iff there is a path
from x1 to x2.

We call G consistent iff the following holds:
– Basic consistency of objects. The null object is invalid, has size and level 0, and its

address is 0, i.e., valid(#) = false, size(#) = level(#) = 0, and 0 0,reg−−−→#. All
DLSs are valid, i.e., ∀d ∈ D : valid(d). Invalid regions have no outgoing edges.

– Field consistency. Fields do not exceed boundaries of objects, i.e., ∀o ∈ O ∀of ∈ N
∀t ∈ T : H(o, of, t) �= ⊥ ⇒ of + size(t) ≤ size(o).

– DLS consistency. Each DLS d ∈ D has a next pointer and a prev pointer, i.e., there
are addresses an, ap ∈ A s.t. H(d, nfo(d), ptr) = an and H(d, pfo(d), ptr) = ap
(cf. Fig. 2). The next pointer is always stored in memory before the prev pointer,
i.e., the next and prev offsets are s.t. ∀d ∈ D : nfo(d) < pfo(d). Points-to edges
encoding links to the first and last node of a DLS d are always pointing to these
nodes with the appropriate head offset, i.e., ∀a ∈ A : tg(P (a)) ∈ {fst, lst} ⇒
of(P (a)) = hfo(d) where d = o(P (a)).5 Finally, there is no cyclic path containing
0+ DLSs (and their addresses) only in a consistent SMG since its semantics would
include an address not referring to any object.

– Nesting consistency. Each nested object o ∈ O of level l = level(o) > 0 has
precisely one parent DLS, denoted parent(o), that is of level l − 1 and there is
a path from parent(o) to o whose inner nodes are of level l and higher only (e.g., in
Fig. 2, d is the parent of r′). Addresses with fst, lst, and reg targets are always of
the same level as the object they refer to (as is the case for af , al, a1, a2 in Fig. 2),
i.e., ∀a ∈ A : tg(P (a)) ∈ {fst, lst, reg} ⇒ level(a) = level(o(P (a))). On the
other hand, addresses with the all target go up one level in the nesting hierarchy,
i.e., ∀a ∈ A : tg(P (a)) = all ⇒ level(a) = level(o(P (a))) + 1 (cf. ad in Fig. 2).
Finally, edges representing back-pointers to all nodes of a list segment can only lead
from objects (transitively) nested below that segment (e.g., in Fig. 2, such an edge
leads from region r′ back to the DLS d, but it cannot lead from any other regions).
Formally, for any o, o′ ∈ O, a ∈ H(o), o(P (a)) = o′, and level(o) > level(o′),
tg(P (a)) = all iff o′ = parentk(o) for some k ≥ 1.

From now on, we assume working with consistent SMGs only. Let GVar be a finite set
of global variables, SVar a countable set of stack variables such that GVar ∩ SVar = ∅,
and let Var = GVar ∪ SVar. A symbolic program configuration (SPC) is a pair C =
(G, ν) where G is an SMG with a set of regions R, and ν : Var → R is a finite injective
map such that ∀x ∈ Var : level(ν(x)) = 0 ∧ valid(ν(x)). Note that ν gives the
regions in which values of variables are stored, not directly the values themselves. We
call each object o such that ν(x) = o for some x ∈ GVar a static object, and each object
o such that ν(x) = o for some x ∈ SVar a stack object. All other objects are called heap
objects. An SPC is called garbage-free iff all its heap objects are reachable from static
or stack objects.

5 The last two requirements are not necessary, but they significantly simplify the below presented
algorithms (e.g., the DLS materialisation given in Section 2.3).

Byte-Precise Verification of Low-Level List Manipulation 223

We define the empty SMG to consist solely of the null object, its address 0, and the
points-to edge between them. The empty SPC then consists of the empty SMG and the
empty variable mapping. An SMG G′ = (O′, V ′, Λ′, H ′, P ′) is a sub-SMG of an SMG
G = (O, V, Λ,H, P) iff (1) O′ ⊆ O, (2) V ′ ⊆ V , and (3) H ′, P ′, and Λ′ are restrictions
of H , P , and Λ to O′ and V ′, respectively. The sub-SMG of G rooted at an object or
value x ∈ O ∪ V , denoted Gx, is the smallest sub-SMG of G that includes x and all
objects and values reachable from x. Given F ⊆ N, the F -restricted sub-SMG of G
rooted at an object o ∈ O is the smallest sub-SMG of G that includes o and all objects
and values reachable from o apart from the addresses AF = {H(o, of, ptr) | of ∈ F}
and nodes that are reachable from o throughAF only. Finally, the sub-SMG of G nested
below d ∈ D, denoted Ĝd, is the smallest sub-SMG of G including d and all objects
and values of level higher than level(d) that are reachable from d via paths that, apart
from d, consist exclusively of objects and values of a level higher than level(d).

2.3 The Semantics of SMGs

We define the semantics of SMGs in two steps, namely, by first defining it in terms of the
so-called memory graphs whose semantics is subsequently defined in terms of concrete
memory images. In particular, a memory graph (MG) is defined exactly as an SMG up to
it is not allowed to contain any list segments. An SMG then represents the class of MGs
that can be obtained (up to isomorphism) by applying any number of times the following
two transformations: (1) materialisation of fresh regions from DLSs (i.e., intuitively,
“pulling out” concrete regions from the beginning or end of segments) and (2) removal
of 0+ DLSs (which may have become 0+ due to the preceding materialisation).

Materialisation and Removal of DLSs. Let G = (O, V, Λ,H, P) be an SMG with the
sets of regions R, DLSs D, and addresses A. Let d ∈ D be a DLS of level 0. Further,
let an, ap ∈ A be the next and prev addresses of d, i.e., H(d, pfo(d), ptr) = ap and
H(d, nfo(d), ptr) = an. The DLS d can be materialised as follows—for an illustration
of the operation, see the upper part of Fig. 3:

1. G is extended by a fresh copy G′
r of the sub-SMG Ĝd nested below d. In G′

r,
d is replaced by a fresh region r such that size(r) = size(d), level(r) = 0, and
valid(r) = true. The nesting level of each object and value in G′

r (apart from r) is
decreased by one.

2. Let af ∈ A be the address pointing to the beginning of d, i.e., such that P (af) =
(hfo(d), fst, d). If af does not exist in G, it is added. Next, A is extended by
a fresh address ad that will point to the beginning of the remaining part of d after
the concretisation (while af will be the address of r). Finally, H and P are changed
s.t. P (af) = (hfo(d), reg, r), H(r, pfo(d), ptr) = ap, H(r, nfo(d), ptr) = ad,
P (ad) = (hfo(d), fst, d), and H(d, pfo(d), ptr) = af .

3. For any object o of Ĝd, let o′ be the corresponding copy of o in G′
r (for o = d, let

o′ = r). For each field (of, t) ∈ (N × T) of each object o in Ĝd whose value is of
level 0, i.e., level(H(o, of, t)) = 0, the corresponding field of o′ in G′

r is set to the
same value, i.e., the set of edges is extended such that H(o′, of, t) = H(o, of, t).

4. If len(d) > 0, len(d) is decreased by one.

224 K. Dudka, P. Peringer, and T. Vojnar

Fig. 3. Materialisation of a DLS: (a) input, (b) output (re-
gion r got materialised from DLS d). Removal of a DLS:
(c) input, (d) output. Sub-SMGs Ĝd and G′

r are highlighted
without their roots.

Next, let d ∈ D be a DLS as
above with the additional re-
quirement of len(d) = 0 with
the addresses an, ap, af , and
al defined as in the case of ma-
terialisation. The DLS d can
be removed as follows—for an
illustration, see the lower part
of Fig. 3: (1) Each has-value
edge o of,t−−→af is replaced by
the edge o of,t−−→an. (2) Each
has-value edge o of,t−−→al is re-
placed by the edge o of,t−−→ap.
(3) The subgraph Ĝd is re-
moved together with the ad-
dresses af , al, and the edges
adjacent with the removed ob-
jects and values.

Given an SMG G = (O, V, Λ,H, P) with a set of DLSs D, we denote by MG(G)
the class of all MGs that can be obtained (up to isomorphism) by materializing each
DLS d ∈ D at least len(d) times and by subsequently removing all DLSs.

Concrete Memory Images. The semantics of an MG G = (R, V, Λ,H, P) is the set
MI(G) of memory images μ : N → {0, . . . , 255} mapping concrete addresses to bytes
such that there exists a function π : R → N, called a region placement, for which the
following holds:

1. Only the null object is placed at address zero, i.e., ∀r ∈ R : π(r) = 0 ⇔ r = #.
2. No two valid regions overlap, i.e., ∀r1, r2 ∈ R : valid(r1) ∧ valid(r2) ⇒ 〈π(r1),

π(r1) + size(r1)) ∩ 〈π(r2), π(r2) + size(r2)) = ∅.
3. Pointer fields are filled with the concrete addresses of the regions they refer to. For-

mally, for each pair of has-value and points-to edges r1 of1,ptr−−−−→a of2,reg−−−−→r2 in H and
P , resp., addr(bseq(μ, π(r1)+of1, size(ptr))) = π(r2)+of2 where bseq(μ, p, size)
is the sequence of bytes μ(p)μ(p + 1)...μ(p + size − 1) for any p, size > 0, and
addr(σ) is the concrete address encoded by the byte sequence σ.

4. Fields having the same values are filled with the same concrete values (up to nul-
lified blocks that can differ in their length), i.e., for every two has-value edges
r1

of1,t1−−−→v and r2
of2,t2−−−→v in H , where v �= 0, bseq(μ, π(r1) + of1, size(t1)) =

bseq(μ, π(r2) + of2, size(t2)).
5. Finally, nullified fields are filled with zeros, i.e., for each has-value edge r of,t−−→0 in

H , μ(π(r) + of + i) = 0 for all 0 ≤ i < size(t).

For an SMG G, we let MI(G) =
⋃

G′∈MG(G) MI(G′). Note that it may happen that it is
not possible to find concrete values satisfying the needed constraints. In such a case, the
semantics of an (S)MG is empty. Note also that we restrict ourselves to a flat address
space, which is, however, sufficient for most practical cases.

Byte-Precise Verification of Low-Level List Manipulation 225

3 Operations on SMGs

In this section, we propose algorithms for all the operations on SMGs that are needed
for their application in program verification. In particular, we discuss data reinterpreta-
tion, join of SMGs (which we use for entailment checking, too), abstraction, inequality
checking, and symbolic execution of C programs. Due to limited space, the description
is mostly informal. More details can be found in [8].

Below, we denote by I(of, t) the right-open integer interval 〈of, of + size(t)), and
for a has-value edge e : o of,t−−→v, we write I(e) as the abbreviation of I(of, t).

3.1 Data Reinterpretation

SMGs allow fields of a single object to overlap and even to have the same offset and
size, being distinguishable by their types only. In line with this feature of SMGs, we
introduce the so-called read reinterpretation that can create multiple views (interpreta-
tions) of a single memory area without actually changing the semantics. On the other
hand, if we write to a field that overlaps with other fields, we need to reflect the change
of the memory image in the overlapping fields, for which the so-called write reinter-
pretation is used. These two operations form the basis of all operations reading and
writing memory represented by SMGs. Apart from them, we also use join reinterpreta-
tion which is applied when joining two SMGs to preserve as much information shared
by the SMGs as possible even when this information is not explicitly represented in the
same way in both the input SMGs.

Defining reinterpretation for all possible data types (and all of their possible values)
is hard (cf. [15]) and beyond the scope of this paper. Instead of that, we define minimal
requirements that must be met by the reinterpretation operators so that our verification
approach is sound. This allows different concrete instantiations of these operators to be
used in the future. Currently, we instantiate the operators for the particular case of deal-
ing with nullified blocks of memory, which is essential for handling low-level pointer
manipulating programs that commonly use functions like calloc() or memset()
to obtain large blocks of nullified memory.6

Read Reinterpretation. A read reinterpretation operator takes as input an SMG G
with a set of objects O, an object o ∈ O, and a field (of, t) to be read from o such that
of + size(t) ≤ size(o). The result is a couple (G′, v) where G′ is an SMG with a set
of has-value edges H ′ such that (1) H ′(o, of, t) = v �= ⊥ and (2) MI(G) = MI(G′).
The operator thus preserves the semantics of the SMG but ensures that it contains a has-
value edge for the field being read. This edge can lead to a value already present in the
SMG but also to a new value derived by the operator from the edges and values existing
in the SMG. In the extreme case, a fresh, completely unconstrained value node can be
added, representing an unknown value, which can, however, become constrained by the
further program execution. In other words, read reinterpretation installs a new view on
some part of the object o, but it cannot modify the semantics of the SMG in any way.

6 Apart from the nullified blocks, our implementation also supports tracking of uninitialized
blocks of memory and certain manipulations of null-terminated strings.

226 K. Dudka, P. Peringer, and T. Vojnar

For the particular case of dealing with nullified memory, we use the following con-
crete read reinterpretation (cf. [8]). If G contains an edge o of,t−−→v, (G, v) is returned.
Otherwise, if each byte of the field (of, t) is nullified by some edge o of ′,t′−−−→0 present
in G, (G′, 0) is returned where G′ is obtained from G by adding the edge o of,t−−→0. Other-
wise, (G′, v) is returned with G′ obtained from G by adding an edge o of,t−−→v leading to
a fresh value v (representing an unknown value). It is easy to see that with the current
support of types and values in SMGs, this is the most precise read reinterpretation that
is possible from the point of view of reading nullified memory.

Write Reinterpretation. The write reinterpretation operator takes as input an SMG G
with a set of objects O, an object o ∈ O, a field (of, t) within o, i.e., such that of +
size(t) ≤ size(o), and a value v that is to be written into the field (of, t) of the object o.
The result is an SMG G′ with a set of has-value edges H ′ such that (1) H ′(o, of, t) = v
and (2) MI(G) ⊆ MI(G′′) where G′′ is the SMG G′ without the edge e : o of,t−−→v. In
other words, the operator makes sure that the resulting SMG contains the edge e that
was to be written while the semantics of G′ without e over-approximates the semantics
of G. Indeed, one cannot require equality here since the new edge may collide with
some other edges, which may have to be dropped in the worst case.

For the case of dealing with nullified memory, we propose the following write rein-
terpretation (cf. [8], which include an illustration too). If G contains the edge e : o of,t−−→v,
G is returned. Otherwise, all has-value edges leading from o to a non-zero value whose
fields overlap with (of, t) are removed. Subsequently, if v = 0, the edge e is added, and
the obtained SMG is returned. Otherwise, all remaining has-value edges leading from
o to 0 that define fields overlapping with (of, t) are split and/or shortened such that
they do not overlap with (of, t), the edge e is added, and the resulting SMG is returned.
Again, it is easy to see that this operator is the most precise write reinterpretation from
the point of view of preserving information about nullified memory that is possible with
the current support of types and values in SMGs.

3.2 Join of SMGs

Join of SMGs is a binary operation that takes two SMGs G1, G2 and returns an SMG G
that is their common generalisation, i.e., MI(G1) ⊆ MI(G) ⊇ MI(G2), and that satisfies
the following further requirements intended to minimize the involved information loss:
If both input SMGs are semantically equal, i.e., MI(G1) = MI(G2), denoted G1) G2,
we require the resulting SMG to be semantically equal to both the input ones, i.e.,
MI(G1) = MI(G) = MI(G2). If MI(G1) ⊃ MI(G2), denoted G1 � G2, we require that
MI(G) = MI(G1). Symmetrically, if MI(G1) ⊂ MI(G2), denoted G1 	 G2, we require
that MI(G) = MI(G2). Finally, if the input SMGs are semantically incomparable, i.e.,
MI(G1) � MI(G2) ∧ MI(G1) � MI(G2), denoted G1 �� G2, no further requirements
are put on the result of the join (besides the inclusion stated above, which is required
for the soundness of our analysis). In order to distinguish which of these cases happens
when joining two SMGs, we tag the result of our join operator by the so-called join sta-
tus with the domain J = {), �, 	, ��} referring to the corresponding relations above.

Byte-Precise Verification of Low-Level List Manipulation 227

Moreover, we allow the join operation to fail if the incurred information loss becomes
too big. Below, we give an informal description of our join operator, for a full descrip-
tion see [8].

The basic idea of our join algorithm is the following. The algorithm simultaneously
traverses a given pair of source SMGs and tries to join each pair of nodes (i.e., objects
or values) encountered at the same time into a single node in the destination SMG.
A single node of one SMG is not allowed to be joined with multiple nodes of the other
SMG. This preserves the distinction between different objects as well as between at
least possibly different values.

The rules according to which it is decided whether a pair of objects simultaneously
encountered in the input SMGs can be joined are the following. First, they must have
the same size, validity, and in case of DLSs, the same head, prev, and next offsets. It is
possible to join DLSs of different lengths as well as DLSs with regions (approximated
as 1+ DLSs). The result is a DLS whose length is the minimum of the lengths of the
joined DLSs (hence, e.g., joining a region with a 2+ DLS gives a 1+ DLS). The levels
of the joined objects must also be the same up to the following case. When joining
a sub-SMG nested below a DLS with a corresponding sub-SMG rooted at a region
(restricted by ignoring the next and prev links), objects corresponding to each other
appear on different levels: E.g., objects nested right below a DLS of level 0 are on level
1, whereas the corresponding objects directly referenced by a region of level 0 are on
level 0 (since for regions, nested and shared sub-SMGs are not distinguished). This
difference can, of course, increase when descending deeper in a hierarchically nested
data structure as it is essentially given by the different numbers of DLSs passed on the
different sides of the join. This difference is tracked by the join algorithm, and only the
objects whose levels differ in the appropriate way are allowed to be joined.

When two objects are being joined, a join reinterpretation operator is used to ensure
that they share the same set of fields and hence have the same number and labels of
outgoing edges (which is always possible albeit sometimes for the price of introducing
has-value edges leading to unknown values). A formalization of join reinterpretation
is available in [8], including a concrete join reinterpretation operator designed to pre-
serve maximum information on nullified blocks in both of the objects being joined. The
join reinterpretation allows the fields of the joined objects to be processed in pairs of
the same size and type. As for joining values, we do not allow joining addresses with
unknown values.7 Moreover, the zero value cannot be joined with a non-zero value.
Further, addresses can be joined only if the points-to edges leading from them are la-
belled by the same offset, and when they lead to DLSs, they must have the same target
specifier. On the other hand, apart from the already above expressed requirement of not
joining a single value in one SMG with several values in the other SMG, no further re-
quirements are put on joining non-address values, which is possible since we currently
track their equalities only.

To increase chances for successfully joining two SMGs, the basic algorithm from
above is extended as follows. When a pair of objects cannot be joined and at least one

7 Allowing a join of an address and an unknown value could lead to a need to drop a part of the
allocated heap in one of the SMGs (in case it was not accessible through some other address
too), which we consider to be a too big loss of information.

228 K. Dudka, P. Peringer, and T. Vojnar

of them is a DLS (call it d and the other object o), the algorithm proceeds as though o
was preceded by a 0+ DLS d′ that is up to its length isomorphic with d (including the
not yet visited part of the appropriate sub-SMG nested below d). Said differently, the
algorithm virtually inserts d′ before o, joins d and d′ into a single 0+ DLS, and then
continues by trying to join o and the successor of d. This extension is possible since the
semantics of a 0+ DLS includes the empty list, which can be safely assumed to appear
anywhere, compensating a missing object in one of the SMGs.

Note, however, that the virtual insertion of a 0+ DLS implies a need to relax some
of the requirements from above. For instance, one needs to allow a join of two different
addresses from one SMG with one address in the other (the prev and next addresses
of d get both joined with the address preceding o). Moreover, the possibility to insert
0+ DLSs introduces some non-determinism into the algorithm since when attempting
to join a pair of incompatible DLSs, a 0+ DLS can be inserted into either of the two
input DLSs, and we choose one of them. The choice may be wrong, but for performance
reasons, we never backtrack. Moreover, we use the 0+ DLS insertion only when a join
of two objects fails locally (i.e., without looking at their successors). When a pair of ob-
jects can be locally joined, but then the join fails on their successors, one could consider
backtracking and trying to insert a 0+ DLS, which we again do not do for performance
reasons (and we did not see a need for that in our cases studies so far).

The described join algorithm is used in two scenarios: (1) When joining garbage-free
SPCs to reduce the number of SPCs obtained from different paths through the program,
in which case the traversal starts from pairs of identical program variables. (2) As a
part of the abstraction algorithm for merging a pair of neighbouring objects (together
with the non-shared parts of the sub-SMGs rooted at them) of a doubly-linked list into
a single DLS, in which case the algorithm is started from the neighbouring objects to
be merged. In the join algorithm, the join status is computed on-the-fly. Initially, the
status is set to). Next, whenever performing a step that implies a particular relation
between G1 and G2 (e.g., joining a 0+ DLS from G1 with a 1+ DLS from G2 implies
that G1 � G2, assuming that the remaining parts of G1 and G2 are semantically equal),
we appropriately update the join status.

3.3 Abstraction

Our abstraction is based on merging uninterrupted sequences of neighbouring objects,
together with the {nfo, pfo}-restricted sub-SMGs rooted at them, into a single DLS.
This is done by repeatedly applying a slight extension of the join algorithm on the
{nfo, pfo}-restricted sub-SMGs rooted at the neighbouring objects. The sequences to be
merged are identified by the so-called candidate DLS entries that consist of an object oc
and next, prev, and head offsets such that oc has a neighbouring object with which it can
be merged into a DLS linked through the given offsets. The abstraction is driven by the
cost to be paid in terms of the loss of precision caused by merging certain objects and
the sub-SMGs rooted at them (in particular, we distinguish joining of equal, entailed,
or incomparable sub-SMGs). The higher the loss of precision is, the longer sequence of
mergeable objects is required to enable a merge of the sequence.

Byte-Precise Verification of Low-Level List Manipulation 229

In the extended join algorithm used in the abstraction (cf. [8]), the two simultaneous
searches are started from two neighbouring objects o1 and o2 of the same SMG G
that are the roots of the {nfoc, pfoc}-restricted sub-SMGs G1, G2 to be merged. The
extended join algorithm constructs the sub-SMG G1,2 that is to be nested below the
DLS resulting from the join of o1 and o2. The extended join algorithm also returns the
sets O1, V1 and O2, V2 of the objects and values of G1 and G2, respectively, whose
join gives rise to G1,2. Unlike when joining two distinct SMGs, the two simultaneous
searches can get to a single node at the same time. Clearly, such a node is shared by G1

and G2, and it is therefore not included into the sub-SMG G1,2 to be nested below the
join of o1 and o2.

Below, we explain in more detail the particular steps of the abstraction. For the ex-
planation, we fix an SPC C = (G, ν) where G = (O, V, Λ,H, P) is an SMG with the
sets of regions R, DLSs D, and addresses A.

Candidate DLS Entries. A quadruple (oc, hfoc, nfoc, pfoc) where oc ∈ O and hfoc,
nfoc, pfoc ∈ N such that nfoc < pfoc is considered a candidate DLS entry iff the fol-
lowing holds: (1) oc is a valid heap object. (2) oc has a neighbouring object o ∈ O with
which it is doubly-linked through the chosen offsets, i.e., there are a1, a2 ∈ A such that
H(oc, nfoc, ptr) = a1, P (a1) = (hfoc, tg1, o) for tg1 ∈ {fst, reg}, H(o, pfoc, ptr) =
a2, and P (a2) = (hfoc, tg2, oc) for tg2 ∈ {lst, reg}.

Longest Mergeable Sequences. The longest mergeable sequence of objects given by a
candidate DLS entry (oc, hfoc, nfoc, pfoc) is the longest sequence of distinct valid heap
objects whose first object is oc, all objects in the sequence are of level 0, all DLSs
that appear in the sequence have hfoc, nfoc, pfoc as their head, next, prev offsets, and
the following holds for any two neighbouring objects o1 and o2 in the sequence (for
a formal description, cf. [8]): (1) The objects o1 and o2 are doubly linked through their
nfoc and pfoc fields. (2) The objects o1 and o2 are a part of a sequence of objects that
is not pointed from outside of the detected list structure. (3) The {nfoc, pfoc}-restricted
sub-SMGs G1 and G2 of G rooted at o1 and o2 can be joined using the extended join
algorithm into the sub-SMG G1,2 to be nested below the join of o1 and o2. Let O1,
V1 and O2, V2 be the sets of non-shared objects and values of G1 and G2, respectively,
whose join gives rise to G1,2. (4) The non-shared objects and values of G1 and G2 (other
than o1 and o2 themselves) are reachable via o1 or o2, respectively, only. Moreover, the
sets O1 and O2 contain heap objects only.

Merging Sequences of Objects into DLSs. Sequences of objects are merged into
a single DLS incrementally, i.e., starting with the first two objects of the sequence, then
merging the resulting new DLS with the third object in the sequence, and so on. Each of
the elementary merge operations is performed as follows (see Fig. 4 for an illustration).

Assume that G is the SMG of the current SPC (i.e., the initial SPC or the SPC
obtained from the last merge) with the set of points-to edges P and the set of addresses
A, o1 is either the first object in the sequence or the DLS obtained from the previous
elementary merge, o2 is the next object of the sequence to be processed, and hfoc, nfoc,
pfoc are the offsets from the candidate DLS entry defining the sequence to be merged.
First, we merge o1 and o2 into a DLS d using hfoc, nfoc, and pfoc as its defining offsets

230 K. Dudka, P. Peringer, and T. Vojnar

Fig. 4. The elementary merge operation: (a) input (b) output

(cf. [8]). The sub-SMG
nested below d is created
using the above men-
tioned extended join al-
gorithm. Next, the DLS-
linking pointers arriving
to o1 and o2 are redi-
rected to d. In partic-
ular, if there is af ∈
A such that P (af) =
(o1, hfoc, tg) for some tg ∈ {fst, reg}, then P is changed such that P (af) =
(d, hfoc, fst). Similarly, if there is al ∈ A such that P (al) = (o2, hfoc, tg) for some
tg ∈ {lst, reg}, then P is changed such that P (al) = (d, hfoc, lst). Finally, each
heap object and each value (apart from the null address and null object) that are not
reachable from any static or stack object of the obtained SPC are removed from its
SMG together with all the edges adjacent to them.

The Top-level Abstraction Algorithm. Assume we are given an SMG G, and a can-
didate DLS entry (oc, hfoc, nfoc, pfoc) defining the longest mergeable sequence of ob-
jects σ = o1o2 . . . on in G of length |σ| = n ≥ 2. We define the cost of merging
a pair of objects o1, o2, denoted cost(o1, o2), as follows. First, cost(o1, o2) = 0 iff the
{nfoc, pfoc}-restricted sub-SMGs G1 and G2 rooted at o1, o2 are equal (when ignor-
ing the kinds of o1 and o2). This is indicated by the) status returned by the modi-
fied join algorithm applied on G1, G2. Further, cost(o1, o2) = 1 iff G1 entails G2, or
vice versa, which is indicated by the status � or 	. Finally, cost(o1, o2) = 2 iff G1

and G2 are incomparable, which is indicated by status ��. The cost of merging a se-
quence of objects σ = o1o2 . . . on, denoted cost(σ), is defined as the maximum of
cost(o1, o2), cost(o2, o3), ..., cost(on−1, on).

Our abstraction is parameterized by associating each cost c ∈ {0, 1, 2} with the
length threshold, denoted lenThr(c), defining the minimum length of a sequence of
mergeable objects allowed to be merged for the given cost. Intuitively, the higher is the
cost, the bigger loss of precision is incurred by the merge, and hence a bigger number of
objects to be merged is required to compensate the cost. In our experiments discussed
in Section 5, we, in particular, found as optimal the setting lenThr(0) = lenThr(1) = 2
and lenThr(2) = 3. Our tool, however, allows the user to tweak these values.

Based on the above introduced notions, the process of abstracting an SPC can now
be described as follows. First, all candidate DLS entries are identified, and for each of
them, the corresponding longest mergeable sequence is computed. Then each longest
mergeable sequence σ for which |σ| < lenThr(cost(σ)) is discarded. Out of the remain-
ing ones, we select those that have the lowest cost. From them, we then select those that
have the longest length. Finally, out of them, one is selected arbitrarily. The selected
sequence is merged, and then the entire abstraction process is repeated till there is a
sequence that can be merged taking its length and cost into account.

Byte-Precise Verification of Low-Level List Manipulation 231

3.4 Checking Equality and Inequality of Values

Checking equality of values in SMGs amounts to simply checking their identity. For
checking inequality, we use an algorithm which is sound and efficient but incomplete.
It is designed to succeed in most common cases, but in order not to harm its efficiency,
we allow it to fail in some exceptional cases (e.g., when comparing addresses out of
bounds of two distinct objects). The basic idea of the algorithm is as follows (cf. [8]):
Let v1 and v2 be two distinct values of level 0 to be checked for inequality (other levels
cannot be directly accessed by program statements). First, if the same value or object
can be reached from v1 and v2 through 0+ DLSs only (using the next/prev fields when
coming through the fst/lst target specifiers, respectively), then the inequality between
v1 and v2 is not established. This is due to v1 and v2 may become the same value when
the possibly empty 0+ DLSs are removed (or they may become addresses of the first and
last node of the same 0+ DLS, and hence be equal in case the list contains a single node).
Otherwise, v1 and v2 are claimed different if the final pair of values reached from them
through 0+ DLSs represents different addresses due to pointing (1) to different valid
objects (each with its own unique address) with offsets inside their bounds, (2) to the
null object and a non-null object (with an in-bound offset), (3) to the same object with
different offsets, or (4) to the same DLS with length at least 2 using different target
specifiers. Otherwise, the inequality is not established.

3.5 A Brief Note on Symbolic Execution

The symbolic execution algorithm based on SMGs is similar to [1]. It uses the read rein-
terpretation operator for memory lookup (as well as type-casting) and the write reinter-
pretation operator for memory mutation. Whenever a DLS is about to be accessed (or
its address with a non-head offset is about to be taken), a materialisation (as described
in Section 2.3) is performed so that the actual program statements are always executed
over concrete objects. If the minimum length of the DLS being materialised is zero, the
computation is split into two branches—one for the empty segment and one for the non-
empty segment. In the former case, the DLS is removed (as described in Section 2.3)
while in the latter case, the minimum length of the DLS is incremented. When exe-
cuting a conditional statement, the algorithm for checking (in)equality of values from
Section 3.4 is used. If neither equality nor inequality are established, the execution is
split into two branches, one of them assuming the compared values to be equal, the
other assuming them not to be equal. This may again involve removing 0+ DLSs in one
of the branches and incrementing their length in the other (cf. [8]).

A Note on Soundness of the Analysis. In the described analysis, program statements
are always executed on concrete objects only, closely following the C semantics. The
read reinterpretation is defined such that it cannot change the semantics of the input
SMG, and the write reinterpretation can only over-approximate the semantics in the
worst case. Likewise, our abstraction and join algorithms are allowed to only over-
approximate the semantics—indeed, when joining a pair of nodes, the semantics of the

232 K. Dudka, P. Peringer, and T. Vojnar

resulting node is always generic enough to cover the semantics of both of the joined
nodes (e.g., the join of a 2+ DLS with a compatible region results in a 1+ DLS, etc.).
Moreover, the entailment check used to terminate the analysis is based on the join op-
erator and consequently conservative. Hence, it is not difficult to see that the proposed
analysis is sound (although a full proof of this fact would be rather technical).

4 Extensions of SMGs

In this section, we point out that the notion of SMGs can be easily extended in various
directions, and we briefly discuss several such extensions (including further kinds of
abstract objects), most of which are already implemented in our tool Predator.

Explicit Non-equivalence Relations. When several objects have the same concrete
value stored in their fields, this is expressed by that the appropriate has-value edges
lead from these objects to the same value node in the SMG. On the other hand, two
different value nodes in an SMG do not necessarily represent different concrete values.
To express that two abstract values represent distinct concrete values, SMGs can be
extended with a symmetric, irreflexive relation over values, which we call an explicit
non-equivalence relation. Clearly, SMGs can be quite naturally extended by allowing
more predicates on data, which is, however, beyond the scope of this paper (up to a small
extension by tracking more concrete values than 0 that is mentioned below).

Singly-linked List Segments (SLSs). Above, we have presented all algorithms on
SMGs describing doubly-linked lists only. Nevertheless, the algorithms work equally
well with singly-linked lists represented by an additional kind of abstract objects, SLSs,
that have no pfo offset, and their addresses are allowed to use the fst and all target
specifiers only. The algorithm looking for DLS entry candidates then simply starts look-
ing for SLS entry candidates whenever it does not discover the back-link.

0/1 Abstract Objects. In order to enable summarization of lists whose nodes can op-
tionally point to some region or that point to nested lists whose length never reaches
2 or more, we introduce the so-called 0/1 abstract objects. We distinguish three kinds
of them with different numbers of neighbour pointers. The first of them represents 0/1
SLSs with one neighbour pointer, another represents 0/1 DLSs with two neighbour
pointers. These objects can be later joined with compatible SLSs or DLSs. The third
kind has no neighbour pointer, and its address is assumed to be NULL when the region
is not allocated. This kind is needed for optionally allocated regions referred from list
nodes but never handled as lists themselves. The 0/1 abstract objects are created by the
join algorithm when a region in one SMG cannot be matched with an object from the
other SMG and none of the above described join mechanisms applies.

Offset Intervals and Address Alignment. The basic SMG notion labels points-to
edges with scalar offsets within the target object. This labelling can be generalized
to intervals of offsets. The intervals can be allowed to arise by joining objects with

Byte-Precise Verification of Low-Level List Manipulation 233

incoming pointers compatible up to their offset. This feature is useful, e.g., to handle
lists arising in higher-level memory allocators discussed in the next section where each
node points to itself with an offset depending on how much of the node has been used
by sub-allocation. Offset intervals also naturally arise when the analysis is allowed to
support address alignment, which is typically implemented by masking several lowest
bits of pointers to zero, resulting in a pointer whose offset is in a certain interval wrt. the
base address. Similarly, one can allow the object size to be given by an interval, which
in turn allows one to abstract lists whose nodes are of a variable size.

Integral Constants and Intervals. The basic SMG notion allows one to express that
two fields have the same value (by the corresponding has-value edges leading to the
same value node) or that their values differ (using the above mentioned explicit non-
equivalence relation). In order to improve the support of dealing with integers, SMGs
can be extended by associating value nodes with concrete integral numbers. These can
be respected by the join algorithm (at least up to some bound), or they can be abstracted
to intervals or some other abstract numerical domains.

5 Implementation

We have implemented the above described algorithms (including the extensions) in
a new version of our tool called Predator.8 Predator is a GCC plug-in, which allows one
to experiment with industrial source code without manually preprocessing it first. The
verified program must, however, be closed in that it must allocate and initialize all the
data structures used. Modular verification of code fragments is planned for the future.
By default, Predator disallows calls to external functions in order to exclude any side
effect that could potentially break memory safety. The only allowed external functions
are those that Predator recognizes as built-in functions and properly models them wrt.
proving memory safety. Besides malloc and free, the set of supported built-in func-
tions includes certain memory manipulating functions defined in the C standard, such
as memset, memcpy, or memmove. Predator uses the same style of error and warning
messages as GCC itself, and hence it can be used with any IDE that can use GCC. It
also supports error recovery to report multiple program errors during one run. For ex-
ample, if a memory leak is detected, Predator only reports a warning, the unreachable
part of SMG is removed, and the symbolic execution then continues.

Predator implements an inter-procedural analysis based on [13]. It does not support
recursive programs yet, but it supports indirect calls, which is necessary for verification
of programs with callbacks (e.g., Linux drivers). Regions for stack variables are cre-
ated automatically as needed and destroyed as soon as they become dead according to a
static live variables analysis, performed before running the symbolic execution. When
working with initialized variables, we take advantage of our efficient representation
of nullified blocks—we first create a has-value edge o 0,char[size(o)]−−−−−−−−→0 for each initial-
ized variable represented by a region o, then we execute all explicit initializers, which
themselves automatically trigger the write reinterpretation. The same approach is used

8 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/

234 K. Dudka, P. Peringer, and T. Vojnar

for calloc-based heap allocation. Thanks to this, we do not need to initialize each
structure member explicitly, which would not scale for complex structures.

The algorithms for abstraction and join implemented in Predator use some further
optimizations of the basic algorithms described in Section 3. While objects in SMGs
are type-free, Predator tracks their estimated type given by the type of the pointers
through which objects are manipulated. The estimated type is used during abstraction
to postpone merging a pair of objects with incompatible types. Note, however, that this
is really a heuristic only—we have a case study that constructs list nodes using solely
void pointers, and it can still be successfully verified by Predator. Another heuristic
is that certain features of the join algorithm (e.g., insertion of a non-empty DLS or
introduction of an 0/1 abstract object) are disabled when joining SMGs while enabled
when merging nodes during abstraction. Predator tracks integral values precisely up
to a certain bound (±10 by default) and once the bound is reached, the values are
abstracted out. Predator also supports intervals aligned to a power of two as well as
tracking of simple dependences between intervals, such as a shift by a constant and
a multiplication by −1. All these features are optional and can be easily disabled.

Predator iteratively computes sets of SMGs for each basic block entry of the control-
flow graph of the given program, covering all program configurations reachable at these
program locations. Termination of the analysis is aided by the abstraction and join algo-
rithms described above. Since the join algorithm is expensive, it is used at loop bound-
aries only. When updating states of other basic block entries, we compare the SMGs
for equality only, which makes the comparison way faster, especially in case a pair
of SMGs cannot be joined. Similarly, the abstraction is by default used only at loop
boundaries in order not to introduce abstract objects where not necessary (reducing the
space for false positives that can arise due to breaking assumptions sometimes used by
programmers for code inside loops as witnessed by some of our case studies).

Predator is able to discover or prove absence of various kinds of memory safety er-
rors, including various forms of illegal dereferences (null dereferences, dereferences of
freed or unallocated memory, out-of-bound dereferences), illegal free operations (dou-
ble free operations, freeing non-heap objects), as well as memory leakage. Moreover,
Predator also uses the fact that SMGs allow for easy checking whether a given pair of
memory areas overlap. Indeed, if both of them are inside of two distinct valid regions,
they have no overlaps, and if both of them are inside the same region, one can simply
check their offset ranges for intersection. Such checks are used for reporting invalid
uses of memcpy or the C-language assignment, which expose undefined behavior if the
destination and source memory areas (partially) overlap with each other.

6 Experiments

The new version of Predator based on the above proposed method was successfully
tested on a number of case studies. Among them there are more than 256 case studies
(freely available with Predator) illustrating various programming constructs typically
used when dealing with linked lists. These case studies include various advanced kinds
of lists used in the Linux kernel and their typical manipulation, typical error patterns that
appear in code operating with Linux lists, various sorting algorithms (insert sort, bubble

Byte-Precise Verification of Low-Level List Manipulation 235

Table 1. Selected experimental results showing either the verification time or one of the following
outcomes: FP = false positive, FN = false negative, T = time out (900 s), x = parsing problems

Test Origin Test Invader SLAyer
Predator Predator
2011-10 2013-02

SLAyer

append.c <0.01 s 10.47 s <0.01 s <0.01 s
cromdata add remove fs.c <0.01 s FN <0.01 s <0.01 s
create kernel.c T FN <0.01 s <0.01 s
cromdata add remove.c T FN <0.01 s <0.01 s
reverse seg cyclic.c FP 0.68 s <0.01 s <0.01 s
is on list via devext.c T 34.43 s 0.20 s 0.02 s
callback remove entry list.c T 71.46 s 0.14 s 0.10 s

Invader cdrom.c FN x 2.44 s 0.66 s

Predator

five-level-sll-destroyed-top-down.c FP x FP 0.05 s
linux-dll-of-linux-dll.c T x 0.41 s 0.05 s
merge-sort.c FP x 1.08 s 0.21 s
list-of-arena-pools-with-alignment.c FP x FP 0.50 s
lvmcache add orphan vginfo.c x x FP 1.07 s
five-level-sll-destroyed-bottom-up.c FP x FP 1.14 s

sort, merge sort), etc. These case studies have up to 300 lines of code, but they consist
almost entirely of complex memory manipulation (unlike larger programs whose big
portions are often ignored by tools verifying memory safety). Next, we successfully
tested Predator on the driver code snippets distributed with SLAyer [2] as well as on the
cdrom driver originally checked by Space Invader [17]. As discussed below, in some
of these examples, we identified errors not found by the other tools due to their more
abstract (not byte-precise) treatment of memory.

Further, we also considered two real-life low-level programs (which, to the best of
our knowledge, have not yet been targeted by fully automated formal verification tools):
a memory allocator from the Netscape portable runtime (NSPR) and a module taken
from the lvm2 logical volume manager. The NSPR allocator allocates memory from
the operating system in blocks called arenas, grouped into singly-linked lists called
arena pools, which can in turn be grouped into lists of arena pools (giving lists of lists
of arenas). User requests are then satisfied by sub-allocation within a suitable arena of
a given arena pool. We have considered a fixed size of the arenas and checked safety of
repeated allocation and deallocation of blocks of aligned size randomly chosen up to the
arena size from arena pools as well as lists of arena pools. For this purpose, a support
for offset intervals as described above was needed. The intervals arise from abstracting
lists whose nodes (arenas) point with different offsets to themselves (one byte behind
the last sub-allocated block within the arena) and from address alignment, which the
NSPR-based allocator is also responsible for. Our approach allowed us to verify that
pointers leading from each arena to its so-far free part never point beyond the arena and
that arena headers never overlap with their data areas, which are the original assertions
checked by NSPR arena pools at run-time. Our lvm2-based case studies then exercise
various functions of the module implementing the volume metadata cache. As in the
case of NSPR arenas, we use the original (unsimplified) code of the module, but (for
now) we use a simplified test harness where the lvm2 implementation of hash tables is
replaced by the lvm2 implementation of doubly-linked lists.

236 K. Dudka, P. Peringer, and T. Vojnar

We have compared the capabilities and performance of Invader, SLAyer, and Preda-
tor on the above case studies on an Intel R© CoreTM i7-3770K machine. The memory
consumption was below 128 MB in all cases. As we can see in Table 1, Predator suc-
cessfully verified even the test-cases that were causing problems to Invader or SLAyer.
We have also revealed issues of memory safety violation in the examples distributed
with Invader and SLAyer because Invader did not check memory manipulation via ar-
ray subscripts and SLAyer did not check size of the blocks allocated on the heap.9 All
the tools were run in their default configurations. Better results can sometimes be ob-
tained for particular case studies by tweaking certain configuration options (abstraction
threshold, call cache size, etc.). However, while such changes may improve the perfor-
mance in some case studies, they may harm it in others, trigger false positives, or even
prevent the analysis from termination.

We have also compared the new version of Predator with its older version that par-
ticipated in the 1st International Competition on Software Verification (SV-COMP’12).
The old Predator produced false positives on many of the more advanced case studies,
including NSPR arenas and lvm2, and it was also slower. For example, the merge-sort
case study, presented as the most expensive in [7] (Predator 2011-02), now runs approx-
imately 25× faster on the same machine (5× due to the algorithms presented above and
5× due to an improved live variable analysis). The new Predator participated in the 2nd
International Competition on Software Verification (SV-COMP’13) [4], where it won
three categories. Moreover, the fact that Predator did not have any false negative over
the whole SV-COMP’13 benchmark confirms the soundness of our analysis algorithm.

7 Conclusion and Future Work

We have presented a new approach to fully automated formal verification of list ma-
nipulating programs capable of handling various features of low-level memory manip-
ulation. We have experimentally validated the approach on a number of case studies
showing its efficiency and capability of handling program behaviour that is beyond
what current fully automated shape analysis tools can handle. In the future, a number of
extensions of our approach are possible. We are planning a support of (low-level) tree
structures, a better support of integer data, a support of arrays and hash tables, as well
as a support for modular verification in order to remove the burden of having to write
environments for the code to be verified.

References

1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang, H.: Shape
Analysis for Composite Data Structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

2. Berdine, J., Cook, B., Ishtiaq, S.: SLAYER: Memory Safety for Systems-Level Code. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183. Springer,
Heidelberg (2011)

9 We used the latest publicly available version of SLAyer from [2]. The version from [3] was
not available, but [3] targets mainly checking of spuriousness of counterexamples.

Byte-Precise Verification of Low-Level List Manipulation 237

3. Berdine, J., Cox, A., Ishtiaq, S., Wintersteiger, C.M.: Diagnosing Abstraction Failure for
Separation Logic-Based Analyses. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 155–173. Springer, Heidelberg (2012)

4. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka, S.A. (eds.)
TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 594–609. Springer, Heidelberg (2013)

5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Beyond Reachability: Shape Abstrac-
tion in the Presence of Pointer Arithmetic. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 182–203. Springer, Heidelberg (2006)

6. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape Analysis with Structural Invariant Checkers.
In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401. Springer,
Heidelberg (2007)

7. Dudka, K., Peringer, P., Vojnar, T.: Predator: A Practical Tool for Checking Manipulation of
Dynamic Data Structures Using Separation Logic. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 372–378. Springer, Heidelberg (2011)

8. Dudka, K., Peringer, P., Vojnar, T.: Byte-Precise Verification of Low-Level List Manipula-
tion. Technical report FIT-TR-2012-04, FIT BUT (2012),
http://www.fit.vutbr.cz/˜idudka/pub/FIT-TR-2012-04.pdf

9. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest Automata for Veri-
fication of Heap Manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 424–440. Springer, Heidelberg (2011)

10. Kreiker, J., Seidl, H., Vojdani, V.: Shape Analysis of Low-Level C with Overlapping Struc-
tures. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 214–230.
Springer, Heidelberg (2010)

11. Laviron, V., Chang, B.-Y.E., Rival, X.: Separating Shape Graphs. In: Gordon, A.D. (ed.)
ESOP 2010. LNCS, vol. 6012, pp. 387–406. Springer, Heidelberg (2010)

12. Marron, M., Hermenegildo, M.V., Kapur, D., Stefanovic, D.: Efficient Context-Sensitive
Shape Analysis with Graph Based Heap Models. In: Hendren, L. (ed.) CC 2008. LNCS,
vol. 4959, pp. 245–259. Springer, Heidelberg (2008)

13. Reps, T., Horwitz, S., Sagiv, M.: Precise Interprocedural Dataflow Analysis via Graph Reach-
ability. In: Proc. of POPL 1995. ACM Press (1995)

14. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In: ACM
Transactions on Programming Languages and Systems (TOPLAS), 24(3) (2002)

15. Tuch, H.: Formal Verification of C Systems Code. Journal of Automated Reasoning 42(2-4)
(2009)

16. Yang, H., Lee, O., Calcagno, C., Distefano, D., O’Hearn, P.W.: On Scalable Shape Analysis.
Technical report RR-07-10, Queen Mary, University of London (2007)

17. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scal-
able Shape Analysis for Systems Code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

http://www.fit.vutbr.cz/~idudka/pub/FIT-TR-2012-04.pdf

Abstract Semantic Differencing for Numerical Programs

Nimrod Partush and Eran Yahav

Technion, Israel

Abstract. We address the problem of computing semantic differences between
a program and a patched version of the program. Our goal is to obtain a precise
characterization of the difference between program versions, or establish their
equivalence when no difference exists.

We focus on computing semantic differences in numerical programs where
the values of variables have no a-priori bounds, and use abstract interpretation to
compute an over-approximation of program differences. Computing differences
and establishing equivalence under abstraction requires abstracting relationships
between variables in the two programs. Towards that end, we first construct a
correlating program in which these relationships can be tracked, and then use
a correlating abstract domain to compute a sound approximation of these rela-
tionships. To better establish equivalence between correlated variables and pre-
cisely capture differences, our domain has to represent non-convex information
using a partially-disjunctive abstract domain. To balance precision and cost of
this representation, our domain over-approximates numerical information while
preserving equivalence between correlated variables by dynamically partitioning
the disjunctive state according to equivalence criteria.

We have implemented our approach in a tool called DIZY, and applied it to a
number of real-world examples, including programs from the GNU core utilities,
Mozilla Firefox and the Linux Kernel. Our evaluation shows that DIZY often
manages to establish equivalence, describes precise approximation of semantic
differences when difference exists, and reports only a few false differences.

1 Introduction

Understanding the semantic difference between two versions of a program is invaluable
in the process of software development. A developer applying a patch is often interested
in answering questions like: (i) did the patch add/remove the desired functionality?
(ii) does the patch introduce other, unexpected, behaviors? (iii) which regression tests
should be run? Answering these questions manually is difficult and time consuming.

Semantic differencing has received much attention in classical work (e.g., [11,12,10])
and has recently seen growing interest for various applications ranging from testing con-
current programs [5], understanding software upgrades [15], to automatic generation of
security exploits [3].

Problem Definition. We define the problem of semantic differencing as follows: Given
a pair of programs (P, P ′) that agree on the number and type of input and output vari-
ables, for every execution π of P that originates from an input i and a corresponding
execution π′ of P ′ that originates from the same input i our goal is: (i) Check whether
π and π′ have the same output i.e. are output-equivalent, and (ii) In case of difference
in output variables, provide a description of the difference.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 238–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Abstract Semantic Differencing for Numerical Programs 239

Existing Techniques. Existing techniques mostly offer solutions based on under ap-
proximation, the most prominent of which is regression testing which provides limited
assurance of behavior equivalence while consuming significant time and compute re-
sources. Other approaches for computing semantics differences [22,24] rely on sym-
bolic execution techniques, may miss differences, and are generally unable to prove
equivalence. Previous work for equivalence checking [9] rely on unsound bounded
model checking techniques to prove (input-output) equivalence of two closely related
numerical programs, under certain conditions (see Section 8 for more details).

Our Approach. We present an approach based on abstract interpretation [7] for pro-
ducing a sound representation of changed program behaviors and proving equivalence
between a program and a patched version of the program. Our method focuses on
abstracting relationships between variables in both versions allowing us to achieve a
precise description of the difference and prove equivalence. Our solution is sound in
the sense that it computes an over approximation of the difference between the two
versions, therefore guaranteeing equivalence when no difference is found.

We focus on output equivalence in the final state. This is sufficient as mid-execution
output can be modeled as added variables in the final state. This limitation also means
that we assume all program executions to be finite (i.e. equivalence/difference holds if
indeed both executions terminate). Note that the definition limits program difference
to the final state which alleviates the need for matching the different stages of (P, P ′).
Finding equivalence/difference in earlier stages of the program requires program match-
ing (we first need to find a suitable location in both programs for checking for equiv-
alence, otherwise it has no meaning). The problem of program matching is orthogonal
and can be addressed via various techniques ranging in complexity and precision - from
syntactic diff [13] to execution indexing [29] and others. In this work we employ a sim-
ple matching strategy to achieve better precision as described in Section 6. We found
this technique to be sufficient for our experiments.

To answer the question of semantic differencing for infinite-state programs, we em-
ploy abstract interpretation. Though the notion of difference is well defined in the con-
crete case, defining and soundly computing it under abstraction is challenging:

– Differencing requires correlation of different program executions. The abstraction
must be able to capture and compare only the input-equivalent executions, and
avoid comparing ones that are not input-equivalent.

– Equivalence of abstract output values does not entail concrete value equivalence.

To address these challenges, we introduce two new concepts: (i) correlating program
- a single program P �� P ′ that captures the behaviors of both P and P ′ in a way
that facilitates abstract interpretation; (ii) correlating abstract domain - a domain for
tracking relationships between variables in P and variables in P ′ using P �� P ′.
Correlating Program. We create a single program which captures the behavior of both
the original program and its patched version. A correlating program P �� P ′ contains
both programs flow and data, however program flow is arranged so to reflect a (simple)
matching between the stages of the two programs. This matching is key for precision as
otherwise we will not be able to maintain equivalence throughout the entire run of the
program, particularly in the face of loops.

240 N. Partush and E. Yahav

Correlating Abstraction. Abstracting relationships allows us to maintain focus on dif-
ferences while over-approximating (whenever necessary for scalability) equivalent be-
haviors. We abstract variables of both programs together, starting off by assuming
equality over all matched variables (variable matching is discussed in Section 4). Thus
we can reflect relationships without necessarily knowing the actual value of variables.
We focus on numerical programs and use numerical domains such as Octagon [18] and
Polyhedra [8] to capture the relationship between variables. Our current implementation
does not track pointer equivalences, but such equivalences can be tracked by a using a
correlating shape analysis domain [1]. To maintain equivalence as much as possible,
our domain was designed to represent non-convex information (e.g. so we will not im-
mediately lose equivalence taking a condition of the form x �= 0 into account). We use
a powerset domain of convex sub-states. Our domain uses a partitioning strategy that
abstracts together states that have the same set of equivalent variables, thus avoiding
exponential blowup (as explained in Section 5). This strategy helps us preserve equiv-
alence even across widening. Therefore our domain may over-approximate numerical
information as long as equivalence between correlated variables is preserved.

1.1 Main Contributions

The main contributions of this paper are as follows:

– We present a novel approach for computing abstract semantic difference between
a program P and a patched version of the program P ′. We focus on numerical
programs where the values of variables have no a-priori bounds.

– We reduce the problem of analyzing the two programs P, P ′ to the problem of
analyzing a single correlating program P �� P ′ that captures the behavior of P
and P ′.

– We present a correlating abstract domain that captures an over-approximation of
the difference between P and P’ by tracking relationships between variables in
P �� P ′. The domain applies a partitioning strategy for scaling the analysis while
maintaining precision in equivalence.

– We have implemented our approach in a tool based on the LLVM compiler infras-
tructure and the APRON numerical abstract domain library, and applied it to several
real-world programs. Our evaluation shows that the tool often manages to establish
equivalence, reports useful approximation of semantic differences when differences
exists, and reports only a few false differences.

2 Overview

In this section, we provide an informal overview of our approach using a simple il-
lustrating example. In Section 7 we show how our approach is applied to real-world
programs. Consider the two versions of a program for computing sign in Fig. 1, in-
spired by an example from [25]. For these programs, we would like to establish that the
output of sign and sign′ differs only in the case where x = 0 and that the difference is
sgn = 1 �= sgn′ = 0.

Abstract Semantic Differencing for Numerical Programs 241

int sign(int x) {
int sgn;
if (x < 0)

sgn = -1
else

sgn = 1
return sgn

}

int sign’(int x’) {
int sgn’;
if (x’ < 0)

sgn’ = -1
else

sgn’ = 1
if (x’==0)

sgn’ = 0
return sgn’
}

int sign(int x) {
int x’ = x;
guard g1 = (x < 0);
guard g1’ = (x’ < 0);
int sgn;
int sgn’ = sgn;
if (g1) sgn = -1;
if (g1’) sgn’ = -1;
if (!g1) sgn = 1;
if (!g1’) sgn’ = 1;
guard g2’ = (x’ == 0);
if (g2’) sgn’ = 0;

}

sign sign′ sign �� sign′

Fig. 1. Two simple implementations of the sign operation and their correlating program

Separate Analysis is Unsound. As a first naïve attempt to achieve this, one could try
to analyze each version of the program separately and compare the (abstract) results.
However, this is clearly unsound, as equivalence under abstraction does not entail con-
crete equivalence. For example, using an interval domain [8] would yield that in both
programs the result ranges in the same interval [−1, 1], missing the fact that sign never
returns the value 0 where sign′ does.

Establishing Equivalence under Abstraction. To establish equivalence under abstrac-
tion, we need to abstract relationships between the values of variables in sign and
sign′. Specifically, we need to track the relationship between the values of sgn and
sgn’. This requires a joint representation in which these relationships can be tracked.

As our approach dictates the joint analysis of two programs for maintaining vari-
able relationships, we need to determine an order in which the different stages of the
programs are analyzed. One solution would be to analyze the programs sequentially.
However, such an analysis will be forced to retain full path sensitivity, withholding
over-approximation, since abstracting together paths will result in a non-restorable loss
of equivalence. For example, analyzing sign first will result in an abstract state where
σ = sgn �→ [−1, 1]. As we continue on towards sign′, we could never restore in σ the
fact that sgn’ is equal to sgn for all paths except where x is zero.

Intuitively, establishing equivalence using the sequential composition P ;P ′ requires
full path sensitivity, leading to an inherently non-scalable solution. Further, in the pres-
ence of loops and widening, applying widening separately to the loops of P and to those
of P ′ does not allow maintaining variable relationships under abstraction.

Correlating Program. To address these challenges, we construct a correlating program
P �� P ′ where operations of P and P ′ are interleaved to achieve correlation throughout
the analysis. Fig. 1 shows the correlating program sign �� sign′. The programs were
transformed to a guarded command language form to allow for interleaving. A key
feature of the correlating program for closely related program versions is the ability
to keep matched instructions, that appear in both versions, closely interleaved. This
allows the analysis to better maintain relationships as the program executions are better
aligned. Using the correlating program, we can directly track the relationship between
sgn in sign and its corresponding variable sgn’ in sign′.

242 N. Partush and E. Yahav

We note that the set of tracked relationships is determined by a matching of P and P ′

variables denoted V C and defined in Section 4. We match variables in the two versions
using variable names as we found that these do not vary greatly over patches. However,
this matching can also be provided by the user.

We describe the specifics of creating P �� P ′ in Section 6 and only briefly note that
the interleaving is chosen according to a syntactic diff process over a guarded command
language version of the programs.

Correlating Abstract Domain. We introduce a correlating abstract domain that tracks
relationships between corresponding variables in P and P ′ using the correlating pro-
gram P �� P ′. Unfortunately, any domain with convex constraints will fail to capture
the precise relationship between variables in many cases. For example, using the poly-
hedra abstract domain [8] to analyze the sign example from Fig. 1, the relationship
between the sgn and sgn’ variables in the correlating program would be lost, leaving
only the trivial 〈1 ≥ sgn ≥ −1, 1 ≥ sgn′ ≥ −1〉 constraint. Although the result
soundly reports a difference (as we do not explicitly know that ≡sgn), we still know
nothing about the difference between the programs.

An obvious, but prohibitively expensive, solution to the problem is to use disjunctive
completion, moving to a powerset domain where the abstract state is a set of convex
objects (e.g., set of polyhedra). A state in such domain is a set of convex abstract repre-
sentations (e.g., polyhedra [8] or octagon [18]). For example, analyzing sign �� sign′
using a powerset domain would yield:

σ1 = {x = x′ < 0, sgn = sgn′ �→ −1}, σ2 = {x = x′ �→ 0, sgn �→ 1, sgn′ �→ 0}
σ3 = {x = x′ > 0, sgn = sgn′ �→ 1}

However, using such domain would significantly limit the applicability of the approach.
The desirable solution is a partially disjunctive domain, where only certain disjunctions
are kept separate during analysis. The challenge in our setting is in keeping the partition
fine enough such that equivalence could be preserved, without reaching exponential
blowup. This is accomplished by applying partitioning.

Partitioning. As the goal of this work is to distinguish equivalent from dissimilar be-
haviors, using equivalence as criteria for merging paths is apt. The partitioning will
abstract together paths that hold equivalence for the same set of variables, allowing for
a maximum of 2|V C| disjunctions in the abstract state.

For example partitioning the above-mentioned result of analyzing sign �� sign′
according to our criteria would abstract behaviors σ1 and σ3 together, as they hold
equivalence for sgn. The merge would abstract away data regarding x and represent
sgn as the [−1, 1] interval, losing precision but gaining reduction in state size. This loss
of precision is acceptable as it is complemented by the offending state σ2.

σ1 = {x = x′, sgn = sgn′ �→ [−1, 1]}, σ2 = {x′ = 0, sgn �→ 1, sgn′ �→ −1}
To reduce state size, we must perform partitioning dynamically during analysis. This
cannot be achieved using a sequential composition P ;P ′. Intuitively, this is because an
operation in P has to “wait” for its equivalent operation to occur in P ′. To overcome
this, our correlating program P �� P ′ interleaves P and P ′ commands, and informs
the analysis when programs have reached a point where correlation may be established
by annotating P �� P ′ with special markers called correlation points denoted CP and
defined also in Section 6.

Abstract Semantic Differencing for Numerical Programs 243

int sum(int arr[], unsigned len) {
int result = 0;
for (unsigned i = 1; i < len; i+=2)

result += arr[i];
return result;

}

int sum’(int arr[], unsigned len) {
int result = 0;
unsigned i = 0;
while (i + 1 < len) {
i++;
result += arr[i];
i++;

}
return result;

}

Fig. 2. Two equivalent versions of a looping program for partial array summation

Widening. Although we achieved a reduction in state size using partitioning, we have
yet to account for programs with loops. Handling loops is where most previous ap-
proaches fall short [9,16,22,24]. To overcome this, we define a widening operator for
our domain, based on the convex sub-domain widening operator (e.g., interval, octagon,
polyhedra). The main challenge here, as our state is a set of convex objects belonging to
the sub-domain, is finding an optimal pairwise matching between objects for a precise
widened result. Ideally, we would like to pair objects that adhere to the same “looping
path” meaning we would like to match a path πi’s abstraction with a path πi+1 that
results from taking another step in the loop. This requires encoding path information
along with the sub-state abstraction. This information is acquired by keeping guard
values explicitly, as they appear in our correlating program, inside the state. As guard
values (true or false) reflect branch outcomes, they can be used to match sub-states
that advanced on the loop by matching their guard values.

We note that the correlating program is crucial to maintaining equivalence over
loops. To demonstrate this we perform the simple exercise of checking equivalence of
a small looping program with itself. Consider the array summation program in Fig. 2.
Equivalence for these two small programs cannot be established soundly by approaches
based on under approximation. To emphasize the importance of the correlating pro-
gram, we will first show the result of an analysis of sum; sum′ which will be:

σ1 = {len = len′ ≤ 1, result = result′ �→ 0}, σ2 = {len = len′ > 1}
This loss of equivalence occurred due to the inability to precisely track the relationship
of result and result’ over sum; sum′. As we widened the first loop to converge, all
paths passing through that loop were merged together, losing the ability to be "matched"
with the second loop waiting further down the road. Performing the same analysis on
sum �� sum′ instead as seen in Fig. 3, allows maintaining equivalence, as the loops are
interleaved to allow establishing ≡result as a loop invariant. This invariant survives the
widening process to prove equivalence at the end as the result would be: σ1 = {≡result}.
We note that we implicitly assume equivalence in array content for sum and sum′.

3 Preliminaries

We use the following standard concrete semantics definitions for a program:

– V ar, V al, Loc denote the set of program variable identifiers, variable values and
program locations respectively. Program locations are also denoted lab for label.
The labels begin and end mark the start and exit locations of the program.

244 N. Partush and E. Yahav

int sum(int arr[], unsigned len) {
unsigned len’ = len;
int arr’[] = arr;
int result = 0;
int result’ = 0;
{

unsigned i = 1;
unsigned i’ = 0;

l: guard g = (i < len);
l’: guard g’ = (i’ + 1 < len’);

if (g’) i’++;
if (g) result += arr[i];
if (g’) result’ += arr’[i’];
if (g’) i’++;
if (g) i+=2;
if (g) goto l;
if (g’) goto l’;

}
}

Fig. 3. sum �� sum′

– A concrete program state σ is a tuple (loc, values) ∈ Σ mapping the set of program
variables to their concrete value at a certain program location loc. The set of all
possible states of a program P is denoted ΣP .

– We describe an imperative program P , as a tuple (V al, V ar,→, Σ0) where →:
ΣP ×ΣP is a transition relation and Σ0 is a set of initial states of the program.

– A program trace π ∈ Σ∗
P , is a sequence of states 〈σ0, σ1, ...〉 describing a single

execution of the program. The set of all possible traces for a program is denoted
[[P]]. We also define last : Σ∗

P → ΣP which returns the last state in a trace.

We note that our formal semantics need not deal with errors states therefore we ig-
nore crash states of the programs, as well as inter-procedural programs since our work
deals with function calls by either assuming output-equivalence (for functions that were
proven to be equivalent) or by inlining them (this work excludes recursion).

4 Concrete Semantics

In this section, we define the notion of concrete difference between programs, based on
a standard concrete semantics.

4.1 Concrete State Differencing

Comparing two programs P and P ′ under concrete semantics means comparing their
traces, but only those that originates from the same input. Towards that end, we first
define the difference between two concrete states.

Intuitively, given two concrete states, the difference between them is the set of vari-
ables (and their values) where the two states map corresponding variables to different
values. As variable names may differ between programs, we parameterize the definition
with a mapping that establishes a correspondence between variables in P and P ′. Thus
concrete state differencing is restricted to comparing values of corresponding variables.

Abstract Semantic Differencing for Numerical Programs 245

Definition 1 (Variable Correspondence). A variable correspondence V C ⊆ V ar ×
V ar′, is a partial mapping between two sets of program variables. The V C mapping
can be taken as input from the user however, our evaluation indicates that is sufficient
to use a name-based mapping for a program and a patched version:

V CEQ � {(v, v′)|v ∈ V ar ∧ v′ ∈ V ar′ ∧ name(v) = name(v′)}

Definition 2 (Concrete State Delta). Given two concrete states σ ∈ ΣP , σ′ ∈ ΣP ′ ,
and a correspondence V C, the concrete state delta is defined as:

*S(σ, σ
′) � {(v, val)|(v, v′) ∈ V C ∧ σ(v) = val �= σ′(v′)}

Informally, *S means the “part of the state σ where corresponding variables do not
agree on values (with respect to σ′)”. Note that *S is not symmetric. In fact, the
direction in which *S is used has meaning in the context of a program P and a
patched version of it P ′. We define *−

S = *S(σ, σ
′) which means the values of the

state that was "removed" in P ′ and *+
S = *S(σ

′, σ) which stands for the values
"added" in P ′. When there is no observable difference between the states we get that
*+

S (σ, σ
′) = *−

S (σ, σ
′) = ∅, and say that the states are equivalent denoted σ ≡ σ′.

Example 1. Consider two concrete states σ = (x �→ 1, y �→ 2, z �→ 3) and σ′ =
(x′ �→ 0, y′ �→ 2, w′ �→ 4) and using V CEQ then *−

S = {(x �→ 1)} since x and x’
match and do not agree on value, y and y’ agree (thus are not in delta) and z’ is not in
V CEQ. Similarly, *+

S = {(x′ �→ 0)}.

We now use our notion of concrete state difference to define the difference between
concrete program traces.

Definition 3 (Trace Delta). Given two traces π ∈ [[P]] and π′ ∈ [[P ′]] that originate
from equivalent input states, we define the trace delta as simply the difference between
the traces final states. Formally: *T (π, π

′) = {*S(last(σ), last(σ
′))}

The definition adheres to our problem definition in Section 1, where we defined pro-
gram difference as difference between matched variables in the terminating state. Since
*T (π, π

′) is based on state difference, we define *+
T and *−

T similarly to their under-
lying states difference operations.

Now, we will move past the concrete semantics towards abstract semantics. This
is required as it is unfeasible to describe difference based on traces. Before doing so,
we must adjust our concrete semantics since a concrete semantics based on individual
traces will not allow us to correlate traces that originate from the same input. This is the
first formal indication of how a separate abstraction, that considers each of the programs
by itself, cannot succeed.

4.2 Concrete Correlating Semantics

We define the correlating state and trace which bind the executions of both programs,
P and P ′, together and define the notion of delta in this setting. This allows us to define
the correlating abstract semantics which is key for successful differencing.

246 N. Partush and E. Yahav

Definition 4 (Correlating Concrete State). A correlating concrete state σ� : V ar ∪
V ar′ → V al is a unified concrete state, mapping variables from both programs (P, P ′)
to their values.

Definition 5 (Correlating Concrete Trace). A correlating trace π�, is a sequence of
correlating states ..., σ�i , ... describing an execution of P �� P ′.

Note that an attribute of the correlating programs (as defined in Section 6) is that it
restricts to traces that originate from equivalent input states i.e., σ�0 ≡ σ′

�0
.

We must remember however, that the number of traces to be compared is potentially
unbounded which means that the delta we compute may be unbounded too. Therefore
we must use an abstraction over the concrete semantics that will allow us to represent
executions in a bounded way.

5 Abstract Correlating Semantics

In this section, we introduce our correlating abstract domain which allows bounded
representation of correlating program state while maintaining equivalence between cor-
related variables.

5.1 Abstract Correlating State

We represent variable information using standard relational abstract domains. As our
analysis is path sensitive, we allow for a set of abstract sub-states, each adhering to a
certain path in the product program. This abstraction is similar to the trace partitioning
domain as described in [25].

Our power-set domain records precise state information but does not scale due to
exponential blowup. As a first means of reducing state size, we define a special join op-
eration that dynamically partitions the abstract state according to the set of equivalences
maintained in each sub-state and joins all sub-states in the same partition together (us-
ing the sub-domain join operation). This join criteria allows separation of equivalence
preserving paths thus achieving better precision. Second, to allow a feasible bound ab-
straction for programs with infinite number of paths, we define a widening operator
which utilizes the sub-domain’s widening operator but cleverly chooses which sub-
states are to be widened, according to path information encoded in state. We start off by
abstracting the correlating trace semantics in Sec. 4.2.

In the following, we assume an abstract relational domain (D�,�D) equipped with
operations �D, �D and ∇D , for representing sets of concrete states in ΣP�P ′ . We sep-
arate the set of program variables into original program variables denoted V ar (which
also include a special added variable for return value, if such exists) and the added guard
variables denoted Guard that are used for storing conditional values alone (Guard also
include a special added guard for return flag). We assume the abstract values in D�

are constraints over the variables and guards (we denote D�
Guard for sub-domain ab-

straction of guards and D�
V ar for original variables), and do not go into further details

regarding the particular abstract domain as it is a parameter of the analysis. We also
assume that the sub-domain D� allows for a sound over-approximation of the concrete

Abstract Semantic Differencing for Numerical Programs 247

semantics (given a sound interpretation of program operations). In our experiments, we
use the polyhedra abstract domain [8] and the octagon abstract domain [18].

Definition 6 (Correlating Abstract State). A correlating abstract program state σ� ∈
Lab → 2D

�
Guard×D�

V ar , is a mapping from a correlating program label l� to a set of
pairs (ctx, data), where ctx ∈ D�

Guard is the execution context i.e. an abstraction of
guards values via the relational numerical domain and data ∈ D�

V ar is an abstraction
of the variables.

We separate abstractions over guard variables added by the transformation to Guarded
command language (GCL) format (see Section 6) from original program variables as
there need not be any relationships between guard and regular variables.

5.2 Abstract Correlating Semantics

Tab. 1 describes the abstract transformers. The table shows the effect of each statement
on a given abstract state σ� = l� �→ S. The abstract transformers are defined using the
abstract transformers of the underlying abstract domain D�. We assume that any pro-
gram P can be transformed such that it only contains the operations described in Tab. 1
(this is achieved by the GCL format). We also assume that for [[g := e]]� operations, e
is a logical operation with boolean value.

Table 1. Abstract transformers

[[v := e]]� l�� �→ {〈ctx, [[v := e]]�
D�(data)〉|〈ctx, data〉 ∈ S}

[[g := e]]� l�� �→ {〈[[g := true]]�
D�(ctx), [[e]]

�

D� (data)〉|〈ctx, data〉) ∈ S}
∪{〈[[g := false]]�

D�(ctx), [[¬e]]�D� (data)〉|〈ctx, data〉 ∈ S}
[[if (g) {s0} else {s1}]]� l�� �→ {〈[[g = true]]�

D�(ctx), [[s0]]
�

D� (data)〉|〈ctx, data〉) ∈ S}
∪{〈[[g = false]]�

D�(ctx), [[s1]]
�

D�(data)〉|〈ctx, data〉 ∈ S}
[[goto lab]]� σ�

Next, we define the abstraction function α : 2Σ
∗
P��P ′ → 2D

�×D�

that abstracts to-
gether a set of concrete correlating traces T . As in our domain traces are abstracted to-
gether if they share the exact same path, we first define an operation path : Σ∗

P�P ′ →
Lab∗ which returns a sequence of labels for a trace’s states i.e. what is the path taken
by that trace. We also allow applying path on a set of traces to denote the set of paths
resulting by applying the function of each of the traces. Finally we define the trace
abstraction as follows:

α(T) � {�path(π)=pβ(last(π))|p ∈ path(T)}

where β(σ) = 〈βD�(σ|Guard), βD�(σ|V ar)〉 i.e. applying the abstraction function of
the abstract sub-domain βD� on parts of the concrete state applying to Guards (denoted

248 N. Partush and E. Yahav

σ|Guard) and V ars (denoted σ|V ar) separately. Our abstraction partitions trace prefixes
π by path and abstracts together the concrete states reached by the prefix - last(π), using
the sub-domain.

Every path in the correlating program will be represented by a single sub-state of
the sub-domain. As a result, all trace prefixes that follow the same path to l� will be
abstracted into a single sub-state of the underlying domain. This abstraction fits seman-
tics differencing well, as inputs that follow the same path display the same behavior
and will usually either keep or break equivalence together, allowing us to separate them
from other behaviors (it is possible for a path to display both behaviors as in Fig. 4 and
we will discuss how we are able to manipulate the abstract state and separate equivalent
behaviors from ones that offend equivalence). Another issue to be addressed is the fact
that our state is still potentially unbounded as the number of paths in the program may
be exponential and even infinite (due to loops).

int f(int x) {
return x;

}

int f’(int x) {
return 2*x;

}

Fig. 4. Single path differentiation candidates

5.3 Dynamic Partitioning

Performing analysis with the powerset domain does not scale as the number of paths
in the correlated program may be exponential (we defer the case of unbound paths to
widening of loops). We must allow for reduction of state σ� = l� �→ S with acceptable
loss of precision. This reduction via partitioning can be achieved by joining the abstract
sub-states in S (using the standard join of the sub-domain). However this can only be
accomplished after first deciding which of the sub-states should be joined and then
choosing the program locations for the partitioning to occur. To choose a strategy, we
start by taking a closer look at the final state of the fully disjunctive analysis of Fig. 1:

σ�(end) = [〈(g1,¬g2′,≡g1), (x > 0, sgn = 1,≡x,sgn)〉,
〈(¬g1,¬g2′,≡g1), (x < 0, sgn = −1,≡x,sgn)〉,
〈(¬g1, g2′,≡g1), (x = 0, sgn = 0, sgn′ = 1,≡x)〉]

One may observe that were we to join the two sub-states that maintain equivalence on
{x, sgn, g1}, it would result in an acceptable loss of precision (losing the x related
constraints). This is achieved by partitioning sub-states according to the set of variables
which they preserve equivalence for. This bounds the state size at 2|V C|, where V C
is the set of correlating variables we wish to track. As mentioned, another key factor
in preserving equivalence and maintaining precision is the program location at which
the partitioning occurs. The first possibility, which is somewhat symmetric to the first
proposed partitioning strategy, is to partition at every join point i.e. after every branch
converges. Let use examine sign �� sign′ state after processing the first guarded in-
struction if (g1) sgn = -1; (we ignored g2′ effect at this point for brevity):

σ� = [〈(g1,≡g1), (x ≥ 0,≡x,sgn)〉, 〈(g1,≡g1), (x < 0, sgn′ = −1,≡x)〉]

Abstract Semantic Differencing for Numerical Programs 249

This suggests that partitioning at join points will perform badly in many scenarios,
specifically here as we will lose all data regarding sgn. However if we could delay
the partitioning to a point where the two programs “converge” (after the following if

(g1’) sgn’ = -1; line), we will get a more precise temporary result which preserves
equivalence. To accomplish this, we define special program locations we name corre-
lating points which present places where programs have likely converged. These are a
sub-product of the correlating program construction process described in Section 6.

unsigned max = ...;
int sum’’(int arr[], unsigned len) {

int result = 0;
if (len > max)

return -1;
for (unsigned i = 1; i < len; i+=2)

result += arr[i];
return result;

}

unsigned max’ = ...;
int sum(int arr[], unsigned len) {
unsigned len’ = len;
int arr’[] = arr;
int result = 0;
int result’ = 0;
guard r’ = (len’ > max’);
if (r’) retval’ = -1;
if (r’) r’ = 0;
{

unsigned i = 1;
unsigned i’ = 1;

l: guard g = (i < len);
l’: guard g’ = 0;

if (r’) g’ = (i’ < len’);
if (g) result += arr[i];
if (r’) if (g’) result’ += arr’[i’];
if (g) i+=2;
if (r’) if (g’) i’+=2;
if (g) goto l;
if (r’) if (g’) goto l’;

}
}

Fig. 5. Patched sum” and correlating sum �� sum”

5.4 Widening

In order for our analysis to handle loops we require a means for reaching a fixed point.
As our analysis iterates over a loop, sub-states may be added or transformed continu-
ously, never converging. We therefore need to define a widening operator for our new
domain. We have the widening operator of our sub-domain at our disposal, but we
are faced with the question of how to lift this operator, i.e., which pairs of sub-states
〈ctx, data〉 from σ� should be widened with which. This problem has been addressed
in the path in other settings [2], and our approach can be viewed as a specialized form
of lifting that is tailored for tracking equivalences. A first viable strategy is to perform
an overall join operation on all pairs which will result in a single pair of sub-states
and then simply apply the widening to this sub-state using the sub-domain’s ∇ opera-
tor. If we examine applying this strategy to sum �� sum′ from Fig. 3, we get that it
will successfully arrive at a fixed point that also maintains equivalence as all sub-states
maintain equivalence at loop back-edges. Now let us try to apply the strategy to the
more complex sum �� sum′′ of Fig. 5. First we mention that as sum′ introduces a
return statement under the len > max condition, the example shows an extra r′ guard
and retval′ variable for representing a return (this exists in all GCL programs but we

250 N. Partush and E. Yahav

omitted it so far for brevity). While analyzing, once we pass that first conditional, our
state is split to reflect the return effect:

σ� = [d1 = 〈(¬r′), (len ≤ max, result = 0,≡len,result)〉,
d2 = 〈(r′), (len > max, retval′ = −1, result = 0,≡len,result)〉]

As we further advance into the loop, d1 will maintain equivalence but d2 will continue
to update the part of the state regarding untagged variables (since r′ is false), specif-
ically it will change result continuously, preventing the analysis from reaching fixed
point. We would require widening here but using the naive strategy of a complete join
will result in aggressive loss of precision, specifically losing all information regarding
result. The problem originates from the fact that prior to widening, we joined sub-
states which adhere to two different loop behaviors: one where both sum and sum′
loop together (that originated from len < max) and the other where sum′ has exited
but sum continues to loop (len ≥ max). Ideally, we would like to match these two
behaviors and widen them accordingly. We devised a widening strategy that allows us
to do this as it basically matches sub-states that adhere to the same behavior, or loop-
paths. This strategy dictates using guards for the matching. If two sub-states agree on
their set of guards, it means they represent the same loop path and can be widened as the
latter originated from the former (widening operates on subsequent iterations). In our
example, using this strategy will allow the correct matching of states after consequent
k, k + 1 loop iterations:

σ�
k = [d1 = 〈(¬r′, g,≡g), (len ≤ max, i = 2k + 1,≡i,len,result)〉,

d2 = 〈(r′,¬g, g′), (len > max, retval′ = −1, result′ = 0, i′ = 2k + 1, i = 1,≡len)〉]
And:

σ�
k+1 = [d1 = 〈(¬r′, g,≡g), (len ≤ max, i = 2k + 3,≡i,len,result)〉,

d2 = 〈(r′,¬g, g′), (len > max, retval′ = −1, result′ = 0, i′ = 2k + 3, i = 1,≡len)〉]

As we can identify the states predecessors by simply matching the guards. d1 will be
widened for a precise description of the difference shown as 〈len = len′ > max′,
retval′ = −1, retval = !〉.

5.5 Differencing for Abstract Correlating States

Given an abstract state in our correlating domain, we want to determine whether equiv-
alence is kept and if so under which conditions it is kept (for partial equivalence) or
determine there is difference and characterize it. As our state may hold several pairs of
sub-states, each holding different equivalence data, we can provide a verbose answer
regarding whether equivalence holds. We partition our sub-states according to the set
of variables they hold equivalence for and report the state for each equivalence parti-
tion class. Since we instrument our correlating program to preserve initial input values,
for some of these states we will also be able to report input constraints thus informing
the user of the input ranges that maintain equivalence. When equivalence could not be
proved, we report the offending states and apply a differencing algorithm for extracting
of the delta. Fig. 4 shows an example of where our analysis is unable to prove equiv-
alence, although part of the state does maintain equivalence (specifically for x = 0).
This is due to the abstraction being too coarse. We describe an algorithm that given a

Abstract Semantic Differencing for Numerical Programs 251

sub-state d ∈ D�, computes the differentiating part of the sub-state (where correlated
variables disagree on values) by splitting it into parts according to equivalence. This
is done by treating the relational constraints in our domain as geometrical objects and
formulating delta based on that.

Definition 7 (Correlating Abstract State Delta). Given a sub-state d and a corre-
spondence V C, the correlating state delta *A(d), computes abstract state differentia-
tion over d. The result is an abstract state � d approximating all concrete values for
variables correlated by V C, that differ between P and P ′. Formally, the delta is simply
the abstraction of the concrete trace deltas:

*A(d)
+ � α(∪path*+

T),*A(d)
− � α(∪path*−

T)

where deltas are grouped together by path and then abstracted.

The algorithm for the extraction of delta from a correlating state, is as follows:

1. d≡ is a state abstracting the concrete states shared by the original and patched
program. Obtained by computing: d≡ � d|V=V ′ ≡ d �

∧
{v = v′|(v, v′) ∈ V C}.

2. d≡ is the negated state i.e. D�\d≡ and it is computed by negating d≡ (as mentioned
before, all logical operations, including negation, are defined on our representation
of an abstract state).

3. Eventually:*A(d) � d�d≡ abstracts all states in P×P ′ where correlated variables
values do not match.

4. *A(d)
+ = *A(d)|V ′ is a projection of the differentiation to display values of P ′

alone i.e. "added values".
5. *A(d)

− = *A(d)|V is a projection of the differentiation to display values of P
alone i.e. "removed values".

Example 2. Applying the algorithm on Fig. 4’s P and P ′ where d = {retval′ =
2retval} will result in the following:

1. d≡ = 〈retval′ = 0, retval = 0〉.
2. d≡ = [〈retval′ > 0〉, 〈retval′ < 0〉, 〈retval > 0〉, 〈retval < 0〉]
3. *A(d) = [〈retval′ = 2retval, retval′ > 0〉, 〈retval′ = 2retval, retval′ <

0〉, 〈retval′ = 2retval, retval > 0〉, 〈retval′ = 2retval, retval < 0〉]
4. *A(d)

+ = [〈retval′ > 0〉, 〈retval′ < 0〉]
5. *A(d)

− = [〈retval > 0〉, 〈retval < 0〉]

We note that as a sub-state is basically a conjunction of constraints, negating it by
splitting to constraints and negating each individually reflects correctly the effect of
negating a conjunction as we are left with a disjunction of negations, as seen in step 2.
We also see that displaying the result in the form of projections is ill-advised as in some
states differentiation data is represented by relationships on correlated variables alone,
thus projecting will lose all data and we will be left with a less informative result. A
geometrical representation of *A calculation can be seen in Fig. 7 in Appendix A.

From this point forward any mention of “delta” (denoted *) refers to the correlating
abstract state delta (*A). We claim that * is a correct abstraction for the concrete state
delta which allows for a scalable representation of difference we aim to capture.

252 N. Partush and E. Yahav

6 Correlating Program

In this section, we describe how to construct a correlating programP �� P ′. The process
attempts to find an interleaving of programs for a more precise differentiation. The
construction also instruments P �� P ′ with the required correlation points CP which
define the locations for our partitioning. We also allow a user defined selection of CP .

6.1 Construction of P �� P ′

The idea of a correlating program is similar to that of self-composition [27], but the way
in which statements in the correlating program are combined is designed to keep the
steps of the two programs close to each other. Analysis of the correlating program can
then recover equivalence between values of correlated variables even when equivalence
is temporarily violated by an update in one version, as the corresponding update in the
other version follows shortly thereafter.

The correlating program is an optimized reduction over P × P ′ where not all pairs
of (σ�, σ′�) are considered, but only pairs in a controlled execution, where correlating
instructions in P and P ′ execute adjacently. This allows for superior precision.

The input for the correlation process are two C programs (P, P ′). The first step in-
volves transforming both programs to a normalized guarded instruction form (PG, P ′

G).
Next, a vector of imperative commands I (and I ′ respectively) is extracted from each
program for the purposes of performing the syntactic diff. An imperative command in
our GCL format is defined to be either one of v := e | goto l | f(...) as they
effectively change the program state (variable values, excluding guards) and control.
Function calls are either inlined, in case equivalence could not be proven for them, or
left as is, in case they are equivalent or are external system calls. Continuing the con-
struction process, a syntactical diff [13] is computed over the vectors (I, I ′). One of
the inputs to the diff process is V C as it is needed to identify correlated variables and
the diff comparison will regard commands differing by variable names which are corre-
lated by V C as equal. The result of the last step will be a vector I� specifying for each
command in I, I ′ whether it is an added command in P ′ (for I ′) marked +, a deleted
command from P (for I) marked −, or a command existing in both versions marked
=. This diff determines the order in which the commands will be interleaved in the re-
sulting P �� P ′ as we will iterate over the result vector I� and use it to construct the
correlating program. We remind that since I, I ′ contain only the imperative commands,
we cannot use it directly as P �� P ′. Instead we will use the imperative commands
as markers, specifying which chunk of program from PG or P ′

G should be taken next
and put in the result. The construction goes as follows: iterate over I� and for every
command c (c′) labeled lc (lc′):

– read PG (P ′
G) up to label lc (lc′) including into block Bc (B′

c)
– for B′

c, tag all variables in the block.
– emit the block to the output.
– delete Bc (B′

c) from PG (P ′
G).

The construction is now complete. We only add that at the start of the process, we
strip P ′

G of its prototype and add declarations for the tagged input variables, initializing

Abstract Semantic Differencing for Numerical Programs 253

them to the untagged version (thus assuring P �� P ′ will only co-execute traces that
originate from the same input for P and P ′). As mentioned, CP is also a product of the
construction, and it’s defined using = commands: after two = commands are emitted to
the output, we add an instrumentation line, telling the analysis of the correlation point.
One final observation regarding the correlating program is that it is a legitimate program
that can be run to achieve the effect of running both versions. We plan to leverage this
ability to use dynamic analysis and testing techniques such as fuzzing [21] and directed
automated testing [4] on the correlating program in our future work.

7 Evaluation

We evaluated DIZY on a number of real world programs where the patches affect numer-
ical variables. As benchmarks, we used several programs from the GNU core utilities,
as well as a few handpicked patches from the Linux kernel and the Mozilla Firefox web
browser. We also include results for illustrative examples used throughout the paper.

7.1 Prototype Implementation

We implemented a correlating compiler named CCC which creates correlating programs
from any two C programs. We also implemented a differencing analysis for analyzing
correlated programs. Both tools are based on LLVM and CLANG compiler infrastruc-
ture. We analyze C code directly since it is more structured, has type information and
keeps a low number of variables, as opposed to intermediate representation. We also
benefit from our delta being computed over original variables. As mentioned in Sec-
tion 6, we normalize the input programs before correlating them. This also allows for
a simpler analysis. Our analysis is intra-procedural and we handle function calls by ei-
ther modularly proving their equivalence and assuming it once encountered or, in case
equivalence could not be proved, by inlining. Calls to external system functions do not
change local state in our examples and thus were ignored. We used the APRON abstract
numerical domain library and conducted our experiments using several domains includ-
ing Interval, Octagon [18] and Polyhedra [8]. All of our experiments were conducted
running on a Intel(R) Core-i7(TM) processor with 4GB.

7.2 Results

Tab. 2 summarizes the results of our analysis. The columns indicate the benchmark
name, lines of code for the analyzed program, the number of lines added and removed
by the patch, whether it required widening, and the result of each benchmark run along-
side its run time in minutes. We included three different setting in the results: with
and without partitioning and with an Interval, Octagon [18] and Polyhedra [8] abstract
domains. Generally, the results are ordered in increasing order of precision from left
to right. Results marked with
presented abstract states with acceptable precision i.e.,
mostly variables that indeed differ between variables were reported, and the description
of the difference was useful for producing actual values for the differencing variables.

254 N. Partush and E. Yahav

Table 2. Experimental Results

Name #LOC #P Widen Interval Octagon Polyhedra
Part No Part Part No Part Part No Part

remove 16 4 N ✗(0) ✗(0)
(0:03)
(0:03)
(0:01)
(0:01)
copy 44 2 N ✗(0:33) ✗(0:33)
(0:23)
(3:11)
(0:07)
(0:47)
fmt 42 5 Y ✗(0:16) ✗(13:20) ✗(3:13) TO
(0:22)
(1:46)
md5sum 40 3 Y
(0:04)
(0:15)
(5:24) TO
(1:38)
(5:52)
pr 100 10 Y ✗(2:35) TO TO TO
(18:49) TO
savewd 86 1 N TO TO
(2:53)
(12:37)
(0:46)
(2:08)
seq 23 15 Y ✗(0:25) ✗(2:04) ✗(12:21) TO ✗(3:24) ✗(8:12)
addr 77 1 N ✗(0:14) ✗(0:46)
(20:00) TO
(6:46) TO
nsGDDN 47 11 N ✗(0:02) ✗(0:21) ✗(0:24) ✗(1:56)
(0:11)
(0:35)
sign 8 2 N ✗(0)
(0)
(0)
(0)
(0)
(0)
sum 7 5 Y ✗(0:03) ✗(0:10) ✗(0:12) ✗(0:33)
(0:04)
(0:14)
nested 10 1 Y ✗(1:02) TO ✗(0:35) ✗(1:37)
(0:12)
(0:30)

As precision increases, the resulting delta was more precise and contained more nu-
merical information describing the difference. Results marked with ✗ produced false
positives, reporting equivalent variables as different or providing too abstract of a de-
scription of the difference (i.e., �). Results marked in TO represent runs that were
stopped after 20 minutes. In either case, the results maintained soundness (equivalence
was never reported falsely).

Runs without partitioning presented the most precise results with the most detailed
abstract states describing the differencing paths. However this setting could not be ap-
plied towards all benchmarks since it leads to state explosion as shown by larger bench-
marks that timed out. Applying partitioning allowed us to scale the analysis while main-
taining precision. Results from runs that included partitioning described difference with
less detail since some numerical data was abstracted away.

As expected, the Interval domain usually produced the fastest, least accurate results,
while maintaining soundness as difference was reported for the appropriate variables
but numerical data was almost completely abstracted away. In some case, like in the
copy benchmark, Interval performed worse than Octagon and Polyhedra (in run time)
for runs with partitioning. This is due to the Interval domain’s limited ability to cap-
ture variable relationships which led to the partitioning algorithm failing in grouping
together the different sub-states (as the equivalences they kept varied greatly). This re-
sulted in a close to 2|VC| number of equivalence groups.

Surprisingly, runs using the Octagon domain presented poor performance (run time),
even compared to the more expensive Polyhedra domain, with less precision. This is
due to the Octagon domain being less successful in capturing equivalences as it is built
upon linear inequalities. This meant that more constraints were needed to represent
variable equality, resulting in bigger states and a slower analysis.

The addr and nsGDDN benchmarks taken from the net/sunrpc/addr.c module
in the Linux kernel SUNRPC implementation v2.6.32-rc6 and Firefox 3.6 security ad-
visory CVE-2010-1196 (adapted to C from C++) respectively. The results produced

Abstract Semantic Differencing for Numerical Programs 255

by DIZY can be directly used towards exploiting known security flaws mentioned in
advisories from which these patches originate, as the resulting abstract state describes
the difference between versions which is exactly the range of exploitable values.

bool bsd_split_3 (char *s, size_t s_len,...) {
int i = s_len;
i--;

+ if (s_len == 0) return false;
while (i && s[i] != ’)’) {
i--;

}
...

}

Fig. 6. Original and patched version of coreutils md5sum.c’s bsd_split_3 procedure

In the md5sum benchmark, all paths in the programs contain loops and only some
of them maintain equivalence. Fig. 6 shows part of the benchmark that was patched
to disallow 0-length inputs (patch line is marked with ‘+’). The main challenge in this
example, is separating the path where s_len is 0, which results in the loop index i
ranging within negative values (producing an array access out of bounds fault), from
the rest of the behaviors that maintain equivalence, throughout the widening process
which is required for the analysis to reach a fixed point. As the partitioning maintains
equivalence, the path where s_len = s_len′ �→ 0, ret �→ false, ret′ �→ true will not
be abstracted together with all other paths (that maintain equivalence). The offending
path will be widened separately, precisely reporting difference in the final program state
for the particular value.

The seq benchmark presented poor results, reporting difference on all variables al-
though the semantic difference is small. This is due to the patch introducing a consid-
erable amount of structural syntactic change to the code. We added the nested bench-
mark to demonstrate results for a simple nested loop program correlated with itself.

8 Related Work

Our work has been mainly inspired by recent work identifying program differencing as
having vast security implications [3,26] as well as advancements made in the field of
under-approximations of program equivalence [9,16,22,24].

The problem of program differencing is fundamental [10] and early work mainly fo-
cused on computing syntactical difference [13]. These solutions are an important step-
ping stone and we used syntactical diff as a means to achieve interleaving of programs
in our correlating program. Another possibility for creating this program is to rely on
the editing sequence that creates the new version from the original program [11].

We rely on classic methods of abstract interpretation [7] for presenting an over ap-
proximating solution for semantic differencing and equivalence. To achieve this we
devised a static analysis over a correlating program. The idea of a correlating program
is similar to that of self-composition [27] except that we compose two different pro-
grams in a interleaving designed to maintain a close correlation between them. The

256 N. Partush and E. Yahav

use of a correlating construct for differencing is novel as previous methods mainly use
sequential composition [9,22,24], disregarding possible program correlation.

We base our analysis on numerical abstractions [8,18] that allow us to reason about
variables of different programs. The abstraction is further refined in a way similar to
trace partitioning [25] with an equivalence-based partitioning criteria.

Jackson and Ladd [14] proposed a tool for computing data dependencies between
input and output variables and comparing these dependencies along versions of a pro-
gram for discovering difference. This method may falsely report difference as semantic
difference may occur even if data dependencies have not changed. Furthermore, data
dependencies offer little insight as to the meaning of difference i.e. input and output
values. Nevertheless, this was an important first step in employing program analysis as
a means for semantic differencing.

Several works on the problem of equivalence of combinatorial circuits [17,19,6]
made important contributions in establishing the problem of equivalence as feasible,
producing practical solutions for hardware verification.

Symbolic execution methods [22,24] offer practical equivalence verification tech-
niques for loop and recursion free programs with small state space. These works com-
plement each other in regards to reporting difference as one [22] presents an over ap-
proximating description of difference and the other [24] presents an under approxi-
mating description including concrete inputs for test cases demonstrating difference in
behavior. An interesting question is how could these methods be combined iteratively
to achieve better precision. Also, this work can be used to complement our work in
cases where equivalence could not be proven and the description of difference can be
leveraged for the extraction of concrete input that leads to offending states.

Bounded model checking based work [9] presents the notion of partial equivalence
which allows checking for equivalence under specific conditions, supplied by the user
but are bound by loops. They employ a technique based on theorem provers for prov-
ing an equivalence formula which embeds program logic (in SSA form) alongside the
requirement for input and output equivalence and user provided constraints.

[1] introduced a correlating heap semantics for verifying linearizability of concur-
rent programs. In their work, a correlating heap semantics is used to establish corre-
spondence between a concurrent program and a sequential version of the program at
specific linearization points.

In previous work regarding translation validation [23,20,30], in order to establish
equivalence for a (looping) code fragment being translated or optimized by a compiler,
a simulation relation between the basic blocks of the translated code is found. This
method is limited in the context of semantic differencing as, for instance, a simulation
relation for examples such as Fig. 2 cannot be automatically established (it needs to
be crafted manually as this is not one of the classic transformations). However, the
correlating program method we propose is generic enough to establish equivalence for
many cases, without requiring special tailoring.

9 Conclusions

We presented an abstract interpretation approach for program equivalence and differ-
encing. We defined a correlating program construct, that allows reasoning over both

Abstract Semantic Differencing for Numerical Programs 257

programs and establishing of equivalence. We defined a correlating abstract domain,
that allows us to maintain variable relationships. This partially disjunctive domain al-
lows to differentiate equivalent from differencing paths and we introduce a dynamic
partitioning strategy to abstract together paths according to equivalence criteria and
avoid exponential blowup. We also defined a widening operator for the disjunctive do-
main, which over approximates looping paths and is able to maintain equivalences for
programs with unbound loops. We showed that this approach is feasible and can be
applied successfully to challenging real world patches.

References

1. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstraction for
verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 477–490. Springer, Heidelberg (2007)

2. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains. Int. J.
Softw. Tools Technol. Transf. 8(4), 449–466 (2006)

3. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit generation
is possible: Techniques and implications. In: S&P 2008, pp. 143–157 (2008)

4. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)

5. Chaki, S., Gurfinkel, A., Strichman, O.: Regression verification for multi-threaded programs.
In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 119–135.
Springer, Heidelberg (2012)

6. Clarke, E.M., Kroening, D.: Hardware verification using ansi-c programs as a reference. In:
ASP-DAC, pp. 308–311 (2003)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In: POPL (1977)

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL 1978, pp. 84–97 (1978)

9. Godlin, B., Strichman, O.: Regression verification. In: DAC, pp. 466–471 (2009)
10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–

580 (1969)
11. Horwitz, S.: Identifying the semantic and textual differences between two versions of a pro-

gram. In: PLDI 1990, pp. 234–245 (1990)
12. Horwitz, S., Prins, J., Reps, T.: Integrating noninterfering versions of programs. ACM Trans.

Program. Lang. Syst. 11(3)
13. Hunt, J.W., McIlroy, M.D.: An algorithm for differential file comparison. Tech. rep., Bell

Laboratories (1975)
14. Jackson, D., Ladd, D.A.: Semantic diff: A tool for summarizing the effects of modifications.

In: ICSM, pp. 243–252 (1994)
15. Jin, W., Orso, A., Xie, T.: BERT: a tool for behavioral regression testing. In: FSE 2010,

pp. 361–362. ACM (2010)
16. Kawaguchi, M., Lahiri, S. K., and Rebelo, H. Conditional equivalence. Tech. rep., MSR

(2010)
17. Kuehlmann, A., Krohm, F.: Equivalence checking using cuts and heaps. In: DAC,

pp. 263–268 (1997)
18. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19, 31–100 (2006)
19. Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to combinational

equivalence checking. In: ICCAD, pp. 836–843 (2006)

258 N. Partush and E. Yahav

20. Necula, G.C.: Translation validation for an optimizing compiler, pp. 83–95
21. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary instru-

mentation. In: PLDI 2007 (2007)
22. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential symbolic execution. In:

FSE 2008 (2008)
23. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.) TACAS

1998. LNCS, vol. 1384, p. 151. Springer, Heidelberg (1998)
24. Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real code. In:

Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 669–685. Springer,
Heidelberg (2011)

25. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans. Program.
Lang. Syst. 29(5) (August 2007)

26. Song, Y., Zhang, Y., Sun, Y.: Automatic vulnerability locating in binary patches. In: CIS
2009,

27. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg (2005)

28. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine pro-
grams using widening to handle recurrences. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 599–613. Springer, Heidelberg (2009)

29. Xin, B., Sumner, W.N., Zhang, X.: Efficient program execution indexing. In: Proceedings of
the 2008 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2008, pp. 238–248 (2008)

30. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B., Hu, Y.: Translation and run-time validation of
optimized code. Electr. Notes Theor. Comput. Sci. 70(4) (2002)

A Appendix

d V=V' d

(d V=V‘)

+

1 2

4,5 3

Fig. 7. Delta computation geometrical representation

Precise Slicing in Imperative Programs

via Term-Rewriting and Abstract Interpretation

Raghavan Komondoor

Indian Institute of Science, Bangalore
raghavan@csa.iisc.ernet.in

Abstract. We propose a new approach for producing precise constrained
slices of programs in a language such as C. We build upon a previous
approach for this problem, which is based on term-rewriting, which pri-
marily targets loop-free fragments and is fully precise in this setting. We
incorporate abstract interpretation into term-rewriting, using a given ar-
bitrary abstract lattice, resulting in a novel technique for slicing loops
whose precision is linked to the power of the given abstract lattice. We
address pointers in a first-class manner, including when they are used
within loops to traverse and update recursive data structures. Finally,
we illustrate the comparative precision of our slices over those of previous
approaches using representative examples.

1 Introduction

Program slicing was introduced by Weiser [16] as a program transformation tech-
nique, in order to extract a smaller program P ′ from a given program P wrt to
a given slicing criterion. In his setting the criterion is the value of a variable
x at a given program point l. The semantics of slicing, intuitively, is that over
all possible executions, P and P ′ result in identical value(s) for variable x at
point l. Subsequently, the notion of the slicing criterion has been generalized in
many ways, e.g., by allowing constraints [5] or conditions [2,8] on the initial and
final states of the program’s executions. Slicing has found varied applications,
including debugging, software testing, software metrics, program comprehen-
sion, program parallelization, and state-space reduction for efficient verification;
numerous techniques have also been proposed for slicing, e.g., as surveyed by
Tip [15] and by Xu et al. [17].

The problem we address is precise, path-sensitive constrained slicing of looping
programs in C-like languages, that may potentially access and manipulate heap
structures via pointers.

1.1 Motivating Example

Consider the example program in Fig. 1(a). Say our criterion – shown within the
box after line 9 – is the value in the variable z at the end of the program. (Let us
ignore the two boxes above line 8 for now.) It can be seen that the conditional

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 259–282, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

260 R. Komondoor

1: while (x > n) {
2: if (x < 50)
3: y = y + 2;
4: if (x > 150)
5: y = y + 1;
6: x--;
7: }

(x = 100, y) , (x �= 100, z)

8: if (x == 100)
9: z = y;

z

((≥100), x)

((≥100), y)

2: if (x < 50) •
3: y = y + 2;
4: if (x > 150) •
5: y = y + 1;
6: x--;

((=100), y)

Iteration 1

((≥100), x)

((≥100), y)

2: if (x < 50) •
3: y = y + 2;
4: if (x > 150) •
5: y = y + 1; •
6: x--;

((≥100), y)

Iteration 2
(a) (b) (c)

Fig. 1. Illustrative examples

statement “if (x < 50) y = y + 2” inside the loop need not be included in
the slice. This is because the value of x decreases monotonically within the loop;
therefore, in any execution in which control flows through the true branch of
the above statement, control will eventually not reach the statement “z = y” in
line 9, which means that the value written into y at line 3 will not affect the
criterion.

In general, we express each slicing criterion as a pair of the form (g, v), where
v is a variable (or address, in general) whose value we are interested in, and g is
the condition (at the point where the criterion is expressed) under which we are
interested in this value. Upon back-propagating the given criterion at the end
of the program in Fig. 1(a), one would get the two criteria shown within boxes
above line 8 in Fig. 1(a). Note the importance of the guards on the criteria; if
there were no guards, line 3 in the loop would end up being pulled into the slice
(unnecessarily) by the first of the two criteria (the one for variable y), because
all assignments to y would have to be considered relevant.

Let us ignore the second criterion (the one for variable z), for now, and con-
sider only the criterion for variable y (i.e., ‘(x = 100, y’)). A naive (but precise)
approach to slicing the loop would be to repeat the following steps iteratively:
Propagate the criterion in hand back through the loop body, and identify the
statements that impact it. Then, collect the variables that are used in these
impacting statements before being defined in the loop body. For each such vari-
able, create a new criterion for it, with the criterion’s guard being the condition
under which the variable is used. Then, slice the loop body using these criteria
(each time we slice the loop body using a criterion we call it an iteration). Keep
repeating this process until no new guarded criteria get generated. Finally, the
statements that are found to impact any of the criteria in any of the iterations
are taken together as the slice of the loop wrt the original criterion. Note that
in each iteration we need to analyze the complete loop body, and not the parts
of the loop body that were found relevant in preceding iterations. That is, the
approach “grows” the slice iteratively.

In the example, in the first iteration, for the criterion ‘(x = 100, y)’, none
of the assignments in the loop are found to be impacting it. Basically, this is
because both the statements that assign to y are controlled by conditions that
would have to evaluate to false in order for x to have the value 100 at the end of

Precise Slicing in Imperative Programs 261

the iteration. The two conditionals themselves, in lines 2 and 4, however impact
the criterion, and are included in the slice1. Now, the use of x in lines 2 and 4
cause the criterion ‘(x = 101, x)’ to be generated (‘(x = 101)’ is the weakest
pre-condition wrt the loop body of the guard of the criterion that was processed
in the current iteration). Also, since y was not unconditionally assigned to by
any impacting statement in this iteration (in fact, it was not even conditionally
assigned), we re-generate a criterion ‘(x = 101, y)’ for y.

We nowprocess the above two criteria in the subsequent two iterations.The first
one of these criteria (the one involving variable x) causes line 6 to be pulled into the
slice, while the other criterion does not cause any new statement to be pulled into
the slice. The process then continues; we keep generating criteria for x and for y,
with guards ‘(x = 102)’, ‘(x = 103)’, etc., until we produce the criterion ‘(x = 150,
y)’. Due to this criterion, finally, line 5 in the program is found to be impacting
and is pulled into the slice. Now, continuing the process, we end up generating a
never-ending sequence of criteria, with guards ‘(x = 151)’, ‘(x = 152)’, etc. Note
that Line 3 itself never gets pulled into the slice. In fact, this naive approach is
fully precise. The problem with it is the impossibility of ensuring its termination,
in general, while guaranteeing soundness as well as full precision.

1.2 Our Approach

The motivation behind our proposal is a need for a principled way to trade off on
the precision of slicing, while guaranteeing termination. The key idea underlying
our approach is to use abstract guards rather than concrete guards in slicing
criteria. An abstract guard l is an element of an abstract lattice that is provided
as a parameter to the approach. An abstract criterion is of the form (l, v), where
v is an address; this criterion basically expresses interest in the value in location
v in the subset of concrete stores that are abstractly represented by l (i.e., that
belong to γ(l)) and that arise at the point where the criterion is given.

Coming back to the example, say we are provided an abstract lattice that is
meant to track the value of variable x only (for simplicity), and contains the
abstract elements {⊥,=100,≤100,≥100, �=100,�}. ‘=100’ indicates that the
value of x is 100, ‘≤100’ indicates that the value of x is at most 100, and so
on. The elements ≥ 100 and ≤ 100 dominate the element = 100; as usual, �
dominates all elements, and every element dominates ⊥. Now, considering the
criterion ‘(x = 100, y)’ in Fig. 1(a). We first “abstract out” its guard, thus ob-
taining the abstract criterion ‘((=100), y)’ (we show abstract guards in bold in
the figure). We then analyze the loop body for the first time (see Fig. 1(b)). As
before, only the conditionals in lines 2 and 4 are found to impact the criterion,
and are included in the slice (as indicated by the bullet signs). Now, at the end
of this iteration, rather than generate a criterion for x with the concrete guard

1 This is following the definition of a correct slice as proposed by Field et al. [5], on
whose approach we are based. As per their definition a condition is considered as
impacting a criterion unless replacing it with a non-deterministic condition makes
no difference to the criterion.

262 R. Komondoor

‘(x = 101)’, we generate a criterion whose guard is an abstraction of this concrete
condition, namely, ‘(≥100)’. Similarly, because y was not unconditionally defined
by an impacting statement, we generate a criterion for y with the same abstract
guard. These two abstract criteria are shown at the top of Fig. 1(b). Say, we
process the criterion ‘((≥100), y)’, in the next iteration, as shown in Fig. 1(c);
line 5 is found impacting in this iteration, and is pulled into the slice. The
same two abstract criteria get generated in this iteration as in the first iteration.
(Processing the abstract criterion ‘((≥100), x)’ that was generated in the first
iteration produces back the same criterion; this iteration is omitted from the
figure.) Therefore, since a fix-point has been reached wrt the abstract criteria
that can be generated, we terminate the analysis. Note in the example that
Line 3 got excluded from the slice, as is desired.

Once the loop has been sliced, we use all the criteria that were generated
across all the iterations to continue slicing the part of the program that precedes
the loop.

Assuming a finite set of addresses that can be used in criteria, and assuming
a finite lattice of abstract guards, the total number of possible criteria is finite.
Therefore, reaching a fix-point is guaranteed. If the lattice is of finite height (as
opposed to being finite), we can still ensure that a fix-point is reached by always
broadening the guard of any newly generated criterion by joining it with the
guard(s) of other criteria generated so far for the same address.

1.3 Novelty and Contributions

From the point of view of the previous literature in constrained slicing of pro-
grams in C-like languages, our approach is novel and more powerful in several
ways. (1) We are the first to allow an arbitrary abstract lattice to be plugged
in, and for the elements of this abstract lattice to be used as guards of criteria,
in order to perform slicing of looping programs. The precision of our approach
is linked to the power of the abstract lattice chosen. (2) To our knowledge ours
is the first slicing approach to specifically address heap-manipulating programs,
and to produce slices with non-trivial precision on typical programs that access
and manipulate heap structures. Two key ingredients that enable this are: (a)
A novel notion, in the context of the slicing literature, of a symbolic address,
that we call a compressed access path; e.g., x.next.∗. A compressed access path
can be used in the place of an address in a criterion, and in general, represents
an infinite family of concrete access paths; e.g., x.next, x.next.next, etc. (b)
Plugging in an abstract domain such as shape analysis [13] in our analysis in
order to identify statements that impact a criterion with high precision.

The underlying part of our approach that identifies the statements in a frag-
ment that are relevant to a criterion (e.g., during an iteration in our analysis
while slicing a loop) is built upon the term-rewriting approach of Field et al. [5].
Their approach performs fully precise slicing of loop-free fragments, including in
the presence of pointers, via term rewriting. A fundamental contribution of our
paper is to introduce a new rewrite rule to go along with PIM’s rewrite rules,
that is effective in situations wherein the term to be rewritten contains a loop

Precise Slicing in Imperative Programs 263

inside it (e.g., when a loop body contains a nested loop). The base PIM rules
in this scenario can essentially only perform term simplifications whose safety
can be established by (limited) unrolling of the loop. The key idea underlying
our rule, on the other hand, is to use abstract interpretation [4] to perform fix-
point reasoning about loops inside terms, and to use this reasoning to perform
(semantics-preserving) simplifications that the base rules might not be able to
do. Our abstract-interpretation based rewrite rule can be interleaved freely and
used along with the base PIM rewrite rules during the term-rewriting sequence.
We hypothesize that our generalization of term rewriting will find other appli-
cations, too, in precise analysis and transformation of imperative programs.

The rest of this paper is structured as follows. Section 2 introduces the term
rewriting approach (PIM) of Field et al., upon which our approach is based.
Section 3 spells out our approach in detail; in this section we consider loops and
pointers, but assume that there are no heap-allocated objects. Section 4 gives
an informal overview of how we address programs that manipulate heap objects;
finally, Section 5 discusses related work.

Due to space constraints we include several related discussions in an associated
technical report [11]: (1) An outline of an argument regarding the correctness
of our approach. (2) The details of how we employ compressed access paths to
slice heap-accessing programs. (3) Two new examples, one being a program that
manipulates two linked data structures using a loop, and another being a “batch”
program that reads a record from a file in each iteration of a loop and processes
different kinds of records differently. We provide interesting slicing criteria for
both these programs, and illustrate our approach. We believe ours is the first
proposed slicing approach to be demonstrated to produce non-trivial slices in
these kinds of challenging scenarios. (5) Expanded discussions corresponding to
various sections in this paper.

2 Background on Term-Rewriting

In this section we give an informal overview of the term-rewriting system for
C programs proposed by Field et al., called PIM. We also discuss how Field
et al. apply the system to the slicing problem. For full details and a complete
discussion on PIM we refer the reader to their paper. This relevance of our
overview is in that our approach, which is described subsequently in Section 3,
builds upon PIM in a closely-coupled manner, inheriting all of PIM’s features
and then adding extra features.

2.1 PIM Intermediate Representation

PIM has two components, a graph or term representation for programs, which
we introduce first, and an equational logic on these graphs, which we introduce
in Section 2.2. PIM graphs are directed acyclic graphs, which can also be inter-
preted as terms after “flattening”. Terms (or subterms) are of two basic types:
store structures and merge structures. A store cell is the simplest form of store

264 R. Komondoor

structure, representing a single assignment statement; it associates an address
expression (the lhs) with a merge structure (the rhs). For example, if x is a
program variable, the store cell {a(x) �→ [1]} maps a(x), which represents the
(constant) address of variable x, to the constant value 1. In general, an address
expression is an expression that evaluates to an address. ‘ ∅s’ represents the
empty store (i.e., no addresses are mapped to values). The ‘◦s’ operator can be
used to sequentially compose store structures. Sequential composition has the
usual semantics; i.e., if stores s1 and s2 both map an address a to something,
the mapping provided by s2 takes precedence in the composed store s1 ◦s s2.

A merge structure is a recursive structure, and is basically a sequence of
one or more inner merge structures or expressions, each guarded by a boolean
expression. The simplest kind of merge structure is a merge cell, of the form m
≡ [g � e], where g is the guard (a boolean expression) and e is an (arithmetic
or boolean) expression. m evaluates to e if g is true, else it evaluates to the null
value ∅m. The operator ‘!’ is used to “select” a constituent merge structure or
expression from a composite merge structure. Basically, the term ((g1 �m1) ◦m
(g2 �m2) ◦m . . . ◦m (gn �mn))! evaluates to mk iff gk evaluates to true and the
guards gk+1, gk+2, . . . , gn all evaluate to false . Thus, merge structures resemble
Lisp cond expressions. Where there is no ambiguity we omit the subscripts m
and s from the symbols ‘∅’ and ‘◦’. Also, where the guard g of a merge cell is
true, we omit the guard (thus, the expression e is “coerced” into a merge cell).

Expressions in PIM make use of the usual arithmetic and boolean operators.
A leaf in an expression may be a constant (including a constant address), or an
address lookup, which is the lookup of the value in a memory location in a store.
Address lookups take the syntactic form ‘!(s@ a)’, where s is a store structure
and a is an address expression. (As we will see later, just ‘s@ a’ evaluates to
a composite merge structure, which encodes the possible values that reside in
location a under different conditions.)

For illustration, we refer to the example program P in Fig. 2(a), and its graph
representation SP in Fig. 2(b). Ignore, for now, the address-lookup at the root
of the term in Fig. 2(b), as well as the term in Fig. 2(c). Children of a node
are depicted above or to the right of the node, to emphasize the correspondence

◦

2 : b = e3; c = e4;
3 : x = e5; ptr = &t;
4 : if(x < 50)

6 : if(x > 150)

8 : x = x − 1;
9 : if(x > 120)

1 : z = e1; t = e2;

5 : ptr = &b;

10 : z = ∗ptr;

7 : ptr = &c;

P
(a)

e1

◦ ((e5 − 1) > 120) � e2

◦

!

(c)

(e5 > 150) � e4

{a(t) �→ [e2]}S1 ◦

S2◦

S3
{a(ptr) �→ [((S2 @a(x))! < 50)

S4 {a(ptr) �→ [((S3 @a(x))! > 150)
� a(c)]}

◦

◦

(•@a(z))!
(b)

S5

◦
� (S5 @(S5 @a(ptr))!)!]}

{a(z) �→ [((S5 @a(x))! > 120)SP

(B1)

(B2)

{a(z) �→ [e1]}

� a(b)]}

(B3)
{a(x) �→ [(S4 @a(x)! − 1)]}

{a(ptr) �→ [a(t)] }

z

Fig. 2. Illustration of the PIM representation

Precise Slicing in Imperative Programs 265

between source-code constructs and their corresponding PIM subgraphs. Store
cells (i.e., statements) are enclosed in curly braces; the composite stores are la-
beled S1, S2, etc., for convenience of notation, so that they can be referred to
wherever required. Merge structures within store structures are enclosed within
square brackets. We use e1, e2, etc., as placeholders in the notation, representing
merge structures whose actual contents are not relevant for the purpose of this
discussion. Note that (a) “if” conditions are flattened, by making each state-
ment inside the conditional become an (unconditional) assignment whose rhs
is a merge structure that is guarded by the “if”s condition, and (b) a variable
reference in any statement in the program gets translated into a address-lookup
on the store-structure that represents the portion of the program that precedes
the statement. The Field et al. paper discusses a simple syntax-directed scheme
for translating any program into its graph representation.

PIM also includes the notion of meta variables, that represent input param-
eters to the program. We ignore this construct in our discussion for the sake of
brevity.

2.2 Rewriting in PIM

In addition to the graph representation of statements and programs, PIM con-
tains an equational logic on these graphs. The logic consists of two subsystems:
(a) an “operational” subsystem of directed rewrite rules, which completely de-
fine the operational semantics of the language and can be used to “execute”
graphs, and (b) an additional set of non-oriented equational rules for reasoning
about operational equivalences of graphs. We begin by introducing two of the
key PIM rewrite rules. Rule S42 converts an address lookup on a composite store
structure into a composite merge structure:

S4: (s1 ◦s s2)@ a −→ (s1 @ a) ◦m (s2 @ a)

1 : B3 � (S5 @a(ptr))!

2 : B3 � (((a(ptr)=a(z))� e1) ◦ ((a(ptr)=a(t))� e2) ◦ . . . ◦ ((a(ptr)=a(x))� ((S4 @a(x))! − 1)))!

3 : B3 � (a(t) ◦ (B1 � a(b)) ◦ (B2 � a(c)))!

4 : ((B3 � a(t)) ◦ ((B3 ∧ B1) � a(b)) ◦ ((B3 ∧ B2) � a(c)))!

5 : ((B3 � a(t)) ◦ ((B3 ∧ B2) � a(c)))!

Fig. 3. Illustration of rewriting, based on the example in Fig. 2(b)

Rule S1 says that the value written into a location a2 by the merge cell
‘{a1 �→ m}’ is m if (a1 = a2) simplifies to true (i.e., a1 and a2 are the same
address), else is the null value:

S1: {a1 �→ m}@ a2 −→ (a1 = a2)�m
To illustrate these rewrite rules we consider the subterm ‘(S5 @a(ptr))!’ in

Fig. 2(b) (corresponding to line 10 in the source code); this sub-term, along with

2 We use the same rule names as in the Field et al. paper.

266 R. Komondoor

its guard B3, is shown in line 1 in Fig. 3 (B1, B2, and B3 are labels that are
used for notational convenience only). The subsequent lines in Fig. 3 illustrate a
sequence of rewrite steps that the subterm undergoes, one step per line. Line 2
results from an application of Rules S4 and S1. Intuitively, since the store S5

is a composition of several store cells, the value in address a(ptr) as per this
store structure is the merge structure in the rhs of the last store cell that is a
constituent of S5 and whose lhs is a(ptr). The term in line 3 results from an
application of the following four rules:

L1: (∅ ◦ l) −→ l, L2: (l ◦ ∅) −→ l
L5: (true � l) −→ l, L6: (false � l) −→ ∅
As a result of these rules, the merge structures that take part in the compo-

sition in line 2 whose guards are false have gotten eliminated. Intuitively, the
term in line 3 indicates that the value in a(ptr) in store S5 is the address of c,
which happens when B2 is true, else is the address of b, when B1 is true, else is
the address of t. We now use the following PIM rewrite rules:

L7: p� (l1 ◦ l2) −→ (p� l1) ◦ (p� l2), L8: (p1 � (p2 � l)) −→ ((p1 ∧ p2)� l)
These rules yield the term in line 4 in Fig. 3. Now, the condition B1 ∧ B3

reduces to false, yielding the term in line 5. This step illustrates the fully precise
nature of PIM rewriting. Intuitively, the term in line 5 indicates that the value
in a(ptr) in S5 under the condition B3 is either the address of c or the address
of t, but definitely not the address of b.

For an illustration of how the PIM rewrite rules natively address pointer
operations, consider the subterm ‘B3�(S5 @(S5 @a(ptr))!)!’ in Fig. 2(b). Given
that ‘(S5 @a(ptr))!’ evaluates to either the address of c or the address of t, upon
simplification of the subterm above the store-cell ‘a(b) �→ e3’ gets eliminated.
What this means intuitively is that the value of ‘*ptr’ in line 10 in Fig. 2(a)
may be equal to e2 or e4, but cannot be equal to e3.

2.3 Slicing via Term Rewriting

Field et al. encode the slicing criterion plus the program itself as an address
lookup on the store-structure that represents the program. For instance, for
the program P in Fig. 2(a), and for a slicing criterion (true, z), the combined
encoding would be the term ‘(SP @a(z))!’, where SP is the store-structure cor-
responding to the program P . This term is the one shown in Fig. 2(b). For the
same program, if the slicing criterion were to be (x < n, z), then the combined
encoding would be the term ‘((SP @a(x))! < (SP @a(n))!)� (SP @a(z))!.

Note that the combined encoding, e.g., the term shown in Fig. 2(b), is itself
a semantic slice of the program P wrt the given criterion. This term can be
syntactically simplified (while preserving its semantics) by rewriting it. Going
back to the example, Fig. 2(c) shows the fully simplified term, which is a normal
form or minimal semantic slice.

A syntactic slice is one that’s a projection of the original program (i.e., certain
statements and conditionals are removed). In many applications of slicing, where
the slice is to be used to perform some analysis or transformation on the original
program, what is desired is a syntactic slice. Each term that is produced during

Precise Slicing in Imperative Programs 267

rewriting, on the other hand, is essentially a semantic slice. In order to map
back semantic slices to the original program to yield syntactic slices, Field et
al. introduce the idea of dependence tracking. Whenever a term t is rewritten
into a term t′, the rewrite rule that was used also indicates the dependences of
the subterms in t′ on the subterms in t, in the form of a binary relation. At
any point in the rewriting process, the subterms of the initial term (e.g., the
one in Fig. 2(b)) on which the current term (e.g., the one in Fig. 2(c)) depends
transitively constitute the syntactic slice of the program. In the example, the
subterm e1 in Fig. 2(c) transitively depends on the store-cell ‘a(z) �→ [e1]’,
as well on the boolean expression B3 (this is intuitively the case because the
final value of z is e1 only when B3 evaluates to false). The subterm e2 depends
transitively on the store-cell ‘a(t) �→ [e2]’, the store-cell ‘a(ptr) �→ [a(t)]’, as well
on the boolean expressions B1, B2, and B3. The subterm e4 depends transitively
on the store-cell ‘a(c) �→ [e4]’, the store-cell ‘a(ptr) �→ [a(c)]’, as well on the
boolean expressions B1, B2, and B3. Therefore, the syntactic slice corresponding
to the term in Fig. 2(c) consists of all parts of the term in Fig. 2(b) except the
store-cells ‘a(b) �→ [e3]’ and ‘a(ptr) �→ [a(b)]’.

Note that although dependence-tracking from any of the rewritten terms
yields a correct syntactic slice, the degree of precision of the slice depends on the
degree to which the term that represents the criterion is rewritten (i.e., simpli-
fied). If the term is reduced to a normal form then the resultant syntactic slice
is guaranteed to be minimal (the Field et al. paper has more details on this.)

2.4 Loops in PIM

We now touch upon how PIM handles loops. A loop is represented in PIM by a
term of the form Loop(λxS .body(vE , uS), s). Informally, vE is the loop’s predicate
(a boolean expression), uS is a store structure representing the loop’s body, both
being functions of the store xS at the beginning of a loop iteration. The second
argument s is the incoming store (i.e., the store that precedes the loop). For
e.g., if a program has two statements s1, s2, followed by a loop whose predicate
is vE and body is s3, followed by a statement s4, its PIM graph would be
s1◦s2◦Loop(λxS .body(vE , s3), (s1◦s2))◦s4. The term Loop(λxS .body(vE , uS), s)
itself denotes the store resulting from repeated execution of the loop body until
the predicate evaluates to false . This is captured by a rewrite rule:

Loop(λxS .body(vE , uS), s) −→ (λxS . vE � (uS ◦ Loop(λxS .body(vE , uS), xS ◦
uS)))s
This rule basically expresses the semantics of a loop using unrolling. For instance,
a single application of this rule on the example loop-structure mentioned above,
would result in:

vE [(s1 ◦ s2)/xS] � (s3[(s1 ◦ s2)/xS] ◦ Loop(λxS .body(vE , s3), s1 ◦ s2 ◦ s3[(s1 ◦
s2)/xS]))

The simplest way in which PIM slices looping programs is using the above
rewrite rule (repeatedly). Field et al. call this technique pure dynamic slicing ;
this approach terminates only when the input- and/or output-side constraints
imply a bound on the number of iterations of the loop. Note that premature

268 R. Komondoor

forced termination of the rewriting process will result in the entire loop being
included in the slice. Whenever the approach terminates it computes a fully
precise slice. PIM also includes other, somewhat more sophisticated techniques
to slice loops, which we will touch upon in Section 3.4.

3 Our Extensions to PIM

Our slicing framework is the same as that of PIM. That is, we encode the pro-
gram plus the slicing criterion as a PIM term, rewrite the term, and finally use
the tracked dependences to emit the syntactic slice. We inherit their term rep-
resentation, as well as all their rewrite rules. The new aspects of our approach
over PIM are in the form of (1) A new rewrite rule that simplifies guards (i.e.,
boolean expressions) to false more aggressively (yet safely) than PIM’s rules,
using abstract interpretation on terms. (2) Letting merge structures (and hence,
slicing criteria) use “abstract” guards (as illustrated in Fig. 1, parts (b) and (c)),
in conjunction with the “concrete” guards that PIM allows. (3) A technique to
slice loops by fix-point analysis of the loop body, using abstract guards, as il-
lustrated intuitively in Section 1.2. Note that we use the same representation of
loops as PIM, namely, the one discussed in Section 2.4. In the rest of this section
we first introduce some notation and terminology, and then discuss in detail the
three aspects mentioned above.

3.1 Notation and Terminology

A scope is a store structure that represents either the entire program, or the
body of a loop in a program. Therefore, the scopes corresponding to a program
form a hierarchical tree structure due to nesting. Associated with each scope F
is a store variable xF , which represents the incoming store into F . When F is
the full program xF represents the initial memory configuration of the program.
When F is a loop, xF is nothing but the formal store parameter xS used in
our representation of loops (see Section 2.4). Different scopes never refer to
shared store- or merge- structures, even when the scopes are related by nesting.
Therefore, rewriting within different scopes can be seen as independent activities.
However, rewriting within a scope can trigger rewriting of contained as well as
containing scopes, as will become clear in Section 3.4.

Let Abs denote the given abstract interpretation lattice; this is a finite or a
finite-height lattice, with associated transfer functions for each kind of statement
and conditional in the language. The precision of our approach depends on the
power of this lattice; however, in the worst case, if a meaningful lattice is not
provided, the trivial lattice {⊥,�} can be used. Associated with the incoming
store variable xF of each scope F is an abstract value lF ∈ Abs, which over-
approximates the set of concrete states that xF may take on. When F is the
program then lF is the abstraction of the incoming store into the program (this
needs to be provided). When F is a loop body we compute lF automatically using
the fragment of the program that precedes the loop (more on this in Section 3.4).

Precise Slicing in Imperative Programs 269

1 : x = e (S1)

2 : if (x is odd)

4 : while(x < n)
5 : x = x + 2

6 : if(x is even)

3 : z = z + 1

7 : y = z + 2

x = x + 2;
while(x < n)
x = e;

v1 = (x1 is odd) &&

x2 = x;

x = e;
x1 = x;

from
(S1 @ x)!

from
(S2 @x)!

(ii)(i)

y
(SP)

(S2)

(x2 is even);
if (v1)

no-op;

Procedure translExp(e)

Input: e, a PIM expression
Output: (val, cfg), where val is a fresh

variable name, and cfg is a CFG
that computes e and stores its
result in val

1: Let val be a fresh variable name
2: if e is a(v)
3: return (val, asgn(val, &v))
4: else if e = (s@ a)!
5: c1 = translStore(s)
6: (v,c2) = translExp(a)
7: return (val, (c1 ; c2 ; asgn(val, *(v)))
8: else if e is (e1 op e2)
9: (v1,c1) = translExp(e1)
10: (v2,c2) = translExp(e2)
11: return (val, (c1 ; c2 ; asgn(val, op(v1, v2))))
12: end if

(a) (b)

Procedure translStore(s)

Input: s, a store structure
Output: a CFG representing s
1: if s is xF
2: return {empty CFG}
3: else if s is a store cell {a �→ m}
4: (v1,c1) = translExp(a)
5: (v2,c2) = translMerge(m)
6: return (c1 ; c2; asgn(*(v1),v2))
7: else if s is a loop
8: Construct a CFG c from s

using vE and uS

9: return c
10: else if s = s1 ◦ s2
11: cfg1 = translStore(s1)
12: cfg2 = translStore(s2)
13: return (cfg1 ; cfg2)
14: end if

Procedure translMerge(m)

Input: m, a merge structure
Output: (val, cfg), where val is a fresh

variable name, and cfg is a CFG
that computes m and stores its
result in val

1: Let val be a fresh variable name
2: if m is an expression
3: (v1,c1) = translExp(m)
4: return (val, (c1 ; asgn(val,v1)))
5: else if m = (g1 � m1) ◦ (g2 � m2)
6: (v1,c1) = translExp(g1)
7: (v2,c2) = translMerge(m1)
8: cfg1 = asgn(c1; c2 ; if(v1, asgn(val, v2)))

9: Similarly, create cfg2 from (g2 � m2)
10: return (val, (cfg1 ; cfg2))
11: end if

(c) (d)

Fig. 4. (a) Example for abstract analysis of conditionals. (b)-(d): Translating PIM
structures into CFGs.

We use the term store to mean a store structure, and the termmemory or state
to refer to a concrete snapshot of memory. We use the term “address lookup” to
refer to a PIM subterm of the form ‘s@ a’. We say “abstract state at a program
point” to mean the abstract value (from the domain Abs) at that program point
due to abstract interpretation.

3.2 Rewriting Boolean Expressions Using Abstract Interpretation

Our first major extension on top of PIM is a new rule that can rewrite boolean
expressions to false in more cases than PIM’s native rules. Simplifying boolean
expressions to false is key to precise slicing; e.g., in the example in Fig. 1, deter-
mining that the condition in line 2 had to be false for x to be equal to or greater
than a hundred after line 6 was what helped exclude line 3 from the slice. While
PIM’s base rules suffice in that example, they don’t suffice in the example in

270 R. Komondoor

Fig. 4(a)(i). In this example, let SP be the store structure corresponding to the
entire program, and let S1 and S2 be the store structures corresponding to the
fragments of the program as shown. The term corresponding to the program plus
criterion is ‘(SP @a(y))!’. During the rewriting of this term, one of the terms
obtained will contain the subterm:

((S2 @a(x))! is even) �
((S1 @a(z))! ◦ (((S1 @a(x))! is odd) � ((S1 @a(z))! + 1)))!

This subterm represents the value in z that is used to compute y. The guard
in the first line above indicates that the value of z is relevant only when the
condition in line 6 in the example program is true. The merge structure in the
second line above indicates the two possible values that may reside in z in line 7,
namely, the value of z in store S1, or this value plus one. It can be noted that
the second of these two values is infeasible; i.e., if ‘(S2 @a(x))!’ is even then
‘(S1 @a(x))!’ cannot be odd. Therefore, line 3 in the program need not be in the
slice at all. To detect this we would need to determine during rewriting that the
condition ‘((S2 @a(x))! is even) ∧ ((S1 @a(x))! is odd)’ reduces to false. The
PIM rules per se will not be able to do this, because the value of x in S2 is
computed in a loop.

Our key idea is to extend the power of the PIM rules that simplify guards by
making them reason about loops using abstract interpretation. In the example
above, we would basically like to abstractly interpret the term S2, using an “odd
/ even” abstract lattice, to determine that ‘(S2 @a(x))!’ is even iff ‘(S1 @a(x))!’
is even (note that S1 is a sub-fragment of S2).

Our New Rewrite Rule. Our approach is to introduce a new rewrite rule for
guards (i.e., boolean expressions), which uses results from abstract interpreta-
tion. At this point we focus on abstract interpretation of terms from the base
PIM term language; we discuss in Section 3.3 how our approach needs to be
extended in the presence of the new operator that we introduce, i.e., “abstract”
guards.

Abstract interpretation is traditionally defined over control-flow graphs
(CFGs), and not over PIM-like term structures. Therefore, given a PIM term p
that is a boolean expression Step 1 of our approach is to translate p (and all
store- and merge-structures that it refers to within the current scope F) to a
(self-contained) CFG, on which abstract interpretation can be performed subse-
quently. We do this translation in a syntax-directed fashion, with each kind of
PIM construct being translated by a corresponding procedure. The pseudo-code
for this is shown in Fig. 4(b)-(d). The pseudo-code is mostly self-explanatory;
therefore, we only touch upon some of its key elements below. The procedure
translExp, which can actually translate any PIM expression e (and not just
conditions), returns a pair, the first element being ‘val’, which is a (fresh) tem-
porary variable name, and the second element being ‘cfg’, which is a CFG which
evaluates e and places the result in ‘val’. Note that during the translation of each

Precise Slicing in Imperative Programs 271

expression or merge structure we introduce a fresh temporary variable name
to hold its value; this is our strategy to translate these kinds of PIM terms,
which basically transmit data (to enclosing terms) without going through a store.
Notice the “return” statement in line 7 in Fig. 4(b): the second component being
returned is a CFG. We use ‘;’ as an infix operator to sequentially compose CFGs;
also, asgn(x,y) is a data-constructor which basically constructs an assignment
statement ‘x := y’. We use other data-constructors for other constructs: ‘op(x,y)’
to generate the syntactic expression “x op y” (see line 11 in Fig. 4(b)), and ‘if(p,
stmt)’, to generate the statement “if (p) stmt” (see line 8 in Fig. 4(d)). For
brevity we omit the (straightforward) details involved in translating a PIM loop
structure into a CFG loop, in lines 7-9 in Fig. 4(c).

The root procedure call that we make to translate the given boolean expres-
sion p is ‘translExp(p)’. Let (val,cfg) be the return value from this call. The last
statement in ‘cfg’ is necessarily of the form ‘asgn(v, exp)’, where ‘v’ is a tempo-
rary variable and ‘exp’ is the translation of p. We finish the construction of the
CFG by appending to the end of ‘cfg’ the statement “if (v) no-op”.

Example: Fig. 4(a)(ii) shows the CFG (depicted, for convenience, as program
text) obtained by translating the condition ‘(((S2 @a(x))! is even) ∧ ((S1 @a(x))!
is odd))’ mentioned earlier. Note that x1, x2, and v1 are the temporary variables
that hold the values of expressions ‘(S1 @a(x))!’, ‘(S2 @a(x))!’, and the entire
condition, respectively. �

Step 2 is to perform abstract interpretation on the CFG constructed above,
using lF (which is the incoming abstract state into the current scope F) as the
initial abstract state. Step 3 is the actual rewrite step: If the computed abstract
state at the true edge of the “if” statement that was added to the end of the
CFG is ⊥, then we rewrite the boolean expression p to the value false ; also, we
let the newly introduced false value be dependent on p (to enable p, but not the
statements that it controls, to be included in the syntactic slice).

Example: In the CFG in Fig. 4(a)(ii), say we use an abstract lattice 2D, where
each element of D, which we call an abstract valuation (shown within square
brackets below), maps each program variable to odd, even, or oddEven. Say the
initial abstract state to this scope is {[e �→ odd], [e �→ even]} (all variables other
than e are mapped to oddEven in both abstract valuations). At the point before
the final “if” condition two abstract valuations arise – one in which both x1 and
x2 are mapped to odd, and another in which both are mapped to even. Therefore,
the analysis can determine that the abstract state at the true edge out of this
condition is the empty set (i.e. ⊥). �

Note that our abstract-interpretation based rewrite rule proposed above and the
(base) rewrite rules of PIM for simplifying conditionals can be freely interleaved.
In fact, there exist natural example programs where (a) initially the PIM rules
are not able to reduce any of the conditions to false , (b) our technique is able to
reduce some of the conditions to false, (c) after the simplification done by our
technique the PIM rules are able to reduce other remaining conditions to false ,
and so on.

272 R. Komondoor

3.3 Abstract Guards

As discussed in the context of the example in Fig. 1 in the introduction, we need
the notion of abstract guards (i.e., conditions) to ensure termination during
slicing of loops. Therefore, we add to the PIM term language a new boolean
operator ‘|=’. The concrete semantics of this operator is as follows: s |= l, where
s is a store structure and l ∈ Abs, is true if the state that s evaluates to is included
in the concretization of l (denoted γ(l)), which is the set of states represented by
l. Note that this “abstract comparison” operator ‘|=’ will not appear in the initial
term obtained by translating a program; it only gets introduced in terms during
the rewriting of loops (as will be discussed in Section 3.4). For an illustration
of a use of this operator, consider Fig. 1(c); the criterion at the end of that
code fragment, namely, ‘((≥100), y)’, is actually encoded as the merge structure
‘(s |= (≥100))�(s@a(y))!’, where s is the store structure representing the loop’s
body. We allow composite boolean expressions that make use of the ‘|=’ operator
in addition to other (base) PIM operators.

Note that the base PIM rewrite rules cannot reason about the abstract opera-
tor ‘|=’. Instead, the new rewrite rule that we had proposed earlier for simplifying
boolean expressions addresses this operator, as follows. For any store s that is
used as an operand of a ‘|=’ operator, we add a pseudo-statement at the last pro-
gram point in the CFG fragment generated from s, whose semantics is to save
the abstract state at that point (from domain Abs) into a pseudo-variable vs.
Then, we translate any condition ‘s |= l’ in the PIM term as the condition ‘vs |= l
in the CFG. During abstract interpretation this condition is interpreted as false
if the congratulations of ls and l are non-intersecting, and as a non-deterministic
condition otherwise.

3.4 Slicing Loops

We now discuss our final extension over PIM, which is a technique to slice a
loop by fix-point analysis of the loop body, using abstract guards, as illustrated
intuitively in Section 1.2. We use the same representation of loops as PIM (which
was introduced in Section 2.4). We introduce some additional notation, for con-
venience: If L is a loop structure Loop(λxS .body(vE , uS), s), s(L) denotes the
body uS of the loop, b(L) denotes the predicate vE of the loop, and inStore(L)
denotes s (which is the “incoming” store into L). As discussed in Section 3.1,
we use the notation xL (rather than xS) to denote the incoming store into each
iteration of the loop L. As mentioned in the introduction, for simplicity of pre-
sentation we address pointers (to local variables) in this section, but not heap
objects. Our technical report [11] discusses the full approach, including handling
of heap accesses.

Procedure RewriteLoop. Procedure RewriteLoop, described in Fig. 5, is the
procedure that performs the fix-point analysis. This procedure needs to be
triggered whenever, during term rewriting, a subterm of the form r = ‘p�
(L@aexp in)!’ is encountered, where p is a boolean expression, L is the store-
structure representing an outermost loop, and aexp in is an address-expression.

Precise Slicing in Imperative Programs 273

Algorithm RewriteLoop

Input: L: a loop-structure. lin , lout ∈ Abs. aexp in: an address expression.
Output: L′: a sliced loop. uses: set of pairs of the form (l, aexp), with l ∈ Abs and aexp being an

address expression.
1: inSlice = ∅; worklist = {(lin , aexp in)}; allCrit = worklist
2: while worklist is not empty do
3: (l, aexp) = worklist.remove()
4: t = (((s(L) |= l) ∧ b(L) ∧ (xL |= lin)) � (s(L)@ aexp)!)
5: tinit = t
6: repeat
7: Apply rewrite rules (base PIM rules + our rule for conditions) on t. We now call the thus

rewritten term as t.
8: for all subterms r of the form ‘p� (L1 @aexp1)!’ in t such that the ‘@’ operator in r is

unmarked do {L1 is an inner loop inside L, and ‘(L1 @aexp1)! ’ is a store-lookup subterm
in L.}

9: Let l1,out ∈ Abs be an abstract state such that if execution of L1 terminates in a state
that is not in γ(l1,out) then p will not hold.

10: Let l1,in ∈ Abs be an abstract state that over-approximates the set of states possible
at the entry of s(L1) given that lin over-approximates the possible states at the entry
of s(L).

11: (L′
1, u) = RewriteLoop(L1, l1,in , l1,out , aexp1)

12: Let every subterm in L′
1 depend on the corresponding subterm in L1

13: for all (l1, aexp2) in u do
14: Create a store-cell { �→ [(inStore(L1) |= l1)� (inStore(L1)@ aexp2)!]}
15: end for
16: Let S be the concatenation of all store cells created above followed by L′

1
17: Rewrite t such that the first argument (i.e., the store) of the ‘@’ operator in r becomes

S (instead of L1). Also, mark this ‘@’ operator. Call the newly obtained term t.
18: end for
19: until (each ‘@’ operator in t is either marked or is a lookup on xL) AND (no more simplifi-

cation desired)
20: Using the dependences from the term t to tinit , add all subterms of tinit that are depended

upon by subterms of t to inSlice.
21: for all subterms of the form (p� (xL @aexp1)! in t do
22: Let l1 ∈ Abs be an abstract state such that if xL takes on a state that is not in γ(l1) then

p will not hold.
23: Let l2 = � {l | (l, aexp1) ∈ allCrit}
24: if (l1 � l2, aexp1) �∈ allCrit
25: Add (l1 � l2, aexp1) to worklist and to allCrit
26: end if
27: end for
28: end while
29: Let L′ be L minus its subterms that are not in inSlice
30: return (L′, allCrit)

Fig. 5. Procedure for rewriting a loop

(Address-lookup terms inside loops that refer to inner loops are taken care of
explicitly within this procedure, via recursive calls, as in line 11 in the pseudo-
code.)

This procedure requires four parameters: L, lin , lout , and aexp in. lout is an
over-approximation of the states that L needs to terminate in order for p to hold.
The pair (lout , aexp in) essentially constitutes the (abstract) slicing criterion
given to the procedure. The abstract state lin is nothing but lF introduced in
Section 3.1 if we treat the body of L as F . RewriteLoop computes and returns
a slice L′ of L for the value in address aexp in, under the constraint that the
states that arise at the initial point of the body of L are contained within γ(lin)
and control leaves L in a state that’s in γ(lout). The original term r mentioned
above can then be rewritten as ‘p� (L′ @aexp in)!’.

Procedure RewriteLoop also returns a set of pairs of the form (l, aexp).
The semantics of such a pair is that the address ‘aexp’ may have an upwards

274 R. Komondoor

1 : while(x > n){
2 : if(x < 50)

7 : }

5 : y = y + 1

6 : x = x − 1

3 : y = y + 2

(a)

4 : if(x > 150)

(((S0 @a(x)) ◦ (L@a(x)))! = 100)�
(M1)

(M2)
((S0 @a(y)) ◦ (L@a(y)))!

(h)

(((S0 ◦ L)@ a(x))! = 100)�
((S0 ◦ L)@ a(y))!

↓ (g)◦

�

!S3 |= (≥100)

(xL @a(x))

S3 |= (≥100) � (S3 @a(x))!

((xL @a(x))!− 1)

↓ (e)

2Iteration
(f)

1

1

◦

◦ {a(y) �→ [((xL @a(x))! < 50)�
(xL @ y)! + 2]}S1

{a(y) �→ [((S1 @a(x))! > 150)�
(S1 @ y)! + 1]}

xL

S3

S2

{a(x) �→ [(S2 @ x)! − 1]}

(b)
2

1

◦
◦

�

!S3 |= (=100)

1Iteration
(d)

(xL @a(y))

((xL @a(y))! + 1)

(c)↓S3 |= (=100) � (S3 @a(y))!

((xL @a(x))! > 150)�

◦

◦

◦

M ′
2 :

{ �→ [. . . a(x) . . .]}

(S0 @a(y))!]}

(i)

(•@a(y))!

{ �→ [(S0 |= (≥100)�

RewriteLoop(L,�,

{ �→ [. . . a(n) . . .]}

(=100), a(y))

Fig. 6. Illustration of slicing of a loop

exposed use in L′ whenever the incoming state into an iteration of L′ is in the
concretization of γ(l). These pairs can be used to slice the part of the program
that precedes loop L (this will be discussed in more detail later in this section).

We now provide some intuition on how the parameters lin and lout can be
computed; the details have been elided due to lack of space. If S is the scope
that contains the loop L, and lS is the initial abstract state at the entry to S, lin
can be computed from lS via a standard forward abstract interpretation of S.
Regarding lout , the idea is to identify the atomic predicates in p that are implied
by p and that refer to values computed in L, and then to lift the conjunction
of these predicates to the abstract domain Abs. For instance, if we let L be the
loop in Fig. 6(a) (which is the same as the loop in Fig. 1(a)), p be ‘((L@a(x))! =
100)’, and use the lattice {⊥,=100,≤100,≥100, �=100,�} (which was introduced
in Section 1.2, and captures the value of variable x alone) , then lout could be
‘=100’ (or, less desirably, ≥100, or even �).

A very high-level summary of procedure RewriteLoop is as follows: The proce-
dure works iteratively. Each iteration of the outermost loop (beginning in line 2
of the pseudo-code) processes a criterion, with the criterion (lout , aexp in) that
was initially passed to the procedure being processed in the first iteration. Pro-
cessing a criterion consists of rewriting the loop’s body using this criterion (line 7
in the pseudo-code). Then, all subterms in the original loop body on which the
rewritten term transitively depends are included in the slice (line 20). Then,
upwards-exposed uses in the rewritten term are identified, and added to the
‘worklist’ as criteria to be processed in subsequent iterations (lines 20-27). We
use joins (line 23–25 in the pseudo-code) to ensure that we generate a finite
number of criteria corresponding to each address; since there are a finite num-
ber of addresses possible (under our current assumption that there are no heap
objects), this ensures termination of the procedure.

Precise Slicing in Imperative Programs 275

Note the loop in lines 8-18 in the pseudo-code. This loop is entered if within
the loop’s body there exist nested loops. In this case each occurrence of a nested
loop is sliced using a recursive invocation of the procedure RewriteLoop.

We discuss in the rest of this section some of the detailed aspects of the usage
of procedure RewriteLoop, as well as its internal functioning, using illustrations.

Invocation of Procedure RewriteLoop. Let us consider the example pro-
gram in Fig. 1(a). The body of the loop L in this example is shown Fig. 6(b) as
a PIM store structure. The subterm shown in Fig. 6(g) arises during the slicing
of this program using variable z as the criterion; here, let S0 be the store struc-
ture corresponding to the fragment of the program that precedes the loop. This
subterm rewrites to the term shown in Fig. 6(h) (using rule S4).

Consider the address-lookup sub-term labeled M2. Since this is a lookup on
a store-structure corresponding to a loop, RewriteLoop gets invoked, with the
following four arguments: L, �, (=100), a(y). We have assumed here that lin is
�. The parameter lout is set to‘(=100)’, as this is the abstraction of the condition
‘(L@a(x))! = 100’ under which the lookup occurs. Fig. 6(i) shows the rewritten
form of the lookup M2. Note that L has been replaced with the sliced loop,
which we denote as ‘RewriteLoop(L, �, (=100), a(y))’.

Note in Fig. 6(i) that three new store-cells have been created and prepended
in front of the reference to the sliced loop. Basically, for each address ‘aexp2’
that is used in the sliced loop before being defined under abstract condition
l1 (recall that these pairs of address expressions and abstract conditions are a
return value from the call to RewriteLoop), we generate such a store-cell, to look
up address ‘aexp2’ from the incoming store into the loop (S0, in this case), under
the same condition l1. The store-cell assigns the looked up value to a dummy
location (denoted by ‘ ’). For instance, ‘{ �→ [(S0 |= (≥100))�(S0@a(y))!]}’,
indicates that the loop L looks up the value of y from the incoming store S0

under the condition ‘x ≥ 100’ on this store. Our motivation behind creating these
store cells is basically to obtain a slice of the program fragment that precedes the
loop using the upwards-exposed addresses inside the loop as criteria. In order
to ensure that this slicing does happen, we need to ensure during subsequent
rewriting steps that the dummy store cells created above are never rewritten
away (in spite of the fact that no statements make use of the values that they
write to).

(The address-lookup term M1 in Fig. 6(h) needs to be rewritten, too, just like
the term M2 was; due to lack of space we omit this from the figure.)

We include an optimization in the algorithm, namely marking. Each instance
of an ‘@’ operator (i.e., the lookup operator) whose first operand is a loop has
‘mark’ bit. By default every lookup operator is unmarked when it gets intro-
duced. Whenever we slice the loop referred to by such an operator, we mark the
operator so that we will not attempt again to slice the loop referred to by it.

The steps discussed above regarding invoking procedure RewriteLoop at each
address-lookup subterm that refers to a loop, and rewriting this address lookup
subterm using the return value from this procedure, need to be done recursively
inside procedure RewriteLoop, too, whenever address-lookups on nested loops are

276 R. Komondoor

encountered. Therefore, our description of these steps in lines 8-18 in the pseudo-
code of the procedure is also applicable in the scenario where RewriteLoop is
invoked at the outermost level.

Iterative Analysis in RewriteLoop. We now illustrate the iterative fix-point
analysis performed by procedure RewriteLoop. Consider the invocation to this
procedure mentioned above with arguments L, �, (= 100), a(y), where L is
the store-structure corresponding to the loop in Fig. 6(a). In the first iteration,
following line 3 in the pseudo-code, we pull out the “root” criterion, namely,
‘((=100), a(y))’, from the worklist. Let’s call this Criterion 0. Following line 4
in the pseudo-code, we construct the term (S3 |= (=100)) � (S3 @a(y))!’ to
represent the desired slice, as shown in Fig. 6(c). Note that S3 is the store
structure representing the body of the loop. (We ought to have also included the
predicates ‘(xL @a(x))! > (xL @a(n))!’ and ‘xL |= �’ in the guard of the above
term; however, these predicates turn out to be not useful in this example, and
we elide them for brevity.) Following line 7 in the pseudo-code, we simplify this
term, yielding the rewritten term shown in Fig. 6(d). Since there are no nested
loops in this example, lines 8–18 in the pseudo-code, which are used to simplify
inner loops, are not executed.

Note the termination condition for the rewriting, in line 19 of the pseudo-code.
The condition says that all address lookups in the rewritten term ought to be to
the initial store xL. This property can always be achieved by applying the PIM
rule S4 (see Section 2.2) repeatedly in line 7 of the pseudo-code; this property
makes it easier for us to generate criteria for subsequent iterations (more on this
below). Note that the rewritten term in Fig. 6(d) satisfies this property. The
second part of the termination condition (i.e., “no more simplification desired”)
devolves the decision on whether to keep rewriting until a normal form is reached,
or whether to stop the rewriting earlier, to a rewriting strategy. Such rewrite
strategies are not a focus of this paper.

We now revert to our illustration using the example. Following line 20 in the
pseudo-code, we trace back dependences from the rewritten term in Fig. 6(d) to
the original term in Fig. 6(b). The subterms in Fig. 6(b) that are not depended
upon by the rewritten term are the ones that correspond to lines 3 and 6 in
Fig. 6(a). Therefore, we add every other subterm in Fig. 6(b) to the set ‘inSlice’,
which basically represents the subterms of the loop body that are to be included
in the slice (we add subterms to this same set in all the iterations). The numbers
within circles adjacent to each subterm in Fig. 6(b) indicate the iteration(s) in
which that subterm was identified as belonging to the slice. (Recall that the
current iteration is Iteration 1.)

The final step in the current iteration (which is the loop in lines 21-27 in
the pseudo-code) is to generate criteria for subsequent iterations. We do this
by identifying address-lookups in the rewritten term in Fig. 6(d) to the store
xL; these are basically the addresses with upwards-exposed uses in the body of
the loop. For instance, the lookup ‘(xL @a(y))!’ occurs two times. Consider the
occurrence in the right child of the ‘◦’ operator, which is under the condition
‘(S3 |= (=100)) ∧ ((xL @a(x))! > 150)’. The abstract state that xL needs to

Precise Slicing in Imperative Programs 277

be described by in order for this condition to hold, as computed in line 22 in
the pseudo-code, is ‘(≥100)’. Therefore, we add the criterion ‘((≥100), a(y))’,
which we call Criterion (1), to ‘worklist’ and to ‘allCrit’. The other occurrence of
‘xL @a(y)’ in the rewritten term, which is under the condition ‘(S3 |= (=100))’,
causes the exact same criterion to be generated. Finally, the lookup ‘(xL @a(x))!’
under the condition ‘(S3 |= (=100))’ causes Criterion (2) – ‘((≥100), a(x))’ – to
be generated. With this, Iteration 1 is over.

It turns out that the processing of Criterion 1 mentioned above has the exact
same effect as the processing of Criterion 0; therefore, for brevity, we ignore the
iteration that’s used to process this criterion. We now process Criterion 2 in
Iteration 2. This causes the term shown in Fig. 6(e) to be created, which gets
eventually rewritten to the term shown Fig. 6(f). This rewritten term depends
transitively on the subterm in Fig. 6(b) that corresponds to line 6 in the source;
therefore, this subterm gets pulled into the slice. No new criteria get generated
from the rewritten term, and so the outer loop of the algorithm terminates. The
final slice is nothing but the original program minus the subterm corresponding
to line 3 in the source; this subterm is not present in the set ‘inSlice’ because
neither of the two rewritten terms produced in the two iterations depends on it.

Our Contributions over the Base PIM Approach. PIM’s naive strategy
to slice loops is called pure dynamic slicing. As discussed in Section 2.4, the idea
here is to unroll loops as part of rewriting. Although this strategy is precise, it
does not terminate on many realistic examples, such as the one in Fig. 1(a). PIM
also includes three other approaches for slicing loops, which are guaranteed to
terminate, but which are not path sensitive, and are hence not as precise as our
approach. We omit the details of these approaches due to lack of space. When
applied on the program in Fig. 1(a) with the value of variable z as the criterion all
these approaches return the entire loop as the slice. Furthermore, none of these
approaches handle loops that manipulate pointers. Our approach generalizes and
subsumes two of these three approaches; the third approach, namely, “invariance
sensitive slicing” can, in general, be used in conjunction with our approach (e.g.,
as a pre-pass).

4 Slicing Loops in Heap Manipulating Programs

Precise slicing of programs that manipulate heap data structures is challenging.
Consider the code fragment shown in Fig. 7(a). Assume that the code that
precedes the while loop is such that x and y point to disjoint, acyclic, singly-
linked lists. The loop’s functionality is to remove elements from a prefix of the
list originally pointed to by x and prepend them to the list originally pointed
to by y. Say we are interested in the functionality in the loop that removes the
elements from the x-list, but not in the code that prepends the removed elements
to the y-list. The criterion to express this is the value of variable x at the point
after the loop; a precise slice, in this case, is one that contains Line 4 only inside
the loop. In particular, Line 5 need not be in the slice. This is because, given

278 R. Komondoor

x and y point to
disjoint acyclic lists
1: while (x.d != k) {
2: t = y;
3: y = x;
4: x = x.next;
5: y.next = t;
6: }

x

x.next

2: t = y;
3: y = x;
4: x = x.next; •
5: y.next = t;

x

Iteration 1

x.next.next

2: t = y;
3: y = x;
4: x = x.next; •
5: y.next = t;

(x.next

Iteration 2

x.next.∗

2: t = y;
3: y = x;
4: x = x.next; •
5: y.next = t;

x.next.∗

Iteration 3

(a) (b) (c) (d)

Fig. 7. Slicing a linked-list traversal program

that the lists were originally acyclic, x.next at the point before Line 5 cannot
point to the same element as x itself.

Our model of heap is that it is a collection of cells, each cell having one or
more fields, fields being scalars or pointers. We allow copying of pointer values,
adding the (constant) offset of a declared field to the value of a (base) pointer to
yield another pointer, and dereferencing of pointers. However, we do not address
arbitrary pointer arithmetic, nor arrays. We handle malloc’s in the typical way,
by treating each malloc site as returning the (fixed) address of a temporary
variable associated with that site.

In the rest of this section we informally introduce the extensions that are
required over the base approach described in Section 3 to address heap manip-
ulating programs. A detailed description is available in our associated technical
report [11].

Access Paths. Slicing criteria are no longer necessarily just addresses of vari-
ables. In general, they might need to be access paths. For Iteration 1 in the
example in Fig. 7, the given criterion is the simple address a(x). As shown in
Fig. 7(b), in this iteration line 4 gets included into the slice. The new criterion
(address) that we would get at end of this iteration would be ‘(xL @a(x))! +
next’, with ‘next’ denoting the constant offset associated with the field of the
same name (for simplicity, we show this criterion simply as x.next at the top of
Fig. 7(b)). This criterion is not a simple address, but an access path. Similarly,
at the end of Iteration 2 the criterion generated would be ‘(xL @((xL @a(x))! +
next))! + next’, and so on.

For convenience of notation, we denote the first of the two access paths shown
above as ‘([xL] x) + next’, the second one as ‘([xL] x.next) + next’, and so on.
In the figure, we use an even more cryptic notation, e.g., x.next, x.next.next,
wherein the store-structure being referred to follows implicitly from the point
where the access-path is shown.

CompressedAccess Paths. As can be observedwith the example above, access
path lengths can grow unboundedly. We need a technique to limit their lengths,
and hence guarantee termination, while still ensuring soundness (i.e., not miss-
ing any required statements from slices), and good precision in typical situations.

Precise Slicing in Imperative Programs 279

Therefore, we introduce the notion of a compressed access path in our term lan-
guage. We denote compressed access paths using the notation ‘([xL] v.f.∗)’.
Intuitively, the semantics of this compressed access path is that it represents an
(infinite) family of (normal) access paths obtained by appending zero or more
fields at its end (in place of the ‘∗’); e.g., ‘([xL] v) + f’, and ‘([xL] v.f) + g’.

We use compressed access paths to ensure termination of the iterative analysis
of loops. We fix a threshold k on the length (i.e.. number of fields in) access paths;
this threshold is a parameter to the analysis. Whenever a (normal) access path
grows to a length beyond k we compress it, by dropping its last field and adding
a ‘∗’ instead. For e.g., in Fig. 7, Iteration 2 generates the criterion ‘([xL] x.next)
+ next’. Assuming k = 1, we would compress this access path, yielding ‘([xL]
x.next.∗)’, which is used as the criterion in Iteration 3.

Compressed access paths need to be handled specially in Rule S4 (see Sec-
tion 2.2), where address-expressions need to be compared. The intuition behind
our modified rule is that (a) a compressed access path cannot be treated as being
definitely equal to any other address expression, and (b) conservative techniques
can be used to determine that an access path is not equal to a given other address
expression.

One way to simplify address equality comparisons to false is to use PIM’s
concrete reasoning. For e.g., a(v), where v is a program variable, cannot be
equal to ‘a + f’ for any address-expression a and field f. That is, intuitively,
an address-expression that involves the traversal of one or more fields can never
evaluate to the address of a variable. Additionally, by plugging in an abstract-
interpretation such as shape analysis [13] into our analysis, one can safely reduce
address equality comparisons to false in more cases than is possible with only
the base PIM rules. For e.g., consider Iteration 2 in Fig. 7, with criterion ‘([xL]
x) + next’. The PIM rules, even using unrolling, will not be able to prove that
the address assigned to in line 5 is never equal to the address ‘([xL] x) + next’.
However, given that x and y point to disjoint acyclic lists at the point before the
loop, using shape analysis we will be able to prove that line 5 is not relevant to
the criterion. The same inference can be made in Iteration 3 also; i.e., x.next.∗
and y.next can be determined to be definitely non-aliased.

5 Related Work

A lot of research has been carried out on the topic of slicing of imperative
programs, e.g., as surveyed by Tip [15] and by Xu et al. [17]. Most of these
approaches are not about computing constrained slices, are not path-sensitive,
are not parameterizable by a user-provided abstract lattice, and do not address
heap-manipulating programs specifically. The approach of Snelting et al. [14] is
an exception, in being mildly path-sensitive.

Various researchers [2,8,10] have proposed various notions of conditioned slic-
ing, whose problem statement is very similar to that of PIM’s constrained slic-
ing. These approaches are primarily based on symbolic execution. There are
two issues with these approaches. (a) Symbolic execution does not produce as

280 R. Komondoor

precise slices as term-rewriting even on loop-free fragments3. (b) More impor-
tantly, these approaches do not treat loops precisely. For e.g., they coalesce all
paths that cycle through loops by broadening the path constraints of these paths,
due to which examples like the one in Fig. 1(a) and Fig. 4(a) cannot be handled
precisely. Our approach does not have this problem, because we keep even cyclic
paths distinct using abstract conditions.

Our approach is related to the predicate-abstraction approach of Hong et
al. [9]. This approach takes a finite partitioning of the state-space of the pro-
gram as an input, in the form of a set of predicates. It then performs slicing
on the “exploded” control-flow graph of the program, whose nodes basically are
the partitions. Note that they support only domains of predicates for this par-
titioning, and not arbitrary abstract lattices. More importantly, the precision of
their approach is tightly linked to the predicate abstraction chosen; whereas, we
interleave fully-precise slicing based on concrete term-rewriting in loop-free frag-
ments (even inside loop bodies), and resort to abstraction only when transferring
a criterion across a loop boundary or across loop iterations. Consider, for e.g.,
the program in Fig. 1(a). Their approach is able to compute a precise slice here if
given the abstract lattice that we used, namely, {⊥,=100,≤100,≥100, �=100,�},
as a partitioning (recall that this lattice tracks only the value of x). However,
say the statement “x--” in line 6 was replaced with the fragment:

y = m + n; x = x - y; if (m < 0) x = x + m; if (n < 0) x = x + n;

This fragment does not increase the value of x. Therefore, line 5 in the program
still need not be included in the slice. However, their approach will not determine
this unless given a much richer set of predicates (e.g., one that track various
relationships between the different variables). In general it may be difficult or
impractical to devise and use such sets of predicates that give sufficient precision.
Term rewriting handles loop-free fragments precisely without the need for any
user-input or parameterization.

Amorphous slicing [7] and assertion-based slicing [1] use precise forms of rea-
soning to compute semantic slices. While PIM also performs semantic reasoning
(via term-rewriting), it has the additional ability to translate back a semantic
slice into a syntactic slice via dependence-tracking. The two approaches men-
tioned above do not use user-provided abstract lattices to address loops.

To summarize, there are two key contributions of ours over all the approaches
mentioned so far in this section: (1) We interleave abstract and concrete reason-
ing in a seamless way, by building on term rewriting. (2) We address slicing of
programs that use pointers, and that manipulate heap structures.

Abstract slicing [18], which is itself based on abstract non-interference [6],
is a variant of slicing in which one wishes to obtain a slice of a program that
does not necessarily preserve concrete values of variables in the criterion, but
certain observable properties of these variables, based on a given abstraction.
Statements that modify the concrete value of a criterion variable, but not its
observable property, need not be retained in the slice. Our problem is standard

3 We omit the details in the interest of space. The example in Fig. 8 in the PIM
paper [5], with the value of x as the criterion, illustrates this.

Precise Slicing in Imperative Programs 281

syntactic slicing, which is quite different from their problem. Note that while
abstraction is part of the problem definition itself for them, for us it only a means
to an end. This said, there is some high-level similarity between our approach
and theirs: they propagate abstract states backward, while we propagate back
address-expressions guarded by abstract states. They address heap-manipulating
programs, like we do. However, our transformation framework is entirely different
from theirs, in that we integrate term rewriting and abstract interpretation.
Theirs is a pure abstract interpretation approach (on control-flow graphs), and
does not address fully-precise analysis on loop-free fragments.

There is an interesting conceptual connection between our approach and the
abstract-interpretation-based approaches for partial evaluation of functional pro-
grams [3] and logic programs [12]. These approaches target languages whose
semantics is defined using term rewriting; they specialize programs wrt given
abstract criteria using term rewriting, and use abstract interpretation to ensure
termination. They do not target slicing, which needs backwards propagation as
well as dependence-tracking, nor do they target heap-manipulating programs.

References

1. Barros, J., da Cruz, D., Henriques, P., Pinto, J.: Assertion-based slicing and slice
graphs. Formal Aspects of Computing 24(2), 217–248 (2012)

2. Canfora, G., Cimitile, A., De Lucia, A.: Conditioned program slicing. Information
and Software Technology 40(11), 595–607 (1998)

3. Consel, C., Khoo, S.: Parameterized partial evaluation. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 15(3), 463–493 (1993)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. ACM
Symp. on Principles of Programming Languages (POPL), pp. 238–252 (1977)

5. Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Proc. Int.
Symp. on Principles of Prog. Langs. (POPL), pp. 379–392 (1995)

6. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In: Proc. ACM Symp. on Principles of
Programming Languages (POPL), pp. 186–197 (2004)

7. Harman, M., Danicic, S.: Amorphous program slicing. In: Proc. Int. Workshop on
Program Comprehension, pp. 70–79 (1997)

8. Harman, M., Hierons, R., Fox, C., Danicic, S., Howroyd, J.: Pre/post conditioned
slicing. In: Proc. Int. Conf. on Software Maintenance (ICSM), pp. 138–147 (2001)

9. Hong, H., Lee, I., Sokolsky, O.: Abstract slicing: A new approach to program slicing
based on abstract interpretation and model checking. In: IEEE Int. Workshop on
Source Code Analysis and Manipulation (SCAM), pp. 25–34 (2005)

10. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Path-sensitive backward slicing.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 231–247. Springer,
Heidelberg (2012)

11. Komondoor, R.: Precise slicing in imperative programs via term-rewriting and
abstract interpretation (2013),
http://www.csa.iisc.ernet.in/~raghavan/slicing-loops-TR2013.pdf

12. Puebla, G., Albert, E., Hermenegildo, M.V.: Abstract interpretation with special-
ized definitions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 107–126. Springer,
Heidelberg (2006)

http://www.csa.iisc.ernet.in/~raghavan/slicing-loops-TR2013.pdf

282 R. Komondoor

13. Sagiv, S., Reps, T.W., Wilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM Trans. Program. Lang. Syst. 20(1), 1–50 (1998)

14. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. ACM Trans. Softw. Eng. Methodol. 15(4),
410–457 (2006)

15. Tip, F.: A survey of program slicing techniques. Journal of programming lan-
guages 3(3), 121–189 (1995)

16. Weiser, M.: Program slicing. In: Proc. Int. Conf. on Software Engg (ICSE),
pp. 439–449 (1981)

17. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

18. Zanardini, D.: The semantics of abstract program slicing. In: IEEE Int. Working
Conf. on Source Code Analysis and Manipulation (SCAM), pp. 89–98 (2008)

Automatic Synthesis of Deterministic Concurrency

Veselin Raychev1, Martin Vechev1, and Eran Yahav2

1 ETH Zurich
{veselin.raychev,martin.vechev}@inf.ethz.ch

2 Technion
yahave@cs.technion.ac.il

Abstract. Many parallel programs are meant to be deterministic: for the same in-
put, the program must produce the same output, regardless of scheduling choices.
Unfortunately, due to complex parallel interaction, programmers make subtle
mistakes that lead to violations of determinism.

In this paper, we present a framework for static synthesis of deterministic con-
currency control: given a non-deterministic parallel program, our synthesis algo-
rithm introduces synchronization that transforms the program into a deterministic
one. The main idea is to statically compute inter-thread ordering constraints that
guarantee determinism and preserve program termination. Then, given the con-
straints and a set of synchronization primitives, the synthesizer produces a pro-
gram that enforces the constraints using the provided synchronization primitives.

To handle realistic programs, our synthesis algorithm uses two abstractions:
a thread-modular abstraction, and an abstraction for memory locations that can
track array accesses. We have implemented our algorithm and successfully ap-
plied it to synthesize deterministic control for a number of programs inspired by
those used in the high-performance computing community. For most programs,
the synthesizer produced synchronization that is as good or better than the hand-
crafted synchronization inserted by the programmer.

1 Introduction

Many parallel programs are meant to be deterministic: for the same input, the program
must produce the same output. Unfortunately, concurrent programming mistakes of-
ten result in parallel programs that are non-deterministic: for the same input, different
executions of the program produce different outputs. Manually enforcing determinism
is a time consuming, error-prone and inefficient task: introducing too much synchro-
nization can lead to sequentializing the parallel program, while introducing too little
synchronization can produce a non-deterministic program.

In this paper we propose to automatically synthesize deterministic concurrency con-
trol: given a non-deterministic (potentially infinite-state) parallel program, our algo-
rithm will statically introduce synchronization that transforms the input program into a
deterministic parallel program.

Determinism Verification under Abstraction. Direct verification of determinism re-
quires comparing the output states of different executions starting from the same input
state. Equality between states can be easily determined when states are concrete. How-
ever, to handle infinite-state programs one must employ abstraction. Under abstraction,

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 283–303, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

284 V. Raychev, M. Vechev, and E. Yahav

the equality relationship between concrete states is lost. Equality between abstract states
does not entail equality between the concrete states they represent, and therefore estab-
lishing equality between abstract states is insufficient.

Establishing Determinism by Conflict-Freedom. Rather than verifying (and enforcing)
determinism directly, we focus on verifying (and enforcing) a stronger property called
conflict-freedom: if the program is conflict-free then it is deterministic. Informally, a
program is conflict-free if in any concrete program state, parallel threads do not access
(where at least one access is a write) the same memory location. Conflict-freedom al-
lows us to reason about determinism in a local way – by using a property that can be
locally enforced, we ensure that the resulting program is deterministic.

Our approach uses abstract interpretation [9] to compute an over-approximation
of the possible concrete program behaviors. Then, the algorithm checks whether the
over-approximation is conflict-free and if so, verification of conflict-freedom (and thus
determinism) succeeds. Otherwise, the algorithm synthesizes a repair that enforces con-
flict freedom. It does so by synthesizing an inter-thread ordering constraint on the
accesses performed by conflicting threads. That is, the synthesis algorithm statically
determinizes the order of operations performed by conflicting threads.

Motivation. A comprehensive study [18] shows that nearly a third of all concurrency er-
rors in a variety of open source projects are inter-thread “ordering” violations. As noted
in [18], such violations cannot be easily fixed with atomicity and locking constructs.
Vasuvedan et al. [28] express desire for a “determinizing compiler”, but do not provide
any analysis.

Over the years, there has been significant interest in automatically enforcing mu-
tual exclusion properties in parallel programs, usually by inferring locks and atomic-
ity constructs [20,30,8]. Comparatively, there has been little focus on static techniques
for enforcing “ordering” relationships or determinism, exceptions being the works of
[23,6,14]. Relationship to existing work is discussed in detail in Section 8.

We present a synthesis framework for statically enforcing determinism. The frame-
work consists of a novel thread-modular synthesis algorithm that enables the use of
flow-sensitive techniques for analyzing each thread. We instantiate the framework with
powerful abstract domains such as Octagon [22] and Polyhedra [10], enabling tracking
and avoidance of conflicting memory accesses at a fine granularity.

Main Contributions. Our main contributions are as follows:

– A thread-modular synthesis algorithm which takes as input a potentially non-
deterministic parallel program, and “determinizes” the program by synthesizing
inter-thread ordering constraints between conflicting statements in a way that
preserves program termination.

– An algorithm that takes as input a set of inter-thread ordering constraints produced
by the synthesizer and a particular synchronization primitive and realizes the con-
straints using the synchronization constructs. To illustrate the concept, we show a
translation to two kinds of synchronization primitives: the classic signal/wait syn-
chronization and the spawn/sync constructs used in structured parallel languages
such as Cilk [4].

Automatic Synthesis of Deterministic Concurrency 285

– An implementation of the algorithm in a tool based on Soot [27] and Apron [13],
using powerful numerical abstract domains such as Octagon and Polyhedra.

– An evaluation of the tool on a set of Java programs derived from those used in the
high performance community. Our results indicate that the tool can be practically
useful: for most programs, it produced synchronization that is as good or better than
the initial hand-crafted synchronization inserted by the programmer.

The tool’s source code, the benchmarks and instructions how to build and run the tool
are available open source at: http://www.srl.inf.ethz.ch/dps.php.

Limitations

– We note that for general programs, non-determinism may occur due to other reasons
like random number generators, network or user interaction. In this work, we focus
on programs for which the non-determinism is only due to conflicts.

– We focus on programs with a constant number of threads. However, this limitation
is imposed only by the used synchronization primitives. For example, programs
using signal/wait synchronization require careful attention to the number of sig-
nal/wait calls based on the number of threads.

2 Overview

Given a parallel program P , our goal is to synthesize a deterministic parallel program
P ′ by adding synchronization to P . To handle infinite-state programs, our synthesis
algorithm is based on abstract interpretation [9], and takes an abstraction α as one of its
parameters. In this setting, the problem can be phrased as:

Given a parallel program P , and an abstraction α, our goal is to synthesize
a deterministic parallel program P ′ by adding synchronization to P such that
P ′ can be automatically verified as deterministic under the abstraction α.

Challenges. Any synthesis algorithm targeting the above problem must address at least
the following three challenges:

– Scalability: The synthesizer should soundly handle realistic infinite-state concur-
rent programs.

– Termination: The inferred synchronization should preserve program termination.

– Number of solutions: The synthesizer should provide a mechanism which allows to
control the number of solutions.

Next, we illustrate our approach on an example. The formalization and evaluation are
provided in later sections.

2.1 Example Program

Consider the simple program shown in Fig. 1(a). Here, a main thread creates two
threads using the spawn construct which in turn execute in parallel and access shared

http://www.srl.inf.ethz.ch/dps.php

286 V. Raychev, M. Vechev, and E. Yahav

variables x and y (both initialized to 0). The conditional at line 7 executes atomically.
In this program, different schedules can lead to different final values for x and y. For
example, the schedule x = 0;y = 0;x = 1;if (x == 0) y = 1 results in values
x = 1, y = 0, and the schedule x = 1;x = 0;if (x == 0) y = 1;y = 0 results
in values x = 0, y = 0. Our goal is to add efficient synchronization to the program such
that its result is deterministic, i.e., all executions of the new program yield the same
output state when starting from the same initial values for x and y.

1 spawn {
2 x = 0; {W:({x})}
3 y = 0; {W:({y})}
4 }
5 spawn {
6 x = 1; {W:({x})}
7 if (x==0) y = 1; {W:({y}),R:({x})}
8 }

(a) (b) (c)

Fig. 1. Example with two spawned threads (a) and its thread-modular transition systems for the
threads, (b) before, and (c) after stabilization

2.2 Thread-Modular Synthesis

To add the necessary synchronization, we present a novel synthesis algorithm that gen-
erates inter-thread ordering constraints, describing an ordering between statements of
different threads. A set of inter-thread ordering constraints can then be implemented in
various ways, for instance by adding synchronization to the program.

One approach would be to build a global transition system of the program in the
style of [16] and use an iterative algorithm to eliminate the “bad” states (states that
cause non-determinism) from the transition system. Unfortunately, building a global
transitions system does not scale to realistic concurrent programs as one needs to reason
about all program interleavings.

Instead, to avoid global reasoning, we introduce a thread-modular synthesis algo-
rithm. To enable thread-modular reasoning the algorithm uses a thread-modular ab-
straction. The synthesis algorithm consists of the following three phases:

Phase 1: Compute Stable Invariants. First, each thread is analyzed sequentially, ini-
tially assuming that all memory locations accessed by the thread are independent from
locations accessed by threads that may execute in parallel. Fig. 1 (b) shows the thread-
modular transition systems for the two threads in the program of Fig. 1 (a) after each
thread is analyzed sequentially. The values in a state are denoted as a tuple 〈pc, x, y〉.
Note that the combination of states (i.e., concretization) in the transition systems of

Automatic Synthesis of Deterministic Concurrency 287

Fig. 1 (b) does not cover all possible states of the original program: it does not represent
a final state x = 0, y = 1, clearly possible in the program.

To guarantee soundness, after the initial analysis of each thread, the analyzer checks
whether the independence assumption holds. If not, it iteratively weakens the computed
invariants until they stop changing as a result of interference with other threads. This
stabilization is usually achieved by having each thread include the values of interfering
locations produced by other threads (e.g., [21]).

For the program in Fig. 1 (a), the accessed memory locations for each statement are
shown in curly braces. The statements x = 0 and x = 1 are conflicting as they can
execute in parallel and both write to location x. Similarly for x = 0 and if (x==0)

y = 1 as well as for y = 0 and if (x==0) y = 1. As conflicts arise, our algorithm
needs to weaken the invariants computed in each thread’s transition system. In our ex-
ample, the weakening results in the transition systems of Fig. 1 (c). Note that in these
(abstract) transition systems, x and y can have more than one possible value in each
state. After the weakening, the result is sound, and indeed, the transition systems do
capture the state where x = 0, y = 1.

Phase 2: Identify and Resolve Conflicts. After the invariants for each thread are com-
puted, the next step is to synthesize a repair that determinizes each conflict. Deter-
minization of a conflict is achieved via an inter-thread ordering constraint. An inter-
thread ordering constraint restricts the order in which statements from different threads
may be executed. Using the transition systems of Fig. 1 (c), the algorithm produces the
following formula: ψ = (l2≺ l6 ∨ l6≺ l2) ∧ (l2≺ l7 ∨ l7≺ l2) ∧ (l3≺ l7 ∨ l7≺ l3).

Table 1. Solutions to ψ

Id (a) Satisfied terms (b) Non-redundant terms
1 l2≺ l6, l2≺ l7, l3≺ l7 l2≺ l6, l3≺ l7
2 l6≺ l2, l2≺ l7, l3≺ l7 l6≺ l2, l3≺ l7
3 l2≺ l6, l7≺ l2, l3≺ l7 —
4 l6≺ l2, l7≺ l2, l3≺ l7 —
5 l2≺ l6, l2≺ l7, l7≺ l3 l2≺ l6, l7≺ l3
6 l6≺ l2, l2≺ l7, l7≺ l3 l6≺ l2, l2≺ l7, l7≺ l3
7 l2≺ l6, l7≺ l2, l7≺ l3 —
8 l6≺ l2, l7≺ l2, l7≺ l3 l7≺ l2

Each term in the formula is a con-
straint determinizing two conflicting
statements. The meaning of a term
l2 ≺ l6 is defined in terms of traces.
Informally, the traces which satisfy
l2 ≺ l6 are those where if statements
at labels l2 and l6 are performed in
the trace, then l2 must occur before l6.
The formal semantics of such terms
are defined in Section 4.

The models which satisfy the syn-
thesized formula represent potential
solutions for making the program de-
terministic. For instance, for the formula above, we have eight minimal solutions as
shown in Table 1 (column a). Each row in column (a) lists a solution of the formula (we
list the terms which are true).

Termination and Redundancy. Unfortunately, some of these solutions are undesirable
and others can be minimized. In particular, solutions 3, 4 and 7 cause non-termination
via deadlock. For instance, solution 3 requires label 3 to execute before label 2, clearly
not possible. Further, solutions 1, 2, 5 and 8 contain redundant terms that can lead to
unnecessary synchronization when implemented directly. For instance, in solution 1,
the term l2≺ l7 is redundant because it is subsumed by the term l3≺ l7. Intuitively, this
is because if the statement at label 3 is executed before the statement at label 7, then

288 V. Raychev, M. Vechev, and E. Yahav

the statement at label 2 is also executed before the statement at label 7. Interestingly,
solution 6 contains no redundant terms and does not introduce non-termination.

Our algorithm addresses both of these issues: it adds terms to the formula ψ that
prevents cycles, and only outputs solutions that do not contain redundant terms. With
the new formula (details are in Section 5), our algorithm produces the five solutions
shown in Table 1(b). Here, ’—’ means that the corresponding solution in that row in
column (a) does not terminate and hence it is not selected in column (b). Indeed, these
solutions do not introduce non-termination and they do not contain redundant terms (up
to the thread-modular abstraction as discussed later).

Reducing the number of solutions. Even after the filtering above, it is possible to pro-
duce too many solutions. There are three principal approaches to deal with this problem:
(i) provide additional specifications that solutions must satisfy. For example, in the case
of a read-write conflict, require that the write always takes place before the read as the
write initializes the data accessed by the read. This particular specification filters solu-
tion 6 from the list. (ii) define criteria that compare solutions. A simple criteria could be
to filter solutions that sequentialize the program when there are other solutions which
do not. This criteria filters solution 8. (iii) using coarser synchronization constructs to
realize the constraints, this arises naturally in phase 3, and is discussed below.

1 spawn {
2 o1.wait(); x = 0;
3 y = 0; o2.signal();
4 }
5 spawn {
6 x = 1; o1.signal();
7 o2.wait(); if (x==0) y = 1;
8 }

spawn {
x = 0;
y = 0;

}
sync; spawn {
x = 1;
if (x==0) y = 1;

}

spawn {
x = 1;
if (x==0) y = 1;

}
sync; spawn {
x = 0;
y = 0;

}

(a) (b) (c)

Fig. 2. (a) Enforcing solution l6≺ l2, l3≺ l7 with signal/wait. (b) Enforcing solution l2≺ l6 and
l3≺ l7 with sync. (c) Enforcing solution l7≺ l2 with spawn and sync.

Phase 3: Realization of Solutions. A solution can be enforced with a variety of syn-
chronization mechanisms. To illustrate the issues that arise when realizing solutions
into the program, we selected two different synchronization primitives:

– spawn/signal/wait: a thread is created with a spawn, a thread can notify another
thread by invoking o.signal() on a signaling object o and a thread can wait to be
notified with o.wait(). Once a thread is notified, it continues execution.

– spawn/sync: this synchronization mechanism is used by structured parallel pro-
gramming languages such as Cilk [4]. A thread is created with a spawn. When a
thread calls sync, the thread blocks and waits until all of its children threads (threads
that it has spawned) as well as their descendants complete.

With the first mechanism all five solutions in Table 1(b) can be implemented directly.
For instance, the implementation of solution l6≺ l2, l3≺ l7 is shown in Fig. 2 (a).

Automatic Synthesis of Deterministic Concurrency 289

Two interesting points need to be noted when using the spawn/sync constructs. First,
not all of the five solutions are directly implementable with spawn/sync. For example,
the solution l6≺ l2, l2≺ l7, l7≺ l3 cannot be implemented by placing a sync construct
anywhere in the program. In fact, from the set of five solutions, only the ordering l2≺ l6,
l3 ≺ l7 can be implemented by placing a sync in the program. The resulting program
is shown in Fig. 2 (b). Second, the implemented solution enforces sequentialization of
the two threads, that is, the implemented solution is more coarse than what the actual
constraints require.

Indeed, with certain synchronization primitives, one may obtain fewer and coarser
solutions than what the solutions yielded by phase 2 require. Hence, one side-effect of
using coarser synchronization constructs is obtaining fewer solutions. Therefore, this
is the third mechanism that can lead to fewer solutions produced by the synthesizer.
In Section 7 we show an evaluation of the two synchronization mechanisms and their
final number of solutions.

Inferring spawns. In addition to sync statements, our approach can also infer a place-
ment for spawn’s. In our example it is impossible to find a placement of sync in the
program that realizes the solution l7 ≺ l2. However, if the user had omitted the spawn
statements, then our algorithm can infer a placement of spawn’s (and sync) that realizes
l7≺ l2. The result is shown in Fig. 2 (c).

Precision. Because of abstraction, it is possible to produce unnecessary constraints.
This is expected as the abstraction loses information in order to make static analysis
tractable. Consider solution l2 ≺ l6, l3 ≺ l7 from Table 1(b). Here, the term l3 ≺ l7
is unnecessary because if l2 ≺ l6 is enforced, y = 1 would not execute and hence
there would be no conflict with the statement at label 3. One can attempt to refine the
abstraction to avoid unnecessary solutions, but in general it is impossible to completely
avoid this effect.

Preserving Termination. The solutions produced in phase 2 should not introduce non-
termination. However, when implementing these solutions into a program, deadlock
may be introduced.

To illustrate the point, we slightly modify the example of Fig. 1: assume that the
statement y = 1 at label 7 is now executed separately from its guard. Suppose that we
would like to realize the solution where y = 1 is always performed before y = 0. If
we implement this with signal/wait, we can introduce non-termination. The reason is
that if we place a signal right after y = 1 and a wait right before y = 0, then it is
possible that the execution of statements (in this sequence): x = 0, x = 1, wait leads
to a deadlock. The reason is that y = 1 will never be reached (and the signal will never
be invoked). This issue can be addressed at any of the three phases. We address the
problem in phase 1 and make sure that the inter-thread constraints in the formula only
use labels that are always performed by the program (defined later).

Our approach soundly handles programs with loops and conditionals, the main point
here is that care must be taken when conflicting labels participate inside conditionals
and loops (the details of our solution can be found in Section 5).

290 V. Raychev, M. Vechev, and E. Yahav

2.3 Abstracting Memory Accesses

So far, we illustrated the steps of our algorithm on a simple example. However, realistic
programs introduce additional challenges in the form of unbounded number of dynam-
ically allocated objects, and accesses to arrays of unknown sizes. To address this issue,
we use an abstraction of memory locations that combines information from a (simple)
heap abstraction with information from a numerical abstraction of array indices. Here,
we briefly illustrate the abstractions on the example in Fig. 3.

1 void update(double[] B, double[] C) {
2 spawn {
3 for (int i=1;i <= n; i++) {
4 int ci = 2*i;
5 double t1 = C[ci]; {R:({AC},{2 ≤ ci ≤ 2*n})}
6 B[i] = t1; {W:({AB},{1 ≤ i ≤ n})}
7 }
8 }
9 spawn {

10 for (int j=n;j <=2*n; j++) {
11 int cj = 2*j+1;
12 double t2 = C[cj]; {R:({AC},{2*n+1≤ cj≤ 4*n+1})}
13 B[j] = t2; {W:({AB},{n ≤ j ≤ 2*n})}
14 }
15 }
16 }

Fig. 3. Simple example for parallel accesses to shared arrays

The threads in the program of Fig. 3 access two arrays B and C passed as param-
eters. Our abstraction for memory locations over-approximates the memory locations
accessed by each statement. We represent the set of (abstract) memory locations ac-
cessed by each statement as a pair of heap information and array index range. The heap
information records what abstract locations may be pointed to by the array base refer-
ence. The array index-range records what indices of the array may be accessed by the
statement via constraints on the index variable.

For this program, our pointer analysis is able to establish that B and C correspond
to disjoint (abstract) memory locations AB and AC , respectively (by analyzing the rest
of the program, not shown here). In this example, we used the Polyhedra abstract do-
main [10] to abstract numerical values, and the array index range is generally repre-
sented as a set of linear inequalities on local variables of the thread. For example, in
Line 5 of the example, the array base C may point to a single abstract location AC , and
the statement reads from the range 2 ≤ ci ≤ 2 ∗ n.

To identify a conflict, our algorithm reasons about potential overlaps between ab-
stract memory locations. In the example of Fig. 3, the ranges of array indices repre-
sented by linear inequalities overlap. That is, the writes at Line 6 and Line 13 overlap
as the abstract memory locations ({AB}, 1 ≤ i ≤ n) and ({AB}, n ≤ j ≤ 2 ∗ n) inter-
sect, leading to potentially conflicting writes by the two threads when i=j=n.

Automatic Synthesis of Deterministic Concurrency 291

3 Background

Here, we provide basic notations and definitions which we use in the rest of the paper.

Programming Language. Our synthesis algorithms are applicable to standard off-the-
shelf concurrent/parallel programming languages. To simplify presentation, we assume
a simple sequential imperative language augmented with the spawn statement for creat-
ing parallel threads. We use TIds to denote the set of thread identifiers, VarIds to denote
the set of local variable identifiers, and Labs to denote the set of program labels. We
assume the code in each thread is augmented with an initial label (the label of the first
statement in the thread) and a final label (the label after the last statement in the thread).
We assume that labels are unique to each thread. We denote the thread of a label l by
tid(l). For an assignment statement at label l, lhs(l) denotes the left hand side, and
rhs(l) the right hand side. To simplify exposition, we assume the language only con-
tains array accesses. The treatment of shared field accesses is similar (and simpler).

Transition System. A transition system is a tuple 〈Σ0, F,Σ, T〉 where Σ is a set of
states, T ⊆ Σ × Σ is a set of transitions between states, Σ0 ⊆ Σ are the initial states
and F ⊆ Σ are the final states. For a transition τ ∈ T , we use src(τ) and dst(τ) to
denote its source and destination states and tid(τ) to denote the thread which performed
τ . A state is final if all threads are at their final label in that state. There are no outgoing
transitions from a final state.

Concrete Semantics. We assume standard semantics which define a program state and
evaluation of expressions and statements in that program state. The semantic domains
are defined in the standard way in Table 2. As we focus our exposition on arrays, each
l-value is a pair (a, n) ∈ (A
 ×N).

Table 2. Semantic Domains

A
 ⊆ aobjs
 allocated arrays
v
 ∈ Val = aobjs
 ∪ {null} ∪N values
lv
 ∈ LV al = aobjs
 ×N l-values
pc
 ∈ PC = TIds ⇀ (Labs ∪ ⊥) program counters
ρ
 ∈ Env
 = TIds × VarIds ⇀ Val environment
h
 ∈ Heap
 = LV al ⇀ Val heap

A program state is a tu-
ple: σ = 〈pc
σ, ρ
σ, h

σ, A

σ〉 ∈

ST
, where ST
 = PC ×
Env
 × Heap
 × 2aobjs� . A
state σ keeps track of the pro-
gram counter for each thread
(pc
σ) (undefined if the thread
has not yet been activated),
an environment mapping lo-
cal variables to values (ρ
σ), a
mapping from allocated array
objects and indices to values (h

σ), and a set of allocated array objects (A

σ).

We denote threads(σ) the set of thread identifiers in dom(pc
σ) which are not
mapped to ⊥. We use succ(σ) to denote the set of states that are direct successors
of σ in the transition system. The set of threads which can perform a transition out of
state σ is denoted by succtid(σ). For a transition τ , we denote by wr(τ) ⊆ LV al the
set of memory locations written by τ , by rd(τ) ⊆ LV al the set of memory location
read by τ , and by rw(τ) = wr(τ) ∪ rd(τ) the set of locations accessed by τ .

The transition system of a program P is denoted by 〈Σ0, FP , ΣP , TP 〉. Every tran-
sition τ ∈ TP is associated with a statement that performed the transition and its label
is denoted by lbl(τ).

292 V. Raychev, M. Vechev, and E. Yahav

A trace π = τ0 · τ1 . . . of a program P is a sequence of transitions, such that for
i ≥ 0, τi ∈ TP , src(τi+1) = dst(τi) and src(τ0) ∈ Σ0. We denote the set of traces
of P by [[P]]. We denote the first state of a trace π by first(π) = src(τ0) and the last
state of a finite trace π by last(π) = dst(τn−1), n = |π|.
Determinism. Informally, a program is deterministic if it produces (observationally)
equivalent outputs for all (observationally) equivalent inputs. For programming lan-
guages where each statement is deterministic, ensuring end-to-end determinism can be
achieved if concurrent shared memory accesses are ordered such that the program is
conflict-free. Conflict-freedom is a strong property which allows us to prove and estab-
lish determinism without devising abstractions for automatically reasoning about state
equality, a task that can be very challenging when analyzing real programs.

Definition 1 (Conflicting Transitions). We say that two transitions τ and τ ′ are con-
flicting, denoted by τ ∦ τ ′, when: i) tid(τ) �= tid(τ ′), ii) src(τ) = src(τ ′) and iii)
wr(τ) ∩ rw(τ ′) �= ∅ or wr(τ ′) ∩ rw(τ) �= ∅.

Definition 2 (Conflict State). A state σ ∈ Σ is a conflict state if there are two transi-
tions τ, τ ′ such that src(τ) = σ and τ ∦ τ ′.

A program P is conflicting if it has a reachable conflict state σ ∈ ΣP . Otherwise, the
program is conflict-free.

4 Constraints and Termination Guarantees

This section states a theorem which outlines the conditions under which enforcing or-
dering constraints will preserve termination. To state the theorem, we define neces-
sary concepts such as termination, thread blocking, and (combination of) ordering con-
straints. Indeed, any synthesis algorithm which operates in the setting outlined in this
section can provide the guarantees stated by the theorem. One such synthesis algorithm
is provided in Section 5.

4.1 Program Termination

To define that a program P halts, it is enough to show that every trace π ∈ [[P]] is finite.
This property is sufficient when all states with no outgoing transitions are final states.
However programs that deadlock do not reach final state and yet they halt. We refine
the definition of termination to exclude halting in non-final states.

Definition 3 (Terminating Set of Program Traces). A set of traces S ⊆ [[P]] is termi-
nating if:

1. every trace π ∈ S is finite.

2. for any trace π′ ∈ S, there exists a trace π ∈ S such that π′ is a prefix of π and
last(π) ∈ FP .

Automatic Synthesis of Deterministic Concurrency 293

We say that a program is terminating if the set [[P]] is a terminating set. Note that it
is possible for the program to terminate, yet during its execution some threads can
be temporarily disabled from making progress. This can happen for instance when a
thread is waiting for an external action to occur before it can make a transition. Below
we define what it means for a thread to be blocked (or not to be enabled at any point).

Definition 4. A thread t blocks in a program P if there exists a reachable state σ ∈ ΣP ,
such that t �∈ succtid(σ) and pc
σ(t) is not a final label of t.

For example, if a thread calls wait then it (temporarily or permanently) blocks.

4.2 Ordering Constraints

In this work we focus on determinization by enforcing ordering between labels that
execute exactly once — the motivation for this approach is to ensure termination.

Definition 5 (Single-transition label). A label l in a program P is a single-transition
label if for every finite trace π ∈ [[P]] where last(π) ∈ FP , there is exactly one transi-
tion τ ∈ π, such that lbl(τ) = l.

Next, we define the meaning of a constraint lm≺ ln in terms of traces that satisfy it.

Definition 6 (Meaning of lm ≺ ln). Given a program P, we say that a trace π ∈ [[P]]
violates an ordering constraint lm≺ ln if:

– lm or ln are not single-transition labels, or
– they are single transition labels where ∃i, j. 0 ≤ i ≤ j < |π| such that lbl(πi) = ln

and lbl(πj) = lm.

Any trace which does not violate lm≺ ln satisfies the predicate.

The definition above is naturally extended to a set of ordering constraints C = {l1 ≺
l2, . . . , lm≺ ln}. That is, a trace satisfies C only if it satisfies each constraint in C. We
use [[P]]C to denote all program traces which satisfy the set of ordering constraints C.
Where convenient we treat the set C as a binary relation on labels. We use labels(C)
to denote all labels appearing in the constraints of set C and labels(C)|t = {l | l ∈
labels(C), tid(l) = t} to denote the set labels of thread t appearing in labels(C).

4.3 Constraining Traces

Next, we define what it means for a set of constraints to be consistent. Intuitively, this
will correspond to what a synthesis algorithm must produce as the output right before
this output is implemented with particular synchronization constructs.

Definition 7. Given a program P, we say that a set of ordering constraints C is consis-
tent w.r.t P , if:

1. labels(C) contains only single transition labels.
2. C does not contain cycles: Ilabels(C) ∩ C∗ = ∅.

294 V. Raychev, M. Vechev, and E. Yahav

3. for every thread t, there exists a unique set T ⊆ C such that:
(a) T is a total order on labels(C)|t.
(b) [[P]]T = [[P]].

The first consistency property is self explanatory. The second property requires that the
set of constraints does not conflict with itself. Here Ilabels(C) is the identity function
defined over the set labels(C). Property 3a) requires that if two labels of the same
thread appear in C (could be in different constraints), then these two labels must be
ordered. Property 3b) states that all traces of the program satisfy the total order. The
last two conditions prevents a situation where two labels of the same thread always
appear in all program traces (i.e., they are single-transition labels), yet in some traces
they appear in one order, and in other traces they appear in the opposite order.

Next, we state a key theorem: removing traces induced by a consistent set of ordering
constraints will not introduce non-termination.

Theorem 1. Given a terminating program P where no thread blocks, and a set of con-
straints C, if C is consistent, then [[P]]C is a terminating set of program traces.

This theorem means that if we produce a program PC where C is enforced in P such
that [[PC]] = [[P]]C , the resulting program will still be terminating. Next, we will see a
thread-modular synthesis algorithm that takes as input a potentially conflicting program
and infers a consistent set of constraints C. Then, we will see how to implement C with
particular synchronization primitives so to obtain a final conflict-free program.

5 Thread-Modular Synthesis

In this section, we present our thread-modular synthesis algorithm. The algorithm is
based on a thread-modular abstraction which over-approximates the concrete behaviors
from Section 3, allowing us to reason in a thread-modular way. The algorithm takes as
input a potentially conflicting program and outputs a conflict-free program.

First, we define a thread modular abstraction. This abstracts away the relationship
between different threads and leads to semantics that tracks each thread separately,
rather than tracking all threads simultaneously. Then, once stabilization is obtained,
we check for conflicts by combining pairwise thread states and checking whether the
combined state is conflict-free.

5.1 Abstraction

We define the projection σ|t of a state σ on a thread identifier t as σ|t = 〈pc|t, ρ|t, h, A〉,
where pc|t is the restriction of pc to t and ρ|t is the restriction of ρ to t. Given a
concrete state σ ∈ ST
, the program state for a single thread t is σ|t ∈ ŜT , where

ŜT = PC × Env
 ×Heap
 × 2aobjs� . Given a set of states S ⊆ ST
, its abstraction
is defined as:

αtm(S) =
⋃
σ∈S

{σ|t | t ∈ threads(σ)}

Automatic Synthesis of Deterministic Concurrency 295

The program counter pc of a state σ̂ ∈ ŜT contains only a single thread in its domain.
Similarly, threads(σ̂) returns a singleton set that contains the single thread represented
in σ̂ (or the empty set if the thread is mapped to ⊥ in σ).

Algorithm 1. Thread-Modular Syn-
thesis

Input: Program P with n threads
Output: Program P’ that is conflict-free

1 compute stabilized Σ1
P , . . . , Σ

n
P

2 ψ ← true
3 foreach i in 1, . . . , n do
4 foreach j in i+ 1, . . . , n do
5 foreach σ̂i

tm ∈ Σi
P ,

σ̂j
tm ∈ Σj

P do
6 σ ← σ̂i

tm ⊕ σ̂j
tm

7 if σ �= ⊥ then
8 ψ ← ψ ∧ resolve(σ)

9 ϕ← ψ ∧ nocycles(ψ)
10 S ← SAT (ϕ)
11 return implement(P, S)

Abstraction Computation. We have de-
fined what the abstraction does and not
how it is computed. There are various
techniques which can automatically com-
pute a thread-modular abstraction of a
program [21]. Typically, these analysis
algorithms begin by computing inductive
invariants for each thread. Then, based
on the interference between threads, they
weaken the proof of a given thread until the
interference checking succeeds. In a later
section, we will discuss how this stabiliza-
tion is accomplished in our setting. After
the thread-modular abstraction is obtained,
one can apply standard abstractions such
as heap or numerical in order to abstract
unbounded state (we will see an example
later).

5.2 Synthesis

Our thread modular synthesizer is shown
in Algorithm 1. After computing invariant stabilization, the algorithm checks for con-
flicts between states and computes ordering constraints to avoid any conflicts. The con-
straints are accumulated in a global inter-thread constraint formula ψ. Next, we discuss
the ingredients of the algorithm.

Step 1: Identifying Conflicts. As defined in Section 3, a conflict is a property of two
transitions executed by different threads. Since our abstraction is thread modular, iden-
tifying a conflict requires pairwise composition of states of individual threads.

First, we define a pairwise state as a composition of individual thread states. The idea
is to define when individual states can be combined into a pairwise state (corresponding
to partial concretization, e.g., in [19]). For example, we can define that two individual
states can be combined only when they agree on shared data, or when the program
locations of the individual threads may indeed occur in parallel.

The combination pc1 ⊕ pc2 of program counter functions pc1, pc2 is defined as

pc1 ⊕ pc2 =

{
⊥, mhp(dom(pc1), dom(pc2)) = false
λt.{pc1(t) | t∈dom(pc1)} ∪ {pc2(t) | t∈dom(pc2)} otherwise.

Here, we use the predicate mhp to decide whether two labels may happen in parallel.
Our approach is parametric on this predicate’s implementation: we can use any existing
may-happen analysis to compute the predicate (e.g. [1]). The combination ρ1 ⊕ ρ2 of
environments is defined similarly.

296 V. Raychev, M. Vechev, and E. Yahav

Definition 8. Given two states σ̂1 = 〈pc1, ρ1, h1, A1〉, σ̂2 = 〈pc2, ρ2, h2, A2〉 ∈ ŜT ,
we say that the states are matching when pc1 ⊕ pc2 �= ⊥, ρ1 ⊕ ρ2 �= ⊥, h1 = h2 and
A1 = A2, and define the composed pairwise state σpw = σ̂1 ⊕ σ̂2 of matching states as
σpw = 〈pc1 ⊕ pc2, ρ1 ⊕ ρ2, h1, A1〉. If the states are not matching, we define σ̂1 ⊕ σ̂2

to be ⊥.

Definition 9 (Conflicting Program). Given a program P with n threads (1..n), let the
reachable states for each thread be Σ1

P , . . . , Σ
n
P respectively, where Σi

P ⊆ ŜT , 1 ≤
i ≤ n. We say that the program is conflicting when there exist matching states σ̂i

tm ∈
Σi

P , σ̂j
tm ∈ Σj

P such that σ̂i
tm ⊕ σ̂j

tm is a conflict state.

A program that is not conflicting is a conflict-free program.

Step 2: Compute Single-Transition Labels and Total Orders. Next, we show how to
build a constraint formula whose satisfying assignments form a consistent set as in Def-
inition 7. First, for each thread t we find a set of single-transition labels St = {lti}ni=1

such that there exists a total order TOt = {∪n−1
i=1 {lti ≺ lti+1}} on the labels in St, in a

way that each trace in [[P]] satisfies this total order. The set containing the total order of
each thread is denoted by thords = ∪t∈TIds TOt.

Next, given a transition τ , we discuss how to compute the functions lpred(τ) and
lsucc(τ) (both of these return a label). Intuitively, the reason we need these functions
is to lift labels which participate in a conflict and are not single-transition labels. We
assume that lt1 is the label of the first statement in the thread and ltn is the final label
in the thread where both are single-transition labels. This guarantees that if a thread t
performs a transition τ such that lbl(τ) �∈ St, then we can always find a transition τ ′ in
a trace π performed by t so that τ ′ precedes τ in π and lbl(τ ′) ∈ St. We use the function
lpred(τ) to denote such a label. The function returns the same label regardless in which
π the transition τ appears. Similarly, we ensure the existence of a single-transition label
of a transition performed after τ in some trace π. We use lsucc(τ) to denote such a
label. A trivial solution is to use lpred(τ) = lt1 and lsucc(τ) = ltn, however, we can also
choose labels that are “closer” to τ (in all traces where τ appears). In case lbl(τ) ∈ St,
we define lpred(τ) = lsucc(τ) = lbl(τ).

Step 3: Resolve conflicts. The formula ψ accumulates constraints for each conflict state.
Let the conflict transitions of state σ be defined as:

conflicts(σ) = {(τ, τ ′) | τ ∦ τ ′, src(τ) = src(τ ′) = σ}

Resolving a conflict state with a pair of conflicting transition τ, τ ′ can be done in two
ways: performing τ first or τ ′ first. Since we would like our formula to contain only
single-transition labels, the formula for resolving conflicts in a state becomes:

resolve(σ) =
∧
{lsucc(τ ′)≺ lpred(τ) ∨ lsucc(τ)≺ lpred(τ

′) | (τ, τ ′) ∈ conflicts(σ)}

Up to here, we have ensured that conditions 1 and 3 in Definition 7 are enforced. Next,
we make sure that condition 2 (i.e., no solutions with cycles) is also met. Let terms(ψ)
be the set of all terms in the boolean formula ψ. Every term has the form la≺ lb. Then,
the following formula describes all possible ways in which cycles can be eliminated.

nocycles(ψ) =
∧
{∨{¬a | a ∈ A, a ∈ terms(ψ)} | A ⊆ terms(ψ)∪ thords,A is a cycle}

Automatic Synthesis of Deterministic Concurrency 297

After all conflicts are resolved and ψ is computed, the formula nocycles(ψ) is added to
ψ obtaining the final formula ϕ (line 9 of Algorithm 1). Note that all labels of a given
thread that appear in terms(ψ) are contained in thords, that is, the labels of a given
thread are totally ordered. As an optimization, we only need to consider cycles that do
not visit the same node multiple times because such cycles can be decomposed into
several smaller ones.

Step 4: Compute satisfying assignments to ϕ. Finally, line 10 of Algorithm 1 computes
a satisfying assignment to ϕ. From this satisfying assignment, we select the constraints
with positive truth values, which results in a consistent set of constraints that makes
the program conflict-free. Note that this set may contain constraints which are implied
by other constraints. This is addressed by performing a transitive reduction on the set.
Such a reduction is unique and can be computed with an iterative greedy algorithm that
at each step removes a constraint implied by others.

6 From Constraints to a Program

In the previous section, we showed how to obtain a consistent set of constraints S. In
this section, we discuss how to enforce S in the program by adding synchronization.
This process is realized by the implement(P, S) procedure of Algorithm 1.

Realization with signal/wait synchronization. A synchronization method, which di-
rectly corresponds to an ordering constraint between a pair of labels, is a signal/wait
object. Every signal/wait object starts non-signaled and can be signaled by a call to
its signal method. The wait method of a non-signaled object blocks the current thread
until the object gets signaled. If lm and ln are single-transition labels, then the ordering
constraint lm≺ ln can be implemented calling o.signal() after the statement at label lm
and calling o.wait() before the statement at label ln.

Realization with structured synchronization. We also considered a set of constructs
used in the structured parallel programming language Cilk [4]. Here, spawn creates
a new child thread while sync blocks until all existing child threads as well as their
recursively created children complete.

Consider the program in Fig. 4(a). Here, a main thread spawns two children threads
and then updates several variables. Suppose we would like to enforce that x = 0 ≺
x = 1, x = 1 ≺ x = 3, x = 3 ≺ x = 2. Here we abuse notation and use state-
ments instead of labels for readability. Fig. 4(b) shows one possible determinization. To
enforce x = 0 ≺ x = 1, the second thread is spawned only after the x = 0 state-
ment, while the thread with x = 1 is joined before spawning the next thread in or-
der to enforce its order to take place before x = 3. Finally, the last sync enforces
x = 3≺x = 2.

In general, as mentioned in Section 2, not every solution can be directly imple-
mentable with spawn/sync: either some coarsening may take place or the solution may
not be directly enforceable. In turn, this leads to fewer overall solutions. In the cases
when spawn/sync is possible, we would like a solution that allows for maximum paral-
lelism. The same order as Fig. 4(b) may be enforced by using sync immediately after the
end of the spawn statements. However, larger portions of the program will be sequen-
tialized and leading to less parallelism. We can solve this by allowing sync statements to

298 V. Raychev, M. Vechev, and E. Yahav

be inserted only at single-transition labels right before a conflict or right before spawn
statements. This leads to Algorithm 2.

x = 0;
spawn {
x = 1;
}
spawn {
x = 3;
}
y = 7;
x = 2;
z = 8;

x = 0;
spawn {
x = 1;

}
sync;
spawn {
x = 3;

}
y = 7;
sync;
x = 2;
z = 8;

x = 0;
y = 7;
x = 2;
spawn {
x = 1;

}
z = 8;
sync;
spawn {
x = 3;

}

x = 0;
y = 7;
x = 2;
spawn {
x = 1;
}
sync;
spawn {
x = 3;
}
z = 8;

(a) (b) (c) (d)

Fig. 4. Example showing different determinizations. (a)
the original program, (b) a determinization by adding
sync statements. (c) a determinization inferring sync and
spawn statements. (d) another determinization inferring
sync and spawn statements.

In this algorithm, we use a
rooted tree of program threads.
Each thread is a node and its
parent node is the thread who
spawned it. The main thread is the
root node. We refer to this tree
as the thread hierarchy. We de-
fine lca to return the lowest com-
mon ancestor in the thread hier-
archy and spawnlabel(a, b) to re-
turn the label at which b executes
spawn of thread a (or a parent
thread of a if a is not a direct child
of b).

Inferring spawn statements. As
mentioned earlier, we can real-
ize ordering constraints by infer-
ring not only sync, but also spawn
statements. This is useful in cases
where the programmer provides a
set of threads without the corresponding spawn statement (or they can be only partially
specified). Ability to infer both sync and spawn allows for finer-grained solutions.

Inference of spawn statements can produce several solutions for the same set of
ordering constraints. For example, programs (c) and (d) in Fig. 4 enforce the same
ordering, but they differ in the way they order statement z = 8 (z is a non-conflicting
variable).

7 Experimental Evaluation

We implemented the thread-modular synthesis algorithm in a tool called DPS and eval-
uated its effectiveness on a set of parallel programs. The implementation handles pro-
grams written in the (sequential) Java language augmented with parallel constructs.
The experiments were conducted using Oracle’s Java 1.6 VM on a 4-core 3.5GHz Core
i7 machine. The input to DPS is a standard Java program optionally augmented with
constructs for thread creation (e.g. spawn). The output of DPS is a determinization
of the program expressed with the desired synchronization primitives: signal/wait or
spawn/sync.

Components of the Synthesizer. Our analysis is based on the Soot analysis engine [27].
First, our analysis computes an abstraction of the heap using a flow-insensitive global
pointer analysis [17]. Since the pointer analysis is flow-insensitive, its results are sound
even in the presence of concurrency. We use the may-alias information mainly to de-
termine abstract array objects. We perform a thread-modular analysis using numerical
abstract domains (based on Apron [13]). For our experiments, we used the Octagon

Automatic Synthesis of Deterministic Concurrency 299

and Polyhedra abstract domains with a simple widening strategy (we identify loops and
widen after some constant number of iterations around the loop). The thread modular
analysis computes the set of abstract states as required by Algorithm 1. To solve the
constraint formulas we used the SAT4J solver [26].

Algorithm 2. Inference of sync
Input: Program P, a set constraints
Output: Program P’ with added

sync statements
1 P’ = P
2 foreach la≺ lb ∈ constraints do
3 ta, tb ← tid(la), tid(lb)
4 tp ← lca(ta, tb)
5 if ta = tp then lpa ← la
6 else lpa ← spawnlabel(ta, t

p)
7 if tb = tp then lpb ← lb
8 else lpb ← spawnlabel(tb, t

p)
9 if lpa≺ lpb then

10 add sync at lpb to P’
11 else
12 return ”not realizable”

13 return P’

Stabilized Proofs. The particular heap ab-
stract domain we use ensures the sequential
analysis of each thread produces a stabilized
proof and there is no need for refinement. The
reason is that the domain abstracts away the
contents of an abstract object, meaning all
possible interferences on that object are con-
sidered. Generally this need not be the case,
and refinement may be necessary to compute
a stabilized proof.

Experimental Data. To evaluate DPS,
we used benchmarks from the Habanero
project [25]. We slightly modified the bench-
marks to ensure the number of spawned
threads is a constant (all modifications pre-
serve the input-output behavior of the pro-
gram). Also, our numerical analysis and syn-
thesis focus on a program fragment where
threads can execute in parallel and interfer-
ence is possible. All resulting programs listed
in Table 3 perform parallel numerical compu-
tations and are meant to be deterministic. To

evaluate our tool, we first removed all initial synchronization from the program and then
ran the synthesizer. The questions we wanted to answer were:

– can the tool discover the initial synchronization and if so, with which abstract do-
mains?

– which methods are useful to reduce the number of solutions?

– can viable determinizations be obtained in reasonable time?

The results for the first question are summarized in the third and fourth columns of
Table 3. Except for SPARSE, running with Polyhedra produced at least as good synchro-
nization as the initial one. In fact, for MOLDYN and SERIES, the tool discovered syn-
chronization that allows for more statements to execute in parallel than in the program
before removing synchronization.

We found that in some programs, the Octagon domain was too imprecise and led
to coarser than necessary synchronization. Still, the tool produced a deterministic pro-
gram, but forced threads to sequentialize. For SPARSE, we were unable to discover the
initial synchronization because the program contains complicated array aliasing ma-
nipulations (an array is indexed with the contents of another array) and the Polyhedra
numerical domain is too imprecise to establish that parallel array accesses are disjoint.
In all cases, the running time of DPS was less than two minutes.

300 V. Raychev, M. Vechev, and E. Yahav

Table 3. Reconstruction of the initial synchronization with different abstract domains and the
number of determinizations with Polyhedra

Abstract Domain Number of Determinizations
Program Description Octagon Polyhedra fine W ≺R sync sync

grained + spawn
CRYPT IDEA encryption ✗
 6 1 1 1
MOLDYN Molecular dynamics simulation ✗
 992 72 72 1
SOR Succesive over-relaxation ✗
 2 1 1 1
LUFACT LU Factorization

 7 4 2 1
SERIES Fourier coefficient analysis

 3 2 2 1
SPARSE Sparse matrix multiplication ✗ ✗ 2 1 1 1

Next, we evaluated different methods for reducing the number of solutions. We ex-
perimented with the following:

– Adding a specification that orders writes before reads: in case of a read-write con-
flict, it is often that the write should be ordered before the read except if this would
create a cycle in the constraints. The intuition is that the read should access the
most recently updated value.

– Choosing orderings that are implementable only with a coarser set of synchroniza-
tion primitives (e.g., only spawn and sync).

The fifth column of Table 3 presents the number of solutions with the most fine grained
constraints the algorithm could generate. For some programs, this setting produced a
high number of determinizations. The sixth column adds a specification to order the
writes before the reads. The last two columns include only solutions, where both, spawn
and sync are inferred. The last column contains only one determinization. This can
happen if the spawn statements are fixed in the program and only sync statements are
inferred. It is worth noting that even in this setting, the synthesized synchronization for
MOLDYN and SERIES allowed for more parallelism than the initial synchronization.

8 Related Work

Next, we survey some of the more closely related work concerning determinism.
The work of Navabi et al. [23] focuses on migrating sequential programs into paral-

lel ones. Our work has a different focus, but shares a similar high level problem: given
a potentially non-deterministic parallel program, construct an output program that is
deterministic. However, there are a number of key technical differences: (i) we use nu-
merical domains to gain precision while [23] only relies on pointer analysis. Without
precise numerical domains such as Octagon or Polyhedra, we will end up sequentializ-
ing all threads of our benchmarks. Generally, applications in High Performance Com-
puting require rather precise domains to establish correctness. In contrast, in [23], it
is often sufficient to enforce coarse-grained synchronization, as any parallel solution
is considered an improvement over the sequential program; (ii) our solutions do not
require ta total logical order between threads, resulting in more solutions. This is par-
ticularly important when we have a pair of threads but a solution is possible where

Automatic Synthesis of Deterministic Concurrency 301

the thread which is spawned first (but still can run in parallel with the second thread)
needs to wait for a transition in the second thread; (iii) in [23], a synchronization point
is generated automatically for every shared memory access, even if that access does
not conflict with any logically preceding thread. This means that some synchronization
may be inserted even if the program is conflict-free. In our approach such synchroniza-
tion points are unnecessary; (iv) we produce a set of constraints as intermediate form,
enabling us to experiment with different synchronization constructs for realizing it.

Next, we examine the technical differences with the work of Botincan et.al. [6].
Here, they start with two sequential programs (e.g. two iterations of a loop) and a proof
of some property for each program in separation logic. Then, by examining each as-
sertion in the proof, one can check whether the resources in the proof can be released.
Conversely, one can check which resources are needed. Then, a thread can grant these
resources to another thread, or block execution until it receives the resources it needs
from another thread. Once the releasing and granting of resources is ensured, the pro-
grams (i.e., two iterations of a loop) can run in parallel. Our work differs in the follow-
ing ways: (i) their approach is centered around resources, a concept in separation logic,
while our approach is based on abstract interpretation; (ii) the inference algorithms are
different: theirs uses logical resources and directly maps (required or unnecessary) re-
sources to specific synchronization primitives, while we use abstract conflict states and
produce constraints that can then be mapped to various synchronization primitives (as
we show); (iii) their work lacks evaluation, while we present a detailed study of how
different specifications and synchronization primitives affect the solution space.

The work of Jin et al. [14] presents a method for enforcing two types of constraints,
called allA-B and firstA-B. While the two works share similar high level goals, the
technical details are very different: for instance, their inference algorithm can introduce
non-termination via deadlocks. Finally, we present a sound thread-modular synthesizer,
while in their work it is assumed that conflicts are provided by an external analysis.

There has been significant interest in various aspects of determinism: automatic ver-
ification [29,15], programming models and systems [7,24,11,2,3]. Some of these dy-
namically ensure that the program is deterministic (e.g., aborts in case of conflicts or
performs deterministic merge of conflicts, or uses deterministic schedulers). A concern
with some of these approaches is that the program may suffer unnecessary slowdowns.
To reduce these overheads, some techniques put stringent requirements on the input pro-
gram (e.g., [24] requires that the input program is data-race free). Further, there is an
issue that a small change to the input may cause a vastly different scheduling strategy,
causing unpredictable slowdowns. In contrast, our approach is static and guarantees
that the output program is deterministic for all input states. We believe that the two
approaches are complementary.

Other approaches such as DPJ [5] extend a programming language with determin-
istic constructs and rely on a type system to verify conflict freedom. However, DPJ’s
type system handling of numerical computations is not as powerful as classic abstract
domains and as such cannot prove conflict-freedom for programs such as SOR. More
importantly, it requires explicit annotations of disjointness and suggests no repairs when
statements conflict.

302 V. Raychev, M. Vechev, and E. Yahav

Program Synthesis. Program synthesis techniques have been successfully used to help
programmers discover tricky details, see [12] for a survey. For instance, inference tech-
niques have been used to automatically synthesize missing synchronization such as
atomic sections [30] and locks [20]. All of these approaches effectively synthesize a
constraint over the statements of the same thread. In contrast, we consider inter-thread
constraints where comparatively speaking, there has been significantly less work.

9 Conclusion and Future Work

We introduced a synthesis framework for statically enforcing determinism of infinite-
state programs. We presented a thread-modular synthesis algorithm, which given a po-
tentially non-deterministic parallel program, discovers ordering constraints that make
the program deterministic, without introducing non-termination.

The algorithm identifies abstract conflict states and then synthesizes an inter-thread
constraint formula that describes ways to resolve these conflicts. Then, the synthesizer
realizes a satisfying assignment to such a constraint in the program via synchroniza-
tion constructs. We showed how this is accomplished for signal/wait and spawn/sync
constructs.

We implemented our synthesizer and evaluated it on a set of programs adapted from
those used in the high performance community. Our results indicate that the tool is ef-
fective: for most programs it managed to quickly synthesize the initial synchronization
placement, and in some cases improve it.

There are several interesting directions for future work: (i) defining more expressive
inter-thread constraints, (ii) extending the notion of single-transition labels, (iii) refin-
ing the thread-modular synthesis algorithm so that stabilization interacts with repairs,
and (iv) designing translation algorithms that convert constraints to more expressive
synchronization, also enabled by (i).

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel analysis
of x10 programs. In: PPoPP 2007: Proceedings of the 12th Symposium on Principles and
Practice of Parallel Programming, pp. 183–193. ACM (2007)

2. Aviram, A., Weng, S.-C., Hu, S., Ford, B.: Efficient system-enforced deterministic paral-
lelism. In: OSDI (2010)

3. Berger, E.D., Yang, T., Liu, T., Novark, G.: Grace: safe multithreaded programming for
c/c++. In: OOPSLA 2009 (2009)

4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
an efficient multithreaded runtime system. In: PPoPP 1995 (1995)

5. Bocchino Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli, R., Overbey,
J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for deterministic parallel
java. In: OOPSLA 2009 (2009)

6. Botincan, M., Dodds, M., Jagannathan, S.: Resource-sensitive synchronization inference by
abduction. In: POPL 2012 (2012)

7. Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming with revisions and isola-
tion types. In: OOPSLA 2010 (2010)

Automatic Synthesis of Deterministic Concurrency 303

8. Cherem, S., Chilimbi, T., Gulwani, S.: Inferring locks for atomic sections. In: PLDI 2008
(2008)

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In: POPL 1997 (1977)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL 1978 (1978)

11. Devietti, J., Lucia, B., Ceze, L., Oskin, M.: Dmp: deterministic shared memory multipro-
cessing. In: ASPLOS 2009 (2009)

12. Gulwani, S.: Dimensions in program synthesis. In: PPDP 2010 (2010)
13. Jeannet, B., Miné, A.: APRON: A library of numerical abstract domains for static analysis.

In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009)

14. Jin, G., Zhang, W., Deng, D., Liblit, B., Lu, S.: Automated concurrency-bug fixing. In: OSDI
2012 (2012)

15. Kawaguchi, M., Rondon, P., Bakst, A., Jhala, R.: Deterministic parallelism via liquid effects.
In: PLDI 2012 (2012)

16. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In: FMCAD
2010 (2010)

17. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using SPARK. In: Hedin, G. (ed.)
CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

18. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. In: SIGOPS Oper. Syst. Rev. (2008)

19. Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap decomposition for
concurrent shape analysis. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079,
pp. 363–377. Springer, Heidelberg (2008)

20. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: synchronization inference for
atomic sections. In: POPL 2006 (2006)

21. Miné, A.: Static analysis of run-time errors in embedded critical parallel c programs. In:
Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 398–418. Springer, Heidelberg (2011)

22. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19, 31–100 (2006)
23. Navabi, A., Zhang, X., Jagannathan, S.: Quasi-static scheduling for safe futures. In: PPoPP

2008 (2008)
24. Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: efficient deterministic multithreading in

software. ASPLOS 2009 (2009)
25. Habanero Multicore Software Research project, http://habanero.rice.edu/hj
26. The SAT4J SAT solver, http://www.sat4j.org/.
27. Vallée-Rai, R., et al.: Soot - a Java Optimization Framework. In: Proceedings of CASCON

1999, pp. 125–135 (1999)
28. Vasudevan, N., Edwards, S.A.: A determinizing compiler. In: PLDI, FIT Session (2009)
29. Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic verification of determinism for

structured parallel programs. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337,
pp. 455–471. Springer, Heidelberg (2010)

30. Vechev, M., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchronization. In: POPL
2010 (2010)

http://habanero.rice.edu/hj
http://www.sat4j.org/

Witnessing Program Transformations

Kedar S. Namjoshi1 and Lenore D. Zuck2

1 Bell Laboratories, Alcatel-Lucent
kedar@research.bell-labs.com
2 University of Illinois at Chicago

lenore@cs.uic.edu

Abstract. We study two closely related problems: (a) showing that
a program transformation is correct and (b) propagating an invariant
through a program transformation. The second problem is motivated by
an application which utilizes program invariants to improve the quality of
compiler optimizations. We show that both problems can be addressed
by augmenting a transformation with an auxiliary witness generation
procedure. For every application of the transformation, the witness gen-
erator constructs a relation which guarantees the correctness of that
instance. We show that stuttering simulation is a sound and complete
witness format. Completeness means that, under mild conditions, every
correct transformation induces a stuttering simulation witness which is
strong enough to prove that the transformation is correct. A witness is
self-contained, in that its correctness is independent of the optimization
procedure which generates it. Any invariant of a source program can be
turned into an invariant of the target of a transformation by suitably
composing it with its witness. Stuttering simulations readily compose,
forming a single witness for a sequence of transformations. Witness gen-
eration is simpler than a formal proof of correctness, and it is compre-
hensive, unlike the heuristics used for translation validation. We define
witnesses for a number of standard compiler optimizations; this exercise
shows that witness generators can be implemented quite easily.

1 Introduction

An optimizing compiler is commonly structured as a sequence of passes. Each
pass has a source program, which is analyzed and transformed to a target pro-
gram, which then becomes the source for the next pass in the sequence. By
augmenting the analysis phase of an optimization pass with information from
externally supplied program invariants, it is possible to significantly enhance the
quality and the effectiveness of the optimization.

To illustrate this point, consider a program which uses McCarthy’s 91 func-
tion [12], which we write as M91(x). The original function is doubly recursive,
but has the simple property that the result is 91, if x ≤ 100, and is (x − 10)
otherwise. Suppose that a programmer supplies this invariant, perhaps as part
of a larger correctness proof. A compiler may then replace an invocation of
this function, say M91(a), with the substantially simpler conditional statement:
if (a <= 100) then 91 else (a-10).

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 304–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Witnessing Program Transformations 305

Program invariants that enable new and improved optimization may arise
from multiple sources: they may be computed by a static program analysis, be
supplied as part of a correctness proof, or be generated by the analysis phase
of an earlier optimization pass. The key technical challenge is to accurately
propagate an invariant through multiple optimization passes. The difficulty arises
because an optimization may alter program structure in arbitrary ways. For
instance, a dead-code elimination removes portions of the program, expression
simplification may add fresh variables and statements, and loop optimization
reorders statement executions. Therefore, an invariant cannot simply be copied
over unchanged from the source to the target of an optimization.

Moreover, one would like a generic and systematic propagation procedure
which works for all optimizations. The questions of correctness and propagation
are closely related: if there is no assurance that an optimization is correct, a
target program invariant cannot be derived from an invariant for its source
program, but must be computed afresh.

In this work we suggest a methodology which resolves both questions. We pro-
pose that every optimization1 procedure is augmented with an auxiliary witness
generator. For each instance of optimization, the generator constructs a witness
relation between the target and source programs which guarantees correctness
for that instance. We show that a stuttering simulation relation forms a sound
and complete witness format. Stuttering simulation has several advantages. First,
checking if a relation is a stuttering simulation can be done by considering only
single program steps (even if stuttering is unbounded), resulting in a generic,
easily implemented, and independent procedure to check for the correctness of a
transformation. Second, stuttering simulation is closed under composition; thus,
a sequence of witnesses, corresponding to a sequence of transformations, can
be collapsed into a single witness for the entire sequence. Third, we show that
a source program invariant can be propagated to the target program simply
by computing its pre-image with respect to the witness relation. And, finally,
we show that this format is complete: under mild conditions, a valid stuttering
simulation relation can be defined for every correct transformation.

Unlike witness propagation, witness generation is not expected to be per-
formed automatically. It assumes accesss to the optimization code and familiar-
ity with the procedure. The additional effort required is compensated for with
a better optimization that can utilize externally supplied invariants, and whose
correctness can be proved independently with theorem provers.

Witness generation differs in crucial respects from the known alternatives to
showing correctness of compiler optimizations. Formally proving the correctness
of a transformation over all legal inputs is a daunting task2. Moreover, a cor-
rectness proof does not directly result in a method for propagating invariants.

1 In this paper, we use “transformation” and “optimization” interchangeably.
2 The remarkable effort described in [10] shows how much work is needed to construct
correctness proofs for an optimizing compiler. As another estimate of the difficulty,
the implementation of sparse conditional constant propagation requires over 2000
lines of C++ code in LLVM [9].

306 K.S. Namjoshi and L.D. Zuck

Translation validation (TV) (cf. [24]) employs heuristics to guess a witness rela-
tion for every instance of an unknown transformation. The heuristics, however,
may fail to produce a witness for some instances.

Witness generation falls in-between these two options. Crucially, we assume
full knowledge of the optimization procedure, as for formal correctness proofs,
but define a generator to construct a witness for every run of the optimizer, as
with TV. Full knowledge of the optimization procedure eliminates the need for
heuristics, while generating a witness for each run is significantly simpler than
constructing a correctness proof. The possible drawback is in the overhead of
witness generation and the need to check a witness for correctness.

L1: y := 3;

L2: x := 10;

L3: x := 20;

L4: y := 2*x + y;

(a) source

L1: y := 3;

L3: x := 20;

L4: y := 2*x + y;

(b) target

Fig. 1. Dead-code elimination

The use of stuttering simulation is a departure from the common method
of showing refinement, which is to establish a simulation relation from the tar-
get to the source program. Simulation is, however, incomplete: for instance, the
dead-code elimination transformation shown in Figure 1 cannot be shown correct
with a standard simulation relation, as the target has fewer instructions than
the source. Our proof that stuttering simulation is complete is a specialization
of results [1,14] on the completeness of refinement mappings; the details of this
connection are laid out in Section 2. The witness relations defined in the com-
pleteness proof are necessarily complex. As we show in Section 3, however, many
common optimizations may be witnessed with simple relations. This is because
the complexity lies in the analysis phase which is used to determine whether
a transformation is feasible, rather than in the transformation itself. A witness
generator can re-use the information gathered in the analysis to define a witness.

To summarize, our contributions in this work are as follows:

– We propose augmenting each optimization pass with a witness generator,
which creates a witness relation for every run of the optimizer.

– We show that stuttering simulation is a sound and (under mild conditions)
complete witness format. As a consequence, witness checking can be made
independent of the optimizations being considered.

– We show how to propagate program invariants using a stuttering simulation
witness. The construction preserves inductiveness: an inductive invariant for
the source turns into an inductive invariant for the target program;

– We show how to define witnesses generators for several standard compiler
optimizations. The generator procedure freely uses analysis information that
has been gathered for the optimization.

Witnessing Program Transformations 307

2 Transformations and Witnesses

We define the notion of correctness for a program transformation, and show that
establishing a stuttering simulation relation from target to source is a sound and
complete method for establishing correctness. We also show how to propagate
invariants across a transformation using witnesses.

2.1 Background and Notation

Following Dijkstra and Scholten[8], the notation [ϕ] for a formula ϕ represents
that ϕ is a validity. For clarity, we often omit displaying the variables that a
predicate depends on; thus, for instance, we may write [f ⇒ g] instead of
[f(x, y) ⇒ g(y)] or the even more verbose (∀x, y : f(x, y) ⇒ g(y)).

The inverse of a binary relation R is written as R−1. The composition of
relations R and S, written R;S, is the relation {(u,w) | (∃v : (u, v) ∈ R ∧
(v, w) ∈ S)}. For a relation R on D × E and a predicate θ on E, the notation
〈R〉θ defines the set {d ∈ D | (∃e : e ∈ E : (d, e) ∈ R ∧ e ∈ θ)}. Its negation
dual, denoted [R]θ, defines the set {d ∈ D | (∀e : e ∈ E ∧ (d, e) ∈ R : e ∈ θ)}.

For a program A and predicate ϕ, wlp(A,ϕ) is the weakest liberal precondi-
tion operator, and wp(A,ϕ) is the weakest precondition operator, both defined
in [7].

2.2 Programs and Transformations

Example programs in this paper are written in a C-like notation. For the formal
framework, it is simpler to consider a program as a symbolic transition system.

Definition 1 (Program). A program is described as a tuple (V,Θ, T), where

– V is a finite set of (typed) state variables, including a distinguished program
location variable, π,

– Θ is an initial condition characterizing the initial states of the program,
– T is a transition relation, relating a state to its possible successors.

A program state is a type-consistent interpretation of its variables. For a state
s and a variable v ∈ V , we denote by s[v] the value that s assigns to v. The
transition relation is denoted syntactically as a predicate on V and V ′, which is
a primed copy of V . For every variable x in V , its primed version x′ refers to
the value of x in the successor state.

There is a unique initial program location, S, such that [Θ → (π = S)], and a
unique terminal program location, F, such that [T ∧ (π = F) → false]. An initial
state is one where the location is S; a final state is one where the location is F;
all other states are intermediate states. We assume that a program has no direct
transition from an initial to a final state, and that there are no transitions to an
initial state.

We assume that the transition relation of a program is complete; that is, for
every non-final state s, there is a state s′ such that T (s, s′) holds, and that a final

308 K.S. Namjoshi and L.D. Zuck

state has no successor. We also assume that the transition relation is location-
deterministic, in that there is a unique transition between any two locations.
Formally, [(T (s, t) ∧ T (s, v) ∧ t[π] = v[π]) ⇒ t = v]. This allows non-
determinism in the sense of Dijkstra’s if -fi and do-od constructs where multiple
guards may be true at a state, since the successor states have different locations.

A computation of a program is a maximal finite or infinite sequence of states
σ : s0, s1, . . ., where s0 is an initial state and every two consecutive states on σ
are related by the transition relation. Maximality implies that the last state of
σ (if any) is a final state.

The notion of correct implementation (“program B implements program A”)
is parameterized with respect to a compatibility relation from the state space
of B to the state space of A. Intuitively, this suggests how the initial and final
states of a B-computation correspond to similar states of A.

We give some examples of compatibility relations. A renaming transformation
maps every variable of programA, say xi, to a corresponding variable, say yi, and
replaces all occurrences of the x-variables with their corresponding y-variables.
The compatibility relation is simply the conjunction of terms (xi = yi), for all i.
A different transformation may replace one variable, x0, of A with a bit-vector
b0, . . . , b31 in B, while renaming all other variables x1, x2, . . . to corresponding
variables y1, y2, . . . as in the renaming transformation. The compatibility relation
is the conjunction of (x0 =

∑31
k=0 bk · 2k) with the terms (xi = yi) for i ≥ 1.

Definition 2 (Computation Matching). Let A and B be programs, and σB

and σA be maximal computations of B and A respectively. Then σB is matched
by σA up to a compatibility relation α if the following all hold:

– The initial states of σB and σA are related by α,
– If σB is terminating, so is σA and their final states are related by α, and
– If σB is infinite then so is σA.

The definition does not require that intermediate states of σB and σA are com-
patible. We make this simplifying choice for this work because, typically, an
optimizing transformation preserves sequential semantics, which depends only
on initial and final states. It is straightforward to modify this definition to require
matching of intermediate states.

Definition 3 (Implementation). Given programs A and B and a compati-
bility relation α, we say that B implements A up to α if for every maximal
computation of B, there is a maximal computation in A that matches it up to α.

Requiring non-terminating computations of B to be matched to non-terminating
computations of A rules out pathological “implementations” where B does not
terminate on any input.

Theorem 1. The implementation formulation has the following properties.

1. (Composition) If B implements A up to α, and C implements B up to β,
then C implements A up to β;α.

Witnessing Program Transformations 309

2. (Preservation) If B implements A up to α, then for any predicates pre and
post, if [〈α−1〉pre ⇒ wlp(A, [α−1]post)] then [pre ⇒ wlp(B, post)], and
[〈α−1〉pre ⇒ wp(A, [α−1]post)] then [pre ⇒ wp(B, post)].

Proof. (Sketch)The composition property follows directly from the definitions.
We sketch a proof of the preservation property for wlp. Suppose there is an
initial state u of B which satisfies pre and a terminating computation of B from
u which ends in a final state v. As B implements A up to α, there is a terminating
computation of A starting from an initial state s and ending in a final state t;
these states match u and v, respectively, by α. As (u, s) ∈ α, the state s satisfies
〈α−1〉pre. Therefore, the state t satisfies [α−1]post . As (v, t) ∈ α, it follows that
v satisfies post .

The proof for wp uses the identity [wp(S, q) ≡ wlp(S, q) ∧ wp(S, true)]
from [7]. It remains to prove that [pre ⇒ wp(B, true)] under the assumption
[〈α−1〉pre ⇒ wp(A, true)]. Consider state u and s as before. If wp(B, true)
does not hold at u, there is an infinite computation from u in B, which must be
matched by an infinite computation from s in A. As s satisfies 〈α−1〉pre, this
leads to a contradiction. ��

A transformation is a partial function on the set of programs. A transformation
τ is correct up to a parametric compatibility function α if for every program
A in its domain, B = τ(A) implements A up to α(A). In practical terms, a
transformation is partial because it need not apply to all programs. Indeed, much
of the effort in compiler optimization is on the analysis required to determine
whether a particular transformation can be applied.

2.3 Stuttering Simulation

The definition of implementation requires matching computations of unbounded
length, which is difficult to verify. A more directly verifiable formulation is in
terms of simulation, which matches single transitions.

It is simpler to define simulation in terms of a transition system, given by a
tuple (S, I, R), where S is a set of states, I is the subset of initial states and
R ⊆ S × S is a transition relation. A program (V,Θ, T) induces the transition
system where the states are interpretations of V , the initial states are those
satisfying Θ, and the relation R is that defined symbolically by T .

Definition 4 (Step Simulation). Given transition systems B and A, a rela-
tion X ⊆ SB × SA is a step simulation if (a) every state in IB is related by
X to some state in IA, and (b) for every u, s and v such that (u, s) ∈ X and
(u, v) ∈ RB, there is some t ∈ SA such that (s, t) ∈ RA and (v, t) ∈ X.

The following theorem is immediate.

Theorem 2 (Step Soundness). For programs B and A and a compatibility
relation α, the program B implements A up to α if there is a step simulation
X from B to A, such that (1) for every initial state sB of B, there is an initial

310 K.S. Namjoshi and L.D. Zuck

state sA of A such that (sB, sA) is in both X and α, and (2) for every final state
tB of B, if (tB , tA) ∈ X then tA is a final state of A and (tB, tA) ∈ α.

Thus, checking the single-transition conditions of step simulation, together with
the two additional conditions of Theorem 2, suffices to show that B is an imple-
mentation of A up to α. These checks can be encoded as validity questions and
(possibly) resolved with a decision procedure.

Step simulation implies that matching finite computations have the same
length. As pointed out in the introduction, this requirement makes it impos-
sible to show the correctness of certain transformations using step simulation.
Stuttering simulation [6] relaxes this condition to allow successive non-empty
segments of the two computations to match by X , as is illustrated in Figure
2(a). However, these segments may be of arbitrary length, which makes it diffi-
cult to check a candidate relation.

For this reason, we use an equivalent single-step definition of stuttering sim-
ulation, formulated in [16] and refined in [14]. This requires, in addition to the
state relation, a ranking function whose value decreases strictly at each stut-
tering step, ensuring that every maximal stuttering segment is finite. We use a
simpler form of the definition, which is illustrated in Figure 2(b).

Fig. 2. Stuttering Simulation. Part (a) shows matching computations; states related
by X are connected with a dashed line. Part(b) illustrates the single-step formulation.

Definition 5 (Stuttering Simulation with Ranking). Consider transition
systems B and A, a relation X ⊆ SB × SA, a well-founded domain (D,≺), and
a partial ranking function, rank : SB × SA → D. The relation X is a stuttering
simulation if (a) every state in IB is related by X to some state in IA, and (b)
for every u, v ∈ SB and s ∈ SA such that (u, s) ∈ X and (u, v) ∈ RB , one of the
following holds:

– There is t such that (s, t) ∈ RA and (v, t) ∈ X, or

Witnessing Program Transformations 311

– There is t such that (s, t) ∈ RA and (u, t) ∈ X and rank(u, t) ≺ rank(u, s)
(stuttering in A), or

– (v, s) ∈ X and rank(v, s) ≺ rank(u, s) (stuttering in B)

The strict decrease in rank on every stuttering step ensures that any stuttering
sequence must be of finite length.

2.4 Soundness and Completeness of Stuttering Simulations

Definition 6 (Witness). Let A and B be programs with α as a compatibility
relation from B to A. An α-witness for (A,B) is a relation X from the state space
of B to that of A which is a stuttering simulation and satisfies the additional
conditions

– For every initial state u of B, there is an initial state s of A such that (u, s)
is in X and α, and

– For every final B-state v, and any A-state t, if (v, t) ∈ X, then t is final for
A and (v, t) ∈ α.

It is a well known fact that stuttering simulations are closed under composition
and union (see [13] for a proof). It is straightforward to show that the union and
the composition of witnesses satisfies the two additional conditions. Hence, we
obtain the following theorem.

Theorem 3. [Closure Properties] The union of witness relations is a witness.
If X is an α-witness for (A,B) and Y is a β-witness for (B,C), then Y ;X is a
β;α-witness for (A,C).

Theorem 4. [Soundness] If X is an α-witness for the program pair (A,B), then
B implements A up to α.

Proof. Suppose that σB is a maximal computation ofB with start state u. By the
first condition of Definition 6, there is an initial state s of A that is related to u
by both X and α. As X is a stuttering simulation, one can inductively construct
a maximal computation σA of A from s which matches σB . Formally, matching
requires that that σA and σB can be partitioned into corresponding non-empty
segments where any pair of states in corresponding segments are related by X .
A full proof showing the inductive construction can be found in [16].

Matching implies that the first condition of Definition 2 is met by the choice of
initial state for σA. We now show the second condition. Suppose σB is finite, so
its last state, say v, is final for B. This state is X-related to some state, say t, on
σA. By condition (2) of the witness definition, t is final for A, and therefore the
last state of σA, and (v, t) is in α. This meets the second condition of Definition
2. On the other hand, if σB is infinite, so is σA, by construction. This meets the
third condition of Definition 2.

Thus, every maximal computation of B has a matching computation in A, so
that B implements A up to α by Definition 3. ��

312 K.S. Namjoshi and L.D. Zuck

In [1], Abadi and Lamport showed that establishing a simulation is complete for
showing language containment after the two transition systems are augmented
with history and prophecy variables. Prophecy variables are needed to account
for stuttering and branching. In [14], Manolios sketches a proof that stuttering
simulation is complete when augmented with history and prophecy variables,
where prophecy variables are used only to account for non-determinism. We
prove in Theorem 5 that stuttering simulation is complete for programs with
deterministic transitions, where unbounded non-determinism is allowed in the
choice of initial state. The proof shows that prophecy variables are unnecessary
in this situation, while history can be folded into the definition of stuttering
simulation. As compiler optimizations are performed on deterministic internal
representations, the assumptions made are valid in practice.

Theorem 5. [Completeness] Consider programs B and A both of which have a
deterministic transition relation. If B implements A up to α, there is an αh-
witness for the pair (Ah, Bh). Here, P h and αh are augmentations of program
P and relation α with respect to a history variable h.

We first sketch out the idea of the proof. By the definition of implementation,
every computation σ of B has a matching computation δ of A. As A and B are
deterministic, the computations are non-branching. The stuttering simulation
relation connects initial states of the two computations, final states (if any),
and every pair of intermediate states. A history variable is used to differentiate
occurrences of the same program state on different computations; as there is no
branching, it suffices to record the initial state of a computation.

Proof. (of Theorem 5) Given a program P = (V,Θ, T), construct P h, an ex-
tension of P with a history variable h. The history variable is an array that
records a value for every program variable. The new program has variable set
V h = V ∪ {h}, transition relation T h = T ∧ (h′ = h), and initial condition
Θh = Θ ∧ (∧ x : x ∈ V : h(x) = x). The new initial condition ensures that the
initial values of all program variables are recorded in the history variable.

For a state s of an extended program, the initial state corresponding to it is
denoted init(s). In this state, the location is S, every program variable x has the
value stored for it in the history h, i.e., init(s)[x] = (s[h])(x), and the history
variable has the value stored in the history; i.e., init(s)[h] = s[h]. The state of
the original program which state s corresponds to is called orig(s). In this state,
the location is the location of s, and every program variable has the value it has
in s, i.e., orig(s)[x] = s[x] for all x ∈ V .

Suppose that programs B and A have been extended in this manner to Bh

and Ah respectively. Determinism and completeness of transitions ensures that
there is a single computation from every initial state. The relation X between
Bh and Ah is defined as follows. For a state u of Bh and a state v of Ah, the
pair (u, v) is in X iff the following conditions hold:

– (Reachability) u is on the computation from initB(u) in Bh and v is on the
computation from initA(v) in Ah,

Witnessing Program Transformations 313

– (Matching) The computation in B starting at origB(initB(u)) is matched
(as in Definition 2) by the computation in A starting at origA(initA(v)).

– (Position) u and v are either both initial states, both final states, or both
intermediate states.

The function rank(u, v) is defined only if (u, v) ∈ X and u and v are both on
a path to a final state. It has the value (m,n) where m is the number of steps
to the final state from u and n is the number of steps to the final state from v.
(By determinism, at most one final state can be reached from any state.) The
comparison function compares rank values point-wise.

We claim that X is a stuttering simulation relation. Consider a pair (u, v)
in X . The definition of X implies that for any descendant u′ of u (including
u′ = u) and descendant v′ of v (including v′ = v), the pair (u′, v′) satisfies the
reachability and matching conditions. This follows as the definition of the history
variable and its update imply that initB(u) = initB(u

′) and initA(v) = initA(v
′).

Hence, in the following, we focus on re-establishing the Position condition for
successor states.

(1) If u is on a path to a final state, so must v by the Matching constraint.
Consider a transition (u, u′). By the definitions, u′ must be either an intermediate
or a final state.

Suppose u′ is a intermediate state. If v is a intermediate state, then (u′, v) ∈ X ;
moreover, rank(u′, v) ≺ rank(u, v) as u′ is closer to its final state than u. If v
is an initial state, its unique successor v′ must be an intermediate state, so
(u′, v′) ∈ X . It is not possible for v to be final state, as u would also have to be
a final state by the definition of X , and would not have a successor.

Suppose u′ is a final state. Then u (and therefore v) must be an intermediate
state. If v has a final successor v′, then (u′, v′) ∈ X . If not, then v has a successor
v′ that is an intermediate state. Then (u, v′) ∈ X ; moreover, rank(u, v′) ≺
rank(u, v) as v′ is closer to its final state than v.

(2) If u has no path to a final state, neither can v by the path matching
condition. Consider a transition (u, u′). If u is an initial state, so is v, by the
definition ofX , so there is an intermediate successor v′ of v such that (u′, v′) ∈ X .
If u is an intermediate state, so are v and u′; hence, by completeness of the
transition relation, v has an intermediate successor v′, and (u′, v′) ∈ X .

This proof establishes that X is a stuttering simulation. We now establish the
two additional conditions that are required for X to be a witness. Define αh so
that (u, v) ∈ αh iff (origB(u), origA(v)) ∈ α.

Consider an initial state u of Bh. Then s = origB(u) is an initial state of
B which, as B implements A up to α, is related to an initial state t of A such
that (s, t) ∈ α. Consider the initial state v of Ah formed by extending t with the
initial value of the history variable. Then origA(v) = t, so that (u, v) ∈ αh.

Suppose u, v are states such that (u, v) ∈ X and u is final. From the Position
condition, v must also be final. As the history variable is purely auxiliary, the
computation from initB(u) to u has a corresponding computation in B from
origB(initB(u)) to origB(u). Similarly, the computation from initA(v) to v has
a corresponding computation in A from origA(initA(v)) to origA(v). By the

314 K.S. Namjoshi and L.D. Zuck

Matching condition, these computations match, so that (origB(u), origA(v)) is
in α, as origB(u) is a final state of B. Hence, (u, v) ∈ αh. ��

2.5 Invariant Propagation

Program invariants may arise from multiple sources: for instance, they may be
supplied externally via a correctness proof or a static analysis of the source
program, or computed internally as part of the analysis phase of an optimization
pass. Having a witness relation helps to propagate both types of invariants for
use in later stages of optimization. Note that the propagated invariant does not
depend on the ranking function used to show that W is a stuttering simulation.

Theorem 6. Let W be a stuttering simulation witness for a transformation
from program A to program B. If θ is an invariant for A, the set 〈W 〉θ is an
invariant for B. Moreover, if θ is inductive, so is 〈W 〉θ.
Proof. Let σ be a computation of B. From the stuttering simulation definition,
there is a computation δ of A such that every state on σ is related to some state
on δ. As δ is a computation of A, every state along it satisfies θ. It follows that
every state on σ satisfies 〈W 〉θ. Hence, the assertion 〈W 〉θ is an invariant for B.

Now assume that θ is inductive; we show that 〈W 〉θ is inductive as well. The
base case, that every initial state of B satisfies 〈W 〉θ, holds as all such states
are related to some initial state of A. Consider any state u of B which satisfies
〈W 〉θ. Therefore, there is a state s of A such that (u, s) ∈ W and s satisfies θ.
Consider a transition in B from u to v. By the stuttering simulation definition,
v corresponds by W to a state t that is reachable by a finite (possibly empty)
path in A from s. As θ is inductive, every state on this path, including t, satisfies
θ; hence, v satisfies 〈W 〉θ. ��

2.6 Computational Questions

Consider a sequence of transformations, with respective witnesses W1,W2, . . . ,
Wk. An invariant θ for the source program may be transferred in stages to the
invariant 〈WK〉(〈WK−1〉(. . . 〈W2〉(〈W1〉θ) . . .)) for the target. As the pre-image
operator distributes over composition, this is equivalent to 〈WK ; . . . ;W2;W1〉θ.
Witnesses are closed under composition by Theorem 3, so letting X = WK ; . . . ;
W2;W1 be the witness for the entire transformation sequence, this expression
can be written succinctly as 〈X〉θ.

An interesting question is whether to perform invariant propagation in an
eager or lazy manner. Eager propagation transfers the invariant for each stage.
Since not all stages necessarily use the transferred invariant, an alternative is to
transfer an invariant only when needed.

We expect that the primary use of a transferred invariant will be to check
the validity of Hoare-triples under the invariant. The checks, therefore, have the
shape [(〈W 〉θ ∧ pre) ⇒ wlp(S, post)]. This can be written equivalently as
[(W ∧ θ ∧ pre ∧ S) ⇒ post], which eliminates the existential quantification
in 〈W 〉. The quantifier-removal is important as, for many logics, efficient decision
procedures are known only for their quantifier-free fragments.

Witnessing Program Transformations 315

3 Witnesses for Common Optimizations

In this section we define witnesses for several standard optimizations. The opti-
mizations are chosen for their commonality and in order to illustrate features of
the witness generation. We consider conditional constant propagation, dead-code
elimination, control-flow graph compression, and a number of loop optimizations.
For constant propagation, the witness is a step simulation; however, dead-code
elimination and control-flow graph compression requires stuttering simulation,
as the target code is shorter than the original. Loop optimizations, such as in-
terchange, tiling, and reversal require more complex witnesses which maintain
invariants about the loop. In each case, witness generation makes explicit the
implicit invariants gathered during the analysis.

3.1 Conditional Constant Propagation

In conditional constant propagation, the analysis algorithm does not propagate
constants through conditional branches which can be derived to be “dead”; i.e.,
those which have a guard which evaluates to false. This produces more accurate
results. For instance, in the example of Figure 3, determining that the “then”
branch of the conditional is dead allows y to be a constant after the conditional.

L1: x := 10;

L2: y := x*x;

L3: z := 2*x + 30;

L4: if(3*z < y){

L5: y := y+1;

L6: }else{

L7: y := y+2;

L8: }

L9: z := y+10;

L10:

(a) source

L1: x := 10;

L2: y := 100;

L3: z := 50;

L4: skip;

L7: y := 102;

L8: skip;

L9: z := 112;

L10:

(b) target

Fig. 3. Conditional Constant Propagation

Constant propagation determines a set of variables that are known to be
constant at each location, along with their values. This set can be represented as
an assertion. For instance, at L3, the assertion is π = L3 ∧ x = 10 ∧ y = 100.
The set of such assertions forms an inductive invariant of the source program.

We use a symbolic representation to specify the relation between target and
source programs. For a source variable x, we use x to represent the same variable
in the target program. The general shape of the witness relation for constant
propagation is the following. A target state t is related to a source state s iff (a)
program locations of s and t correspond, (b) all variables have identical values
in s and t, and (c) the inductive invariant representing constant values holds of

316 K.S. Namjoshi and L.D. Zuck

the source program. In our example, for simplicity, we rename locations in the
target so that the correspondence is obvious (e.g., L3 in the source corresponds
to L3 in the target) but such renaming is not required.

The witness relation for the example program includes the following clause.
Note that the invariant for the source program has been “folded-in” to the
relation through the assertions x = 10 ∧ y = 100 ∧ z = 50.

(π=L4) ∧ (π=L4) ∧ (x = x) ∧ (y = y) ∧ (z = z) ∧ x = 10 ∧ y = 100 ∧ z = 50

Carrying the invariants in the relation is necessary to match transitions as re-
quired for a step simulation. For instance, the unconditional transition from the
target location L4 to L7 can be matched by the conditional source transition
from L4 to L7 only because the values of y and z are known to be the constant
values. We obtain the following theorem.

Theorem 7. For any correct constant propagation, the defined relation is a step
simulation witness which preserves all variables.

3.2 Dead Code Elimination (DCE)

Dead code elimination is based on an analysis of “live” variables. A variable is
live at a program point if there is program path starting at that point where the
variable is used before it is redefined. (All variables are considered live at S and
F nodes.) If the transition from location m to location n assigns a value to a
variable v that is dead (i.e., not live) at n, the assignment is replaced with a skip
statement. This is illustrated in Figure 4 which performs dead-code detection
for the output of the conditional analysis.

L1: x := 10;

L2: y := 100;

L3: z := 50;

L4: skip;

L7: y := 102;

L8: skip;

L9: z := 112;

L10:

(a) source

L1: x := 10;

L2: skip;

L3: skip;

L4: skip;

L7: y := 102;

L8: skip;

L9: z := 112;

L10:

(b) target

Fig. 4. Dead code elimination

The result of the liveness analysis is a set, denoted live(l), for each location l
of the source program. The witness relation for DCE is the following. A target
state t is related to a source state s if (a) the program locations are identical for s
and t, and (b) every variable that is live at the source location has the same value

Witnessing Program Transformations 317

in target and source states – i.e., for every variable v such that v ∈ live(s[π)]):
s[v] = t[v]. For the example programs, the relation includes the clause

(π = L3) ∧ (π = L3) ∧ (x = x)

as only the variable x is live at L3.

Theorem 8. For any correct dead code elimination, the defined relation is a
step simulation witness which preserves all variables.

Proof. Every initial state of the target is an initial state of the source. Consider
a pair of related states (t, s). Let m be the common location in s and t. Now
consider a transition from t to t′. There is a corresponding transition from s to
s′ where s′ and t′ have the same location, as the control flow of the program
is unchanged. The transition from t to t′ is either a skip that is a result of
eliminating an assignment of a dead variable at l, or corresponds to an identical
transition in the source. Note that the transition in the source must be based
only on variables live at m. In the latter case, as s and t agree on the values of
live variables, the result of the transition is identical in both source and target.

In the first case, the source transition from s must have the form y := e for
some variable y that is dead at the successor location m′. Consider a variable
x that is live at m′. Hence, x �= y, so that s′[x] = s[x]. By the skip transition,
t′[x] = t[x]. Variable x must also be live at m, thus, s[x] = t[x] by the witness
relation, so that s′[x] = t′[x], as desired. Finally, as all variables are considered
live at S and F nodes, the two additional conditions in the witness definition
hold for the compatibility relation which preserves all program variables. ��

3.3 Control-Flow Graph Compression (CFG)

The output of the dead code elimination has several unnecessary skip statements.
These may be removed using the rewrite rule which replaces skip;S by S, for
any statement S. This compresses the control flow graph of the program. Other
instances of compression may occur in the following situations: (1) a sequence
such as goto L1; L1:S is replaced with L1:S, or (2) the sequence S1;S2 replaces
the sequence S1;if (C) skip else skip;S2. In each case, the target program
is shorter than the source. There cannot, therefore, be a step simulation witness;
it is necessary to introduce stuttering.

The general witness definition relates a target state t to a source state s if for
all v �= π, s[v] = t[v] and either s[π] = t[π] or s[π] lies on a linear chain of skip
statements starting from s[π] in the source graph. For our example, the witness
relation connects L1 in the target to {L1, L2, L3, L4} in the source, and L7 to
{L7, L8}, while L9 and L10 are connected to L9 and L10, respectively.

As for the ranking, note that every skip-sequence occurs in the same basic
block. Hence, we can assign a rank to each stuttering pair that measures its
distance from the end of the source skip-sequence, while non-stuttering pairs
are given a sufficiently high rank. Thus, one possible ranking is (L1, L1) �→
3, (L1, L2) �→ 2, (L1, L3) �→ 1, (L1, L4) �→ 0, (L7, L7) �→ 3, (L7, L8) �→ 2,
(L9, L9) �→ 3, and (L10, L10) �→ 3.

318 K.S. Namjoshi and L.D. Zuck

L1: x := 10;

L2: skip;

L3: skip;

L4: skip;

L7: y := 102;

L8: skip;

L9: z := 112;

L10:

(a) source

L1: x := 10;

L7: y := 102;

L9: z := 112;

L10:

(b) target

Fig. 5. Control-Flow-Graph compression

Theorem 9. For a correct control-flow graph compression, the defined relation
is a stuttering simulation witness which preserves all variables.

Proof. (Sketch)Suppose that target state t is related to source state s. Then
location s[π] is on a linear chain of skip statements from t[π] in the source
graph. This chain must be of bounded length; the distance to the end of the
chain provides the rank function needed for the stuttering simulation proof. A
transition from t is matched either by a transition from s, or by a stuttering skip
transition from s to s′, where s′ and t are matched by the witness while the rank
decreases along the step. The two additional conditions of the witness definition
hold for the compatibility relation which preserves all program variables. ��

As stuttering simulations are closed under composition, the witnesses for con-
stant propagation, dead-code elimination, and control-flow graph compression
can be composed to form a single witness for the transformation from the pro-
gram in Figure 3(a) to the program in Figure 5(b).

4 Reordering Transformations

A reordering transformation is a program transformation that merely changes
the order of execution of the code, without adding or deleting any executions of
any statement [2]. It preserves a dependence if it preserves the relative execution
order of the source and target of that dependence, and thus preserves the mean-
ing of the program. Reordering transformations include many loop optimizations
including fusion, distribution, interchange, and tiling.

A generic loop can be described by the statement “for i ∈ I by ≺I do B(i)”
where i is the loop induction variable and I is the set of the values assumed
by i through the different iterations of the loop. The set I can typically be
characterized by a set of linear inequalities.

4.1 Loop Invariant Code Motion

This is a simple reordering transformation, also referred to as “hoisting” or
“scalar promotion”. In it, a statement (or a group of statements) in the loop

Witnessing Program Transformations 319

body B(i) that does not depend on any of the loop iterations is taken out of the
loop body. See for example Fig. 6, which is a simplified version of an example
from [15]. The assignments to a and c are not dependent on any statement in the
loop body. Moreover, the loop body is executed at least once. These facts can
be established by a static dependency analysis. Therefore, the two assignments
may be moved before the loop without changing the overall semantics.

The stuttering simulation maps the first few statements of the target program
(L1, L12, L13) and the first iteration of the target loop into the first iteration of
the source loop. This requires stuttering, as there are more instructions in the
target program segment than in the source program segment. The corresponding
symbolic (stuttering simulation) matching may thus include (π = L5) ∧ (π =
L5) ∧ (i = i) ∧ (a = a) ∧ (b = b) ∧ (c = c) ∧ (i = 1) ∧ (a = 3) ∧ (b = 2) ∧
(c = 2). From the second iteration onwards, the two loops are linked in a step
simulation as, by that stage, the values of a, b, and c are established as identical
constants in both programs. This pattern, of matching up the first iterations
of the loops using a stuttering simulation, while subsequent iterations are in a
step simulation, applies to the general instance of loop invariant code motion. For
these iterations, the matching may include (π = L5) ∧ (π = L5) ∧ (i = i) ∧ (a =
a) ∧ (b = b) ∧ (c = c) ∧ (d = d) ∧ (i > 1) ∧ (a = 3) ∧ (b = 2) ∧ (c = 2).
An alternative treatment of this transformation can be found in [23].

L1: b := 2;

L2: for i=1 to 100 do{

L3: a := b + 1;

L4: c := 2;

L5: d := (i mod 2) * c;}

L6:

(a) source

L1: b := 2;

L12: a := 3;

L13: c := 2;

L2: for i=1 to 100 do{

L5: d := (i mod 2) * 2;}

L6:

(b) target

Fig. 6. Loop Invariant Code Motion

4.2 Loop Reordering Transformations

“Loop transformations” usually refer to a group of transformations that reorder
the loop bodies themselves, rather than the statements inside the loop body, and
have the generic form:

for i ∈ I by ≺I do B(i) =⇒ for j ∈ J by ≺J do B(F (j)) (1)

In such a transformation, we may possibly change the domain of the loop indices
from I to J , the names of loop indices from i to j, and possibly introduce an
additional linear transformation in the loop’s body, changing it from the source
B(i) to the target body B(F (j)). An example of such a transformation is loop
reversal, that can be described as

320 K.S. Namjoshi and L.D. Zuck

for i = 1 to N do B(i) =⇒ for j = N to 1 (by −1) do B(j)

Here I = J = [1..N], the transformation F is the identity, and the two orders
are given by i1 ≺I i2 ⇐⇒ i1 < i2 and j1 ≺J j2 ⇐⇒ j1 > j2, respectively.
Since we expect the source and target programs to execute the same instances
of the loop’s body (possibly in a different order), the mapping F : J �→ I is a
bijection from J to I.

The work in [24] includes a comprehensive table of common loop transfor-
mations expressed in this form. There, “structure preserving” and “reordering”
transformations are treated differently, here we claim that witnesses allow for
uniform treatment of the two types of transformations. There, it is shown that
the following commutation conditions suffice for a correct loop transformation:

1. The mapping F is a bijection from J onto I.
2. For every i1 ≺I i2 such that F−1(i2) ≺J F−1(i1), B(i1); B(i2) ∼ B(i2); B(i1).

Establishing simulation iteration by iteration may be difficult (perhaps even use-
less at times); the commutation conditions are sufficient to establish stuttering
simulation for states before and after the loop body. Propagation of inner loop
invariants, however, may be beneficial to perform further optimizations. While a
general scheme for establishing such a transformation may require complex logics
and reasoning, in many cases the obvious scheme — of replacing a source invari-
ant ϕ(i) by its counterpart F−1(ϕ(i)) — is correct. For example, consider the

programs in Fig. 7 and let AssertionA be the assertion ϕA(i) : sum =
∑i−1

k=1 a[i].
Since for every i = 1, . . . , N , F−1(i) = N − j + 1, we replace k = 1 with
k = N − 1 + 1 = N , i− 1 with F−1(i− 1) = N − j, and a[i] with a[j] to obtain

ϕB(j) : sum =
∑N

k=N−j a[k] for AssertionB.

B0

L1: sum := 0;

B1 {sum = 0}

L2: for i=1 to N do{

****AssertionA

L3: sum := sum + a[i];}

B2

L4:

(a) source

B0

L1: sum := 0;

B1 {sum = 0}

L2: for j=N to 1 by (-1) do{

****AssertionB

L3: sum := sum + a[j];}

B2

L4:

(b) target

Fig. 7. Vector summation reversal

5 Discussion, Conclusions, and Related Work

Ensuring the correctness of program transformations – in particular, compiler
optimizations – is a long-standing research problem. In [11], Leroy gives a nice
technical and historical view of approaches to this question. A primary approach

Witnessing Program Transformations 321

is to formally prove each transformation correct, over all legal input programs.
This is done, for example, in the CompCert project [10], and in [5], which derives
and proves correct optimizations using denotational semantics and a relational
version of Hoare’s logic. However, formal verification of a full-fledged optimizing
compiler, as one would verify any other large program, is often infeasible, due to
its size, evolution over time, and, possibly, proprietary considerations. Transla-
tion Validation offers an alternative to full verification. The idea is to construct
a validating tool which, after every run of the compiler, formally confirms that
the target code produced is a correct translation of the source program. (Proof-
carrying code [19] is related but certifies specific properties of programs.) A
primary assumption of this approach is that the validator has limited knowledge
of the transformation process. Hence, a variety of methods for translation vali-
dation arise (cf. [20,18,21,23,24,22]), each making choices between the flexibility
of the program syntax and the set of possible optimizations that are handled. As
details of the optimization are assumed to be unknown, each method employs
heuristics to set up an inductive correctness proof for a run of the optimizer.
This approach is, therefore, naturally limited in its reach by the heuristics that
are used to compute a correctness proof.

More recently, [4] study certificate translation, which transforms a correctness
proof of a source program into a correctness proof of the program’s transforma-
tion, and certificate analysis, which transforms a proof of correctness from one
formalism into another. In [3], a method for proving semantic equivalence pro-
grams based on relational Hoare logic is presented. While there are similarities
to our use of stuttering simulation relations as witnesses, the general thrust is
closer to translation validation rather than witness generation, and has similar
limitations.

Our approach, while close to translation validation, differs crucially in that
it supposes that the optimization procedure is known and can be examined and
augmented. Hence, we suppose that the optimization procedure can be aug-
mented with a witness generator which produces witnesses which are checked
– as in the translation validation – at run-time. As the optimization process is
visible to the witness generator, the generator is able to make use of auxiliary
invariants derived by the optimizer in order to produce a witness. This implies
that witness generation is, in principle, applicable to any optimization. The par-
ticular form of witness that is considered here ensures that it is complete; hence,
a witness checker may be written once and reused for the witnesses produced
by a variety of transformations. The completeness result applies to deterministic
programs. This may seem like a limitation; however, program optimizations are,
for the most part, applied to deterministic sections of code, although the full
program may have non-determinism from inputs and thread-level scheduling.

In practice, limits may arise from the complexity of the witness relation that
must be produced. For instance, the logics needed to express the witness may
not have decision procedures, so that fully automated witness checking is not
possible. However, in several cases – a selection of which is presented in Section
3 – witnesses can be expressed in terms of simple logics which are solvable using

322 K.S. Namjoshi and L.D. Zuck

current SMT solvers. An interesting question, which we plan to address in future
work, is the extent to which specialized forms of witnesses may be generated for
efficient checking.

We also state and provide a solution for the problem of invariant propagation.
This is prompted by recent (ongoing) work to crowd-sourced formal verification,
which will enable an application to use manually generated invariants to en-
hance and extend compiler optimizations. However, one need not rely solely on
crowd-sourcing or expert intervention for invariants; sound static analysis tools
often produce deep invariants for program code, especially loops, which are not
uncovered by the quick analysis carried out inside a compiler.

Invariant propagation is a special case of the proof propagation that is dis-
cussed in [17]; however, that work considers only propagation of inductive in-
variants through a step simulation. Theorem 6 extends the propagation result
to general invariants and stuttering simulation. While invariant propagation of
a kind is standard in optimizing compilers (e.g., the results of a points-to analy-
sis on the source program may be used in several subsequent optimizations), to
the best of our knowledge, the problem of invariant propagation had not been
addressed in the general form discussed here. An interesting practical issue with
invariant propagation is whether it should be performed in an eager or lazy
manner, as discussed briefly in Section 2.5.

In this paper, we have considered a simple, procedure-free model of programs.
A large number of standard optimizations fit this model. Extending witness
generation and checking to inter-procedural optimizations is a topic of ongoing
work. In current work, we are developing witness generators for several of the
commonly applied optimization routines in LLVM [9], using SMT solvers to
check the correctness of the generated witnesses.

Acknowledgements. This material is based on research sponsored by DARPA
under agreement number FA8750-12-C-0166. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of DARPA or
the U.S. Government.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991)

2. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann (2002)

3. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: Asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013)

4. Barthe, G., Kunz, C.: An abstract model of certificate translation. ACM Trans.
Program. Lang. Syst. 33(4), 13 (2011)

Witnessing Program Transformations 323

5. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL, pp. 14–25 (2004)

6. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many
identical finite state processes. Inf. Comput. 81(1), 13–31 (1989)

7. Dijkstra, E.: Guarded commands, nondeterminacy, and formal derivation of pro-
grams. CACM 18(8) (1975)

8. Dijkstra, E., Scholten, C.: Predicate Calculus and Program Semantics. Springer
(1990)

9. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88 (2004), Webpage at llvm.org

10. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL, pp. 42–54. ACM (2006)

11. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7),
107–115 (2009)

12. Manna, Z., McCarthy, J.: Properties of programs and partial function logic. Journal
of Machine Intelligence 5 (1970)

13. Manolios, P.: Mechanical Verification of Reactive Systems. PhD thesis, University
of Texas at Austin (2001)

14. Manolios, P.: A compositional theory of refinement for branching time. In: Geist,
D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 304–318. Springer,
Heidelberg (2003)

15. Muchnick, S.: Advanced Compiler Design & Implementation. Morgan Kaufmann,
San Francisco (1997)

16. Namjoshi, K.S.: A simple characterization of stuttering bisimulation. In: Ramesh,
S., Sivakumar, G. (eds.) FST TCS 1997. LNCS, vol. 1346, pp. 284–296. Springer,
Heidelberg (1997)

17. Namjoshi, K.S.: Lifting temporal proofs through abstractions. In: Zuck, L.D., Attie,
P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp.
174–188. Springer, Heidelberg (2002)

18. Necula, G.: Translation validation of an optimizing compiler. In: Proceedings of
the ACM SIGPLAN Conference on Principles of Programming Languages Design
and Implementation, PLDI 2000, pp. 83–95 (2000)

19. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: OSDI,
pp. 229–243. ACM (1996)

20. Pnueli, A., Siegel, M., Shtrichman, O.: The code validation tool (CVT)- automatic
verification of a compilation process. Software Tools for Technology Transfer 2(2),
192–201 (1998)

21. Rinard, M., Marinov, D.: Credible compilation with pointers. In: Proceedings of
the Run-Time Result Verification Workshop (July 2000)

22. Tristan, J.-B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for LLVM. In: PLDI, pp. 295–305 (2011)

23. Zuck, L.D., Pnueli, A., Goldberg, B.: Voc: A methodology for the translation val-
idation of optimizing compilers. J. UCS 9(3), 223–247 (2003)

24. Zuck, L.D., Pnueli, A., Goldberg, B., Barrett, C.W., Fang, Y., Hu, Y.: Transla-
tion and run-time validation of loop transformations. Formal Methods in System
Design 27(3), 335–360 (2005)

llvm.org

Formal Verification of a C Value Analysis Based
on Abstract Interpretation∗

Sandrine Blazy1, Vincent Laporte1, André Maroneze1, and David Pichardie2

1 IRISA - Université Rennes 1
2 Harvard University / INRIA

Abstract. Static analyzers based on abstract interpretation are com-
plex pieces of software implementing delicate algorithms. Even if static
analysis techniques are well understood, their implementation on real
languages is still error-prone.

This paper presents a formal verification using the Coq proof assistant:
a formalization of a value analysis (based on abstract interpretation),
and a soundness proof of the value analysis. The formalization relies on
generic interfaces. The mechanized proof is facilitated by a translation
validation of a Bourdoncle fixpoint iterator.

The work has been integrated into the CompCert verified C-compiler.
Our verified analysis directly operates over an intermediate language of
the compiler having the same expressiveness as C. The automatic extrac-
tion of our value analysis into OCaml yields a program with competitive
results, obtained from experiments on a number of benchmarks and com-
parisons with the Frama-C tool.

1 Introduction

Over the last decade, significant progress has been made in developing tools
to support mathematical and program-analytic reasoning. Proof assistants like
ACL2, Coq, HOL, Isabelle and PVS are now successfully applied both in math-
ematics (e.g., a mechanized proof of the 4-colour theorem [15] and of the Feit-
Thompson theorem [16]) and in formal verification of critical software systems
(e.g., the CompCert C-compiler [20] and the verified operating system kernel
seL4 [18]).

Over the same time, automatic verification tools based on model-checking,
static analysis and program proof have become widely used by the critical soft-
ware industry. The main reason for their success is that they strengthen the
confidence we can have in critical software by providing evidence of software
correctness. The next step is to strengthen the confidence in the results of these
verification tools, and proof assistants seem to be mature and adequate for this
task. This paper presents a foundational step towards the formal verification of
a static analysis based on abstract interpretation [10]: the formal verification us-
ing the Coq proof assistant of a value-range analysis operating over a real-world
language.
∗ This work was supported by Agence Nationale de la Recherche, grant number ANR-

11-INSE-003 Verasco.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 324–344, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Formal Verification of a C Value Analysis Based on Abstract Interpretation 325

Static analyzers based on abstract interpretation are complex pieces of soft-
ware that implement delicate symbolic algorithms and numerical computations.
Their design requires a deep understanding of the targeted programming lan-
guage. Misinterpretations of the programming language informal semantics may
lead to subtle soundness bugs that may be hard to detect by using only test-
ing techniques. Implementing a value analysis raises specific issues related to
low-level numeric computations. First, the analysis must handle the machine
arithmetic that is (more or less) defined in the programming language. Second,
some computations done by the analyzer rely on this machine arithmetic.

Thus, a prerequisite for implementing a static analyzer operating over a C-like
language is to rely on a formal semantics of the programming language defining
precisely the expected behaviors of any program execution (and including low-
level features such as machine arithmetic). Such formal semantics are defined in
the CompCert compiler (and it is unusual for a compiler). More precisely, each
language of the compiler is defined by a formal semantics (in Coq) associating
observable behaviors to any program. Observable behaviors include normal ter-
mination, divergence, abnormal termination and undefined behaviors (such as
out-of-bounds array access). We have chosen one language of the compiler (the
main intermediate language that has the same expressiveness as C, see Section 2)
and we have formalized a static analyzer operating over this language. The ad-
vantage of this approach is that our analyzer as well as the formal semantics
operate exactly over the same language.

The main peculiarity of the CompCert C-compiler is that it is equipped with
a proof of semantic preservation [20]. This proof is made possible thanks to the
formal semantics of the languages of the compiler. The proof states that any
compiled program behaves exactly as specified by the semantics of its original
program. It consists of the composition of correctness proofs for each compiler
pass and thus involves reasoning on the different intermediate languages of the
compiler.

All results presented in this paper have been mechanically verified using
the Coq proof assistant. The complete Coq development is available online at
http://www.irisa.fr/celtique/ext/value-analysis.

The paper makes the following contributions.

– It provides the first verified value analysis for a realistic language such as C
and hence demonstrates the usability of theorem proving in static analysis
of real programs.

– It presents a modular design with strong interfaces aimed at facilitating any
further extension.

– It provides a reference description of basic techniques of abstract interpreta-
tion and thus gives advice on how to use the abstract interpretation method-
ology for this kind of exercice while maintaining a sufficiently low cost in
terms of formal proof effort.

– It compares the performances of our tool (that has been generated automat-
ically from our formalization and integrated into the CompCert compiler)
with those of two interval-based value analyzers for C.

http://www.irisa.fr/celtique/ext/value-analysis

326 S. Blazy et al.

The paper exposes many examples taken from the formal development. It is
structured to follow the development of a C value analysis based on abstract
interpretation; from generic abstract domains (section 3), to fixpoint resolution
(section 4) and numerical and memory abstractions (sections 5 and 6). Section 7
describes the experimental evaluation of our implementation. Related work is
discussed in Section 8, followed by concluding remarks.

2 Background

This section starts with a short introduction to the Coq proof assistant. It is
followed by a brief presentation of the CompCert architecture and memory model.
The language our analyzer operates over is described at the end of this section.

2.1 Short Introduction to Coq

Coq is an interactive theorem prover. It consists in a strongly typed specification
language and a language for conducting machine-checked proofs interactively.
The Coq specification language is a functional programming language as well as
a language for inductively defining mathematical properties, for which it has a
dedicated type (Prop). Induction principles are automatically generated by Coq
from inductive definitions, thus inductive reasoning is very convenient. Data
structures may consist of properties together with dependent types. Coq’s type
system includes type classes. Coq specifications are usually defined in a modular
way (e.g., using record types and functors, that are functions operating over
structured data such as records). The user is in charge to interactively build
proofs in the system but those proofs are automatically machine-checked by the
Coq kernel. OCaml programs can be automatically generated by Coq from Coq
specifications. This process is called extraction.

2.2 The CompCert Memory Model

There are 11 languages in the CompCert compiler, including 9 intermediate lan-
guages. These languages feature both low-level aspects such as pointers, pointer
arithmetic and nested objects, and high-level aspects such as separation and
freshness guarantees. A memory model [21] is shared by the semantics of all
these languages. Memory states (of type mem) are collections of blocks, each
block being an array of abstract bytes. A block represents a C variable or an
invocation of malloc. Pointers are represented by pairs (b,i) of a block identifier
and a byte offset i within this block. Pointer arithmetic modifies the offset part
of a pointer value, keeping its block identifier part unchanged.

Values stored in memory are the disjoint union of 32-bit integers (written as
vint(i)), 64-bit floating-point numbers, locations (written as vptr(b,i)), and
the special value undef representing the contents of uninitialized memory. Pointer
values vptr(b,i) are composed of a block identifier b and an integer byte offset i
within this block. Memory chunks appear in memory operations load and store,
to describe concisely the size, type and signedness of the value being stored.

Formal Verification of a C Value Analysis Based on Abstract Interpretation 327

Values: v ::= vint(i) | vfloat(f) | vptr(b, i)
| undef

Mem. chunks: κ ::= Mint8signed | Mint8unsigned 8-bit integers
| Mint16signed | Mint16unsigned 16-bit integers
| Mint32 32-bit integers or pointers
| Mfloat32 32-bit floats
| Mfloat64 64-bit floats

In CompCert, a 32-bit integer (type int) is defined as a Coq arbitrary-precision
integer (type Z) plus a property called intrange that it is in the range 0 to 232

(excluded). The function signed (resp. unsigned) gives an interpretation of ma-
chine integers as a signed (resp. unsigned) integer. The properties signed_range
and unsigned_range are examples of useful properties for machine integers.

Definition max_unsigned : Z := 232 - 1.
Definition max_signed : Z := 231 - 1.
Definition min_signed : Z := - 231.
Record int := { intval: Z;

intrange: 0 ≤ intval < 232 }.
Definition unsigned (n: int) : Z := intval n.
Definition signed (n: int) : Z := if unsigned(n) < 231 then unsigned(n)

else unsigned(n) - 232.
Theorem signed_range: ∀ i, min_signed ≤ signed(i) ≤ max_signed.

Proof. (* Proof commands omitted here *) Qed.
Theorem unsigned_range: ∀ i, 0 ≤ unsigned(i) ≤ max_unsigned.

Proof. (* Proof commands omitted here *) Qed.

2.3 The CFG Intermediate Language

The main intermediate language of the CompCert compiler is called Cminor, a
low-level imperative language structured like C into expressions, statements and
functions. Historically, Cminor was the target language of the compiler front-end.
There are four main differences with C [20]. First, arithmetic operators are not
overloaded. Second, address computations are explicit, as well as memory access
(using load and store operations). Third, control structures are if-statements,
infinite loops, nested blocks plus associated exits and early returns. Last, local
variables can only hold scalar values and they do not reside in memory, making
it impossible to take a pointer to a local variable like the C operator & does.
Instead, each Cminor function declares the size of a stack-allocated block, allo-
cated in memory at function entry and automatically freed at function return.
The expression addrstack(n) returns a pointer within that block at constant
offset n.

Cminor was designed to be the privileged language for integrating within
CompCert other tools operating over C and other compiler front-ends. For in-
stance, two front-end compilers from functional languages to Cminor have been
connected to CompCert using Cminor, and a separation logic has been defined

328 S. Blazy et al.

for Cminor [2]. The Concurrent Cminor language extends Cminor with concur-
rent features and lies at the heart of the Verified Software Toolchain project [1].

As control-flow is still complex in Cminor (due to the presence of nested
blocks and exits), we have first designed a new intermediate language called CFG
that is adapted for static analysis: 1) its expressions are Cminor expressions
(i.e., side-effect free C expressions), 2) its programs are represented by their
control flow graphs, with explicit program points and 3) the control flow is
restricted to simple unconditional and conditional jumps. The CFG syntax is
defined in Figure 1. Floating-point operators are omitted in the figure, as our
analysis does not compute any information about floats. Statements include
assignment to local variables, memory stores, if-statements and function calls.
Expressions include reading local variables, constants and arithmetic operations,
reading store locations, and conditional expressions. As in the memory model,
loads and stores are parameterized by a memory chunk κ.

The CFG language is integrated into the CompCert compiler, as shown in Fig-
ure 2. There is a translation from Cminor to CFG and a theorem stating that
any terminating or diverging execution of a CFG program is also a terminating
or diverging execution of the original Cminor program. Thus, instead of analyz-
ing Cminor programs, we can analyze CFG programs and use this theorem to
propagate the results of the CFG analysis on Cminor programs. For instance, in
order to show that Cminor is memory safe, we only need to show that CFG is
memory safe.

For the purpose of the experiments that we conduct in Section 7, we use an
inlining pass recently added to the CompCert compiler. It was implemented and
proved correct by X.Leroy for another language of the compiler, RTL, that is
similar to CFG except that it only handles flat expressions. Since our analysis
operates on CFG, we have adapted this inlining pass to CFG. Adapting the
soundness proof of this transformation to CFG has been left for future work.

The concrete semantics of CFG is defined in small-step style as a transition
relation between execution states. An execution state is a tuple called σ. Among
the components of σ are the current program point (i.e., a node in the control-
flow graph), the memory state (type mem) and the environment (type env) map-
ping program variables to values. We use σ.E to denote the environment of a
state σ, and dom(σ.E) to denote its domain (i.e., the set of its variables). We use
reach(P) to denote the set of states belonging to the execution trace of P .

Our value analysis (called value_analysis) computes for each program point
the estimated values of the program variables. When the value of a variable is
an integer i or a pointer value of offset i, the estimate provides two numerical
ranges signed_range and unsigned_range . The first one over-approximates the
signed interpretation of i and the other range over-approximates its unsigned
interpretation. We note ints_in_range (signed_range , unsigned_range) i this
fact. Thus, given a program P , value_analysis (P) yields a map such that for
each node l in its control flow graph and each variable v, value_analysis (P)[l, v]
is a pair of sound ranges for v. The following theorem states the soundness of the
value analysis: for every program state that may be reached during the execution

Formal Verification of a C Value Analysis Based on Abstract Interpretation 329

Constants: c ::= n | f integer and floating-point constants
| addrsymbol(id, n) address of a symbol plus an offset
| addrstack(n) stack pointer plus a given offset

Expressions: a ::= id variable identifier
| c constant
| op1 a unary arithmetic operation
| a1 op2 a2 binary arithmetic operation
| a1? a2 : a3 conditional expression
| load(κ, a) memory load

Unary op.: op1 ::= cast8unsigned 8-bit zero extension
| cast8signed 8-bit sign extension
| cast16unsigned 16-bit zero extension
| cast16signed 16-bit sign extension
| boolval 0 if null, 1 if non-null
| negint integer opposite
| notbool boolean negation
| notint bitwise complement

Binary op.: op2 ::= + | - | * | / | % arithmetic integer operators
| << | >> | & | | | ^ bitwise operators
| /u | %u | >>u unsigned operators
| cmp(b) integer signed comparisons
| cmpu(b) integer unsigned comparisons

Comparisons: b ::= < | <= | > | >= | == | != relational operators
Statements: i ::= skip(l) no operation (go to l)

| assign(id, a, l) assignment
| store(κ, a, a, l) memory store
| if(e, ltrue, lfalse) if statement
| call(sig, id?, a, a∗, l) function call
| return(a)? function return

Fig. 1. Abstract syntax of CFG

RTLCminorC source Clight ASM
Platform specific backend

CFG

Value Analysis

Mini-ML

Haskell

Concurrent
Cminor

Fig. 2. Integration of the value analysis in the CompCert toolchain

330 S. Blazy et al.

of a program, any program point and variable, every variable valuation computed
by the analysis is a correct estimation of the exact value given by the concrete
semantics.

Theorem 1 (Soundness of the value analysis). Let P be a program, σ ∈
reach(P) and res = value_analysis (P) be the result of the value analysis. Then,
for each program point l, for each local variable v ∈ dom(σ.E) that contains
an integer i (i.e., σ.E(v) = vint(i) ∨ ∃b, σ.E(v) = vptr(b, i)), the property
(ints_in_range res[l, v] i) holds.

2.4 Overview of a Modular Value Analysis

Our value analysis is designed in a modular way: a generic fixpoint iterator
operates over generic abstract domains (see Section 3). The iterator is based on
the state-of-the-art Bourdoncle [6] algorithm that provides both efficiency and
precision (see Section 4).

The modular design of the abstract domains is inspired from the design of
the Astrée analyzer. It consists in three layers that are showed in Figure 3. The
simplest domains are numerical abstract domains made of intervals of machine
integers. These domains are not aware of the C memory model.

M
em

or
y

A
bs

tra
ct

io
n

N
um

. E
nv

. A
bs

tra
ct

io
n

N
um

. A
bs

tra
ct

io
n

CFG analyzer

Local Memory Abstraction

Non Relational Env. Abstraction

Reduced Product

Unsigned
Intervals

Signed
Intervals

Relational Abstract
Domain

Miné’s Memory
Abstract Domain

Congruence Abstract
Domain

Fig. 3. Design of abstract domains: a three-layer view

In a C program, a same piece of data can be used both in signed and unsigned
operations, and the results of these operations differ from one interpretation to
the other. Thus, we have two numerical abstract domains, one for each interpre-
tation. Our analysis computes the reduced product of the two domains in order
to make a continuous fruitful information exchange between these two domains
(see Section 5).

Then, we build abstract domains representing numerical environments. We
provide a non-relational abstraction that is parameterized by a numerical ab-
stract domain. The last layer is the abstract domain representing memory. It is

Formal Verification of a C Value Analysis Based on Abstract Interpretation 331

parameterized by the previous layer and links the abstract interpreter with the
numerical abstract domains (see Section 6).

This modular design is targeted to connect at each layer other abstract do-
mains. They are represented in dotted lines in Figure 3. For example, several
abstract memory models can be used instead of the current one while maintain-
ing the same interfaces with the rest of the formal development. The ultimate
goal is to enhance our current abstract interpreter in order to connect it to a
memory domain à la Miné [23]. The current interfaces are also compatible with
any relational numerical abstract domain. At the top, more basic numerical ab-
stractions as congruence could be added and plugged into our reduced product.

3 Abstract Domain Library

This section describes the library we have designed to represent our abstract
domains. First, it defines generic abstract domains. Then, it details the interval
abstract domain. Last, it explains how to combine abstract domains.

3.1 Abstract Domain Interface

Abstract interpretation provides various frameworks [10] for the design of ab-
stract semantics. The most well-known framework is based on Galois connec-
tions but some relaxed frameworks exist. They are generally used when some
useful abstraction does not fulfill standard properties (e.g., polyhedral abstract
domains [12] do not form a complete lattice). In our context, a relaxed framework
is required because of the associated lightweight proof effort.

Since our main goal is to provide a formal proof of soundness for the result
of an analysis, some additional properties such as best approximation or com-
pleteness do not require a machine checked proof. In some previous work of the
last author, a framework has been defined for the purpose of machine checked
proofs [14]. In this paper, we push further this initiative and provide a more
minimalist framework. The signature of abstract domains is of the following
form.1

Notation P(A) := (A → Prop). (* identify sets and predicates *)
Notation x ∈ P := (P x).
Notation P1 ⊆ P2 := (incl P1 P2). (* property inclusion *)

Record adom (A:Type) (B:Type) : Type := {
le: A → A → bool; (* partial order test *)
top: A; (* greatest element *)
join: A → A → A; (* least upper bound *)
widen: A → A → A; (* widening operator *)
gamma: A → P(B); (* concretization function *)
gamma_monotone: (* monotonicity of gamma *)
∀ a1 a2, le a1 a2 = true → (gamma a1) ⊆ (gamma a2);

top_sound: (* top over-approximates any *)

1 In this paper, for the sake of simplicity, we only use records to structure our formal-
ization. However, in our development, we also use more advanced Coq features such
as type classes.

332 S. Blazy et al.

∀ x, x ∈ (gamma top); (* concrete property *)
join_sound: ∀ x y:A, (* join over-approximates *)

(gamma x) ∪ (gamma y) ⊆ gamma (join x y); (* concrete union *)
}.

Here, A is the type of abstract values, B is the type of concrete values, and the type
of the abstract domain is (adom A B). This type is a record with various operators
(described on the right part) and properties about them. This record contains
only three properties: the monotonicity of the gamma operator, the soundness of
the top element and the soundness of the least upper bound operator join. We
do not provide formal proof relating the abstract order with top or join. Indeed
any weak-join will be suitable here. The lack of properties about the widening
operator is particularly surprising at first sight. In fact, as we will explain in
Section 4, the widening operator is used only during fixpoint iteration and this
step is validated a posteriori. Thus, only the result of this iteration step is verified
and we don’t need a widening operator for that purpose.

The gamma operator of every abstract domain will be noted γ. The type class
mechanism enables Coq to infer which domain it refers to.

3.2 Example of Abstract Domain: Intervals

Our value analysis operates over compositions of abstract domains. The most
basic abstract domain is the domain of intervals. Figure 4 defines the abstract
domain of intervals made of machine integers, that are interpreted as signed
integers. This instance is called signed_itv_adom . The definitions are standard
and only some of them are detailed in the figure. An interval represents the
range of the signed interpretation of a machine integer. Thus, top is defined as
the largest interval with bounds min_signed and max_signed . The concretization
is defined as follows. A machine integer n belongs to the concretization of an
interval itv iff signed(n) belongs to itv. The proof of the lemma top_sound
follows from the signed_range theorem given in Section 2.2.

Record itv := {min: Z; max: Z}.

Definition signed_itv_adom : adom itv int := {
le := (λ itv1 itv2, ...); (* definition omitted here *)
top := { min:= min_signed; max:= max_signed};
join := (λ itv1 itv2, ...); (* definition omitted here *)
widen := (λ itv1 itv2, ...); (* definition omitted here *)
gamma := (λ itv n, itv.min ≤ signed(n) ≤ itv.max);
top_sound := (...); (* proof term omitted here *)
gamma_monotone := (...); (* proof term omitted here *)
join_sound := (...); (* proof term omitted here *)

}.

Fig. 4. An instance called signed_itv_adom : the domain of intervals (made of signed
machine integers) with a concretization to P(int)

Formal Verification of a C Value Analysis Based on Abstract Interpretation 333

We also define a variant of this domain with a concretization using an unsigned
interpretation of machine integers: (λ itv n, itv.min≤unsigned(n)≤itv.max).
As explained in Section 5, combining both domains recovers some precision that
may be lost when using only one of them.

The itv record type provides only lower and upper bounds of type Z. Using
the expressiveness of the Coq type system, we could choose to add an extra field
requiring a proof that min ≤ max holds. While elegant at first sight, this would
be rather heavyweight in practice, since we must provide such a proof each time
we build a new interval. For the kind of proofs we perform, if such a property
was required, we would generally have an hypothesis of the form i ∈ (γ itv) in
our context and it would trivially imply that itv.min ≤ itv.max holds.

3.3 Abstract Domain Functors

Our library provides several functors that build complex abstract domains from
simpler ones.

Direct Product. A first example is the product (adom (A*A') B) of two ab-
stract domains (adom A B) and (adom A' B), where the concretization of a pair
(a,a'):A*A' is the intersection (γ a) ∩ (γ a').

Lifting a Bottom Element A bottom element is not mandatory in our definition
of abstract domains because some sub-domains do not necessarily contain one.
For instance, the domain of intervals does not contain such a least element. Still
in our development, the bottom element plays a specific and important role since
we use it for reduction. We hence introduce a polymorphic type A+⊥ that lifts a
type A with an extra bottom element called Bot. We then define a simple functor
lift_bot that lifts any domain (adom A B) on a type A to a domain on A+⊥. In
this new domain, the concretization function extends the concretization of the
input domain and γ Bot = ∅.
Definition botlift (A:Type): Type := Bot | NotBot (x:A).
Notation A+⊥ := (botlift A).
Definition lift_bot (A B: Type): adom A B → adom (A+⊥) B :=

(* definition omitted here *)

Finite Reduced Map. Lifted domains are used for instance as input for an im-
portant functor of finite maps. CompCert uses intensively the TREE interface.
Given an implementation T of the interface TREE and a type A, an element of
type (TREE.t A) represents a partial map from keys (of type T.elt) to values
of type A. The interface is implemented for several kinds of keys in the Comp-
Cert libraries. In our development, we use it to map variables to abstract values,
but also program points to abstract environments. The functor implements the
following type.
AbTree.make(T:TREE)(A B:Type): adom A B → adom (T.t A)+⊥ (T.elt → B)

An element in (T.t A)+⊥ is turned into a function of type T.elt → A+⊥ via the
function get that satisfies the following equations.

334 S. Blazy et al.

get(Bot)(k) = Bot
get(NotBot m)(k) = top (* if m[k] is undefined *)
get(NotBot m)(k) = NotBot m[k] (* otherwise *)

As a consequence, the top element is represented in a lazy way: a key is associated
to it as soon as it is not bound in the partial map. Furthermore, the map is
reduced w.r.t. the bottom element of the input domain: as soon as we try to bind
a key to the bottom element, the whole map is shrunk to Bot. This situation is
interesting for dead code elimination and more generally for the whole precision
of an analysis.

4 Fixpoint Resolution

From a proof point of view, the main lesson learned from the CompCert ex-
periment is the following. When formally verifying a complex piece of software
relying on sophisticated data structures and delicate algorithms, it is not real-
istic to write the whole software using exclusively the specification language of
the proof assistant. A more pragmatic approach to formal verification consists
in reusing an existing implementation in order to separately verify its results.
This approach is not optimal, but it is worthwhile when the algorithm is a so-
phisticated piece of code and when the formal verification of each of the results
is much easier than the formal verification of the algorithm itself.

The CompCert compiler combines both approaches in order to facilitate the
proofs. Most of the compiler passes are written and proved in Coq. A few com-
piler passes (e.g., the register allocation [26]) are not written directly in Coq, but
formally verified in Coq by a translation validation approach. Our value analysis
also combines both approaches. We have formally verified a checker that vali-
dates a posteriori the untrusted results of a fixpoint engine written in OCaml,
that finds fixpoints using widening and narrowing operators.

As many data flow analyses, our value analysis can be turned into the fixpoint
resolution of an equation system on a lattice. CompCert already provides a
classical Kildall iteration framework to iteratively find the least fixpoint of an
equation system. But using such a framework is impossible here for two reasons.
First, the lattice of bounded intervals contains very long ascending chains that
make standard Kleene iterations too slow. Second, the non-monotonic nature of
widening and narrowing makes fixpoint iteration sensible to the iteration order
of each equation.

We have then designed a new fixpoint resolution framework that relies on the
general iteration techniques defined by Bourdoncle [6]. First, Bourdoncle pro-
vides a strategy computation algorithm based on Tarjan’s algorithm to compute
strongly connected subcomponents of a directed graph and find loop headers
for widening positioning. This algorithm also orders each strongly connected
subcomponent in order to obtain an iteration strategy that iterates inner loops
until stabilization before iterating outer loops. Bourdoncle then provides an ef-
ficient fixpoint iteration algorithm that iterates along the previous strategy and
requires a minimum number of abstract order tests to detect convergence.

Formal Verification of a C Value Analysis Based on Abstract Interpretation 335

This algorithm relies on advanced reasoning in graph theory and formally ver-
ifying it would be highly challenging. This frontal approach would also certainly
be too rigid because widening iteration requires several heuristic adjustments
to reach a satisfactory precision in practice (loop unrolling, delayed widenings,
decreasing iterations). We have therefore opted for a more flexible verification
strategy: as Bourdoncle strategies, fixpoints are computed by an external tool
(represented by the function called get_extern_fixpoint) and we only formally
verify a fixpoint checker (called check_fxp).

Our fixpoint analyzer is defined below, given an abstract domain ab, a pro-
gram P and its entry point entry, the transfer functions transfer and initial
abstract values init.
Definition solve_pfp (ab: adom t B) (P: PTree.t instruction)

(entry: node) (transfer: node→instruction→list(node*(t→t)))
(init: t) : node → t :=
let fxp := get_extern_fixpoint entry ab P transfer init in
if check_fxp entry ab P transfer init fxp then fxp else top.

The verification of the fixpoint checker yields the following property: the con-
cretization of the result of the solve_pfp function is a post-fixpoint of the con-
crete transfer function. That is, given the analysis result fxp, for each node pc
of the program, applying the corresponding transfer function tf to the analysis
result yields an abstract value included in the analysis result.
Lemma solve_pfp_postfixpoint: ∀ ab entry P transfer init fxp,

fxp = solve_pfp ab P entry transfer init →
∀ pc i, P[pc] = i →
∀ (pc',tf) ∈list (transfer pc i), γ(tf(fxp pc)) ⊆γ(fxp pc').

Proof. (* proof commands are omitted here *) Qed.

5 Numerical Abstraction

Following the design of the Astrée analyzer [11], our value analysis is parameter-
ized by a numerical abstract domain that is unaware of the C memory model.
We first present the interface of abstract numerical environments, then how we
abstract numerical values in order to build non relational abstract environments.
Finally, we show concrete instances of numerical domains and how they can be
combined.

5.1 Abstraction of Numerical Environments

The first interface captures the notion of numerical environment abstraction.
Given a type t for abstract values and a notion of variable var (simple positive
integers in our development), we require an abstract domain that concretizes to
P(var → int) and provide three sound operators range, assign and assume.
sign_flag ::= Signed | Unsigned
Definition ints_in_range (r:sign_flag → itv+⊥) : int :=

(γ (r Signed)) ∩ (γ (r Unsigned)).
Record int_dom (t:Type) := {

336 S. Blazy et al.

int_adom: adom t (var → int); (* abstract domain structure *)
(* signed/unsigned range of an expression *)
range: nexpr → t → sign_flag → itv+⊥;
range_sound: ∀ e ρ ab,

ρ ∈ γ ab → eval_nexpr ρ e ⊆ ints_in_range (range e ab);
(* assignment of a variable by a numerical expression *)
assign: var → nexpr → t → t;
assign_sound: ∀ x e ρ n ab,

ρ ∈ γ ab → n ∈ eval_nexpr ρ e → (upd ρ x n) ∈ γ (assign x e ab);
(* assume a numerical expression evaluates to true *)
assume: nexpr → t → t;
assume_sound: ∀ e ρ ab,

ρ ∈ γ ab → Ntrue ∈ eval_nexpr ρ e → ρ ∈ γ (assume e ab)
}.

This interface matches with any implementation of a relational abstract do-
main [12] on machine integers. To increase precision, it relies on a notion of
expression tree (type nexpr) defined as follows and relying on CFG operators.

etr ::= NEvar id | NEconst c | NEunop op1 etr | NEbop op2 etr etr | NEcond etr etr etr

These expressions are associated with a big-step operational semantics eval_nexpr
of type (var→int) → nexpr → P(int) that we define as a partial function rep-
resented by a relation. The semantics is not detailed in this paper.

5.2 Building Non-relational Abstraction of Numerical Environments

Implementing a fully verified relational abstract domain is a challenge in itself
and it is not in the scope of this paper. We implement instead the previous inter-
face with a standard non relational abstract environment of the form var → V�

where V� abstracts numerical values. The notion of abstraction of numerical
values is captured by the following interface.
Record num_dom (t:Type) := {

num_adom : adom t int; (* abstract domain structure *)
meet: t → t → t+⊥; (* over-approximation of the concrete *)
meet_sound: ∀ x y, (γ x) ∩ (γ y) ⊆ γ (meet x y); (* intersection *)
range: t → sign_flag → itv+⊥; (* signed/unsigned range *)
range_sound: ∀ x:t, γ x ⊆ ints_in_range (range x);
const: constant → t; const_sound: (*omitted*);
forward_unop: unary_operation → t → t+⊥;
forward_unop_sound: ∀ op x,

Eval_unop op (γ x) ⊆ γ (forward_unop op x);
forward_binop: (* omitted *); forward_binop_sound: (* omitted *);
backward_unop: (* omitted *); backward_unop_sound: (* omitted *);
backward_binop: binary_operation → t → t → t → t+⊥ * t+⊥;
backward_binop_sound: ∀ op x y z i j k,

eval_binop op i j k → i ∈ (γ x) → j ∈ (γ y) → k ∈ (γ z) →
let (x',y') := backward_binop op x y z in

i ∈ (γ x') ∧ j ∈ (γ y')
}.

It is defined as a carrier t, an abstract domain structure num_adom and a bunch of
abstract transformers. Some operators are forward ones: they provide properties
about the output of an operation. For instance, the operator const builds an

Formal Verification of a C Value Analysis Based on Abstract Interpretation 337

abstraction of a single value. Some operators are backward ones: given some
properties about the input and expected output of an operation, they provide a
refined property about its input. Each operator comes with a soundness proof.

We also implement a functor that lifts any abstraction of numerical values into
a numerical environment abstraction. It relies on the functor for finite reduced
maps that we have presented at the end of Section 3. Here, PTree provides an
implementation of the TREE interface for the var type.

NonRelDom.make(t): num_dom t → int_dom ((PTree.t t)+⊥)

The most advanced operator in this functor is the assume function. It relies on
a backward abstract semantics of expressions.
Fixpoint backward_expr (e:nexpr) (ab:t) (itv:Val) : t :=

match e with
| ...
| NEcond b l r ⇒

join
(backward_expr b (backward_expr r ab itv) (const Nfalse))
(backward_expr b (backward_expr l ab itv)

(backward_unop boolval (eval_expr b ab) (const Ntrue)))
end.

We just show and comment the case of conditional expressions. Given such an
expression NEcond b l r, an abstract environment ab and the expected value itv
of this expression, we explore the two branches of the condition. In one case, the
condition b evaluated to Nfalse and the right branch r evaluated to itv. In the
other case, the condition b evaluated to anything whose boolean value is Ntrue
and the left branch l evaluated to itv. Then we have to consider that any of the
two branches might have been taken, hence the join.

Equipped with such backward operators, the analysis is then able to deal with
complex conditions like the following: if (0 <= x && x < y && y < z && z < t
&& t < u && u < v && v < 10). When analysing the true branch of this if, it is
sound to assume that the condition holds. The backward operator will propagate
this information and infer one bound for each variable. Since backward evaluation
of conditions goes right to left, the following bounds are inferred: v < 10, u < 9,
t < 8, z < 7, y < 6, and 0 ≤ x < 5. Unfortunately, no information is propagated
from left to right. However applying again the assume function does propagate
information between the various conditions. Iterating this process finally yields
the most precise intervals for all variables involved in this condition.

Notice that inferring such precise information is possible thanks to the avail-
ability of complex expressions in the analyzed CFG program. Compare for ex-
ample with Frama-C which, prior to any analysis, destructs boolean operations
into nested ifs; it is thus unable to give both bounds for each variable.

5.3 Abstraction of Numerical Values: Instances and Functor

We gave two instances of the numerical value abstraction interface: the intervals
of signed integers and the intervals of unsigned integers. Several operations are
defined on intervals together with their proofs of correctness. We have to take

338 S. Blazy et al.

into account machine arithmetic. We do not try to precisely track integers that
wrap-around intentionally. Instead we systematically test if an overflow may
occur and fall back to top when we can’t prove the absence of overflow.
Definition repr (i: itv): itv := if leb i top then i else top.
Definition add (i j: itv): itv :=

repr { min := i.min + j.min; max := i.max + j.max}.

We also rely on a reduction operator when the result of an operation may lead to
an empty interval. Since our representation of intervals contains several elements
with the same (empty) concretization, it is important to always use a same
representative for them.2

Definition reduce (min max:Z): itv+⊥ :=
if min ≤ max then NotBot (ITV min max) else Bot.

Definition backward_lt (i j: itv): itv+⊥ * itv+⊥ :=
(meet i (reduce min_signed (j.max-1)),

meet j (reduce (i.min+1) max_signed)).

At run-time, there are no signed or unsigned integers; there are only machine
integers that are bit arrays whose interpretation may vary depending on the
operations they undergo. Therefore choosing one of the two interval domains
may hamper the precision of the analysis. Consider the following example C
program.

1 int main(void) { signed s; unsigned u;
2 if (*) u = 231 - 1; else u = 231;
3 if (*) s = 0; else s = -1;
4 return u + s; }

At the end of line 2, an unsigned interval can exactly represent the two values
that the variable u may hold. However, the least signed interval that contains
them both is top. Similarly, at the end of line 3, a signed interval can precisely
approximate the content of variable s whereas an unsigned interval would be ex-
tremely imprecise. Moreover, comparison operations can be precisely translated
into operations over intervals (e.g., intersections) only when they share the same
signedness. Therefore, so as to get as precise information as possible, we need to
combine the two interval domains. This is done through reduction.

To combine abstractions of numerical values in a generic and precise way, we
implement a functor that takes two abstractions and a sound reduction operator
and returns a new abstraction based on their reduced product.
Definition reduced_product (t t':Type) (N:num_dom t) (N':num_dom t')

(R:reduction N N') : num_dom (t*t') := (* omitted definition *)

A reduction is made of an operator ρ and a proof that this operator is a sound
reduction.
Record reduction (A B:Type) (N1:num_dom A) (N2:num_dom B) := {

ρ: A+⊥ → B+⊥ → (A * B)+⊥;
ρ_sound: ∀ a b, (γ a) ∩ (γ b) ⊆ γ (ρ a b) }

2 Otherwise the analyzer may encounter two equivalent values without noticing it and
lose precision.

Formal Verification of a C Value Analysis Based on Abstract Interpretation 339

Each operator of this functor is implemented by first using the operator of both
input domains and then reducing the result with ρ. We hence ensure that each
encountered value is systematically of the form ρ a b but we do not prove this
fact formally, avoiding the heavy manipulation of quotients. Note also that, for
soundness purposes, we do not need to prove that reduction actually reduces
(i.e., returns a lower element in the abstract lattice)!

6 Memory Abstraction

The last layer of our modular architecture connects the CFG abstract interpreter
with numerical abstract domains. It aims at translating every C feature into
useful information in the numerical world. On the interpreter side, the interface
with this abstract memory model is called mem_dom. It consists in trees made of
CFG expressions and four basic commands forget, assign, store and assume.
Record mem_dom (t:Type) := { (* abstract domain with concretization

to local environment and global memory *)
mem_adom: adom t (env * mem);
(* consult the range of a local variable *)
range: t → ident → sign_flag → itv+⊥;
range_sound: ∀ ab e m x i,

(e,m) ∈ γ ab → (e[x] = vint(i) ∨ ∃ b, e[x] = vptr(b,i)) →
i ∈ (ints_in_range (range ab x));

(* project the value of a local variable *)
forget: ident → t → t;
forget_sound: ∀ x ab, Forget x (γ ab) ⊆ γ (forget x ab);
(* assign a local variable *)
assign: ident → expr → t → t;
assign_sound: ∀ x e ab, Assign x e (γ ab) ⊆ γ (assign x e ab);
(* assign a memory cell *)
store: memory_chunk → expr → expr → t → t;
store_sound: ∀ κ l r ab,

Store κ l r (γ ab) ⊆ γ (store κ l r ab);
(* assume an expression evaluates to non-zero value *)
assume: expr → t → t;
assume_sound: ∀ e ab, Assume e (γ ab) ⊆ γ (assume e ab)

}.

Our final analyzer is parameterized by a structure of this type.
value_analysis (t:Type) : mem_dom t →

program → node → (ident → sign_flag → Interval.itv +⊥)

A structure of type mem_dom is built with a functor of the following form.
AbMem.make (t:Type) : int_dom t → mem_dom (t*type_info)

The numerical abstraction is associated with a flow sensitive type information
(of type type_info) that we compute at the same time. This type information
tries to recover some information to disambiguate integer and pointer values.
The abstract domain is built using the product functor presented in Section 3.
The concretization function of the numeric domain is lifted from a concretization
of type t → P(var→int) to a concretization of type t → P(env * mem) with
the following definition. 3

3 The types env and mem are introduced in Section 2.

340 S. Blazy et al.

Definition gamma_mem (ab:t) := λ (e,m):(env*mem).
∃ ρ:var → int, ρ ∈ (γ ab) ∧

(∀ x i, (e[x] = vint(i) ∨ ∃ b, e[x] = vptr(b,i)) → ρ x = i).

For each transfer function that takes as argument a C expression, we convert it
into a numerical expression in order to feed the numerical abstract domain. For
instance, the assign operator takes the following form.
Definition assign (id:ident) (e:expr) (ab:t*type_info): t*type_info :=

let (nm,tp) := ab in
(* convert expression e into a numeric form using type infos *)
match convert tp e with

| None ⇒ forget id ab (* if we fail, we just project *)
| Some ne ⇒

(* otherwise we call the numerical assignment operator *)
(num.assign id ne nm, ... (* type info update omitted *))

end.

Removing some ambiguity between pointers and integers is mandatory for sound-
ness. As an example, consider the unsigned equality expression (x ==u y). For
the sake of precision of the analysis, it is important to convert it into a simple
numerical equality x == y before using the assume operator of the numerical
abstract domain. However if x contains a numerical value and y a pointer, the
first formula is always false while assuming the second formula in the numerical
world would lead to a spurious assumption about the offset of the pointer in y.

7 Experimental Evaluation

Our verified value analyzer takes as input a CFG program and outputs ranges
for every variable at every point of the program. Our formal development adds
about 7,500 lines of Coq code (consisting of 4,000 lines of Coq functions and
definitions and 3,500 lines of Coq statements and proof scripts) and 200 lines
of OCaml to the 100,000 lines of Coq and 1,000 lines of OCaml provided in
CompCert 1.11.

We have conducted some experiments to evaluate the precision and the ef-
ficiency of our analyzer. Indeed, an analyzer that always returns “top” is eas-
ily proved correct, but useless. It is therefore important to distinguish between
bounded and unbounded variables. Moreover, a precise but non-scalable analyzer
has limited applicability. In order to evaluate the precision and efficiency of our
value analysis, we use the OCaml extracted code to compile our benchmark
programs into CFG programs and to run our analyzer on them.

We compare our analyzer to two interval-based analyzers operating over C pro-
grams: a state-of-the-art industrial tool, Frama-C [13], and an implementation
of a value-range analyzer [24]. Frama-C is an industrial-strength framework for
static analysis, developed at CEA. It integrates an abstract interpretation-based
interprocedural value analysis on interval domains with congruence, k-sets and
memory analysis. It operates over C programs and has a very deep knowledge
of its semantics, allowing it to slice out undefined behaviors for more precise
results. It currently does not handle recursive functions. The value-range an-
alyzer, which will be referred to as Wrapped is described in [24]. It relies on

Formal Verification of a C Value Analysis Based on Abstract Interpretation 341

LLVM and operates over its intermediate representation to perform an interval
analysis in a signedness-agnostic manner, using so-called “wrapped” intervals
to deal with machine integer issues such as overflows while retaining precision.
It is an intraprocedural tool, but can benefit from LLVM’s inlining to perform
interprocedurally in the absence of recursion.

The 3 tools have been compared on significant C programs from CompCert’s
test suite. They range from a few dozen to a few thousand statements. To relate
information from different analyses, we annotated the programs to capture infor-
mation on integer variables at function entries and exits and at loops (for iteration
variables). This amounts to 545 annotations in the 20 programs considered. For
each program point, we counted the number of bounded variables. We consider
as bounded any variable whose inferred interval has no more than 231 elements,
and hence rule out useless intervals like x∈[−231,231 − 2], inferred after a guard
like x<y. Finally, to be able to compare the results of an interprocedural analysis
with those of two intraprocedural analyses with inlining, we considered for each
annotation the union of the intervals of all call contexts. Less than 10% of inter-
vals present a union of different intervals, and among those several preserve the
boundedness for all contexts. Overall, its impact on the results is negligible.

The results are shown in Figure 5, which displays the number of bounded vari-
ables per program and per analyzer. In total, Frama-C bounded 398 variables, our
analyzer got 355, and Wrapped ended up with 305. The main differences between
our analyzer and Frama-C, especially on the larger benchmarks (lzw, arcode and
lzss) result from global variable tracking and congruence information. Such rea-
soning is not handled by our analyzer. On the other hand, the precision of our
product of signed and unsigned domains allows us to bound more variables (e.g.,
on fannkuch), where Wrapped also obtains a good score, mainly due to variables
bounded as [0, 231 − 1] and similar values. Some issues with the inlining used by
Wrapped explain its worse results in fft, knucleotide and spectral .

We also compared the execution times of the analyses. Overall, our analysis
runs faster than Frama-C because we track less information, such as pointers

0

5

10

15

20

25

30
Our Analyzer Frama-C Wrapped

0

10

20

30

40

50

60

70

80

90

Fig. 5. Number of bounded intervals (bounded per program and analyzer)

342 S. Blazy et al.

and global variables. For programs without these features, both analyses run in
roughly the same time, from a few tenths of seconds for the smaller programs
up to a few seconds for the larger ones. Wrapped’s analysis is faster than the
others. On a larger benchmark (over 3,000 lines of C code and about 10,000 CFG
instructions after inlining) our analysis took 34 seconds to perform.

It is hard to draw final conclusions about the precision of our tool from these
experiments. Frama-C, for instance, is likely to perform better on specific indus-
trial critical software for which it has been specially tuned. Nevertheless we give
evidence that our analyzer performs non-trivial reasoning over the C semantics,
close to that of state-of-the-art (non-verified) tools.

8 Related Work
While mechanization of research paper proofs attracts an increasing number
of practitioners, it should not be confused with the activity of developing a
formally verified compiler or static analyzer. Our work is initially inspired by the
achievement of the CompCert compiler [20] but we target the area of abstract-
interpretation-based static analyzers.

Previous work on mechanized verification of static analyses has been mostly
based on classic data flow frameworks: Klein and Nipkow instantiate this frame-
work for inference of Java bytecode types [19]; Coupet-Grimal and Delobel [9]
and Bertot et al. [3] for compiler optimizations, and Cachera et al. [7] for control
flow analysis. Vafeiadis et al. [28] rely on a simple data flow analysis to verify
a fence elimination optimization for concurrent C programs. Compared to these
prior works, our value analysis relies on fixpoint iterations that are accelerating
with widening operators. Cachera and Pichardie [8] and Nipkow [25] describe
a verified static analysis based on widenings but their technique is restricted
to structured programs and targets languages without machine arithmetic nor
pointers. Leroy and Robert [22] have developed a points-to analysis in the Comp-
Cert framework. This static analysis technique is quite orthogonal to what we
formalize here. Their verified tool is not compared to any existing analyzer.
Hofmann et al. [17] provide a machine-checked correctness proof in Coq for a
generic post-fixpoint solver named RLD. The formalized algorithm is not fully
executable and cannot be extracted to OCaml code.

Of course the area of non-verified static analysis for C programs is a broader
topic. In our context, the most relevant and inspiring works are the static anal-
yses devoted to a precise handling of signed and unsigned integers [27,24] and
the Astrée static analyzer [11]. Our current formalization is directly inspired by
Astrée’s design choices, trying to capture some of its key interfaces. Our cur-
rent abstract memory model is aligned with the model developed by Miné [23]
because we connect a C abstract semantics with a generic notion of numerical
abstract domain. Still our treatment of memory is simplified since we only track
values of local variables in the current implementation of our analyzer.

9 Conclusion
This work provides the first verified value analysis for a realistic language as C.
Implementing a precise value analysis for C is highly error-prone. We hope that

Formal Verification of a C Value Analysis Based on Abstract Interpretation 343

our work shows the feasibility of developing such a tool together with a machine-
checked proof. The precision of the analysis has been experimentally evaluated and
compared on several benchmarks. The paper’s technology performs comparably
to existing off-the-shelf (unverified!) tools, Frama-C [13] and Wrapped [24]. Our
contribution is also methodological. Our formalization, its lightweight interfaces
and its proofs can be easily reused to develop different formally verified analyses.

Now that the main interfaces are defined, we expect to improve our analyzer
in several challenging directions. First, we want to replace the current memory
abstraction with a domain similar to Miné’s memory model [23]. Verifying such
a domain raises specific challenges not only in terms of semantic proofs but also
in terms of efficient implementation of the transfer functions. Without special
care, the domain may not be able to scale to large enough programs. We also
intend to connect relational abstract domains to the interface for numerical en-
vironments. We would like to develop efficient validation techniques following
Besson et al. [4] approach and test their efficiency on large programs. The last
and important challenge concerns floats. Astrée relies on subtle reasoning and
manipulation on floats. CompCert has recently been enhanced with a fully ver-
ified implementation of floating-point arithmetic [5] and we hope to be able to
incorporate them in our own value analysis.

Acknowledgements. We thank Antoine Miné, David Monniaux and Xavier
Rival for many fruitful discussions on the Astrée static analyzer. We thank
Jacques-Henri Jourdan and Xavier Leroy for integrating the CFG language into
the CompCert compiler.

References
1. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,

vol. 6602, pp. 1–17. Springer, Heidelberg (2011)
2. Appel, A.W., Blazy, S.: Separation logic for small-step Cminor. In: Schneider, K.,

Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg
(2007)

3. Bertot, Y., Grégoire, B., Leroy, X.: A structured approach to proving compiler
optimizations based on dataflow analysis. In: Filliâtre, J.-C., Paulin-Mohring, C.,
Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 66–81. Springer, Heidelberg
(2006)

4. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Certified result checking for poly-
hedral analysis of bytecode programs. In: Wirsing, M., Hofmann, M., Rauschmayer,
A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 253–267. Springer, Heidelberg (2010)

5. Boldo, S., Jourdan, J., Leroy, X., Melquiond, G.: A formally-verified C compiler
supporting floating-point arithmetic. In: Proc. of ARITH 21. IEEE Computer So-
ciety Press (to appear, 2013)

6. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

7. Cachera, D., Jensen, T.P., Pichardie, D., Rusu, V.: Extracting a data flow analyser
in constructive logic. Theoretical Computer Science 342(1), 56–78 (2005)

344 S. Blazy et al.

8. Cachera, D., Pichardie, D.: A certified denotational abstract interpreter. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 9–24. Springer,
Heidelberg (2010)

9. Coupet-Grimal, S., Delobel, W.: A uniform and certified approach for two static
analyses. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004.
LNCS, vol. 3839, pp. 115–137. Springer, Heidelberg (2006)

10. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2(4), 511–547 (1992)

11. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Ri-
val, X.: The Astrée analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,
pp. 21–30. Springer, Heidelberg (2005)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proc. of POPL 1978, pp. 84–97. ACM Press (1978)

13. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

14. Pichardie, D.: Interprétation abstraite en logique intuitionniste : extraction
d’analyseurs Java certifiés. PhD thesis, Université Rennes 1 (2005) (in French)

15. Gonthier, G.: The Four Colour Theorem: Engineering of a Formal Proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)

16. Gonthier, G.: Engineering mathematics: the odd order theorem proof. In: Proc. of
POPL 2013, pp. 1–2. ACM (2013)

17. Hofmann, M., Karbyshev, A., Seidl, H.: Verifying a local generic solver in Coq. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 340–355. Springer,
Heidelberg (2010)

18. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: SeL4: formal verification of an operating-system kernel. Comm. of the
ACM 53(6), 107–115 (2010)

19. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine and compiler. ACM TOPLAS 28(4), 619–695 (2006)

20. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009)

21. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model,
version 2. Research report RR-7987, INRIA (June 2012)

22. Robert, V., Leroy, X.: A formally-verified alias analysis. In: Hawblitzel, C., Miller,
D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 11–26. Springer, Heidelberg (2012)

23. Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: Proc. of LCTES 2006, pp. 54–63. ACM (June 2006)

24. Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Signedness-agnostic pro-
gram analysis: Precise integer bounds for low-level code. In: Jhala, R., Igarashi, A.
(eds.) APLAS 2012. LNCS, vol. 7705, pp. 115–130. Springer, Heidelberg (2012)

25. Nipkow, T.: Abstract interpretation of annotated commands. In: Beringer, L., Felty,
A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 116–132. Springer, Heidelberg (2012)

26. Rideau, S., Leroy, X.: Validating register allocation and spilling. In: Gupta, R. (ed.)
CC 2010. LNCS, vol. 6011, pp. 224–243. Springer, Heidelberg (2010)

27. Simon, A., King, A.: Taming the wrapping of integer arithmetic. In: Riis Nielson, H.,
Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 121–136. Springer, Heidelberg (2007)

28. Vafeiadis, V., Zappa Nardelli, F.: Verifying fence elimination optimisations. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 146–162. Springer, Heidelberg
(2011)

Efficient Generation of Correctness Certificates

for the Abstract Domain of Polyhedra�

Alexis Fouilhe, David Monniaux, and Michaël Périn

Verimag – Centre Équation – 2, Avenue de Vignate, 38610 Gières, France

Abstract. Polyhedra form an established abstract domain for inferring
runtime properties of programs using abstract interpretation. Computa-
tions on them need to be certified for the whole static analysis results to
be trusted. In this work, we look at how far we can get down the road
of a posteriori verification to lower the overhead of certification of the
abstract domain of polyhedra. We demonstrate methods for making the
cost of inclusion certificate generation negligible. From a performance
point of view, our single-representation, constraints-based implementa-
tion compares with state-of-the-art implementations.

In static analysis by abstract interpretation [1], sets of reachable states, which
are in general infinite or at least very large and not amenable to tractable com-
putation, are over-approximated by elements of an abstract domain on which the
analyzer applies forward (resp. backward) steps corresponding to program oper-
ations (assignments, tests. . .) as well as “joins” corresponding to control points
with several incoming (resp. outgoing) edges. When dealing with numerical vari-
ables in the analyzed programs, one of the simplest abstract domains consists in
keeping one interval per variable, and the forward analysis is known as interval
arithmetic. Interval arithmetic however does not keep track of relationships be-
tween variables. The domain of convex polyhedra [2] tracks relationships of the
form

∑
i aixi �� b where the ai and b are integer (or rational) constants, the xi

are rational program variables, and �� is ≤, < or =.
The implementor of an abstract domain faces two hurdles: the implementation

should be reasonably efficient and scalable; it should be reasonably bug-free.
As an example, the Parma Polyhedra Library (PPL) [3], version 1.0, which
implements several relational numerical abstract domains, comprises 260,000
lines of C++; despite the care put in its development, it is probable that bugs
have slipped through. The same applies to the Apron library [4].

Such hurdles are especially severe when the analysis is applied to large-scale
critical programs (e.g. in the Astrée system [5], targeting avionics software).
For such systems, normal compilers may not be trusted, resulting in expensive
post-compilation checking procedures, and prompting the development of the
CompCert certified compiler [6]: this compiler is programmed, specified and
proved correct in Coq [7]. We wish to extend this approach to obtain a trusted
static analyzer; this article focuses on obtaining a trusted library for convex

� This work was partially supported by ANR project “VERASCO” (INS 2011).

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 345–365, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://verasco.imag.fr/

346 A. Fouilhe, D. Monniaux, and M. Périn

polyhedra, similar in features to the polyhedra libraries at the core of PPL and
Apron.

One method for certifying the results of a static analysis is to store the invari-
ants obtained by an untrusted analyzer at (roughly) all program points, then
check that they are inductive using a trusted checker: each statement is then a
Hoare triple that must be checked. Unfortunately, storing invariants everywhere
proved impractical in the Astrée analyzer due to memory consumption; we
then opted to recompute them. Our (future) analyzer will thus store invariants
only at loop heads, and thus, for control programs consisting of one huge con-
trol loop plus small, unrolled, inner loops, will store only a single invariant. It
will then enter a checking phase which will recompute, in a trusted fashion, all
intermediate invariants. Efficiency is thus important.

The main contribution of our article is an efficient way of implementing a
provably correct abstract domain of polyhedra. Efficiency is two-fold:

1. In proof effort: most of the implementation consists in an untrusted oracle
providing certificates of the correctness of its computations; only a much
smaller certificate checker, consisting in simple algorithms (multiplying and
adding vectors, replacing a variable by an expression), needs to be proven
correct in the proof assistant.

2. In execution time: the expensive parts of the computations (e.g. linear pro-
gramming) are inside the untrusted oracle and may use efficient program-
ming techniques unavailable in parts that need formal proofs. We do not
compute certificates as an afterthought of polyhedral computations: close ex-
amination of the algorithms implementing the polyhedral operators revealed
that they directly expose the elements needed to build certificates. Simple
bookkeeping alleviates the need to rebuild them after the fact. The overhead
of making the operators certifying is thus very limited. This contrasts with
earlier approaches [8] based on a posteriori generation of witnesses, which
had to be recomputed from scratch using linear programming.

A second contribution is a complete implementation of the abstract domain of
polyhedra in a purely constraints-based representation. Most libraries used in
static analysis, including PPL and Apron, use a double description: a polyhe-
dron is both an intersection of half-spaces (constraints) or the convex hull of
vertices, half-lines and lines (generators), with frequent conversions. Unfortu-
nately, the generator representation is exponential in the number of constraints,
including for common cases such as hypercubes (e.g. specification of ranges of
inputs for the program). We instead chose to represent the polyhedra solely as
lists of constraints, with pruning of redundant ones. Our implementation uses
sparse matrices of rational numbers and uses efficient techniques for convex hull
[9] and emptiness testing by linear programming [10].

We applied our library to examples of polyhedral computations obtained by
running the Pagai static analyzer [11] on benchmark programs. Despite a com-
mon claim that implementations based on the double representation are more
efficient than those based on constraints only, our library reaches performance

Efficient Generation of Correctness Certificates 347

comparable to the Apron library together with the high-level of trust brought
by our Coq certificate checker.

The remainder of this paper is organized as follows. After having stated the
conventions we are using (§1), we define correctness criteria for the operators of
the abstract domain (§2), which all reduce to inclusion properties for which cer-
tificates are presented as Farkas coefficients (also known as Lagrange multipliers)
(§3). Such certificates may also be cheaply generated for the convex hull (§4).
Both forward step and convex hull operations reduce internally to a form of
projection. Some design choices of our implementation are then described (§5),
including how to keep the representation size of the polyhedra reasonable. Last
before conclusion (§7), an experimental evaluation and accompanying results are
presented (§6).

1 Definitions and Notations

In the remainder of this article, we use the following notations and definitions.

1. C: a linear constraint of the form a · x ≤ b where a is a vector of rational
constants, b is a rational and x ∈ Qn is the vector of the analyzed program
variables. Such a linear constraint, or constraint for short, can be viewed

as a half-space in an n-dimensional space. We write C
def
= a · x > b for the

complementary half-space.
2. P : a convex polyhedron, not necessarily closed, represented as a set of con-

straints. We call “size of the representation of P” the number of constraints
that P is made of.

3. satisfaction: saying that point y of Qn satisfies a constraint C
def
= a · x ≤ b

means that a ·y ≤ b. By extension, a point y satisfies (or is in) polyhedron P
if it satisfies all of its constraints. We write this: Sat P y. Given that a
constraint C can be regarded as polyhedron with only one constraint, we
also write: Sat C y.

4. Given our focus on the abstract domain of polyhedra we shall adopt the
following vocabulary.
(a) The order relation on polyhedra � is geometrical inclusion.
(b) The least upper bound � is the convex hull.
(c) The greatest lower bound � is geometrical intersection.
We will further distinguish the definition of abstract domain operators from
their actual implementation, which can have bugs. The implemented version
of the operators will be written with a hat: �̂, �̂ and �̂ implement the ideal
operators �, � and �, respectively.

5. inclusion: a polyhedron P1 is included in a polyhedron P2 (noted P1 �P2) if
and only if

∀y, Sat P1 y ⇒ Sat P2 y (1)

Inclusion for constraints C1
def
= a1 · x ≤ b1 and C2

def
= a2 · x ≤ b2 is a special

case which is easy to decide: C1 �C2 holds if and only if there exists k > 0
such that k · a1 = a2 and k · b1 ≤ b2. This latter case is thus proven correct
directly inside Coq.

348 A. Fouilhe, D. Monniaux, and M. Périn

2 Correctness of the Abstract Domain Operators

Let us now see what needs to be proven for the implementation of each operator
of an abstract domain so that the correctness of its result can be established.

Inclusion test P1 �̂P2 ⇒ P1 �P2

Convex hull P1 �P1�̂P2 and P2 �P1�̂P2

Intersection ∀x, Sat P1 x ∧ Sat P2 x ⇒ Sat P1�̂P2 x.
For now, we will assume a naive implementation of the intersection: P1�̂P2

is the union of the constraints of P1 with these of P2, which trivially satisfies
the desired property.

Assignment in a forward analysis, x := e amounts to intersection by the equal-
ity constraint x′ = e (where x′ is a fresh variable), projection of x and renam-
ing of x′ to x.1 When analyzing backward, assignment is just substitution.

Projection if P2 is the returned polyhedron for the projection of P1 parallel to
variables xi1 , . . . , xip we check that P1 �P2 and that variables xi1 , . . . , xip

do not appear in the constraints defining P2.
Widening : no correctness check needed. Widening (�) is used to accelerate the

convergence of the analysis to a candidate invariant. For partial correctness of
the analyzer, no property is formally needed of the widening operator, since
iterations stop when the inclusion test reports that an inductive invariant has
been obtained. There exist formalizations of the widening operator suitable
for proving the total correctness of the analysis (that is, that it eventually
converges to an inductive invariant) [12] but we avoided this question by
assuming some large upper bound on the number of iterations after which
the analyzer terminates with an error message.

Remark that we only prove that the returned polyhedron contains the polyhe-
dron that it should ideally be (which is all that is needed for proving that the
results of the analysis are sound), not that it equals it: for instance, we prove
that the polyhedron returned by the convex hull operator includes the convex
hull, not that it is the true convex hull. The precision of our algorithms (that
is, the property that they do not return polyhedra larger than needed) is not
proved formally; it is however ensured by usual software engineering methods
(informally correct algorithms, comparing the output of our implementation to
that of other polyhedra libraries. . .).

3 A Posteriori Verification of the Inclusion Test

We shall now describe a way to ensure the correctness of the inclusion test.
Recall we represent polyhedra as sets of constraints only. Our certificate for

1 Other polyhedra libraries distinguish invertible assignments (e.g. x := x + 1, more
generally x′ = A ·x with A an invertible matrix), which can be handled without pro-
jection, from non-invertible ones (e.g. x := y+ z). Because our library automatically
keeps a canonical system of equalities, which it uses if possible when projecting, no
explicit detection of invertibility is needed; it is subsumed by the canonicalization.

Efficient Generation of Correctness Certificates 349

proving that a polyhedron P , composed of the constraints C1, . . . , Cn satisfies a
constraint C relies on the following trivial fact:

Lemma 1. If a point y satisfies a set of constraints {C1, . . . , Cn}, it satisfies
any linear positive combination

∑n
i=1 λiCi with λi ≥ 0.

If we can find a constraint C′ that is a linear positive combination of C1, . . . ,
Cn and such that C′ �C then it follows that P is included in C. Farkas’ lemma
states that such linear combinations necessarily exist when inclusion holds, which
justifies our approach.

The motivation for a posteriori verification of inclusion results stems from this
formulation: while finding an appropriate linear combination requires advanced
algorithms, a small program checking that a particular set of λi’s entails P �C
can easily be proven correct in a proof assistant. We call these λi’s the certificate
for P �C.

3.1 A Certificate Checker Certified in Coq

Our certificate checker has Coq type:

inclusion checker (P1 P2 : Polyhedra) (cert : Cert) : Exception (P1 �P2)

where the type Polyhedra is a simple representation of a polyhedron as a list of
linear constraints and the type Cert is a representation for inclusion certificates.
If a proof of P1 �P2 can be built from cert , then the inclusion checker returns
it wrapped in the constructor value. However cert might be incorrect due to a
bug in �̂. In this case, the inclusion checker fails to build a proof of P1 �P2

and returns error.
When extracting theOcaml program from theCoq development, proof terms

are erased and the type of the checker function becomes that which would have
been expected from a hand-written Ocaml function:2

inclusion checker : Polyhedra → Polyhedra → Cert → bool

In reality, our implementation is slightly more complicated because the untrust-
ed part of our library, for efficiency reasons, operates on fast rational and integer
arithmetic, while the checker uses standard Coq types that explicitly represent
integers as a list of bits (see §5.6).

3.2 A Certificate-Generating Inclusion Test

Let us now go back to the problem of building a proof of P �C by exhibiting
an appropriate linear combination. From [8], this can be rephrased as a pure
satisfiability problem in linear programming:(

∀y,¬Sat
(
P � C

)
y
)
⇒ P �C

2 We chose to replace the constructors value and error of the type Exception by
Ocaml booleans instead of letting the extraction define an Ocaml type “exception”
with two nullary constructors due to proof terms being erased.

350 A. Fouilhe, D. Monniaux, and M. Périn

This problem can be solved by the simplex algorithm [13]. For this purpose, the
simplex variant proposed by [10], designed for SMT-solvers, is particularly well-
suited. This algorithm only implements the first of the two phases of the simplex
algorithm: finding a feasible point, that is a point satisfying all the constraints of
the problem. If there is no such point, a witness of unsatisfiability is extracted as
a set of mutually exclusive bounds on linear terms and suitable Farkas coefficients
λ, in the same way that blocking clauses for theory lemmas are obtained for use
in SMT-solving modulo linear rational arithmetic. Furthermore, this algorithm
is designed for cheap backtracking (addition and removal of constraints), which
is paramount in SMT-solving and also very useful in our application (§5.2).

Our approach to certificate generation differs from previous suggestions [8]
where inclusion is first tested by untrusted means, and, if the answer is positive, a
vector of Farkas coefficients is sought as the solution of a dual linear programming
problem with optimization, which has a solution, the Farkas coefficients, if and
only if the primal problem has no solution. Ours uses a primal formulation
without optimization.

3.3 From an Unsatisfiability Witness to an Inclusion Certificate

Inclusion certificates are derived from unsatisfiability witness in a way similar
to [14]. To illustrate how they are built as part of the inclusion test, a global
idea of the inner workings of the simplex variant from [10] is needed. We insist
on the following being a coarse approximation.

We aim at building, given P non-empty and C, an inclusion certificate for
P �C, otherwise said P ∧ C having no solution. P is composed of n con-
straints C1, . . . , Cn of the form

∑n
j=1 aij · xj ≤ bi, where i is the constraint

subscript. We refer to C
def
= b0 <

∑n
j=1 a0j · xj as C0.

Let us start by describing the organization of data. Each constraint Ci is split
into an equation x′

i =
∑n

j=1 aij · xj and a bound x′
i ≤ bi where x′

i is a fresh
variable. For the sake of simplicity, in this presentation, a constraint xi ≤ bi is
represented as x′

i = xi ∧ x′
i ≤ bi ; the actual implementation avoids introducing

such extra variable. Therefore, each x′
i uniquely identifies Ci by construction

and the original variables xi are unbounded. We call basic the variables which
are defined by an equation (i.e. on the left-hand side, with unit coefficient) and
non-basic the others. Last, the algorithm maintains a candidate feasible point,
that is a value for every variable x′

i and xj , initially set to 0.
From this starting point, the algorithm iterates pivoting steps while ensuring

preservation of the invariant: the candidate feasible point always satisfy the equa-
tions and the values of the non-basic variables always satisfy their bounds (‡).
At each iteration and prior to pivoting, a basic variable x′

i is chosen such that its
value does not satisfy its bounds. Either there is no such x′

i, and the candidate
feasible point is indeed a solution of P ∧C, thereby disproving P �C; or there is
such a basic variable x′

i. In this case, we shift its value to fit its bounds and we
seek a non-basic variable x′

n such that its value can be adjusted to compensate
the shift: through a pivoting step, x′

i becomes non-basic, and x′
n becomes basic.

Efficient Generation of Correctness Certificates 351

If there is no such x′
n (because all the non-basic variables already have reached

their bound), the equation which defines x′
i exhibits incompatible bounds of

the problem and is of the form x′
i =

∑
j �=i λj · x′

j (only x′
j ’s appear in this

equation: recall that the xj ’s are unbounded). We now show how to transform
this unsatisfiability result into an inclusion certificate.

Since we supposed that P is not empty, the unsatisfiability necessarily involves
C0. Thus, x

′
0, which represents C0, has a non-zero coefficient λ0 in the equation.

Without loss of generality, we suppose that the incompatible bounds involve an
upper bound on x′

i and that λ0 is positive. The above equation can be rewritten
so that x′

0 appears on the left-hand side:

x′
0 =

n∑
j=1

λ′
j · x′

j

where the lower bound b0 < x′
0 and the upper bound

∑n
j=1 λ

′
j · x′

j ≤ b′ are such

that b′ ≤ b0. Recall that the x′
i’s were defined as equal to linear terms li

def
=∑n

j=1 aij · xj of the constraints Ci. Let us now substitute the x′
i’s by their defi-

nition, yielding

l0 =

n∑
j=1

λ′
j · lj

Noting that C is l0 ≤ b0 (since C0 = b0 < l0 is C), that
∑n

j=1 λ
′
j · lj ≤ b and

that b′ ≤ b0, the λ′
j ’s form an inclusion certificate for P �C.

4 A Posteriori Verification of the Convex Hull

We saw in §2 that the result of the convex hull of two polyhedra P1 and P2 must

verify inclusion properties with respect to both P1 and P2. Computing P
def
=

P1�̂P2, then P1 �̂P and P2 �̂P and then checking the certificates would produce
a certified convex hull result, at the expense of two extra inclusion tests. From
a development point of view, this is the lightest approach. However, careful
exploitation of the details of �̂ can save us the extra cost of certificate generation,
at the expense of some development effort.

Before delving into the details, let us introduce some more notations for the
sake of brevity. In this section, a polyhedron P is regarded as a column vector of
the constraints C1, . . . , Cn it is composed of. This allows for a matrix notation:

P
def
= {x | A · x ≤ b}, where the linear term of Ci is the ith line of A and the

constant of Ci is the ith component of b.
Then, an inclusion certificate, λ1, . . . , λn, for P �C′ is a line vector Λ, such

that Λ · P = C and C �C′. Now, an inclusion certificate for P �P ′ is a set of
inclusion certificates Λ1, . . . ,Λn, one for each constraint C′

i of P
′. Such a set can

be regarded as a matrix F such that

F
def
=

⎛⎜⎝Λ1

...
Λn

⎞⎟⎠ and F × P �P ′

352 A. Fouilhe, D. Monniaux, and M. Périn

where the ith line of F × P is a constraint C such that C �C′
i. We call Λ a

Farkas vector and F a Farkas matrix.

4.1 A Convex Hull Algorithm on Constraints Representation

The convex hull P1 � P2 is the smallest polyhedron containing all line segments
joining P1 to P2. Thus, a point x of P1 � P2 is the barycenter of a point x1

in P1 and a point x2 in P2. Exploiting this remark, [15] defined P1 � P2, with
Pi = {x | Ai · x ≤ bi}, as the set of solutions of the constraints A1 · x1 ≤
b1 ∧ A2 · x2 ≤ b2 ∧ x = α1 · x1 + α2 · x2 ∧ α1 + α2 = 1 ∧ 0 ≤ α1 ∧ 0 ≤ α2

using 2n + 2 auxiliary variables x1,x2, α1, α2 where n = |x| is the number of
variables of the polyhedron. Still following [15], the variable changes x′

1 = α1 ·x1

and x′
2 = α2 ·x2 remove the non-linearity of the equation x = α1 ·x1 +α2 ·x2.

The resulting polyhedron can regarded as the 3-block system Sbar below. The
auxiliary variables x′

1,x
′
2, α1, α2 are then projected out to stick to the tuple x

of program variables. Therefore, the untrusted convex hull operator �̂ mainly

consists in a sequence of projections: P1 �̂P2
def
= p̂roj Sbar (x

′
1,x

′
2, α1, α2) where

Sbar =

⎛⎜⎜⎜⎜⎜⎜⎝
A1x

′
1 ≤ α1b1

A2x
′
2 ≤ α2b2

x = x′
1 + x′

2
α1 + α2 = 1

0 ≤ α1

0 ≤ α2

⎞⎟⎟⎟⎟⎟⎟⎠
4.2 Instrumenting the Projection Algorithm

Projecting a variable xk from a polyhedron P represented by constraints can be
achieved using Fourier-Motzkin elimination (e.g. [13]). This algorithm partitions
the constraints of P into three sets: E0

xk
contains the constraints where the

coefficient of xk is nil, E+
xk

contains those having a strictly positive coefficient
for xk and E−

xk
contains those which coefficient for xk is strictly negative.

Then, the result Pproj of the projection of xk from P is defined as

Pproj = proj P xk
def
= E0

xk
∪
(
map elimxk

(E+
xk

× E−
xk
)
)

where E+
xk

× E−
xk

is the set of all possible pairs of inequalities, one element of
each pair belonging to E+

xk
and the other belonging to E−

xk
. The elimxk

function
builds the linear combination with positive coefficients of the members of a pair
such that xk has a zero coefficient in the result.

Illustrating on an example, projecting x from

P
def
= {y ≤ 1, 2 · x+ y ≤ 2,−x− y ≤ 1} gives

E0
x = {y ≤ 1} and E+

x × E−
x = {(2 · x+ y ≤ 2,−x− y ≤ 1)}

From 1·(2·x+y ≤ 2)+2·(−x−y ≤ 1) = −y ≤ 4, we get Pproj = {y ≤ 1,−y ≤ 4}.

Efficient Generation of Correctness Certificates 353

Note that every constraint C of Pproj is either a constraint of P , or the result of
a linear combination with non-negative coefficients λ1, λ2 of two constraints C1

and C2 of P , such that λ1 ·C1 + λ2 ·C2 = C. It is therefore possible, with some
bookkeeping, to build a matrix F such that F × P = Pproj. This extends to the
projection of several variables: if proj P xk = Pproj = F ×P and proj Pproj xl =
P ′
proj = F ′ × Pproj, then P ′

proj = F ′′ × P with F ′′ = F ′ × F .
Fourier-Motzkin elimination can generate a lot of redundant constraints, which

make the representation size of Pproj unwieldy. In the worst case, the n con-
straints split evenly into E+

xk
and E−

xk
, and thus, after one elimination, one gets

n2/4 constraints; this yields an upper bound of n2p/4p where p is the number
of elimination steps. Yet, the number of true faces can only grow in single expo-
nential [16, §4.1]; thus most generated constraints are likely to be redundant.

The algorithm inspired from [9], which we use in practice, adds these refine-
ments to Fourier-Motzkin elimination:

1. Using equalities when available to make substitutions. A substitution is no
more than a linear combination of two constraints, the coefficients of which
can be recorded in F . Note that there is no sign restriction on the coefficient
applied to an equality.

2. Discarding trivially redundant constraints. The corresponding line F can be
discarded just as well.

3. Discarding constraints proved redundant by linear programming, as in §5.2.

Note that, since discarding a constraint only adds points to the polyhedron, there
is no need to prove these refinements to be correct or to provide certificates for
them. We could thus very easily add new heuristics.

4.3 On-the-Fly Generation of Inclusion Certificates

In order to establish the correctness of static analysis, the convex hull opera-
tor should return a superset of the true convex hull; we thus need proofs of
P1 �P1 �̂P2 and P2 �P1 �̂P2. The converse inclusion is not needed for correct-
ness, though we expect that it holds; we will not prove it. A certifying operator
�̂ must then produce for each constraint C of P1 �̂P2 a certificate Λ1 (resp. Λ2)
proving the inclusion of P1 (resp. P2) into the single-constraint polyhedron C.
The method we propose for on-the-fly generation of a correctness certificate is
based on the following remark.

For each constraint C of P1 �̂P2, the projection operator p̂roj provides a vector
Λ such that Λ×Sbar = C, where Sbar is the system of constraints defined in §4.1.
An examination of the certificate reveals that Λ can be split into three parts
(Λ1,Λ2,Λ3) such that Λ1 refers to the constraints A1.x

′
1 ≤ α1b1 derived from

P1 ; Λ2 refers to the constraints A2.x
′
2 ≤ α2b2 derived from P2 and Λ3 refers to

the barycenter part x = x′
1+x′

2 ∧ α1+α2 = 1 ∧ 0 ≤ α1 ∧ 0 ≤ α2. Let us apply
the substitution σ = [α1/1, α2/0,x

′
1/x,x

′
2/0], that characterizes the points of

P1 as some extreme barycenters, to each terms of the equality Λ×Sbar = C. This
only changes Sbar : Indeed, Λσ = Λ since Λ is a constant vector and Cσ = C

354 A. Fouilhe, D. Monniaux, and M. Périn

since none of the substituted variables appears in C (due to projection). We
obtain the equality (below) where many constraints of Sbarσ became trivial.

(Λ1,Λ2,Λ3)×

⎛⎜⎜⎜⎜⎜⎜⎝
A1x ≤ b1

0 ≤ 0

x = x
1 = 1
0 ≤ 1
0 ≤ 0

⎞⎟⎟⎟⎟⎟⎟⎠ = C

This equality can be simplified into Λ1 × (A1x ≤ b1) +λ(0 ≤ 1) = C where λ is
the third coefficient of Λ3. This shows that Λ1 is a certificate3 for P1 �C. The
same reasoning with σ = [α1/0, α2/1,x

′
1/0,x

′
2/x] shows that Λ2 is a certificate

for P2 �C.

5 Notes on the Implementation

The practical efficiency of the abstract domain operators is highly sensitive to
implementation details. Let us thus describe our main design choices.

5.1 Extending to Equalities and Strict Inequalities

Everything we discussed so far deals with non-strict inequalities only. The in-
clusion test algorithm however complements such non-strict inequalities, which
yields strict ones. Adaptation could have been restricted to the simplex algo-
rithm on which the inclusion test relies, and such an enhancement is described
in [10]. We have however elected to add full support for strict inequalities to our
implementation. Once the addition of two constraints has been defined, almost
no further change to the algorithms we discussed previously was needed.

Proper support and use of equalities was more involving. As [9] points out,
equalities can be used for projecting variables. Such substitutions do not increase
the number of constraints, contrary to Fourier-Motzkin elimination. We ended up
splitting the constraint set into a set of equalities, each serving as the definition of
a variable, and a set of inequalities in which these variables have been substituted
by their definitions. Minimization (see §5.2) was augmented to look for implicit
equalities in the set of inequalities. Last, testing inclusion of P in C was split
into two phases: substituting in C the variables defined by the equalities of P
and then using the simplex-based method described earlier without putting the
equalities of P in, which reduces the problem size.

Inclusion certificates were adapted for equalities. If P �C, with C
def
= a·x = b,

cannot be proven using a linear combination of equalities, it is split as {a · x ≤
b,a · x ≥ b} and P is proven to be included in each separately.

3 The shift λ of the bound is lost and will be computed again by our Coq-certified
checker.

Efficient Generation of Correctness Certificates 355

5.2 Minimization

The intersection P1�̂P2 is a very simple operation. As §2 described, a naive
implementation amounts to list concatenation. However, some constraints of P1

may be redundant with constraints of P2. Keeping redundant constraints leads
to a quick growth of the representation sizes and thus of computation costs.
In addition, one condition for the good operations of widening operators on
polyhedra is that there should be no implicit equality in the system of inequalities
and no redundant constraint [17].

It is therefore necessary to minimize the size of the representation of polyhe-
dra, that is, removing all redundant constraints, and to have a system of equality
constraints that exactly defines the affine span of the polyhedron. We call Pmin

the result of the minimization on P . The correctness of the result is preserved
as long as Pmin is an over-approximation of P , which means P �Pmin.

First, we check whether P has points in it using the simplex algorithm from
§3.3. If P is empty, ⊥ is returned as the minimal representation. The certifi-
cate is built from the witness of contradictory bounds returned by the simplex
algorithm. It is a linear combination which result is a trivially contradictory
constraint involving only constants (e.g. 0 ≤ −1) and which, in other words, has
no solution.

The next step is implicit equality detection. It builds on a · x ≤ b ∧ a · x ≥
b ⇒ a · x = b. For every C≤ def

= a · x ≤ b of P (by definition P �C≤), we test

whether P �C≥ def
= a·x ≥ b. If the inclusion holds, the certificate of the resulting

equality is composed of a linear combination yielding C≥ and a trivial one,
1 ·C≤, yielding C≤. Once this is done, the representation of P can be split into a
system of equalities Pe and a system of inequalities Pi with no implicit equality.
Pe is transformed to be in echelon form using Gaussian elimination, which has
two benefits. First, redundant equations are detected and removed. Second, each
equation can now serve as the definition of one variable. The so-defined variables
are then substituted in Pi, yielding P ′

i . Although our implementation tracks
evidence of the correctness of this process, it should be noted that the uses of
equalities decribed above are standard practice.

At this point, if redundancy remains, it is to be found in P ′
i only. It is detected

using inclusion tests: for every C ∈ P ′
i , if P

′
i \{C}�P ′

i , C is removed. Removing
a constraint is, at worst, an over-approximation for which no justification needs
to be provided.

All that we describe above involve many runs of the simplex algorithm. The
key point which makes this viable in practice is the following: they are all strongly
related and many pivoting steps are shared among the different queries. We
described (§3.3) the data representation used by the simplex variant we use: it
splits each constraint of P in linear term and bound by inserting new variables.
These variables can have both an upper and a lower bound. Let us now illustrate

the three steps of minimization on constraint C
def
= a · x ≤ b, split as x′ = a · x

and x′ ≤ b. The first step, satisfiability, solves this very problem. Then, implicit
equalities detection checks whether x′ = a · x and x′ < b is unsatisfiable. Last,
redundancy elimination operates on x′ = a · x and x′ > b.

356 A. Fouilhe, D. Monniaux, and M. Périn

For all these problems, we only changed the bound on x′, without ever touch-
ing either the constraint x′ = a · x or the other constraints of P . These changes
can be done dynamically, while preserving the simplex invariant (‡ of §3.3), by
making sure that the affected x′ is a basic variable. This remark, once general-
ized to a whole polyhedron, enables the factorization of the construction of the
simplex problem. Actually, it is only done once for each minimization. It is also
hoped that the feasible point of one problem is close enough to that of the next
problem, so that convergence is quick.

Minimization also plays an important role in the convex hull algorithm. We
mentioned (§4.2) that projection increases the representation size of polyhedra
and described some simple counter-measures from [9]. When projecting a lot
of variables, as is done for computing the convex hull of two polyhedra, each
redundant constraint can trigger a lot of extra computation. Applying a complete
minimization after the projection of each variable mitigates this. More precisely,
only the third of the steps described above is used: projection cannot make a non-
empty polyhedron empty and it cannot reduce the dimension of a polyhedron,
no implicit equality can be created.

5.3 A More Detailed Intuition on Bookkeeping

We mentioned in §3.2 and §4 that simple bookkeeping makes it possible to build
inclusion certificates. We now give a more precise insight on what is involved,
on the example of the projection.

The main change is an extension of the notion of constraint, which is now a
pair (f, C) of a certificate fragment and a linear constraint as we presented them
so far. A certificate fragment f is a list of pairs (ni, id i), ni being a rational
coefficient and id i a natural number uniquely identifying one constraint of P .
The meaning of f is the following∑

i

ni · Cidi = C, with Cidi ∈ P and (ni, id i) ∈ f

The elimxk
function introduced in §4.2 is extended to take two extended con-

straints (f1, C1) and (f2, C2), and return an extended constraint (f, C). Recall
that the original elimxk

chooses λ1 and λ2 such that the coefficient of xk in the
resulting C is nil. The extended version returns (λ1 ·f1 @ λ2 ·f2, λ1 ·C1+λ2 ·C2),
where @ is the list concatenation operator and λi · fi is a notation for:

map (fun (n, id) → (λi · n, id)) fi

The certificate fragment keeps track of how a constraint was generated from an
initial set of constraints. For a single projection proj P xk, the fragments are
initialized as [(1, idC)] for every constraint C before the actual projection starts.
For a series of projection as done for the convex hull, the initialization takes
place before the first projection.

Efficient Generation of Correctness Certificates 357

5.4 Polyhedron Representation Invariants

The data representation our implementation uses for polyhedra satisfies a num-
ber of invariants which relate to minimality.

(1) There is no implicit equality among the inequalities.
(2) There is no redundant constraint, equality or inequality.
(3) In a given constraint, factors common to all the coefficients of variables are

removed.
(4) Each equality provides a definition for one variable, which is then substituted

in the inequalities.
(5) Empty polyhedra are explicitly labeled as such.

(3) helps keeping numbers small, hopefully fitting machine representation, re-
sulting in cheaper arithmetic. (1) implies in particular that if an implicit equality
is created when adding a constraint C to a polyhedron P , then C is necessarily
involved in that equality. It follows that the search for implicit equalities can be
restricted to those involving newly added constraints. Because of (2), the same
holds for redundancy elimination: if C is shown to be redundant, P remains
unaffected by the intersection. Furthermore, (4) allows for the reduction of the
problem dimension when testing for P1 �P2. Once the same variables are sub-
stituted in P1 and P2, only the inequalities need to be inserted in the simplex
problem. Last, (3) and (4) give a canonical form to constraints, which make
syntactic criteria for deciding inclusion of constraints more powerful. These cri-
teria, suggested by [9], are used whenever possible in the inclusion test and the
projection.

5.5 Data Structures

Radix Trees. Capturing linear relations between program variables with poly-
hedra generally leads to sparse systems, as noted by [9]. Our implementation uses
a tree representation of vectors4 where the path from the root to a node identifies
the variable whose coefficient is stored at that node. This offers a middle ground
between dense representation, as used by other widely-used implementation of
the abstraction domain of polyhedra, and sparse representation which makes
random access costly as sparsity diminishes.

Numbers Representation. Rational vector coefficients can grow so as to over-
flow native integer representation during an analysis. Working around this short-
coming requires the use of an arithmetic library for arbitrarily large numbers.
This has a serious impact on overall performance. Our implementation uses the
ZArith[18] Ocaml front-end to GMP[19]. ZArith tries to lower the cost of
using GMP by using native integers as long as they don’t overflow.

Our experiments show that, in many practical cases, extended precision arith-
metic is not used. This echoes similar findings in SMT-solvers such as Z3 or

4 The idea was borrowed from [8].

358 A. Fouilhe, D. Monniaux, and M. Périn

OpenSMT [20]: in most cases, extended precision is not used, thus the great
importance of an arithmetic library that operates on machine words as much
as possible, without allocating extended precision numbers. In the case of poly-
hedra, however, the situation occasionally degenerates when the convex hull
operator generates large coefficients.

The extracted Ocaml code of inclusion checker does not use this efficient
representation. Because of the need for correctness of computations, the checker
instead uses the Coq representation of numbers (lists of bits), which is inefficient
on numerical computations. Alternatively, assuming trust in ZArith and GMP,
it is possible to configure the Coq extractor to base the checker on ZArith.

5.6 A Posteriori Certification vs. Full COQ-Certified Development

Even though our library is planned to be used in a Coq-certified analyzer,
we preferred a posteriori certification over a fully Coq-certified development.
Keeping Coq only for the development of checkers of external computations
reduces the development cost and reconciles efficiency of the tool and confidence
in its implementation through certificates.

First, it reduces the proof effort: verifying that a guess is the solution to a
problem involves weaker mathematic arguments than proving correctness and
termination of the solver. To illustrate the simplicity of our Coq development,
Figure 1 shows some excerpts which are self-explanatory. The last function,
inclusion checker, is representative of the difficulty of the proofs. This func-
tion is close to its extraction in Ocaml except that it returns either an error

or a proof of P1 �P2 wrapped in the value constructor (Line 38). In the case
where P1 is an empty polyhedron (established by eproof) the proof of inclusion
in P2 is built from that proof of emptiness. The missing proof of Line 38 is done
in the interactive prover (Lines 43-45) and automatically placed in the function.
It consists in an induction on the list of constraints of P2 that shows that the
empty polyhedron P1 is included in every constraint of P2.

Our external library acts as an oracle: it efficiently performs the operation
and returns a certificate which serves two purposes: it can be used to check the
correctness of the computations but it is also a short cut toward the result. For
instance, the convex hull P1 � P2 is easy to obtain from the complete inclusion
certificates (F1,λ1) related to P1 or (F2,λ2) related to P2. Indeed, P1 � P2 =
F1 · P1 + λ1 = F2 · P2 + λ2 (see §4.3). This way, the expensive computations
that involve numerous calls to our simplex algorithm are done by our Ocaml

implementation using ZArith and the result is reflected in Coq at the cost of
just a matrix product using the Coq-certified representation of numbers. If we
work in such a manner, we never actually have to transfer polyhedra from the
untrusted to the trusted side.

From a general point of view, splitting a tool into an untrusted solver and a
correctness checker makes it more amenable to extensions and optimizations. A
posteriori certification has a cost each time the correctness of a result needs to
be proved (only during the last phase of the analysis to ascertain the stability

Efficient Generation of Correctness Certificates 359

of the inferred properties). However, it allows optimizations whose correctness
would be difficult to prove and usage of untrusted components (e.g. GMP).

6 Experimental Results

In order to evaluate the viability of our solution, we compared experimentally
our library (referred to as Libpoly) with mature implementations.

In addition to the efficiency of the polyhedra computation, we wished to mea-
sure the cost of the inclusion checker. Our approach guarantees that, if our
certificate checker terminates successfully on a given verification, the result of
the operation which produced the certificate is correct. However, this assertion
currently only applies to the polyhedra as known to the Coq checker: a transla-
tion occurs between the Ocaml representation of numbers, ZArith, and their
representation in the Coq language as lists of bits. This means that the checker
has to compute on this inefficient representation, and thus we wished to ascertain
whether the cost was tolerable.5

The best approach to evaluating Libpoly would have been to rely on it for
building a complete static analyzer. Although this is our long-term goal, a less
demanding method was needed for a more immediate evaluation. We chose to
compare computation results from Libpoly to those of widely used existing
implementations of the abstract domain of polyhedra: the NewPolka library
and the PPL. More precisely, we used them through their Apron front end [4].

6.1 The Method

As [21] points out, randomly-generated polyhedra do not give a faithful eval-
uation: a more realistic approach was needed. Because of the lack of a static
analyzer supporting both Apron and Libpoly, we carried out the comparison
by logging and then replaying with Libpoly the abstract domain operations
done by the existing Pagai analyzer [11] using Apron.

Technically, logging consists in intercepting calls to the Apron shared library
(using the wrap functionality of the GNU linker ld), analyzing the data struc-
tures passed as operands and generating equivalent Ocaml code for Libpoly.
NewPolka and PPL results are logged too, for comparison purposes. At the
end of the analysis, the generated Ocaml code forms a complete program which
replays all the abstract domain operations executed by the NewPolka library
or the PPL on request of the analyzer.

5 An alternative would be to map, at checker extraction time, Coq numbers to ZArith

numbers, at the expense of having both ZArith and GMP in the trusted computing
base. One may consider that we already make assumptions about ZArith and GMP:
we assume they respect memory safety, and thus will not corrupt the data of the
Ocaml code extracted from Coq, or at least that, if they corrupt memory, they
will cause a crash in the analyzer (probably in the garbage collector) instead of a
silent execution with incorrect data. This seems a much less bold assumption than
considering that they always compute correctly, including in all corner cases.

360 A. Fouilhe, D. Monniaux, and M. Périn

1 From module LinearCsrt:

2 Record LinearCstr: Set := mk {coefs: Vec; cmp op: Cmp; bound: Num}.
3

4 Definition Sat (c:LinearCstr) (x:Vec) : Prop :=

5 denote (Vec.eval (coefs c) x) (cmp op c) (bound c).
6

7 From module List:
8 Inductive Forall (A : Type) (pred : A → Prop) : list A → Prop :=

9 | Forall nil: Forall pred nil

10 | Forall cons: ∀ (x:A) (l:list A),

11 pred x → Forall pred l → Forall pred (x :: l)

12

13 From module Polyhedra:
14 Definition Polyhedra : Set := list (id * LinearCstr).

15

16 Definition Sat (P:Polyhedra) (x:Vec) : Prop :=

17 List.Forall (fun c => LinearCstr.Sat (snd c) x) P.

18

19 Definition Incl (P:Polyhedra) (C:LinearCstr) : Prop :=

20 ∀ x:Vec, Sat P x → LinearCstr.Sat C x.
21

22 Definition (infix �) (P1 P2 : Polyhedra) : Prop :=

23 ∀ x:Vec, Sat P1 x → Sat P2 x.
24

25 Definition CertOneConstraint : Set := list (id * Num)

26

27 Inductive Cert : Set :=

28 | incl: list (id * CertOneConstraint) -> Cert

29 | empty: CertOneConstraint -> Cert.

30

31 Lemma Empty is included: ∀ (P:Polyhedra) (C:LinearCstr),

32 (Empty P) → (Incl P C).

33

34 Definition inclusion checker (P1 P2:Polyhedra) (cert:Cert) : Exc(P1�P2).

35 refine (match cert with

36 | incl icert => checkInclusion P1 P2 icert
37 | empty ecert => match (checkEmptyness P1 ecert) with

38 | value eproof => value ← missing proof
39 | error => error

40 end

41 end

42). The missing proof is provided by the following proof script:
43 induction P2 with IH;

44 exact (List.Forall nil) ;

45 exact (List.Forall cons c (Empty is included P1 (snd c) eproof) IH).

46 Defined.

Fig. 1. Excerpts of our Coq-certified inclusion checker

Efficient Generation of Correctness Certificates 361

The comparison was done for the following operations: parallel assignment,
convex hull, inclusion test and intersection on the analysis of the following pro-
grams:

1. bf: the Blowfish cryptographic cipher
2. bz2: the bzip2 compression algorithm
3. dbz2: the bzip2 decompress algorithm
4. jpg: an implementation of the jpeg codec
5. re: the regular expression engine of GNU awk

6. foo: a hand-crafted program leading to polyhedra with many constraints,
large coefficients and few equalities

6.2 Precision and Representation Size Comparison

The result of each operator we evaluated is a well-defined geometrical object. For
every logged call, the results from NewPolka, PPL and Libpoly were checked
for equality (double inclusion). The certificates generated by Libpoly were then
systematically checked. Furthermore, polyhedra have a minimal constraints re-
presentation, up to the variable choices in the substitutions of equalities. It was
systematically checked whether Libpoly, NewPolka and the PPL computed
the same number of equalities and inequalities. In all the cases we tried, the
tests of correctness and precision passed. It is to be noted that the PPL does
not systematically minimize representations: its results often have redundant
constraints.6

Besides giving confidence in the results computed by Libpoly, ensuring that
our results are identical to those of NewPolka or the PPL lead us to believe
that the analyzer behavior would not have been very different, had it used the
results from Libpoly. There is no noticeable difference between the analyses
carried out using NewPolka and the PPL.

6.3 Timing Measurements

Timing measurements were made difficult because of the importance of the state
of polyhedra in the double representationNewPolka and the PPL use. We were
concerned that logging and replaying as described above would be unfair towards
these libraries, since it would force the systematic recomputation of generator
representations that, in a real analyzer, would be kept internally. We thus opted
for a different approach.

We measured the timings for NewPolka and the PPL directly inside Pagai
by wrapping the function calls between calls to a high precision timer. We made
sure that the overhead of the timer system calls was sufficiently small so as
to produce meaningful results. For Libpoly, timing measurements were done

6 This is due to the lazy-by-default implementation of the operators of the PPL. Since
support for the eager version of the operators has been deprecated in and is being
removed from the PPL (see [22], § A Note on the Implementation of the Operators),
we could not configure the library to have the same behavior as NewPolka.

362 A. Fouilhe, D. Monniaux, and M. Périn

Table 1. Timing comparison between NewPolka (N), PPL (P), Libpoly (L) and
Libpoly with certificate checker (C): total time (in milliseconds) spent in each of the
operations; trivial problems are excluded

prog. assignment convex hull inclusion intersection
N P L N P L C N P L C N P L

bf 3.7 11.4 0.5 3.2 1.2 2.7 2.8 0.2 0.4 0.1 0.1 10.7 13.4 1.2
bz2 14.6 54.1 2.9 23.5 11.5 66.8 68.7 1.6 2.8 0.7 1.2 52.3 61.1 7.9
dbz2 1618 4182 83.8 1393 231.9 532.8 535.3 32.3 35.6 2.1 3.6 1687 1815 28.3
jpg 23.7 68.3 3.8 28.2 7.5 24.0 24.9 1.2 1.8 0.5 0.8 39.7 51.0 6.0
re 5.7 17.2 0.7 20.2 8.4 17.9 19.2 1.1 1.3 0.5 0.7 37.3 47.2 3.3
foo 9.2 14.8 8.5 4.2 0.6 941.8 943.7 0.2 0.2 0.9 0.9 6.7 7.1 5.5

during the replay and exclude the time needed to parse and rebuild the operand
polyhedra.

We present two views of the same timing measurements, carried out on the
programs introduced in §6.1. Table 1 gives, for each benchmark program, the
total time spent in each operation of the abstract domain. Such a table does
not inform us of the typical distribution of problem sizes and the relationship
between problem size and computation time, thus we compiled Table 2 which
shows computation times aggregated according to the “problem size”, defined
as the sum of the number of constraints of all the operands of a given operation.

For the assignment and the convex hull, all the constraints of the two operands
are put together after renaming and many projections follow. The inclusion
test P1 �̂P2, in the worst case, solves as many linear programming problems as
there are constraints in P2, but each is of size the number of constraints of P1+1.
Last, the intersection operator minimizes the result of the union of the sets of
constraints. Note that the sums in Table 1 exclude operations on trivial problems
of size zero or one.

The presented results show that Libpoly is efficient on small problems. Yet,
the performance gap between Libpoly and the other implementations closes on
bigger problems. This is especially true for the convex hull, which is a costly
operation in the constraint representation. At least part of the difference in effi-
ciency on small problems can be explained by the generality Apron provides: it
provides a unified interface to several abstract domains at the expense of an extra
abstraction layer which introduces a significant overhead on small problems.

More generally, the use of ZArith in Libpoly is likely to lower the cost
of arithmetic when compared to NewPolka and the PPL, which use GMP

directly. The foo program illustrates this: the analysis creates constraints with
big coefficients, likely to overflow native number representation. However, precise
measurement of the effect of using ZArith would be a hard task.

Last, Table 1 seems to show that problems are most often of rather small size,
but this may well be due to our limited experimentation means.

In spite of the shortcomings of our evaluation method, these results seem
promising for a constraints-only implementation of the abstract domain of poly-
hedra. Some progress still needs to be made on the convex hull side (see §7).
It is also interesting to notice the performance differences between the

Efficient Generation of Correctness Certificates 363

Table 2. Timing comparison between NewPolka (N), PPL (P) and Libpoly (L).
Computation times (in milliseconds) are aggregated according to operation and prob-
lem size. (n) is the total number of problems of the size range in the benckmarks.

problem size 0–1 2–5 6–10 11–15 16–20 21–25 26–30 31+

assignment
N 33.8 601.8 385.4 20.9 78.3 537.4 59.5 13.1
P 47.5 1176 519.7 87.4 247.6 2111 81.7 77.9
L 1.1 6.6 14.3 10.7 5.2 39.2 15.2 11.6
n 539 667 381 58 64 480 30 16

convex hull
N 687.9 679.7 434.1 119.5 68.8 37.9 6.4 3.5
P 167.5 141.0 68.4 22.8 16.8 9.2 1.9 0.9
L 7.0 57.1 133.7 131.2 1050 106.4 50.1 27.8
n 3354 3373 1092 354 135 65 14 7

inclusion
N 7.2 9.7 9.7 3.3 5.8 4.0 4.0 0
P 6.5 12.8 10.6 4.2 7.0 3.9 3.4 0
L 0.6 1.6 1.3 0.5 1.0 0.3 0.1 0
n 1482 1881 673 277 111 52 17 4

intersection
N 1389 1752 52.3 27.4 1.3
P 1933 1740 158.6 91.4 4.8
L 35.0 30.9 18.4 8.8 0.6
n 11458 4094 322 156 6 0 0 0

NewPolka and the PPL. At least part of them can be explained by the eager-
ness of NewPolka and the lazyness of the PPL.

6.4 Certificate Checking Overhead

The certificate checking overhead shown in Table 1 includes the translation be-
tween Ocaml and Coq representations. Inside a certified static analyzer, this
overhead could be reduced by only transferring the certificates, as opposed to the
full polyhedra, and using them to simulate the polyhedra computations, with-
out bothering to check after every call that the polyhedron inside the Ocaml

library corresponds to the one inside the certified checker. In addition to trans-
lation costs, there is the general inefficiency of computations on Coq integers,
which are represented as lists of bits; this is considerably more expensive than
using native integers, or even arrays of native integers as GMP would do.

However, it should be noted that the checking of inclusion certificates occurs
only during the final step of the certified static analysis which consists in verifying
that the inferred invariant candidates are indeed inductive invariants for the
program.

Last, the overhead of certificate checking is relatively greater for inclusion
than for convex hull. Although the actual checking burden is bigger for the
convex hull, due to certificate composition densifying the resulting certificate,
the inclusion test algorithm is much cheaper than the convex hull in terms of
computations. More precisely, the convex hull algorithm involves inclusion tests
as part of representation minimization.

364 A. Fouilhe, D. Monniaux, and M. Périn

7 Conclusions

The previous sections demonstrated that a realistic implementation of the ab-
stract domain of polyhedra can be certified using a posteriori verification of
results. This approach has a key benefit: the time-consuming development in-
side the Coq proof assistant is reduced to the bare minimum. A tight integra-
tion of the certification concern enables on-the-fly certification generation as a
by-production of the actual computations, thereby making the associated cost
negligible. The same procedures can be used for fixed point iterations (with cer-
tificate generation turned off for efficiency) and for fixed point verification (with
certificates generated and checked).

The complete implementation which has been developed operates only on
a constraints representation of polyhedra; our motivations for this choice were
the ease of generation of certificates as well as the absence of combinatorial ex-
plosion on common cases such as hypercubes. This is made possible through
careful choice of data structures and exploitation of recent algorithmic refine-
ments [9,10]. Possible future developments include designing efficient techniques
for generating Farkas certificates for a library based on the double representa-
tion (generators and constraints) and providing heuristics for choosing when to
operate over constraints only and when to use the double representation.

Prior to this, however, there remains room for both enhancement and exten-
sion of our current implementation. A simple enhancement would be to have
both an upper and a lower bound for linear terms, which would further con-
dense the representation of polyhedra. The implicit equality detection algorithm
could be made less naive by exploiting the fact that a point in a polyhedron P
which has implicit equalities Ei necessarily reaches the bounds of the inequalities
involved in the proof of P �Ei.

Finally, our library is planned to be part of a certified static analyzer, such
as the one being built in the Verasco project. Beyond a certified implementa-
tion of the abstract domain of polyhedra, our library could also serve to verify
the numerical invariants discovered by untrusted analysis using a combination
of abstract domains (intervals, octagons, ... which are special cases of polyhe-
dra). The discovered invariants could be stored in the form of polyhedra and the
verification of their stability could be done with our certified library. Currently,
our polyhedron library only deals with linear constraints, but a general-purpose
analyzer has to handle nonlinearity. Our library should therefore include lin-
earization techniques [23] at the condition that these be proven correct.

Acknowledgements. We would like to thank Bertrand Jeannet for his advice
on proper ways to evaluate Libpoly against his NewPolka library.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages (POPL), pp. 238–252. ACM (1977)

Efficient Generation of Correctness Certificates 365

2. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Principles of Programming Languages (POPL), pp. 84–97. ACM
(1978)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

4. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation (PLDI), pp. 196–207. ACM (2003)

6. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

7. The Coq Development Team: The Coq proof assistant reference manual. INRIA.
8.4. edn. (2012)

8. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Result certification for relational
program analysis. Technical Report RR-6333, INRIA (2007)

9. Simon, A., King, A.: Exploiting sparsity in polyhedral analysis. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 336–351. Springer, Heidelberg
(2005)

10. Dutertre, B., De Moura, L.: Integrating simplex with DPLL(T). Technical Report
SRI-CSL-06-01, SRI International, computer science laboratory (2006)

11. Henry, J., Monniaux, D., Moy, M.: PAGAI: a path sensitive static analyser. In:
Jeannet, B. (ed.) Tools for Automatic Program Analysis (TAPAS) (2012)

12. Monniaux, D.: A minimalistic look at widening operators. Higher Order and Sym-
bolic Computation 22(2), 145–154 (2009)

13. Dantzig, G., Thapa, M.N.D.: Linear Programming. Springer (2003)
14. Necula, G.C., Lee, P.: Proof generation in the Touchstone theorem prover. In:

McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 25–44. Springer,
Heidelberg (2000)

15. Benoy, F., King, A., Mesnard, F.: Computing convex hulls with a linear solver.
Theory and Practice of Logic Programming 5(1-2), 259–271 (2005)

16. Monniaux, D.: Quantifier elimination by lazy model enumeration. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer,
Heidelberg (2010)

17. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for
convex polyhedra. Science of Computer Programming 58(1-2), 28–56 (2005)

18. Miné, A., Leroy, X.: ZArith, http://forge.ocamlcore.org/projects/zarith
19. Free Software Foundation: The GNU Multiple Precision Arithmetic Library. 5.0

edn. (2012)
20. Barbosa, C., de Oliveira, D., Monniaux, D.: Experiments on the feasibility of using

a floating-point simplex in an SMT solver. In: Workshop on Practical Aspects of
Automated Reasoning (PAAR), CEUR Workshop Proceedings (2012)

21. Monniaux, D.: On using floating-point computations to help an exact linear arith-
metic decision procedure. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 570–583. Springer, Heidelberg (2009)

22. Bugseng: The Parma Polyhedra Library. 1.0 edn. (2012)
23. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-

mains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2006)

http://forge.ocamlcore.org/projects/zarith

Static Provenance Verification

for Message Passing Programs

Rupak Majumdar1, Roland Meyer2, and Zilong Wang1

1 MPI-SWS, Germany
2 University of Kaiserslautern, Germany

Abstract. Provenance information records the source and ownership
history of an object. We study the problem of provenance tracking in
concurrent programs, in which several principals execute concurrent pro-
cesses and exchange messages over unbounded but unordered channels.
The provenance of a message, roughly, is a function of the sequence of
principals that have transmitted the message in the past. The provenance
verification problem is to statically decide, given a message passing pro-
gram and a set of allowed provenances, whether the provenance of all
messages in all possible program executions, belongs to the allowed set.

We formalize the provenance verification problem abstractly in terms
of well-structured provenance domains, and show a general decidability
result for it. In particular, we show that if the provenance of a message
is a sequence of principals who have sent the message, and a provenance
query asks if the provenance lies in a regular set, the problem is decidable
and EXPSPACE-complete.

While the theoretical complexity is high, we show an implementation
of our technique that performs efficiently on a set of Javascript examples
tracking provenances in Firefox extensions. Our experiments show that
many browser extensions store and transmit user information although
the user sets the browser to the private mode.

1 Introduction

Controlled access and dissemination of data is a key ingredient of system secu-
rity: we do not want secret information to reach untrusted principals and we
do not want to receive bad information (indirectly) from untrusted principals.
Many organizations receive private information from users and this information
is passed around within the organization to carry out business-critical activities.
These organizations must ensure that the data is not accidentally disclosed to
unauthorized users, as the potential cost of disclosure can be high. Moreover, in
many domains, such as healthcare and finance, the control of data is required
by regulatory agencies through legislation such as HIPAA and GLBA.

We present an abstract model of information dissemination in message passing
systems, and a static analyzer to verify correct dissemination. We model systems
as concurrent message passing processes, one process for each principal in the
system. Processes communicate by sending and receiving messages via a shared

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 366–387, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Static Provenance Verification for Message Passing Programs 367

set of channels. Channels are unbounded, but can reorder messages. Sends are
non-blocking, but receive actions block until a message is available.

To track information about the origin and access history of a message, we
augment messages with provenance annotations. Roughly, the provenance of a
message is a function of the sequence of principles that have transmitted the
message in the past. Depending on the function, we get different provenance
annotations. For example, the annotation can simply be the sequence of princi-
pals. Whenever a principal sends a message, we append the name of the principal
to the current provenance of the message. The provenance verification problem
asks, given a message passing program, a variable in the program, and a set
of allowed provenance annotations, whether the provenance of every message
stored in the variable, on every run of the program, belongs to the set of allowed
provenances.

Consider a healthcare system in which a patient sends health questions to a
secretary or a nurse, who in turn, forwards the question to doctors. An
information-dissemination policy may require that every health answer received
by the patient has been seen by at least one doctor. That is, the provenance
of every message received by the patient must belong to the regular language
Patient(Secretary + Nurse) Doctor+.

We consider provenance verification for general provenance domains satisfying
an algebraic requirement. Static provenance verification is hard because of two
sources of unboundedness in the model. First, the provenance information asso-
ciated with a single message can be unbounded. For example there is no bound
on the number of doctors who see a health question before an answer is sent
back. Second, the number of pending messages in the system can be unbounded.
We tackle these two sources of unboundedness as follows.

We give a reduction from provenance verification problem to coverability in
labeled Petri nets, where tokens carry (potentially unbounded) provenance data.
As a result, we obtain a general decidability result for provenance verification
problem, when the domain of provenance annotations is well-structured [1,8].
Specifically, we show verification is EXPSPACE-complete for the set provenance
domain, that tracks the set of principals that have seen a message, as well as for
the language provenance domain, in which provenance information is stored as
ordered sequences of principals that have seen the message and policies are regu-
lar languages. Our proofs combine well-structuredness arguments with symbolic
representations; we analyze coverability in a product of a Petri net modeling the
system and a symbolic domain encoding the set of allowed provenances.

While our decision procedures reduce the verification problems to problems
on Petri nets, our experiences with a direct implementation of provenance verifi-
cation based on existing Petri net coverability tools have been somewhat disap-
pointing. Mostly, this is because after the reduction to Petri nets, the coverability
tools fail to utilize the structure of message passing programs, in particular po-
tential state-space reductions arising from partial order reduction (POR) [11].

We implemented a coverability checker that is tuned for message passing pro-
grams on top of the Spin model checker [14]. Our implementation uses the

368 R. Majumdar, R. Meyer, and Z. Wang

expand-enlarge-check (EEC) pradigm [10]. The EEC algorithm explores a se-
quence of finite-state approximations of the message passing program.
Intuitively, the approximation is obtained by replacing the counters in the Petri
net with “abstract” counters that count precisely up to a given parameter k, and
then set the count to ∞. Since the induced state space is finite for each approxi-
mation, we can use a finite-state reachability engine (such as Spin) to explore its
state space. Additionally, we use partial order reduction, already implemented
in Spin, to reduce the explored state space, allowing local actions of different
processes to commute.

Our choice of a message passing programming model with unbounded but
unordered buffers was inspired by the communication model in browser exten-
sions, where several components communicate asynchronously. Specifically, we
checked the following property of extensions. Most browsers have a “private
mode” that allow users to browse the internet without saving information about
pages visited. Browser extensions should respect the private mode and not save
user information (or worse, upload user information to remote servers) while the
user is browsing in the private mode. We checked this property and found that
several widely-used Firefox extensions, including some extensions whose pur-
pose is to improve user privacy, do not properly handle “private mode” settings.
Among nine browser extensions using message passing, local storage, and some-
times remote database accesses, we found five extensions store user data even in
the private mode. Thus, our experiments demonstrate that a precise static tool
can be useful in detecting privacy violations in this domain.

One can view our result as a general compilation procedure from a provenance
verification problem for a program P to a safety verification problem for an
instrumented program P ′. The instrumentation P ′ adds some counters to P
but keeps the other features (e.g., complex control flow and data structures)
the same: program P ′ is safe iff P satisfies the provenance properties. After the
reduction, we can harness any verification technique that has been developed
for the underlying class of programs (e.g., abstract interpretation or software
model checking). Our experiments use a simple dataflow abstraction, but other
abstract domains could be used for more precision. We chose message passing
programs for our presentation as they capture the essence of provenance tracking:
concurrency, unbounded provenance information, and unbounded channels. This
focus allows us to settle the complexity of provenance verification without mixing
it with the complexity of features in the programming model.

Related Work. Provenance annotation on data has been studied extensively in
the database community [6,3,12], both for annotating query results and for track-
ing information through workflows. Provenance information is usually tracked
for a fixed database and a fixed query in a declarative query language. Seen as a
program, the query has exactly one “execution path.” The connection between
provenance tracking and dependency analysis in (sequential) programs was made
in [5]. A provenance-tracking semantics for asynchronous π-calculus was given
in [27], but the static analysis problem was not considered. Most previous work
focused on dynamic tracking and enforcement along one execution path, and the

Static Provenance Verification for Message Passing Programs 369

patient {
var p1, p2, p3;

while (true) {
choose

P1: [] p1 = HQ; send(ch0, p1);

P2: [] p1 = AR; send(ch0, p1);

P3: [] recv(ch1, p2);

P4: if (p2 == HA) p3 = p2;

}
}

secretary {
var s1, s2;

while (true) {
S1: recv(ch0, s1);

S2: if (s1 == HQ)

S3: send(ch2, s1);

S4: else {
S5: s2 = AA(s1);

S6: send(ch1, s2);

}
}

}
doctor{

var d1, d2;

while(true) {
D1: recv(ch2, d1);

D2: d2 = HA(d1);

D3: choose

D4: [] send(ch1, d2);

D5: [] send(ch2, d2);

}
}

Fig. 1. Medical system example

static meet-over-all-paths solution was not considered. In contrast, we provide
algorithms to track provenances in concurrent message passing programs, and
give algorithms to check provenance queries over all execution paths of programs.
We were inspired by the algebraic framework of provenance semirings [12] to give
a similar algebraic description of provenance domains.

Our algorithm for provenance verification generalizes algorithms for explicit
information flow studied in the context of sequential programs [25], e.g., through
taint analysis. Taint analysis problems [15,19] classify methods as sources, sinks,
and sanitizers, and require that any data flow from sources to sinks must go
through one or more sanitizers. In our model, this property can be formulated by
requiring that the provenance of every message received by a sink must conform
to the regular specification (source+ sanitizer+)∗. We are able to verify such
properties for message passing programs, where the source, sanitizer, and sink
can be concurrently executing processes sharing unbounded channels, and with
other intermediary processes as well. Previous work, too numerous to enumerate
here, either dealt with dynamic enforcement or provided imprecise static checks
for these domains. We show precise static analysis remains decidable!

2 Example

We motivate our results by modeling a simple online health system described
in [2], which allows patients to interact with their doctors and other healthcare

370 R. Majumdar, R. Meyer, and Z. Wang

professionals using a web-based message passing system. In the system, users
have different roles, such as Patient, Secretary, and Doctor. Patients can ask
health questions and receive answers by exchanging messages with their doctors.

For simplicity of exposition, we describe a subset of the functionality of the
system as a message passing program. (In Section 5, we modeled the entire sys-
tem as a case study.) Intuitively, a message passing program is a collection of
imperative processes running concurrently, one for each principal in the system.
In our example, each role (Patient, Doctor, etc.) is modeled as a different prin-
cipal. The processes run by the principals have local variables, and in addition,
communicate with each other by sending to and receiving from shared chan-
nels. We assume shared channels are potentially unbounded, but may reorder
messages. Message sends are non-blocking, the execution continues at the con-
trol point following the send. Receives are blocking: a process blocks until some
message from the channel is received.

Figure 1 shows a simple implementation of the system, written in a sim-
ple imperative language. We have three principals: Patient (modeling the set of
patients using the system), Secretary (modeling secretaries who receive and for-
ward messages), and Doctor (modeling the set of doctors using the system). The
choose construct nondeterministically chooses and executes one of its branches.
A send action sends a message to a channel, and a recv receives a message from
a channel into a local variable.

There are four kinds of messages in the system. The patient can send a health
question (HQ) or an appointment request (AR). The healthcare providers can
send back a health answer (HA) or an appointment confirmation (AA). The
principals communicate through shared channels ch0, ch1, and ch2.

The patient process runs in a loop. In each step, it nondeterministically decides
to either send an HQ or an AR to ch0, or to receive an answer on channel ch1.
The secretary process runs a loop. In each step, it receives a message from
channel ch0. If it is an HQ, the message is forwarded to doctors on channel ch2.
If it is an AR, the secretary answers the patient directly on channel ch1. The
doctor process receives health questions on channel ch2. It computes a health
answer based on the received message (the assignment on line D2). It can either
reply directly to the patient (on channel ch1), or put the answer back to channel
ch2 for further processing.

Figure 1 also shows a possible message sequence for a health question, where
the patient sends a health question to the secretary, the secretary forwards it
to the doctor, and the doctor looks at the message several times before replying
with a health answer. We capture the flow of messages through the principals
using provenance annotations with each message; the provenance captures the
history of all the principals that have forwarded the message. While in Section 3
we give a general algebraic definition of a provenance domain, for the moment,
think of a provenance as a string over the principals. When a message is initially
assigned, e.g., on line P1, the provenance is the empty string ε. After the patient
sends the message, the channel ch0 contains an HQ message with provenance
Patient. When the message is forwarded to channel ch2, its provenance becomes

Static Provenance Verification for Message Passing Programs 371

q0 q1 q2 q3Patient Secretary Doctor
Doctor

Fig. 2. Complemented finite automaton for provenance property. We omit an accepting
sink to which all unspecified edges go.

Patient Secretary. Finally, when the message is sent back on ch1, its provenance
is a string in the regular language Patient Secretary Doctor+, indicating that it
has been sent originally by the patient, seen by the secretary next, and then seen
by the doctor one or more times.

The provenance verification problem asks, given the message passing program,
a variable v, and a regular language R of provenances, whether the content of
v has a provenance in R along all program executions. In the example, we can
ask if the provenance of variable p3 is in the set

ε+ Patient Secretary Doctor+, (1)

capturing the requirement that any health answer must be initiated by a health
question from the patient, and must be seen by a doctor at least once, after it
has been seen by a secretary.

Notice that the example is unbounded in two dimensions. First, the channels
can contain unboundedly many messages. For example, the patient process can
send unboundedly many messages on channel ch0 before the secretary process
receives them. Second, the provenance annotations can be unbounded: a message
in channel ch2 can have an unbounded number of Doctor annotations.

We show the provenance verification problem is decidable. The first observa-
tion is that, if we ignore provenances, we can keep a counter for each channel ch
and each message type m, that counts the number of messages with value m that
are currently in ch. A send action increases the counter, a receive decrements it.
We can then show that the transition system of a message passing program is
well-structured [1,8]: an action that could be taken in a state can also be taken if
there are more messages in the channels. Formally, we give a reduction to Petri
nets, an infinite-state well-structured system with good decidability properties.

In the presence of provenances, we have to be more careful. Unlike a normal
Petri net, now the “tokens” (the messages in the channels) will carry potentially
unbounded provenance annotations. However, given the regular set R, we only
need to distinguish two provenance annotations that behave differently with re-
spect to a deterministic finite automaton A for R. So, we keep more counters
that are now of the form 〈ch,m, q〉: one counter for each combination of channel
ch, message type m, and state q of A. The state of the automaton A remembers
where the automaton would go to, starting with its initial state, on seeing the
provenance annotation. Similarly, for each variable in the program, we distin-
guish the contents of the variable based on the message type m as well as the
state q of the automaton.

372 R. Majumdar, R. Meyer, and Z. Wang

patient {
var p1, p2, p3;

while (true) {
choose

P1′ [] p1 = 〈HQ,q0〉; 〈ch0, HQ,q1〉++;
P2′ [] p1 = 〈AR,q0〉; 〈ch0, AR,q1〉++;
P31 [] if 〈ch1, HQ, q〉 > 0 (for each q ∈ Q)

p2 = 〈HQ, q〉; 〈ch1, HQ, q〉--;
P32 [] if 〈ch1, HA, q〉 > 0 (for each q ∈ Q)

p2 = 〈HA, q〉; 〈ch1, HA, q〉--;
P4′ if (p2 == (HA, ·)) p3 = p2;

P33 [] if 〈ch1, AA, q〉 > 0 (for each q ∈ Q)

p2 = 〈AA, q〉; 〈ch1, AA, q〉--;
P34 [] if 〈ch1, AR, q〉 > 0 (for each q ∈ Q)

p2 = 〈AR, q〉; 〈ch1, AR, q〉--;
}

}

Fig. 3. Translation of patient. We have simplified some statements for readability:
the actual translation performs a case split over p1 in lines P1′ and P2′, and performs
the check on line P4′ after each statement P3i.

Figure 2 shows a deterministic automaton accepting the complement of the
language in (1). Using this automaton, we describe the reduction to a well-
structured system as follows. Let Q = {q0, q1, q2, q3, q4} be the set of states of
the automaton (q4 is the omitted sink state). We have a set of integer-valued
counters 〈chi,m, q〉, for i=0, 1, 2, m∈{HQ, HA, AA, AR}, and q∈Q. For example,
the counter 〈ch0, HQ, q1〉 stores the number of HQs in ch0 for which the automa-
ton is in state q1. Figure 3 shows the translation of the patient process. The
send actions are replaced by incrementing the appropriate counter. For example,
the action send(ch0,p1) in line P1 is replaced with incrementing the counter
〈ch0, HQ, q1〉, the state of the automaton is q1 because the principal Patient takes
the automaton from its initial state q0 to the state q1. The receive action non-
deterministically selects a non-zero counter and decrements it, while storing the
message and the state into the local variable.

After the translation, we are left with a well-structured system. Verifying the
provenance specification reduces to checking if there is a reachable configuration
of the system in which v contains a message whose provenance automaton is in
a final state. This reachability question can be solved as a coverability problem
on the well-structured system, which is decidable. In fact, we show a symbolic
encoding that gives an optimal algorithm.

3 Message Passing Programs

Preliminaries. A multiset m over a set Σ is a function Σ → N with finite
support (i.e., m(σ) �= 0 for finitely many σ ∈ Σ). By M[Σ] we denote the set

Static Provenance Verification for Message Passing Programs 373

of all multisets over Σ. As an example, we write m = �σ2
1 , σ3� for the multiset

m ∈ M[{σ1,σ2,σ3}] with m(σ1) = 2,m(σ2) = 0, and m(σ3) = 1. We write ∅
for the empty multiset, mapping each σ ∈ Σ to 0. Two multisets are ordered
by m1 ≤ m2 if for all σ ∈ Σ, we have m1(σ) ≤ m2(σ). Let m1 ⊕ m2 (resp.
m1 - m2) be the multiset that maps every element σ ∈ Σ to m1(σ) + m2(σ)
(resp. max {0,m1(σ)−m2(σ)}).

For a set X , a relation � ⊆ X×X is a well-quasi-order (wqo) if it is reflexive,
transitive, and such that for every infinite sequence x0, x1, . . . of elements from
X , there exists i < j such that xi � xj . Given a wqo �, we define its induced
equivalence ≡ ⊆ X ×X by x ≡ y if x � y and y � x.

A subset X ′ of X is upward closed if for each x ∈ X , if there is a x′ ∈ X ′ with
x′ � x then x ∈ X ′. A subset X ′ of X is downward closed if for each x ∈ X ,
if there is a x′ ∈ X ′ with x � x′ then x ∈ X ′. A function f : X → X is called
�-monotonic if for each x, x′ ∈ X , if x � x′ then f(x) � f(x′).

A transition system TS = (C, c0,→) consists of a set C of configurations, an
initial configuration c0 ∈ C, and a transition relation → ⊆ C × C. We write →∗

for the reflexive transitive closure of →. A configuration c ∈ C is reachable if
c0 →∗ c. A well-structured transition system is a TS = (C, c0,→) equipped with
a well-quasi order � ⊆ C × C such that for all c1, c2, c3 ∈ C with c1 � c2 and
c1 → c3, there exists c4 ∈ C with c3 � c4 and c2 → c4.

3.1 Programming Model

Syntax. We work in the setting of asynchronous message passing programs.
For simplicity, we assume that the programming language has a single finitely-
valued datatypeM of messages. A channel is a (potentially unbounded) multiset
of messages supporting two actions: a send action (written ch!x) that takes a
message stored in variable x and puts it into the channel, and a receive action
(written ch?x) that takes a message m from the channel and copies it to the
variable x. Let C be a finite set of channels.

A control flow graph (CFG) G = (X,V,E, v0) consists of a set X of message
variables, a set V of control locations including a unique start location v0 ∈ V ,
and a set E of labeled directed edges between the control locations in V . Every
edge in E is labeled with one of the following actions:

– an assignment y := ⊗(x), where x, y ∈ X and ⊗ is an uninterpreted unary
operation on messages;

– an assume action assume(x = m), where x ∈ X and m ∈ M;
– a send action ch!x, or a receive action ch?x, where x ∈ X and ch ∈ C.

A message passing program P = (Prin , C, {Gp}p∈Prin) consists of a finite set
Prin of principals, a set C of channels, and for each p ∈ Prin , a control flow
graph Gp.

Intuitively, a message passing program consists of a finite set of processes.
Each process is owned by a named entity or a principal. The processes have
local variables which can be updated using unary operators, and communicate

374 R. Majumdar, R. Meyer, and Z. Wang

with other processes by asynchronously sending to and receiving messages from
the set of channels C.

We shall use the notation v
a,p−−→ v′ to denote that the CFG Gp of principal p

has an edge (v, v′) ∈ Ep labeled with the action a. Given the set {Gp}p∈Prin of

CFGs, we define X� = /{Xp | p ∈ Prin}, V � = /{Vp | p ∈ Prin}, and E� =
/{Ep | p ∈ Prin} as the disjoint unions of local variables, control locations, and
control flow edges, respectively.

Semantics. We now give a provenance-carrying semantics to message pass-
ing programs. Let U be a (not necessarily finite) set of provenances. We shall
associate with each message in a message passing program a provenance from U .

Let P = (Prin , C, {Gp}p∈Prin) be a message passing program. A provenance

domain U = (U,�, ψ) for P consists of a set U of provenances, a well-quasi
ordering � on U , and for each principal p ∈ Prin and for each operation op ∈
⊗ ∪ {!, ?}, a �-monotonic function ψ(p, op) : U → U . A provenance domain is
decidable if � is a decidable relation and ψ is a computable function. We assume
all provenance domains below are decidable.

Since channels are unordered, we represent contents of a channel as a multi-
set of pairs of messages and provenances. A configuration (�, c, π) consists of a
location function � : Prin → V � mapping each principal to a control location;
a channel function c : C → M[M× U] mapping each channel to a multiset
of pairs of messages from M and provenances from U ; and a store function
π : X� → M× U mapping each variable to a message and its provenance.

Define �0 : Prin → V � as the function mapping p ∈ Prin to the start location
v0p ∈ Vp and c0 : C → M[M× U] as the function mapping each ch ∈ C to the

empty multiset ∅. Let π0 :X
�→ M× U be a mapping from variables in X� to

a default initial value m0 from M and a default initial provenance ε from U .
The provenance-carrying semantics of a message passing program P with

respect to the provenance domain (U,�, ψ) is defined as the transition system
TS(P) = (C, c0,→) where C is the set of configurations, the initial configuration
c0 = (�0, c0, π0), and the transition relation → ⊆ C × C is defined as follows.

For a function f : A → B, a ∈ A, and b ∈ B, let f [a �→ b] denote the function
that maps a to b and all a′ �= a to f(a′). We define (�, c, π) → (�′, c′, π′) if
there exists p ∈ Prin and (�(p), a, �′(p)) ∈ E� such that for all p′ �= p, we have
�(p′) = �′(p′); and

1. if a ≡ y := ⊗(x) and (m,u) = π(x) then c′ = c and π′ = π[y �→
(⊗(m), ψ(p,⊗)(u))];

2. if a ≡ assume(x = m) then c′ = c, π′ = π, and π(x) = (m, ·);
3. if a ≡ ch!x then π′ = π and if (m,u) = π(x), then c′ = c[ch �→ c(ch)⊕

�(m,ψ(p, !)(u))�];
4. if a ≡ ch?x and there is (m,u) such that c(ch)(m,u) > 0 then c′ = c[ch �→

c(ch)-�(m,u)�] and π′ = π[x �→ (m,ψ(p, ?)(u))].

Intuitively, in each step, one of the principals executes a local action. An assign-
ment action y := ⊗(x) transforms the message contained in x by applying the

Static Provenance Verification for Message Passing Programs 375

operation ⊗ and transforms the provenance of x by applying ψ, storing the new
message and its provenance in y. An assume checks that a variable has a specific
message. Sends and receives model asynchronous communication to shared chan-
nels. Send actions are non-blocking, receive actions are blocking, and a channel
can reorder messages.

Let P be a message passing program and U = (U,�, ψ) a provenance do-
main. We consider provenance specifications given by downward closed sets over
U . Downward closed sets capture the “monotonicity” property that holds in
many domains. For example, a security policy that holds when a given set of
trusted principals looks at a message, is also met when fewer principals look at
it. Conversely, bad behaviors are captured by upward closed sets.

The provenance verification problem asks, given a variable x of P and a down-
ward closed set D ⊆ U , if the provenance of the content of variable x is always
in D along all runs of the program. Dually, the specification is violated if there
exists a reachable configuration where the provenance of variable x is in the up-
ward closed set I = U\D. Such a configuration indicates a violation of security
policies. We shall use the dual formulation in our algorithms.

3.2 Examples

We now give illustrative examples of provenance domains.

Example 1. [The Language Provenance Domain] Consider U = Prin∗, the
set of finite sequences over principals. Let (Q,Prin , q0, δ) be a deterministic finite
automaton, and let � be defined as u � v iff δ(q0, u) = δ(q0, v). Let ψ be the
function defined as ψ(p, !)(u) = u · p, and ψ(·, ·)(u) = u for all other operations.
Intuitively, the language provenance domain associates a list of principals with
each message: the sequence of principals who have sent this message along the
current computation.

A downward closed set D in the language provenance domain is a regular
language that prescribes a set F ⊆ Q of final states for the finite automaton
A. The corresponding upward closed set I is a regular language that prescribes
a set Q \ F of final states for the complement automaton A. The provenance
verification problem asks, for example, if the provenance of the message in p3

always belongs to the regular language Patient Secretary Doctor+ along all runs
of the program.

Example 2. [The Set Provenance Domain] Let U = 2Prin , the set of sets of
principals. Let � be set inclusion. Since the set of principals is finite, this is a
wqo. Let ψ be the function defined as ψ(p, !)(u) = u∪{p}, and ψ(·, ·)(u) = u for
all other operations. The set provenance domain associates a set of principals
with each message: the set contains all the principals who have sent this message
(potentially multiple times). An upward closed set I corresponds to a set of sets
of principals, such that if a set of principals is in I, each of its supersets is also
in I. As an example, suppose the set of principals Prin is divided into “trusted”
and “untrusted” principals. A downward closed set D specifies the sets all of

376 R. Majumdar, R. Meyer, and Z. Wang

whose elements are “trusted”. As a result, the corresponding upward closed set
I captures all sets containing at least one “untrusted” principal. The provenance
verification problem asks, given a variable x, if there is a message stored in x
along a run that has a provenance which is one of the sets in I.

4 Model Checking

We now give a model checking algorithm for provenance verification by reduction
to labeled Petri nets.

4.1 Labeled Petri Nets

A Petri net (PN) is a tuple N = 〈S, T, (I, O)〉 where S is a finite set of places,
T is a finite set of transitions, and functions I : T → S → {0, 1} and O : T →
S → {0, 1} encodes pre- and post-conditions of transitions.

A marking is a multiset over S. A transition t ∈ T is enabled at a marking μ,
denoted by μ[t〉, if μ ≥ I(t). An enabled transition t at μ may fire to produce
a new marking μ′, denoted by μ[t〉μ′, where μ′ = μ- I(t)⊕O(t). We naturally
lift the enabledness and firing notions from one transition to a sequence σ ∈ T ∗

of transitions. A PN N and a marking μ0 define a transition system TS(N) =
(M[S], μ0,→), where μ → μ′ if there is a transition t such that μ[t〉μ′.

The encoding of a PN N is given by a list of pairs of lists. Each transition
t ∈ T is encoded by two lists corresponding to I(t) and O(t). Each list I(t) or
O(t) is encoded as a bitvector of size |S|. The size of N , written ‖N‖, is the sum
of the representations of all the lists.

Let N be a Petri net and μ0 and μ markings. The coverability problem asks if
there is μ′ ≥ μ that is reachable from μ0, so μ0 →∗ μ′ ≥ μ. In this case, we say
μ is coverable from μ0.

Theorem 1. [18,24] The coverability problem for Petri nets is EXPSPACE-
complete.

In the usual definition of Petri nets, tokens are simply uninterpreted “dots” and
markings count the number of dots in each place. We now extend the Petri net
model with tokens labeled with elements from a decidable provenance domain
U . A U-labeled Petri net N = 〈S, T, (I, O), Λ〉 is a Petri net 〈S, T, (I, O)〉 that
is equipped with a labeling function Λ specifying how provenance markings are
updated when a transition is fired. Consider a transition t ∈ T . Let p1, . . . , pk be
an ordering of all the places in S for which I(t)(p) = 1. For each place p′ ∈ S with
O(t)(p′) = 1, the labeling function Λ(t, p′) is a �-monotonic function Uk → U .
We assume the labeling function Λ is computable.

A labeled marking μ is a mapping from places S to multisets over U , i.e.,
it labels each token in a marking with an element of U . A labeled marking μ
induces a marking erase(μ) that maps each p ∈ S to

∑
u∈U μ(p)(u) obtained by

erasing all provenance information carried by tokens. Fix a transition t, and let

Static Provenance Verification for Message Passing Programs 377

p1, . . . , pk be an ordering of the places such that I(t)(p) = 1. The transition t
is enabled at a labeled marking μ if for each p ∈ S with I(t)(p) = 1, we have
erase(μ)(p) ≥ 1. An enabled transition t at μ can fire to produce a new labeled
marking μ′, denoted (by abuse of notation) μ[t〉μ′, defined as follows. To compute
μ′ from μ, first pick and remove arbitrarily tokens from p1 to pk with labels u1

to uk respectively. Then, for each p′ with O(t)(p′) = 1, add a token whose label
is Λ(t, p′)(u1, . . . , uk) to p′. All other places remain unchanged. We extend the
firing notion to sequences of transitions, as well as notions of transition system,
size, reachability, and coverability to labeled Petri nets in the obvious way.

To prove the coverability problem is decidable for U-labeled Petri nets, we
argue that their transition systems (M[U]

S
, μ0, ↪→) are well-structured in that

the labeled markings can be equipped with an order that allows larger labeled
markings to mimic the behaviour of smaller ones, i.e. there is a wqo 0 ⊆
M[U]

S × M[U]
S

that is compatible with the transitions: for all μ1↪→μ′
1 and

μ10μ2 there is μ2 ↪→ μ′
2 so that μ′

1 0 μ′
2.

To define a suitable wqo on labeled markings, we first compare the multisets
on a place. Intuitively, μ(p) 0 μ′(p) with μ, μ′ ∈ M[U]

S
and p ∈ S if for every

u in μ(p) there is an element u′ in μ′(p) such that u � u′ in the wqo � of
the provenance domain. Hence, μ 0 μ′ if for each p ∈ S there is an injective
function fp : μ(p) → μ′(p) so that for each u ∈ μ(p), we have u � fp(u). The
result is a wqo by Higman’s lemma [13] and the fact that wqos are stable under
Cartesian products. The ordering is also compatible with the transitions by the
monotonicity requirement on labelings. The following theorem follows using
standard results on well-structured transition systems [1,8].

Theorem 2. The coverability problem for U-labeled Petri nets is decidable and
EXPSPACE-hard for decidable provenance domains U .

The coverability problem for labeled Petri nets need not be in EXPSPACE, even
when the operations on U are provided by an oracle. For example, nested Petri
nets [20] can encode reset nets, for which a non-primitive recursive lower bound
is known for coverability [26].

4.2 From Message Passing Programs to Labeled Petri Nets

Let P = (Prin , C, {Gp}p∈Prin) be a message passing program and U = (U,�, ψ)
a provenance domain. We now give a labeled Petri net semantics to the program.

Define the labeled Petri net N(P ,U) = 〈S, T, (I, O), Λ〉 as follows. There is a
place for each program location, for each local variable and message value, and
each channel and message value: S = V � ∪ (X�×M) ∪ (C×M).

In the definition of labels, we use variable prov(p) for the token (which is a
provenance) in place p ∈ S that is used for firing. The set T is the smallest set
that satisfies the following conditions.

1. For each e ≡ v
y:=⊗(x),p−−−−−−→v′ in E�, and for each m,m′∈M, there is a tran-

sition t with I(t)=�v, (x,m), (y,m′)� and O(t)=�v′, (x,m), (y,⊗m)�. Also,
Λ(t, (x,m))=prov(x,m), Λ(t, (y,⊗m))=ψ(p,⊗)(prov(x,m)), and Λ(t, v′)=ε.

378 R. Majumdar, R. Meyer, and Z. Wang

2. For each e ≡ v
assume(x=m),p−−−−−−−−−→v′ in E�, there is a transition t with

I(t)=�v, (x,m)� and O(t)=�v′, (x,m)�. Also, Λ(t, v′) = ε, and Λ(t, (x,m)) =
prov(x,m).

3. For each e ≡ v
ch!x,p−−−−→v′ in E�, and for eachm∈M, there is a transition t with

I(t)=�v,(x,m)�, O(t)=�v′,(x,m),(ch ,m)�. Also, Λ(t, v′)=ε, Λ(t, (x,m))=
prov(x,m), and Λ(t, (ch,m))=ψ(p, !)(prov(x,m)).

4. For each e ≡ v
ch?x,p−−−−→v′ in E�, for each m,m′∈M, there is a transition t

with I(t) = �v, (x,m), (ch ,m′)� and O(t) = �v′, (x,m′)�. Also, Λ(t, v′) = ε
and Λ(t, (x,m′)) = ψ(p, ?)(prov(ch,m′)).

To relate P with its Petri nets semantics N(P ,U), we define a bijection ι between
configurations and labeled markings: ι(�, c, π) = μ iff all of the three conditions
hold: (1) μ(v) = �ε� iff there is p ∈ Prin with �(p) = v; (2) for all x ∈ X�, for all
m ∈ M, and for all u ∈ U , μ(x,m) = �u� iff π(x) = (m,u); (3) for all ch ∈ C,
for all m ∈ M, and for all u ∈ U , μ(ch,m)(u) = k iff c(ch)(m,u) = k. Define
the initial labeled marking μ0 = ι(�0, c0, π0). The following observation follows
from the definition of ι.

Lemma 1. TS(P) and TS(N(P ,U)) are isomorphic.

Complexity-wise, the problem inherits the hardness of coverability in (unlabeled)
Petri nets for any non-trivial provenance domain.

Theorem 3. Given a message passing program P and a decidable provenance
domain U = (U,�, ψ), the provenance verification problem is decidable. It is
EXPSPACE-hard for any provenance domain with at least two elements.

Proof. From the construction of the labeled Petri net, Lemma 1, the provenance
verification problem is reducible in polynomial time to coverability for labeled
Petri nets. Thus, by Theorem 2, provenance verification problem is decidable.

For EXPSPACE-hardness, we reduce Petri net coverability to provenance ver-
ification. To simulate a Petri net with a message passing program, we introduce
a channel for every place and then serialize the reading of tokens. Consider
N = 〈S, T, (I, O)〉. We construct a message passing program with one principal,
one message, and a channel for each place in S. The control flow graph of the only
principal has a central node from which loops simulate the Petri net transitions.
At each step, the central node picks a transition t ∈ T non-deterministically and
simulates first the consumption and then the production of tokens — one by
one. To consume a token from place p with I(t)(p) = 1, the principal receives a
message from channel p. For the production, it sends a message to the channel p′

with O(t)(p′) = 1. Additionally, the principal non-deterministically checks if the
current configuration of channels covers the target marking. If so, it writes a mes-
sage into a special variable x. The provenance verification problem asks whether
x ever contains a message with non-trivial provenance. EXPSPACE-hardness
follows from Theorem 1.

Static Provenance Verification for Message Passing Programs 379

4.3 EXPSPACE Upper Bounds

For set and language provenance domains, we can in fact show a matching upper
bound on the complexity. It relies on a fairly general product construction and
reduction to Petri nets. We say that a provenance domain U is of finite index if
the equivalence induced by � has finitely many classes. We denote this equiva-
lence by ≡. Clearly, any finite provenance domain (thus, the set domain) is of
finite index. The language domain is also of finite index: take the equivalence
relation induced by the Myhill-Nerode classes of the language. The following
lemma characterizes the structural properties of provenance domains of finite
index.

Lemma 2. Consider a Petri net N = 〈S, T, (I, O), Λ〉 that is labelled by U
of finite index. (1) The equivalence classes are closed under Λ: for any tuple
e1, . . . , ek of ≡-equivalence classes, the image Λ(e1, . . . , ek) is fully contained in
another equivalence class e. (2) The upward-closure of any u ∈ U is a finite
union of ≡-classes.

Let N = 〈S, T, (I, O), Λ〉 be a U-labeled Petri net, and suppose U is of finite
index. We now define a product construction that reduces N to an ordinary
Petri net N ′ = 〈S′, T ′, (I ′, O′)〉. Intuitively, for each place p ∈ S and each
equivalence class e, there is a place (p, e) in S′ that keeps track of all tokens
in N at place p and having their label in the equivalence class e. We define
S′ = S×{[u]≡ | u ∈ U}. Each transition in N is simulated by a family of transi-
tions in T ′, one for each combination of equivalence classes for the source tokens.
More precisely, T ′ is the smallest set that contains the following family of tran-
sitions for each t ∈ T . Let p1, . . . , pk be the places in S with I(t)(pi) = 1. For
each sequence p = 〈e1, . . . , ek〉 of k-tuples of ≡-equivalence classes, we have a
transition tp ∈ T ′ such that I ′(tp)((pi, ei)) = 1 for i = 1, . . . , k and I ′(tp)(p) = 0
for all other places. Moreover, for each p ∈ S with O(t)(p) = 1 labeled with Λ,
we have that O′(tp)((p, e)) = 1 with Λ(e1, . . . , ek) ⊆ e. Note that this inclusion is
well-defined by Lemma 2(1). This product construction reduces a labelled cover-
ability query in N to several unlabelled queries in N ′. What are the unlabelled
queries we need? Consider a token u in a labelled marking μ ∈ M[U]

S
. We use

the equivalence classes that, with Lemma 2(2), characterize the upward closure
of u. In the following proposition, we assume that these classes are effectively
computable. This is the case for set and language domains.

Proposition 1. If U is of finite index, coverability for U-labeled Petri nets is
reducible to coverability for Petri nets.

Proposition 1 provides a 2EXPSPACE upper bound for the set and language
domains, which is not optimal. Consider the set domain. Each subset of princi-
pals yields an equivalence class of provenances. Hence, there is an exponential
number of classes and the above product net is exponential. A similar prob-
lem occurs for the language domain if the provenance specification is given by
a non-deterministic finite automaton. There are regular languages where this
non-deterministic representation is exponentially more succinct than any deter-
ministic one. The deterministic one, however, is needed in the product. To derive

380 R. Majumdar, R. Meyer, and Z. Wang

an optimal upper bound, we give compact representations of these exponentially
many classes.

Theorem 4. Provenance verification problem is in EXPSPACE for set and lan-
guage domains.

Proof. To establish membership in EXPSPACE, we implement the above reduc-
tion from labeled to unlabeled coverability in a compact way, so that the size of
the resulting Petri net is polynomial in the size of the input. The challenge is to
avoid the multiplication between places and equivalence classes, which may be
exponential. Instead, we first encode the classes into polynomially many addi-
tional places, and maintain the relationship between a place and a class in the
marking of the new net. Second, we only keep the provenance information for
tokens in the goal marking, and omit the provenance of the remaining tokens.

Let E be the set of equivalence classes of a provenance domain of finite index.
Let κ = 1log |E|2. The symbolic representation of E uses 2κ places. Let the
places be b0, d0, . . . , bκ−1, dκ−1. We maintain the invariant that in any reachable
marking, exactly one of bi, di contains a single token, for i = 0, . . . , (κ − 1).
Intuitively, a token in bi specifies the bit i is one, and a token in di specifies
the bit i is zero. Using constructions on (1-safe) Petri nets, one can “copy” a
bitvector, remove all tokens from a bitvector, or update a bitvector to a value.

For example, to empty out a bitvector, we introduce κ+ 1 places p0, . . . , pκ,
with an initial token in p0. Each pi, i ∈ {0, . . . , κ− 1}, has two transitions: they
take a token from pi and from bi (resp. di), and put a token in pi+1. When pκ is
marked, all the bits have been cleared. Similarly, to copy the configuration from
places b0, d0, . . . , bκ−1, dκ−1 to empty places b′0, d

′
0, . . . , b

′
κ−1, d

′
κ−1, we use the

following gadget. We add additional κ+1 places p0, . . . , pκ, with an initial token
on p0. For each pi, i ∈ {0, . . . , κ− 1} there are two transitions: one takes a token
from pi and one token from bi and puts a token in pi+1, one in bi, and one in b′i;
the other takes a token from pi and one from di and puts a token in pi+1, one in
di, and one in d′i. When the place pκ is marked, the bits in b0, d0, . . . , bκ−1, dκ−1

have been copied to b′0, d
′
0, . . . , b

′
κ−1, d

′
κ−1.

Now, in the translation of the Petri net, instead of a place (x,m, e) for each
variable x, message m, and equivalence class e ∈ E, we keep 2κ places for each
place (x,m), encoding the equivalence class e for x and m. If all 2κ places for
(x,m) are empty in a marking, it implies that the current content of x is not
m; otherwise, the provenance equivalence class e ∈ E of (x,m) is encoded by
the 2κ bits. The transitions of the net are updated with the gadgets to copy the
provenance bitvectors in case of assignments.

Moreover, for each channel ch, we maintain the provenance information of
one message, and drop the provenance of every other message in the channel.
That is, each channel ch is modeled using places (ch,m) for each m ∈ M,
and in addition, 2κ·|M| places that encode the provenance equivalence class of
one message for each value in M stored in the channel. Intuitively, tokens in
(ch,m) denote messages with value m in the channel ch whose provenance has
been “forgotten” and tokens in the bitvectors encode one message (per mes-
sage type) in the channel whose provenance is encoded using 2κ places. We use

Static Provenance Verification for Message Passing Programs 381

non-determinism to guess which messages contribute to the message with prove-
nance in the target. When a message is sent to a channel, we non-deterministically
decide to keep its provenance (thus using the bitvectors, moving any tokens al-
ready there) or to drop its provenance.

Similarly, when we receive from a channel, we non-deterministically decide to
either read from the “special” places for the encoding of an equivalence class, or
from the “normal” place.

Now, for the set domain, we use 2|Prin | places to encode sets of principals.
For the language domain, where the specification is given by a non-deterministic
automaton with states Q, we use 2|Q| places to encode the subsets of states. The
encoding allows us to perform the subset construction on the fly. Each action
of the program requires at most a polynomial number of additional places to
encode the gadgets. Thus, we get a Petri net that is polynomial in the size of
the message passing program and the specification. Thus, using Theorem 1, we
get the EXPSPACE upper bound.

5 Implementation and Experiments

We have implemented a tool for the provenance verification problem for language
provenance domains. Our tool takes as input a message passing program encoded
in an extended Promela syntax in which channels are marked asynchronous and
have the semantics described in Section 3. It reduces the provenance verifica-
tion problem to Petri net coverability using the algorithm from Section 4. We
first used state-of-the-art tools for Petri net coverability [9,21]. Unfortunately,
the times taken to verify the provenance properties were high. This is because
Petri net coverability tools are optimized for nets with many places that can be
unbounded and for high concurrency. Instead, message passing programs only
have few places that are unbounded (the channels). Our second observation is
that message passing programs have a lot of scope for partial-order reduction, by
allowing a process to continue executing until it hits a blocking receive action.
To take advantage of these features, we implemented a coverability checker that
combines expand-enlarge-check (EEC) [10] with partial order reduction [11].

5.1 Expand-Enlarge-Check and Partial Order Reduction

The EEC procedure [10] performs counter abstraction over a Petri net. We ob-
serve that only the places representing shared channels can have more than one
token in our Petri nets. Instead of counting the exact number of messages in a
channel, we fix a parameter k ≥ 0 and count precisely up to k. If at any point,
the number of messages in a channel exceeds k, we replace the number by ∞.
Once the count goes to ∞, we do not decrease the count even when messages are
removed from the channel. For example, if k = 0, the abstraction of a channel
distinguishes two cases: either the channel has no messages or it has an arbitrary
number of messages.

The abstraction is sound, in that if a marking is coverable in the original net,
it is also covered in the abstraction. However, the abstraction can add spurious

382 R. Majumdar, R. Meyer, and Z. Wang

counterexamples, in that a marking can be considered coverable in the abstrac-
tion, even though it is not coverable in the original net. By concretely simulating
a specific counterexample path, we can decide if the counterexample is genuine
or spurious. In case the counterexample is spurious, we increase the parameter
k and continue. This abstraction-refinement process is guaranteed to terminate,
by either finding a genuine path that covers a given marking, or by proving that
the target marking is not coverable for some parameter k in the abstraction [10].
We have found that k = 1 is usually sufficient to soundly abstract the state
space and to prove a provenance property; this is consistent with other uses of
counter abstractions in verification [23,17].

Additionally, we note that once the parameter k is fixed, the state space
of the system is finite, since each channel can have at most k + 2 messages
({0, . . . , k}∪ {∞}). Thus, for each k, we can perform reachability analysis using
a finite-state reachability engine. In our implementation, we choose the Spin
model checker [14] to perform reachability analysis in every iteration where k is
fixed. In Spin models, for each channel, each message type, and each state of the
provenance automaton, we have a variable that takes k+2 values, implementing
the k-abstraction.

Additionally, message passing programs have the potential for partial order
reduction. For example, each process in the program can be executed until it
reaches a blocking receive action, and the local actions of different processes
commute. Since Spin already implements partial order reduction, we get the
benefits of partial order reduction for free.

5.2 Case Studies: Message Passing Benchmarks

We first describe our evaluation on a set of three message passing systems (see
Table 1). The example MyHealth Portal is described in [2]. We checked if the
provenance of a variable is always in the regular language Patient (Secretary +
ε) Nurse Doctor+ + ε. The bug tracking system [16] manages software bug
reports. It has five principals and eight types of messages (bug report, closed,
fix-again, fix, must-fix, more-information, pending, and verified). The provenance
specification, given as an automaton with nine states, encodes the flow of events
leading from a bug report to a bug fix. We found that the original system violated
the specification because a message was sent to an incorrect channel. After fixing
the bug, we were able to prove the property for the new system. The Service In-
cident Exchange Standard (SIS) specifies a system to share service incident data
and facilitate resolutions. The standard envisages interactions between service
requesters and providers. We took the system model from [4], which consists of
16 principals, 18 channels, and 9 message types. The property to check is once
a service request is terminated, it is never reopened.

Results. Table 2 lists the analysis results. All experiments were performed on
a 2 core Intel Xeon X5650 CPU machine with 64GB memory and 64bit Linux
(Debian/Lenny). We compare state-of-the-art Petri net coverability tools (Mist2
[9] and Petruchio [21]) with our Spin-based coverability checker. We run Petru-
chio and three different options of Mist2 and report the best times. A timeout

Static Provenance Verification for Message Passing Programs 383

indicates that all the tools timed out. The “Markings” row indicates the number
of coverability checks required to prove correctness. The time denotes the sum
of the times for all the coverability checks to finish, where for each check, we
take the best time by any tool.

For our Spin-based checker, we report the parameter k for which either a gen-
uine counterexample was found, or the system was proved correct. We compare
the results with and without partial order reduction. For each run, we give three
numbers: the number of states and transitions explored by our checker and the
time taken. There is a significant reduction when partial order reduction is turned
on. Moreover, our Spin-based implementation is orders of magnitude faster than
the Petri net coverability tools.

5.3 Private Mode and Firefox Extensions

We performed a larger case study on provenance in browser extensions. Modern
browsers provide a “private mode” that deletes cookies, forms, and browsing
history at the end of each browsing session. Browsers also provide an exten-
sion mechanism, through which third-party developers can add functionality to
browsers. Extensions can communicate between their front- and back-ends by
asynchronous messages passing, and between each other via temporary files.
Moreover, Firefox lets extension developers manage SQLite databases in user
machines by invoking a service called mozIStorageService. It provides a set of
asynchronous APIs for extensions to communicate with databases through SQL
queries. If extension developers do not properly handle the private mode, user
data may be stored in the database while the user is browsing in private mode.

It is expected that browser extensions should respect the private mode. Un-
fortunately, browsers do not restrict an extension’s capability in private mode,
and it is the responsibility of developers not to record user data in private mode.
In the second set of case studies, we check if extension developers for Firefox
obey the privacy concerns when the user is browsing in private mode.

Our goal is to check if extensions using mozIStorageService can store user
data while in private mode. We formulate the problem of tracking informa-
tion flow in private mode as a provenance verification problem. Consider a set
of browser extensions cooperating with each other, and a principal Db mod-
elling a database. For each extension A, we introduce two principals NormA
and PrivA that represent two instances of A running in the normal and in

Table 1. Message passing benchmarks. “Principals” is the number of principals, “Mes-
sages” the possible values of messages, “Channels” is the number of shared channels,
and “Automaton” is the number of states in the provenance automaton.

Example Principals Messages Channels Automaton

Health Care 4 4 5 6
Bug Tracking 5 8 5 9
SIS 16 9 18 2

384 R. Majumdar, R. Meyer, and Z. Wang

Table 2. Results of the message passing benchmarks. Bug Tracking (1) is the buggy
version.

PN tools Health Care Bug Tracking (1) Bug Tracking (2) SIS

Markings 12 1 40 127
Time 125.6s 2308.940s timeout 1152.07s

Our Checker Health Care Bug Tracking (1) Bug Tracking (2) SIS

k 0 1 0 1

States (No POR) 6351 39 4905516 3738754
States (POR) 2490 39 995468 893786

Trans (No POR) 23357 39 24850365 17274836
Trans (POR) 4249 39 1707682 1736062

Time (No POR) 0.04s 0.01s 38.6s 58.7s
Time (POR) 0.01s 0.01s 3.37s 6.10s

the private mode, respectively. For each extension A that saves data to the
database, there are two channels chDb, ch

′
Db for NormA and PrivA to interact

with Db. Moreover, for each pair of extensions (A,B) where A sends data
to B, for instance, by writing and reading files, there are four combinations:
(NormA,NormB), (PrivA,NormB), (NormA,PrivB), and (PrivA,PrivB). For each
case, we introduce a channel ch to model the message flow from A to B. The
property we check is whether some PrivA directly or indirectly updates the
database. Note that it is not sufficient to ensure every write to the database
is guarded by a check that the browser is not in private mode. There can be
indirect flows where data is stored in a temporary file in private mode, or com-
municated to a different extension, and later stored in the database.

We use Firefox 13.0.1 in our experiments. We selected nine popular extensions
from Firefox’s extension repository, by filtering them based on the keywords
form, history, and shopping, and then filtering based on their use of mozIStor-
ageService. The extensions we chose have about 50000 users on average.

Our tool works as follows. We first use JSure [7], a Javascript parser and
static analyzer, to obtain the control flow from the extension source code, and
to produce a message passing program in Promela syntax. As the access to a
database is either via calling the mozIStorageService APIs directly or via helper
extensions, we capture along the control flow the information about when an
extension calls these APIs to update the database, and the information about
when extensions communicate with each other by writing and reading temporary
files. Our front end abstracts away complex data structures in the program. In
particular, we do not track the contents inserted into the database. This may
lead to false positives in the analysis. We then run our Spin-based back-end to
verify the message passing program.

Table 3 lists the results. Five out of the nine examples are found to store
user information even in private mode. All examples can be verified efficiently
(in a few milliseconds) because usually a small portion of code is related to
database accesses and extension communications, and complex data structures

Static Provenance Verification for Message Passing Programs 385

are abstracted out. For all unsafe cases, we have successfully replayed executions
that violate the private mode in Firefox.

6 Extensions

We have described a general algebraic model of provenance in concurrent mes-
sage passing systems and an algorithm for statically verifying provenance prop-
erties. For these expressive programs, only dynamic checks or imprecise static
checks had been studied so far. While the complexity may seem high, reacha-
bility analysis in message passing programs is already EXPSPACE-complete, so
provenance verification does not incur an extra cost.

Table 3. Experimental results for Firefox extensions

Name LOC Leak Usage Leak Details Time

Amazon Price
History and
More 4.1.4

8124 Yes

Provide comparative
pricing for searched
products. Inform pricing
drops for searched
products.

Records shopping
history while in
private mode.

57ms

Facebook Chat
History Manager
1.5

2798 Yes
Help users organize
conversations by time
and names of persons.

Records the person
to whom users talk,
the conversation con-
tent, and the time in
private mode.

60ms

FVD Speed Dial
with Online Sync
4.0.3

21278 Yes

Provide a dashboard
holding favorite websites
of users. Cross-platform
bookmark synchroniza-
tion.

Keeps counting how
often users look at
the websites on their
Speed Dial in private
mode and lists them.

57ms

Privad 1.0 17593 Yes
Uses differential privacy
to prevent ad targeting.

Records user brows-
ing history while in
private mode.

60ms

Shopping Assist
3.2.4.6

15263 Yes
Provide comparative
pricing for searched
products.

Records shopping
history while in
private mode.

57ms

Form History
Control 1.2.10.3

16560 No
Autosave text on forms,
search bar history, for
crash recovery.

63ms

History Deleter
2.4

3027 No
Utilities to delete history
automatically by user
defined rules.

90ms

Lazarus: Form
Recovery 2.3

10839 No
Autosave text on forms,
search bar history, for
crash recovery.

64ms

Session Manager
0.7.9

14010 No
Autosave sessions by
time for crash recovery.

104ms

386 R. Majumdar, R. Meyer, and Z. Wang

Our decidability results continue to hold under some extensions to the
programming model. For example, our decidability results also hold when pro-
grams can test the provenance of a message against an upward closed set in a
conditional, or in the presence of a spawn instruction that dynamically generates
a new thread of execution. Informally, to decide provenance verification in the
presence of provenance-tests, we extend the product construction to track the
membership in each upward closed set appearing syntactically in some condi-
tional. To handle spawn, we modify the reduction to Petri nets to keep a place
for each spawned instance (that is, each tuple of control location and valuation
to local variables).

On the other hand, many other extensions are easily seen to be undecidable.
For example, if each principal executes a recursive program, or if messages come
from an unbounded domain such as the natural numbers, or if channels preserve
the order of messages, the provenance verification problem becomes undecidable
by simple reductions from known undecidable problems [22].

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS 1996, pp. 313–321. IEEE (1996)

2. Barth, A., Mitchell, J., Datta, A., Sundaram, S.: Privacy and utility in business
processes. In: CSF, pp. 279–294. IEEE (2007)

3. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp. 316–330. Springer, Heidelberg (2000)

4. Chaki, S., Rajamani, S., Rehof, J.: Types as models: model checking message-
passing programs. In: POPL, pp. 45–57. ACM (2002)

5. Cheney, J., Ahmed, A., Acar, U.: Provenance as dependency analysis. Math. Struct.
in Computer Science 21, 1301–1337 (2011)

6. Cui, Y., Widom, J., Wiener, J.: Tracing the lineage of view data in a warehousing
environment. ACM TODS 25, 179–227 (2000)

7. Durak, B.: JSure, https://github.com/berke/jsure

8. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1-2), 63–92 (2001)

9. Ganty, P., Raskin, J.-F., Begin, L.V.: From many places to few: Automatic ab-
straction refinement for Petri nets. Fund. Informaticae 88(3), 275–305 (2008)

10. Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, enlarge and check: new algo-
rithms for the coverability problem of WSTS. In: Lodaya, K., Mahajan, M. (eds.)
FSTTCS 2004. LNCS, vol. 3328, pp. 287–298. Springer, Heidelberg (2004)

11. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996)

12. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS,
pp. 31–40. ACM (2007)

13. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc
(3) 2, 326–336 (1952)

14. Holzmann, G.: The Spin model checker. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

https://github.com/berke/jsure

Static Provenance Verification for Message Passing Programs 387

15. Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., Kuo, S.-Y.: Securing web
application code by static analysis and runtime protection. In: WWW, pp. 40–52
(2004)

16. Janák, J.: Issue tracking systems. Diplomová práce, Masarykova univerzita, Fakulta
informatiky (2009)

17. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL 2007, pp. 339–350. ACM (2007)

18. Lipton, R.: The reachability problem is exponential-space hard. Technical Re-
port 62, Department of Computer Science, Yale University (1976)

19. Livshits, B., Lam, M.: Finding security errors in Java programs with static analysis.
In: Usenix Security Symposium, pp. 271–286 (2005)

20. Lomazova, I.A., Schnoebelen, P.: Some decidability results for nested Petri nets.
In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI 1999. LNCS, vol. 1755,
pp. 208–220. Springer, Heidelberg (2000)

21. Meyer, R., Strazny, T.: Petruchio: From dynamic networks to nets. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 175–179. Springer,
Heidelberg (2010)

22. Minsky, M.: Finite and Infinite Machines. Prentice-Hall (1967)
23. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1,∞)-counter abstraction. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002)

24. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoretical Computer Science 6(2), 223–231 (1978)

25. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE J. Se-
lected Areas in Communications 21, 5–19 (2003)

26. Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010)

27. Souilah, I., Francalanza, A., Sassone, V.: A formal model of provenance in dis-
tributed systems. In: Workshop on the Theory and Practice of Provenance (2009)

Verification as Learning Geometric Concepts

Rahul Sharma1, Saurabh Gupta2, Bharath Hariharan2,
Alex Aiken1, and Aditya V. Nori3

1 Stanford University
{sharmar,aiken}@cs.stanford.edu

2 University of California at Berkeley
{sgupta,bharath2}@eecs.berkeley.edu

3 Microsoft Research India
adityan@microsoft.com

Abstract. We formalize the problem of program verification as a learn-
ing problem, showing that invariants in program verification can be
regarded as geometric concepts in machine learning. Safety properties
define bad states: states a program should not reach. Program verifica-
tion explains why a program’s set of reachable states is disjoint from the
set of bad states. In Hoare Logic, these explanations are predicates that
form inductive assertions. Using samples for reachable and bad states and
by applying well known machine learning algorithms for classification, we
are able to generate inductive assertions. By relaxing the search for an
exact proof to classifiers, we obtain complexity theoretic improvements.
Further, we extend the learning algorithm to obtain a sound procedure
that can generate proofs containing invariants that are arbitrary boolean
combinations of polynomial inequalities. We have evaluated our approach
on a number of challenging benchmarks and the results are promising.

Keywords: loop invariants, verification, machine learning.

1 Introduction

We formalize the problem of verification as a learning problem, showing that loop
invariants can be regarded as geometric concepts in machine learning. Informally,
an invariant is a predicate that separates good and bad program states and once
we have obtained strong invariants for all the loops, standard techniques can be
used to generate program proofs. The motivation for using machine learning for
invariant inference is twofold: guarantees and expressiveness.

Standard verification algorithms observe some small number of behaviors of
the program under consideration and extrapolate this information to (hope-
fully) get a proof for all possible behaviors of the program. The extrapolation
is a heuristic and systematic ways of performing extrapolation are unknown,
except for the cases where they have been carefully designed for a particular
class of programs. Slam [6] generates new predicates from infeasible counter-
example traces. Interpolant based techniques [37] extrapolate the information
obtained from proving the correctness of finite unwindings of loops. In abstract
interpretation [21], fixpoint iterations are performed for a few iterations of the

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 388–411, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Verification as Learning Geometric Concepts 389

loop and this information is extrapolated using a widening operator. In any of
these heuristics, and others, there is no formal characterization of how well the
output of the extrapolation strategy approximates the true invariants.

Extrapolation is the fundamental problem attacked by machine learning: A
learning algorithm has some finite training data and the goal is to learn a func-
tion that generalizes for the infinite set of possible inputs. For classification, the
learner is given some examples of good and bad states and the goal is to learn a
predicate that separates all the good states from all the bad states. Unlike stan-
dard verification approaches that have no guarantees on extrapolation, learning
theory provides formal generalization guarantees for learning algorithms. These
guarantees are provided in learning models that assume certain oracles. However,
it is well known in the machine learning community that extrapolation engines
that have learning guarantees in the theoretical models tend to have good per-
formance empirically. The algorithms have been applied in diverse areas such as
finance, biology, and vision: we apply learning algorithms to the task of invariant
inference.

Standard invariant generation techniques find invariants of a restricted form:
there are restrictions on expressiveness that are not due to efficiency consid-
erations but instead due to fundamental limitations. These techniques espe-
cially have trouble with disjunctions and non-linearities. Predicate abstraction
restricts invariants to a boolean combination of a given set of predicates. Ex-
isting interpolation engines cannot generate non-linear predicates [1]. Template
based approaches for linear invariants like [35] require a template that fixes
the boolean form of the invariant and approaches for non-linear invariants [53]
can only find conjunctions of polynomial equalities. Abstract interpretation over
convex hulls [23] handles neither disjunctions nor non-linearities. Disjunctions
can be obtained by performing disjunctive completion [22,26], but widening [3]
places an ad hoc restriction on the number of disjuncts. Our learning algorithm
is strictly more expressive than these previous approaches: It can generate arbi-
trary boolean combinations of polynomial inequalities (of a given degree). Hence
there are no restrictions on the number of disjuncts and we go beyond linear in-
equalities and polynomial equalities.

Unsurprisingly, our learning algorithm, with such expressive power, has high
computational complexity. Next, we show how to trade expressiveness for com-
putational speedups. We construct efficient machine learning algorithms, with
formal generalization guarantees, for generating arbitrary boolean combinations
of constituent predicates when these predicates come from a given set of predi-
cates (predicate abstraction), when the size of integer constants in the predicates
are bounded, or from a given abstract domain (such as boxes or octagons). Note
that these efficient algorithms with reduced expressiveness still generate arbi-
trary boolean combinations of predicates.

Our main insight is to view invariants as geometric concepts separating good
and bad states. This view allows us to make the following contributions:

– We show how to use a well known learning algorithm [13] for the purpose
of computing candidate invariants. This algorithm is a PAC learner: it has

390 R. Sharma et al.

generalization guarantees in the PAC (probably approximately correct) learn-
ing model. The learning algorithm makes no assumption about the syntax
of the program and outputs a candidate invariant that is as expressive as
arbitrary boolean combinations of linear inequalities.

– The algorithm of [13] is impractical. We parametrize the algorithm of [13]
by the abstract domain in which the linear inequalities constituting the in-
variants lie, allowing us to obtain candidates that are arbitrary boolean
combinations of linear inequalities belonging to the given abstract domain.
We obtain efficient PAC learning algorithms for generating such candidates
for abstract domains requiring few variables, such as boxes or octagons and
finite domains such as predicate abstraction.

– We augment our learning algorithms with a theorem prover to obtain a sound
procedure for computing invariants. This idea of combining procedures for
generating likely invariants with verification engines has been previously ex-
plored in [49,55,54] (see Section 6). We evaluate the performance of this
procedure on challenging benchmarks for invariant generation from the lit-
erature. We are able to generate invariants, using a small amount of data,
in a few seconds per loop on these benchmarks.

The rest of the paper is organized as follows: We informally introduce our tech-
nique using an example in Section 2. We then describe necessary background
material, including the learning algorithm of [13] (Section 3). Section 4 describes
the main results of our work. We first give an efficient algorithm for obtaining
likely invariants from candidate predicates (Section 4.1). Next, in Section 4.1,
we obtain efficient algorithms for the case when the linear inequalities constitut-
ing the invariant lie in a given abstract domain. In Section 4.2, we extend [13]
to generate candidates that are arbitrary boolean combinations of polynomial
inequalities. Finally, Section 4.3 describes our sound procedure for generating
invariants. Section 5 describes our implementation and experiments. We discuss
related work in Section 6 and conclude in Section 7.

2 Overview of the Technique

1: x := i; y := j;

2: while (x != 0) { x--; y--; }

3: if (i == j) assert (y == 0);

Fig. 1. Motivating example

Consider the program in Figure 1 [37]. To prove that the assertion in line 3 is
never violated, we need to prove the following Hoare triple:

{x = i ∧ y = j}while (x != 0) do x--; y--{i = j ⇒ y = 0}

In general, to prove {P} while E do S {Q}, where E is the loop condition
and S is the loop body, we need to find a loop invariant I satisfying P ⇒ I,

Verification as Learning Geometric Concepts 391

{I ∧ E}S{I}, and I ∧ ¬E ⇒ Q. Thus, to verify that the program in Figure 1
does not violate the assertion, we need a loop invariant I such that (x = i∧ y =
j) ⇒ I, {I ∧ x �= 0}S{I}, and I ∧ x = 0 ⇒ (i = j ⇒ y = 0). The predicate
I ≡ i = j ⇒ x = y is one such invariant [37].

There is another way to view loop invariants. For simplicity of exposition,
we restrict our attention to correct programs that never violate assertions (e.g.,
Figure 1). A state is a valuation of the program variables, for example (i, j, x, y) =
(1, 0, 1, 0). Consider the set of states at the loop head (the while statement of
Figure 1) when the program is executed. All such states are good states, that is,
states that a correct program can reach. A bad state is one that would cause an
assertion violation. For example, if we are in the state (i, j, x, y) = (1, 1, 0, 1) at
the loop head, then execution does not enter the loop and violates the assertion.

An invariant strong enough to prove the program correct is true for all good
states and false for all bad states. Therefore, if one can compute the good states
and the bad states, an invariant will be a predicate that separates the good states
from the bad states. Of course, in general we cannot compute the set of all good
states and the set of all bad states. But we can always compute some good and
bad states by sampling the program.

To generate samples of good states, we simply run the program on some inputs.
If we run the program in Figure 1 with the initial state (1, 0, 1, 0), we obtain the
good samples (1, 0, 1, 0) and (1, 0, 0,−1). To compute bad states, we can sample
from predicates under-approximating the set of all bad states. For Figure 1, (x =
0∧i = j∧y �= 0) is the set of bad states that do not enter the loop body and violate
the assertion, and (x = 1∧ i = j ∧ y �= 1) is the set of bad states that execute the
loop body once and then violate the assertion. Note that such predicates can be
obtained from the program using a standard weakest precondition computation.
Finally, we find a predicate separating the good and bad samples.

But how can we guarantee that a predicate separating the good samples from
the bad samples also separates all good states from all bad states? In machine
learning, formal guarantees are obtained by showing that the algorithm gener-
ating these predicates learns in some learning model. There are several learning
models and in this paper we use Valiant’s PAC (probably approximately correct)
model [56]. An algorithm that learns in the PAC model has the guarantee that
if it is given enough independent samples then with a high probability it will
come up with a predicate that will separate almost all the good states from the
bad states. Hence, under the assumptions of the PAC model, we are guaranteed
to find good candidate invariants with high probability. However, just like any
other theoretical learning model, the assumptions of PAC model are generally
impossible or at least very difficult to realize in practice. We emphasize that in
the variety of applications in which PAC learning algorithms are applied, the
assumptions of the PAC model are seldom met. Hence, the question whether
generalization guarantees in a learning model are relevant in practice is an em-
pirical one. PAC has intimate connections with complexity theory and cryptog-
raphy and is one of the most widely used models. We demonstrate empirically
in Section 5 that PAC learning algorithms successfully infer invariants.

392 R. Sharma et al.

Bshouty et al. [13] presented a PAC learning algorithm for geometric con-
cepts (see Section 3.2). This algorithm can produce predicates as expressive as
arbitrary boolean combinations of linear inequalities. In particular, the invariant
required for Figure 1 is expressible using this approach. However, this expres-
siveness has a cost: the algorithm of [13] is exponential in the number of program
variables. To obtain polynomial time algorithms in the number of samples and
program variables we must restrict the expressiveness. Assume, for example,
that we knew the invariant for the program in Figure 1 is a boolean combination
of octagons (which it is). For octagons, the linear inequalities are of the form
±x±y ≤ c, where x and y are program variables and c is a constant (Section 4.1).
We extend [13] to obtain a PAC learning algorithm for obtaining a predicate,
separating good and bad samples, that is an arbitrary boolean combination of
linear inequalities belonging to a given abstract domain. The time complexity of
our algorithm increases gracefully with the expressiveness of the chosen abstract
domain (Section 4.1). For example, the complexity for octagons is higher than
that for boxes.

We augment our learning algorithm with a theorem prover (Section 4.3),
obtaining a sound algorithm for program verification. Empirically, we show that
the predicates discovered by our approach are provably invariants using standard
verification engines (Section 5).

2.1 Finding Invariants for the Example

We now explain how our sound algorithm (Section 4.3) for program verification
(parametrized by octagons) proves the correctness of the program in Figure 1.
To sample the good states, assume we run the program on inputs where i, j ∈
{0, 1, 2}. As suggested above, we obtain bad states by sampling the predicate
representing violations of the assertion after going through at most one loop
iteration: x = 0∧ i = j ∧ y �= 0∨x = 1∧ i = j ∧ y �= 1. In total, for this example,
we generated 18 good samples and 24 bad samples. The algorithm of [13] first
generates a large set of candidate hyperplanes representing all linear inequalities
possibly occurring in the output predicate. We build this set by constructing all
possible hyperplanes (of the form ±x± y = c) passing through every state. For
instance, the state (2, 2, 0, 0) generates twenty four hyperplanes: x = 0, x = y,
i± x = 2,. . .. Section 4.1 justifies this choice of the set of candidates.

From this large set of hyperplanes, we pick a subset that successfully separates
the good and bad samples. Note that every good sample must be separated
from every bad sample. Several algorithms can be used to solve this problem.
We describe how a standard greedy approach would work. We keep track of the
pairs of samples, one good and the other bad, that have not yet been separated
by any hyperplane, and repeatedly select from the set of candidate hyperplanes
the one that separates the maximum number of remaining unseparated pairs,
repeating until no unseparated pairs remain.

Verification as Learning Geometric Concepts 393

Fig. 2. Candidate inequalities passing
through all states

Fig. 3. Separating good states and bad
states using boxes

We illustrate this process in Figures 2 and 3. The +’s are the good states, and
the −’s are the bad states. Assume that our abstract domain is the box or interval
domain, that is, the predicates are inequalities of the form ±x ≤ c. We first
generate our candidates, that is, hyperplanes of the form x = c passing through
all the good and bad states. These corresponds to all possible horizontal and
vertical lines passing through all the + and − states as shown in Figure 2. Next,
from this set of candidate lines, we initially select line 3, separating one good
state from three bad states, which is the maximum number of pairs separated by
any of the lines. Next, we select line 1 because it separates one good state from
two bad states. Finally, we select line 2, separating the final pair of one good
state and one bad state. The lines tesselate the space into cells, where each cell
is a conjunction of boxes bounding the cell and no cell contains both a good and
a bad state. Each shaded cell in Figure 3 represents a conjunction of boxes that
includes only the good states. The returned predicate is the set of all shaded
cells in Figure 3, which is a disjunction of boxes.

By a similar process, for the 42 states generated from Figure 1 and using
the octagon domain, our tool infers the predicate I ≡ i ≤ j + 1 ∨ j ≤ i + 1 ∨
x = y in 0.06 seconds. We annotated the loop of Figure 1 with this predicate
as a candidate loop invariant and gave it to the Boogie [7] program checker.
Boogie was successfully able to prove that I was indeed a loop invariant and
was able to show that the assertion holds. As another example, on parametrizing
with the Octahedron [16] abstract domain, our technique discovers the simpler
conjunctive loop invariant: i+ y = x+ j in 0.09s.

3 Preliminaries

This section presents necessary background material, including the learning al-
gorithm of [13]. Our goal is to verify a Hoare triple {P}S{Q} for the simple
language of while programs defined as follows:

S ::= x:=M | S; S | if E then S else S fi | while E do S

The while program S is defined over integer variables, and we want to check
whether, for all states s in the precondition P , executing S with initial state

394 R. Sharma et al.

s results in a state satisfying the postconditionQ. In particular, if L ≡ whileE do S
is a while program, then to check {P}L{Q}, Hoare logic tells us that we need a
predicate I such that P ⇒ I, {I ∧ E}S{I}, and I ∧ ¬E ⇒ Q. Such a predicate
I is called an inductive invariant or simply an invariant of the loop L. Once we
have obtained invariants for all the loops, then standard techniques can generate
program proofs [7]. We first focus our attention on invariants in the theory of
linear arithmetic:

φ ::= wTx+ d ≥ 0 | true | false | φ ∧ φ | φ ∨ φ | ¬φ

where w = (w1, . . . , wn)
T ∈ Qn is a point, an n-dimensional vector of rational

number constants. The vector x = (x1, . . . , xn)
T is an n-dimensional vector of

variables. The inner product 〈w, x〉 of w and x is wTx = w1x1+ . . .+wnxn. The
equation wTx+ d = 0 is a hyperplane in n dimensions with slope w and bias d.
Each hyperplane corresponds to an intersection of two half-spaces: wTx + d ≥
0 and wTx + d ≤ 0. For instance, x − y = 0 is a 2-dimensional hyperplane,
x − y + 2z = 0 is a 3-dimensional hyperplane, and x ≥ y and x ≤ y are half-
spaces corresponding to the hyperplane x = y.

3.1 Invariants and Binary Classification

Assume that the Hoare triple {P}while E do S{Q} is valid. Let the loop L have
n variables x = {x1, . . . , xn}. Therefore, the precondition P (x) and postcondition
Q(x) are predicates over x. If the loop execution is started in a state satisfying
P and control flow reaches the loop head after zero or more iterations, then
the resulting state is said be reachable at the loop head. Denote the set of all
reachable states at the loop head by R. Since the Hoare triple is valid, all the
reachable states are good states. On the other hand, if we execute the loop from
a state y satisfying ¬E ∧ ¬Q, then we will reach a state at the end of the loop
that violates the postcondition, that is, y satisfies ¬Q. We call such a state a bad
state. Denote the set of all bad states by B. Observe that for a correct program,
R ⇒ ¬B. Otherwise, any state satisfying R ∧ B is a reachable bad state. R
is the strongest invariant, while ¬B is the weakest invariant sufficient to prove
the Hoare triple. Any inductive predicate I satisfying R ⇒ I and I ⇒ ¬B
suffices for the proof: I contains all the good states and does not contain any
bad state. Therefore, I separates the good states from the bad states, and thus
the problem of computing an invariant can be formulated as finding a separator
between R and B. In general, we do not know R and B – our objective is to
compute a separator I from under-approximations of R and B. For the Hoare
triple {P}while E do S{Q}, any subset of states reachable from P is an under-
approximation of R, while any subset of states satisfying, but not limited to,
the predicate ¬E ∧ ¬Q is an under-approximation of B.

Computing separators between sets of points is a well-studied problem in
machine learning and goes under the name binary classification. The input to
the binary classification problem is a set of points with labels from {1, 0}. Given
points and their labels, the goal of the binary classification is to find a classifier

Verification as Learning Geometric Concepts 395

C : points → {true, false}, such that C(a) = true, for every point a with label
1, and C(b) = false for every point b with label 0. This process is called training
a classifier, and the set of labeled points is called the training data.

The goal of classification is not to just classify the training points correctly but
also to be able to predict the labels of previously unseen points. In particular,
even if we are given a new labeled point w, with label l, not contained in the
training data, then it should be very likely that C(w) is true if and only if l = 1.
This property is called generalization, and an algorithm that computes classifiers
that are likely to perform well on unseen points is said to generalize well.

If C lies in linear arithmetic, that is, it is an arbitrary boolean combination
of half-spaces, then we call such a C a geometric concept. Our goal is to apply
machine learning algorithms for learning geometric concepts to obtain invariants.
The good states, obtained by sampling from R, will be labeled 1 and the bad
states, obtained by sampling from B, will be labeled 0. We want to use these
labeled points to train a classifier that is likely to be an invariant, separating all
the good states R from all the bad states B. In other words, we would like to
compute a classifier that generalizes well enough to be an invariant.

3.2 Learning Geometric Concepts

Let R and B be under-approximations of the good states R and the bad states
B, respectively, at a loop head. The classifier ∨r∈Rx = r trivially separates R
from B. However, this classifier has a large generalization error. In particular, it
will misclassify every state in R \ R; a candidate invariant misclassifies a good
state r when I(r) = false and a bad state b when I(b) = true. It can be shown if
a predicate or classifier grows linearly with the size of training data (∨r∈Rx = r
being such a predicate), then such a classifier cannot generalize well. On the
other hand, a predicate that is independent of the size of training data can be
proven to generalize well [11].

To reduce the size of the predicates, Bshouty et al. [13] frame the problem of
learning a general geometric concept as a set cover problem. Let X be a set of
n points. We are given a set F ⊆ 2X with k elements such that each element
Fi ∈ F is a subset of X . We say that an element x ∈ X is covered by the set Fi

if x ∈ Fi. The goal is to select the minimum number of sets Fi such that each
element of X is covered by at least one set. For example, if X = {1, 2, 3} and
F = {{1, 2}, {2, 3}, {1, 3}}, then {{1, 2}, {2, 3}} is a solution, and this minimum
set cover has a size of two. The set cover problem is NP-complete and we have to
be satisfied with approximation algorithms [12,15]. Bshouty et al. [13] formalize
learning of geometric concepts as a set cover problem, solve it using [12], and
show that the resulting algorithm PAC learns. Note that experiments of [12]
show that the performance of the naive greedy algorithm [15] is similar to the
algorithm of [12] in practice. Hence, we use the simple to implement greedy set
cover for our implementation (Section 5).

We are given a set of samples V = {xi}i=1,...m, some of which are good and
some bad. We create a bipartite graph U where each sample is a node and there
is an edge between nodes x+ and x− for every good sample x+ and every bad

396 R. Sharma et al.

Fig. 4. Separating three points in two dimensions. The solid lines tessellate R2 into
seven cells. The −’s are the bad states and the +’s are the good states. The dotted
lines are the edges to be cut.

sample x−. In Figure 4, there is one good state, two bad states, and dotted
lines represent edges of U . Next, we look for hyperplanes that cut the edges of
the graph U . A hyperplane cuts an edge if the two endpoints of the edge lie on
different sides of the hyperplane. Note that for every solution, each good sample
needs to be separated from every bad sample. This implies that we will need
to “cut” every edge in graph U . Intuitively, once we have collected a set S of
hyperplanes such that every edge in graph U is cut by at least one hyperplane
in S we can perfectly separate the good and bad samples. The hyperplanes in S
tessellate Rd into a number of cells. (In Figure 4, the three solid lines tessellate
R2 into seven cells.) No cell contains both a good sample and a bad sample – if
it does, then the edge between a good sample and a bad sample in the cell is not
cut by any hyperplane in S. Thus, each cell contains only good samples, or only
bad samples, or no samples at all. We can therefore label each cell, as “good”
in the first case, “bad” in the second case, and with an arbitrary “don’t care”
label in the last case.

Each cell is bounded by a set of hyperplanes, and therefore corresponds to an
intersection of half-spaces. The “good” region of Rd (where d is the number of
variables in the program) is then a union of cells labeled “good”, and hence a
union of intersections of half-spaces, that we output. Thus, the union of inter-
sections of half-spaces we output contains all the good samples, no bad samples,
and separates all the good from all the bad samples.

This discussion shows that all we need to do is to come up with the set S of
hyperplanes that together cut every edge of graph U . To achieve this goal, we
consider a universal set of hyperplanes F corresponding to all possible partitions
of states. Every hyperplane defines a partition of states: some states lie above the
plane and some lie below it. F contains one hyperplane for every possible par-
tition. By Sauer’s lemma, such a set F has cardinality O(md) [13]. We say that
an edge is covered by a hyperplane from F if the hyperplane cuts it. We want
to cover all edges of graph U by these hyperplanes. This set cover problem can
be solved in several ways that have comparable performance in practice [15,12].
The simplest solution is to greedily select the hyperplane from F that covers
the maximum number of uncovered edges of graph U , and repeating the greedy
selection until all edges in U are cut. For Figure 4, F contains three hyperplanes,

Verification as Learning Geometric Concepts 397

and graph U has two edges (edges between −’s and +’s.). The horizontal plane
cuts both the edges and divides the space into two cells: one above and one
below. Since the cell above the horizontal plane contains a ‘+’, we will label it
“good”. Similarly, the cell below is labeled “bad”. The output predicate is the
half-space above the horizontal hyperplane. If the good and bad samples, total m
in number, require a minimum number of s hyperplanes to separate them, then
the greedy approach has the guarantee that will compute a predicate that uses
O(s logm) hyperplanes. Using [12], we can obtain a predicate using O(sd log sd)
hyperplanes. This implies that the number of inequalities of the classifier ap-
proximates the number of the inequalities of the simplest true invariant by a
logarithmic factor. Such a relationship between candidate and true invariants
appears to be new in the context of invariant inference.

3.3 PAC Learning

By enumerating a plane for each partition and performing a set cover, the al-
gorithm of [13] finds a geometric concept that separates the good samples from
the bad samples. But how well does it generalize? Bshouty et al. [13] showed
that under the assumptions of the PAC model [56] this process is likely to pro-
duce a geometric concept that will separate all the good states from all the bad
states with high probability. The major assumption of the PAC model is that
there is an oracle that knows the true classifier and it generates training data
by drawing independent and identically distributed samples from a distribution
and assigning them labels, either good or bad, using the true classifier.

Independent samples are theoretically justified as otherwise one can construct
data with an arbitrary number of samples by duplicating one sample an arbitrary
number of times and then the term “amount of training data” is not well de-
fined. Practically, if one draws a sample randomly from some distribution, then
deciding whether it is good or bad is undecidable. Hence such an oracle cannot
be implemented and in our experiments we make do with a simple technique for
obtaining samples, where the samples are not necessarily independent.

The proof of PAC learning in [13] uses the following result from the seminal
paper of Blumer et al. [11].

Theorem 1. If an algorithm outputs f consistent with a sample of size max(
4
ε log

2
δ ,

8V C
ε log 13

ε

)
then f has error at most ε with probability at least 1− δ.

Intuitively, this theorem states that if an algorithm can separate a large number
of good and bad samples then the classifier has a low probability of misclassifying
a new sample. Here V C is the Vapnik-Chervonenkis dimension, a quantity deter-
mined by the number of hyperplanes in the geometric concepts we are learning
and the number of variables. In [13], by using algorithms for set cover that have
a good approximation factor [12], Bshouty et al. are able to bound the number of
planes in the output predicate f , and hence the quantity V C. Since the output
of [13] is consistent with all good and bad samples, given enough samples the
algorithm outputs a predicate that is very likely to separate all the good states
from all the bad states. For the full proof the reader is referred to [13].

398 R. Sharma et al.

Hence, [13] can produce predicates that are likely to separate all good states
and bad states, under PAC assumptions. This is a formal guarantee on the
extrapolation we have performed using some good and bad samples, that is, using
some finite behaviors of the program. Although this guarantee is in a model, we
are unaware of any previous program verification engine with any guarantee, in
a model or otherwise, on the heuristic extrapolation they perform. Even though
this guarantee is not the best possible guarantee that one would desire, the
undecidability of program verification prevents strong results for the problem we
consider. It is well known that the PAC learners tend to have good performance
in practice for a variety of learning tasks. Our experiments show that the PAC
learners we construct have good performance for the task of invariant inference.
We believe that by finding candidate invariants separating all good samples from
all bad samples and misclassifying unseen points with low probability leads our
technique to produce true invariants.

3.4 Complexity

If we have m states in d dimensions, then we need to cover O(m2) edges of
graph U using O(md) hyperplanes of F . Greedy set cover has a time complexity
of O(m2|F|). Considering O(md) hyperplanes is, however, impractical. With a
thousand samples for a four variable program, we will need to enumerate 1012

planes. Hence this algorithm has a very high space complexity and will run out
of memory on most benchmarks of Section 5.

Suppose the invariant has s hyperplanes. Hence the good states and bad
states can be separated by s hyperplanes. To achieve learning, we require that
F should contain s hyperplanes that separate the good samples and the bad
samples – since the planes constituting the invariant could be any arbitrary
set, in general we need to select a lot of candidates to ensure this. By adding
assumptions about the invariant, the size of F can be reduced. Say for octagons,
for thousand samples and four variables, the algorithm of Section 4.1 considers
24000 candidates.

3.5 Logic Minimization

The output of the algorithm of Section 3.2 is a set S of hyperplanes separat-
ing every good sample from every bad sample. As described previously, these
hyperplanes tessellate Rd into cells. Recall that S has the property that no cell
contains both a good state and a bad state.

Now we must construct a predicate containing all good samples and excluding
all bad samples. One obvious option is the union of cells labeled “good”. But
this might result in a huge predicate since each cell is an intersection of half-
spaces. Our goal is to compute a predicate with the smallest number of boolean
operators such that it contains all the “good” cells and no “bad” cells. Let H be
the set of half-spaces constituting the “good” cells. Define a boolean matrix M
with m rows and |H| columns, and an m-dimensional vector y as follows.

Verification as Learning Geometric Concepts 399

M(i, j) = true ⇔ {ithstate ∈ jth half-space of H}
y(i) = true ⇔ {ithstate is a good state}

This matrixM together with the vector y resembles a partial truth table – the ith

row of M identifies the cell in which the ith state lies and y(i) (the label of the ith

state) gives the label for the cell (whether it is a cell containing only good states
or only bad states). Now, we want to learn the simplest boolean function (in
terms of the number of boolean operators) f : {true, false}|H| → {true, false},
such that f(Mi) = y(i) (Mi is the ith row of M). This problem is called logic
minimization and is NP-complete. Empirically, however, S has a small number of
hyperplanes, at most eight in our experiments, and we are able to use standard
exponential time algorithms like the Quine-McCluskey algorithm [44] to get a
small classifier.

In summary, we use set covering for learning geometric concepts (Section 3.2)
to compute predicates with a small number of hyperplanes. Combining this with
logic minimization, we compute a predicate with a small number of boolean
connectives. Empirically, we find that these predicates are actual invariants for all
the benchmarks that have an arbitrary boolean combination of linear inequalities
as an invariant.

4 Practical Algorithms

The algorithm discussed in Section 3.2, although of considerable interest, has
limited practical applicability because its space and time complexity is expo-
nential in the dimension, which in our case, is the number of program variables
(Section 3.4). This complexity is not too surprising since, for example, abstract
interpretation over the abstract domain of convex hulls [23] is also exponential
in the number of variables. In this paper, we make the common assumption
that the invariants come from a restricted class, which amounts to reducing the
number of candidate sets for covering in our set cover algorithm. Therefore, we
are able to obtain polynomial time algorithms in the number of samples and the
dimension to generate classifiers under mild restrictions (Section 4.1).

4.1 Restricting Generality

Let s denote the number of hyperplanes in the invariant. Then for PAC learning,
we say the set F of candidate hyperplanes is adequate if it contains s hyperplanes
that completely separate the good samples from the bad samples. Recall that
the complexity of the procedure of Section 3.2 is O(m2|F|), and therefore a
polynomial size set F makes the algorithm polynomial time. In addition, the set
covering step can be parallelized for efficiency [8].

In the following two sections we will give two PAC learning algorithms. The
formal proofs that these algorithms learn in the PAC model are beyond the
scope of this paper and are similar to the proofs in [13]. However, we do show
the construction of adequate sets F that coupled with a good approximation
factor of set cover [12] give us PAC learning guarantees.

400 R. Sharma et al.

Predicate Abstraction. Suppose we are given a set of predicates P where each
predicate is a half-space. Assume that the invariant is a boolean combination
of predicates in P , and checking whether a given candidate I is an invariant is
co-NP-complete. If the invariant is an intersection or disjunction of predicates
in P , then Houdini [27] can find the invariant in time PNP (that is, it makes a
polynomial number of calls to an oracle that can solve NP problems). When the
predicates are arbitrary boolean combinations of half-spaces from P , then the
problem of finding the invariant is much harder, NPNP -complete [39]. We are
not aware of any previous approach that solves this problem.

Now suppose that instead of an exact invariant, we want to find a PAC clas-
sifier to separate the good states from the bad states. If the set of candidates
F is P , then this trivially guarantees that there are s hyperplanes in F that do
separate all the good states from the bad states – all we need to do now to obtain
a PAC algorithm is to solve a set cover problem [12]. This observation allows us
to obtain a practical algorithm. By using the greedy algorithm on m samples,
we can find a classifier in time O(m2|P|). Therefore, by relaxing our problem to
finding a classifier that separates good samples from bad samples, rather than
finding an exact invariant, we are able to solve a NPNP complete problem in
time O(m2|P|) time, a very significant improvement in time complexity.

Abstract Interpretation. Simple predicate abstraction can be restrictive be-
cause the set of predicates is fixed and finite. Abstract interpretation is another
approach to finding invariants that can deal with infinite sets of predicates. For
scalable analyses, abstract interpretation assumes that invariants come from re-
stricted abstract domains. Two of the most common abstract domains are boxes
and octagons. In boxes, the predicates are of the form ±x+ c ≥ 0, where x is a
program variable and c is a constant. In octagons, the predicates are of the form
±x ± y + c ≥ 0. Note that, by varying c, these form an infinite family of pred-
icates. These restricted abstract domains amount to fixing the set of possible
slopes w of the constituent half-spaces wTx+ b ≥ 0 (the bias b that corresponds
to c, is however free).

Suppose now that we are given a finite set of slopes, that is, we are given a
finite set of weight vectors Σ = {wi | i = 1, . . . , |Σ|}, such that the invariant
only involves hyperplanes with these slopes. In this case, we observe that we
can restrict our attention to hyperplanes that pass through one of the samples,
because any hyperplane in the invariant that does not pass through any sample
can be translated until it passes through one of the samples and the resulting
predicate will still separate all the good samples from the bad samples. In this
case, the set F is defined as follows:

F = {(w, b) | w ∈ Σ and wTxi + b = 0 for some sample xi ∈ V } (1)

The size of F is |Σ|m. Again, this set contains s hyperplanes that separate all
the good samples from all the bad samples (the s hyperplanes of the invariant,
translated to where they pass through one of the samples), and therefore this set
is adequate and coupled with set covering [12] gives us a PAC learning algorithm.

Verification as Learning Geometric Concepts 401

The time complexity for greedy set cover in this case also includes the time
taken to compute the bias for each hyperplane in F . There are |F| = |Σ|m such
hyperplanes, and finding the bias for each hyperplane takes O(d) time. The time
complexity is therefore O(m2|F|+ d|F|) = O(m3|Σ|).

If we want to find classifiers over abstract domains such as boxes and octagons,
then we can work with the appropriate slopes. For boxes |Σ| is O(d) and for
octagons |Σ| is O(d2). Interestingly, the increase in complexity when learning
classifiers as we go from boxes to octagons mirrors the increase in complexity
of the abstract interpretation. By adding more slopes we can move to more
expressive abstract domains. Also note that the abstract domain over which we
compute classifiers is much richer than the corresponding abstract interpretation.
Conventional efficient abstract interpretation can only find invariants that are
conjunctions of predicates, but we learn arbitrary boolean combinations of half-
spaces, that allows us to learn arbitrary boolean combinations of predicates in
abstract domains.

Again, we observe that by relaxing the requirement from an invariant to a
classifier that separates good and bad samples, we are able to obtain predicates in
polynomial time that are richer than any existing symbolic program verification
tool we are familiar with.

4.2 Non-linear Invariants

Our geometric method of extracting likely invariants carries over to polynomial
inequalities. Assume we are given a fixed bound k on the degree of the poly-
nomials. Consider a d-dimensional point �x = (x1, . . . , xd). We can map �x to a(
d+k−1

k

)
-dimensional space by considering every possible monomial involving the

components of �x of maximum degree k as a separate dimension. Thus,

φ(�x) = (xα1
1 xα2

2 . . . xαd

d |
∑
i

αi ≤ k, αi ∈ N) (2)

Using the mapping φ, we can transform every point �x into a higher dimensional
space. In this space, polynomial inequalities of degree k are linear half-spaces,
and so the entire machinery above carries through without any changes. In the
general case, when we have no information about the invariant then we will take
time exponential in d. When we know the slopes or the predicates constituting
the invariants then we can get efficient algorithms by following the approach of
Section 4.1. Therefore, we can infer likely invariants that are arbitrary boolean
combinations of polynomial inequalities of a given degree.

4.3 Recovering Soundness

Once we obtain a classifier, we want to use it to construct proofs for programs.
But the classifier is not guaranteed to be an invariant. To obtain soundness, we
augment our learning algorithm with a theorem prover using a standard guess-
and-check loop [55,54]. We sample, perform learning, and propose a candidate

402 R. Sharma et al.

invariant using the set cover approach for learning geometric concepts as de-
scribed in Section 3.2 (the guess step). We then ask a theorem prover to check
whether the candidate invariant is indeed an invariant (the check step). If the
check succeeds we are done. Otherwise, the candidate invariant is not an invari-
ant and we sample more states and guess again. When we terminate successfully,
we have computed a sound invariant. For a candidate invariant I, we make the
following queries:

1. The candidate invariant is weaker than the pre-condition P ⇒ I.
2. The candidate invariant implies the post-condition I ∧ ¬E ⇒ Q.
3. The candidate invariant is inductive {I ∧E}S{I}.

If all three queries succeed, then we have found an invariant. Note that since
we are working with samples, I is neither an under-approximation nor an over-
approximation of the actual invariant. If the first constraint fails, then a counter-
example is a good state that I classifies as bad. If the second constraint fails, then
a counter-example is a bad state that I classifies as good. If the third constraint,
representing inductiveness, fails then we get a pair of states (x, y) such that I
classifies x as good, y as bad, and if the loop body starts its execution from
state x then it can terminate in state y. Hence if x is good then so is y and (x, y)
refutes the candidate I. However, x is unlabelled, i.e., we do not know whether
it is a good state or not and we cannot add x and y to samples directly.

Now, we want our learning algorithm to generate a classifier that respects
the pair (x, y) of counter-example states: if the classifier includes x then it also
includes y. If the invariant has s hyperplanes then the greedy set cover can be ex-
tended to generate a separator between good and bad samples that respects such
pairs. The basic idea is to greedily select the hyperplanes which make the most
number of pairs consistent. Moreover the number of hyperplanes in the output
is guaranteed to be O(s(logm)2): the size of the predicate can increase linearly
with the number of pairs. This algorithm can be used to guide our learning algo-
rithm in the case it finds an invariant that is not inductive. Note that the need
for this extension did not arise in our experiments. Using a small amount of data,
greedy set cover was sufficient to find an invariant. For buggy programs, a good
state g, a bad state b, and a sequence of pairs (x1, x2), (x2, x3), . . . , (xk−1, xk)
such that g = x1 and b = xk is an error trace, i.e., certificate for a bug.

When we applied guess-and-check in our previous work [55,54] to infer relevant
predicates for verification, we checked for only two out of the three constraints
listed above (Section 6). Hence, these predicates did not prove any program prop-
erty and moreover they were of limited expressiveness (no disjunctions among
other restrictions). Checking fewer constraints coupled with reduced expressive-
ness made it straightforward to incorporate counter-examples. In contrast, we
now must deal with the kinds of counter-examples (good, bad, and unlabeled)
for an expressive class of predicates. Handling all three kinds is necessary to
guarantee progress, ensuring that an incorrect candidate invariant is never pro-
posed again. However, if the candidates are inadequate then the guess-and-check
procedure will loop forever: Inadequacy results in candidate invariants that grow
linearly with the number of samples.

Verification as Learning Geometric Concepts 403

If we want to analyze a single procedure program with multiple loops, then
we process the loops beginning with the last, innermost loop and working out-
wards and upward to the first, outermost loop. The invariants of the processed
loops become assertions or postconditions for the to-be-processed loops. While
checking the candidate invariants, the condition that the candidate invariant
should be weaker than the pre-condition is only checked for the topmost outer-
most loop L and not for others. If this check generates a counter-example then
the program is executed from the head of L with the variables initialized using
the counter-example. This execution generates new good states for the loops it
reaches and invariant computation is repeated for these loops.

5 Experimental Evaluation

We have implemented and evaluated our approach on a number of challenging C
benchmarks. Greedy set cover is implemented in one hundred lines of MATLAB

Table 1. Program is the name, LOC is lines, #Loops is the number of loops, and #Vars

is the number of variables in the benchmark. #Good is the maximum number of good
states, #Bad is the maximum number of bad states, and Learn is the maximum time of
the learning routine over all loops of the program. Check is time by Boogie for proving
the correctness of the whole program and Result is the verdict: OK is verified, FAIL is
failure of our learning technique, and PRE is verified but under certain pre-conditions.

Program LOC #Loops #Vars #Good #Bad Learn(s) Check(s) Result

fig6 [31] 16 1 2 3 0 0.030 1.04 OK

fig9 [31] 10 1 2 1 0 0.030 0.99 OK

prog2 [31] 19 1 2 10 0 0.034 1.00 OK

prog3 [31] 29 1 4 8 126 0.106 1.05 OK

test [31] 30 1 4 20 0 0.162 1.00 OK

ex23 [36] 20 1 2 111 0 0.045 1.05 OK

sas07 [29] 20 1 2 103 6112 2.64 1.02 OK

popl07 [32] 20 1 2 101 10000 2.85 0.99 OK

get-tag [35] 120 2 2 6 28 0.092 1.04 OK

hsort [35] 47 2 5 15 435 0.19 1.05 OK

maill-qp [35] 92 1 3 9 253 0.11 1.05 OK

msort [35] 73 6 10 9 77 0.093 1.12 OK

nested [35] 21 3 4 49 392 0.24 0.99 OK

seq-len1 [35] 44 6 5 36 1029 0.32 1.04 PRE

seq-len [35] 44 6 5 224 3822 4.39 1.04 OK

spam [35] 57 2 5 11 147 1.01 1.05 OK

svd [35] 50 5 5 150 1708 4.92 0.99 OK

split 20 1 5 36 4851 FAIL NA FAIL

div [53] 28 2 6 343 248 2.03 1.04 OK

404 R. Sharma et al.

code. We use Havoc [5] to generate BoogiePL programs from C programs
annotated with candidate invariants. Next, Boogie [7] verification condition
generator operates on theBoogiePL programs to check the candidate invariants
by passing the verification conditions to Z3 theorem prover [45]. All experiments
were performed on a 2.67GHz Intel Xeon processor system with 8 GB RAM
running Windows 7 and MATLAB R2010b.

Implementation Notes. Our implementation analyzes single procedure C pro-
grams with integer variables and assertions. Since all these programs contain
loops, we need to compute invariants that are strong enough to prove the asser-
tions. For every loop, our technique works as follows: first, we instrument the
loop head to log the values of the variables in scope. Next, we run the program till
termination on some test inputs to generate data. All internal non-deterministic
choices, such as non-deterministic tests on branches, are randomly selected. All
states reaching the loop head are stored in a matrix good. We then compute
the null space of good to get the sub-space J in which the good states lie: J
represents the equality relationships that the good states satisfy. Working in the
lower dimensional sub-space J improves the performance of our algorithms by
effectively reducing d, the number of independent variables.

Next, from the loop body, we statically identify the predicate B representing
the states that will violate some assertion after at most one iteration of the loop.
We then sample the bad states from the predicate B ∧ J . The good and bad
samples are then used to generate the set of candidate hyperplanes F using the
specified slopes – octagons are sufficient for all programs except seq-len.

We perform another optimization: we restrict the candidates to just the oc-
tagons passing through the good states, thus reducing the number of candidates.
Note that this optimization still leads to an adequate set of candidates and we
retain our learning guarantees. Next, using the greedy algorithm, we select the
hyperplanes that separate the good from the bad states, and return a set of half-
spaces H and a partial boolean function f : f(b1, . . . , b|H|) that represents the
label of the cell that lies inside the half-spaces for which bi’s are true and outside
the half-space for which bi is false. This algorithm is linear in the number of
bad states and its complexity is governed almost entirely by the number of good
states. For our benchmarks, |H| was at most 8. We use the Quine-McCluskey
algorithm for logic minimization (Section 3.5) that returns the smallest total
boolean function g that agrees with f . Conjoining the predicate obtained us-
ing g and H with J yields a candidate invariant. This invariant is added as an
annotation to the original program that is checked with Boogie for assertion
violations.

Evaluation. An important empirical question is how much data is sufficient
to obtain a sound invariant. To answer this question, we adopt the following
method for generating data: we run the programs on all possible inputs s.t. all
input variables have their values between [−1, N] where N is initially zero. This
process generates good states at the loop head. Next we generate bad states and
check whether our first guess is an invariant. If not then we continue generating

Verification as Learning Geometric Concepts 405

more bad states and checking if the guess is an invariant. If we have generated
10,000 bad states and still have not found an invariant then we increment N by
one and repeat the process. We are able to obtain a sound invariant within four
iterations of this process for our linear benchmarks; div needs ten iterations: it
needs more data as the (non-linear) invariant is found in a higher dimensional
space.

Now we explain our approach of sampling bad states given a set of good
states. Each variable x at the loop head takes values in some range [Lx,Mx] for
the good states. To sample the bad states, we exhaustively enumerate states (in
the subspace in which the good states lie) where the value of each variable x
varies over the range [Lx,Mx]. For deterministic programs with finite number of
reachable states, any enumerated state that is unreachable is labeled bad. For
others, bad states are generated by identifying the enumerated states satisfying
the predicate B representing bad states. Because this process can enumerate a
very large number of states unless the range or number of variables is small,
we incrementally enumerate the states until we generate 10,000 bad states. The
results in Table 1 show the number of good states (column 5) and bad states
(column 6) that yield a sound invariant.

We observe that only a few good states are required for these benchmarks,
which leads us to believe that existing test suites of programs should be sufficient
for generating sound invariants. We observe that our sampling strategy based
on enumeration generates many bad states that are not useful for the algorithm.
The candidate invariant is mainly determined by the bad states that are close
to the good states and not those that are further away and play no role in
determining the good state/bad state boundary. The complexity of our algorithm
is governed mainly by the good states, due to our optimizations, and hence
generating superfluous bad states is not an issue for these benchmarks. Since
the candidate inequalities are determined by the good and bad states, the good
and bad samples should be generated with the goal of including the inequalities
of the invariants in the set of candidates. Note that we use a naive strategy for
sampling. Better strategies directed towards the above goal are certainly possible
and may work better.

The benchmarks that we used for evaluating our technique are shown in the
first column (labeled Program) of Table 1. Lee-Yannakakis partition refine-
ment algorithm [42] does not work well on fig6; Synergy [31] fails to termi-
nate on fig9; prog2 has a loop with a large constant number of iterations and
predicate abstraction based tools like Slam take time proportional to the num-
ber of loop iterations. The program prog3 requires a disjunctive invariant. For
test we find the invariant y = x + lock: Slam finds the disjunctive invariant
(x = y ⇒ lock = 0 ∧ x �= y ⇒ lock = 1). For ex23, we discovered the invariant
z = counter + 36y. This is possible because the size of constants are bounded
only for computing inequalities: the equalities in J have no restriction on the
size of constants. Such relationships are beyond the scope of tools performing
abstract interpretation over octagons [40]. The equalities in J are sufficient to
verify the correctness of the benchmarks containing a zero in column #Bad of

406 R. Sharma et al.

Table 1. The programs sas07 and popl07 are deterministic programs requiring
disjunctive invariants. We handle these without using any templates [35]. The
programs get-tag through svd are the benchmarks used to evaluate the tem-
plate based invariant generation tool InvGen [35]. As seen from Table 1, we are
faster than InvGen on half of these programs, and slower on the other half.

We modify seq-len to obtain the benchmark seq-len1; the program
seq-len1 assumes that all inputs are positive. We are able to find strong in-
variants for the loops, using octagons for slopes, that are sufficient to prove the
correctness of this program. These invariants include sophisticated equalities like
i+k = n0+n1+n2. Since we proved the correctness by assuming a pre-condition
on inputs, the Result column says PRE. Next, we analyze seq-len, that has no
pre-conditions on inputs, using octagons as slopes. We obtain a separator that
has as many linear inequalities as the number of input states; such a predicate
will not generalize. For this example, there is no separator small in size if we
restrict the domain of our slopes to octagons. Therefore, we add slopes of hy-
perplanes that constitute invariants of seq-len1 and similar slopes to our bag
of slopes. We are then able to prove seq-len correct by discovering invariants
like i+ k ≥ n0 + n1 + n2. This demonstrates how we can find logically stronger
invariants in specialized contexts.

The split program requires an invariant that uses an interpreted function
iseven. Our approach fails on this program as the desired invariant cannot be
expressed as an arbitrary boolean combinations of half-spaces. For the div pro-
gram, the objective is to verify that the computed remainder is less than the
divisor and the quotient times divisor plus remainder is equal to dividend. Using
the technique described in Section 4.2 with a degree bound of 2, we are able to
infer a invariant that proves the specification. We are unaware of any previous
technique that can prove the specification of this benchmark.

6 Related Work

In this section, we compare our approach with existing techniques for linear and
non-linear invariant generation. Since the literature on invariant inference is rich,
we only discuss the techniques closest to our work.

6.1 Comparison with Linear Invariant Generation

Invariant generation tools that are based on either abstract interpretation [23,21],
or constraint solving [19,35], or their combination [18], cannot handle arbi-
trary boolean combinations of half-spaces. Similar to us, Clousot [41] improves
its performance by conjoining equalities and inequalities over boxes. Some ap-
proaches like [25,26,52,32,34,29,43] can handle disjunctions, but they restrict the
number of disjunctions by widening, manual input, or trace based heuristics. In
contrast, [28] handles disjunctions of a specific form.

Predicate abstraction based tools are geared towards computing arbitrary
boolean combinations of predicates [6,9,31,1,10,30]. Among these, Yogi [31] uses

Verification as Learning Geometric Concepts 407

test cases to determine where to refine its abstraction. However, just like [47], it
uses the trace and not the concrete states generated by a test. InvGen [35] uses
test cases for constraint simplification, but does not generalize from them with
provable generalization guarantees. Amato et al. [2] analyze data from program
executions to tune their abstract interpretation. Recently, we ran support vector
machines [20], a widely used machine learning algorithm, in a guess-and-check
loop to obtain a sound interpolation procedure [55]. However, [55] cannot handle
disjunctions and computed interpolants need not be inductive.

Daikon [24] is a tool for generating likely invariants using tests. Candidate
invariants are generated using templates, and candidates that violate some test
case are removed. Since the invariants are based on templates, Daikon is less
expressive than our approach. It is interesting to note that our empirical results
are consistent with those reported in [49]: a small number of states can cover most
program behaviors. Random interpretation [33] trade-offs complexity of program
analysis for a small probability of unsoundness. In contrast, our guarantees are
sound and we trade expressiveness for efficiency.

6.2 Comparison with Tools for Non-linear Invariants

Existing sound tools for non-linear invariant generation can produce invariants
that are conjunctions of polynomial equalities [51,38,50,14,46,53,17]. However,
by imposing strict restrictions on syntax (such as no nested loops) [51,38] do
not need to assume the degree of polynomials as the input. Bagnara et al. [4]
introduce new variables for monomials and generate linear invariants over them
by abstract interpretation over convex polyhedra. Our domain is more expressive:
arbitrary boolean combinations of polynomial inequalities.

Nguyen et al. [48] give an unsound algorithm for generation of likely invariants
that are conjunctions of polynomial equalities or inequalities. For equalities, they
compute the null space of good samples (obtained from tests) in the higher
dimensional space described in Section 4.2, that is also one of the steps of our
technique. For generation of candidate polynomial inequalities they find the
convex hull of the good samples in the higher dimensional space. In addition to
limiting the expressiveness to just conjunction of polynomial inequalities, this
step is computationally very expensive. In a related work, we ran [48] in a guess-
and-check loop to obtain an algorithm [54], with soundness and termination
guarantees, for generating polynomial equalities as invariants. A termination
proof was possible as [54] can return the trivial invariant true: it is not required to
find invariants strong enough to prove some property of interest. This technique
can handle only the benchmarks that require zero bad states in Table 1, whereas
our current technique can handle all the benchmarks of [54].

7 Conclusion

We have presented a machine learning perspective to verifying safety properties
of programs and demonstrated how it helps us achieve guarantees and expres-
siveness. The learning algorithm performs a set cover and given an adequate

408 R. Sharma et al.

set of candidate inequalities, it has the guarantee that the output candidate
invariant uses at most a logarithmic number of inequalities more than the sim-
plest true invariant. Hence the algorithm is biased towards simple invariants
and hence parsimonious proofs. The PAC learning guarantees for this algorithm
formally capture the generalization properties of the candidate invariants. Dis-
junctions and non-linearities are handled naturally with no a priori bound on
the number of disjunctions. We trade expressiveness for efficiency by changing
the abstract domains and demonstrate our approach on challenging benchmarks.
The literature on classification algorithms is rich and it will be interesting to see
how different classification algorithms perform on the task of invariant inference.
Learning algorithms for data structures manipulating programs are left as future
work.

Acknowledgements. We thank Hongseok Yang and the anonymous reviewers
for their constructive comments. Praneeth Netrapalli, Divya Gupta, and Prateek
Jain helped in extending the classification algorithm to handle pairs. Sharma per-
formed part of the work reported here during a summer internship at Microsoft
Research India. This material is based on research sponsored by NSF grant
CCF-0915766 and the Air Force Research Laboratory, under agreement num-
ber FA8750-12-2-0020. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig interpretation. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 300–316. Springer, Heidelberg
(2012)

2. Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component
analysis. J. Symb. Comput. 47(12), 1533–1560 (2012)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
STTT 9(3-4) (2007)

4. Bagnara, R., Rodŕıguez-Carbonell, E., Zaffanella, E.: Generation of basic semi-
algebraic invariants using convex polyhedra. In: Hankin, C., Siveroni, I. (eds.) SAS
2005. LNCS, vol. 3672, pp. 19–34. Springer, Heidelberg (2005)

5. Ball, T., Hackett, B., Lahiri, S.K., Qadeer, S., Vanegue, J.: Towards scalable mod-
ular checking of user-defined properties. In: Leavens, G.T., O’Hearn, P., Rajamani,
S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 1–24. Springer, Heidelberg (2010)

6. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

7. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

8. Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with
applications to learning and geometry. J. Comput. Syst. Sci. 49(3), 454–477 (1994)

Verification as Learning Geometric Concepts 409

9. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST. STTT 9(5-6), 505–525 (2007)

10. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI, pp. 300–309 (2007)

11. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
Vapnik-Chervonenkis dimension. JACM 36(4), 929–965 (1989)

12. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. In: SoCG, pp. 293–302 (1994)

13. Bshouty, N.H., Goldman, S.A., Mathias, H.D., Suri, S., Tamaki, H.: Noise-tolerant
distribution-free learning of general geometric concepts. In: STOC, pp. 151–160
(1996)

14. Cachera, D., Jensen, T., Jobin, A., Kirchner, F.: Inference of polynomial invariants
for imperative programs: A farewell to gröbner bases. In: Miné, A., Schmidt, D.
(eds.) SAS 2012. LNCS, vol. 7460, pp. 58–74. Springer, Heidelberg (2012)

15. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979)

16. Clarisó, R., Cortadella, J.: The octahedron abstract domain. In: Giacobazzi, R.
(ed.) SAS 2004. LNCS, vol. 3148, pp. 312–327. Springer, Heidelberg (2004)

17. Colón, M.A.: Approximating the algebraic relational semantics of imperative pro-
grams. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 296–311. Springer,
Heidelberg (2004)

18. Colón, M.A., Sankaranarayanan, S.: Generalizing the template polyhedral domain.
In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 176–195. Springer, Heidel-
berg (2011)

19. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

20. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

21. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL,
pp. 238–252 (1977)

22. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282 (1979)

23. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–96 (1978)

24. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007)

25. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

26. Filé, G., Ranzato, F.: Improving abstract interpretations by systematic lifting to
the powerset. In: GULP-PRODE, vol. (1), pp. 357–371 (1994)

27. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

28. Ghorbal, K., Ivančić, F., Balakrishnan, G., Maeda, N., Gupta, A.: Donut do-
mains: Efficient non-convex domains for abstract interpretation. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 235–250. Springer,
Heidelberg (2012)

410 R. Sharma et al.

29. Gopan, D., Reps, T.: Guided static analysis. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)

30. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically re-
fining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

31. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
a new algorithm for property checking. In: FSE 2006, pp. 117–127 (2006)

32. Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: POPL,
pp. 277–289 (2007)

33. Gulwani, S., Necula, G.C.: Discovering affine equalities using random interpreta-
tion. In: POPL, pp. 74–84 (2003)

34. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI, pp. 281–292 (2008)

35. Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 262–276. Springer,
Heidelberg (2009)

36. Ivancic, F., Sankaranarayanan, S.: NECLA Static Analysis Benchmarks,
http://www.nec-labs.com/research/system/

systems SAV-website/small static bench-v1.1.tar.gz

37. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate re-
finement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 459–473. Springer, Heidelberg (2006)

38. Kovács, L.: A complete invariant generation approach for p-solvable loops. In:
Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947,
pp. 242–256. Springer, Heidelberg (2010)

39. Lahiri, S.K., Qadeer, S.: Complexity and algorithms for monomial and clausal
predicate abstraction. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663,
pp. 214–229. Springer, Heidelberg (2009)

40. Lalire, G., Argoud, M., Jeannet, B.: The Interproc Analyzer,
http://pop-art.inrialpes.fr/people/bjeannet/

bjeannet-forge/interproc/index.html
41. Laviron, V., Logozzo, F.: Subpolyhedra: a family of numerical abstract domains

for the (more) scalable inference of linear inequalities. STTT 13(6), 585–601 (2011)
42. Lee, D., Yannakakis, M.: Online minimization of transition systems (extended ab-

stract). In: STOC, pp. 264–274 (1992)
43. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static

analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer,
Heidelberg (2005)

44. McCluskey, E.J.: Minimization of boolean functions. Bell Systems Technical Jour-
nal 35(6), 1417–1444 (1956)

45. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

46. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Information
Processing Letters 91(5), 233–244 (2004)

47. Naik, M., Yang, H., Castelnuovo, G., Sagiv, M.: Abstractions from tests. In: POPL,
pp. 373–386 (2012)

48. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover
polynomial and array invariants. In: ICSE (2012)

49. Nimmer, J.W., Ernst, M.D.: Automatic generation of program specifications. In:
ISSTA, pp. 229–239 (2002)

http://www.nec-labs.com/research/system/systems_SAV-website/small_static_bench-v1.1.tar.gz
http://www.nec-labs.com/research/system/systems_SAV-website/small_static_bench-v1.1.tar.gz
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html

Verification as Learning Geometric Concepts 411

50. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invari-
ants of bounded degree using abstract interpretation. Sci. Comput. Program. 64(1),
54–75 (2007)

51. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. J. Symb. Comput. 42(4), 443–476 (2007)

52. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static analysis in
disjunctive numerical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 3–17. Springer, Heidelberg (2006)

53. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using Gröbner bases. In: POPL, pp. 318–329 (2004)

54. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013)

55. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012)

56. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

Interpolation-Based Verification

of Floating-Point Programs
with Abstract CDCL�

Martin Brain1, Vijay D’Silva3, Alberto Griggio2,��,
Leopold Haller1, and Daniel Kroening1

1 University of Oxford
first.last@cs.ox.ac.uk

2 Fondazione Bruno Kessler, Trento, Italy
griggio@fbk.eu

3 University of California, Berkeley
vijayd@eecs.berkeley.edu

Abstract. One approach for smt solvers to improve efficiency is to del-
egate reasoning to abstract domains. Solvers using abstract domains do
not support interpolation and cannot be used for interpolation-based ver-
ification. We extend Abstract Conflict Driven Clause Learning (acdcl)
solvers with proof generation and interpolation. Our results lead to the
first interpolation procedure for floating-point logic and subsequently,
the first interpolation-based verifiers for programs with floating-point
variables. We demonstrate the potential of this approach by verifying a
number of programs which are challenging for current verification tools.

1 Introduction

Numeric software that manipulates floating-point variables is ubiquitous in auto-
motive, avionic, medical, public transportation and other safety critical systems.
The IEEE 754 standard defines the format of, operations on, and exceptions
concerning floating-point computations. To alleviate the complexity of floating-
point reasoning, some solvers use abstract domains to manipulate and approxi-
mate the semantics of formulae [2,14,22,24].

In this paper, we study solvers that implement the Abstract Conflict Driven
Clause Learning (acdcl) algorithm [9]. acdcl solvers lift the Conflict Driven
Clause Learning (cdcl) algorithm in sat solvers to operate on abstract domain
elements instead of propositional formulae. To enable the use of acdcl solvers
in interpolation-based verification, we extend acdcl with proof generation and

� Supported by the Toyota Motor Corporation, ERC project 280053, EPSRC
project EP/J012564/1, and the FP7 STREP PINCETTE.

�� Supported by Provincia Autonoma di Trento and the European Community’s
FP7/2007-2013 under grant agreement Marie Curie FP7 – PCOFUND-GA-2008-
226070 “progetto Trentino”, project ADAPTATION.

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 412–432, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Interpolation-Based Verification of Floating-Point Programs 413

interpolant construction. We apply our theoretical results to derive verifiers for
programs with floating-point variables.

The intuition behind our work stems from the construction of propositional
interpolants. Clause learning sat solvers can generate resolution proofs [25]
and interpolants can be constructed in time linear in the size of a proof [18].
We introduce acdcl proofs, which extend propositional resolution with reason-
ing about abstract domain elements. Under certain conditions, discussed later,
acdcl proofs can be rewritten to obtain proofs with the structure generated
by dpll(t) solvers. Existing techniques can be used to construct interpolants
from such proof [19]. The major difference between our work and existing work
is not in the interpolation procedure we use but in the solver algorithm used to
generate proofs. Extending acdcl to generate proofs with the same structure
as dpll(t) solvers is useful because there are cases where dpll(t) solvers time
out out but an acdcl solver does not [1].

Contributions and Contents. In this paper, we present and evaluate the
first interpolation-based verification procedures for programs with floating-point
variables. Our work makes the following contributions.

1. Generation of proofs for acdcl based on the notion of abstract resolution.
Abstract resolution generalises resolution to accommodate formula manipu-
lation in an abstract domain.

2. Sufficient conditions for computing interpolants from acdcl proofs, and for
linear-time interpolation in a theory.

3. The first interpolation-based verifiers for floating-point logic. We implement
both the Bounded Model Checking-based interpolation algorithm of [18],
and two variants of lazy abstraction with interpolants [20,3].

4. Our implementations perform better than existing state-of-the-art verifica-
tion tools on a set of small but challenging floating-point programs.

The paper is organised as follows: Section 2 contains a recap of acdcl, and
Section 3 presents our extension of resolution and of acdcl to generate proofs.
Our results on interpolation appear in Section 4, which includes a treatment of
the issues arising in the floating point context. We present our empirical results
in Section 5, followed by related work in Section 6.

2 Abstract Conflict Driven Clause Learning

We recall the abstract satisfaction framework, which allows us to study satisfia-
bility problems in terms of lattices and transformers and is the basis for acdcl.
We refer the reader to [9] for a deeper treatment of acdcl, and to [14] for an
instantiation of acdcl for floating-point reasoning.

2.1 The Abstract Satisfaction Framework

Logic. We work with standard first-order notions of predicates, functions and
terms. An atomic predicate is a predicate symbol composed with terms. A literal

414 M. Brain et al.

is an atomic predicate or its negation. A clause is a disjunction of literals, and a
cube is a conjunction of literals. A cnf formula is a conjunction of clauses, and
one in dnf is a disjunction of cubes.

We assume a satisfaction relation |= between structures in a set Structs and
formulae. A structure σ is a model of ϕ if σ |= ϕ, otherwise, σ is a countermodel.
A formula is satisfiable if it has a model and is unsatisfiable otherwise. The
satisfiability problem is to determine whether a given formula is satisfiable. We
write sat for the satisfiability problem for propositional logic.

Lattices. A lattice (L,�,�,�) is a partially ordered set with a meet and a join.
The powerset lattice over a set X , written (℘(S),⊆,∪,∩), contains subsets of S
order by inclusion. Two functions f, g : Q → L from a set Q to L can be ordered
pointwise, denoted f � g, if f(x) � g(x) holds for all x in Q. Functions on L
also lift pointwise to Q → L. The least and greatest fixed points of a monotone
function f on a complete lattice will be denoted lfp(f) and gfp(f), respectively.

Let idS be the identity function on a set S. A Galois connection between

posets (C,�) and (A,�), written (C,�) −−−→←−−−
α

γ
(A,�), is a pair of monotone

functions α : C → A and γ : A → C satisfying the pointwise constraints
α ◦ γ � idA and idC � γ ◦ α.

Concrete Semantics of Formulae. We recall a fixed point characterisation
of satisfiability [9].The concrete domain of structures is (℘(Structs),⊆,∪,∩).
A formula ϕ defines two structure transformers. The name structure transformers
is used by analogy to state transformers and predicate transformers. Let X be a
set of structures. The model transformer modsϕ removes all countermodels of ϕ
from X , and the conflict transformer confsϕ adds all countermodels of ϕ to X .

modsϕ(X) =̂{σ ∈ X | σ |= ϕ} confsϕ(X) =̂{σ ∈ Structs | σ �|= ϕ or σ ∈ X}

Properties of a formula can be expressed with transformers. The set of models
of ϕ is modsϕ(Structs) and the set of countermodels of ϕ is confsϕ(∅).
Theorem 1. The following statements are equivalent.

1. A formula ϕ is unsatisfiable.
2. The greatest fixed point gfp(modsϕ) contains no structures.
3. The least fixed point lfp(confsϕ) contains all structures.

Applying the transformers above amounts to solving the all-sat problem and
is at least as hard as satisfiability. For efficiency, we use abstraction.

Abstract Satisfaction. We overapproximate models and underapproximate
countermodels. Let (O,�,�,�) be an overapproximation of the domain of struc-
tures and (U,�,�,�) be an underapproximation. The approximation is for-
malised by the Galois connections below. The orders � and � both refine set
inclusion on structures. That is, a � b implies γ(a) ⊆ γ(b), and x � y implies
γ(x) ⊆ γ(y).

(℘(Structs),⊆) −−−−→←−−−−
αO

γO

(O,�) (℘(Structs),⊇) −−−−→←−−−−
αU

γU

(U,�)

Interpolation-Based Verification of Floating-Point Programs 415

An abstract model transformer amodsϕ : O → O, and an abstract conflict trans-
former aconfsϕ : U → U satisfy the pointwise constraints below.

modsϕ ◦ γO ⊆ γO ◦ amodsϕ confsϕ ◦ γU ⊇ γU ◦ aconfsϕ

The basic soundness result of abstract interpretation can be used to derive sound
but incomplete satisfiability solvers.

Theorem 2. A formula ϕ is unsatisfiable over a set of structures Structs if at
least one of the conditions below hold.

1. The set γO(gfp(amodsϕ)) is empty.
2. The set γU (lfp(aconfsϕ)) contains all structures.

If gfp(amodsϕ) concretises to the empty set, ϕ must be unsatisfiable. Due to
imprecision in the abstraction, γO(gfp(amodsϕ)) may not be empty even if ϕ is
unsatisfiable. Similar intuition applies to reasoning with aconfsϕ.

2.2 A Recap of ACDCL

Recent work has given an abstract interpretation characterisation of the clause
learning algorithm in sat solvers [9]. This characterisation builds upon the ob-
servation that the data structures and operations in propositional sat solvers
are defined entirely by the notion of a literal. Propositional literals are the gen-
erators of cnf formulae, partial assignments (the data structure for deduction)
and clauses (used in learning). The unit rule, decisions, and conflict analysis, can
all be formulated in terms of literals. If we can generalise the notion of a literal,
all else follows. The work in [9] shows that complementable meet irreducibles are
a mathematical generalisation of literals to abstract domains. We review this
characterisation next.

Irreducible Elements. Irreducible elements in a lattice cannot be derived
from other elements using meets and joins. A lattice element x is completely
meet irreducible if for all X ⊆ L, the equality x =

�
X implies x is in X .

The set of meet irreducibles of L is denoted Irr�(L). A meet decomposition
is a function mdc : L → ℘(Irr�(L)) satisfying x =

�
mdc(x) for all x. We

shorten ‘completely meet irreducible’ to ‘meet irreducible’ in this paper. A meet
irreducible m of an abstract domain is complementable if there is an element m
satisfying that ¬γ(m) = γ(m). A domain has complementable meet irreducibles
if every element is the meet of meet irreducibles, and every meet irreducible is
complementable.

Domains to Logic. acdcl uses both abstract domain elements and formulae.
We use lower case letters such as p, q, r for logical literals, ϕ, ψ for formulae, and
m,n for domain elements. Our work applies to abstract domains that satisfy
the requirements below. The first two conditions enforce that the semantics of
logical formulae and abstract domain elements are both given in terms of a set

416 M. Brain et al.

of structures. The fourth condition ensure that meet irreducibles of the abstract
domain can be represented by logical formulae. The formula representation is
required to generate proofs. In Section 4.3 we show that choosing a representation
is non-trivial.

Assumption 1. Let L be set of formulae in the logic we consider and O be an
abstract domain. We make the following assumptions.
1. Formulae in L are interpreted over structures in a set Structs.
2. The concretisation function γ is in O → ℘(Structs).
3. The abstract domain O has complementable meet irreducibles.
4. There exists a function 〈·〉 : Irr�(O) → L which maps every meet irreducible

m to a formula 〈m〉 such that γ(m) is the set of models of 〈m〉.

We write P,Q,M,N for objects that are formulae or logical representations of
meet irreducibles, and P denotes ¬P if P is a formula, or 〈m〉, if P is the
representation of the meet irreducible m. Assumption 1 allows us to represent
logical negations of abstract domain elements as clauses. We adopt the standard
convention of writing clauses as sets of literals. Even if an abstract domain is
not complemented, we can exploit meet irreducibles to represent the negation
of a lattice element as a clause. The clausal negation of an abstract element a is
the set neg(a) =̂{〈m〉 | m ∈ mdc(a)}.

Learning as Transformer Refinement. acdcl discovers regions of the search
space that do not contain models of a formula and uses learning to navigate
subsequent search away from such regions. An abstract element a is a conflict
if modsϕ(γ(a)) is the empty set. The best learning transformer for a conflict a,
defined below, prunes abstract elements using conflicts.

Learna : O → O Learna =̂ x �→ α(γ(x) ∩ ¬γ(a))

A learning transformer is one that overapproximates the best learning trans-
former. A learning transformer removes countermodels from an abstract element,
but may not remove all. acdcl discovers conflicts, synthesises learning trans-
formers, and uses these transformers to refine the analysis. We now elaborate on
the details of conflict discovery and learning transformer synthesis.

The propositional unit rule asserts that if a region of the search space contains
no model for all but one literal in a clause, every model of the clause must be
a model of the remaining literal. The abstract unit rule lifts this intuition to
abstract domains. Let θ be the clausal negation neg(c) of some conflict c.

Unitθ(a) =̂

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊥ if γ(p � a) = ∅ for all p in θ

a � q otherwise, if there exists q in θ

and for all p �= q in θ, γ(a � p) = ∅
a otherwise

(1)

Interpolation-Based Verification of Floating-Point Programs 417

Learning corresponds to synthesising abstract unit rules from conflicts. acdcl
can be understood as generating a sequence of transformers, as below.

amods0ϕ =̂
�
θ∈ϕ

Unitθ amods i+1
ϕ =̂ amods iϕ �Unitneg(c), for some conflict c

acdcl begins with unit rules for clauses in the formula, and alternates between
two phases, model search, where conflicts are discovered, and conflict analysis,
where the conflicts are generalised. Eventually, a satisfying assignment is found,
or the formula is shown to be unsatisfiable, or the precision limit of the abstract
domain is reached with an inconclusive result, or, in certain cases, the procedure
may not terminate. Algorithmic details of acdcl relevant for proof generation
are discussed in the next section.

3 Proofs from ACDCL

The contribution of this section is to generalise resolution to encode abstract
domain reasoning, and extend acdcl with proof generation.

3.1 Abstract Resolution

The resolution rule asserts that if the conjunction of θ∨p with ¬p∨ψ is satisfiable,
the clause θ∨ψ must also be satisfiable. The rule is formulated entirely in terms
of literals, and can be lifted to complementable meet irreducibles. We generalise
resolution in two directions illustrated below.

Example 1. We consider a variable x interpreted as an interval, and write a
constraint x ∈ [0,∞] as x ≥ 0 for convenience. Of the three inferences below,
standard resolution permits the first one.

θ ∨ 〈x ≤ 0〉 ¬〈x ≤ 0〉 ∨ ψ

θ ∨ ψ

θ ∨ 〈x ≤ 0〉 〈x ≤ 0〉 ∨ ψ

θ ∨ ψ

θ ∨ 〈x ≤ 0〉 〈x ≥ 1〉 ∨ ψ

θ ∨ ψ

The second inference uses complementable meet irreducibles for Boolean reason-
ing about certain abstract domain elements. The third inference requires theory
reasoning, namely that (x ≤ 0) � (x ≥ 1) is ⊥.

We formalise the inferences above with an extension of the resolution rule that
eliminates pairs of meet irreducibles. We encode theory reasoning by a semantic
resolution rule that applies if a pair of elements reduce to bottom in an abstract
domain

Definition 1 (Abstract Resolution). Let θ and ψ be clauses. Abstract resolu-
tion consists of three rules. The literal resolution rule lres is standard resolution,
and mres extends the standard rule to complementable meet irreducibles.

θ ∨ p ¬p ∨ ψ

θ ∨ ψ
lres

θ ∨ 〈m〉 〈m〉 ∨ ψ

θ ∨ ψ
mres

418 M. Brain et al.

The semantic resolution rule sres below uses the meet in the abstract domain
to eliminate elements.

θ ∨ 〈m〉 〈n〉 ∨ ψ

θ ∨ ψ
sres, if m � n = ⊥,

After applying resolution, a literal may occur multiple times in a resolvent if it
occurs in both antecedents. When dealing with a theory, a resolvent may be of
the form 〈m〉∨ 〈n〉, where m and n are meet irreducibles satisfying m � n. Such
a clause can be semantically folded to the equivalent clause 〈n〉. More generally,
the semantic folding of a clause

Definition 2 (Folding). The semantic folding of a clause θ is the clause

sfold(θ) =̂ {〈m〉 ∈ ϕ | � ∃〈n〉 ∈ ϕ such that m � n}

containing syntactic representations of the maximal elements of θ.

In addition to the abstract resolution rules, acdcl solvers reason using conflicts.
A conflict is a region of the space with no models, so its negation, when viewed
as a formula is a tautology. The standard proof-theoretic treatment of conflicts
in the smt literature is to treat them as theory lemmas. We adopt the same
convention.

Definition 3. A theory lemma is a clause θ ∨ ψ satisfying that θ is the clausal
negation neg(c) of an element satisfying c � aconfs¬ψ(⊥).

Intuitively, c contains only countermodels of ¬ψ, so c “implies” ψ, and the con-
trapositive of this statement is a tautology that we encode as a clause.

Definition 4 (ACDCL proof). Consider a cnf formula ϕ. The hypothesis
rule hyp and lemma rule lemma are given below.

θ
hyp, if θ ∈ ϕ

θ ∨ P
lemma, if

⎧⎨⎩θ ∨ P is a theory lemma,
and P is a literal of ϕ
or P is a meet irreducible

⎫⎬⎭
A clause θ is derived from a cnf formula ϕ by acdcl if θ is introduced by hyp

or lemma, or if θ is derived by applying either the abstract resolution rules or
semantic folding to clauses derived from ϕ by acdcl. An acdcl refutation is
an acdcl derivation of ⊥.

Theorem 3 extends the soundness of resolution to acdcl proofs.

Theorem 3. If there exists an acdcl derivation of a clause θ from a formula
ϕ then ϕ |= θ.

Proof. The proof is by induction on the structure of an acdcl derivation. For
the base case, consider the hypothesis and lemma rules.

Interpolation-Based Verification of Floating-Point Programs 419

1. Clauses introduced by hyp belong to ϕ.
2. A clause θ∨P with θ = neg(c) is derived from an element c � aconfs¬P (⊥),

so by the soundness of abstract transformers, γ(c) ⊆ confs¬P (∅), and by
negation ¬γ(c) ⊇ ¬confs¬P (∅), and by negation of the formula, ¬γ(c) ∪
modsP (Structs) = Structs, so neg(c) ∨ P is valid.

For the induction step, we assume that the theorem holds for clauses derived by
acdcl. The case for lres is standard, and the reasoning for mres and sres are
similar, so we only consider mres. Let σ be a model of c1 ∨ 〈l1〉 and of c2 ∨ 〈l2〉.
There are three cases. If σ does not satisfy 〈l1〉 or 〈l2〉, it satisfies c1 ∨ c2. If σ
does not satisfy l1, it must satisfy c1, hence satisfies c1 ∨ c2. The case for not
satisfying l2 is identical. Note σ cannot satisfy both l1 and l2 because they are
logical representations of a complemented pair. ��

Corollary 1 (Soundness). If there exists an acdcl refutation for ϕ, then ϕ
is unsatisfiable.

3.2 Proofs from Runs of ACDCL

We now discuss the algorithmic details of acdcl and show how the algorithm
can be extended with proof generation. The algorithm operates on a sequence
of meet-irreducibles called an abstract trail.

Model Search. Model search can be viewed as a way to guide conflict analysis.
The meet of elements in the trail, say a, represents the region considered for
model search. If the set γ(a) contains a model, the fixed point gfp(amods iϕ �
λx.a) will be non-empty. If this fixed point is strictly smaller than a, new meet
irreducibles are added to the trail. Elements added to the trail are deduced facts
and are associated with a reason. The reason is either a subformula of ϕ, or a
formula representing the learned transformer Unitneg(c).

Example 2. Consider the following cnf formula ϕ in linear integer arithmetic:

ϕ =̂(x ≥ 3) ∧ (x+ y ≤ 5) ∧ ((x ≤ 0) ∨ (y ≥ 6))

acdcl over the interval abstract domain produces the following trail during
model search:

i trail i reason[i]
1 : 〈x ≥ 3〉 ← (x ≥ 3)
2 : 〈y ≤ 2〉 ← (x+ y ≤ 5)
3 : ⊥ ← (x ≤ 0) ∨ (y ≥ 6)

The meet irreducible 〈y ≤ 2〉 is deduced in step 2 from the trail 〈x ≥ 3〉 and the
reason (x+ y ≤ 5). A conflict is discovered in step 3.

If a conflict is not found, acdcl makes decisions. A decision is a meet irreducible
that when conjoined with the current trail, yields a strictly smaller element. If
a does represent the empty set, acdcl enters the conflict analysis phase.

420 M. Brain et al.

Conflict Analysis. The goal of conflict analysis is to generalise a conflict a to
a larger, still conflicting region. Proof generation only takes place during conflict
analysis phase, so we discuss it in greater detail. Conflict analysis is detailed by
the uncoloured lines in Algorithm 1 (see [14] for details). Given a reason r for a
conflict a the analysis uses an transformer aconfsr,a satisfying two properties:

1. aconfsr,a is sound in the sense that it underapproximates the transformer
λx. confsr(x) ∪ γ(a), and

2. aconfsr,a generalises, meaning that aconfsr,a(b) ' a for all elements b.

Conflict analysis steps backwards through the trail and generalises each meet
irreducible by applying the conflict transformer with respect to the associated
reason. The generalised result is stored in the marking array. An invariant of the
algorithm is that after each main loop iteration, the meet of elements in marking
is a conflict. This conflict is used to synthesise a learning transformer. If � is
not conflicting after the analysis, a backjump undoes part of the trail to return
to an earlier, non-conflicting state from which model search continues.

Proof Generation. Proof construction mirrors the construction of resolution
proofs from runs of a propositional sat solver [25]. We walk backwards along the
trail and identify proofs steps encoding the reasoning that was performed. The
main difference to the propositional case is that an acdcl proof has to account
for the reasoning performed by aconfs in the abstract domain.

The proof-producing extension of acdcl conflict analysis is given by the
coloured lines of Algorithm 1. The algorithm uses an array called proof to map
clauses to proof fragments. We reuse the names of proof rules as functions that
construct proof steps. In the case of resolution rules, the second argument is
the resolved literal, and the other arguments are antecedents. We write res for
lres and mres, because both encode Boolean reasoning, so the distinction is
not important for correctness of the algorithm.

The proof array is initialized by associating each clause in the input formula
with an hyp application. Lines 11-17 constructs a proof to justify that marking [i]
can be deduced from q by applying the abstract unit rule to reason [i]. Line 18 con-
structs a proof for the propagation ofmarking [i] in the trail. The piecewise proofs
in the pl array are consolidated in lines 23-25 to derive a proof for the learnt clause.

Example 3. We revisit the formula ϕ and trail in Example 2 and illustrate both
conflict analysis and proof construction. In this example, we do distinguish be-
tween lres and mres. Abstract conflict analysis starts from index 3 in the trail.
Suppose that applying aconfsreason[3] to ⊥ yields the set of meet irreducibles
q =̂{〈y ≤ 5〉, 〈x ≥ 1〉}. Then marking is updated as below.

marking [1] ← 〈x ≥ 1〉 marking [2] ← 〈y ≤ 5〉

The element reason [3] is unit under q, with amods (y≥6)(q) = ⊥. We obtain the
proof below

r =̂ (x ≤ 0) ∨ (y ≥ 6)
hyp 〈x ≥ 1〉 ∨ 〈y ≤ 5〉 ∨ ¬(y ≥ 6)

lemma

(x < 0) ∨ 〈x ≥ 1〉 ∨ 〈y ≤ 5〉 lres

Interpolation-Based Verification of Floating-Point Programs 421

which we extend to P3:

P3 =̂ ¬(x ≤ 0) ∨ 〈x ≥ 1〉 ∨ 〈y ≤ 5〉 lemma

r

〈x ≥ 1〉 ∨ 〈y ≤ 5〉 lres

At the next iteration, we have marking [2] = 〈y ≤ 5〉. Applying aconfsreason[2] to
marking [2] returns q =̂{〈x ≥ 0〉}. Then marking [1] is set to 〈x ≥ 1〉 � 〈x ≥ 0〉 =
〈x ≥ 1〉, and the following proof P2 is generated:

P2 =̂
¬(x+ y ≤ 5) ∨ 〈x ≥ 0〉 ∨ 〈y ≤ 5〉 lemma

(x+ y ≤ 5)
hyp

〈x ≥ 0〉 ∨ 〈y ≤ 5〉 lres

Finally, at the last iteration, we have marking [1] = 〈x ≥ 1〉, and applying
aconfsreason[1] to marking [1] returns �. The following proof P1 is generated:

P1 =̂ ¬(x ≥ 3) ∨ 〈x ≥ 1〉 lemma

(x ≥ 3)
hyp

〈x ≥ 1〉 lres

The final refutation Pa is obtained by combining P3,P2 and P1 as follows:

Pa =̂

P3 P2

〈x ≥ 1〉 sres P1

⊥ sres,

where in the first sres application we applied sfold to eliminate 〈x ≥ 0〉.

We conclude the section with a correctness proof.

Theorem 4. Let learnt be the clause returned by the proof-producing abstract
conflict analysis algorithm of acdcl (Algorithm 1). Then proof [learnt] is an
abstract resolution proof for learnt.

Proof. Assume by induction that proof [reason[i]] is an abstract resolution proof
for reason [i], for each non-decision position i in the trail.

First, we show that the lemma and res applications at lines 14, 17 and
18 are correct. For the lemmas, the side conditions hold by the correctness of
amods and aconfs and by the definition of the abstract unit rule (1). For the
res at line 17, l ∈ p by construction, and l ∈ pi by the inductive hypothesis.
Similarly, for the res at line 18, u ∈ pi because u ∈ proof [reason [i]] by the
inductive hypothesis and u �∈ unitreason by construction. As a consequence of
the correctness of such lemma and res applications, the proof pi generated at
line 18 is a correct abstract resolution proof for the clause marking [i] ∨ q (since
all literals L ∈ reason [i] \ q are eliminated by the sequence of resolutions at
line 17). Moreover, q ⊆ {c | ∃1 ≤ j < i such that marking [j] � c}. Because of
this, in the applications of sres at line 24, l ∈ p and P contains a literal l2
such that l2 � l. Therefore, the side conditions of sres are satisfied. In order

422 M. Brain et al.

Algorithm 1. acdcl proof generation during abstract conflict analysis.

1 abstract-conflict-analysis(trail , reason , proof)
2 i← |trail |; marking ← {1 �→ !, . . . , (i− 1) �→ !, i �→ ⊥};
3 pl← nil;
4 loop
5 if marking [i] �= ! then
6 a← �

1≤j<i trail [j];

7 q ← aconfsreason[i],a(marking [i]);

8 foreach c in mdc(q) do
9 r ← smallest index r′ s.t. trailr′ " c;

10 marking [r]← marking [r] � c ;

11 unitreason← nil; u← !;
12 foreach l in reason [i] do
13 if amods l(q) = ∅ then

14 if l �∈ q then unitreason← unitreason : (l, lemma(l ∨ q));
15 else u← l;

16 pi ← proof [reason [i]];
17 foreach (l, p) in unitreason do pi ← res(pi, l, p);
18 if u �= ! then pi ← res(pi, u, lemma(u ∨ q ∨marking [i]));
19 pl← pl : (marking [i], pi);

20 marking [i]← !; i← i− 1;
21 if stopping-criterion(trail ,marking) then

22 confl ← �
1≤i≤|trail| marking [i]; learnt← confl;

23 (, P)← pl[1];
24 foreach (l, p) in pl[2 . . . |pl|] do P ← sres(P, l, p);
25 proof [learnt]← P ;
26 return learnt;

to prove the theorem, it remains to show that the literals of P not involved
in the sequence of sres applications of line 24 are exactly those in the set
{marking [i] | 1 ≤ i ≤ |trail | and marking [i] �= �}. Since the elements of marking
are meet irreducibles, after the update marking [r] ← marking [r] � c at line 10,
either marking [r] is set to c ∈ q, or marking [r] was already set to an element c′ of
the result q′ of amods of a previous iteration of the loop of Algorithm 1. In both
cases, the new value of marking [r] will occur in some proof in the list pl, and
hence in the root of P . Also the old value of marking [r] before the update at line
10 will occur in some proof in the list pl, if it was not �. However, such values
will not occur in the root of P thanks to the use of sfold in the applications of
sres. ��

Corollary 2. Let ϕ be a cnf formula. If acdcl can prove the unsatisfiability
of ϕ, then there exists an abstract resolution refutation for it.

Interpolation-Based Verification of Floating-Point Programs 423

4 Interpolation for ACDCL

The contribution of this section is sufficient conditions for deriving interpolants
from acdcl proofs. We show how to reuse interpolant constructions for resolu-
tion proofs as well as proofs from dpll(t) solvers to compute interpolants. This
allows us to take advantage of the large body of results about interpolation in
sat and smt, while still retaining the performance benefits that acdcl might
have over dpll(t) (see e.g. [1]).

4.1 ACDCL and DPLL(T) Proofs

dpll(t) solvers generate Boolean resolution proof with leaves that are input
clauses or theory lemmas [19]. We define such proofs in our setting below.

Definition 5. Given a cnf formula ϕ and a clause θ, a dpll(t) proof of θ
from ϕ is an abstract resolution proof containing no sres applications.

It should not come as a surprise that an abstract resolution proof can be trans-
formed into a dpll(t) proof satisfying the definition above. The transformation
can be achieved by replacing sres steps by a combination of mres and lemma

steps, as indicated below.

1. An sres step involving 〈l1〉 and 〈l1〉 can be replaced by an mres step.
2. An sres step involving 〈l1〉 and 〈l2〉 can be replaced by a combination of

two mres and one lemma steps as below.

c1 ∨ 〈l1〉 c2 ∨ 〈l2〉
c1 ∨ c2

sres
c1 ∨ 〈l1〉

c2 ∨ 〈l2〉 〈l1〉 ∨ 〈l2〉
lemma

c2 ∨ 〈l1〉
mres

c1 ∨ c2
mres

3. An sfold step which removes an element 〈l2〉 because of an element 〈l1〉
satisfying l2 � l1 can be rewritten as follows:

c ∨ 〈l2〉 ∨ 〈l1〉 〈l2〉 ∨ 〈l1〉
lemma

c ∨ 〈l1〉 mres

Example 4. Consider again the formula ϕ and the refutation of Example 3. We
convert it into a dpll(t) proof with the transformation below.

P3 P2

〈x ≥ 1〉 sres P1

⊥ sres

P3 P2

〈x ≥ 0〉 ∨ 〈x ≥ 1〉 mres 〈x ≥ 0〉 ∨ 〈x ≥ 1〉 lemma

〈x ≥ 1〉 mres P1

⊥ mres

424 M. Brain et al.

4.2 Generation of Interpolants

Constructing a dpll(t) refutation from an abstract resolution refutation is
the first step towards using existing interpolation algorithms like e.g. [19] with
acdcl. Such algorithms do not typically apply to arbitrary dpll(t) proofs but
require proofs to satisfy a syntactic condition commonly called colourability.1.

Definition 6 (Colourability). Let Σ be a set of symbols, let t be a term in a
theory T , and let syms(t) be the set of symbols which occur in t and are uninter-
preted in T . Then t is Σ-colourable iff syms(t) ⊆ Σ. Given two formulas A and
B in T , t is A-colourable if it is syms(A)-colourable, and B-colourable if it is
syms(B)-colourable. If t is syms(A)∪syms(B)-colourable but neither A-colourable
nor B-colourable, t is AB-mixed.

Instantiating acdcl to work on abstract domains that do not allow AB-mixed
terms enables interpolant generation for theories in which interpolation exists
for conjunctions of literals. A more interesting case is to wonder whether it is
possible to use acdcl to compute interpolants for theories for which there is
no known efficient interpolation procedure. The lemma below provides sufficient
conditions on proof structure.

Lemma 1. Let Pdpll(t) be a dpll(t) proof generated from an abstract resolu-
tion refutation for a formula ϕA ∧ ϕB in a given theory T . If all the lemmas
occurring in Pdpll(t) are either A-colourable or B-colourable, then it is possible
to compute an interpolant I for (ϕA, ϕB) from Pdpll(t).

Proof. Let

ψA =̂ϕA ∧
∧
{c is an A-colorable lemma of Pdpll(t)}

ψB =̂ϕB ∧
∧
{c is a B-colorable lemma of Pdpll(t)}

By the hypothesis, each lemma in Pdpll(t) occurs in either ψA or ψB. Therefore,
ψA ∧ ψB is propositionally unsatisfiable, and Pdpll(t) is a Boolean resolution
refutation for ψA ∧ ψB. Thus, we can compute an interpolant I for (ψA, ψB) by
applying an off-the-shelf Boolean interpolation algorithm to Pdpll(t). Since the
lemmas of Pdpll(t) are by definition valid clauses in the theory T , ψA and ψB

are logically equivalent to ϕA and ϕB in T . Therefore, I is an interpolant also
for (ϕA, ϕB). ��

One candidate for satisfying the conditions of Lemma 1 is to use a Cartesian
abstract domain because every meet irreducible represents a predicate with one
variable and can be coloured. Domain structure alone is insufficient because the
conflict transformer must also respect the colorability requirement. We say a
conflict transformer aconfs is locality preserving with respect to a formula ϕA ∧
ϕB if for all colorable θ and elements a, all elements in the meet decomposition
of aconfsθ(a) are A-colorable or all are B-colorable.

1 Preprocessing to enforce colourability in restricted cases is known [5].

Interpolation-Based Verification of Floating-Point Programs 425

Corollary 3. If acdcl is instantiated over a Cartesian domain and it produces
an abstract resolution refutation Pa for an unsatisfiable formula ϕA ∧ ϕB, then
an interpolant I for (ϕA, ϕB) can be computed from Pa.

Proof. In a Cartesian domain, complementable elements contain only one vari-
able, and so they are always colorable. Therefore, Pa does not contain AB-mixed
terms. Let Pdpll(t) be a dpll(t) refutation corresponding to Pa. By the side
conditions of lemma rule, lemmas in Pdpll(t) consist of some complementable
elements and at most one literal occurring in either ϕA or ϕB (or both). There-
fore, assuming the conflict transformer is locality preserving, all the lemmas in
Pdpll(t) are colorable. By Lemma 1, then, we can compute an interpolant for
(ϕA, ϕB) from Pdpll(t). ��

Example 5. We give an example showing that not all abstract resolution proofs
are amenable to interpolation with existing dpll(t)-based algorithms. Consider
the following pair of formulas in linear arithmetic:

ϕA =̂(x3 + y1 ≤ x1 + x2) ∧ (x1 ≤ x3) ∧ (x2 ≤ 0)
ϕB =̂(z1 ≤ y1) ∧ (1 ≤ z1)

An interpolant for (ϕA, ϕB) is the formula (y1 ≤ 0).
Suppose that acdcl is instantiated over the non-Cartesian abstract domain

of octagons.A run of acdcl might produce the following trail:

i trail i reason [i]
1 : 〈−x1 + x3 ≥ 0〉 ← (x1 ≤ x3)
2 : 〈y1 − z1 ≥ 0〉 ← (z1 ≤ y1)
3 : 〈x2 − z1 ≥ 0〉 ← (x3 + y1 ≤ x1 + x2)
4 : 〈x2 ≥ 1〉 ← (1 ≤ z1)
5 : ⊥ ← (x2 ≤ 0)

A dpll(t) proof for this trail is the following:

P =̂

P5 P4

〈x2 − z1 ≥ 0〉 P3

〈−x1 + x3 ≥ 0〉 ∨ 〈y1 − z1 ≥ 0〉 P2

〈−x1 + x3 ≥ 0〉 P1

⊥
where:

P5 =̂
〈x2 ≥ 1〉 ∨ ¬(x2 ≤ 0) (x2 ≤ 0)

〈x2 ≥ 1〉
P4 =̂

〈x2 ≥ 1〉 ∨ 〈x2 − z1 ≥ 0〉 ∨ ¬(1 ≤ z1) (1 ≤ z1)

〈x2 ≥ 1〉 ∨ 〈x2 − z1 ≥ 0〉

P3 =̂
〈−x1 + x3 ≥ 0〉 ∨ 〈y1 − z1 ≥ 0〉 ∨ ¬(x3 + y1 ≤ x1 + x2) ∨ 〈x2 − z1 ≥ 0〉 (x3 + y1 ≤ x1 + x2)

〈−x1 + x3 ≥ 0〉 ∨ 〈y1 − z1 ≥ 0〉 ∨ 〈x2 − z1 ≥ 0〉

P2 =̂
〈y1 − z1 ≥ 0〉 ∨ ¬(z1 ≤ y1) (z1 ≤ y1)

〈y1 − z1 ≥ 0〉 P1 =̂
〈−x1 + x3 ≥ 0〉 ∨ ¬(x1 ≤ x3) (x1 ≤ x3)

〈−x1 + x3 ≥ 0〉

426 M. Brain et al.

Since some of the leaves of P contain both A-colorable and B-colorable atoms,
Boolean interpolation algorithms are not applicable to it. Moreover, P contains
also the AB-mixed atom 〈x2 − z1 ≥ 0〉, which prevents also the use of off-the-
shelf dpll(t)-based interpolation algorithms for linear arithmetic (e.g. [19]).

4.3 An Interpolation Procedure for Floating Point Arithmetic

Using Corollary 3, we build a complete interpolation procedure for floating-point
arithmetic (fpa), by instantiating acdcl over the interval abstract domain for
floating-point variables [14].

Floating Point Arithmetic. Floating-point numbers are approximate repre-
sentations of the reals that allow for fixed size bit-vector encoding. A floating-
point number represents a real number as a triple of positive integers (s,m, e),
consisting of a sign bit s taken from the set of Booleans {0, 1}, a significand m
and an exponent e. Its real interpretation is given by (−1)s ·m · 2e. A floating-
point format determines the number of bits used for encoding significand and
exponent. For a given format, we define F to be the set of all floating-point
numbers plus the special values positive infinity +∞, negative infinity −∞,
and NaN , which represents an invalid arithmetic result. Terms in fpa are con-
structed from floating-point variables, constants, standard arithmetic operators
and special operators such as square roots and combined multiply-accumulate
operations. Most operations are parameterized by one of five rounding modes.
The result of floating-point operations is defined to be the real result (computed
with ‘infinite precision’) rounded to a floating-point number using the chosen
rounding mode. Formulas in fpa are Boolean combinations of predicates over
floating-point terms. In addition to the standard equality predicate =, fpa offers
a number of floating-point specific predicates including a special floating-point
equality =F, and floating-point specific arithmetic inequalities < and ≤. Since
these operators approximate real comparisons they have unusual properties. For
example, every comparison with the value NaN returns false, therefore =F is not
reflexive since NaN =F NaN does not hold.

ACDCL-Based Interpolation for FPA. We build our interpolation proce-
dure upon fp-acdcl, a sound and complete acdcl-based satisfiability algorithm
for fpa presented in [14]. More specifically, we instantiate acdcl over the Carte-
sian abstract domain of intervals of floating-point values. In order to to this, we
define a total order � over all floating-point values, including special values such
as NaN . In particular, � is such that NaN is the minimum element, −0 � 0,
and f1 � f2 ⇐⇒ f1 ≤ f2 in all other cases. Meet irreducibles in this domain
are half-open intervals, which we denote with 〈x � f〉 or 〈x 3 f〉 for a variable
x and a floating-point value f .

We extend fp-acdcl with proof-generation capabilities, and compute the
interpolants using existing off-the-shelf proof-based interpolation algorithm for
propositional logic (such as e.g. [19]), as described in the previous sections. The
only thing to observe here is that, in general, the computed interpolants will

Interpolation-Based Verification of Floating-Point Programs 427

contain predicates corresponding to some meet irreducibles 〈x � f〉, which are
not part of the signature of fpa as defined above. However, we can eliminate
such predicates with a post-processing step on the generated interpolant, simply
by replacing them with equivalent formulas in fpa. Notice that, because of the
unusual properties of operations in fpa, in general a single meet irreducible
cannot be represented by a single atom in fpa, but non-atomic formulas are
needed. For example, the equivalent of 〈x � −0〉 in the syntax of fpa is the
formula (x = NaN) ∨ ((x ≤ 0) ∧ ¬(x = +0)).

Example 6. Consider the following two formulas ϕA and ϕB in fpa (where “·e”
denotes an operation with a “round to nearest even” rounding mode):

ϕA =̂(x ≥ 1.0) ∧ (x+e y ≤ 1.1)
ϕB =̂(z ≥ 0.2) ∧ (z < 0.22) ∧ (z ∗e y > 0.05).

Suppose that fp-acdcl generates the following dpll(t) proof P for ϕA ∧ ϕB :

P =̂

P5 P4

〈x # 1.0〉 ∨ 〈z # 0.2〉 ∨ 〈z # 0.22〉 P3

〈x # 1.0〉 ∨ 〈z # 0.22〉 P2

〈x # 1.0〉 P1

⊥

where:

P5 =̂
¬(x+e y ≤ 1.1) ∨ 〈x # 1.0〉 ∨ 〈y # 0.1001∼〉 (x+e y ≤ 1.1)

〈x # 1.0〉 ∨ 〈y # 0.1001∼〉
P4 =̂

¬(z ∗e y > 0.05) ∨ 〈z # 0.2〉 ∨ 〈y # 0.1001∼〉 ∨ 〈z # 0.22〉 (z ∗e y > 0.05)

〈z # 0.2〉 ∨ 〈y # 0.1001∼〉 ∨ 〈z # 0.22〉
P3 =̂

¬(z ≥ 0.2) ∨ 〈z # 0.2〉 (z ≥ 0.2)

〈z # 0.2〉

P2 =̂
¬(z < 0.22) ∨ 〈z # 0.22〉 (z < 0.22)

〈z # 0.22〉
P1 =̂

¬(x ≥ 1.0) ∨ 〈x # 1.0〉 (x ≥ 1.0)

〈x # 1.0〉

By applying the Boolean interpolation algorithm of [19] to Pdpll(t), we ob-
tain the interpolant I =̂〈y 3 1.001∼〉, which is equivalent to the fpa formula
¬(y ≥ 1.001∼).

5 Evaluation

In order to evaluate the utility of our interpolation procedure for fpa, we have
implemented several interpolation-based program verifiers, and performed ex-
periments on a number of small but challenging floating-point programs. In this
section, we present the results of our experimental evaluation.

428 M. Brain et al.

5.1 Implementation

Interpolating Decision Procedure. We have implemented our interpolating
decision procedure within the mathsat5 smt solver [4]. Details of the ACDCL
solver for floating-point intervals are given in [14]. We have extended this solver
with proof generation and interpolation. The implementation allows to choose
among three different propositional interpolation algorithms for constructing
interpolants from acdcl proofs, and it also provides the option to combine
acdcl-based interpolation with the simple procedure based on inlining “defini-
tional equalities” described in [12], which was shown to be particularly effective
for formulas arising in software verification.

Program Verifiers. We have implemented three different program verifiers
based on interpolants. The first one, called “Monolithic” here, is the procedure
proposed by McMillan in [18], which uses interpolants for computing overap-
proximations of postimages in symbolic transition systems for verifying circuits.
The two others are variants of the “lazy abstraction with interpolants” algo-
rithm of [20] for the verification of imperative sequential programs. We have
implemented the original algorithm as described in [20] (called “Impact”), as
well as the variant proposed in [3], which combines Impact with techniques in-
spired by the IC3 algorithm (called “TreeIC3+ITP” in [3], and simply “Impact
with IC3-like strenghtening” here).2

5.2 Experimental Results and Discussion

Benchmarks. We use three sets of benchmarks to demonstrate the range of
application of floating-point interpolation. The first set of benchmarks, dcblock-
simple, is derived from a simple filter in the CSound audio processing system. The
programs contain infinite loops with a per-cycle input and non-linear arithmetic.
Assertions check the variable ranges for each iteration. Proving correctness re-
quires the verification system to be able to reason about the ‘eventual’ behaviour
of the code.

The second set of benchmarks, rangevMain, is based on a widely-used itera-
tive algorithm for computing square roots [21]. The main loop always terminates,
but the number of steps is determined by the input and the initial guess, which
are both non-deterministic. Proving properties of the result after the loop re-
quires finding consequences of the loop invariant and reasoning about non-linear
behaviour including division.

The final set of benchmarks, test, are synthetic tests, which require accurate
reasoning about floating-point semantics. These demonstrate the limitation of
using the ’standard model’ of floating point [21] to convert the analysis into a
non-linear real decision problem. Termination of loops and the reachability and

2 Notice that in the TreeIC3+ITP algorithm of [3], interpolants are combined with
underapproximated preimage computations based on quantifier elimination. Here,
we only use interpolants, since we do not have an effective quantifier elimination
procedure for fpa.

Interpolation-Based Verification of Floating-Point Programs 429

truth of assertions in these benchmarks require precise reasoning about floating-
point arithmetic, including rounding and loss of precision.

Experimental Setup. We present a comparison of interpolation-based ver-
ification using our technique with model checking and conventional abstract
interpreters. We compare with SatAbs [6] (release 3.2 with Boom revision 201),
a model checker that implements predicate abstraction, and Wolverine [17] (re-
vision 69), an interpolant-based model checker. To the authors’ knowledge, these
are the only model checking tools that support bit-precise reasoning about float-
ing point. In both cases, this is realized via ‘bit-blasting’, i.e., a translation to
bit-vectors. We also compare with the commercial abstract interpretation sys-
tems Fluctuat [8] (version 3.1228) and Astrée [7] (version 12.10). In all cases,
tools were run with their default options. We suspect that with expert assistance
in their configuration, particularly the abstract interpretation tools, results could
likely be improved.

The experiments were run on a 2.83GHz Intel Core2 Q9550 using Fedora Core
17. Each experiment was limited to 1200 seconds and 3GB RAM and was run
sequentially to avoid inaccuracies due to cache and memory contention.

Table 1. IMPACT with IC3-like strengthening vs. acdcl and other tools

TreeIC3+ITP Model Checking Abstract Interpretation
SatAbs Wolverine Fluctuat Astrée

dcblock-simple-1 117.25 TO MO UN 0.18
dcblock-simple-2 117.47 TO MO UN 0.19
dcblock-simple-3 2.31 TO MO UN 0.20
dcblock-simple-4 727.26 TO MO UN 0.15
rangevMain1 0.23 TO MO UN UN
rangevMain2 0.23 TO MO UN UN
rangevMain2b 0.17 TO MO UN UN
rangevMain5 0.28 TO MO UN UN
rangevMain10 0.34 TO MO UN UN

test1 0.01 2.16 TO UN UN
test2 0.90 0.13 MO UN UN
test3 6.89 0.14 9.94 UN UN
test4 23.67 0.13 TO UN UN

Results and Discussion. Table 1 compares Impact with IC3-like strengthen-
ing and equality inlining based on acdcl with state-of-the-art research model
checkers and commercial abstract interpretation tools. Times are recorded in
seconds, where “TO” and “MO” denote experiments that reached the time and
memory limits, respectively. Here, “UN” denotes experiments where safety could
not be proven due to limitations of the abstraction. Further comparisons between
different interpolation-based verification algorithms and between different inter-
polation schemes may be found in the appendix.

430 M. Brain et al.

From the results it is clear that interpolation-based verification using ACDCL
is a powerful technique that can verify a range of programs that are beyond the
reach of current tools. Further discussion may be found in the appendix.

The performance of SatAbs and Wolverine shows the limitations of ‘bit blast-
ing’ as an approach to deciding fpa theories. As they are bit precise, the test
benchmarks can be handled, but they are unable to generate sufficiently concise
invariants to allow other benchmarks to be verified. Conversely, the abstract
interpretation tools are very fast (there were no runs that took more than 1 sec-
ond) but in almost all cases they could not verify the assertions. The benchmarks
that Astrée verified were likely due to having explicit domains for digital filters.
Experimenting with the number of loop unrollings and the widening operators
used may yield positive results as in some cases the computed ranges were close
or were clearly converging before widening to the full interval.

6 Related Work

Our work resides in the context of interpolating smt solvers. There is a per-
formance gap between solvers and their interpolating counterparts, as well as a
theoretical gap because proof generation is not well understood within all solver
architectures. Interpolating solvers for first-order theories with use-cases in ver-
ification were introduced by McMillan [19], who follows the dpll(t) paradigm,
and supports linear rational arithmetic and integer difference arithmetic.

Interpolation frameworks have been developed for first-order theories by con-
trolling the structure of proofs in a superposition-based theorem prover [15].
Another framework for computing interpolants in extensions of a base theory
with additional symbols and axioms, by exploting interpolation algorithms for
the base theory appeared in [23]. This paper presents a framework for acdcl

procedures, with an instantiation for the floating-point solver in [14].
The challenge addressed by our work is to study interpolation for a solver in

which the notion of a proof is not obvious. The same challenge was addressed
in [16] “lifting” propositional interpolants to equality logic in solvers that used
Boolean encoding of equality formulae, and in [12] to derive bit-vector inter-
polants from interpolants for propositional logic and linear integer arithmetic.
Our work differs from these by its focus on abstract interpretation-based solvers.
We believe that our work is the first to attempt interpolation and proof genera-
tion in an abstract interpretation-based solver.

We now summarize applications of interpolating solvers in program analysis.
The first application of an interpolating solver in software verification was for
predicate discovery in Blast [19]. Wolverine [17] and the analyser in Sec. 5 imple-
ment the Impact algorithm [20]. We use abstract interpretation as building-block
inside an interpolating solver. Conversely, interpolation is used in an abstract
interpreter in [13] for automatically refining abstract interpretations. acdcl can
be applied directly to programs by extending the logic supported by the solver
with fixed-point operators [10].

Interpolation-Based Verification of Floating-Point Programs 431

Finally, the combination of abstract interpretation and decidable logics for
invariant generation has been recently explored by Garoche et al. [11]. In [22]
constraint programming techniques are used for refining abstract interpretations
of floating-point programs.

7 Conclusion

One approach to improving performance of decision procedures is to delegate
some reasoning to an abstract domain. However, solvers that use abstract do-
mains do not support interpolation and proof generation. We have presented
proof generation and interpolation techniques for the family of acdcl solvers,
in which all reasoning is performed within an abstract domain. We have built
upon these techniques to implement the first interpolation-based verifiers for pro-
grams with floating-point variables, and demonstrated that our verifiers extend
the range of what can be automatically verified.

We observe a curious reversal of traditional roles in ours and related work.
Abstract interpretation has historically been applied to reason about programs,
while proofs and interpolation have been developed in a decision procedure con-
text. We have however used abstract interpretation to design our decision pro-
cedure and interpolation to design our program verifier. The broad question for
extending this line of work is to identify further techniques from abstract inter-
pretation that can improve decision procedures, and to import techniques from
decision procedures to develop program verifiers.

References

1. Brain, M., D’Silva, V., Haller, L., Griggio, A., Kroening, D.: An abstract interpre-
tation of DPLL(T). In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 455–475. Springer, Heidelberg (2013)

2. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: Proc. of Formal Methods in Computer-Aided Design, pp. 69–76. IEEE
Computer Society Press (2009)

3. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012)

4. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013)

5. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants
in satisfiability modulo theories. ACM Transactions on Computational Logic 12(1),
7 (2010)

6. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI-C programs using SAT. Formal Methods in Systems Design 25(2-3), 105–
127 (2004)

7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

432 M. Brain et al.

8. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards
an industrial use of FLUCTUAT on safety-critical avionics software. In: Alpuente,
M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer,
Heidelberg (2009)

9. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: Proc. of
Principles of Programming Languages, pp. 143–154 (2013)

10. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with
conflict-driven learning. In: Proc. of Tools and Algorithms for the Construction and
Analysis of Systems, pp. 48–63 (2012)

11. Garoche, P.-L., Kahsai, T., Tinelli, C.: Invariant stream generators using automatic
abstract transformers based on a decidable logic. CoRR, abs/1205.3758 (2012)

12. Griggio, A.: Effective word-level interpolation for software verification. In: Proc. of
Formal Methods in Computer-Aided Design (2011)

13. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically re-
fining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

14. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: Proc. of Formal Methods in Computer-Aided Design,
pp. 131–140 (2012)

15. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)

16. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-
level. In: FMCAD, pp. 85–89. IEEE (2007)

17. Kroening, D., Weissenbacher, G.: Interpolation-based software verification with
Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 573–578. Springer, Heidelberg (2011)

18. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

19. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Sci-
ence 345(1), 101–121 (2005)

20. McMillan, K.L.: Lazy abstraction with interpolants. In: LPAR-18 2012, pp. 123–
136. Springer (2006)

21. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser, Boston (2010)

22. Ponsini, O., Michel, C., Rueher, M.: Refining abstract interpretation based value
analysis with constraint programming techniques. In: Milano, M. (ed.) CP 2012.
LNCS, vol. 7514, pp. 593–607. Springer, Heidelberg (2012)

23. Totla, N., Wies, T.: Complete instantiation-based interpolation. In: Proc. of Prin-
ciples of Programming Languages, pp. 537–548. ACM Press (2013)

24. Truchet, C., Pelleau, M., Benhamou, F.: Abstract domains for constraint pro-
gramming, with the example of octagons. In: Symbolic and Numeric Algorithms
for Scientific Computing, pp. 72–79 (2010)

25. Zhang, L., Malik, S.: The quest for efficient Boolean satisfiability solvers. In:
Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 295–313. Springer,
Heidelberg (2002)

Concise Analysis Using Implication Algebras

for Task-Local Memory Optimisation

Leo White and Alan Mycroft

Computer Laboratory, University of Cambridge
William Gates Building, 15 JJ Thomson Avenue,

Cambridge CB3 0FD, UK
Firstname.Lastname@cl.cam.ac.uk

Abstract. OpenMP is a pragma-based extension to C to support par-
allelism. The OpenMP standard recently added support for task-based
parallelism but in a richer way than languages such as Cilk. Näıve im-
plementations give each task its own stack for task-local memory, which
is very inefficient.

We detail a program analysis for OpenMP to enable tasks to share
stacks without synchronisation—either unconditionally or dependent on
some cheap run-time condition which is very likely to hold in busy
systems.

The analysis is based on a novel implication-algebra generalisation of
logic programming which allows concise but easily readable encodings
of the various constraints. The formalism enables us to show that the
analysis has a unique solution and polynomial-time complexity.

We conclude with performance figures.

1 Introduction

Task-based parallelism is a high level parallel programming model made popular
by languages such as Cilk [1]. It uses lightweight cooperative threads called tasks,
which may spawn new tasks and synchronise with the completion of the tasks
that they have spawned.

OpenMP is a shared-memory parallel programming language that has recently
introduced support for task-based parallelism—in a less restricted form than
Cilk. OpenMP task implementations have struggled to compete with other task-
based systems [2,3] as they have been too heavyweight, allocating a whole stack
for each task and then restricting parallelism at some cut-off to limit memory
consumption.

However, in many cases two or more OpenMP tasks could share stacks without
any synchronisation. This paper describes the analysis required to implement such
an optimisation. It revolves around analysing the stack usage of a program’s tasks.

1.1 OpenMP

OpenMP was originally designed for scientific applications on shared-memory
multi-processors. Parallelism is expressed by annotating a program with com-
piler directives. The language originally only supported data parallelism and

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 433–453, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

434 L. White and A. Mycroft

static task parallelism. However the emergence of multi-core architectures has
brought mainstream applications into the parallel world. These applications are
more irregular and dynamic than their scientific counterparts, and require more
expressive forms of parallelism. With this in mind, the OpenMP Architecture
Review Board released OpenMP 3.0 [4], which includes support for task-based
parallelism.

The execution model of OpenMP within the parallel sections of a program
consists of teams of threads executing tasks and workshares. These threads are
heavyweight and preemptively scheduled—typically implemented using system
threads. Workshares support data parallelism: they divide work amongst the
threads in a team; e.g. the for workshare allows iterations of a for loop to be
divided amongst the threads.

Tasks express more dynamic forms of parallelism. Tasks are sequences of in-
structions to be executed by a thread. They need not be executed immediately,
but can be deferred until later or executed by a different thread in the team.
When a team of threads is created each thread begins executing an initial task.
These tasks can in turn spawn more tasks using the task directive. A task can
also perform a sync operation using the taskwait directive, which prevents that
task from being executed until all of the tasks that it has spawned have finished.

One point to note, in contrast to languages like Cilk, is that OpenMP tasks can
outlive the task which spawned them. This breaks a theorem (Blumofe et al. [5])
for Cilk-like languages about existence of time- and space-optimal execution
schedules, and complicates our stack size analysis.

1.2 Optimising Task-Local Memory Allocation

We develop an optimisation that allows multiple tasks to share a single stack.
In general, two concurrent tasks sharing a stack would require time-consuming
synchronisation between the tasks and would require garbage collection to avoid
wasting a potentially unbounded amount of space. However, in some cases a
parent task may safely share its stack with some of its child tasks. Consider the
OpenMP function shown in Fig. 1. Both tasks only require a bounded amount of
space, and they both must finish before the parent task (the one which executed
the work function) finishes. This means that their stack frames could safely be
allocated from the parent task’s stack (by using different offsets within it). We
say that the child tasks’ stacks can be merged with their parent task’s stack.

The stacks of the child tasks created by the spawn instructions in Fig. 1
can always safely be merged. Other spawn instructions create child tasks whose
stacks can safely be merged in most, but not all, instances. Consider the post-
order tree traversal OpenMP function shown in Fig. 2. There is no guarantee
that the first child task will finish before the second child task begins and they
both use unbounded stack space, so they cannot generally be merged. However,
our OpenMP implementation executes tasks in post-order: when a thread en-
counters a spawn instruction it will suspend its current task and begin executing
the newly created task. After that new task has finished it will resume its orig-
inal task (assuming it has not been stolen for execution on another thread).

Concise Analysis Using Implication Algebras 435

void add t ree (struct t r e e node ∗ root) {
#pragma omp task unt ied // OpenMP spawn
{ t r e e node ∗p = root ;

while (p) { l e f t s um += p−>value ;
p = p−> l e f t ;

}
}
#pragma omp task unt ied // OpenMP spawn
{ t r e e node ∗q = root ;

while (q) { r ight sum += q−>value ;
q = q−>r i gh t ;

}
}
#pragma omp taskwait // OpenMP sync

}

Fig. 1. OpenMP example—where spawned stacks can be merged

void po s t o rd e r t r av e r s e (struct t r e e node ∗p) {
i f (p−> l e f t)

#pragma omp task unt ied // OpenMP spawn
po s t o rd e r t r av e r s e (p−> l e f t) ;

i f (p−>r i gh t)
#pragma omp task unt ied // OpenMP spawn

po s t o rd e r t r av e r s e (p−>r i gh t) ;
#pragma omp taskwait // OpenMP sync
proce s s (p) ;

}

Fig. 2. OpenMP example—stack merge is often possible subject to a cheap test

This means that, if the parent task has not been stolen, the first child task in
Fig. 1 will definitely finish before the second child task begins.

We can merge spawn instructions like the second one in Fig. 1 as long as
their parent task has not been stolen. This can be checked at run-time cheaply
and without synchronisation. We say that such spawn instructions are merged
guarded, while spawn instructions that can always be merged are merged un-
guarded.

To support this optimisation the compiler must determine sets M of spawn
instructions whose stacks can safely be merged (the merged set), and U ⊆ M of
spawn instructions whose stacks can safely be merged unguarded (the unguarded
set).

1.3 Concise Analysis

In order to express our analysis concisely, we develop a generalisation of logic
programming. We use a multi-valued logic, with the values representing possible
stack sizes.

436 L. White and A. Mycroft

First we use a program in this logic to represent finding the sizes of stacks for a
particular pair of merged set and unguarded set. Then, using the notion of a sta-
ble model which was developed as a semantics for negation in logic programming,
we are able to extend this program to express the whole analysis.

By showing a stratification result about the program representing the analysis,
we show that the analysis has a single solution and can be solved in polynomial
time.

2 Logic Programming: Negation and Multi-valued Logic

Logic programming is a paradigm where computation arises from proof search
in a logic according to a fixed, predictable strategy. It arose with the creation of
Prolog [6]. This work uses a variant of logic programming where we restrict terms
to be variables or constants (the Datalog restriction) but also allow negation and
multi-valued logic.

Syntax. A (traditional) logic program P is a set of rules of the form

A ←− B1, . . . ,Bk

where A,B1, . . . ,Bk are atoms. An atom is a formula of the form F (t1, . . . , tk)
where F is a predicate symbol and t1, . . . , tk are terms. A is called the head and
B1, . . . ,Bk the body of the rule. Logic programming languages differ according
to the forms of terms allowed. We give a general explanation below, but our
applications will only consider Datalog-style terms consisting of variables and
constants. A logic program defines a model in which queries (syntactically bodies
of rules) may be evaluated. We write ground(P) for the ground instances of rules
in P .

Note that we do not require P to be finite. Indeed the program analyses we
propose naturally give infinite such P , but Section 8 shows these to have an
equivalent finite form.

Interpretations, Models and Immediate Consequence Operator. To
evaluate a query with respect to a logic program we use some form of reduction
process (SLD-resolution for Prolog, bottom-up model calculation for Datalog),
but the semantics is simplest expressed model-theoretically. We present the the-
ory for a general complete lattice (L,�) of truth values (the traditional theory
uses {false � true}). We use � to represent the join operator of this lattice and
� to represent the meet operator of this lattice. Members of L may appear as
nullary atoms in a program.

Given a logic program P , its Herbrand base HBP is the set of ground atoms
that can be constructed from the predicate symbols and function symbols that
appear in P . A Herbrand interpretation I for a logic program P is a mapping
of HBP to L; interpretations are ordered pointwise by �.

Concise Analysis Using Implication Algebras 437

Given a ground rule r = (A ←− B1, . . . ,Bk), we say a Herbrand interpretation
I respects rule r, written I |= r, if I (B1) � · · · � I (Bk) � I (A). A Herbrand
interpretation I of P is a Herbrand model iff I |= r (∀r ∈ ground(P)). The
least such model (which always exists for the rule-form above) is the canonical
representation of a logic program’s semantics.

Given logic program P we define the immediate consequence operator TP from
Herbrand interpretations to Herbrand interpretations as:(

TP (I)
)
(A) =

⊔
(A←−B1,...,Bk)∈ground(P)

I (B1) � · · · � I (Bk)

Note that I is a model of P iff it is a pre-fixed point of TP (i.e. TP (I) � I).
Further, since the TP function is monotonic (i.e. I1 � I2 ⇒ TP (I1) � TP (I2)),
it has a least fixed point, which is the least model of P .

2.1 Negation and Its Semantics

It is natural to consider extending logic programs with some notion of negation.
This leads to the idea of a general logic program which has rules of the form
A ←− L1, . . . ,Lk where L is a literal. A literal is either an atom (positive literal)
or the negation of an atom (negative literal).

The immediate consequence operator of a general logic program is not guar-
anteed to be monotonic. This means that it may not have a least fixed point, so
that the canonical model of logic programs cannot be used as the canonical model
of general logic programs. It is also one of the strengths of adding negative liter-
als: support for non-monotonic reasoning. A classic example of non-monotonic
reasoning is the following:

fly(X) ←− bird(X),¬penguin(X)

bird(X) ←− penguin(X)

bird(tweety) ←−
penguin(skippy) ←−

It seems obvious that the “intended” model of the above logic program is:

{bird(tweety), fly(tweety), penguin(skippy), bird(skippy)}

Two approaches to defining such a model are to stratify programs and to use
stable models.

Stratified Programs. One approach to defining a standard model for general
logic programs is to restrict our attention to those programs that can be stratified.

A predicate symbol F is used by a rule if it appears within a literal in the
body of a rule. If all the literals that it appears within are positive then the use
is positive, otherwise the use is negative. A predicate symbol F is defined by a
rule if it appears within the head of that rule.

438 L. White and A. Mycroft

A general logic program P is stratified if it can be partitioned P1∪· · ·∪Pk = P
so that, for every predicate symbol F , if F is defined in Pi and used in Pj then
i ≤ j, and additionally i < j if the use is negative.

Any such stratification gives the standard model1 of P as Mk below:

M1 = The least fixed point of TP1

Mi = The least fixed point of λI .
(
TPi (I) �Mi−1

)
Stable Models. Stable models (Gelfond et al. [8]) give a more general definition
of standard model using reducts. For any general logic program P and Herbrand
interpretation I , the reduct of P with respect to I is a logic program defined as:

RP (I) = { A ←− redI (L1), . . . , redI (Lk) | (A ←− L1, . . . ,Lk) ∈ ground(P) }

where red I (L) =

{
L if L is positive

Î (L) if L is negative

where Î is the natural extension of I to ground literals.
A stable model of a program P is any interpretation I that is the least model

of its own reduct RP (I).
Unlike the standard models of the previous sections, a general logic program

may have multiple stable models or none. For example, both {p} and {q} are
stable models of the general logic program having two rules: (p ←− ¬q) and
(q ←− ¬p). A stratified program has a unique stable model. The stable model
semantics for negation does not fit into the standard paradigm of logic pro-
gramming. Traditional logic programming hopes to assign to each program a
single “intended” model, whereas stable model semantics assigns to each pro-
gram a (possibly empty) set of models. However, the stable model semantics
can be used for a different logic programming paradigm: answer set program-
ming. Answer set programming treats logic programs as a system of constraints
and computes the stable models as the solutions to those constraints. Note that
finding all stable models needs a backtracking search rather than the traditional
bottom-up model calculation in Datalog.

2.2 Implication Algebra Programming

We use logic programs to represent stack-size constraints using a multi-valued
logic. To represent operations like addition on these sizes it is convenient to allow
operators other than negation in literals—a form of implication algebra (due to
Damasio et al. [9])—to give implication programs.

Literals are now terms of an algebra A. A positive literal is one where the
formula corresponds to a function that is monotonic (order preserving) in the
atoms that it contains. Similarly, negative literals correspond to functions that
are anti-monotonic (order reversing) in the atoms they contain. We do not con-
sider operators which are neither negative nor positive (such as subtraction).

1 Apt et al. [7] show that this standard model does not depend on which stratification
of P is used.

Concise Analysis Using Implication Algebras 439

Implication Programs and Their Models. An implication program P is a
set of rules of the form A ←− L1, . . . ,Lk where A is an atom, and L1, . . . ,Lk are
positive literals.

Given an implication program P , we extend the notion of Herbrand base HBP

from the set of atoms to the set, HLP , of all ground literals that can be formed
from the atoms inHBP . A Herbrand interpretation for an implication program P
is a mapping I : HBP → L which extends to a valuation function Î : HLP → L.

Given rule r = (A ←− L1, . . . ,Lk), now a Herbrand interpretation I respects
rule r, written I |= r, if Î (L1) � · · · � Î (Lk) � I (A). Definitions of Herbrand
model, canonical semantics, immediate consequence operator etc. are unchanged.

General Implication Programs and Their Models. General implication
programs extend implication programs by also allowing negative literals. The
concepts of stratified programs and stable models defined in Section 2.1 apply
to general implication programs exactly as they do to general logic programs.

3 Stack Sizes

The safety of merging stacks depends on the potential size of those stacks at
different points in a program’s execution. We represent the potential size of
a stack by N∞ = N ∪ {∞}, writing � for its usual order ≤N extended with
(∀z ∈ N∞) z � ∞. Note that (N∞,�) is a complete lattice. To emphasise this,
we will often represent 0 by the symbol ⊥ and ∞ by the symbol �. The join of
this lattice (�) is max and the meet (�) is min.

We use this lattice as the basis for implication programs, using literals of the
form:

L ::= ¬L | ∼L | L+ L | A
We use the usual addition operator extended such that (∀z ∈ N∞) z + ∞ =
∞+ z = ∞.

There are natural definitions for both implication and difference operators on
this lattice2:

∀z1, z2 ∈ N∞. z1 → z2
def
=

{
z2 if z2 	 z1

� otherwise

∀z1, z2 ∈ N∞. z1 � z2
def
=

{
z1 if z2 	 z1

⊥ otherwise

Both operators can be used to define pseudo-complement operations:

∀z ∈ N∞. ¬z def
= z → ⊥

∀z ∈ N∞. ∼z
def
= �� z

To distinguish them we will call ¬ the complement and ∼ the supplement.

2 This follows from N∞ being a bi-Heyting algebra—both it and its dual are Heyting
algebras

440 L. White and A. Mycroft

The complement gives � when applied to 0, and ⊥ otherwise. We use it
conveniently to mean “equals zero”. The supplement gives ⊥ when applied to
∞, and � otherwise. We use it conveniently to mean “is not ∞”. Note that both
are anti-monotonic, so they form negative literals.

4 OpenMP Program Representation

We represent OpenMP programs as a triple (F , body ,S) where F is the set of
function names, body is a function that maps function names to their flowgraph
(CFG), and S ⊆ F gives the entry points to the program. We make various
assumptions: function names are unique, program flowgraphs are disjoint and
the bodies of tasks have been outlined into their own separate functions. (For
example, Fig. 1 would be treated as three function definitions, one for the work
function and one each for the two task bodies.) We assume that every function
is call-graph reachable from S and that every node in a flowgraph is reachable
within its associated function.

Each flowgraph is a tuple (N ,E , s , e) with nodes N , edges E , entry node s
and exit node e. For a given function f ∈ F we write start(f) = s , end(f) = e,
Nodes(f) = N and Edges(f) = E . Our analysis is not concerned with detailed
intraprocedural execution, so control flow is considered non-deterministic along
edges in E , and local variables are summarised by their total size, frame(f).

Flowgraph nodes n are labelled with instructions instr(n). These form four
classes: calls, spawns, syncs and local computation. Given f ∈ F we write
Calls(f) (resp. Spawns(f), Syncs(f)) for the subset of Nodes(f) labelled with
function calls (resp. task spawns, task syncs). Additionally, provided instr(n)
calls or spawns function g, we write func(n) = g.

4.1 Paths, Synchronising Instructions and the Call Graph

Paths. A path through a function f is an edge-respecting sequence of nodes
(n0, . . . ,nk) in body(f). The set of all paths between nodes n and m is

Paths(n,m) = {(l0, . . . , lk) | l0=n ∧ lk =m ∧ ∀ 0 ≤ i < k . (li , li+1) ∈ Edges(f)}
Notation: Paths(n,) =

⋃
m Paths(n,m) Paths(,n) =

⋃
m Paths(m,n)

Synchronising Instructions. A synchronising instruction is one whose exe-
cution necessarily involves the execution of a sync instruction. These are either
sync instructions themselves or calls to functions with a synchronising instruc-
tion on every possible path. We define the sets of synchronising instructions, one
for each function, as the smallest sets closed under the rules:

Synchronising(f) ⊇ Syncs(f)

Synchronising(f) ⊇
{
n ∈ Calls(f) | g = func(n) ∧

∀ (m0, . . . ,mk) ∈ Paths(start(g), end(g))

∃ 0 ≤ i ≤ k . mi ∈ Synchronising(g)
}

Concise Analysis Using Implication Algebras 441

Unsynchronised Paths. An unsynchronised path is a path that may pass
through no synchronising instructions. We define the set of unsynchronised paths
between two instructions of a function f as follows:

Upaths(n,m) = {(l0, . . . , lk) ∈ Paths(n,m) | ∀ 0 < i < k . li /∈ Synchronising(f)}
Notation: Upaths(n,) =

⋃
m Upaths(n,m) Upaths(,n) =

⋃
m Upaths(m,n)

Call Graph. The call graph is a relation CallGraph on instructions:

CallGraph(n,m)
def⇔ m ∈ Calls(f) ∪ Spawns(f) where f = func(n)

We use this relation on spawn and call instructions to order merged sets M and
unguarded sets U by dominance (rooted in S, the set of program entry points).

5 Stack Size Analysis Using Implication Programs

This section formulates the stack size analysis as an implication program in a
logic using N∞ as logic values. Although predicates in the implication program
are written as having parameters, these parameters are all constants rather than
run-time variables as could be found in Prolog. We emphasise this by writing
parameters within 〈 〉 instead of (). The framework is monotonic in that only
conjunction (min), disjunction (max) and sum are used (we address the ben-
efits in expressiveness and efficiency of using general implication programs in
Section 6).

We do not analyse OpenMP programs in isolation, but rather in a context of
a choice of merged set M and unguarded set U . Hence the result of analysing
an OpenMP program is an implication program P(M ,U).

Only some choices of M and U are safe and of these we wish to choose a
‘best’ solution (Section 5.3). Finally, we show how a context-sensitive variant of
the analysis naturally follows (Section 5.5).

This section focuses on ease of expression and does not address efficiency,
or even computability (note that the analyses here can produce infinite logic
programs—Section 8 shows that these are equivalent to finite logic programs).

We represent the amount of stack space that may be required by a function
at different points in its execution by four separate values:

Total Size. An upper bound on the total amount of stack space that may be
used during a function’s execution. This includes the space used by any child
functions that it calls, and the space used by any child tasks that it spawns
whose stacks have been merged.

Post Size. An upper bound on the amount of stack space that the function may
use after it returns3. This size represents how the function may interfere with
functions or tasks executed after it has finished. It includes the space used
by any merged child tasks that it spawns whose execution may not have
completed when the function returns.

3 In task-based systems like Cilk this value is always zero because all tasks wait for
their children to complete, but this is not the case in OpenMP.

442 L. White and A. Mycroft

void foo (. . .)
{
#pragma omp task

bar (. . .) ;

#pragma omp taskwait

#pragma omp task
baz (. . .) ;

}

Size Value

Total frame(foo)+(
frame(bar) � frame(baz)

)
Post frame(baz)
Pre frame(foo) + frame(bar)
Through 0

Fig. 3. Example of different stack sizes

Pre Size. An upper bound on the amount of stack space that the function may
use while an existing child task is still executing. This size represents how the
function may interfere with tasks spawned before it started executing. It is
similar to the total size, but includes neither tasks whose stacks are merged
guarded nor any space used after the execution of a sync instruction.

Through Size. An upper bound on the amount of stack space that the function
may use after it returns, while an existing child task is still executing. This
size represents how the function may simultaneously interfere with tasks
spawned before it started executing, and functions or tasks executed after it
has finished. It is similar to the post size, but includes neither tasks whose
stacks are merged guarded nor space used after the execution of a sync
instruction.

For example, consider the program in Fig. 3. If we assume that the spawns of
bar() and baz() are merged unguarded then the sizes are as shown on the
right-hand side. We also extend these size definitions to apply to individual
instructions, for instance the total size of a call instruction is an upper bound on
the total amount of stack space that may be used during that call’s execution.

We represent these sizes with the predicate symbols TotalSize, PostSize,
PreSize and ThroughSize parameterised with function names or instruction
nodes. The next two subsections describe the rules that make up P(M ,U).

5.1 Rules for Functions

Total Size. Each function’s total size must be greater than its stack frame plus
the total size of any of its individual instructions. We can represent this by the
following rule family:

[f ∈ F , n ∈ Nodes(f)] TotalSize〈f 〉 ←− frame(f) + TotalSize〈n〉

The notation here [f ∈ F] represents a meta-level ‘for all’, in that one rule is
generated for every function f (and in this case for each node n).

The above rules ensure that a function’s total size is greater than the total
size of any of its instructions executing on their own. A function’s total size must

Concise Analysis Using Implication Algebras 443

also be greater than any combination of its instructions that may use stack space
simultaneously. This can be represented by the following rule family:

[f ∈ F , n ∈ Nodes(f), (m0, . . . ,mk) ∈ Upaths(, n)]

TotalSize〈f 〉 ←−frame(f) + PostSize〈m0〉

+
∑

0<i<k

ThroughSize〈mi〉

+ PreSize〈mk 〉

Post Size, Pre Size and Through Size. A function’s post size must be
greater than the post size of any combination of its instructions that may use
stack space simultaneously, and which lie on an unsynchronised path to the
function’s exit. A function’s pre size must be greater than its stack frame plus
the pre size of any combination of its instructions that may use stack space
simultaneously, and which lie on an unsynchronised path from the function’s
entry. A function’s through size must be greater than the through size of any
combination of its instructions that may use stack space simultaneously, and
which lie on an unsynchronised path from the function’s entry to its exit. These
observations encode directly as rule families:

[f ∈ F , (n0, . . . ,nk) ∈ Upaths(, end(f))]

PostSize〈f 〉 ←− PostSize〈n0〉

+
∑

0<i≤k

ThroughSize〈ni〉

[f ∈ F , (n0, . . . ,nk) ∈ Upaths(start(f),)]

PreSize〈f 〉 ←−frame(f) +
∑

0≤i<k

ThroughSize〈ni〉

+ PreSize〈nk 〉

[f ∈ F , (n0, . . . ,nk) ∈ Upaths(start(f), end(f))]

ThroughSize〈f 〉 ←−
∑

0≤i≤k

ThroughSize〈ni〉

5.2 Rules for Instructions

Call Instructions. Since all call instructions use the stack of the caller, their
sizes must be greater than the corresponding size of the functions they call. This
is represented by the following rule family:

[f ∈ F , n ∈ Calls(f)]

TotalSize〈n〉 ←− TotalSize〈func(n)〉
PreSize〈n〉 ←− PreSize〈func(n)〉
PostSize〈n〉 ←− PostSize〈func(n)〉
ThroughSize〈n〉 ←− ThroughSize〈func(n)〉

444 L. White and A. Mycroft

Spawn Instructions. For any merged spawn instruction, the spawned task
may use the stack of the caller and may be deferred until some point after the
spawn instruction has completed. This means that both the total size and post
size of the instruction must be greater than the total size of the spawned task.
If the spawn instruction is merged unguarded then the pre size and through size
of the instruction must also be greater than the size of the spawned task. This
leads to the following rule families:

[n ∈ M] TotalSize〈n〉 ←− TotalSize〈func(n)〉
PostSize〈n〉 ←− TotalSize〈func(n)〉

[n ∈ U] PreSize〈n〉 ←− TotalSize〈func(n)〉
ThroughSize〈n〉 ←− TotalSize〈func(n)〉

5.3 Optimising Merged and Unguarded Sets

A solution to our analysis is a pair (M ,U) of merged set M and unguarded set
U. Our analysis must choose the “best” safe solution. We now explore: (i) which
solutions are safe, and (ii) which safe solution is the “best”.

Which Solutions Are Safe? Using the implication program P(M ,U), we can
now decide whether a particular solution (M ,U) is a safe choice of merged and
unguarded sets. There are two situations that we consider unsafe:

1. A child task using its parent task’s stack after that parent task has finished.
2. Two tasks simultaneously using unbounded amounts of the same stack.

In situation 1 the parent task may delete the stack after it has finished while
the child task is still using it. In situation 2 both tasks may try to push and
pop data onto the top of the stack concurrently, which our optimisation does
not support (it would require synchronisation). Note that it would be safe if one
of the tasks only required a bounded amount of space because then that much
space could be reserved on the stack in advance.

Situation 1 is equivalent to spawning a function with a non-zero post size. To
avoid this situation, under the least model of P(M ,U) for a safe solution (M ,U),
the following family of formulae must all evaluate to �:

[f ∈ F , n ∈ Spawns(f)] ¬ PostSize〈func(n)〉

Situation 2 is equivalent to some of a task’s child tasks using unbounded stack
space whilst at the same time the parent task (and possibly some of its other
child tasks) also uses unbounded stack space. To avoid this situation, under the
least model of P(M ,U) for a safe solution (M ,U), the following family of formulae
must all evaluate to �:

[f ∈ F , n0 ∈ Nodes(f), (n0, . . . ,nk ,m0, . . . ,ml) ∈ Upaths(n0,)]

∼
(∑

0<i≤k

ThroughSize〈ni〉
+ PostSize〈n0〉

� ∑
0≤i<l

ThroughSize〈mi〉
+ PreSize〈ml〉

)

Concise Analysis Using Implication Algebras 445

These formulae mean that the tasks spawned by instructions n0, . . . ,nk , and the
instructions m0, . . . ,ml which may execute simultaneously with them, cannot
both use unbounded stack space.

If both of these conditions are met then we say that a solution (M ,U) is a
safe choice for merged and unguarded sets.

Which Safe Solution Is the “Best”? Our aim is to merge as many stacks at
run time as we can, and for as many as possible of those merges to be unguarded.
It is also more important to increase the total number of stacks merged than
to increase the number of stacks merged unguarded. Hence we order solutions
lexicographically:

(M ,U) � (M ′,U ′) ⇔ M ⊂ M ′ ∨ (M = M ′ ∧ U ⊆ U ′)

We would like to choose as the result of our analysis the greatest safe solution
according to this ordering. However, not every program has a unique greatest
safe solution. Every program does have a unique set of maximal safe solutions,
whose members are each either greater than or incomparable with all other
safe solutions. In order to chose the best solution from the set of maximal safe
solutions, we must use heuristics.

One simple heuristic is preferring to merge spawns that are further from the
root of the run-time call graph, because they are likely to be executed more
often. We can approximate this using the static call graph by preferring maximal
solution (M ,U) over maximal solution (M ′,U ′) if, letting Lost = M ′ \M and
Gained = M \M ′, we have that every node n ∈ Lost dominates (in CallGraph
with respect to paths starting at S) every node m ∈ Gained . Note that this
is a heuristic for choosing between maximal solutions, rather than an ordering
on all solutions, because the reasoning behind it assumes that there are no safe
solutions greater than (M ,U) or (M ′,U ′).4

Even with this heuristic programs may still have several equally preferred
safe solutions. We call such solutions optimal. In Section 5.5 we discuss context
sensitivity; the context-sensitive version of our analysis has only a single optimal
solution.

5.4 Finding an Optimal Solution

Finding the greatest safe solution according to both the ordering on solutions
and our call-graph heuristic is a kind of constraint optimisation problem (COP).

A traditional COP consists of a constraint problem (often represented by a
set of variables with domains and a set of constraints on those variables) and an
objective function. The aim is to optimise the objective function while obeying
the constraints. In our case, the safety conditions are our constraint problem,
and instead of an objective function we have the ordering on solutions and our
call-graph heuristic.

4 Including this heuristic as part of the ordering on all solutions can lead to cycles in
the ordering.

446 L. White and A. Mycroft

Many COPs are inherently non-monotonic: as the variables are increased the
value of the objective function increases, until a constraint is broken—which
is equivalent to the objective function being zero. This is true of finding an
optimal solution for our analysis: we prefer solutions which merge more spawn
instructions, but as more spawn instructions are merged the sizes increase, and
as the sizes increase the solution becomes more likely to be unsafe.

COPs are usually solved using some form of backtracking search. This tries
to incrementally build solutions, abandoning each partial candidate as soon as
it determines that it cannot possibly be part of a valid solution. Such an ap-
proach can easily be adopted for finding the optimal solution to our analysis:
keep merging more spawn instructions until it is unsafe, then backtrack and try
merging some different spawn instructions.

The search space of a COP is exponential in the number of variables, and our
problem requires us to recompute the stack sizes for each solution that we try.
A näıve search could be very expensive, however there are two simple methods
for improving our search:

1. We can use the stack sizes to prune the search tree. For instance, if the
current solution causes two tasks to have unbounded size and their spawn
instructions have an unsynchronised path between them, then there is no
point in trying a solution that merges both of them unguarded.

2. Instead of recomputing the stack sizes for each possible solution, we can start
from the stack sizes of a similar solution and just compute the changes.

We shall see in Section 6 that this approach can be encoded as a general impli-
cation program; this enables a more efficient solver.

5.5 Adding Context Sensitivity

It is clear from our safety conditions that whether a spawn can be safely merged
is context-sensitive. By context-sensitive we mean that it does not just depend
on the details of the function that contains it, but also on the details of the
function that called that function, and the details of the function that called
that second function, and so on.

While the safety conditions are context-sensitive, the optimisation and anal-
ysis described so far are context-insensitive. This means that some stacks will
not be merged even though it would be safe to do so, because it would not have
been safe if the function had been called from a different context.

In order to allow more spawn points to be merged at run time, we can make the
optimisation and analysis context-sensitive. This involves making the behaviour
of functions depend on the context that called them.

In our model we achieve this by creating multiple versions of the same function
for different contexts, but in practice we simply add extra arguments containing
information about the calling context.

A recursive program may have an infinite number of contexts, however we
are only interested in the restrictions placed on a function by its context. These

Concise Analysis Using Implication Algebras 447

restrictions can be represented by four boolean values (see Section 6.1), so we
can also represent our context by four boolean values.

Making our optimisation context-sensitive is very cheap; other than the extra
context arguments it only requires a few additional logic operations before some
calls and stack frame allocations. A simple analysis can detect and remove unused
or unnecessary context arguments.

The aim of making the optimisation context-sensitive is to separate run-time
function calls when they are called from contexts which require them to merge
fewer spawns. This means that the context that a call is in depends on the stack
sizes of related instructions, but the stack sizes of instructions depend on the
contexts that they are given. This recursive relationship is also non-monotonic:
as stack sizes increase more calls are assigned more restrictive contexts, but as
more calls are placed in more restrictive contexts stack sizes decrease.

This situation is very similar to the one that exists between stack sizes and
the merged and unguarded sets. Similarly it can be resolved using a backtracking
search and it can be encoded as a general implication program.

6 The Analysis as a General Implication Program

This section describes how to represent the context-sensitive version of our anal-
ysis as a single general implication program—the idea is that meta-level con-
straints on U and M are now expressed within the logic using negation.

6.1 Stack Size Restrictions

We represent the safety conditions, within this general implication program, as
various restrictions on individual stack sizes. There are four kinds of restriction:

1. Restricting the post size to 0. This is equivalent to making the complement
of the post size �.

2. Restricting the post size to be not unbounded. This is equivalent to making
the supplement of the post size �.

3. Restricting the pre size to be not unbounded. This is equivalent to making
the supplement of the pre size �.

4. Restricting the through size to be 0. This is equivalent to making the com-
plement of the through size �.

We place these restrictions on instructions using the predicates CompPostSize,
SuppPostSize, SuppPreSize and CompThroughSize. We do not need to have
explicit predicates to place these restrictions on functions, because we use these
restrictions as the contexts for functions. Each function f is replaced by 16
versions of the function f(cr ,sr ,sg,cgr), one for each possible combination of
restrictions.

448 L. White and A. Mycroft

Note that these restrictions can only affect stack sizes by preventing or guard-
ing merges. So a function whose pre size is restricted may still have unbounded
pre size if that unboundedness is caused by ordinary recursive calls, rather than
by recursive spawns.

The CompPostSize restriction is placed on functions that are spawned, to
prevent our first safety condition from being broken. It is propagated by the rule
family:

[f ∈ F , γ ∈ ({T} × B× B× B), (n0, . . . ,nk) ∈ Upaths(, end(fγ))]

CompPostSize〈n0〉 ←− �

The other restrictions are used to prevent our second safety condition from being
broken. They are propagated by the rule families:

[f ∈ F , γ ∈ (B× {T} × B× B), (n0, . . . ,nk) ∈ Upaths(, end(fγ))]

SuppPostSize〈n0〉 ←− �

[f ∈ F , γ ∈ (B× B× {T} × B), (n0, . . . ,nk) ∈ Upaths(start(fγ),)]

SuppPreSize〈nk 〉 ←− �

[f ∈ F , γ ∈ (B× B× B× {T}),
(n0, . . . ,nk) ∈ Upaths(start(fγ), end(fγ)), 0 ≤ i ≤ k]

CompThroughSize〈ni〉 ←− �

The CompThroughSize restriction is used to prevent loops of instructions from
using unbounded stack space. It is enforced by the rule:

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Nodes(fγ), (m0, . . . ,mk) ∈ Upaths(n, n)]

CompThroughSize〈m0〉 ←− �

The SuppPreSize restriction is used to prevent spawn instructions from being
merged unguarded if they are unbounded and preceded by a merged spawn
instruction which is also unbounded. It is enforced by the rule family:

[f ∈ F , γ ∈ (B × B× B× B), n ∈ Nodes(fγ), (m0, . . . ,mk) ∈ Upaths(, n)]

SuppPreSize〈mk 〉 ←− ∼∼ PostSize〈m0〉

The SuppPostSize restriction is used to prevent spawn instructions from being
merged if they are unbounded and followed by a call to a function that may use
unbounded stack space (even if all its spawns are merged guarded). Note that
we do not prevent a spawn from being merged due to a later unguarded spawn,
because we prefer to make the later spawn guarded. This restriction is enforced
by the rule family:

Concise Analysis Using Implication Algebras 449

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Nodes(fγ), (m0, . . . ,mk) ∈ Upaths(n,),

g = func(mk), cr ∈ B, sr ∈ B, crg ∈ B]

SuppPostSize〈m0〉 ←− ∼∼ PreSize〈g(cr ,sr ,T,crg)〉 ,
lit(cr, CompPostSize〈mk 〉) ,
lit(sr, SuppPostSize〈mk 〉) ,
lit(crg, CompThroughSize〈mk 〉)

where lit(b,A) is a macro for

{
¬¬A if b = T

¬A if b = F

Note that the litmacro used in generating the above rules converts the restriction
predicates into booleans that can be used as the contexts for functions.

We apply the supplement restrictions to spawns via complement restrictions
using the following rules. This is equivalent to preventing unbounded sizes by
forcing those sizes to be zero (i.e. preventing the stacks from merging).

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Spawns(fγ), g = func(n)]

CompPostSize〈n〉 ←− SuppPostSize〈n〉 ,
∼∼ TotalSize〈g(T,T,F,F)〉

CompPreSize〈n〉 ←− SuppPreSize〈n〉 ,
∼∼ TotalSize〈g(T,T,F,F)〉

We refer to these rules as the bounding rules.

6.2 Other Rules

The rules for the stack sizes of spawn instructions are as follows:

[f ∈ F , γ ∈ (B× B× B× B), n ∈ Spawns(fγ), g = func(n)]

TotalSize〈n〉 ←− TotalSize〈g(T,T,F,F)〉 , ¬ CompPostSize〈n〉
PostSize〈n〉 ←− TotalSize〈g(T,T,F,F)〉 , ¬ CompPostSize〈n〉
PreSize〈n〉 ←− TotalSize〈g(T,T,F,F)〉 , ¬ CompPostSize〈n〉 ,

¬ CompPreSize〈n〉 , ¬ CompThroughSize〈n〉
ThroughSize〈n〉 ←− TotalSize〈g(T,T,F,F)〉 , ¬ CompPostSize〈n〉 ,

¬ CompPreSize〈n〉 , ¬ CompThroughSize〈n〉

The remaining stack size rules are based on those in Section 5 and are omitted
for brevity.

6.3 Extracting Solutions

Given a stable model of the rules described in this section, we can extract a
solution that is equivalent to the solution that we would have obtained using the

450 L. White and A. Mycroft

methods suggested in Section 5.3. The merged set M and unguarded merge set
U are given by:

M = {n | TotalSize〈g(T,T,F,F)〉 � PostSize〈n〉, g = func(n)}
U = {n | TotalSize〈g(T,T,F,F)〉 � ThroughSize〈n〉, g = func(n)}

7 Stratification

We could find stable models for the general implication program using back-
tracking algorithms similar to those used in answer set programming, based on
the DPLL algorithm. However, using stratified models finds them more directly.

It is easy to see that the implication program derived in the previous section
cannot be stratified. However looking at the rules we can make the following
observations:

1. CompPostSize and CompThroughSize only depend negatively on other pred-
icates via the bounding rules.

2. The bounding rules only apply within a function with context (T, T, F, F) if
that function contains an instruction with unbounded TotalSize, and such
functions have unbounded TotalSize with or without the bounding rules.
This means that the TotalSize of all functions f(T,T,F,F) can be calculated
without the bounding rules, and in such a calculation TotalSize will only
depend negatively on the CompPostSize and CompThroughSize predicates.

3. For any instruction n, if SuppPreSize〈n〉 equals � then the value of
SuppPostSize〈n〉 will not affect the values of PreSize〈n〉 or ThroughSize〈n〉.
This means that the PreSize of any function with a context of the form
(cr, sr, T, crg) only depends negatively on the TotalSize of functions with
context (T, T, F, F) and on the values of CompPostSize and CompThroughSize

calculated without the bounding rules.
4. If ThroughSize〈f(cr ,T,sg,crg)〉 �= ThroughSize〈f(cr ,F,sg,crg)〉 then

PostSize〈f(cr ,T,sg,crg)〉 = PostSize〈f(cr ,F,sg,crg)〉 = �. Therefore, for any
instruction n, the value of SuppPreSize〈n〉 will not affect the values of
PostSize〈n〉. This means that the PostSize of any node only depends neg-
atively on the TotalSize of functions with context (T, T, F, F) and on the
values of CompPostSize, CompThroughSize and SuppPostSize.

This means that we can create a stratifiable general implication program by
using five layers of the general implication program from the previous section.
Each layer is a more accurate approximation of the full set of rules. All negative
literals are made to refer to the literals of the previous layer, so that the program
can easily be stratified.

Concise Analysis Using Implication Algebras 451

These layers work as follows:

1. The first layer calculates the values of CompPostSize and
CompThroughSize ignoring the bounding rules.

2. The second layer calculates the values of TotalSize for all functions with
context (T, T, F, F).

3. The third layer calculates the values of SuppPostSize.
4. The fourth layer calculates the values of SuppPreSize.
5. The fifth layer calculates the values of all the remaining predicates.

It can be shown that the stable models of the previous general implication pro-
gram are equivalent to the stable models of this stratified general implication
program. Since stratifiable general implication programs have a unique stable
model, this shows that our analysis has a unique solution.

8 Complexity of the Analysis

The unique stable model of a stratified general implication program P1 ∪ · · · ∪
Pk is the same as its standard model. This standard model can be computed
in polynomial time if the least fixed points of each TPi can be computed in
polynomial time.

While some of the rule families of our analysis contain an infinite number
of rules this was only for presentation. They can also be expressed by a finite
number of rules, using an additional predicate to represent the maximum sum
of ThroughSize between two instructions:

[f ∈ F , n,m ∈ Nodes(f), (l0, . . . , lk) ∈ Upaths(n,m), ∀ 0 < i < k]

PathMax〈n,m〉 ←− PathMax〈n, li〉+ PathMax〈li ,m〉+ ThroughSize〈li〉

Since the number of rules is finite, and the operations within the rules are all
polynomial time, each iteration of TPi can be computed in polynomial time.

Each possible bounded size that can be assigned to a predicate in P is uniquely
determined by a set of (context-sensitive) function names and instruction nodes.
Otherwise that size would include a recursive call or an unbounded iteration of
spawns, and so would be �. This means that the number of times a predicate
can increase its size is proportional to the size of the original OpenMP program,
so the least fixed points of each TPi can be computed in polynomial time.

9 Evaluation

We implemented the optimisation within our EMCC prototype compiler. We
compared it to our compiler without the optimisation, as well as to three other
OpenMP implementations: GCC [10], OpenUH [11] and Nanos [12].

452 L. White and A. Mycroft

Each of these other implementations uses a stack per-task. To prevent ex-
cessive memory consumption they restrict parallelism after a certain number
of stacks have been created. By decreasing the required number of stacks, our
optimisation allows us to restrict parallelism less often.

Our EMCC implementation and OpenUH are more lightweight than GCC and
Nanos: OpenUH uses coroutines to implement its tasks, and our implementation
divides tasks into continuations.

We compared the implementations using programs from the Barcelona Tasks
Suite [13]: Alignment, NQueens and Sort. Alignment uses an iterative pattern
with a parallel loop that spawns multiple tasks. The other two use recursive
divide-and-conquer patterns, with each task spawning multiple tasks and then
waiting for them to finish. The benchmarks were run on a server with 32 AMD
Opteron processors.

The results are shown in Fig. 4. Alignment shows no real difference between
implementations. Sort shows performance gains for the lightweight implemen-
tations, and further gains due to the optimisation. NQueens shows significant
gains due to the optimisation.

Fig. 4. Results

Concise Analysis Using Implication Algebras 453

10 Conclusion

In this paper we have described a program analysis for OpenMP to enable tasks
to share stacks for task-local memory. We have shown how a novel implication-
algebra generalisation of logic programming allows a concise but easily readable
encoding of the various constraints.

Using this formalism we were able to show that the analysis has a unique
solution and polynomial-time complexity.

This optimisation has enabled us to implement a very lightweight implemen-
tation of OpenMP, and we have shown that this outperforms existing OpenMP
implementations that give each task their own stack for task-local memory.

References

1. Supertech Research: Cilk 5.4.6 Reference Manual (1998)
2. Podobas, A., Brorsson, M., Faxén, K.F.: A comparison of some recent task-based

parallel programming models (2010)
3. Olivier, S.L., Prins, J.F.: Evaluating OpenMP 3.0 Run Time Systems on Unbal-

anced Task Graphs. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.)
IWOMP 2009. LNCS, vol. 5568, pp. 63–78. Springer, Heidelberg (2009)

4. OpenMP Architecture Review Board: OpenMP Application Program Interface.
Technical report (2008)

5. Blumofe, R.D., Leiserson, C.E.: Space-efficient scheduling of multithreaded compu-
tations. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, pp. 362–371 (1993)

6. Kowalski, R.: Predicate logic as programming language. Edinburgh University
(1973)

7. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge.
IBM TJ Watson Research Center (1986)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference on Logic Programming, vol. 161
(1988)

9. Damásio, C., Pereira, L.: Antitonic logic programs. Logic Programming and Non-
motonic Reasoning, 379–393 (2001)

10. Stallman, R.M.: GNU compiler collection internals. Free Software Foundation
(2002)

11. Addison, C., LaGrone, J., Huang, L., Chapman, B.: OpenMP 3.0 tasking imple-
mentation in OpenUH. In: Open64 Workshop at CGO 2009 (2009)

12. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for OpenMP
tasks in Nanos v4. In: Proceedings of the 2007 Conference of the Center for Ad-
vanced Studies on Collaborative Research, pp. 256–259 (2007)

13. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in OpenMP. In: Proceedings of the 2009 International Conference on Parallel Pro-
cessing, ICPP 2009, pp. 124–131. IEEE Computer Society, Washington, DC (2009)

Automatic Verification of Erlang-Style

Concurrency

Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong

University of Oxford

Abstract. This paper presents an approach to verify safety properties of
Erlang-style, higher-order concurrent programs automatically. Inspired by
Core Erlang, we introduce λActor, a prototypical functional language with
pattern-matching algebraic data types, augmented with process creation
and asynchronous message-passing primitives. We formalise an abstract
model of λActor programs called Actor Communicating System (ACS)
which has a natural interpretation as a vector addition system, for which
some verification problems are decidable. We give a parametric abstract
interpretation framework for λActor and use it to build a polytime com-
putable, flow-based, abstract semantics ofλActor programs, whichwe then
use to bootstrap the ACS construction, thus deriving a more accurate ab-
stract model of the input program.

We evaluate the method which we implemented in the prototype Soter.
We find that in practice our abstraction technique is accurate enough to
verify an interesting range of safety properties. Though the ACS cov-
erability problem is Expspace-complete, Soter can analyse non-trivial
programs in a matter of seconds.

Keywords: Erlang, Infinite-state Systems Verification, Petri Nets.

1 Introduction

This paper concerns the verification of concurrent programs written in Erlang.
Originally designed to program fault-tolerant distributed systems at Ericsson in
the late 80s, Erlang is now a widely used, open-sourced language with support
for higher-order functions, concurrency, communication, distribution, on-the-fly
code reloading, and multiple platforms [3,2]. Largely because of a runtime system
that offers highly efficient process creation and message-passing communication,
Erlang is a natural fit for programming multicore CPUs, networked servers,
parallel databases, GUIs, and monitoring, control and testing tools.

The sequential part of Erlang is a higher order, dynamically typed, call-by-
value functional language with pattern-matching algebraic data types. Following
the actor model [1], a concurrent Erlang computation consists of a dynamic net-
work of processes that communicate by message passing. Every process has a
unique process identifier (pid), and is equipped with an unbounded mailbox.
Messages are sent asynchronously in the sense that send is non-blocking. Mes-
sages are retrieved from the mailbox, not FIFO, but First-In-First-Firable-Out

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 454–476, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Verification of Erlang-Style Concurrency 455

(FIFFO) via pattern-matching. A process may block while waiting for a message
that matches a certain pattern to arrive in its mailbox. For a quick and highly
readable introduction to Erlang, see Armstrong’s CACM article [2].

Challenges. Concurrent programs are hard to write. They are just as hard to
verify. In the case of Erlang programs, the inherent complexity of the verification
task can be seen from several diverse sources of infinity in the state space.

(∞ 1) General recursion requires a (process local) call-stack.
(∞ 2) Higher-order functions are first-class values; closures can be passed as

parameters or returned.
(∞ 3) Data domains, and hence the message space, are unbounded: functions

may return, and variables may be bound to, terms of an arbitrary size.
(∞ 4) An unbounded number of processes can be spawned dynamically.
(∞ 5) Mailboxes have unbounded capacity.

The challenge of verifying Erlang programs is that one must reason about the
asynchronous communication of an unbounded set of messages, across an un-
bounded set of Turing-powerful processes.

Our goal is to verify safety properties of Erlang-like programs automatically,
using a combination of static analysis and infinite-state model checking. To a
large extent, the key decision of which causes of infinity to model as accurately as
possible and which to abstract is forced upon us: the class consisting of a fixed set
of context-free (equivalently, first-order) processes, each equipped with a mailbox
of size one and communicating messages from a finite set, is already Turing
powerful [10]. Our strategy is thus to abstract (∞ 1), (∞ 2) and (∞ 3), while
seeking to analyse message-passing concurrency, assuming (∞ 4) and (∞ 5).

We consider programs of λActor, a prototypical functional language with
actor-style concurrency. λActor is essentially Core Erlang [5]—the official in-
termediate representation of Erlang code, which exhibits in full the higher-order
features of Erlang, with asynchronous message-passing concurrency and dynamic
process creation. With decidable infinite-state model checking in mind, we intro-
duce Actor Communicating System (ACS), which models the interaction of an
unbounded set of communicating processes. An ACS has a finite set of control
states Q, a finite set of pid classes P , a finite set of messages M , and a finite

set of transition rules. An ACS transition rule has the shape ι : q
�−→ q′, which

means that a process of pid class ι can transition from state q to state q′ with
(possible) communication side effect �, of which there are four kinds, namely,
(i) the process makes an internal transition (ii) it extracts and reads a message
m from its mailbox (iii) it sends a message m to a process of pid class ι′ (iv) it
spawns a process of pid class ι′. ACS models are infinite state: the mailbox of a
process has unbounded capacity, and the number of processes in an ACS may
grow arbitrarily large. However the set of pid classes is fixed, and processes of
the same pid class are not distinguishable.

An ACS can be interpreted naturally as a vector addition system (VAS),
or equivalently Petri net, using counter abstraction. We consider a particular

456 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

counter abstraction of ACS, called VAS semantics, which models an ACS as
a VAS distinguishing two kinds of counters. A counter named by a pair (ι, q)
counts the number of processes of pid class ι that are currently in state q; a
counter named by (ι,m) counts the sum total of occurrences of a message m
currently in the mailbox of p, where p ranges over processes of pid class ι. Using
this abstraction, we can conservatively decide properties of the ACS using well-
known decision procedures for VAS.

Parametric, Flow-Based Abstract Interpretation. The starting point of our ver-
ification pathway is the abstraction of the sources of infinity (∞ 1), (∞ 2) and
(∞ 3). Methods such as k-CFA [35] can be used to abstract higher-order re-
cursive functions to a finite-state system. Rather than ‘baking in’ each type of
abstraction separately, we develop a general abstract interpretation framework
which is parametric on a number of basic domains. In the style of Van Horn and
Might [36], we devise a machine-based operational semantics of λActor which is
‘generated’ from the basic domains of Time, Mailbox and Data. We show that
there is a simple notion of sound abstraction of the basic domains whereby every
such abstraction gives rise to a sound abstract semantics of λActor programs
(Theorem 1). Further if a given sound abstraction of the basic domains is fi-
nite and the associated auxiliary operations are computable, then the derived
abstract semantics is finite and computable.

Generating an ACS. We show that a sound ACS (Theorem 3) can be con-
structed in polynomial time by bootstrapping from the 0-CFA-like abstract se-
mantics. Further, the dimension of the resulting ACS is polynomial in the length
of the input λActor program. The idea is that the 0-CFA-like abstract (transi-
tion) semantics constitutes a sound but rough analysis of the control-flow of the
program, which takes higher-order computation into account but communicating
behaviour only minimally. The bootstrap construction consists in constraining
these rough transitions with guards of the form ‘receive a message of this type’
or ‘send a message of this type’ or ‘spawn a process’, thus resulting in a more
accurate abstract model of the input λActor program in the form of an ACS.

Evaluation. To demonstrate the feasibility of our verification method, we have
constructed a prototype implementation called Soter. Our empirical results show
that the abstraction framework is accurate enough to verify an interesting range
of safety properties of non-trivial Erlang programs.

Outline. In Section 2 we define the syntax of λActor and informally explain
its semantics with the help of an example program. In Section 3, we introduce
Actor Communicating System and its VAS semantics. In Section 4 we present a
machine-based operational semantics of λActor and then, in Section 5, we develop
a parametric abstract interpretation from it. In Section 6, we use the analysis
to bootstrap the ACS construction. In Section 7 we present the experimental
results based on our tool implementation Soter, and discuss the limitations of
our approach.We omit proofs for lack of space; they can be found in the extended

Automatic Verification of Erlang-Style Concurrency 457

version of the paper [12]. Please rename the filename of the long version—there
should be no reference to POPL13.

Notation. We write A∗ for the set of finite sequences of elements of the set A,
and ε for the null sequence. Let a ∈ A and l, l′ ∈ A∗, we overload ‘·’ so that it
means insertion at the top a · l, at the bottom l · a or concatenation l · l′. We
write li for the i-th element of l. The set of finite partial functions from A to B
is denoted A ⇀ B. we define f [a �→ b] := (λx. if (x=a) then b else f(x)); [] is
the everywhere undefined function.

2 A Prototypical Fragment of Erlang

In this section we introduce λActor, a prototypical untyped functional language
with actor concurrency. λActor is inspired by single-node Core Erlang [5] without
built-in functions and fault-tolerant features. It exhibits in full the higher-order
features of Erlang, with message-passing concurrency and dynamic process cre-
ation. The syntax of λActor is defined as follows:

e ∈ Exp ::= x | c(e1, . . . , en) | e0(e1, . . . , en) | fun

| letrec f1(x1, . . . , xk1)=e1. · · · fn(x1, . . . , xkn)=en. in e

| case e of pat1 → e1; . . . ; patn → en end

| receive pat1 → e1; . . . ; patn → en end

| send(e1, e2) | spawn(e) | self ()

fun ::= fun(x1, . . . , xn) → e

pat ::= x | c(pat1, . . . , patn)

where c ranges over a fixed finite set Σ of constructors.
For ease of comparison we keep the syntax close to Core Erlang and use

uncurried functions, delimiters, fun and end. We write ‘ ’ for an unnamed un-
bound variable; using symbols from Σ, we write n-tuples as {e1, . . . , en}, the
list constructor cons as [|] and the empty list as [] . Sequencing (e1 , e2) is a
shorthand for (fun()→e2)(e1) and we we omit brackets for nullary construc-
tors. The character ‘%’ marks the start of a line of comment. Variable names
begin with an uppercase letter. We write fv(e) for the free variables of an ex-
pression and we define a λActor program P to be a closed λActor expression. We
associate a unique label l to each sub-expression e of a program and indicate
that e is labelled by l by writing � : e. Take a term � : (�0 : e0(�1 : e1, . . . , �n : en)),
we define �.argi := �i and arity(�) := n.

To illustrate λActor’s concurrency model we sketch a small-step reduction
semantics here. The rewrite rules for function application and λ-abstraction are
identical to call-by-value λ-calculus; we write evaluation contexts as E[]. A state
of the computation of a λActor program is a setΠ of processes running in parallel.
A process 〈e〉ιm, identified by the pid ι, evaluates an expression e with mailbox m
holding unconsumed messages. Purely functional reductions performed by each

458 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

1 letrec
2 %

3 res start (Res) =
4 spawn(fun()→ res free (Res)).
5 res free (Res) =
6 receive {lock, P}→
7 send(P, {acquired, self ()}),
8 res locked (Res, P)
9 end.

10 res locked (Res, P) =
11 receive
12 {req, P, Cmd}→
13 case Res(P, Cmd) of
14 {NewRes, ok}→
15 res locked (NewRes, P);
16 {NewRes, {reply, A}}→
17 send(P, {ans, self () , A}),
18 res locked (NewRes, P)
19 end;
20 {unlock, P}→ res free (Res)
21 end.
22 %

23 res lock (Q)=
24 send(Q, {lock, self ()}),
25 receive {acquired, Q}→ ok end.
26 res unlock (Q)=
27 send(Q, {unlock, self ()}).
28 res request (Q, Cmd) =
29 send(Q, {req, self () , Cmd}),
30 receive {ans, Q, X}→ X end.

31 res do (Q, Cmd) =
32 send(Q, {req, self () , Cmd}).
33 %

34 cell start () =
35 res start (cell (zero)).
36 cell (X) = fun(P, Cmd)→
37 case Cmd of
38 {write , Y}→ {cell (Y), ok};
39 read → {cell (X), {reply , X}}
40 end.
41 %

42 cell lock (C) = res lock (C).
43 cell unlock (C) = res unlock(C).
44 cell read (C) = res request (C, read).
45 cell write (C,X)=res do(C, {write, X}).
46 %

47 inc (C) =
48 cell lock (C),
49 cell write (C, {succ, cell read (C)}),
50 cell unlock (C).
51 add to cell (M, C) =
52 case M of
53 zero → ok;
54 {succ, M’}→
55 spawn(fun()→ inc (C)),
56 add to cell (M’, C)
57 end.
58 %

59 in C = cell start () ,
60 add to cell (N, C).

Fig. 1. Locked Resource (running example)

process are independently interleaved. A spawn construct, spawn(fun()→e),
evaluates to a fresh pid ι′ and creates a new process 〈e〉ι′ε , with pid ι′:

〈E[spawn(fun()→e)]〉ιm ‖ Π −→ 〈E[ι′]〉ιm ‖ 〈e〉ι′ε ‖ Π

A send construct, send(ι, v), evaluates to the message v with the side-effect of
appending it to the mailbox of the receiver process ι; thus send is non-blocking:

〈E[send(ι, v)]〉ι
′
m′ ‖ 〈e〉ιm ‖ Π −→ 〈E[v]〉ι

′
m′ ‖ 〈e〉ιm·v ‖ Π

The evaluation of a receive construct, receive p1 → e1 . . . pn → en end, will
block if the mailbox of the process in question contains no message that matches
any of the patterns pi. Otherwise, the first message m that matches a pattern,
say pi, is consumed by the process, and the computation continues with the
evaluation of ei. The pattern-matching variables in ei are bound by θ to the
corresponding matching subterms of the message m; if more than one pattern
matches the message, then the first in textual order is fired

〈E[receive p1 → e1 . . . pn → en end]〉ιm·m·m′ ‖ Π −→ 〈E[θei]〉ι
′
m·m′ ‖ Π ;

Automatic Verification of Erlang-Style Concurrency 459

Note that message passing is not First-In-First-Out but rather First-In-First-
Fireable Out (FIFFO): incoming messages are queued at the end of the mailbox,
and the message that a receive construct extracts is not necessarily the first.

Example 1 (Locked Resource). Figure 1 shows an example λActor program. The
code has three logical parts, which would constitute three modules in Erlang.
The first part defines an Erlang behaviour1 that governs the lock-controlled,
concurrent access of a shared resource by a number of clients. A resource is
viewed as a generic server implementing the locking protocol, parametrised on
a function that specifies how to react to requests. Note the use of higher-order
arguments and return values. The function res start creates a new process that
runs an unlocked (res free) instance of the resource. When unlocked, a resource
waits for a {lock, P} message to arrive from a client P. Upon receipt of such a
message, an acknowledgement message is sent back to the client and the control
is yielded to res locked . When locked (by a client P), a resource can accept
requests {req,P,Cmd} from P—and from P only—for an unspecified command
Cmd to be executed. After running the requested command, the resource is
expected to return the updated resource handler and an answer, which may
be the atom ok, which requires no additional action, or a couple {reply , Ans}
which signals that the answer Ans should be sent back to the client. When an
unlock message is received from P the control is given back to res free . Note
that the mailbox matching mechanism allows multiple locks and requests to
be sent asynchronously to the mailbox of the locked resource without causing
conflicts: the pattern matching in the locked state ensures that all the pending
lock requests get delayed for later consumption once the resource gets unlocked.
The functions res lock , res unlock , res request , res do hide the protocol from
the user who can then use this API as if it was purely functional.

The second part implements a simple shared resource that holds a natural
number, which is encoded using the constructors {succ, } and zero, and allows
a client to read its value or overwrite it with a new one. Without lock messages,
a shared resource with such a protocol easily leads to inconsistencies.

The last part defines the function inc which accesses a locked cell to increment
its value. The function add to cell addsM to the contents of the cell by spawning
M processes incrementing it concurrently. Finally the entry-point of the program
sets up a process with a shared locked cell and then calls add to cell . Note that
N is a free variable; to make the example a program we can either close it by
setting N to a constant or make it range over all natural numbers with the
extension described in Section 4.

An interesting correctness property of this code is the mutual exclusion of the
lock-protected region (i.e. line 49) of the concurrent instances of inc.

1 I.e. a module implementing a general purpose protocol, parametrised over another
module containing the code specific to a particular instance. Note that we simulate
modules with higher-order parameters, which is general enough to express in full the
dynamic module system of Erlang.

460 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

3 Actor Communicating Systems

In this section we explore the design space of abstract models of Erlang-style
concurrency. We seek a model of computation that should capture the core con-
currency and asynchronous communication features of λActor and yet enjoys
the decidability of interesting verification problems. In the presence of pattern-
matching algebraic data types, the (sequential) functional fragment of λActor is
already Turing powerful [30]. Restricting it to a pushdown (equivalently, first-
order) fragment but allowing concurrent execution would enable, using very
primitive synchronization, the simulation of a Turing-powerful finite automaton
with two stacks. A single finite-control process equipped with a mailbox (re-
quired for asynchronous communication) can encode a Turing-powerful queue
automaton in the sense of Minsky. Thus constrained, we opt for a model of con-
current computation that has finite control, a finite number of messages, and a
finite number of process classes.

Definition 1. An Actor Communicating System (ACS) A is a tuple 〈P,Q,M,
R, ι0, q0〉 where P is a finite set of pid-classes, Q is a finite set of control-states,
M is a finite set of messages, ι0 ∈ P is the pid-class of the initial process, q0 ∈ Q
is the initial state of the initial process, and R is a finite set of rules of the form

ι : q
�−→ q′ where ι ∈ P , q, q′ ∈ Q and � is a label that can take one of four forms:

τ (local transition), ?m with m ∈ M (receive a message), ι′!m with ι′ ∈ P ,
m ∈ M (send a message), νι′. q′′ with ι′ ∈ P and q′′ ∈ Q (spawn a new process
in pid-class ι′ starting from q′′).

Now we have to give ACS a semantics, but interpreting the ACS mailboxes as
FIFFO queues would yield a Turing-powerful model. Our solution is to apply
a counter abstraction on mailboxes: disregard the ordering of messages, but
track the number of occurrences of every message in a mailbox. Since we bound
the number of pid-classes, but wish to model dynamic (and hence unbounded)
spawning of processes, we apply a second counter abstraction on the control
states of each pid-class: we count, for each control-state of each pid-class, the
number of processes in that pid-class that are currently in that state.

For soundness, we need to make sure that such an abstraction contains all the
behaviours of the semantics with FIFFO mailboxes: if there is a matching term in
the mailbox, then the corresponding branch is non-deterministically fired. To see
the difference, take the ACS that has one process (named ι), three control states

q, q1 and q2, and two rules ι : q
?a−→ q1, ι : q

?b−→ q2. When equipped with a FIFFO
mailbox containing the sequence c a b, the process can only evolve from q to q1
by consuming a from the mailbox, since it can skip c but will find a matching
message (and thus not look further) before reaching the message b. In contrast,
the counter semantics would let q evolve non-deterministically to both q1 and q2,
consuming a or b respectively: the mailbox is abstracted to [a �→ 1, b �→ 1, c �→ 1]
with no information on whether a or b arrived first. However, the abstracted
semantics does contain the traces of the FIFFO semantics.

Automatic Verification of Erlang-Style Concurrency 461

The VAS semantics of an ACS is a state transition system equipped with
counters that support increment and decrement (when non-zero) operations.
Such infinite-state systems are known as vector addition systems (VAS).

Definition 2 (Vector Addition System). A vector addition system (VAS)
V is a pair (I, R) where I is a finite set of indices (called the places of the VAS)
and R ⊆ ZI is a finite set of rules. Thus a rule is just a vector of integers of
dimension |I|, whose components are indexed (i.e. named) by the elements of I.

The state transition system �V� induced by a VAS V = (I, R) has state-set NI

and transition relation {(v,v + r) | v ∈ NI , r ∈ R,v+ r ∈ NI}. We write v ≤ v′

just if for all i in I, v(i) ≤ v′(i).

The semantics of an ACS can now be given easily in terms of the underlying
vector addition system.

Definition 3 (VAS semantics). The semantics of an ACS A = (P,Q,M,
R, ι0, q0) is the transition system induced by the VAS V = (I,R) where I =
P × (Q/M). Each ACS rule in R is translated into a VAS rule in R as follows:

ι : q
τ−→ q′ is the vector that decrements (ι, q) and increments (ι, q′), ι : q ?m−−→ q′

decrements (ι, q) and (ι,m) while incrementing (ι, q′), ι : q
ι′!m−−−→ q′ decrements

(ι, q) and increments both (ι, q′) and (ι′,m), ι : q
νι′. q′′−−−−→ q′ decrements (ι, q) while

incrementing both (ι, q′) and (ι′, q′′). Given a �V�-state v ∈ NI , the component
v(ι, q) counts the number of processes in the pid-class ι currently in state q, while
the component v(ι,m) is the sum of the number of occurrences of the message
m in the mailboxes of the processes of the pid-class ι.

While infinite-state, many non-trivial properties are decidable on VAS including
reachability, coverability and place boundedness; for more details see [14]. In
this paper we focus on coverability, which is Expspace-complete [33]: given two
states s and t, is it possible to reach from s a state t′ that covers t (i.e. t′ ≤ t)?

Which kinds of correctness properties of λActor programs can one specify by
coverability of an ACS? We will be using ACS to over-approximate the seman-
tics of a λActor program, so if a state of the ACS is not coverable, then it is
not reachable in any execution of the program. It follows that we can use cover-
ability to express safety properties such as: (i) unreachability of error program
locations (ii) mutual exclusion (iii) boundedness of mailboxes: is it possible to
reach a state where the mailbox of pid-class ι has more than k messages? If not
we can allocate just k memory cells for that mailbox.

4 An Operational Semantics for λActor

In this section, we define an operational semantics for λActor using a time-
stamped CESK* machine, following an approach by Van Horn and Might [36]. An
unusual feature of such machines are store-allocated continuations which allow
the recursion in a programs’s control flow and data structure to be separated
from the recursive structure in its state space.

462 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

Functional reductions

FunEval
if π(ι) = 〈� : (e0(e1, . . . , en)), ρ, a, t〉

b := newkpush(ι, π(ι))

then π′ = π[ι 	→ 〈e0, ρ, b, t〉]
σ′ = σ[b 	→ Arg0〈�, ε, ρ, a〉]

ArgEval
if π(ι) = 〈v, ρ, a, t〉

σ(a) = κ = Argi〈�, d0 . . . di−1, ρ′, c〉
di := (v, ρ)

b := newkpop(ι, κ, π(ι))

then π′ = π[ι 	→ 〈�.argi+1, ρ
′, b, t〉]

σ′ = σ[b 	→ Argi+1〈�, d0 . . . di, ρ′, c〉]

Vars
if π(ι) = 〈x, ρ, a, t〉

σ(ρ(x)) = (v, ρ′)
then π′ = π[ι 	→ 〈v, ρ′, a, t〉]
Apply
if π(ι) = 〈v, ρ, a, t〉, arity(�) = n

σ(a) = κ = Argn〈�, d0 . . . dn−1, ρ′, c〉
d0 = (fun(x1 . . . xn) → e, ρ0) dn := (v, ρ)

bi := newva(ι, xi, res(σ, di), π(ι))

t′ := tick(�, π(ι))

then π′ = π[ι 	→ 〈e, ρ′[x1 → b1 . . . xn → bn], c, t′〉]
σ′ = σ[b1 	→ d1 . . . bn 	→ dn]

Fig. 2. Concrete Semantics rules for the functional primitives. The tables define the
transition relation s = 〈π, μ, σ, ϑ〉 → 〈π′, μ′, σ′, ϑ′〉 = s′ by cases; the primed compo-
nents of the state are identical to the non-primed components, unless indicated other-
wise in the “then” part of the rule. The meta-variable v stands for terms that cannot
be further rewritten such as λ-abstractions, constructor applications and un-applied
primitives.

A Concrete Machine Semantics. Without loss of generality, we assume that in
a λActor program, variables are distinct, and constructors and cases are only
applied to variables. The λActor machine defines a transition system on (global)
states s ∈ State := Procs × Mailboxes × Store. An element π of Procs :=
Pid ⇀ ProcState associates a process with its (local) state, and an element
μ of Mailboxes := Pid ⇀ Mailbox associates a process with its mailbox. We split
a store σ into two partitions Store := (VAddr ⇀ Value) × (KAddr ⇀ Kont)
each with its address space, to separate values and continuations. By abuse of
notation σ(x) shall mean the application of the first component when x ∈ VAddr
and of the second when x ∈ KAddr .

The local state q of a process is a tuple in ProcState := (ProgLoc / Pid) ×
Env × KAddr × Time consisting of (i) a pid, or a program location which is a
subterm of the program, labelled with its occurrence; whenever it is clear from
the context, we shall omit the label; (ii) an environment, which is a map from
variables to pointers to values ρ ∈ Env := Var ⇀ VAddr ; (iii) a pointer to a
continuation, which indicates what to evaluate next when the current evaluation
returns a value; (iv) a time-stamp, which will be described later.

Values are either closures d ∈ Value := Closure / Pid or pids Closure :=
ProgLoc×Env . Note that closures include both functions and constructor terms.
All the above domains are naturally partially ordered: ProgLoc and Var are
discrete partial orders, all others are defined by pointwise extension.

A mailbox is a finite sequence of values: m ∈ Mailbox := Value∗. We denote
the empty mailbox by ε. A mailbox is supported by two operations:

Automatic Verification of Erlang-Style Concurrency 463

Concurrency

Receive
if π(ι) = 〈e, ρ, a, t〉

e = receive p1 → e1 . . . pn → en end

mmatch(p1 . . . pn, μ(ι), ρ, σ) = (i, θ,m)
θ = [x1 �→ d1 . . . xk �→ dk]
bj := newva(ι, xj , res(σ, dj), π(ι))
ρ′ := ρ [x1 �→ b1 . . . xk �→ bk]

then π′ = π[ι �→ 〈ei, ρ′, a, t〉]
μ′ = μ[ι �→ m]
σ′ = σ[b1 �→ d1 . . . bk �→ dk]

Self
if π(ι) = 〈 self (), ρ, a, t〉
then π′ = π[ι �→ 〈ι, ρ, a, t〉]

Send
if π(ι) = 〈v, ρ, a, t〉 σ(a) = Arg2〈�, d, ι′, , c〉

d = (send,)
then π′ = π[ι �→ 〈v, ρ, c, t〉]

μ′ = μ[ι′ �→ enq((v, ρ), μ(ι′))]

Spawn
if π(ι) = 〈fun() → e, ρ, a, t〉 d = (spawn,)
σ(a)=Arg1〈�, d, ρ′, c〉 ι′ := newpid(ι, �, t)

then

π′ = π

[
ι �→ 〈ι′, ρ′, c, t〉,
ι′ �→ 〈e, ρ,∗, t0〉

]
μ′ = μ[ι′ �→ ε]

Fig. 3. Concrete Semantic Rules for Concurrency primitives

mmatch: pat∗ ×Mailbox × Env × Store → (N× (Var ⇀ Value)×Mailbox)⊥
enq: Value ×Mailbox → Mailbox

The function mmatch takes a list of patterns, a mailbox, the current environ-
ment and a store (for resolving pointers in the values stored in the mailbox)
and returns the index of the matching pattern, a substitution witnessing the
match, and the mailbox resulting from the extraction of the matched mes-
sage. To model Erlang-style FIFFO mailboxes we set enq(d,m) := m · d and
define mmatch(p1 . . . pn,m, ρ, σ) := (i, θ,m1 ·m2) such that m = m1 · d ·m2 with
∀d′ ∈ m1 and ∀j . matchρ,σ(pj , d

′) = ⊥, and θ = matchρ,σ(pi, d) with ∀j <
i . matchρ,σ(pj , d) = ⊥ where matchρ,σ(p, d) pattern-matches term d against
pattern p, using the environment ρ and store σ where necessary, and returns a
substitution if successful and ⊥ otherwise.

Evaluation Contexts as Continuations. Next we represent (in an inside-out man-
ner) evaluation contexts as continuations. A continuation consists of a tag in-
dicating the shape of the evaluation context, a pointer to a continuation repre-
senting the enclosing evaluation context, and, in some cases, a program location
and an environment. Thus κ ∈ Kont consists of the following constructs:

- Stop represents the empty context.
- Argi〈�, v0 . . . vi−1, ρ, a〉 represents the context E[v0(v1, . . . , vi−1, [], e

′
i+1, . . . ,

e′n)] where e0(e1, . . . , en) is the subterm located at �; ρ closes the terms ei+1,
. . . , en to e′i+1, . . . , e

′
n respectively; the address a points to the continuation

representing the enclosing evaluation context E.

Addresses, Pids and Time-Stamps. While the machine supports arbitrary con-
crete representations of time-stamps, addresses and pids, we present here an

464 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

instance based on contours [35] which shall serve as the reference semantics of
λActor, and the basis for the abstraction.

A way to represent a dynamic occurrence of a symbol is the history of the
computation at the point of its creation. We record history as contours which
are strings of program locations t ∈ Time := ProgLoc∗. The initial contour is
just the empty sequence t0 := ε, while the function tick : ProgLoc × Time →
Time updates the contour of the process in question by prepending the current
program location tick(�, t) := � · t. Addresses for values b ∈ VAddr := Pid ×
Var × Data × Time are represented by tuples comprising the current pid, the
variable in question, the bound value and the current time stamp. Addresses
for continuations a, c ∈ KAddr := (Pid × ProgLoc × Env × Time) / {∗} are
represented by tuples comprising the current pid, program location, environment
and time; or ∗ which is the address of the initial continuation (Stop).

The data domain (δ ∈ Data) is the set of closed λActor terms; the function
res : Store×Value → Data resolves all the pointers of a value through the store σ,
returning the corresponding closed term res(σ, (e, ρ)) := e[x �→ res(σ, σ(ρ(x))) |
x ∈ fv(e)] or, when the value is a pid it just returns it res(σ, ι) := ι.

We extract the relevant components from the context to generate new
addresses:

newkpush : Pid × ProcState → KAddr

newkpush(ι, 〈�, ρ, , t〉) := (ι, �.arg0, ρ, t)

newkpop : Pid ×Kont × ProcState → KAddr

newkpop(ι, κ, 〈 , , , t〉) := (ι, �.argi+1, ρ, t) where κ = Argi〈�, . . . , ρ, 〉
newva : Pid ×Var ×Data × ProcState → VAddr

newva(ι, x, δ, 〈 , , , t〉) := (ι, x, δ, t)

To enable data abstraction in our framework, the address of a value contains the
data to which the variable is bound: by making appropriate use of the embedded
information in the abstract semantics, we can fine-tune the data sensitivity of
our analysis.

Following the same scheme, pids (ι ∈ Pid) can be identified with the contour of
the spawn that generated them: Pid := (ProgLoc×Time). Thus the generation
of a new pid is defined as

newpid : Pid × ProgLoc × Time → Pid

newpid((�
′, t′), �, t) := (�, tick∗(t, tick(�′, t′))

where tick∗ is just the simple extension of tick that prepends a whole sequence to
another. Note that the new pid contains the pid that created it as a sub-sequence:
it is indeed part of its history. The pid ι0 := (�0, ε) is the pid associated with the
starting process, where �0 is just the root of the program.

Remark 1. Note that the only sources of infinity for the state space are time,
mailboxes and the data component of value addresses. If these domains are finite
then the state space is finite.

Automatic Verification of Erlang-Style Concurrency 465

Definition 4 (Concrete Semantics). We define a (non-deterministic) tran-
sition relation on states (→) ⊆ State × State. In Figures 2 and 3 we present
the rules for application, message passing and process creation; we omit rules
for letrec, case and returning pids since they follow the same shape. The tran-
sition s → s′ is defined by a case analysis of the shape of s. The initial state
associated with a program P is sP := 〈π0, μ0, σ0〉 where π0 = [ι0 �→ 〈P , [],∗, t0〉],
μ0 = [ι0 �→ ε] and σ0 = [∗ �→ Stop].

The rules for the purely functional reductions are a simple lifting of the corre-
sponding rules for the sequential CESK* machine: when the currently selected
process is evaluating a variable Vars its address is looked up in the environment
and the corresponding value is fetched from the store and returned.Apply: When
evaluating an application, control is given to each argument in turn—including
the function to be applied; FunEval and ArgEval are then applied, collecting
the values in the continuation. When the machine has evaluated all arguments,
it records the new values in the environment and store, and passes control to
the function-body. The rule Receive fires if mmatch returns a valid match from
the process’ mailbox and passes control to the expression in the matching clause
with the pattern-variables populated by the matching substitution θ. When the
machine applies rule Send it extracts the recipient’s pid from the continuation,
and calls enq to dispatch the message. Rule Spawn is enabled if the argument
evaluates to a nullary function; the machine then creates a new process with a
fresh pid running the body of the function.

Concurrent abstract reductions

AbsReceive

if π̂(ι̂) % q̂ = 〈e, ρ̂, â, t̂ 〉
e = receive p1 → e1 . . . pn → en end

m̂match(p1 . . . pn, μ̂(ι̂), ρ̂, σ̂) % (i, θ̂, m̂)

θ̂ = [x1 �→ d̂1 . . . xk �→ d̂k]

δ̂j ∈ r̂es(σ̂, d̂j)

b̂j := n̂ewva(ι̂, xj , δ̂j , q̂)

ρ̂′ := ρ̂[x1 �→ b̂1 . . . xk �→ b̂k]

then π̂′ = π̂ � [̂ι �→ {〈ei, ρ̂′, â, t̂ 〉}]
μ̂′ = μ̂[̂ι �→ m̂]

σ̂′ = σ̂ � [̂b1 �→ {d̂1} . . . b̂k �→ {d̂k}]
AbsSelf

if π̂(ι̂) % 〈 self (), ρ̂, â, t̂ 〉
then π̂′ = π̂ � [̂ι �→ {〈ι̂, ρ̂, â, t̂ 〉}]

AbsSend

if π̂(ι̂) % 〈v, ρ̂, â, t̂ 〉 σ̂(â) % Arg2〈�, d̂, ι̂′, , ĉ〉
d̂ = (send,)

then π̂′ = π̂ � [̂ι �→ {〈v, ρ̂, ĉ, t̂ 〉}]
μ̂′ = μ̂[̂ι′ �→ ênq((v, ρ̂), μ̂(ι̂′))]

AbsSpawn

if π̂(ι̂) % 〈fun()→ e, ρ̂, â, t̂ 〉
σ̂(â) % Arg1〈�, d̂, ρ̂′, ĉ〉

d̂ = (spawn,)

ι̂′ := n̂ewpid(ι̂, �, t̂)
then

π̂′ = π̂�
[

ι̂ �→ {〈ι̂′, ρ̂′, ĉ, t̂ 〉},
ι̂′ �→ {〈e, ρ̂,∗, t̂0〉}

]
μ̂′ = μ̂ � [̂ι′ �→ ε̂]

Fig. 4. Abstract Semantic Rules for Concurrency primitives. We write � for the join
operation of the appropriate domain.

466 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

One can easily add rules for run-time errors such as wrong arity in function
application, non-exhaustive patterns in cases, sending to a non-pid and spawning
a non-function.

5 Parametric Abstract Interpretation

We aim to abstract the concrete operational semantics of Section 4 isolating the
least set of domains that need to be made finite in order for the abstraction to be
decidable. In Remark 1 we identify Time, Mailbox and Data as responsible for
the unboundedness of the state space. Our abstract semantics is thus parametric
on the abstraction of these basic domains.

Definition 5 (Basic domains abstraction). A data abstraction is a triple

D = 〈D̂ata, αd, r̂es〉 where D̂ata is a flat (i.e. discretely ordered) domain of ab-

stract data values, αd : Data → D̂ata and r̂es : Ŝtore×V̂alue → P(D̂ata). A time

abstraction is a tuple T = 〈T̂ime, αt, t̂ick, t̂0〉 where T̂ime is a flat domain of

abstract contours, αt : Time → T̂ime, t̂0 ∈ T̂ime, and t̂ick : ProgLoc × T̂ime →
T̂ime. A mailbox abstraction is a tuple M = 〈M̂ailbox ,≤m,�m, αm, ênq, ε̂,

m̂match〉 where (M̂ailbox ,≤m,�m) is a join-semilattice with least element ε̂ ∈
M̂ailbox , αm : Mailbox → M̂ailbox , ênq : V̂alue × M̂ailbox → M̂ailbox are mono-

tone in mailboxes and m̂match: pat∗× M̂ailbox × Ênv× Ŝtore → P(N× (Var ⇀

V̂alue)× M̂ailbox). A basic domains abstraction is a triple I = 〈D, T ,M〉 con-
sisting of a data, a time and a mailbox abstraction.

An abstract interpretation of the basic domains determines an interpretation of
the other abstract domains as follows.

Ŝtate := P̂rocs × ̂Mailboxes × Ŝtore P̂rocs := P̂id → P(̂ProcState)

̂ProcState := (ProgLoc / P̂id)× Ênv × K̂Addr × T̂ime

Ŝtore := (V̂Addr → P(V̂alue))× (K̂Addr → P(K̂ont))

̂Mailboxes := P̂id → M̂ailbox P̂id := (ProgLoc × T̂ime) / {ι̂0} ι̂0 := t̂0

Ênv := Var ⇀ V̂Addr V̂alue := Ĉlosure / P̂id Ĉlosure := ProgLoc × Ênv

each equipped with an abstraction function defined by an appropriate pointwise
extension. We will call all of them α since it will not introduce ambiguities. The

abstract domain K̂ont is the pointwise abstraction of Kont , and we will use the
same tags as those in the concrete domain. The abstract functions ̂newkpush,
̂newkpop, n̂ewva and n̂ewpid, are defined exactly as their concrete versions, but

on the abstract domains. When B is a flat domain, the abstraction of a partial
map C = A ⇀ B to Ĉ = Â → P(B̂) , where f̂ ≤

̂C ĝ ⇔ ∀â. f̂(â) ⊆ g(â), is

defined as αC(f) := λâ ∈ Â. {αB(b) | (a, b) ∈ f and αA(a) = â}.
The operations on the parameter domains need to ‘behave’ with respect to the

abstraction functions: the standard correctness conditions listed below must be

Automatic Verification of Erlang-Style Concurrency 467

satisfied by their instances. These conditions amount to requiring that what we
get from an application of a concrete auxiliary function is adequately represented
by the abstract result of the application of the abstract counterpart of that
auxiliary function. The partial orders on the domains are standard pointwise
extensions of partial orders of the parameter domains.

Definition 6 (Sound basic domains abstraction). A basic domains abstrac-
tion I is sound just if the conditions below are met by the auxiliary operations:

αt(tick(�, t)) ≤ t̂ick(�, αt(t)) (1)

σ̂ ≤ σ̂′ ∧ d̂ ≤ d̂′ =⇒ r̂es(σ̂, d̂) ≤ r̂es(σ̂′, d̂′) (2)

∀σ̂ ≥ α(σ). αd(res(σ, d)) ∈ r̂es(σ̂, α(d)) (3)

αm(enq(d,m)) ≤ ênq(α(d), αm(m)) αm(ε) = ε̂ (4)

if mmatch(p,m, ρ, σ) = (i, θ,m′) then ∀m̂ ≥ α(m), ∀σ̂ ≥ α(σ)

∃m̂′ ≥ α(m′) such that (i, α(θ), m̂′) ∈ m̂match(p, m̂, α(ρ), σ̂) (5)

Following the Abstract Interpretation framework, one can exploit the soundness
constraints to derive, by algebraic manipulation, the definitions of the abstract
auxiliary functions which would then be correct by construction [26].

Definition 7 (Abstract Semantics). Once the abstract domains are fixed,
the rules that define the abstract transition relation are straightforward abstrac-
tions of the original ones. In Figure 4, we present the abstract counterparts of
the concurrency rules for the operational semantics of Figure 3; the full list of
the abstract rules can be found in the extended paper [12]. defining the non-

deterministic abstract transition relation on abstract states (�) ⊆ Ŝtate× Ŝtate.
When referring to a particular program P, the abstract semantics is the portion
of the graph reachable from sP .

Theorem 1 (Soundness of Analysis). Given a sound abstraction of the basic

domains, if s → s′ and αcfa(s) ≤ u, then there exists u′ ∈ Ŝtate such that
αcfa(s

′) ≤ u′ and u � u′.

Now that we have defined a sound abstract semantics we give sufficient conditions
for its computability.

Theorem 2 (Decidability of Analysis). If a given (sound) abstraction of the
basic domains is finite, then the derived abstract semantics is finite; it is also
decidable if the associated auxiliary operations (in Definition 6) are computable.

Abstracting Mailboxes. For the analysis to be computable abstract mailboxes
need to be finite too. Abstracting addresses (and data) to a finite set, values, and
thus messages, become finite. We abstract a mailbox by an un-ordered set of mes-
sages in the static analysis overcoming the potential unbounded length of mail-
boxes but loosing information about the sequence and removal of messages. This

468 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

abstraction is formalised in the domain Mset := 〈P(V̂alue),⊆,∪, αset, ênqset, ∅,
m̂matchset〉 where the abstract versions of enq and the matching function can
be derived from the correctness condition: αset(m) := {α(d) | ∃i. mi = d},
ênqset(d̂, m̂) := {d̂} ∪ m̂ and

m̂matchset(p1 . . . pn, m̂, ρ̂, σ̂) :=
{
(i, θ̂, m̂)

∣∣∣d̂ ∈ m̂, θ̂ ∈ m̂atchρ̂,σ̂(pi, d̂)
}

Abstracting Data. We included data in the value addresses in the definition of
VAddr in order to allow for sensitivity towards data in the analysis. However,
cutting contours is no longer sufficient to make VAddr finite. A simple solution
is to use the trivial data abstraction Data0 := { }, discarding the value, or if
more precision is required, any finite data-abstraction would do: the analysis will
then distinguish states that differ because of different bindings in their frame.

A data abstraction particularly well-suited to languages with algebraic data-
types is the abstraction that discards every sub-term of a constructor term that is
nested at a deeper level than a parameter D. We call DataD such an abstraction,
the formal definition of which can be found in [12].

Abstracting Time. k-CFA is a specific time abstraction which yields an analysis
that distinguishes dynamic contexts up to a given bound k; this is achieved by
truncating contours at length k to obtain their abstract counterparts obtain-
ing the abstract domain Timek :=

⋃
0≤i≤k ProgLoc

i, αk
t (�0 . . . �k · t) := �0 . . . �k.

The simplest analysis we can then define is a 0-CFA with the basic domains

abstraction 〈Data0,Time0, M̂ailbox set〉. With this instantiation many of the do-
mains collapse into singletons. However, the analysis keeps a separate store and
mailboxes for each abstract state and leads to an exponential algorithm. To
improve the complexity we apply a widening along the lines of [36, Section 7]:
we replace the separate store and separate mailboxes for each state by a global
copy of each. This reduces significantly the state-space we need to explore: the
algorithm becomes polynomial in the size of the program.

Considering other abstractions for the basic domains easily leads to expo-
nential algorithms; in particular, the state-space grows linearly wrt the size of
abstract data so the complexity of the analysis using DataD is exponential in D.

Open Programs. Often it is useful to verify an open expression where its input is
taken from a regular set of terms [30]. For this purpose we introduce a new prim-
itive choice that non-deterministically calls one of its arguments. For instance,
an interesting way of closing N in Example 1 is to bind it to any num():

any num() = choice(fun()→ zero, fun() → {succ, any num()}).
If the state running two or more instances of inc’s critical section is uncoverable,
then mutual exclusion is ensured for arbitrarily many instances of inc.

6 Generating the Actor Communicating System

The CFA algorithm allows us to derive a sound representation of the control-
flow of the program taking into account higher-order computation and some

Automatic Verification of Erlang-Style Concurrency 469

information about synchronization. The abstract transition relation gives us a
rough scheme of the possible transitions that we can ‘guard’ with communication
and process creation actions. These guarded rules will form the definition of an
ACS that simulates the semantics of the input λActor program.

Terminology. We identify a common pattern of the rules of the abstract seman-
tics. In each rule R, the premise distinguishes an abstract pid ι̂ and an abstract
process state q̂ = 〈e, ρ̂, â, t̂ 〉 associated with ι̂ i.e. q̂ ∈ π̂(ι̂) and the conclusion of
the rule associates a new abstract process state—call it q̂′—with ι̂ i.e. q̂′ ∈ π̂′(ι̂).
Henceforth we shall refer to (ι̂, q̂, q̂′) as the active components of the rule R.

Definition 8 (Generated ACS). Given a λActor program P, a sound basic
domains abstraction I = 〈T ,M,D〉 and a sound data abstraction for messages

Dmsg = 〈M̂sg , αmsg, r̂esmsg〉 the Actor communicating system generated by P, I
and Dmsg is AP := 〈P̂id , ̂ProcState, M̂sg , R, α(ι0), α(π0(ι0))〉 where sP = 〈π0,
μ0, σ0, t0〉 is the initial state with π0 = [ι0 �→ 〈P , [],∗, t0〉] and the rules in R are
defined by induction over the following rules.

(AcsRec) If ŝ � ŝ′ is proved by AbsReceive with active components (ι̂, q̂, q̂′)
where d̂ = (pi, ρ̂

′) is the abstract message matched by m̂match and m̂ ∈
r̂esmsg(σ̂, d̂), then ι̂ : q̂

?m̂−−→ q̂′ is in R.
(AcsSend) If ŝ � ŝ′ is proved by AbsSend with active components (ι̂, q̂, q̂′)

where d̂ is the sent abstract value and m̂ ∈ r̂esmsg(σ̂, d̂), then ι̂ : q̂
ι̂′!m̂−−−→ q̂′ is

in R.
(AcsSp) If ŝ � ŝ′ is proved by AbsSpawn with active component (ι̂, q̂, q̂′) where

ι̂′ is the new abstract pid that is generated in the premise of the rule, which

gets associated with the process state q̂′′ = 〈e, ρ̂,∗〉 then ι̂ : q̂
νι̂′.q̂′′−−−−→ q̂′ is in R.

(AcsTau) If ŝ � ŝ′ is proved by any other rule with active components (ι̂, q̂, q̂′),
then ι̂ : q̂

τ−→ q̂′ is in R.

As we will make precise later, keeping P̂id and ̂ProcState small is of paramount
importance for the model checking of the generated ACS to be feasible. This
is the main reason why we keep the message abstraction independent from the
data abstraction: this allows us to increase precision with respect to types of
messages, which is computationally cheap, and keep the expensive precision on
data as low as possible. It is important to note that these two ‘dimensions’ are
in fact independent and a more precise message space enhances the precision of
the ACS even when using Data0 as the data abstraction.

In our examples (and in our implementation) we use a DataD abstraction for
messages where D is the maximum depth of the receive patterns of the program.

Definition 9. The function αacs : State → (P̂id × (̂ProcState / M̂sg) → N) re-
lating concrete states and states of the ACS is defined as

αacs(〈π, μ, σ〉) :=

⎧⎪⎪⎨⎪⎪⎩
(ι̂, q̂) �→

∣∣{ι | α(ι) = ι̂, α(π(ι)) = q̂}
∣∣

(ι̂, m̂) �→
∣∣∣∣∣
{
(ι, i)

∣∣∣∣∣α(ι) = ι̂,

αmsg(res(σ, μ(ι)i)) = m̂

}∣∣∣∣∣

470 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

cell startι̂0 :

res start sp inc

stop

τ
νι̂c.res free

νι̂i.inc0

τ res freeι̂c :

ack

res locked Res

cell?lock

ι̂i!ack

?req
?unlock

τ

ι̂i!ans

τ

inc0ι̂i : inc1 inc2 inc3 inc4 inc5 stop
ι̂c!lock ?ack ι̂c!req ?ans ι̂c!req ι̂c!unlock

Fig. 5. ACS generated by the algorithm from Example 1

It is important to note that most of the decidable properties of the generated
ACS are not even expressible on the CFA graph alone: being able to predicate on
the contents of the counters means we can decide boundedness, mutual exclusion
and many other expressive properties.

Theorem 3 (Soundness of generated ACS). For all choices of I and Dmsg,
for all concrete states s and s′, if s → s′ and αacs(s) ≤ v then there exists v′

such that αacs(s
′) ≤ v′, and v →acs v

′.

Let AP be the ACS derived from a given λActor program P . From Theorem 3 we
have that �AP� simulates the semantics of P : for each run s → s1 → s2 → . . .
of P , there exists a �AP�-run v →acs v1 →acs v2 →acs . . . such that αacs(s) = v
and for all i, αacs(si) ≤ vi. Simulation preserves all paths so reachability (and
coverability) is preserved.

Example 2. Figure 5 shows a pictorial representation of the ACS generated by
our procedure from the program in Example 1 (with the parametric entry point
of Section 4) using a 0-CFA analysis.The three pid-classes correspond to the
starting process ι̂0 and the two static calls of spawn in the program, the one for
the shared cell process ι̂c and the other, ι̂i, for all the processes running inc.

The entry point is (ι̂0, cell start). The second component represents the lock-
ing protocol quite faithfully. The VAS semantics is accurate enough to prove
mutual exclusion of state ‘inc2’, which is protected by locks. This property can
be stated as a coverability problem for VAS: can inc2 = 2 be covered? We can
answer this question algorithmically: in this case the answer is negative and
soundness allows us to conclude that our input program satisfies the property.

Complexity of the Generation. Generating an ACS from a program amounts to
calculating the analysis of Section 5 and aggregating the relevant ACS rules for
each transition of the analysis. Since we are adding O(1) rules to R for each
transition, the complexity of the generation is the same as the complexity of the
analysis itself. The only reason for adding more than one rule to R for a single
transition is the cardinality of M̂sg but since this costs only a constant overhead,
increasing the precision with respect to message types is not as expensive as
adopting more precise data abstractions.

Automatic Verification of Erlang-Style Concurrency 471

Dimension of the Abstract Model. The complexity of coverability on VAS is
Expspace in the dimension of the VAS; hence for the approach to be practical, it
is critical to keep the number of components of the VAS underlying the generated
ACS small; in what follows we call dimension of an ACS the dimension of the
VAS underlying its VAS semantics.

Our algorithm produces an ACS with dimension (| ̂ProcState|+ |M̂sg |)×|P̂id |.
With the 0-CFA abstraction described at the end of Section 4, ̂ProcState is poly-

nomial in the size of the program and P̂id is linear in the size of the program so,
assuming |M̂sg | to be a constant, the dimension of the generated ACS is polyno-
mial in the size of the program, in the worst case. Due to the parametricity of the
abstract interpretation we can adjust for the right levels of precision and speed.
For example, if the property at hand is not sensitive to pids, one can choose a

coarser pid abstraction. It is also possible to greatly reduce ̂ProcState: we observe
that many of the control states result from intermediate functional reductions;
such reductions performed by different processes are independent, thanks to the
actor model paradigm. This allows for the use of preorder reductions. In our
prototype, as described in Section 7, we implemented a simple reduction that
collapses internal functional transitions, if irrelevant to the property at hand.
This has proven to be a simple yet effective transformation yielding a significant

speedup. We conjecture that, after the reduction, the cardinality of ̂ProcState is
quadratic only in the number of send, spawn and receive of the program.

7 Evaluation, Limitations and Extensions

To evaluate the feasibility of the approach, we have constructed Soter, a pro-
totype implementation of our method. Written in Haskell, Soter takes as input
a single Erlang module annotated with safety properties in the form of simple
assertions. Soter supports the full higher-order fragment and the (single-node)
concurrency and communication primitives of Erlang; for more details about the
tool see [11]. The annotated Erlang module is first compiled to Core Erlang by
the Erlang compiler. A 0-CFA-like analysis, with support for the DataD data
and message abstraction, is then performed on the compile; subsequently an
ACS is generated. The ACS is simplified and then fed to the backend model-
checker along with coverability queries translated from the annotations in the
input Erlang program. Soter’s backend is the tool BFC [20] which features a fast
coverability engine for a variant of VAS. At the end of the verification pathway,
if the answer is YES then the program is safe with respect to the input property,
otherwise the analysis is inconclusive.

In Table 1 we summarise our experimental results. Many of the examples
are higher-order, use dynamic (and unbounded) process creation and non-trivial
synchronization. Example 1 appears as reslock and Soter proves mutual exclusion
of the clients’ critical section. concdb is the example program of [18] for which we
prove mutual exclusion. pipe is inspired by the ‘pipe’ example of [21]; the property
proved here is boundedness of mailboxes. sieve is a dynamically spawning higher-
order concurrent implementation of Erathostene’s sieve inspired by a program by

472 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

Table 1. Soter Benchmarks. LOC is the number of lines of compiled Core Erlang.
PRP is the number of properties to be proven. ORD is the order of the program. D and
M are the data and message abstraction depth. In the “Safe?” column, “no*” means
that the verification was inconclusive but the program is safe; “no” means that the
program is not safe and Soter finds a genuine counterexample. “Places” is the number
of places of the underlying Petri net after simplification; “Ratio” is the ratio between
the number of places before and after simplification. All times are in seconds.

Name LOC PRP ORD SAFE?
ABS ACS SIZE TIME
D M Places Ratio Analysis Simpl BFC Total

reslock 356 1 2 yes 0 2 40 10% 0.56 0.08 0.82 1.48
sieve 230 3 2 yes 0 2 47 19% 0.26 0.03 2.46 2.76
concdb 321 1 1 yes 0 2 67 12% 1.10 0.16 5.19 6.46
state factory 295 2 2 yes 0 1 22 4% 0.59 0.13 0.02 0.75
pipe 173 1 2 yes 0 0 18 8% 0.15 0.03 0.00 0.18
ring 211 1 2 yes 0 2 36 9% 0.55 0.07 0.25 0.88
parikh 101 1 1 yes 0 2 42 41% 0.05 0.01 0.07 0.13
unsafe send 49 1 1 no 0 1 10 38% 0.02 0.00 0.00 0.02
safe send 82 1 1 no* 0 1 33 36% 0.05 0.01 0.00 0.06
safe send 82 4 1 yes 1 2 82 34% 0.23 0.03 0.06 0.32
firewall 236 1 2 no* 0 2 35 10% 0.36 0.05 0.02 0.44
firewall 236 1 2 yes 1 3 74 10% 2.38 0.30 0.00 2.69
finite leader 555 1 2 no* 0 2 56 20% 0.35 0.03 0.01 0.40
finite leader 555 1 2 yes 1 3 97 23% 0.75 0.07 0.86 1.70
stutter 115 1 1 no* 0 0 15 19% 0.04 0.00 0.00 0.05
howait 187 1 2 no* 0 2 29 14% 0.19 0.02 0.00 0.22

Rob Pike [32]; Soter can prove all the mailboxes are bounded. safe send, firewall
and finite leader could be successfully verified after refining the data abstraction.
All example programs, annotated with coverability queries, can be viewed and
verified using Soter at http://mjolnir.cs.ox.ac.uk/soter/.

There are programs and correctness properties that cannot be proved using
any of the presented abstractions. Programs whose correctness depends on the
order in which messages are delivered are abstracted too coarsely by the counter
abstraction on mailboxes; however this is an uncommon pattern. Properties that
assume the precise identification of processes are also not amenable to our ap-
proach because of the abstraction on pids. Finally, stack-based reasoning is out of
reach of the current abstractions. The examples stutter and howait were designed
specifically to illustrate Soter’s limitations, see [12] for details.

Refinement and Extensions. The parametric definition of our abstract seman-
tics allows us to tune the precision of the analysis. For safety properties, the
counter-example witnessing a no-instance is a finite run of the abstract model.
We conjecture that, given a spurious counter-example, a suitable refinement of
the basic domains abstraction is computable which eliminates the spurious run
of the corresponding abstract semantics. The development of a fully-fledged CE-
GAR loop is a topic of ongoing research.

http://mjolnir.cs.ox.ac.uk/soter/

Automatic Verification of Erlang-Style Concurrency 473

The general architecture of our approach, combining static analysis and ab-
stract model generation, can be adapted to accommodate different language
features and different abstract models. By appropriate decoration of the anal-
ysis, it is possible to derive even more complex models for which semi-decision
verification procedures have been developed [4,23].

8 Related Work and Conclusions

Verification or bug-finding tools for Erlang [24,29,22,7,8,6] typically rely on static
analysis. The information obtained, usually in the form of a call graph, is then
used to extract type constraints or infer runtime properties. Examples of static
analyses of Erlang programs in the literature include data-flow [6], control-
flow [29,22] and escape [7] analyses. Reppy and Xiao [34] and Colby [9] analyse
the communication patterns of CML, which is based on typed channels and syn-
chronous message passing, unlike Erlang’s Actor-based model. To our knowledge,
none of these analyses derives an infinite-state system.

Van Horn and Might [27] derive a CFA for a multithreaded extension of
Scheme, using the same methodology [36] that we follow. The concurrency model
therein is thread-based, and uses a compare-and-swap primitive. Our contribu-
tion, in addition to extending the methodology to Actor concurrency, is to use
the derived parametric abstract interpretation to bootstrap the construction of
an infinite-state abstract model for automated verification.

Venet [37] proposed an abstract interpretation framework for the sanalysis of
π-calculus, later extended to other process algebras by Feret [13] and applied to
CAP, a process calculus based on the Actor model, by Garoche [17]. In particular,
Feret’s non-standard semantics can be seen as an alternative to Van Horn and
Might’s methodology, but tailored for process calculi.

Huch [18] uses abstract interpretation and model checking to verify LTL-
definable properties of a restricted fragment of Erlang programs:

(i) order-one (ii) tail-recursive, (iii) mailboxes are bounded (iv) programs
spawn a fixed, statically computable, number of processes. Given a data ab-
straction function, his method transforms a program to an abstract, finite-state
model. In contrast, our method can verify Erlang programs of every finite order,
with no restriction on the size of mailboxes, or the number of processes that may
be spawned. Since our method of verification is by transformation to a decidable
infinite-state system that simulates the input program, it is capable of greater
accuracy.

McErlang is a model checker for Erlang programs developed by Fredlund
and Svensson [15]. Given a program, a Büchi automaton, and an abstraction
function, McErlang explores on-the-fly a product of an abstract model of the
program and the Büchi automaton. When the abstracted model has infinitely
many reachable states, McErlang’s exploration will not terminate. McErlang
implements a fully-fledged Erlang runtime system, and it supports a substantial
part of the language, including distributed and fault-tolerant features.

Asynchronous Programs, i.e. first-order recursive procedures with finite data
which can make an unbounded number of asynchronous calls, can be encoded

474 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

precisely into VAS and thus verified using reachability [19,16]. This infinite-state
model supports call-stacks, through Parikh images, but not message-passing.

ACS can be expressed as processes in a suitable variant of CCS [28]. Decidable
fragments of process calculi have been used in the literature to verify concur-
rent systems. Meyer [25] isolated a rich fragment of the π-calculus called depth-
bounded. For certain patterns of communication, this fragment can be the basis
of an abstract model that avoids the “merging” of mailboxes of the processes
belonging to the same pid-class. Erlang programs however can express processes
which are not depth bounded. We plan to address the automatic abstraction of
arbitrary Erlang programs as depth-bounded process elsewhere.

Dialyzer [22,7,8] is a popular bug finding tool, included in the standard Er-
lang / OTP distribution. Given an Erlang program, the tool uses flow and es-
cape [31] analyses to detect specific error patterns. Building on top of Dialyzer’s
static analysis, success types are derived. Lindahl and Sagonas’ success types [22]
‘never disallow the use of a function that will not result in a type clash during
runtime’ and thus never generate false positives. Dialyzer puts to good use the
type annotations that programmers do use in practice; it scales well and is effec-
tive in detecting ‘discrepancies’ in Erlang code. However, success typing cannot
be used to verify program correctness.

Conclusion. We have defined a generic analysis for λActor, and a way of ex-
tracting from the analysis a simulating infinite-state abstract model in the form
of an ACS, which can be automatically verified for coverability: if a state of
the abstract model is not coverable then the corresponding concrete states of
the input λActor program are not reachable. Our constructions are parametric
thus enabling different analyses to be easily instantiated. In particular, with a
0-CFA-like specialisation of the framework, the analysis and generation of the
ACS are computable in polynomial time. Further, the dimension of the resulting
ACS is polynomial in the length of the input program, small enough for the
verification problem to be tractable in many useful cases. The empirical results
using our prototype implementation Soter are encouraging. They demonstrate
that the abstraction framework can be used to prove interesting safety properties
of non-trivial programs automatically.

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

2. Armstrong, J.: Erlang. CACM 53(9), 68 (2010)
3. Armstrong, J., Virding, R., Williams, M.: Concurrent programming in Erlang.

Prentice Hall (1993)
4. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of

concurrent programs with procedures. ACM SIGPLAN Notices 38, 62–73 (2003)
5. Carlsson, R.: An introduction to Core Erlang. In: Proceedings of the PLI 2001

Erlang Workshop (2001)
6. Carlsson, R., Sagonas, K., Wilhelmsson, J.: Message analysis for concurrent pro-

grams using message passing. ACM TOPLAS (2006)

Automatic Verification of Erlang-Style Concurrency 475

7. Christakis, M., Sagonas, K.: Static detection of race conditions in erlang. In: Carro,
M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 119–133. Springer, Heidelberg
(2010)

8. Christakis, M., Sagonas, K.: Detection of asynchronous message passing errors
using static analysis. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS,
vol. 6539, pp. 5–18. Springer, Heidelberg (2011)

9. Colby, C.: Analyzing the communication topology of concurrent programs. In:
PEPM, pp. 202–213 (1995)

10. D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Verifying Erlang-style concurrency au-
tomatically. Technical report, University of Oxford DCS Technical Report (2011),
http://mjolnir.cs.ox.ac.uk/soter/cpmrs.pdf

11. D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Soter: an automatic safety verifier for
Erlang. In: AGERE! 2012, pp. 137–140. ACM (2012)

12. D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Automatic verification of Erlang-style
concurrency. CoRR, abs/1303.2201 (2013), http://arxiv.org/abs/1303.2201

13. Feret, J.: Abstract interpretation of mobile systems. Journal of Logic and Algebraic
Programming 63(1), 59–130 (2005)

14. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1-2), 63–92 (2001)

15. Fredlund, L., Svensson, H.: McErlang: a model checker for a distributed functional
programming language. In: ICFP, pp. 125–136 (2007)

16. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs.
TOPLAS 34(1) (2012)

17. Garoche, P.-L., Pantel, M., Thirioux, X.: Static safety for an actor dedicated
process calculus by abstract interpretation. In: Gorrieri, R., Wehrheim, H. (eds.)
FMOODS 2006. LNCS, vol. 4037, pp. 78–92. Springer, Heidelberg (2006)

18. Huch, F.: Verification of Erlang programs using abstract interpretation and model
checking. In: ICFP, pp. 261–272 (1999)

19. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL 2007, pp. 339–350. ACM, New York (2007)

20. Kaiser, A., Kroening, D., Wahl, T.: Efficient coverability analysis by proof mini-
mization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 500–515. Springer, Heidelberg (2012), www.cprover.org/bfc/

21. Kobayashi, N., Nakade, M., Yonezawa, A.: Static analysis of communication for
asynchronous concurrent programming languages. In: Mycroft, A. (ed.) SAS 1995.
LNCS, vol. 983, pp. 225–242. Springer, Heidelberg (1995)

22. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
PPDP, pp. 167–178 (2006)

23. Long, Z., Calin, G., Majumdar, R., Meyer, R.: Language-Theoretic abstraction
refinement. In: de Lara, J., Zisman, A. (eds.) FASE. LNCS, vol. 7212, pp. 362–376.
Springer, Heidelberg (2012)

24. Marlow, S., Wadler, P.: A practical subtyping system for Erlang. In: ICFP, pp.
136–149 (1997)

25. Meyer, R.: On boundedness in depth in the π-calculus. In: Fifth Ifip International
Conference On Theoretical Computer Science, pp. 477–489 (2008)

26. Midtgaard, J., Jensen, T.: A calculational approach to control-flow analysis by ab-
stract interpretation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079,
pp. 347–362. Springer, Heidelberg (2008)

27. Might, M., Van Horn, D.: A family of abstract interpretations for static analysis of
concurrent higher-order programs. In: Yahav, E. (ed.) SAS. LNCS, vol. 6887, pp.
180–197. Springer, Heidelberg (2011)

http://mjolnir.cs.ox.ac.uk/soter/cpmrs.pdf
http://arxiv.org/abs/1303.2201
www.cprover.org/bfc/

476 E. D’Osualdo, J. Kochems, and C.-H. Luke Ong

28. Milner, R.: A calculus of communicating systems, vol. 92. Springer, Heidelberg
(1980)

29. Nyström, S.: A soft-typing system for Erlang. In: ACM Sigplan Erlang Workshop,
pp. 56–71 (2003)

30. Ong, C.-H.L., Ramsay, S.J.: Verifying higher-order functional programs with
pattern-matching algebraic data types. In: POPL, pp. 587–598 (2011)

31. Park, Y.G., Goldberg, B.: Escape analysis on lists. ACM SIGPLAN Notices 27,
116–127 (1992)

32. Pike, R.: Concurrency and message passing in Newsqueak. Google Talks Archive,
http://youtu.be/hB05UFqOtFA

33. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoretical Computer Science 6, 223–231 (1978)

34. Reppy, J.H., Xiao, Y.: Specialization of CML message-passing primitives. In:
POPL, pp. 315–326 (2007)

35. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University (1991)

36. Van Horn, D., Might, M.: Abstracting abstract machines. In: ICFP, pp. 51–62
(2010)

37. Venet, A.: Abstract interpretation of the pi-calculus. In: LOMAPS, pp. 51–75
(1996)

http://youtu.be/hB05UFqOtFA

Contextual Locking for Dynamic Pushdown

Networks�

Peter Lammich1, Markus Müller-Olm2, Helmut Seidl1, and Alexander Wenner2

1 Technische Universität München, Germany
{lammich,seidl}@in.tum.de

2 Institut für Informatik, Westfälische Wilhelms-Universität Münster, Germany
{markus.mueller-olm,alexander.wenner}@wwu.de

Abstract. Contextual locking is a scheme for synchronizing between
possibly recursive processes that has been proposed by Chadha et al. re-
cently. Contextual locking allows for arbitrary usage of locks within the
same procedure call and Chadha et al. show that control-point reach-
ability for two processes adhering to contextual locking is decidable in
polynomial time. Here, we complement these results. We show that in
presence of contextual locking, control-point reachability becomes
PSPACE-hard, already if the number of processes is increased to three.
On the other hand, we show that PSPACE is both necessary and suffi-
cient for deciding control-point reachability of k processes for k > 2, and
that this upper bound remains valid even if dynamic spawning of new
processes is allowed. Furthermore, we consider the problem of regular
reachability, i.e., whether a configuration within a given regular set can
be reached. Here, we show that this problem is decidable for recursive
processes with dynamic thread creation and contextual locking. Finally,
we generalize this result to processes that additionally use a form of join
operations.

1 Introduction

Analysing parallel programs is notoriously hard, especially in the presence of
procedures and synchronisation. Ramalingam showed that even simple safety
properties like reachability for programs with synchronous communication and
procedures are undecidable [17]. The same holds for mutual exclusion via locks
[10]. Undecidability can be avoided by using abstraction to over-approximate
reachability [2] or by considering restricted classes of executions only to under-
approximate reachability [5,16]. Identifying synchronization patterns where ex-
act reachability is decidable remains a challenging problem.

Chadha et al. propose contextual locking, where arbitrary locking may occur
as long as it does not cross procedure boundaries [4]. On the one hand, this
constraint on lock usage is shown to lead to a decidable simultaneous reachability
problem for two processes. On the other hand Chadha et al. demonstrate that

� This work was partially funded by the DFG project OpIAT (Optimal Interprocedural
Analysis of Programs with Thread Creation, MU 1508/1 and SE 551/13).

F. Logozzo and M. Fähndrich (Eds.): SAS 2013, LNCS 7935, pp. 477–498, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

478 P. Lammich et al.

it is suitable to model common locking patterns and we refer the reader to their
paper for a detailed justification of contextual locking and comparison with other
locking schemes. The contribution of this paper is to extend their result to more
general settings.

The main observation of Chadha et al. is, that it suffices to regard executions
where the procedure calls of both processes occur well-nested. This reduces the
problem of checking reachability for two processes to reachability of a single
pushdown process. However, already for three processes, this reduction is no
longer possible. Consider the following three processes T1, T2, T3 with procedures
P,Q using contextual locking:

T1 : rel(B)5; acq(B)8; rel(C)9; acq(C)12;
T2 : P ; rel(D)13; acq(D)16;
T3 : rel(A)1; acq(A)4; Q;

P : acq(A)2; rel(A)3; acq(C)10; rel(C)11;
Q : acq(B)6; rel(B)7; acq(D)14; rel(D)15;

Assume that the processes hold locks {B,C}, {D} and {A}, respectively, at the
beginning of the execution. Using further locks, this can be ensured even when
starting with the empty set of locks for each process. All three processes can
reach the end simultaneously, for example by following the annotated schedule.
However, in any execution where all processes reach the end, the calls to proce-
dures P and Q are necessarily non-nested. Lock A forces P to start before Q,
locks B and C require Q to start before P ends and lock D ensures that Q only
ends after P has ended. Therefore, in general, reachability of multi-pushdown
processes cannot be easily reduced to reachability of a single pushdown process.

We show that simultaneous reachability for systems with at least three pro-
cesses is PSPACE-complete (§2). Furthermore, the problem remains PSPACE-
complete for systems with dynamic thread creation (§3), which better fit the
concepts of real languages like Java and C with pthreads. While simultaneous
reachability focuses on the states of constantly many processes in the configu-
ration, regular reachability concerns the whole configuration, and thus is more
natural for systems with an unbounded number of processes. By exploiting well-
quasi orderings, similar to [6], for suitably abstracted configurations, we show
that regular reachability is decidable for systems with dynamic thread creation
(§4) and joins (§5) as additional synchronisation primitive.

In related work Bonnet et al. have recently combined contextual locking with
reentrant locking [1]. In this setting simultaneous reachability is shown to be
decidable under bounded context switches. Kahlon et al. have shown, that si-
multaneous reachability for two processes becomes decidable when locks are
only used in a well-nested fashion, i.e., when the last lock acquired always is the
first lock to be released [10]. This result was later generalized to systems with
dynamic process creation [13], regular reachability [14,12], and joins [7]. Fur-
thermore, Kahlon et al. generalized their result to bounded lock-chains, where
nesting of locking may be violated, as long as chains of overlapping lock regions

Contextual Locking for Dynamic Pushdown Networks 479

are bounded. In this setting, simultaneous reachability for two processes is still
decidable [8,9].

2 The Static Case

In [4] an algorithm is presented that decides whether two given control-states are
simultaneously reachable by a system of two possibly recursive processes which
use contextual locking. Their algorithm is exponential in the number of locks,
but polynomial in the size of the program. It remained open whether and how
this approach can be generalized to more than two threads. In the following,
we provide an algorithm for deciding a slightly more general problem, namely,
reachability of a control-sequence, for systems of k recursive processes with k ≥ 1
which runs in PSPACE. Moreover we show that the original algorithm cannot be
easily generalized to more than two threads by showing that reachability already
for three processes is PSPACE hard—even for a constant number of locks.

We consider a multi-pushdown system P with a fixed number k ∈ N of pro-
cesses with a shared finite set of locks L. Each process i ∈ {1, . . . k} maintains
a thread-local state which is of the form (q,X) where q is from a finite set Q
of process-local information and X ⊆ L is the set of currently held locks. Fur-
thermore, we are given a finite set Γ of local information of possibly called pro-
cedures. Thus, each γ ∈ Γ encodes the name of the current procedure together
with a finite amount of information about the local state of the current call to
the procedure. Accordingly, the current call-stack (or pushdown) of the process
is represented by a sequence w = γ1 . . . γk ∈ Γ ∗. For convenience, we assume
that the top of the pushdown is on the left side, i.e., equals γ1. A configuration of
a single process thus is given by a pair ((q,X), w) where q ∈ Q,X ⊆ L, w ∈ Γ ∗.
Each process is defined by a finite set of rules of the form:

r : (q, γ)
τ−→ (q′, γ′) (computation step)

r : (q, γ)
τ−→ (q′, γ1γ2) (procedure call)

r : (q, γ)
τ−→ (q′, ε) (procedure exit)

r : (q, γ)
acq(l)−−−→ (q′, γ′) (acquire lock l ∈ L)

r : (q, γ)
rel(l)−−−→ (q′, γ′) (release lock l ∈ L)

where r is a unique identifier for the corresponding rule, and τ is the empty
label. The rules define the effects of actions onto the thread configuration, i.e.,
the process-local state, the (left end of the) call-stack and the effect onto the set
of currently held locks. Let eff(r) be the effect on the set of locks of a rule r.

A step ((q,X), γw)
r
=⇒ ((q′, X ′), w′w) on local configurations is defined if there

is a rule r : (q, γ)
e−→ (q′, w′) and X ′ = X ∪ {l} with l /∈ X if eff(r) = acq(l)

or X ′ = X \ {l} with l ∈ X if eff(r) = rel(l) or X = X ′ if eff(r) = τ . For a
sequence π = r1 . . . rm of rules, we write [[π]] ((q,X), w) = ((q′, X ′), w′) if the
sequence r1, . . . , rm of rules is successively executable starting from the thread
configuration ((q,X), w) and results in the configuration ((q′, X ′), w′).

480 P. Lammich et al.

A process adheres to contextual locking if lock operations do not cross proce-
dure boundaries, i.e. a lock acquired during a procedure call must be released in
the same procedure call and no procedure called in the meantime may release it
temporarily. Formally for all X ⊆ L and every call rule (q, γ)

τ−→ (q′, γ1γ2) and
all sequences π with [[π]] ((q′, X), γ1) = ((q′′, X ′), w), the following holds:

1. X ⊆ X ′;
2. if w = ε, then X = X ′.

A configuration of a multi-pushdown system with k processes is a sequence

t = ((q1, X1), w1) . . . ((qk, Xk), wk)

where we assume that the sets Xi of locks are pairwise disjoint. W.l.o.g. we may
assume that all processes share the same set of rules, but may differ in their
respective start configurations. For an initial configuration we assume Xi = ∅
and wi ∈ Γ for all i ∈ {1, . . . , k}. An execution of the system can be considered as
an interleaving of executions of the participating threads i ∈ {1, . . . , k}. In order
to distinguish the action of one process from the same action of another process,
we identify actions by means of pairs (i, r) where i identifies the process and r
the performed action. A sequenceΠ of pairs (i, r) starting from configuration t is
executable resulting in configuration t′, if either Π = ε and t′ = t, orΠ = Π ′(i, r)
and the following holds:

1. Π ′ is executable for t resulting in t′′ = ((q′′1 , X
′′
1), w1) . . . ((q

′′
k , X

′′
k), wk);

2. rule r is applicable thread-locally to the configuration ((q′′i , X
′′
i), w

′′
i) of the

ith process resulting in some process configuration ((q′i, X
′
i), w

′
i);

3. if eff(r) = acq(l), then lock l is also globally available, i.e., l /∈ X ′′
1 ∪ . . .∪X ′′

k ;
4. t′ = ((q′1, X

′
1), w

′
1) . . . ((q

′
k, X

′
k), w

′
k), where ((q′j , X

′
j), w

′
j) = ((q′′j , X

′′
j), w

′′
j)

for j �= i.

In this case, we write t′ = [[Π]] t. A configuration t′ is reachable from a config-
uration t if t′ = [[Π]] t for some global execution sequence Π . Likewise, a set T
of configurations is reachable from t iff there is a configuration t′ ∈ T such that
t′ is reachable from t. We now extend simultaneous control-state reachability of
two processes to control-state sequence reachability of k processes and formulate
our first result:

Theorem 1. Assume that t = ((q1, ∅), γ1) . . . ((qk, ∅), γk) is the initial configu-
ration and σ = (q′1, X

′
1) . . . (q

′
k, X

′
k) is a sequence of process-local states of length

k. Then it is decidable in PSPACE for processes which adhere to contextual
locking, whether the set

T = {((q′1, X ′
1), w

′
1) . . . ((q

′
k, X

′
k), w

′
k) | w′

i ∈ Γ ∗}

is reachable from t or not.

The main observation that leads to a PSPACE algorithm is that reachability is
preserved, if only executions are considered where the sizes of occurring push-
downs are polynomially bounded. Intuitively, the pushdown of a process grows

Contextual Locking for Dynamic Pushdown Networks 481

whenever a procedure is called. For every such call, two cases can be distin-
guished. In the first case, the called procedure never returns. In this case, the
pushed return location is dead, it will never make it to the top of the push-
down again and thus can be discarded. In the second case, the called procedure
eventually returns. Thus, the pushdown grows only temporarily. In presence of
recursion, the pushdown still may grow arbitrarily. In the following we therefore
show, that in the case of deeply nested recursive calls that eventually return,
the execution can be transformed into a shorter execution that still preserves
reachability, but uses strictly smaller pushdowns.

For i = 1, . . . , k, let proji denote the homomorphism which extracts from a
global execution sequence Π , with t′ = [[Π]] t, the execution sub-sequence of
the ith process, i.e. the homomorphism proji is defined by proji(i, r) = r and
proji(i

′, r) = ε for i �= i′. In particular, ((q′i, X
′
i), w

′
i) = [[proji(Π)]] ((qi, Xi), wi) if

((qi, Xi), wi) and ((q′i, X
′
i), w

′
i) are the configurations of the ith process in t and

t′, respectively. The proof of Theorem 1 then is based on the following sequence
of lemmas. Lemma 2 allows to discard return information of non-returning pro-
cedure calls by introducing new rules in the pushdown, that allow to effectively
inline such a procedure call.

Lemma 2. Given a multipushdown-system P , a system P ′ can be constructed
such that any control sequence σ = (q′1, X

′
1) . . . (q

′
k, X

′
k) is reachable from an

initial configuration t in P iff the sequence σ′ = (〈q′1,�〉, X ′
1) . . . (〈q′k,�〉, X ′

k) is
reachable from the initial configuration t in P ′ and all pushdowns are empty in
the final configuration.

Proof. The set of states of the new system consists of all old states and additional
states 〈q,⊥〉, 〈q,�〉. The set of pushdown symbols contains all old symbols in ad-
dition to new symbols 〈γ,#〉. The system non-deterministically decides whether
the execution will return to a level in the pushdown. The lowest level which will
be visited again is marked by # in the pushdown. Since symbols below this level
will never be at the top of the pushdown again, we construct the system to remove
them directly, thus # marks the bottom of the pushdown in the new system. ⊥,�
in the state mark whether the pushdown is empty or not. The new set of rules
consists of transitions r : (q, γ)

τ−→ (〈q,⊥〉, 〈γ,#〉) which add the markers to the

initial configuration. Furthermore, we have a rule r′ : (〈q,⊥〉, γ) e−→ (〈q′,⊥〉, w′)
working above the marker in the pushdown for each rule r : (q, γ)

e−→ (q′, w′) of
the old system. Additionally, we add rules that apply to the marked pushdown
symbol. Computation- and lock-steps preserve the position of the marker, thus
we add r′ : (〈q,⊥〉, 〈γ,#〉) e−→ (〈q′,⊥〉, 〈γ′,#〉) for every rule r : (q, γ)

e−→ (q′, γ′).
Return below the marked level empties the pushdown and ends the execu-
tion, thus we add new rules r′ : (〈q,⊥〉, 〈γ,#〉) τ−→ (〈q′,�〉, ε) that reach a

corresponding final state for each rule r′ : (q, γ)
τ−→ (q′, ε). In case of a call-

transition, the system non-deterministically decides whether it will return from
the newly pushed symbol or not. For each call-transition r : (q, γ)

τ−→ (q′, γ1γ2)
we add one rule r′1 : (〈q,⊥〉, 〈γ,#〉) τ−→ (〈q′,⊥〉, γ1〈γ2,#〉) that decides that the
call is returning and thus preserves the position of the marker. A second rule

482 P. Lammich et al.

r′2 : (〈q,⊥〉, 〈γ,#〉) τ−→ (〈q′,⊥〉, 〈γ1,#〉) decides that the call is non-returning,
moves the marker and discards the lower pushdown symbol by only pushing the
upper symbol. To be able to reach a configuration inside a procedure with an
empty pushdown, we finally add rules r′ : (〈q,⊥〉, 〈γ,#〉) τ−→ (〈q,�〉, ε), that
may terminate an execution by emptying a pushdown of size one, preserving the
control state. The claim follows by induction on the length of an execution. The
size of the resulting system only increases by a constant factor from the size of
the original system.

Remark 3. Instead of using ⊥ and # in the construction of Lemma 2, one can
also use this annotation to store information about the discarded pushdown. For
example one can impose a regular constraint on each pushdown in the final con-
figuration. To this end we use states s, s′ of a given automaton A over pushdown
symbols and propagate the state when discarding a pushdown symbol, i.e., only
add call rules r′2 : (〈q, s〉, 〈γ, s′〉) τ−→ (〈q′, s〉, 〈γ1, s′′〉) of the second kind, where

(s′′, γ2, s′) is a transition of A, return rules r′ : (〈q, s〉, 〈γ, s′〉) τ−→ (〈q′,�〉, ε)
where s = s′ and rules r′ : (〈q, s〉, 〈γ, s′〉) τ−→ (〈q,�〉, ε) ending the computation
where (s, γ, s′) is a transition of A. By additionally requiring that s is an initial

and s′ a final state of A in rules r : (q, γ)
τ−→ (〈q, s〉, 〈γ, s′〉) for the initial mark-

ing, we ensure that reaching a final state implies that the discarded pushdown
has an accepting run in the automaton.

Lemma 4 shows that we may disregard nested returning procedure calls, that
are executed in a similar context. Recently, a similar statement was developed
independently by Bonnet et al. for the main proof of [1].

Lemma 4. Assume that t′ = [[Π]] t for global configurations t, t′ where the con-
figuration of the ith process in t is given by ((qi, Xi), wi). Assume further that

there is a call rule r : (q, γ)
τ−→ (q′, γ1γ2) together with a state p such that the

following holds:

– proji(Π) can be written as c1rπc2 with ((q,X), γw) = [[c1]] ((qi, Xi), wi) for
some w where [[π]] ((q′, X), γ1) = (p, ε); and furthermore,

– π = u1rπ
′u2 such that ((q,X ′), γw′) = [[u1]] ((q

′, X), γ1) for some w′ where
[[π′]] ((q′, X ′), γ1) = (p, ε).

Consider a factorization of the global execution Π = C1(i, r)U1(i, r)Π
′U2C2 with

proji(Cj) = cj, proji(Uj) = uj for j ∈ {1, 2} and proji(Π
′) = π′. Assume that for

j ∈ {1, 2}, U ′
j is obtained from Uj by removing all steps of the ith process. Then

the sequence C1U
′
1(i, r)Π

′U ′
2C2 is an execution for t which also results in t′.

Proof. Let t1 denote the configuration which is reached by the global execution
C1. In particular, X is the set of locks held by the ith process in t1. We proceed
by considering longer and longer prefixes of the executions. Let V and V ′ denote
a prefix of U1 and the corresponding prefix of U ′

1, respectively. By induction on
the length of V , we prove that

Contextual Locking for Dynamic Pushdown Networks 483

– The set X is included in the set of locks held by the ith process in the
configuration [[(i, r)V]] t1.

– V ′ is executable and the set X equals the set of locks held by the ith process
in the configuration [[V ′]] t1.

Now consider the second occurrence of the call transition r of the ith process. We
have proven so far, that in particular, X ⊆ X ′. For all other processes, the sets
of acquired locks after the executions (i, r)U1(i, r) and U ′

1(i, r) agree, since these
processes have executed the same sequences of actions. Let t2 = [[(i, r)U1(i, r)]] t1
and t′2 = [[U ′

1(i, r)]] t1. Due to contextual locking, the local execution π′ of the
ith process does not depend on any lock being in X ′ and only acquires locks
that are not in X ′, thus it may also execute with the smaller initial set of locks
X . Therefore, Π ′ is executable both in configurations t2 and t′2 resulting in
configurations t3 and t′3, respectively. Since the processes adhere to contextual
locking, the sets of locks held by the ith process in configurations t3 and t′3,
respectively, equal again X ′ and X , respectively. Now let V and V ′ denote a
prefix of U2 and the corresponding prefix of U ′

2, respectively. By induction on
the length of V , we prove that

– The set X is included in the set of locks held by the ith process in the
configuration [[V]] t3.

– V ′ is executable and the set X equals the set of locks held by the ith process
in the configuration [[V ′]] t′3.

Due to contextual locking, the set of locks held by the ith process in configuration
[[U2]] t3 precisely equals X . It follows that the two configurations [[U2]] t3 and
[[U ′

2]] t
′
3 coincide. Accordingly, C1U

′
1(i, r)U

′
2C2 is a global execution sequence for

t, and the configurations [[Π]] t and [[C1U
′
1(i, r)Π

′U ′
2C2]] t agree.

Proof (Theorem 1). We can now essentially reduce the problem to checking
reachability of a finite state system, whose configurations have polynomial size.
Instead of checking reachability in the original system we check for reachabil-
ity with an empty pushdown in the modified system of Lemma 2. According
to Lemma 4, we can eliminate nested returning procedure calls, which have the
same initial state q, pushdown symbol γ and final state p. It follows by a simple
counting argument, that reachability can be checked using bounded pushdowns
of size O(|Q|2 · |Γ |), since each execution using a larger pushdown can be trans-
formed into one using a smaller pushdown.

We now show that the PSPACE algorithm to establish the decidability of reach-
ability in Theorem 1 cannot be improved in general. In fact, we show that control
sequence reachability is PSPACE-hard already for three processes using contex-
tual locking with a constant number of locks only. Note that this is in sharp
contrast with the result of [4] for two processes with contextual locking where
an upper bound is obtained which is polynomial in the size of the processes and
exponential only in the number of locks.

Theorem 5. For three processes using contextual locking with a constant num-
ber of locks, control sequence reachability is PSPACE-hard.

484 P. Lammich et al.

Proof. The construction of the three processes builds on the observation that
the set of successful runs of a linear space-bounded Turing Machine can be
represented as an intersection L1 ∩ L2 of two languages Li over an alphabet of
fixed size, each of which can be accepted by a pushdown automaton of polynomial
size, that uses its pushdown in a disciplined fashion.

Configurations of a linear space-bounded Turing Machine, i.e. the contents of
the tape together with the current control state, can be represented by words of
fixed length m = k · (n+ 1) over a binary alphabet, where n is the space-bound
and k depends logarithmically on the size of the alphabet and the number of
control states of the Turing Machine. The control state is inserted to the left of
the current position of the head on the tape and each tape symbol and the state
of the Turing Machine is encoded using k bits.

A word of the language L1 is a sequence of subwords of length m, where the
first subword encodes an initial and the last subword is the reverse of a final
configuration of the Turing Machine and the (2l+1)-th subword is the reverse of
the (2l+ 2)-th subword. The language L2 consists of words, where each word is
again a sequence of subwords of length m and the (2l+1)-th subword is now the
reverse encoding of a configuration reachable from the configuration encoded by
the 2l-th subword in one step of the Turing Machine.

We can construct two pushdown processes which accept the languages L1

and L2, respectively, together with an additional finite state process that checks
the intersection. Instead of formally realizing these three processes as a multi-
pushdown system, we prefer to use a more intuitive notation by means of pro-
grams with procedures. In our construction, reading a bit i ∈ {0, 1} is simulated
by temporarily acquiring the lock Ai associated with that bit using use(Ai). We
write use(Z) = acq(Z); rel(Z) for short for a lock Z. The third process tries to
enforce that both pushdown processes read the same bit by only allowing access
to one bit at a time. This is achieved by blocking all locks and only temporarily
releasing the one associated with the intended bit using free(Ai), where we write
free(Z) = rel(Z); acq(Z) for a lock Z.

This mechanism, though, is not yet sufficient to synchronize the two pushdown
processes. The third process may allow a series of bits, but it is not ensured that
each of these bits is read by both pushdown processes or that a pushdown does
not use one release to read the same bit twice. The second problem can be solved
by introducing an additional lock B. Reading a bit i ∈ {0, 1} is then represented
by use(Ai); use(B) and allowing a bit i to be processed by free(Ai); free(B).
Since one occurrence of use(Ai) is no longer directly followed by another one,
two separate uses can no longer be associated with the same operation free(Ai).

Solving the first problem is more intricate. A first idea would be to use the
same mechanism in reverse and introduce locks that are blocked by the pushdown
processes and are meant to be acquired by the synchronizing process. These could
be used after each bit to prevent the synchronizing process from going ahead
before both pushdown processes have read the proposed bit. This, however,
would violate contextual locking, since the pushdown processes would have to
block these locks from the start and only release them temporarily after each

Contextual Locking for Dynamic Pushdown Networks 485

bit, which in general, occurs in a context different from the initial context. The
second idea therefore is to exploit the disciplined pushdown usage of the two
pushdown processes. Both processes read words consisting of pairs of subwords of
a fixed length m. Each pair of subwords is independent from the next. Thus, the
pushdown processes can be constructed in a way that they return to the initial
context after reading 2m bits. In order to implement this idea, we introduce
locks S1, S2, R1, R2 that synchronize the third process with the two pushdown
processes exactly every 2m steps. In the following, we present the programs for
each of the three processes.

The synchronizing process does not use push- or pop-operations and thus can
be represented by a finite-state program:

acq(A0); acq(A1); acq(B);
use(Z1); use(Z2); acq(Y);

s3 : while (∗) {
((free(A0) ∨ free(A1)); free(B))m; use(R1); use(R2);
((free(A0) ∨ free(A1)); free(B))m; use(S1); use(S2)

}
l3 : // program point to be reached

The processes reading L1 and L2 are given by:

acq(R1); acq(R2); acq(S1); acq(S2);
acq(Z1); use(Y); acq(Z2); use(Y);

s1 : checkInput; free(R1); free(R2); s2 : while (∗) {
while (∗) { checkStep; free(S1); free(S2)

checkRev; free(R1); free(R2) }
} l2 : // point to be reached
checkFinal;

l1 : // point to be reached

The locks Y, Z1, Z2 and their usage pattern enforce, that all processes first have
to reach their starting label si, and thus acquire the initial set of locks required
to block the other processes. The sub-routines checkInput and checkFinal for
verifying the first and last configurations, respectively, can be implemented by
a finite-state program in a straight-forward way. The sub routines checkRev and
checkStep can be implemented as follows, using procedures Ci with 0 ≤ i ≤ m
and Pi with 3 ≤ i ≤ n+ 1:

checkRev : Cm

Ci : (use(A0); use(B);Ci−1; use(A0); use(B))
∨ (use(A1); use(B);Ci−1; use(A1); use(B))

C0 : skip
checkStep : Pn+1

Pi :
∨
{read(a);Pi−1; read(a) | a is tape symbol}

∨
∨
{read(a1a2a3);C(i−3)·k; read(b1b2b3) | (a1a2a3, b1b2b3) is a step}

We write read(w) = use(Ai0); use(B); . . . use(Aij); use(B); for reading the binary
encoding i0 . . . ij of a word w over tape symbols and states of the Turing Machine

486 P. Lammich et al.

and read(w) for the same operation using the reverse of the encoding of w. A pair
(a1a2a3, b1b2b3) is a step of the Turing Machine if a2 is the control state, a1, a3
are tape symbols and b1b2b3 describes the rewritten portion of the configuration
after a step, including the movement of the head.

The description should have made it clear that, starting from their initial
configurations with empty sets of held locks, the control-sequence

(l1, {R1, R2, Z1})(l2, {S1, S2, Z2})(l3, {A0, A1, B, Y })

will be reachable if and only if the simulated Turing Machine has an accepting
computation for the given initial configuration.

3 Spawning of New Processes

In this section, we show how the algorithm for control sequence reachability
from the last section can be enhanced to multi-pushdown systems where new
processes can be dynamically spawned. Programs now additionally may have
transitions of the form:

r : (q, γ)
(q1,γ1)−−−−→ (q2, γ2) (spawn step)

where the effect of the transition is the spawning of a new thread with the
initial configuration ((q1, ∅), γ1). The function eff(r) is extended accordingly.
The pair (q2, γ2) on the right-hand side describes the continuation of the process

executing this step. The local step relation
·
=⇒ affects the current process similar

to a compute-rule. The global step relation additionally extends the sequence of
processes which are concurrently running, by one more process. As in [3,7], we
find it convenient to keep track of the ancestry between processes. For that, each
local configuration of a process is equipped with an extra component which is
meant to hold all successively spawned processes. Thus, a global configuration is
now a rooted tree (h, (q,X), w) where, as before, q is a process state, X is a finite
set of locks, w ∈ Γ ∗ is the pushdown and h is a (possibly empty) sequence of
sub-trees representing the child processes. Again, we additionally demand that
the different occurrences of sets of locks in a global configuration are mutually
disjoint. Initial configurations consist only of a single process and are of the form
(ε, (q, ∅), γ). In order to identify sub-configurations within a global configuration t
we use sequences of positive integers called positions. In particular, ε is a position
in t and the sub-configuration of t at position ε, denoted by t/ε, equals t itself.
Furthermore, if t = (t1 . . . tk, (q,X), w) and η is a position of ti for i = 1, . . . , k,
then iη is a position in t with t/iη = ti/η. Likewise, if t = (t1 . . . tk, (q,X), w),
then the root process of t, i.e. the process in t at position ε, denoted by t[ε], has
the process-local configuration ((q,X), w) and has successively spawned the root
processes of t1, . . . , tk. We write t[η] for the root process of t/η, i.e. t[η] = t/η[ε].

Now, global steps are rules applied to sub-configurations. A global step (η, r)
transforms a global configuration t into t′, if the following holds:

Contextual Locking for Dynamic Pushdown Networks 487

– t/η = (h, (q,X), w), ((q,X), w)
r
=⇒ ((q′, X ′), w′) and t′/η = (h′, (q′, X ′), w′)

– l /∈ X ′′ for all local configurations t[η′] = ((q′′, X ′′), w′′), if eff(r) = acq(l)
– if eff(r) = (q1, γ1) then h′ = h(ε, (q1, ∅), γ1) else h′ = h
– all other sub-configurations t/η′ are preserved

In this case, we denote the resulting configuration also as t′ = [[(η, r)]] t and
extend the notation to sequences Π of global steps. Note that each newly created
process initially holds the empty set of locks. A multipushdown system with
dynamic process generation by means of spawn-rules has been called dynamic
pushdown network or DPN [3]. The DPN adheres to contextual locking if each
process of the DPN does so. We first consider reachability of a control sequence
of a fixed length for DPNs. This means that we require only a subset of the
processes to reach certain control states simultaneously. A control sequence

σ = (q′1, X
′
1) . . . (q

′
k, X

′
k)

is reachable from a global configuration t if a global configuration t′ is reachable
such that t′[ηi] = ((q′i, X

′
i), w

′
i) for a suitable sequence η1 < . . . < ηk of positions

in t′ where the ordering < on positions is given by the left-right ordering within
the textual representation of t′, i.e. η < η′ if η′ is a proper prefix of η or η = η0jη1
and η′ = η0j

′η2 where j < j′. In this case, we also say that t′ is compatible
with the control sequence σ at positions η1, . . . , ηk. The main theorem of this
section is:

Theorem 6. For every DPN P with contextual locking and control-sequence σ
it is decidable in PSPACE whether or not σ is reachable from an initial config-
uration (ε, (q, ∅), γ) of the DPN.

Since the lower-bound result from the last section also applies to DPNs, we con-
clude that control sequence reachability for DPNs is in fact, PSPACE-complete.

The key observation for the PSPACE upper bound is, that for reachability of
a control sequence σ only steps of processes at one of the positions in the control
sequence, or ancestors of such a process, must be considered.

Assume that t0 = (ε, (p, ∅), γ) is an initial configuration of a DPN and t =
[[Π]] t0. Then we call a position η inactive w.r.t. a global execution sequence Π ,
if Π does not contain any step (η, r) and thus also no step (ηη′, r) for any η′.
The following lemma can be proven by induction on the length of prefixes of Π .

Lemma 7. Assume that t is compatible with the σ = (q1, X1) . . . (qk, Xk) at
positions η1, . . . , ηk. Let Π

′ denote the subsequence of Π which is obtained from
Π by removing all steps (η, r) where η is not a prefix of any of the ηi. Then the
following holds:

1. t′ = [[Π ′]] t0 is still a global configuration which is compatible with the given
control-sequence σ at positions η1, . . . , ηk.

2. Every position η of t′ is either inactive or a prefix of one of the ηi. ��

Let us call the configuration t′ together with the global execution sequence Π ′

which is constructed according to Lemma 7, purified w.r.t. the control-sequence

488 P. Lammich et al.

σ. A purified global execution sequence may still be further reduced while pre-
serving compatibility with the given control-sequence. For that, we first add
transitions that skip spawning of inactive processes altogether.

For a given DPN P , consider the DPN P ′ which is obtained from P by adding

a transition r′ : (q, γ) τ−→ (p2, γ2) for every transition r : (q, γ)
(p1,γ1)−−−−→ (p2, γ2).

The resulting DPN has the same number of states and pushdown symbols as P
and at most twice as many transitions. We have:

Lemma 8. Consider a non-empty control sequence σ = (q1, X1) . . . (qk, Xk).
Let t0 = (ε, (q0, ∅), γ0) be an initial configuration. Then the following statements
are equivalent:

1. a configuration t is reachable from t0 w.r.t. P which is compatible with σ;
2. a configuration t′ is reachable from t0 w.r.t. P ′ which is compatible with σ;
3. a configuration t′′ is reachable from t0 w.r.t. P ′ which is compatible with σ at

positions η1, . . . , ηk where t′ has no inactive processes w.r.t. these positions.

Proof. Assertion (2) follows from assertion (1) since every execution of DPN P
is also an execution of DPN P ′. Assertion (3) follows from assertion (2) in two
stages. First, we may assume by Lemma 7 w.l.o.g. that the global execution
sequence is purified. Then this global execution sequence is modified in such a
way that spawning of inactive processes is replaced with the corresponding basic
computation step which avoids the new process but preserves the process local
successor state and pushdown. Note that not spawning inactive processes may
cause a decrease in the number of spawned processes and thus may change the
addresses of corresponding processes. Finally, given a global execution reaching
t′′ from t0 w.r.t. DPN P ′ which is compatible with σ and does not spawn inactive
processes, a global execution of DPN P can be recovered which is still compatible
with σ essentially by introducing spawn-operations r again for the corresponding
compute-operations r′. The additionally created processes will be treated as
inactive processes.

Henceforth, we call an execution sequence according to statement (3) of Lemma
8 strongly purified. In a strongly purified execution, a process may still have
an arbitrary number of ancestors. Thus still an arbitrary number of processes
would have to be tracked in order to check reachability. However, here our second
main observation comes in handy, namely, that similar to deeply nested recursive
procedure calls, also deeply nested recursive spawns can be cut out of a given
execution. Consider a situation where a process spawns a second process. The
second process in turn spawns a third process with the same initial configura-
tion as the second process and no other processes are spawned by the second
process. In this case, the execution of the second process can be replaced by the
execution of the third process. This eliminates one ancestor from the execution.
This observation can be used to derive a bound on the number of processes that
must be tracked in order to decide control-sequence reachability.

Lemma 9. Assume that t′ = [[Π ′]] t0 where t′ is compatible with the control
sequence σ at positions η1, . . . , ηk and t′ together with Π ′ is strongly purified

Contextual Locking for Dynamic Pushdown Networks 489

w.r.t. the control sequence σ. Then there is a subsequence Π ′′ of Π ′ such that
the following holds:

1. t′′ = [[Π ′′]] t0 is still a global configuration which is compatible with the given
control sequence σ – but now at positions η′1, . . . , η

′
k where the number of

distinct non-empty prefixes of η′1, . . . , η
′
k is at most (2k − 1) · |Q| · |Γ |.

2. The number of active positions in Π ′′ is bounded by (2k − 1) · |Q| · |Γ |+ 1.

Proof. For the first statement, we purge positions as follows. Assume that ηi =
ηη′η′′ and the processes at positions η and ηη′ are spawned with the same initial
configuration (ε, (q, ∅), γ) and additionally, there is no proper prefix η′′′ of η′

such that ηη′′′ is the longest common prefix of ηi and some ηj , i �= j. Then ηη′

is replaced in all positions ηj where it occurs as a prefix, with η, and the global
execution sequence Π is reduced accordingly. This means that all steps (ηχ, r)
are removed from Π ′ where χ is a prefix of η′, and then all steps (ηη′χ, r) are
replaced with (ηχ, r).

This reduction is performed until it is no longer applicable. Let η′1, . . . , η
′
k

denote the resulting sequence of positions, and Π ′′ the resulting global execution
sequence. Assume for a contradiction that the number of distinct non-empty
prefixes of η′1, . . . , η

′
k exceeds (2k − 1) · |Q| · |Γ |. As there are only |Q| · |Γ |

distinct initial configurations of spawned processes, Π ′′ must create at least
2k of the sub-processes represented by these non-empty prefixes with the same
initial configuration, say (ε, (q, ∅), γ). Let ρ1, . . . , ρl, l ≥ 2k, be (all) the non-
empty prefixes of η′1, . . . , η′k created with this initial configuration (ε, (q, ∅), γ).
Consider the (potentially multi-rooted) tree induced on ρ1, . . . , ρl by the prefix
relation, i.e. ρj is a successor of ρi in the tree, if ρi is a proper prefix of ρj but
there is no ρh that is a proper prefix of ρj and a proper suffix of ρi. This tree
has at most k leafs as any leaf must be a maximal prefix among the ρ1, . . . , ρl
of one of the positions η′1, . . . , η

′
k. This implies that at most k − 1 inner nodes

can be branching. On the other hand, there are at least k non-maximal prefixes.
Hence, at least one of the non-maximal prefixes, say η = ρi, is non-branching,
i.e. has just one successor ρj = ηη′. This implies that the above reduction can be
applied with η and η′ resulting in a sequence of shorter positions–contradiction.
Due to strong purification only ε and non-empty prefixes of the purged positions
η′1, . . . , η′k can be active in Π ′′. Hence, the second statement follows from the
first one.

Proof (Theorem 6). For deciding whether a control sequence σ of length k is
reachable from the initial configuration, it suffices by Lemma 8 to consider
strongly purified global executions only. By Lemma 9, only global configura-
tions must be considered where the number of active positions is bounded by
(2k − 1) · |Q| · |Γ |. Additionally, the construction of Lemma 2 can be extended
to DPNs so that only the case must be considered where all processes in the
final configuration have an empty pushdown. Then we proceed analogous to the
proof of Lemma 4 and derive a bound on the pushdown of each process. The
bound now must take the length k of the control sequence into account, since

490 P. Lammich et al.

recursive calls may not be removed in which a process needed for reachability of
σ is spawned.

Assume that t = [[Π]] t0 for an initial configuration t0 and a global config-
uration t. Assume that σ = (q′1, X

′
1) . . . (q

′
k, X

′
k) is a control sequence in t at

positions η1 < . . . < ηk. Assume further that the execution sequence is strongly
purified w.r.t. σ. If during Π a call rule r : (q, γ)

τ−→ (q′, γ1γ2) is called more
often than k · |Q| times for the same position η, then there is a state p such that
Π can be factored into Π = C1(r, η)U1(r, η)Π1U2C2 and the following holds:

– U1, U2 do not spawn any processes;
– projη((r, η)Π1) as well as projη((r, η)U1(r, η)Π1U2) are same-level computa-

tions for the subconfiguration t[η] resulting in the same control state p.

For i = 1, 2, let U ′
i be the sequence obtained from Ui by removing all steps of

process η. Then the sequence Π ′ = C1U
′
1(r, η)Π1U

′
2C2 is again a computation

sequence for t which is compatible with the control sequence σ at the same
positions η1 < . . . < ηk.

We conclude that a configuration compatible with σ can be reached by an
execution where the depth of each intermediately occurring call-stack is bounded
by a polynomial, now in the number of positions in the control sequence and
the size of the DPN. Overall, we find that space polynomial in the length of
the control-sequence σ and the size of the DPN P is sufficient to verify for P
whether σ is reachable by P from the initial configuration (ε, (p, ∅), γ).

4 Regular Reachability

In this section we introduce regular control reachability as a reachability property,
that allows to specify properties of configurations of an arbitrary and varying
number of processes. Here the word of control states obtained by postorder
traversal of a configuration must be contained in a regular language. For that,
we define the yield of a configuration t = (t1 . . . tk, ((q,X), w)) of a DPN as

yield(t) = yield(t1) . . . yield(tk)(q,X)

In the following, we show that regular control reachability is decidable for DPNs
with contextual locking.

Theorem 10. For a DPN P with contextual locking and a regular language L
over the alphabet Q × 2L, it is decidable whether or not a configuration t with
yield(t) ∈ L is reachable from an initial configuration in P .

In order to prove Theorem 10, we first show that regular control reachability for
a DPN can be reduced to control-set reachability of a DPN. In a second step
we explicitly reduce each pushdown system to a finite state system, using the
same argument for recursive calls as before. A DPN without a pushdown is also
called dynamic finite-state network (DFN). W.r.t. control-set reachability, con-
figurations of DFNs can be further abstracted by just abstracting configurations

Contextual Locking for Dynamic Pushdown Networks 491

to vectors which only keep the multiplicities of occurring process-local states. In
the following, we are going to make these ideas precise.

First, we reduce regular control reachability to control-set reachability. For
that, we define the state set of a configuration t = (t1 . . . tk, ((q,X), w)) by:

states(t) = states(t1) ∪ . . . ∪ states(tk) ∪ {(q,X)}

Lemma 11. For a DPN P with contextual locking and a regular language L over
the alphabet Q×2L, there exists a DPN P ′ with states Q′ and contextual locking,
and a set Q′

0 ⊆ Q′×2L, such that a configuration t with yield(t) ∈ L is reachable
from an initial configuration in P iff a configuration t′ with states(t′) ⊆ Q′

0 is
reachable from a corresponding initial configuration in P ′.

Proof. Assume that L is given by the finite automaton A = (S,Q× 2L, δ, s0, F)
where S is the finite set of states of A. We construct a new DPN that encodes
the regular reachability into its control states. The yield of a configuration is
accepted by the automaton iff there is a run of the automaton that accepts it.
The idea is to guess and verify this accepting run during an execution of the
DPN. Since the yield of a configuration is constructed from the local process
configurations it suffices to guess a partial run for each local configuration and
make sure that the partial runs form a run of the automaton. To this end we
introduce new control states 〈s, q, s′〉 where s, s′ ∈ S. A control state 〈s, q, s′〉
signals that s and s′ have been guessed as initial and final states for the partial
run that recognizes the yield of the subconfiguration generated by this process,
and all process it has yet to spawn. As a first step, an initial guess is made. For
that, we add transitions r : (q, γ)

τ−→ (〈s0, q, s〉, γ) where s ∈ F . We proceed by

replacing each non-spawn-transition r : (q, γ)
e−→ (q′, w′) with a transition pre-

serving the guess r′ : (〈s, q, s′〉, γ) e−→ (〈s, q′, s′〉, w′). In case of a spawn-transition

r : (q, γ)
(q1,γ1)−−−−→ (q2, γ2), the guess for the spawned process is initialized by split-

ting the guess for the parent and distributing it. Therefore, we add transitions

r′ : (〈s, q, s′〉, γ) (〈s,q1,s′′〉,γ1)−−−−−−−−→ (〈s′′, q2, s′〉, γ2). If all processes in an execution of
P ′ reach local configurations ((〈s1, q, s2〉, X), w) where (s1, (q,X), s2) is a transi-
tion of A, then all guesses have been correct, implying that there is an accepting
path for the yield of this configuration. If on the other hand an execution of P
reaches a configuration whose yield is accepted by A we can annotate the guesses
to obtain an execution of P ′. Checking regular reachability thus reduces to check-
ing control set reachability of the set Q′

0 = {(〈s1, q, s2〉, X) | (s1, (q,X), s2) ∈ δ}.

Remark 12. One can modify the construction from Remark 3 such that it allows
to reduce general regular reachability, which also includes the stack content
of each process, to regular control reachability. To see this, consider a finite
automatonA, now over the input alphabet (Q×2L)∪Γ . Then the initial marking
of a process can be used to further split the guess from Lemma 11 into parts for
the state and the pushdown, i.e. we only add marking rules r : (〈s1, q, s2〉, γ) τ−→
(〈〈s1, q, s′2〉, s′2〉, 〈γ, s2〉). The remaining construction proceeds as in Remark 3
using the transitions of A.

492 P. Lammich et al.

In the next step, we reduce control set reachability of a DPN to control set
reachability of a DPN without push or pop operations, i.e., a DFN:

Lemma 13. For a DPN P with contextual locking and a set Q0 ⊆ Q × 2L of
control states, there exists a DPN P ′ with contextual locking, no push or pop
operations and a set Q′

0 ⊆ Q′ × 2L, such that a configuration t with states(t) ⊆
Q0 is reachable from an initial configuration in P iff a configuration t′ with
states(t′) ⊆ Q′

0 is reachable from a corresponding initial configuration in P ′.

Proof. First we apply the construction of Lemma 2 to only consider reachability
where all pushdowns are empty. Using the same arguments as Lemma 4 and the
proof of Theorem 6 we can derive a polynomial bound on the size of pushdown
needed to check reachability. Assume that a pushdown is reached during an
execution whose size exceeds |Q|2 · |Γ | symbols. This translates to a process with

more than |Q|2 · |Γ | nested returning procedure calls. Each nested procedure
call can be tagged with the initial control state and topmost pushdown symbol
together with the final control state. Since the number of procedure calls exceeds
the number of possible tags, there are at least two procedure calls, whose starting
and ending situation are the same. Then the outer procedure call can be replaced
with the inner call, by removing all steps of the outer procedure call as well as
of all processes spawned by it. As before, because of contextual locking and
processes starting with an empty set of locks, removing these steps does not
impose additional constraints on an execution. Since all remaining processes
still reach a state in Q0, whenever that was the case before the replacement,
control-set reachability is preserved if the sizes of all occurring pushdowns are
restricted to size at most |Q|2 · |Γ |.

Using this result a DFN can be defined with states Q′ = {(q, w) | q ∈ Q,w ∈
Γ ∗, |w| ≤ |Q|2 · |Γ |} where the bounded pushdown is encoded into the control
state. We introduce an artificial pushdown symbol # and define transitions:

((q, w),#)
eff(r)−−−→ ((q′, w′),#) if (q, w)

r
=⇒ (q′, w′) and eff(r) �= (q1, γ1)

((q, w),#)
((q1,γ1),#)−−−−−−−→ ((q′, w′),#) if (q, w)

r
=⇒ (q′, w′) and eff(r) = (q1, γ1)

An initial configuration (ε, (q, ∅), γ) is translated into an initial configuration
(ε, ((q, γ), ∅),#). Finally, the control set for reachability in the new DFN is set
to Q′

0 = {((q, ε), X) ∈ Q′ | (q,X) ∈ Q0}. The executions of the new DFN are
in one-to-one correspondence to the executions of the original DPN that do not
violate the pushdown bound. Thus, we have reduced control-set reachability for
a DPN to control-set reachability for a (possibly exponentially larger) DFN.

For control-set reachability of a DFN, the precise ordering of processes within a
configuration is irrelevant. Therefore, we now abstract configurations of a DFN
to multisets of local process configurations. The proof of Theorem 10 then is
based on a monotonicity property of control-set reachability. This monotonicity
property states that whenever a control set Q0 is reachable from a (multi set)
configuration v, then this is also the case for any multi sub-set of v.

Contextual Locking for Dynamic Pushdown Networks 493

Proof (Theorem 10). We apply Lemma 11 and Lemma 13 to only consider con-
trol set reachability of a setQ0 for a DFN. For the proof, the ordering of processes
within a configuration is irrelevant. Therefore, configurations are abstracted as
a vector v mapping pairs (q,X) of states and sets of held locks to the number
v(q,X) of processes that are currently in state q and hold the set X of locks.
Thus, v(q,X) > 1 only if X = ∅, and for X �= ∅, v(q,X) = 1 implies v(q′, Y) = 0
for all q′ �= q and X ∩ Y �= ∅. Let us call such vectors v abstract configurations.
Every transition of the DFN P induces a corresponding abstract transition on
abstract configurations. Let P ′ denote the transition system on abstract configu-
rations corresponding to the DFN P . Note that, due to unbounded application of
spawn-transitions, the transition system P ′ is still infinite. The initial configura-
tion t0 of P corresponds to the abstract configuration v0 = {(q0, ∅) �→ 1} where
q0 is the initial state of P . Let V0 be the set of all abstract configurations such
that v(q,X) = 0 for all q /∈ Q0. Then the DFN P may reach a configuration from
t0 where all occurring states are in Q0 iff a configuration v is abstractly reach-
able from v0 where v ∈ V0. On configurations of P ′, we consider the elementwise
partial ordering defined by v � v′ iff v(q,X) ≤ v′(q,X) for all (q,X).

By case distinction, we verify that, if v � v′ and w′ is reachable in P ′ from v′

in one abstract step, then either v � w′ or there is an abstract configuration w
which is reachable from v in one step such that w � w′.

From this fact, we conclude that whenever a configuration in V0 is reachable
from v′ and v � v′, then a configuration in V0 is also reachable from v.

Let W denote the set of abstract configurations reachable from v0 (w.r.t.
P ′) and min(W) the set of minimal elements in W w.r.t. the ordering �. Then
V0∩W �= ∅ iff V0∩min(W) �= ∅. Thus, it suffices to determine the set of minimal
configurations which are reachable from v0. The set min(W) can be determined
by iteratively accumulating the set of reachable configurations where during
every step, only those configurations are maintained which are currently mini-
mal. Since in a set of minimal configurations, vectors are pairwise incomparable,
Dickson’s Lemma can be applied—implying that the algorithm terminates.

5 Joining of Processes

In [7], DPNs have been considered that are additionally equipped with a join
operation. A join can only be executed if all immediate children of a process
which have been spawned up to this point, have terminated. We show for DPNs
extended with such joins that regular control reachability as considered in the
last section, is still decidable.

Theorem 14. Assume that P is a DPN with joins and contextual locking, and
L is a regular language over the alphabet Q × 2L. Then it is decidable if a con-
figuration t with yield(t) ∈ L is reachable from an initial configuration in P .

Formally, a DPN with joins is a DPN where the set of rules additionally may
include dedicated transitions of the form

r : (q, γ)
join−−→ (q′, γ′) (join step)

494 P. Lammich et al.

The intended semantics is that a process may execute the join-transition only
after all processes spawned by the process executing the join-transition, have
already been terminated. For that, we assume that termination is signaled by
reaching a control state in a set Qt ⊆ Q from which no further transitions can
occur. Thus, the following condition must additionally hold for a step as defined
in Section 3:

– if eff(r) = join and h = t1 . . . tk then qi ∈ Qt for all i ∈ {1, . . . , k}, where
ti = (hi, (qi, Xi), wi).

The same arguments as in Section 4 can be applied to show that regular control
reachability of a language L for a DPN P with contextual locking and joins
can be reduced to control set reachability of a set Q0 for a DFN P ′. This is
due to the fact that removing join operations only lessens the constraints on an
execution and otherwise removing steps from an execution does not change a
thread from terminating to not terminating. As in Lemma 13, we represent the
trivial pushdown of a DFN by means of #.

Remark 15. Using the same method as in in Remark 12 Theorem 14 can be
extended to regular reachability which includes all pushdowns.

Control-set reachability for DFNs with joins, however, can no longer be natu-
rally reduced to the computation of minimal elements of suitable sets of vectors
of natural numbers. Whether or not a join can be executed, does not depend
on the multiplicities by which individual process-local states (q,X) are reached
but on whether the right subset of processes have terminated. Accordingly, the
abstraction of configurations through vectors of numbers is no longer sufficient.
Instead, the nesting of processes as given by configurations must be maintained
in order to identify the processes to be waited for. In order to apply an anal-
ogous argument as in Section 4, a well-quasi-ordering on (suitably abstracted)
configurations is required, that preserves reachability. Since configurations are
ordered trees, a candidate ordering is the embedded subtree ordering. From t � t′,
however, it not necessarily follows that every sequence of transitions for t′ gives
rise to a sequence of transitions for t resulting again in a smaller configuration.
Here, a configuration is smaller if it can be obtained from the larger configu-
ration by removing a subtree or by removing a node and replacing it with one
of its descendants. But removing and replacing a process may cause its parent
to wait for termination of a process which does not terminate. A corresponding
monotonicity property, though, is crucial in Section 4 for restricting reachability
analysis to maintaining sets of minimal elements only.

We observe that a process may be replaced by a descendant, if all processes in
the hierarchy inbetween participate in a join. Since a join requires termination
of all children and can only be executed by a process before its termination, this
ensures that termination of the original process is preceded by termination of
the process it is replaced with. Consequently in the shortened execution no join
is blocked, since all required processes are still able to terminate.

We now construct an abstraction of a DFN, where configurations are multisets
of unordered trees and indicate how the monotonicity property can be enforced.

Contextual Locking for Dynamic Pushdown Networks 495

The idea is to include processes into the tree only when they participate in a
join. All others are added as additional roots to the top-level. We show that
abstracting a DFN with joins in this way, preserves control-set reachability. A
similar argument as in Section 4, then allows us to show decidability. In the
following, we present the outlined proof sketch in detail.

For each spawn-transition r : (q,#)
(q1,#)−−−−→ (q2,#) we introduce a spawn’-

transition with the same semantics:

r′ : (q,#)
〈q1,#〉−−−−→ (q2,#) (spawn’ step)

Clearly, each configuration t which was reachable w.r.t. the original DFN is also
reachable w.r.t. to the DFN with the extra spawn’-transitions by an execution
where the following property holds:

S1. Every spawn’-transition is eventually followed by a join-transition in the
same process;

S2. After every spawn-transition, no join-transition occurs in the same process.

Therefore, we may concentrate on control-set reachability of a set Q0 by means
of executions satisfying properties S1 and S2. Let us call such executions S-
executions. By guessing whether a process eventually executes a join-operation
or not and maintaining a corresponding bit in the process-local state, we may
enforce that the DFN only performs prefixes of S-executions and reaches the set
Q0 of dedicated control states only by means of an S-execution. Let us call such
a DFN an S-DFN for control-state reachability of Q0.

For an S-DFN, we now abandon irrelevant nesting of processes and only keep
nesting of processes which is required for simulating join-operations. This means
that spawn’-transitions add new processes as leaves to the configuration, while
spawn-transitions add new processes on toplevel as new roots. For that, we
consider finite multi-sets m of unordered finite trees t. Each such tree t is of
the form t = (m′, (q,X),#) where q is a state of the S-DFN, X is a set of
currently held locks and m′ is a multiset of trees — each corresponding to a
process spawned by a spawn’-transition. We write ⊕ for the union of multisets.

For such multisets abstracting configurations of a S-DFN, we define the fol-

lowing abstract transitions. A join-transition r : (q,#)
join−−→ (q′,#) is applicable

at t = (m′, (q,X),#) within an abstract configuration m if all subtrees t′ ∈ m′

are terminated. In this case, it replaces the subtree t within m by the subtree

t′ = (m′, (q′, X),#). Applying the spawn’-transition r′ : (q,#)
〈q1,#〉−−−−→ (q2,#),

at t = (m′, (q,X),#) within an abstract configuration m, replaces t with t′ =

(m′ ⊕ {(∅, (q1, ∅),#)}, (q2, X),#). A spawn-transition r : (q,#)
(q1,#)−−−−→ (q2,#)

applied to a subtree t = (m′, (q,X),#) within an abstract configuration m,
replaces t with t′ = (m′, (q2, X),#) and adds the tree (∅, (q1, ∅),#) to the multi-
set on the toplevel. The abstract execution steps corresponding to the remaining
transitions are defined in a straight forward way. We remark that the notion
of an S-execution is also applicable to the abstracted DFNs with joins. Let P �

denote the abstract DFN constructed from a S-DFN P in this way. Since every

496 P. Lammich et al.

execution of P is a prefix of an S-execution, the same also holds for abstract
executions of P �. Moreover, we obtain that a configuration t where all states are
contained in the control set Q0, can be reached by P from the initial configura-
tion t0 = (ε, (q0, ∅),#) by means of an S-execution iff a configuration m, where
all states are from Q0, can be reached in P � by means of an abstract S-execution
from m0 = (∅, (q0, ∅),#). Let V0 be the set of all multiset configurations m such
that all states in m are from Q0.

On unordered trees t and multisets m, the embedded subtree ordering is the
least reflexive and transitive ordering � with the following properties:

– Assume that t = (m, (q,X),#). Then t′ ∈ m′ implies t′ � t; and alsom′ � m
implies (m′, (q,X),#) � t.

– Assume that m = m1 ⊕ {t} for some t. Then m1 � m; and t′ � t implies
m1 ⊕ {t′} � m.

By Kruskal’s Theorem [11], the ordering � on multisets of unordered finite trees
is a well-quasi-ordering.

As in the case without join-transitions, we find that if m � m′ and w′ is
reachable in P � from m′ in one step, then either m � w′ or there is a multiset
configuration w which is reachable from m in a corresponding abstract step such
that w � w′. From this monotonicity, we conclude that whenever a configuration
in V0 is reachable from m′ and m � m′, then a configuration in V0 is also
reachable from m.

Proof (Theorem 14). Let W denote the set of abstract multiset configurations
reachable from m0 = {(∅, (q0, ∅),#) (w.r.t. P �) and min(W) the set of mini-
mal elements in W w.r.t. the ordering � on multisets. Then V0 ∩ W �= ∅ iff
V0 ∩ min(W) �= ∅. Thus, it suffices to determine the set of minimal configura-
tions which are abstractly reachable fromm0. The set min(W) can be determined
by iteratively accumulating the set of abstractly reachable configurations where
during every step, only those configurations are maintained which are currently
minimal. Since in a set of minimal configurations, multisets are pairwise in-
comparable, we conclude, now no longer by Dickson’s lemma, but by Kruskal’s
Theorem that the algorithm terminates.

6 Conclusion

We have analyzed the complexity of simultaneous reachability for multiple re-
cursive processes running in parallel which may use contextual locking. While
this problem has been shown to be PTIME solvable for two processes in [4],
we have shown that this problem becomes PSPACE-complete already for k > 2
processes where PSPACE is still sufficient if dynamic thread creation is allowed.

The situation seems to be more complicated if reachability of a regular set
of configurations is considered. Such regular sets allow to formalize more intricate

Contextual Locking for Dynamic Pushdown Networks 497

properties of configurations. We succeeded to prove decidability by means of
Dickson’s lemma. The precise complexity of this problem, though, remains open.
Interestingly, decidability is preserved even if a join operation is added. Note
that fork/join parallelism through parallel procedure calls as considered, e.g., in
[15,18], can be expressed by means of DPNs with join. Accordingly, reachability
for this model of concurrency remains decidable if contextual locking is allowed.
Also there, however, the precise complexity remains open.

References

1. Bonnet, R., Chadha, R.: Bounded context-switching and reentrant locking. In:
Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 65–80. Springer, Heidel-
berg (2013)

2. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis
of concurrent programs with procedures. Int. J. Found. Comput. Sci. 14(4), 551
(2003)

3. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

4. Chadha, R., Madhusudan, P., Viswanathan, M.: Reachability under contextual
locking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
437–450. Springer, Heidelberg (2012)

5. Esparza, J., Ganty, P.: Complexity of pattern-based verification for multithreaded
programs. In: POPL, pp. 499–510. ACM (2011)

6. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

7. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-lock-
sensitive forward reachability analysis for concurrent programs with dynamic pro-
cess creation. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp.
199–213. Springer, Heidelberg (2011)

8. Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing decid-
ability of pairwise cfl-reachability for threads communicating via locks. In: LICS,
pp. 27–36. IEEE Computer Society (2009)

9. Kahlon, V.: Reasoning about threads with bounded lock chains. In: Katoen, J.-P.,
König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 450–465. Springer, Heidel-
berg (2011)

10. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

11. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture.
Trans. of the American Math. Society 95(2), 210–225 (1960)

12. Lammich, P.: Lock-Sensitive Analysis of Parallel Programs. Ph.D. thesis, WWU
Münster (June 2011)

13. Lammich, P., Müller-Olm, M.: Conflict analysis of programs with procedures, dy-
namic thread creation, and monitors. In: Alpuente, M., Vidal, G. (eds.) SAS 2008.
LNCS, vol. 5079, pp. 205–220. Springer, Heidelberg (2008)

14. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009)

498 P. Lammich et al.

15. Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-
State Systems. Ph.D. thesis, TU München (April 1998)

16. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

17. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

18. Seidl, H., Steffen, B.: Constraint-based inter-procedural analysis of parallel pro-
grams. Nord. J. Comput. 7(4), 375–400 (2000)

Author Index

Aiken, Alex 388
Amato, Gianluca 25

Bjørner, Nikolaj 105
Blazy, Sandrine 324
Brain, Martin 412

Dan, Andrei Marian 84
Doh, Kyung-Goo 194
D’Osualdo, Emanuele 454
Drăgoi, Cezara 150
D’Silva, Vijay 412
Dudka, Kamil 215

Enea, Constantin 150

Fouilhe, Alexis 345

Gange, Graeme 6
Garg, Pranav 172
Goubault, Eric 1
Griggio, Alberto 412
Gupta, Saurabh 388

Haller, Leopold 412
Hariharan, Bharath 388

Kim, Hyunha 194
Kochems, Jonathan 454
Komondoor, Raghavan 259
Kroening, Daniel 412

Lammich, Peter 477
Laporte, Vincent 324

Madhusudan, P. 172
Majumdar, Rupak 366
Maroneze, André 324
McMillan, Ken 105
Meshman, Yuri 84
Meyer, Roland 366
Monniaux, David 345

Müller-Olm, Markus 477
Mycroft, Alan 433

Namjoshi, Kedar S. 304
Navas, Jorge A. 6
Nori, Aditya V. 388

Ong, C.-H. Luke 454

Parlato, Gennaro 172
Partush, Nimrod 238
Peleg, Hila 63
Périn, Michaël 345
Peringer, Petr 215
Pichardie, David 324

Raychev, Veselin 283
Roy, Subhajit 126
Rybalchenko, Andrey 105

Sankaranarayanan, Sriram 4
Schachte, Peter 6
Schmidt, David A. 194
Scozzari, Francesca 25
Seidl, Helmut 477
Sharma, Rahul 388
Shoham, Sharon 63
Sighireanu, Mihaela 150
Søndergaard, Harald 6
Stuckey, Peter J. 6

Urban, Caterina 43

Vechev, Martin 84, 283
Vojnar, Tomáš 215

Wang, Zilong 366
Wenner, Alexander 477
White, Leo 433

Yahav, Eran 63, 84, 238, 283
Yang, Hongseok 63

Zuck, Lenore D. 304

	Preface
	Organization
	Table of Contents
	Static Analysis by Abstract Interpretationof Numerical Programs and Systems,and FLUCTUAT
	References

	Static Analysis in the Continuously Changing World
	1 Introduction
	References

	Abstract Interpretation overNon-lattice Abstract Domains
	1 Introduction
	2 Lattices and Quasi-lattices
	3 The Use of Quasi-joins
	3.1 Impact on Predictability of Analysis
	3.2 Impact on Precision
	3.3 Impact on Termination

	4 Examples of Non-lattice Abstract Domains
	4.1 Wrapped Intervals (W-intervals)
	4.2 Donut Domains
	4.3 Segmentations for Array Content Analysis

	5 Abstract Interpretation over Bounded Posets
	5.1 Non-associative Quasi-joins
	5.2 Non-monotone Quasi-joins

	6 Conclusion
	References

	Localizing Widening and Narrowing
	1 Introduction
	1.1 Improving Widening
	1.2 Improving Descending Sequences
	1.3 Plan of the Paper

	2 Localized Widening
	2.1 Preliminaries
	2.2 Localizing Widening

	3 Localized Narrowing
	3.1 More on w.t.o. and Dependency Graphs
	3.2 The Algorithm
	3.3 Initialization Policies

	4 Related Works
	4.1 Examples and Experiments

	5 Conclusions
	References

	The Abstract Domain of SegmentedRanking Functions
	1 Introduction
	2 Concrete Termination Semantics
	2.1 Termination Semantics
	2.2 A Small Imperative Language

	3 An Abstract Domain Functor for Termination
	3.1 Environments Abstract Domain
	3.2 Functions Abstract Domain
	3.3 Segmented Ranking Functions Abstract Domain
	3.4 Abstract Termination Semantics

	4 Implementation
	5 Related Work
	6 Conclusions and Future Work
	References

	Symbolic Automata for Static Specification Mining
	1 Introduction
	2 Overview
	2.1 Illustrative Example
	2.2 An Abstract Domain of Symbolic Automata

	3 Symbolic Automata
	3.1 Semantics

	4 An Abstract Domain for Specification Mining
	4.1 Preorder on DSAs
	4.2 A Lattice for Specification Mining

	5 Query Matching Using Symbolic Simulation
	5.1 Symbolic Simulation
	5.2 Algorithm for Checking Simulation

	6 Completion Using Unknown Elimination
	7 Consolidation Using Join and Minimization
	8 Putting It all Together
	References

	Predicate Abstraction for Relaxed Memory Models
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Standard (Naive) Predicate Abstraction under RMM Is Unsound
	2.3 Predicate Abstraction for RelaxedMemory Models

	3 Reduction
	4 Predicate Abstraction for Relaxed Memory Models
	4.1 Predicate Abstraction
	4.2 Predicate Extrapolation: From Predicates under SC to Predicates under RelaxedModel
	4.3 Cube Extrapolation: From SC Proof to PSO Predicates

	5 Extrapolating Predicates: SC to PSO
	5.1 Generic Predicates
	5.2 Extrapolating from

	6 Experimental Evaluation
	6.1 Prototype Implementation
	6.2 Results
	6.3 Observations

	7 Related Work
	8 Conclusion and Future Work
	References

	On Solving Universally Quantified Horn Clauses
	1 Introduction
	2 Preliminaries
	3 The Quantified Relational Post-fixed Point Problem
	3.1 Refutations and Derivation Trees
	3.2 Solving RPFP’s
	3.3 Quantified Predicates

	4 Trigger-Based Quantifier Instantiation
	4.1 Theory of Equality
	4.2 Theory of Arrays
	4.3 Algorithm

	5 Applications
	5.1 Simulating Array Segmentation Abstractions
	5.2 Simulating the Fluid Updates Abstraction
	5.3 Proving Termination

	6 Conclusion
	References

	From Concrete Examples to Heap ManipulatingPrograms
	1 Introduction
	2 Let’s Meet
	3 The Synthesis Algorithm
	3.1 Generating Programs
	3.2 Optimizing the Program

	4 Refinement Using Counterexample Generation
	5 Discussion
	6 Implementation and Experiments
	7 Related Work
	8 Conclusions and Future Work
	References

	Local Shape Analysis for Overlaid Data Structures
	1 Introduction
	2 Overview
	3 Programs
	4 Assertion Language
	5 Abstract Domain
	5.1 Abstract Domain Elements
	5.2 Order Relation
	5.3 An Effective Homomorphism Check for Predicate Edges

	6 Widening
	7 Abstract Transformers
	7.1 Intra-procedural Analysis
	7.2 Inter-procedural Analysis

	8 Experiments
	References

	Quantified Data Automata on Skinny Trees:An Abstract Domain for Lists
	1 Introduction
	2 Programs Manipulating Heap and Data
	3 Quantified Skinny-Tree Data Automata
	4 A Partial Order over
	5 Abstract Transformer over
	6 Elastic Quantified Skinny-Tree Data Automata
	6.1 From

	7 Experimental Evaluation
	References

	Static Validation of Dynamically GeneratedHTML Documents Based on Abstract Parsingand Semantic Processing
	1 Introduction
	1.1 Motivating Examples
	1.2 Contributions

	2 Fundamentals of Abstract Parsing
	2.1 Simplifying the Calculation: Higher-Order Parse States
	2.2 Finite Convergence by Stack Folding

	3 Abstract Semantic-Processing
	4 Attributed LR(1) Grammar for the HTML DTD
	4.1 Unordered Occurrences of Elements
	4.2 Tag Inclusion and Exclusion
	4.3 Validation of Attributes in an HTML Element

	5 Experiments: Static HTML Validation
	5.1 Tag Matching
	5.2 Misplaced Element
	5.3 Attributes in HTML Elements

	6 Static Validation of Semantic Properties
	6.1 Properties of Element Identifiers
	6.2 Submission of FORM Fields

	7 Related Research
	8 Conclusion
	References

	Byte-Precise Verification of Low-Level ListManipulation
	1 Introduction
	2 Symbolic Memory Graphs
	2.1 The Intuition behind SMGs
	2.2 Symbolic Memory Graphs
	2.3 The Semantics of SMGs

	3 Operations on SMGs
	3.1 Data Reinterpretation
	3.2 Join of SMGs
	3.3 Abstraction
	3.4 Checking Equality and Inequality of Values
	3.5 A Brief Note on Symbolic Execution

	4 Extensions of SMGs
	5 Implementation
	6 Experiments
	7 Conclusion and Future Work
	References

	Abstract Semantic Differencing for Numerical Programs
	1 Introduction
	1.1 Main Contributions

	2 Overview
	3 Preliminaries
	4 Concrete Semantics
	4.1 Concrete State Differencing
	4.2 Concrete Correlating Semantics

	5 Abstract Correlating Semantics
	5.1 Abstract Correlating State
	5.2 Abstract Correlating Semantics
	5.3 Dynamic Partitioning
	5.4 Widening
	5.5 Differencing for Abstract Correlating States

	6 Correlating Program
	6.1 Construction ofP

	7 Evaluation
	7.1 Prototype Implementation
	7.2 Results

	8 Related Work
	9 Conclusions
	References

	Precise Slicing in Imperative Programsvia Term-Rewriting and Abstract Interpretation
	1 Introduction
	1.1 Motivating Example
	1.2 Our Approach
	1.3 Novelty and Contributions

	2 Background on Term-Rewriting
	2.1 PIM Intermediate Representation
	2.2 Rewriting in PIM
	2.3 Slicing via Term Rewriting
	2.4 Loops in PIM

	3 Our Extensions to PIM
	3.1 Notation and Terminology
	3.2 Rewriting Boolean Expressions Using Abstract Interpretation
	3.3 Abstract Guards
	3.4 Slicing Loops

	4 Slicing Loops in Heap Manipulating Programs
	5 Related Work
	References

	Automatic Synthesis of Deterministic Concurrency
	1 Introduction
	2 Overview
	2.1 Example Program
	2.2 Thread-Modular Synthesis
	2.3 Abstracting Memory Accesses

	3 Background
	4 Constraints and Termination Guarantees
	4.1 Program Termination
	4.2 Ordering Constraints
	4.3 Constraining Traces

	5 Thread-Modular Synthesis
	5.1 Abstraction
	5.2 Synthesis

	6 From Constraints to a Program
	7 Experimental Evaluation
	8 Related Work
	9 Conclusion and Future Work
	References

	Witnessing Program Transformations
	1 Introduction
	2 Transformations and Witnesses
	2.1 Background and Notation
	2.2 Programs and Transformations
	2.3 Stuttering Simulation
	2.4 Soundness and Completeness of Stuttering Simulations
	2.5 Invariant Propagation
	2.6 Computational Questions

	3 Witnesses for Common Optimizations
	3.1 Conditional Constant Propagation
	3.2 Dead Code Elimination (DCE)
	3.3 Control-Flow Graph Compression (CFG)

	4 Reordering Transformations
	4.1 Loop Invariant Code Motion
	4.2 Loop Reordering Transformations

	5 Discussion, Conclusions, and Related Work
	References

	Formal Verification of a C Value Analysis Basedon Abstract Interpretation
	1 Introduction
	2 Background
	2.1 Short Introduction to Coq
	2.2 The CompCert Memory Model
	2.3 The CFG Intermediate Language
	2.4 Overview of a Modular Value Analysis

	3 Abstract Domain Library
	3.1 Abstract Domain Interface
	3.2 Example of Abstract Domain: Intervals
	3.3 Abstract Domain Functors

	4 Fixpoint Resolution
	5 Numerical Abstraction
	5.1 Abstraction of Numerical Environments
	5.2 Building Non-relational Abstraction of Numerical Environments
	5.3 Abstraction of Numerical Values: Instances and Functor

	6 Memory Abstraction
	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	References

	Efficient Generation of Correctness Certificatesfor the Abstract Domain of Polyhedra
	1 Definitions and Notations
	2 Correctness of the Abstract Domain Operators
	3 A Posteriori Verification of the Inclusion Test
	3.1 A Certificate Checker Certified in Coq
	3.2 A Certificate-Generating Inclusion Test
	3.3 From an Unsatisfiability Witness to an Inclusion Certificate

	4 A Posteriori Verification of the Convex Hull
	4.1 A Convex Hull Algorithm on Constraints Representation
	4.2 Instrumenting the Projection Algorithm
	4.3 On-the-Fly Generation of Inclusion Certificates

	5 Notes on the Implementation
	5.1 Extending to Equalities and Strict Inequalities
	5.2 Minimization
	5.3 A More Detailed Intuition on Bookkeeping
	5.4 Polyhedron Representation Invariants
	5.5 Data Structures
	5.6 A Posteriori Certification vs. Full COQ-Certified Development

	6 Experimental Results
	6.1 The Method
	6.2 Precision and Representation Size Comparison
	6.3 Timing Measurements
	6.4 Certificate Checking Overhead

	7 Conclusions
	References

	Static Provenance Verificationfor Message Passing Programs
	1 Introduction
	2 Example
	3 Message Passing Programs
	3.1 Programming Model
	3.2 Examples

	4 Model Checking
	4.1 Labeled Petri Nets
	4.2 From Message Passing Programs to Labeled Petri Nets
	4.3 EXPSPACE Upper Bounds

	5 Implementation and Experiments
	5.1 Expand-Enlarge-Check and Partial Order Reduction
	5.2 Case Studies: Message Passing Benchmarks
	5.3 Private Mode and Firefox Extensions

	6 Extensions
	References

	Verification as Learning Geometric Concepts
	1 Introduction
	2 Overview of the Technique
	2.1 Finding Invariants for the Example

	3 Preliminaries
	3.1 Invariants and Binary Classification
	3.2 Learning Geometric Concepts
	3.3 PAC Learning
	3.4 Complexity
	3.5 Logic Minimization

	4 Practical Algorithms
	4.1 Restricting Generality
	4.2 Non-linear Invariants
	4.3 Recovering Soundness

	5 Experimental Evaluation
	6 Related Work
	6.1 Comparison with Linear Invariant Generation
	6.2 Comparison with Tools for Non-linear Invariants

	7 Conclusion
	References

	Interpolation-Based Verificationof Floating-Point Programswith Abstract CDCL
	1 Introduction
	2 Abstract Conflict Driven Clause Learning
	2.1 The Abstract Satisfaction Framework
	2.2 A Recap of ACDCL

	3 Proofs from ACDCL
	3.1 Abstract Resolution
	3.2 Proofs from Runs of ACDCL

	4 Interpolation for ACDCL
	4.1 ACDCL and DPLL(T) Proofs
	4.2 Generation of Interpolants
	4.3 An Interpolation Procedure for Floating Point Arithmetic

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Results and Discussion

	6 Related Work
	7 Conclusion
	References

	Concise Analysis Using Implication Algebrasfor Task-Local Memory Optimisation
	1 Introduction
	1.1 OpenMP
	1.2 Optimising Task-Local Memory Allocation
	1.3 Concise Analysis

	2 Logic Programming: Negation and Multi-valued Logic
	2.1 Negation and Its Semantics
	2.2 Implication Algebra Programming

	3 StackSizes
	4 OpenMP Program Representation
	4.1 Paths, Synchronising Instructions and the Call Graph

	5 Stack Size Analysis Using Implication Programs
	5.1 Rules for Functions
	5.2 Rules for Instructions
	5.3 Optimising Merged and Unguarded Sets
	5.4 Finding an Optimal Solution
	5.5 Adding Context Sensitivity

	6 The Analysis as a General Implication Program
	6.1 Stack Size Restrictions
	6.2 Other Rules
	6.3 Extracting Solutions

	7 Stratification
	8 Complexity of the Analysis
	9 Evaluation
	10 Conclusion
	References

	Automatic Verification of Erlang-StyleConcurrency
	1 Introduction
	2 A Prototypical Fragment of Erlang
	3 Actor Communicating Systems
	4 An Operational Semantics for
	5 Parametric Abstract Interpretation
	6 Generating the Actor Communicating System
	7 Evaluation, Limitations and Extensions
	8 Related Work and Conclusions
	References

	Contextual Locking for Dynamic PushdownNetworks
	1 Introduction
	2 The Static Case
	3 Spawning of New Processes
	4 Regular Reachability
	5 Joining of Processes
	6 Conclusion
	References

	Author Index

