
123

Gunar Schirner
Marcelo Götz

Achim Rettberg
Mauro C. Zanella
Franz J. Rammig

(Eds.)

4th IFIP TC 10 International
Embedded Systems Symposium, IESS 2013
Paderborn, Germany, June 2013, Proceedings

Embedded Systems:
Design, Analysis
and Verification

IFIP AICT 403

IFIP Advances in Information
and Communication Technology 403

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Mike Hinchey, Lero, Limerick, Ireland

Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA

Communication Systems
Guy Leduc, Université de Liège, Belgium

System Modeling and Optimization
Jacques Henry, Université de Bordeaux, France

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

ICT and Society
Jackie Phahlamohlaka, CSIR, Pretoria, South Africa

Computer Systems Technology
Paolo Prinetto, Politecnico di Torino, Italy

Security and Privacy Protection in Information Processing Systems
Kai Rannenberg, Goethe University Frankfurt, Germany

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Annelise Mark Pejtersen, Center of Cognitive Systems Engineering, Denmark

Entertainment Computing
Ryohei Nakatsu, National University of Singapore

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is about information processing may
apply to become a full member of IFIP, although full membership is restricted to
one society per country. Full members are entitled to vote at the annual General
Assembly, National societies preferring a less committed involvement may apply
for associate or corresponding membership. Associate members enjoy the same
benefits as full members, but without voting rights. Corresponding members are
not represented in IFIP bodies. Affiliated membership is open to non-national
societies, and individual and honorary membership schemes are also offered.

Gunar Schirner Marcelo Götz
Achim Rettberg Mauro C. Zanella
Franz J. Rammig (Eds.)

Embedded Systems:
Design, Analysis
and Verification
4th IFIP TC 10 International
Embedded Systems Symposium, IESS 2013
Paderborn, Germany, June 17-19, 2013
Proceedings

13

Volume Editors

Gunar Schirner
Northeastern University
Boston, MA, USA
E-mail: schirner@ece.neu.edu

Marcelo Götz
Fed. University of Rio Grande do Sul
Porto Alegre, RS, Brazil
E-mail: mgoetz@ece.ufrgs.br

Achim Rettberg
Carl von Ossietzky University
Oldenburg, Germany
E-mail: achim.rettberg@iess.org

Mauro C. Zanella
ZF Friedrichshafen AG
Friedrichshafen, Germany
E-mail: mauro.zanella@zf.com

Franz J. Rammig
Paderborn University
Paderborn, Germany
E-mail: franz@upb.de

ISSN 1868-4238 e-ISSN 1868-422X
ISBN 978-3-642-38852-1 e-ISBN 978-3-642-38853-8
DOI 10.1007/978-3-642-38853-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939604

CR Subject Classification (1998): C.3, C.4, D.2.4, C.2, D.2.11, D.4.7, J.2, J.6, C.0,
C.1, B.3, B.8

© IFIP International Federation for Information Processing 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book presents the technical program of the International Embedded Sys-
tems Symposium (IESS) 2013. The design, analysis, and verification of embedded
systems are discussed from complementary views in chapters of this book, in-
cluding design methodologies, dealing with nonfunctional aspects, verification,
performance analysis, real-time systems design, and applications examples. The
book includes a special chapter dedicated to the BMBF-funded ARAMIS project
on Automotive, Railway and Avionics Multicore Systems. In addition, real-world
application case studies are presented discussing challenges and realizations of
embedded systems.

Over recent years, embedded systems have gained an enormous amount of
processing power and functionality and have entered several application areas,
owing to the fact that many of the formerly external components can now be in-
tegrated into a single System-on-Chip. This tendency has resulted in a dramatic
reduction in the size and cost of embedded systems. As a unique technology, the
design of embedded systems is an essential element of many innovations.

Embedded system smeet their performance goals, including real-time con-
straints, through a combination of special-purpose hardware and software com-
ponents tailored to the system requirements. Both the development of new fea-
tures and the reuse of existing intellectual property components are essential
to keeping up with ever-demanding customer requirements. Furthermore, design
complexities are steadily growing with an increasing number of components that
have to cooperate properly. Embedded system designers have to cope with mul-
tiple goals and constraints simultaneously, including timing, power, reliability,
dependability, maintenance, packaging and, last but not least, price.

The significance of these constraints varies depending on the application area
a system is targeted for. Typical embedded applications include consumer elec-
tronic, automotive, medical, and communication devices.

The International Embedded Systems Symposium (IESS) is a unique forum
to present novel ideas, exchange timely research results, and discuss the state
of the art and future trends in the field of embedded systems. Contributors and
participants from both industry and academia take active part in this sympo-
sium. The IESS conference is organized by the Computer Systems Technology
committee (TC10) of the International Federation for Information Processing
(IFIP), especially the working group 3.2 “Embedded Systems.”

IESS is a true interdisciplinary conference on the design of embedded systems.
Computer Science and Electrical Engineering are the predominant academic
disciplines concerned with the topics covered in IESS, but many applications
also involve civil, mechanical, aerospace, and automotive engineering, as well as
various medical disciplines.

VI Preface

In 2005, IESS was held for the first time in Manaus, Brazil. In this initial
instalment, IESS 2005 was very successful with 30 accepted papers ranging from
specification to embedded systems application. IESS 2007 was the second edition
of the symposium held in Irvine (CA), USA, with 35 accepted papers and two
tutorials ranging from analysis, design methodologies to case studies from auto-
motive and medical applications. IESS 2009 took place at the wonderful Schloss
Montfort in Langenargen, Germany, with 28 accepted papers and two tutorials
ranging from efficient modeling toward challenges for designers of fault-tolerant
embedded systems.

IESS 2013 was held in Paderborn, Germany, at the Heinz Nixdorf Museums-
Forum (HNF), which hosts the world largest computer museum.

The articles presented in this book are the result of a thorough review process
implemented by the Technical Program Committee. Out of 42 valid submissions,
22 full papers were accepted yielding an acceptance rate of 52%. In addition,
eight short papers are included yielding an overall acceptance rate of 74%.

First and foremost, we thank our sponsors dSPACE, ZF Friedrichshafen AG,
the Carl von Ossietzky University Oldenburg, and the Paderborn University for
their generous financial support of this conference. Without these contributions,
IESS 2013 would not have been possible in its current form. Very special thanks
to the Heinz Nixdorf Museums-Forum (HNF) for hosting the event. Especially,
we thank Gabriele Himmelsbach from HNF for her outstanding organizational
support in arranging the facilities and venue.

We would also like to thank IFIP as the organizational body for the promotion
and support of the IESS conference.

Last but not least, we thank the authors for their interesting research contri-
butions and the members of the Technical Program Committee for their valuable
time and effort in reviewing the articles.

June 2013 Gunar Schirner
Marcelo Götz

Achim Rettberg
Mauro C. Zanella
Franz J. Rammig

IFIP TC10 Working Conference:

International Embedded Systems Symposium
(IESS) June 17–19, 2013

Heinz Nixdorf Muesums-Forum, Paderborn,
Germany

General Chairs

Achim Rettberg Carl v. Ossietzky University, Oldenburg,
Germany

Mauro C. Zanella ZF Friedrichshafen AG, Friedrichshafen,
Germany

General Co-chair

Franz J. Rammig University of Paderborn, Germany

Program Co-chair

Marcelo Götz Federal University of Rio Grande do Sul, Brazil
Gunar Schirner Northeastern University Boston, USA

Local Arrangements Chair

Achim Rettberg Carl von Ossietzky University, Oldenburg,
Germany

Publicity Chair

Marco Wehrmeister Santa Catarina State University, Brazil

Web Chair

Tayfun Gezgin OFFIS Insitute for Information Technology,
Oldenburg, Germany

VIII IFIP TC10 Working Conference

Finance Chair

Achim Rettberg Carl von Ossietzky University, Oldenburg,
Germany

Technical Program Committee

Samar Abdi Concordia University Montreal, Canada
Christian Allmann Audi Electronics Venture, Germany
Michael Amann ZF Friedrichshafen, Germany
Richard Anthony The University of Greenwich, UK
Jürgen Becker University of Karlsruhe, Germany
Alecio Binotto UFRGS, Brazil and LBNL, USA
Christophe Bobda University of Potsdam, Germany
Luigi Carro UFRGS, Brazil
Florian Dittmann TWT, Germany
Rainer Doemer University of California at Irvine, USA
Cecilia Ekelin Volvo Technology Corporation, Sweden
Rolf Ernst Technical University Braunschweig, Germany
Danubia B. Espindola FURG, Brazil
Masahiro Fujita University of Tokyo, Japan
Andreas Gerstlauer University of Texas Austin, USA
Marcelo Götz UFRGS, Brazil
Kim Grüttner OFFIS, Germany
Andreas Hein Carl von Ossietzky University, Oldenburg,

Germany
Joerg Henkel University of Karlsruhe, Germany
Stefan Henkler OFFIS, Germany
Carsten Homburg dSPACE, Germany
Uwe Honekamp Vector Informatik, Germany
Michael Huebner Ruhr University Bochum, Germany
Marcel Jackowski USP, Brazil
Ricardo Jacobi University of Brasilia, Brazil
Michael Keckeisen ZF Friedrichshafen, Germany
Timo Kerstan dSPACE, Germany
Amin Khajeh Intel, USA
Doo-Hyun Kim Konkuk University, Korea
Bernd Kleinjohann C-LAB, Germany
Hermann Kopetz Technical University Vienna, Austria
Marcio Kreutz UFRN, Brazil
Horst Krimmel ZF Friedrichshafen, Germany
Thomas Lehmann HAW Hamburg, Germany
Armin Lichtblau Mentor Graphics, Germany
Patrick Lysaght Xilinx Research Labs, USA
Roger May Altera, UK

IFIP TC10 Working Conference IX

Adam Morawiec ECSI, France
Wolfgang Nebel Carl von Ossietzky University, Oldenburg,

Germany
Mike Olivarez Freescale Semiconductor, USA
Carlos Pereira UFRGS, Brazil
Edison Pignaton de Freitas IME, Brazil
Franz Rammig University of Paderborn, Germany
Achim Rettberg Carl von Ossietzky University, Oldenburg,

Germany
Carsten Rust Sagem Orga, Germany
Stefan Schimpf ETAS, Germany
Juergen Schirmer Robert Bosch GmbH, Stuttgart, Germany
Gunar Schirner Northeastern University Boston, USA
Aviral Shrivastava Arizona State University, USA
Joachim Stroop dSPACE, Germany
Hiroyuki Tomiyama Ritsumeikan University, Japan
Flavio R. Wagner UFRGS, Brazil
Marco Wehrmeister UDESC, Brazil
Marilyn Wolf Georgia Institute of Technology, USA
Mauro Zanella ZF Friedrichshafen, Germany
Jianwen Zhu University of Toronto, Canada

Co-organizing Institution

IFIP TC 10, WG 10.2 and WG 10.5

Sponsors

dSPACE GmbH
ZF Lemförder GmbH
Carl von Ossietzky University, Oldenburg
University of Paderborn

Table of Contents

Design Methodologies

TECSCE: HW/SW Codesign Framework for Data Parallelism Based
on Software Component . 1

Takuya Azumi, Yasaman Samei Syahkal, Yuko Hara-Azumi,
Hiroshi Oyama, and Rainer Dömer

Programming Robots with Events . 14
Truong-Giang Le, Dmitriy Fedosov, Olivier Hermant,
Matthieu Manceny, Renaud Pawlak, and Renaud Rioboo

Joint Algorithm Developing and System-Level Design: Case Study on
Video Encoding . 26

Jiaxing Zhang and Gunar Schirner

Automatic Execution of Test Cases on UML Models of Embedded
Systems . 39

Marco A. Wehrmeister and Gian R. Berkenbrock

Non-functional Aspects of Embedded Systems

Compiler Optimizations Do Impact the Reliability of Control-Flow
Radiation Hardened Embedded Software . 49

Rafael B. Parizi, Ronaldo R. Ferreira, Luigi Carro, and
Álvaro F. Moreira

Power Reduction in Embedded Systems Using a Design Methodology
Based on Synchronous Finite State Machines . 61

Douglas P.B. Renaux and Fabiana Pöttker

Low-Power Processors Require Effective Memory Partitioning 73
Leonardo Steinfeld, Marcus Ritt, Fernando Silveira, and Luigi Carro

Enhancement of System-Lifetime by Alternating Module Activation 82
Frank Sill Torres

Verification

Model Checking Memory-Related Properties of Hardware/Software
Co-designs . 92

Marcel Pockrandt, Paula Herber, Verena Klös, and Sabine Glesner

XII Table of Contents

Reducing Re-verification Effort by Requirement-Based Change
Management . 104

Markus Oertel and Achim Rettberg

Formal Deadlock Analysis of SpecC Models Using Satisfiability Modulo
Theories . 116

Che-Wei Chang and Rainer Dömer

Automated Functional Verification of Application Specific
Instruction-set Processors . 128

Marcela Šimková, Zdeněk Přikryl, Zdeněk Kotásek, and
Tomáš Hruška

Performance Analysis

Compressing Microcontroller Execution Traces to Assist System
Analysis . 139

Azzeddine Amiar, Mickaël Delahaye, Yliès Falcone, and
Lydie du Bousquet

Hardware and Software Implementations of Prim’s Algorithm for
Efficient Minimum Spanning Tree Computation . 151

Artur Mariano, Dongwook Lee, Andreas Gerstlauer, and Derek Chiou

A Passive Monitoring Tool for Evaluation of Routing in WirelessHART
Networks . 159

Gustavo Kunzel, Jean Michel Winter, Ivan Muller,
Carlos Eduardo Pereira, and João Cesar Netto

Automated Identification of Performance Bottleneck on Embedded
Systems for Design Space Exploration . 171

Yuki Ando, Seiya Shibata, Shinya Honda, Hiroyuki Tomiyama, and
Hiroaki Takada

ARAMIS Special Session

Compositional Timing Analysis of Real-Time Systems Based on
Resource Segregation Abstraction . 181

Philipp Reinkemeier and Ingo Stierand

Towards Virtualization Concepts for Novel Automotive HMI Systems . . . 193
Simon Gansel, Stephan Schnitzer, Frank Dürr, Kurt Rothermel, and
Christian Maihöfer

Exploiting Segregation in Bus-Based MPSoCs to Improve Scalability of
Model-Checking-Based Performance Analysis for SDFAs 205

Maher Fakih, Kim Grüttner, Martin Fränzle, and Achim Rettberg

Table of Contents XIII

Formal Verification of Concurrent Embedded Software 218
Dirk Nowotka and Johannes Traub

On the Homogeneous Multiprocessor Virtual Machine Partitioning
Problem . 228

Stefan Groesbrink

Real-Time Systems

Fault-Tolerant Deployment of Real-Time Software in AUTOSAR ECU
Networks . 238

Kay Klobedanz, Jan Jatzkowski, Achim Rettberg, and
Wolfgang Mueller

Adaptive Total Bandwidth Server: Using Predictive Execution Time 250
Kiyofumi Tanaka

Real-Time Service-Oriented Architectures: A Data-Centric
Implementation for Distributed and Heterogeneous Robotic System 262

Pekka Alho and Jouni Mattila

Contract-Based Compositional Scheduling Analysis for Evolving
Systems . 272

Tayfun Gezgin, Stefan Henkler, Achim Rettberg, and Ingo Stierand

Embedded System Applications

Extending an IEEE 42010-Compliant Viewpoint-Based
Engineering-Framework for Embedded Systems to Support
Variant Management . 283

André Heuer, Tobias Kaufmann, and Thorsten Weyer

Proteus Hypervisor: Full Virtualization and Paravirtualization for
Multi-core Embedded Systems . 293

Katharina Gilles, Stefan Groesbrink, Daniel Baldin, and
Timo Kerstan

A Structural Parametric Binaural 3D Sound Implementation Using
Open Hardware . 306

Bruno Dal Bó Silva and Marcelo Götz

Real-Time Aspects in Distributed Systems

Modeling Time-Triggered Ethernet in SystemC/TLM for Virtual
Prototyping of Cyber-Physical Systems . 318

Zhenkai Zhang and Xenofon Koutsoukos

XIV Table of Contents

I/O Sharing in a Multi-core Kernel for Mixed-Criticality
Applications . 331

Gang Li and Søren Top

Evaluating the Impact of Integrating a Security Module on the
Real-Time Properties of a System . 343

Sunil Malipatlolla and Ingo Stierand

Author Index . 353

TECSCE: HW/SW Codesign Framework

for Data Parallelism Based on Software
Component

Takuya Azumi1, Yasaman Samei Syahkal2, Yuko Hara-Azumi3,
Hiroshi Oyama4, and Rainer Dömer2

1 College of Information Science and Engineering, Ritsumeikan University
takuya@cs.ritsumei.ac.jp

2 Center for Embedded Computer Systems, University of California, Irvine
{ysameisy,doemer}@uci.edu

3 Graduate School of Information Science, Nara Institute of Science and Technology
yuko-ha@is.naist.jp

4 OKUMA Corporation
hi-ooyama@okuma.co.jp

Abstract. This paper presents a hardware/software (HW/SW) code-
sign framework (TECSCE) which enables software developers to easily
design complex embedded systems such as massive data-parallel systems.
TECSCE is implemented by integrating TECS and SCE: TECS is a com-
ponent technology for embedded software, and SCE provides an environ-
ment for system-on-a-chip designs. Since TECS is based on standard C
language, it allows the developers to start the design process easily and
fast. SCE is a rapid design exploration tool capable of efficient MPSoC
implementation. TECSCE utilizes all these advantages since it supports
transformation from component descriptions and component sources to
SpecC specification, and lets the developers decide data partitioning and
parallelization at a software component level. Moreover, TECSCE effec-
tively duplicates software components, depending on their degree of data
parallelizing, to generate multiple SpecC specification models. An appli-
cation for creating a panoramic image removing objects, such as people,
is illustrated as a case study. The evaluation of the case study demon-
strates the effectiveness of the proposed framework.

1 Introduction

Increasing complexities of embedded system and strict schedules in time-to-
market are critical issues in the today’s system-level design. Currently, vari-
ous embedded systems incorporate multimedia applications, which are required
more and more complex functionalities. Meanwhile, the semiconductor technol-
ogy progress has placed a great amount of hardware resources on one chip, en-
abling to implement more functionalities as hardware in order to realize efficient
systems. This widens design space to be explored and makes system-level designs
further complicated - to improve the design productivity, designing systems at
a higher abstraction level is necessary [1].

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 1–13, 2013.
c© IFIP International Federation for Information Processing 2013

2 T. Azumi et al.

Hardware/software (HW/SW) codesign of these systems mainly relies on the
following challenging issues: (1) data parallelism to improve performance, (2)
support for software developers to implement such complicated systems without
knowing system-level languages such as SystemC and SpecC, (3) implementa-
tion to directly use existing code without modification, and (4) management of
communication between functionalities. To the best of our knowledge, there is
no work addressing all of the above issues.

This paper presents a system-level framework (TECSCE) to cope with the
preceding issues. This framework aims at enabling even software developers to
easily design complicated systems such as multimedia applications which are rich
in data parallelism. For this, we integrate a component technology for embedded
software, TECS (TOPPERS Embedded Component System [2]), and the system-
on-a-chip environment SCE [3], which is based on SpecC language. Since TECS
is based on conventional C language, it allows the developers to start the design
process easily and fast. SCE is a rapid design exploration tool capable of efficient
MPSoC implementation.

The contribution of this work is to present a system-level design method for
software developers to deal withmassively parallel embedded systems using TECS.
In existing HW/SW codesign technologies, a designer needs to manually add or
modify HW/SW communication sources (e.g., their size, direction, and allocator)
in input behavioral descriptions, which is complex to specify and error-prone. In
contrast, in the proposed framework, the developer can design the overall system
at a software component level and has no need to specify the HW/SW communi-
cation in the input description because TECS defines the interface between com-
ponents, and the communication sources are automatically generated. Moreover,
a newmechanism of duplicating components realizes data partitioning at the soft-
ware component level for an effective speedup of the applications.

The rest of this paper is organized as follows. Section 2 explains TECS, SCE,
and the overview of the proposed framework. Section 3 depicts a case study of
adapting the proposed framework. The evaluation of the case study is shown in
Section 4. Related work is described in Section 5. Finally, Section 6 concludes
this paper.

2 TECSCE

In this section, the overviews of TECS, SCE, and a system-level design frame-
work (TECSCE) integrating TECS and SCE are presented.

2.1 TECS

In embedded software domains, software component technologies have become
popular to improve the productivity [2,4,5]. It has many advantages such as
increasing reusability, reducing time-to-market, reducing software production
cost, and hence, improving productivity [6].

TECS adopts a static model that statically instantiates and connects com-
ponents. The attributes of the components and interface sources for connecting

TECSCE: HW/SW Codesign Framework for Data Parallelism 3

Fig. 1. Component diagram

the components are statically generated by the interface generator. Furthermore,
TECS optimizes the interface sources. Hence, no instantiation overhead is intro-
duced at runtime, and the runtime overhead of the interface code is minimized
[7]. Therefore, these attributes of TECS are suitable for system-level designs.

Furthermore, in system-level designs, parallelism and pipeline processing
should be considered. TECS supports parallelism and pipeline processing on
a real-time OS for multi-processors in embedded software [8]. The oneway call-
ing is provided to support the parallelism. It means that a caller component does
not need to wait until a callee component finishes executing. At a software level
for multiprocessors environment, the parallelism has been already supported in
TECS. Therefore, it is possible to adapt the feature for system-level designs.

Component Model in TECS. A cell is an instance of component in TECS.
Cells are properly connected in order to develop an appropriate application. A
cell has entry port and call port interfaces. The entry port is an interface to
provide services (functions) to other cells. Each service of the entry port called
the entry function is implemented in C language. The call port is an interface to
use the services of other cells. A cell communicates in this environment through
these interfaces. To distinguish call ports of caller cells, an entry port array is
used. A subscript is utilized to identify the entry port array. A developer decides
the size of an entry port array. The entry port and the call port have signatures
(sets of services). A signature is the definition of interfaces in a cell. A celltype
is the definition of a cell, as well as the Class of an object-oriented language. A
cell is an entity of a celltype.

Figure 1 shows an example of a component diagram. Each rectangle represents
a cell. The dual rectangle depicts a active cell that is the entry point of a program
such as a task and an interrupt handler. The left cell is a TaskA cell, and the
right cell is a B cell. Here, each of tTask and tB represents the celltype name.
The triangle in the B cell depicts an entry port. The connection of the entry port
in the cells describes a call port.

Component Description in TECS. The description of a component in TECS
can be classified into three descriptions: a signature description, a celltype de-
scription, and a build description. An example for component descriptions is
presented in Section 3 to briefly explain these three descriptions 1 .

1 Please refer [2] for the more detailed explanations.

4 T. Azumi et al.

① ②

③

④

⑤

⑥

Fig. 2. Design flow using the proposed framework

2.2 SCE

SCE implements a top-down system design flow based on a specify-explore-refine
paradigm with support for heterogeneous target platforms consisting of custom
hardware components, embedded software processors, dedicated IP blocks, and
complex communication bus architectures. The rest of features and design flow
is explained in the next subsection.

2.3 Overview of TECSCE

Figure 2 represents the design flow using the proposed framework. The circled
numbers in Figure 2 represent the order of design steps.

– Step1: A framework user (hereafter, a developer) defines signatures (interface
definitions) and celltype (component definitions).

– Step2: The developer implements celltype source (component source code) in
C language. They can use the template code based on signatures and celltype
descriptions.

– Step3: The developer describes an application structure including definitions
of cells (instances of component) and the connection between cells. In this
step, the developer decides the degree of data partitioning. If it is possible
to use existing source code (i.e., legacy code), the developer can start from
Step3.

– Step4: The SpecC specification model based on the component description,
including definitions of behaviors and channels, is generated by a TECS

TECSCE: HW/SW Codesign Framework for Data Parallelism 5

Fig. 3. Target application. Left images are input images. Right image is a result image.

generator. The specification model is a functional and abstract model that
is free of any implementation details.

– Step5: The designer can automatically generate system models (Transaction-
level models) based on design decisions (i.e. mapping the behaviors of the
specification model onto the allocated PEs).

– Step6: The hardware and software parts in the system model are imple-
mented by hardware and software synthesis phases, respectively.

SCE supports generating a new model by integrating the design decisions into
the previous model.

3 Case Study for Proposed Framework

In this section, the proposed framework is explained through a case study. First,
a target application is described. Then, two kinds of mechanism to generate
specification models (Step4 in Figure 2) are depicted.

3.1 Target Application

The target application named MovingObjectRemoral for a case study of the
framework is an application for generating a panoramic image removing objects,
such as people. In the panoramic image view system, such as Google Street
View, a user can see images from the street using omnidirectional images. Figure
3 illustrates the target application. The application creates the image without
people as shown in the right image of Figure 3 based on the algorithm [9] by
using a set of panoramic images which are taken at the same position.

Since creating an image by removing obstacles needs a number of original
images, each of which has too many pixels, the original program is designed only
for off-line use. Because the output image depends on the place and environment,
we do not know how many source images are needed to create the output image.
Therefore, currently, we need enormously long time to take images at each place.
Our final goal is to create the output image in real-time by using our framework.

3.2 TECS Components for the Target Application

Figure 4 shows a TECS component diagram for the target application. Each
rectangle represents a cell which is a component in TECS. The left, middle, and

6 T. Azumi et al.

tReader
Reader

tReader
Reader

tWriter
Writer

tWriter
Writer

tWriter
Writer

tMOR

tMOR

tMOR

tMOR

tMOR

tMOR

tMOR

tReader
Reader

Fig. 4. Component diagram for target application

1 signature sSliceImage {
2 [oneway] void sendBlock([in]const slice *slice image);

3 };

Fig. 5. Signature description for the target application

1 [singleton, active]
2 celltype tReader {
3 call sSliceImage cSliceImage[];
4 };
5 celltype tWriter {
6 entry sSliceImage eSliceImage[];
7 };

8 celltype tMOR{
9 entry sSliceImage eSliceImage;
10 call sSliceImage cSliceImage;
11 attr{
12 float32 t rate = 0.75;
13 };
14 var{
15 int32 t count = 0;
16 slice out slice image;
17 slice slice images[MAX COUNT];
18 };
19 };

Fig. 6. Celltype description for the target application

right cells are a Reader cell, an MOR (MovingObjectRemoral) cell, and a Writer
cell, respectively. The Reader cell reads image files, slices the image, and sends
the sliced image data to the MOR cells. The MOR cell collects background colors
(RGB) of each pixel based on the input images. The Writer cell creates the final
image based on the data collected by the MOR cell. Here, tReader, tMOR, and
tWriter represent the celltype name.

Figure 5 shows a signature description between tReader and tMOR, and be-
tween tMOR and tWriter.

The signature description is used to define a set of function heads. A signature
name, such as sSliceImage, follows a signature keyword to define the signature.
The initial character (“s”) of the signature name sSliceImage represents the

TECSCE: HW/SW Codesign Framework for Data Parallelism 7

1 const int32 t SliceCount = 2;

2 [generate(RepeatJoinPlugin," count=SliceCount")]
3 cell tReader Reader {
4 cSliceImage[0] = MOR 000.eSliceImage;

5 };
6 [generate(RepeatCellPlugin," count=SliceCount")]
7 cell tMOR MOR 000 {
8 cSliceImage = Writer.eSliceImage[0];

9 };
10 cell tWriter Writer{
11 };

Fig. 7. Build description for the target application

signature. A set of function heads is enumerated in the body of this keyword.
TECS provides the in, out, and inout keywords to distinguish whether a param-
eter is an input and/or an output. The in keyword is used to transfer data from
a caller cell to a callee cell. The oneway keyword means that a caller cell does
not need to wait for finishing a callee cell. Namely, the oneway keyword is useful
when a caller cell and a callee cell are executed in parallel.

Figure 6 describes a celltype description. The celltype description is used to
define the entry ports, call ports, attributes, and variables of each celltype. The
singleton keyword (Line 1 in Figure 6) represents that a singleton celltype is a
particular cell, only one of which exists in a system to reduce the overhead. The
active keyword (Line 1 in Figure 6) represents the entry point of a program such
as a task and an interrupt handler. A celltype name, such as tReader, follows a
celltype keyword to define celltype. The initial character (“t”) of the celltype name
tReader represents the celltype. To declare an entry port, an entry keyword is
used (Line 6 and 9 in Figure 6). Two words follow the entry keyword: a signature
name, such as sSliceImage, and an entry port name, such as eSliceImage. The
initial character (“e”) of the entry port name eSliceImage represents an entry
port. Likewise, to declare a call port, a call keyword is used (Line 3 and 10 in
Figure 6). The initial character (“c”) of the call port name cSliceImage represents
a call port.

The attr and var keywords that are used to increase the number of different
cells are attached to the celltype and are initialized when each cell is created. The
set of attributes or variables is enumerated in the body of these keywords. These
keywords can be omitted when a celltype does not have an attribute and/or a
variable.

Figure 7 shows a build description. The build description is used to declare
cells and to connect between cells for constructing an application. To declare
a cell, the cell keyword is used. Two words follow the cell keyword: a celltype
name, such as tReader, and a cell name, such as Reader (Lines 3-5, Lines 7-
9, and Lines 10-11 in Figure 7). In this case, eSliceImage (entry port name) of
MOR 000 (cell name) is connected to cSliceImage (call port name) of Reader
(cell name). The signatures of the call port and the entry port must be the same
in order to connect the cells.

8 T. Azumi et al.

3.3 cellPlugin

At the component level (Step 3 in Figure 2), the proposed framework realizes
data partitioning. A new plugin named cellPlugin is proposed to duplicate cells
for data partitioning and connect the cells. There are two types of cellPlugin:
RepeatCellPlugin and RepeatJoinPlugin.

RepeatCellPlugin supports duplication of cells depending on the slice count
i.e. the number of data partitions. and connection between the call port of the
duplicated cells and the entry ports of the connected cell in the original build
description (Line 6 in Figure 7). RepeatJoinPlugin provides connection between
the call port of the duplicated cells generated by RepeatCellPlugin (Line 2 in Fig-
ure 7). Note that it is easy to duplicate MOR cells for realizing data partitioning
and parallelization as shown in Figure 4.

3.4 cd2specc

In this subsection, policies of transformation from a component description to
a specification model in SpecC language are described. A basic policy of trans-
formation is that a cell and an argument of function of signature correspond to
a behavior and a channel in SpecC language, respectively. The tReader, tMOR,
and tWriter celltypes correspond to tReader, tMOR, tWriter behaviors generated
by cd2specc, respectively. The following pseudo code describes the examples of
generated SpecC code.

Pseudo Code 1. tMOR behavior
1 behavior tMOR(channel definitions){
2 void eSliceImage sendBlock

(slice image){
3 for i to HIGHT / SliceCount do

4 for j to WIDTH do

5 store pixel color

6 sort

7 end for

8 end for

9 send new image to Writer

10 }

11 void main(){
12 while true do

13 receive slice image data

14 call eSliceImage sendBlock

15 end while

16 }
17 }

Pseudo Code 1 shows a tMOR behavior. If a behavior has an entry func-
tion, the behavior receives parameters to call the entry function. In this case,
tMOR behavior receives sliced images by using channels to call entry function
(eSliceImage sendBlock) in Pseudo Code 1. Although there are several ways to
realize tMOR, here we show in the pseudo code an algorithm to do so easily.
This is often used for sorting algorithm based on brightness of each pixel to find
the background color for each pixel. In this case, the brighter color depending
on the rate value (Line 12 in Figure 6) is selected.

TECSCE: HW/SW Codesign Framework for Data Parallelism 9

Pseudo Code 2. Main behavior
1 behavior Main(channel definitions){
2 // declaration of channels

3 // declaration of behaviors

4 tReader Reader(...);

5 tMOR MOR 000(...);

6 tMOR MOR 001(...);

7 //...

8 Writer Writer(...);

9 int main(){
10 par{
11 Reader.main();

12 MOR 000.main();

13 MOR 001.main();

14 //...

15 Writer.main();

16 }
17 }
18 }

Fig. 8. Specification model of SpecC language when slice count is two

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120

th
e

nu
m

be
r

of
 li

ne
s

the nubmer of data partitioning

cd2spec
cellplugin

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120

th
e

nu
m

be
r

of
 li

ne
s

the nubmer of data partitioning

Fig. 9. Size of generated code in SpecC language

ASpecCprogram starts with execution of themain function of the root behavior
which is named Main as shown in Pseudo Code 2. The roles of the main behavior
are instantiation of behaviors, initialization of channels, connection of channels be-
tween behaviors, and management of execution of the other behaviors.

All behavioral synthesis tools typically do not support all possible C language
constructs, such as recursion, dynamic memory allocation. Thus, TECS compo-
nent source obeying these restrictions can be synthesized. Since recursion and
dynamic memory allocation are not usually used for embedded software, these
restrictions are not critical.

10 T. Azumi et al.

Figure 8 shows a specification model of SpecC language when slice count is
two. The model consists of four behaviors and four communication channels.
The numbers of channels and MOR instances are depended on the number of
slice count.

4 Evaluation

For the experimental evaluation of the TECSCE design flow, we used the appli-
cation described in Section 3 to show effectiveness of cellPlugin and cd2specc for
improving design productivity.

First, we measured the number of lines of each component description gen-
erated by cellPlugin and each SpecC code generated by cd2specc. The values in
Figure 9 represent the total number of lines of generated code. When the number
of data partitioning is zero, the value shows the lines of common code, e.g., def-
initions of channel types, template code of behaviors, and implementation code
based on entry functions. As can be seen from Figure 9, the lines of the code
proportionally grow to slice count. In TECSCE, the developers only change the
parameter for slice count in order to manage the data partitioning. The results
indicate that the communication code between behaviors have a significant im-
pact on productivity. Therefore, it can be concluded that cellPlugin and cd2specc
are useful, particularly for large slice count.

Next, we evaluated four algorithms to realize the MOR: Bubble, Insert, Av-
erage, and Bucket. Bubble is a basic algorithm for MOR based on a bubble sort
to decide the background color. Insert is based on an insertion sort. Average is
assumed that the background color is the average color value. Bucket is based
on a bucket sort.

Each MOR behavior was mapped onto different cores based on ARM7TDMI
(100MHz). The execution time of processing 50 images with 128x128 pixels on
every core is measured when slice count was eight. An ISS (Instruction Set Sim-
ulator) supported by SCE was used to measure the cycle counts for estimation
of the execution time. Table 1 shows the results of execution time for each core
when slice count is eight. These results indicate that the generated SpecC de-
scriptions are accurately simulatable.

All of the series of images are not necessary to collect the background color for
the target application because the series of images are almost the same. Therefore,
if a few input images can be obtained per second, it is enough to generate the out-
put image. In our experiments, two images per second were enough to generate an

Table 1. Results of Execution Time (ms) (slice count is Eight)

Algorithm CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8

Bubble 16465.0 16343.0 16215.2 16162.5 16276.9 16325.0 16372.7 16396.3

Insert 2261.3 2360.5 2423.9 2425.4 2423.2 2384.4 2345.2 2317.8

Average 942.1 973.4 997.9 997.7 997.6 997.8 997.8 997.5

Bucket 944.9 973.2 987.7 980.8 998.8 999.3 999.4 999.2

TECSCE: HW/SW Codesign Framework for Data Parallelism 11

output one. It is possible to use this application in real-time when each input im-
age with 256x512 is used on this configuration (eight cores, ARM 100MHz, and
Bucket algorithm). If the developers want to deal with bigger images in real-time,
there are several options: to use higher clock frequency, to increase the number of
data partitioning, to use hardware IPs, and so forth.

5 Related Work

HW/SW codesign frameworks have been studied for more than a decade.
Daedalus [10] framework supports a codesign for multimedia systems. It starts

from a sequential program in C, and converts the sequential program into a
parallel KPN (Kahn Process Network) specification through a KPNgen tool.

SystemBuilder [11] is a codsign tool which automatically synthesizes target
implementation of a system from a functional description. It starts with system
specification in C language, in which a designer manually specifies the system
functionalities as a set of concurrent processes communicating with each other
through channels.

SystemCoDesigner [12] supports a fast design space exploration and rapid
prototyping of behavioral SystemC models by using an actor-oriented approach.

The system-on-chip environment (SCE) [3] is based on the influential SpecC
language and methodology. SCE implements a top-down system design flow
based on a specify-explore-refine paradigm with support for heterogeneous tar-
get platforms consisting of custom hardware components, embedded software
processors, dedicated IP blocks, and complex communication bus architectures.

System-level designs based UML [13,14] are proposed to improve the produc-
tivity. One [13] is for exploring partial and dynamic reconfiguration of modern
FPGAs. The other [14] is for closing the gap between UML-based modeling and
SystemC-based simulation.

To the best of our knowledge, there is no work addressing all of the issues
mentioned in Section 1. TECSCE solve all of the issues since cd2specc, which
a part of TECSCE, makes the overall system at a software component level
in order to hide the many implementation details such as communication be-
tween functionalities. The framework users do not need to specify the HW/SW
communication in the input description because the communication sources are
automatically generated from component descriptions TECS specifically defines
the interface between components. Therefore, TECSCE realizes that existing
code can be used without modification and without knowing system-level lan-
guages such as SystemC and SpecC. Moreover, cellPlugin, which is a part of
TECSCE, supports that duplication of components realizes data partitioning at
a component level for an effective speedup of the applications.

6 Conclusions

This paper proposed a new codesign framework integrating TECS and SCE,
which enables software developers to deal with massive parallel computing for

12 T. Azumi et al.

multimedia embedded systems. The advantage of our framework is that devel-
opers can directly exploit software components for system-level design without
modifying input C sources (component sources). Moreover, since TECS supports
data partitioning and SCE supports MPSoCs as target architectures, our frame-
work can deal with more complex applications (such as MOR) and can help
parallelize them for efficient implementation. The evaluation demonstrated the
effectiveness of the proposed framework including cellPlugin and cd2specc and the
capability of operating the MOR application in real-time. Furthermore, almost
all multimedia applications can be adapted to the same model of our frame-
work. cellPlugin and cd2specc are open-source software, and will be avaibale to
download from the website at [15].

Acknowledgments. This work was partially supported by JSPS KAKENHI
Grant Number 40582036. We would like to thank Maiya Hori, Ismail Arai, and
Nobuhiko Nishio for providing the MOR application.

References

1. Sangiovanni-Vincentelli, A.: Quo vadis, SLD? Reasoning about the Trends and
Challenges of System Level Design. IEEE 95(3), 467–506 (2007)

2. Azumi, T., Yamamoto, M., Kominami, Y., Takagi, N., Oyama, H., Takada, H.: A
new specification of software components for embedded systems. In: Proc. 10th
IEEE International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing, pp. 46–50 (May 2007)

3. Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi, S., Gajski,
D.D.: System-on-Chip Environment: A SpecC-Based Framework for Heterogeneous
MPSoC Design. EURASIP Journal on Embedded Systems 2008, 1–13 (2008)

4. AUTOSAR: AUTOSAR Specification, http://www.autosar.org/
5. Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., H̊akansson, J., Möller, A.,

Pettersson, P., Tivoli, M.: The SAVE approach to component-based development
of vehicular systems. Journal of Systems and Software 80(5), 655–667 (2007)

6. Lau, K.K., Wang, Z.: Software component models. IEEE Transactions on Software
Engineering 33(10), 709–724 (2007)

7. Azumi, T., Oyama, H., Takada, H.: Optimization of component connections for an
embedded component system. In: Proc. IEEE/IFIP 7th International Conference
on Embedded and Uniquitous Computing, pp. 182–188 (August 2009)

8. Azumi, T., Oyama, H., Takada, H.: Memory allocator for efficient task communi-
cations by using RPC channels in an embedded component system. In: Proc. the
12th IASTED International Conference on Software Engineering and Applications,
pp. 204–209 (November 2008)

9. Hori, M., Takahashi, H., Kanbara, M., Yokoya, N.: Removal of moving objects and
inconsistencies in color tone for an omnidirectional image database. In: Koch, R.,
Huang, F. (eds.) ACCV 2010 Workshops, Part II. LNCS, vol. 6469, pp. 62–71.
Springer, Heidelberg (2011)

10. Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A.D., Polstra, S., Bose, R.,
Zissulescu, C., Deprettere, E.F.: Daedalus: Toward composable multimedia mp-soc
design. In: Proc. International 45th Design Automation Conference, pp. 574–579
(July 2008)

http://www.autosar.org/

TECSCE: HW/SW Codesign Framework for Data Parallelism 13

11. Honda, S., Tomiyama, H., Takada, H.: RTOS and codesign toolkit for multipro-
cessor systems-on-chip. In: Proc. 12th Asia and South Pacific Design Automation
Conference, pp. 336–341 (January 2007)

12. Keinert, J., Streübrbar, M., Schlichter, T., Falk, J., Gladigau, J., Haubelt, C.,
Teich, J., Meredith, M.: Systemcodesigner an automatic esl synthesis approach by
design space exploration and behavioral synthesis for streaming applications. ACM
Trans. Des. Autom. Electron. Syst. 14(1), 1:1–1:23 (2009)

13. Vidal, J., de Lamotte, F., Gogniat, G., Diguet, J.P., Soulard, P.: UML design for
dynamically reconfigurable multiprocessor embedded systems. In: Proceedings of
the Conference on Design, Automation and Test in Europe, pp. 1195–1200 (March
2010)

14. Mischkalla, F., He, D., Mueller, W.: Closing the gap between UML-based modeling,
simulation and synthesis of combined HW/SW systems. In: Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 1201–1206 (March
2010)

15. TECS, http://www.toppers.jp/tecs

http://www.toppers.jp/tecs

Programming Robots with Events

Truong-Giang Le1, Dmitriy Fedosov2, Olivier Hermant3,
Matthieu Manceny1, Renaud Pawlak4, and Renaud Rioboo5

1 LISITE - ISEP, 28 rue Notre-Dame des Champs, 75006 Paris, France
2 Saint-Petersbourg University of Aerospace Instrumentation, 67 Bolshaya Morskaya

street, 190000, Saint Petersburg, Russia
3 CRI - MINES ParisTech, 35 rue ST-Honoré, 77300 Fontainebleau, France

4 IDCapture, 2 rue Duphot, 75001 Paris, France
5 ENSIIE, 1 square de la Résistance, F-91025 Évry CEDEX, France

{le-truong.giang,matthieu.manceny}@isep.fr,

{dvfdsv,renaud.pawlak}@gmail.com,

olivier.hermant@mines-paristech.fr,

renaud.rioboo@ensiie.fr

Abstract. We introduce how to use event-based style to program robots
through the INI programming language. INI features both built-in and
user-defined events, a mechanism to handle various kinds of changes
happening in the environment. Event handlers run in parallel either syn-
chronously or asynchronously, and events can be reconfigured at runtime
to modify their behavior when needed. We apply INI to the humanoid
robot called Nao, for which we develop an object tracking program.

Keywords: robotics, event-based programming, context-aware reactive
systems, parallel programming.

1 Introduction

The word “robot” was coined by the Czech novelist Karel Capek in a 1920 play
titled Rassum’s Universal Robots. In Czech, “robot” means worker or servant.
According to the definition of the Robot Institute of America dating back to
1979, robot is:

A reprogrammable, multifunctional manipulator designed to move ma-
terial, parts, tools or specialized devices through variable programmed
motions for the performance of a variety of tasks.

At present, people require more from the robots, since they are considered as a
subset of “smart structures” - engineered constructs equipped with sensors to
“think” and to adapt to the environment [28]. Generally, robots can be put into
three main categories: manipulators, mobile robots and humanoid robots [26].

Robots now play an important role in many domains. In manufacturing,
robots are used to replace humans in remote, hard, unhealthy or dangerous
work. They will change the industry by replacing the CNC (Computer(ized)

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 14–25, 2013.
c© IFIP International Federation for Information Processing 2013

Programming Robots with Events 15

Numerical(ly) Control(led)) machines. In hospitals, they are employed to take
care of the patients, and even do complex work like performing surgery. In ed-
ucation, robots may be good assistants for the children. They maybe also good
friends for old people at home for talking and sharing housework. The global
service robotics market in 2011 was worth $18.39 billion. This market is valued
at $20.73 billion in 2012 and expected to reach $46.18 billion by 2017 at an es-
timated CAGR (Compound Annual Growth Rate) of 17.4% from 2012 to 2017
[20]. As a result, research on robot gets an increasing interests from governments,
companies, and researchers [2,3].

Building a robot program is a complex task since a robot needs to quickly
react to variabilities in the execution environment. In other words, a robot should
be indeed autonomous. Besides, it should be able to do several things at one
time. Consequently, using a programming language or development framework
dedicated to robots is essential. The ultimate goal is to help programmers develop
robot programs more efficiently and straightforwardly.

We give an overview of such robot programming languages and frameworks
in Section 2. Next, in Section 3, we discuss how to define and apply events in
our novel programming language called INI, especially its advanced features like
events synchronization and reconfiguration. Then, we present a case study of
using INI to control the humanoid robot Nao to track an object (Section 4).
Finally, some conclusions and future work are discussed in Section 5.

2 Related Work

Classical languages like Java, C/C++, .Net are usually used for programming
robot [1,17,22]. However, developing robot’s applications using these languages
require more time and effort since they are not fully dedicated to this purpose.
For example, to support interaction between robots and environment when some-
thing happens, programmers have to construct a mechanism for event detection
and handling. In order to do this, programmers need to write a lot of code or
may use some extensions like [16,23] although they are not easy to adapt.

Additionally, several robotic development platforms and DSLs (Domain Spe-
cific Languages) have been designed to assist programmers. Urbiscript is a script-
ing language primarily designed for robotics. It’s a dynamic, prototype-based,
and object-oriented scripting language. It supports and emphasizes parallel and
event-based programming, which are very popular paradigms in robotics, by
providing core primitives and language constructs [12]. UrbiScript has some lim-
itations. First, it is an untyped language. Besides, it lacks support for synchro-
nization among events, which is essential in some scenarios. Moreover, events in
UrbiScript cannot be reconfigured at runtime to change their behavior.

The KUKA Robot Programming Language is developed by KUKA, one of
the world’s leading manufacturers of industrial robots [6]. KUKA is simple,
Pascal-like and lacks many features. A Matlab abstraction layer has been in-
troduced to extend its capabilities [4]. RoboLogix is a scripting language that
utilizes common commands, or instruction sets among major robot manufactur-
ers. RoboLogix programs consist of data objects and a program flow [15]. The

16 T.-G. Le et al.

data objects reside in registers and the program flow represents the list of instruc-
tions, or instruction set, that is used to program the robot. However, RoboLogix
still does not supply a well-defined mechanism for the robots to interact and
react to environment.

In recent years, event-driven programming has emerged as an efficient method
for interacting and collaborating with the environment in ubiquitous comput-
ing. Using event-driven style requires less effort and may lead to more robust
software [8]. This style is used to write many kinds of applications: robotics,
context-aware reactive applications, self-adaptive systems, interactive systems,
etc. In consequence, several event-based programming languages have been de-
veloped so far [5,14]. However, in these languages, events still cannot be defined
intuitively and straightforwardly, and their features are still limited. For ex-
ample, events cannot run in parallel to take advantage of multiple processors.
Besides, programmers may not dynamically customize events’ behavior to deal
with changes in the environment.

Considering limitations of current event-based programming language, we
have developed a novel programming language called INI. With INI, developers
may define and use events easily. Along with several built-in events, they also
can write their own events in Java or in C/C++, and then integrate to INI
programs. Events in INI may run concurrently either asynchronously or syn-
chronously. Moreover, events may be reconfigured at run time to handle different
scenarios happening in the context.

3 Event-Based Programming with INI

3.1 Overview

Events are used to monitor changes happening in the environment or for time
scheduling. In other words, any form of monitoring can be considered to be
compatible with event-based style. Generally, there are three types of events [21]:

– A timer event to express the passing of time.
– An arbitrary detectable state change in the system, e.g. the change of the

value of a variable during execution.
– A physical event such as the appearance of a person detected by cameras.

For example, programmers may define an event to monitor the power level of
their systems or to observe users’ behavior in order to react. They can also
specify an event to schedule a desired action at preferable time. To understand
more about event-based programming, please refer to [9,10].

INI is a programming language developed by ourselves, which runs on Java
Virtual Machine (JVM) but INI’s syntax and semantics are not Java’s ones. INI
is developed aiming at supporting the development of concurrent and context-
aware reactive systems, which need a well-defined mechanism for capturing and
handling events. As shown later, INI supports all those kinds of event. Event
callback handlers (or events instances) are declared in the body of functions

Programming Robots with Events 17

and are raised, by default asynchronously, every time the event occurs. By con-
vention, an event instance in INI starts with @ and takes input and output
parameters. Input parameters are configuration parameters to tune the event
execution. Output parameters are variable names that are filled in with values
when then the event callback is called, and executed in a new thread. They can
be considered as the measured characteristic of the event instance. It has to be
noticed that those variables, as well as any INI variable, enjoy a global scope in
the function’s body. Both kinds of parameters are optional. Moreover, an event
can also be optionally bound to an id, so that other parts of the program can
refer to it. The syntax of event instances is shown below:

id:@eventKind [inputParam1 =value1 , inputParam2 =value2 , ...]

(outputParam1 , outputParam2 , ...)

{ <action > }

Table 1. Some built-in events in INI

Built-in event kind Meaning

@init() used to initialize variables, when a function starts.

@end() triggered when no event handler runs, and when the
function is about to return.

@every[time:Integer]() occurs periodically, as specified by its input
parameter (in milliseconds).

@update[variable:T] invoked when the given variable’s value changes
(oldValue:T, newValue:T) during execution.

@cron[pattern:String]() used to trigger an action, based on the UNIX CRON
pattern indicated by its input parameter.

Programmers may use built-in events (listed in Table 1), or write user-defined
events (in Java or in C/C++), and then integrate them to their INI programs
through bindings. By developing custom events, one can process data which
are captured by sensors. To illustrate events in INI, let’s consider a program
which uses sensors to capture and collect weather and climate data like humidity,
temperature, wind speed, rainfall, etc. In our program, we can define separate
events to handle these tasks as shown in Figure 1. For instance, we can define
an event @humidityMonitor to observe the humidity level periodically. This
event has one input parameter named humPeriod that sets the periodicity of
the checks (time unit is in hours). Besides, it has one output parameter named
humidity to indicate the current humidity. Inside this event, depending on the
value of the current humidity, we can define several corresponding actions such
as warning when the humidity is too high. Other events can be defined in a
similar structure. The last event is a built-in @cron event, which is employed to
send these data to a server at 3:00 AM, 11:00 AM, and 7:00 PM every day (to
learn more about UNIX CRON pattern, please refer to [7]). All events in our
program run in parallel so that it can handle multiple tasks at one time.

18 T.-G. Le et al.

1 function main () {

2 h:@humidityMonitor [humPeriod = 1](humidity) {

3 case {

4 humidity > ... {...}

5 default {...}

6 }

7 }

8 t:@temperatureMonitor [tempPeriod = 2](temperature) { ... }

9 ...

10 @cron[pattern = "0�3-11-19 �*�*�*"]() {

11 //Send data to a server for tracking purpose ...

12 }

13 }

Fig. 1. A sample INI program used for collecting climate data

3.2 Advanced Use of Events

By default, except for the @init and @end events (see Table 1), all INI events are
executed asynchronously. However, in some scenarios, a given event e0may want
to synchronize on other events e1,..., eN. It means that the synchronizing
event e0 must wait for all running threads corresponding to the target events
to be terminated before running. For instance, when e0 may affect the actions
defined inside other events, we need to apply the synchronization mechanism.
The syntax corresponding to the above discussion is:

$(e1,e2 ,...,eN) e0:@eventKind ... { <action > }

Events in INI may be reconfigured at runtime in order to adjust their behavior
when necessary to adapt to changes happening in the environment. Programmers
may use the built-in function reconfigure event(eventId, [inputParam1=

value1, inputParam2=value2,...]) in order to modify the values of input
parameters of the event referred to by eventId. For instance, in the example of
Figure 1, we can call reconfigure event(h, [humPeriod=0.5]) to set the hu-
midity data collection period to 30 minutes. Now our event will gather data every
30 minutes instead of one hour as before. Besides, we also allow programmers
to stop and restart events with two built-in functions: stop event([eventId1,

eventId2,...]) and restart event([eventId1, eventId2,...]). For exam-
ple, we can stop all data collection processes when the energy level of the system
is too low, and restart them later when the energy is restored.

Last but not least, events in INI may be used in combination with a boolean
expression to express the requirement that need to be satisfied before they can
be executed. Programmers may use the syntax below:

<event_expression > <logical_expression > { <action > }

For example, if we want the event @humidityMonitor to be executed only when
the temperature is higher than some threshold:

Programming Robots with Events 19

@humidityMonitor [humPeriod =1](humidity) temperature >... {...}

To understand more about the above mechanisms and other aspects of INI (e.g.
developing user-defined events, rules, type system, type checking, and built-in
functions), the readers may have a look at [19,27].

4 A Case Study with the Humanoid Robot Nao

In this section, we briefly present the humanoid robot Nao, especially its features
related to the moving mechanism. Then we show an INI tracking program run-
ning on Nao. The purpose of our INI program is controlling the Nao to detect a
ball in the space and then walk to reach it.

4.1 Introduction to Nao and Its Moving Mechanism

Nao is the humanoid robot that is built by the French company Aldebaran-
Robotics [13,25]. It is equipped with many sensor devices to obtain robot’s close
environment information (see Figure 2). Nao has for instance become a standard
platform for RoboCup, an international initiative that fosters research in robotics
and artificial intelligence [11].

Fig. 2. Nao’s features [25]

NAOqi is the middleware running on Nao that helps prepare modules to be
run either on Nao or on a remote PC. Code can be developed on Windows,
Mac or Linux, and be called from many languages including C++, Java, Python
and .Net. The company Aldebaran Robotics developed many modules built on
top of this framework that offer rich APIs for interacting with Nao, including
functionalities related to audio, vision, motion, communication or several low-
level accesses. They also provide a well-organized documentation, particularly
on how to control the robot effectively [24].

Nao is able to walk on multiple floor surfaces such as carpet, tiles and wooden
floors. Each step is composed of a double leg and a single leg support phase.
With Nao, the basic foot step planner is used by the walk process [24], pro-
vided by three possible walk control APIs: ALMotionProxy::setWalkTarget

20 T.-G. Le et al.

Velocity() (applied in our later case study), ALMotionProxy :: walkTo() or
ALMotionProxy::setFootSteps(). The foot’s position is specified by three pa-
rameters: x, y and θ (see Figure 3). x is the distance along the X axis in meters
(forwards and backwards). y is the distance along the Y axis in meters (lateral
motion). θ is the robot orientation relative to the current orientation (i.e. the
rotation around the Z axis) in radians [-3.1415 to 3.1415]. The movement is com-
posed of a translation by x and y, then a rotation around the vertical Z axis θ. It is
possible to define custom gait parameters for the walk of Nao so that we can con-
trol the direction and speed to adjust to different scenarios. To learn more about
these parameters (e.g. MaxStepX, MaxStepY, MaxStepTheta, MaxStepFrequency,
etc.) along with their value ranges and default values, please refer to Nao’s doc-
umentation [24]. In INI, we abstract over many of those parameters through
user-defined events and functions in order to facilitate programming.

4.2 An INI Tracking Program Running on Nao

In this part, we show how INI can be applied for programming robot through
the example of building a ball tracking program. Figure 3 displays the possible
relative positions between the robot and the ball. There are three distinguished

Fig. 3. Possible relative positions among the robot and the ball

zones that are specified based on the distance from the robot to the detected
ball. And then according to which zone the ball belongs to, we can control the
robot with the desired behavior:

– Zone 1: When the distance from the robot to the detected ball is larger than
the forwardThreshold (unit is in meters and its range is 0.0 - 1.0 meters),
the ball is considered as far from the robot and it needs to move in order to
reach the ball.

Programming Robots with Events 21

– Zone 2: When the distance from the robot to the detected ball is between
backwardThreshold (its unit and range are the same as forwardThreshold)
and forwardThreshold, the robot does not move since its place can be
considered as a good position to observe the ball. However, the robot’s head
still can turn to continue to follow the ball.

– Zone 3: When the distance from the robot to the detected ball is shorter
than backwardThreshold, the ball is considered as too close and moving
towards the robot. As a result, the robot will go backward in order to avoid
the collision and keep its eyes on the ball.

The activity diagram of the strategy is shown in Figure 4. Our program is shown

Fig. 4. The activity diagram for our program

in Figure 5. In our program, we employ three events. The event @init (lines 2-
16) is applied to initialize the variables used later in our program. The purpose
of using two variables forwardThreshold and backwardThreshold has been ex-
plained above. The variable interval (unit is in milliseconds) sets the delay after
which, if no ball is detected, the robot temporarily stops tracking. The variable
stepFrequency (normalized between 0.0 and 1.0, see more in [24]) is applied
to set how often the robot will move and the variable defaultStepFrequency

is applied to set the default value for step frequency. The two variables ip and
port are used to indicate the parameters for Nao’s network address. The boolean
variable useSensors is used to indicate whether the program uses the direct re-
turned values from sensors or the values after adjustments by the robot itself
(please refer to Nao’s documentation [24] to understand more). The variable
targetTheta is the robot orientation relative to the ball’s orientation. The vari-
able robotPosition points out the robot’s position when it detects the ball so

22 T.-G. Le et al.

1 function main () {

2 @init() {

3 forwardThreshold = 0.5

4 backwardThreshold = 0.3

5 interval = 1000

6 stepFrequency = 0.0

7 defaultStepFrequency = 1.0

8 ip = "nao.local"

9 port = 9559

10 useSensors = false

11 targetTheta = 0.0

12 robotPosition = [0.0 ,0.0 ,0.0]

13 stepX = 0.0

14 needAdjustDirection = false

15 i = 0

16 }

17 $(e) d: @detectBall [robotIP = ip, robotPort = port ,

18 checkingTime = interval](ballPosition){

19 // Compute necessary parameters , and return in an array

20 parameters = process_position (ip, port , ballPosition ,

21 forwardThreshold , backwardThreshold , useSensors)

22 targetTheta = parameters [0]

23 robotPosition = parameters [1]

24 stepX = parameters [2]

25 i = 0

26 needAdjustDirection = true

27 stepFrequency = defaultStepFrequency

28 }

29 $(d,e) e:@every[time = 200]() {

30 // Control the robot to go one step if the ball is detected

31 needAdjustDirection = reach_to_target (name , port ,

32 stepFrequency , robotPosition , stepX , targetTheta ,

33 needAdjustDirection , useSensors)

34 i++

35 case {

36 // Reset parameters after three consecutive walking steps

37 i>3 {

38 stepX = 0.0

39 targetTheta = 0.0

40 stepFrequency = 0.0

41 }

42 }

43 }

44 }

Fig. 5. An object tracking program written in INI

Programming Robots with Events 23

that then we can calculate appropriate needed direction and speed for its move-
ment. stepX is the fraction (between 0.0 and 1.0) of MaxStepX (the maximum
translation along the X axis for one step, see [24]). The sign of stepX also in-
dicates the moving direction (forward or backward) of the Nao. The boolean
variable needAdjustDirection is used to indicate whether we need to adjust
the direction when the robot moves towards the ball. The intention of using the
temporary variable i will be explained later.

The event @detectBall (lines 17-28) is a user-defined event written in Java,
which uses image processing techniques to detect a ball with the help of video
cameras located in the forehead of Nao. This event has three input parameters:
robotIP , robotPort and checkingTime have the same meanings that the cor-
responding variables ip, port and interval described before own. Inside this
event, when a ball is detected, we call the function process position to process
positions of the ball and the robot, and also specify the appropriate direction
and velocity for the robot’s movement.

The event @every (lines 29-43) is applied to control the robot to move to-
wards the target every 200 milliseconds. The function reach to target is used
to determine a suitable velocity for the robot and to control the robot mov-
ing towards the ball. The robot only moves when all needed parameters related
to orientation, velocity and frequency are specified. Each call of that function
makes one walking step. During execution, the robot may adjust the direction
and velocity to make them more well-suited since the ball may change its po-
sition. As a result, after each step when the robot comes to the new location,
we calculate the direction error. If the error for θ exceeds the allowed threshold
(e.g. 10 degrees), the variable needAdjustDirection becomes true and some
adjustments will be applied so that the robot walks in the correct way. We use
the temporary variable i to reset some parameters. When i > 3, this means
that the robot already walked for three successful steps without checking again
the position of the ball. In this case, by resetting some parameters, the robot
will stop temporarily. Then it waits to detect the ball again to check whether
during its displacement, the ball has moved to another place or not. If yes, Nao
gets the updated position of the ball, then continues to walk and reach it.

In our program, we synchronize the two events @detectBall and @every

in order to avoid data access conflicts and unwanted behavior. For example,
the robot is controlled to walk to the ball only when all needed parameters are
calculated. Besides, we want to ensure that during the calculation of parameters,
the robot is not moving so that the measured numbers are correct and stable.
Consequently, we add the notation for synchronization, i.e. $(...) before each
event (line 17 and line 29). Additionally, the event @every is also synchronized
with itself so that each robot step does not overlap with others.

When running in experiment, our program completes well the desired require-
ments. The robot detects the orange ball in the space and then follows it. When
the ball is moved to another position, Nao also changes the direction and speed
to reach the ball if needed. A demonstration video can be watched on YouTube
[18].

24 T.-G. Le et al.

5 Conclusion and Future Work

In this paper, we presented how to write robot applications by using INI, a novel
programming language that supports event-based paradigm. Programmers may
use built-in events, or develop custom events in other languages like Java or
C/C++ and then integrate them to INI programs. Moreover, events may run
in parallel (asynchronously or synchronously) to speed up the execution and
improve performance. Last but not least, in case of changes happening in the
environment, events can be dynamically reconfigured to adapt to a new context.

For future work, we will extend our example by adding more features to our
program such as detecting and avoiding obstacles on the way to the target and
control robot’s hands to catch the object. We also have a plan to develop more
practical applications running on Nao. For example, we can build a program
which may recognize the human voice commands, and then control the robot to
act the desired behavior.

Acknowledgments. The work presented in this article is co-funded by the Eu-
ropean Union. Europe is committed in Ile-de-France with the European Regional
Development Fund.

References

1. Auyeung, T.: Robot programming in C (2006),
http://www.drtak.org/teaches/ARC/cisp299_bot/book/book.pdf

2. Bar-Cohen, Y., Hanson, D.: The Coming Robot Revolution: Expectations and
Fears About Emerging Intelligent, Humanlike Machines, 1st edn. Springer Pub-
lishing Company, Incorporated (2009)

3. Bekey, G.: Robotics: State of the Art and Future Challenges. World Scientific
(2008)

4. Chinello, F., Scheggi, S., Morbidi, F., Prattichizzo, D.: Kuka control toolbox. IEEE
Robot. Automat. Mag. 18(4), 69–79 (2011)

5. Cohen, N.H., Kalleberg, K.T.: EventScript: an event-processing language based
on regular expressions with actions. In: Proceedings of the 2008 ACM SIGPLAN-
SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems,
LCTES 2008, pp. 111–120. ACM, New York (2008)

6. KUKA Robotics Corporation: Kuka, http://www.kuka-robotics.com

7. Crontab, http://crontab.org/
8. Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D., Morris, R.: Event-driven

programming for robust software. In: Proceedings of the 10th Workshop on ACM
SIGOPS European Workshop, EW 10, pp. 186–189 (2002)

9. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co.
(2010)

10. Faison, T.: Event-Based Programming: Taking Events to the Limit. Apress, Berkely
(2006)

11. Federation, T.R.: Robocup’s homepage, http://www.robocup.org/

12. Gostai: The Urbi Software Development Kit (July 2011)

http://www.drtak.org/teaches/ARC/cisp299_bot/book/book.pdf
http://www.kuka-robotics.com
http://crontab.org/
http://www.robocup.org/

Programming Robots with Events 25

13. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P.,
Marnier, B., Serre, J., Maisonnier, B.: The Nao humanoid: A combination of per-
formance and affordability. CoRR abs/0807.3223 (2008)

14. Holzer, A., Ziarek, L., Jayaram, K., Eugster, P.: Putting events in context:
aspects for event-based distributed programming. In: Proceedings of the Tenth
International Conference on Aspect-Oriented Software Development, AOSD 2011,
pp. 241–252. ACM, New York (2011)

15. Logic Design Inc.: Robologix,
http://www.robologix.com/programming_robologix.php

16. Jayaram, K.R., Eugster, P.: Context-oriented programming with EventJava.
In: International Workshop on Context-Oriented Programming, COP 2009, pp.
9:1–9:6. ACM, New York (2009)

17. Kang, S., Gu, K., Chang, W., Chi, H.: Robot Development Using Microsoft
Robotics Developer Studio. Taylor & Francis (2011)

18. Le, T.G.: A demonstration video, http://www.youtube.com/watch?v=alKZ9gZa4AU
19. Le, T.G., Hermant, O., Manceny, M., Pawlak, R., Rioboo, R.: Unifying event-based

and rule-based styles to develop concurrent and context-aware reactive applications
- toward a convenient support for concurrent and reactive programming. In: Pro-
ceedings of the 7th International Conference on Software Paradigm Trends, Rome,
Italy, July 24-27, pp. 347–350 (2012)

20. M&M: Service robotics market (personal & professional) global fore-
cast & assessment by applications & geography (2012 - 2017) (2012),
http://www.marketsandmarkets.com/

21. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer-
Verlag New York, Inc., Secaucus (2006)

22. Preston, S.: The Definitive Guide to Building Java Robots (The Definitive Guide
to). Apress, Berkely (2005)

23. Robomatter: Robotc, http://www.robotc.net/
24. Aldebaran Robotics: Nao software documentation,

http://www.aldebaran-robotics.com/documentation/

25. Aldebaran Robotics: Nao’s homepage, http://www.aldebaran-robotics.com
26. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.

Prentice Hall Press, Upper Saddle River (2009)
27. Truong-Giang, L.: INI Online (2012),

https://sites.google.com/site/inilanguage/

28. Wadhawan, V.: Robots of the future. Resonance 12, 61–78 (2007)

http://www.robologix.com/programming_robologix.php
http://www.youtube.com/watch?v=alKZ9gZa4AU
http://www.marketsandmarkets.com/
http://www.robotc.net/
http://www.aldebaran-robotics.com/documentation/
http://www.aldebaran-robotics.com
https://sites.google.com/site/inilanguage/

Joint Algorithm Developing and System-Level

Design: Case Study on Video Encoding

Jiaxing Zhang and Gunar Schirner

Department of Electrical and Computer Engineering
Northeastern University

Boston, MA, 02115
{jxzhang,schirner}@ece.neu.edu

Abstract. System-Level Design Environments (SLDEs) are often uti-
lized for tackling the design complexity of modern embedded systems.
SLDEs typically start with a specification capturing core algorithms. Al-
gorithm development itself largely occurs in Algorithm Design Environ-
ments (ADE) with little or no hardware concern. Currently, algorithm
and system design environments are disjoint; system level specifications
are manually implemented which leads to the specification gap.

In this paper, we bridge algorithm and system design environments
creating a unified design flow facilitating algorithm and system co-design.
It enables algorithm realizations over heterogeneous platforms, while still
tuning the algorithm according to platform needs. Our design flow starts
with algorithm design in Simulink, out of which a System Level Design
Language (SLDL)-based specification is synthesized. This specification
then is used for design space exploration across heterogeneous target
platforms and abstraction levels, and, after identifying a suitable plat-
form, synthesized to HW/SW implementations. It realizes a unified de-
velopment cycle across algorithm modeling and system-level design with
quick responses to design decisions on algorithm-, specification- and sys-
tem exploration level. It empowers the designer to combine analysis re-
sults across environments, apply cross layer optimizations, which will
yield an overall optimized design through rapid design iterations.

We demonstrate the benefits on a MJPEG video encoder case study,
showing early computation/communication estimation and rapid proto-
typing from Simulink models. Results from Virtual Platform performance
analysis enable the algorithm designer to improve model structure to bet-
ter match the heterogeneous platform in an efficient and fast design cycle.
Through applying our unified design flow, an improved HW/SW is found
yielding 50% performance gain compared to a pure software solution.

1 Introduction

The increasing complexity of Multi-Processor System-On-Chip (MPSoC) designs
has become a major challenge. Designers combine components with diverse and
distinct architecture characteristics heterogeneously to achieve efficient and flex-
ible platform solutions, which however, dramatically increases design complexity.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 26–38, 2013.
c© IFIP International Federation for Information Processing 2013

Joint Algorithm Developing and System-Level Design 27

In order to tame the complexity, System-Level Design (SLD) has emerged with
methodologies, tools and environments for a systematic design at higher levels
of abstraction. System-Level Design Environments (SLDE), such as PeaCE [5]
and SoC Environment (SCE) [2] operate on an input specification captured in
an System-Level Design Language (SLDL), such as SystemC[15] and SpecC[3].
Based on an input specification, SLDEs provide design space exploration through
early performance estimation, automated refinement into Transaction Level Mod-
els (TLM), and detailed analysis capabilities. Designers can use their synthesis
to generate target implementations. A typical SLD environment is shown at the
lower half of Fig. 1.

System-Level Design Env.

Refinements

Specification

Synthesis

TLM/PAM

A
nalysis

Algorithm Development Env.

Modeling Tools

Design Decisions

Si
m

ul
at

io
n

&
 V

ali
da

tio
n

Algorithm Model

Implementations

A
nalysis

Si
m

ul
at

io
n

&
 V

ali
da

tio
n

Specification Gap

Fig. 1. Specification Gap

An Algorithm Design Environment (ADE), cur-
rently separated from the system-level design, is
shown at the top half of Fig. 1. Algorithm develop-
ment environments mainly concentrate on modeling
algorithms. They simplify prototyping of algorithms
by providing toolboxes of algorithm components, de-
tailed (graphical) analysis and functional validation
tools. Often, at this level of design, little or no hard-
ware knowledge is concerned. ADE examples include
TargetLink[13], LabView[7] and Simulink[18]. These
ADEs also offer some generation capabilities, however
focus on homogeneous solutions and do not offer ex-
ploration facilities comparable to SLDEs.

However, there is no direct connection between
ADEs and SLDEs. Algorithms captured in environ-
ments like Simulink are abundantly available through various toolboxes (e.g.
computer visions, signal processing), but they need to be converted manually
into an SLDL specification for system designed exploration. The manual conver-
sion is time-consuming, tedious and error-prone, which defines the Specification
Gap (Fig. 1, middle). The specification gap lowers design productivity and hin-
ders efficient co-design of algorithm and architecture.

In this paper, we present a unified design flow that integrates both algo-
rithm and system design environments by bridging the specification gap through
Algo2Spec. In this paper, we focus on Simulink as an ADE, which offers mod-
eling, simulating, debugging and analyzing multi-domain dynamic systems. We
propose Algo2Spec to close the specification gap by synthesizing Simulink models
into SLDL specifications. This enables rapid heterogeneous design space explo-
ration, e.g. through automatically generated VPs at varying abstraction levels.
Simultaneously, by extending an existing system design flow to the algorithm
level, algorithm designers in Simulink are provided with rapid, dynamic and ac-
curate feedback from heterogeneous VP analysis. Combining the environments
creates a seamless unified design flow reaching from Simulink models, via spec-
ification, and VPs to target implementations. The unified flow simplifies model
analysis and instant propagation up in the design flow, empowering designers to
make strategic decisions for globally optimized designs.

28 J. Zhang and G. Schirner

We demonstrate the gained flexibility and efficiency of our unified flow using
a video encoder design. We show multiple iterations of design decisions to high-
light feedback across the environments. Within three design iterations, models
with varying granularity are examined in heterogeneous platform explorations.
Through applying the unified flow, a software/hardware co-design solution was
identified that yields 50% performance gain compare to pure a software solution.

The remainder of this paper is structured as following: Section 2 introduces
relevant related work. Section 3 overviews the design flow. Section 4 shows the
cross-layer decisions. Section 5 demonstrates the flow benefits on the video en-
coder case study. Finally, section 6 concludes the paper.

2 Related Work

Significant research effort has been invested into system-level design usually
starting from functional specifications. Conversely, the challenge of how to obtain
the specification has not gained much attention and consequently specifications
are mostly written manually.

Using UML as part of SoC design methodologies has been intensively stud-
ied [8,12,20,17]. Several language conversions to translate UML models into
SystemC are proposed [20], [17]. Furthermore, a framework for co-simulation
between MATLAB and UML under a co-design flow with application specific
UML customizations is provided in [14]. However, these approaches mostly fo-
cus on structural conversion and behavior translation (with exception of state
machines) is less explored.

A top-down refinement flow from Simulink to SystemC TLM in presented in
[6,16]. Refinement and component exploration in their work happens in Simulink,
requiring direct annotation, rewriting and modifications of Simulink models. This
can be seen as contrary to abstraction separation as the top level of abstraction
should not involve hardware concerns [9]. Moreover, no system exploration tools
or profiling facilities are instantly applied in their approach to SystemC models.
On the implementation side, the Simulink conversion is realized as external tools
(ie. yacc/lex), which cannot be integrated to Simulink directly while increasing
the overall design tool complexity.

Meanwhile, a re-coding approach [1] is proposed to transform flat C code into a
structured SLDL specification. The effort similarly aims to close the specification
gap, but directly targets C as an input language. Our approach, on the other
hand, starts from a higher abstraction by using Simulink as input models.

Also some generation facilities are present within Simulink. The Simulink
Embedded Coder (SEC) [10] directly generates target-specific embedded C code,
however does not enable heterogeneous exploration. A co-simulation solution [11]
is introduced between Simulink and generated SystemC TLM, however with the
focus of being used as testbench rather than the design itself.

Joint Algorithm Developing and System-Level Design 29

3 Unified Algorithm-System Design Flow

Our unified design flow combining both algorithm- and system-level design is
shown in Fig. 2. The figure jointly represents three essential aspects (a) the
design flow on the left, (b) model examples on the right and (c) decisions at
varying levels. Algorithm Design Environment (ADE), Specification Generation
Tool (SGT), namely our proposed Algo2Spec, as well as System-Level Design
Environment (SLDE) compose a top-down design methodology with SGT con-
necting the other two major design environments. For the work in this paper, we
select Simulink [18] as an ADE and the System-on-Chip Environment (SCE) [2]
as an SLDE. The latter uses SpecC [3] as an SLDL. The principles and concepts,
however, apply to SystemC [15] equally.

Algorithm

Algorithm Capture

Analysis

Algorithm
Block DB

Algorithm Design
Environment

Simulink

Algorithm
Decisions

SpecC
TLM

SpecC

Specification
Decisions

System-Level
Decisions

Front-end Synthesizer

Integrator

Analysis Specification

Signal Synthesis

Hierarchy Synthesis

Leaf Synthesis

TLM

System Refinement

Implementation

Back-end Synthesis
HW Ifc SWAnalysis

Network R.

Scheduling R.

Architecture R.

Commun. R.

PE DB

SW DB
- RTOS
- Wrapper
- HAL

SLDL Skeletons Comp. Code

Algo2spec: Specification
Generation Tool

Sytem-Level Design
Environment

Fig. 2. Unified algorithm-system design flow with feedback/decision loop

The unified design flow, as depicted in Fig. 2, starts with designer captur-
ing in ADE the algorithm with desired functionalities and structure. Available
algorithms from the algorithm block database simplify and accelerate the de-
velopment. The designer tunes and refines the algorithms in ADE as a cycle of
modeling, simulation, debugging, validation and evaluation. The result of ADE
is the captured algorithm in Simulink as for example shown on top right Fig. 2.
The example consists of the top-level blocks A1, A2, A5, and A8, were A2 and
A5 execute parallel and contain further sub-blocks.

After finishing the initial algorithm specification, the designer transitions to
Specification Generation Tool (SGT), namely Algo2Spec, shown in the middle

30 J. Zhang and G. Schirner

of the Fig. 2. Algo2Spec synthesizes the Simulink model into a specification
in SpecC SLDL, following the designer’s specification design decision. Different
SLDL specification can be generated based on decisions of granularity, scheduling
and optimization configurations. An SLDL specification example is shown next
to the SGT, were leaf blocks are converted to leaf behaviors and hierarchical
blocks are represented through hierarchical behaviors preserving the original
hierarchy. Simulink signals are captured as variable in this example.

The generated specification is then the basis for detailed design space explo-
ration in the SLDE. The designer can explore platform decisions: Processing
Elements (PE) allocation, behavior to PE mapping, scheduling and communica-
tion refinement. In SLDE, depicted in the bottom of Fig. 2, System Refinement
then realizes these decisions in form of Transaction-level Models (TLM). The
TLM of the example, illustrated below the specification, is generated based on
a mapping decision of A1, A2 on CPU while A5 and A8 on a custom hard-
ware: HW1. After optimizing algorithms and finalizing the platform decisions,
the Back-end Synthesis can synthesize the overall design down to the selected
hardware/software implementation.

3.1 Algo2Spec: Specification Generation Tool

To bridge the gap between ADE and SLDE, we propose Algo2Spec. Algo2Spec
takes the Similink algorithm model as an input and synthesizes it to a SpecC
SLDL specification representing the algorithm’s functionality and original hierar-
chy. We construct Algo2Spec as a multi-stage process of the front-end synthesizer
and the integrator. In the first step, the front-end synthesizer in turn conducts
leaf synthesis (generating computation code for each leaf component), hierarchy
synthesis (producing the overall SLDL skeleton) and signal synthesis (connecting
behaviors). Afterwards, the integrator combines the output of front-end synthe-
sizer to produce a specification. The following paragraphs outline each step.

Leaf Synthesis. As a first step in the generation process, the front-end syn-
thesizer starts with the leaf synthesis. It works on the smallest unit in the model,
which is an atomic block in Simulink (e.g computation, algebraic or logical) as
the blocks A1, A3, A4, and A6-A8 in the example. Each leaf block in Simulink
will be represented as a SLDL behavior, which is an atomic unit capturing com-
putational load. As SpecC SLDL is an extension over ANSI-C, C-code is needed
for each behavior. To generate this, leaf synthesis iterates through the Simulink
model and invokes Simulink Embedded Coder (SEC) as the back-end C code
generator for each leaf. The result is a set of C files for each Simulink block
expressing the computation.

Hierarchy Synthesis. The hierarchy synthesis is responsible for generating
an overall SLDL skeleton for the Simulink model, capturing its structural and
behavioral hierarchy. For this it creates an empty behavior for each identified
leaf, and also creates hierarchical behaviors to represent the Simulink model
structure. In our example A2 and A5 are hierarchical behaviors containing the
child behaviors A3, A4 and A6, A7, respectively. During this stage, syntactical
correctness and model functional validity are both enforced. Single rate models

Joint Algorithm Developing and System-Level Design 31

appear as a sequential composition. Multiple single-rate islands are represented
as parallel behaviors communicating through channels. However, hierarchy flat-
tening is necessary for multi-rate models to partition blocks running at different
rates to different rate control behaviors in the SLDL specification. Scheduling is
an important part of hierarchy synthesis, please see Sec. 4.

Signal Synthesis. Simulink uses signals for communicating between blocks
by defining that each signal has to have at one simulation time interval the same
value at every of its point. Signal synthesis recreates the same connectivity in
SLDL communication primitives ensuring communication across behaviors. It
mainly generates variables mapped through ports and routed through hierar-
chical behavior to enable communication. Signal synthesis becomes critical in
multi-rate models, were buffers are needed. Buffers are generally represented as
queues in the SLDL.

Integrator. After front-end synthesis, the integrator combines the computa-
tion code generated by leaf synthesis and the SLDL skeleton containing hierarchy,
communication and scheduling generated by hierarchy/signal synthesis to out-
put the final specification. The integrator localizes global variables and creates
clean and well-defined communication interface adhering to the communication
structure in original Simulink models. In addition, the integrator also inserts all
initialization and termination routines to maintain proper model execution.

In result, all computation related procedures are merged into SLDL behaviors
by the integrator. A specification that captures the model hierarchy, execution
semantics, signal properties and valid results is generated. The SLDL specifi-
cation serves as the fundamental element for detailed design space exploration.
The SGT eliminates the need for manually writing the specification, thus avoid
coding errors and significantly shortens the time to exploration.

Scope. As Simulink offers a wide range of modeling domains (e.g. continues
time and discrete) and in order to achieve a feasible solution. The subset sup-
ported by Algo2Spec has to be limited. Most importantly, continues time models
are out of scope for Algo2Spec. Restricting the scope of considered Simulink se-
mantics for synthesis purpose has been shown effective in earlier approaches [19],
which demonstrated tremendous benefits while targeting only a safe subset. For
this paper, we target the following components: blocks under discrete and fixed
step solver and SEC; special blocks in toolboxes (partially supported depending
on configurations); multi-rate systems with limited rate-transition schemes.

4 Cross-Layer Decisions

With the tight integration, the unified design flow realizes a feedback/decision
loop (see Fig. 2) where feedback by the analysis tools in ADE, SGT and SLDE
respectively is propagated to the designer on the left-hand side. In result, on
the right side, the designer enters new decisions into the flow for optimization
and system-level exploration to identify a suitable algorithm / platform combi-
nation. Assisted by the multi-level analysis feedback, the designer can identify
and eliminate bottlenecks at an appropriate level. The next paragraphs outline
the decisions at each level as well as overall decision opportunities.

32 J. Zhang and G. Schirner

Algorithm Decisions. The decisions at the first level mostly stem from
within the ADE. Through its simulation analysis, the designer improves the
algorithm for optimizing functional performance. Examples include algorithm
exploration to find the most suitable algorithm for a given task, the configuration
or tuning of an algorithm. Functional performance in this context could refer to
the detection accuracy of a vision algorithm.

However, algorithm composition also affects the later design. As a structural
example, an S-Function block cannot be further decomposed into smaller blocks.
Thus, it hinders finer granularity explorations. Higher dimensions and width of
signals used between blocks may cause higher traffic if these blocks are mapped
to different PEs. An additional degree of freedom is the exposed amount and
type of parallelism. Different types of PEs (such as processor, GPU, custom
hardware) efficiently operate on different types of parallelism (task-level, data-
level, fine-grained, respectively). If the designer already has a PE type in mind,
the algorithms with an appropriate parallelism can be chosen. Overall, algorithm
decisions not only alter model functionality, but also impact the system-level
explorability of the overall design and preferred PE-type mapping.

Specification Decisions. These decisions affect the generation of the speci-
fication in terms of granularity of SLDL blocks, scheduling of blocks and exposed
parallelism. The granularity decision determines up to which level the Simulink’s
structure is exposed in SLDL, and conversely what is treated as a leaf compo-
nent. At one extreme, the finest granularity exposes each atomic Simulink block
as leaf in SLDL. This hinders Simulink to perform block fusion as all blocks are
generated separately. Further, it may expose overly simplistic blocks, such as sin-
gle stage combinatorial logic, to the SLDL. Overall, this may cause unnecessary
communication overhead in the SLDL specification without offering impactful
mapping alternatives. At the other extreme, the coarsest granularity treats the
Simulink top model as one ”big” leaf. It gives all cross-block optimization po-
tential to Simulink, however, causes a loss of hierarchy which in turn removes
the possibility of heterogeneous exploration. Algo2Spec therefore aims at at a
granularity with a threshold balancing block fusion potential and exploration
flexibility. In the current version, Algo2Spec relies on the designer to define the
granularity (see Fig. 2). A heuristic and automatic decision making for deciding
granularity is part of future work.

Simulink and the SLDL differ in execution semantics, which offers opportu-
nities for scheduling exploration. One policy: faithful scheduling emulates the
simulation semantics of Simulink. All Simulink blocks are statically scheduled in
a sorted dependency list and executed sequentially. In result, all SLDL behav-
iors will be sequentially executed in the same order. A second scheduling policy:
pipelined scheduling can be observed for example in the Simulink HDL Coder
generated code. Blocks are executed in a pipeline fashion offering temporal par-
allelism. If selected, Simulink blocks are then synthesized into a pipelined SLDL
model enabling parallelism exploring. For brevity and simplicity, this paper fo-
cuses on faithful scheduling.

Joint Algorithm Developing and System-Level Design 33

It has to be noted that granularity and scheduling also affect the exposed
parallelism. The desired parallelism depends on the targeted PE class as for
example mapping to custom hardware component can benefit from much finer
grained parallelism than a processor mapping.

System-Level Decisions. Once the specification is defined, a myriad of
system-level decisions are required spanning architecture decisions (PE alloca-
tion and behavior mapping), scheduling decisions of behaviors within each PE
(static, dynamic-priority, dynamic-FCFS), network decisions (interconnect and
communication element allocation), and subsequent communication decisions
(selecting interconnect specific communication and synchronization primitives).
These decisions are for example discussed in [2]. The SLDE realizes these de-
cisions by model refinement. It generates Transaction-Level Models (TLM) at
varying levels of abstraction to implement these decisions. The generated TLMs
are then used for performance/power/cost analysis driving new system-level de-
sign decisions.

Cross Layer Decisions. In addition to the decisions at each level, cross-layer
decisions are needed. For example, we have observed in the past the need to
change parallelism granularity and type depending on mapping decisions. Hence
in result of system exploration, the algorithm definition needs to be changed. We
also have experienced the necessity for platform specific algorithm tuning such
as converting from floating to fixed point computation, or reducing memory
bandwidth of a vision algorithm through parameter compression. Again, with
automating the path from algorithm to specification and instant available per-
formance feedback, the designer can easily try out various decision combinations
that will yield better overall designs.

5 Case Study

We demonstrate the flexibility of the unified design flow by exploring a Motion
JPEG (M-JPEG) video encoder. We have chosen this application for it is a
real-life application that is not too complicated. M-JPEG is a video format that
defines each frame of the video feed is compressed as a JPEG image separately,
which is like MPEG [4] but without inter-frame predictive coding. It is primarily
used in video-capturing equipment, such as digital cameras and webcams. We
start with a Simulink model out of the vision toolbox. The model contains 294
blocks, 28 S-functions, 35 subsystems, 86 inports and 69 outputs. The model
contains blocks with up to 8 levels in depth (which we will later simply refer to
as depth). For our experiments, the design encodes a 910-frame QVGA (320x240)
video stream.

In this case study, the designer performs three exploration steps of granularity
identification (algorithm decisions/specification decisions), early estimations and
platform explorations (system-level decisions). Based on simulation feedback, a
new design iteration starts with new higher-level design decisions. Overall, we
show three design iterations.

All iterations draw from the same database of processing element (PE) types.
For simplicity, we restrict the exploration to one CPU (ARM7TDMI at 100MHz)

34 J. Zhang and G. Schirner

that is assisted by up to two custom hardware components (HW1, HW2 at
100MHz). All PEs are connected to one processor bus of type AMBA AHB.

Initial Design Iteration. In the first iteration, the designer selects a coarse
granularity which only exposes a minimum decomposition. This may poten-
tially facilitate optimization of the generated computation code, such as block
fusion by Simulink Embedded Coder (SEC) and reduce the overall traffic due
to fewer components. With the selected granularity, Algo2Spec generates the
coarse-grained specification as shown in Fig. 3. It only contains three leaf be-
haviors, PreProc, BlkProc and MatCon in behavior Encoder_DUT (Design Under
Test) together with Stimulus and Monitor consisting the testbench.

Fig. 3. Initial Specification

After specification generation, the SLDE
tools for early estimation can be used to
identify allocation and mapping candidates.
Fig. 5 shows the result of early estimations
of both computation and communication de-
mands on each generated leaf behavior in
the specification. Computation expresses the
number of C-level operations executed in each leaf behavior. Communication de-
mand shows number of bytes are transferred overall in a leaf behavior.

PreProc BlkProc MatCon
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Behaviors

C
om

pu
ta

tio
n

[O
pe

ra
tio

ns
 in

 M
ill

io
ns

]

Computation
Communication

0

200

400

600

800

1000

1200

C
om

m
un

ic
at

io
n

[K
B

yt
es

]

Fig. 4. Initial Early Estimation

Expl1 Expl2
0

10

20

30

40

50

60

70

80

90

Platform Explorations

T
im

e
[s

ec
on

ds
]

Expl.
CPU%
HW1%

0

10

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n

P
er

ce
nt

ag
e

Fig. 5. Initial Exploration Results

Due to the coarse granularity, not many blocks are available for PE mapping as
they are all merged together into a few ”super” blocks even though it has a fairly
light overall traffic. BlkProc is the most computational and communicational
expensive block. Thus the design is most suitable for SW-only mapping and one
with a custom HW component for the most computation intense block BlkProc.
Tabl. 1 summarize these explorations.

Table 1. Initial Explorations

Expl1 Expl2

CPU All All others

HW1 BlkProc

Fig. 5 plots the results of the platform
explorations in terms of target execution
time (in secs) and PE utilizations (in per-
centage). The leftmost bar indicates tar-
get execution time, while the right bars

Joint Algorithm Developing and System-Level Design 35

show PE utilizations. Expl1, the SW-only solution takes nearly 80s where Expl2,
is faster with 60s. With dedicated HW for executing the most computational
intensive behavior, both CPU and HW1 are load-balanced and the co-design
solution offers some performance increase. However, the speedup is not too sig-
nificant due to the coarse-grained model and limited parallelism. Hence, we start
a new iteration for a finer-grained specification to increase mapping options.

Intermediate Design Iteration. A finer granularity with depth 3 (hierarchy
levels) is chosen to generate a new specification. Fig. 6 illustrates the simplified
fine-grained specification. The fine-grained specification decomposes all three
levels of PreProc to 10 sub-behaviors; BlkProc to 4 sub-behaviors; MatCon to
1 sub-behavior (see Fig. 6). Two task-level parallelism within, Spl_Par and
ImgP_Par are discovered while decomposing Pre_proc and scheduled in parallel
in the generated SLDL specification.

Fig. 6. Intermediate Specification

The estimation results in Fig. 7
omit two behaviors in ImgP_Par due
to their low computation and commu-
nication demands. Also, it is inefficient
to explore the task-level parallelism in
Spl_Par, and ImgP_Par as these be-
haviors have low computation. Splitting
BlkProc potentially introduces more
traffic as InProc and OuProc have more
data exchange with SubBlk within the

original block. Consequently, Tabl. 2 shows selected explorations: Expl3, map-
ping SubBlk to HW1 and Expl4, mapping SubBlk and Chroma to HW1.

Table 2. Intermediate Explorations

Expl3 Expl4

CPU All others All others

HW1 SubBlk SubBlk, Chroma

The results in Fig. 8 (with Expl1 for ref-
erence) show that Expl3 yields a similar
performance gain as Expl2 in the previous
iteration. Unexpectedly, Expl4 downgrades
performance by incurring more traffic.

ColorConv SplY SplCb SplCr Chroma ImgP1 InProc SubBlk OuProc
0

2000

4000

6000

8000

10000

12000

Behaviors

C
om

pu
ta

tio
n

[O
pe

ra
tio

ns
 in

 M
ill

io
ns

]

Computation
Communication

0

200

400

600

800

1000

1200

C
om

m
un

ic
at

io
n

[K
B

yt
es

]

Fig. 7. Interm. Early Estimation

Expl1 Expl3 Expl4
0

10

20

30

40

50

60

70

80

90

Platform Explorations

T
im

e
[s

ec
on

ds
]

Expl.
CPU%
HW1%

0

10

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n

P
er

ce
nt

ag
e

Fig. 8. Interm. Exploration Results

36 J. Zhang and G. Schirner

Even though this specification offers more mapping flexibility, it introduces
too many oversimplified behaviors such as SplY, SplCb, SplCr and ImgP1/2/3.
Hierarchy depth is imbalanced: BlkProc in Fig. 3 has depth of 8 while on the
same level, PreProc and MatCon only have depths of 3 and 2. It is undesired
to decompose computationally non-intense blocks unnecessarily while the com-
putation heavy BlkProc is insufficiently split. Therefore, in the next iteration
a custom granularity selectively splits BlkProc to an even finer granularity to
expose potential parallelism without affecting other blocks with overheads.

Final Design Iteration. Fig. 9 shows the custom generated specification
which has BlkProc with depths of 5, while PreProc and MatCon remains at level
1. BlkProc is decomposed now through 5 levels to Mot, along with three parallel
behaviors: Tran1, Tran2 and Tran2.

Fig. 9. Final Specification

Fig. 10 presents early estimation for behav-
iors with meaningful computation or commu-
nication. Tran1 has significant computation
and low communication, making it a candi-
date for concurrent execution. This iteration
now uses two custom hardware: HW1 and
HW2. Tabl. 3 show the explorations. All four
explorations have Tran1 mapped on a sepa-
rated HW1, running concurrently with Tran2.
The designer explores with Tran1, Tran2 and
Tran3 to run in parallel by adding HW2
(Expl6, Expl7 and Expl8).

Fig. 11 shows that, mapping Tran2 does not
boost the performance meaningfully as its low computation to communication
ratio. Furthermore, Expl8, even though HW2 is load-balance, the overall perfor-
mance still does not increase much due to additional traffic.

PreProc InProc Mot Tran1 Tran2 Tran3 OuProc MatCon
0

1000

2000

3000

4000

5000

6000

7000

8000

Behaviors

C
om

pu
ta

tio
n

[O
pe

ra
tio

ns
 in

 M
ill

io
ns

]

Computation
Communication

0

100

200

300

400

500

600

700

800

C
om

m
un

ic
at

io
n

[K
B

yt
es

]

Fig. 10. Final Early Estimation

Expl1 Expl5 Expl6 Expl7 Expl8
0

10

20

30

40

50

60

70

80

90

Platform Explorations

T
im

e
[s

ec
on

ds
]

Expl.
CPU%
HW1%
HW2%

0

10

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n

P
er

ce
nt

ag
e

Fig. 11. Final Exploration Results

Joint Algorithm Developing and System-Level Design 37

Table 3. Final Explorations

Expl5 Expl6 Expl7 Expl8

CPU All oth. All oth. All oth. All oth.

HW1 PreProc PreProc PreProc PreProc
Tran1 Tran1 Tran1 Tran1
Mot InProc

HW2 Tran2 Tran2 Mot, Tran2

Expl5 achieves best performance
splitting the two computational heavy
blocks PreProc and Mot onto CPU and
HW1 without much traffic. Meanwhile,
it keeps Tran1 running in parallel with
Tran2 and Tran3. Subsequently, Expl5
is selected for final implementation,
which is generated by the back-end syn-
thesis. Due to limitation of space, the
details of the implementation are not further examined.

6 Conclusion

In this paper, we presented a unified algorithm and system design flow. We intro-
duced Algo2Spec which closes the specification gap by generating SLDL specifi-
cations out of Simulink algorithm models. Automating specification generation
eliminates the error tedious manual implementation. Moreover, it enables algo-
rithm designers to explore the platform implications of the chosen algorithms,
and empowers a cross-layer decision process.

We demonstrated the unified flow using an MJPEG video encoder example
and highlighted cross-layer design iterations. An improved HW/SW solution was
identified yielding 50% performance gain compared to a pure software solution.
All explorations are conducted in a few hours which yield a significant improve-
ment on productivity and efficiency.

Acknowledgment. The work presented in this paper is in part supported by
the National Science Foundation under Grant No. 1136027.

References

1. Chandraiah, P., Domer, R.: Code and data structure partitioning for parallel
and flexible MPSoC specification using designer-controlled recoding. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 27(6),
1078–1090 (2008)

2. Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi, S., Gajski,
D.D.: System-on-Chip Environment: A SpecC-based Framework for Heterogeneous
MPSoC Design 2008(647953),13 (2008)

3. Gajski, D.D., Zhu, J., Dömer, R., Gerstlauer, A., Zhao, S.: SpecC: Specification
Language and Design Methodology. Kluwer Academic Publishers (2000)

4. Gall, D.L.: MPEG: a video compression standard for multimedia applications.
Communications of the ACM 34, 46–58 (1991)

5. Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Pyo Joo, Y.: PeaCE: A hardware-software
codesign environment for multimedia embedded systems. ACM Transactions on
Design Automation of Electronic Systems 12 (2007)

6. Jerraya, A.A., Bouchhima, A., Pétrot, F.: Programming models and HW-SW in-
terfaces abstraction for multi-processor SoC. In: Design Automation Conference,
pp. 280–285 (2006)

38 J. Zhang and G. Schirner

7. Johnson, G.: LabVIEW Graphical Programming: Practical Applications in Instru-
mentation and Control, 2nd edn. McGraw-Hill School Education Group (1997)

8. Martin, G., Mueller, W.: UML for SOC Design. Springer, Dordrecht (2005)
9. Marwedel, P.: Embedded Systems Design. Kluwer Academic Publishers (2003)

10. The Mathworks, Inc. Simulink Embedded Coder Reference R2011b (2011)
11. The Mathworks, Inc. Untimed SystemC/TLM Simulation (2012b)
12. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model-Driven Ar-

chitecture, 1st edn. Addison-Wesley Professional (May 2002)
13. MISRA. Misra ac tl: Modelling style guidelines for the application of targetlink in

the context of automatic code generation (2007)
14. Mueller, W., Rosti, A., Bocchio, S., Riccobene, E., Scandurra, P., Dehaene, W.,

Vanderperren, Y.: UML for ESL design: basic principles, tools, and applications.
In: International Conference on Computer Aided Design, pp. 73–80 (2006)

15. Open SystemC Initiative. Functional Specification for SystemC 2.0 (2000)
16. Popovici, K.M.: Multilevel Programming Envrionment for Heterogeneous MPSoC

Architectures. PhD thesis, Grenoble Institute of Technology (2008)
17. Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S.: A SoC design methodology

involving a UML 2.0 profile for SystemC. In: Design, Automation, and Test in
Europe, pp. 704–709 (2005)

18. The Mathworks Inc. MATLAB and Simulink (1993)
19. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time simulink

to lustre. ACM Trans. Embed. Comput. Syst. 4(4), 779–818 (2005)
20. Vanderperren, Y., Dehaene, W.: From UML/SysML to MATLAB/Simulink: cur-

rent state and future perspectives. In: Design, Automation, and Test in Europe
(2006)

Automatic Execution of Test Cases on UML

Models of Embedded Systems�

Marco A. Wehrmeister1 and Gian R. Berkenbrock2

1 Federal University of Technology – Paraná (UTFPR)
Av. Sete de Setembro, 3165, 80230-901 Curitiba, Brazil

wehrmeister@utfpr.edu.br
2 Santa Catarina State University (UDESC)

Rua Paulo Malschitzki, s/n, 89219-710 Joinville, Brazil
gian@joinville.udesc.br

Abstract. During the design of an embedded system, fixing errors dis-
covered only in later stages is a very expensive activity. In order to de-
crease such costs, the engineers have to identify and fix the introduced
errors as soon as possible. Therefore, it makes sense to facilitate the
errors detection during the whole the design cycle, including the ini-
tial specification stages. This work proposed a test-based approach to
aid the early verification of embedded and real-time systems. The pro-
posed approach applies test cases on the system behavior described in
the high-level specifications. A tool to automate the execution of the test
cases upon UML models has been created. Its initial goal is to improve
the errors detection on the system behavior before the implementation
phase, since test cases are based on the system requirements. Test cases
are platform independent and describe: runtime scenarios; the behaviors
to be tested along with their input; and the expected results. The tool
executes automatically each test case, in which the specified behavior
is simulated Thereafter, the obtained results are compared with the ex-
pected ones, indicating the success or failure of the test case. A case
study was performed to validate the proposed approach. The achieved
results demonstrate that it is feasible to test the system behavior even
though when the implementation is still not available.

Keywords: Model-Driven Engineering, UML, testing, test cases execu-
tion, simulation.

1 Introduction

The design of embedded systems is a very complex task. The engineering team
must cope with many distinct requirements and constraints (including timing
constraints), whereas the project schedule shrinks due to the time-to-market
pressure. Moreover, modern embedded and real-time systems are demanded to

� This work is being supported by National Council for Scientific and Technological
Development (CNPq - Brazil) through the grant 480321/2011-6.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 39–48, 2013.
© IFIP International Federation for Information Processing 2013

40 M.A. Wehrmeister and G.R. Berkenbrock

deliver an increasing amount of services, affecting directly the complexity of their
design. As the system size increases in terms of the number of functions, the
number of potential errors or bugs also increases. As a consequence, additional
resources (e.g. extra time, money and people) are needed to fix such problems
before delivering the final system.

A common approach to deal with the system complexity is to decompose hier-
archically a complex problem into smaller sub-problems, increasing the abstrac-
tion level [1]. Model-Driven Engineering (MDE) [2] has been seen as a suitable
approach to cope with design complexity of embedded systems. It advocates that
specifications with higher abstraction levels (i.e. models) are the main artifacts
of the design. These models are successively refined up to achieve the system
implementation using components (hardware and software) available in a target
execution platform. Specifically, the engineers specify a Platform Independent
Model (PIM) that is refined and mapped into a Platform Specific Model (PSM),
from which source code can be generated automatically. CASE tools helps with
such a transformation process.

As one can infer, the quality and correctness of the generated code is directly
related with the information provided by the created models and their trans-
formations. Thus, as the system implementation relies strongly on the created
models, an undetected error in any model is easily propagated to latter design
phases. An error introduced in early design stages and detected only in advanced
stages leads to a higher repair cost. The total cost would be lower (from 10 to 100
times lower [3]) if the error had been detected and fixed in the phase in which it
was introduced. Taking into account that MDE approaches strongly rely on the
PIM and its transformation to a PSM, it is very important to provide techniques
to test and verify the produced models. Consequently, the automation of these
tasks (e.g. automatic execution of test cases on the system models) is requited.

Aspect-oriented Model-Driven Engineering for Real-Time systems (AMoDE-
RT) [4][5] has been successfully applied to design embedded and real-time sys-
tems. The engineers specify the system’s structure and behavior using UML1

models annotated with stereotype of the MARTE profile2. In [6], AMoDE-RT
was extended to include a verification activity in the specification phase, in or-
der to enable the engineers to simulate the execution of the behavior specified
in the UML model. However, such an approach was not adequate, since there is
a considerable effort to create and run new tests.

This work extends that previous work by proposing the repeatable and auto-
matic verification3 of embedded and real-time systems based on their high-level
specifications. The Automated Testing for UML (AT4U) approach proposes the
automatic execution of test cases on the behavioral diagrams of an UML model.
The set of test cases exercise parts of the system behavior (specified in an UML
model) via simulation. The test results can be analyzed to check if the system has

1 http://www.omg.org/spec/UML/2.4
2 http://www.omg.org/spec/MARTE/1.1
3 In this paper, “verification” means checking the specification using a finite set of test
cases to exercise system behavior, instead of the exhaustive and formal verification.

http://www.omg.org/spec/UML/2.4
http://www.omg.org/spec/MARTE/1.1

Automatic Execution of Test Cases on UML Models of Embedded Systems 41

behaved as expected. To support the proposed approach, the AT4U tool executes
automatically the set of test cases on the UML model. Each test case describes a
runtime scenario (on which the system is exercised) and the behavior selected to
be tested. Framework for UML Model Behavior Simulation (FUMBeS) [6] simu-
lates the indicated behavior, using the input arguments specified in the test case.
The obtained result is compared with the expected result to indicate whether
the test case succeeded or not.

It is important to highlight that this automated testing is done already in
the specification phase, so that the UML model being created (or its parts) are
verified as soon as possible, even if the model is still incomplete. The proposed
approach has been validated with a real-world case study. The experiments show
encouraging results on the use of AT4U and FUMBeS to simulate and test the
system behavior in early design phase, without any concrete implementation.

This paper is organized as follows: section 2 discusses the related work; section
3 provides an overview the AT4U approach; section 4 presents the experiments
performed to assess AT4U and their results; and finally, section 5 draws some
the conclusions and discusses the future work.

2 Related Work

This section discusses some recent related work regarding Model-Based Test
(MBT) and test automation. In [7], the authors discuss MBT and its automation.
Several characteristics are evaluated, e.g. quality of MBT versus hand-crafted
test in terms of coverage and number of detected failures. Among other conclu-
sions, the authors state that MBT is worth using as it detects from two to six
times more requirements errors.

In both [8] and [9], UML models annotated with stereotype of the UML Test-
ing Profile (UTP) are used to generate tests using the language TTCN-3(Testing
and Test Control Notation, version 3) in order to perform black-box testing on
software components. The work presented in [8] uses sequence diagrams to gen-
erate the TTCN-3 code for the test cases behavior. Additionally, test case con-
figuration code (written in TTCN-3) are generated from composite structure
diagrams. Similarly, in [9], TTCN-3 code is generated from sequence and/or ac-
tivity diagrams decorated with UTP stereotypes. However, that approach uses
MDE concepts and created a mapping between the UML/UTP and TTCN-3
meta-model. A TTCN-3 model is obtained from UML model by using a model-
to-model transformation.

In [10], MBT is applied in Resource-Constrained Real-Time Embedded Sys-
tems (RC-RTES). UML models are annotated with stereotype of the UTP to
generate a test framework, comprising: a proxy test model, UTP artifacts (i.e.
test drivers and test cases), and a communication interface. The tests cases are
executed directly on the RC-RTES, however the produced results are mirrored
to the design level. In that approach, the test cases are manually specified as
sequence diagrams.

The automated generation of test cases is addressed in [11]. MDE techniques
are use to generate test cases from sequence diagrams. The Eclipse Modeling

42 M.A. Wehrmeister and G.R. Berkenbrock

Framework (EMF) was used to create two PIM: the sequence of method calls
(SMC) model and the xUnit models. By using the Tefkat engine, a model-to-
model transformation translates a SMC model into a xUnit model. Thereafter,
a model-to-text transformation combines the xUnit model, test data and code
headers to generate test cases for a given target unit testing framework. The
experiment conducted in [11] generated test cases for SUnit and JUnit.

Comparing the proposed verification approach with the cited works, the main
difference is the possibility to execute the test cases directly on the high-level
specification. This work proposes a PIM to represent test cases information like-
wise [11] and [9]. However, the proposed PIM seems to be more complete since it
represents both the test case definitions and the results produced during testing.
The test cases are manually specified (as in [10]) in XML files rather than using
the UML diagrams as in [10], [8] and [9]. Finally, to the best of our knowledge,
AT4U is the first approach that allows the automated execution of test cases on
UML model.

3 Automated Testing for UML Models

The Automated Testing for UML (AT4U) approach have been created to aid the
engineers to verify the behavior of embedded and real-time systems in earlier
design stages. AMoDE-RT was extended to include a verification activity: the
execution of a set of test cases upon the behavior described in the UML model.
Therefore, the proposed approach relies on two techniques: (i) the automatic
execution of many test cases, including test case scenario setup, execution of
selected system behaviors, and the evaluation of the produced results; and (ii)
the execution of the specified behavior via simulation.

The proposed approach is based on the ideas presented in the family of code-
driven testing frameworks known as xUnit [12]. However, instead of executing
the test cases on the system implementation, the test cases are executed on the
UML model during the specification phase in an iterative fashion (i.e. a closed
loop comprising specification and simulation/testing) until the specification is
considered correct by the engineering team. For that, AT4U executes a set of
test cases upon both individual elements (i.e. unit test) and groups of dependent
elements (i.e. component test) that have been specified in the UML model. Fur-
ther, as the execution of test cases is performed automatically by a software tool
named AT4U tool, the testing process can be repeated at every round of changes
on the UML model, allowing regression test. If inconsistencies are detected, the
UML model can be fixed, and hence, the problem is not propagated to the next
stages of the design. An overview of the AT4U approach is depicted in figure 1.

Usually, high-level specifications such as UML models are independent of any
implementation technology or execution platform. The use of any platform spe-
cific testing technology is not desirable since engineers need to translate the
high-level specification into code for the target execution platform before per-
forming any kind of automated testing. In this situation, the testing results may
be affected by both the errors introduced in the specification and the errors of
this translation process.

Automatic Execution of Test Cases on UML Models of Embedded Systems 43

Test Results
(XML)

AT4U

FUMBeS

AT4U
Meta-Model

Test Cases
(XML)

DERCS
Model UML

Specification

Fig. 1. Overview of AT4U verification approach

In order to to allow testing automation for platform independent specifica-
tions, AT4U provides: (i) a platform independent description of test cases, and
(ii) a mechanism to execute these platform independent test cases. AT4U pro-
poses a test suite model, whose meta-model is based on the concepts and ideas of
the xUnit framework [12] and the UML Testing profile4. AT4U meta-model rep-
resents the following information: (i) the test cases used to exercise the system
behavior; and (ii) test case results, which are produced during the execution of
each test case. For details on AT4U meta-model, see [13]. It is important to note
that this test suite model is platform independent, and thus, it could be used
later in the design cycle to generate test cases in the chosen target platform.

The AT4U tool automates the execution of test cases on high-level specifica-
tions. It takes as input a DERCS model5 (created from the UML model that
represents the embedded real-time system under test) and an XML file contain-
ing the description of all test cases that must be executed. Once the system
model and the test suite model are loaded, the test cases are executed on the
model as follows. For each test case, the AT4U performs: (i) the setup of the ini-
tial scenario; (ii) the simulation of the selected methods; and (iii) the evaluation
of the results obtained from the simulated execution of the methods set.

In the scenario initialization phase, the information provided by the AT4U
meta-model is used to initialize the runtime state of DERCS’ objects. Each object
described in the input scenario provides the values to initialize the DERCS’s
objects, i.e. these values are directly assigned to runtime information of the
corresponding attributes.

Thereafter, in the method testing phase, AT4U executes the methods specified
within the test case, checking if the associated assertions are valid or not. This
phase is divided in two parts: (i) method setup and execution; and (ii) the eval-
uation of the assertions associated with the method under test. Once all input
arguments are set, FUMBeS simulates the execution of the behavior associated
with the method under test. Each individual actions associated with the simu-
lated behavior is executed and its outcomes eventually modify the runtime state
of the DERCS model (for details see [6]).

4 http://www.omg.org/spec/UTP/1.1/
5 Distributed Embedded Real-time Compact Specification (DERCS) is a PIM suitable
for code generation and simulation. Unfortunately, due to space constraints, a dis-
cussion on the reasons that led to the creation and use of DERCS is out-of-scope for
this text. Interested readers should refer to [5] and [6].

http://www.omg.org/spec/UTP/1.1/

44 M.A. Wehrmeister and G.R. Berkenbrock

After the simulation, FUMBeS returns the value produced during the execu-
tion of the method under test. Then, evaluation phase takes place. The assertions
associated with the method under test are evaluated. AT4U tool compares the
expected result with the one obtained after the method execution, using the
specified comparison operation. In addition, AT4U tool evaluates the assertions
related the expected scenario of the whole test case. For that, it compares the
expected scenario described in the test case with the scenario obtained after
executing the set of methods. Each object of the expected scenario is compared
with its counterpart in the DERCS model. If the state of both objects is similar,
the next object is evaluated until all objects described in the expected scenario
are checked. The test case is marked as successful if all assertions are valid, i.e.
those related to each individual method must be valid, along with those related
to the whole test case. If any of these assertions is not valid, the test case failed
and is marked accordingly.

It is worth noting that an important issue of any automated testing approach
is to provide the feedback on the executed test cases. AT4U approach reports
the outcomes of the test cases by means of an XML file. This file is generated
from the output elements provided by the AT4U model.

The root of the XML document (TestSuite) is divided in various nodes, each
one reporting the results of one test case. Each TestCase node has two sub-
trees. Scenario subtree reports the input, expected and result scenarios. Each of
these scenarios reports the snapshot of the objects states in the following mo-
ments: Input describes the objects before the execution of any method; Expected
indicates the objects specified in the expected scenario of the test case; and Re-
sult reveals the objects after the execution of all methods within the test case.
Methods subtree presents information on the methods exercised during the test
case. For each Method, the following information is reported: InputParameters
describes the values used as input to simulate the execution of the method’s be-
havior; ReturnedValue indicates the expected and the obtained value returned
after the execution of the method; Scenario reports the input, expected and
result scenarios (the snapshots are taken after the method execution).

However, although a comprehensive amount of data is provided by this report,
the XML format is not appropriate for reading by human beings. This XML file
could be processed (e.g. using XSLT - eXtensible Stylesheet Language Transfor-
mations6) to produce another document in a human readable format, such as
HTML or RTF, so that the test cases results are better visualized. Such a fea-
ture is subject for our future work. However, it is important to highlight that, by
generating an XML file containing the results of the execution of each test case,
other software tools could process such information analyze the obtained results.
For instance, test coverage could be evaluated, or software documentation could
be generated based on such an information.

6 http://www.w3.org/TR/xslt

http://www.w3.org/TR/xslt

Automatic Execution of Test Cases on UML Models of Embedded Systems 45

4 AT4U Validation: UAV Case Study

This section presents a case study conducted to validate the AT4U approach.
This case study has two main goals. The first one is to check if the proposed
approach is practicable, i.e. if the engineers can specify a set of test cases and
execute them automatically on the UML model of an embedded and real-time
system. The second one is to evaluate the performance of the AT4U tool, in
order to assess how much time AT4U tool takes to execute the set of test cases.

The AT4U approach was applied in the movement control system of an Un-
manned Aerial Vehicle (UAV) presented in [5]. More precisely, 20 test cases
have been created to test parts of the movement control system in 4 different
situations: (i) the system operating under normal environmental conditions (4
test cases); (ii) the sensing subsystem is running, but the helicopter is powered
down and it lies on the ground (4 test cases); (iii) the helicopter is powered on,
but it lies on the ground (7 test cases); (iv) the system operating under hostile
environmental conditions (5 test cases).

The set of test cases exercises a total of 31 distinct methods, including simple
get/set methods and methods with more complex computations. Some of these
methods have been simulated more than once (in different situations), and hence,
143 different simulations have been performed to execute the complete set of
test cases. The normal and abnormal values have been chosen as input for the
test cases. The complete set of test cases was executed and all assertions were
evaluated as true, indicating that all test cases were successful.

Figure 2 shows a small fragment of the report generated by AT4U tool re-
garding the test case for the method TemperatureSensorDriver.getValue(). Lines
102-105 show that the expected and returned values are equal. Hence, the asser-
tion on the behavior of this method was evaluated as true (assertResult=“true”).
The set of test case has been repeated 10 times and their results remained the
same. Thereafter, the behavior of the TemperatureSensorDriver.getValue() was
modified in the UML model, in order to check if its test case would fail. Now,
this method returns the value of sTemperature.Value plus one instead of return-
ing directly this value. The complete set of test cases was executed again. As
expected, this test case failed, since its assertion is not valid anymore.

The first goal of this case study was achieved as various test cases have been
specified and executed repeatedly on the high-level specification of the embed-
ded and real-time system. By using AT4U approach, it is possible to perform
regression tests. Modifications on the UML model can be automatically evalu-
ated by the test cases previously developed. An error introduced in the system’s
parts that are covered by the test cases is quickly detected; at least one of these
parts is going to eventually fail, as it was illustrated in the previous paragraph.

As mentioned, the second goal of this case study is to evaluate the perfor-
mance of the AT4U tool. The technologies reused were implemented in Java (i.e.
DERCS, FUMBeS, and EMF), and thus, AT4U tool was developed using the
JDK 1.6. The experiments have been conducted with a MacBook equipped with
an Intel Core 2 Due processor running at 2.16 MHz, 2 GB of RAM, Snow Leop-
ard as operating system, and Java SE Runtime Environment version 1.26.0 26

46 M.A. Wehrmeister and G.R. Berkenbrock

001 <?xml version ="1.0" encoding ="UTF -8"?>
002 <TestSuite >
003 <TestCase id="TC -1.3">
004 <Scenario assertResult="true">

...
099 </Scenario >
098 <Methods >
099 <Method name="getValue " obj="sTemperature"
100 assertResult="true">
101 <InputParameters ></InputParameters >
102 <ReturnedValue assertResult="true">
103 <Expected >20</ Expected >
104 <Result >20</ Result >
105 </ReturnedValue >
106 <Scenario assertResult="true">

...
201 </Scenario >
202 </Method>
203 </Methods >
204 </TestCase >
205 </TestSuite >

Fig. 2. XML file reporting test case results

(build 1.6.0 26-b03-384-10M3425). To run the experiment, the system was re-
booted, all background applications finished, and the experiments executed in a
shell session.

The set of test cases was executed 100 times. The complete set was executed
in 3712 ms on average, and the average execution time per test case was 185,6
ms (25,96 ms per method). It is important to note that this performance is
highly dependent on the tested behaviors. In fact, depending on the complexity
of the tested behaviors (e.g. the amount of loop iterations, branches, or executed
actions), this execution time can be longer or shorter. Hence, the numbers pre-
sented in this case study show only that it is feasible to run test cases to simulate
the behavior specified in an UML model.

Considering that there is no implementation available in the specification
phase, the AT4U execution time would not be a problem, since engineers do not
need to spend time implementing a functionality to verify a solution. Hence, the
errors in the specification may be quickly detected without having any imple-
mentation or the complete UML model. This performance allows the execution
of the whole set of test cases at every round of changes on the UML model to
assess if errors were introduced in the specification.

5 Conclusions and Future Work

To decrease the overall cost, it is very important to provide methods and tools
to check the created artifacts as soon as possible in the design cycle. The later
an error is detected, the higher the cost and effort to fix it [3]. This works pro-
poses an additional activity in the AMoDE-RT approach. Specifically, the AT4U

Automatic Execution of Test Cases on UML Models of Embedded Systems 47

approach supports the automation of the verification activities of system speci-
fications, more precisely, UML models. The specification phase became an iter-
ative process comprising modeling, model-to-model transformations, and model
testing and simulation. By using the AT4U verification approach, engineers spec-
ify and execute a set of test case during the creation of the UML model.

AT4U tool supports the proposed approach by automating the execution of
the test cases on the UML model. It uses the FUMBeS framework to simulate
(parts of) the system behavior. In other words, AT4U executes (the parts of)
the embedded and real-time system under controlled and specific situations that
have been defined within the test cases. Test cases are represented in a platform
independent fashion by means of a test suite model. Engineers write test cases in
an XML file which is used to instantiate the mentioned testing model. Similarly,
AT4U tool reports the results of the test cases execution in an XML file. This
report provides information such as the initial, expected and resulting scenarios
used in each test case, as well as the data produced by the executed behaviors
and the results of the assertions evaluation.

Although this work is the initial step towards automatic execution of test cases
in both models and system implementation, it already presented encouraging re-
sults. The proposed approach has been validated with a real-world application
of embedded and real-time systems domain. The experiments show indications
that AT4U approach is suitable for the purpose of an early assessment of system
behavior. Engineers may verify the system specification, and also evaluate differ-
ent solutions, while the specification is being created in early stages of design. It
is worth pointing out that there is no need to implement any part of the system
under design to check the suitability of a solution.

Moreover, AT4U enables the regression test of UML model. This helps the
engineers to identify whether an error has been included in the specification
in the latter refinement steps. Although the benefits already mentioned in this
paper, AT4U is not intended to be the unique technique used to verify the system.
It shall be used along with other verification methods and tools including code-
driven testing automation frameworks, in order to improve the confidence on the
design and also to decrease the number of specification errors.

Future work directions include the improvement of AT4U in order to support
the use of the UML testing profile to specify the set of test cases, instead of using
an XML file Two new tools are needed to support AT4U: one to facilitate the
specification of the test cases XML file; and another to facilitate the visualization
of the testing report. A test cases generation tool is also important. Such a tool
would use the information provided by AT4U PIM to generate the corresponding
test cases for a selected target platform. In addition, this tool could create the
test cases automatically based on the execution flow of the system behavior. An
UML virtual machine using FUMBeS is also envisaged. It should simulate the
whole embedded and real-time system, i.e. the execution of its active objects
and their concurrent execution, respecting the time constraints.

48 M.A. Wehrmeister and G.R. Berkenbrock

References

1. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972), doi:10.1145/361598.361623

2. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Com-
puter 39(2), 25–31 (2006)

3. Broekman, B.M., Notenboom, E.: Testing Embedded Software. Addison-Wesley,
Boston (2002)

4. Wehrmeister, M.A., Freitas, E.P., Pereira, C.E., Wagner, F.R.: An aspect-oriented
approach for dealing with non-functional requirements in a model-driven develop-
ment of distributed embedded real-time systems. In: Proc. of 10th International
Symposium on Object Oriented Real-Time Distributed Computing, pp. 428–432.
IEEE Computer Society, Washington (2007)

5. Wehrmeister, M.A., Pereira, C.E., Rammig, F.: Aspect-oriented model-driven en-
gineering for embedded systems applied to automation systems. IEEE Trans. on
Industrial Informatics (2013), To appear in special issue on Software Engineering
in Factory and Energy Automation, doi:10.1109/TII.2013.2240308

6. Wehrmeister, M.A., Packer, J.G., Ceron, L.M.: Support for early verification of
embedded real-time systems through UML models simulation. SIGOPS Operating
Systems Review 46(1), 73–81 (2012), doi:10.1145/2146382.2146396

7. Pretschner, A., et al.: One evaluation of model-based testing and its automation.
In: Proc. 27th International Conference on Software Engineering, pp. 392–401.
ACM, New York (2005)

8. Baker, P., Jervis, C.: Testing UML2.0 models using TTCN-3 and the UML2.0 test-
ing profile. In: Gaudin, E., Najm, E., Reed, R. (eds.) SDL 2007. LNCS, vol. 4745,
pp. 86–100. Springer, Heidelberg (2007)

9. Zander, J., Dai, Z.R., Schieferdecker, I., Din, G.: From U2TP models to executable
tests with TTCN-3 - an approach to model driven testing. In: Khendek, F., Dssouli,
R. (eds.) TestCom 2005. LNCS, vol. 3502, pp. 289–303. Springer, Heidelberg (2005)

10. Iyenghar, P., Pulvermueller, E., Westerkamp, C.: Towards model-based test au-
tomation for embedded systems using UML and UTP. In: Proc. of IEEE 16th
Conference on Emerging Technologies Factory Automation, pp. 1–9 (September
2011)

11. Javed, A.Z., Strooper, P.A., Watson, G.N.: Automated generation of test cases
using model-driven architecture. In: Proc. of the Intl. Workshop on Automation of
Software Test. IEEE Computer Society (2007)

12. Beck, K.: Simple smalltalk testing. In: Beck, K. (ed.) Kent Beck’s Guide to Better
Smalltalk, pp. 277–288. Cambridge University Press, New York (1999)

13. Wehrmeister, M., Ceron, L., Silva, J.: Early verification of embedded systems:
Testing automation for UML models. In: 2012 Brazilian Symposium on Computing
System Engineering (SBESC), pp. 1–7. Brazilian Computer Society, Porto Alegre
(2012)

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 49–60, 2013.
© IFIP International Federation for Information Processing 2013

Compiler Optimizations Do Impact the Reliability of
Control-Flow Radiation Hardened Embedded Software

Rafael B. Parizi, Ronaldo R. Ferreira, Luigi Carro, and Álvaro F. Moreira

Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
{rbparizi,rrferreira,carro,afmoreira}@inf.ufrgs.br

Abstract. This paper characterizes how compiler optimizations impact software
control-flow reliability when the optimized application is compiled with a tech-
nique to enable the software itself to detect and correct radiation induced soft-
errors occurring in branches. Supported by a comprehensive fault injection
campaign using an established benchmark suite in the embedded systems do-
main, we show that the careful selection of the available compiler optimizations
is necessary to avoid a significant decrease of software reliability while sustain-
ing the performance boost those optimizations provide.

Keywords: compiler optimization, compiler orchestration, embedded systems,
fault tolerance, LLVM, radiation, reliability, soft errors, tuning.

1 Introduction

Compiler optimizations are taken for granted in modern software development, enabl-
ing applications to execute more efficiently in the target hardware architecture. Mod-
ern architectures have complex inner structures designed to boost performance, and if
the software developer were to be aware of all those inner details, performance opti-
mization would jeopardize the development processes. Compiler optimizations are
transparent to the developer, who picks the appropriate ones to the results s/he wants
to achieve, or, as it is more common, letting this task to the compiler itself by flagging
if it should be less or more aggressive in terms of performance.

Industry already offers microprocessors built with 22 nm transistors, with a predic-
tion that transistor’s size will reach 7.4 nm by 2014 [1]. This aggressive technology
scaling creates a big challenge concerning the reliability of microprocessors using
newest technologies. Smaller transistors are more likely to be disrupted by transient
sources of errors caused by radiation, known as soft-errors [2]. Radiation particles
originated from cosmic rays when striking a circuit induce bit flips during software
execution, and since transistors are becoming smaller there is a higher probability that
transistors will be disrupted by a single radiation particle with smaller transistors re-
quiring a smaller amount of charge to disrupt their stored logical value. The newest
technologies are so sensitive to radiation that their usage will be compromised even at
the sea level, as predicted in the literature [3]. In [4] it is shown that modern 22nm
GPU cards are susceptible to such an error rate that makes their usage unfeasible in

50 R.B. Parizi et al.

critical embedded systems. However, industry is already investing in GPU architec-
tures as the platform of choice for high performance and low power embedded com-
puting, such as the ARM Mali® embedded GPU [5].

The classical solution to harden systems against radiation is the use of spatial re-
dundancy, i.e. the replication of hardware modules. However, spatial redundancy is
prohibitive for embedded systems which usually cannot afford extra costs of hardware
area and power. The increase on power is a severe problem, because it is expected
that 21% of the entire chip area must be turned off during its operation to meet the
available power budget, and an impressive chip area of 50% at 8 nm [6]. This creates
the dark silicon problem [6]: a huge area of the circuit cannot be used during its life-
cycle. This problem gets worse when the microprocessor has redundant units, because
system’s reliability could be compromised if redundant units were turned off. The
current solution to this problem is to use radiation hardened microprocessors, which
are designed to endure radiation. The problem with this approach is the low availabili-
ty and high pricing of those radiation hardened components. For instance, a 25 MHz
microprocessor has a unitary price of U$ 200,000.00 [7]. This high pricing makes the
use of radiation hardened microprocessors unfeasible for embedded systems used in
aircrafts, not to say about cars and low-end medical devices such as pacemakers. For
these critical embedded systems where cost is the major constraint a cheaper but yet
effective approach for reliability against radiation is necessary.

Software-Implemented Hardware Fault-Tolerance (SIHFT) [8] is an approach for
radiation reliability that adds redundancy in terms of extra instructions or data to the
application, keeping the hardware unchanged. SIHFT techniques work by modifying
the original program by adding checking mechanisms to it. SIHFT are classified either
as control-flow or as data-flow. The former is designed to detect when an illegal jump
has occurred during application execution to possibly proceed with the resolution of
the correct jump address or at least signaling that such an error has occurred. The
latter checks if a data variable being read is correct or not. While the effects of data-
flow SIHFT methods are clear (usually the duplication of program variables or the
addition of variable checksums solve the problem), the impacts of the control-flow
ones is yet not well understood. Because control-flow methods modify the program’s
control-flow graph (CFG), which happens to be the same artifact used by compiler
optimizations, the efficiency of control-flow reliability techniques might be influ-
enced by the optimizations in an unpredictable way.

In this paper we evaluate how the cumulative usage of compiler optimizations in-
fluence reliability of applications hardened with the state-of-the-art Automatic Cor-
rection of Control-flow Errors (ACCE) [9] control-flow SIHFT technique, which was
chosen because it is the current most efficient method in terms of reliability, attaining
an error correction rate of ~70%. The application set we use in this paper is drawn
from the MiBench [10] suite. For the sake of clarity, the ACCE technique is briefly
reviewed in Section 2. Section 3 presents the fault model we assume and the metho-
dology used in this paper. Finally, Section 4 presents the impact of individual and
cumulative optimization passes using the LLVM [11] as the production compiler.

 Compiler Optimizations Do Impact the Reliability of Control-Flow Radiation 51

2 Automatic Correction of Control-flow Errors

ACCE [9] is a software technique for reliability that detects and corrects control-flow
errors (CFE) due to random and arbitrary bit flips that might occur during software
execution. The hardening of an application with ACCE is done at compilation, since it
is implemented as a transformation pass in the compiler. ACCE modifies the applica-
tions’ basic blocks with the insertion of extra instructions that perform the error detec-
tion and correction during software execution. In this section we briefly explain how
ACCE works in two separate subsections, one dedicated to error detection and the
other to error correction in the subsections 2.1 and 2.2, respectively. The reader
should refer to the ACCE article for a detailed presentation and experimental evalua-
tion [9]. The fault model that ACCE assumes is further described in Section 3.

2.1 Control-Flow Error Detection

ACCE performs online detection of CFEs by checking the signatures in the beginning
and in the end of each basic block of the control-flow graph, thus, ACCE is classified
as a signature checking SIHFT technique as termed in the literature. The basic block
signatures are computed and generated during compilation; the signature generation is
critical because it needs to compute non-aliased signatures between the basic block,
i.e. each block must be unambiguously identified. In addition, for each basic block
found in the CFG two additional code regions are added, the header and the footer.
The signature checking during execution takes place inside these code regions. Fig. 1
shows two basic blocks (labeled as N2 and N6) with the additional code regions. The
top region corresponds to the header and the bottom to the footer. Still at compilation
ACCE creates for each function in the application two additional blocks, the function
entry block and the Function Error Handler (FEH). For instance, Fig. 1 depicts a
portion of two functions, f1 and f2, both owning entry blocks labeled as F1 and F2,
and function error handlers, labeled as FEH_1 and FEH_2, respectively. Finally,
ACCE creates a last extra block, the Global Error Handler (GEH), which can only be
reached from a FEH block. The role of these blocks will be presented soon.

At runtime ACCE maintains a global signature register (represented as S), which
is constantly updated to contain the signature of the basic block that the execution has
reached. Therefore, during the execution of the header and footer code regions of
each basic block, the value of the signature register is compared with the signatures
generated during compilation for those code regions and, if those values do not match,
a control flow error has just been detected and the control should be transferred to the
corresponding FEH block of the function where execution currently is at. ACCE also
maintains the current function register (represented as F), which stores the unique
identifier of the function currently being executed. The current function register is
only assigned at the extra entry function block. This process encompasses the detec-
tion of an illegal and erroneous due to a soft error.

Fig. 1 depicts an example of the checking and update of signatures performed in
execution time that occurs in a basic block. In this example, the control-flow error
occurs in the block N2 of function F1, where an illegal jump incorrectly transfers the

52 R.B. Parizi et al.

F1

[S = 0111]

br S!= 1100, f1_err
S = S XOR 1011

br S!=0111, f1_err
S = S XOR 1110

N2

F = 1
br err_flag== 1, f1_err

br F!=1, error_handler
err _flag = 0
num_err = num_err+1
br num_err > thresh, exit
...
br S == 0111, jmp N2
....
jmp f1_err

FEH_1

F2

[S = 0110]

br S!= 1110, f2_err
S = S XOR 1000

br S!=0110, f2_err
S = S XOR 1010

N6

F = 2
br err_flag== 1, f2_err

br F!=2, error_handler
err _flag = 0
num_err = num_err+1
br num_err > thresh, exit
...
br S == 0110, jmp N6
....
jmp f2_err

FEH_2

err_flag = 1
br F == 1, F1
br F == 2, F2
num_err = num_err + 1
br num_err > thresh, exit
jmp error_handler

GEH

CFE

… …

……

1

3

5

4

2

Fig. 1. Depiction of how the control is transferred from a function to the basic blocks that
ACCE has created when a control-flow error occurs during software execution. In this figure,
there is a control flow error (dashed arrow) causing the execution to jump from the block N2 of
function F1 to the block N6 of function F2.

control flow to the basic block N6 of function F2. When the execution reaches the
footer of the block N6 the signature register S is checked against the signature gener-
ated at compilation. In this case, S = 0111 (i.e. the previous value assigned in the
header of the block N2). Thus, the branch test in the N6 footer will detect that the
expected signature does not match with the value of S, and, thus, the CFE error must
signaled (step 1 in Fig. 1). In this example, the application branches to the address
f2_err, making the application enter the FEH_2 block (since the error was detected
by a block owned by the function F2, the function error handler invoked is the
FEH_2). At this point, the CFE was detected and ACCE can proceed with the correc-
tion of the detected CFE.

 Compiler Optimizations Do Impact the Reliability of Control-Flow Radiation 53

2.2 Control-Flow Error Correction

The correction process starts as soon as an illegal jump is detected by the procedure
described in subsection 2.1, with the control flow transferred to the FEH correspond-
ing to the function where the CFE was found. The FEH checks if the illegal jump was
originated in the function it is responsible to handle its detected errors by comparing
the value of the function’s identifier (F1 or F2, in the example of Fig. 1) with the
current function register F. If the error happened in the function stored in the F regis-
ter, FEH evaluates the current value of the signature register and then transfers the
control to the basic block that is the origin of the illegal jump (this origin is stored in
the S register). On the other hand, if the illegal jump was not originated in the func-
tion where the detection has occurred, the FEH then transfers the control flow to the
GEH. In this case, the GEH is responsible for identifying the function where the CFE
has occurred and to transfer the control flow back to this function, so that the error is
correctly treated by the function’s FEH. The GEH searches the function where the
error has occurred and transfers the control to its entry block, which will then sends
the control flow to the proper FEH so that the error can be corrected, i.e. branching
the control to the basic block where the CFE has occurred.

Recalling the example depicted in Fig. 1, after the CFE is detected and the control
is transferred to FEH_2 (step 1) the F register is matched against the function iden-
tifier of the function from where the control came. However, since the CFE originated
in the basic block N2 of function F1, F = 1. Therefore, FEH_2 is not capable of find-
ing the basic block where the CFE originated, and then it transfers the control to the
GEH so that the correct FEH can be found (step 2). The GEH searches for the func-
tion identifier stored in F, until it finds that it should branch to F1 (step 3). Upon
reaching the entry block F1, the variable err_flag = 1, because it was assigned to 1 in
the GEH, meaning that there is an error that should be fixed, thus, the control
branches to FEH_1 (step 4). Now since F = 1, FEH_1 knows that it is the FEH capa-
ble of handling the CFE and, as such, sets the variable err_flag to 0. Finally, it
searches for the basic block that has the signature equals the register S. Upon finding
it, the control branches to this basic block, i.e. N2 in Fig. 1 (step 5). This last branch
restores the control flow to the point of the program right before the occurrence of the
CFE. Notice that inside all the FEH and the GEH there is the variable num_error
counting how many times the control has passed through a FEH or GEH. This acts as
a threshold for the number of how many times the correction must be attempted,
which is necessary to avoid an infinite loop in case the registers F or S get corrupted
for any reason. This process concludes the correction of a CFE with ACCE.

3 Fault Model and Experimental Methodology

The fault model we assume in the experiments is the single bit flip, i.e. only one bit of
a word is changed when a fault is injected. ACCE is capable of handling multiple bit
flip as long as the bits flipped is within a same word. Since the fault injection, as it
will be discussed later, guarantees that the injected fault ultimately turned into a mani-
fested error it does not matter how many bits are flipped, i.e. there is no silent data

54 R.B. Parizi et al.

corruption: faults that cause a word to change its value that does not change the beha-
vior of the program nor its output. This could happen in the case the fault flipped the
bits of a dead variable.

The ACCE technique was implemented as a transformation pass in the LLVM [11]
production compiler, which performs all the modifications in the control-flow graph
described in section 2 using the LLVM Intermediate Representation (LLVM-IR). The
ACCE transformation pass was applied after the set of compiler optimizations, since
doing in the opposite order a compiler optimization could invalidate the ACCE gener-
ated code and semantics.

Since ACCE is a SIHFT technique to detect and correct control-flow errors, the
adopted fault model simulates three distinct control flow disruptions that might occur
due to a control flow error. Remind that a CFE is caused by the execution of an illegal
branch to a possibly wrong address. The branch errors considered in this paper are:

1. Branch creation: the program counter is changed, transforming an arbi-
trary instruction (e.g. an addition) into an unconditional branch;

2. Branch deletion: the program counter is set to the next program instruc-
tion to execute independently if the current instruction is a branch;

3. Branch disruption: the program counter is disrupted to point to a distinct
and possibly wrong destination instruction address.

We implemented a software fault injector using the GDB (GNU Debugger) in a simi-
lar fashion as [12], which is an accepted fault injection methodology in the embedded
systems domain, in order to perform the fault injection campaigns. The steps of the
fault injection process are the following:

1. The LLVM-IR program resulting from the compilation with a set of opti-
mization and with ACCE is translated to the assembly language of the
target machine;

2. The execution trace in assembly language is extracted from the program
execution with GDB;

3. A branch error (branch creation, deletion or disruption) is randomly se-
lected. In average each branch error accounts for 1/3 of the amount of in-
jected errors;

4. One of the instructions from the trace obtained in step 2 is chosen at ran-
dom for fault injection. In this step a histogram of each instruction is
computed because instructions that execute more often have a higher
probability to be disrupted;

5. If the chosen instruction in step 4 executes n times, choose at random an
integer number k with 1 ≤ k ≤ n;

6. Using GDB, a breakpoint is inserted right before the k-th execution of the
instruction selected in step 4;

7. During program execution, upon reaching the breakpoint inserted in step
6, the program counter is intentionally corrupted by flipping one of its bits
to reproduce the branch error chosen in step 3;

8. The program continues its execution until it finishes.

 Compiler Optimizations Do Impact the Reliability of Control-Flow Radiation 55

A fault is only considered valid if it has generated a CFE, i.e. silent data corruption
and segmentation faults were not considered to measure the impacts of the compiler
optimizations on reliability. All the experiments in this paper were performed in a 64-
bit Intel Core i5 2.4 GHz desktop with 4 GB of RAM and the LLVM compiler ver-
sion 2.9. For all programs versions, where each version corresponds to the program
compiled with a set of optimizations plus the ACCE pass, 1,000 faults were injected
using the aforementioned fault injection scheme. In the experiments we considered
ten benchmark applications from the MiBench [10] embedded benchmark suite: ba-
sicmath, bitcount, crc32, dijkstra, fft, patricia, quicksort, rijndael, string search, and
susan (comprising susan corners, edge, and smooth).

4 Impact of Compiler Optimizations on Control-Flow
Reliability of Embedded Software

This section looks at the impacts on software reliability when an application is com-
piled with a set of compiler optimizations and further hardened with the ACCE me-
thod. Throughout this section the baseline for all comparisons is an application com-
piled with the ACCE method without any other compiler optimization. ACCE per-
forms detection and correction of control-flow errors, thus all data discussed in this
section considers the correction rate as the data to compute the efficiency metric. In
this analysis we use 58 optimizations provided by the LLVM production compiler.
Finally, the results were obtained using the fault model and fault injection methodolo-
gy described in section 3.

The impact of the compiler optimizations when compiling for reliability is meas-
ured in this paper using the metric Relative Improvement Percentage (RIP) [13]. The
RIP is presented in Eq. 1, where Fi is a compiler optimization, E(Fi) is the error cor-
rection rate obtained for a hardened application compiled with Fi, and EB is the error
correction rate obtained for the baseline, i.e. the application compiled only with
ACCE and without any optimization.

%100

)(
)(×

−
=

B

Bi
iB E

EFE
FRIP

 (1)
Fig. 2 shows a scatter plot of the obtained RIP for each application, with each of the
58 LLVM optimizations being a point in the y-axis. Each point represents the har-
dened application compiled with a single LLVM optimization at a time. Thus, for
each application have 58 different versions (points in the chart). Fig. 2 shows that
several optimizations increase the RIP considerably, sometimes reaching a RIP of
~10%. This is a great result, which shows that reliability can be increased for free just
picking appropriate optimizations that facilitates for ACCE the process of error detec-
tion and correction. However, we also see that some optimizations totally jeopardize
reliability, reaching a RIP of −73.27% (bottom filled red circle for bitcount).

It is also possible to gather evidence that the structure of the application also influ-
ences how an optimization impacts on the RIP of reliability. Let us consider the
block-placement optimization, which is represented by the white diamond in Fig. 2. In

56 R.B. Parizi et al.

-80,00

-70,00

-60,00

-50,00

-40,00

-30,00

-20,00

-10,00

0,00

10,00

20,00
R

el
at

iv
e

Im
pr

ov
em

en
t

P
er

ce
nt

ag
e

Fig. 2. Relative Improvement Percentage for the error correction rate of applications hardened
with ACCE under further compiler optimization. Each hardened application was compiled with
a single optimization at a time, but all applications were compiled with the 58 LLVM optimiza-
tions, thus, each hardened application has 58 versions. The baseline (RIP = 0%) is the error
correction rate of the hardened application compiled without any LLVM optimization. Each
point in the chart represents the application with one optimization protected with ACCE.

the case of the qsort application, block-placement has a RIP of −42.75% and a RIP of
+11.68%. The reader can notice that other optimizations also have this behavior (in-
creasing RIP for sovme applications and decreasing it for others). It also happens that
some hardened applications are less sensitive to compiler optimizations, as it is the
case of the crc_32 one, where the RIP is within the ± 5% interval around the baseline.

Fig. 3 depicts the RIP of a selected subset of the 58 LLVM optimizations, making
it clear that even within a small subset the variation in RIP for reliability is far from

-6.00
-4.00
-2.00
0.00
2.00
4.00
6.00
8.00

10.00

R
el

at
iv

e
Im

pr
ov

em
en

t P
er

ce
nt

ag
e always-inline inline loop-unroll tailduplicate

Fig. 3. Relative Improvement Percentage of a selected subset of the 58 LLVM optimizations.
The baseline (RIP = 0%) is the error correction rate of the hardened application compiled with-
out any LLVM optimization.

 Compiler Optimizations Do Impact the Reliability of Control-Flow Radiation 57

-15.00

-10.00

-5.00

0.00

5.00

R
el

at
iv

e
Im

pr
ov

em
en

t P
er

ce
nt

ag
e 10 20 30 40 50 58# of optimizations

Fig. 4. Relative Improvement Percentage of random subsets of the 58 LLVM optimizations
with a varying number of optimizations for each different subset: 10, 20, 30, 40, 50, 58 optimi-
zations. The RIP for each subset was measured taking the average of 6 random subsets for each
subset size. Hence, distinct possible optimizations subsets were considered. The baseline (RIP
= 0%) is the error correction rate of the hardened application compiled without any LLVM
optimization.

negligible. For instance, the always-inline LLVM optimization has an error correction
RIP interval of [−4.55%, +9.24%].

Usually compiler optimizations are applied in bulk, using several of them during
compilation. Therefore, it is important to also examine if successive optimization
passes could compromise or increase software reliability of a hardened application.
Fig. 4 presents the error correction rate RIP where the hardened application was com-
piled with a subset of the 58 LLVM optimizations. In this experiment we used six
sizes of subsets: 10, 20, 30, 40, 50, and 58. The RIP shown in Fig. 4 is the average of
five random subsets, i.e. it is an average of distinct subsets of the same size. Taking
the average and picking the optimizations at random reproduces the effects of indi-
scriminately picking the compiler optimizations or, at least, choosing optimizations
with the object of optimizing performance without previous knowledge of how the
chosen optimizations influence together the software reliability.

It is possible to see that the cumulative effect of compiler optimizations in the error
correction RIP is in most of the cases deleterious, but for a few exceptions. Fig. 4
confirms that some applications are less sensitive to the effects of compiler optimiza-
tions, e.g. the crc32 has its RIP within the [−1.11%, 0.73%]. On the other hand, ba-
sicmath, bitcount, and patricia are jeopardized. Interesting to notice that the RIP in
case of picking a subset of optimizations is not subject to the much severe reduction
that was measured when only a single optimization was used (Fig. 2), evidencing that
the composition of distinct optimization may be beneficial for reliability.

Based on the data and experiments discussed in this section it is clear that choosing
of compiler optimizations requires the software designer to take into consideration
that some optimizations may not be adequate in terms of reliability for a given appli-
cation. Moreover, data shows that a given optimization is not only by itself a source
of reliability reduction; reliability is also dependent of the application being hardened
and how a given optimization facilitates or not the work of the ACCE technique.

58 R.B. Parizi et al.

5 Related Work

Much attention has been devoted to the impact of compiler optimizations on program
performance in the literature. However, the understanding of how those optimizations
work together and how they influence each other is a rather recent research topic. The
Combined Elimination (CE) [13] is an analysis approach to identify the best sequence
of optimizations of for a given application set using the GCC compiler. The authors
discuss that simple orchestration schemes between the optimizations can achieve
near-optimal results as if it was performed an exhaustive search in all the design space
created by the optimizations. CE is a greedy approach that firstly compiles the pro-
grams with a single optimization, using this version as the baseline. From those base-
line versions the set of Relative Improvement Percentage (RIP) is calculated, which is
the percentage that the program’s performance is reduced/increased (section 4 dis-
cussed RIP in details). With the RIP at hand for all baselines, the CE starts removing
the optimizations with negative RIP, until the total RIP of all optimizations applied
into a program do not reduce. CE was evaluated in different architectures, achieving
an average RIP of 3% for the SPEC2000, and up to 10% in case of the Pentium IV for
the floating point applications.

The Compiler Optimization Level Exploration (COLE) [14] is another approach to
achieve performance increase by selecting a proper optimization sequence. COLE
uses a population-based multi-objective optimization algorithm to construct a Paretto
optimal set of optimizations for a given application using the GCC compiler. The data
found with COLE give some insightful results about how the optimization. For in-
stance, 25% of the GCC optimizations appear in at most one Paretto set, and some of
them appear in all sets. Therefore, 75% of all optimizations do not contribute to im-
prove the performance, meaning that they can be safely ignored! COLE also shows
that the quality of an optimization is highly tied with the application set.

The Architectural Vulnerability Factor (AVF) [15] is a metric to estimate the
probability that the bits in a given hardware structure will be corrupted by a soft-error
when executing a certain application. The AVF is calculated as the total time the vul-
nerable bits remains in the hardware architecture. For example, the register file has a
100% AVF, because all of its bits are vulnerable in case of a soft-error. This metric is
influence by the application due to liveness: for instance, a dead variable has a 0%
AVF because it is not used in a computation. The authors in [16] evaluate the impact
of the GCC optimizations in the AVF metric by trying to reduce the AVF-delay-
square-product (ADS) introduced by the authors. The ADS relates considers a linear
relation of the AVF between the square of the performance in cycles, clearly prioritiz-
ing performance over reliability. It is reported that the –O3 optimization level is de-
trimental both to the AVF and performance, because for the benchmarks considered
(MiBench) have increased the number of loads executed. Again, the patricia applica-
tion was the one with the highest reduction in the AVF at 13%.

In [17] the authors analyze the impact of compiler optimizations on data reliability
in terms of variable liveness. Liveness of a variable is the time period between the
variable is written and it is last read before a new write operation. The authors con-
clude that the liveness is not related only with the compiler optimization, but it also

 Compiler Optimizations Do Impact the Reliability of Control-Flow Radiation 59

depends on the application being compiled, which is in accordance with the discus-
sion we made in section 4. The paper shows that some optimizations tend to extend
the time a variable is stored in a register instead of memory. The goal behind this is
obvious: it is much faster to fetch the value of a variable when it is in the register than
in memory. However, the memory is usually more protected than registers because of
cheap and efficient Error Correction Code (ECC) schemes, and, thus, thinking about
reliability it is not a good idea to expose a variable in a register for a longer time. The
solution to that could be the application of ECC such as Huffman to the program va-
riables itself. Decimal Hamming (DH) [18] is a software technique that does that for a
class of programs where the program’s output is a linear function of the input. The
generalization of efficient data-flow SIHFT techniques such as DH (i.e. ECC of pro-
gram variables) is still an open research problem.

6 Conclusions and Future Work

In this paper we characterized the problem of compiling embedded software for relia-
bility, given that compiler optimizations do impact the coverage rate. The study pre-
sented in this paper makes clear that choosing optimizations indiscriminately can
decrease software reliability to unacceptable levels, probably avoiding the software to
be deployed as originally planned. Embedded software and systems deployed in space
applications must always be certified evidencing that they support harsh radiation
environments, and given the increasing technology scaling, other safety critical em-
bedded systems might have to tolerate radiation induced errors in a near future.
Therefore, the embedded software engineer must be very careful when compiling
safety critical embedded software.

Design space exploration (DSE) for embedded systems usually considers “classic-
al” non-functional requirements, such as energy consumption and performance. How-
ever, this paper has shown the need for automatic DSE methods to consider reliability
when pruning the design space of feasible solutions. This could be realized with the
support of compiler orchestration during the DSE step. As future work we are study-
ing how to efficiently extend automatic DSE algorithms to implement compiler or-
chestration for reliability against radiation induced errors.

Acknowledgments. This work is supported by CAPES foundation of the Ministry of
Education, CNPq research council of the Ministry of Science and Technology, and
FAPERGS research agency of the State of Rio Grande do Sul, Brazil. R. Ferreira was
supported with a doctoral research grant from the Deutscher Akademischer Aus-
tauschdienst (DAAD) and from the Fraunhofer-Gesellschaft, Germany.

References

1. ITRS. ITRS 2009 Roadmap. International Technology Roadmap for Semiconductors.
Tech. Rep. (2009)

60 R.B. Parizi et al.

2. Borkar, S.: Designing reliable systems from unreliable components: the challenges of tran-
sistor variability and degradation. Micro 25(6), 10–16 (2005)

3. Normand, E.: Single event upset at ground level. IEEE Trans. on Nuclear Science 43(6),
2742–2750 (1996)

4. Rech, P., et al.: Neutron-induced soft-errors in graphic processing units. In: IEEE Radia-
tion Effects Data Workshop (REDW 2012), 6 p. IEEE (2012)

5. ARM Mali Graphics Hardware, http://www.arm.com/products/multimedia/
mali-graphics-hardware/index.php

6. Esmaeizadeh, H., et al.: Dark silicon and the end of multicore scaling. In: ISCA 2011:
Proc. of the 38th Int. Symp. on Comp. Arch., pp. 365–376 (2011)

7. Mehlitz, P.C., Penix, J.: Expecting the unexpected – radiation hardened software. In: Info-
com @ American Inst. of Aeronautics and Astronautics (2005)

8. Goloubeva, O., Rebaudengo, M., Reorda, M.S., Violante, M.: Software-Implemented
Hardware Fault Tolerance. Springer, New York (2006)

9. Vemu, R., Gurumurthy, S., Abraham, J.: ACCE: Automatic correction of control-flow er-
rors. In: ITC 2007: IEEE Int. Test Conf., pp. 1–10 (2007)

10. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mi-
Bench: A free, commercially representative embedded benchmark suite. In: WWC-4 2001:
Proc. of the IEEE Int. Workshop of Workload Characterization, pp. 3–14. IEEE (2001)

11. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis &
transformation. In: CGO 2004: Proc. of the Int. Symp. on Code Generation and Optimiza-
tion, pp. 75–88. IEEE, Washington, DC (2004)

12. Krishnamurthy, N., Jhaveri, V., Abraham, J.A.: A design methodology for software fault
injection in embedded systems. In: DCIA 1998: Proc. of the Workshop on Dependable
Computing and its Applications. IFIP (1998)

13. Pan, Z., Eigenmann, R.: Fast and Effective Orchestration of Compiler Optimizations for
Automatic Performance Tuning. In: Proceedings of the International Symposium on Code
Generation and Optimization (CGO 2006), pp. 319–332. IEEE (2006)

14. Hoste, K., Eeckhout, L.: Cole: compiler optimization level exploration. In: Proceedings of
the 6th Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO 2008), pp. 165–174. ACM (2008)

15. Mukherjee, S.S., Weaver, C., Emer, J., Reinhardt, S.K., Austin, T.: A systematic
methodology to compute the architectural vulnerability factors for a high-performance mi-
croprocessor. In: Proc. of the 36th Annual IEEE/ACM Int. Symp. on Microarchitecture
(MICRO 36), pp. 29–41. IEEE (2003)

16. Jones, T.M., O’Boyle, M.F.P., Ergin, O.: Evaluating the Effects of Compiler Optimisations
on AVF. In: Workshop on Interaction Between Compilers and Computer Architecture,
INTERACT-12 (2008)

17. Bergaoui, S., Leveugle, R.: Impact of Software Optimization on Variable Lifetimes in a
Microprocessor-Based System. In: Proceedings of the 2011 Sixth IEEE International Sym-
posium on Electronic Design, Test and Application (DELTA 2011), pp. 56–61 (2011)

18. Argyrides, C., Ferreira, R., Lisboa, C., Carro, L.: Decimal hamming: a novel software-
implemented technique to cope with soft errors. In: Proc. of the 26th IEEE Int. Symp. on
Defect and Fault Tolerance in VLSI and Nanotech. Sys., DFT 2011, pp. 11–17. IEEE
(2011)

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 61–72, 2013.
© IFIP International Federation for Information Processing 2013

Power Reduction in Embedded Systems Using a Design
Methodology Based on Synchronous Finite State

Machines

Douglas P.B. Renaux and Fabiana Pöttker

Federal Technological University of Paraná, Department of Electronic Engineering,
Curitiba, Brazil

{douglasrenaux,fpottker}@utfpr.edu.br

Abstract. To achieve the highest levels of power reduction, embedded systems
must be conceived as low-power devices, since the early stages of the design
process. The proposed Model-Based-Development process uses Synchronous
Finite State Machines (SFSM) to model the behavior of low-power devices.
This methodology is aimed at devices at the lower-end of the complexity spec-
trum, as long as the device behavior can be modeled as SFSM. The implemen-
tation requires a single timer to provide the SFSM clock. The energy reduction
is obtained by changing the state of the processor to a low-power state, such as
deep-sleep.

The main contribution is the use of a methodology where energy consump-
tion awareness is a concern from the early stages of the design cycle, and not an
afterthought to the implementation phase.

Keywords: Synchronous finite state machine, energy consumption, ARM mi-
crocontroller, Tankless water heater, Model-Based-Development.

1 Introduction

The reduction of power consumption by embedded devices has become a major con-
cern for designers for three main reasons: (1) Global electrical energy consumption is
growing at a rate close to 40% per decade [1] and embedded devices, in the order of
100 billion, contribute to this consumption; (2) many embedded devices, mainly due
to mobility requirements, are battery powered (using both rechargeable and non-
rechargeable batteries) and lower consumption results in a longer usage time and less
pollution to the environment; (3) in a futuristic view, embedded devices will harvest
energy from the environment, thus disposing of a very limited energy budget.

Bohn [2] presents a futuristic scenario of Ambiental Intelligence where a large
number of embedded devices will be present in our surroundings, including clothes,
appliances, and most of the equipment that we use daily. This ubiquitous network of
devices, many being of very small dimensions, will benefit from the approach of
Energy Harvesting, i.e. the use of the energy sources in our surroundings, including
moving objects, vibrating machine parts, changes in temperature, light and other

62 D.P.B. Renaux and F. Pöttker

electromagnetic waves. Since the amount of energy obtainable by Energy Harvesting
is usually very small, such devices will be required to have extremely low power con-
sumption levels, in the order of tens to hundreds of µW [3].

To achieve the lowest possible levels of energy consumption, the low-power re-
quirements must be a major concern since the early stages of development. The pro-
posed methodology addresses this concern by the use of Synchronous Finite State
Machines (SFSM) as it is a modeling approach that is prone to low-power implemen-
tation. A straightforward implementation of putting the processor in deep-sleep mode
between clock ticks of the SFSM results in very low consumption levels combined
with low resources usage: just a timer is required.

2 Problem Domain

2.1 Approaches for the Reduction of Energy Consumption in Embedded
Systems

There are many approaches to achieve energy consumption reduction in Embedded
Systems [4]. These can be categorized in four classes:

• Hardware: these are hardware design techniques including lower supply voltage,
lower processor clock frequencies, low power functional blocks design and low
power operating modes.

• Computer Architecture and Compilers: concerns the instruction-set design tech-
niques and the appropriate use of the instruction-set by the compilers [5],[6].

• RTOS: the kernel can manage the system’s energy consumption by changing to
low-power modes or reducing the processing power [7],[10].

• Application: the applications can change state to low-power requirement modes
whenever their processing needs allow so [4].

The methodology proposed in this paper falls into the Application class.
Our approach uses a very straightforward mechanism of changing the state of the

processor to sleep-state, where power consumption is minimal and the CPU is not
operating. Another approach is used in Chameleon [13], an application level power
management system that controls DVFS settings.

2.2 Synchronous Finite State Machines

A Synchronous Finite State Machine performs state transitions only when its clock
ticks. Hence, its transitions are synchronous, as opposed to Asynchronous Finite State
Machines where transitions may occur as soon as an external event triggers them.

One important difference between SFSM and AFSM is depicted in Fig. 1 where a
SFMS is presented. The initial state is A. The occurrence of the event ev1 enables a
transition to state B. This transition occurs only on the next clock tick. Between two
consecutive clock ticks, more than one event may occur. This situation is illustrated
by the transition from state B to state A. This transition is enabled if both events ev1
and ev2 occurred between two consecutive clock ticks.

 Power Reduction in Embedded Systems Using a Design Methodology 63

Fig. 1. Example of a State Diagram of a SFSM

3 Related Work

The reduction of energy consumption in embedded systems has been the research
subject for several decades already. All the approaches listed in Section 2.1 have been
analyzed. Ishihara [8] presents techniques for analysis and measurements in embed-
ded systems, so that energy consumption reduction techniques can be evaluated. Ti-
wari [9] presents a methodology for embedded software energy consumption analysis.

Venkatachalam [5] presents a survey of the available techniques for energy con-
sumption reduction in embedded systems. These techniques can be applied at several
levels: circuit, systems, architecture and applications.

At circuit level, most of the power consumption is due to charging the intrinsic ca-
pacitances in digital circuits. Power is a function of the capacitance, clock frequency
and the square of the supply voltage. The Dynamic Voltage Scaling (DVS) technique
is frequently used to reduce power consumption. It consists of the reduction in the
supply voltage and clock frequency whenever the system does not require its full
processing speed.

Other circuit level techniques comprise the reduction of transistor sizes in the IC
fabrication process, thus, diminishing the intrinsic capacitances, as well as logic gates
restructuring to reduce the amount of switching needed. Concerning the buses, some
of the applied techniques are the reduction of switching frequency, crosstalk, and
signal amplitude, as well as bus segmentation and bus precharging.

At compiler level, energy consumption reduction is obtained by code optimization
(less instruction to produce the same logical result) and by reducing the number of
memory accesses.

At the applications level, the application and its runtime environment (e.g. RTOS)
exchange information concerning opportunities for energy reduction, such as availa-
bility of resources and processing power requirements.

The proposed methodology is concerned with design techniques at the applications
level. Future improvements in the proposed methodology will include the interactions
with the RTOS and the required support to be implemented in the RTOS.

64 D.P.B. Renaux and F. Pöttker

4 Proposed Methodology

The proposed methodology is applicable at the applications level (Section 2.1), there-
fore, it follows the usual application software development process. In each phase,
decisions are taken so that the system can be modeled by SFSM and implemented as
such.

1. Operational Concept: the product must be conceived to be prone to a SFSM
modeling approach, as such, it must deal with discrete time events and actions. In-
puts may represent continuous values, but they will be sampled synchronously to
the SFSM clock. Outputs will be generated on every SFSM clock period, hence,
with delays when compared to a system that operates continuously.

2. Software Requirements: the requirements must consider the discrete time opera-
tion of the system, hence, delays in input signal detection and output signal genera-
tion should be allowed. The larger the allowed delays, the higher the possibilities
for reduction of energy consumption. At this phase, if functional and temporal re-
quirements are too stringent then the solution space is reduced, as well as the at-
tainable low-power requirements.

3. Software Architecture: The current version of our proposed methodology con-
cerns lower-complexity devices that can be modeled as a single SFSM or as a col-
lection of SFSM. If several SFSM are used, from an energy consumption point of
view, it is preferable if all the SFSM clocks have the same period or are multiples
of the same master period, thereby reducing the number of times that the processor
has to switch from deep-sleep mode to operating mode.
The selection of the SFSM clock period is of significance both for the reduction of
consumption and also for the effect on the control algorithm of the embedded de-
vice. In the remainder of this section, several considerations regarding the determi-
nation of the SFSM clock period are presented.

4. Software Design and Implementation: to improve flexibility, reusability, and
portability, the control algorithms design should be parameterized with respect to
the SFSM clock periods such that changes to the clock period do not required code
modifications except for a possible change in a defined constant.
For the implementation either a hardware timer or an RTOS timer is required to
tick at the end of each SFSM clock period. On each tick the processor is awakened
from the deep-sleep mode and executes a simple procedure: (1) reading inputs, (2)
identifying if a transition is enabled and firing it, (3) generating new outputs, and
(4) returning to deep-sleep mode.

5. Software Testing: special care must be taken in the testing phase with respect to
input detection delay and output delays due to the SFSM operation.

4.1 Considerations on the Proposed Technique

Applicability
The proposed technique is aimed at lower complexity embedded systems, particularly
to reactive systems. It is feasible to apply this technique to systems composed of

 Power Reduction in Embedded Systems Using a Design Methodology 65

several SFSM, however, more significant reduction of energy consumption is
achieved when all SFSM operate with the same clock period or on multiples of the
same clock period.

SFSM Clock Period Selection
In general, most embedded applications allow for a range of the SFSM clock period.
The higher the SFSM clock period, the higher the reduction in energy consumption, at
the expense of a larger output delay.

The energy consumption (in Wh) over a given time of operation (much larger than
the SFSM clock period) is given by (1). The same type of equation (2) is used to cal-
culate the power consumption (in W). Equation 2 can be simplified to (3) when the
computation time is considerably smaller than the SFSM clock period. Figure 2 shows
the asymptotes of (3) and their crossing point Tm. As may be noticed, there is no ben-
efit in increasing the SFSM clock period above Tm because the maximum consump-
tion reduction has already been achieved. Hence, the optimal SFSM clock period to
achieve the maximum reduction in power consumption is given by (4). ܥܧ ൌ ைேܥܧ ௧ೀಿ்೎೗ೖ ൅ ஽௦ܥܧ ሺ்೎೗ೖି௧ೀಿሻ்೎೗ೖ ܥ (1) ൌ ைேܥ ௧ೀಿ்೎೗ೖ ൅ ஽௦ܥ ሺ்೎೗ೖି௧ೀಿሻ்೎೗ೖ ܥ (2) ؆ ைேܥ ௧ೀಿ்೎೗ೖ ൅ ஽ௌ (3)ܥ

௠ܶ ൌ ஼ೀಿ஼ವೄ ൈ ைே (4)ݐ

Where:
EC – energy consumption (in Wh)
C – power consumption (in W)
CON – power consumption with the processor operating
CDS – power consumption with the processor in the deep sleep mode
tON – computation time
Tclk – SFSM clock period
Tm – optimal SFSM clock period

ON
DS

ON
m t

C

C
T ×= [s]clkT

Fig. 2. Asymptotic behavior of equation (3) – power consumption versus SFSM clock period

66 D.P.B. Renaux and F. Pöttker

Figure 3 presents the effect of the SFSM clock period increase on the power
consumption of two embedded systems with different power consumptions when the
processor is operating. The embedded system 1 (Consumption 1) has a power con-
sumption (CON) five times lower than embedded system 2 (Consumption 2), while both
have the same power consumption in deep sleep mode (CDS). In both cases the reduc-
tion in power consumption is significant with the increase of the clock period, up to
their Tm (0.021s for the system 1 and 0.1s for the system 2 – obtained from Equation
4). Higher SFSM clock periods than these would only lead to an increased delay in the
response time of the system without significant reduction in power consumption.

0

0.0005

0.001

0.0015

0.002

0.0025

0 0.2 0.4 0.6

Co
m

su
m

pt
io

n
[W

]

SFSM clock period [s]

Consumption 1

Consumption 2

Fig. 3. Effect of the SFSM clock period on the energy consumption

Effects on Real-Time Systems
When a system is modeled as a SFSM a computational delay is added and this delay
is dependent on the SFSM clock. The effect of the delay must be taken into account in
the design process of the system as well as the maximum possible clock period.

5 Experimental Results

To illustrate the proposed methodology and validate the results the control unit of a
tankless gas water heater was developed and measured. In the literature there are oth-
er experiments performed with tankless gas water heaters, such as the fuzzy logic
control unit presented by Vieira [11].

5.1 Tankless Gas Water Heater Description and Requirements

A tankless gas water heater is composed of a heat exchanger, a gas burner, a control
unit (gas heater controller), several sensors (water flow, water outlet temperature, and
pilot flame detector) and one actuator (gas valve). As soon as water is flowing
through the heat exchanger the gas valve opens and the gas is ignited by the pilot
flame. Water is heated while it flows through the heat exchanger. There is no storage

 Power Reduction in Embedded Systems Using a Design Methodology 67

of hot water in this system. As soon as the usage of hot water stops the gas valve is
closed and the flame extinguish.

The gas heater controller is the electronic module responsible for the control of the
temperature at the water outlet by controlling the gas flow valve. The controller needs
to sensor the water temperature (Tw), the water flow (W) and the presence of the pilot
flame (P) as well as the desired temperature (Ts) selected by the user.

The functional requirements concern the opening of the gas valve to allow for the
adequate gas flow to maintain the water temperature within 2 degrees Celsius from
the desired temperature. The safety requirements are that the gas flow valve must be
closed if the water flow is below the safety limit (0.5 liters per minute) or the pilot
flame is off.

Figure 4 depicts the tankless gas water heater block diagram. The controller rece-
ives signals from the water flow sensor (W), the pilot light sensor (P) and the water
temperature sensor (Tw). The first two sensors are digital (on/off) while the water
temperature sensor is analog. The desired temperature (Ts) is given by a 10 position
selector. Table 1 presents the desired temperature corresponding to each position of
the selector switch. The water outlet temperature sensor is connected to a 4 bit analog-
to-digital converter. The temperatures corresponding to each value of the ADC are
also presented in Table 1. The controller output V controls the gas flow valve in the
range from 0% (valve totally closed) up to 100% (valve totally open).

Fig. 4. Tankless gas water heater block diagram

Table 1. Desired and Measured Temperature
Ranges

Desired

Temperature
(oC) - Ts

Measured
Temperature

(oC) - Tw
0 below 38°
1 40° 38° to 42°
2 44° 42° to 46°
3 48° 46° to 50°
4 52° 50° to 54°
5 56° 54° to 58°
6 60° 58° to 62°
7 64° 62° to 66°
8 68° 66° to 70°
9 72° 70° to 74°

10 76° 74° to 78°
11 78° to 82°
12 82° to 86°
13 86° to 90°
14 90° to 94°
15 94° to 98°

68 D.P.B. Renaux and F. Pöttker

5.2 Control Algorithm Design

The control algorithm is implemented by the SFSM presented in Fig 5. In the Idle
state, no water is flowing and the gas flow valve is closed. When the water flow is
above the minimum level of 0.5 liters/min and the pilot flame is on, then the SFSM
transitions to the Init Delay state and, after 3 seconds, it transitions to the T state with
the gas flow valve at 50%. The control algorithm consists of making no corrections
to the gas flow valve output whenever the measured temperature is within 2 degrees
of the desired temperature; to do small corrections (2% per 350 ms control cycle)
when the temperature difference is small (up to one setting of the temperature selec-
tor) and doing larger corrections (10% per 350 ms control cycle) when the tempera-
ture difference is larger.

Due to the safety requirement, whenever the water flow is below the minimum lev-
el or the pilot flame is off, the SFSM transitions to the Idle state.

Fig. 5. Tankless gas water heater controller state diagram

5.3 Control Algorithm Simulation

The tankless gas heater was simulated in Matlab/Simulink. The block diagram of the
simulation model is depicted in Fig 6. The thermal transfer is modeled as a second
order system with a time constant of 1 second. This block models the thermal transfer
from the flame to the heat exchanger followed by the thermal transfer from the heat
exchanger to the water flow. The change in temperature is given by (derived from the
formulae presented by Henze [12]):

 Power Reduction in Embedded Systems Using a Design Methodology 69

݀ܶ ൌ ܲ ሾܹ݇ሿ ൈ ଵ௙௟௢௪ ሾೖ೒ೞ ሿ ൈ ଵ௖೛ೢ (5)

where:
P is the power (in kW) generated due to gas burning
flow is the water flow (in kg/s) through the heat exchanger
cpw is the specific heat capacity of water (4.18 kJ/kg.K)

The gas heater controller has an input for the timer tick and two parameterized inputs
to accommodate for the changes in the SFSM clock period. The simulation evaluates
the desired temperature step-response (desired temperature changed to 40 degrees).
Fig 7 shows the response of the simulation: after 12 seconds the system stabilizes
within ± 1 degree of the desired temperature.

The simulations were performed with SFSM clock periods ranging from 25 ms to
350 ms. Due to the parameterization of the correction values the responses are nearly
identical for all values of the SFSM clock periods.

Fig. 6. Tankless gas heater simulation model

5.4 Implementation

For the implementation an ARM Cortex-M processor was used: the NXP LPC 1343, a
Cortex-M3 processor running at 72 MHz (Fig 8). The SFSM was implemented in C
using the EWARM compiler from IAR. The SFSM clock ticks were generated by the
SYSTICK timer, a standard timer available in all Cortex-M3 processors. On every
tick the processor wakes up, executes the SFSM and returns to deep-sleep mode (Sec-
tion 4). On this processor, the required supply current is of 21 mA in the operating
mode and of 100 uA in deep-sleep mode.

.005

small correction

.05

large correction

flow
Tw/Gas

Ts

1

s +2s+12

Transfer Fcn

10

Ti

Pulse
Generator

Model Info
Fabi

delta T = P [kW] * 1/flow [kg/s] * 1/4.18 [kJ/kg.K]

double RC: 1/(1+s)^2
R1: th res to cooper
C1: th capacitance of cooper
R2: th res to water
C2: th capacitance of water

Divide

Tw

Ts

Cs

Cl

G

Controller

-K-

1/4.18

70 D.P.B. Renaux and F. Pöttker

Fig. 7. Step-response obtained by simulation

Fig. 8. Photograph of the gas heater controller prototype

Energy consumption was evaluated at three scenarios: (1) processor operating con-
tinuously; (2) SFSM clock period of 25 ms and (3) SFSM clock period of 350 ms. For
scenarios (2) and (3), deep-sleep mode is used. The measured values of the supply
current and supply power are presented in Table 2. The supply voltage is of 3.3 V.

 Power Reduction in Embedded Systems Using a Design Methodology 71

The optimal SFSM clock period (Section 4.1) for this implementation is 21 ms.
One can observe that changing the SFSM clock period from 25 ms to 350 ms (a 14
fold increase) results in a power reduction from 606 uW to 350 uW, a reduction of
only 42%.

The effects of the changes in the SFSM clock period on the water temperature are
not noticeable, as predicted by the simulation results. This is mainly due to the time
constants of the physical system (heat transfer from flame to heat exchanger and
then to water flow) being larger than the maximum SFSM clock periods used in this
evaluation.

Table 2. Measured Power Consumption

Scenario Supply Current Power Consumption

Continuously in operating mode 21 mA 69 mW

SFSM clock period of 25 ms. 184 uA 606 uW

SFSM clock period of 350 ms 106 uA 350 uW

6 Conclusion

The proposed methodology advocates the use of Synchronous Finite State Machine
models since the early phases of development as well as a concern, during require-
ments elicitation, for delay tolerances. In this way, a straightforward implementation
technique of short execution bursts followed by periods of low-power deep-sleep
results in significant reduction of energy consumption.

A tankless gas water heater controller was implemented with the proposed metho-
dology. This controller is powered from a 4000 mAh non-rechargeable battery whose
life is extended from 190 hours (if the processor is in continuous operating mode) to
2.25 years (using deep-sleep mode).

One could argue that the total amount of energy consumed by a gas water heater
renders useless the small amount of energy that is saved in the given example. How-
ever, there are two important considerations: (1) currently the gas water heater has
two energy sources – gas and electricity; the potential for significant reduction in
energy consumption from the battery will extend battery life, reducing cost and
environmental waste. (2) Since gas water heaters produce waste heat, one could apply
energy harvesting to power the electronics, provided a start-up mechanism is
available.

The proposed methodology is currently aimed at devices of lower complexity. A
future research direction is broadening the scope to include more complex devices;
these are likely to require the use of an RTOS that should manage the entry into
deep-sleep mode. Another research direction is the application of the technique to
Asynchronous Finite State Machines, aiming at the devices whose functionality is not
adequately modeled by SFSM.

72 D.P.B. Renaux and F. Pöttker

References

1. International Energy Agency – 2012 Key World Energy Statistics (2012),
http://www.iea.org/publications/freepublications/publication
/name,31287,en.html

2. Bohn, J., Coroama, V., Langheinrich, M., Mattern, F., Rohs, M.: Social, Economic and
Ethical Implications of Ambient Intelligence and Ubiquitous Computing. In: Weber, W.,
Rabaey, J.M., Aarts, E. (eds.) Ambient Intelligence, pp. 5–29. Springer (2005)

3. Strba, A.: Embedded Systems with Limited Power Resources, Enocean (2009),
http://www.enocean.com/fileadmin/redaktion/pdf/white_paper/w
p_embedded_systems_en.pdf

4. Inführ, J., Jahrmann, P.: Hard- and Software Strategies for Reducing Energy Consumption
in Embedded Systems. Seminar-Thesis, Vienna University of Technology (2009)

5. Venkatachalam, V., Franz, M.: Power Reduction Techniques for Microprocessor Systems.
ACM Computing Surveys 37(3), 195–237 (2005)

6. Ortiz, D.A., Santiago, N.G.: Highl Level Optimization for Low Power Consumption on
Microprocessor-Based Systems. In: 50th Midwest Symposium on Circuits and Systems,
Montreal, pp. 1265–1268 (2007)

7. Wiedenhoft, G.R., Hoeller Jr., A., Fröhlich, A.A.: Um Gerente de Energia para Sistemas
Profundamente Embarcados. In: Workshop de Sistemas Operacionais, Rio de Janeiro, pp.
796–804 (2007)

8. Ishihara, T., Goudarzi, M.: System-Level Techniques for Estimating and Reducing Energy
Consumption in Real-Time Embedded Systems. In: International SoC Design Conference,
Seoul, pp. 67–72 (2007)

9. Tiwari, V., Malik, S., Wolfe, A.: Power Analysis of Embedded Software: A First Step
Towards Software Power Minimization. IEEE Transactions on VLSI Systems, 437–445
(1994)

10. Huang, K., Santinelli, L., Chen, J., Thiele, L., Buttazzo, G.C.: Adaptive Dynamic Power
Management for Hard Real-Time Systems. In: 30th IEEE Real-Time Systems Symposium,
Washington, pp. 23–32 (2009)

11. Vieira, J.A.B., Mota, A.M.: Modeling and Control of a Water Gas Heater with Neuro
Fuzzy Techniques. In: 3rd WSEAS International Conference, Switzerland, pp. 3571–3576
(2002)

12. Henze, G.P., Yuill, D.P., Coward, A.H.: Development of a Model Predictive Controller for
Tankless Water Heaters. HVAC&R Research 15(1), 3–23 (2009)

13. Liu, X., Shenoy, P., Corner, M.D.: Chameleon: Application-Level Power Management.
IEEE Transactions on Mobile Computing 7(8) (August 2008)

Low-Power Processors Require Effective

Memory Partitioning

Leonardo Steinfeld1, Marcus Ritt2, Fernando Silveira1, and Luigi Carro2

1 Instituto de Ingenieria Electrica, Facultad de Ingenieria, Universidad de la
Republica, Uruguay

2 Instituto de Informatica, Universidade Federal do Rio Grande do Sul, Brasil

Abstract. The ever increasing complexity of embedded systems de-
mands for rising memory size, and larger memories increase the power
drain. In this work, we exploit banked memories with independent low-
leakage retention mode in event-driven applications. The resulting energy
saving for a given number of banks is close to the maximum achievable
value, since the memory banks access pattern of event-driven applica-
tions presents a high temporal locality, leading to a low saving loss due
to wake-up transitions. Results show an energy reduction up to 77.4%
for a memory of ten banks with a partition overhead of 1%.

Keywords: banked memory, event-driven applications, power manage-
ment, wireless sensor network.

1 Introduction

In the last years, there has been a lot of research dealing with processing power
optimization resulting in a variety of ultra-low power processors. These proces-
sors pose a primary energy limitation for SRAM, where the embedded SRAM
consumes most of the total processor power [1]. Partitioning a SRAM memory
into multiple banks that can be independently accessed reduces the dynamic
power consumption, and since only one bank is active per access, the remaining
idle banks can be put into a low-leakage sleep state to also reduce the static
power [2]. However, the power and area overhead due to the extra wiring and
duplication of address and control logic prohibits an arbitrary fine partitioning
into a large number of small banks. Therefore, the final number of banks should
be carefully chosen at design time, taking into account this partitioning over-
head. The memory organization may be limited to equally-sized banks, or it can
allow any bank size. Moreover, the strategy for the bank states management may
range from a greedy policy (as soon as a bank memory is not being accessed it is
put into low leakage state) to the use of more sophisticated prediction algorithms
[3].

Memory banking has been applied for code and data using scratch-pad and
cache memories in applications with high performance requirements (e.g. [2],[4]).
We follow the methodology employed in [4], in which a memory access trace is
used to solve an optimization problem for allocating the application memory

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 73–81, 2013.
c© IFIP International Federation for Information Processing 2013

74 L. Steinfeld et al.

divided in blocks to memory banks. However, to the best of our knowledge,
this is the first time SRAM banked memories are considered for event-driven
applications code, and the use of such characteristics leads to meaningful power
savings, as it will be shown.

The main contribution of this work is to show that, thanks to our new problem
formulation, one can find the optimum partitioning of memory banks in the very
common event-driven applications. We derive expressions for energy savings in
the case of equally sized banks based on a detailed model for different power
management strategies. The maximum achievable energy saving is found, and
the limiting factors are clearly determined. We show that it is possible to find
a near optimum number of banks at design time, irrespective of the application
and the access pattern to memory, provided that the energy memory parameters
are given, such as energy consumption characteristics and the partition overhead
as a function of the number of banks. We show that using our approach in a
banked memory leads to aggressive (close to 80%) energy reduction in event-
driven applications.

The remainder of this paper is organized as follows. In Section 2, we present
a memory energy model, and in Section 3 we derive expressions for the energy
savings of a banked memory. The experiments are presented in Section 4 and in
Section 5 we discuss the results. Finally Section 6 contains concluding remarks.

2 Banked Memory Energy Model

In this section we present a memory energy model for deriving expressions for
the energy consumption of an equally-sized banked memory with different power
management strategies.

2.1 Memory Energy Model

The static power consumed by a SRAM memory depends on its actual state:
ready or sleep. During the ready state read or write cycles can be performed,
but not in the sleep state. Since the memory remains in one of these states for a
certain amount of cycles, the static energy consumed can be expressed in terms
of energy per cycle (Erdy and Eslp) and number of cycles in each state. Each
memory access, performed during the ready state, consumes a certain amount
of energy (Eacc). The ready period during which memory is accessed is usually
called the active period, and the total energy spent corresponds to the sum of
the access and the ready energy (Eact = Eacc + Erdy), i.e. the dynamic and
static energy. On the other hand, the ready cycles without access are called idle
cycles, consuming only static energy (Eidl = Erdy). Each state transition from
sleep to active (i.e. the wake-up transition) has an associated energy cost (Ewkp)
and a latency, considered later. Based on the parameters defined above, the total
energy consumption of a memory can be defined as

E = Eactnact + Eidlnidl + Eslpnslp + Ewkpnwkp, (1)

Low-Power Processors Require Effective Memory Partitioning 75

Table 1. Memory energy consumption coefficients

Eact Eidl Eslp Ewkp

1.78 × 10−6 3.28 × 10−7 3.28 × 10−8 7.95 × 10−6

where nact, nidl and nslp are the sum of the cycles in which the memory is in
active, idle and in sleep state respectively, and nwkp is the number of times the
memory switches from sleep to active state.

The energy values in Eq. (1) depend on the size of the memory, and gener-
ally energy is considered proportional to it [2]. Using the CACTI tool [5], we
simulated a pure RAM memory, one read/write port, 65 nm technology and a
high performance ITRS transistor type, varying its size from 512 B to 256 KB.
CACTI outputs the dynamic and leakage energy, corresponding to the access
and idle of our model. The active energy is directly computed (dynamic plus
leakage). The access, active, and idle energy were fitted to a linear function as
a function of the memory size to determine the energy coefficients. The energy
consumed per cycle in the sleep state is a fraction of the idle energy, since we
suppose that a technique based on reducing the supply voltage is used to expo-
nentially reduce the leakage [6]. We considered a reduction factor of leakage in
sleep state of 0.1, which is generally accepted in the literature [7]. Finally, before
a memory bank could be successfully accessed, the memory cells need to go back
from the data retention voltage to the ready voltage, which involves the loading
of internal capacitances. Since the involved currents in this process are similar
to those in an access cycle, the associated wake-up energy cost is proportional
to the access energy, ranging the proportionality constant from about 1 [8] to
hundreds [9]. We adopt an intermediate value of 10. Table 1 shows the different
coefficients used in the remainder of this work.

Finally, partitioning a memory in N equally sized banks reduce the energy
by N,

Ek =
Ek

N
. (2)

for k ∈ {act, idl, slp, wkp}, where Ek is the corresponding energy consumption
per cycle of the whole memory.

3 Energy Savings

In this section we derive expressions for the energy savings of a memory of equally
sized banks for two different management schemes. The first general expression
corresponds to any power management by means of which a bank may remain
in idle state even if it is not accessed. The decision algorithm may range from a
simple fixed time-out policy to dynamic and sophisticated prediction algorithms.
The second expression correspond to the simplest policy, greedy, in which a bank
is put into sleep state as soon as it is not being accessed, and is determined as
a special case of the former.

76 L. Steinfeld et al.

The total energy consumption per cycle of the whole banked memory after n
cycles have elapsed is

ĒN = Eact

N∑

i=1

nacti

n
+ Eidl

N∑

i=1

nidli

n
+ Eslp

N∑

i=1

nslpi

n
+ Ewkp

N∑

i=1

nwkpi

n
, (3)

Since the total number of cycles is n = nacti + nidli + nslpi for all banks, and
that there is only one bank active per cycle

N∑

i=1

nacti = n (4)

then we obtain

ĒN = Eact + (N − 1)Eslp + (Eidl − Eslp)
N∑

i=1

nidli

n
+ Ewkp

N∑

i=1

nwkpi

n
. (5)

The first two terms of the sum are the consumption of having only one bank
in active state and the remaining N − 1 banks in sleep state. The third term,
related to the idle energy, depends on the fraction of idle cycles performed by
each bank i. The last term of the sum represents the wake-up energy as a function
of the average wake-up rate of each memory bank, that is the average number
of cycles elapsed between two consecutive bank transitions from sleep to active
(for example, one transition in 1000 cycles).

We define the energy savings of a banked memory as the relative deviation
of the energy consumption of a equivalent single bank memory (E1 = NEact,
always active)

δE =
NEact − ĒN

NEact
. (6)

The energy saving of a banked memory of N uniform banks is

δEN =
N − 1

N

(
1 − Eslp

Eact

)
− 1

N

(
Eidl − Eslp

Eact

) N∑

i=1

nidli

n
−

− 1
N

Ewkp

Eact

N∑

i=1

nwkpi

n
. (7)

If a greedy power management is considered a memory bank it is put into sleep
state as soon as is not being accessed, hence there is no idle cycles and Eq. (7)
simplifies to

δEgrdy
N =

N − 1
N

(
1 − Eslp

Eact

)
− 1

N

Ewkp

Eact

N∑

i=1

nwkpi

n
. (8)

Low-Power Processors Require Effective Memory Partitioning 77

In this case, the application blocks allocation to memory banks must minimize
the accumulated wake-up rate in order to maximize the energy saving. Note
that the energy saving does not depend on the access profile among the banks,
since the access to every bank costs the same as all banks have the same size.
Still, the allocation of blocks to banks must consider the constraints of the banks
size. Finally, the energy saving can be improved by increasing N and at the same
time keeping the accumulated wake-up rate low. The maximum achievable saving
corresponds to the sleep to active rate, which is equivalent to have the whole
memory in sleep state. Even so, the partition overhead limits the maximum
number of banks.

Compared to Eq. (8), the general expression Eq. (7) has an additional term,
which is related to the energy increase caused by the idle cycles. This does not
mean that the energy saving is reduced, since the accumulated wake-up ratio
may decrease.

3.1 Effective Energy Saving

As mentioned previously, the wake-up transition from sleep to active state of a
bank memory has an associated latency. This latency forces the microprocessor
to stall until the bank is ready. The microprocessor may remain idle for a few
cycles each time a new bank is waken up, incrementing the energy drain. This
extra microprocessor energy can be included with the bank wake-up energy and
for simplicity we will not consider it explicitly. Moreover, if the wake-up rate
is small and the active power of the microprocessor is much higher than idle
power, this overhead can be neglected. Additionally, the extra time due to the
wake-up transition is not an issue in low duty-cycle applications, since simply
slightly increases the duty-cycle.

On the other hand, the partitioning overhead must be considered to determine
the effective energy saving. A previous work had characterized the partitioning
overhead as a function of the number of banks for a partitioned memory of arbi-
trary sizes [9]. In that case the hardware overhead is due to an additional decoder
(to translate addresses and control signals into the multiple control and address
signals), and the wiring to connect the decoder to the banks. As the number of
memory banks increases, the complexity of the decoder is roughly constant, but
the wiring overhead increases [9]. The partition overhead is proportional to the
active energy of an equivalent monolithic memory and roughly linear with the
number of banks, as can be clearly seen by inspecting the data of the aforemen-
tioned work (3.5%, 5.6%, 7.3% and 9% for a 2-, 3-, 4-, and 5-bank partitions,
resulting in an overhead factor of approximately 1.8% per bank). Consequently,
the relative overhead energy can be modeled as:

δEovhd
N = kovhdN. (9)

In this work, the memory is partitioned into equally-sized banks. As result the
overhead is expected to decrease leading to a lower value for the overhead factor.

78 L. Steinfeld et al.

3.2 Energy Savings Limits

The energy savings in the limit, as the wake-up and idle contributions tend to
zero, is

δEmax
N =

N − 1
N

(
1 − Eslp

Eact

)
. (10)

If the partition overhead is considered (Eq. 9), the maximum effective energy
saving is

δEmax
N,eff =

N − 1
N

(
1 − Eslp

Eact

)
− kovhdN. (11)

δEmax
N,eff is maximized for

Nopt =

√
1

kovhd

(
1 − Eslp

Eact

)
. (12)

4 Experiments

In this section we present experiments comparing the predicted energy savings
by our model to the energy savings obtained by solving an integer linear program
(ILP).

The criteria for selecting the case study application were: public availability
of source files, realistic and ready-to-use application. We chose a wireless sensor
network application (data-collection) from the standard distribution of TinyOS
(version 2.1.0) 1. The application, MultihopOscilloscope, was compiled for nodes
based on a MSP430 microcontroller2. Each node of the network periodically
samples a sensor and the readings are transmitted to a sink node using a network
collection protocol.

We simulated a network composed of 25 nodes using COOJA[10] to obtain a
memory access trace of one million cycles or time steps.

For the sake of simplicity, the block set was selected as those defined by the
program functions and the compiler generated global symbols (user and library
functions, plus those created by the compiler). The size of the blocks ranges from
tens to hundreds of bytes, in accordance with the general guideline of writing
short functions, considering the run-to-completion characteristic of TinyOS and
any non-preemptive event-driven software architecture. The segments size of
the application are 3205 bytes of text, 122 and 3534 bytes of zero-valued and
initialized data respectively. The number of global symbols is 261.

The problem of allocating the code to equally sized banks was solved using an
ILP solver for up eight banks, for the greedy power management using a segment
trace of 5000 cycles. The total memory size was considered 10% larger than the
1 www.tinyos.net
2 www.ti.com/msp430

www.tinyos.net
www.ti.com/msp430

Low-Power Processors Require Effective Memory Partitioning 79

Table 2. Optimum number of banks as a function of partition overhead

kovhd(%) 0 1 2 3 5

Nopt ∞ 10 7 6 4

δEmax
N,eff(%) 97.1 77.4 69.2 62.9 52.8

application size, to ensure the feasibility of the solution. The average energy
consumption is calculated considering the whole trace using the memory energy
model and the block-to-bank allocation map. The energy saving is determined
comparing with a memory with a single bank with no power management.

5 Results and Discussion

The optimum number of banks estimated using Eq. (12) (after rounding) as a
function of kovhd (1%, 2%, 3% and 5%) is shown in Table 2. The energy savings
is limited by the partition overhead, reaching a value of 77.4% for an overhead
of 1%. The energy saving limit, as the partition overhead tends to zero and N
to infinity, is 97.1% (the corresponding value of 1 − Eslp/Eact).

Table 3 compares the energy saving results as a function of the number of
banks and the partition overhead. It can be observed that the maximum energy
saving for greedy strategy with 2%, 3% and 5% of partition overhead is achieved
for seven, six and five banks respectively (both marked with a gray background).
The optimum number of banks for an overhead of 5% differs from what arises
in the previous limit case (see Table 2). This means that the saving loss due
to wake-up transitions shifts the optimum number of banks. For a given parti-
tion overhead, the energy saving for the estimated optimum number of banks
is within about 4% of the saving limit (comparing saving values in Table 2 to
the corresponding values in Table 3, number of banks: four, six and seven, and
partition overhead: 5%, 3% and 2% respectively). This difference came from the
wake-up transitions losses. In this case study, due to its even-driven nature, the
code memory access patterns are caused by external events. Each event trig-
gers a chain of function calls starting with the interrupt subroutine. This chain
may include the execution of subsequent functions calls starting with a queued
handler function called by a basic scheduler. The allocation of highly correlated
functions to the same bank leads to a bank access pattern with a high temporal

Table 3. Energy saving for greedy power management

greedy
number of banks

2 3 4 5 6 7 8

kovhd 1 43.7 58.1 64.8 68.9 71.4 72.9 73.7

(%)
2 41.7 55.1 60.8 63.9 65.4 65.9 65.7
3 39.7 52.1 56.8 58.9 59.4 58.9 57.7
5 35.7 46.1 48.8 48.9 47.4 44.9 41.7

80 L. Steinfeld et al.

locality. Hence, the total wake-up fraction across the banks is very low. This
explain the modest difference with the limit value.

6 Conclusions

We have found that aggressive energy savings can be obtained using a banked
memory, up to 77.4% (estimated) for a partition overhead of 1% with a memory
of ten banks, and 65.9% (simulated) for a partition overhead of 2% with a mem-
ory of seven banks. The energy saving is maximized by properly allocating the
program memory to the banks in order to minimize the accumulated wake-up
rate. The saving increases as a function of the number of banks, and is limited
by the partition overhead. The derived model gives valuable insight into the
particular factors (coming from the application and the technology) critical for
reaching the maximum achievable energy saving. Moreover, at design time the
optimum number of banks can be estimated, considering just energy memory
parameters. The resulting energy saving for a given number of banks is close
to the derived limit, since event-driven applications present access patterns to
banks with a high temporal locality.

References

1. Verma, N.: Analysis Towards Minimization of Total SRAM Energy Over Active
and Idle Operating Modes. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 19(9), 1695–1703 (2011)

2. Golubeva, O., Loghi, M., Poncino, M., Macii, E.: Architectural leakage-aware man-
agement of partitioned scratchpad memories. In: DATE 2007: Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 1665–1670. EDA
Consortium, San Jose(2007)

3. Calimera, A., Macii, A., Macii, E., Poncino, M.: Design Techniques and Archi-
tectures for Low-Leakage SRAMs. IEEE Transactions on Circuits and Systems I:
Regular Papers 59(9), 1992–2007 (2012)

4. Ozturk, O., Kandemir, M.: ILP-Based energy minimization techniques for banked
memories. ACM Trans. Des. Autom. Electron. Syst. 13(3), 1–40 (2008)

5. Thoziyoor, S., Ahn, J.H., Monchiero, M., Brockman, J.B., Jouppi, N.P.: A Com-
prehensive Memory Modeling Tool and Its Application to the Design and Analysis
of Future Memory Hierarchies. In: 2008 International Symposium on Computer
Architecture, pp. 51–62. IEEE, Washington, DC (2008)

6. Qin, H., Cao, Y., Markovic, D., Vladimirescu, A., Rabaey, J.: SRAM leakage
suppression by minimizing standby supply voltage. In: SCS 2003: Proceedings of
the International Symposium on Signals, Circuits and Systems, pp. 55–60. IEEE
Comput. Soc., Los Alamitos (2004)

7. Rabaey, J.: Low power design essentials. Springer (2009)
8. Calimera, A., Benini, L., Macii, A., Macii, E., Poncino, M.: Design of a Flexible

Reactivation Cell for Safe Power-Mode Transition in Power-Gated Circuits. IEEE
Transactions on Circuits and Systems I: Regular Papers 56(9), 1979–1993 (2009)

Low-Power Processors Require Effective Memory Partitioning 81

9. Loghi, M., Golubeva, O., Macii, E., Poncino, M.: Architectural Leakage Power
Minimization of Scratchpad Memories by Application-Driven Sub-Banking. IEEE
Transactions on Computers (2010)

10. Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., Sauter,
R., Marrón, P.J.: COOJA/MSPSim: interoperability testing for wireless sensor
networks. In: Proceedings of the 2nd International Conference on Simulation Tools
and Techniques, Simutools 2009, pp. 1–7. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Brussels (2009)

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 82–91, 2013.
© IFIP International Federation for Information Processing 2013

Enhancement of System-Lifetime by Alternating Module
Activation

Frank Sill Torres

Dept. of Electronic Engineering, Federal University of Minas Gerais, Brazil
franksill@ufmg.br

Abstract. Reliability and robustness have been always important parameters of
integrated systems. However, with the emergence of nanotechnologies reliabili-
ty concerns are arising with an alarming pace. The consequence is an increasing
demand of techniques that improve yield as well as lifetime reliability of to-
day’s complex integrated systems. It is requested though, that the solutions re-
sult in only minimum penalties on power dissipation and system performance.
The approach Alternating Module Activation (AMA) offers both extension of
system lifetime and low increase of power and delay. The essential contribution
of this work is an analysis to which extent this technique can be improved even
more. Thereby, components that enable partial concurrent error detection as
well as Built-in self-test functionality are included. Further, a flow for compari-
son of system’s lifetime on cell-level is presented. Final results indicate an
improvement of the system’s lifetime of up to 58 % for designs in which the
expected instance lifetime differs by factor 2.

Keywords: Robustness, Redundancy, Sleep Transistor, Modeling, BIST.

1 Introduction

CMOS is still the predominating technology for digital designs with no identifiable
concurrence in the near future. Driving forces of this leadership are the high miniatu-
rization capability and the robustness of CMOS. The latter, though, is decreasing with
an alarming pace against the background of technologies with sizes at the nanoscale.
Such technologies, with device dimensions in the range of a few nanometers, suffer
from an increased susceptibility to different kinds of failures during operation [1]. In
contrast to previous technology generations, solutions within the manufacturing
process are not sufficient anymore to deal with these kinds of issues. Accordingly,
reliability concerns are not only an issue of manufacturing anymore, but also have to
be considered in all abstraction layers of the design process. Thereby, three main
strategies can be identified: (I) design techniques that detect errors [2], (II) techniques
that detect and correct errors [3] and (III) those techniques that try to avoid or at least
prolongate errors [4][5]. As those techniques of strategy (I) require another mechan-
ism to cope with the detected error, they do not increase the expected lifetime of the
designs as aimed at in this work.

We proposed in previous works [6][7] a design technique that relates to strategy
(III) and combines Sleep Transistors with the idea of modular redundancy to extend

 Enhancement of System-Lifetime by Alternating Module Activation 83

lifetime reliability of integrated circuits. In this work, we propose how this approach
can be combined with techniques of strategy (II) to cope with errors as they can final-
ly still occur.

The remainder of this contribution is organized as follows: section 2 summarizes
the initial approach while section 3 presents the proposed extensions of the design
technique. The subsequent section 4 introduces an extended flow on cell-level in or-
der to compare lifetime reliability of integrated circuits. The following section 5
presents and discusses simulation results before section 6 concludes this work.

2 Alternating Module Activation

This section describes the fundamentals of the previously developed approach Alter-
nating Module Activation as well as requirements for the necessary control logic.

2.1 Basic Idea

An essential characteristic of power gating with Sleep Transistors [8] is its ability to
dynamically disconnect the power supply during the runtime of integrated systems.
Hence, during the disconnected state the gated logic is ideally without any inherent
currents and voltages, and thus electromagnetic fields. Furthermore, local tempera-
tures are reduced as there is no switching activity present. It should be noted that
these are key parameters for several lifetime decreasing effects, like electromigration
[9], gate-oxide breakdown [10], and negative bias temperature instability [11], of
integrated circuits. Thus, during an idle phase of a gated logic these effects are elimi-
nated or at least strongly reduced. As a consequence, the mean time to failure
(MTTF), which is the average time that a system operates until it fails, is prolonged
approximately by the time that the design is in the idle phase. This relation is applied
by the proposed approach Alternating Module Activation (AMA). Hereby, each gated
module (i.e. each logic block) is implemented at least two times (see also Fig. 1).
During the runtime though, only one of these instances is active while the others are
disconnected from the power supply. Consequently, the resulting ideal mean time to
failure MTTF'AMA of a module realized with the proposed approach can be expressed
by:

 = ⋅AMA minMTTF' MTTFN (1)

where N is the number of redundant instances and MTTFmin is the minimum MTTF
over all module instances. Equation (3) refers to the ideal case where any additional
logic is neglected and the gated modules are completely disconnected from the power
supply.

It could be shown in previous works [7] that there is a moderate increase in dynam-
ic power dissipation of ca. 6 %, while the leakage and area are roughly doubled.

84 F.S. Torres

2.2 Control Circuitry

In order to properly work, additional logic is required to multiplex the results from the
currently active instance to the subsequent module. This is implemented by multip-
lexers that are placed behind the redundant instances as depicted in Fig. 1. Here, a
simple 2:1 multiplexer is shown to forward the correct signals from the redundant
instances of the module A to the subsequent module B.

Commonly, power gated logic requires additional clock cycles before the logic can
be fully operated again (i.e. wake-up time [8]). Hence, it is not feasible to connect the
signals controlling the Sleep Transistors (here /Sleep1 and /Sleep2) also directly to the
multiplexers. Instead, a control signal scheme as shown in Fig. 1 should be applied to
ensure data consistency. Thereby, it has to be assured that before a transition of the
multiplexed outputs both instances are active (/Sleep1 and /Sleep2 are logically ‘1’).

Fig. 1. The initial AMA approach with two redundant instances, whereas the results of the
active instance are forwarded by the subsequent multiplexer, and related control signal scheme

Considering the transition time the mean time to failure MTTF''AMA results to:

 ()= ⋅ − ⋅AMA , i i minMTTF'' 1 MTTF with: MTTF=MTTFtrans iN p (2)

with ptrans is the probability that the instance i is in the transition phase but its output is
still not forwarded by the multiplexer.

For a comprehensive investigation, it has to be considered that the lifetime of the
system also depends on the MTTF of the multiplexers. The multiplexers though are
realized as transmission gates [6], whereas only one path is active at a time. Thus, the
impact of failure mechanisms, like gate-oxide breakdown or electromigration [12], is
also correspondingly smaller. Nevertheless, it is reasonable to apply special design
strategies for the multiplexers as well, like transistors with thicker gate oxide and
wider wires.

Module A
Instance 1

Module A
Instance 2

Module B
Sleep 1

Sleep 2

MUX‐ctrl

Sleep 2

MUX‐ctrl

Sleep 1

timeSleep Transistors

 Enhancement of System-Lifetime by Alternating Module Activation 85

3 Enhanced Alternating Module Activation

This section proposes extensions of the AMA approach that increase the lifetime in
case of faultiness of one of the instances. Beside this, error detection capability and
Built-in self-test (BIST) functionality are added.

3.1 Partial Concurrent Error Detection

A missing function of the initial version of the Alternating Module Activation ap-
proach is error detection capability. Hence, it is proposed to add comparators to each
multiplexer. Its function is the verification that all multiplexer’s inputs have the same
value, and thus, whether all instances of a module produce equal results (comparator
C-M in Fig. 2). However, only during the transition phase, i.e. when one instance is
disconnected from supply while another is connected (see Fig. 1), more than one in-
stance is active at the same time. This presents a limitation as only during this phase
concurrent error detection (CED) is possible. The intention of this partial CED
though, is not the identification of transient faults [13]. In contrast, its purpose is the
detection of permanent faults.

It is recommended to modify the transition phase in the way that all instances are
connected for a limited time. Thus, the probability of detection of an error can be
increased. Considering this change, the mean time to failure MTTF'EAMA of a module
results to:

 ()= ⋅ − ⋅EAMA minMTTF' 1 MTTFtransN p (3)

where ptrans denotes the probability that the instances are in transition phase and its
outputs are not forwarded by the multiplexer. Consequently, the increase of ptrans re-
duces the time between the occurrence of a permanent failure and its detections.

3.2 Selective Complete Deactivation of Instances

One major drawback of the initial version of the AMA approach is the complete func-
tion loss if one of the instances fails. Thus, it is proposed to utilize the existence of at
least two instances of each module. The basic idea is the complete deactivation of an
instance in case of failure, i.e. the control algorithm stops to consider the defective
instance. This deactivation can pushed so far that the single instance configuration is
reached. Thus, the expected life time of the circuit can be increased by the difference
of the mean time to failure of the instances of each module. Considering exclusively
the MTTF of the instances of the module the resulting MTTFmod_EAMA can be
estimated with:

86 F.S. Torres

() ()

()() ()

()

1 2 1

EAMA

N N-1

i i (i-1)
1

MTTF 1 MTTF -MTTF
MTTF 1

... MTTF -MTTF

1 MTTF with: MTTF MTTF

trans

N

trans
i

N N
p

p
=

⋅ + − ⋅ + 
 = ⋅ −

+  

= − ⋅ >
 (4)

Hence, in case of different mean time to failures of the instances the increase
ΔMTTFmod_EAMA results to:

 ()EAMA i i (i-1)
2

MTTF 1 MTTF with: MTTF MTTF .
N

trans
i

p
=

Δ = − ⋅ > (5)

These differences of the MTTF result from variations of process parameters, aberra-
tions of layout parameters, on-die temperature distribution, and effects through neigh-
boring blocks.

3.3 Built-In Self-Test for Faulty Instance Identification

Another missing function of the initial approach is the identification of a faulty in-
stance. Hence, it is proposed to add a memory based Built-In Self-Test (BIST) mode.
Therefore, test input and output vectors for each module have to be generated and
stored in a memory block whose inputs are multiplexed to the module inputs. Further,
the outputs of the memory and the module are connected to comparators (see Fig. 2).
Thus, in case of detection of an error by the partial CED the proposed BIST structure
can be applied for successive tests of each instance for identification of the faulty one.

3.4 Final Architecture and Control Scheme

Fig. 2 shows the final architecture of the extended approach whereas the initial blocks
are greyed out. For reasons of lifetime extension both kinds of comparators as well as
the memory can be switched off by Sleep Transistors when it is not needed. Fig. 3
depicts the new control structure which is extended by two phases of error detection.
As described in subsection 3.1 the partial CED is only active during the transition
phase. Further, the design changes to the BIST mode only in case of the detection of
an error. During that mode the system has to be halted as no correct functionality can
be guaranteed. After detection of a faulty instance it is removed from the list of possi-
ble active instances and the system returns to normal operation.

4 Technique for MTTF Comparison on Cell-Level

This section proposes a new technique on cell-level for the comparison of mean time
to failure of integrated designs.

 Enhancement of System-Lifetime by Alternating Module Activation 87

Fig. 2. Structure of Enhanced AMA (blocks of the initial AMA are greyed out)

4.1 Types of Modeling of Failure Mechanisms

Several models for individual failure mechanisms within integrated circuits can be
found in the literature [8][9][12], whereas SPICE simulations are reported as the most
accurate approach used by circuit designers. However, the accuracy comes together
with major computational efforts and simulation times, which limits the maximum
number of elements within an investigation. In contrast, approaches on higher levels
decrease drastically the effort in computation, allowing the analysis of considerably
more complex design [14][15]. However, this gain comes with the price of reduced
accuracy.

Fig. 3. Control flow for extended AMA approach, enhanced by an error detection phase during
module transition and a BIST mode

Module A
Instance 1

Module A
Instance 2

Module B
Sleep1

Sleep2

MUX‐ctrl

C‐M

Cmp‐m

BIST‐
Memory

Test‐In

C‐BIST

Cmp‐b

Test‐Out

Data‐In

MUX‐tst

C‐M‐Error C‐BIST‐Error

Comparators

Mem

Instance i
active

All Instances
active

All C‐M
active

transition to
output of

instance (i+1)

All Instances
without i+1

deactive

All C‐M
deactive

All C‐BIST
and memory

active

System
Halt

Instance j
removed
from list

All C‐BIST
and memory

deactive

Transition to
Test‐In

Transition to
Data‐In

System
Reactivated

Error

No
Error

transition to output
of instance j

Run BIST

i++

j++

No Error

Error

j=0

Error detection via comparators C‐M

BIST mode

88 F.S. Torres

4.2 Cell models for MTTF Comparison

The proposed approach for modeling of the meant time to failure of integrated designs
is an extension of the in [6] presented mixed-signal method. In contrast to the solution
on SPICE level the new approach applies models on cell-level in which the function
of the logic cells deteriorates over time. Thereby, the level of degradation is paramete-
rized for each cell and bases on results from studies on SPICE level [6]. Further, all
cells receive an additional input that defines whether the cell is active or deactivated.
This allows different level of degradation depending on the state of connected Sleep
Transistors.

5 Results of the Simulations

In this section, the setup of the test environment is presented before the obtained si-
mulation results are discussed.

5.1 Setup of the Test Environment

The presented simulation results are based on designs from the ISCAS benchmark
suite (c1355 and c3450) [15], the ITC99 benchmark suite (b05, b15 and b21) [17],
and two proprietary designs, i.e. a 32-bit multiplier (mult) and a simple 8-bit MIPS-
like processor (MIPS). The applied library consists of 8 standard cells described as
VERILOG modules with a hard degradation limit that takes the cell active time into
consideration. The levels of cell degradation are based on simulation results obtained
from the test environment presented in [7]. Thereby, all cells were realized in a pre-
dictive 16 nm technology [18] and simulated with the same error models as in [7].
Next, all cells were simulated with different parameters for the error models, and with
connected Sleep Transistors in on- and off-mode. Thereby, the values of the parame-
ters were chosen in a manner that for each cell five different MTTF could be defined.
The multiplexer are implemented as transmission gates with increased transistor di-
mensions that elevate the MTTF of these components.

In the current implementation the control circuitry is included in the test environ-
ment and not part of the analyzed designs. In future works several robust design strat-
egies shall be analyzed for these block. The probability that an instance is in a transi-
tion phase without having its outputs forwarded, defined by frequency and length of a
transition, was set to 1 %. Due to random values for degradation all simulations were
executed 100 times. Further, the automated duplication of module instances as well as
the insertion of Sleep Transistors, multiplexer and comparators is done by a tool spe-
cifically written for these tasks.

The number of redundant instances is limited to two as we consider solutions with
higher numbers of instances as too costly in terms of area.

5.2 Results and Discussion

In a first step it was verified whether the results of the initial AMA approach (see
section 2) can be reproduced in the proposed test environment. Therefore, for each

 Enhancement of System-Lifetime by Alternating Module Activation 89

design the MTTF of the raw version without any redundant blocks was estimated.
Subsequently, those designs were modified according to the AMA approach presented
in section 2. Thus, each design was duplicated and complemented with the multiplex-
er, while the test environment was extended by the related control logic. Further, for
both experiments the cell degradation models that lead to the longest MTTF were
chosen. At these simulations, a design was considered as defective with the appear-
ance of the first wrong result at the design outputs. The results presented in Fig. 4
show that the improvements of the initial approach could be reproduced whereas the
MTTF could be increased by an average of factor 1.98.

Fig. 4. Increase of Mean Time To Failure (MTTF) of designs realized with the initial AMA
approach (each module with two instances) compared to the raw versions

In the next step the proposed extension of the AMA approach (see section 3) was
analyzed. Initially, the designs were simulated with each module realized as single
instance and for all five degradation classes of the cells. Next, comparators and a
memory based BIST were added while the control logic was extended by error verifi-
cation. Then, each modified design was simulated five times whereas the cell degra-
dation models of one instance of each module were varied.

The results of this analysis are depicted in Fig. 5. Here, the increase of the mean
time to failure of the extended approach compared to the initial one is shown for vary-
ing relation between the MTTFs of the instances. The depicted curves show the min-
imum, average, and maximum improvement of the system’s MTTF compared to the
initial approach. It follows that for equal distributed MTTFs of the instances the pro-
posed extension leads only to a negligible increase of expected system lifetime (aver-
age: 1 %). In contrast, already with one group of instances having a 25 % lower mean
time to failure the system’s MTTF can be increased in average by 8 %. If one group
of the instances has a MTTF this is by factor 2 shorter the improvement increases up
to 51 % (average: 50 %). Hence, it could be shown that the presented approach can
considerably increase the system lifetime.

It should be noted that these simulations cannot classify the increase of robustness
against errors that are not based on temporary degradation but abrupt failures, e.g.

0.0

0.5

1.0

1.5

2.0

2.5

b05 b15 b21 c1355 c3540 mult32 MIPS

In
cr

ea
se

 o
f S

ys
te

m
's

 M
TT

F

Improvement of MTTF through initial AMA approach
compared to raw designs

90 F.S. Torres

based on high temperature peaks, extreme overvoltage due to electro-static discharge,
or infant mortality effects.

For this analysis we consider a comparison of the MTTF of raw designs with the
extended version of the approach as not conclusive. This is due to fact that the choice
for the cell degradation model for the raw versions would be only random.

Fig. 5. Improvement of Mean Time To Failure (MTTF) of extended approach compared to the
initial approach under variation of relation of instance’s MTTFs (each module with 2 instances)

6 Conclusion

Integrated circuits realized in nanometer technology are continuously more suscepti-
ble to severe failure mechanisms. This alarming development necessitates design
techniques to improve the lifetime reliability. Hence, the presented work proposes an
extension of an approach that combines the ideas of Sleep Transistors and modular
redundancy in a beneficial way. Thereby, the approach aims at increased lifetime
reliability while the impact on delay and power dissipation is kept to a minimum. Due
to proposed extensions of this work it is possible to detect permanent errors. Further-
more, the modifications lead to extension of the expected system’s lifetime as faulty
instances can be identified and disconnected. In order to compare system lifetime, we
also proposed a modeling technique on cell-level. Finally, simulation results show
that the proposed improvements of the design approach can extend the system’s Mean
Time To Failure (MTTF) in average by 52 % if the instance’s MTTF differ by
factor 2.

Acknowledgements. This work was supported by grants from CNPq, CNPq/DISSE,
CAPES, FAPEMIG, and UFMG/PRPq.

0%

10%

20%

30%

40%

50%

60%

1 1.25 1.5 1.75 2

In
cr

ea
se

 o
f S

ys
te

m
's

 M
TT

F

Relation of instances MTTFs

Improvement of MTTF due to the extended AMA
approach for varying relation between instance's MTTF

min max average

 Enhancement of System-Lifetime by Alternating Module Activation 91

References

1. Srinivasan, J., Adve, S., Bose, P., Rivers, J.: The impact of technology scaling on lifetime
reliability. In: Proceedings of IEEE International Conference on Dependable Systems and
Networks (2004)

2. Bernardi, P., Bolzani, L.M.V., Rebaudengo, M., Reorda, M.S., Vargas, F.L., Violante, M.:
A new hybrid fault detection technique for Systems-on-a-Chip. IEEE Transaction on
Computers 55(2), 185–198 (2006)

3. Mitra, S., Seifert, N., Zhang, M., Shi, Q., Kim, K.S.: Robust System Design with Built-In
Soft-Error Resilience. Computer 38(2), 43–52 (2005)

4. Inukai, T., Hiramoto, T., Sakurai, T.: Variable threshold CMOS (VTCMOS) in series
connected circuits. In: Proceedings of the International Symposium on Low Power Elec-
tronics and Design, pp. 201–206 (2001)

5. Tschanz, J., et al.: Adaptive body bias for reducing impacts of die-to-die and within-die pa-
rameter variations on microprocessor frequency and leakage. IEEE Journal of Solid-States
Circuits 37, 1396–1402 (2002)

6. Sill Torres, F., Cornelius, C., Timmermann, D.: Reliability Enhancement via Sleep Tran-
sistors. In: Proceedings of 12th IEEE Latin-American Test Workshop, pp. 1–6 (2011)

7. Cornelius, C., Sill Torres, F., Timmermann, D.: Power-Efficient Application of Sleep
Transistors to Enhance the Reliability of Integrated Circuits. Journal of Low Power Elec-
tronics 7(4), 552–561 (2011)

8. Powell, M., Yang, S.-H., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated-Vdd: A circuit
technique to reduce leakage in deep-submicron cache memories. In: Proceedings of Inter-
national Symposium on Low Power Electronics and Design, pp. 90–95 (2000)

9. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J., Hu, C.-K.: RAMP: A Model for Reliability
Aware Microprocessor Design. IBM Research Report, RC23048 (2003)

10. Stathis, J.: Reliability limits for the gate insulator in cmos technology. IBM Journal of Re-
search & Develop 46(2/3), 265–286 (2002)

11. Maricau, E., Gielen, G.: NBTI model for analogue IC reliability simulation. Electronics
Letters 46(18) (2010)

12. Failure Mechanisms and Models for Semiconductor Devices, JEDEC Publication JEP122-
A, Jedec Solid State Technology Association (2002)

13. Possamai Bastos, R., Sill Torres, F., Di Natale, G., Flottes, M., Rouzeyre, B.: Novel tran-
sient-fault detection circuit featuring enhanced bulk built-in current sensor with low-power
sleep-mode. Microelectronics Reliability 52(9-10), 1781–1786 (2012)

14. Lorenz, D., Barke, M., Schlichtmann, U.: Aging analysis at gate and macro cell level. In:
Proceedings of Computer-Aided Design, pp. 77–84 (2010)

15. Xiao, J., Jiang, J., Zhu, X., Ouyang, C.: A Method of Gate-Level Circuit Reliability Esti-
mation Based on Iterative PTM Model. In: Proceed. Dependable Computing, pp. 276–277
(2011)

16. Hansen, M., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 Benchmarks: A Case Study
in Reverse Engineering. IEEE Design & Test 16(3), 72–80 (1999)

17. Basto, L.: First results of ITC’99 benchmark circuits. IEEE Design & Test of Comput-
ers 17(3), 54–59 (2000)

18. Zhao, W., Cao, Y.: New generation of Predictive Technology Model for sub-45nm early
design exploration. IEEE Transactions on Electron Devices 53(11), 2816–2823 (2006)

Model Checking Memory-Related Properties

of Hardware/Software Co-designs

Marcel Pockrandt, Paula Herber, Verena Klös, and Sabine Glesner

Technische Universität Berlin
{marcel.pockrandt,paula.herber,verena.kloes,sabine.glesner}@tu-berlin.de

Abstract. Memory safety plays a crucial role in concurrent hardware/-
software systems and must be guaranteed under all circumstances. Al-
though there exist some approaches for complete verification that can
cope with both hardware and software and their interplay, none of them
supports pointers or memory. To overcome this problem, we present a
novel approach for model checking memory-related properties of digi-
tal HW/SW systems designed in SystemC/TLM. The main idea is to
formalize a clean subset of the SystemC memory model using Uppaal

timed automata. Then, we embed this formal memory model into our
previously proposed automatic transformation from SystemC/TLM to
Uppaal timed automata. With that, we can fully automatically verify
memory-related properties of a wide range of practical applications. We
show the applicability of our approach by verifying memory safety of an
industrial design that makes ample use of pointers and call-by-reference.

1 Introduction

Concurrent HW/SW systems are used in many safety critical applications, which
imposes high quality requirements. At the same time, the demands on multi-
functioning and flexibility are steadily increasing. To meet the high quality stan-
dards and to satisfy the rising quantitative demands, complete and automatic
verification techniques such as model checking are needed. Existing techniques
for HW/SW co-verification do not support pointers or memory. Thus, they can-
not be used to verify memory-related properties and they are not applicable to
a wide range of practical applications, as many HW/SW co-designs rely heavily
on the use of pointers.

In this paper, we present a novel approach for model checking memory-related
properties of digital HW/SW systems implemented in SystemC/TLM [15,20].
SystemC/TLM is a system level design language which is widely used for the
design of concurrent HW/SW systems and has gained the status of a de facto
standard during the last years. The main idea of our approach is to formalize
a clean subset of the SystemC memory model using multiple typed arrays. We
incorporate this formal memory model into our previously proposed SystemC to
timed automata transformation [13,14,21]. With that, we enable the complete
and automatic verification of safety and timing properties of SystemC/TLM de-
signs, including memory safety, using the Uppaal model checker. Our approach

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 92–103, 2013.
c© IFIP International Federation for Information Processing 2013

Model Checking Memory-Related Properties 93

can handle all important elements of the SystemC/TLM language, including port
and socket communication, dynamic sensitivity and timing. Thus, we can cope
with both hardware and software and their interplay. We require our approach
for model checking of memory-related properties of SystemC/TLM designs to
fulfill the following criteria:

1. The SystemC memory model subset must be clearly defined.
2. The automatic transformation from SystemC/TLM to Uppaal must cover

the most important memory related constructs, at least the use of pointer
variables and call-by-reference.

3. The resulting representation should produce as little overhead as possible on
verification time and memory consumption for the Uppaal model checker.

4. To ease debugging, the automatically generated Uppaal model should be
easy to read and understand.

Note that our main goal is to make the theoretical results from formal memory
modeling applicable for practical applications, and in particular, to transfer the
results from the verification of C programs (with pointers) to the verification of
HW/SW co-designs written in SystemC. We do not aim at supporting the full
C memory model, including inter-type aliasing and frame problems. Instead, we
focus on a small, clean subset of the SystemC memory model that is sufficient
for most practical examples and can be verified fully automatically.

The rest of this paper is structured as follows: In section 2, we briefly intro-
duce the preliminaries. In section 3, we summarize related work. In section 4,
we present our approach for the formalization of the SystemC memory model
with Uppaal timed automata. Then, we show how we incorporated the mem-
ory model into our previously proposed automatic transformation from System-
C/TLM to Uppaal. In Section 5, we describe the verification of memory safety
with our approach. Finally, we present the results of this transformation for our
case study in Section 6 and conclude in Section 7.

2 Preliminaries

In this section, we briefly introduce the preliminaries that are necessary to un-
derstand the remainder of the paper. First, we give an overview over the system
level design language SystemC/TLM andUppaal timed automata (UTA). Then
we give a brief introduction into our transformation from SystemC to timed au-
tomata.

2.1 SystemC/TLM

SystemC [15] is a system level design language and a framework for HW/SW co-
simulation. It allows modeling and executing of hardware and software on various
levels of abstraction. It is implemented as a C++class library, which provides the
language elements for the description of hardware and software, and an event-
driven simulation kernel. A SystemC design is a set of communicating processes,

94 M. Pockrandt et al.

triggered by events and interacting through channels. Modules and channels
represent structural information. SystemC also introduces an integer-valued time
model with arbitrary time resolution. The execution of the design is controlled
by the SystemC scheduler. It controls the simulation time, the execution of
processes, handles event notifications and updates primitive channels.

Transaction Level Modeling (TLM) is mainly used for early platform evalua-
tion, performance analysis, and fast simulation of HW/SW systems. The general
idea is to use transactions as an abstraction for all kind of data that is transmit-
ted between different modules. This enables simulations on different abstraction
levels, trading off accuracy and simulation speed. The TLM standard [20] and
its implementation are an extension of SystemC, which provide interoperabil-
ity between different transaction level models. The core of the TLM standard
is the interoperability layer, which comprises standardized transport interfaces,
sockets, and a generic payload.

2.2 Uppaal Timed Automata

Timed automata [1] are finite-state machines extended by clocks. Two types of
clock constraints are used to model time-dependent behavior: Invariants are as-
signed to locations and restrict the time the automaton can stay in this location.
Guards are assigned to edges and enable progress only if they evaluate to true.
Networks of timed automata are used to model concurrent processes, which are
executed with an interleaving semantics and synchronize on channels.

Uppaal [2] is a tool suite for modeling, simulation, and verification of net-
works of timed automata. The Uppaal modeling language extends timed au-
tomata by bounded integer variables, a template mechanism, binary and broad-
cast channels, and urgent and committed locations. Binary channels enable a
blocking synchronization between two processes, whereas broadcast channels
enable non-blocking synchronization between one sender and arbitrarily many
receivers. Urgent and committed locations are used to model locations where
no time may pass. Furthermore, leaving a committed location has priority over
non-committed locations.

A small example Uppaal timed automaton (UTA) is shown in Figure 1. The
initial location is denoted by ©◦ , and request? and ack! denote sending and
receiving on channels, respectively. The clock variable x is first set to zero and
then used in two clock constraints: the invariant x <= maxtime denotes that
the corresponding location must be left before x becomes greater than maxtime,
and the guard x >= mintime enables the corresponding edge at mintime. The
symbols ©∪ and ©c depict urgent and committed locations.

2.3 Transformation from SystemC to UPPAAL

In previous work [13,14,21], we have presented an approach for the automatic
transformation of the informally defined semantics of SystemC/TLM designs
into the formal semantics of UTA. The transformation preserves the (informally
defined) behavioral semantics and the structure of a given SystemC design and

Model Checking Memory-Related Properties 95

x <= maxtime

ack!
value = f(t)

x >= mintime

request?
x = 0

Fig. 1. Example Timed Automaton

can be applied fully automatically. It requires two major restrictions. First, we
do not handle dynamic process or object creation. This hardly narrows the ap-
plicability of the approach, as dynamic object and process creation are rarely
used in SystemC designs. Second, the approach only supports data types that
can be mapped to (structs and arrays of) int and bool.

In our transformation, we use predefined templates for SystemC constructs
such as events, processes and the scheduler. Then, each method is mapped to
a single UTA template. Call-return semantics is modeled with binary channels.
Process automata are used to encapsulate the method automata and care for
the interactions with event objects, the scheduler, and primitive channels. Our
transformation is compositional in the sense that we transform each module
separately and compose the system in a final instantiation and binding phase.
For detailed information on the transformation of SystemC/TLM designs to
UTA we refer to [12].

3 Related Work

In the past ten years, there has been a lot of work on the development of formal
memory models for C and C-like languages and in particular on the verification of
pointer programs. Three main approaches to reason about memory in C (cf. [26])
exist: First, semantic approaches regard memory as a function from some kind of
address to some kind of value. Second, there exist approaches that use multiple
typed heaps in order to avoid the necessity of coping with inter-type aliasing. In
these approaches, a separate heap is used for each language type that is present in
a given program or design. In [5], Bornat describes under which restrictions such
a memory model is semantically sound. Third, approaches based on separation
logic (an extension of Hoare logic) [22] are able to cope with aliasing and frame
problems. The main idea of separation logic is to provide inference rules that
allow for the expression of aliasing conditions and local reasoning.

With our approach, we mainly adapt the idea of multiple typed heaps [5] by
providing a separate memory array for each datatype used in a given design.

There also have been several approaches to provide a formal semantics for Sys-
temC in order to enable automatic and complete verification techniques. How-
ever, many of them only cope with a synchronous subset of SystemC [18,23,24,10],
cannot handle dynamic sensitivity or timing, and do not consider pointers or
memory. Other approaches which are based on a transformation from SystemC
into some kind of state machine formalism [11,25,27,19], process algebras [17,9]
or sequential C programs [6,7] do not cope with pointers or memory as well.

96 M. Pockrandt et al.

Furthermore, most of these approaches lack some important features (e.g., no
support for time, no exact timing behavior, no automatic transformation). To
the best of our knowledge, the only approach that can cope with pointers and
memory is the work of [16,4]. There, a labeled Kripke structure-based seman-
tics for SystemC is proposed and predicate abstraction techniques are used for
verification. However, the main idea of this approach is to abstract from the
hardware by grouping it into combinational and clocked threads, which are then
combined into a synchronous product for the overall system. They do neither
address timing issues nor inter-process communication via sockets and channels.
Thus, it remains unclear how they would cope with deeply integrated hardware
and software components and their interplay. Several approaches exists for the
verification of memory safety properties. However, these approaches focus on
pure C (e.g., BLAST [3] and VCC/Z3 [8]) and cannot cope with the special
semantics of SystemC/TLM.

4 Formalization and Transformation of the SystemC
Memory Model

In this paper, we present a novel approach for model checking memory-related
properties of HW/SW systems implemented in SystemC/TLM. The main idea
of our approach is to formalize a clean subset of the SystemC memory model
using separate memory arrays for each type present in a given design (cf. [5]).
In order to enable model checking of memory-related properties, we incorporate
this formal memory model into our SystemC to Timed Automata Transforma-
tion Engine (STATE) [13,14,21]. To this end, we define a set of transformation
rules, which covers all memory-related constructs that are relevant for our subset
of the SystemC memory model. For each memory-related construct, we define
a UTA representation. With that, we can automatically transform a given Sys-
temC/TLM design that makes use of pointers and memory into a UTA model.

In the following, we first state a set of assumptions that define a subset of the
SystemC memory model. Then, we present our representation of the SystemC
memory model within Uppaal. Finally, we present the transformation itself.

4.1 Assumptions

Our memory model covers many memory related constructs like call-by-reference
of methods, referencing of variables, derefencing of pointers and pointers to
pointers in arbitrary depth. However, we require a given SystemC/TLM model
to fulfill the following assumptions:

1. No typecasts are used.
2. No direct hardware access of memory addresses (e. g., int *p; p = 0xFFFFFF;).
3. Structs are only referenced by pointers of the same type as the struct. This also

means that there are no direct references to struct members.
4. No pointer arithmetic is used.
5. No dynamic memory allocation.

Model Checking Memory-Related Properties 97

6. No recursion is used.

7. No function pointers are used.

Assumptions 1, 5, and 6 are necessary as Uppaal does not support typecasting,
dynamic memory allocation or recursion. The second assumption is necessary
because we do not model the memory bytewise and can only access it per vari-
able. The third assumption is due to the fact that we do not flatten structs and
therefore struct members do not have an own address. As we only model the data
memory, assumption 7 is necessary. The Assumptions 1-4 can be considered as
minor ones and hardly restrict the expressiveness of our memory model. As most
SystemC/TLM models do neither make use of dynamic memory allocation nor
of recursion, Assumptions 5 and 6 are acceptable as well.

With the assumptions above, we have a clear definition of the subset of the
SystemC memory model that we want to support with our approach.

4.2 Representation

The main idea of our representation is to model the memory of the System-
C/TLM design with multiple typed arrays. As Uppaal does not support poly-
morphic datatypes, we create a separate array for each datatype used in the
design. Pointers then can be modeled as integer variables, which point to a po-
sition in the array for the corresponding type. Array variables are interpreted as
pointers to the first array element. All other variables are modeled as constant
pointers if they are ever referenced (e.g., call-by-reference or direct referencing).

Figure 2 shows a small example of our Uppaal representation for the Sys-
temC memory model. While pointers, integers and struct variables are arbitrarily
spread over the memory in the SystemC memory model, we group them together
in our Uppaal representation. In our example, there exist an integer variable i
and two objects s and t of type data. Furthermore, there is an integer pointer
p, pointing to i, and a pointer q of type data, pointing to t. In the resulting
Uppaal model, i is placed in the array intMem and s and t are placed in the
array dataMem. The pointers are transformed from real addresses into the corre-
sponding array indices. Note that the arrays have a finite and fixed size which
cannot be altered during the execution of the model. However, the pointers can
point to all existing data of their type.

4.3 Transformation

For the transformation of a given design, we sort all variables into three disjunct
sets: PTR, containing all pointers, REF containing all referenced nonpointer
variables and all arrays and VAR containing all other nonpointer variables.

The result can be used to extract the memory model of the SystemC/TLM
model and to transform it into a Uppaal memory model as proposed in 4.2.
Figure 3 shows a small example for the transformation. Except for additional
array accesses, the resulting Uppaal model has the same structure and variable

98 M. Pockrandt et al.

t
q

s

i p

int *p

int i

intMem

dataMem

data *q

data s

data t

Fig. 2. Memory Representation in SystemC and UPPAAL

1

2 data ar r [3] ;
3 data x ;
4 data ∗p ;
5

6 x . val = 23 ;
7 p = &x ;
8 p−>val = 42 ;
9 ar r [2] . va l = 12 ;

10 ∗p = arr [1] ;
11 p = &arr [2] ;

(a) SystemC/TLM representation

1 i n t dataMEM[DATAMEMSIZE] ;
2 const i n t a r r = 0 ;
3 const i n t x = 3 ;
4 i n t p ;
5

6 dataMEM[x] . va l = 23 ;
7 p = x ;
8 dataMEM[p] . va l = 42 ;
9 dataMEM[arr +2] . va l = 12 ;

10 dataMEM[p] = dataMEM[ar r +1] ;
11 p = arr + 2 ;

(b) Uppaal representation

Fig. 3. Memory Representation Examples

names as the original design. This eases manual matching with the corresponding
SystemC/TLM design to correct detected errors in SystemC/TLM designs.

Table 1 shows the transformation rules we use, with var ∈ REF, arr ∈ REF∧
isArray(arr), p,q ∈ PTR, arbitrary data types T, U, V andW, and the arbitrary
expression E. In general, every referenced variable is converted into a typed array
index. While for nonpointer variables this index is constant, pointers can be
arbitrarily changed. Direct accesses to these variables and pointer dereferencing
operations can be modeled by typed array accesses. Direct pointer manipulation
and variable referencing can be performed without any typed array access.

For all variable types in the REF and PTR sets, we generate a typed array
representing the memory for this type. The size of each typed array is determined
by the total amount of referenced variables of this type. For all members of the
REF set, we reserve one field in the typed array per variable per module instance
and generate a constant integer with the name of the variable and the index
of the reserved field. For arrays, we reserve one field per element and set the
constant integer to the index of the first element in the array. We replace every

Model Checking Memory-Related Properties 99

variable access with an array access to the typed array and every referencing of
the variable by a direct access. If the variable is an array, the index is used as an
offset. For all members of the PTR set we generate an integer variable with the
initial value NULL (-1) or the index of the variable the pointer points to. As -1 is
not a valid index of the typed array, all accesses to uninitialized pointers result
in an array index error. Furthermore, we replace every dereferencing operation
to the pointer with an array access to the corresponding typed array.

We implemented the transformation rules in our previously proposed transfor-
mation from SystemC to Uppaal and thus can transform a given SystemC/TLM
model with pointers fully automatically. Currently, our implementation does not
support pointers to pointers and arrays of pointers, though both can be added
with little effort.

Table 1. Transformation Rules

SystemC Uppaal

Declarations
T var; ⇒ const int var = newIndex(T);
T var = E; ⇒ const int var = newIndex(T);

TMEM[var] = E;
U arr[E]; ⇒ const int arr = newIndex(U, E);
U arr[] = {v0,...,vn−1}; ⇒ const int arr = newIndex(U, n);

UMEM[arr+0] = v0; ...;
UMEM[arr+(n-1)] = vn−1;

V *p; ⇒ int p = -1;
W *q = E; ⇒ int q = E;

Variable Access
var ⇒ TMEM[var]
arr[E] ⇒ UMEM[arr+E]
&(E) ⇒ E
&arr[E] ⇒ arr+E

Pointer Access
*(E) ⇒ TMEM[E] (with E of type T)
NULL ⇒ -1

Field Access
var.field ⇒ TMEM[var].field
var.p→field ⇒ VMEM[TMEM[var].p].field
arr[E].field ⇒ UMEM[arr+E].field
arr[E].p→field ⇒ VMEM[UMEM[arr+E].p].field
p→field ⇒ VMEM[p].field
p→q→field ⇒ WMEM[VMEM[p].q].field

5 Verification of Memory Safety

As our transformation from SystemC to Uppaal is able to cope with pointers
and other memory-related constructs, the Uppaal model checker can now be

100 M. Pockrandt et al.

used to verify memory safety properties. In general, we can verify all properties
that can be expressed within the subset of CTL supported by Uppaal [2] (e.g.,
safety, liveness and timing properties as shown in [21]). For convenience, our
verification framework generates two memory safety properties automatically:

(a) All pointers in the design are always either null, or they point to a valid part
of the memory array corresponding to their type.

(b) The design never tries to access memory via a null pointer.

To verify the first property, it is necessary to check for all pointers p0...pn that
they are either null or have a value within the range of their typed array. If the
function u(pi) yields the size of the typed array of the type of pi, property (a)
can be formalized as follows:

AG (p0 = null ∨ 0 ≤ p0 ≤ u(p0)− 1) ∧ ... ∧ (pn = null ∨ 0 ≤ pn ≤ u(pn)− 1)

The second property cannot be captured statically, as it needs the dynamic
information where in the program a pointer is used to access memory. To solve
this problem, we have developed an algorithm identifying all memory accesses in
all processes Proc0...Procn. For each transition comprising a memory access, a
unique label li is assigned to its source location. With these labels, the property
that a memory access mai that uses a pointer pj is valid can be formalized as
follows:

safe(mai) ≡ (Proc(mai).li =⇒ (pj 	= null))

Using this abbreviation, the second property can be formalized as follows:

AG safe(ma0) ∧ ... ∧ safe(man)

Both memory safety properties described above are automatically generated for
all pointers in a given design within our verification framework.

6 Evaluation

In this section we evaluate our approach with an industrial case study, namely a
TLM implementation of the AMBA AHB, provided by Carbon Design Systems.

The original model consists of about 1500 LOC. To meet the assumptions
of our approach, we performed the following modifications: (1) we changed the
sockets to TLM standard sockets, (2) we replaced the generic payload type with
a specific one, (3) we replaced operators for dynamic memory management (e.g.,
new, delete) by static memory allocation and (4) we only transfer constant data
through the bus. The latter modification drastically simplifies the verification
problem. However, our focus is on verifying the correct concurrent behavior,
synchronization, timing, and memory safety which do not depend on the data
that is transfered over the bus. The modified model consists of about 1600 LOC.

We also performed experiments on a pointer-free variant of the AMBA AHB
design to evaluate the additional verification effort produced by our memory

Model Checking Memory-Related Properties 101

Table 2. Results from the Amba AHB Design

Verification time ([h:]min:sec)

Pointer-free design Design with pointers

1M1S 1M2S 2M1S 2M2S 1M1S 1M2S 2M1S 2M2S

transformation time 0:04 0:04 0:04 0:04 0:03 0:03 0:04 0:05

deadlock freedom < 1 < 1 0:27 1:08 6:17 12:06 37:28 1:24:25
only one master - - 0:14 0:34 - - 24:07 54:32
bus granted to M1 < 1 < 1 0:15 0:37 3:56 7:47 24:10 54:06
bus granted to M2 - - 0:15 0:38 - - 24:10 54:02
timing < 1 < 1 0:22 0:54 11:37 22:24 1:09:15 2:32:04
memory safety (a) - - - - 4:36 9:16 27:57 1:04:07
memory safety (b) - - - - 6:36 13:19 39:12 1:27:29

states 5K 9K 537K 1M 15M 26M 64M 127M
memory usage < 1 mb 2 mb 61 mb 112 mb 873 mb 1.5 gb 2.2 gb 3.9 gb

model. Therefore, we manually removed all memory related constructs from the
original design and tried to keep the resulting design completely side-effect free.
In the following, we compare the results of two different experiments: transfor-
mation and verification of (1) the pointer-free design and (2) of a design featuring
pointers and other memory-related constructs (like call-by-reference).

For both designs, we verified the following properties: (1) deadlock freedom,
(2) a bus request is always eventually answered with a grant signal, (3) the bus is
only granted to one master at a time, (4) a transaction through the bus is always
finished within a given time limit. For the CTL formulae we refer to [21]. For
the design with pointers and other memory-related constructs, we additionally
verified memory safety, as described in Section 5. All experiments were run on a
64bit Linux system with a dual core 3.0 GHz CPU and 8 GB RAM. To evaluate
the scalability of our approach we used different design sizes (from 1 master and
1 slave, 1M1S, to 2 master and 2 slaves, 2M2S). The results of the verification
are shown in Table 2.

All properties have been proven to be satisfied at the end of the verification
phase. During the verification, we detected a bug in the original design which
led to a deadlock situation. When a transaction is split into several separate
transfers, a counter variable is used to store the number of successful transfers
before the split occurs. This variable was not reset in the original design. As a
consequence, all split transactions besides the first one failed. This is a typical
example which is both difficult to detect and to correct with simulation alone.
With our approach, the generation of a counter example took only a few min-
utes. Due to the structure preservation of our transformation and the graphical
visualization in Uppaal, it was easy to understand the cause of the problem.

Our results show that the verification effort, in terms of CPU time and mem-
ory consumption, is drastically increased if pointers and other memory-related
constructs are taken into account. This is due to the fact that the memory model
introduces an additional integer variable for each variable in the design. How-
ever, formal verification via model checking, if successful, is only performed once

102 M. Pockrandt et al.

during the whole development cycle. At the same time, the generation of counter
examples only takes a few minutes. Most importantly, we are not aware of any
other approach that can cope with the HW/SW interplay within SystemC/TLM
models and at the same time facilitates the verification of memory-related prop-
erties, for example memory safety.

7 Conclusion and Future Work

We presented a novel approach for model checking of memory-related properties
on HW/SW systems implemented in SystemC/TLM. We formalized a clean sub-
set of the SystemC memory model with UTA. We use this formalization for a
fully-automatic transformation of SystemC/TLM into equivalent Uppaal timed
automata. This enables the use of the Uppaal model checker to verify memory-
related properties. For convenience, we generate two memory safety properties,
namely that all pointers only point to valid memory locations or null and that no
null pointer accesses are used, automatically within our verification framework.

We implemented our approach and showed its applicability with an industrial
design of the AMBA Advanced High Performance Bus (AHB). We were able
to verify deadlock freedom, timing, and memory safety. We detected a deadlock
situation in the AMBA AHB design, which could easily be resolved with the help
of the counter-example generated by the Uppaal model checker. Our memory
model produces a significant overhead to verification time and memory con-
sumption. However, this overhead is compensated with the possibility to verify
memory-related properties and the drastically increased practical applicability
of our approach.

In our case study, we manually modified the design such that only constant
data is transfered over the bus. For future work, we plan to extend our approach
with automatic data abstraction techniques to enable the verification of even
larger SystemC/TLM designs without manual interaction.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

2. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking Memory Safety
with Blast. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 2–18. Springer,
Heidelberg (2005)

4. Blanc, N., Kroening, D., Sharygina, N.: Scoot: A Tool for the Analysis of SystemC
Models. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 467–470. Springer, Heidelberg (2008)

5. Bornat, R.: Proving pointer programs in Hoare Logic. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

Model Checking Memory-Related Properties 103

6. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: A soft-
ware model checking approach. In: FMCAD, pp. 51–59 (2010)

7. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos – A
Software Model Checker for SystemC. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 310–316. Springer, Heidelberg (2011)

8. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

9. Garavel, H., Helmstetter, C., Ponsini, O., Serwe, W.: Verification of an industrial
SystemC/TLM model using LOTOS and CADP. In: MEMOCODE, pp. 46–55.
IEEE (2009)

10. Große, D., Kühne, U., Drechsler, R.: HW/SW Co-Verification of Embedded Sys-
tems using Bounded Model Checking. In: Great Lakes Symposium on VLSI, pp.
43–48. ACM Press (2006)

11. Habibi, A., Moinudeen, H., Tahar, S.: Generating Finite State Machines from
SystemC. In: DATE, pp. 76–81. IEEE (2006)

12. Herber, P.: A Framework for Automated HW/SW Co-Verification of SystemC De-
signs using Timed Automata. Logos (2010)

13. Herber, P., Fellmuth, J., Glesner, S.: Model Checking SystemC Designs Using
Timed Automata. In: CODES+ISSS, pp. 131–136. ACM Press (2008)

14. Herber, P., Pockrandt, M., Glesner, S.: Transforming SystemC Transaction Level
Models into UPPAAL Timed Automata. In: MEMOCODE, pp. 161–170. IEEE
Computer Society (2011)

15. IEEE Standards Association: IEEE Std. 1666–2005, Open SystemC Language Ref-
erence Manual (2005)

16. Kroening, D., Sharygina, N.: Formal Verification of SystemC by Automatic Hard-
ware/Software Partitioning. In: MEMOCODE, pp. 101–110. IEEE (2005)

17. Man, K.L.: An Overview of SystemCFL. In: Research in Microelectronics and
Electronics, vol. 1, pp. 145–148 (2005)

18. Müller, W., Ruf, J., Rosenstiel, W.: An ASM based SystemC Simulation Seman-
tics. In: Methodologies and Applications, pp. 97–126. Kluwer Academic Publishers
(2003)

19. Niemann, B., Haubelt, C.: Formalizing TLM with Communicating State Machines.
Forum on Specification and Design Languages (2006)

20. Open SystemC Initiative (OSCI): TLM 2.0 Reference Manual (2009)
21. Pockrandt, M., Herber, P., Glesner, S.: Model Checking a SystemC/TLM Design

of the AMBA AHB Protocol. In: ESTIMedia, pp. 66–75. IEEE (2011)
22. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

LICS, pp. 55–74. IEEE Computer Society (2002)
23. Ruf, J., Hoffmann, D.W., Gerlach, J., Kropf, T., Rosenstiel, W., Müller, W.: The

Simulation Semantics of SystemC. In: DATE, pp. 64–70. IEEE (2001)
24. Salem, A.: Formal Semantics of Synchronous SystemC. In: Design, Automation

and Test in Europe (DATE), pp. 10376–10381. IEEE Computer Society (2003)
25. Traulsen, C., Cornet, J., Moy, M., Maraninchi, F.: A SystemC/TLM semantics in

Promela and its possible applications. In: Bošnački, D., Edelkamp, S. (eds.) SPIN
2007. LNCS, vol. 4595, pp. 204–222. Springer, Heidelberg (2007)

26. Tuch, H.: Formal Memory Models for Verifying C Systems Code (2008)
27. Zhang, Y., Vedrine, F., Monsuez, B.: SystemC Waiting-State Automata. In: Pro-

ceedings of VECoS 2007 (2007)

Reducing Re-verification Effort

by Requirement-Based Change Management�

Markus Oertel1 and Achim Rettberg2

1 OFFIS e.V., Escherweg2, D-26121 Oldenburg, Germany
markus.oertel@offis.de

2 University of Oldenburg, Ammerländer Heerstraße 114-118, D-26111 Oldenburg,
Germany

achim.rettberg@informatik.uni-oldenburg.de

Abstract. Changes in parts of a safety critical system typically require
the re-verification of the whole system design. In this paper we present
a change management approach that contains the effects of a change
within a region of the system. The approach guarantees to maintain the
integrity of the system while performing changes. Our approach directly
integrates verification and validation activities in the process. Further-
more, the propagation of changes is not based on the interfaces of the
components and their interconnections, but exploits the knowledge of the
behavior described by the requirements. This approach creates a much
more precise set of affected system artifacts. In addition, we propose
techniques to analyze the propagation of changes automatically based
on formalized requirements and guide the selection of suitable compen-
sation candidates.

Keywords: change management, system consistency, verification and
validation, formal methods, safety critical embedded systems, model-
based design.

1 Introduction

Today’s safety critical embedded systems are subject to a strict quality assurance
process. Domain specific standards like the ISO 26262 [2] (automotive)or ARP
4761 [1] (aerospace) aim to reduce the risk of harming people by a systematic
hazard analysis and structured breakdown of safety requirements and system
design. Once having reached a consistent system state in which all verification
and validation (V&V) activities have been performed, changes can become ex-
tremely expensive since typically the whole system design needs to be verified
again.

Current change management tools used in a systems engineering context like
Reqtify [11], IBM Change [15] or Atego Workbench [4] focus on the traceability

� The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement n◦269335 and the German Federal Ministry of
Education and Research (BMBF).

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 104–115, 2013.
c© IFIP International Federation for Information Processing 2013

Reducing Re-verification Effort by Requirement-Based Change Management 105

[18][13] between requirements and/or system artifacts. If changes occur, these
tools highlight the system artifacts directly connected by trace-links to a changed
element. This approach has a couple of limitations: Changing a single compo-
nent often requires changes in other components as well [12] to re-establish the
consistency of the system. Based on the information available by the traceability
links and the interconnections of components, it is not possible to contain the
propagation of a change. This results again in very broad re-validation and re-
certification activities. Furthermore, it is impossible to narrow down the set of
system artifacts that are directly affected by the change. All linked elements are
potential candidates and need to be checked for unwanted side-effects manually,
although only a part of them are relevant to the change. Also the integration of
configuration management features into the change management process needs
to be improved: In contrast to current development guidelines like CMMI-DEV
[8] baselines are set manually, not bound to consistency criteria, and the de-
pendencies between updated system artifacts and verification results are not
considered.

In literature change management and change impact analysis is basically ap-
proached from two different directions. Estimate the costs of a change before
implementing it and identifying affected elements during the change process.

Most of the techniques to quantify the costs of a change do not consider a de-
tailed analysis of the particular change but use knowledge about similar systems
and engineering experience. Clarkson et al. [7] use a Design Structure Matrix in
combination with a probabilistic approach to determine the likelihood and im-
pact of changes on the different system components. Furthermore scenario based
approaches[5] exist to determine quality metrics concerning modifyability for a
given architecture. Change scenarios will be defined and for each of them the
possible impact will be estimated. The average effort will be calculated based
on all considered change-scenarios. This approach is suited to compare two ar-
chitectures or determine the risk of expensive changes. It is not used in the
development process itself to handle introduced changes. Verification and vali-
dation activities are not considered and difficult to integrate into the approach
since only one unit of measure can be used for the calculations (Lines of code
are used in the example).

Approaches for change management during the actual change process are
typically based on graph structures [6] and are mostly related to software change
management. Extensions exist to object oriented software [19] but the techniques
are not applicable for system engineering since the implementation is too late
available in the development process (which also might be physical and no code),
therefore the requirements of the components are better suited to propagate
changes.

In this paper we provide an approach for containing change effects and main-
taining the consistency during the change process. Our technique ensures to
identify all verification and validation activities that are affected by the change.
The approach is based on the system requirements rather than the interconnec-
tions of components. Therefore we can limit the change propagation semantically

106 M. Oertel and A. Rettberg

without explicitly modeling it. Also the set of elements that are directly affected
by a change is much smaller compared to other change management systems. I.e.,
from all connected elements only a subset needs to be checked for malfunctions
through the change.

We currently cover the functional and timing aspects of the system within one
design-perspective [10]. Perspectives represent the system at different structural
stages, like a logical, technical or geometrical perspective. Aspects cover the
properties within one perspective that are related to a particular topic like safety,
timing or weight. Our approach allows the containment of changes within the
mentioned aspects only. Nevertheless adding more aspects and perspectives is
systematically possible. It is expected that for a given use case only a small subset
of them needs to be added like weight, electromagnetic compatibility (EMC) or
heat.

The base process is described in section 3. In section 4 the principles be-
hind the containment of the change effects are explained. Section 5 provides an
overview over the necessary formalization techniques and activities that can be
checked automatically. Based on this formalization we introduce a concept of
identifying system elements that can be modified to reach fast a consistent sys-
tem again. The approach has been implemented in an OSLC based demonstrator.
Section 7 introduces this prototype and first evaluation results. A conclusion and
future development activities are outlined in the final section 8.

2 System Abstraction and Prerequisites

We analyzed many different meta-models and standards across various domains
to identify a basic set of system artifacts and trace-links [17], that cover most
of the currently used development artifacts. The change management process
is described on these elements to be easy applicable to existing model-based
development workflows.

The elements are:

– Components: Model-based representation of the interface of a system ele-
ment. Depending upon the used perspective this can be logical components
or concrete hardware or software parts [10].

– Requirements: Requirements represent functionality or properties that the
component it is attached to shall fulfill.

– Implementation: Implementations represent the behavior of a component.
This might be software (code or functional model) or a hardware implemen-
tation.

– V&V Cases: Representation of the activity and their results to prove a
property of the system.

The trace-links are:

– Satisfy: Connects a requirement with a model component. It symbolizes a
“shall satisfy” relation.

Reducing Re-verification Effort by Requirement-Based Change Management 107

– Derive: A requirement is decomposed into multiple derived requirements.
– Refine: A requirement is formalized into another language or representation.
– Implementation: Connects an implementation to a component.

These links are verification target, i.e. that it needs to be proved that the claimed
property holds. Therefore V&V cases can be connected to each link detailing the
activity that needs to be performed to get the necessary evidence.

To establish a change management process that allows to encapsulate the
change in a determined area of the development item, it is necessary that a few
prerequisites by the development process itself are met. Still, the process shall
be as less inversive to the common practice processes as possible.

The most important prerequisite is that the requirements are always linked to
a component and formulated in a black box manner, meaning that the require-
ment specifies the intended behavior on the interface of this component. This is
in line with the contract based design paradigms to ensure the composability of
the specified elements [9].

There are also some assumptions on the technical setup for the later realisa-
tion: As stated in typical recommendations for configuration management [16]
we require all system artifacts to be under version control. In addition we require
also trace-links to be versioned and pointing to versioned elements. This is nec-
essary since the semantics of a link may not be applied for a changed element, at
least not without an analysis. E.g.: A component covers a special requirement,
but after changing the requirement is has to be considered again whether the
attached component is still the best to implement this requirement. The link is
just valid for a special version of a requirement.

3 Change Management Process

During the processing of a change request verification results that are connected
to modified elements need to be invalidated. Furthermore all modified elements,
also the trace-links and verification results need to be versioned to point to the
new targets. The consistency of these elements is necessary to allow a reject of the
change request at any point in time. This might be necessary if it is foreseeable
that the change is becoming too expensive. Furthermore the correct version of
the verification targets is required to fulfill the traceability and documentation
requirements from various safety standards.

The process to achieve these goals is depicted in figure 1 and consists of four
basic steps that are executed in an iterative manner:

The system (A,L)v consists of the set of system artifacts A = R ∪C ∪ V ∪ I
(Requirements, Components, V&V cases and Implementations) and the set of
links L. Each state of the system is identified by a version v ∈ N+. In this
description of the process a new version of the whole system is created in each
step, this is a simplification in the notation, in the implementation, of course,
each element is versioned for its own. A baseline v ∈ B is a version in which all
verification activities v of the system are executed successfully.

108 M. Oertel and A. Rettberg

Change

Local Impact

Local
Verification

Compensation
Candidate

Identification

All V&V

OK & Accept
change

New Baseline

Revert System

Reject
Change
Request

Reject
Change
Request

Re
je

ct

Ch
an

ge

Re
qu

es
t

Reject
Change
Request

Fig. 1. Basic process for handling Change Requests

v ∈ B → ∀v ∈ (A,L)v : status(v) == success

In the i’s execution of the change phase a set of elements of the system (A,L)i−1

is modified, denoted as Emodi
⊆ (A,L)i.

This modification alone results in an inconsistent system state, since the V&V
cases connected to the system elements e that have not been changed are not
valid anymore and need to be re-validated. In the local impact phase the con-
nected V&V cases are reset:

∀v ∈ (A,L)i|e ∈ target(v) ∧ e ∈ Emodi
: status(v) → suspect

The set of elements evaluated by a V&V case v is expressed by target(v)
The suspect V&V cases Vsuspect need to be re-validated in the local verification

phase:

v ∈ Vsuspect → {failed, success}

For the failed V&V cases it is necessary to adapt the system. The possible
compensation candidates Ecomp are the elements the V&V case is targeting.

Ecompi
=

⋃

v∈Vsuspect

target(v)

Reducing Re-verification Effort by Requirement-Based Change Management 109

The engineer needs to select one or more elements of this set and modify them
so that the failed V&V activities are successful again. These modifications start
the cycle again:

Emodi+1
⊆ Ecompi+1

A new baseline can be created if all V&V activities are again successfully exe-
cuted.

4 Consistency of the System

The described process uses the V&V activities to propagate changes across the
system design. We claim to identify the parts of the system that are not affected
by a change. In this paper we consider the functional aspect of the system within
one perspective only. This means in particular, that “side-effects” over other
aspects or perspectives are not considered. A typical example for these side-
effects is change propagation through heat distribution. Due to a change on
one part of the system other parts get that warm that they need additional
cooling. The approach is designed in a way that these additional considerations
can be added as needed by the system under development. The set of necessary
perspectives can typically be limited in advance since the type of system often
constitutes if e.g. EMC, weight or heat aspects have to be considered.

To be able to contain the change effects a defined set of V&V activities needs
to be carried out. We use four different types of V&V cases that are necessary to
comply with modern safety standards anyway (e.g. ISO 26262 [2] which basically
evaluate each trace-link:

– The most important V&V activity is the verification of the correct deriva-
tion of requirements, i.e. that a requirement is correctly split up into sub-
requirements. If changes in requirements cause this derive-relation between
requirements to fail, other requirements need to be adapted as well. Using
requirements for change propagation instead of connectors between compo-
nents has the benefit that a criterion for stopping the change propagation
is given. If the split-up is still (or again, after further modifications) cor-
rect, there is no further propagation in this part of the system. Therefore
requirements build the backbone for change propagation. To prove the cor-
rect derivation of requirements a consistency check of these requirements is
technically mandatory, since the split-up of inconsistent requirements is cor-
rect if the top-level and the sub-requirements result in a system that cannot
be build.

– Also modifications in implementations or their components can result in
change effect propagation. Therefore the implementation link between a com-
ponent and an implementation needs to be verified. This check is limited to
the interface, since the component itself does not contain any more informa-
tion. This check is easily automatable.

110 M. Oertel and A. Rettberg

– Similar to the implementation link, also the satisfy link (between requirement
and component) needs to be checked. This analysis is also based in the
interface.

– Due to the fact, that the structural system description in form of components
is separated from the behavioral description in form of the implementations
and requirements an additional V&V activity is needed that checks the re-
lation of the requirement to the implementation. This is typically performed
by testing.

The functional relations between the different components are extracted from
the requirements. Whether one requirement change propagates towards other
components is determined by the result of the test checking the correct deriva-
tion of the connected requirements. This step can be automated, see section 5.
Therefore no explicit modeling of change propagation is necessary for the func-
tional aspect. To be able to use the requirements for containing change effects
they need to be stated in a blackbox manner, i.e. that they are just formulated
on the interface of the attached component. This kind of requirements allows
virtual integration [9] as needed by our approach. A formal prove that these
prerequisites will contain any functional change effects will be published soon.

To guarantee that there is no influence by the change outside of the identified
boundary it is assumed that all verification activities are accurate. Many of the
mentioned verification activities can be automated using formal methods (see
section 5) and therefore reach the desired accuracy. This especially applies for
the analysis verifying the correct derivation of requirements which is responsible
for the propagation of the changes using the requirements. To be able to get
qualified or certified even the manually performed verification activities or test-
cases need to have a reasonable level of confidence. The same level of confidence
also applies for the propagation of the change.

5 Automating Change Impact Analysis

In the previous section we discussed how changes can propagate along the re-
quirements through the system. Therefore, a reliable method of proving the
requirements derivation is desired. This method can be realized using the formal
requirements specification language (RSL) [10] and the entailment analysis [9].

The RSL is a formal but still human readable language to express require-
ments. It is based upon predefined patterns with attributes that can be filled by
the requirements engineer and was designed to cover a whole range of different
types of requirements.

A typical example of a pattern:
Whenever <EVENT> occurs <CONDITION> holds during [INTERVAL]

The formalization the the requirement “The emergency light shall provide illu-
mination for at least 10 minutes after the emergency landing has been initiated”
looks like:

Whenever EmergencyLandingInitiated occurs emergencyLight==ON holds

during [0s,600s]

Reducing Re-verification Effort by Requirement-Based Change Management 111

The semantics of these patterns are described using timed automata.
The entailment analysis is a contract based virtual integration technique.

Input are the specifications of the top-level component and a set of specifications
of the direct sub-level components.

ent : rtop ×Rsub → 0, 1|Rsub ⊆ succ(rtop)

The entailment relation is defined on the accepted traces Ta of the specifications
[14]. Entailment is given, if the set of traces which are accepted by all sub-
requirements is a subset of the set of accepted traces by the top-level requirement.
In contrast, if there exists a trace that is accepted by all the sub-requirements but
not from the top-level requirement the sub-requirements are not strict enough.
These additional traces describe behavior which is forbidden by the specification
of the top-level requirement and therefore the requirements breakdown is not
correct.

ent(r, R) =

{
1 iff

⋂
rs∈R Ta(rs) ⊆ Ta(r)

0 iff
⋂

rs∈R Ta(rs) � Ta(r)

The entailment analysis fits the needs for the verification of derive links. It can
be automatically proved that the behavior described by the derived require-
ments is in line with the top-level requirement. Consequently, if requirements
are changed, but the derive-relation towards the top-level and towards the more
refined requirements are still correct, the set of accepted traces is unchanged and
a propagation of changes outside this boundary can be obviated.

6 Guided Compensation Candidate Selection by Shifting

Using the formalization and entailment analysis the change management process
can be further automated. In some cases it is possible to identify a concrete
element out of the set of compensation candidates which is a good choice to
adapt to a change, because no implementation needs to be adapted but only
requirements reformulated.

This guidance mechanism uses the fact that requirements are typically stated
with some margins since the actual implementation might not be known at early
phases of the development process. This typically includes timing or memory
constraints as well as behavioral requirements. Furthermore, the usage of COTS
(components-of-the-shelf) enforces this effect since externally purchased compo-
nents commonly not match the requirements to 100% but are e.g. a little faster
or provide additional features not needed at the time of component selection.

In terms of the entailment relation this means that the set of accepted traces
by the top-level requirements which are not in the set of the sub-level require-
ments might be of significant size.

ΔTa(rtop, R) = Ta(rtop)−
⋂

rs∈R

Ta(rs) 	= ∅

112 M. Oertel and A. Rettberg

If a requirement gets changed in the system, this buffer can be used to compen-
sate the change not only locally but at a different location of the system. This
can be achieved since ΔTa can be shifted towards the upper level requirements
and “collect more” traces that can be used at a chunk. This is realized by re-
placing the top-level requirement with the parallel composition of the sub-level
requirements.

The parallel composition [20] of a set of requirements is also defined by the
accepted traces. The composition includes only the traces that are compatible
to all requirements.

Ta(r1||r2) = Ta(r1) ∩ Ta(r2)

If entailment is given (ent(rtop, R) = 1) it is obvious that the top-level require-
ment rtop can be replaced by the parallel composition

�
r∈R without altering the

result since entailment is always given this way:

ent(
�
rs∈R, R) = 1

⇒
⋂

rs∈R Ta(rs) ⊆ Ta(
�
rs∈R)

⇒
⋂

rs∈R Ta(rs) ⊆
⋂

rs∈R Ta(rs)

While reducing the set of accepted traces for the top-level requirement by
ΔTa(rtop, R) a failed entailment relation using rtop as a sub-requirement might
be successful again.

An example with timing requirements is depicted in figure 2. The require-
ments R1 to R6 represent time budgets, the arrows represent derive links.
If requirement R2 is changed to 50ms because it was not possible to find
an implementation that could fulfill this requirement the entailment relation
ent(R1, {R2, R3, R4}) would fail (see figure 2(a)), causing additional changes in
the system. In this case requirement R4 can be replaced by the parallel composi-
tion of R5 and R6, namely 30ms, and the entailment relation
ent(R1, {R2, R3, {R5||R6}}) is still valid (figure 2(b)).

Applying this technique over multiple levels and starting from more than one
sub-requirement also non-trivial cases of shifting can be identified resulting only
in requirement changes and no implementation changes. Furthermore, it is not
necessary to re-validate the changed requirements.

7 Prototype

The tool landscape used for model-based development of safety-critical
embedded systems is characterized by a high degree of distribution and het-
erogeneity [17]. Different development teams are working with different tools
(for requirements management, verification, test, modeling, simulation, etc...)
and different repositories on the final product. Therefore an integrated change
management solution needs to overcome tool, supply-chain and data-format
boundaries. Therefore, our prototype implementation “ReMain” uses an OSLC

Reducing Re-verification Effort by Requirement-Based Change Management 113

R1: 100 ms

R2: 30ms
 40 ms

R4: 40 ms

R3: 20 ms

R5: 20 ms

R6: 10 ms

…

…

(a) Entailment fails because of changes in R2

R1: 100 ms

R2: 30ms
 40 ms

R4: 40 ms
R5||R6: 30ms

R3: 20 ms

R5: 20 ms

R6: 10 ms

…

…

(b) Corrected entailment by shifting

Fig. 2. Simplified example using timing requirements

[3] based communication to access the different system artifacts across different
repository locations. The tool consists of a server component handling the change
requests and initiating the versioning of artifacts and a client that displays the
affected system parts to the user and handles his input.

In the current demonstrator setup requirements can be stored in IBM DOORS
or MS Excel, components are represented as EAST-ADL or AUTOSAR models
and Implementations are read from Simulink models. The V&V cases are man-
aged by the ReMain tool itself. Missing V&V cases which were necessary (see
section 4) for our approach can be identified and generated. A dedicated V&V
repository is planned for future versions.

The typical workflow should not be touched, so developers can automatically
trigger the change management process by changing elements with their known
modeling tool (e.g. Simulink or DOORS). The OSLC adapters of these tools
will detect the change and send a modification event to the server part of the
ReMain tool.

After receiving the modification event the ReMain server will perform the “lo-
cal impact” activity. In particular, this includes the versioning of the connected
links and V&V cases and setting their status to “suspect”. The client will display
only the part of the system that is currently affected by the change.

The status of the different V&V cases is represented by colored bubbles after
the name of the element. The engineer gets a direct overview which activities
still have to be performed and how much the change already propagated through
the system. If formalized requirements are used the entailment analyzes can be
executed automatically directly from the user interface of the ReMain client. If
a verification activity fails, compensation candidates are highlighted.

114 M. Oertel and A. Rettberg

If all verification activities have been executed successfully a new baseline
can be created containing the consistent system elements. The baseline is cur-
rently stored externally but shall be directly integrated in existing configuration
management tools in the future.

First evaluation results have shown that it is much easier to track changes
in distributed development environments. Compared to existing approaches the
decision how to react on changes can be made much faster. We use an ABS
braking system as a test platform in which a saving in verification activities
of more than 80% could be reached depending upon the artifacts that have
been changed. For conclusive numbers more systems need to be analyzed in a
systematic way.

8 Conclusion and Outlook

We presented an approach to identify the affected system parts during changes
of system components for the functional aspect of the design. Using proper
requirement formulation, traceability between system artifacts and a defined
set of verification activities it is possible to reduce the re-certification effort of
products since changes outside of the identified boundary have no effect on the
system behavior.

In contrast to existing change management approaches the propagation of
changes is not based on connected interfaces, but on the stated requirements of
the system. This ensures semantically correct change effect propagation without
the need of explicitly modeling the propagation. Furthermore, the set of system
artifacts that need to be investigated during the process is reduced compared to
approaches using the interconnections of components. Using formalized require-
ments the propagation process can be automated and even suggestions to possi-
ble good compensation candidates for failed V&V activities can be given. In the
prototype implementation “ReMain” the process has been integrated in a highly
distributed development environment consisting of commonly used development
tools and formats like DOORS, Excel, Simulink, AUTOSAR and EAST-ADL.

Still, a couple of features are not yet discussed or implemented: Separating
a requirement into an assumption and a promise (contract), the propagation of
changes can even further reduced, also the compensation candidate selection is
likely to benefit from this approach. Furthermore, the process needs to be ex-
tended to cover more than one perspective and more than the functional aspect.
This includes the integration of allocation decisions. It is the aim to provide a
change management solution where additional aspects (like EMC or heat distri-
bution) can be added to cover the “side-effects” that are needed for the system
under development. Also the accuracy of the approach needs to be investigated
if the confidence in the executed V&V activities is low.

References

1. Arp-4761:aerospace recommended practice: Guidelines and methods for conducting
the safety assessment process on civil airborne systems and equipment (1996)

Reducing Re-verification Effort by Requirement-Based Change Management 115

2. Iso 26262: Road vehicles - functional safety (November 2011)
3. Oslc: Open services for lifecycle collaboration (December 2012),

http://open-services.net/

4. atego: Atego workbench (November 2012),
http://www.atego.com/products/atego-workbench/

5. Bengtsson, P., Bengtsson, P., Bengtsson, P.: Architecture-level modifiability anal-
ysis. Journal of Systems and Software 69 (2002)

6. Bohner, S.A.: Extending software change impact analysis into cots components.
In: Proceedings of the 27th Annual NASA Goddard/IEEE Software Engineering
Workshop, pp. 175–182 (December 2002)

7. Clarkson, P., Simons, C., Eckert, C.: Predicting change propagation in complex
design. Journal of Mechanical Design(Transactions of the ASME) 126(5), 788–797
(2004)

8. CMMI Product Team: Cmmi for development, version 1.3: Improving
processes for developing better products and services (November 2010),
http://www.sei.cmu.edu/reports/10tr033.pdf

9. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture de-
sign. In: Design, Automation Test in Europe Conference Exhibition (DATE), pp.
1–6 (March 2011)

10. Damm, W., Hungar, H., Henkler, S., Stierand, I., Josko, B., Reinkemeier, P., Baum-
gart, A., Büker, M., Gezgin, T., Ehmen, G., Weber, R.: SPES2020 Architecture
Modeling. Tech. rep., OFFIS e.V. (2011)

11. Dassault Systems: Reqtify (November 2012),
http://www.3ds.com/products/catia/portfolio/geensoft/reqtify/

12. Eckert, C., Clarkson, P., Zanker, W.: Change and customisation in com-
plex engineering domains. Research in Engineering Design 15, 1–21 (2004),
http://dx.doi.org/10.1007/s00163-003-0031-7

13. Gotel, O., Finkelstein, C.: An analysis of the requirements traceability problem. In:
Proceedings of the First International Conference on Requirements Engineering,
pp. 94–101 (April 1994)

14. Hungar, H.: Compositionality with strong assumptions. In: Nordic Workshop on
Programming Theory, pp. 11–13. Mälardalen Real–Time Research Center (Novem-
ber 2011)

15. IBM: Rational change (November 2012),
http://www-01.ibm.com/software/awdtools/change/

16. International Organization for Standardization: Iso 10007: Quality management
systems guidelines for configuration management (June 2003)

17. Rajan, A., Wahl, T. (eds.): CESAR - Cost-efficient Methods and Processes for
Safety-relevant Embedded Systems. Springer (2013) No. 978-3709113868

18. Ramesh, B., Powers, T., Stubbs, C., Edwards, M.: Implementing requirements
traceability: a case study. In: Proceedings of the Second IEEE International Sym-
posium on Requirements Engineering, pp. 89–95 (March 1995)

19. Ryder, B.G., Tip, F.: Change impact analysis for object-oriented programs. In:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analy-
sis for Software Tools and Engineering, PASTE 2001, pp. 46–53. ACM, New York
(2001), http://doi.acm.org/10.1145/379605.379661

20. SPEEDS: SPEEDS core meta-model syntax and draft semantics, SPEEDS D.2.1.c
(2007)

http://open-services.net/
http://www.atego.com/products/atego-workbench/
http://www.sei.cmu.edu/reports/10tr033.pdf
http://www.3ds.com/products/catia/portfolio/geensoft/reqtify/
http://dx.doi.org/10.1007/s00163-003-0031-7
http://www-01.ibm.com/software/awdtools/change/
http://doi.acm.org/10.1145/379605.379661

Formal Deadlock Analysis of SpecC Models

Using Satisfiability Modulo Theories

Che-Wei Chang and Rainer Dömer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA

Abstract. For a system-on-chip design which may be composed of mul-
tiple processing elements running in parallel, improper execution order
and communication assignment may lead to problematic consequences,
and one of the consequences could be deadlock. In this paper, we pro-
pose an approach to abstracting SpecC-based system models for formal
analysis using satisfiability modulo theories (SMT). Based on the lan-
guage execution semantics, our approach abstracts the timing relations
between the time intervals of the behaviors in the design. We then use a
SMT solver to check if there are any conflicts among those timing rela-
tions. If a conflict is detected, our tool will read the unsatisfiable model
generated by the SMT solver and report the cause of the conflict to the
user. We demonstrate our approach on a JPEG encoder design model.

1 Introduction

An embedded system design can be implemented in many ways, and a typi-
cal design usually consists of hardware and software components running on
one or multiple processing elements. In such a design, the partitioned compo-
nents on different processing elements are executed in parallel. To make sure the
data dependency and the execution order is correct, communication between
components synchronizes the execution of components on different processing
elements. In system-level description languages (SLDLs), like SpecC and Sys-
temC, the communication between components is implemented as channels, and
multiple types of channel are provided in the SLDLs to satisfy different kinds of
communication and synchronization requirements.

Channels provide a convenient way to communicate among multiple process-
ing elements. However, misusing the type of channel or setting incorrect buffer
size in a channel can lead to deadlock situations, and it is difficult to determine
the cause of deadlocks when the design is complex. In this paper we propose a
method to perform static analysis and detect deadlocks in the design automat-
ically. Based on the SpecC execution semantics, our approach can extract the
timing relations between behaviors in the design, and then analyse these with
Satisfiability Modulo Theories (SMT) to detect any conflicts. To accelerate the
debugging process, our approach also reports the causes of the deadlock to the
user if a deadlock situation is found.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 116–127, 2013.
c© IFIP International Federation for Information Processing 2013

Formal Deadlock Analysis of SpecC Models Using SMT 117

This report is organized as follows: in Section 2 we list the related works in
formal validation of SLDLs. In Section 3, we briefly introduce SpecC SLDL and
Satisfiability Modulo Theories. In Section 4, we describe our proposed approach
in detail, including the assumptions and limitations at this point. Also, we il-
lustrate the conversion from SpecC model to SMT assertions. In the last two
sections, we demonstrate our approach with a JPEG encoder model and sum up
with a conclusion and future work.

2 Related Work

A lot of research has been conducted in the area of verification and validation of
system-level designs. We can see that many researchers convert the semantics or
behavioral model of the SLDL into another well-defined representation and make
use of existing tools to validate the extracted properties. In [3] and [4], a method
to generate a state machine from SystemC and using existing tools for test case
generation is proposed; in [5] and [6], a SystemC design is mapped into semantics
of UPPAAL time automata and the resulting model can be checked by using
UPPAAL model checker; [7] proposed an approach to translate SystemC models
into a Petri-net based representation for embedded systems(PRES+) which can
then be used for model checking. In [8], a SystemC design is represented in
the form of predictive synchronization dependency graph (PSDG) and extended
Petri Net, and an approach combining simulation and static analysis to detect
deadlocks is proposed. [9] focuses on translating a SystemC design into a state
transition system, i.e. the Kripke structure, so that existing symbolic model
checking techniques can be applied on SystemC.

3 Preliminaries

3.1 SpecC SLDL

SpecC [1] is a SLDL and is defined as extension of the ANSI-C programming lan-
guage. It is a formal notation intended for the specification and design of digital
embedded systems, including hardware and software portions. SpecC supports
concepts essential for embedded systems design, including behavioral and struc-
tural hierarchy, concurrency, communication, synchronization, state transitions,
exception handling, and timing. The execution semantics of the SpecC language
are defined by use of a time interval formalism [2].

3.2 Satisfiability Modulo Theories

Satisfiability (SAT) is the problem of determining if an assignment of the Boolean
variables exists, that makes the outcome of a given Boolean formula true. Satisfi-
ability Modulo Theories (SMT) checks whether a given logic formula is satisfiable
over one or more theories. Unlike the formulas in Boolean SAT which are built
from Boolean variables and composed using logical operations, the satisfiability

118 C.-W. Chang and R. Dömer

of formula like (x + 2y ≤ 7) ∧ (2x − y ≤ 10) can be solved by combining a
SAT solver with a theory solver for linear arithmetic. The problem to be solved
by SMT can be described with richer language (arithmetic and inequality in
the example above), and the meaning of the formula will be captured by the
supporting theories.

Our proposed approach abstracts the timing relations among the behavior
and channel activities in the SpecC model, and then describes the relations
in the form of inequality expressed in SMT-LIB2 language. After the formulas
are generated, a SMT solver is then used to solve the formula and check if it
is satisfiable. In our implementation, we use Z3 theorem prover developed at
Microsoft Research as our SMT solver. For more detailed information about
SMT-LIB2 language and Z3 theorem prover, please refer to [11] and [10].

4 From SpecC to SMT Assertions

In this section, we first introduce the supported SpecC execution types in our
approach and their execution semantics.

4.1 Execution

The basic structure of a SpecC behavior includes port declaration, a main
method, local variable and function declaration (optional), and sub-behavior
instantiation (optional). The supported SpecC behavior models in our tool can
be categorized into the following two types:
Leaf Behavior: A behavior is called leaf-behavior if it is purely composed of
local variable(s), local function(s) and a main method, and there is no sub-
behavior instantiation in the behavior. In the example shown in Figure 4, be-
havior ReadP ic and Block1 are leaf behaviors.
Non-Leaf Behavior: A behavior is called non-leaf behavior if it is purely com-
posed of sub-behavior instance(s) and a main method. For non-leaf behaviors,
all statements in the main method are limited to statements specifying the exe-
cution type of the behavior and function calls to sub-behavior instances. In the
example shown in Figure 4, behaviorDUT , Read, JPEG encoder and Pic2Blk
are non-leaf behaviors.

Note that for simplicity our tool does not support models which do not fit
into these two categories, and the execution types we are going to describe in
this section is for non-leaf behaviors only since sub-behavior instantiation can
only occur in non-leaf behavior.

In SpecC, the sub-behavior or sub-channel instantiation is regarded as a state-
ment of function call to a method of the sub-behavior or sub-channel. To specify
the execution time of a statement, for each statement s in a SpecC program, a
time interval 〈Tstart(s), Tend(s)〉 is defined. Tstart(s) and Tend(s) represent the
start and end times of the statement execution respectively, and the following
condition must hold: Tstart(s)< Tend(s)

Formal Deadlock Analysis of SpecC Models Using SMT 119

The execution time of an instantiated behavior s Texe(s) is defined as Texe(s)
= Tend(s) - Tstart(s). For a statement S consisting of a set of sub-behavior
instances 〈ssub 1, ssub 2, ssub 3, ...ssub n〉, the following condition holds:

∀i ∈ {1, 2, 3, ...n},Tstart(S) ≤ Tstart(ssub i)

Tend(S) ≥ Tend(ssub i)

The type of execution defines the relation between the Tstart and Tend of the
behavior instance under the current behavior, and it is specified in the main
method of the behavior. In the following, four types of supported execution
are described, which are Sequential, Parallel, Pipelined, and Loop execution.
Figure 1 shows an example of specifying Sequential, Parallel and Pipelined
execution in a SpecC behavior. Loop execution is not a explicitly defined be-
havioral execution in SpecC, but we can regard it as a special case of Pipelined
execution with only one instance inside.

behavior B_seq
{
 B b1, b2, b3;

void main(void)
 {
 b1.main();
 b2.main();
 b3.main();
 }
} ;

behavior B_par
{
 B_seq A, B;

void main(void)
 { par {
 A.main();
 B.main();
 }
 }
} ;

behavior B_pipe
{
 B b1, b2, b3;

void main(void)
 { pipe(i=0; i<N; i++){
 b1.main();
 b2.main();
 b3.main(); }
 }
} ;

behavior B_loop
{
 B b1;

void main(void)
 { pipe(i=0; i<N; i++){
 b1.main(); }
 }
} ;

Fig. 1. Four Supported Execution Types

Sequential Execution. Sequential execution of statements is defined by or-
dered time intervals that do not overlap. Formally, for a statement S consisting
of a sequence of sub-statements 〈s1, s2, ...sn〉, the time interval of statement S
includes all time intervals of the sub-statements, and the following conditions
hold:

∀i ∈ {1, 2, ..., n},Tstart(S) ≤ Tstart(si)

Tstart(si) < Tend(si)

Tend(si) ≤ Tend(S)

∀i ∈ {1, 2, ..., n− 1},Tend(si) ≤ Tstart(si+1)

Note that sequential statements are not necessarily executed continuously. Gaps
may exist between Tend and Tstart of two consecutive statements, as well as
between the Tstart (Tend) of the sub-statement and the Tstart (Tend) of the
statement in which the sub-statement is called. Figure 2 shows an example of
the time interval for the sequential execution in Figure 1.

120 C.-W. Chang and R. Dömer

Tstart(B_seq) Tend(B_seq)
Tstart(b1) Tend(b1) Tstart(b1) Tend(b1) Tstart(b3) Tend(b3)

B_seq

b2b1 b3

Fig. 2. Time interval for sequential execution

Parallel Execution. Parallel execution of statements can be specified by par
or pipe statements. In particular, the time intervals of the sub-statements invoked
by a par statement are the same. Formally, for a statement S consisting of
concurrent sub-statements 〈s1, s2, ...sn〉, the following conditions hold:

∀i ∈ {1, 2, ..., n},Tstart(S) = Tstart(si)

Tend(S) = Tend(si)

Tstart(si) < Tend(si)

Figure 3 shows an example of the time interval for the parallel execution in
Figure 1.

Tstart(B_par) Tend(B_par)

Tstart(A.b1)

A.b1

B.b1

B_par

Tend(A.b1)

Tstart(B.b1) Tend(B.b1)

A.b2

B.b2

A.b3

B.b3

Tstart(A.b2) Tend(A.b2)

Tstart(B.b2) Tend(B.b2) Tstart(B.b3) Tend(B.b3)

Tstart(A.b3) Tend(A.b3)

Fig. 3. Time interval for parallel execution

Pipelined and Loop Execution. Pipelined execution of statements is a spe-
cial form of concurrent execution. The syntax of pipe statement in SpecC is illus-
trated in Figure 1, where N in the example specifies the number of iterations.
Formally, for a statement S consisting of sub-statements 〈s1, s2, ...sn〉 executed
for m iterations in pipelined manner, let si.j represents the j-th iteration of the
execution of statement si. Then the following conditions hold:

Formal Deadlock Analysis of SpecC Models Using SMT 121

∀i, x ∈ {1, 2, ..., n}, j, y ∈ {1, 2, ...,m} :

Tstart(si.j) < Tend(si.j),

Tstart(si.j) = Tstart(sx.y), if i + j = x + y

Tend(si.j) = Tend(sx.y), if i + j = x + y

Tend(si.j) ≤ Tstart(sx.y), if i + j < x + y

Loop execution is not defined explicitly in the behavioral execution semantics of
SpecC, but it can be regarded as a special case of Pipelined execution with only
one sub-statement.

Note that in the definition of pipelined statements the iteration number could
be infinity if the number is not specified, i.e. no range specification after the
statement pipe. However, to simplify the static analysis in this proposed method,
at this point, the number of iterations has to be a finite integer and explicitly
specified in the model.

Please be aware that for now our proposed method does not support all types
of execution and communication defined in SpecC. Full support of SpecC is part
of our future work.

4.2 Communication

In SpecC, the communication between two behaviors can be implemented by
port variable, channel communication, or by accessing global variables. Since
right now the goal of our approach is to detect deadlocks in the design, the
communication implemented with port variables and global variables are not
taken into consideration because they will not lead to deadlock situation in the
design.

Multiple types of channels are defined in SpecC. These include semaphore,
mutex, barrier, token, queue, handshake, and double handshake. In this paper,
we use queue channel with different buffer sizes to model the supported channel
communication in our approach. For example, to model the blocking characteris-
tics of handshake channels, we use a queue channel with one element buffer and
zero element buffer to implement the handshake and double handshake channel.

To clearly identify the communication between behaviors, we also impose
some limitations on the communication between behaviors. First, to make the
data dependency between behaviors clear, we limit the communication between
behaviors to point-to-point, i.e. every instantiated channel in the design is ded-
icated to the communication between a pair of sender and receiver. Second, to
abstract the channel activity without looking into too much detail of the be-
havior model, the function call of the sending (receiving) function to (from) a
certain channel can only be executed once in the main method of a behavior, i.e.
a function call to channel communication in any type of iteration (for or while
loop) in the main method of a behavior model is not supported. For the case
that the output of a behavior has to be separated into multiple parts and sent
to another behavior, the sending (receiving) function calls have to be wrapped
in a behavior and executed in loop execution by using pipe statements.

122 C.-W. Chang and R. Dömer

Figure 4 shows an example of the situation described above. In this example,
a small picture of size 24-by-16 pixels is read and encoded into a JPEG file.
Since the input image block size for a JPEG encoding process is eight-by-eight
pixels, the picture has to be separated into 6 sub-blocks. The raw picture is read
into the topmost behavior DUT by sub-behavior Read, then behavior Pic2Blk
divides the picture into six 8-by-8-pixel blocks and sends the blocks to JPEG
encoder model. Inside behavior Pic2Blk, behavior Block1 is instantiated in a
loop execution. Behavor Block1 fetches the block from the raw picture according
to the current iteration number, and calls the sending function to send the data
to JPEG encoder through channel Q. In this example, channel Q is a queue
channel with two buffers and each buffer is an integer array of size 64.

Read i_Read

blkout.
send(blk)

ReadPic i_R

Block1 i_B

6

24x16

Pic2Blk i_S

blkout

Q{2}Q{2}

JPEG Encoder

DUT

DCT

Fig. 4. Behavior Read in the JPEG encoder SpecC model

Similar to the time interval 〈Tstart,Tend〉 defined for the execution of a state-
ment, a time stamp set 〈Tsent(Q),Trcvd(Q)〉 is also defined for each channel com-
munication activity between behaviors, where Tsent represents the time stamp
when the the execution of sending a data to the channel finishes, and Trcvd rep-
resents the time stamp when the execution of receiving data from the channel
finishes. Based on the definition of Tsent and Trcvd, for a queue channel Q com-
munication through which m data items are transferred, the relation between
time stamps Tsent(Qi) and Trcvd(Qi), where Qi represents the i-th data transfer
through channel Q, should hold:

∀i ∈ {0, 1, 2, ...,m− 1},Tsent(Qi) ≤ Trcvd(Qi)

∀i ∈ {0, 1, 2, ...,m− 2},Tsent(Qi) < Tsent(Qi+1)

Trcvd(Qi) < Trcvd(Qi+1)

∀i ∈ {0, 1, 2, ...,m− n− 1},Trcvd(Qi) ≤ Tsent(Qi+n)

where n is the buffer depth of channel Q.

4.3 From Time Stamps to SMT Assertions

Figure 5 shows the flow of our proposed method. First, the SpecC model is
converted into a design representation called SpecC internal representation(SIR).

Formal Deadlock Analysis of SpecC Models Using SMT 123

SpecC Design

SC2SIR

SIR File

SIR2SMT

SMT File

Index to
Statements

index
0

Informations
statement
statement

line
line

Z3 SMT Solver

SAT UNSAT

statement
statement
statement

1

2

line
line
line
line statement

Index of
problematic
assertion(s)

Problematic
statement(s)

and
corresponding
line number

Fig. 5. The flow of converting a SpecC model into SMT assertions and deadlock anal-
ysis with the Z3 SMT solver

The next step is to traverse the internal representation structure and generate
the assertions corresponding to the statements in the design. At the same time,
an index-to-statement record is created which links the generated assertions to
the statements in the design. After the assertions and records are generated,
we use the Z3 theorem prover to check if there is any conflict in the set that
makes the equations unsatisfiable. If there are any, Z3 will report the indices of
assertions leading to the conflict, and our tool can use the indices to access the
record and report the problem information to the user. In the following part of
this section, we use the model shown in Figure 4 as an example, and illustrate
the corresponding assertions for the model.

Execution to SMT Assertions: In our proposed method, we use uninter-
preted functions in SMT-LIB2 language to represent every time stamp in the
model, and convert the timing relations between those stamps into assertions.
For an uninterpreted function, the user can define the number of arguments, the
data type of argument, the data type of the return value, and its interpretation.
In our method, the return value of an uninterpreted function is seen as the value
of a time stamp, and the argument(s) of the function is (are) used to specify the
number of times a behavior instance is executed in a pipelined structure or a
loop. For a behavior instance, which is not in a pipelined or loop execution, the
time stamps of this instance are represented as uninterpreted functions with no
argument since the behavior will only be executed once.

For example, for instance i S in behavior Read in Figure 4, the following
assertions will be generated:

124 C.-W. Chang and R. Dömer

(declare− fun TstartDUT.i Read.i S () Int)

(declare− fun TendDUT.i Read.i S () Int)

(assert (<= TstartDUT.i Read TstartDUT.i Read.i S))

(assert (<= TendDUT.i Read.i S TendDUT.i Read))

(assert (< TstartDUT.i Read.i S TendDUT.i Read.i S))

(assert (<= TendDUT.i Read.i R TstartDUT.i Read.i S))

For a behavior instance, which is executed in a pipelined or loop for multiple
times, the time stamps of this instance are represented as uninterpreted functions
with one or multiple arguments. The input value of the argument is the number
of execution times of this instance.

For example, for instance S1 in behavior Sender in Figure 4, the following
assertions will be generated:

(declare− fun TstartDUT.i Read.i S.i B (Int) Int)

(declare− fun TendDUT.i Reae.i S.i B (Int) Int)

(assert (forall ((I0 Int)) (=> (and (>= I0 0) (<= I0 5))

(<= TstartDUT.i Read.i S

(TstartDUT.i Read.i S.i B I0)))))

(assert (forall ((I0 Int)) (=> (and (>= I0 0) (<= I0 4))

(<= (TendDUT.i Read.i S.i B I0)

(TstartDUT.i Read.i S.i B (+ I0 1))))))

Communication to SMT Assertions: In our approach, the time stamp of
every channel activity is represented as an uninterpreted function with one ar-
gument, and the input value of the argument is the number of execution times
of channel activity. For example, for channel Q in behavior DUT in Figure 4,
the following assertions will be generated:

∀i ∈ {0, 1, ..., 5}, TsentDUT.Q(i) ≤ TrcvdDUT.Q(i)
∀i ∈ {0, 1, ..., 3}, TrcvdDUT.Q(i) ≤ TsentDUT.Q(i+ 2)

Our tool will also generate the equality for the time stamp of the channel activity
and the time stamp of the function call to the interface of the corresponding
channel. For example, the following assertion will be generated for the channel
accessing function call blkout in Figure 4:

∀i ∈ {0, 1, ..., 5},
TsentDUT.q(i) = TsentDUT.i Read.i S.i B.blkout(i)

TstartDUT.i Read.i S.i B(i) ≤ TsentDUT.i Read.i S.i B.blkout(i)

TsentDUT.i Read.i S.i B.blkout(i) ≤ TendDUT.i Read.i S.i B(i)

Formal Deadlock Analysis of SpecC Models Using SMT 125

For space limitations, we can only list a portion of the assertions as examples.
Other assertions are generated based on the timing relations we described in
Section 4.1 and Section 4.2.

During the assertion creation, a table named index-to-statement will also be
generated. For every assertion generated by our tool, an identical index is given
to the assertion and the information about the corresponding statement that is
stored in the entry addressed by that index. Take assertion TrcvdDUT.Q(i) ≤
TsentDUT.Q(i+ 2) listed above as an example. This assertion is generated be-
cause channel Q is instantiated in behavior DUT and its depth is set to two.
Therefore, in the entry addressed by the index of this assertion, the information
of the statement specifying the depth of the channel is stored.

5 Experiments

In this section, we demonstrate our proposed method with a JPEG encoder
SpecC model. In this example, the JPEG encoder is asked to encode five sub-
frames of size eight-by-eight pixels from a raw picture. Figure 6 shows two
different implementations of the SpecC JPEG encoder model.

In the JPEG encoder, every subframe will be encoded in three steps, two-
dimensional discrete cosine transform (DCT), quantization, and Huffman en-
coding. For every subframe, these three encoding steps have to be executed in
order. In our SpecC model, three behaviorsD, Q, andH are implemented to per-
form the discrete cosine transform, quantization, and Huffman coding of JPEG
encoding, respectively.

quan huff
6 6

dct
6

quan huff
6 6

dct
6

QD HQD H

Quantize_Huffman

JPEG EncoderJPEG Encoder

(A) (B)

qh{1}

dq{1}

qh{1}
dq{1}

Fig. 6. Two examples of JPEG encoder SpecC model. Example(A) is a design without
deadlock, while Example(B) will incur a deadlock situation.

As shown in Figure 6(A), behavior D, Q, and H are executed in parallel
fashion. To make sure these three steps are executed in correct order, two queue
channels are used to transfer the intermediate encoding data between these three
behaviors, instead of using port variable connections. In model (B), sub-behavior
Q and H are wrapped into a behavior Quantize Huff and executed in sequen-
tial manner. The problem in model (B) is that behavior Q will halt forever after

126 C.-W. Chang and R. Dömer

the first two iterations of its sub-behavior quan. In this composition, behavior
quan will be executed six times before the execution of behavior Q finishes, but
the execution will stop because the queue channel between behavior quan and
behavior huff becomes full after the first two data sets are generated. Since
behavior H can only be executed after the execution of behavior Q finishes, the
sub-behavior huff cannot be executed to empty the queue channel qh.

We have used our tool to analyse both models. Table 1 shows the analysis
results of the two models.

Table 1. Static SMT analysis results for model (A) and (B)

Design #ofAssertions T ime Satisfiability Error Report

Model-(A) 187 4.94s SAT N/A

Model-(B) 192 1.39s UNSAT Type: QUEUE
Line[16]: Channel[qh]
Type: SEQ
Line[23]: Instance[Q]
Line[24]: Instance[H]
Type: LOOP
Line[58]: Behavior[Q]
Line[60]: Instance[quan]
...

In Table 1, the value in Line represents the line number of the statement in
the SpecC model, and Type shows the type of information stored in the entry.
For example, the Type : SEQ in this table shows that behavior instance Q and
H are executed in sequential manner, and Q is executed before H . Though for
now the error report might not be intuitive for the unfamiliar user to understand
what led to the deadlock, the model designer who developed the model will easily
recognize the deadlock situation.

6 Conclusion

In this paper we have proposed an approach to statically analyze deadlocks in
SpecC models using a SMT solver. After the introduction of four supported ex-
ecution types and queue channel communication in our tool, we have described
our approach in detail by showing how to extract timing relations between time
stamps according to SpecC execution semantics, and have illustrated the con-
version from timing relations to SMT-LIB2 assertions. Finally we demonstrated
our implementation with a JPEG encoder model, and showed that our approach
is capable of detecting the deadlock in the model and reporting useful diagnostic
information to the user.

At this point, this research is still far from complete and there is a lot of future
work to do. Future work includes expanding the support for larger models, and
extending our research to cover more design verification problems. For now our

Formal Deadlock Analysis of SpecC Models Using SMT 127

implementation only supports a confined set of SpecC models and leaves some
important features of SpecC unsupported, such as FSM composition. In the
future we will improve our tool so that it can extract the timing relations from a
control-flow graph and represent the relations with SMT-LIB2 assertions. Except
for the deadlock analysis, we also found that SMT solver might be suitable for
time constraint analysis. We will keep exploring possible applications and make
this approach more general in the future.

Acknowledgment. This work has been supported in part by funding from the
National Science Foundation (NSF) under research grant NSF Award #0747523.
The authors thank the NSF for the valuable support. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation.

References

1. Dömer, R., Gerstlauer, A., Gajski, D.: SpecC Language Reference Manual Version
2.0, http://www.cecs.uci.edu/~specc/reference/SpecC_LRM_20.pdf

2. Fujita, M., Nakamura, H.: The Standard SpecC Language. In: Proceedings of the
International Symposium on System Synthesis, Montreal (October 2001)

3. Habibi, A., Moinudeen, H., Tahar, S.: Generating Finite State Machines from Sys-
temC. In: Design, Automation and Test in Europe, pp. 76–81 (2006)

4. Habibi, A., Tahar, S.: An Approach for the Verification of SystemC Designs Using
AsmL. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 69–83.
Springer, Heidelberg (2005)

5. Herber, P., Fellmuth, J., Glesner, S.: Model Checking SystemC Designs Using
Timed Automata. In: Int. Conf. on HW/SW Codesign and System Synthesis. ACM
Press (2008)

6. Herber, P., Pockrandt, M., Glesner, S.: Transforming SystemC Transaction Level
Models into UPPAAL timed automata. In: 2011 9th IEEE/ACM International
Conference on Formal Methods and Models for Codesign (MEMOCODE), pp.
161–170 (2011)

7. Karlsson, D., Eles, P., Peng, Z.: Formal verification of SystemC Designs using a
Petri-Net based Representation. In: DATE, pp. 1228–1233 (2006)

8. Chou, C.-N., Ho, Y.-S., Huan, C.H.C.-Y.: Formal Deadlock Checking on High-Level
SystemC Designs. In: 2010 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 794–799 (2010)

9. Chou, C.-N., Ho, Y.-S., Huan, C.H.C.-Y.: Symbolic Model Checking on SystemC
Design. In: Proceedings of the 49th Annual Design Automation Conference, DAC
2012, pp. 327–333 (2012)

10. Z3 theorem prover, http://z3.codeplex.com/
11. Cok, D.R.: The SMT-LIB v2 Language and Tools: A Tutorial,

http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf

http://www.cecs.uci.edu/~specc/reference/SpecC_LRM_20.pdf
http://z3.codeplex.com/
http://www.grammatech.com/resources/smt/SMTLIBTutorial.pdf

Automated Functional Verification of Application
Specific Instruction-set Processors�

Marcela Šimková, Zdeněk Přikryl, Zdeněk Kotásek, and Tomáš Hruška

Faculty of Information Technology, Brno University of Technology, Czech Republic
{isimkova,iprikryl,kotasek,hruska}@fit.vutbr.cz

Abstract. Nowadays highly competitive market of consumer electronics is very
sensitive to the time it takes to introduce a new product. However, the ever-
growing complexity of application specific instruction-set processors (ASIPs)
which are inseparable parts of nowadays complex embedded systems makes this
task even more challenging. In ASIPs, it is necessary to test and verify signifi-
cantly bigger portion of logic, tricky timing behaviour or specific corner cases in
a defined time schedule. As a consequence, the gap between the proposed ver-
ification plan and the quality of verification tasks is widening due to this time
restriction. One way how to solve this issue is using faster, efficient and cost-
effective methods of verification. The aim of this paper is to introduce an auto-
mated generation of SystemVerilog verification environments (testbenches) for
verification of ASIPs. Results show that our approach reduces the time and effort
needed for implementation of testbenches significantly and is robust enough to
detect also well-hidden bugs.

1 Introduction

The core of current complex embedded systems is usually formed by one or more pro-
cessors. The use of processors brings advantages of a programmable solution mainly
the possibility of a software change after the product is shifted to the market.

The types of processors that are used within embedded systems are typically de-
termined by an application itself. One can use general purpose processors (GPPs) or
application specific instruction-set processors (ASIPs) or their combination. The ad-
vantages of GPPs are their availability on the market and an acceptable price because
they are manufactured in millions or more. On the other hand, their performance, power
consumption and area are worse in comparison to ASIPs that are highly optimised for
a given task and therefore, have much better parameters.

However, one needs a powerful and easy-to-use tools for the ASIPs design, testing
and verification as well as tools for their programming and simulation. These tools often
use architecture description languages (ADLs) [6] for the description of a processor.

� This work was supported by the European Social Fund (ESF) in the project Excellent
Young Researchers at BUT (CZ.1.07/2.3.00/30.0039), the IT4Innovations Centre of Excel-
lence (CZ.1.05/1.1.00/02.0070), Brno Ph.D. Talent Scholarship Programme, the BUT FIT
project FIT-S-11-1, research plan no. MSM0021630528, and the research funding MPO ČR
no. FR-TI1/038.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 128–138, 2013.
c© IFIP International Federation for Information Processing 2013

Automated Functional Verification of Application Specific Instruction-set Processors 129

ADL allows automated generation of the programming tools such as C/C++ compiler
or assembler, simulation tools such as instruction-set simulator (IIS) or profiler. More-
over, the representation of the processor in hardware description language (HDL) such
as VHDL or Verilog is generated from this description. If the designer wants to change
a design somehow (add a new feature, fix a bug), he or she just change the processor
description and all tools as well as the hardware description are re-generated. This al-
lows really fast design space exploration [4] within processor design phases. Examples
of ADLs are LISA [2], ArchC [9], nML [1] or CodAL [3].

In some cases, when a special functional unit is added for instance a modular arith-
metic unit (in cryptography processors) additional verification steps should be per-
formed. The reason is that description of instructions can be different for simulation/hard-
ware and for the C compiler (e.g. LISA language has separate sections describing the
same feature for the simulator and for the C compiler). In this case, one should verify
that the generated hardware can be programmed by the generated C compiler. In other
words, the C compiler should be verified with respects to the features of a processor.
Therefore, it is highly desirable to have a tool that automatically generates verification
environments and allows checking all above mentioned properties.

In this paper we propose an innovative approach for automated generation of ver-
ification environments which is easily applicable in the development cycle of proces-
sors. As a development environment we utilise the Codasip framework [3] but the main
principles are applicable in other environments as well. In order to verify a hardware
representation of processors with respect to the generated C/C++ compiler we decided
to apply functional verification approach as it offers perfect scalability and speed.

The following section shows the state of the art in the development of processors
and description of verification techniques which are typically used in this field. After-
wards, the Codasip framework is described in Section 3. Our approach is introduced
in Section 4, and Section 5 presents experimental results. In the end of this paper, the
conclusions and our plans for future research are mentioned.

2 Verification in the Development Cycle of Processors

The following subsections introduce verification techniques used within processor de-
sign phases as well as research projects and companies dealing with processor design.

2.1 Verification Approaches

For verification of processors a variety of options exists: (i) formal verification, (ii)
simulation and testing, and (iii) functional verification. However, their nature and pre-
conditions for the speed, user expertise and complexity of the verification process are
often a limiting factor.

Formal verification is an approach based on an exhaustive exploration of the state
space of a system, hence it is potentially able to formally prove correctness of a system.
The main disadvantages of this method are state space explosion for real-world systems
and the need to provide formal specifications of behaviour of the system which makes
this method often hard to use.

130 M. Šimková et al.

Simulation and testing, on the other hand, are based on observing the behaviour of
the verified system in a limited number of situations, thus it provides only a partial
guarantee of correctness of the system. However, because tests focus mainly on the
typical use of the system and on corner cases, this is often sufficient. Moreover, writing
tests is usually faster and easier than writing formal specifications.

Functional verification is a simulation-based method that does not prove correctness
of a system but uses advanced verification techniques for reaching verification closure.
Verification environments (or testbenches) are typically implemented in some hardware
verification language, e.g. in SystemVerilog, OpenVera or e. During verification, a set
of constrained-random test vectors is typically generated and the behaviour of the sys-
tem for these vectors is compared with the behaviour specified by a provided reference
model (which is called scoreboarding). In order to measure progress in functional ver-
ification (using coverage metrics), it is necessary to (i) find a way how to generate test
vectors that cover critical parts of the state space, and (ii) maximise the number of vec-
tors tested. To facilitate the process of verification and to formally express the intended
behaviour, internal synchronisation, and expected operations of the system, assertions
may be used.

All above mentioned features are effective in checking the correctness of the sys-
tem and maximising the efficiency of the overall verification process. The popularity
of functional verification is claimed by the existence of various verification methodolo-
gies, with OVM (Open Verification Methodology) [5] and UVM (Universal Verification
Methodology) [5] being mostly used. They offer a free library of basic classes and
examples implemented in SystemVerilog and define how to build easily reusable and
scalable verification environments.

2.2 Design and Verification of Processors

There exist several research projects or companies dealing with processor design using
ADLs. One of them is an open-source ArchC project [9]. A processor is described
using ArchC language and the semantics of instructions is described using SystemC
constructions [11]. All programming tools as well as IIS can be generated from the
description in ArchC. The generation of a hardware representation is currently under
development and there is no mention of verifying them so far.

Synopsys company offers Processor Designer [8] for designing processors. It uses
LISA language. The programming tools, ISS as well as the HDL representation can be
generated from the processor description. However, they do not provide any automati-
cally generated verification environments. As mentioned in Section 1, instructions are
described in two ways, the first one is used by the generator of the C compiler and the
second one is used by ISS. Therefore, if the descriptions of instructions for ISS and the
C compiler are not equivalent, then there is no automatic way how to detect it. In that
case, C compiler cannot program the target processor properly.

Target company uses an enhanced version of nML language for the description of a
processor microarchitecture [12]. The C compiler and ISS can be generated from the
description of a processor as well as the HDL representation. According to the web
presentation, the verification environment consists of a test program generator. It emits
programs in assembly language (note that the assembly language is processor specific).

Automated Functional Verification of Application Specific Instruction-set Processors 131

The generated test program is loaded by the ISS and a third party RTL simulator which
evaluates the generated HDL representation. The program is executed and after the
testing phase is completed, results are compared. If they are equal, then the test passed,
otherwise an inconsistency is found and it needs to be investigated further. Nevertheless,
a generator of test programs in some high-level language like C or C++ is missing.
Therefore, the C compiler itself is not verified with respect to the processor.

When focusing on automated generation of verification environments in general
(not necessary for processors), there already exist some commercial solutions which
are quite close to our work. One example is Pioneer NTB from Synopsys [10] which
enables to generate SystemVerilog and OpenVera testbenches for different hardware
designs written in VHDL or Verilog with inbuilt support for third-party simulators,
constrained-random stimulus generation, assertions and coverage. Another example is
SystemVerilog Frameworks Template Generator (SVF-TG) [7] which assists in creating
and maintaining verification environments in SystemVerilog according to the Verifica-
tion Methodology Manual (VMM).

3 Codasip Framework

The Codasip Framework is a product of the Codasip company and represents a de-
velopment environment for ASIPs. As the main description language it utilises ADL
called CodAL [3]. It is based on the C language and has been developed by the Codasip
company in cooperation with Brno University of Technology, Faculty of Information
Technology. All mainstream types of processor architectures such as RISC, CISC or
VLIW can be described.

The CodAL language allows two kinds of descriptions. In the early stage of the
design space exploration a designer creates only the instruction-set (the instruction-
accurate description). It contains information about instruction decoders, the semantics
of instructions and resources of the processor. Using this description, programming
tools such as a C/C++ compiler and simulation tools can be properly generated. The
C/C++ compiler is based on LLVM platform [13].

As soon as the instruction-set is stabilised a designer can add information about
processor microarchitecture (cycle-accurate description) which allows generating pro-
gramming tools (without the C/C++ compiler), RTL simulators and the HDL repre-
sentation of the processor (in VHDL or Verilog). As a result, two models of the same
processor on different level of abstraction exist.

It is important to point out that in our generated verification environments the
instruction-accurate description is taken as a golden (reference) model and the cycle-
accurate description is verified against it.

The instruction-accurate description can be transformed into several formal models
which are used for capturing particular features of a processor. Formal models which
are used in our solution are decoding trees in case of instruction decoders and abstract
syntax trees in case of semantics of instructions [14]. All formal models are optimised
and then normalised into the abstract syntax tree representation that can be transformed
automatically into different implementations (mainly in C/C++ languages). The gener-
ated code together with the additional code (it represents resources of processor such as
registers or memories) forms ISS.

132 M. Šimková et al.

It should be noted that some parts of the generated code can be reused further in the
golden model for verification purposes (more information in Section 4). At the same
time as the golden model is generated, connections to the verification environment are
established via the direct programming interface (DPI) in SystemVerilog. Automated
generation of golden models reduces the time needed for implementation of verification
environments significantly. Of course, a designer can always rewrite or complement the
golden model manually.

The cycle-accurate description of a processor can be transformed into the same for-
mal models as in case of the instruction-accurate description. Besides them, the proces-
sor microarchitecture is captured using activation graphs. In case of the cycle-accurate
description, the formal models are normalised into the component representation. Each
component represents either a construction in the CodAL language such as arithmetic
operators or processor resources or it represents an entity at the higher level of abstrac-
tion such as the instruction decoder or a functional unit. Two fundamental ideas are
present in this model, (i) components can communicate with each other using ports and
(ii) components can exist within each other. In this way, component representation is
closely related to HDLs and serves as an input for the HDL generator as well as for the
generator of verification environments.

Fig. 1. Verification flow in the Codasip Framework

For better comprehension of the previous text, the idea is summarised once again
in Figure 1. Codasip works with the instruction and the cycle-accurate description of
a processor and specific tools are generated from these descriptions. The highlighted
parts are used during the verification process. It should be noted that the presented idea
is generally applicable and is not restricted only to the Codasip Framework.

Verification environments generated from formal models are thoroughly described
in the following section.

Automated Functional Verification of Application Specific Instruction-set Processors 133

4 Functional Verification Environments for Processors

The goal of functional verification is to establish the conformance of a design of pro-
cessor to its specification. However, considerable time is consumed by designing and
implementation of verification environments.

In order to comfortably debug and verify ASIPs designed in the Codasip framework
as fast as possible and not waste time with implementation tasks we designed a special
feature allowing automated pre-generation of OVM verification environment for every
processor. In this way we can highly reuse the specification model provided in the Co-
dAL language and all intermediate representations of the processor for comprehensive
generation of all units.

Our main strategy for building robust verification environments is to comply with
principles of OVM (they are depicted in Figure 2). We have fulfilled this task in the
following way:

Fig. 2. Verification methodology

1. OVM Testbench. Codasip supports automated generation of object-oriented test-
bench environments created with compliance to open, standard and widely used
OVM methodology.

2. Program Generator. During verification we need to trigger architectural and mi-
croarchitectural events defined in the verification plan and ensure that all corner
cases and interesting scenarios are exercised and bugs hidden in them are exposed.
For achieving the high level of coverage closure of every design of processor it is
possible to utilise either a generator of simple C/C++ programs in some third-party
tool or already prepared set of benchmark programs.

3. Reference Methodology. A significant benefit of our approach is gained by auto-
mated creation of golden models for functional verification purposes. We realised
that it is possible to reuse formal models of the instruction-accurate description of
the processor at the higher level of abstraction and generate C/C++ representation
of these models in the form of reference functions which are prepared for every
instruction of the processor. Moreover, we are able to generate SystemVerilog en-
capsulations, so the designer can write his/her own golden model with advantage
of the pre-generated connection to other parts of the verification environment.

4. Functional Coverage. According to the high-level description of the processor and
the low-level representation of the same processor in VHDL, we are able to auto-
matically extract interesting coverage scenarios and pre-generate coverage points
for comprehensive checking of functionality and complex behaviour of the proces-
sor. Of course, it is highly recommended to users to add some specific coverage

134 M. Šimková et al.

points manually. Nevertheless, the built-in coverage methodology allows measur-
ing the progress towards the verification goals much faster.

In addition, interconnection with a third-party simulator e.g. ModelSim from Mentor
Graphics allows us to implicitly support assertion analysis, code coverage analysis and
signals visibility during all verification runs. A general architecture of generated OVM
testbenches is depicted in Figure 3 and main components are described further.

Fig. 3. OVM verification environments for user-defined processors in Codasip framework

– DUT (Device Under Test). The verified hardware representation of the processor
written in VHDL/Verilog. According to the type of the processor, different number
of internal memories and register arrays is used. The processor typically contains
a basic control interface with clock and reset signal, an input interface and an output
interface.

– OVM Verification Environment. Basic classes/components of generated verifica-
tion testbenches with compliance to OVM methodology:
• Input Ports Sequencer and Driver. Generation of input sequences and

supplying them to input ports of the DUT.
• Instruction Sequencer and Driver. Generation of input test programs or read-

ing already prepared benchmark programs from external resources. Afterwards,
programs are loaded to the program memory of the processor as well as to the
instruction decoder in Scoreboard.

Automated Functional Verification of Application Specific Instruction-set Processors 135

• Scoreboard. This unit represents a self-checking mechanism for functional
verification. In order to prepare expected responses of the verified processor to
a particular program, Scoreboard uses a set of pre-generated reference func-
tions created with respect to the specification described in the high-level Co-
dAL language. For computational purposes a reference memory and a refer-
ence register array are used. As a result, predicted memory result, predicted
register array result and predicted output ports result are prepared.

• Halt Detection Unit. It is necessary to define a specific time in simulation
when images of memories and register arrays of processor are checked. Evi-
dently, it should be done when a program is completely evaluated by the pro-
cessor. This situation can be distinguished according to the detection of HALT
instruction activity in the processor.

• Data Monitor. In case of the detection of HALT instruction activity, Data
Monitor reads images of memories and register arrays of the processor and
sends them to Scoreboard where they are compared with expected responses.
If a discrepancy occurs, verification is stopped and a detailed report with de-
scription of an error is provided.

• Output Ports Monitor. Output ports of DUT are driven and their values are
stored for later processing. In contrast with Data Monitor, this monitor works
continuously not only in case of HALT instruction activity. Values generated
by a reference model in Scoreboard are stored as well. Equivalence between
stored values is checked by a function given by user or by default one.

• Subscribers. The aim of these units is to define functional coverage points,
in other words interesting scenarios according to the verification plan which
should be properly checked. These units are not present in Figure 3 although
they are generated in every verification environment.

5 Experimental Results

In this section, the results of our solution are provided. We generated verification envi-
ronments for two processors. The first one is the 16bits low-power DSP (Harward archi-
tecture) called Codea2. The second one is the 32bit high performance processor (Von
Neumann architecture) called Codix. Detailed information about them can be found
in [3]. We used Mentor Graphics’ ModelSim SE-64 10.0b as the SystemVerilog in-
terpreter and the DUT simulator. Testing programs from benchmarks such as EEMBS
and MiBench or test-suites such as full-retval-gcctestuite and perrenial testsuite were
utilised during verification. The Xilinx WebPack ISE was used for synthesis. All ex-
periments were performed using the Intel Core 2 Quad processor with 2.8 GHz, 1333
MHz FSB and 8GB of RAM running on 64-bit Linux based operating system.

Table 1 expresses the size of processors in terms of required Look-Up Tables (LUTs)
and Flip-Flops (FFs) on the Xilinx Virtex5 FPGA board. Other columns contain in-
formation about the number of tracked instructions and the time in seconds needed for
generation of SystemVerilog verification environment and all reference functions inside
the golden models (Generation Time). In addition, the number of lines of programming
code for every verification environment is provided (Code Lines). A designer typically

136 M. Šimková et al.

needs around fourteen days in order to create basics of the verification environment
(without generation of proper stimuli, checking coverage results, etc.), so the automated
generation saves the time significantly.

Table 1. Measured Results

Processor LUTs/FF (Virtex5) Tracked Instructions Generation Time [s] Code Lines

Codea2 1411/436 60 12 2871
Codix 1860/560 123 26 3586

Table 2 provides information about the verification runtime and results. As Codea2
is a low-power DSP processor some programs had to be omitted during experiments
because of their size (e.g. programs using standard C library). Therefore, the number
of programs is not the same as in case of Codix. Of course, the verification runtime
depends on the number of tested programs and if the program is compiled with no
optimisation the runtime is significantly longer.

Table 2. Runtime statistics

Processor Programs Runtime [min]

Codea2 636 28
Codix 1634 96

The coverage statistics in Table 3 can show which units of the processor have been
appropriately checked. As one can see, the instruction-set functional coverage reaches
only around fifty percent for both processors (i.e. a half of instructions were executed).
The low percentage is caused by the fact that selected programs from benchmarks did
not use specific C constructions which would invoke specific instructions. On the other
hand, all processors registers files were fully tested (100% Register File coverage). This
means that read and write instructions were performed from/to every single address in
register files. The functional coverage of memories represents coverage of control sig-
nals in memory controllers. Besides functional coverage, ModelSim simulator provides
also code coverage statistics like branch, statement, conditions and expression cover-
age. According to the code coverage analysis we were able to identify several parts of
the source code which were not executed by our testing programs and therefore we must
improve our testing set and explore all coverage holes carefully.

Table 3. Coverage statistics

Processor
Code Coverage [%] Functional Coverage [%]

Branch Statement Conditions Expression Instruction-Set Register File Memories

Codea2 87.0 99.1 62.3 58.1 51.2 100 87.5
Codix 92.1 99.2 70.4 79.4 44.7 100 71.5

Automated Functional Verification of Application Specific Instruction-set Processors 137

Fig. 4. Coverage Screenshot

Figure 4 demonstrates the status of instruction-set functional coverage for Codix
processor after execution of 500 programs in ModelSim.

Of course, the main purpose of verification is to find bugs and thanks to our pre-
generated verification environment we were able to target this issue successfully. We
discovered several well-hidden bugs located mainly in the C/C++ compiler or in the
description of a processor. One of them was present in the data hazard handling when
the compiler did not respect a data hazard between read and write operation to the
register file. Another bugs caused jumping to incorrectly stored addresses and one bug
was introduced by adding a new instruction into the Codix processor description. The
designer accidentally added a structural hazard into the execute stage of the pipeline.

6 Conclusion and Future Work

To summarise, implementation of functional verification environment is a manual and
highly error prone process. As we wanted to accelerate creation and maintenance of
advanced OVM verification environment for ASIPs we implemented a special feature
which allows their automated generation. The experimental results show that the auto-
matic generation is fast and robust and we were able to find several crucial bugs during
the processors design.

In the future we plan to utilise a sophisticated generator of programs in order to
achieve higher level of coverage of verified processors because during experiments we
identified several holes in functional coverage and code coverage. Moreover, we want
to discover the relation between test-templates and coverage points.

References

1. Fauth, A., Van Praet, J., Freericks, M.: Describing instruction set processors using nML.
In: Proceedings of European Design and Test Conference, Paris, pp. 503–507 (1995) ISBN
0-8186-7039-8

2. Hoffmann, A., Meyr, H., Leupers, R.: Architecture Exploration for Embedded Processors
with LISA. Springer (2002) ISBN 1402073380

3. Codasip Framework. Codasip (2012), http://www.codasip.com/
4. Martin, G., Bailey, B., Piziali, A.: ESL Design and Verification: A Prescription for Elec-

tronic System Level Methodology (Systems on Silicon). Morgan Kaufmann (2007) ISBN
0123735513

http://www.codasip.com/

138 M. Šimková et al.

5. Mentor Graphics Verification Academy. UVM/OVM (2012),
https://verificationacademy.com/topics/verification-methodology

6. Mishra, P., Dutt, N.: Processor Description Languages (Systems on Silicon), vol. 1. Morgan
Kaufmann (2008) ISBN 9780123742872

7. Paradigm Works SystemVerilog Frameworks Template Generator (2012),
http://svf-tg.paradigm-works.com/svftg/

8. Processor Designer (2012), http://www.synopsys.com/Systems/BlockDesign/
ProcessorDev/Pages/default.aspx

9. Azevedo, R., et al.: The ArchC architecture description language and tools. International
Journal of Parallel Program 33(5), 453–484 (2005) ISSN 0885-7458

10. Synopsys. Pioneer NTB (2012), http://www.synopsys.com/Tools/Verification/
FunctionalVerification/Pages/Pioneer-NTB.aspx

11. SystemC Project (2012), http://www.systemc.org/home/
12. Target (2012), http://www.retarget.com/
13. The LLVM Compiler Infrastructure Project (2012), http://llvm.org/
14. Přikryl, Z.: Advanced Methods of Microprocessor Simulation. Information Sciences and

Technologies, Bulletin of the ACM Slovakia 3(3), 1–13 (2011) ISSN 1338-1237

https://verificationacademy.com/topics/verification-methodology
http://svf-tg.paradigm-works.com/svftg/
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/Pioneer-NTB.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/Pioneer-NTB.aspx
http://www.systemc.org/home/
http://www.retarget.com/
http://llvm.org/

Compressing Microcontroller Execution Traces

to Assist System Analysis

Azzeddine Amiar, Mickaël Delahaye, Yliès Falcone, and Lydie du Bousquet

Université Grenoble Alpes
Laboratoire d’Informatique de Grenoble

38041 Grenoble, France
FirstName.LastName@imag.fr

Abstract. Recent technological advances have made possible the re-
trieval of execution traces on microcontrollers. However, the huge amount
of data in the collected trace makes the trace analysis extremely diffi-
cult and time-consuming. In this paper, by leveraging both cycles and
repetitions present in an execution trace, we present an approach which
offers a compact and accurate trace compression. This compression may
be used during the trace analysis without decompression, notably for
identifying repeated cycles or comparing different cycles. The evalua-
tion demonstrates that our approach reaches high compression ratios on
microcontroller execution traces.

1 Introduction

A microcontroller is an integrated circuit embedded in various kinds of equip-
ment such as cars, washing machines or toys. Surprisingly, if microcontrollers
are now affordable, the development of embedded software is still expensive.
According to our industrial partners, this development cost is mainly due to
the validation step, and especially debugging. Indeed, though there are several
development environments for embedded applications, there exist few tools dedi-
cated to their validation. Consequently, validation and debugging are carried out
manually, and thus are tedious and time consuming tasks [12]. Recent microcon-
trollers allow trace recording. Using specialized probes it is possible to collect
basic execution traces without input/output data. Due to the cyclic nature of
most embedded programs, such traces consist in very long sequences of multiple
repetitions of instructions.

In this paper, we aim to help automated or manual analysis of microcon-
troller traces by facilating the localization repetitions and by keeping the amount
of data manageable. We propose a compression approach based on a grammar
generation. Our algorithm, named Cyclitur, is based on our extension of the
Sequitur algorithm [11]. Sequitur produces a grammar by leveraging regularities
found in an input trace. The output grammar is an accurate but compact rep-
resentation of the input trace. Compared with Sequitur, our extension, named
ReSequitur, ensures an additional grammar property. Cyclitur is implemented
in a tool named CoMET (see Figure 7). CoMET enables us to compress real
traces recorded on embedded applications and network traffic simulations.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 139–150, 2013.
c© IFIP International Federation for Information Processing 2013

140 A. Amiar et al.

1 int main(void) {
2 while(1) {
3 static JOY_State_TypeDef JoyState = JOY_NONE;
4 static TS_STATE* TS_State;
5 JoyState = IOE_JoyStickGetState();
6 switch (JoyState) {
7 case JOY_NONE:
8 LCD_DisplayStringLine(Line5, "JOY: ---- "); break;
9 case JOY_UP:

10 LCD_DisplayStringLine(Line5, "JOY: UP "); break;
11 case JOY_DOWN:
12 LCD_DisplayStringLine(Line5, "JOY: DOWN "); break;
13 default:
14 LCD_DisplayStringLine(Line5, "JOY: ERROR "); break;
15 }
16 TS_State = IOE_TS_GetState();
17 Delay(1);
18 if (STM_EVAL_PBGetState(Button_KEY) == 0) {
19 STM_EVAL_LEDToggle(LED1);
20 LCD_DisplayStringLine(Line4, "Pol: KEY Pressed");
21 }
22 if (STM_EVAL_PBGetState(Button_TAMPER) == 0) {
23 STM_EVAL_LEDToggle(LED2);
24 LCD_DisplayStringLine(Line4, "Pol: TAMPER Pressed");
25 } } }

[...]
0x08000CA0," BL.W LCD_WriteReg (0x08000D74)"
0x08000D74," PUSH {r4-r6,lr}"
0x08000D76," MOV r5,r0"
0x08000D78," MOV r4,r1"
0x08000D7A," MOV r0,r5"
0x08000D7C," BL.W LCD_WriteRegIndex (0x08000DC8)"
0x08000DC8," PUSH {r4,lr}"
0x08000DCA," MOV r4,r0"
0x08000DCC," MOV r0,#0x70"
[...]

Fig. 1. Example of C embedded software code and extract from execution trace

2 Motivation

Microcontrollers run software programs specially designed for embedded use. Em-
bedded programs are most often written in the C programming language. A lot
of those programs can be categorized as cyclic, i.e., they rely on a main loop that
iterates indefinitely. In the following, we call the loop header the instruction that
defines this main loop. Usually, at each iteration of the loop, sensors are read and
actions are taken in response. Figure 1 gives a small example of embedded soft-
ware in C. This program repetitively checks if the user moves a joystick or pushes
a button, and displays some text on an LCD screen to describe the actions of the
user. The cyclic aspect is represented by an infinite loop, which starts at line 2.

The cost of developing software for microcontrollers is still very high. The
specificity of each use case and the very low-level programming render the de-
velopment of such software error-prone. Consequently, a very large part of the
development time is spent in debugging. However, the arrival of new microcon-
trollers has made possible the recording of execution traces. For instance, ARM
Cortex-M microcontrollers include a module dedicated to trace recording, called
Embedded Trace Macrocell. Using a specific probe, it is possible to record the
execution trace of the program running on the microcontroller. Although race

Compressing Microcontroller Execution Traces to Assist System Analysis 141

analysis seems pertinent to debug microcontroller programs, the collected traces
usually contain a huge amount of data, due to the real-time and cyclic nature
of the embedded programs. Figure 1 provides a small extract of the execution
trace collected during the execution of the program. While the recorded trace
was more than one million lines long, the chosen extract contains a few lines oc-
curring during a call of the macro LCD_DisplayStringLine. This extract exemplifies
what makes the trace analysis very difficult: a few lines of source code can give
raise to a very large amount of data in the trace.

This paper proposes a method to assist the analysis process of microcontroller
execution traces. In other words, we address the first two steps of the debug pro-
cess, which are the comprehension and the analysis of execution traces. Indeed,
we propose a method to compress the microcontroller execution traces [10,8,7],
in order to have a high view to get a quick understanding of execution traces.
Our tool CoMET (see Figure 7) implements our compression, and provides two
visualizations. The engineer, by visualizing the compression generated by our ap-
proach, will be guided throughout the trace analysis, for instance, by identifying
cycles that appears most often in the trace or by comparing cycles.

3 Cyclic Trace Compression

Given an input string, a grammar-based compression computes a small gram-
mar that generates only one string, the input string. This grammar reveals the
structure of the string and can often be used in further processing with no prior
decompression, which is an opportunity for trace analysis.

Sequitur, proposed by Nevill-Manning and Witten [11], is a grammar-based
compression algorithm. To generate a grammar, Sequitur takes a string as input,
and finds repeated subsequences present in the string. Sequitur operates in linear
time and in an online fashion. Each repetition gives rise to a rule in the grammar,
and is replaced with a nonterminal symbol. The compression process is executed
iteratively. For instance, for the string cabcabcabcabcad, Sequitur generates the
following grammar:

S → AABd, A → CC, B → ca, C → Bb

The original string contains 15 symbols and the Sequitur-generated grammar
contains 14 symbols. The compression explicitly capture the repetitions of the
subsequence cba.

In this paper we propose Cyclitur, an extension of Sequitur, to compress
microcontroller execution traces. While keeping the same complexity as Sequitur,
Cyclitur compresses consecutive repetitions and takes advantage of the cyclic
nature of the trace. For instance, for the same string and if the loop header is a,
Cyclitur computes this grammar:

S → cA4B, A → abc, B → ad

The grammar contains only 11 symbols and each of the cycles is represented
by a single symbol (c as is, abc as A, and ad as B). This section first ex-
plains our formalism and details the improvements made to Sequitur to compress
microcontroller execution traces.

142 A. Amiar et al.

3.1 Preliminaries

Given an alphabet Σ, an r-string α is a sequence of pairs 〈symbol, number of
consecutive repetitions〉. The set of r-strings over Σ is Σ∗

r = (Σ ×N \ {0})∗. In
an r-string α, αi,1 stands for the symbol of the i-th element of α and αi,2 for
its number of repetitions. |α| denotes the number of elements in the r-string α.
To lighten notations, repetition numbers are placed in superscript after symbols
and they are omitted when equal to one. For instance, ab5d10 is a shorthand for
the sequence 〈a, 1〉〈b, 5〉〈d, 10〉. The expansion of the r-string α ∈ Σ∗

r , noted α̂,
is a string in Σ∗, and is defined as follows:

α̂ = α1,1 · · ·α1,1︸ ︷︷ ︸
repeated α1,2 times

α2,1 · · ·α2,1︸ ︷︷ ︸
α2,2 times

· · ·α|α|,1 · · ·α|α|,1︸ ︷︷ ︸
α|α|,2 times

.

An r-grammar G is a 4-tuple 〈Σ,Γ, S,Δ〉 where:
– Σ is a finite alphabet of terminal symbols,
– Γ is a disjoint finite alphabet of nonterminal symbols,
– S ∈ Γ is a start symbol, i.e., a particular nonterminal,
– and Δ ⊆ Γ × (Σ ∪ Γ)∗r is a set of r-production rules,

such that the following properties are verified:

– for every nonterminal A, there is a unique r-string α s.t. 〈A,α〉 is in Δ,
– there is an ordering over Γ s.t., for each r-production rule 〈A,α〉 in Δ, every

nonterminal in α precedes A.

An r-production rule 〈A,α〉 ∈ Δ associates the nonterminal A and the r-string
α, resp. called the head and the body of the rule. The r-grammar body is {α |
∃A : 〈A,α〉 ∈ Δ}, i.e., the set of rule bodies. Note that the additional properties
ensure that an r-grammar contains one rule per nonterminal and is non recursive
(cycle-free). In the following, we consider an r-grammar G = 〈Σ,Γ, S,Δ〉.

3.2 Properties of Generated Grammars

ReSequitur is an algorithm that compresses a string to an r-grammar (see Figure
2). ReSequitur takes as inputs an alphabet Σ, a string to compress ω ∈ Σ∗, a
(possibly empty) initial set of symbols Γ0, and an initial set of rules Δ0 ⊂
(Γ0 ×Σ∗

r). Like Sequitur, ReSequitur ensures that two properties called digram
uniqueness and rule utility hold on the output r-grammar.

The digram uniqueness property states that an r-grammar should not contain
two non-overlapping occurrences of the same digram in the r-grammar body.

Property 1 (Digram uniqueness). The digram uniqueness property holds for G,
noted RUniqueness(G), if for all terminals A,B ∈ Γ , symbols a, b, c, d ∈ Σ ∪ Γ ,
strictly positive integers n,m, p, q ∈ N \ {0}, and r-strings α, β, γ, δ ∈ (Σ ∪ Γ)∗r,
the two following statements hold:

(A 	= B ∧ {〈A,α anbm β〉, 〈B, γ cpdq δ〉} ⊂ Δ) =⇒ anbm 	= cpdq

(in different rules)

(〈A,α anbm β cpdq γ〉 ∈ Δ) =⇒ anbm 	= cpdq (in a same rule)

Compressing Microcontroller Execution Traces to Assist System Analysis 143

1 let S be a fresh nonterminal representing a rule (S /∈ Σ ∪ Γ0)
2 G ← 〈Σ,Γ0 ∪ {S}, S,Δ0 ∪ {〈S, ε〉}〉
3 for i ← 1 to |ω| do
4 append (ωi)

1 to the body of rule S
5 while ¬RUniqueness(G) ∨ ¬RUtility(G) ∨ ¬RConsecutive(G) do
6 if ¬RConsecutive(G) then
7 let a, n, m be s.t. anam is a r-digram in G
8 replace every occurrence of anam in G with an+m

9 else if ¬RUniqueness(G) then
10 let δ be a repeated r-digram in G
11 if ∃〈A,α〉 ∈ Δ : α = δ then
12 replace the other occurrence of δ in G with A
13 else
14 form new rule 〈D, δ〉 where D /∈ (Σ ∪ Γ)
15 replace both occurrences of δ in G with D
16 Δ ← Δ ∪ {〈D, δ〉}
17 Γ ← Γ ∪ {D}
18 end

19 else if ¬RUtility(G) then
20 let 〈A,α〉 ∈ Δ be a rule used once
21 replace the occurrence of A with α in G
22 Δ ← Δ� {〈A,α〉}
23 Γ ← Γ � {A}
24 end

25 end

26 end
27 return G

Fig. 2. Function ReSequitur(Σ,ω,Γ0,Δ0)

The rule utility property ensures that every rule except the start rule is used
more than once in the r-grammar body. This is formally defined as follows:

Property 2 (Rule utility). The rule utility holds for G, noted RUtility(G), if:

∀A ∈ Γ \ {S} :

(∑

〈B,β〉∈Δ

∑

i∈[1..|β|]

{
βi,2 if βi,1 = A

0 if βi,1 	= A

)
≥ 2 .

In order to compress consecutive repetitions more efficiently, compared with Se-
quitur, ReSequitur ensures an additional property: any digram in an r-grammar
body consists of different symbols.

Property 3 (No consecutive repetition). G has no consecutive repetitions,
which is noted RConsecutive(G), if the following statement holds:

∀a, b ∈ Σ ∪ Γ, ∀n,m ∈ N \ {0}, ∀α, β ∈ (Σ ∪ Γ)∗r , ∀C ∈ Γ :

〈C,α anbmβ〉 ∈ Δ ⇒ a 	= b .

To ensure this property at each iteration of the outer loop, ReSequitur merges
every digram of the form anam into a single repeated symbol an+m.

144 A. Amiar et al.

1 Γ0 ← ∅; Δ0 ← ∅; ω′ ← ε; i ← 1
2 for j ← 2 to |ω| do
3 if j = |ω| ∨ ωj = lh then
4 〈Σ′, Γ ′, S′,Δ′〉 ← ReSequitur(Σ,ωi..j−1, Γ0,Δ0)
5 Γ0 ← Γ ′; Δ0 ← Δ′; ω′ ← ω′ · S′; i ← j

6 end

7 end
8 〈Σ′′, Γ ′′, S′′,Δ′′〉 ← ReSequitur(Σ,ω′, Γ0, Δ0)
9 return 〈Σ′′, Γ ′′, S′′,Δ′′〉

Fig. 3. Function Cyclitur(Σ,ω, lh)

3.3 Exploiting Cycles with Cyclitur

Recall that our objective is to compress cyclic traces extracted from microcon-
trollers. Therefore, the first step in our approach is the cycle detection. A cycle is
a subsequence of the execution trace that consists of one execution of the main
loop of the embedded program. Cycle detection relies on the localization of a
special event that represents the loop header. Detecting cycles using the loop
header event consists in dividing the trace into blocks, where each block repre-
sents a specific cycle. Given a loop header lh, consider the set of cycles C(ω, lh)
defined as a set of pairs of indexes over the execution trace ω as follows:

C(ω, lh) = {〈i, j〉 ∈ [1..|ω|]2 | i ≤ j ∧ (i = 1 ∨ ωi = lh) ∧ (j = |ω| ∨ ωj+1 = lh)

∧ ∀k ∈ [i + 1..j] : ωk 	= lh} .
Figure 3 presents the overall algorithm of the Cyclitur compression. ReSequitur
is first applied on each cycle to detect repetitions (lines 2–7), while sharing the
same set of rules. Then applying ReSequitur on the compression produced by the
previous step allows to detect similar sequences of cycles in the trace (line 8).

4 Application Example

Cyclitur infers patterns in execution traces and can be used for many applica-
tions. As an example of such an application, we propose here to use the com-
pression generated by Cyclitur to detect an abnormal behavior in the embedded
context. As shown in Figure 4, in this example, a user equipped with a device
(e.g. a smartphone) interacts with five sensors. The user turns from the right
to the left, and whenever he is in front of a sensor, his device sends a message
to the sensor. After receiving a notification from the device, the sensor sends
a message to the user. Finally, when the user receives the message sent by the
sensor, his device sends an acknowledgment to the sensor. If the user sends a
message to a sensor, and he does not get a response from the sensor, within 15
seconds, he considers this behavior as abnormal behavior and he turns to the
left and interacts with the next sensor. Figure 5 illustrates the execution trace
generated using this example.

By using the word “send” as the loop header in the trace, the execution trace
will be divided into blocks as shown in Figure 5. For example, the events that are

Compressing Microcontroller Execution Traces to Assist System Analysis 145

related to the sending of a message from the device to a sensor will be compressed
and represented by C1. Then the compression generated by Cyclitur will be of
the form:

S → A(n times), A → C1 C2 C3

Let us consider the following senario, the sensor 3 receives a message from the
user, but it takes more than 15 seconds to answer. In this case, the user turns to
the left and interacts with the sensor 4. While the user receives the message from
the sensor 4, his device receives also the message from the sensor 3. Therefore,
the device of the user sends an acknowledgment to sensor 3 and an acknowledg-
ment to sensor 4. Using the trace compression illustrated in Figure 6, which is
generated by Cyclitur and where the normal behavior is C1 C2 C3, it is intuitive
to note that the abnormal behavior is C1 C1 C2 C2 C3 C3.

Fig. 4. Application example
Fig. 5. Execution trace of the applica-
tion example

Fig. 6. Anomaly detection using trace compression

5 Implementation and Evaluation

The evaluation of our trace-compression approach is an experimental evaluation
that consists in comparing grammars obtained by applying Sequitur and Cyclitur
on various execution traces. The experimental evaluation was made possible
thanks to our tool named CoMET.

5.1 CoMET

CoMET is a tool written in Java in 12,000 LOC that implements both Sequitur
and Cyclitur algorithms. It takes as input an execution trace file. It extracts

146 A. Amiar et al.

automatically a string of symbols, to finally output a grammar, either as text or
as a Java object for programmatic use. As shown in Figure 7, CoMET provides
two visualizations:

– Cycle pie chart : it provides the occurrence rates of cycles in the trace.
– Cycle in time: it emphasizes all occurrences of a specific cycle in the trace.

5.2 Metrics of Experimental Evaluation

In the following, we use a given string (trace) ω, and the output grammar (resp.
r-grammar) generated with Sequitur (resp. Cyclitur), noted G = 〈Σ,Γ, S,Δ〉.
The size of the grammar G is the sum of the number of symbol occurrences
in its body (both terminals and nonterminals) and the number of its rules. The
compression ratio, noted Comp(G), is used to compare the degree of compression
of grammars generated using Sequitur and Cyclitur and is defined as follows:

Comp(G) =
Size(G)

|ω|
Note that the compression ratio varies between 0 and 1, where 0 represents the
best compression, and 1 the worst.

5.3 Programs and Traces

The traces used to evaluate our approach come from five embedded programs
provided by STMicroelectronics and EASii IC. For confidentiality reasons, pro-
grams are not described. In the following we denote by Pi the i-th program. One
at a time each program is loaded onto a STM32F107 EVAL-C microcontroller
board and executed. The execution trace is recovered using a Keil UlinkPro
probe, and saved in CSV format. For each program, five execution traces are
produced. In the trace file, for each instruction, we have the time when it was
executed, the corresponding assembly instruction and the program counter (PC).
For our compression approach we are only interested in the PCs.

5.4 Results

Table 1 contains the results of the experimental evaluation, where each line
represents a trace of a program. The columns #Sym. and #Cycles repre-
sent respectively the number of symbol occurrences and the number of cycles
in a trace. For each generated grammar, Table 1 contains its size Size() and
its compression ratio Comp(). Figure 8 displays the arithmetic average of the
compression ratios over the five collected traces of the program. Note that the
use of other average measures give different values, but the same result: a clear
difference of compression ratios between Sequitur and Cyclitur. The compression
ratio varies between 0 and 1, where 0 represents the best compression, and 1 the
worst. For example, for program P1, we observe that our approach produces
better compression than Sequitur. The sizes of grammars generated by Sequitur
for the execution traces of P1 vary from 1,051 up to 2,581.

Compressing Microcontroller Execution Traces to Assist System Analysis 147

Table 1. Evaluation results

Prog. Trace #Sym. #Cycles Sequitur Cyclitur
Size(G) Comp(G) Size(G′) Comp(G′)

P1 T1 1048575 7588 2581 0.002461436 1484 0.001415254
T2 1048576 7274 1748 0.001667023 944 0.000900269
T3 1048576 7109 1764 0.001682281 946 0.000902176
T4 1048571 7586 1497 0.001427657 970 0.000925068
T5 1048574 4448 1051 0.001002314 625 0.000596048

P2 T1 1048575 1515 21040 0.020160694 18102 0.017263429
T2 1048575 1593 20324 0.019382495 16537 0.015770927
T3 1048575 1591 18933 0.018055933 15970 0.015230193
T4 1048576 1736 19658 0.01874733 16709 0.015934944
T5 1048574 1789 19478 0.018575704 17335 0.016531976

P3 T1 1048572 1440 1918 0.001829154 1766 0.001684195
T2 1048571 1442 1830 0.001745232 1407 0.001341826
T3 1048573 1442 1813 0.001729016 1686 0.001607899
T4 1048576 1441 1961 0.001870155 1661 0.001584053
T5 1048576 1442 1842 0.001756668 1701 0.0016222

P4 T1 1048567 1277 1726 0.001646056 1407 0.001341831
T2 1048571 1462 2199 0.00209714 1488 0.001419074
T3 1048574 1276 1879 0.001791957 1325 0.001263621
T4 1048575 1462 1706 0.00162697 1524 0.001453401
T5 1048575 1462 1613 0.001538278 1416 0.001350404

P5 T1 1048573 16132 301 0.000287057 125 0.00011921
T2 1048576 16132 295 0.000281334 132 0.000117302
T3 1048570 7440 1599 0.001524934 1172 0.001117713
T4 1048571 16131 309 0.000294687 137 0.000130654
T5 1048576 16132 290 0.000276566 135 0.000128746

Fig. 7. CoMET Visualization

�� �� �� �� ��
�	���

�	���

�	��

�	���

�	���

�	���
�
������ ��������

�������

�
��

��

�

��
��

���
���

Fig. 8. Compared average compression
ratios for each program

The sizes of original traces vary between 1,048,571 and 1,048,576, with 4,448
and 7,588 cycles. Therefore, the compression ratios vary between 0.0010 and
0.0025. Cyclitur produces grammars whose sizes vary from 625 to 1,484. The
compression ratios vary between 0.0006 and 0.0014. Note that, for all considered
programs, the use of Cyclitur leads to better compression than Sequitur. The
compression ratios are better from 12% to 42%.

5.5 Cyclitur and Network Traces

We evaluate our trace-compression approach on four additional traces obtained
from network simulations. The considered network is a Multi-Channel Multi-

148 A. Amiar et al.

Interface Wireless Mesh Network (WMN) with routers based on the IEEE 802.11
technology [4]. The loop header used to detect cycles is a specific event that refers
to the emission of a request from client to server.

The trace 1 consists in 6,011,850 events spread over 9,574 cycles. The com-
pression ratio using Sequitur is 0.0027% for a generated grammar whose size
is 16,531 (744 terminals, 12,375 nonterminals and 3,412 rules). The compres-
sion ratio for Cyclitur grammar reaches 0.0026% for a grammar of size 16,057
(373 terminals, 13,884 nonterminals and 4,182 rules). Cyclitur generates a gram-
mar that contains more rules than the grammar generated by Sequitur, but is
easier to understand and to analyze, because it is more compact and it facili-
tates cycle detection. The trace 2 trace consists in 8,040,942 events spread over
9,574 cycles. Sequitur generates a grammar of size 18,639 while Cyclitur gener-
ates a grammar of size 18,439. The use of Sequitur and Cyclitur on the second
trace gives respectively 0.00023% and 0.0022% compression ratios. The trace 3
contains 13,883,977 events spread over 2,797 cycles. While Sequitur generates
a grammar of size 28,181, Cyclitur generates a grammar of size 26,468. The
compression ratios are respectively 0.0020% and 0.0019%. Finally, the trace 4
contains 10,312,955 events spread over 33,834 cycles. While Sequitur reaches a
0.0016% compression ratio with a grammar of size 16,690. Cyclitur reaches a
0.0009% compression ratio with a grammar of size 10,145.

The previous results show that Cyclitur can be used likewise to compress
network traffic traces. We observe that for all network traces collected in these
experiments, the use of Cyclitur generates a better compression than Sequitur.

6 Related Work

Compressing microcontroller traces with the objective of analyzing them re-
mains a challenge. In other areas, particularly in object oriented context, there
are numerous studies concerning reduction and compression of execution traces.
Hamou-Lhadj and Lethbridge [8] use an acyclic oriented graph representing
method calls to compress traces. Other representations have been used such
as trees [13] and finite automata [9]. Also, in [7] Hamou-Lhadj and Lethbridge,
propose the removal of implementation and useless details to ease the analysis
of execution traces. These object oriented approaches are not suitable for our
purpose for multiple reasons. First, they discard the order of events, which is
paramount to understand a program. Second, they use input/output data. In
our context, this information is rarely available and raises important storage
problems. Third, they reason about method calls. In optimized microcontroller
code, function calls alone are inadequate to understand the program, since the
core logic of a program is sometimes coded in a single function.

Generic data compression methods have been used for execution traces, e.g.,
Gzip [6]. However, almost no analysis can be performed on the compressed form
of the execution trace. Larus [10] proposes to compress control flow paths using
Sequitur. As Sequitur finds regularities in the path (e.g., repeated code), the out-
put grammar can be used to detect hot subpaths, i.e., short acyclic paths that

Compressing Microcontroller Execution Traces to Assist System Analysis 149

are costly. Our work consists in compressing traces by detecting and exploiting
cycles. It allows us to reach better compression ratios than Sequitur. Burtscher
et al. [2] also propose a value predictor-based compression algorithm for execu-
tion trace that obtain better compression ratios than Gzip or Sequitur. Zhang
and Gupta [15] propose an improvement of value predictor-based compression
for whole execution trace (WET), i.e., control flow and other information mixed
together. Their method allows the user to extract partial information (e.g., the
control flow path) from the compressed WET. If their method allows bidirec-
tional decompression, such compression are usually not understandable by the
engineer and automated analysis requires at least partial decompression. On the
contrary, the simple structure offered by the grammar is well-suited for analysis.
Moreover, these techniques may notably lose reference points (here, cycles). Like
the run-length encoding, Cyclitur compresses consecutive repetitions but it also
detects patterns and cycles. We believe that cycles revealed in the process of
Cyclitur may assist automatic trace analysis, e.g., using cycle matching [1].

Grammar-based compression is the object of active research in information
theory (cf. [3] for a survey). In particular, extensions of Sequitur are able to
produce smaller grammars. For instance, Yang and Kiefer propose to generalize
Sequitur to n-grams (rather than digram) [14]. If this leads to better compres-
sions, it comes at a price: their algorithm does not share the time and space
complexity of Sequitur, and as a result, is not usable on large amount of data.

7 Conclusion and Perspectives

In the microcontroller context, new microprocessors have enabled the recording
of the execution of embedded software as a trace. Analyzing execution traces
may help in embedded software debugging, which represents a large part of the
cost of their development. However, collected traces contains a huge amount of
data, making the analysis difficult and tedious. For both manual and automatic
analysis of the trace, it seems opportune to have a compact and analyzable
representation of the trace.

In this paper, we propose a trace compression method that aims at facilitat-
ing trace analysis. The method relies on a grammar-based compression named
Cyclitur built upon the Sequitur algorithm [11]. Our approach starts by dividing
a trace into cycles, where each cycle is an execution of the active main loop. The
second step consists in discovering and compressing similarities in the trace.

Our approach is evaluated to compare its compression rate to the existing
Sequitur algorithm. The experimental evaluation shows that our approach gen-
erates an equivalent or better compression than Sequitur on execution traces. On
microcontroller execution traces, Cyclitur compression ratios were better than
Sequitur compression ratios from 12% to 42%. In addition, Cyclitur may help in
identifying and locating important details in an execution trace.

While Cyclitur is not aimed at competing with compression ratio of com-
pression schemes in general, it would be interesting to compare Cyclitur with
value predictor-based compressions [15,2]. Also, we intend to help locating faults

150 A. Amiar et al.

in embedded software by analyzing compressed traces and adapting dynamic
validation and data mining techniques [5].

Acknowledgment. This work has been funded by the French-government Sin-
gle Inter-Ministry Fund (FUI) through the IO32 project (Instrumentation and
Tools for 32-bit Microcontrollers). The authors would like to thank
STMicroelectronics, AIM and ESAii IC for their help.

References

1. Aoe, J.: Computer Algorithms: String Pattern Matching Strategies. Wiley-IEEE
Computer Society Press (1994)

2. Burtscher, M., Ganusov, I., Jackson, S., Ke, J., Ratanaworabhan, P., Sam, N.: The
VPC trace-compression algorithms. IEEE Trans. on Computers 54(11), 1329–1344
(2005)

3. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. on Information The-
ory 51(7), 2554–2576 (2005)

4. De Oliveira, C., Theoleyre, F., Duda, A.: Connectivity in multi-channel multi-
interface wireless mesh networks. In: International Wireless Communications and
Mobile Computing Conference (IWCMC), pp. 35–40 (2011)

5. Fayyad, U., Piatetsky-shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AI Magazine 17, 37–54 (1996)

6. Gailly, J.-L., Adler, M.: Gzip, http://www.gzip.org
7. Hamou-Lhadj, A., Lethbridge, T.: Summarizing the content of large traces to fa-

cilitate the understanding of the behaviour of a software system. In: International
Conference on Program Comprehension (ICPC), pp. 181–190. IEEE Computer
Society (2006)

8. Hamou-Lhadj, A., Lethbridge, T.C.: Compression techniques to simplify the anal-
ysis of large execution traces. In: International Workshop on Program Comprehen-
sion (IWPC), pp. 159–168. IEEE Computer Society (2002)

9. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer,
Heidelberg (2009)

10. Larus, J.R.: Whole program paths. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pp. 259–269. ACM (1999)

11. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical strcture in sequences:
A linear-time algorithm. Journal of Artificial Intellgence Research (JAIR) 7, 67–82
(1997)

12. Rohani, A., Zarandi, H.: An analysis of fault effects and propagations in AVR
microcontroller ATmega103(L). In: International Conference on Availability, Reli-
ability and Security (ARES), pp. 166–172 (2009)

13. Taniguchi, K., Ishio, T., Kamiya, T., Kusumoto, S., Inoue, K.: Extracting sequence
diagram from execution trace of Java program. In: International Workshop on
Principles of Software Evolution, pp. 148–154. IEEE Computer Society (2005)

14. Yang, E.-H., Kieffer, J.C.: Efficient universal lossless data compression algorithms
based on a greedy sequential grammar transform—Part one: Without context mod-
els. IEEE Trans. on Information Theory 46(3), 755–777 (2000)

15. Zhang, X., Gupta, R.: Whole execution traces and their applications. ACM Trans.
Archit. Code Optim. 2(3), 301–334 (2005)

http://www.gzip.org

Hardware and Software Implementations

of Prim’s Algorithm for Efficient Minimum
Spanning Tree Computation

Artur Mariano1,�, Dongwook Lee2, Andreas Gerstlauer2, and Derek Chiou2

1 Institute for Scientific Computing
Technische Universität Darmstadt

Darmstadt, Germany
2 Electrical and Computer Engineering
University of Texas, Austin, Texas, USA
artur.mariano@sc.tu-darmstadt.de,

{dongwook.lee@mail,gerstl@ece,derek@ece}.utexas.edu

Abstract. Minimum spanning tree (MST) problems play an important
role in many networking applications, such as routing and network plan-
ning. In many cases, such as wireless ad-hoc networks, this requires ef-
ficient high-performance and low-power implementations that can run
at regular intervals in real time on embedded platforms. In this pa-
per, we study custom software and hardware realizations of one common
algorithm for MST computations, Prim’s algorithm. We specifically in-
vestigate a performance-optimized realization of this algorithm on recon-
figurable hardware, which is increasingly present in such platforms.

Prim’s algorithm is based on graph traversals, which are inherently
hard to parallelize. We study two algorithmic variants and compare their
performance against implementations on desktop-class and embedded
CPUs. Results show that the raw execution time of an optimized imple-
mentation of Prim’s algorithm on a Spartan-class Xilinx FPGA running
at 24MHz and utilizing less than 2.5% of its logic resources is 20% faster
than an embedded ARM9 processor. When scaled to moderate clock
frequencies of 150 and 250MHz in more advanced FPGA technology,
speedups of 7x and 12x are possible (at 56% and 94% of the ARM9
clock frequency, respectively).

Keywords: Prim’s algorithm, FPGA, Hardware acceleration, MST.

1 Introduction

The minimum spanning tree (MST) problem is as an important application
within the class of combinatorial optimizations. It has important applications
in computer and communication networks, playing a major role in network re-
liability, classification and routing [1]. In many application domains, such as
wireless and mobile ad-hoc networks (WANETS and MANETS), MST solvers

� This work was performed while Artur Mariano was at UT Austin.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 151–158, 2013.
c© IFIP International Federation for Information Processing 2013

152 A. Mariano et al.

have to be run online, demanding efficient, low-power, real-time implementations
on embedded platforms.

In this paper, we focus on hardware implementation of one particular, common
MST solver: Prim’s algorithm [2], which is used in several ad-hoc networks [3] for
topology calculation and other maintenance tasks, such as broadcasts, at both
initialization and run time. In particular, several maximum broadcast lifetime
(MBL) algorithms have been proposed in the past, all as derivatives of Prim’s
algorithm, running on a general directed graph [4]. In such applications, Prim’s
algorithm is typically applied to medium to large network models with signif-
icant complexity, e.g. in terms of the number of nodes. In order to adapt to
changing network conditions, the algorithm has to be executed in a distributed
fashion at regular intervals on each node. In mobile and battery-operated nodes,
cost, computational power and energy consumption are often critical resources,
and high performance and low power realizations are required. For this purpose,
platforms increasingly include reconfigurable logic to support hardware acceler-
ation of (dynamically varying) tasks. This motivates an FPGA implementation
of Prim’s algorithm, where our primary focus is initially on improved real-time
performance. To the best of our knowledge, there are currently no other studies
of custom hardware realizations of this algorithm.

The rest of the paper is organized as follows: Section 2 provides a brief re-
view of the theory behind Prim’s algorithm including related work. Section 3
discusses the FPGA realization of the algorithm, and Sections 4 and 5 present
the experimental setup and results. Finally, the paper concludes with a summary
and outlook in Section 6.

2 Prim’s Algorithm

Prim is a greedy algorithm that solves the MST problem for a connected and
weighted undirected graph. A minimum spanning tree is a set of edges that
connect every vertex contained in the original graph, such that the total weight
of the edges in the tree is minimized.

The algorithm starts at a random node of the graph and, in each iteration,
examines all available edges from visited to non-visited nodes in order to choose
the one with the lowest cost. The destination of the chosen edge is then added
to the visited nodes set and the edge added to the MST. The pseudo-code of the
algorithm is presented as Algorithm 1.

2.1 Performance Analysis

As with a majority of graph traversals, Prim’s algorithm has irregular memory
access patterns. In CPUs, this limits cache use and thus overall performance.
As such, the algorithm is memory-bound with low computational requirements,
and its performance is highly dependent on the organization of memory storage
and memory access patterns.

HW and SW Implementations of Prim’s for Efficient MST Computation 153

Algorithm 1: Standard Prim’s algorithm.

Input: A non-empty connected weighted graph G composed of vertexes VG and
edges EG, possibly with null weights;
Result: The minimal spanning tree in the finalPath array;
Initialization: VT = {r}, where r is a random starting node from V ;

while VT
= VG do
minimum ← ∞;
for Visited nodes s ∈ VT do

for all edges E(s,v) and v /∈ VT do
if Weight(E) ≤ minimum then

minimum ← Weight(E);
edge ← E;
newV isited ← v;

finalPath ← finalPath ∪ {edge};
VT ← VT ∪ {newV isited};

Depending on the used data structures, Prim’s algorithm can have differ-
ent asymptotic complexities. For common implementations using an adjacency
matrix, Prim’s complexity is O(V 2). For other implementations using adja-
cency lists with binary or Fibonacci heaps, the complexity reduces down to
O((V +E) log V) = O(E log V)) and O(E+V log V), respectively. This comes
at a higher fixed complexity per step with reduced regularity and exploitable
parallelism. Hence, we focus in our work on the most common form using
adjacency matrix based realizations.

2.2 Parallelism Analysis

Depending on the implementation of Prim’s algorithm, it can exhibit some par-
allelism. For realizations that use an adjacency matrix to represent the graph,
an improved implementation has been reported in [5], which is shown in Algo-
rithm 2. This second version uses a supplemental array d to cache every value if
it represents a cheaper solution than the ones seen so far, which allows lookups
for minimum paths to be done in parallel.

In [5], the authors have pointed out that the outer while loop in this second
implementation is hard to parallelize due to its inherent dependencies. However,
the other operations in the body of the loop, namely minimum edge cost lookups
(i.e. min-reduction steps) and updates of the candidate set can be processed in
parallel over different elements of the supplementary array d. However, min-
reduction operations have to take into account that values representing edges
E(s, d) in which s ∈ VT and d ∈ VT can not be considered.

154 A. Mariano et al.

Algorithm 2: Second implementation of Prim’s algorithm.

Input: A non-empty connected weighted graph G composed of vertexes VG and
edges EG, possibly with null weights;
Result: The minimal spanning tree in the d array;
Initialization: VT = {r} and d[r] = 0, where r is a random node from V ;

for v ∈ (V-VT) do
if E(r,v) then

d[v] ← Weight(E);
else

d[v] ← ∞

while VT
= VG do
Find a vertex u such that:
| d[u] =min{d(v) | v ∈ (V − VT)}

VT ← VT ∪ {u};
for all v ∈ (V − VT) do

d[v] ←min{d[v],Weight(u, v)};

2.3 Related Work

There are a number of implementations of Prim’s method on CPUs. Some
work has been done on parallel realizations targeting SMP architectures with
shared address space, growing multiple trees in parallel and achieving a reported
speedup of 2.64x for dense graphs [6]. Additionally, in [7] a distributed mem-
ory implementation, which supports adding multiple vertexes per iteration was
demonstrated using MPI. Next to CPU implementations, GPUs were also used
to compute Prim’s algorithm [8]. Such GPU implementations achieve only lim-
ited speedups of around 3x, highlighting the difficulties in implementing Prim’s
algorithm in an efficient and real-time manner. In [8], the authors argued that the
difficulty in parallelizing Prim’s algorithm is very similar to other SSSP (single
source shortest path) problems, like Dijkstra’s algorithm.

3 FPGA Implementation

We used high-level synthesis (HLS) to synthesize C code for the different Prim
variants down to RTL. We employed Calypto Catapult-C [9] to generate RTL,
which was further synthesized using Mentor Precision (for logic synthesis) and
Xilinx ISE (for place & route). Table 1 summarizes LUT, CLB, DFF and BRAM
utilizations over different graph sizes for both implementations. We have realized
the algorithm for graph sizes up to N = 160 nodes, where graphs are stored as
adjacency matrices with N ×N float values representing edge weights (and with
negative values indicating edge absence).

Within Catapult-C, we exploited loop unrolling and chaining only at a coarse
granularity, i.e. for the bigger outer loops. This allows a fair comparison with

HW and SW Implementations of Prim’s for Efficient MST Computation 155

Table 1. FGPA synthesis results

Graphs size 40 70 100 130 160

Algorithm 1

LUTs 1047 1044 1109 1425 1448
CLBs 523 522 554 712 724
DFFs 563 623 628 635 624
BRAMs 6 12 21 33 48

Algorithm 2

LUTs 1029 1145 1198 1368 1425
CLBs 514 572 599 684 712
DFFs 592 622 635 658 653
BRAMs 7 13 22 34 49

Table 2. Test platform specifications

Device CPUs FPGA

Manufacturer Intel ARM Xilinx
Brand Pentium M ARM 9 Spartan
Model T2080 926EJ-S 3
Max clock 1.73 GHz 266 MHz 400 MHz
Cores 2 1 -
System mem 2 Gbytes 32 Mbytes 1.8 Mbit
L1 Cache 32kB 16kB -
L2 Cache 4MB - -
Pipeline 12 stage 5 stage -
Year 2006 2001 2003
Launch price $134 $15.5 $3.5

CPUs, for which we did not realize manually optimized implementations. Ex-
ploited optimizations of the outer loops did not provide us with substantial per-
formance gains, while unrolling of loops did increase total area. Area increases
by 3 times for a 8x unrolling degree. We were not able to pipeline the loops due
to dependencies. The middle inner loop in Algorithm 1 has shown some small
performance improvements when unrolled, with no significant difference between
unrolling by 2, 4 or 8 times. Overall, the code did not exhibit significant benefits
when applying loop optimizations.

4 Experimental Setup

We tested the performance of Prim’s algorithm on 3 devices: a desktop-class
CPU, an embedded processor and a Xilinx FPGA. Characteristics of tested
platforms are summarized in Table 2. We evaluated algorithm performance on
all platforms in order to measure possible speedups when moving to the FPGA.

For FPGA prototyping, we utilized a development board that includes a
Freescale i.MX21 applications processor (MCU), which communicates with a
Xilinx Spartan 3 FPGA over Freescale’s proprietary EIM bus. The MCU con-
tains an integrated ARM9 processor running at 266MHz, an AMBA AHB bus
and an EIM module that bridges between the AHB and the EIM bus. The ARM9
runs an embedded Linux distribution with kernel version 2.6.16 on top of which
we implemented a testbench that feeds the FPGA with data and reads its out-
put. We utilized both polling and interrupt-based synchronization between the
ARM9 and the FPGA. On the FPGA side, we manually integrated Catapult-
generated RTL with a bus slave interface connection to the EIM bus, using a
custom developed EIM slave RTL IP module to receive and send data from/to
the CPU. Designs were synthesized to run at 24MHz on the FPGA. The bus
interface clock, on the other hand, was set to run at 65MHz.

Measurements of FPGA execution times have been made both including and
excluding communication overhead. To obtain total FPGA execution times, we
measured the time stamps between sending the first data item and receiving the
last result on the CPU side. This includes overhead for OS calls, interrupt han-
dling and EIM bus communication. In addition, we developed a VHDL/Verilog

156 A. Mariano et al.

testbench and performed simulations to determine the raw FPGA computation
time without any such communication overhead.

For our experiments, the algorithm ran on all platforms with fully-connected1

random graphs with orders (sizes) of up to 160 nodes (as determined by FPGA
memory limitations). When compiling the code for the CPUs, we did not perform
any manual tuning, solely relying on standard compiler optimizations using GCC
4.2.3 and GCC 4.5.2 for ARM9 and Pentium processors, respectively.

5 Results

Figure 1(a) shows total execution times of running Algorithm 1 for graphs with
up to 160 nodes on the Intel Pentium, the ARM9 and the FPGA. We report
execution times as the median of 5 measurements.

The Intel CPU clearly outperforms other devices. While a Pentium CPU is
neither common in embedded domains nor comparable to other platforms in
terms of price, we include its results as a baseline for reference.

Compared to the ARM9 processor, execution times on the FPGA are slightly
larger across all graph orders. However, in this setup, measured execution times
include communication overhead, which may limit overall FPGA performance.
On the other hand, computation and communication are overlapped in the
FPGA and computational complexities grow with the square of the graph size
whereas communication overhead only grows linearly. Coupled with the fact
that execution time differences between the ARM and the FPGA increase with
growing graph sizes, this indicates that communication latencies are effectively
hidden and clock frequency and/or hardware resources are limiting performance.

0

5

10

15

20

25

40 70 100 130 160

E
xe

cu
tio

n
Ti

m
e

(s
)

Graph Order

(a) Algorithm 1 (b) Algorithm 2

0

5

10

15

20

25

30

50 100 150 200 250 300 350 400 450 500

(c) Scaled Algorithm 2

Fig. 1. Total runtime and speedup of algorithms for graphs with up to 160 nodes

FPGA-internal storage sizes limit possible graph sizes to 160 nodes in our case.
This limitation could be overcome by taking advantage of matrix symmetries:
the same matrix could be represented with half of the data, enabling the study

1 Graphs with (k − 1)-connectivity with k = order.

HW and SW Implementations of Prim’s for Efficient MST Computation 157

of bigger inputs, e.g. to see if FPGAs could overcome the ARM9. However,
as previously mentioned, execution times are computation bound and relative
differences of both devices are growing for larger inputs. As such, extrapolating
would indicate that the FPGA will not be able to outperform the ARM9 even
for larger inputs.

To take advantage of FPGA strengths with increasing benefits for any addi-
tional parallelism available in the algorithm [10,11], we have tested the second
implementation of Prim’s algorithm on dedicated hardware. Figure 1(b) shows
the results of these experiments as measured on the FPGA and on the ARM9,
where FPGA performance is reported both with and without communication
overhead.

Algorithm 2 clearly performs better on both devices, with speedups of around
37.5x and 68.5x compared to Algorithm 1 for the ARM9 and FPGA, respectively.
Even though the FPGA can take more advantage of the second implementation’s
parallelism than the single-core ARM9, the ARM9 still outperforms the FPGA
in total execution time. However, when considering raw execution times without
communication overhead, the FPGA performs better.

In addition, overall FPGA performance of designs on our board is limited
to a maximum frequency of 24MHz. To extrapolate possible performance, we
scaled raw execution times for a graph with 160 nodes (requiring around 8.8 mil-
lion clock cycles) to other clock frequencies, as shown in Figure 1(c). Assuming
the bus interface is not a limiting factor, running the developed design on an
ASIC or better FPGA in a more advanced technology would result in theoretical
speedups of 5x and 10x for moderate clock frequencies of 100MHz and 200MHz,
respectively, as also shown by Figure 1(c). However, this would most likely also
come at increased cost, i.e. decreased price/efficiency ratios.

6 Summary and Conclusions

In this paper, we presented an FPGA implementation of Prim’s algorithm for
minimum spanning tree computation. To the best of our knowledge, this rep-
resents the first study of realizing this algorithm on reconfigurable hardware.
Prim’s algorithm plays a major role in embedded and mobile computing, such
as wireless ad hoc networks, where FPGAs may be present to support hardware
acceleration of performance-critical tasks. We followed a state-of-the-art C-to-
RTL methodology using HLS tools to synthesize a high-level C description of
two algorithmic variants down to the FPGA, with high performance being the
primary goal. On our Spartan 3 FPGA with 66,560 LUTs, 33,280 CLB slices and
68,027 DFFs, our designs utilizes less than 2.5% of each type of logic resource.

Our results show that, considering total wall-time for any of the tried im-
plementations, our unoptimized FPGA implementation running at a low clock
frequency dictated by the bus interface reaches about the same performance as
an implementation running on an embedded ARM core. However, in terms of
raw computation cycles without any communication or OS overhead, the FPGA
design achieves a speedup of ≈1.21. Using more advanced FPGA technology,

158 A. Mariano et al.

with a different device, running at a moderate frequency of 150MHz (55% of
the ARM9’s 266MHz frequency), speedups of around 7.5x should be achievable.
Compared to gains of 2.5-3x achieved on multi-core CPUs or GPUs, such an
FPGA implementation can achieve better performance at lower cost and power
consumption.

Prim’s algorithm in its default implementations is limited in the available par-
allelism. In future work, we plan to investigate opportunities for further algorith-
mic enhancements specifically targeted at FPGA and hardware implementation,
e.g. by speculative execution or by sacrificing optimality of results for better
performance.

Acknowledgments. Authors want to thank UT Austin|Portugal 2011 for en-
abling this research collaboration (www.utaustinportugal.org).

References

1. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.
IEEE Ann. Hist. Comput. 7(1), 43–57 (1985)

2. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technology Journal 36, 1389–1401 (1957)

3. Benkic, K., Planinsic, P., Cucej, Z.: Custom wireless sensor network based on
zigbee. In: 49th Elmar, Croatia, pp. 259–262 (September 2007)

4. Song, G., Yang, O.: Energy-aware multicasting in wireless ad hoc networks: A
survey and discussion. Computer Communications 30(9), 2129–2148 (2007)

5. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to parallel computing:
design and analysis of algorithms, 2nd edn. Addison-Wesley (2003)

6. Setia, R., Nedunchezhian, A., Balachandran, S.: A new parallel algorithm for min-
imum spanning tree problem. In: International Conference on High Performance
Computing (HiPC), pp. 1–5 (2009)

7. Gonina, E., Kale, L.: Parallel Prim’s Algorithm with a novel extension. PPL Tech-
nical Report (October 2007)

8. Wang, W., Huang, Y., Guo, S.: Design and Implementation of GPU-Based Prim
Algorithm. International Journal of Modern Education and Computer Science
(IJMECS) 3(4), 55 (2011)

9. Bollaert, T.: Catapult Synthesis: A Practical Introduction to Interactive C Synthe-
sis High-Level Synthesis. In: Coussy, P., Morawiec, A. (eds.) High-Level Synthesis,
pp. 29–52. Springer Ned., Dordrecht (2008)

10. Singleterry, R., Sobieszczanski-Sobieski, J., Brown, S.: Field-Programmable Gate
Array Computer in Structural Analysis: An Initial Exploration. In: 43rd
AIAA/AMSE/ASCE/AHS Structures, Structural Dynamics, and Materials Con-
ference, pp. 1–5 (April 2002)

11. Ornl, W.Y., Strenski, D., Maltby, J.: Performance Evaluation of FPGA-Based Bi-
ological Applications Olaf. Cray Users Group, Seattle (2007)

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 159–170, 2013.
© IFIP International Federation for Information Processing 2013

A Passive Monitoring Tool for Evaluation of Routing
 in WirelessHART Networks

Gustavo Kunzel1, Jean Michel Winter1, Ivan Muller1, Carlos Eduardo Pereira1,
and João Cesar Netto2

1 Federal University of Rio Grande do Sul, Electrical Engineering Dept., Porto Alegre, Brazil
{gustavo.kunzel,jean.winter,ivan.muller}@ufrgs.br,

cepereira@ece.ufrgs.br
2 Federal University of Rio Grande do Sul, Informatics Dept., Porto Alegre, Brazil

netto@inf.ufrgs.br

Abstract. Wireless communication networks have received strong interest for
applications in industrial environments. The use of wireless networks in
automation systems introduces stringent requirements regarding real-time
communication, reliability and security. The WirelessHART protocol aims to
meet these requirements. In this protocol, a device known as Network Manager
is responsible for the entire network configuration, including route definition
and resource allocation for the communications. The route definition is a
complex process, due to wireless networks characteristics, limited resources of
devices and stringent application requirements. This work presents a tool that
enables the evaluation of the topology and routes used in operational Wireles-
sHART networks. By capturing packets at the physical layer, information of
operating conditions is obtained, where anomalies in network topology and
routes can be identified. In the case study, a WirelessHART network was dep-
loyed in a laboratory, and by the developed tool, important information about
the network conditions was obtained, such as topology, routes, neighbors, su-
perframes and links configured among devices.

Keywords: WirelessHART, Wireless industrial networks, Routing.

1 Introduction

The deployment of wireless networks in real-world control and monitoring applica-
tions can be a labor-intensive task [1]. Environmental effects often trigger bugs or
degrade performance in a way that cannot be observed [2]. To track down such prob-
lems, it is necessary to inspect the conditions of network after devices deployment.
The inspection can be complex when commercial equipment is used in applications. It
can be difficult to gather specific information about the performance of the network,
according to the limited visibility provided by the equipments.

Wireless networks has stringent requirements on reliable and real-time communi-
cation [3, 22] when used in industrial control applications. Missing or delaying the
process data may severely degrade the control quality. Factors as signal strength vari-
ations, node mobility and power limitation may interfere on overall performance.

160 G. Kunzel et al.

Recently, the International Electrotechnical Commission certified the WirelessHART
(WH) protocol as the first wireless communication standard for process control [4]. The
good acceptance of the protocol by the industry has ensured the developing of different
devices that meet the standard from several manufacturers. However, it can be seen that
there is still a great lack of computational tools that allow a clearer examination of the
behavior and characteristics of these networks and devices [5]. Many of these tools
become essential as soon as the full operation of the network depends and varies accord-
ing to the aspects of the environment as well as the distribution of devices.

The WH network enables mesh topologies, where all the devices have the task of
forwarding packets to and from other devices. The Network Manager (NM) has the
task of gather information about devices neighbors, network conditions and
communication statistics. Based on this info, the NM defines the routes used for
communication. The evaluation of the routes used may help user to improve network
performance and identify problems, as well as device characteristics.

Several works address the collection of diagnosis information for wireless net-
works, utilizing active and passive mechanisms [2, 6-7, 17-24]. Active mechanisms
involve instrumentation of the network devices with monitoring software. Passive
mechanisms utilize sniffers that overhear the packets exchanged on the physical layer
[6]. The passive method has advantages, as no interference is added to the network.
However, related works do not address specific issues about the passive monitoring of
WH packets. WH utilizes an authentication/encryption mechanism to provide secure
communication, so the tool must keep track of information to correctly decode the
packets and obtain decrypted data. Commercial tools provide means for collecting
and decoding WH packets, but the results are shown in a spreadsheet format, making
the analysis of data a labor-intensive task.

This work discusses the development of a passive monitoring software tool for
evaluation of topology and routes used in WH networks, with a specific architecture
to deal with the security information of the protocol. The user can input collected log
files or implement a communication directly with sniffers, allowing online and offline
analysis methods. Once received, the packets are decoded, an overview of the net-
work is built and by means of statistics, charts, lists, graphs, and other information
about the network is shown, helping the user on different evaluations of the network.

The paper is structured as follows. Diagnosis approaches for wireless sensor net-
works are presented in Section 2. Section 3 presents a short brief of WH and the pro-
tocol packet structure and routing mechanisms. Section 4 presents the tool structure.
Section 5 presents a case study using the tool in a WH network. The conclusion and
the future works are presented in Section 6.

2 Related Work

The diagnosis of wireless networks can be achieved in an active or passive fashion.
The active mechanism involves the instrumentation of the nodes with monitoring
software for capturing of diagnostic information. The active approaches require nodes
to transmit specific messages to diagnosis tools using the communication channel or

 A Passive Monitoring Tool for Evaluation of Routing in WirelessHART 161

an alternative back channel [17-20]. This method may overload the normal network
communication. A back channel is also not usually available on the devices and on
the field. Scarce sensor resources (bandwidth, energy, constrained CPU and memory)
may also affect the performance of this kind of diagnosis and change the behavior of
the network [2]. The passive approaches in [2], [6], [21-24] utilize sniffers to overhear
packets exchanged by the nodes, to form an overview of the network. This approach
does not interfere on the network, as no additional bandwidth is required for diagnos-
tic information transfer and no processing and energy power is used in the devices for
diagnosis purposes [2]. On the other hand, the passive method is subjected to packet
loss, caused by interference, collision and coverage of sniffers. Solutions for the snif-
fer’s deployment problem are proposed in [22]. The hardware for the sniffers is not
addressed in this work.

The software architectures for captured packets evaluation of IEEE 802.15.4 are
proposed in [2], [6] and [24]. These works propose a generic architecture for collect-
ing, merging, decoding, filtering and visualizing data. However, these approaches do
not have mechanisms to deal with protocols that contain security and encryption like
WH. Wi-Analys [7] is a commercial tool that provides means for collecting and de-
coding packets captured from WH networks, but the visualization of results is done in
a spreadsheet format, what difficult the analysis of the information.

3 The WirelessHART Protocol

The WH standard is part of version 7 of the HART specification [8-9]. It features a
secure network and operates on the 2.4 GHz ISM (Industrial, Scientific and Medical)
radio band. The physical layer is based on the IEEE 802.15.4 standard in which direct
sequence spread spectrum is employed [10]. A WH network supports a variety of
devices, including field devices, adapters, portable devices, access points, network
manager and a gateway to connect to a host application. The protocol allows multiple
access and media arbitration by means of Time Division Multiple Access (TDMA)
[11]. The links among devices are programmed and allocated in different time slots
by the NM. The NM continuously adapts the routing and schedule due to changes in
network topology and demand for communication [12]. The following subsections
present the ISO/OSI layers of the protocol.

3.1 Data-Link Layer

The Data-Link Layer is responsible for secure, reliable, error free communication of
data between WH devices [13]. The communications are performed in 10 ms time-
slots, where two devices are assigned to communicate. A communication transaction
within a slot supports the transmission of a Data-Link Protocol Data Unit (DLPDU)
from a source, followed by an acknowledgment DLPDU by the addressed device. To
enhance reliability, channel-hopping mechanism is combined with TDMA. DLPDU
structure is presented in Fig. 1.

162 G. Kunzel et al.

The CRC-16 ITU-T [14] is used for bit error detection and AES-CCM* [15] is
used for message authentication. Authentication uses the WH Well-Known Key for
advertisement DLPDUs and messages of joining devices. Other communications use
the Network Key (provided by the NM when a device is joining the network). The
Nonce used is a combination of the Absolute Slot Number (ASN) and the source ad-
dress of the packet. ASN counts the total number of slots occurred since network’s
birth, and is known by devices through the advertise packets. Five types of DLPDU
packets are defined: Advertisement, Acknowledge, Data, Keep-Alive and Disconnect.

Fig. 1. DLPDU structure

3.2 Network Layer

The Network Layer provides routing, end-to-end security and transport services. Data
DLPDU packets contain in its payload a Network Layer Protocol Data Unit (NPDU),
shown in Fig. 2. The NPDU contains three layers: Network Layer, with routing and
packet time information, Security Layer that ensures private communication and
enciphered payload, containing information being exchanged over network [16].

Fig. 2. NPDU structure

The AES-CCM* is also used for authentication of NPDU and decryption of the en-
ciphered payload. The Join Key is used for devices joining the network. The Session
Keys (provided by the NM when a device is joining the network) are used in other
communications (between Device and Gateway, Device and NM). The Counter field
of the Security Layer provides information for the Nonce reconstruction.

Three routing mechanisms are provided in the standard and are described below.

Graph Routing. A graph contains paths that connect different devices on the net-
work. The NM is responsible for creating the graphs and configuring them on each
device through transport layer commands [3]. A graph shows a set of direct links
between source and final destination and can provide also redundant paths. To send a
packet using this method, the source device of packet writes the specific Graph ID
number in the NPDU header. All devices on the path must be preconfigured with
graph information that specifies the neighbors to which packets may be forwarded.

 A Passive Monitoring Tool for Evaluation of Routing in WirelessHART 163

Source Routing. The source routing provides one single directed path between
source and destination device. A list of devices that the packet must travel is statically
specified in the NPDU header of the packet [12]. This method does not require
configuration of graphs and routes in the devices.

Superframe Routing. In this method, packets are assigned to a specific superframe
and the device sends the message according to the identification of the superframe.
The forwarding device selects the first available slot in the superframe, and sends the
message. So, the superframe must have links that leads packet to its destination. Iden-
tification of the superframe routing is done in the NPDU header using the Graph ID
field. If the field value is less than 255, then routing is done using superframe. If the
value is 256 or more, then routing is done via graphs. A combination of superframe
routing and the source routing is also allowed. In this case, the packet is forwarded
through the source list with slots configured inside the specified superframe.

3.3 Transport Layer

The Transport Layer provides means to ensure end-end packet delivery, device status
and one or more commands. Enciphered payload of the Security Layer contains a
Transport Layer Protocol Data Unit (TPDU). Fig. 3 shows the structure of the TPDU
packet.

Fig. 3. TPDU structure

4 Routing Monitoring Tool Structure

The structure of the proposed tool is presented in Fig. 4. The tool provides meanings
for capturing and decoding captured data, obtaining network information and
visualizing routes configured in the devices.

4.1 Capture

The capture of the packets exchanged by nodes is carried out in a passive way by
installing one or more sniffers within the area of network. The sniffers add also a
timestamp to the captured packets. The deployed sniffers may not be able to hear all
packets that occur in network. Reasons involve radio sensitivity, positioning and
noise. A partial coverage of the network can meet the requirements of some types of
analysis for the WH protocol. This approach has the advantage of limiting the amount
of data processed in later steps. Further information about sniffers deployment can be

164 G. Kunzel et al.

Capture

Field
Device

Sniffer

DecoderNetwork Trace

Get topology
and routes

Visualization

Fig. 4. Monitoring tool structure

found in [22]. For routing evaluation, sniffers may be deployed close to the Access
Points, where all the management data to and from NM passes by.

An important factor to be observed in the diagnostic of WH protocol is the com-
munication on multiple channels [13], requiring sniffers to be able to monitor the 16
channels simultaneously. Other issue is that the use of multiple sniffers introduces the
need of a synchronization mechanism, since packets may be overheard in different
sniffers who have a slightly different clock [2]. A merging process is necessary to
combine several sniffers captures in a single trace, ordered according to the timestamp
of packets. The merging methods can be found in [2], [6], and [21].

In order to keep the flexibility of the tool, the Capture Block has an interface for
input of data from different sources, such as simulators, capture log files, or direct
connection with sniffers. The received data is added in a queue to be processed.

4.2 Decoder

The Decoder Block aims to convert a packet from raw bytes to structured message
description, according to the ISO/OSI model of WH. At the end of this process, the
contents of the packets are interpreted to get information about network conditions.
The decoding process is complex due the AES-CCM*, which requires that informa-
tion about the keys and counters are obtained and stored. The main blocks of the de-
coder are shown in Fig. 5 and described below. Before execution, user must provide
the system with the Network ID and Join Key to enable the decoder to obtain infor-
mation needed for further authentication and decryption.

 A Passive Monitoring Tool for Evaluation of Routing in WirelessHART 165

Network
Trace

Network keys and ASN

AES-CCM* NPDU
Decryption

Session keys and counters

NPDU construction

TPDU construction and
list of application
layer commands

Is data
DLPDU?

Yes

No

Decoded packet
list

Application layer commands

Packet conversion
from bytes to a

DLPDU

AES-CCM* DLPDU
Authentication

Receive captured
packet

Fig. 5. Packet decoding sequence

Initially, the raw bytes of the packet are converted to its specific type of DLPDU.
The packets with wrong CRC-16 and wrong header are identified. Once structured,
the DLPDU packets that do not belong to the Network ID provided are identified.

Network Trace. The Network Trace Block provides the necessary information to the
decoder for authentication and decryption of packets. It also holds information dis-
covered of the network (e.g. devices, superframes and links). Depending on the cov-
erage of the sniffers, the data stored in the Network Trace may be similar to the data
stored in the NM, which have full information about the network operation. For each
new message authenticated or decrypted, the Network Trace must be updated in order
to maintain updated information of the keys, counters and network. Authentication
and decryption of some packets may be compromised, as result of missing keys due to
packet loss. The user should be aware of this issue when evaluating the network.

For authenticating the DLPDUs, the Network Trace must keep trace of the current
ASN of the network, using an advertise packet captured. While the ASN of the net-
work is not provided, authentication and further processes are compromised. The
DLPDU must be authenticated in order to verify its integrity. The Message Integrity
Code (MIC) field of the DLPDU is compared with the MIC obtained applying the
AES-CCM* algorithm on the raw bytes of the DLPDU. The Network Trace Block

166 G. Kunzel et al.

keeps track of the Well-Known Key and the Network Key. The Network Key is
obtained during the join process of a device.

Once authenticated, the Network Trace is updated with the last ASN used and with
the packet timestamp. The Data DLPDUs are decoded on the NPDU layer, while the
other types of DLPDUs are sent to the Fill Message block. Another issue involves the
decryption of the NPDUs. To do the decryption, sniffers must hear the join process of
the device, where the Session Keys provided by the NM are obtained. Without these
keys the system is not able to decrypt the contents of the Security Layer messages.
For Data DLPDUs, the payload contained in the Security Layer of the NPDU is
decrypted, using the Join Key or the specific Device’s Session Keys and Session
Counters.

Once decrypted, the packet is decoded in the transport layer, where a TPDU is
generated. The Network Trace interprets the commands contained in the TPDU in
order to maintain an updated view of the network, with Network Keys, Sessions, Su-
perframes, Links, Device’s Timers, Services, and further information. A list of
all decoded packets is generated in order to allow filtering of messages in future
applications of the tool.

4.3 Topology and Routes

The information discovered and stored in Network Trace is used to build an updated
view of the network topology and the routes used. Network neighbor’s information is
used to build the topology of the network. The routes used for packet propagation are
obtained based on the graphs, superframes and routes configured on each device.
A graph representing each route is built for further analysis.

4.4 Visualizer

The topology and the discovered routes are summarized by the Visualizer Block to be
easily interpreted by the user. Representations such statistics, charts and graphs can be
used for analysis. Information contained in the Network Trace about the devices and
network also may be displayed.

5 Case Study

In order to evaluate the tool, we deployed a WH network in a laboratory environment.
The network consisted of the following devices: a Network Manager, an Access Point
and a Gateway (Emerson model 1420A), nine WH-compatible field devices devel-
oped in previous work [26] and a Wi-Analys Network Analyzer Sniffer, from Hart
Communication Foundation. Fig. 6a shows the WH-compatible devices and Fig. 6b
the sniffer.

 A Passive Monitoring Tool for Evaluation of Routing in WirelessHART 167

Fig. 6. WH compatible devices (a) and sniffer (b)

The data collected from sniffer was stored in a log file and later loaded in the tool.
Packets were captured during a period of 120 minutes since network’s birth. The snif-
fer was deployed close to the access point to get overall information of network. Fig.
7 shows a representation of the network.

Network
Manager/
Gateway

Field
Devices

Sniffer

Log Computer

Fig. 7. Deployed network representation

The following subsections present analysis of the network behavior obtained with
the captured packets. Before loading the file in the developed tool, we provided the
Join Key (0x12345678000000000000000000000000) and Network ID (0001) of
devices. The sensor devices publish their process variable each minute.

5.1 Network Topology Evaluation

The current topology of network is evaluated to find devices that may be bottlenecks
for transferring data and devices with weak connections to neighbors. A graph is built
showing discovered neighbors and the Received Signal Level (RSL) of packets over-
heard from neighbors. Fig. 8 shows the current graph when analysis reaches the end
of log file. As observed, the connectivity of the network is high, as devices can hear
almost all other neighbors. Blue circle represents the Access Point of the network.

168 G. Kunzel et al.

Fig. 8. Network topology graph

5.2 Routes used for Devices to Propagate Data to Access Point

The routes configured in the devices were used as basis to reconstruct information of
graphs and paths of the network. Based on the information stored in the Network
Trace, our tool has identified that the NM uses superframe routing. Superframe 0 has
the uplink graph [3], used to forward data towards the access point. Superframe 1
contains the broadcast graph that is used by NM to send packets to all devices through
a combination of source routing and superframe routing.

Fig. 9. Uplink graph contained in Superframe 0

 A Passive Monitoring Tool for Evaluation of Routing in WirelessHART 169

6 Conclusion and Future Work

The use of wireless networks in industrial control and monitoring applications can
present performance problems due to several factors. To track down such problems, it
is necessary to inspect the network and nodes conditions after the deployment.

In this paper we present a software tool for inspection of routing in WH networks.
Capture of information is done in a passive way by sniffers. The captured packets are
used to build an overview of network topology and routes used in communications.
Visualization of obtained information is done via graphs, charts and lists.

The study case has shown that tool can provide important information about the
network conditions, and can help user to identify problems and understand the
protocol and devices characteristics. User must be aware that packet loss caused by
sniffers may affect the analysis.

On ongoing work, we are using this tool to analyze a WH deployment in an indus-
trial application, to verify different aspects of network topology and routing strategies
used in WH equipment. Information analyzed shall be used for improvements on
devices and on Network Manager routing and scheduling algorithms, to better adjust
the network performance for desired applications. The developing of enhanced
algorithms for routing and scheduling in WirelessHART networks is still a necessity.

References

1. Tateson, J., Roadknight, C., Gonzalez, A., Khan, T., Fitz, S., Henning, I., Boyd, N.,
Vincent, C., Marshall, I.: Real World Issues in Deploying a Wireless Sensor Network for
Oceanography. In: Proceedings of Workshop on Real-World Wireless Sensor Networks
(REALWSN 2005), Stockholm (2005)

2. Ringwald, M., Römer, K.: Deployment of Sensor Networks: Problems and Passive Inspec-
tion. In: Proceedings of the 5th Workshop on Intelligent Solutions in Embedded Systems
(WISES 2007), Madrid, pp. 180–193 (2007)

3. Han, S., Zhu, X., Mok, A.K., Chen, D., Nixon, M.: Reliable and Real-Time Communica-
tion in Industrial Wireless Mesh Networks. In: Proceedings of 17th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2011), Chicago, pp. 3–12
(2011)

4. HART Communication Foundation, http://www.hartcomm.org/protocol/
wihart/wireless_technology.html (accessed September 2012)

5. Winter, J.M., Lima, C., Muller, I., Pereira, C.E., Netto, J.C.: WirelessHART Routing
Analysis Software. In: Computing System Engineering Brazilian Symposium (SBESC
2011), Florianopolis, pp. 96–98 (2011)

6. Yu, D.: DiF: A Diagnosis Framework for Wireless Sensor Networks. In: IEEE Conference
on Computer Communications (INFOCOM 2010), San Diego, pp. 1–5 (2010)

7. Han, S., Song, J., Zhu, X., Mok, A.K., Chen, D., Nixon, M., Pratt, W., Gondhalekar, V.:
Wi-HTest: Compliance Test Suite for Diagnosing Devices in Real-Time WirelessHART
Network. In: Real-Time and Embedded Technology and Applications Symposium (RTAS
2009), San Francisco, pp. 327–336 (2009)

170 G. Kunzel et al.

8. Kim, A.N., Hekland, F., Petersen, S., Doyle, P.: When HART Goes Wireless: Understand-
ing and Implementing the WirelessHART Standard. In: IEEE International Conference on
Emerging Technologies and Factory Automation, Hamburg, pp. 899–907 (2008)

9. Song, J., Mok, A.K., Chen, D., Nixon, M., Blevins, T., Wojsznis, W.: Improving pid con-
trol with unreliable communications. In: ISA EXPO Technical Confererence, Houston
(2006)

10. IEEE 802.11, http://grouper.ieee.org/groups/802/11/ (accessed July
2012)

11. Rappaport, T.S.: Wireless Communications – Principles & Practice. Prentice Hall Com-
munications Engineering and Emerging Technologies Series, New York (1996)

12. Chen, D., Nixon, M., Mok, A.: WirelessHART: real-time mesh network for industrial au-
tomation. Springer, England (2010)

13. HART Communication Foundation, HCF SPEC 075, Rev. 1.1 (2008)
14. Simpson, W.: http://www.faqs.org/rfcs/rfc1549.html (accessed July 2012)
15. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CCM Mode

for Authentication and Confidentiality. National Institute of Standards and Technology.
Special Publication 800-38C (2004)

16. HART Communication Foundation, HCF SPEC 085, Rev. 1.2. (2009)
17. Srinvasan, K., Kazandjieva, M.A., Jain, M., Kim, E., Levis, P.: SWAT: Enabling Wireless

Network Measurements. In: ACM 8th Conference on Embedded Networked Systems
(SENSYS 2008), Raleigh (2008)

18. Maerien, J., Agten, P., Huygens, C., Joosen, W.: FAMoS: A Flexible Active Monitoring
Service for Wireless Sensor Networks. In: Göschka, K.M., Haridi, S. (eds.) DAIS 2012.
LNCS, vol. 7272, pp. 104–117. Springer, Heidelberg (2012)

19. Rost, S., Balakrishnan, H.M.: A Health Monitoring System for Wireless Sensor Networks.
In: Sensor and Ad Hoc Communications and Networks (SECON 2006), pp. 575–584
(2006)

20. Ramanathan, N., Kohler, E., Girod, L., Estrin, D.: Sympathy: a debugging system for sen-
sor networks. In: IEEE 29th Annual International Conference on Local Computer Net-
works, Tampa, pp. 554–555 (2004)

21. Chen, B.-R., Peterson, G., Mainland, G., Welsh, M.: LiveNet: Using Passive Monitoring to
Reconstruct Sensor Network Dynamics. In: Nikoletseas, S.E., Chlebus, B.S., Johnson,
D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 79–98. Springer,
Heidelberg (2008)

22. Zeng, W., Chen, X., Kim, Y.A., Bu, Z., Wei, W., Wang, B., Shi, Z.J.: Delay monitoring
for wireless sensor networks: An architecture using air sniffers. In: IEEE Conference on
Military Communications (MILCOM 2009), Boston, pp. 1–8 (2009)

23. Depari, A., Ferrari, P., Flammini, A., Lancellotti, M., Marioli, D., Rinaldi, S., Sisinni, E.:
Design and performance evaluation of a distributed WirelessHART sniffer based on
IEEE1588. In: International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication (ISPCS 2009), Brescia, pp. 1–6 (2009)

24. Ban, S.J., Cho, H., Lee, C.W., Kim, S.W.: Implementation of IEEE 802.15.4 Packet Ana-
lyzer. In: International Conference on Computer, Electrical, and Systems Science, and En-
gineering (CESSE 2007), Bangkok, pp. 346–349 (2007)

25. Choong, L.: Multi-Channel IEEE 802.15.4 Packet Capture Using Software Defined Radio.
M.S. thesis, UCLA (2009)

26. Muller, I., Pereira, C.E., Netto, J.C., Fabris, E.C., Algayer, R.: Development of Wireles-
sHART Compatible Field Devices. In: IEEE Instrumentation and Measurement Technolo-
gy Conference, Austin, pp. 1430–1434 (2010)

Automated Identification of Performance

Bottleneck on Embedded Systems
for Design Space Exploration

Yuki Ando1, Seiya Shibata1,�, Shinya Honda1,
Hiroyuki Tomiyama2, and Hiroaki Takada1

1 Nagoya University, Nagoya, Japan
2 Ritsumeikan University, Kusatsu, Japan

Abstract. Embedded systems usually have strict resource and perfor-
mance constraints. Designers often need to improve the system design
so that the system satisfies those constraints. In such case, performance
bottlenecks should be identified and improved effectively. In this paper,
we present a method to identify performance bottlenecks. Our method
automatically identifies not only the bottlenecks but also a list of im-
provement rates of bottlenecks that is necessary for the system to sat-
isfy design constraints. With the list of improvement rates, designers
easily consider how to improve the bottlenecks. A case study on AES
encryption and decryption application shows effectiveness of our method.

1 Introduction

As the functionality of embedded systems has increased, they are required more
and more computation. Some processes representing the functions of the sys-
tems are implemented in dedicated hardware so that the system accelerates their
computation. On the other hand, implementing processes in dedicated hardware
causes to increase hardware area. For embedded systems, it is important to
satisfy design constraints such as execution time and hardware area. So sys-
tem designers are facing a problem that they have to efficiently find a system
configuration satisfying the design constraints.

Figure 1 shows an example of design flow for embedded systems with dedicated
hardware. It starts from changing software description to software/hardware
(SW/HW) mixed description. Then, designers conduct exploration of SW/HW
partitioning. During the exploration of SW/HW partitioning, system designers
try to find a mapping that satisfies design constraints by changing the allocation
of processes. In the past, design tools have been developed in order to efficiently
explore SW/HW partitioning [1,2].

After the exploration of SW/HW partitioning, the designers have to check
whether a mapping satisfies all design constraints because exploration of SW/HW
partitioning may not find a mapping that satisfies the design constraints.

� Presently with NEC Corporation.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 171–180, 2013.
c© IFIP International Federation for Information Processing 2013

172 Y. Ando et al.

Redesing (by designers)
- changing design description
- changing implementation for HW

Yes

No

Consideration of improvement
(by designers without clues)

Bottleneck identification
(by designers with
analysis methods)

SW/HW partitioning
(by exploration algorithm)

- changing only mappings

Initial design
(by designers)

- changing SW description to
SW/HW mixed description

Judgement
- does the system satisfy the

design constraints?

End of design

Existing method
Consideration of improvement

(by designers with clues
(IRs on bottleneck processes))

Exploration of
IRs on bottleneck processes

(by algorithm)
- includes bottleneck identification

This work

A list of IRs on
bottleneck processes

Exploration
with different

conditions

Fig. 1. Entire design flow

For example, a mapping satisfies design constraint of hardware area but may
not satisfy that of execution time. From this mapping, changing an allocation
of a process from SW to HW makes execution time faster. However, it brings
bigger hardware area. As the result, new mapping satisfies design constraint of
execution time but may not satisfy that of hardware area. Thus, exploration of
SW/HW partitioning does not always find a mapping that satisfies all design
constraints. In such case, designers need improve the design description.

There are two big problems to improve the design description. First problem
is identification of bottlenecks on the system. In the existing design method, de-
signers identify the bottlenecks using analysis tools. Fei et al. divided execution
logs into particular behavior groups and analyze the behavior groups[3]. Valle et
al. proposed a method to make logging of system performance easy[4]. Second
problem is identification of improvement rates (IRs) of bottlenecks. With existing
design methods, designers have to identify how much they have to improve bot-
tlenecks to satisfy design constraints. Then, they consider how to change design
description to improve the system performances. The existing design methods
waste time of designers to improve design description.

In this paper, we propose a method to automatically identify not only bottle-
necks but also a list of IRs of bottlenecks that are necessary to satisfy the design
constraints. With our method, designers no longer identify how much they have
to improve the bottlenecks because our method automatically takes care of that.
It is ideal for designers to know the essential IRs on bottlenecks. In addition, our
method lists up several candidates to improve the systems. Thus, our method
brings shorter time to identify the IRs of bottlenecks, and designers can take
more time to consider various ways to improve the system description.

Our main contribution is a method to explore the IRs on bottlenecks. In
addition, our method explores IRs for not only execution time but also hardware
area. A case study on AES shows the effectiveness of our method.

Automated Identification of Performance Bottleneck 173

Process
Channel

MEM/FIFO/REG

CPU1

RTOS

HWM

MEM/FIFO/REG

REG/MEM
Shared
Mem
C1 Slave I/F

top

CPU2

RTOS
EncF

EncL

C3

C2

HWM
DecF

C4

HWM

REG/MEM

DecL

C5Dedicated
HW

EncF

EncLDecF

DecL C2

C1

C3

C4

C5

top

Application model Target architecture and an example of mapping

Fig. 2. An example of application model (AES) and target architecture

2 Application Model and Target Architecture

Fig.2 shows an example of application (AES encryption and decryption) model
on left side. Application model describes a set of processes running concurrently
and channels representing communications among processes. This kind of models
is common for design tools such as ARTEMIS[5] and Metropolis[6].

Right side of Fig.2 depicts an example of our target architectures. It also
shows an example of mappings (top and EncF are allocated to SW, and the
others are allocated to HW) for AES encryption and decryption model. The fig-
ure shows typical architecture and mapping of system-on-a-chip. The processors
(CPU) are assumed to be homogeneous, and the number of processors must be
greater than or equal to one. Processors, dedicated hardware, and shared mem-
ory are connected through a standard on-chip bus. The processes allocated to
SW are implemented onto processors as RTOS tasks. Those allocated to HW
are implemented onto hardware modules (HWMs) in the dedicated hardware.

Memory is shared for communication among the processors (C1). For com-
munication between the processors and hardware modules, memory (MEM) and
the register (REG) are generated in HWMs (C2, C5). They are accessed from
processors through a standard on-chip bus and the slave interface. HWMs can
communicate with each other directly through the exclusionary FIFO, MEM,
and REG (C3, C4). Thus, the architecture allows processors and hardware
modules to communicate directly through a bus, memory, and the interfaces.

3 Exploration of Improvement Rate on Bottleneck
Process

3.1 Definition of Bottleneck Process

In this paper, a process X is defined as a bottleneck process if reducing the
execution time of process X shortens entire execution time of system without
any change of mapping.

Figure 3 shows an example of bottleneck processes. The example has four
processes. The original execution time of processes A, B, C, and D are 300,
400, 100, and 700, respectively. Processes A, B, C are mapped to a processor

174 Y. Ando et al.

A B
D

CCPU
HW

HW

800
time0

CPU A' B
D

C
x0.7

Exe. of process A is reduced by 30% (A')

Original

A B'
D'

C
x0.6

x0.9

※Exe. indicates execution time [time unit]
 Area indicates hardware area [area unit]

HW
CPU

Estimation of
execution time/
hardware area

with IR

710

640

Case I: A is bottleneck process

Case II:
B & D are bottleneck processes

B
30 --- --- ---

CA D
IR for Exe. [%]

B
--- --- --- ---

CA D
IR for Area [%]

B
--- 40 --- 10

CA D
IR for Exe. [%]

B
--- --- --- 5

CA D
IR for Area [%]

Exe. of process B is reduced by 40% (B')
Exe. of process D is reduced by 10% (D')
Area of process D is reduced by 5% (D')

Process B
300 400Exe. 100 700

CA D

--- ---Area --- 200

Process B
210 400Exe. 100 700

CA' D

--- ---Area --- 200

Process B'
300 240Exe. 100 630

CA D'

--- ---Area --- 190

Estimation of
execution time/
hardware area

with IR

Fig. 3. An example of IRs and bottleneck processes.

(CPU) and process D is mapped to hardware module (HW). The original entire
execution time is 800 as shown on the right side of the figure.

Case I shows that process A is a bottleneck process. The execution time of A
is assumed to be 210 (A’), that is 70% of process A. The entire execution time
of Case I is reduced to 710 because execution time of A’ is applied. Reducing
the execution time of process A causes to shorten the entire execution time.
Therefore, process A is a bottleneck process under our definition.

With our definition, several processes may become bottleneck processes at
the same time as shown Case II. The entire execution time also becomes shorter
than original one when the execution time of process B and D are assumed to
be 240 (B’) and 630 (D’), respectively. Thus, processes B and D are bottlenecks.

3.2 Definition of Improvement Rate (IR)

IR indicates the ratio to shorten the execution time or to reduce the hardware
area of process compared to original one. Examples of IR are also shown in
Fig. 3. Each process has two types of IR, one for execution time and the other
for hardware area. For example, original execution time and hardware area of
process D are 700 and 200, respectively. In Case II, it has 10% of IR for execution
time and 5% of IR for hardware area. Thus, execution time and hardware area
of process D are assumed to be 630 and 190, respectively.

3.3 Exploration of the IRs on Bottleneck Processes

Under the definition of a bottleneck process and that of IR, estimating the entire
execution time with IRs identifies bottleneck processes. If the entire execution
time is reduced, processes that have IRs are bottlenecks. Thus, increasing the
value of IRs unveils whether the processes are bottlenecks or not.

Fig. 4 shows the exploration flow of IRs on bottleneck processes. The inputs
are a mapping to explore the IRs and design constraints of execution time and
hardware area. The output is a set of IRs that satisfies the design constraints.

Automated Identification of Performance Bottleneck 175

Input:
-A mapping to explore
-Design constraints

STEP I
sets_IRs =
 GenerateNewSetsIRs (base_set_IRs);

STEP III
each set_IRs in sets_IRs{
 set_IRs.eval = costFunction(set_IRs);
}

STEP IV
min_eval = base_set_IRs.eval;
base_set_IRs = MinEval(sets_IRs);

Output:
A set of IRs to satisfy
the system constraints

Yes

no

Initialize(base_set_IRs);
base_set_IRs.eval =
 maximum value;

STEP II
each set_IRs in sets_IRs{
 set_IRs.exe =
 EstimateExe(set_IRs);
 set_IRs.area =
 EstimateArea(set_IRs);
}

base_set_IRs.satisfyConstraints?
|| base_set_IRs.eval > min_eval

yes

Fig. 4. Exploration flow of IRs for bottleneck processes

At the beginning, all IRs in a set of IRs (base set IRs) are initialized to 0%
(Initialize). At the same time, evaluation value of base set IRs (base set IRs.eval)
is initialized to maximum value. After the initialization, four steps are repeated.
At step I, new sets of IRs are generated from base set IRs to increase values
of IRs so that the input mapping satisfies the design constraints. At step II,
execution time and hardware area are estimated with generated sets of IRs. At
step III, all generated sets of IRs are evaluated by the cost function because
increasing the same value of IR causes to produce unrealizable IR such as 100%.
At step IV, the best set of IRs is selected for further exploration. The detail of
each step is described end of this section. After step IV, if a set of IRs satisfies
the design constraints, or there is no better set of IRs, the exploration ends.

After an exploration, designers get a mapping and its best set of IRs on bot-
tleneck processes. The best set of IRs indicates how much bottleneck processes
should be improved to satisfy the design constraints for the mapping. In addi-
tion, exploration on different mappings may bring better ones. Thus, designers
can easily find the best mapping and its set of IRs on bottleneck processes among
several pairs of them.

STEP I. From base set IRs, new sets of IRs are generated by a function
GenerateNewSetsIRs. Only an IR in base set IRs is increased at once. Before
the exploration, designers have to define static increasing number. Generating
new sets of IRs on all IRs, the number of new sets is twice the number of
processes in maximum.

STEP II. Execution time and hardware area are estimated for all sets of
IRs in sets IRs. Trace-based estimation tools [7,8] are assumed to be used to
estimate the entire execution time with IRs. The tools usually take profiles of
process execution time as input. For that, the tools can estimate the entire exe-
cution time with IRs by arranging the profiles of execution time. Hardware area
is estimated by summation of the area of hardware modules. Area of hardware
module is reduced when the hardware area is estimated with IRs.

176 Y. Ando et al.

STEP III. Sets of IRs are evaluated by the cost function (costFunction)
to determine the best set of IRs. Better set of IR is assumed to have smaller
value. Without this evaluation, only an IR of a process may be increased. This
causes to produce unrealizable value of IR such as 100%. The definition of the
cost function is described in Sect. 3.4.

STEP IV. A function, MinEval, returns a set of IRs that has minimum
evaluated value. Because better set of IRs has smaller value, this step selects the
best set of IRs among the generated sets of IRs. The selected set of IRs become
base set IRs for further exploration.

3.4 Detail of Cost Function

In order to determine better sets of IRs, we propose a cost function (costFunc-
tion). First of all, the set of IRs should make a mapping satisfy the design
constraints because this is the main purpose. So the cost function allows IRs
to increase their values. Secondly, the set of IRs should not have impossible
values of IRs such as 100%. So the cost function have to prevent that a set of
IRs includes such impossible values. Thirdly, there may be some processes that
are no longer improved. Such processes should not be listed to improve more.
From these points, the cost function should have three features below. Note that
smaller value is assumed to be better.

1. The value of cost function gets smaller (better) when the estimated execution
time and hardware area close to the design constraints (the values of IRs get
larger).

2. The value of cost function should be larger for large IRs to prevent impossible
values of IRs.

3. Designers can set easiness of improvement on all processes separately.

For first feature, distance (dis) between estimated values and design constraints
is used. For second feature, penalty (penal) depending on IRs is used. Third
feature is handled by introducing values of easiness for processes.

There are three kind of parameters determined by designers before the explo-
ration starts. Note that xxx should be either “exe” or “area” indicating execution
time or hardware area, respectively.

– targetxxx : value of design constraints for exe/area

– easep xxx : value of easiness to improve process p for exe/area

– maxxxx : maximum value of exe/area

The inputs of the cost function are estimated values of execution time (estexe)
and hardware area (estarea), and a set of IRs (ratep xxx). The cost function
consists of distance (dis) and penalty (penal). It returns its value (eval) by (1).

eval = dis+ penal (1)

Automated Identification of Performance Bottleneck 177

From (2) to (4) show calculation of dis. Because our method deals with execu-
tion time and hardware area, distances for each design constraints (disexe and
disarea) are calculated as shown in (3) and (4).

dis = (disexe + disarea) / 2 (2)

disxxx =

{
3× difxxx + 0.1 (difxxx > 0)
0.001× difxxx (others)

(3)

difxxx = estxxx − targetxxx (4)

The total penalty (penal) is given by (5). It is an average of penalties for execu-
tion time(penalexe) and hardware area (penalarea) given by (6). In the equation,
ratep exe and ratep area indicate the IR of process p ∈ P for execution time and
hardware area, respectively. Note that P is a set of processes in the system.
Standard value of easiness to improve process p (easep xxx) is assumed to be
one. If it is bigger than one, it means that the process p is hard to improve,
and vice versa. Values of easiness to improve process have to be determined by
designers before the exploration starts.

penal = (penalexe + penalarea) / 2 (5)

penalxxx = (
∑

p∈P

(ratep xxx ∗ easep xxx)
3) / |P | (6)

The coefficients in the cost function are calibrated with MPEG-4 decoder appli-
cation that consists of 11 processes. We calibrated them on various combinations
of design constraints, mappings and number of processors. Note that the easiness
of improvement was set to one during the calibration.

4 A Case Study

This section shows a case study on AES encryption and decryption application
(AES) in CHStone[9]. Before this study, we decided the aim to reduce hardware
area while the execution time keeps the same. During the study, we improved
the performance of AES twice along with the design flow shown in Fig. 1. The
target architecture is Altera Stratix II FPGA [11] board which has a single soft
core processor and dedicated hardware. Design constraints are execution time
and hardware area (the number of look-up table (#LUTs)).

4.1 Initial Design of AES Encryption and Decryption

AES is written in C and the number of lines is 716. We divided AES descrip-
tion into five processes as shown in left side of Fig. 2 so that we can use our
system-level design tool [10] and explore SW/HW partitioning. We just changed
SW description to SW/HW mixed description. This design without any opti-
mization is called initial design. In detail, the global arrays in C description are
changed to shared-memory communication. Because the process named “top” is

178 Y. Ando et al.

the sequencer of the application, it is not a target of improvement and explo-
ration of SW/HW partitioning. EncF and EncL are the first half and last half
of encryption, respectively. Also, DecF and DecL are the first half and last half
of decryption, respectively. AES repeats encryption and decryption 10 blocks of
data consisting of 16 integers for 100 times.

4.2 Improvement of Initial Design

We first explored SW/HW partitioning for initial design. As AES has four
processes that can be allocated to SW and HW, so there are 16 mappings in
total. We explored SW/HW partitioning by implementing all mappings onto
the FPGA board with our tool. From this, we found 11 mappings that construct
the trade-offs between execution time and hardware area. We also found that the
shortest execution time and #LUTs were 1.31 seconds and 19,244, respectively.

In order to improve the design, we decided design constraints of 1.3 seconds
for execution time and 18,000 for hardware area. For all processes, the easiness
to improve process was set to one (default). We explored IRs for 11 mappings on
trade-off with the design constraints. In this work, we used our own trace-based
estimation tool [12] for exploration of IRs on bottleneck processes.

After the exploration, we had 11 sets of IRs (a set of IRs for each mapping).
The best three results in terms of value calculated by the cost function are
shown in Table 1. In the table, “Mapping”, “IR for Exe.” and “IR for Area”
indicate allocation of processes, IRs for execution time and that for hardware
area, respectively.

Table 1. Identified bottlenecks and IRs for initial design

ID Mapping IR for Exe. [%]] IR for Area [%]
EncF EncL DecF DecL EncF EncL DecF DecL EncF EncL DecF DecL

No.1 SW HW HW HW — — — 5 — 5 — 5

No.2 HW SW HW 25 — 15 5 — — — —

No.3 SW SW HW — 40 15 5 — — — —

From the result of No.1, DecL was identified as a bottleneck for execution
time. Its execution time had to be reduced 5% in order to satisfy the design
constraints. So we considered how to improve its execution time with the result.
Then, we decided to tune the design description because initial design was just
changed to SW/HW mixed description from SW description. At redesign step,
we reduced the number of memory accesses in DecL. We also unrolled the loop
instructions in DecL because it was implemented on HW. After the redesign,
we again explored SW/HW partitioning and found that mapping (No.1) has the
execution time of 0.83 seconds and the hardware area of 16,573 in #LUTs. Thus,
we could have a design that satisfied the design constraints.

Automated Identification of Performance Bottleneck 179

4.3 Summary of Case Study to Improvement AES Application

As mentioned before, we improved AES twice along with the design flow shown
in Fig. 1. The previous section shows the detail of first improvement of AES. In
this section, we summarize our case study.

Table 2. Execution time (Exe.) and hardware area (Area) for designs

Allocation of process / Difference from Initial † Measured
Design EncF EncL DecF DecL Exe. [sec] Area [#LUTs]

Initial HW HW HW HW 1.31 19,244

Imp1 SW HW HW HW / M, L 0.83 16,573

Imp2 HW / S HW / S HW SW / M 1.29 12,501

†M: reducing memory accesses, L: loops are unrolled,S: reducing hardware area

Table 2 shows execution time and hardware area of three designs. Initial, Imp1
and Imp2 indicate initial design, first improved design and second improved
design, respectively. After first improvement, we got a design named Imp1 that
satisfied original design constraints (shorter than 1.3 seconds and less than 18,000
in #LUTs). The aim to improve AES was reducing hardware area while the
execution time remains less than 1.3 seconds. As the execution time of Imp1 was
0.83 seconds, so we considered that sacrificing the execution time could reduce
the hardware area.

We, once again, decided the design constraints of 1.3 seconds for execution
time and 14,000 for hardware area. Then we explored SW/HW partitioning
on Imp1. We, however, could not find any mapping satisfying new design con-
straints. Thus, we explored IRs on Imp1 design. With the results of exploration
for IRs, we changed the synthesis option of hardware for processes EncF and
EncL. The synthesis options are shown on Imp2 in Table 2. As a result, we got
a design whose execution time and hardware area are 1.29 seconds and 12,501
in #LUTs that satisfied the design constraints.

This case study shows that we could improve AES by using only explored IRs.
After the twice of improvements, hardware area was reduced 35% with shorter
execution time compared to initial design. Therefore, IRs helped the designer to
tune the description of application to satisfy design constraints.

5 Conclusion

We proposed a method to identify system bottlenecks and explore improvement
rates of them for embedded systems. Because our method automatically identi-
fies not only bottlenecks but also a list of improvement rates that is necessary to
satisfy the design constraints, our method helps designers to improve the system
without a time-consuming analysis. The case study on AES encryption and de-
cryption application showed that our method surely identified system bottlenecks
automatically. The designers efficiently consider how to improve the system with
the list of improvement rates. Entire design time is shortened with our method.
Therefore, our method is effective to improve the embedded systems.

180 Y. Ando et al.

Acknowledgment. This workwas in part supported by STARC (Semiconductor
Technology Academic Research Center).

References

1. Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi, S., Gajski,
D.D.: System-on-Chip Environment: A SpecC-Based Framework for Heterogeneous
MPSoC Design. EURASIP Journal on Embedded Systems (2008)

2. Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.P.: PeaCE: A Hardware-Software
Codesign Environment for Multimedia Embedded Systems. ACM Trans. Design
Automation of Electronic Systems (2007)

3. Gao, F., Sair, S.: Long term Performance Bottleneck Analysis and Prediction. In:
International Conference on Computer Design, pp. 3–9 (2006)

4. Del Valle, P.G., Atienza, D., Magan, I., Flores, J.G., Perez, E.A., Mendias, J.M.,
Benini, L., Micheli, G.D.: A complete multi-processor system-on-chip FPGA-based
emulation framework. In: International Conference on Very Large Scale Integration,
pp. 140–145 (2006)

5. Pimentel, A.D.: The Artemis workbench for system-level performance evaluation of
embedded systems. International Journal of Embedded Systems 3, 181–196 (2008)

6. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C.,
SangiovanniVincentelli, A.: Metoropolis: An Integrated Electronic System
Design Environment. Computer (2003)

7. Ueda, K., Sakanushi, K., Takeuchi, K., Imai, M.: Architecture-level performance
estimation method based on system-level profiling. In: Computers & Digital Tech-
niques, pp. 12–19 (2005)

8. Wild, T., Herkersdorf, A., Lee, G.Y.: TAPES - Trace-based architecture perfor-
mance evaluation with SystemC. Design Automation for Embedded Systems 10,
157–179 (2005)

9. Hara, Y., Tomiyama, H., Honda, S., Takada, H.: Proposal and Quantitative Anal-
ysis of the CHStone Benchmark Program Suite for Practical C-based High-level
Synthesis. Journal of Information Processing 17, 242–254 (2009)

10. Shibata, S., Honda, S., Tomiyama, H., Takada, H.: Advanced SystemBuilder: A
Tool Set for Multiprocessor Design Space Exploration. In: International SoC Design
Conference, pp. 79–82 (2010)

11. Altera Corporation, http://www.altera.com/
12. Shibata, S., Ando, Y., Honda, S., Tomiyama, H., Takada, H.: A Fast Performance

Estimation Framework for System-Level Design Space Exploration. IPSJ Transac-
tions on System LSI Design Methodology 5, 44–55 (2012)

http://www.altera.com/

Compositional Timing Analysis of Real-Time
Systems Based on Resource Segregation

Abstraction�

Philipp Reinkemeier1 and Ingo Stierand2

1 OFFIS - Institute for Information Technology,
Oldenburg, Germany

philipp.reinkemeier@offis.de
2 Carl von Ossietzky Universität Oldenburg,

Oldenburg, Germany
stierand@informatik.uni-oldenburg.de

Abstract. For most embedded safety-critical systems not only the func-
tional correctness is of importance, but they must provide their services
also in a timely manner. Therefore, it is important to have rigorous anal-
ysis techniques for determining timing properties of such systems. The
ever increasing complexity of such real-time systems calls for composi-
tional analysis techniques, where timing properties of local systems are
composed to infer timing properties of the overall system. In analyti-
cal timing analysis approaches the dynamic timing behavior of a system
is characterized by mathematical formulas abstracting from the state-
dependent behavior of the system. While these approaches scale well
and also support compositional reasoning, the results often exhibit large
over-approximations. Our approach for compositional timing analysis is
based on ω-regular languages, which can be employed in automata-based
model-checking frameworks. To tackle the scalability problem due to
state-space explosion, we present a technique to abstract an application
by means of its resource demands. The technique allows to carry out
an analysis independently for each application that shall be deployed on
the same platform using its granted resource supply. Integration of the
applications on the platform can then be analyzed based on the different
resource supplies without considering details of the applications.

1 Introduction and Related Work

Developing safety-critical real-time systems is becoming increasingly complex as
the number of functions realized by these systems grows. Additionally an in-
creasing number of functions is realized in software, which is then integrated
� This work was partly supported by the Federal Ministry for Education and Re-

search (BMBF) under support code 01IS11035M, ’Automotive, Railway and Avion-
ics Multicore Systems (ARAMiS)’, and by the German Research Council (DFG) as
part of the Transregional Collaborative Research Center ’Automatic Verification and
Analysis of Complex Systems’ (SFB/TR 14 AVACS).

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 181–192, 2013.
c© IFIP International Federation for Information Processing 2013

182 P. Reinkemeier and I. Stierand

on a common target platform in order to save costs. The integration on a
common platform causes interferences between the different software-functions
due to their shared resource usage. It is desirable to bound these interfer-
ences in a way to make guarantees about the timing behavior of the individual
software-functions. A schedulability analysis delivers such bounds for interfer-
ences between software-tasks sharing a CPU by means of a scheduling strategy.

Fig. 1. Exemplary Integration Scenario using Resource Segregation

We present a compositional analysis framework using real-time interfaces
based on ω-regular languages. Following the idea of interface-based design, com-
ponents are described by interfaces and can be composed if their corresponding
interfaces are compatible. The contribution of this work is a framework allowing
to formally capture the resource demand of an interface, that we call segrega-
tion property. Compatibility of interfaces then can be reduced to compatibility
of their segregation properties. Further a refinement relation is defined, which
leads to a sufficient condition for compatibility of segregation properties. The
framework can be used in (but is not restricted to) scenarios like the following:
The bottom part of Fig. 1 shows a target platform that is envisioned by say an
Original Equipment Manufacturer (OEM). It consists of a processing node (P).
Suppose the OEM wants to implement two applications, components C1 and C2,
on this architecture and delegates their actual implementation to two different
suppliers. Both applications share the same resource of the target platform, i.e.
tasks t1, t2 and t3 are all executed on P after integration. Therefore, a resource
reservation is assigned to each component, guaranteeing a certain amount of re-
source supply. Then the timing behavior of both components can be analyzed
independently from each other based on their resource demands and the guar-
anteed resource supply. Verification of the successful integration of C1 and C2

on the platform then amounts to check whether the reserved resource supplies
can be composed.

There have been considerable studies on compositional real-time scheduling
frameworks [12,13,11,7,5]. These studies define interface theories for compo-
nents abstracting the resource requirement of a component by means of demand

Compositional Timing Analysis of Real-Time Systems 183

functions [12,13], bounded-delay resource models [7], or periodic resource models
[11,5]. Based on these theories the required resources of a component, captured
by its interface, can for example be abstracted into a single task. This approach
gives rise to hierarchical scheduling frameworks where interfaces propagate re-
source demands between different layers of the hierarchy. Our proposed resource
segregation abstraction of a component is an extension of the real-time interfaces
presented in [3]. Contrary to the aforementioned approaches, our real-time in-
terfaces and resource segregation are based on ω-regular languages. That means,
the approach can for example be employed in automata-based model-checking
frameworks. In addition the results we present are not bound to specific task
and resource models, like periodic or bounded delay.

Analytic methods provide efficient analysis by abstracting from concrete be-
havior. The drawback is that this typically leads to over-approximations of the
analysis results. Computational methods on the other hand, such as model-
checking for automata ([2,9,6]), typically provide the expressive power to model
and analyze real-time systems without the need for approximate analysis meth-
ods. This flexibility comes with costs. Model-checking is computationally ex-
pensive, which often prevents analysis of larger systems. The contribution of
this paper will help to reduce verification complexity for the application of
computational methods.

The paper is structured as follows: Section 2 briefly introduces real-time in-
terfaces presented in [3], where task executions are characterized by ω-regular
languages over time slices occupied by the respective tasks. Section 3 provides
the formalization of segregation properties for interfaces, which can be used to
abstract from concrete behavior of an interface. We define refinement and com-
position operations on segregation properties that preserve schedulability of the
composition of the associated interfaces. Section 4 shows that our approach is
consistent with the (analytical) resource models of [11,5] by the definition of a
translation. Section 5 discusses further work and concludes the paper.

2 Real-Time Interfaces

The resource segregation abstraction presented in this work is based on the
real-time interfaces presented in [3]. Therefore, we briefly summarize the basic
definitions. We assume a set of real-time components are to be executed on a set
of resources such as processing nodes and communication channels. Each compo-
nent consists of a set of tasks. A real-time interface of a component specifies the
set of all its legal schedules when it is executed on the resources. For example,
consider a component with two tasks 1 and 2, which are scheduled on a single
resource in discrete slots of some fixed duration, like shown in Fig. 1 for com-
ponent P1. A schedule for this component can be described by an infinite word
over the alphabet 0, 1, 2. 0 means the resource is idle during the slot, and 1 and 2
means the corresponding task is running. The real-time interface of a component
is an ω-language containing all legal schedules of the component. Therefore, an
interface with a non-empty language contains at least one schedule and is said

184 P. Reinkemeier and I. Stierand

to be schedulable. Interfaces can be composed (intersection) to check whether
two components together are schedulable.

Definition 1. A real-time interface I is a tuple (L, T), where T ⊆ T is the set
of tasks of the interface and L ⊆ Tω is an ω-regular language denoting the set
of legal schedules of I. The empty task 0 denoting an idle slot is part of every
interface, i.e. 0 ∈ T .

The intuition of an interface is that it describes the set of schedules that satisfy
the requirements of its component. An interface with an empty language is said
to be not schedulable. Conversely, an interface with a non-empty language is
said to be schedulable, as at least one legal schedule exists for the interface.
Example: Suppose that task t1 in Fig. 1 is a periodic task t with period p = 5
and an execution time e = 3. The language of its interface I1 can be described
by the following regular expression: LI1 = 0<5[t3 ||| 02]ω , where u ||| v denotes all
possible interleavings of the finite words u and v. That means, a schedule is legal
for interface I1, as long as it provides 3 slots during a time interval of 5.

Observe, that interface I1 captures an assumption about the activation pat-
tern of task t1. The part 0<5 of the regular expression represents all possible
phasings of the initial task activations. This correlates to the formalism of event
streams, which is a well-known representation of task activation patterns in real-
time systems (cf. [10]) by lower and upper arrival curves η−(Δt) and η+(Δt).

T 2T 3T 4T0

1
2
3
4
5

Fig. 2. Arrival curves of periodic events

Key to dealing with interfaces having different alphabets is the following pro-
jection operation: For alphabet T and language L of an interface I and T ′ ⊆ T ,
we consider its projection prT ′(L) to T ′, which is the unique extension of the
function T → T ′ that is identity on the elements of T ′ and maps every element
of T \ T ′ to 0. We will also need the inverse projection pr−1

T ′′(L), for T ′′ ⊇ T ,
which is the language over T ′′ whose words projected to T belong to L.

Definition 2. Given two interfaces I1 = (L1, T1) and I2 = (L2, T2) the parallel
composition I1 ‖ I2 is the interface (L, T), where

– T = T1 ∪ T2 and
– L = pr−1

T (L1) ∩ pr−1
T (L2)

Compositional Timing Analysis of Real-Time Systems 185

The intuition of this definition is that a schedule is legal for I1 ‖ I2 if its restric-
tion to T2 is legal for I2 and its restriction to T1 is legal for I1. That means tasks
of an interface are allowed to run when the resource is idle in the other interface.

Definition 3. Given two interfaces I = (L, T) and I ′ = (L′, T ′), then I ′ refines
I, I ′ � I, if and only if:

– T ′ ⊇ T and
– prT (L

′) ⊆ L

The intuition of this definition is that all schedules legal in I ′ are (modulo pro-
jection) also legal schedules in I and I ′ is able to schedule more tasks from the
set T ′ \ T in the gaps left by schedules in I.

The following lemmas provide useful properties of the real-time interface
framework.

Lemma 1. Parallel composition of interfaces is associative and commutative.

An associative and commutative composition operation guarantees that compos-
able interfaces may be assembled together in any order. Therefore, real-interfaces
support incremental design.

Lemma 2. Refinement of interfaces is a partial order.

As refinement is a partial order, it is ensured that: If interface I ′ � I, then for
any interface I ′′ � I ′ it holds that I ′′ � I. That means interfaces can be refined
iteratively.

Lemma 3. Refinement is compositional. That means I ′ � I implies I ′ ‖ J �
I ‖ J .

A compositional refinement allows to refine composable interfaces separately,
while maintaining composability. Together with commutativity and associativ-
ity of the composition operator, we have that the real-time interfaces support
independent implementability. Proofs for Lemma 1-3 are presented in [3].

3 Resource Segregation

While real-time interfaces are powerful enough to cope with complex designs and
scenarios like depicted in Fig. 1, the refinement relation involves complex lan-
guage inclusion checks. Moreover, the details of all components and their tasks
must be known in order to compose them. Therefore, we introduce an abstraction
for a real-time interface consisting of multiple tasks that we call segregation prop-
erty. These segregation properties will be defined such that compositionality of
segregation properties ensures compositionality of their interfaces, respectively.
That means given two interfaces I1 and I2 and segregation properties BI1 and
BI2 , we look for a composition operator ‖ and a simple property ϕ, such that

BI1 ‖ BI2 |= ϕ =⇒ I1 ‖ I2 is schedulable

186 P. Reinkemeier and I. Stierand

3.1 Interface Composability

Recall, that an interface I describes a set of legal schedules. It represents for the
activation patterns of its tasks a set of possible discrete slot allocations under
which the tasks can be executed successfully. A segregation property BI for an
interface abstracts from the tasks of the interface, and only exposes a set of
possible slots reservations for which the interface is schedulable. Note that a
segregation property for an interface indeed may contain more available slots
than are used by the respective interface.

Composition of the segregation properties BI1 and BI2 of interfaces I1 and I2
then combines non-conflicting slot reservations of BI1 and BI2 . The property ϕ
states that at least one such non-conflicting slot reservation exists, i.e. the set of
slot reservations defined by BI1 ‖ BI2 is not empty.

We now define slot reservation and segregation property of an interface and de-
fine a composition operation. We use the composition operation on slot
reservations to derive a composability condition for interfaces based on their
segregation properties.

Definition 4. A slot reservation B is an ω-regular language over {0, 1}, B ⊆
{0, 1}ω. Each ω-word b ∈ B defines an infinite sequence of slots that are either
available (0) or unavailable (1).

We denote BI a segregation property for interface I, if and only if for all
b ∈ BI holds that I is schedulable for all its activation patterns using only the
available slots defined in b.

Example: For task t1 in the example above, BI1 is a segregation property of I1
if it contains for each sub-sequence of length 5 at least 3 available slots. A valid
segregation property for I1 is BI1 =

⋃
σ∈C5

3
σω, where C5

3 denotes the set of finite
words σ = σ1 . . . σ5 over {0, 1} of length 5 obtained by combination of 3 symbols
σi = 0 over 5 symbols and the remaining symbols are 1.

We define the parallel composition B1 ‖ B2 of slot reservations such that we
select only those pairs b1 ∈ B1, b2 ∈ B2, where no slot is available (0) in both
words, combining them into a single word b ∈ B1 ‖ B2, where slots are available
that are available in either b1 or b2 and all other slots remain unavailable (1).

For convenience, we make use of the binary operators ∧ and ∨ defined on
elements of {0, 1} with their usual Boolean interpretations. We extend both
operators to ω-regular words bi = bi1bi2 . . . ∈ {0, 1}ω, by their component-wise
application: b1 ∧ b2 = (b11 ∧ b21)(b12 ∧ b22) . . ., and ∨ respectively.

Definition 5. Given two slot reservations B1 and B2 the parallel composition
B1 ‖ B2 is defined as:

B1 ‖ B2 = {b1 ∧ b2|b1 ∈ B1, b2 ∈ B2 and b1 ∨ b2 = 1ω}

Example: Fig. 3 depicts an illustration of the composition of the segregation
property BI1 of I1 from the example above with another slot reservation
B2 = [01 ||| 14]ω.

Compositional Timing Analysis of Real-Time Systems 187

0 10 01

0 1 001

...
...

0 10 0

0 1 00

...
...

0...
...

11 1 10

0

BI1 B2BI1 B2

Fig. 3. Illustration of Slot Reservation Composition

The following lemma states the desired condition for composability of interfaces
depending on their segregation properties:

Lemma 4. Two interfaces I1 and I2 are composable and can be scheduled to-
gether if the parallel composition of their segregation properties is not empty, i.e.
BI1 ‖ BI2 	= ∅.
Proof: As BI1 is a segregation property for I1 and BI2 is a segregation property
for I2, I1 is schedulable for all its activations patterns for all b ∈ BI1 and I2 is
schedulable for all b ∈ BI2 , respectively. According to Definition 5 all words b ∈
BI1 ‖ BI2 are sequences of slots such that there exists a pair b1 ∈ BI1 , b2 ∈ BI2 ,
where no slot is available in both words. Thus, interface I1 can be scheduled using
only the available slots in b that are also available in b1, interface I2 respectively.
Consequently, it holds that each unavailable slot in b1 ∈ BI1 is not used by
I1, and I2 may schedule one of its tasks in these slots, if they are available in
b2 ∈ BI2 . For interface I2 the same argument applies. Thus, it follows that the
language of I1 ‖ I2 is not empty, which according to Definition 1 means a legal
schedule for I1 ‖ I2 exists. ��

3.2 Refinement of Slot Reservations

Recall, that Definition 4 defines BI to be a segregation property for interface I,
if and only if I is schedulable for all its activation patterns for every b ∈ BI .
From this definition we conclude that given a segregation property BI , any
subset B′

I ⊆ BI is also a segregation property for interface I. Further, each
b = σ1σ2 . . . ∈ BI defines a sequence of slots, where all slots σi = 0 are available
to the interface. Obviously, if the interface is schedulable for b ∈ BI , then it is
also schedulable for b′, where b′ = σ′

1σ
′
2 . . . and σ′

i = 0 and σi = 1 for some i and
σ′
j = σj for all other slots j 	= i. In other words, we can always make more slots

available to an interface without impact on its schedulability.
These observations give rise to a refinement relation on slot reservations. First,

we define a partial order on ω-regular words over {0, 1} as follows: Let be b, b′ ∈
{0, 1}ω. We say b′ ≤ b if and only if ∀i ∈ N : σb′i = 1 =⇒ σbi = 1. That is,
b′ precedes b if all slots that are unavailable (1) in b′ are also unavailable in b.
Indeed b might contain additional unavailable slots that are available (0) in b′.
In other words: Slots that are available in b are also available in b′. Obviously, a
bottom element 0ω and a top element 1ω exist with regard to the partial order
≤. For any b ∈ {0, 1}ω we have that 0ω ≤ b ≤ 1ω.

188 P. Reinkemeier and I. Stierand

We extend the relation on ω-regular words over {0, 1} to slot reservations
(ω-regular languages over {0, 1}) as follows:

Definition 6. Given two slot reservations B′ and B, then B′ refines B, B′ � B,
if and only if:

∀b′ ∈ B′ : ∃b ∈ B : b′ ≤ b

The refinement relation � on slot reservations is a pre-order, as mutual refine-
ment not necessarily implies equivalence: B � B′ and B′ � B 	=⇒ B = B′.
Note, that this definition of refinement captures both observations: Given a seg-
regation property BI , any subset B′

I ⊆ BI is also a segregation property for I
and it holds that B′

I � BI . Further, for a segregation property BI , we can con-
struct B′

I � BI from BI , where for some b′ ∈ B′
I we make more slots available,

i.e. ∃b ∈ BI : b′ ≤ b. Still B′
I is a segregation property for I. Thus, given a

segregation property BI for interface I, then any B′
I � BI is also a segregation

property for I.
However, B′

I may be an ‘over-approximation’ of BI . Consider the segregation
property BI and a subset B′

I ⊂ BI . As the interface I is schedulable for all
words b ∈ BI , we can understand BI as a set of alternative slot reservations
‘supported’ by the interface I. Thus, this alternative is lost when eliminating a
word from BI in a subset B′

I ⊂ BI . Now consider B′′
I � BI obtained by replacing

some word b ∈ BI with a word b′′ ≤ b. The interface I is schedulable using only
the available slots in b. b′′ may be on over-approximation as more slots can be
available in b′′ that are not available in b. Both over-approximations of BI lead
to an increased probability of causing slot conflicts when composing them with
another segregation property BĨ . But If that composition is still not empty, I
and Ĩ are composable and can be scheduled together.
Example: Fig. 4 depicts an illustration of the preceding discussion on refinement
applied on the segregation property BI1 of I1 from the example above.

0 10 01

0 1 001

...
...

0 10 0

0 1 00

...
......

BI1 BI1'BI1''

1

10 10 0

0 1 001

...

0

Fig. 4. Illustration of Segregation Property Refinement

The following lemma formalizes these observations and provides a sufficient
condition for composability of interfaces (see Lemma 4):

Lemma 5. Given two interfaces I1 and I2 and segregation properties BI1 and
BI2 , respectively. Then for any two slot reservations B′

I1
� BI1 and B′

I2
� BI2

it holds that B′
I1

‖ B′
I2

	= ∅ =⇒ BI1 ‖ BI2 	= ∅.

Compositional Timing Analysis of Real-Time Systems 189

Proof: According to Definition 5 all words b′ ∈ B′
I1

‖ B′
I2

are sequences of slots
such that there exists a pair b′1 ∈ B′

I1
, b′2 ∈ B′

I2
, where no slot is available in both

words. According to Definition 6 b1 ∈ BI1 , b2 ∈ BI2 exist, where b′1 ≤ b1 and
b′2 ≤ b2. Slots that are unavailable (1) in b′1 are also unavailable in b1. The same
holds for b′2 and b2. It follows that b1 and b2 can be composed and BI1 ‖ BI2

contains at least on element. ��

4 Periodic Resource Models and Resource Segregation

As discussed in Section 1, the idea of resource segregation and their exploitation
in compositional analysis frameworks is not new. However to our best knowledge
the principle has only been applied in frameworks that are based on analytical
methods. For example the frameworks proposed by I. Lee et. al. [11,5] are based
on the concepts of demand bound functions dbf(Δ) and supply bound functions
sbf(Δ). The function dbf(Δ) characterizes the maximal processing demand of
a real-time component within any interval of length Δ. The function sbf(Δ)
characterizes the minimal processing power provided by the resource in any time
interval of length Δ. The real-time component is considered to be schedulable,
if ∀Δ : dbf(Δ) ≤ sbf(Δ). Note, that the concept of service curves known from
real-time calculus [4] is comparable with these frameworks, as described in [13].
In this section we discuss in more detail the relation of our approach with the
frameworks presented in [11,5]. We will see that our approach is able to capture
the models considered in these frameworks, and thus results established in these
frameworks also apply in our setting.

Both frameworks are based on the concepts of demand bound functions and
supply bound functions, where in [11] a Periodic Resource Model is presented and
in [5] an Explicit Deadline Periodic Resource Model (EDP) is presented. Both
models are used to create compositional hierarchical scheduling frameworks. In
both frameworks a component is a set of tasks scheduled under a specific strategy.
The total resource demand of a component to schedule all its tasks is expressed
as a demand bound function dbf(Δ). The resource models are used to capture
the amount of resource allocations of a partitioned resource, which is formally
expressed as a supply bound function sbf(Δ). If a component is schedulable
under the considered partitioned resource (defined by the resource model), i.e.
dbf(Δ) ≤ sbf(Δ), then the resource model can be transformed into a task and
components can be composed hierarchically. Thus, the composition problem is
reduced to the abstraction problem.

The periodic resource model Γ = (Π,Θ) characterizes a partitioned resource
that repetitively provides Θ units of resource with a repetition period Π . The
EDP resource model Ω = (Π,Θ,Δ) is an extension of the periodic resource
model. It characterizes a partitioned resource that repetitively supplies Θ units
of resource within Δ time units, with Π the period of repetition. Keeping in mind
the idea of transforming a resource model into a task at the next level of the
hierarchy, the relation between both models becomes clear: A periodic resource
model Γ = (Π,Θ) is the EDP model Ω = (Π,Θ,Π) (cf. [5]). Therefore, in the
following we focus on EDP resource models.

190 P. Reinkemeier and I. Stierand

4.1 Real-Time Component Model

A real-time component is defined as C = 〈{C1, . . . , Cn}, S〉, where Ci is either
another real-time component or a sporadic task. A sporadic task is defined by a
tuple τ = (p, e, d), where p is a minimum separation time, e the execution time
of the task and d a deadline relative to the release of task τ . It holds that e ≤
d ≤ p. The workload C1, . . . , Cn is scheduled under strategy S that is either RM
(rate monotonic), DM (deadline monotonic) or EDF (earliest deadline first).
The resource demand of a component is then the collective resource demand
of its tasks under its scheduler S. The demand bound function [8,1] dbfC(Δ)
characterizes the maximum resource demand for a task set in any given time
interval of length Δ.

In our framework real-time components translate into interfaces, where each
interface I is either a composition of interfaces I = I1 ‖ . . . ‖ In or an ‘atomic
interface’ in case of a single sporadic task. Given a task t = (p, e, d), the language
of the corresponding interface is LIt = 0<p−1[(te ||| 0d−e)0p−d]ω, where u ||| v
denotes all possible interleavings of the finite words u and v. Given a component
C = 〈{C1, . . . , Cn}, S〉, then the condition IC1 ‖ . . . ‖ ICn 	= ∅ determines
whether the component is schedulable at all under some scheduling strategy S.
Now consider a fixed priority scheduling (FPS), say rate monotonic scheduling.
The component is schedulable under FPS if and only if IFPS � IC1 ‖ . . . ‖
ICn . How to capture the scheduling of a task set under FPS in terms of an
interface IFPS is described in [3]. A segregation property BIFPS of interface
IFPS characterizes the resource demands of C = 〈{C1, . . . , Cn}, FPS〉.

The resource demands of a component C, explicated by the demand bound
function dbfC(Δ) can be safely over-approximated by any function f(Δ), with
f(Δ) ≥ dbfC(Δ). For example in [11] a linear function ldbfC(Δ) is given for
EDF scheduling that provides an upper bound for dbfC(Δ). In our framework
over-approximations of the resource demands BIC of a component translate into
refinements of BIC . As discussed in Section 3.2 any B′

IC
� BIC is also a seg-

regation property for interface IC , albeit a potential over-approximation of the
resource demands defined by BIC .

4.2 Resource Model and Schedulability

Consider an explicit deadline periodic resource model Ω = (Π,Θ,Δ). It char-
acterizes a partitioned resource that repetitively supplies Θ units of resource
within Δ time units, with Π the period of repetition. The partitioned resource
characterized by Ω, can also be characterized by the following slot reservation:

BΩ = 1≤(Π−Θ)[(0Θ ||| 1Δ−Θ)1Π−Δ]ω

The resource supply of a resource is the amount of provided resource allocations.
Complementary to the demand bound function for components, the resource
supply bound function sfbΩ(Δ) computes the minimum resource supply for Ω
in a given time interval of length Δ.

Compositional Timing Analysis of Real-Time Systems 191

The resource supply sfbΩ(Δ) can be safely under-approximated by any func-
tion f(Δ), with f(Δ) ≤ sfbΩ(Δ). Analogously, in our framework under-
approximations of the resource supply are captured by the refinement relation.
B′′

Ω, with BΩ � B′′
Ω, is a potential under-approximation of the resource supply

of a resource.
In the context of EDP resource models, schedulability is defined for a real-

time component C = 〈{C1, . . . , Cn}, S〉 using an EDP resource model Ω. Exact
schedulability conditions are given for the scheduling strategies RM , DM and
EDF . We will not go into the details of the theorems here and refer to [5]
instead. Basically it must holds that ∀Δ : dfbC(Δ) ≤ sfbΩ(Δ). Schedulability
of C under Ω can be formulated in our framework as refinement. Given the
segregation property BIC and the resource supply BΩ, then C is schedulable
under Ω, if BΩ � BIC . Sufficient conditions based on over-approximation of
resource demands and under-approximation of resource supplies are induced
by transitivity of the refinement relation. Given segregation property BIC , slot
reservationBΩ and B′

IC
� BIC , and BΩ � B′′

Ω, then B′′
Ω � B′

IC
=⇒ BΩ � BIC .

5 Conclusion

This paper proposes a formalization of segregation properties enabling composi-
tional timing analysis based on ω-regular languages. By exploiting the formalism
of real-time interfaces, segregation properties allow to abstract the concrete be-
havior of components, and provide conditions under which the composition of
a set of components results in a schedulable system. The approach supports
the verification process in two directions. Firstly, the abstraction helps to re-
duce verification complexity, which often prevents analysis of larger systems
using model-checking techniques. Secondly, the approach subsumes well-known
approaches in the domain of analytical resource models. This enables the elab-
oration of combined methods to further reduce analysis efforts.

While this initial approach supports only single resources, future work will
allow for the expression of multiple resources. In this case, slot reservations do
not argue over the alphabet {0, 1}, but over tuples (r1, ..., rn) for n resources,
where ri ∈ {0, 1}. Indeed, this requires modified definitions of composition and
refinement. A further extension of this approach will allow to support multipro-
cessor resources. In this case, segregation properties are no more defined over the
alphabet {0, 1}, but for example over sets {0, 1, ...,m} characterizing the number
of available processing units of the resource.

References

1. Baruah, S., Rosier, L., Howell, R.: Algorithms and complexity concerning the pre-
emptive scheduling of periodic, real-time tasks on one processor. Real-Time Sys-
tems 2, 301–324 (1990)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: Proc. Conference on Software Engineering and Formal Methods, SEFM
(2006)

192 P. Reinkemeier and I. Stierand

3. Bhaduri, P., Stierand, I.: A proposal for real-time interfaces in speeds. In: Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 441–446 (March
2010)

4. Chakraborty, S., Kunzli, S., Thiele, L.: A general framework for analysing sys-
tem properties in platform-based embedded system designs. In: Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), pp. 190–195. IEEE
Computer Society (2003)

5. Easwaran, A., Anand, M., Lee, I.: Compositional analysis framework using edp re-
source models. In: Proceedings of the 28th IEEE International Real-Time Systems
Symposium, RTSS 2007, pp. 129–138. IEEE Computer Society (2007)

6. Guan, N., Ekberg, P., Stigge, M., Yi, W.: Effective and Efficient Scheduling of
Certifiable Mixed-Criticality Sporadic Task Systems. In: Proc. Real-Time Systems
Symposium, RTSS (2011)

7. Henzinger, T., Matic, S.: An interface algebra for real-time components. In: Pro-
ceedings of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS 2006, pp. 253–266. IEEE Computer Society (2006)

8. Lehoczky, J.P., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In: IEEE Real-Time Systems Sympo-
sium, pp. 166–171. IEEE Computer Society (1989)

9. Perathoner, S., Lampka, K., Thiele, L.: Composing Heterogeneous Components
for System-wide Performance Analysis. In: Design, Automation Test in Europe
Conference Exhibition, DATE (2011)

10. Richter, K.: Compositional Scheduling Analysis Using Standard Event Models.
Ph.D. thesis, Technical University of Braunschweig, Germany (2004)

11. Shin, I., Lee, I.: Periodic resource model for compositional real-time guarantees.
In: Proceedings of the 24th IEEE International Real-Time Systems Symposium,
RTSS 2003, pp. 2–13. IEEE Computer Society (2003)

12. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: Proceedings of the 6th ACM & IEEE International Conference
on Embedded Software, EMSOFT 2006, pp. 34–43. ACM (2006)

13. Wandeler, E., Thiele, L.: Interface-based design of real-time systems with hier-
archical scheduling. In: Proceedings of the 12th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, RTAS 2006, pp. 243–252. IEEE
Computer Society (2006)

Towards Virtualization Concepts

for Novel Automotive HMI Systems

Simon Gansel1, Stephan Schnitzer2, Frank Dürr2, Kurt Rothermel2,
and Christian Maihöfer1

1 System Architecture and Platforms Department
Daimler AG, Böblingen, Germany
firstname.lastname@daimler.com

2 Institute of Parallel and Distributed Systems
University of Stuttgart, Germany
lastname@ipvs.uni-stuttgart.de

Abstract. Many innovations in the automotive industry are based on
electronics and software, which has led to a steady increase of electronic
control units (ECU) in cars. This brought up serious scalability and
complexity issues in terms of cost, installation space, and energy con-
sumption. In order to tackle these problems, there is a strong interest
to consolidate ECUs using virtualization technologies. However, current
efforts largely neglect legal constraints and certification issues and the
resulting technical requirements.

In this paper, we focus on the consolidation of graphics hardware
through virtualization, which received a lot of interest in the car industry
due to the growing relevance of HMI systems such as head unit and
instrument cluster in modern cars. First, we investigate relevant ISO
standards and legal requirements and derive seven technical requirements
for a virtualized automotive HMI system. Based on these requirements,
we present the concept for a Virtualized Automotive Graphics System
(VAGS) that allows for the consolidation of mixed-criticality graphics
ECUs.

1 Introduction

Over the years, the automotive industry, which was mainly driven by hardware
and mechanics in the past, has changed to an industry where about 90% of
all innovations are driven by electronics and software [3]. In current high-end
cars, the IT hardware and software architecture is represented by more than 70
physically separated electronic control units (ECU), which are partitioned into
different domains and connected via a network of different communication bus
systems. To deploy new functionalities, the OEMs often add further ECUs to the
vehicle. This trend of “new function, new ECU” has lead to serious scalability
issues in terms of cost, installation space, and energy consumption. In order to
deal with these problems and to stop this trend of adding further ECUs, there
is a strong interest in the car industry to consolidate ECUs using virtualization
technologies to share the same hardware between different components.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 193–204, 2013.
c© IFIP International Federation for Information Processing 2013

194 S. Gansel et al.

In this paper, we focus on the consolidation of graphics hardware since it is
of high relevance in modern cars. An increasing number of automotive function-
alities and applications require highly sophisticated graphical representations in
2D or 3D based on hardware acceleration. For instance, the Head Unit (HU)
uses displays integrated into the backside of the front seats and center console
to display multimedia content; and displays connected to the Instrument Clus-
ter (IC) show car specific information like current vehicle speed or warnings.
Therefore, HU and IC are good candidates for hardware consolidation. Each vir-
tualized ECU runs in a dedicated virtual machine (VM), and a virtual machine
monitor (VMM) acts as middleware between VMs and hardware. Besides the
already mentioned general benefits, the virtualization of IC and HU provides
advantages such as the flexible placement of graphical output on previously sep-
arated displays, which is a matter of software implementation only. Moreover,
virtualization enables OEMs to deploy custom applications inside a dedicated
VM that is isolated from HU and IC.

This paper makes the following two contributions to enable the consolidation
of graphics hardware in vehicular systems. First, we thoroughly analyze relevant
ISO standards and legal requirements and derive seven technical requirements
for a virtualized automotive HMI system. Such requirements have been largely
neglected by current virtualization efforts, which did not target automotive sys-
tems with their specific requirements, in particular, with respect to safety. For
OEMs, the certifiability of automotive system functionalities is highly relevant.
According to [16, ISO 26262], for each functionality safety-criticality shall be
identified and mapped to criticality-classes1. To fulfill the criticality-level, the
severity and likelihood of failures must be determined using, for instance, failure
mode and effects analysis (FMEA) [25]. Moreover, certifiability also applies to
custom third-party applications. For instance, [12, ISO 15005] prohibits display-
ing movies to the driver while the vehicle is in motion. These specific regulations
impose challenging technical requirements to virtualization.

As second contribution, we present a concept for a Virtualized Automotive
Graphics System (VAGS). We elaborate on the challenges that are due to the
identified requirements to consolidate mixed-criticality graphics ECUs as used,
in particular, by the HU and IC. Although virtualization is a mature technology
for general resources like CPU or main memory, existing concepts do neither pro-
vide sufficient isolation for accessing shared graphics hardware (GPU) and input
devices (e.g., steering wheel buttons), nor do they provide sufficient isolation for
implementing the flexible presentation of application windows. Our proposed
architecture can be used as starting point for the future implementation of the
specified components.

The rest of this paper is structured as follows. In the next section, we ana-
lyze automotive standards and guidelines and derive technical requirements. In
Section 3, we present the concept for a VAGS. In Section 4, we briefly describe a

1 [16, ISO 26262] specifies five safety requirement levels: Four ASIL (Automotive Safety
Integrity Level) ranging from ASIL-A (low criticality) to ASIL-D (high criticality),
and one no-criticality level QM (Quality Management).

Towards Virtualization Concepts for Novel Automotive HMI Systems 195

first proof-of-concept implementation of our concepts. Finally, we discuss related
work in Section 5 and conclude this paper with a summary and outlook onto
future work in Section 6.

2 Requirements

In this section, we discuss requirements that are relevant for automotive HMI
systems. Automotive application development is constrained by ISO standards,
automotive design guidelines, legal requirements, and OEM specific demands.
The design guidelines (e.g., [1, AAM 2006], [5, ESoP 2008], [18, JAMA 2004])
in the automotive domain are almost completely derived from the following ISO
standards.

– [11, ISO 11428] Ergonomic requirements for the perception of visual danger
signals.

– [12, ISO 15005] Requirements to prevent impairment of the safe and effective
operation of the moving vehicle.

– [14, ISO 16951] Priority-based presentation of messages.
– [15, ISO 2575] Symbols for controls and indicators.
– [13, ISO 15408-2] Security in IT systems.
– [16, ISO 26262] Risk-based assessment of potentially hazardous operational

situations and of safety measures.

In the following, we propose seven technical requirements for automotive HMI
system. For each of them we added references to relevant sections of the men-
tioned ISO standards.

R1 – Input Event Handling

R1.1 – Restricted Access Control: For user input events access control is
required and it shall not violate any of the following constraints [12, ISO
15005]. Applications using dialogues shall not require to use input devices
in a way that demands removal of both hands from the steering wheel
while driving (5.2.2.2.2). Additionally, exiting a dialog or an application
shall always be possible (5.3.3.2.1) unless legally required or traffic-situation-
relevant (5.3.3.2.3).

R1.2 – Restricted Processing Time: A maximum processing time for input
event handling shall be met. For instance, response to tactile user inputs shall
not exceed 250 ms (5.2.4.2.3).

R2 – Restricted Window Creation and Positioning

R2.1 – Restricted Visibility of Windows: Usually, graphical applications
use API functions to change the visibility of windows, e.g., to create, hide, or
position them. This functionality must be restricted, and functions not in-
tended to be used by the driver must be inaccessible for him [12, ISO 15005]
(5.2.2.2.4).

196 S. Gansel et al.

R2.2 – Priority-based Displaying of Windows: If multiple windows shall
be displayed, the importance of each of them must be defined. Importance
is represented by priorities, which can depend on safety requirements and
software ergonomic aspects (5.2.4.2.4) that must be met by the system
(5.2.4.3.3). Moreover, they can depend on urgency and criticality which
have to be defined [14, ISO 16951] (3.5). Additionally, appropriate reac-
tions (e.g., behavior in case of conflicts) shall be enforced [14, ISO 16951]
(Annex B). Furthermore, country-specific legal requirements constrain the
definition of the priorities, e.g., German law requires the constant visibility
of the speedometer while the vehicle is in motion (StVZO §57 [19]). Addi-
tionally, visual information must be presented in a consistent way [12, ISO
15005] (5.3.2.2.1).

R2.3 – Timing Constraints: An automotive HMI system shall enable appli-
cations to provide important information to the driver within given time
constraints. This means that windows showing information shall be visible
within given time constraints [12, ISO 15005] (5.2.4.3.4). If applications re-
quire user interaction, e.g., if a user selects a radio channel, the flow of infor-
mation must not adversely affect driving (5.2.4.2.1). Concretely, according
to [1, AAM 2006] Section 2.1, each glance shall not exceed 2 seconds. Hence,
any kind of animation shall not run longer than 2 seconds.

R3 – Trusted Channel

R3.1 – Integrity and Confidentiality: In environments where applications
run inside VMs, communication is inevitable. This holds for communication
that previously used dedicated communication hardware and is now replaced
by software-based inter-VM communication. According to [13, ISO 15408-2],
communication between applications and hardware must provide integrity
and confidentiality, for both user data (14.5.8.2) and software components
providing relevant functionality (17.1.5.3). All applications that need trusted
communication shall be able to use it (17.1.5.2).

R3.2 – Authentication and Non-Repudiation: Identification shall be as-
sured even between distinct systems (17.1.5.1), which also applies to inter-
VM communication. A trusted channel also requires non-repudiation of ori-
gin (8.1.1 and 8.1.6.1-3) and receipt (8.2.1 and 8.2.6.1-3). This requires au-
thentication and may also involve cryptographic key management (9.1.1)
and key access (9.1.7.1).

R4 – Virtualized Graphics Rendering In our system, multiple VMs have
shared access to a single GPU, and therefore the VMM has to provide isolation.
That is, unintended interference between applications must not occur.

R4.1 – Priority Handling: Application windows must be assigned a prior-
ity which determines how GPU commands are processed [12, ISO 15005]
(5.2.4.2.4 and 5.2.4.3.3), [13, ISO 15408-2] (15.2.5.1-2 and 15.2.6.1-2).

Towards Virtualization Concepts for Novel Automotive HMI Systems 197

R4.2 – Rendering Time Constraints: Not only comparative requirements
(like priorities) but also absolute timing requirements have to be fulfilled. A
response to a drivers tactile input shall not exceed 250 ms [12, ISO 15005]
(5.2.4.2.3). Similarly, emergency signals may require constant redraw rates
to represent flashing lights [11, ISO 11428] (4.2.2). This requires appropri-
ate CPU and GPU resources and imposes a minimum frame rate since the
delay between two consecutive frames is constraint by an upper bound. The
upper bound must be known to determine the effectiveness of safety-critical
messages [14, ISO 16951] (Annex F) and also to allow for the definition of
delays after which messages are displayed (Annex B).

R4.3 – GPU Resource Isolation: The GPU is a controlled resource accord-
ing to [13, ISO 15408-2]. To prevent unintended interference, it must be
possible to provide guarantees to certain applications that they are pro-
vided sufficient GPU resources such as processing time. Therefore, it must
be possible to control which GPU resources individual windows, graphical
applications, or VMs are allowed to use (15.3.6.1 and 15.3.7.1-2).

R5 – Reconfiguration of Policies A set of permissions that apply to user
input events, application windows, and the related scheduling and isolation is
called a policy. At each point in time, exactly one policy is active, though policies
are dynamically switched during runtime depending on the system state.

R5.1 – Dynamic State Changes: In accordance to [12, ISO 15005], a state
change happens either on user request or automatically by system-defined
rules. A state can depend on a current vehicle condition like “vehicle is in
motion” which could require the deactivation of applications that are not
intended to be used by the driver while the vehicle is in motion (5.2.2.2.4).
Otherwise, an automotive HMI system shall provide sufficient information
and warnings to provide the driver with the intended purpose in a current
state. For every state change, specified deadlines apply to determine a con-
sistent and accurate transition between different states. The definition of
states and system behavior is explained in more detail in [14, ISO 16951]
(3.3 and Annex E).

R5.2 – Dynamic Policy Changes: Authorized software components shall be
able to apply changes to policies during runtime. This includes granting
and revoking permissions on both, currently active and currently inactive
policies. As for R5.1, deadlines apply to dynamic policy changes. Where
applicable and allowed, the driver shall be able to change the active policy
to manipulate the flow of information (5.3.3.2.3).

R5.3 – Presentation Enforcement: The system-defined rules shall enforce
the presentation of legally required messages and traffic-situation-relevant
messages. Presentation requires that those messages are visible and perceiv-
able, in particular, if state changes require driver attention [12, ISO 15005]
(5.3.2.2.2). Furthermore, state-related information shall be displayed either
continuously or upon request by the driver.

198 S. Gansel et al.

R6 – Certifiability For an OEM, certifiability is an essential part of the soft-
ware development process, e.g., by using methods like FMEA [25]. The devel-
opment process for certified software, in particular, for high criticality levels, is
quite complex and expensive. A key indicator for complexity is the number of
function points that correlates with the approximated number of software de-
fects [3]. Hence, a system shall be developed with respect to an easy certification
according to [16, ISO 26262].

R7 – System Monitoring System Monitoring puts the focus on logging,
detecting, and reacting to events that possibly are relevant to provide safety.

R7.1 – Secure Boot: Derived from [13, ISO 15408-2], the system shall provide
secure boot to ensure the integrity of the system. Compromising the system
(14.6.9.1) or system devices or elements (14.6.9.2) by physical tampering
shall be unambiguously detected.

R7.2 – Auditing: The auditing of all safety-critical related events shall be
guaranteed to ensure traceability of system activities in an automotive HMI
system that potentially violate safety or security. Therefore, direct hardware
access must not be permitted to ensure that auditing cannot be bypassed.
For a potential violation analysis, a fixed set of rules shall be defined for a
basic threshold detection, [13, ISO 15408-2] (7.3.2). To indicate any potential
violation of the system-defined rules, the monitoring of audited events shall
also be based on a set of rules (7.3.8.1) that must be enforced by the system
either as an accumulation or a combination of a subset of defined auditable
events which are known to threat the system security (7.3.8.2). Similarly, all
changes to policies initiated by applications shall be monitored and verified.

R7.3 – Supervision of Timing Requirements: It is a requirement to regu-
late the flow of information to ensure short and concise groups such that the
driver can easily perceive the information with minimal distraction [12, ISO
15005] (5.2.4.2.1). Therefore, specified time restrictions need to be verified.
This also includes the auditing of driver tactile input and system response
time which shall not exceed 250 ms (5.2.4.2.3).

R7.4 – Detection of DoS Attacks: The occurrence of any event represent-
ing a significant threat such as a DoS attack shall be detectable by the
system in real-time or during a post-collection batch-mode analysis [13, ISO
15408-2] (7.3.2).

R7.5 – Perception of Visual Signals: For the perception of visual danger
signals, visibility properties like fractions of luminances [11, ISO 11428]
(4.2.1.2) and colors of signal lights (4.3.2) have to be monitored. Monitoring
is also required for certain safety-critical symbols defined in [15, ISO 2575].

R7.6 – Software Fault Tolerance: [13, ISO 15408-2] requires the detection
of defined failures or service discontinuities and a recovery to return to a con-
sistent and secure state (14.7.8.1) by using automated procedures (14.7.9.2).
A list of potential failures and service discontinuities have to be super-
vised by a watchdog to detect entering of failure states. Furthermore, for a

Towards Virtualization Concepts for Novel Automotive HMI Systems 199

defined subset of functions that are required to complete successfully, failure
scenarios shall be specified that ensure recovery (14.7.11.1).

R7.7 – System Integrity: In case of unrecoverable failures, the system shall
be able to switch to degraded operation mode to preserve system integrity. A
list of failure types shall be defined for which no disturbance of the operation
of the system can take place [13, ISO 15408-2] (15.1.7.1). Moreover, the
system shall ensure the operation of a set of capabilities for predefined failure
types (15.1.6.1). This includes the handling of DoS attacks and detection of
illegitimate policy changes. Some events have to be maintained in an internal
representation to indicate if any violations take or took place. This includes
the behavior of system activities for the identification of potential violations
(7.3.10.2-3) like state changes (7.3.10.1).

3 Architecture

In this section, we briefly describe the architecture of a Virtualized Automotive
Graphics System (VAGS) (cf. Fig. 1) that addresses the identified requirements.

Certifiability (R6) applies to the complete development process, all other re-
quirements are represented by the functionalities of the components of our archi-
tecture. With respect to certifiability, we follow the approach of a microkernel-
based VMM where drivers run in user space rather than kernel space. There-
fore, the kernel code size is very small and easier to certify [3]. If driver code
crashes, this does not affect the VMM. The Virtualization Manager runs in a
dedicated VM and exclusively manages shared resources. It contains relevant
drivers, e.g., for GPU and input devices. This ensures that access to all shared
resources is controlled by a single trustworthy VM. Indirect hardware access
by VMs facilitates Virtualized Graphics Rendering (R4) and System Monitor-
ing (R7). Additionally, the Virtualization Manager contains multiple software
components ensuring that every hardware access by VMs is in compliance with
our requirements. Note that our architecture only shows four exemplarily VMs.
However, we do not restrict the number of VMs. Therefore, it is possible to
deploy additional VMs if needed. In order to access hardware, the HU and IC
VMs communicate with the Virtualization Manager VM. For this bidirectional
communication, a Trusted Channel (R3) is required to support secure communi-
cation between the different virtual machines. A trusted channel is provided by
the cooperation of the Isolated Communication Channel and the Authentication
Manager. The Isolated Communication Channel provides integrity and isolation
for communication (R3.1) between applications and the Virtualization Manager.
To initiate a connection, applications first have to provide valid credentials to
the Authentication Manager, to guarantee non-repudiation of origin and receipt
(R3.2). In particular, this is required for the communication between the graph-
ical applications located on HU or IC and the virtualization manager, which
needs to be trustworthy to ensure that the active policy is never violated.

Permission and Policy Management (R5) ensures that applications are get-
ting their defined permissions to use functionalities or resources provided by

200 S. Gansel et al.

��������	�
��
�������

�
���
��

��

���
������
��

����	�����������

!�	�����
	
"��
�	���

�
	
"��
���#�����	�
	����
��$

�
	
"�#�	�
%����	���
���	��
	
"��

�$���#
��	����

%�����	"
!
�����"

���

����&�##�	��
���	�&�
		�

��

�������
#����

(
����
#����

��

)
���
"
���	 ����
 (�

���*�	����#�	��&
�����+ ���*��
���	��+���*�����

�,
���	��
	
"��+

--- ---

����

$�/ ����

$�2

---���*�����#�
���+
��

%���/ %���2 ---

Fig. 1. Architecture

the Input Manager, Window Manager, or GPU Scheduler. Permissions are rep-
resented by the active policy, which depends on the current state (R5.1), e.g.,
“vehicle is parking” or “vehicle is in motion”. The policy management is config-
ured by rules that define transitions between policies performed whenever state
changes (R5.2) in defined time constraints (R5.3).

The Input Manager performs Input Event Handling (R1) and is responsible
for dispatching user input events to the intended applications (R1.1). Since the
processing of user input is subject to time restrictions, a minimal delivery time
for input events to the applications must be ensured (R1.2).

The GPU Scheduler is responsible for Virtualized Graphics Rendering (R4)
according to drawing requirements and permissions of graphical applications. To
this end, applications are assigned priorities that define the amount of dedicated
GPU resources (R4.1). Besides priorities, according to (R4.2), deadlines apply
to the graphical rendering of certain applications like the tachometer. The GPU
scheduler, therefore, has to sequence graphics commands, schedule application
requests and provide isolation between different contexts (R4.3).

The Window Manager provides the functionality for creating, positioning,
and displaying windows of graphical applications. This represents a paradigm
shift from fully user-defined window management to restricted window creation
and positioning (R2). Applications with sufficient permissions interact with the
Window Manager to create windows and to modify properties like size and po-
sition (R2.1). Moreover the Window Manager is responsible for correct window
stacking (R2.2) and meeting rendering time requirements (R2.3).

In order to guarantee Secure Boot (R7.1), the integrity of code that is loaded
must be verified, using, for instance, approaches described in [8]. The Audit-
ing component (R7.2) traces all relevant system activities and interactions. The
gathered traces can be used by the Watchdog and System Monitor components
to detect inconsistencies (for R7.3 to R7.7). The Watchdog supervises relevant
system functionalities and emits signals in case of system malfunctioning as re-
quired for R7.3 to R7.6. The System Monitor receives signals of detected system
malfunctions from the Watchdog. Rules are used to configure its reaction on
these signals.

Towards Virtualization Concepts for Novel Automotive HMI Systems 201

4 Implementation

We have created a proof-of-concept implementation for the main parts of our
proposed VAGS architecture. The implementation consists of a Window Man-
ager using an hierarchical access control management for display areas and input
events. It supports permission negotiation between different virtual machines and
applications. The applications create, destroy and move their windows using a
dedicated Window Manager API. Based on their permissions, applications are
allowed to display their windows in dedicated display areas. Furthermore, each
display area is mapped to a depth level representing the priority of the appli-
cation. This prevents that application windows are overlapped by windows of
applications with lower priority. The Window Manager has a dedicated com-
positing backend which is currently (as an intermediate step) based on X11
compositing.

Linux was used as operating system for the Virtualization Manager and the
graphical applications. As a first step we used an x86 standard PC platform
and created a set of automotive applications like speedometer and navigation
software to demonstrate the feasibility of the concept.

For communication between applications located on different VMs, a trans-
port layer has been implemented. The channels use a custom ring buffer imple-
mentation and shared memory to establish data transfer channels. These chan-
nels are used for forwarding graphics data like EGL, OpenGL ES 2.0, and API
commands of the Window Manager, from the graphics applications to the Vir-
tualization Manager. The management of shared memory is performed by a
dedicated component in the Virtualization Manager. To allow applications on
different VMs for initiating new connections, in each VM a management process
performs the mapping of shared memory segments to applications. The Virtual-
ization Manager performs simple scheduling using synchronization mechanisms
of OpenGL ES 2.0.

5 Related Work

The concept of microkernel-based VMMs in virtualization is well known for many
years. The focus on safety increased during the last few years, e.g., the NOVA
microkernel [26]. Moreover, certifiability became more important, at least in case
of the VMM [22].

A large number of work related to virtualization and graphics applications
has been described in the literature. Due to space constraints, we only focus on
windowing systems, GPU scheduling, and graphics forwarding in the following.
According to [17], the X11 Windowing System does not provide security. Trusted
X [4] has been proposed to provide security for the X Windowing System tar-
geting the requirements in TCSEC B3 (superseded by [13, ISO 15408-2]) but
has not been certified. To provide isolation, an untrusted X server and a window
manager is deployed for each security level which impacts scalability. Therefore,
mutual isolation of applications is practically impossible due to scalability is-
sues. Nitpicker [7] is a GUI server with security mechanisms and protocols to

202 S. Gansel et al.

provide secure and isolated user interaction using different operating systems.
To achieve isolation between these OSes, Nitpicker uses the VMM L4/Fiasco
[10]. The EROS Window System (EWS) [24] targets the protection of sensi-
tive information and the enforcement of security policies by providing access
control mechanisms and enforcing the user volition. A common denominator of
Trusted X, Nitpicker, and EWS is that they only focus on security and thus do
not comply with Input Event Handling (R1), Restricted Window Creation and
Positioning (R2), and System Monitoring (R5). DOpE [6] is a window server
that assures redrawing rates windows of real-time applications and provides a
best-effort service for non-real-time applications. DOpE is based on L4/Fiasco
[10] for isolation and IPC. However, policies are not enforced. Common to all
these windowing systems is the fact that they do not support graphics hard-
ware acceleration and do not provide any timing guarantees for rendering and
displaying.

GERM [2] provides GPU resource management targeting fairness without ad-
dressing isolation or prioritization. Timegraph [21] enhances these concepts and
provides priority-based scheduling of GPU command groups for DRI2. However,
for the execution time of an GPU command group no upper bound can be guar-
anteed and the performance is heavily degraded. Additionally, due to latency
induced by synchronous GPU operations, applications using the X Server and
double buffering encounter additional problems addressed in [20]. However, the
X Server itself does not provide sufficient isolation mechanisms and therefore
cannot be used for an automotive HMI system.

VMGL [23] is an approach to transfer OpenGL commands from an OpenGL
client to an OpenGL server using a TCP/IP connection. However, using TCP/IP
causes significant latency and overhead. Blink [9] is a display system which fo-
cuses on the safe multiplexing of OpenGL programs in different VMs. Blink
uses an OpenGL Client/Server to transmit the OpenGL commands and data
via shared memory to a “Driver VM”. The “Driver VM” is responsible for the
execution of the OpenGL commands on the GPU. Blink proposes “BlinkGL”
which increases performance, but requires applications to be modified.

6 Summary and Future Work

In this paper, we presented requirements for novel automotive HMI systems.
From relevant ISO standards, we derived seven technical requirements for the
physical consolidation of mixed-criticality graphical ECUs such as head unit and
instrument cluster. Additionally we presented VAGS (Virtualized Automotive
Graphics System), a novel automotive HMI concept which provides isolation be-
tween custom graphics applications running in dedicated VMs. Although these
applications are not certified, a VAGS can guarantee that no unintended inter-
ference with certified OEM software can take place. We presented a suitable
architecture and created a proof-of-concept implementation.

In future work we are going to improve graphics scheduling by using execution
time prediction of graphics commands and by using a more suitable scheduling

Towards Virtualization Concepts for Novel Automotive HMI Systems 203

algorithm. Furthermore, we implement system monitoring, auditing, a watch-
dog, and integrate authentication concepts. Since the current implementation is
based on X11, which has a couple of drawbacks, we plan to switch to a native
implementation tailored to embedded hardware. Finally, we evaluate and opti-
mize the performance of our implementation depending on different application
scenarios.

Acknowledgement. This paper has been supported in part by the ARAMiS
(Automotive, Railway and Avionics Multicore Systems) project of the Ger-
man Federal Ministry for Education and Research (BMBF) with funding ID
01IS11035.

References

[1] AAM: Statement of Principles, Criteria and Verification Procedures on Driver
Interactions with Advanced In-Vehicle Information and Communication Systems.
Alliance of Automotive Manufacturers (July 2006)

[2] Bautin, M., Dwarakinath, A., Chiueh, T.: Graphic engine resource management
(2008)

[3] Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Com-
puter 42(4), 42–52 (2009)

[4] Epstein, J., McHugh, J., Pascale, R., Orman, H., Benson, G., Martin, C.,
Marmor-Squires, A., Danner, B., Branstad, M.: A prototype b3 trusted x win-
dow system. In: Proceedings of the 7th Annual Computer Security Applications
Conference, pp. 44–55 (December 1991)

[5] ESOP: On safe and efficient in-vehicle information and communication systems:
update of the European Statement of Principles on human-machine interface.
Commission of the European Communities (2008)

[6] Feske, N., Hartig, H.: Dope – a window server for real-time and embedded sys-
tems. In: Proceedings of the 24th IEEE Real-Time Systems Symposium, pp. 74–77
(December 2003)

[7] Feske, N., Helmuth, C.: A nitpicker’s guide to a minimal-complexity secure gui.
In: Proceedings of the 21st Computer Security Applications Conference, pp. 85–94
(December 2005)

[8] Gallery, E., Mitchell, C.J.: Trusted computing: Security and applications (May
2008)

[9] Hansen, J.G.: Blink: Advanced Display Multiplexing for Virtualized Applications.
In: Proceedings of the 17th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), pp. 15–20 (2007)

[10] Hohmuth, M.: The Fiasco kernel: System Architecure. Technical report: TUD-
FI02-06-Juli-2002 (2002)

[11] ISO 11428: Ergonomics – Visual danger signals – General requirements, design
and testing. ISO, Geneva, Switzerland (December 1996)

[12] ISO 15005: Road vehicles – Ergonomic aspects of transport information and con-
trol systems – Dialogue management principles and compliance procecdures. ISO,
Geneva, Switzerland (July 2002)

[13] ISO 15408-2: Information technology – Security techniques – Evaluation criteria
for IT security – Part 2: Security functional components. ISO, Geneva, Switzerland
(August 2008)

204 S. Gansel et al.

[14] ISO 16951: Road vehicles – Ergonomic aspects of transport information and con-
trol systems (TICS) – Procedures for determining priority of on-board messages
presented to drivers. ISO, Geneva, Switzerland (2004)

[15] ISO 2575: Road vehicles – Symbols for controls, indicators and tell-tales. ISO,
Geneva, Switzerland (July 2010)

[16] ISO 26262: Road vehicles – Functional Safety. ISO, Geneva, Switzerland
(November 2011)

[17] Epstein, J., Picciotto, J.: Trusting x: Issues in building trusted x window systems
– or – what’s not trusted about x. In: Proceedings of the 14th National Computer
Security Conference, vol. 1. National Institute of Standards and Technology, Na-
tional Computer Security Center (October 1991)

[18] JAMA: Guideline for In-vehicle Display Systems – Version 3.0. Japan Automobile
Manufacturers Association (August 2004)

[19] Janker, H.: Straßenverkehrsrecht: StVG, StVO, StVZO, Fahrzeug-ZulassungsVO,
Fahrerlaubnis-VO, Verkehrszeichen, Bußgeldkatalog. C.H. Beck (2011)

[20] Kato, S., Lakshmanan, K., Ishikawa, Y., Rajkumar, R.: Resource sharing in gpu-
accelerated windowing systems. In: Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2011 17th IEEE. pp. 191–200 (April 2011)

[21] Kato, S., Lakshmanan, K., Rajkumar, R., Ishikawa, Y.: Timegraph: Gpu schedul-
ing for real-time multi-tasking environments. In: Proceedings of USENIX Annual
Technical Conference. USENIX Association, Berkeley (2011)

[22] Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: Formal verification of an OS kernel. Communications of the
ACM 53(6), 107–115 (June 2010)

[23] Lagar-Cavilla, H.A., Tolia, N., Satyanarayanan, M., de Lara, E.: VMM-
independent graphics acceleration. In: Proceedings of the 3rd International Con-
ference on Virtual Execution Environments, pp. 33–43. ACM, New York (2007)

[24] Shapiro, J.S., Vanderburgh, J., Northup, E., Chizmadia, D.: Design of the eros
trusted window system. In: Proceedings of the 13th Conference on USENIX Se-
curity Symposium, vol. 13. USENIX Association, Berkeley (2004)

[25] Stamatis, D.: Failure Mode and Effect Analysis: FMEA from Theory to Execution.
ASQ Quality Press (2003)

[26] Steinberg, U., Kauer, B.: Nova: a microhypervisor-based secure virtualization ar-
chitecture. In: Proceedings of the 5th European Conference on Computer Systems,
EuroSys 2010, pp. 209–222. ACM, New York (2010)

Exploiting Segregation in Bus-Based MPSoCs

to Improve Scalability of Model-Checking-Based
Performance Analysis for SDFAs

Maher Fakih1, Kim Grüttner1, Martin Fränzle2, and Achim Rettberg2

1 OFFIS – Institute for Information Technology, Germany
2 Carl von Ossietzky Universität, Germany

Abstract. The timing predictability of embedded systems with hard
real-time requirements is fundamental for guaranteeing their safe usage.
With the emergence of multicore platforms this task becomes even more
challenging, because of shared processing, communication and memory
resources. Model-checking techniques are capable of verifying the perfor-
mance properties of applications running on these platforms. Unfortu-
nately, these techniques are not scalable when analyzing systems with
large number of tasks and processing units. In this paper, a model-
checking based approach that allows to guarantee timing bounds of
multiple Synchronous Data Flow Applications (SDFA) running on
shared-bus multicore architectures will be extended for a TDMA hy-
pervisor architecture. We will improve the the number of SDFAs being
analyzable by our model-checking approach by exploiting the temporal
and spatial segregation properties of the TDMA architecture and demon-
strate how this method can be applied.

1 Introduction

A look at the current development process of electronic systems in the automo-
tive domain, shows that this development process is still based on the design of
distributed single-core ECUs (Electronic Control Units), especially in the hard
real-time domain (for safety-critical systems) with a single application running
per ECU. Yet, because of the growing computational demand of real-time appli-
cations (in automotive, avionics, and multimedia), extending the design process
for supporting multicore architectures becomes inevitable. Due to their signifi-
cantly increased performance and Space Weight and Power (SWaP) reductions,
multicores offer an appealing alternative to traditional architectures.

In ”traditional” distributed systems, dedicated memory per ECU and pre-
dictable field-bus protocols are used. This allows temporal and spatial segrega-
tion and timing requirements can be verified using traditional static analysis
techniques. In multicore systems, contention on shared resources such as buses
and memories makes the static timing analysis of such platforms very hard.
To enable the applicability of static analysis techniques in multicore systems,
resource virtualization using a static time slot per application has been intro-
duced [1]. Time slots are switched circularly by a resource manager or hyper-
visor. The hypervisor takes care of the temporal and spatial segregation. Each

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 205–217, 2013.
c© IFIP International Federation for Information Processing 2013

206 M. Fakih et al.

application can access all platform resources until its time slot is over. When
switching to the next slot, the hypervisor takes care of storing the local state of
all platform resources of the terminated slot and restores the local state of the
next time slot to be activated. In this paper, we present a composable analysis
that is capable to analyze real-time properties of SDFAs on multicore platforms
using a shared-bus architecture and dedicated data and instruction memories
per processing unit. When using the hypervisor architecture described above,
composability can be exploited due to the guaranteed segregation properties.

Our method, allows a model-checking based performance analysis of multiple
SDFAs running on a single multicore platform [2]. An SDFA consists of multiple
actors that exchange information through tokens and follows the Synchronous
Dataflow (SDF) [3] Model of Computation (MoC). SDFAs are represented as
Synchronous Dataflow Graphs (SDFGs). Our multicore architecture consists of
tiles, each of them has a processor core with its own instruction and data mem-
ory. Message passing of tokens is implemented through memory-mapped I/O on
a shared memory connected to the tiles via shared bus architecture. The SDF
semantics support the clean separation between task computation and communi-
cation times which enables the analysis of timing effects though shared memory
accesses. The general idea is illustrated with the following example. Four SDFAs,
each two of them are mapped onto a dedicated 2-tile platform, as shown on the
left side of Fig. 1. Under this mapping all SDFAs meet their required deadlines.
On the right side of Fig. 1 all four SDFAs have been integrated on a virtualized
2-tile platform, where every set of applications is statically mapped to a time
slot (A, B to slot1 and C, D to slot2). Segregation is implemented through a
hypervisor component which implements a TDMA protocol that manages the
switching between time slots and guarantees that applications running in differ-
ent time slots have exclusive access to each tile’s processor and have their own
private area in the tile’s local memories as well as in the shared memory.

Fig. 1. Integrating four SDFAs on a 2-tile virtualized platform

Improving Scalability of Model-Checking-Based Performance Analysis 207

In this paper, we improve the number of actors being analyzable by our model-
checking approach [2] on a fixed number of tiles. This improvement benefits
significantly from a composable analysis based on the temporal and spatial seg-
regation properties of virtualized multicore platforms as described above. In
Section 2, we discuss the related work addressing the performance analysis of
synchronous dataflow graphs (SDFGs) on multicores. We extend our system
model description for virtualized platforms in Section 3. In Section 4 we describe
our compositional performance analysis for virtualized systems and evaluate its
improvements with regard to scalability of our model-checking approach. The
paper closes with a conclusion and gives an outlook on future work.

2 Related Work

2.1 Model-Checking

Lv et al. [4] presented an approach based on model-checking (UPPAAL) com-
bined with abstract cache interpretation to estimate WCET of non-sharing code
programs on a shared-bus multicore platform. Gustavsson et al. [5] moved further
and tried to extend the former work [4] concentrating on modeling code sharing
programs and enhancing the hardware architecture with additional data cache
but without the consideration of bus contentions. In their work, they considered
general tasks modeled at assembly level and analyzed these when mapped to
an architecture where every core has its private L1 cache and all cores share
an L2 cache without sharing a bus. Yet, the instruction level granularity of the
modeled tasks lead to scalability problems even with a platform of four cores, on
which four (very simple) tasks run and communicate through a shared buffer.
Despite the advantage of the former two approaches being applicable to any
code generated/written for any domain, the fine granularity of the code-level
or instruction-level impedes the scalability of the model-checking technique. In
[2], we intended to limit the application to an SDF MoC and limit the hard-
ware architecture by removing caches, in order to reason about the scalability
of a model-checking-based method for the performance analysis of SDFGs. We
showed in [2] that our model-checking approach scales up to 36 actors mapped
to 4-tiles and up to 96 actors on a 2-tiles platforms. In this paper, we intend to
improve the number of actors being analyzable by our method on a fixed number
of tiles (up to 4 tiles). In [6] an approach which combines model-checking with
real-time analysis was presented to extend the scalability of worst-case response
time analysis in multi-cores. Tasks are composed of superblocks where resource
access phases can be identified. In this paper, we concentrate on SDF based
applications with their specific properties and constraints. It is possible to use
the abstraction techniques from [6] to analyze SDF applications. Dong et al. [7]
presented a timed automata-based approach to verify the impact of execution
platform and application mapping on the schedulability (meeting hard real-time
requirements). The granularity of the application is considered at the task level.
With tasks and processors having their own timed automata, the approach scales

208 M. Fakih et al.

up to 103 tasks mapped to 3 cores. Yet, the communication model is missing in
this approach.

2.2 Performance Analysis of SDFGs

Bhattacharyya et al. [3] proposed to analyze performance of a single SDFG
mapped to a multi-processor system by decomposing it into a homogeneous
SDFG (HSDFG). This could result in an exponential number of actors in the
HSDFG compared to the SDFG. This in turn may lead to performance prob-
lems for the analysis methods. Ghamarian [8] presented novel methods to cal-
culate performance metrics for single SDF applications which avoid translating
SDFGs to HSDFGs. Nevertheless, resource sharing and other architecture prop-
erties were not considered. Moone [9] analyzed the mapping of SDFGs on a
multiprocessor platform with limited resource sharing. The interconnect makes
use of a network-on-chip that supports network connections with guaranteed
communication services allowing them to easily derive conservatively estimated
bounds on the performance metrics of SDFGs. Kumar [10] presented a proba-
bilistic technique to estimate the performance of SDFGs sharing resources on
a multi-processor system. Although this analysis was made taking into account
the blocking time due to resource sharing, the estimation approach was aimed
at analyzing soft real-time systems rather than those of hard real-time require-
ments. The work presented in [11] introduces an approach based on state-space
exploration to verify the hard real-time performance of applications modeled
with SDFGs that are mapped to a platform with shared resources. In contrast
to this paper, it does however not consider a shared communication resource.
Schabbir et al. [12] presented a design flow to generate multiprocessor platforms
for multiple SDFGs. The performance analysis for hard real-time tasks is based
on calculating the worst-case waiting time on resources as the sum of all tasks’
execution times which can access this resource. This is a safe but obviously a
very pessimistic approach. In [13] the composability of SDFGs applications on
MPSoC platforms was analyzed. The resource manager proposed in their work,
relies on run-time monitoring and intervenes when desired to achieve fairness
between the SDFGs running. In difference to their work, we utilize a TDMA-
based hypervisor which allows exclusive resource access for SDFGs assigned to
time slots. Furthermore, in every time slot a model-checking-based method is
utilized for the timing validation of multiple hard real-time SDFGs on a multi-
core platform, considering the contention on a shared communication medium
with flexible arbitration protocols such as First Come First Serve (FCFS).

3 System Model Definition

Definitions and terms of the system model are based on the X-Chart based
synthesis process defined in [14]. We decided to use a formal notation (inspired
from [3, 15]) to describe in an unambiguous way, the main modeling primitives
and decisions of the synthesis process. This synthesis process takes as first input

Improving Scalability of Model-Checking-Based Performance Analysis 209

a set of behavior models, each implemented in the SDF MoC. The second input
comprises resource constraints on the target architecture. The output is a model
of performance (MoP) that serves as input for our performance analysis.

3.1 Model of Computation (MoC)

An SDF graph (SDFG) is a directed graph which typically consists of nodes
(called actors) modeling functions/computations and arcs modeling the data
flow. In SDFGs a static number of data samples (tokens) are consumed/produced
each time an actor executes (fires). An actor can be a consumer, a producer or
a transporter actor. We describe the formal semantics of SDFGs as follows:

Definition 1. (Port) A Port is a tuple P = (Dir,Rate) where Dir ∈ {I, O} de-
fines whether P is an input or an output port, and the function Rate : P → N>0

assigns a rate to each port. This rate specifies the number of tokens con-
sumed/produced by every port when the corresponding actor fires.

Definition 2. (Actor) An actor is a tuple A = (P , F) consisting of a finite set
P of ports P , and F a label, representing the functionality of the actor.

Definition 3. (SDFG) An SDFG is a triple SDFG = (A,D, Ts) consisting of
a finite set A of actors A, a finite set D of dependency edges D, and a token size
attribute Ts (in bits). An edge D is represented as a triple D = (Src,Dst,Del)
where the source (Src) of a dependency edge is an output port of some actor, the
destination (Dst) is an input port of some actor, and Del ∈ N0 is the number of
initial tokens (also called delay) of an edge. All ports of all actors are connected
to exactly one edge, and all edges are connected to ports of some actor.

Definition 4. (Repetition vector) A repetition vector of an SDFG is defined
as the vector specifying the number of times every actor in the SDFG has to be
executed such that the initial state of the graph is obtained. Formally, a repetition
vector of an SDFG is a function γ : A → N0 so that for every edge (p, q) ∈ D
from a ∈ A to b ∈ A, Rate(p)× γ(a) = Rate(q)× γ(b). A repetition vector γ
is called non-trivial if and only if for all a ∈ A : γ(a) > 0. In this paper, we use
the term repetition vector to express the smallest non-trivial repetition vector.

3.2 Model of Architecture (MoA)

Fig. 1 depicts our proposed platform architecture template. Each tile is made
up of a processing element (PE) which has a configurable bus connection. A
shared bus is used to connect the tiles to shared memory blocks. In addition,
every PE has two local disjoint memories for instructions (IM)and data (DM).
Furthermore, we assume that all tiles have the same bit-width as the bus and the
architecture is fully synchronous using a single clock. This architecture enables
the actors of SDFGs to communicate via buffers implemented in the shared
memory. Only explicit communication (message passing) between actors will be
visible on the interconnect and the shared memory. We assume constant access

210 M. Fakih et al.

time for any memory block in the shared memory (as in [4]). Furthermore, we
assume that bus block transfers are supported.

The hypervisor component implements global time slots on the platform using
a TDMA protocol. Each time slot represents a subset (or all) of the platform
resources to be used exclusively by the subset of SDFGs statically assigned to
this slot. For this reason a shadow memories per slot for each local IM, DM and
shared memory location is available to guarantee spatial segregation between
different slots. The hypervisor has the role of switching cyclically between the
slots, storing and restoring the local and global state through management of
the different shadow memories. We describe our virtualized architecture model
as follows:

Definition 5. (Tile) A tile is a triple T = (PE, i,Mp) with processing el-
ement PE = (PEtype, f) where PEtype is the type of the processor and
f is its clock frequency, i ∈ N>0 is the number of manageable slots and
Mp = ((mI0 . . .mIi−1), (mD0 . . .mDi−1)) where mI ,mD ∈ N>0 are the instruc-
tion and data memory sizes (in bits) respectively, and the index i represents the
slot number of this memory. Total size of instruction and data memory is i∗mX

for X ∈ D, I.

Definition 6. (Execution Platform) An execution platform
EP = (H, T , B,MS) consists of a hypervisor component H = (Sl, h)
where Sl is the number of slots the hypervisor can handle, and h is the delay of
switching from one slot to another, a finite set T of tiles TH.Sl, a shared bus
B = (bb, AP), where bb is the bandwidth in bits/cycle and AP is the arbitration
protocol (FCFS, TDMA, Round-Robin), and MS = (ms0 . . .msH.Sl−1

) a shared
memory where all slots have their own dedicated shared memory of the same
size ms in bits. Total size of the shared memory is H.Sl ∗ms.

Definition 7. (Virtual Execution Platform) Let Sl := EP.H.Sl be the number
of slots managed by the hypervisor. Then a virtual execution platform V EP =
(l, EP.T , EP.B,EP.MS(0))0 × · · · × (l, EP.T , EP.B,EP.MS(Sl−1))Sl−1 consists
of the duration of each slot l, the tiles T , the shared bus B and one shared
memory partition MS(j), 0 ≤ j ≤ EP.H.Sl − 1 of EP . We define V EP (i) =
(l, T , B,MS)i as the configuration of EP at the i-th time slot.

3.3 System Synthesis

The system synthesis includes the definition of the Virtual Execution Platform,
and the partitioning of SDFGs for different VEPs and the binding and scheduling
of the SDFGs on the resources of their VEP. The mapping of the partitioned
SDFGs on our VEP model is defined as follows:

Definition 8. (Mapping) Let Sl := EP.H.Sl be the number of slots managed
by the hypervisor. Then for every slot 0 ≤ i ≤ Sl− 1, let Ai be the set of actors
and Di the set of all edges of all SDFGs assigned to this slot. Then a mapping
for each slot can be defined as a tuple Mi = (αi, βi) with

Improving Scalability of Model-Checking-Based Performance Analysis 211

1. the function αi : Ai → V EP (i).T mapping every actor to a tile (multiple
actors can be assigned to one tile)

2. the function βi : Di →
⋃

V EP (i).T Mp(i) ∪ V EP (i).MS mapping every edge
of the SDFG either to the slot’s private memory of the tile or to the slot’s
shared memory partition.

An edge mapped to a private or to the shared memory represents a consumer-
producer FIFO buffer in an actual implementation [3]. The following three defi-
nitions allow us to express the scheduling behavior of multiple SDFGs mapped
to the tiles of V EP (i):

Definition 9. (Static-order schedule) For an SDFG with repetition vector γ, a
static-order schedule SO is an ordered list of the actors (to be executed on some
tile), where every actor a is included in this list γ(a) times.

Definition 10. (Scheduling Function) Let SOi be the set of all SO schedules for
all SDFGs considered in slot i. A scheduling function for slot i is a function Si :
V EP (i).T → soi, which assigns to every tile t ∈ V EP (i).T a subset soi ⊆ SOi.

Definition 11. (Scheduler) A scheduler for a slot i is a triple Si = (soi, F,HS)
where soi ⊆ SOi is the set of different SDFGs schedules assigned to one tile,
F represents the functionality (code) of the scheduler and HS is the hierarchi-
cal scheduling, defining the order (priority) of execution of independent lists of
different SDFGs assigned to one tile according to an arbitration strategy (Static-
Order, Round-Robin, TDMA).

We assume that all SDFGs running in the system are known at design time.
Furthermore, while the actors execution order is fixed, the consumer-producer
synchronization in each tile is performed at run-time depending on the buffer
state [3]. A producer actor writes data into a FIFO buffer and blocks if that buffer
is full, while a consumer actor blocks when the buffer is empty. An important
performance metric of SDFG that will be evaluated in Section 5 is the period,
defined in this paper as the time needed for one static order schedule of an SDFG
to be completed.

3.4 Model of Performance (MoP)

In order to be able to verify that the performance of the SDFG stays within given
bounds, we must keep track of all possible timing delays of all SDFGs per slot,
with regard to the physical resources of the underlying multicore platform. To
achieve this, a MoP is extracted from the synthesis process which includes only
the SW/HW components where the timing delay is critical. From the hardware
abstraction point of view, we consider a Transaction Level Model (TLM) [16]
abstraction for the communication. This means that the application layer issues
read/write transactions on the bus, abstracting from the communication proto-
col (see CAAM model [16]). After synthesis, the following system components
can be annotated with execution times/delays: the scheduler that implements

212 M. Fakih et al.

the static order schedule within an SDFG and the hierarchical scheduling across
different SDFGs, the actors, the tiles, the bus and the shared memories. A new
component (communication driver) is introduced into our system, which is re-
sponsible of implementing the communication between actors mapped to a tile
with other components such as the private memory and the shared memory.
In addition, when an actor blocks on a buffer, this driver implements a polling
mechanism. If Ai is the set of actors, Si the set of schedulers, Di the set of
edges, Ci the set of communication drivers, V EP (i).B the bus, V EP (i).MS the
set of shared memories, and

⋃
V EP (i).T Mp(i) the set of private memories per

slot, when considering the performance of the synthesized model, the following
delay functions per slot i are defined:

– ΔAi : Ai×V EP (i).T → N>0×N>0 which provides an execution time interval
[BCET,WCET] for each actor representing the cycles needed to execute the
actor behavior on the corresponding tile. This delay can be estimated using
a static analyzer tool.

– ΔSi : Si × V EP (i).T → N>0 × N>0, ΔCi : Ci × V EP (i).T → N>0 × N>0

assigns in analogy to ΔAi to every scheduler and communication driver a
delay interval, which can be estimated using a static analyzer tool depending
on the code of both components and the platform properties.

– ΔDi : Di ×
⋃

V EP (i).T Mp(i) ∪ V EP (i).MS → N>0 assigns to each commu-
nicating edge d ∈ Di mapped to a communication primitive a delay which
depends on the number and size of the tokens being transported on the edge
and the bandwidth of the corresponding communication medium. We as-
sume that the delay on the edge mapped to a private memory is included in
the interval calculated by the static analyzer tool for the actors. Likewise,
the shared memory access delay is included in the delay of the bus needed
to serve a message passing communication.

Now, for each slot i we can abstractly represent every tile by the actors mapped
to it, the scheduler, a communication driver, each with their delay as defined
before, and its private memory. Each of the private memories in the tiles and the
shared memories can be abstracted in a set of (private/shared) FIFO buffers with
corresponding sizes depending on the rate of the edges mapped to them and the
schedule (each edge is mapped to exactly one FIFO buffer). Note that although
no delays are explicitly modeled on the private and shared buffers, these buffers
are still considered in the MoP because of their effect on the synchronization
which in turn affects the performance.

4 Compositional Performance Analysis Method

4.1 Model-Checking Based Performance Analysis within a Slot

The following method is used to analyze the performance of all SDFGs mapped
to a single slot accessing a subset of the multicore’s compute, memory and shared
bus resources. The components of the MoP identified in the last Section can be

Improving Scalability of Model-Checking-Based Performance Analysis 213

formalized using the timed automata semantics of UPPAAL1. The composition
can be described as follows:

System = VirtualExecutionPlatform || q
i=1 SDFGi

SDFGi =
r
j=1 Consumerj || s

k=1 Producerk || t
l=1 Transporterl

VirtualExecutionPlatform= u
m=1 Tilem || Bus || v

o=1SharedFIFOo

Tilei= Scheduleri || CommunicationDriveri || w
p=1 PrivateFIFOp

where || means parallel composition of timed automata in UPPAAL, q is the
number of SDFGs, r, s, t represent the number of actors (distinguished according
to their type), u is the number of tiles, v is the number of shared FIFO, and w
is the number of private FIFO buffers. In [2], we described the implementation
and the interactions of timed-automata of different components of the MoP. In
addition we illustrated, how performance metrics such as the Worst Case Period
(WCP) can obtained with the help of UPPAAL model-checker. The evaluation
in [2] showed that this method suffers from scalability limitations. E.g. up to
36 actors on a 4-tile platform and up to 96 actors on a 2-tile platform could be
analyzed in a reasonable amount of time.

4.2 Performance Analysis across the Slots

With the proposed extension to our system model definition in Section 3, our
approach in [2] can be used to obtain the WCP of multiple SDFGs per slot with
the help of model-checking. In this subsection we describe how this WCP changes
when considering other slots where different SDFGs are mapped. As described
above, the hypervisor implements a temporal and spatial segregation between
SDFGs of different slots. I.e. all SDFGs of a slot have exclusive access to the
resources and no contention with other SDFGs from other slots can appear. Yet
every SDFG in one slot can still have contention with other SDFGs mapped to
the same slot. This contention and its effect can be analyzed using the model-
checking method presented in the last Section 4.1 and in [2].

For the construction of the slots in the V EP , the length V EP (i).l of every
slot i is set to be equal to the maximum WCP of all SDFGs mapped to this
slot. Since the hypervisor has the role to dispatch/suspend SDFGs in every slot,
an execution platform dependent slot switching delay overhead h := EP.H.h is
induced at the beginning of each slot. Assuming that SDFGs running in one slot
are independent from those running in other slots, the following formula can be
used to determine the WCPcompos of every SDFG after the composition:

WCPcompos =

Sl∑

i=0

WCPmax(i) + (Sl× h), (1)

where WCPmax(i) is the maximal WCP among the SDFGs running in slot i
and Sl := EP.H.Sl is the total number of slots.

1 UPPAAL 4.1.11 (rev. 5085), has been used in the experiments.

214 M. Fakih et al.

5 Evaluation

5.1 Performance Analysis

Suppose we have four SDFGs, each two of them are mapped onto a 2-tile platform
(see Fig. 1). Now, we have the task to integrate both platforms on one multicore
platform, such that they still meet their timing requirements. This is indeed,
a typical use-case in many domains nowadays (automotive, avionics). The goal
of this experiment, is to demonstrate how our proposed method can be applied
to above use-case, and to show that in case the contention on the bus is high,
partitioning induces only minor performance penalties.

Tab. 1 shows the parameters of the four artificial SDFGs, we constructed to
examine the claim above. The actors’ worst-case execution times were generated
randomly (uniformly distributed) within a range of [5..500] cycles, and a timing
requirement (WCPreq) was imposed on every SDFG. We have set the ports’
rates deliberately high, in order to impose contention on the bus. High rates
lead to longer communication time of the active actor, and this in turn leads to
longer waiting time of other actors trying to access the bus. In addition, all edges
of all SDFGs in all mappings were mapped to the shared memory in order to
achieve a high contention on the bus. The bus has a bandwidth of 32 bits/cycle,
a FCFS arbitration protocol and all tokens are of size 32 bits. Moreover, all
SDFGs were scheduled according to a static order schedule.

First, we configured the timed automata templates to evaluate the mapping
of the considered SDFGs, each pair on a 2-tile platform (see Fig. 1 left). The
Worst-case Period (WCPisol) values for every SDFG were calculated using the
model-checking method as described in Section 4.1. Next, we integrated the
four SDFGs and mapped them on a 2-tile platform but without the hypervisor
component. Again, we utilize the model-checking based analysis to find the new
WCP (WCPnocomp) of every SDFG (see Tab. 1 (Exp. 2 tiles)). After that, we
take use of the hypervisor extension, configuring two time slots. SDFGs A, B are
assigned to slot1, and C, D are assigned to slot2 (see Fig. 1 right). The length of
every slot is equivalent to the maximum WCPisol (WCPmax) among the SDFGs

Table 1. Experiments Setup and Results, WCP in cycles

SDFGs Parameters Exp. 2 tiles Exp. 4 tiles

Actors Chan Ports’ Rate WCPreq WCPisol WCPnocomp WCPcompos WCPisol WCPcompos

A 10 9 [1200,2400] 160000 54529 140863 135400
B 10 9 [200,600] 160000 59895 117439 145096 171000
C 10 9 [220,440] 160000 85001 141734 135400
D 6 5 [100,200] 160000 44236 119466 69600
E 10 9 [500,2000] 107850 279050
F 10 9 [300,600] 64500
G 10 9 [700,1400] 66950
H 6 5 [150,300] 37300

Improving Scalability of Model-Checking-Based Performance Analysis 215

assigned to this slot (slot1: 59895, slot2: 85001). The new WCPs (WCPcompos)
are calculated according to Formula (1) assuming a hypervisor delay h of 100
cycles. The results depicted in Tab. 1 (Exp. 2 tiles), show that all SDFGs still
respect their requirements, with a minor performance degradation of average
12.5% in the case of temporal and spatial segregation through the hypervisor.

5.2 Scalability

The model-checking method presented in [2] does not scale beyond 36 actors
mapped to a 4-tile platform. In order to demonstrate the scalability improvement
of our proposed extension, we consider the same set of artificial SDFGs presented
above which have in total 36 actors, and another set of SDFGs (E, F, G and H)
also having 36 actors (see Tab. 1). Every set was mapped on a 4-tile platform
(without hypervisor) and both were first analyzed in isolation with the help of
the model-checking method. After obtaining the WCPisol of the single SDFGs
in isolation (see Tab. 1: Exp. 4 tiles), we now map the 8 SDFGs onto a 4-tile
platform with a hypervisor with two slots and a slot switching delay h of 100
cycles. SDFGs A, B, C, D were assigned to slot1 with the length 171000 cycles
and E, F, G, H to slot2 having a length of 107850. Afterwise, we calculated
the new WCPcompos of the single SDFGs according to (1) (see Tab. 1: Exp.
4 tiles). The results show that our composable analysis doubles the number of
actors, which can be analyzed compared to [2] for this example, at the cost of
performance degradation.

Fig. 2. Scalability Results

Clearly, we can now increase the number of SDFGs that can be analyzed by
increasing the number of slots managed by the hypervisor. Fig. 2 shows that by
10 slots we could analyze up to 960 actors on a 2-tile platform and 360 actors on
a 4-tile platform. Nevertheless, the designer should be acquainted with the fact
that by increasing the number of slots the performance overhead of the single
SDFG would be increased (for Exp. 4 tiles an average of 255%).

216 M. Fakih et al.

6 Conclusion

In this paper, we have presented a composable extension to our model-checking-
based performance analysis method for the validation of hard real-time SDFGs
mapped to a virtualized shared-bus multicore platform. Exploiting the temporal
and spatial segregation properties of the hypervisor, significantly improves scal-
ability depending on the number of slots (by ten slots) up to 360 actors mapped
to 4-tile and up to 960 actors on a 2-tile platforms. Future work will address
relaxing the MoC towards dynamic data flow graphs, and relaxing architecture
constraints towards interrupts, cross-bar switches, and dedicated FIFO channels.

Acknowledgement. This paper has been partially supported by the MotorBrain
ENIAC project under the grant (13N11480) of the German Federal Ministry of Research
and Education (BMBF).

References

[1] Aeronautical Radio, I.: Arinc 653: Avionics application software standard inter-
face. Technical report, ARINC, 2551 Riva Road Annapolis, MD 21401, U.S.A
(2003)

[2] Fakih, M., Grüttner, K., Fränzle, M., Rettberg, A.: Towards performance analysis
of SDFGs mapped to shared–bus architectures using model–checking. In: Proceed-
ings of the Conference on Design, Automation and Test in Europe, DATE 2013,
Leuven, Belgium, European Design and Automation Association (March 2013)

[3] Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and Syn-
chronization, 1 edn. CRC Press (March 2000)

[4] Lv, M., Yi, W., Guan, N., Yu, G.: Combining Abstract Interpretation with Model
Checking for Timing Analysis of Multicore Software. In: 2010 31st IEEE Real-
Time Systems Symposium, pp. 339–349 (2010)

[5] Gustavsson, A., Ermedahl, A., Lisper, B., Pettersson, P.: Towards WCET Analysis
of Multicore Architectures Using UPPAAL. In: 10th, pp. 101–112 (2011)

[6] Giannopoulou, G., Lampka, K., Stoimenov, N., Thiele, L.: Timed model checking
with abstractions: Towards worst-case response time analysis in resource-sharing
manycore systems. In: Proc. International Conference on Embedded Software
(EMSOFT), Tampere, Finland, pp. 63–72. ACM (October 2012)

[7] Dong-il, C., Hyung, C., Jan, M.: System-Level Verification of Multi-Core Embed-
ded Systems Using Timed-Automata, pp. 9302–9307 (July 2008)

[8] Ghamarian, A.: Timing Analysis of Synchronous Data Flow Graphs. PhD thesis,
Eindhoven University of Technology (2008)

[9] Moonen, A.: Predictable Embedded Multiprocessor Architecture for Streaming
Applications. PhD thesis, Eindhoven University of Technology (2009)

[10] Kumar, A.: Analysis, Design and Management of Multimedia Multiprocessor Sys-
tems. PhD thesis, Ph. D. thesis, Eindhoven University of Technology (2009)

[11] Yang, Y., Geilen, M., Basten, T., Stuijk, S., Corporaal, H.: Automated bottleneck-
driven design-space exploration of media processing systems. In: Proceedings of
the Conference on Design, Automation and Test in Europe, DATE 2010, Leuven,
Belgium, pp. 1041–1046. European Design and Automation Association (2010)

Improving Scalability of Model-Checking-Based Performance Analysis 217

[12] Shabbir, A., Kumar, A., Stuijk, S., Mesman, B., Corporaal, H.: CA-MPSoC: An
Automated Design Flow for Predictable Multi-processor Architectures for Multi-
ple Applications. Journal of Systems Architecture 56(7), 265–277 (2010)

[13] Kumar, A., Mesman, B., Theelen, B., Corporaal, H., Ha, Y.: Analyzing compos-
ability of applications on MPSoC platforms. J. Syst. Archit. 54(3-4) (March 2008)

[14] Gerstlauer, A., Haubelt, C., Pimentel, A., Stefanov, T., Gajski, D., Teich, J.: Elec-
tronic System-Level Synthesis Methodologies. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 28(10), 1517–1530 (2009)

[15] Stuijk, S.: Predictable Mapping of Streaming Applications on Multiprocessors,
vol. 68. University Microfilms International, P. O. Box 1764, Ann Arbor, MI,
48106, USA (2007)

[16] Cai, L., Gajski, D.: Transaction Level Modeling: an Overview. In: First
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, pp. 19–24 (October 2003)

Formal Verification of Concurrent Embedded Software

Dirk Nowotka1,∗ and Johannes Traub2

1 Department of Computer Science, Kiel University
dn@informatik.uni-kiel.de

2 E/E- and Software-Technologies, Daimler AG
johannes.traub@daimler.com

Abstract. With the introduction of multicore hardware to embedded systems
their vulnerability to race conditions has been drastically increased. Therefore,
sufficient methods and techniques have to be developed in order to identify this
kind of runtime errors. In this paper, we demonstrate an approach employing a
formal technique in the verification process. We use MEMICS, which is a spe-
cialized constraint solver able to identify general runtime errors as well as race
conditions. We show how this tool can be embedded into an existing software
analysis tool chain. In particular, we describe the process of deriving the formal
input model for the solver from C code. The advantage of using constraint solv-
ing techniques is that we can offer an entire trace leading to a race condition.
The ongoing development of MEMICS is part of our work inside the ARAMiS
project.

1 Introduction

One of the main goals of the ARAMiS project — “Automotive, Railway and Avionics
Multicore Systems” — [BS] is to enhance on safety issues for multicore embedded
technologies in vehicles. In terms of embedded systems a safety aspect is the assurance
that the software running on them is free of any kind of runtime error, which they may
suffer and fault from. Software can suffer from a lot of different runtime errors, like an
arithmetic overflow, a division by zero, an index out of bound access, a null dereference,
a race conditions and a stack overflow. A detailed list of runtime errors can be found in
Table 1 in Section 3. The nastiest of these runtime errors are the race conditions, as they
might only occur sporadically and are therefore very hard to detect or trace. With the
current introduction of multicore hardware to embedded systems, their vulnerability to
race conditions has increased drastically. To get this problem under control new tools
and techniques are required.

In [NT12] we introduced the static software analysis tool MEMICS, which is able to
detect race conditions as well as common runtime errors in C/C++ source code. Com-
mon static analysis tools like Astrée [CCF+05], Polyspace [pol], and Bauhaus [RVP06]
are able to analyse large code fragments but do suffer from potential false positives
which requires an extensive manual postprocessing of their results. MEMICS is based
on constraint solving techniques which eliminate the problem of false positives. How-
ever, the complexity of constraint solving algorithms is very high which means that the

∗ This work has been supported by the BMBF grant 01IS110355.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 218–227, 2013.
c© IFIP International Federation for Information Processing 2013

Formal Verification of Concurrent Embedded Software 219

code fragments MEMICS can analyse are not too large. We believe that a combination
of both approaches, approximative and precise techniques, together in one tool chain
lead to a significant improvement of the analysis of concurrent code. In this paper we
describe how MEMICS fits into a static analysis workflow. Moreover, we give a detailed
description of the conversion of C code to the MEMICS input model.

Within the ARAMiS project there are two possible scenarios discussed, in which the
MEMICS tool can be used to provide safety:

1. Migration to multicore hardware, and
2. Development for multicore hardware.

Both scenarios have the same origin. Lets assume an OEM has decided to replace the
hardware of one of its ECU’s — e.g. due to new features, optimized power consumption,
or need for more performance — and the replacement hardware contains a multicore
CPU, whereas the old one was a singlecore system. In this case the OEM has to decide,
either to port the current software version to match all the new features of the multicore
hardware or to entirely restart and build a new software from scratch. Still, no matter
which of the two choices are picked, it is clear that the possibility of potential races has
increased with the new hardware. Therefore MEMICS can be used to determine and
eliminate races during the development process.

The MEMICS tool is described in Section 2, where we mainly focus on the MEMICS
frontend. Section 3 provides current results of the MEMICS tool. In Section 4 we dis-
cuss the role and possible use cases of MEMICS inside the ARAMiS project. Finally
we conclude our paper in Section 5 and give a perspective for the future.

2 The MEMICS Tool

In [NT12] we introduced MEMICS, while mainly focusing on the overall tool and the
proof engine. The current paper is dedicated to the preprocessing engine in MEMICS,
the MEMICS frontend, which is introduced in detail in Section 2.1. Figure 1 shows
the architectural overview of MEMICS. The input to MEMICS is C/C++ source code,
which in the first step is preprocessed in the MEMICS frontend and results in the
MEMICS model. This model is then passed to the core of MEMICS, the actual proof
engine, which checks if the model suffers from any runtime error.

2.1 The MEMICS Frontend

The MEMICS frontend describes the interface between the source input, which is
C/C++ source code, and the MEMICS model. We decided to use the Low Level Virtual
Machine (LLVM) [LA04] infrastructure as a base for this frontend, as it is currently one
the most advanced and user friendly compiler framework. In the first step, the C/C++
sources get compiled using the CLANG [Fan10] compiler and are linked together using
llvm-ld. The result is one bitcode file, which resides in the LLVM intermediate repre-
sentation (IR) [Lat]. The LLVM IR is a combination of the LLVM language, which is
based on the MIPS [Swe06] instruction set, and an unlimited set of virtual registers. In
order to simplify and reduce the input problem, we can optionally run a Program Slicer

220 D. Nowotka and J. Traub

MEMICS

MEMICS-COREMEMICS-FRONTEND

 C/C++
Source
Code

LLVM
IR

MEMICS
Model

Counter
Example

Model
is Save

MEMICS
Proof Engine

LLVM
MEMICS
Backend

CLANG

Program
Slicer

Next
Iteration

Unrolling/
Logic
Encoding

Fig. 1. An Overview of the MEMICS Architecture

[Wei81] directly on the LLVM IR. Due to the fact that this slice must not modify the
overall behaviour of the program, we can only apply specific slicing techniques. The IR
still features function- and variable-pointers as well as other specific types, which are
not straight forward dealable by common verification techniques. So, instead of hav-
ing to lower all the special features on our own, we decided to take advantage of the
LLVM backend, which is generating plain machine code. Therefore, we derived the
LLVM MEMICS backend from the MIPS backend and added some minor modifica-
tions to the instruction lowering. But instead of printing plain MIPS assembly code,
the LLVM MEMICS backend creates the MEMICS intermediate representation, which
is introduced in Section 2.2. Every machine instruction can be mapped one-by-one to
a MEMICS instruction and every global variable is on the one hand applied to the
MEMICS RAM and on the other hand assigned to the model.

Like almost any compiler infrastructure the LLVM MIPS backend supports three dif-
ferent relocation types [Lev99]: dynamic-no-pic, pic and static. Pic is short for “position
independent code” and even allows the temporal storage of jump destinations into reg-
isters. Both, pic and dynamic-no-pic allow libraries to be fetched dynamically, which
results in a smaller linked binary. Whereas in static relocation type all libraries are stat-
ically linked into the binary, which is therefore bigger. In the current development state
our MEMICS intermediate representation requires absolute jump destinations, which
forces us to either use dynamic-no-pic or static relocation type.

2.2 The MEMICS Intermediate Representation

The MEMICS intermediate representation (IR) or the MEMICS model is based on a
combination of a finite state machine definition and the MIPS instruction set. An in-
struction inside the IR is defined as the 4-tuple:

< si, c, a, s
′
i >, where:

si is the current program counter (PC), c is an optional condition (e.g. in a branch
instruction), a is the actual MIPS instruction, and s′i is the successor PC.

Formal Verification of Concurrent Embedded Software 221

Figure 2 shows a small example of the conversion from C source code to the MEMICS
IR. The source code shown in the first box is a simple function, which computes the di-
vision of the operandsa and b. Compiling this code using CLANG results in the LLVM
IR, which is shown in the second box of the figure. It is observable that the IR itself is
already more like a machine language, compared to the actual source code. First of all
local memory for the operands is allocated, which is afterwards assigned with the ac-
tual values of them. In the next step the values are read from the memory into the two
virtual registers %0 and %1. Next the division itself takes place and finally the result
is returned. The MEMICS IR, which is shown in the last box of Figure 2, is retrieved
from the LLVM IR via the LLVM MEMICS backend. The result is even closer to the
MIPS assembly language then the LLVM IR. The actual instruction has been embed-
ded between the current program counter and the following program counter, which
are both required in order to properly process the model. First of all in line 1 the local
stack pointer gets allocated. In line 2 and 3 the operands - respectively the registers 4
and 5 - are stored in the local memory. Now, the actual division takes part in line 4,
where the result is store in register lo and the remainder in register hi. In the next two
instructions the result is assigned to the return value register 2 and the stack pointer gets
freed. Finally the function returns to its caller, which is stored in the ra (return address)
register.

2.3 The MEMICS Core

The MEMICS Core is the actual verification engine of the MEMICS tool, which checks
if the MEMICS IR and its underlying C/C++ source code suffers from any runtime
error or not. The verification process is based on Bounded Model Checking (BMC)
[BCC+03]. Therefore, the MEMICS IR is unrolled step by step into a logic formula
in Static Single Assignment (SSA) form [AWZ88, RWZ88] and then passed to the
MEMICS Proof Engine. This proof engine is a self developed Interval Constraint Solver
(ICS), based on the ideas from HySAT and its successor ISAT [FHT+07]. The main dif-
ference between an ICS and common SAT-/SMT-Solvers [MMZ+01, dMB09] - e.g.
MiniSAT [ES03], Boolector [BB09], Z3 [dMB08] and many other - is, instead of
dealing with fix-point variable decisions during the internal search procedure, vari-
able ranges are deduced. Since the main purpose of our tool is software verification,
it contains many special features regarding the analysis of software. For details on these
features please refer to [NT12].

3 Results

In [NT12] we have tested MEMICS on an internal benchmark set, which contains dif-
ferent types of runtime errors, based on errors observed in real life. We used the Com-
mon Weakness Enumeration (CWE) [cwe] database to define the base classes for these
errors. As the CWE gathers almost any kind of error, which is observable in a com-
puter based environment, we do by far not match all error classes, but only show the
most relevant ones for static software analysis. The result of these tests is shown in
Table 1, where we have compared MEMICS with two analysis tools, CBMC [CKL04]
and LLBMC [SFM10], which are also operating based on BMC.

222 D. Nowotka and J. Traub

C Code

int divide(int a, int b) {
return (a / b);

}
LLVM Intermediate Representation

define i32 @divide(i32 %a, i32 %b) nounwind {
entry:
%a.addr = alloca i32, align 4
%b.addr = alloca i32, align 4
store i32 %a, i32* %a.addr, align 4
store i32 %b, i32* %b.addr, align 4
%0 = load i32* %a.addr, align 4
%1 = load i32* %b.addr, align 4
%div = sdiv i32 %0, %1
ret i32 %div

}
MEMICS Intermediate Representation

1: PC = 1 -> malloc(sp_reg’ , 8) AND PC’ = 2;
2: PC = 2 -> sw(4_reg, (memadr(sp_reg, 4) AND __clk__))

AND PC’ = 3;
3: PC = 3 -> sw(5_reg, (memadr(sp_reg, 0) AND __clk__))

AND PC’ = 4;
5: PC = 4 -> (lo_reg’ = 4_reg / 5_reg)

AND (hi_reg’ = 4_reg % 5_reg)
AND PC’ = 5;

6: PC = 5 -> (2_reg’ = lo_reg) AND PC’ = 6;
7: PC = 6 -> free(sp_reg) AND PC’ = 7;
8: PC = 7 -> PC’ = ra_reg;

Fig. 2. From C Source Code via the LLVM IR to the MEMICS IR

With this results we have shown that our tool is already able to identify a lot of
runtime errors, as well common sequential as difficult concurrent ones.

4 MEMICS and the ARAMiS Multicore Platform

As in the introduction already mentioned the main goal of ARAMiS is to provide a
platform for multicore development. This platform should feature a seamless integration
of the development tools along the development process. For this purpose one current
development process is the creation of a global exchange format. This format should
help all tools along the development process to intercommunicate with each other and
pass on usable information or already computed results.

The MEMICS tool can intercommunicate and share information with common static
analysis tools like Astrée, Polyspace, and others as well as race detection tools like

Formal Verification of Concurrent Embedded Software 223

Bauhaus [RVP06] and others. Figure 3 illustrates the information sharing between those
tools alongside the ARAMiS exchange format. The main idea behind the combination
of these tools is to provide the best overall performance for all of them. Whereas tools
like Astrée and Polyspace have the ability to handle large amounts of source code, they
are based on abstract interpretation [CC77] and may therefore suffer from imprecision
in the results. Bauhaus can also handle a lot of input in terms of source code, but it still
suffers from false positives in the results, since it is working based on approximative
techniques. On the other hand BMC tools like MEMICS are limited due to the state
explosion problem, while offering enormous precision. In our case we even provide
a direct counterexample leading to an error. In Section 4.1 and 4.2 we describe three
different scenarios of possible tool intercommunication.

Table 1. Results of MEMICS compared to CBMC and LLBMC, where a �represents a correct
verification result, - a false one and ◦ signals that the tool does not support the class of testcases

Class Benchmark CWE-ID MEMICS CBMC LLBMC

Arithmetic
DivByZeroFloat 369 � � ◦
DivByZeroInt 369 � � �

IntOver 190 � � �

Memory

DoubleFree 415 � � �
InvalidFree 590 � � �

NullDereference 476 � � �
PointertToStack 465 � - �

SizeOfOnPointers 467 � - �
UseAfterFree 416 � - �

Pointer Arithmetic
Scaling 468 � - �

Subtraction 469 � - �

Race Condition
LostUpdate 5671 � ◦ ◦

MissingSynchronisation 820 � ◦ ◦

Synchronization
DeadLock 833 � ◦ ◦

DoubleLock 667 � ◦ ◦

4.1 Combination: MEMICS ↔ Polyspace

The output of Polyspace is divided in three different groups: the green, orange and red
results. A green result states the given property is free of faults, whereas a red one is
an actual finding. All of the orange ones are not determinable and must therefore be
manually reviewed. One can use MEMICS to check if the error is “real” or not. The
definition of the check is acutally quite simple. Let us assume the indeterminable error
is a potential division by zero occurring in the example function “divide” of Figure
2. In that case using the definition of the according MEMICS IR from Figure 2, the
target-question MEMICS has to determine is:

PC == 4 ∧ 5 reg == 0
1 We did not find a straight forward ID for a lost update, but the example in this entry describes

one.

224 D. Nowotka and J. Traub

Precise Method

Postprocessing
Analysis

Development Process

MEMICS

Static Single
 Analysis

Race Detection

Bauhaus

Astrée

Polyspace

Approximative
Method

ARAMiS Exchange Format

Fig. 3. ARAMiS Exchange Format: Intercommunication between Software Analysis Tools

4.2 Combination: Bauhaus ↔ MEMICS

In case of the Bauhaus race detector, two different scenarios can be considered. In the
first case Bauhaus can just pass its common output as well as the system description
- including the task definitions, their priorities and so on - to MEMICS in order to
determine, which of the detected race pairs can really occur in the system. Such a race
pair can either be a read operation from task A in conflict with a write operation from
task B on the same shared resource or a write-write conflict between task A and B. So
e.g. for a read/write conflict, given the read access occurs at PC = x, the write conflict
occurs at PC = y and the resource is located at address z in the memory, the target-
question for MEMICS is:

clk(load, z, A, PC = x) > clk(store, z, B, PC = y)

In the second case Bauhaus can use MEMICS to gather more information on the schedul-
ing of tasks. With this help Bauhaus can reduce the set of potential race conditions. Let
us assume that the initial program counter of task A is PC taskA = x and for task
B PC taskB = y. The target-question for MEMICS, if e.g. the two tasks can start
synchronously, is:

clk(PC taskA = x) == clk(PC taskB = y)

The MEMICS tool benefits from the first two scenarios described above, because adding
a target-question to input of the MEMICS IR has almost the same impact as Program
Slicing. It does not actually reduce the MEMICS IR, but reduces to search space only
to the required behaviour, which is shown in Figure 4. This reduction can have a large
impact on the overall time MEMICS requires to solve the input problem.

Formal Verification of Concurrent Embedded Software 225

Entire Searchspace

Target
specific
Slice

Fig. 4. MEMICS IR Slice: Searchspace Reduction to a specific Target

5 Conclusions and Future Work

In this paper we have described, how the software verification tool MEMICS maps
C code to its input model. We have shown the advantages of using LLVM and that
especially the LLVM Backend is the most suitable solution for our purpose. Moreover,
we described the role of MEMICS inside a software analysis tool chain, in particular
within the ARAMiS project. This gives our perspective in which cases MEMICS can
enhance the development process.

Currently, we are running scalability tests of the MEMICS tool to test the limits
of our approach and push those. Another ongoing work is to embed techniques like
counterexample guided abstraction refinement (CEGAR) [CGJ+00] in order to improve
on MEMICS efficiency. In terms of the ARAMiS project, we will use the exchange
format, once it is available, for tying MEMICS into the tool chain. This will help us a
lot in case of direct knowledge sharing with other tools like e.g. Bauhaus and Polyspace.
The information we can retrieve from these tools is supposed to drastically reduce the
size of the input in most cases.

References

[AWZ88] Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 1–11 (1988)

[BB09] Brummayer, R., Biere, A.: Boolector: An Efficient SMT Solver for Bit-Vectors and
Arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009)

[BCC+03] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Check-
ing. Advances in Computers, vol. 58, pp. 117–148. Elsevier (2003)

[BS] Becker, J., Sander, O.: Automotive, Railway and Avionics Multicore Systems -
ARAMiS, http://www.projekt-aramis.de/

[CC77] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In: Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 1977, pp. 238–252. ACM, New York (1977)

http://www.projekt-aramis.de/

226 D. Nowotka and J. Traub

[CCF+05] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30.
Springer, Heidelberg (2005)

[CGJ+00] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

[CKL04] Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

[cwe] Common Weakness Enumeration, http://cwe.mitre.org
[dMB08] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

[dMB09] de Moura, L., Bjørner, N.: Satisfiability Modulo Theories: An Appetizer. In: Oliveira,
M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 23–36. Springer,
Heidelberg (2009)

[ES03] Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

[Fan10] Fandrey, D.: Clang/LLVM Maturity Report (June 2010),
http://www.iwi.hs-karlsruhe.de

[FHT+07] Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large
non-linear arithmetic constraint systems with complex boolean structure. Journal on
Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)

[LA04] Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program Anal-
ysis & Transformation. In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO 2004), Palo Alto, California (March 2004)

[Lat] Lattner, C.: LLVM Language Reference Manual,
http://llvm.org/docs/LangRef.html

[Lev99] Levine, J.R.: Linkers and Loaders, 1st edn. Morgan Kaufmann Publishers Inc., San
Francisco (1999)

[MMZ+01] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, DAC 2001, pp. 530–535. ACM, New York (2001)

[NT12] Nowotka, D., Traub, J.: MEMICS - Memory Interval Constrain Solving of (concur-
rent) Machine Code. In: Plödereder, E., Dencker, P., Klenk, H., Keller, H.B., Spitzer,
S. (eds.) Automotive - Safety & Security 2012: Sicherheit und Zuverlässigkeit für
Automobile Informationstechnik. Lecture Notes in Informatics, vol. 210, pp. 69–83.
Springer (2012)

[pol] Polyspace, http://www.mathworks.com/products/polyspace
[RVP06] Raza, A., Vogel, G., Plödereder, E.: Bauhaus – A Tool Suite for Program Analysis

and Reverse Engineering. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe
2006. LNCS, vol. 4006, pp. 71–82. Springer, Heidelberg (2006)

[RWZ88] Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global value numbers and redundant
computations. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 12–27 (1988)

[SFM10] Sinz, C., Falke, S., Merz, F.: A Precise Memory Model for Low-Level Bounded
Model Checking. In: Proceedings of the 5th International Workshop on Systems
Software Verification (SSV 2010), Vancouver, Canada (2010)

http://cwe.mitre.org
http://www.iwi.hs-karlsruhe.de
http://llvm.org/docs/LangRef.html
http://www.mathworks.com/products/polyspace

Formal Verification of Concurrent Embedded Software 227

[Swe06] Sweetman, D.: See MIPS Run, 2nd edn. Morgan Kaufmann Publishers Inc.,
San Francisco (2006)

[Wei81] Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on
Software Engineering, ICSE 1981, pp. 439–449. IEEE Press, Piscataway (1981)

On the Homogeneous Multiprocessor Virtual

Machine Partitioning Problem

Stefan Groesbrink

Design of Distributed Embedded Systems, Heinz Nixdorf Institute
University of Paderborn

Fuerstenallee 11, 33102 Paderborn, Germany
s.groesbrink@upb.de, http://www.hni.uni-paderborn.de/

Abstract. This work addresses the partitioning of virtual machines
with real-time requirements onto a multi-core platform. The partition-
ing is usually done manually through interactions between subsystem
vendors and system designers. Such a proceeding is expensive, does not
guarantee to find the best solution, and does not scale with regard to
the upcoming higher complexity in terms of an increasing number of
both virtual machines and processor cores. The partitioning problem is
defined in a formal manner by the abstraction of computation time de-
mand of virtual machines and computation time supply of a shared pro-
cessor. The application of a branch-and-bound partitioning algorithm is
proposed. Combined with a generation of a feasible schedule for the vir-
tual machines mapped to a processor, it is guaranteed that the demand
of a virtual machine is satisfied, even if independently developed vir-
tual machines share a processor. The partitioning algorithm offers two
optimization goals, required number of processors and the introduced
optimization metric criticality distribution, a first step towards a parti-
tioning that considers multiple criticality levels. The different outcomes
of the two approaches are illustrated exemplarily.

1 Introduction

This work targets the hypervisor-based integration of multiple systems of mixed
criticality levels on a multicore platform. System virtualization refers to the divi-
sion of the resources of a computer system into multiple execution environments
in order to share the hardware among multiple operating system instances. Each
guest runs within a virtual machine—an isolated duplicate of the real machine.
System virtualization is a promising software architecture to meet many of the
requirements of complex embedded systems and cyber-physical systems, due to
its capabilities such as resource partitioning, consolidation with maintained iso-
lation, transparent use of multiple processor system-on-chips, and cross-platform
portability.

The rise of multi-core platforms increases the interest in virtualization, since
virtualization’s architectural abstraction eases the migration to multi-core plat-
forms [11]. The replacement of multiple hardware units by a single multi-core

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 228–237, 2013.
c© IFIP International Federation for Information Processing 2013

http://www.hni.uni-paderborn.de/

On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem 229

system has the potential to reduce size, weight, and power. The coexistence of
mixed criticality levels has been identified as one of the core foundational con-
cepts for cyber-physical systems [3]. System virtualization implies it in many
cases, since the applicability of virtualization is limited significantly if the inte-
gration of systems of different criticality level is not allowed.

Contribution. This work addresses the partitioning of virtual machines with
real-time requirements onto a multi-core platform. We define this design prob-
lem as the homogeneous multiprocessor virtual machine partitioning problem in
a formal manner, specifying the computation time demand of virtual machines
and the computation time supply of a shared processor. A mapping of a given set
of virtual machines among a minimum number of required processors is achieved
by a branch-and-bound algorithm, such that the capacity of any individual pro-
cessor is not exceeded. This automated solution provides analytical correctness
guarantees, which can be used in system certification. An introduced optimiza-
tion metric is a first step towards a partitioning that considers multiple virtual
machine criticality levels appropriately.

2 System Model

2.1 Task Model and Virtual Machine Model

According to the periodic task model, each periodic task τi is defined as a se-
quence of jobs and characterized by a period Ti, denoting the time interval
between the activation times of consecutive jobs [16]. The worst-case execution
time (WCET) Ci of a task represents an upper bound on the amount of time
required to execute the task. The utilization U(τi) is defined as the ratio of
WCET and period: U(τi) = Ci/Ti. A criticality level χ is assigned to each task
[24]. Only two criticality levels are assumed in this work, HI and LO.

A virtual machine Vk is modeled as a set of tasks and a scheduling algorithmA,
which is applied by the guest operating system. A criticality level χ is assigned to
each virtual machine. If a virtual machine’s task set is characterized by multiple
criticality levels, the highest criticality level determines the criticality of the
virtual machine.

2.2 Multi-core and Virtual Processor

Target platform are homogeneous multi-core systems, consisting of m identical
cores of equal computing power. This implies that each task has the same ex-
ecution speed and utilization on each processor core. Assumed is in addition a
shared memory architecture with a uniform memory access.

A virtual processor is a representation of the physical processor to the virtual
machines. A dedicated virtual processor P virt

k is created for each virtual machine
Vk. It is in general slower than the physical processor core to allow a mapping
of multiple virtual processors onto a single physical processor core. A virtual

230 S. Groesbrink

processor is modeled as a processor capacity reserve [18], a function Π(t) : N �→
{0, 1} defined as follows:

Π(t) =

{
0, resource not allocated

1, resource allocated
(1)

The computation capacity of a physical processor core is partitioned into a set
of reservations. Each reservation is characterized by a tuple (Qk, Υk): in every
period Υk, the reservation provides Qk units of computation time. αk = Qk/Υk

denotes the bandwidth of the virtual processor.
The computational service provided by a virtual processor P virt

k can be an-
alyzed with its supply function Zk(t), as introduced by Mok et al. [19]. Zk(t)
returns the minimum amount of computation time (worst-case) provided by the
virtual processor in an arbitrary time interval of length t ≥ 0:

Zk(t) = min
t0≥0

∫ t0+t

t0

Π(x)dx . (2)

2.3 Notation

The symbols in this paper are therefore defined as follows:

1. τi = (Ci, Ti) : task i with WCET Ci, period Ti, utilization U(τi) = Ci/Ti

2. P = {P1, P2, ..., Pm} : set of processors (m ≥ 2)
3. V = {V1, V2, ..., Vn} : set of virtual machines (n ≥ 2)
4. τi ∈ Vk : task τi is executed in Vk

5. U(Vk) =
∑

τi∈Vk
U(τi) : utilization of Vk

6. χ(Vk) ∈ {LO,HI} : criticality level of Vk

7. P virt = {P virt
1 , P virt

2 , ..., P virt
n } : virtual processors, Vk is mapped to P virt

k

8. (Qk, Υk) : resource reservation with bandwidth αk = Qk/Υk

9. Zk(t) : minimum amount of computation time provided by P virt
k

10. Γ (Pi) : subset of virtual processors allocated to Pi

All parameters of the system—number of processors and computing capacity,
number of virtual machines and parameters of all virtual machines, number of
tasks and parameters of all tasks—are a priori known.

3 The Homogeneous Multiprocessor Virtual Machine
Partitioning Problem

The scheduling problem for system virtualization on multi-core platforms con-
sists of two sub-problems:

(i) partitioning: mapping of the virtual machines to processor cores
(ii) uniprocessor hierarchical scheduling on each processor core

On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem 231

Sub-problem (ii) is well-understood and many solutions are available, e.g. [15].
This work focuses on sub-problem (i) and refer to it as the homogeneous mul-
tiprocessor virtual machine partitioning problem. More precisely, the virtual
processors P virt executing the virtual machines V have to be mapped to the
physical processors P :

V
f1�→ P virt f2�→ P . (3)

f1 is a bijective function: each virtual machine Vk is mapped to a dedicated
virtual processor P virt

k . f2 maps 0 to n = |P virt| virtual processors to each
element of P . A solution to the problem is a partition Γ , defined as:

Γ = (Γ (P1), Γ (P2), ..., Γ (Pm)) (4)

Such a mapping of virtual machines (equivalent to virtual processors) to physical
processors is correct, if and only if the computation capacity requirements of
all virtual processors are met; and by consequence the schedulability of the
associated virtual machines is guaranteed.

The partitioning problem is equivalent to a bin-packing problem, as for ex-
ample Baruah [2] has shown for the task partitioning problem by transformation
from 3-Partition. The virtual machines are the objects to pack with size deter-
mined by their utilization factors. The bins are processors with a computation
capacity value that is dependent on the applied virtual machine scheduler of this
processor. The bin-packing problem is known to be intractable (NP-hard in the
strong sense) [10] and the research focused on approximation algorithms [6].

4 Scheduling Scheme

It is an important observation that the hypervisor-based integration of inde-
pendently developed and validated systems implies partitioned scheduling. As
a coarse-grained approach, it consolidates entire software stacks including an
operating system, resulting in scheduling decisions on two levels (hierarchical
scheduling). The hypervisor schedules the virtual machines and the hosted guest
operating systems schedule their tasks according to their own local scheduling
policies. This is irreconcilable with a scheduling based on a global ready queue.

Virtual Machine Scheduling. In the context of this work, n virtual machines
are statically assigned to m < n processors. Although a dynamic mapping is
conceptually and technically possible, a static solution eases certification signif-
icantly, due to the lower run-time complexity, the higher predictability, and the
wider experience of system designer and certification authority with uniproces-
sor scheduling. Run-time scheduling can be performed efficiently in such systems
and the overhead of a complex virtual machine scheduler is avoided.

For each processor, the virtual machine scheduling is implemented based on
fixed time slices. Execution time windows within a repetitive major cycle are
assigned to the virtual machines based on the required utilization and the maxi-
mum blackout time. As a formal model, the Single Time Slot Periodic Partitions

232 S. Groesbrink

model by Mok et al. [20] is applied. A resource partition is defined as N disjunct
time intervals {(S1, E1), ..., (SN , EN)} and a partition period Ppartition, so that a
virtual machine Vi is executed during intervals (Si+j ·Ppartition, Ei+j ·Ppartition)
with j ≥ 0. Kerstan et al. [13] presented an approach to calculate such time in-
tervals for virtual machines scheduled by either earliest deadline first (EDF) or
rate-monotonic (RM), with S0 = 0 and Si = Ei−1:

Ei =

{
Si + U(Vi) · Ppartition in case of EDF

Si +
1

URM
lub (Vi)

U(Vi) · Ppartition in case of RM , with
(5)

URM
lub (Vi) = ntasks · (2

1
ntasks − 1) (6)

In case of RM, a scaling relative to the least upper bound URM
lub is required. If the

partition period is chosen as Ppartition = gcd({Tk|τk ∈
⋃n

i=1 Vi}), no deadline
will be missed [13].

The virtual machine schedule is computed offline and stored in a dispatching
table, similar to the cyclic executive scheduling approach [1]. The size of this
table is bounded, since the schedule repeats itself after Ppartition. Such a highly
predictable and at design time analyzable scheduling scheme is the de facto
standard for scheduling high-criticality workloads [21].

In the terms of the resource reservation model of the virtual processor, the
bandwidth αk of the virtual processor P virt

k that executes virtual machine Vk

is equal to (Ek − Sk)/Ppartition, with Υk = Ppartition and Qk = α · Υ . Note
that this abstraction of the computation time demand of a virtual machine to
a recurring time slot that is serviced by a virtual processor (Qk, ΥK) allows to
regard the virtual machine as a periodic task and transforms the virtual machine
partitioning problem to the task partitioning problem.

Task Scheduling. Any scheduling algorithm can be applied as task scheduler,
as long as it allows to abstract the computation time requirements of the task
set in terms of a demand-bound function dbf(Vi, t), which bounds the compu-
tation time demand that the virtual machine could request to meet the timing
requirements of its tasks within a specific time interval of length t [23]. As a
task set cannot possibly be schedulable according to any algorithm if the total
execution that is released in an interval and must also complete in that interval
exceeds the available processing capacity, the processor load provides a simple
necessary condition for taskset feasibility:
A virtual machine Vk, applying A as local scheduler and executed by a virtual
processor P virt

k characterized by the supply function Zk, is schedulable if and
only if ∀ t > 0 : dbfA(Vk, t) ≤ Zk(t) (compare [23]).

5 Partitioning Algorithm

Common task set partitioning schemes apply Bin-Packing Heuristics or Integer-
Linear-Programming (ILP) approaches in order to provide an efficient algorithm

On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem 233

[5][7]. In the context of this work, however, the number of virtual machines
is comparatively small and the partitioning algorithm is to be run offline and
does not have to be executed on the embedded processor. Therefore, the algo-
rithm performs a systematic enumeration of all candidate solutions following the
branch-and-bound paradigm [14]. The depth of the search tree is equal to the
number of virtual machines n.

Two optimization goals are considered, according to which candidates are
compared. Minimizing the number of processors is the basic optimization goal.
In addition, the goal can be set to maximize the CriticalityDistribution, a
metric defined as follows:

Definition. The CriticalityDistribution Z denotes for a partitioning Γ the
distribution of the ncrit ≤ n HI-critical virtual machines among them processors:

Z(Γ) =

∑m
i=1 ζ(Pi)

ncrit
, with (7)

ζ(Pi) =

{
1, if ∃P virt

j ∈ Γ (Pi) : χ(Vj) = HI,

0, otherwise.
(8)

For example, assumed that ncrit = 4 and m = 4, Z equals 1 if there is at least
one HI-critical virtual machine mapped to all processors; and Z equals 0.75 if
one processor does not host a HI-critical virtual machine. This results, if the
maximum number of processors is not limited, to a mapping of each cirtical
virtual machine to a dedicated processor, which is potentially shared with LO-
critical virtual machines, but not with other HI-critical virtual machines.

The motivation of the optimization goal criticality distribution is the Critical-
ity Inversion Problem, defined by de Niz et al. [8]. Transferred to virtual machine
scheduling, criticality inversion occurs if a HI-critical virtual machine overruns
its execution time budget and is stopped to allow a LO-critical virtual machine
to run, resulting in a deadline miss for a task of the HI-critical virtual machine.
By definition of criticality, it is more appropriate to continue the execution of
the HI-critical virtual machine, which can be done for highly utilized processors
by stealing execution time from the budget of LO-critical virtual machines. It
is in general easier to avoid criticality inversion, if virtual machines of differing
criticality share a processor. If the number of virtual machines does not exceed
the number of physical processors, all critical virtual machine are mapped to
different physical processors. The partitioning algorithm either minimizes the
number of processors or maximizes the criticality distribution, while minimizing
the number of processors among partitions of same criticality distribution.

Before generating the search tree, the set of virtual machines V is sorted
according to decreasing utilization. This is motivated by a pruning condition:
if at some node, the bandwidth assigned to a processor is greater than 1, the
computational capacity of the processor is overrun and the whole subtree can
be pruned. Such a subtree pruning tends to occur earlier, if the virtual machines
are ordered according to decreasing utilization.

We introduce that a virtual machine is termed to be heavy, if certification re-
quires that this virtual machine is exclusively mapped to a dedicated processor

234 S. Groesbrink

or if other virtual machines can only be scheduled in background, i.e. the heavy
virtual machine is executed immediately whenever it is has a computation de-
mand. By consequence, a heavy virtual machine cannot be mapped to the same
processor as other HI-critical virtual machines.

6 Example

The different outcome dependent on the optimization goal of the algorithm is
illustrated with the examplary virtual machine set of Table 1. EDF is assumed
for all virtual machines, so that a scaling is not required and αk = U(Vk).

Table 1. Example: Set of Virtual Machines

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

χ LO HI LO LO HI HI HI LO LO HI
U 0.6 0.5 0.5 0.3 0.25 0.2 0.2 0.2 0.2 0.15

Figure 1 depicts the virtual machine to processor mapping for three differ-
ent goals, with a red virtual machine identifier denoting a HI-critical virtual
machine. Subfigure (a) depicts the outcome for the optimization of the num-
ber of processors. The virtual machine set is not schedulable on less than four
processors. The average utilization per processor is 0.775 and the criticality dis-
tribution Z is 3/5 = 0.6. Subfigure (b) depicts the outcome for the optimization
of the criticality distribution, however with a maximum number of mmax = 4
processors allowed. The allocation is therefore still characterized by the mini-
mum number of processors. The criticality distribution Z improves to 4/5 = 0.8.
From a criticality point of view, this mapping is more suitable, since the options
to avoid criticality inversion on processor P3 are very limited in the first solution.
Subfigure (c) depicts an unrestricted optimization of the criticality distribution,
resulting in an additional processor. The optimal criticality distribution Z = 1 is
achieved, however at the cost of exceeding the minimum number of processors,
which leads to a decrease of the average utilization per processor to 0.62. The
last mapping is the correct choice, if the five HI-critical virtual machines are
heavy.

7 Related Work

The related problem of partitioning a periodic task set upon homogeneous mul-
tiprocessor platforms has been extensively studied, both theoretically and em-
pirically [5][7]. Lopez et al. observed that ordering tasks according to decreasing
utilization prior to the partitioning proves helpful [17], a technique applied in
this work as well. Buttazzo et al. proposed a branch-and-bound algorithm for

On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem 235

P1

V1

P2 P3 P4

V4

V2

V3

V5
V6

V9
V10

V7
V8

U=
1

P1

V1

P2 P3 P4

V4V2

V3

V5 V6
V9

V10

V7

V8

U=
1

P1

V1

P2 P3 P4

V4V2

V3

V5 V6
V9

V10V7

V8

U=
1

P5

(a) Minimize Bandwidth (b) Minimize Criticality Distribution
(maximum of 4 processors)

(c) Minimize Criticality Distribution

Fig. 1. Mappings for different Optimization Goals

partitioning a task set with precedence constraints, in order to minimize the re-
quired overall computational bandwidth [4]. Peng and Shin presented a branch-
and-bound algorithm in order to partition a set of communicating tasks in a
distributed system [22].

Kelly at al. proposed bin-packing algorithms for the partitioning of mixed-
criticality real-time task sets [12]. Using a common mixed-criticality task model
(characterized by an assignment of multiple WCET values, one per each criti-
cality level in the system), they experimentally compare different kinds of task
ordering according to utilization and criticality and observed that the latter solu-
tions results in a higher percentage of finding a feasible schedule for a randomly
generated task set.

Shin and Lee introduced a formal description of the component abstraction
problem (abstract the real-time requirements of a component) and the com-
ponent composition model (compose independently analyzed locally scheduled
components into a global system)[23]. Easwaran et al. introduced compositional
analysis techniques for automated scheduling of partitions and processes in the
specific context of the ARINC-653 standard for distributed avionics systems [9],
however, did not tackle the mapping of partions to processors. As required by
the ARINC specification and as done in this work, a static partition schedule is
generated at design time. Both the partitions and the tasks within the partitions
are scheduled by a deadline-monotonic scheduler.

236 S. Groesbrink

8 Conclusion and Future Work

This work defined the partitioning problem of mapping virtual machines with
real-time constraints to a homogeneous multiprocessor architecture in a formal
manner. This is the prerequisite for an algorithmic solution. Formal models were
adapted to abstract and specify the computation time demand of a virtual ma-
chine and the computation time supply of a shared processor, in order to analyt-
ically evaluate whether it is guaranteed that the demand of a virtual machine is
satisfied. The application of a branch-and-bound algorithm is proposed with two
optimization metrics. A brief introduction on how to generate a feasible virtual
machine schedule after the partitioning was given. A highly predictable and at
design time analyzable scheduling scheme based on fixed time slices was chosen
as this is the de facto standard for scheduling high-criticality systems.

Partitioning and schedule generation together guarantee that all virtual ma-
chines obtain a sufficient amount of computation capacity and obtain it in time,
so that the hosted guest systems never miss a deadline. This automated solution
provides analytical correctness guarantees, which can help with system certifica-
tion. In contrast to a manual partitioning, it guarantees to find the optimal solu-
tion and scales well with regard to an increasing number of both virtual machines
and processor cores. The optimization metric criticality distribution is a first step
towards a partitioning that considers multiple criticality levels appropriately. The
different outcomes of the two approaches were illustrated exemplarily.

The presented algorithm serves as a groundwork for a research of the partition-
ing problem. In particularly,we are going to include the overhead of virtualmachine
context switching, since it is formost real implementations extensive enough to not
be neglected. The partitioning directly influences the virtual machine scheduling,
which in turn heavily influences the number of virtualmachine context switches. In
addition, communication between virtual machines should be included, since the
communication latency depends on the fact whether two virtual machines share
a core or not. A further interesting question is whether a more detailled analysis
of the timing characteristics of the virtual machines, in order to map guests with
similar characteristics to the same processor, leads to better results.

Acknowledgments. This work was funded within the project ARAMiS by
the German Federal Ministry for Education and Research with the funding IDs
01IS11035. The responsibility for the content remains with the authors.

References

1. Baker, T., Shaw, A.: The cyclic executive model and ada. Real-Time Systems
(1989)

2. Baruah, S.: Task partitioning upon heterogeneous multiprocessor platforms. In:
Real-Time and Embedded Technology and Applications Symposium (2004)

3. Baruah, S., Li, H., Stougie, L.: Towards the design of certifiable mixed-criticality
systems. In: Real-Time and Embedded Technology and Applications Symposium
(2010)

On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem 237

4. Buttazzo, G., Bini, E., Wu, Y.: Partitioning real-time applications over multi-core
reservations. IEEE Transactions on Industrial Informatics 7, 302–315 (2011)

5. Carpenter, J., et al.: A categorization of real-time multiprocessor scheduling prob-
lems and algorithms. In: Handbook on Scheduling Algorithms, Methods, and Mod-
els (2004)

6. Coffman, E., Garey, M., Johnson, D.: Approximation algorithms for bin packing:
a survey. In: Approximation Algorithms for NP-hard Problems, pp. 46–93 (1996)

7. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Computing Surveys (2010)

8. de Niz, D., et al.: On the scheduling of mixed-criticality real-time task sets. In:
Real-Time Systems Symposium (2009)

9. Easwaran, A., et al.: A compositional scheduling framework for digital avionics
systems. In: Real-Time Computing Systems and Applications (2009)

10. Garey, M., Johnson, D.: Computers and Intractability. W.H. Freman, New York
(1979)

11. Intel Corporation (White paper): Applying multi-core and virtualization to indus-
trial and safety-related applications (2009),
http://download.intel.com/platforms/applied/indpc/321410.pdf

12. Kelly, O., Aydin, H., Zhao, B.: On partitioned scheduling of fixed-priority mixed-
criticality task sets. In: IEEE 10th International Conference on Trust, Security and
Privacy in Computing and Communications (2011)

13. Kerstan, T., Baldin, D., Groesbrink, S.: Full virtualization of real-time systems by
temporal partitioning. In: Workshop on Operating Systems Platforms for Embed-
ded Real-Time Applications (2010)

14. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960)

15. Lipari, G., Bini, E.: Resource partitioning among real-time applications. In: Eu-
romicro Conference on Real-Time Systems (2003)

16. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM (1973)

17. Lopez, J., Garcia, M., Diaz, J., Garcia, D.: Utilization bounds for multiprocessor
rate-monotonic systems. Real-Time Systems (2003)

18. Mercer, C., et al.: Processor capacity reserves: Operating system support for mul-
timedia applications. In: Multimedia Computing and Systems (1994)

19. Mok, A., Feng, A.: Real-time virtual resource: A timely abstraction for embedded
systems. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS,
vol. 2491, pp. 182–196. Springer, Heidelberg (2002)

20. Mok, A., Feng, X., Chen, D.: Resource partition for real-time systems. In: Real-
Time Technology and Applications Symposium (2001)

21. Mollison, M., et al.: Mixed-criticality real-time scheduling for multicore systems.
In: International Conference on Computer and Information Technology (2010)

22. Peng, D., Shin, K.: Assignment and scheduling communicating periodic tasks in
distributed real-time systems. IEEE Transactions on Software Engineering (1997)

23. Shin, I., Lee, I.: Compositional real-time scheduling framework with periodic
model. ACM Transactions on Embedded Computing Systems 7 (2008)

24. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: Proc. of the Real-Time Systems Symposium (2007)

http://download.intel.com/platforms/applied/indpc/321410.pdf

Fault-Tolerant Deployment of Real-Time

Software in AUTOSAR ECU Networks

Kay Klobedanz1, Jan Jatzkowski1, Achim Rettberg2, and Wolfgang Mueller1

1 University of Paderborn/C-LAB, 33102 Paderborn, Germany
{kay.klobedanz,jan.jatzkowski,wolfgang.mueller}@c-lab.de

2 Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
achim.rettberg@uni-oldenburg.de

Abstract. We present an approach for deployment of real-time software
in ECU networks enabling AUTOSAR-based design of fault-tolerant au-
tomotive systems. Deployment of software in a safety-critical distributed
system implies appropriate mapping and scheduling of tasks and mes-
sages to fulfill hard real-time constraints. Additional safety requirements
like deterministic communication and redundancy must be fulfilled to
guarantee fault tolerance and dependability. Our approach is built on
AUTOSAR methodology and enables redundancy for compensation of
ECU failures to increase fault tolerance. Based on AUTOSAR-compliant
modeling of real-time software, our approach determines an initial de-
ployment combined with reconfigurations for remaining nodes at design
time. To enable redundancy options, we propose a reconfigurable ECU
network topology. Furthermore, we present a concept to detect failed
nodes and activate reconfigurations by means of AUTOSAR.

1 Introduction

Today’s automotive vehicles provide numerous complex electronic features re-
alized by means of distributed real-time systems with an increasing number
of electronic control units (ECUs). Many of these systems implement safety-
critical functions, which have to fulfill hard real-time constraints to guarantee
dependable functionality. Furthermore, subsystems are often developed by dif-
ferent partners and suppliers and have to be integrated. To address these chal-
lenges, the AUTomotive Open System ARchitecture (AUTOSAR) development
partnership was founded. It offers a standardization for the software architecture
of ECUs and defines a methodology to support function-driven system design.
Hereby, AUTOSAR helps to reduce development complexity and enables smooth
integration of third party features and reuse of software and hardware compo-
nents [1]. Figure 1 illustrates the AUTOSAR-based design flow steps and the
resulting dependencies for the deployment of provided software components [2].
Deployment implies task mapping and bus mapping resulting in schedules af-
fecting each other. The problem of mapping and scheduling tasks and messages
in a distributed system is NP-hard [3]. Beside hard real-time constraints, safety-
critical systems have to consider additional requirements to guarantee depend-
ability. Hence, deterministic communication protocols and redundancy concepts

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 238–249, 2013.
c© IFIP International Federation for Information Processing 2013

Fault-Tolerant Deployment of Real-Time Software 239

Software Architecture Hardware Topology
Deployment

Task Mapping Bus Mapping

ECU Scheduling Bus Scheduling

Fig. 1. System design flow steps and their dependencies [2]

shall be utilized to increase fault tolerance of such systems [4]. AUTOSAR sup-
ports FlexRay, which is the emerging communication standard for safety-critical
automotive networks. It provides deterministic behavior, high bandwidth capac-
ities, and redundant channels to increase fault tolerance. To further increase
fault tolerance, node failures shall also be compensated by redundancy.

We present an approach for real-time software deployment built on AU-
TOSAR methodology to design fault-tolerant automotive systems. Our approach
determines an initial deployment combined with necessary reconfigurations and
task replications to compensate node failures. The determined deployment so-
lution includes appropriate task and bus mappings resulting in corresponding
schedules that fulfill hard real-time constraints (cf. Fig. 1). In addition, we pro-
pose a modified version of a reconfigurable ECU network topology presented
in [5] to enable flexible task replication and offer the required redundancy. Re-
garding AUTOSAR, we propose a flexible Runnable-to-task mapping for fault-
tolerant systems and present a concept for an AUTOSAR-compliant integra-
tion of our fault-tolerant approach: We propose an AUTOSAR Complex Device
Driver (CDD) to detect failed nodes and initiate the appropriate reconfiguration.

The remainder of this paper is structured as follows. After related work and
an introduction to AUTOSAR we present our proposal for a reconfigurable ECU
network topology in Section 4. Section 5 describes our fault-tolerant deployment
approach and applies it to a real-world application before we introduce a concept
for AUTOSAR integration in Section 6. The article is closed by the conclusion.

2 Related Work

In general, scheduling of tasks and messages in distributed systems is addressed
by several publications [6,7,8]. Other publications propose heuristics for the de-
sign of FlexRay systems [9,10,11]. In [12] strategies to improve fault tolerance of
such systems are described. However, we propose an approach for fault-tolerant
deployment of real-time software specific for AUTOSAR-based design flow. AU-
TOSAR divides task mapping into two steps: Mapping (i) software components
(SWCs) encapsulating Runnables onto ECUs and (ii) Runnables to tasks that
are scheduled by an OS. Since the number of tasks captured by AUTOSAR OS
is limited, Runnable-to-task mapping is generally not trivial [13]. Although some
approaches solve one [14] or even both [15] steps for an AUTOSAR-compliant
mapping, to our knowledge, [16] is the only one considering this combined with
fault tolerance. But unlike our approach, only a subset of the software requires
hard real-time and each redundant Runnable is mapped to a separate task.

240 K. Klobedanz et al.

3 AUTOSAR

AUTOSAR provides a common software architecture and infrastructure for auto-
motive systems. For this purpose, AUTOSAR distinguishes between Application
Layer including hardware-independently modeled application software, Runtime
Environment (RTE) implementing communication, and Basic Software (BSW)
Layer providing hardware-dependent software, e.g. OS and bus drivers.

An Application Layer consists of Software Components (SWCs) encapsulat-
ing complete or partial functionality of application software [17]. Each Atomic-
SWC has an internal behavior represented by a set of Runnables. “Atomic”
means that this SWC must be entirely – i.e. all its Runnables – mapped to one
ECU. Runnables model code and represent internal behavior. AUTOSAR pro-
vides RTE events, whose triggering is periodical or depends on communication
activities. In response to these events, the RTE triggers Runnables, i.e. RTE
events provide activation characteristics of Runnables. Based on RTE events, all
Runnables assigned to an ECU are mapped to tasks scheduled by AUTOSAR
OS. AUTOSAR Timing Extensions describe timing characteristics of a system
related to the different views of AUTOSAR [18,19]. A timing description de-
fines an expected timing behavior of timing events and timing event chains.
Each event refers to a location of the AUTOSAR model where its occurrence is
observed. An event chain is characterized by two events defining its beginning
(stimulus) and end (response). Timing constraints are related to events or event
chains. They define timing requirements which must be fulfilled by the system
or timing guarantees that developers ensure regarding system behavior.

At Virtual Function Bus (VFB) level communication between SWCs is mod-
eled by connected ports. We apply the Sender-Receiver paradigm in implicit
mode, i.e. data elements are automatically read by the RTE before a Runnable is
invoked and (different) data elements are automatically written after a Runnable
has terminated [20]. AUTOSAR distinguishes Inter-ECU communication be-
tween two or more ECUs and Intra-ECU communication between Runnables
on the same ECU [21]. For Inter-ECU communication, AUTOSAR supports the
FlexRay protocol providing message transport in deterministic time slots [22].
FlexRay makes use of recurring communication cycles and is composed of a static
and an optional dynamic segment. In the time-triggered static segment, a fixed
and initially defined number of equally sized slots is statically assigned to one
sender node. Changing this assignment requires a bus restart. Slot and frame
size, cycle length, and several other parameters are defined by an initial setup of
the FlexRay schedule. The payload segment of a FlexRay frame contains data in
up to 127 2-byte words. Payload data can be divided into AUTOSAR Protocol
Data Units (PDUs) composed of one or more words. Hence, different messages
from one sender ECU can be combined by frame packing.

4 A Reconfigurable ECU Network Topology

To increase fault tolerance in an ECU network, node failures should be compen-
sated by redundancy and software replication. In current distributed real-time

Fault-Tolerant Deployment of Real-Time Software 241

Left-rear
Wheel Speed

(200μs)

Left-front
Wheel Speed

(200μs)

Right-rear
Wheel Speed

(200μs)

Right-front
Wheel Speed

(200μs)

Calculate
Yaw Rate
(300μs)

Hand-wheel
Position
(150μs)

Lateral
Accelaration

(175μs)

Desired
Braking Force

(400μs)

Actuate
Brakes
(150μs)

Actuate
Throttle
(200μs)

Ya
(3

and-wheel
Position

aCa
Y

e
R t

alculate
R te Lateral

Accelaration

e

Desired
ki FBra ce

ctuate
B k

Actuate
Th ttl

(a) Traction Control

P
er

io
d

(m
ax

 e
nd

-to
-e

nd
 d

el
ay

) =
30

00
μs

Object Dist.
& Speed
(300μs)

Current
Speed
(150μs)

Desired
Speed
(300μs)

Current
Thrott. Pos.

(175μs)

Desired
Brake Force

(200μs)

Desired
Thrott. Pos.

(250μs)

Actuate
Throttle
(200μs)

Actuate
Brakes
(150μs)

D
S

dDesired
S d

Desired
tt PTh

Actuate
Th ttl

ctuate
B k

Desired
Brake For

(b) Adaptive Cruise Control

Fig. 2. Functional Components of a TC (a) and an ACC (b) system [11]

systems, failures of hardwired nodes cannot be compensated by software redun-
dancy as connections to sensors and actuators get lost. We propose a modified
network topology distinguishing two types of ECUs [5]: (i) Peripheral interface
nodes, which are wired to sensors and actuators, and just read/write values
from/to the bus and (ii) functional nodes hosting the functional software and
communicating over the bus. Since peripheral interface nodes do not execute
complex tasks, they only require low hardware capacities allowing cost-efficient
hardware redundancy. Here, we focus on distributed functional ECUs that pro-
vide and receive data via communication bus and can therefore be utilized for
redundancy and reconfiguration. In the following ECU refers to functional nodes.

5 Fault-Tolerant Deployment Approach

In this section we present our fault-tolerant deployment approach. It contains (i)
initial definition and modeling of the given SW-architecture & HW-topology for
interdependent (ii) Runnable & task mappings and (iii) bus mappings. For better
traceability all steps of our approach are applied to a real-world application.

5.1 Modeling of Software Architecture

Figure 2 illustrates the functional components of a Traction Control (TC) and
an Adaptive Cruise Control (ACC) system, shows data dependencies, and pro-
vides information about their timing properties [11]: worst-case execution times
(WCETs) and periods. In AUTOSAR these components are modeled as SWCs,
whose functional behavior is represented by Runnables. Putting each Runnable
into a separate SWC enables mapping of each Runnable to an arbitrary ECU.
Thus, we use Runnable-to-ECU and SWC-to-ECU mapping as synonyms. The
set of Runnables is modeled as R = {Ri(Ti, Ci, ri, di, si, fi) | 1 ≤ i ≤ n}. Each
Runnable Ri is described by its period Ti, WCET Ci, release time ri, deadline
di, start time si, and finishing time fi.

242 K. Klobedanz et al.

SWC1

R1 (200μs)

SWC2

R2 (200μs)

SWC6

R6 (150μs)

SWC9

R9 (150μs)

SWC5

R5 (300μs)

SWC3

R3 (200μs)

SWC4

R4 (200μs)

SWC10

R10 (200μs)

SWC8

R8 (400μs)

VFB VFBV

SWC3 SWC4

SWC7

R7 (175μs)

Fig. 3. Traction Control system model on AUTOSAR VFB level

For the TC system, Fig. 3 shows the resulting model on VFB level with
Runnables listed in Table 1. A VFB level model represents the given software
architecture with communication dependencies independent of the given hard-
ware architecture and acts as input for the AUTOSAR-based system design.
AUTOSAR Timing Extensions are used to annotate timing constraints for the
model by means of events and event chains. Based on the event chain R1 →
R5 → R8 → R10 in Fig. 3, a maximum latency requirement defines that the
delay between the input at R1 (stimulus) and the output of R10 (response) must
not exceed the given maximum end-to-end delay (period) of 3000μs. Timing
constraints are defined for each event chain. Dependencies between Runnables
imply order and precedence constraints. Considering the maximum end-to-end
delay for the event chains, we define an available execution interval Ei = [ri, di]
for each Runnable Ri with release time:

ri =

{
0 , if Ri ∈ Rin

max{rj + Cj |Rj ∈ RdirectPrei} , else.

If a Runnable has no predecessors (Ri ∈ Rin), the available execution interval
of Ri starts at ri = 0. Otherwise, ri is calculated by means of rj and Cj of the
direct predecessors (Rj ∈ RdirectPrei). The deadline of Ri is calculated as:

di =

{
max end-to-end delay , if Ri ∈ Rout

min{dk − Ck |Rk ∈ RdirectSucci} , else.

If a Runnable has no successors (Ri ∈ Rout), the available execution interval of
Ri ends at di = max end-to-end delay. Otherwise, di depends on rk and Ck of the
direct successors of Ri (Rk ∈ RdirectSucci). Table 1 summarizes the calculated
available execution intervals Ei for the Runnables of the TC and ACC systems.

Table 1. Runnable properties for TC and ACC systems (values in μs)

TC System ACC System

Ri R1−4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18

Ci 200 300 150 175 400 150 200 300 150 300 175 200 250 200 150

ri 0 200 0 0 500 900 900 0 0 300 0 600 600 850 800

di 2100 2400 2400 2400 2800 3000 3000 2350 2350 2650 2550 2850 2800 3000 3000

Fault-Tolerant Deployment of Real-Time Software 243

Algorithm 1. InitialMapping(R, E)
Input: Runnables R and ECUs E .
Output: RunnableMapping: Minit : R �→ E .
1: SortByDeadlineAndReleaseTime(R)

2: for all Ri ∈ Rin do
3: Etmp ← GetFeasibleECUs(E)
4: ECUtmp ← GetEarliestFinish(Etmp)
5: MapRunnable(Ri, ECUtmp)
6: end for
7: for all Ri ∈ R \ Rin do
8: Etmp ← GetFeasibleECUs(E)
9: ECUtmp ← GetMinimumDelay(Ri, Etmp)
10: MapRunnable(Ri, ECUtmp)
11: end for
12: return Minit : R �→ E

5.2 Runnable and Task Mapping

For a feasible SWC-to-ECU and Runnable-to-task mapping the properties of
the ECUs have to be considered. The set of ECUs is E = {ECUj | 1 ≤ j ≤ m}.
We consider a homogeneous network structure. Hence, the Runnable WCETs
provided in Table 1 are valid for all ECUs. The objective of our approach is to
determine a feasible combined solution for an initial software deployment and all
necessary reconfigurations and task replications for the remaining nodes of the
network in case of a node failure. Thus, each configuration has to fulfill the dead-
lines of all Runnables and the end-to-end delay constraints for all event chains.
Therefore, our approach iteratively analyzes and reduces the resulting execution
delay for each SWC-to-ECU mapping to finally ensure minimized end-to-end
delays for all event chains. It starts with the initial mapping Minit described by
peusdo-code in Alg. 1. The algorithm defines the mapping order of Runnables
via sorting them by deadline and release time. Before each mapping a schedula-
bility test has to determine the feasible ECUs in E . Therefore, we propose our
Extended Response Time Analysis for Rate (Deadline) Monotonic Scheduling
which is a common approach for AUTOSAR OS:

Xi = (Ci + δi) +

i−1∑

j=1

⌈
Xi

Tj

⌉
Cj .

It combines the WCET Ci and the resulting communication delay δi to calcu-
late the response time Xi for each Runnable Ri. The initial mapping begins
with the Runnables Rin, which have no precedence constraints, and maps them
iteratively to the ECU hosting the last Runnable with the earliest finishing time.
Thus, in a network with n ECUs, the first n Runnables will be mapped to empty
ECUs. For Runnables with predecessors (R ∈ R \Rin), Alg. 2 returns the ECU
with the minimum execution delay. It determines the direct predecessors of
R, their hosting ECUs Epre, and the last Runnables on these ECUs (Rlast). If

244 K. Klobedanz et al.

Algorithm 2. GetMinimumDelay(R, E)
Input: A Runnable R and ECUs E .
Output: ECU with minimum delay.
1: RdirectPre ← GetDirectPredecessors(R)
2: Epre ← GetHostECUs(RdirectPre, E)
3: Rlast ← GetLastRunnables(Epre)
4: Rcap ← Rlast ∩ RdirectPre

5: if Rcap
= ∅ then
6: ECU ← GetHostECU(GetLatestFinish(Rcap),E)
7: else
8: ECUpreMin ← GetEarliestFinish(Epre)
9: if E \ Epre
= ∅ then
10: ECUnonPreMin ← GetEarliestFinish(E \ Epre)
11: Δ ← Diff〈GetFinishTime(ECUpreMin), GetFinishTime(ECUnonPreMin)〉
12: if Δ > ComOverhead then
13: ECU ← ECUnonPreMin

14: else
15: ECU ← ECUpreMin

16: end if
17: else
18: ECU ← ECUpreMin

19: end if
20: end if
21: return ECU

one or more of the direct predecessors of R are last Runnable(s), the algorithm
maps R to the same ECU as the predecessor with the latest finishing time. This
avoids additional Inter-ECU communication delay for the latest input of R. If
there are Runnables mapped to Epre after all direct predecessors, the Inter-ECU
communication for input to R can take place during their execution. In this
case the algorithm determines the ECUpreMin with the earliest finishing time. If
there are ECUs that do not host any of the direct predecessors of R, the one
with the earliest finishing time (ECUnonPreMin) is also considered. The algorithm
compares the difference Δ between these finishing times to the communication
overhead resulting by a mapping to ECUnonPreMin. The communication over-
head depends on the number of slots needed and on the slot size defined for bus
communication (ref. Section 5.3). If the communication overhead is smaller than
Δ, the algorithm returns ECUnonPreMin, else it returns ECUpreMin. By means of
Alg. 1 and Alg. 2 our approach determines a feasible initial mapping with min-
imized execution delays considering timing, order, and precedence constraints.
In a network with n ECUs it has to perform n redundancy mappings. Alg. 3
calculates the redundancy mapping Mred for a Runnable set to feasible remain-
ing ECUs. Beside Rfail and Erem it takes Minit as an input, meaning that the
set of Runnables initially mapped to Erem is kept for each remaining ECU. This
allows to combine Runnables on Erem to tasks and the reuse of messages and
slots in different reconfigurations. Similar to the initial mapping, the algorithm

Fault-Tolerant Deployment of Real-Time Software 245

Algorithm 3. RedundancyMapping(Rfail, Erem,Minit)

Input: Runnables Rfail, ECUs Erem, and Mapping Minit.
Output: RedundancyMapping: Mred : Rfail �→ Erem.
1: Mred ← Minit

2: for all Ri ∈ Rfail do
3: Etmp ← GetFeasibleECUs(Erem)
4: ECUtmp ← GetECUMinE2E(Ri, Etmp,Mred)
5: Mred ← Mred∪MapRunnable(Ri, ECUtmp)
6: end for
7: return Mred : Rfail �→ Erem

iteratively inserts the Runnables from Rfail. Hence, in each mapping step the re-
dundancy mapping Mred is complemented by the currently performed mapping.
In Alg. 4, for each assignment our approach determines the Runnable-to-ECU
mapping resulting in the minimum overall end-to-end delay, i.e. longest end-to-
end delay of all event chains. This algorithm checks each ECUi ∈ Erem based
on their current mapping. It complements Mcur by inserting R preserving or-
der and precedence constraints by means of deadlines and release times. This
insertion results in Runnable shiftings and growing execution delays due to the
constraints on one or more of the ECUs. The algorithm calculates the overall
end-to-end delay for all event chains implied by Mi and stores it referencing to
ECUi. This results in a set of end-to-end delays (E2E): one for each Runnable-
to-ECU mapping. Finally, Alg. 4 compares these values and returns the ECU
with minimum overall end-to-end delay. Fig. 4 depicts Gantt Charts for the TC
and ACC systems in a network with 3 ECUs. It shows how our SWC-to-ECU
approach preserves the initial order of Runnables on remaining ECUs and in-
serts redundant Runnables. It also shows that our approach enables an efficient
Runnable-to-task mapping to reduce the number of required tasks. For this pur-
pose Runnables that are assigned to the same ECU and keep connected at each
redundancy mapping, are encapsulated in one task. Summarized, this results
in 13 tasks for the initial mapping and 18 tasks for the redundant Runnables.
Although each redundant Runnable is mapped to a separate task, our approach
also supports the encapsulation of redundant Runnables in one task.

Algorithm 4. GetECUMinE2E(R, E ,Mcur)

Input: Runnable R, ECUs E , and Mapping Mcur.
Output: ECU causing minimum overall E2E delay
1: for all ECUi ∈ E do
2: Mi ← Mcur∪MapRunnable(R, ECUi)
3: E2EECUi ← OverallE2EDelay(Mi)
4: E2E ← E2E∪E2EECUi

5: end for
6: ECU ← ECUMinE2E(E2E)
7: return ECU

246 K. Klobedanz et al.

τr6 τr5 τr4

τr3 τr1 τr2

R1

R2

R3

R4

R5 R6

R7

R8 R9

R10 R11

R12

R13

R14 R15

R16 R17

R18

τr1
R1 R2

R3

τr4
R4 R5 R6

τr2
R7

R8 R9

R10 R11

R12

τr5
R13

R14 R15

τr6
R16

τr3
R17 R18

ECU1

ECU2

ECU3

ECU2

ECU3

τ1 τ2
R4

R6

R7

R11

R12

R

R9

18

Initial Mapping

Redundancy Mapping
 (Failure of ECU1)

R6

R11

R12 R13 R16 R

τ4 τ3

τ5 τ6 τ7 τ8 τ9

τ10 τ11 τ12 τ13

τ5

τ10

τ6 τ7 τ8 τ9

τ11 τ12 τ13

τr12

τr18 τr17 τr16 τr15

τr14 τr13

τr11 τr10

τr9 τr8 τr7

22

33

22

33

Redundancy Mapping
 (Failure of ECU3)

500μs 1000μs 3000μs 1500μs 2000μs 2500μs

Redundancy Mapping
 (Failure of ECU2)

R1

τr7
R2

R3

R4

R5 R6

R7

R8 R9

τr9
R10

R11 R12

R13

τr8
R14

R15

R16 R17

τr12
R18

ECU1

ECU3

R1

R2 R3

R4

τr17
R5 R6

R7

τr14
R8

τr18
R9 R10 R11

τr13
R12 R13

R14 R15

R16 R17

R18

ECU1

ECU2

τ 10

R2R4

R6

R7

τr10
R11 R12

R

ττ 11τr11
R15

R17

τ
R

τ 16τ 15τr15
R3

R4

τr16
R6

R7

R11

R12 R13

R14 R

τ1 τ2 τ4 τ3

τ10 τ11 τ12 τ13

τ1 τ2 τ3 τ4

τ5 τ6 τ7 τ8 τ9

Fig. 4. Gantt Charts of Runnable and task mappings for TC and ACC systems

5.3 Communication and Bus Mapping

The number of Inter-ECU messages depends on the Runnable mappings; their
size depends on the given software architecture. The message sizes of the TC and
ACC systems are 10 to 22 bits [11] and require one or two words of a FlexRay
frame. For each Inter-ECU message mi, the Runnable mappings result in an
available transmission interval Txi = [fsend, srecv]. Thus, mi may be transmitted
in one slot θ of the slot set Θi in Txi. The number of slots in Θi depends on
the slot size. Here, we consider a slot size of θsize = 25μs, i.e. up to 6 PDUs
per frame. Alg. 5 describes our bus mapping approach. It adds the Inter-ECU
messages MMi

of all Runnable mappings to a common message set M. For each
message it determines the sender ECU and transmission interval per mapping
and adds it to a common set Ωmj . Afterwards, it performs an assignment of slots
to messages respectively sender ECUs. Therefore, all Inter-ECU messagesM are
considered. Analyzing all messages with the same sender ECU, the correspond-
ing transmission intervals Ωmi,ECUj get identified. Since the initial mapping is
kept, Inter-ECUmessages can be sent by the same ECU in one or more Runnable
mappings (ref. Fig. 4). Thus, our approach reduces the number of needed slots
for the ECU assignments. It compares the determined transmission intervals. For
overlapping slots the first available common slot θmap is assigned to the sender
ECU for the transmission of mi. Thus, the same message and slot is reused in

Fault-Tolerant Deployment of Real-Time Software 247

Algorithm 5. BusMapping(Π,Θ, E)
Input: RunnableMappings Π , Set of Slots Θ, and ECUs E .
Output: BusMapping: (M, E) �→ Θ
1: for all Mi ∈ Π do
2: MMi ← GetInterEcuMSGs(Mi)

3: M ← M∪MMi

4: for all mj ∈ MMi do
5: ECUsend(Mi,mj) ← GetSenderECU(Mi, mj ,E)
6: Θmj ,ECUsend(Mi,mj)

← GetTxInterval (mj , ECUsend(Mi,mj))

7: Ωmj ← Ωmj ∪ Θmj ,ECUsend(Mi,mj)

8: end for
9: end for
10: for all mi ∈ M do
11: Esender ← GetSenderECUs(Ωmi ,E)
12: for all ECUj ∈ Esender do
13: Ωmi,ECUj ← GetTxIntervalsForSameSender(Ωmi , ECUj)
14: θmap ← GetFirstCommonAndAvailableSlot(Ωmi,ECUj)
15: MapToSlot((mi, ECUj),θmap)
16: end for
17: end for
18: return (M, E) �→ Θ

Table 2. Bus Mapping for Inter-ECU communication (excerpt)

Message Sender: Transmission Interval (μs) Slot (μs)

R1 → R5 ECU1:[200, 500] , [200, 800] , [200, 1025]
ECU2:[400, 700]

[200, 225]
[400, 425]

R2 → R5 ECU1:[600, 800]
ECU2:[200, 500] , [200, 700]

[600, 625]
[225, 250]

R4 → R5 ECU1:[400, 500] , [400, 800] , [400, 1025] [425, 450]

R5 → R8 ECU2:[1325, 1350] [1325, 1350]

R6 → R8 ECU2:[850, 1350] [1325, 1350]

different reconfigurations. In non-overlapping intervals, mi is mapped to the first
available slot in each interval. It is also checked if the current message can be
mapped to the same slot as one of the other messages by utilizing frame packing.
Table 2 provides an excerpt of the determined bus mappings. It shows transmis-
sion intervals and assigned slots for messages per sender and gives examples
for reuse and frame packing. Fig. 4 depicts the end-to-end delays for the event
chain R1 → R10 and shows that the end-to-end delay constraint is fulfilled for
all mappings. The same holds for all other event chains.

6 Reconfiguration with AUTOSAR

Having a feasible AUTOSAR-compliant SWC-to-ECU and Runnable-to-task
mapping, two challenges remain to solve by means of AUTOSAR: Detect a failed

248 K. Klobedanz et al.

ECU and activate the appropriate redundant tasks within the ECU network ac-
cording to the fault-tolerant reconfiguration. While AUTOSAR specifies a BSW
called Watchdog Manager to manage errors of BSW modules and SWCs run-
ning on an ECU, there is no explicit specification regarding detection of failed
nodes within an ECU network. Therefore, we propose to extend AUTOSAR
BSW by means of a Complex Device Driver (CDD, [23]). Using FlexRay-specific
functionality provided by BSW of AUTOSAR Communication Stack, it can be
monitored if valid frames are received. Combined with the static slot-to-sender
assignment, each ECU can identify failed ECUs. When a failed ECU is detected,
each remaining ECU has to activate its appropriate redundant tasks. For this
purpose we propose using ScheduleTables : a statically defined activation mech-
anism provided by AUTOSAR OS for time-triggered tasks used with an OSEK
Counter [13]. Here, we use the FlexRay clock to support synchronization of
ScheduleTables running on different ECUs within a network. Note that tasks
are only activated, i.e. tasks require an appropriate priority to ensure that they
are scheduled in time. For each ECU we define one single ScheduleTable for each
configuration of this ECU, i.e. a ScheduleTable activates only those tasks that are
part of its corresponding configuration. Utilizing the different states that each
ScheduleTable can enter – e.g. RUNNING and STOPPED – the ScheduleTable
with the currently required configuration is RUNNING while all the others are
STOPPED. Since in this paper we consider periodic tasks, ScheduleTables have
repeating behavior, i.e. a RUNNING ScheduleTable is processed in a loop. Hav-
ing an AUTOSAR-compliant concept to detect a failed ECU within a network
and to manage different task activation patterns on an ECU, we need to com-
bine these concepts. This can be done by using BSW Mode Manager. Defining
one mode per configuration on a particular ECU, our CDD can request a mode
switch when a failed ECU is detected. This mode switch enforces that the cur-
rently running ScheduleTable is STOPPED and, depending on the failed ECU,
the appropriate ScheduleTable enters state RUNNING.

7 Conclusion

We presented an approach for fault-tolerant deployment of real-time software
in AUTOSAR ECU networks and applied it to real-world applications. It of-
fers methods for task and message mappings to determine an initial deployment
combined with reconfigurations. To enable redundancy, we proposed a recon-
figurable network topology. Finally, we introduced a CDD for detecting failed
nodes and activation of reconfigurations.

Acknowledgements. This work was partly funded by the DFG SFB 614
and the German Ministry of Education and Research (BMBF) through the
project SANITAS (01M3088I) and the ITEA2 projects VERDE (01S09012H),
AMALTHEA (01IS11020J), and TIMMO-2-USE (01IS10034A).

Fault-Tolerant Deployment of Real-Time Software 249

References

1. Fennel, H., et al.: Achievements and exploitation of the AUTOSAR development
partnership. In: Society of Automotive Engineers (SAE) Convergence (2006)

2. Scheickl, O., Rudorfer, M.: Automotive real time development using a timing-
augmented autosar specification. In: Proceedings of the 4th European Congress on
Embedded Real-Time Software, ERTS (2008)

3. Burns, A.: Scheduling hard real-time systems: A review (1991)
4. Paret, D.: Multiplexed Networks for Embedded Systems. Wiley (2007)
5. Klobedanz, K., et al.: An approach for self-reconfiguring and fault-tolerant dis-

tributed real-time systems. In: 3rd IEEE Workshop on Self-Organizing Real-Time
Systems, SORT (2012)

6. Pop, P., et al.: Scheduling with optimized communication for time-triggered em-
bedded systems. In: Proceedings of the 7th International Workshop on Hard-
ware/Software Codesign, CODES (1999)

7. Pop, P., et al.: Bus access optimization for distributed embedded systems based on
schedulability analysis. In: Proceedings of Design, Automation and Test in Europe,
DATE (2000)

8. Eles, P., et al.: Scheduling with bus access optimization for distributed embedded
systems. IEEE Trans. Very Large Scale Integr. Syst. 8(5) (2000)

9. Ding, S., et al.: A ga-based scheduling method for flexray systems. In: Proceedings
of the 5th ACM International Conference on Embedded Software, EMSOFT (2005)

10. Ding, S., et al.: An effective ga-based scheduling algorithm for flexray systems.
IEICE - Transactions on Information and Systems E91-D(8) (2008)

11. Kandasamy, N., et al.: Dependable communication synthesis for distributed em-
bedded systems. In: International Conference on Computer Safety, Reliability and
Security, SAFECOMP (2003)

12. Brendle, R., Streichert, T., Koch, D., Haubelt, C.D., Teich, J.: Dynamic recon-
figuration of flexRay schedules for response time reduction in asynchronous fault-
tolerant networks. In: Brinkschulte, U., Ungerer, T., Hochberger, C., Spallek, R.G.
(eds.) ARCS 2008. LNCS, vol. 4934, pp. 117–129. Springer, Heidelberg (2008)

13. AUTOSAR: Specification of Operating System, Ver. 5.0.0 (2011)
14. Peng, W., et al.: Deployment optimization for autosar system configuration. In:

2nd International Conference on Computer Engineering and Technology, ICCET
(2010)

15. Zhang, M., Gu, Z.: Optimization issues in mapping autosar components to dis-
tributed multithreaded implementations. In: 22nd IEEE International Symposium
on Rapid System Prototyping, RSP (2011)

16. Kim, J., et al.: An autosar-compliant automotive platform for meeting reliability
and timing constraints. In: Society of Automotive Engineers (SAE) World Congress
and Exhibition (2011)

17. AUTOSAR: Software Component Template, Ver. 4.2.0 (2011)
18. AUTOSAR: Specification of Timing Extensions, Ver. 1.2.0 (2011)
19. Peraldi-Frati, M.A., et al.: Timing modeling with autosar - current state and future

directions. In: Design, Automation, and Test in Europe Conference Exhibition,
DATE (2012)

20. AUTOSAR: Specification of RTE, Ver. 3.2.0 (2011)
21. AUTOSAR: Specification of Communication, Ver. 4.2.0 (2011)
22. FlexRay Consortium: FlexRay Communications System Protocol Specification Ver.

2.1 (2005)
23. AUTOSAR: Technical Overview, Ver. 2.1.1 (2008)

Adaptive Total Bandwidth Server:

Using Predictive Execution Time

Kiyofumi Tanaka

School of Information Science, Japan Advanced Institute of Science and Technology,
Asahidai 1–1, Nomi-city, Ishikawa, 923–1292 Japan

kiyofumi@jaist.ac.jp

Abstract. Along with the growing diversity and complexity of real-time
embedded systems, it is becoming common that different types of tasks,
periodic tasks and aperiodic tasks, reside in a system. In such systems, it
is important that schedulability of periodic tasks is maintained and at the
same time response times to aperiodic requests are short enough. Total
Bandwidth Server (TBS) is one of convincing task scheduling algorithms
for mixed task sets of periodic and aperiodic tasks. This paper proposes
a method of using predictive execution times instead of worst-case exe-
cution times for deadline calculations in TBS to obtain shorter deadlines
and reducing response times of aperiodic execution, while maintaining
the schedulability of periodic tasks. From the evaluation by simulation,
the proposed method combined with a resource reclaiming technique ex-
hibits better average response times for aperiodic tasks, in case of a heavy
load, by up to 39%.

Keywords: Real-time task scheduling, worst-case execution time,
predictive execution time, total bandwidth server.

1 Introduction

Along with the growing diversity and complexity of embedded systems, it is
becoming common that different types of tasks reside in a system. For exam-
ple, control tasks that are required to completely meet real-time requirements
(hard tasks) and user interface tasks that should give a certain level of response
times but are not required to completely behave at real-time (soft tasks) would
be mixed. To achieve real-time processing required in such a system, real-time
scheduling algorithms that involve both hard and soft tasks and guarantee the
schedulability of tasks (especially of hard tasks) must be used.

Hard tasks should be periodically invoked and be considered to spend their
worst-case execution time (WCET), since the schedulability, that they satisfy
their deadline requirements, must be confirmed in advance of system operation.
On the other hand, soft tasks can run on aperiodic invocations because of inex-
act real-time requirements. There is a scheduling algorithm for such hard and
soft tasks, Total Bandwidth Server (TBS) [1]. TBS has a merit that CPU uti-
lization can be up to 100% while maintaining schedulability. This study explores
algorithms based on TBS.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 250–261, 2013.
c© IFIP International Federation for Information Processing 2013

Adaptive Total Bandwidth Server: Using Predictive Execution Time 251

Complexity of current processors and programs makes estimation of WCET
difficult. For example, deep pipelining execution of machine instructions makes
estimation of their execution times hard, or in a system with many tasks, whether
each memory reference would hit in the cache memory or not is difficult to
decide/predict [2]. In addition, the worst-case execution path in a program is
almost impossible to trace since it includes many branches and loop structures,
and all input patterns give a vast search range [3]. Consequently, WCET is
obliged to be pessimistically estimated and leads to having a large gap with
actual execution times. Due to this gap, it is difficult to obtain the best schedules
by scheduling algorithms that use tasks’ execution times.

In this research, it is taken into consideration that soft tasks are not required
to completely satisfy the deadline constraints, and, instead of WCET, predictive
execution time (PET) is introduced in the TBS-based scheduling algorithm,
which aims to shorten response times of soft tasks.

2 Related Works

There are various scheduling algorithms proposed for task sets consisting of
both periodic and aperiodic tasks. They are categorized to fixed-priority servers
and dynamic-priority servers. Fixed-priority servers are based on rate monotonic
(RM) scheduling [4], which has a merit that higher-priority tasks have lower jit-
ters. As representative examples, Deferrable Server [5], Priority Exchange [5],
Sporadic Server [6], and Slack Stealing [7] were proposed. On the other hand,
dynamic-priority servers are based on earliest deadline first (EDF) scheduling
[4], which provides a strong merit that CPU utilization can reach up to 100%
while maintaining schedulability. Dynamic Priority Exchange [1], Dynamic Spo-
radic server [1], Total Bandwidth Server [1], Earliest Deadline Late Server [1],
and Constant Bandwidth Server [8] are examples of dynamic-priority servers.
The aim of these algorithms is to make response times of aperiodic requests
shorter, while the effectiveness is obtained in exchange for their implementation
complexity.

Total Bandwidth Server (TBS) provides good response times while leaving its
implementation complexity moderate. It is assumed that hard tasks are invoked
periodically and have their deadlines equal to the end of the period, and that soft
tasks are invoked irregularly, but do not have their explicit deadline requirements
in advance. When a soft task is invoked, tentative deadline is calculated and given
to the task as:

dk = max(rk, dk−1) +
Ck

Us
(1)

where k means kth instance of aperiodic tasks, rk is the arrival time of the kth
instance, dk−1 is the absolute deadline of the k − 1th (previous) instance, Ck is
WCET of the kth instance, and Us is the CPU utilization factor by the server
which takes charge of execution of aperiodic tasks. The server is considered to
occupy the Us utilization factor and, every time an aperiodic request arrives,

252 K. Tanaka

leads to give the instance the bandwidth of Us. The term, max(rk, dk−1), pre-
vents bandwidths of successive aperiodic instances from overlapping with each
other. After an instance of an aperiodic task is given its deadline, all periodic
and aperiodic tasks are scheduled by following EDF algorithm. By letting Up be
the CPU utilization factor by all hard periodic tasks, it was proved that a task
set is schedulable if and only if Up + Us ≤ 1 [1].

In TBS, overestimated WCET would make the deadline later than necessary
by the formula (1). This might delay the execution of the aperiodic instance
and cause long response time. The literature [10] showed the method, resource
reclaiming, where deadline is recalculated by using actually elapsed execution
time when the instance finishes, and the new deadline is used for the deadline
calculation for subsequent aperiodic instances. By this method, the subsequent
instances benefit from the earlier deadlines and their response times would be
improved.

In the resource reclaiming, kth aperiodic instance is given deadline d′k by:

d′k = rk +
Ck

Us
(2)

rk is the value calculated as:

rk = max(rk, dk−1, fk−1) (3)

That is, the maximal value among the arrival time, the recalculated deadline of
the previous instance and the finishing time of the previous instance is selected
as the release time. When the k − 1th aperiodic instance finishes, the deadline
is recalculated by the following formula that includes the actual execution time,
Ck−1, of the instance, and is reflected in the formula (3), and then in the formula
(2), for the subsequent task.

dk−1 = rk−1 +
Ck−1

Us
(4)

There is another algorithm based on TBS. In the literature [11], Buttazzo, et
al. proposed a method for firm (not hard) periodic and soft aperiodic tasks.
Since firm deadline allows a task to be missed to some degree, the algorithm
achieves shorter response times by skipping periodic executions at times and
ensuring larger bandwidth for aperiodic tasks. This method aims to achieve
short response times at the sacrifice of completeness of periodic instances. On
the other hand, in this paper, a method of shortening response times of aperiodic
instances while maintaining schedulability of periodic tasks is proposed.

3 The Adaptive Total Bandwidth Algorithm

As is the case with the total bandwidth server algorithm presented in the liter-
ature [1], this paper assumes that task sets consist of periodic tasks with hard
deadlines and aperiodic tasks without explicit deadlines, where it is desirable

Adaptive Total Bandwidth Server: Using Predictive Execution Time 253

that aperiodic execution finishes as early as possible. Since aperiodic tasks do
not have deadline, it is not necessary to use WCET from a schedulability point
of view. Although TBS dynamically gives tentative deadlines to aperiodic in-
stances, missing the deadlines is not serious or catastrophic. Therefore, use of
WCET for deadline calculation is not essential. Instead, shorter execution times
can be assumed and used for the deadline calculation while maintaining schedu-
lability of the whole task set. When the assumed execution times elapsed but the
execution did not finish yet, the deadline only has to be recalculated by using
longer execution times, for example, WCET. By this strategy, when aperiodic
execution finishes in the assumed time, the corresponding short deadline and
EDF algorithm can make the response time shorter.

3.1 Prediction of Execution Time (PET)

Generally, in real-time scheduling and its schedulability analysis, task execution
is considered to spend worst-case execution time (WCET). In practice, task
execution time is unknown beforehand and therefore WCET must be supposed
to spend, especially in hard real-time systems. However, in most cases, actual
execution time is shorter than WCET. Since WCET is pessimistically estimated,
the difference between the actual execution time and WCET tends to be large.

As the impact of the difference, for example, when SJF (Shortest Job First)
algorithm is applied based on WCETs, the average turnaround time would be
worse than that of the same algorithm based on actual execution times, although
this is an oracle with prior information. In Figure 1, (1) shows that WCETs of
task A, task B and task C are 2, 3, and 4, respectively, and the execution order is
A, B, and then C based on SJF. When this order is applied to actual executions
where actual execution times are 2, 1, and 2 for task A, task B, and task C,
respectively, the average turnaround time becomes 3.33 (Figure 1 (2)). On the
other hand, if the actual execution times are known in advance and used in the
algorithm, the average turnaround time will be 3 under SJF as shown in Figure
1 (3). Like this, decision based on WCETs is not necessarily the best.

For task sets consisting of both hard and soft tasks, although WCET must
be assumed for execution of hard tasks, execution time shorter than WCET
can be assumed for soft tasks since they can miss their deadline to some

A B C

A B C

AB C

Average turnaround time = (2 + 3 + 5) / 3 = 3.33

Average turnaround time = (1 + 3 + 5) / 3 = 3.00

2 1 2

1 2 2

WCET = 2 WCET = 3 WCET = 4

(2)

(3)

(1)

Scheduling based on WCET

Scheduling based on actual execution times

Fig. 1. Scheduling base on Shortest Job First

254 K. Tanaka

degree. Especially in the total bandwidth server environments, deadlines are
not given to aperiodic tasks in advance. In run-time, (tentative) deadline is cal-
culated using WCET and is assigned dynamically. If the deadline calculation for
aperiodic tasks uses execution time shorter than WCET, earlier deadline can be
obtained and therefore shorter response time can be expected. Assumption of
shorter execution time can cause deadline misses. However, the deadline misses
are not serious since the tasks are for soft real-time processing. After the misses,
remaining execution has only to continue.

In this strategy, execution times should be predicted. There are various pos-
sible ways to obtain the predictive execution times (PET).

1. Random choice of execution times
2. Measurement in advance
3. Prediction using a history of execution

The above 1 has high possibility of choosing shorter times than actual execution
times, and therefore would cause many deadline misses (although the misses are
not serious). The next one seems effective but has a defect of not following the
change of execution times when a task is executed many times in the system
operation. The third one predicts execution times by an execution history of
the same task and therefore can follow the fluctuation of execution times. The
prediction method is not the most important essence of the proposed adaptive
TBS. For the present, this paper uses the following prediction method which
corresponds to the above 3.

CiPETk
= α× CiPETk−1

+ (1 − α)× CiETk−1
, CiPET0

= CiWCET (5)

Here, CiPETk
is PET for kth instance of an aperiodic task Ji. CiETk−1

is the

execution time actually spent for the previous execution of the same task Ji.
The initial value CiPET0

is equal to WCET of the task, CiWCET . This formula
calculates as the predictive execution time an weighted average of the previous
PET and the previous actual execution time with the weighting coefficient α.

3.2 Definition of the Adaptive TB Server

In the adaptive TBS, an instance of an aperiodic task is divided into two sub
instances. They are regarded as different instances, and then the original TBS
is naturally applied.

In the following descriptions, aperiodic tasks are not distinguished and they
are supposed to have global serial instance numbers, k, according to the request
order. Execution of Jk, kth instance of aperiodic tasks, is divided into two parts,
JPETk

and JRESTk
. JPET k

corresponds to the execution from the beginning of
Jk to the predicted finishing time. JREST k

corresponds to the execution from the
predicted finishing time. If the execution of Jk finishes at or before the predicted
time, JRESTk

does not exist. Let the worst case execution time of Jk be CWCETk
,

the predictive execution time of Jk be CPET k
, and the execution time of JRESTk

Adaptive Total Bandwidth Server: Using Predictive Execution Time 255

be CREST k
= CWCET k

−CPET k
. When the kth aperiodic request arrives at the

time t = rk, two instances for the request are assigned deadlines as:

dPETk
= max(rk, dk−1) +

CPET k

Us
(6)

dREST k
= dPETk

+
CREST k

Us
(7)

Deadline assignment in the original TBS was as:

dk = max(rk, dk−1) +
CWCETk

Us
(8)

From CREST k
= CWCETk

− CPET k
and the formula (6), (7), and (8),

dREST k
= max(rk, dk−1) +

CPETk

Us
+

CWCET k
− CPET k

Us

= max(rk, dk−1) +
CWCETk

Us
= dk

Therefore, two deadlines can be calculated by the formula (6) and (8) at the
arrival time. The use of the formula (8) is more suitable than the formula (7)
since the second term in the right expression is calculated with two constants
and has only to be calculated once in advance of the system operation.

3.3 Example of Adaptive Total Bandwidth Server

In this section, an example of Adaptive TBS is shown. In Figure 2, (1) and (2)
show scheduling results of the original and adaptive TBS, respectively. There
are two periodic tasks, τ1 and τ2, and an aperiodic task request. The period of
τ1 is T1 = 4, and its execution time C1 = 1. τ2 has the period T2 = 6, and its
execution time C2 = 3. Therefore, the CPU utilization by the two periodic tasks
is Up = 0.25 + 0.5 = 0.75 and the CPU utilization by the aperiodic server is
Us = 1 − Up = 0.25. The aperiodic request occurs at tick 3, and its WCET is
supposed to be 3, while the predictive execution time and the actual execution
time are 2. In the original TBS, the deadline of the aperiodic task is dWCET =
3 + 3/0.25 = 15. Based on EDF algorithm, the aperiodic task starts execution
at tick 5, and is suspended at tick 6 by τ2. Then, after the execution of τ1, the
execution resumes at tick 10 and finishes at tick 11. Consequently, the response
time becomes 11 − 3 = 8. On the other hand, in the adaptive TBS, the two
deadlines, dPET = 3 + 2/0.25 = 11 and dREST = 11 + (3 − 2)/0.25 = 15, are
given. Based on EDF, the aperiodic task starts execution at tick 3 and finishes at
tick 7, which gives the response time of 7− 3 = 4. In this example, the adaptive
TBS shortens the response time by 4 ticks compared with the original TBS.

Suppose that the same task set is scheduled except that the actual execution
time of the aperiodic task is 3 ticks. The adaptive TBS suspends the aperiodic
execution at tick 7, resumes the execution at tick 11, and then finishes it at tick
12. Like this, even if the execution time is incorrectly predicted, the response
time would be the same as or shorter than that in the original TBS.

256 K. Tanaka

Up = 0.25 + 0.5 = 0.75

Us = 1 - Up = 0.25

CWCET = 3

CPET = 2

T1 = 4

C1 = 1

T2 = 6

C2 = 3

dWCET

Up = 0.25 + 0.5 = 0.75

Us = 1 - Up = 0.25

CWCET = 3

CPET = 2

T1 = 4

C1 = 1

T2 = 6

C2 = 3

dPET dWCET

τ1

τ2

τ1

τ2

Aperiodic

requests

Aperiodic

requests

(1) Original TBS

(2) Adaptive TBS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 2. Example of original and adaptive TBS

3.4 Adaptive Total Bandwidth Schedulability

After an aperiodic request is divided into two sub instances, the adaptive TBS
behaves just as the original TBS, where the two sub instances can be considered
to arrive at the same time. Obviously, from the formulas (6) and (7), the uti-
lization by the two instances between max(rk, dk−1) and dk is the same as that
in the original TBS as follows.

UJPETk
=

CPETk

dPET k
−max(rk, dk−1)

= Us, UJRESTk
=

CRESTk

dREST k
− dPETk

= Us

Therefore, schedulability of the adaptive TBS leads to be the same as that of
the original TBS presented in the literature [9].

3.5 Implementation Complexity

In the proposed algorithm, task execution is divided into two instances. However,
operating systems should manage a task with a single information set, task
control block. This is realized by re-setting up deadline and re-inserting the task
in a ready queue when PET elapses and the task has not finished, which is the
only difference from the original TBS. To find that execution reaches PET, the
scheduler should be executed every tick timing. This is achieved by calling the
scheduler when timer/tick interrupts occur, which is a natural procedure that
operating systems usually follow. In addition, as described in the section 3.2, the
value of the second term in the right side of the formula (8) should be statically
computed and used when necessary to reduce the recalculation overheads.

Adaptive Total Bandwidth Server: Using Predictive Execution Time 257

3.6 Affinity with Resource Reclaiming

In the proposed adaptive TBS, when deadline is calculated for kth aperiodic
request, dk−1 is needed. Since the previous (k−1th) aperiodic request is divided
into two instances, the deadline for the second instance, that is dRESTk−1

, is
used for the calculation. However, when the execution of the k − 1th request
finishes in its PET (CPETk−1

), the second instance is not executed. In this case,
instead of dRESTk−1

, dPETk−1
can be used to calculate the deadline for the

kth task. This can be applied when the execution of the first instance of the
k− 1th aperiodic task finishes before the kth aperiodic task arrives. This is one
of resource reclaiming methods.

A greedier method, resource reclaiming technique [10] described in the section
2, can be easily applied to the proposed adaptive TBS. When the execution of an
aperiodic instance finishes, whether or not the execution is for the first or second
instance after the task is divided, the deadline is recalculated by the formula (4),
then the deadline is applied to the formula (3), and finally the following aperiodic
instances can be given earlier deadlines by the formula (2).

In this paper, the former is called “simple resource reclaiming” and the latter
“greedier resource reclaiming”. In the evaluation section, these two resource
reclaiming methods are combined with the proposed adaptive TBS.

4 Evaluation

4.1 Evaluation Methodology

In this section, simulation results of the proposed TBS are shown. In the eval-
uation, six methods, Original TBS, the original TBS with resource reclaiming
described in the section 2 (Original TBS-95), the adaptive TBS without any
resource reclaiming (ATBS w/o RR), the adaptive TBS with simple resource
reclaiming described in the section 3.6 (ATBS w/ RR), the adaptive TBS with
greedier resource reclaiming (ATBS-95), and the ideal TBS where execution
times of instances are known (Oracle), are compared.

In the simulation, task sets consist of periodic tasks with the total CPU uti-
lization (Up) from 60% to 90% at intervals of 5% and aperiodic tasks with the
total utilization from 0.5% to 2% in the observation period (100,000 ticks). The
aperiodic server has the utilization Us = 1−Up. For periodic tasks, their periods
are decided by exponential distributions where the average value is 100 ticks.
Their WCET and actual execution times are equal and obtained by exponen-
tial distributions with the average of 10 ticks. For aperiodic tasks, a task set is
supposed to contain 1 to 4 different tasks. Each task in a set is invoked multiple
times and the arrival times are decided by Poisson distributions with 1.25 per
1,000 ticks on average. The WCETs are decided by exponential distributions
with the average of 8 ticks. Each task instance has its actual execution time
decided by exponential distributions with the average of 4 ticks, under the con-
dition that the upper bound is the corresponding WCET. For all aperiodic task
sets, the average ratio of actual execution times to WCET was about 0.33.

258 K. Tanaka

For each Up, all combinations of ten periodic task sets and ten aperiodic task
sets (total 100 task sets) are simulated and the average value is shown. For
the proposed methods, the weighting coefficient for PET calculation (α in the
section 3.1) is 0.5.

4.2 Results

Figure 3 is the results where each task set contains only one aperiodic task. The
utilization by the aperiodic task’s execution is about 0.5%. In the figure, the
horizontal axis indicates the CPU utilization by periodic tasks (Up), and the
vertical axis indicates the average response time of aperiodic task executions.
Under 65%, the response times are almost the same for all the six methods.
This is because the server utilization, Us = 1 − Up, is large enough to quickly
serve the aperiodic requests. Over 70%, the differences gradually appear. When
Up is 90%, the response time of the original TBS is about 32 ticks, and that of
the original TBS-95 is 28.5 ticks. On the other hand, ATBS w/o RR, ATBS w/
RR, and ATBS-95 exhibit the response times of 20.5, 18, and 17.5 ticks, respec-
tively. In this evaluation, it is found that a method with deadline assignment
based on PET (ATBS w/o RR) improves the response time by 36% compared
to the original WCET-based method, and that a method with greedier resource
reclaiming (ATBS-95) outperforms the original ATBS-95 by 39%. Consequently,
the PET-based method exhibits better ability when it is applied with resource
reclaiming.

Figure 4 is the results where four aperiodic tasks are included in the task
sets. The utilization by the aperiodic tasks is about 2%. The trend is similar to
Figure 3 except that the improvement by resource reclaiming is larger. This is
because the higher aperiodic utilization leads to the situation where occurrences
of aperiodic requests overlap with each other and the resource reclaiming is
applied more frequently. The improvement of ATBS w/o RR to Original TBS
is 13%, while ATBS-95 achieves more improvement over the original TBS-95,
which is 22%.

The use of PET is discussed. The ratio of aperiodic executions that finished in
PET was 56%. Table 1 is the average of the shortened deadline length for aperi-
odic instances that finished in their PET in the simulation of Figure 4. (“Short-
ened length” means how shorter the deadline is than that based on WCET.)
The difference between ATBS w/o RR, ATBS w/ RR, and ATBS-95 does not
exist, and therefore the table shows the ratio collectively. The larger Up is, the
longer the shortened length is. This is because larger Up corresponds to smaller
Us(= 1− Up), therefore the 2nd term of the right expression in the formula (1)
would be larger and then the shortened length would be longer. Consequently,
ATBS methods using PET provide larger improvements when the utilization by
periodic tasks is high, in other words, when the capacity of the aperiodic server
is small.

Next, effects of resource reclaiming are discussed. Table 2 shows ratios of
resource reclaiming that actuallxy affected the deadline calculation of the suc-
ceeding tasks (that is, ratios of the cases that dk−1 is the maximum in the

Adaptive Total Bandwidth Server: Using Predictive Execution Time 259

0

5

10

15

20

25

30

35

60% 65% 70% 75% 80% 85% 90%

A
v

e
r
a

g
e

 R
e

s
p

o
n

s
e

 T
im

e
 (

t
ic

k
s
)

Original TBS

Original TBS-95

ATBS w/o RR

ATBS w/ RR

ATBS-95

Oracle

Fig. 3. Average response time (One aperiodic task)

0

5

10

15

20

25

30

35

40

45

50

60% 65% 70% 75% 80% 85% 90%

A
v

e
r
a

g
e

 R
e

s
p

o
n

s
e

 T
im

e
 (

t
ic

k
s
)

Original TBS

Original TBS-95

ATBS w/o RR

ATBS w/ RR

ATBS-95

Oracle

Fig. 4. Average response time (Four aperiodic tasks)

260 K. Tanaka

Table 1. Shortened deadline length (Four aperiodic tasks)

Up (%) 60 65 70 75 80 85 90

Shortened length 19.7 22.8 26.5 31.8 40.0 54.1 84.6

formula (1) before resource reclaiming). In addition, it shows average shortened
deadline lengths in parentheses. From the table, when Up is larger, more and
longer resource reclaiming is performed. For ATBS, greedier resource reclaim-
ing (ATBS-95) provides more frequent and longer resource reclaiming than the
simple resource reclaiming (ATBS w/ RR).

Table 2. Affected resource reclaiming ratio (%) (Four aperiodic tasks)

Up (%) TBS–95 ATBS w/ RR ATBS–95

60 13.7 (20.1) 8.6 (18.1) 12.5 (19.7)

65 16.0 (23.2) 10.4 (20.8) 14.8 (22.8)

70 18.8 (28.2) 12.6 (25.3) 17.6 (27.7)

75 22.7 (36.8) 15.7 (32.6) 21.4 (36.3)

80 28.8 (52.7) 21.1 (44.5) 27.4 (51.6)

85 38.3 (85.5) 29.1 (68.9) 36.6 (83.3)

90 57.9 (299.1) 48.6 (252.9) 56.0 (297.4)

5 Conclusion

In this paper, for Total Bandwidth Server which is task scheduling algorithm
for task sets consisting of periodic tasks with hard deadlines and aperiodic tasks
without deadlines, the method that uses predictive execution times (PET) in-
stead of worst-case execution times for deadline calculation of aperiodic instances
is proposed. The use of PET is allowed since aperiodic tasks do not have explicit
deadlines. The aim of the method is to shorten response times of aperiodic tasks,
while the schedulability of periodic tasks is not influenced. The method can be
used with resource reclaiming techniques to further reduce response times.

From the evaluation by simulation, it was confirmed that the use of PET can
shorten response times of aperiodic executions and that resource reclaiming can
provide further improvements.

Currently, obtaining PET is simply based on the weighted average of the
previous execution time and the previous PET. Better calculation methods of
PET need to be explored. In addition, in this paper, an aperiodic task execution
is divided into two instances. There is a choice that it is divided into three or
more instances and stepped deadlines are assigned to them. This choice is worth
evaluating.

The evaluation in this paper used task sets that were generated based on
probability distribution. To reflect actual situations where task execution times

Adaptive Total Bandwidth Server: Using Predictive Execution Time 261

fluctuate, evaluation with actual program codes is desired. In addition, in the
current evaluation, the greedier resource reclaiming exhibits better improvement
than the simple resource reclaiming. However, considering the calculation over-
heads of reclaiming, the effects might be degraded. In such cases, the practicality
of the simple resource reclaiming might emerge. In the future, evaluation with
actual program codes and scheduling overheads should be performed.

References

1. Spuri, M., Buttazzo, G.C.: Efficient Aperiodic Service under Earliest Deadline First
Scheduling. In: IEEE Real-Time Systems Symposium, pp. 2–11. IEEE Computer
Society, San Juan (1994)

2. Lundqvist, T., Stenström, P.: Timing Anomalies in Dynamically Scheduled Micro-
processors. In: IEEE Real-Time Systems Symposium, pp. 12–21. IEEE Computer
Society, Phoenix (1999)

3. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The Worst-Case Execution Time Prob-
lem – Overview of Methods and Survey of Tools. ACM Trans. on Embedded Com-
puting Systems 7(3), 1–53 (2008)

4. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of the Association for Computing Machin-
ery 20(1), 46–61 (1973)

5. Lehoczky, J.P., Sha, L., Strosnider, J.K.: Enhanced Aperiodic Responsiveness in
Hard Real-Time Environments. In: IEEE Real-Time Systems Symposium, pp.
261–270. IEEE Computer Society, San Jose (1987)

6. Sprunt, B., Sha, L., Lehoczky, J.: Aperiodic Task Scheduling for Hard-Real-Time
Systems. Journal of Real-Time Systems 1(1), 27–60 (1989)

7. Lehoczky, J.P., Ramos-Thue, S.: An Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive Systems. In: IEEE Real-Time Sys-
tems Symposium, pp. 110–123. IEEE Computer Society, Vienna (1992)

8. Abeni, L., Buttazzo, G.: Integrating Multimedia Applications in Hard Real-Time
Systems. In: IEEE Real-Time Systems Symposium, pp. 4–13. IEEE Computer
Society, Madrid (1998)

9. Spuri, M., Buttazzo, G.: Scheduling Aperiodic Tasks in Dynamic Priority Systems.
Journal of Real-Time Systems 10(2), 179–210 (1996)

10. Spuri, M., Buttazzo, G., Sensini, F.: Robust Aperiodic Scheduling under Dynamic
Priority Systems. In: IEEE Real-Time Systems Symposium, pp. 210–219. IEEE
Computer Society, Pisa (1995)

11. Buttazzo, G.C., Caccamo, M.: Minimizing Aperiodic Response Times in a Firm
Real-Time Environment. IEEE Trans. on Software Engineering 25(1), 22–32 (1999)

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 262–271, 2013.
© IFIP International Federation for Information Processing 2013

Real-Time Service-Oriented Architectures:
A Data-Centric Implementation for Distributed

and Heterogeneous Robotic System

Pekka Alho and Jouni Mattila

Tampere University of Technology, Dept. of Intelligent Hydraulics and Automation, Finland
{pekka.alho,jouni.mattila}@tut.fi

Abstract. Cyber-physical systems like networked robots have benefited from
improvements in hardware processing power, and can facilitate modern compo-
nent and service-based architectures that promote software reuse and bring
higher-level functionality, improved integration capabilities, scalability and
ease of development to the devices. However, these systems also have very
specific requirements such as reliability, safety, and strict timeliness require-
ments set by the physical world, that must be addressed in the architecture.

This paper proposes a real-time capable service-oriented architecture, based
on data-centric middleware and an open real-time operating system. A proto-
type implementation for a robotic remote handling scenario is used to test the
approach. The architecture is evaluated on the basis of how well it fulfils the
expectations given for the service-orientation, including: reusability, evolvabil-
ity, interoperability and real-time performance. In one sentence, the goal is
to evaluate the benefits of a data-centric approach to service-orientation in a
performance-critical and distributed system.

Keywords: real-time, distributed, SOA, data-centric, middleware, robotics.

1 Introduction

Developing software for cyber-physical embedded systems such as networked robots
is a demanding task, due to complex functionality that has to be realised in a distrib-
uted and heterogeneous computing environment which typically has requirements for
real-time performance and fault tolerance. Many of the challenges in these systems
are related to interoperability and growing scale. Typically a distributed control sys-
tem will consist of several subsystems running on different platforms that produce
and consume increasing amounts of data.

On a higher abstraction level, business processes are also becoming strongly net-
worked to improve efficiency by automatically transferring data, task requests etc.
between systems. This means that robotic systems must be integrated to operations
management systems, open for external connections, and able to connect and cooper-
ate with other machines. These requirements and challenges are not unique to robotics

 Real-Time Service-Oriented Architectures: A Data-Centric Implementation 263

– other domains like industrial automation, mobile machines and telecommunication
have very similar issues.

Service-oriented software engineering has evolved from component frameworks
and object orientation to meet the demands of more open and networked environ-
ments. It promotes reuse by decomposing business processes into reusable core ser-
vices. The main benefits of service-oriented architecture (SOA) include high level of
decoupling – provided by the service model – and interoperability which enables
service providers and consumers to exist on different platforms. Two major down-
sides typically associated with SOA are complexity of developing such a system and
increased overhead caused by communication mechanisms [6]. The latter is also re-
lated to the lack of performance guarantees, and presents a major challenge especially
for embedded systems. An SOA implementation for robotic system therefore needs to
place heavy emphasis on solving this problem, which is one of the key design goals
for the architecture presented in this paper.

Application of SOA design principles to real-time systems (RTSOA) is a research
topic that has come up in the last decade, with research including experimental im-
plementations [3], [9], [10] and related key features like service composition [2], [4].
However, most of the current RTSOA approaches are based on the existing message-
based Web Service standards. Web services face challenges when used in embedded
systems, as messages need to be serialized in real-time [2], and quality of service
(QoS) must be managed at the transport layer. Other challenges include complexity of
networking with HTTP, XML, and SOAP; constraints imposed by embedded system
architecture; and verbosity of HTTP and XML.

We believe that the service-oriented approach may be beneficial for the develop-
ment of cyber-physical systems, but there is a need to test out different implementa-
tion solutions that fulfil the specific limitations and requirements of the target domain,
including reliable communications, limited resources, and deterministic behaviour.
In this paper we present a data-centric approach to RTSOA and evaluate it by imple-
menting the proposed reference architecture for a robotic remote handling scenario.
Remote handling involves human operators remotely controlling robots that perform
tasks like maintenance or construction in dangerous environments, so reliability and
performance of the system are vital for successful task completion.

2 Real-Time Service Orientation for Robotic Systems

2.1 Design Goals

We see the following as the main design goals for the real-time service-oriented
architecture:

• Promote software reuse by producing reusable and decoupled software modules.
• Enable composing a working system out of reusable and existing services.
• Improve interoperability of heterogeneous systems (platform & programming

language independence).

264 P. Alho and J. Mattila

• Ensure evolvability [8] in the future; the architecture should support changing
requirements and operating environments during the system lifecycle.

• Deterministic real-time performance, despite dynamically changing environment.
• Dependable and fault tolerant operation.
• Improve cost-efficiency & ease of development; the implementation should be

able to use off-the-shelf solutions for tools, software and hardware, instead of pur-
pose-built applications and devices.

2.2 Reference Architecture

The reference architecture, introduced in [5], is a general proof-of-concept control
system platform for machine automation as an alternative to proprietary and special-
ized solutions. The platform is based on the ideas of real-time service orientation,
introduced previously in this section, and emphasizes integrability, interoperability,
maintainability and heterogeneity. Service orientation allows software components to
be published and located locally or over a network.

Fig. 1. Layered architectural view of the reference architecture

In section 3 we will describe the actual implementation of the reference architecture
for a remote handling scenario. A high-level layered view of the reference architecture is
shown in Fig. 1. Key concepts of the architecture are services, communication & infor-
mation sharing mechanisms, composition, and fault-tolerance. These are described next.

2.3 Concurrency Model and Real-Time Performance

The choice of a concurrency model for the architecture directly affects decoupling of
the modules and management of real-time constraints. Options for the concurrency
model include processes, threads or call-back functions [1]. Each solution has its own
pros and cons for ease of development and inter-process communication. For a ser-
vice-based architecture, the process-based model (services as processes) makes most
sense, as it is the most decoupled alternative. This decoupling provided by processes
has benefits, including the possibility to more easily manage services at runtime and
improved robustness.

A service can be defined as an independently developed, deployed, managed, and
maintained software implementation that directly represents business tasks or devices.

 Real-Time Service-Oriented Architectures: A Data-Centric Implementation 265

A service can be defined by a verb which describes the function it implements, e.g.
“generate a trajectory”. Our implementation of services uses object orientation: service
is an interface (virtual class) that has methods for starting, stopping, restarting etc. the
service, which the service developer must implement. Services can use native applica-
tions and services provided by the operating system (e.g. APIs for communication).

2.4 Communication and Information Sharing

In order to communicate, components need some form of visibility or references be-
tween the communicating parties. However, this can lead to a tightly coupled system
design that scales poorly. Examples of communication methods that impose coupling
include sockets, remote method invocation and client-server model in general. A more
decoupled solution is to use middleware based on the asynchronous publish/subscribe
communication paradigm, which can be implemented as message-based like Java
Message Service (JMS), or data-centric like Data Distribution Service (DDS)1.

Another communication problem in distributed real-time systems is that networking
can add unpredictable delays and unreliability to connections. Therefore we need to be
able to set and monitor quality of service (QoS) parameters like reliability and how long
the data is valid for each topic, so that the system can react appropriately if the QoS is
compromised. QoS can be used to define if we want reliable sending (e.g. for com-
mands) or just the most recent value as fast as possible (e.g. sensor measurements).

Fig. 2. Bus-based communication in SOA

The data-centric middleware can be used as a data bus between the services, as
shown in Fig. 2: this is similar to the use of enterprise service bus (ESB) in enterprise
SOAs. Another benefit of using a distributed middleware is a global data space where
all data can be accessed; there is no central broker/repository that could act as a bot-
tleneck or a single point of failure.

In an ideal situation we would have total location transparency for the services (no
difference between accessing local and distributed services), but in order to achieve
optimal real-time performance, the architecture uses separate communication methods

1 A standard maintained by Object Management Group,

http://portals.omg.org/dds/

266 P. Alho and J. Mattila

for local and networked communications, termed local service bus and global service
bus. The reference architecture itself is not committed to any specific communication
standard, but the implementation uses DDS middleware and the communication
mechanisms provided by the real-time operating system (RTOS) Xenomai2.

Local connection of services as components and the use of DDS as a data-bus for
distributed communications combine the strengths of component and service ap-
proaches, and provides optimal real-time performance in both cases. DDS can be used
on low-end embedded systems to read and send sensor information, whereas XML-
based solutions would be too heavy, and would necessitate a separate solution.

• Global service bus: DDS was chosen since it implements asynchronous data-
centric publish/subscribe model and provides QoS management, making it suitable
for cyber-physical systems, which place a heavy emphasis on sending and receiv-
ing data.

• Local service bus: services can use RTOS message queues (an asynchronous
“mailbox”) or shared memory for local real-time communication between two ser-
vices. The queue-based local communication is similar to the component wiring
approach used in component-based software engineering.

2.5 Composition

In complex systems, the number of internal components can easily grow to the range
of hundreds or even thousands. Management of this many components or services can
be complex and laborious if the framework-implementation of the architecture does
not provide tools for this. Engineering of new applications from reusable components
is supported by a repository of available components, configuration services to select
and combine components, and run-time mechanisms that allow components to be
dynamically changed.

Fig. 3. Composite service (Key: circle denotes a service, arrow shows direction of data flow)

In the service-oriented architecture, higher level functionality can be implemented
by creating composite services of the existing services, as shown in Fig. 3. Different
means of implementing composition include programmatic, publish/subscribe, events

2 Real time Linux kernel extension and development framework,

http://www.xenomai.org/

 Real-Time Service-Oriented Architectures: A Data-Centric Implementation 267

and orchestration engine. Since our reference architecture is based on the pub-
lish/subscribe model, this is a natural match for the composition mechanism, and
enables flexible implementation of composite services. Services can be chained lo-
cally and globally to form new composite services. A single service can be part of
multiple composite services and used by multiple other services, which can reduce the
level of unnecessary redundancy in the system.

A repository provides a way to document and list available services or compo-
nents. For SOAs this can be done by writing an interface description and saving it in
the repository. Service registries, on the other hand, provide runtime information for
finding and binding services. In our proposed data-centric approach, based on the use
of a data bus, the middleware can handle registration of new publishers, and match
subscribers to the provided data topics.

Service composition and management at runtime is handled dynamically through a
local service manager, which controls spawning of new services. This makes it possi-
ble to modify a service and restart it on-the-fly, enabling faster deployment process by
updating only related services, instead of having to recompile the whole system after
every reconfiguration or update.

2.6 Fault Tolerance

Fault tolerance is a key requirement for the architecture, as many cyber-physical sys-
tems perform safety-critical tasks. A fault in the control system may endanger human
lives (either directly or indirectly), cause operational downtime or damage the envi-
ronment or equipment. Service-orientation can support error confinement with the
modular architecture, based on the decoupling provided by the service model, al-
though the system still needs to implement error detection and recovery.

Because of the decoupled design, developers cannot make the presumption that other
services are always available, and must take the situation into account in their application
code so that the service will react if a dependency goes down, e.g. because of failure or
manual shutdown. The error handling approach based on decoupling is similar to the one
used in the Erlang programming language, which can be summarized as “let it crash” [7].
In the event of an error, the process is terminated, presuming it is not an exception that
can be handled. This forces other services to react and do error recovery, including enter-
ing their safe state. The architecture can still be prone to error propagation, so the services
should be made fail-silent if possible, making it easier to detect faults.

In order to implement error detection, the system can use a service manager to de-
tect crashed services based on heartbeat signals or monitoring the use of resources like
CPU and memory. Unresponsive behaviour or unexpected increase in CPU usage for a
service can indicate a fault in the service, and may endanger real-time performance of
other services and cause unexpected and potentially dangerous behaviour. The service
manager restarts the unresponsive service, which will put the system temporarily into a
safe state by forcing other services to do error handling, according to the “let it fail”
approach. Key principle is writing loosely coupled services, by forcing the developer
to consider situations where the dependency services are not available or timing con-
straints are violated.

268 P. Alho and J. Mattila

3 Implementation for a Remote Handling System

In order to test the proposed data-centric real-time approach to service-orientation, we
implemented a remote handling control system (RHCS) for automated teleoperation
of an industrial robot Comau SMART NM45-2.0, based on the reference architecture
described in the previous section. A basic remote handling scenario consists of an
operator using the web-server based Operation Management System (OMS) to send
movement commands to the equipment controller. Virtual reality software (IHA3D)
is used to visualize the position and movements of the robot.

Services deployed on the equipment controller for the remote handling system im-
plementation are shown in Fig. 4. Service descriptions, real-time task priorities and
execution periods are listed in Table 1.

Table 1. List of services used in the remote handling control system

Service name Service description Priority
[0 .. 99]

Period
[ms]

Trajectory-
Generator

Generate a trajectory profile that the manipu-
lator can follow from one point to another.

50 2

C4G
Interact with the low level control system of
the manipulator.

91 2

C4GJoint-
DataPub

Publish manipulator joint position data. 45 10

OmsCom
Read OMS commands and manipulator joint
data; send commands to the trajectory gen-
erator to create new trajectories.

40 50

Measuring Measure task execution time and jitter. 20 0.1

4 Evaluation of the Experiment

This section presents an evaluation of the problems and benefits of the proposed ap-
proach that could be observed with the implemented experimental system. The system
is evaluated with the following criteria: reusability, interoperability, evolvability, real-
time performance, fault tolerance, and ease of development. Dynamic composition
performance depends greatly on the algorithm design [2] and it is not evaluated in this
paper. Instead, a static composition is used.

Reused software includes TrajectoryGenerator service, C4G service and
two subsystems (OMS and virtual reality). A service-based implementation avoids
stovepipe system antipattern3 as services are loosely coupled (no direct references to
other services) and do not interfere with each other’s namespaces etc., simplifying
future reuse of services.

3 http://sourcemaking.com/antipatterns/stovepipe-system

 Real-Time Service-Oriented Architectures: A Data-Centric Implementation 269

Fig. 4. Service deployment view for the system (Key: UML)

Interoperability of heterogeneous systems (machines and higher-level enterprise
systems) is supported on any platform that has a compatible DDS implementation.
DDS is available on several programming languages, therefore good programming
language independence is provided. Interfaces to Web services, REST-based services
and other communication platforms can be implemented with adapters.

Evolvability – the software must be able to accommodate new and changing re-
quirements, including connections to unforeseen external sources. Ability to do this in
the long term is especially important for industrial automation systems, because they
have long expected lifetimes. This can be measured with evolvability, which de-
scribes the ability of software to accommodate future changes [8]. Performing a com-
plete evolvability analysis is not reasonable in this context, so we focus on the
changeability, extensibility and portability sub-characteristics:

• Changeability: Data typically has better consistency in the long run when compared
to interfaces. However, if the data topics or queue configurations are changed or
added, corresponding modifications must be implemented to both publishers and
subscribers, but it is possible to provide extensions topics that provide the new or
changed data, thus retaining compatibility with old implementations.

• Extensibility: New topics or functionality in the form of services can be added
on-the-fly, without shutting down and recompiling the whole system. The run-
time composition can be managed with the service manager, which can also be
used to lazily launch necessary services (service chains).

• Portability is limited if RTOS-specific features like real-time queues are used.

270 P. Alho and J. Mattila

Real-time performance – we analysed system performance by measuring cycle dura-
tions for a real-time task first unloaded and then running a full remote handling system
with a script generating artificial CPU, network & disk loads. The real-time measuring
task was executed 10000 times with 100 µs period on a 3.4 GHz Pentium 4 CPU. The
measured latencies are shown in Fig. 5. Although standard deviation of cycle duration
has increased from 172 ns to 410 ns in the heavily loaded system, graphs show highly
deterministic behaviour in both cases. Performance of the DDS middleware in embed-
ded real-time systems has been evaluated e.g. by Xiong et al. in [11].

Fig. 5. Cycle durations for single task vs. remote handling system with extra load

Fault tolerance – the service manager can detect if services use more system re-
sources than reserved at start-up, and force a restart. Other services need to react ac-
cording to the “let it crash” error handling approach. After the services have been
restarted, normal operation can be resumed if the fault was transient. A leaky bucket
counter or an escalating retry timer can be used to distinguish transient faults from
permanent ones.

An example case of error handling: the TrajectoryGenerator service is
killed in the middle of running a trajectory to the C4G service, which controls the
robot. C4G service detects that there is no new data available, and stops the movement
of the robot, by ramping down the power in a controlled and safe fashion. Normal
operation can be resumed when the TrajectoryGenerator is restarted.

Cost-efficiency & ease of development: the service-model is an intuitive ap-
proach for developers, as services can be interfaces to devices or related to tasks that
must be accomplished. Linux-based development offers a variety of tools & drivers,
reducing need for self-developed or proprietary choices. Communication configura-
tions (for local queues) are currently hardcoded, so managing a large number of local
communications becomes cumbersome, although the service manager can be used to
start services. The local service communications should be standardized and details
moved to external configuration files that could also be managed with tools to sim-
plify management and reduce local coupling between services.

5 Conclusions

A dynamic module system based on services or components is necessary to manage
complexity of embedded and distributed control systems. The module system should

 Real-Time Service-Oriented Architectures: A Data-Centric Implementation 271

abstract the communications between modules, and provide tools for managing and
deploying the configurations in order to improve software reusability and simplify
development process, maintenance, and integration of new devices to the system.

In this paper we have presented our design concept for a service-based software ar-
chitecture. Our proposed approach adapts the SOA paradigm with data-centric design,
based on topic-based publish/subscribe middleware and RTOS. The experimental im-
plementation of the architecture demonstrates integration of heterogeneous subsystems
with the service-based control system through a scalable middleware-based data bus.
The control system is based on an open RTOS and has deterministic real-time capabili-
ties. Although all composition features in the prototype are not fully implemented, it
provides contribution by testing the data-centric approach to implementing RTSOA.

References

1. Calisi, D., Censi, A., Iocchi, L., Nardi, D.: Design choices for modular and flexible robotic
software development: the OpenRDK viewpoint. Journal of Software Engineering for Ro-
botics 3(1), 13–27 (2012)

2. Tsai, W., Lee, Y.-H., Cao, Z., Chen, Y., Xiao, B.: RTSOA: Real-Time Service-Oriented
Architecture. In: Proceedings of the 2nd IEEE International Symposium on Service-
Oriented System Engineering (SOSE 2006), pp. 49–56. IEEE (2006)

3. Cucinotta, T., Mancina, A., Anastasi, G., Lipari, G., Mangeruca, L., Checcozzo, R., et al.:
A Real-Time Service-Oriented Architecture for Industrial Automation. IEEE Transactions
on Industrial Informatics 5(3), 267–277 (2009)

4. Moussa, H., Gao, T., Yen, I.-L., Bastani, F., Jeng, J.-J.: Toward effective service composi-
tion for real-time SOA-based systems. Service Oriented Computing and Applica-
tions 4(Special Issue: RTSOAA), 17–31 (2010)

5. Hahto, A., Rasi, T., Mattila, J., Koskimies, K.: Service-oriented architecture for embedded
machine control. In: International Conference on Service-Oriented Computing and Appli-
cations. IEEE (2011)

6. Machado, A., Ferraz, C.: Guidelines for performance evaluation of web services. In: Proc.
of the 11th Brazilian Symp. on Multimedia and the Web, WebMedia 2005, pp. 1–10. ACM
(2005)

7. Armstrong, J.: Making reliable distributed systems in the presence of software errors. Dis-
sertation. Royal Institute of Technology, Stockholm (2003)

8. Pei-Breivold, H., Crnkovic, I., Larsson, M.: A systematic review of software architecture
evolution research. Inf. and Software Technol. 54(1), 16–40 (2012)

9. Panahi, M., Nie, W., Lin, K.-J.: A Framework for real-time service-oriented architecture.
In: 2009 IEEE Conf. on Commerce and Enterp. Comput., pp. 460–467. IEEE (2009)

10. Garces-Erice, L.: Building an Enterprise Service Bus for Real-Time SOA: A Messaging
Middleware Stack. In: 33rd Annual IEEE International Computer Software and Applica-
tions Conference, COMPSAC 2009, pp. 79–84. IEEE (2009)

11. Xiong, M., Parsons, J., Edmondson, J., Nguyen, H., Schmidt, D.C.: Evaluating the perfor-
mance of publish/subscribe platforms for information management in distributed real-time
and embedded systems (2011)

Contract-Based Compositional Scheduling

Analysis for Evolving Systems�

Tayfun Gezgin1, Stefan Henkler1, Achim Rettberg2, and Ingo Stierand2

1 Institute for Information Technology (OFFIS)
2 Carl von Ossietzky University Oldenburg

Abstract. The objective of this work is the analysis and verification
of distributed real-time systems. Such systems have to work in a timely
manner in order to deliver the desired services. We consider a system
architecture with multiple computation resources. The aim is to work
out a compositional state-based analysis technique to determine exact
response times and to validate end-to-end deadlines. Further, we consider
such systems in a larger context, where a set of systems work in a col-
laborative and distributed fashion. A major aspect of such collaborative
systems is the dynamic evolution. New systems can participate, existing
systems may leave because of failures, or properties may change. We use
contracts to encapsulate systems which work in a collaborative manner.
These contracts define sound timing bounds on services offered to the
environment. When some systems evolve, only those parts which changed
need to be re-validated.

Keywords: Compositional Analysis, Real-Time Systems, Scheduling
Analysis, Model Checking, Abstraction Techniques.

1 Introduction

For safety-critical distributed systems it is crucial that they adhere to their spec-
ifications, as the violation of a requirement could lead to very high costs or even
threats to human life. One crucial aspect for safety critical systems is that they
have to work in a timely manner. Therefore, in order to develop safe and reliable
systems, rigorous analysis techniques of timing-dependent behaviour are nec-
essary. In literature, basically there are two approaches for scheduling analysis
of distributed real-time systems. The classical approach is a holistic one, as it
was worked out by e.g. Tindell and Clark [12]. Here, local analysis is performed
evaluating fixed-point equations. The analysis is very fast and is able to han-
dle large systems evaluating performance characteristics like time and memory

� This work was partly supported by European Commission funding the Large-scale
integrating project (IP) proposal under ICT Call 7 (FP7-ICT-2011-7) Designing
for Adaptability and evolutioN in System of systems Engineering (DANSE) (No.
287716), and by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center ’Automatic Verification and Analysis of Complex
Systems’ (SFB/TR 14 AVACS).

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 272–282, 2013.
c© IFIP International Federation for Information Processing 2013

Contract-Based Compositional Scheduling Analysis 273

consumption. Unfortunately, it delivers very pessimistic results when inter-ECU
task dependencies exist. In [10] activation pattern for tasks are described by
upper and lower arrival curves realizing a more compositional analysis method.
Based on this work a compositional scheduling analysis tool, called SymTA/S,
was created by SymtaVision. The concept has been developed by Kai Richter
et.al. [8], and was improved and extended in several works, e.g. [9]. The main
idea behind SymTa/S is to transform event streams whenever needed and to
exploit classical scheduling algorithms for local analysis. This concept is very
fast and is able to handle large systems, but typically yields pessimistic results.

The second approach is based on model checking, and has been illustrated
for example in [5,4]. Here, all entities like tasks, processors, and schedulers are
modeled in terms of timed automata. The advantage of this approach is that
one gets exact solutions with respect to the modeled scheduling problem. As the
state space of the analyzed system is preserved, checking complex characteristics
like safety properties is possible. Unfortunately, the approach is not scalable, as
the state space of the whole architecture is generated in one single step.

Our approach for scheduling analysis combines both analytical and model
checking methods. Analogous to [5] we consider the full state space for analysis,
where all inter-leavings and task dependencies are preserved. For this, the state
space of the entire system architecture is constructed in a compositional manner.
Based on the state space of a resource, response times are determined. Further,
we propose a concept in order to handle timing properties of evolving systems.
Evolving systems are such systems, where parts can change during run-time.
Changes can occur due to failures and reconfigurations, or when new tasks are
allocated to existing resources. When such a part of the system changes, it is
desirable to only re-validate this part locally without the rest of the system.

Next, we present in Section 2 the foundation of our approach. In Section
3 we introduce operations on symbolic transition systems in order to realize
our compositional analysis. In Section 3.3, we present our state-based analysis
technique. The contract based approach for evolving systems is illustrated in
Section 4, and finally we give a conclusion.

2 Fundamentals

In this work we consider system architectures consisting of sets of process-
ing units (ECU). A set of tasks is allocated to each ECU. Our goal is to

wait

c_p <= p

releasing

c_p <= j

init

c_p <= p

c_p >= p
c_p = 0

e!

c_p=0
��

��

��

��

��

��

��

�� ��

��

����

����

Fig. 1. Left: characterization of event streams; Right: example architecture

274 T. Gezgin et al.

determine for each task corresponding response times, and whether all task
deadlines and end-to-end deadlines are satisfied. More specific, a task is a tuple
τ = (bcet, wcet, d, pr), where bcet, wcet ∈ N≥0 are the best and worst case ex-
ecution times with respect to the allocated ECU with bcet ≤ wcet, d ∈ N≥0 is
its deadline determining the maximal allowed time frame from release time to
task termination, and pr ∈ N≥0 is the fixed priority of the task. We will refer
to the elements of a tasks by indexing, e.g. bcetτ for task τ . The set of all tasks
is called T. Independent tasks are triggered by events of a corresponding event
stream (ES). An event stream ES = (p, j) is characterized by a period p and a
jitter j with p, j ∈ N≥0. Such streams can be characterized by upper and lower
occurrence curves as introduced in the real-time calculus [11] or timed automata
(introduced in the next section) like illustrated in the left part of Figure 1. In
this work we will restrict to event streams where jτ < pτ for all τ ∈ T. Also more
general event streams with bursts would be possible. Automata for such event
streams were presented in [6]. Task dependencies are captured by connecting
corresponding tasks, like e.g. in Figure 1 where t3 depends on t2.

Each ECU in a system is modeled by the tuple ecu = (T , Sch,R,S,A).
A mapping T : T → B determines the set of tasks that are allocated to the
ECU. For each ECU, a scheduling policy Sch is given. Three additional state
dependent functions provide dynamic book keeping needed to perform scheduling
analysis: (i) a ready map R : T → B determines tasks, which are released but to
which no computation time has been allocated up to now, (ii) a start delay map
S : T → [t1, t2] with t1, t2 ∈ N>0 which determines the delay interval for a task
getting from status released to run, and (iii) an active task map A : T → [t1, t2]
with t1, t2 ∈ N>0 which determines the interruption times of tasks. This map is
ordered and the first element determines the currently running task.

2.1 Timed Automata: Syntax and Semantics

Timed automata [1] are finite automata extended with a finite set of real-valued
variables called clocks. Here, we define syntax and semantics of timed automata
as employed by Uppaal. Uppaal adapts timed safety automata introduced in [7].
In such automata, progress is enforced by means of local invariants. States (or
locations) may be associated with a timing constraint defining upper bounds
on clocks. Let C be a set of clocks. A clock constraint is defined by the syntax
ϕ ::= c1 ∼ t | c1 − c2 ∼ t | ϕ∧ϕ, where c1, c2 ∈ C, t ∈ Q≥0 and ∼∈ {≤, <,=, >
,≥}. The set of all clock constraints over the set of clocks C is denoted by Φ(C).
Valuation of a set of clocks C is a function ν : C → R+ assigning each clock in
C a non-negative real number. We denote ν |= ϕ the fact that a clock constraint
ϕ evaluates to true under the clock valuation ν. We use 0C to denote the clock
valuation {c �→ 0 | c ∈ C}, abbreviate the time shift by ν + d := ν(c) + d for
all c ∈ C, and define clock resets for a set of clocks � ⊆ C by ν[� �→ 0] with
ν[� �→ 0](c) = 0 if c ∈ �, and ν[� �→ 0] = ν(c) else.

Contract-Based Compositional Scheduling Analysis 275

Definition 1 (Timed Automaton).
A Timed Automaton (TA) is a tuple A = (L, l0, Σ,C,R, I) where

– L is a finite, non-empty set of locations, and l0 ∈ L is the initial location,

– Σ is a finite alphabet of channels, and C is a finite set of clocks,

– R ⊆ L × Σ × Φ(C) × 2C × L is a set of transitions. A tuple r = (l, σ, ϕ, �, l′)
represents a transition from location l to location l′ annotated with the action σ,
constraint ϕ, and a set � of clocks which are reset.

– I : L → Φ(C) is a mapping which assigns an invariant to each location,

The semantics of timed automata is given by timed transition systems.

Definition 2 (Timed Transition System). Let Ai = (Li, l
0
i , Σi, Ci, Ri, Ii)

with i ∈ {1, ..., n} be a network of timed automata with pairwise disjoint sets of clocks
and alphabets. The semantics of such a network is defined in terms of a timed transition
system T (A1 ‖ ... ‖ An) = (Conf,Conf0, C,Σ,→), where

– Conf = {(l, ν) | l ∈ L1 × ...× Ln ∧ ν |=
∧n

j=1 Ij(lj)} is the set of configurations,

and Conf0 = (l0, 0C), where l0 = (l01, ..., l
0
n) is the initial location and 0C is the

initial clock valuation,

– C = C1 ∪ ... ∪ Cn, Σ = Σ1 ∪ ... ∪Σn,

– →⊆ Conf × (Σ ∪ R+) × Conf is the transition relation. A transition
((l, ν), λ, (l′, ν′)), also denoted by (l, ν)

λ−→(l′, ν′), has one of the following types.

• A flow transition (l, ν)
t−→(l, ν+t) with t ∈ R+ can occur, if ν+t |=

∧n
j=1 Ij(lj).

• A discrete transition (l, ν)
λ−→(l′, ν′) with l′ = l[li → l′i] and λ ∈ Σ can occur,

if for some i ∈ {1, ..., n} it holds that (li, λi, ϕi, �i, l
′
i) ∈ Ri, such that ν |= ϕi,

ν′ = ν[�i �→ 0] and ν′ |=
∧n

j=1 Ij(l
′
j).

The function l[li → l′i] for a location vector l = (l1, ..., li, ..., ln) represents the
location vector l = (l1, ..., l

′
i, ...ln). As the set of configurations is infinite, [1]

gives a finite representation which is called region graph. In [2] a more efficient
data structure called zone graph was presented. A zone represents the maximal
set of clock valuations satisfying a corresponding clock constraint. Let g ∈ Φ(C)
be a clock constraint, the induced set of clock valuations Dg = {ν | ν |= g}
is called a clock zone. Let D↑ = {ν + d | ν ∈ D ∧ d ∈ R+} and D[� → 0] =
{ν[� �→ 0] | ν ∈ D}. The finite representation of a timed automaton is given by
a symbolic transition system.

Definition 3 (Symbolic Transition System). Let A be a network of timed
automata with pairwise disjoint sets of clocks and alphabets. The symbolic transition
system (zone graph) of A is a tuple STS(A) = (S,S0,→) where

– S = {〈l, Dϕ〉 | l ∈ L1 × ... × Ln, ϕ ∈ Φ(C)} is the symbolic state set, and S0 =
〈l0, 0C〉 is the initial state,

– →⊆ S × S is the symbolic transition relation with

• 〈l,D〉 → 〈l,D↑ ∩DI(l)〉, where I(l) =
∧n

j=1 Ij(lj)

• 〈l,D〉 → 〈l′, (D ∩ Dϕi)[�i → 0] ∩ DI(l′)〉 where l′ = l[li → l′i], if there is a
i ∈ {1, ..., n} such that (li, λi, ϕi, �i, l

′
i) ∈ Ri .

276 T. Gezgin et al.

Note that for the general case some so called normalization operations on zones
are necessary. If we build the symbolic transition system for an automaton con-
taining clocks without a ceiling, i.e. some maximal reachable upper bound, it
will lead to infinite sets of symbolic states. Nevertheless, for our cases the above
definition will be sufficient as we always will have ceilings for all clocks. Please
refer to [2] for more details on zone normalization operations.

3 Compositional Analysis

We build the state spaces - i.e. the symbolic transition systems (STS) - of each
resource successively. These state spaces contain the response times of the al-
located tasks. To construct the STS of a resource, besides the behaviour of the
scheduler and characteristics of the allocated tasks, an input STS describing the
activation times of the tasks is necessary. Generally, the inputs of the tasks are
originated from different sources, such that multiple input STSs are given and
we have first to build the product of these STS. As an example, consider Figure
1: to compute the STS of ECU2, we need the activation behaviour of task t4,
which is given by the event stream I3, while the input for t3 is given by the
output STS of resource ECU1. Further, the input STS of a resource can include
behaviour which is not relevant for the computation of the resource STS. In the
above example, to compute the STS of ECU2, only the part of the state space
of ECU1 containing the behaviour of task t2 is relevant. We can skip the part
of the state space, in which detailed information about task t1 is present.

In the following, we will first introduce both operations on STS, i.e. the ab-
straction operation in Section 3.1 and the product computation in Section 3.2.
The construction of the STS of a resource is detailed in Section 3.3.

3.1 State Abstraction

In general, an abstraction function is defined as α : S → S′, where S′ ⊆ S for a
state set S. In the context of scheduling analysis we will define in the following
the state space of our considered problem domain. Then, we will introduce two
specific abstraction functions, one operating on zones and one on locations. These
two abstraction functions will then be combined and applied to our problem
domain.

Considered State Space. To capture the initial non-determinism of the
input event streams of n independent tasks of a ECU as defined in the
previous section, the corresponding STS consists of 2n locations. Let L =
{0, (l1), ...(ln), (l1, l2), ..., (l1, ..., ln)} be a set of discrete locations over index set
I = {1, ..., n}. The location (li) indicates that an instance of task τi has already
been released at least once. Analogously, location (l1, ..., ln) indicates that all
tasks have already been released at least once.

Besides the set of locations the considered state set is defined over clock
valuations over a set of clocks C. For each independent task τ two types of

Contract-Based Compositional Scheduling Analysis 277

clocks are needed, i.e. (i) clocks which trace the periodical activation of each
task (cp(τ) for task τ), and (ii) clocks which trace the time frame from releasing
a task up to the finish of computation (cactive(τ)). In order to capture overlapping
task activations, i.e., where multiple task instances ti of task τ may be active
at the same time, multiple clocks cactive(ti) exist, one for each task instance.
We need multiple clocks as we rely on using simple clocks in order to realize
our scheduling analysis with preemption, i.e. we cannot change the derivative
of a clock. Otherwise, we would have so called stopwatch automata where a
stopwatch is used to track the allocated execution times of tasks. For this class
of automata the reachability problem is known to be undecidable [3]. As we
need to use one separate clock per task instance, we need to know a priory
the maximal number of possible parallel activations of one task. For dependent
tasks we need only the second class of clocks as we do not have to trace the
activation times. For a task set T we will denote with clk(T) the set of clocks
of all tasks in T. As an example, consider the right part of Figure 1, where we
have the periodical clocks cp(t1), cp(t2), cp(t3), and allocated computation time
clocks cactive(t1), cactive(t2), cactive(t3), cactive(t4).

Abstraction on Zones. Let C′ ⊆ C. For a constraint g ∈ Φ(C) let g|C′ be the
constraint, where all propositions containing clocks of the set C\C′ are removed.
Analogously, for a constraint g ∈ Φ(C′) let g|C be the constraint extended with
propositions containing clocks in C\C′. The extension is defined in such a way,
that it does not affect the original zone, i.e. Dg = (Dg|C)|C′ and the new con-
straints are of the form 0 ≤ c ≤ ∞ forall c ∈ C\C′. For example, consider the
sets C = {c1, c2}, C′ = {c2} and the constraint g = c1− c2 ≤ 3∧ c1 ≤ 5∧ c2 ≤ 1.
Then g|C′ = c2 ≤ 1. Further, we have (g|C′)|C = c2 ≤ 1 ∧ 0 ≤ c1 ≤ ∞. For a
zone D = {ν | ν |= g} defined over C we define the zone projection operation
D|C′ = {ν | ν |= g|C′} accordingly. Note that we have Dg ⊆ Dg|C′ .

Abstraction on Locations. Let a set of locations L over index set I be given.
For I ′ ⊆ I let αI′(L) be the set of locations over index set I ′, where locations with
indexes not in I ′ are left out. For this, consider for example I ′ = I\{i}. Then
αI′(l1, ..., li, ..., ln) = (l0, ..., li−1, li+1, ..., ln). As abbreviation we will directly use
tasks instead of explicit indexes, e.g. α{τi,τj} := αi,j .

Abstraction on States of Symbolic Transition Systems. With the intro-
duced abstraction functions on both clock zones and sets of locations we can
now define the abstraction function which abstracts sets of states of a STS. Note
that these states are tuple over locations and zones. Let T ⊆ Te, where Te is
the set of tasks allocated to ECU e. The abstraction function abstracts from
the state set of the STS of ECU e to the parts where only information about a
chosen sub-task set T is kept:

αT : 〈l, D〉 → 〈αT (l), Dclk(T)〉. (1)

This abstraction function induces the following over-approximated STS:

278 T. Gezgin et al.

Definition 4. Let STS A = (S, S0,→) be a STS over a task set T. The induced
abstraction for T ⊆ T from αT is the STS A′ = (S′, S′

0,→′) with

– S′ = αT (S) is the induced set of abstract states, and S′
0 = αT (S0) is the

initial abstract state,
– →′⊆ S′ × S′ the abstract transition relation, where a →′ b iff there exists a

s1 ∈ α−1
T (a) and s2 ∈ α−1

T (b) such that s1 → s′2.

Due to the definition of the transition relation it is obvious that this abstraction
yields an over-approximation of the original STS.

3.2 Product Construction

Let Ai = (Si, S
0
i ,→i) for i = {1, ..., n} be a set of STSs over disjoint clock

sets Ci and alphabets Σi. In the following, we define the product construction
A = A1 × ... × An, which is a STS over clock set C = C1 ∪ ... ∪ Cn. For each
created state of the product STS we need to keep track from which input states,
i.e. states of the input STSs A1, ..., An, it resulted. For this, we introduce for
each Ai the function ξi that maps each product STS state to a state of Ai. The
initial state of the product is given by

〈l0, 0C〉 = 〈(l01 , ..., l0n), 0C1 ∪ ... ∪ 0Cn〉 (2)

where 〈l0i , 0Ci〉 is the initial state of Ai. Note that ξi(〈l0, 0C〉) = 〈l0i , 0Ci〉. The
time successor 〈l, D′〉 of state 〈l, D〉 is then determined by

〈l, D′〉 = 〈l, D↑ ∩D′
1|C ∩ ... ∩D′

n|C〉 (3)

where ξi(〈l, D〉) = 〈li, D′
i〉 for i ∈ {1, ..., n} are the time successors of the input

states. Note that the zones from all STSs are extended to the global clock set C.
Starting from the computed time successor, to compute all possible discrete

steps in the product transition system, each outgoing transition from each STS
is tried to be fired. In fact, this is also done in Definition 3: whenever the guards
of a transition are fulfilled, a discrete transition is enabled and can be fired.
This is the case, when the intersection of the zone induced by the guard and
the current zone is not empty. The discrete successors of a state 〈l, D〉 of the
product STS are given by the following set:

dSucc(〈l, D〉) = {〈l[li → l′i], D
′〉 | 〈li, Di〉 → 〈l′i, D′

i〉 ∧ D′ 	= ∅} (4)

where D′ = (D ∩ ρ−1(D′
i)|C)[ρ(D

′
i) → 0] ∩ D′

i|C and 〈li, Di〉 = ξi(〈l, D〉) for all

i ∈ {1, ..., n}. The function ρ(D) represents the set of clocks, which are reseted
in the corresponding zone and ρ−1(D) represents the symbolic state before the
reset operation of the corresponding transition has been performed. A discrete
step is possible, if the resulting zone is not empty.

3.3 Resource Graph Computation

In this section we will illustrate the construction of the state space of a resource.
Due to the limited page size we will only sketch the idea of our algorithm here.
In the following we will use the functions i.lb() and i.ub() to access the lower
and upper bound of an interval i.

Contract-Based Compositional Scheduling Analysis 279

Listing 1.1. Main code computeResourceSTS(STS Sin, Configuration cin)

set Ψ(〈l0, 0C〉) and ξ.add(〈l0, 0C〉, 〈l0in, 0Cin 〉)
while (Ψ . s i z e > 0)

〈l,D〉 = Ψ . pop () , 〈lin, Din〉 = ξ(〈l,D〉)
f o ra l l (edgein ∈ outgoingEdges(〈lin, Din〉) : computeSuccessor (〈l,D〉, edgein)
checkDeadlines ()

The main algorithm for the computation of a resource STS is illustrated in
Listing 1.1. The input parameters are an input STS Sin describing the task
activation times, and some configuration data such as the scheduling policy and
informations about the allocated tasks. Analogous to the computation of the
product, we need to keep track for each of the resource state, from which input
state (i.e. state of the input transition system) it resulted. For this, we introduce
the function ξ which maps each resource STS state to an input STS state.

The algorithm starts by creating the initial symbolic state s0 = 〈l0, C0〉 of the
resource STS. This state is added to a set Ψ, which determines the states, for
which successors have to be computed. The initial state 〈l0in, 0Cin〉 of the input
transition system is set as the corresponding input state of s0.

The possible successors of a state 〈l, D〉 are determined by the successors of
the corresponding input state ξ(〈l, D〉). The computation of the successors of a
resource state proceeds analogous to the successor computation of the product
STS introduced in the previous section. For this, the algorithm iterates through
all outgoing transitions of the corresponding input state defining either the set
of tasks, which can be released, or the (single) time successor, and builds a
set of corresponding successors of the resource state. If edgein defines the time
successor 〈lin, Din〉, we get the time successor of the current resource state 〈l, D〉
by computingD↑∩Din|C . If a task instance t is running in state 〈l, D〉, we further
intersect the zone with the response time of the running task, i.e. cactive(t) ≤
wcett + interruptT imest.ub().

If else edgein defines a discrete successor which constitutes to a release of a new
instance of task τ , we need to perform a case distinction: If there is no running
task in the current resource state 〈l, D〉 (i.e. when the active task map Al in
location l is empty), we build the successor resource state 〈l′, D′〉 by intersecting
the current resource D with the zone of the successor of the corresponding input
state. The active task map Al then gets the entry (tτ , [0, 0]).

Else when we have a running task, we have to determine, whether this task can
finish its computation before a new instance of the task determined by edgein
can be released. This is done as follows.

1. If the running task t cannot terminate, i.e. cactive(t).ub() < bcrtt, we try
to release a new task instance as defined in the input STS state. For this,
the intersection of the current resource state and the successor state of the
corresponding input state is computed. Two cases can occur here:

(a) If the intersection results in an empty zone, the discrete step cannot be
taken and the next input edge is considered.

280 T. Gezgin et al.

(b) Else, a new instance of task τ can be released. The active task map
Al gets the new entry (tτ , [0, 0]). Then, the next running task wrt. the
considered scheduling policy is determined. At least the new state is
added to the graph and the set Ψ ′.

2. If a running task t will terminate (cactive(t).lb() == wcrtt), its execution
time is accumulated to all interrupted tasks by incrementing their interrupt
times in the active task map Al. Then we determine the next running task
according to the scheduling policy. If we move the task t from the ready
map to the active map (i.e. a previously released task which did not get
computation time so far), we have to store the time frame from release to
start of t in order to correctly determine its allocated execution time. This
time frame is given by clock cactive(t) and is stored in the start delay map
S. Further, we have to reset cactive(t) as no computation time has been
allocated so far. At least, we are recursing computeSuccessor(〈l′, D′〉, τ).

If cactive(t).ub() ≥ bcrtt∧cactive(t).lb() ≤ wcrtt then both 1) and 2) are executed
in this order.

Each state which is generated in the computeSuccessor method is added to
the set Ψ . For all newly generated states Ψ ′ we determine whether a deadline is
violated as follows.

∀〈l, D〉 ∈ Ψ ′, t ∈ Al ∪Rl : Dt.ub() ≤ dt. (5)

If Equation 5 is violated or no state is left in Ψ , the algorithm terminates.

4 Contract Based Analysis

Systems in our context may evolve. Such an evolution is illustrated in Figure
2. The system System1 is first composed of two resources which deliver some
service to its environment. After some time a reconfiguration of this system may
occur. In Figure 2 the system is changed to a new decomposition structure

������ ������

	
���
�
��

���
������

������

	
���
�
��

���
������

����
��� ����
���

���
���

���
���

����
���

������

���

������

�����������
��������

�����
!���
"���#
��

$������$���%����������$�'��*���+

,,�������	�//

������

	
���
�
��

���
������

����
���

���
���

���

���

�����������
��������

�����
!���
"���#
��

$������$���%����������$�'��*���+

,,�������	�//

������

	
���
�
��

���
������

���
���

� %
���

������

	
���
�
��
� %

Fig. 2. Changing part of a system

consisting of three resources. Such reconfigurations would get necessary if for
example some resources fail, loads of the tasks get larger, or new tasks are
allocated to the system, such that new resources get necessary. If such systems
are annotated by constraints determining the quality of the offered services,

Contract-Based Compositional Scheduling Analysis 281

internal changes would not affect other systems, as these rely on the quality
guarantees of the system. In the above example, a contract consisting of an
assumption (A) and a guarantee (G) is annotated to the system. An assumption
specifies how the context of the component, i.e. the environment from the point
of view of the component, should behave. Only if the assumption is fulfilled,
the component will behave as guaranteed. If now a change of a system occurs,
we only need to check this part rather than all other systems. When a change
occurs, we use the algorithm presented in Section 3.3 to re-validate the contract.
This concept can be further extended to parts of Systems of Systems (SoS): if
several systems cooperate in order reach some goals and to offer some services
to their environment, these cooperating systems can again be annotated by such
timing contracts. When a whole system is exchanged by another system in this
part of the SoS, again only the STSs of the constituent systems of this part have
to be build to re-validate the contract. As we do the analysis in a compositional
manner, we further can reuse the STSs of these constituent systems, which are
not affected by the changing system. This is for example the case, when they
only deliver services to the changed systems and do not adhere on their services.

5 Conclusion and Future Work

In this work we presented a scheduling analysis technique for systems with mul-
tiple resources and potential preemptions of tasks. The state space of the entire
system architecture is defined by symbolic transitions systems (STS) and is con-
structed in a compositional manner. For this, we introduced two operations on
STSs, namely the product construction and the abstraction on parts of a STS.
Further, we proposed a concept in order to handle timing properties of evolving
systems. We proposed to encapsulate cooperating system by contracts, such that
changes of such a part do not affect other systems. Currently, we are implement-
ing our proposed concept. The implementation so far builds up the STS of the
whole architecture and performs the response time analysis in a holistic man-
ner. In future work we will validate our approach and compare it with related
tools. We will investigate new abstraction techniques which will further boost
the scalability of our approach.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004)

3. Cassez, F., Larsen, K.: The Impressive Power of Stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

4. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-based framework for schedula-
bility analysis using uppaal 4.1. In: Nicolescu, G., Mosterman, P.J. (eds.) Model-
Based Design for Embedded Systems, pp. 93–119 (2009)

282 T. Gezgin et al.

5. Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes:
Schedulability and decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002)

6. Hendriks, M., Verhoef, M.: Timed automata based analysis of embedded system
architectures. In: Parallel and Distributed Processing Symposium (April 2006)

7. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Information and Computation 111, 394–406 (1992)

8. Richter, K.: Compositional Scheduling Analysis Using Standard Event Models.
PhD thesis, Technical University of Braunschweig, Braunschweig, Germany (2004)

9. Rox, J., Ernst, R.: Exploiting inter-event stream correlations between output event
streams of non-preemptively scheduled tasks. In: Proceedings of the Conference on
Design, Automation and Test in Europe, DATE, Leuven, Belgium (2010)

10. Thiele, L., Chakraborty, S., Gries, M., Maxiaguine, A., Greutert, J.: Embedded
software in network processors - models and algorithms. In: Henzinger, T.A.,
Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 416–434. Springer, Hei-
delberg (2001)

11. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: IEEE International Symposium on Circuits and Systems
(ISCAS), vol. 4, pp. 101–104 (2000)

12. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time
systems. Microprocess. Microprogram. 40, 117–134 (1994)

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 283–292, 2013.
© IFIP International Federation for Information Processing 2013

Extending an IEEE 42010-Compliant Viewpoint-Based
Engineering-Framework for Embedded Systems

to Support Variant Management

André Heuer, Tobias Kaufmann, and Thorsten Weyer

paluno – The Ruhr Institute for Software Technology
University of Duisburg-Essen

Gerlingstr. 16
45127 Essen, Germany

{andre.heuer,tobias.kaufmann,thorsten.weyer}@paluno.uni-due.de

Abstract. The increasing complexity of today’s embedded systems and the in-
creasing demand for higher quality require a comprehensive engineering ap-
proach. The model-based engineering approach that has been developed in the
project SPES 2020 (Software Platform Embedded Systems) is intended to com-
prehensively support the development of embedded systems in the future. The
approach allows for specifying an embedded system from different viewpoints
that are artefact-based and seamlessly integrated. It is compliant with the IEEE
Std. 1471 for specifying viewpoints for architectural descriptions. However, the
higher demand for individual embedded software necessitates the integration of
variant management into the engineering process of an embedded system. A
prerequisite for the seamless integration of variant management is the explicit
consideration of variability. Variability allows for developing individual soft-
ware based on a set of common core assets. Yet, variability is a crosscutting
concern as it affects all related engineering disciplines and artefacts across the
engineering process of an embedded system. Since the IEEE Std. 1471 does not
support the documentation of crosscutting aspects, we apply the concept of per-
spectives to IEEE Std. 1471’s successor (IEEE Std. 42010) in order to extend
the SPES engineering approach to support continuous variant management.

1 Introduction

Embedded systems bear more and more functionality, must satisfy a growing number
of crucial quality demands, and additionally have a higher degree of complexity and
inter-system relationships. Key players of the German embedded systems community
were involved in the project SPES 2020 (Software Platform Embedded Systems)
which was a joined project funded by the German Federal Ministry of Education and
Research1. SPES 2020 aimed at developing a model-based engineering approach that
addresses the challenges mentioned above (cf. [4]).

1 See http://spes2020.informatik.tu-muenchen.de/

284 A. Heuer, T. Kaufmann, and T. Weyer

The project consortium represented important industrial domains in Germany: automa-
tion, automotive, avionics, energy, and healthcare. In the project, the partners from
industry and academia jointly developed an artefact-centred, model-based engineering
framework for embedded systems that is based on the IEEE Standard 1471 (cf. [9]). This
framework is called the SPES Modelling Framework (or short: SPES MF). The SPES MF
focusses on the software within an embedded system (cf. [10]) and allows for a seamless
engineering of embedded systems, from the requirements to the technical architecture of
the system under development (SUD) across multiple abstraction layers (cf. [4]).

Beside the need for seamless model-based engineering, there is a higher demand
for the development of different variants of embedded systems. Variant management
consists of activities to define variability, to manage variable artefacts, activities to
resolve variability and to manage traceability information that are necessary to fulfil
these activities (cf. [15]) in each step within the engineering process.

Thereby, variability is defined as the ability to adapt [17], i.e. a development artefact
can exist in different shapes at the same time (cf. [15]). The current version of the SPES
MF does not support the systematic consideration of variants. As a consequence, con-
cepts and techniques are required for extending the SPES MF to support variant man-
agement in the engineering process of an embedded system. A prerequisite for that is
the seamless consideration of variability across the engineering artefacts (cf. [3]).

Variability may cause crosscutting changes, for example, in the requirements and
the architecture by adapting a system for a specific variant (cf. [14]). A new require-
ment may impose changes to the architecture. Thus, variability can be seen as a cross-
cutting concern. Since variability affects all existing viewpoints of the SPES MF, the
SPES MF needs to be adapted to deal with such crosscutting concerns. In [10], per-
spectives are recommended to address crosscutting concerns. We define a Variability
Perspective for SPES MF that supports the development of different variants of sys-
tems in a systematic and comprehensive way.

The paper is structured as follows: Section 2 describes the fundamentals for ex-
tending the SPES MF with respect to the consideration of variability in the different
engineering artefacts. Section 3 describes our extension of the SPES MF to integrate
the Variability Perspective in the SPES MF. Section 4 reviews the related work on
integrating variability in architectural frameworks. Section 5 gives a conclusion and
sketches the future research.

2 Fundamentals

In order to cope not only with the functionality and complexity of a single SUD but
also with the variability of a number of similar embedded systems, this section de-
scribes the fundamentals to extend the SPES MF for supporting variant management.

2.1 Variant Management in the Engineering of Embedded Systems

Variability is defined as the ability to adapt. Thus, the variability of an embedded
system is defined as the ability to adapt the system with regard to a specific context
(e.g. context of use, cf. section 1).

 Extending an IEEE 42010-Compliant Viewpoint-Based Engineering-Framework 285

It is widely accepted in industry and academia that variability should be docu-
mented explicitly in a variability model, which is already a well-proven paradigm in
the software product line community (cf., e.g., [5], [12], [15]). This explicit documen-
tation of variability is based on two ontological concepts and their relations. The vari-
ability subject is defined as a variable item of the real world or a variable property of
such an item, e.g. the paint of a car (cf. [15]). The variability object is defined as a
particular instance of a variability subject, e.g. red paint. A variant is a running sys-
tem that is constituted of a selected set of variability objects. Consequently, in the
engineering of variability-intensive embedded systems, variant management can be
characterized as a process that complements the original engineering process (e.g.
requirements engineering, architectural design) by systematically considering variants
in each of the engineering disciplines. Performing continuous variant management
additionally implies that the relationships of variants are seamlessly documented on a
semantic level across the engineering process.

2.2 Viewpoint-Specifications Based on IEEE Std. 1471 and IEEE Std. 42010

The IEEE Std. 1471 [9] and its current successor IEEE Std. 42010 [10] introduce a
conceptual framework for architectural descriptions (cf. section 1). The key concept
of both frameworks is the architectural viewpoint (or short: viewpoint). To reduce the
complexity, the architectural description of a system is typically divided into a num-
ber of interrelated views. A viewpoint can be characterized as a structured specifica-
tion that supports the definition of such a view on the system. The specification of a
viewpoint consists of the stakeholders’ concerns (e.g. specifying the logical architec-
ture) that are addressed by the view together with conventions for creating that view
(e.g. the underlying ontology, the ontological relationships to other views, and rules
for evaluating the quality of the corresponding views).

Beside the different interrelated views of a system, typically, a system architecture
also bears certain crosscutting properties, i.e. properties that have an ontological
grounding in each view or an ontological relationship to each one of the views. Ac-
cording to IEEE Std. 42010, architectural models can be shared across multiple views
expressing the ontological relationships of the views. This is one possible implemen-
tation of the concept of architectural perspectives (or short: perspectives) introduced
by ROZANSKI and WOODS in [16].

2.3 The SPES 2020 Modelling Framework

The SPES MF supports the development of embedded systems by focussing on the
following principles (cf. [4]): distinguishing between problem and solution, explicitly
considering system decomposition, seamless model-based engineering, distinguishing
between logical and technical solutions, and continuous engineering of crosscutting
system properties. These principles manifest themselves within the SPES MF in two
orthogonal dimensions, the SPES viewpoints and the SPES abstraction layers.

286 A. Heuer, T. Kaufmann, and T. Weyer

The SPES MF Viewpoints. The different stakeholders (e.g. requirements engineers,
functional analysts, solution architects) in the engineering process of an embedded
system have different concerns. Based on the separation of concerns principle, the
individual concerns of stakeholders are addressed by certain views that are, in accor-
dance to IEEE Std. 1471, governed by viewpoints in the SPES MF. Each viewpoint
addresses certain concerns in the engineering process of an embedded system. The
SPES MF differentiates between the following four SPES viewpoints: the SPES Re-
quirements Viewpoint addresses the structured documentation and analysis of re-
quirements; the SPES Functional Viewpoint addresses the structured documentation
and analysis of system functions; the SPES Logical Viewpoint addresses structured
documentation and analysis of the logical solution, and the SPES Technical Viewpoint
addresses the structured documentation and analysis of the technical solution.

The SPES MF Abstraction Layers. To reduce the complexity of the engineering proc-
ess a coarse-grained engineering “problem” is decomposed into a number of fine-
grained engineering problems following the strategy of divide and conquer, i.e. the
composition of the fine-grained solutions is a solution for the coarse-grained engineer-
ing problem. Each time, a coarse-grained engineering subject is decomposed into a
number of fine-grained engineering subjects; a new abstraction layer is created. Since
the number of abstraction layers depends on the properties of the individual engineering
context of an embedded system, the SPES MF does not define a certain number of ab-
straction layers. However the SPES MF provides the mechanism to create new abstrac-
tion layers that can be used by engineers to decompose the overall engineering problem
to a level of granularity at which the complexity of the fine-grained systems is manage-
able without the need of performing another step of decomposition.

3 Integrating Variability in the SPES MF

To extend the SPES MF for supporting continuous variant management, firstly, the
nature of variability is analysed. Secondly, a general concept for extending the SPES
MF is defined and thirdly the specification of the Variability Perspective is presented.

3.1 An Insight into the Nature of Variability within the SPES MF Viewpoints

Variability can affect the SPES viewpoints in different ways. Within the SPES Re-
quirements View the requirements of the SUD are specified by using different types
of models (e.g. goal models, scenario models). For instance, requirements in terms of
system goals (cf. e.g. [8]) are specifying the intention of the stakeholders with regard
to the objectives, properties, or use of the system [8]. A variable goal thus represents
an objective that may only apply in a specific usage context of the system. Goals can
also be contradictory, for example, if a goal of a certain stakeholder excludes a goal of
another stakeholder in a specific usage context of the system. In this situation, these
two goals can never be included together in the same variant of a system. Thus, vari-
ability in goals may have its origin in variability concerning the stakeholders that have
to be considered or in variable intentions of one stakeholder with respect to a different
usage context.

 Extending an IEEE 42010-Compliant Viewpoint-Based Engineering-Framework 287

In contrast to the Requirements View, the Technical View defines hardware com-
ponents which implement specific functions or realize logical components. Variability
on the Technical View could be embodied, for example, by different pins of hardware
pieces, or by a different clock speed of a bus. It is obvious that the ontological mean-
ing of variability in the Technical Viewpoint is different from the ontological mean-
ing of variability in the Requirements Viewpoint. In the same way we come to the
general conclusion that the ontological meaning of variability is different in all of the
SPES viewpoints.

3.2 General Concept for Extending the SPES MF for Variant Management

A specific aspect where variability occurs, for instance, in the Requirements View of
the SUD is on the ontological level that is different as a variable aspect in the Techni-
cal View ( in Fig. 1).Variability within the Requirements View can be modelled in
an explicit variability artefact (i.e. variability model) with a precise ontological rela-
tionship to the engineering artefacts of the Requirements View ( in Fig. 1), whereas
variability within the Technical Viewpoint can be documented in an explicit variabil-
ity model that has a precise ontological relationships to the engineering artefacts of
the Technical Viewpoint. This concept can also be applied to other viewpoints and
results in distinct variability models for each of the SPES viewpoints.

Viewpoints Abstraction layers

Perspectives

Variability

Ontological Relationships of a variability artefact

System

Subsystem

Sub-Subsystem

Re
qu

ir
em

en
ts

Fu
nc

tio
na

l

Lo
gi

ca
l

Te
ch

ni
ca

l

1

2

3

Between variability artefacts across the different viewpoints

Between variability artefacts across the abstraction layers

To the corresponding engineering artefacts Variability
Artefacts

Engineering
Artefacts

1

3
2

Fig. 1. Variability models in the different viewpoints and their relations

As already mentioned in Section 2.3, today’s embedded software is engineered
across different abstraction layers based on the SPES MF. Thus, most of the artefact
types that are defined based on the underlying ontology of the viewpoints are used on
each of the abstraction layers but with a different level of granularity of the engineer-
ing subject. On a subsystem layer in Fig. 1, for example, a component diagram

288 A. Heuer, T. Kaufmann, and T. Weyer

models the structure of the SUD. On this level, an interface can be variable. However,
on the sub-subsystem layer in Fig. 1, for example, the structure of the different com-
ponents can also be modelled by a component diagram and interfaces can also be
variable and both variable interfaces are related to each other. Additionally, the defi-
nition of a variability subject on a higher abstraction layer may lead to different alter-
natives that impose new variability objects representing different decompositions on a
lower abstraction level. Thus, not only artefacts of different types, but also of the
same type across different abstraction layers ( in Fig. 1) are affected.

The general concept of integrating variability in the SPES MF is also based on the
empirical findings and conceptualizations of AMERICA ET AL. [1] as well as THIEL and
HEIN [18]. AMERICA ET AL., argue to explicitly document the possible design deci-
sions, by documenting viewpoint relevant variability. Furthermore, they argue that the
explicit documentation of choices leads to an increased awareness of such choices,
which in turn is beneficial for the stakeholder communication. THIEL and HEIN are
interpreting variability as a kind of quality of the architecture of a system in terms of
its configurability and modifiability. Variability is materialized in the artefacts by
changes or adaptations of specific elements, e.g. interfaces.

3.3 Specifying Crosscutting Aspects Conform to IEEE Std. 42010

The SPES MF in its current version does not specify how variant management and thus
variability should be addressed in its corresponding viewpoints and abstraction layers.
As we already discussed, variant management potentially affects all artefacts and con-
sequently crosscuts all viewpoints of the SPES MF. IEEE Std. 42010 itself provides a
mechanism for realizing crosscutting concerns by allowing architectural models to be
shared across multiple views and thereby focus on the relevant aspects of a view. Re-
garding variant management, we belief that this approach is not sufficient, because, as
we discussed in section 3.2, the ontological meaning of variability significantly differs
in each of the four viewpoints. As a consequence, a shared architectural model would
need to be able to represent viewpoint-specific ontological concepts.

ROZANSKI and WOODS [16] also recognized a need for addressing crosscutting as-
pects fulfilling specific concerns of the majority of system’s stakeholders. They are
identifying qualities of the architecture (e.g. safety, security) that are affecting all
views. To address these qualities, ROZANSKI and WOODS introduced the concept of
perspectives, which are defined as [16]: “[…] a collection of architectural activities,
tactics, and guidelines that are used to ensure that a system exhibits its particular set
of related properties that require consideration across a number of the system’s ar-
chitectural views”. Perspectives are therefore orthogonal to architectural views. In
[16] a perspective specification template is proposed that addresses the quality proper-
ties in an IEEE Std. 42010 based specification.

3.4 Specification of the Variability Perspective for the SPES MF

Since variability can be regarded as a quality property and therefore as a crosscutting
concern of a system architecture, we extend the SPES MF by following the approach

 Extending an IEEE 42010-Compliant Viewpoint-Based Engineering-Framework 289

that is described in Section 3.3. To that end we use the template proposed in [16] for
specifying the architectural perspective. An excerpt from the specification of the
Variability Perspective is shown in Table 1.

Table 1. Excerpt from the specification of the Variability Perspective

Section Content

Applicability Each SPES MF view is affected:
• When applying the Variability Perspective to the Requirements View, it guides

the requirements engineering process of the SUD so that the variability of the
requirements can be considered systematically.

• When applying the Variability Perspective to the Functional View, it guides the
functional design for the SUD so that the variability of the system functions can
be considered systematically.

• When applying the Variability Perspective to the Logical View, it guides the
design of the logical architecture of the SUD so that the variability within of the
logical architecture can be considered systematically.

• When applying the Variability Perspective to the Technical View, it guides the
design of the technical architecture of the SUD so that variability of the technical
architecture can be considered systematically.

Each SPES MF abstraction layer is affected:
• When applying the Variability Perspective to an abstraction layer, it guides the

systematic engineering of the engineering subjects within that layer so that the
variability can be considered across all views of the engineering subject.

Concerns • Variability: the ability of the SUD to be adapted to a different context, e.g. con-
text of usage, technological context, economical context, legal context or organ-
izational context.

• Quality properties of variability: correctness, completeness, consistent and
traceable to its origin and to corresponding engineering artefacts.

Activities Steps for applying the Variability Perspective to the Requirements View:
• Identification of variability in the requirements of the SUD: This step aims at

identifying variability in the requirements that is originated by variable context
properties.

• Documentation of variability in the requirements of the SUD: This step aims at
documenting the variability in the requirements.

• Analysis of variability in the requirements of the SUD: This step aims at analys-
ing the variability in the requirements, e.g. with respect to correctness, com-
pleteness and consistency.

• Negotiation of variability in the requirements of the SUD: This step aims at
negotiating the variability in the requirements, with the stakeholders of the SUD.

• Validation of the variability in the requirements of the SUD: This step aims at
analysing the variability in the requirements, e.g. with respect to correctness,
completeness and consistency.

Steps for applying the Variability Perspective to the Functional View:
• […]
Steps for applying the Variability Perspective to the Logical View:
• […]
Steps for applying the Variability Perspective to the Technical View:
• Identification of variability in the technical architecture of the SUD: This step

aims at identifying variability in the technical architecture that is originated by,
for example, variable technical resources (e.g. processors, communication in-
frastructure) as well as variable sensors or actuators).

290 A. Heuer, T. Kaufmann, and T. Weyer

Table 1. (Continued)

Architectural
tactics

Context Analysis and Documentation: for structured analysis and documentation of
the context properties that are the origin of variability
• Orthogonal Variability Modelling: for explicit documentation of variability and its

relationship to engineering artefacts
• Model Checking: […]

Problems
and pitfalls

Problems and pitfalls that may arise:
• The increasing complexity of variable artefacts that increases the effort to keep

the engineering artefacts consistent.
• Complex variability models tend to be ambiguous und confusing, for example,

false optional features that are part of every product because of constraints.
• […]

4 Related Work

Today, multiple frameworks for designing a system’s architecture exist. All these
frameworks share the concept of multiple architectural views. In this context, cross-
cutting concerns are often considered as quality or system properties or non-
functional as well as quality requirements of a SUD, which need special consideration
when crafting a system’s architecture.

In terms of documenting a system’s architecture the standards IEEE Std. 1471 [9]
and its successor IEEE Std. 42010 [10] provide a conceptual framework for specify-
ing viewpoints governing views (cf. section 2.2). Another approach for documenting
a system’s architectural views is proposed in “Views and Beyond” [7], which is com-
pliant to IEEE Std. 1471 (cf. [6]).

ZACHMAN proposes a Framework [21], which makes use of six different architec-
tural representations (viewpoints). This framework does not state how crosscutting
concerns should be addressed in detail.

The Reference Model of Open Distributed Processing (RM-ODP) [11] proposes
five viewpoints, focusing on particular concerns within a system. In addition a set of
system properties are defined including quality of service, but it is not addressed how
these properties should be encountered during system development.

The rational unified process (RUP) makes use of The 4 + 1 View Model of Archi-
tecture, which was introduced in [13]. In RUP four different kinds of non-functional
requirements are distinguished, which are subject to an iterative, scenario-based proc-
ess determining the key drivers of architectural elements. But no explicit guidelines
are given how non-functional requirements should be addressed in the architectural
design phase.

Attribute-Driven Design (ADD) [20] is a method that can be described as an ap-
proach for defining a software architecture based on the software’s quality attribute
requirements. Essentially, ADD promotes a recursive design process decomposing a
SUD making use of the architectural tactics introduced in [2], resulting in views that
are compliant to [7], and consequently explicitly address crosscutting concerns.

The TOGAF framework uses the iterative Architecture Development Method
(ADM), which contains an analysis of changes etc. in terms of their cross architectural

 Extending an IEEE 42010-Compliant Viewpoint-Based Engineering-Framework 291

impact. In its current version [18], the TOGAF framework encourages the use of IEEE
Std. 42010 in order to craft the necessary viewpoints and views.

ROZANSKI and WOODS [16] take the 4+1 View Model of Architecture as foundation
and provide an IEEE Std. 42010 compliant viewpoint catalogue. The stakeholders’
requirements as well as the architecture are subject to an iterative architecture definition
process. But in contrast to RUP, crosscutting concerns are explicitly addressed in terms
of perspectives.

As motivated in subsection 2.3, software intensive embedded systems need special
consideration during their engineering. The domain independent model-based engi-
neering methodology of SPES, takes these special needs and challenges into account.
In doing so, the IEEE Std. 1471 based viewpoints of the SPES MF are explicitly tai-
lored to the needs of the development of software intensive embedded systems. The
above described frameworks are of a more general nature and are consequently not
directly applicable in the context of such systems. As motivated in subsection 3.1,
variability affects multiple viewpoints and their artefacts. Consequently, it is our firm
belief that variability has to be addressed explicitly. Therefore we decided to apply
the approach by ROZANSKI and WOODS to the SPES MF in order to address variabil-
ity explicitly.

5 Conclusion

The specification of the Variability Perspective is an essential means for supporting
the continuous variant management across the whole engineering process of embed-
ded systems, which are based on the SPES MF. This is done by defining how to
seamlessly integrate, among others, the identification, documentation and analysis of
variability and its relationships to the underlying engineering artefacts across the
viewpoints and abstraction layers of the SPES MF. In our future work we will apply
the extension of the SPES MF for variant management to three industrial case studies
(a driver assistance system for vehicles, a mission control software in unmanned
aerial vehicles, and a desalination plant) to gain deeper insights concerning the appli-
cability and usefulness for supporting the continuous variant management in the
engineering processes of embedded systems.

Acknowledgement. This paper was partially funded by the BMBF project SPES
2020_XTCore under grant 01IS12005C and the DFG project KOPI grant PO 607/4-1.

References

1. America, P., Rommes, E., Obbink, H.: Multi-view variation modeling for scenario analy-
sis. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 44–65. Springer,
Heidelberg (2004)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,
Reading (2003)

292 A. Heuer, T. Kaufmann, and T. Weyer

3. Broy, M.: Outlook. In: Pohl, K., Hönninger, H., Achatz, R., Broy, M. (eds.) Model-Based
Engineering of Embedded Systems – The SPES 2020 Methodology. Springer, Heidelberg
(2012)

4. Broy, M., Damm, W., Henkler, S., Pohl, K., Vogelsang, A., Weyer, T.: Introduction to the
SPES Modeling Framework. In: Pohl, K., Hönninger, H., Achatz, R., Broy, M. (eds.)
Model-Based Engineering of Embedded Systems – The SPES 2020 Methodology.
Springer, Heidelberg (2012)

5. Clements, P., Northrop, L.: Software Product Lines – Practices and Patterns.
Addison-Wesley, Boston (2002)

6. Clements, P.: Comparing the SEI’s Views and Beyond Approach for Documenting Soft-
ware Architectures with ANSI-IEEE Std. 1471-2000. Technical Report, Software Engi-
neering Institute, Carnegie Mellon University, CMU/SEI-2005-TN-017 (2005)

7. Clements, P.: Documenting software architectures: views and beyond. Addison-Wesley,
Boston (2011)

8. Daun, M., Tenbergen, B., Weyer, T.: Requirements Viewpoint. In: Pohl, K., Hönninger,
H., Achatz, R., Broy, M. (eds.) Model-Based Engineering of Embedded Systems – The
SPES 2020 Methodology. Springer, Heidelberg (2012)

9. IEEE Recommended Practice for Architectural Description of Software Intensive Systems.
IEEE Standard 1471-2000 (2000)

10. ISO/IEC/IEEE Systems and Software Engineering – Architecture description.
ISO/IEC/IEEE Standard 42010:2011 (2011)

11. ITU-T X.903 | ISO/IEC 10746-3 Information Technology – Open Distributed Processing –
Reference Model – Architecture.ISO/IEC Standard 10746-3 (2009)

12. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE Soft-
ware 19(4), 58–65 (2002)

13. Kruchten, P.: The 4 + 1 View Model of architecture. IEEE Software 12(6), 42–50 (1995)
14. Noda, N., Kishi, T.: Aspect-Oriented Modeling for Variability Management. In: Proceed-

ings of the 12th International Software Product Line Conference, pp. 213–222. IEEE
Computer Society (2008)

15. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Heidelberg (2005)

16. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stakeholders Us-
ing Viewpoints and Perspectives, 2nd edn. Addison-Wesley, Upper Saddle River (2012)

17. The ARTFL Project: Webster´s Revised Unabridged Dictionary (1913+1828),
http://machaut.uchicago.edu/?resource=Webster%27s&word=varia
bility&use1913=on (accessed on December 19, 2012)

18. The Open Group: TOGAF Version 9.1. 10th new edn. Van Haren Publishing, Zaltbommel
(2011)

19. Thiel, S., Hein, A.: Systematic integration of variability into product line architecture de-
sign. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 130–153. Springer,
Heidelberg (2002)

20. Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., Wood, W.:
Attribute-Driven Design (ADD), Version 2.0. Technical Report, Software Engineering In-
stitute, Carnegie Mellon University, CMU/SEI-2006-TR-023 (2006)

21. Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems Jour-
nal 26(3), 276–292 (1987)

Proteus Hypervisor:

Full Virtualization and Paravirtualization
for Multi-core Embedded Systems

Katharina Gilles1, Stefan Groesbrink1, Daniel Baldin1, and Timo Kerstan2

1 Design of Distributed Embedded Systems, Heinz Nixdorf Institute,
Fuerstenallee 11, 33102 Paderborn, Germany

s.groesbrink@upb.de,dbaldin@upb.de, www.hni.uni-paderborn.de/
2 dSPACE GmbH, Rathenaustrasse 26, 33102 Paderborn, Germany

tkerstan@dspace.de, www.dspace.de

Abstract. System virtualization’s integration of multiple software
stacks with maintained isolation on multi-core architectures has the po-
tential to meet high functionality and reliability requirements in a re-
source efficient manner. Paravirtualization is the prevailing approach in
the embedded domain. Its applicability is however limited, since not all
operating systems can be ported to the paravirtualization application
programming interface. Proteus is a multi-core hypervisor for PowerPC-
based embedded systems, which supports both full virtualization and
paravirtualization without relying on special hardware support. The hy-
pervisor ensures spatial and temporal separation of the guest systems.
The evaluation indicates a low memory footprint of 15 kilobytes and the
configurability allows for an application-specific inclusion of components.
The interrupt latencies and the execution times for hypercall handlers,
emulation routines, and virtual machine context switches are analyzed.

1 Introduction and Related Work

System virtualization refers to the division of the hardware resources into multi-
ple execution environments [21]. The hypervisor separates operating system (OS)
and hardware in order to share the hardware among multiple OS instances. Each
guest runs within a virtual machine (VM)—an isolated duplicate of the real ma-
chine (also referred to as partition). The consolidation of multiple systems with
maintained separation is well-suited to build a system-of-systems. Independently
developed software such as third party components, trusted (and potentially cer-
tified) legacy software, and newly developed application-specific software can be
combined to implement the required functionality. The reusability of software
components is increased, time-to-market and development costs can be reduced,
the lifetime of certified software can be extended. The rise of multi-core proces-
sors is a major enabler for virtualization. The replacement of multiple hardware
units by a single multi-core system has the potential to reduce size, weight, and
power [19]. Virtualization’s architectural abstraction eases the migration from

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 293–305, 2013.
c© IFIP International Federation for Information Processing 2013

www.hni.uni-paderborn.de/

294 K. Gilles et al.

single-core to multi-core platforms [11] and supports the creation of an unified
software architecture for multiple hardware platforms.

Primary use cases for this technology are security for open systems and OS
heterogeneity. First, if a system allows the user to add software, the isolation
of potentially faulty or malicious software in a VM ensures against risks for
the critical parts of the system. Second, multiple different OSs can be hosted
to provide each subsystem a suitable interface. Industrial automation, medical,
or mobile systems, for example, require often both a real-time operating system
(RTOS) and a general purpose operating system (GPOS) [11]. The deterministic
and highly efficient RTOS executes critical tasks such as the control of actua-
tors or the cellular communication of a mobile device. The feature-rich GPOS
supports the development of the graphical user interface. The integration of a
legacy component may require a third OS.

Since system virtualization gained significant interest in the embedded real-
time world, multiple vendors developed multi-core hypervisors for this domain,
for example, Wind River’s Embedded Hypervisor, LynuxWorks’ LynxSecure Hy-
pervisor, or Green Hills’ Integrity Multivisor. See [7] for a recently published
survey of both commercial and academic real-time virtualization solutions. In
the academic world, Xi et al. developed a real-time scheduling framework for
the hypervisor Xen [23], which supports PowerPC multi-core architectures. Xen
relies on either paravirtualization [2] or on hardware assistance. Xen is not avail-
able for PowerPC without an additional hypervisor mode, although this is on
the project’s roadmap since 2006 [3]. XtratuM by Masmano et al. is a para-
virtualization hypervisor implemented on PowerPC [17]. SParK by Ghaisas et
al. is a hypervisor for PowerPC platforms without hardware assistance for vir-
tualization [6]. However, their solution requires paravirtualization and does not
support multi-core platforms. Closest to our work, Tavares et al. presented an
embedded hypervisor for PowerPC 405, which supports full virtualization, but
no multi-core architectures [22].

None of these hypervisors provides full virtualization on multi-core PowerPC
platforms without hardware assistance. They rely on either paravirtualization
or processor virtualization extensions. Examples for processors with hardware
assistance for virtualization are Intel VT-x or AMD-V for x86 architectures.
Virtualization support was added to the PowerPC architecture with instruction
set architecture Power ISA Version 2.06 [9], is however only available for high
performance processors. Typical platforms for embedded systems do not feature
hardware assistance and many OSs cannot be paravirtualized for legal or techni-
cal reasons. By consequence, the applicability of existing PowerPC hypervisors
is limited significantly.

We present the first real-time hypervisor for multi-core PowerPC platforms,
which features both paravirtualization and full virtualization without relying on
explicit hardware assistance for virtualization. Proteus ensures VM separation
and is characterized by a bare-metal approach, a symmetric use of the processor
cores, and a synchronization mechanism that does not rely on special hardware
support. The evaluation shows a low memory and execution time overhead.

Proteus Hypervisor: Full Virtualization and Paravirtualization 295

Hardware

S
up

er
vi

so
r

M
od

e
P

ro
bl

em
M

od
e

IRQ Handler

Dispatcher

ISA Emulator
Hypercall
Handler

VM Scheduler

IPCM

Untrusted VMP
Modules

Full Virtualized
Application

Para-Virtualized
Application

Hypercalls

Program IRQ Syscall IRQ PIT IRQ External IRQ

Fig. 1. Design of the Proteus Hypervisor [1]

2 Approach

In previous work, we developed a predecessor with the same name Proteus [1], a
hypervisor for 32-bit single-core PowerPC architectures. In this work, we present
a redesign for multi-core platforms.

2.1 Design

A hosted hypervisor runs on top of a host OS [21], which leaves resource man-
agement and scheduling at the mercy of this OS. Moreover, the entire system
is exposed to the safety and security vulnerabilities of the underlying OS. A
bare-metal hypervisor runs directly on top of the hardware, facilitating a more
efficient virtualization solution. The amount of code executed in privileged mode
is smaller compared to a hosted hypervisor, since only a (preferably thin) hy-
pervisor and no OS is incorporated in the trusted computing base. The attack
surface is reduced, both the overall security and the certifiability of functional
safety are increased. Due to those performance and robustness advantages as
well as the clearer and more scalable separation, the bare-metal approach is
more appropriate for embedded systems and followed by our design.

The design of the Proteus hypervisor is depicted in Fig. 1. The PowerPC 405
[8] features two execution modes. In the problem mode for applications only a
subset of the instruction set can be executed. In the more privileged supervisor
mode for system software, full access to machine state and I/O devices is available
via privileged instructions. Only the minimal set of components is executed in
supervisor mode: interrupt and hypercall handlers, VM scheduler, and inter-
partition communication manager (IPCM). All other components such as I/O
device drivers are placed inside a separate partition (untrusted VMP modules)
and executed in problem mode.

296 K. Gilles et al.

Any occurring interrupt is delegated to the hypervisor. The hypervisor saves
the context of the running VM and forwards the interrupt internally to the appro-
priate component or back to the OS. If the execution of a privileged instruction
caused the interrupt, it is forwarded to the dispatcher to identify the correspond-
ing emulation routine. In case of a hypercall, the hypercall handler invokes either
the emulator, the inter-partition communication manager, or the VM scheduler.
An external interrupt is forwarded to the responsible device driver.

Proteus is a symmetric hypervisor: all cores have the same role and execute
guest systems. When the guest traps or calls for a service, the hypervisor takes
over control and its own code is executed on that core. Different guests on dif-
ferent cores can perform this context switch from guest to hypervisor at the
same time. An alternative design is the sidecore approach with one dedicated
core to exclusively execute the hypervisor [14]. When an interrupt occurs, the
hypervisor on the sidecore handles it and no context switch is invoked. The hy-
pervisor may either be informed via an interprocessor interrupt (not featured by
the PowerPC 405) or a notification by the guest OS, which requires paravirtual-
ization. To reconcile sidecore approach and full virtualization, a small fraction of
the hypervisor could be executed on each core to forward interrupts. The guest
OS could run unmodified, but each exception would involve a context switch and
thereby a loss of the major benefit. If the sidecore is already serving the request
of a guest, other guests have to wait, resulting in varying interrupt processing
time, which is inappropriate for real-time systems. For these reasons, we decided
in favor of a symmetric design.

2.2 Multi-core Processor Virtualization

The virtualization of the processing unit is the crucial part of a hypervisor. An
instruction is called sensitive if it depends on or modifies the configuration of
resources. According to a criteria defined by Popek and Goldberg, an instruction
set is efficiently virtualizable, if the set of sensitive instructions is a subset of
the set of privileged instructions [18]. The PowerPC fulfills this criteria and is
fully virtualizable. In contrast for example to the x86 architecture, all sensitive
instructions cause an exception (trap), if executed in problem mode.

Solely the hypervisor is executed in supervisor mode and the guests are
executed in problem mode with no direct access to the machine state. This
limitation of the guests’ hardware access is mandatory in order to retain the
hypervisor’s control over the hardware and guarantee the separation between
VMs. The PowerPC 405 does not provide explicit hardware support for virtu-
alization such as an additional hypervisor execution mode. However, guest OSs
rely themselves on an execution-mode differentiation. Therefore, the problem
mode has to be subdivided into two logical execution modes: VM’s privileged
mode and VM’s problem mode. By virtualizing the machine state register, the
hypervisor creates the illusion that a guest OS is executed in supervisor mode,
but runs it actually in problem mode. When a guest OS executes a privileged
instruction in problem mode (e.g. an access to the machine state register) a trap
is caused and the hypervisor executes the responsible emulation routine.

Proteus Hypervisor: Full Virtualization and Paravirtualization 297

In a multi-core system, access to shared resources must be synchronized. A
common solution are semaphores, accessed under mutual exclusion and assigned
exclusively to one core at any time. The PowerPC 405 does not feature any
hardware support to realize mutual exclusion in a multi-core architecture. Its
instructions lwarx (load locked) and stwcx (store conditional) for atomic mem-
ory access do not work across multiple processor cores. Since interrupt disabling
is as well not feasible for multi-core systems, Proteus implements a software
semaphore solution: Leslie Lamport’s Bakery Algorithm [15]. It does not require
atomic operations such as test-and-set, satisfies FIFO fairness and excludes star-
vation, an advantage over Dijkstra’s algorithm [4].

2.3 Full Virtualization and Paravirtualization

The capability to host unmodified OSs classifies hypervisors. In terms of full vir-
tualization, unmodified guests can be hosted, whereas paravirtualization requires
a porting of the guest OS to the hypervisor’s paravirtualization application pro-
gramming interface (API) [2]. The guest is aware of being executed within a VM
and uses hypercalls to request hypervisor services, what can often be exploited
to increase the performance [13]. The major drawback is the need to port an
OS, which involves modifications of critical kernel parts. If legal or technical
issues preclude this for an OS, it is not possible to host it. A specific advantage
of paravirtualization for real-time systems is the possibility to apply dynamic
real-time scheduling algorithms, which in general require a passing of scheduling
information such as deadlines from guest OS to hypervisor.

Proteus supports both kinds because of those characteristics of the two
approaches—paravirtualization’s efficiency, but limited applicability on the one
hand, full virtualization’s support of non-modifiable guests on the other hand.
If the modification of an OS is possible, the system designer decides whether
the effort of paravirtualization is justified. The concurrent hosting of both para-
virtualized and fully virtualized guests is possible without restriction. Proteus
is designed for the co-hosting of GPOS and RTOS, and the natural approach
is to host a paravirtualized RTOS and a fully virtualized GPOS. In addition,
bare-metal applications without underlying OS can be hosted.

Each privileged instruction is associated with an emulating hypercall. Hyper-
calls are realized as system calls. A system call is identified as a hypercall, if
it is executed in the VM’s logical privileged mode. A paravirtualized OS can
use hypercalls to communicate with other guests, call I/O functionality, pass
scheduling information to the hypervisor, or yield the CPU.

2.4 Spatial and Temporal Separation

System virtualization for embedded real-time systems requires the guarantee of
spatial and temporal separation of the guest systems. Spatial separation refers
to the protection of the integrity of the memory space of both the hypervisor
and the guests. Any possibility of a harmful activity going beyond the bound-
aries of a VM has to be eliminated. To achieve this, each VM operates in its

298 K. Gilles et al.

own address space, which is statically mapped to a region of the shared memory.
It is protected by the memory management unit (MMU) of the PowerPC 405.
Communication between VMs is controlled by the IPCM. If the hypervisor au-
thorizes the communication, it creates a shared-memory tunnel. Communication
between VMs is mandatory, if formerly physically distributed systems that have
to communicate with each other are consolidated.

Temporal separation is fulfilled, if all guest systems are executed in com-
pliance with their timing requirements. A predictable, deterministic behavior
of every single real-time guest has to be guaranteed. The worst-case execution
times (WCET) of all routines are bounded and were analyzed (see section 3).
These results make it possible to determine the WCET of a program that is
executed on top of Proteus. System virtualization implies scheduling decisions
on two levels. The hypervisor schedules the VMs and the guest OSs schedule
their tasks according to their own scheduling policies. Proteus manages a global
VM scheduling queue and each VM can be executed on each core. If this is
undesired, a VM can be bound to one specific core or a subset of cores, for ex-
ample to assign a core exclusively to a safety-critical guest [11]. If the number
of VMs nguests exceeds the number of processor cores ncores, at each point in
time, nguests − ncores VMs are not executed. The cores have to be shared in a
time-division multiplexing manner and the VM scheduling is implemented as a
fixed time slice based approach. The guests’ task sets have to be analyzed and
execution time windows within a repetitive major cycle are assigned to the VMs
based on the required utilization and execution frequency. This static schedul-
ing approach is for example applied in the aerospace domain and part of the
software specification ARINC 653 (Avionics Application Standard Software In-
terface)[20] for space and time partitioning in avionics real-time systems in the
context of Integrated Modular Avionics [5]. See [12] for guidance of designing a
schedule that allows all guests to meet their timing constraints. The scheduler
can be replaced by implementing an interface.

3 Experimental Results

3.1 Evaluation Platform: IBM PowerPC 405

Target architecture of our implementation are platforms with multiple IBM
PowerPC 405 cores [8], a 32-bit RISC core providing up to 400 MHz. It is
designed for low-cost and low-power embedded systems and features separate
instruction and data caches as well as a MMU with a software-managed TLB.
Specifications and register-transfer level description are freely available to the
research community. Due to the API compatibility within the PowerPC family,
porting the results to other PowerPC processors should be fairly simple. In order
to be able to evaluate the software with low effort on different hardware configu-
rations, the evaluation platform is a software simulator for PowerPC multi-cores
[10]. The IBM PowerPC Multi-core Instruction Set Simulator can optionally in-
clude peripheral devices (e.g. an UART) and provides an interface for external

Proteus Hypervisor: Full Virtualization and Paravirtualization 299

simulation environments. Many components of the simulated hardware can be
configured, for example, the number of cores or cache sizes.

3.2 Memory Footprint

Dependent on the requirements of the actual system, Proteus can be configured.
The workflow is based on the modification of a configuration file by the system
designer. According to these specifications, the preprocessor manipulates the
implementation files and removes unneeded code.

Figure 2 lists code and data size for the base functionality and the addition-
ally required memory for different components, also depicted in a figure with a
differentiation between text segment (executable instructions) and data segment
(static variables). The hypervisor is written in C and assembly language. The
efficiency of a hypervisor is highly dependent on the execution times of the inter-
rupt handling. For this reason, most of the components called by those handlers
and the handlers themselves are written in assembly language. All executables
are generated with compiler optimization level 2 (option -O2 for the GNU C
compiler), which focuses on the performance of the generated code and not pri-
marily on the code size. The solely full virtualization supporting base requires a
total of about 11 kilobytes. The addition of paravirtualization support accounts
for less than 1 kilobyte.

The system designer can decide on enabling TLB virtualization (TLB V), de-
vice driver support, and inter-partition communication. Innocuous register file
mapping (IRFM) is a performance boost for paravirtualized guests. By map-
ping a specific set of privileged registers into VM’s memory space, no trap to
the hypervisor is required to access these registers. Previrtualization (Pre V)
is an approach to paravirtualize guests automatically [16]. The source code is
analyzed at compile time in order to identify privileged instructions. At load
time, the hypervisor replaces privileged instructions by hypercalls. If all features
are enabled, the memory requirement of the hypervisor sums up to about 15
kilobytes.

Feature Memory Footprint [bytes]
Assembler C code Data Total

Base 2492 5732 2980 11204
ParaV 252 0 148 400
IRFM 292 476 0 768
PreV 0 256 0 256
TLB V 812 264 656 1732
Driver 0 648 12 660
IPCM 0 500 0 500

Total 3848 7876 3796 15520

Fig. 2. Impact of Individual Components on Memory Footprint

300 K. Gilles et al.

3.3 Execution Time Overhead

The following performance figures denote the worst-case execution time in case
of enabled and hot instruction cache, resulting in a duration for each instruction
fetch of one processor cycle, and a clock speed of 300 MHz.

Virtual Machine Context Switch. If multiple VMs share a core, switching
between them involves the saving of the context of the preempted VM, the
selection of the next VM and the resume of this VM, including the restoring
of its context. Table 1 lists the execution times for a VM context switch. The
overhead of accessing the semaphore that protects the ready queue accounts for
a large part of the scheduling execution time.

Table 1. Execution Time of a Virtual Machine Context Switch (4 cores)

Routine Execution time
in ns (processor cycles)

VM Context Saving 450 (135)
VM Scheduling 2270 (681)
VM Resume 800 (240)

Total 3520 (1056)

Synchronized Shared Resource Access Routines. Figure 3 depicts the
execution time of the subroutines of Bakery’s Algorithm for synchronized shared
resource access (semaphore operations wait() and signal()). The execution time
increases linearly with the number of cores, since the included execution of the
function mutex start() has to iterate over an array of length equal to the number
of cores. The operation wait() causes a blocking of the calling process, if the
resource is not available. In case of four cores, the worst case occurs if the calling
process is blocked by a process on each of the three other cores, as depicted in
Fig. 4. The following formula calculates the worst-case waiting time. wait short
(14 cycles), wait long (46 cycles), signal short (15 cycles) and signal long (54
cycles) refer to the shortest and longest paths through the routines wait() and
signal(). The critical section is equal to 3 · (wait long + mutex stop), which is
the minimum influence of the critical section, since core 1 cannot perform the
signal() before core 4 completed the try to acquire the semaphore.

x = 3(mutex start+ wait short+mutex stop+ 3(wait long +mutex stop)

+mutex start+ signal long +mutex stop)

= 3(169 + 14 + 11 + 3(46 + 11) + 169 + 54 + 11) = 1797.

As a result, the worst-case waiting time for synchronized shared resource
access sums up to 1797 processor cycles or 5990 ns.

Proteus Hypervisor: Full Virtualization and Paravirtualization 301

Fig. 3. Linear Dependency of Execution Time of Routines for Exclusive Resource
Access on Number of Cores

��������	
��	�
���������

�	�����	�����������	���
��
	�	���
����
�

������

�
����	���������

��
���

� � ��	������
� ����	������

����	�����
��	�������

��
���

��
���

��
���

Fig. 4. Worst-case Waiting Time for Synchronized Shared Resource Access for 4 Cores

Interrupt Latency. Virtualization increases the interrupt latency. Any inter-
rupt is first delivered to the hypervisor, analyzed and potentially forwarded back
to the guest. For example, the additional latency of a programmable timer in-
terrupt is 497 ns (149 processor cycles) and 337 ns (101 processor cycles) for a
system call interrupt. To obtain the total interrupt latency, one has to add the
interrupt latency of the guest OS. Timer interrupt handling takes longer, since
the virtual interrupt timer has to be updated. Proteus omits the effort of saving
the complete VM context by saving only the registers that are needed by the
emulation routine. The implementation in assembly language uses the fewest
possible number of registers.

302 K. Gilles et al.

Table 2. Execution Time of Emulation Routines

Privileged Execution time in ns (processor cycles)
instruction Full virtualization Paravirtualization Speedup

rfi 527 (158) 410 (123) 28 %
wrteei 447 (134) 393 (118) 14 %
mtmsr 517 (155) 363 (109) 42 %
mtevpr 503 (151) 347 (104) 45 %
mtzpr 547 (164) 353 (106) 55 %
mfmsr 453 (136) 363 (109) 25 %
mfevpr 477 (143) 363 (109) 31 %

Emulation of Privileged Instructions. The emulation of privileged instruc-
tions is the core functionality of the hypervisor. The emulation service is re-
quested via interrupt (full virtualization) or hypercall (paravirtualization). Ta-
ble 2 lists the execution times of some exemplary emulation routines. Compared
to full virtualization, paravirtualization speeds up the execution by 14% to 55%.
The average speedup for all privileged instructions, not just the ones listed in
this paper, is 39.25%.

An analysis of the steps of an emulation routine helps to understand why
paravirtualization can achieve such a significant speedup:

1. Reenabling of the data translation and saving of the contents of those regis-
ters that are needed to execute the emulation routine.

2. Analysis of the exception in order to identify the correct emulation subrou-
tine and jump to it (dispatching).

3. Actual emulation of the instruction.
4. Restoring of the register contents.

Table 3 lists the execution time of those steps exemplary for the instruction
mtevpr. The actual emulation accounts for the smallest fraction. Register sav-
ing and restoring are expensive, however likewise for both full virtualization
and paravirtualization. The performance gain of paravirtualization is based on
the significantly lower overhead for identification of the cause of the exception

Table 3. Execution Time of Emulation Routine for mtevpr

Step of emulation Execution time in ns (processor cycles)
routine Full virtualization Paravirtualization

Save registers 137 (41) 137 (41)
Analysis and dispatch 220 (66) 73 (22)
Emulate 20 (6) 20 (6)
Restore registers 127 (38) 117 (35)

Total 503 (151) 347 (104)

Proteus Hypervisor: Full Virtualization and Paravirtualization 303

and dispatching to the correct subroutine. In case of paravirtualization, only a
register read-out is necessary in order to obtain the hypercall ID.

Hypercalls. A guest OS can request hypervisor services via the paravirtualiza-
tion interface. The hypercall vm yield, which voluntarily releases the core, has an
execution time of 507 ns (152 processor cycles). By calling sched set param, the
guest OS passes information to the hypervisor’s scheduler. The execution time of
this hypercall is 793 ns (238 processor cycles). The hypercall create comm tunnel
requests the creation of a shared-memory tunnel for communication between it-
self and a second VM and is characterized by an execution time of 1027 ns (308
processor cycles). The hypercall vm yield does not return to the VM and the
execution time is measured until the start of the hypervisor’s schedule routine.
The other two hypercalls return to the VM and the execution time measurement
is stopped when the calling VM resumes its execution.

4 Conclusion

Proteus is a hypervisor for embedded PowerPC multi-core platforms, which is
able to host both paravirtualized and fully virtualized guest systems without
hardware assistance for virtualization. It is a bare-metal hypervisor, character-
ized by a symmetric use of the processor cores. The synchronization mechanism
for shared resource access does not rely on hardware support. This increases
the execution time overhead, but extends the applicability of the hypervisor
to shared-memory multiprocessor systems. The hypervisor ensures spatial and
temporal separation among the guest systems.

Paravirtualization is due to efficiency advantages the prevailing virtualization
approach in the embedded domain. Its applicability is however limited. For legal
or technical reasons, not all operating systems can be ported to the paravirtu-
alization interface. Proteus can host such operating systems nevertheless, based
on full virtualization’s execution of unmodified guests. Paravirtualized operating
systems can use hypercalls to communicate with other guests, call I/O function-
ality, pass scheduling information to the hypervisor, or yield the CPU.

The evaluation highlighted the low memory requirement and the application-
specific configurability. The memory footprint is 11 kilobytes for the base func-
tionality and 15 kilobytes for a configuration with all functional features. The
interrupt latencies and the execution times for synchronization primitives, hy-
percall handlers, emulation routines, and virtual machine context switch are all
in the range of hundreds of processor cycles. The detailed WCET analysis of all
routines make it possible to determine the WCET of a hosted application.

The Proteus Hypervisor is free software released under the GNU General
Public License. The source code can be downloaded from https://orcos.cs.uni-
paderborn.de/orcos/www .

304 K. Gilles et al.

References

1. Baldin, D., Kerstan, T.: Proteus, a Hybrid Virtualization Platform for Embedded
Systems. In: Proc. of the International Embedded Systems Symposium (2009)

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: Proc. of the 19th
ACM Symposium on Operating Systems Principles (2003)

3. Blanchard, H., Xenidis, J.: Xen on PowerPC (January 2006),
http://www.xen.org/files/xs0106_xen_on_powerpc.pdf

4. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
munications of the ACM 8(9) (1965)

5. Garside, R., Pighetti, J.: Integrating modular avionics: A new role emerges. IEEE
A & E Systems Magazine (2009)

6. Ghaisas, S., Karmakar, G., Shenai, D., Tirodkar, S., Ramamritham, K.: SParK:
Safety Partition Kernel for Integrated Real-Time Systems. In: Sachs, K., Petrov, I.,
Guerrero, P. (eds.) Buchmann Festschrift. LNCS, vol. 6462, pp. 159–174. Springer,
Heidelberg (2010)

7. Gu, Z., Zhao, Q.: A State-of-the-Art Survey on Real-Time Issues in Embedded
Systems Virtualization. Journal of Software Engineering and Applications 5(4),
277–290 (2012)

8. IBM: PowerPC 405 Processor Core (2005), http://www-01.ibm.com/chips/

techlib/techlib.nsf/products/PowerPC 405 Embedded Cores

9. IBM: PowerPC ISA 2.06 Revision B (July 2010), https://www.power.org/

documentation/power-isa-version-2-06-revision-b/

10. IBM Research: IBM PowerPC 4XX Instruction Set Simulator (ISS) (October 2012),
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC 4XX

Instruction Set Simulator (ISS)

11. Intel Corporation (White paper): Applying multi-core and virtualization to in-
dustrial and safety-related applications (2009), http://download.intel.com/

platforms/applied/indpc/321410.pdf

12. Kerstan, T., Baldin, D., Groesbrink, S.: Full virtualization of real-time systems by
temporal partitioning. In: Proc. of the 6th International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications (2010)

13. King, S., Dunlap, G., Chen, P.: Operating System Support for Virtual Machines.
In: Proc. of the USENIX Annual Technical Conference (2003)

14. Kumar, S., Raj, H., Schwan, K., Ganev, I.: Re-architecting VMMs for Multicore
Systems: The Sidecore Approach. In: Proc. of the Workshop on Interaction between
Operating Systems and Computer Architecture (2007)

15. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mununications of the ACM 17, 453–455 (1974)

16. LeVasseur, J., Uhlig, V., Chapman, M., Chubb, P., Leslie, B., Heiser, G.: Pre-
virtualization: Soft Layering for Virtual Machines. In: Proc. of the 13th Asia-Pacific
Computer Systems Architecture Conference (2008)

17. Masmano, M., Ripoll, I., Crespo, A.: XtratuM: a Hypervisor for Safety Critical
Embedded Systems. In: Proc. of the Eleventh Real-Time Linux Workshop (2009)

18. Popek, G.J., Goldberg, R.P.: Formal Requirements for Virtualizable Third Gener-
ation Architectures. Communications of the ACM 17(7), 412–421 (1974)

19. Prisaznuk, P.: Integrated Modular Avionics. In: Proc. of the IEEE National
Aerospace and Electronics Conference (1992)

http://www.xen.org/files/xs0106_xen_on_powerpc.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_405_Embedded_Cores
http://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_405_Embedded_Cores
https://www.power.org/documentation/power-isa-version-2-06-revision-b/
https://www.power.org/documentation/power-isa-version-2-06-revision-b/
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_4XX_Instruction_Set_Simulator_(ISS)
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_4XX_Instruction_Set_Simulator_(ISS)
http://download.intel.com/platforms/applied/indpc/321410.pdf
http://download.intel.com/platforms/applied/indpc/321410.pdf

Proteus Hypervisor: Full Virtualization and Paravirtualization 305

20. Prisaznuk, P.: ARINC 653 Role in Integrated Modular Avionics (IMA). In: Proc.
of the 27th IEEEE Digital Avionics Systems Conference (2008)

21. Smith, J.E., Nair, R.: The Architecture of Virtual Machines. IEEE Computer
(2005)

22. Tavares, A., Carvalho, A., Rodrigues, P., Garcia, P., Gomes, T., Cabral, J.,
Cardoso, P., Montenegro, S., Ekpanyapong, M.: A Customizable and ARINC 653
Quasi-compliant Hypervisor. In: Proc. of the IEEE International Conference on
Industrial Technology (2012)

23. Xi, S., Wilson, J., Lu, C., Gill, C.: RT-Xen: Towards Real-time Hypervisor Schedul-
ing in Xen. In: Proc. of the International Conference on Embedded Software (2011)

A Structural Parametric Binaural 3D Sound
Implementation Using Open Hardware

Bruno Dal Bó Silva� and Marcelo Götz

Electrical Engineering Department
Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, Brazil

bruno.silva@ims.ind.br, mgoetz@ece.ufrgs.br

Abstract. Most binaural 3D sound implementations use large databases
with pre-recorded transfer functions, which are mostly prohibitive for real
time embedded applications. This article focus on a parametric approach
proposal, opening space for customizations and to add new processing
blocks easily. In this work we show the feasibility of a parametric binau-
ral architecture for dynamic sound localization in embedded platforms
for mobile applications, ranging from multimedia and entertainment to
hearing aid for individuals with visual disabilities. The complete solu-
tion, ranging from algorithms analysis and suiting, development using
the Beagleboard platform for prototyping, and performance benchmarks,
are presented.

Keywords: Binaural, Parametric, Beagleboard, Embedded, Digital
Signal Processing.

1 Introduction

Virtual sound localization is an interesting feature for innumerous types of ap-
plications, ranging from multimedia and entertainment to hearing aid for indi-
viduals with visual disabilities. Binaural sound localization is a technique that
uses single-channel input signal, and by proper manipulation, can produce two
different signals (left and right) channels. By these means a human user might
perceive the source located on a determined point in space.

Head-Related Transfer Function (HRTF), which is usually well known tech-
nique employed for binaural sound localization, is a hard problem and compu-
tational intensive task. Such systems, enabling a dynamic changing of azimuth
angle, usually requires the usage of dedicated computing hardware (e.g.[1–3]).
Nowadays execution platforms found in mobile devices usually offers a notable
computation capacity for audio processing, which is usually promoted by the in-
clusion of a Digital Signal Processing (DSP) processor. However, HRTF related
algorithms must be well designed for such platforms to take advantage of the
available processing capacity.

� Currently with IMS Power Quality.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 306–317, 2013.
c© IFIP International Federation for Information Processing 2013

A Structural Parametric Binaural 3D Sound Implementation 307

In our work we aggregate various methods and models of parametric 3D bin-
aural sound for dynamic sound localization, propose some algorithm suiting (spe-
cially for Interaural Level Difference - ILD filter) for embedded development, and
validate them by prototyping using low-cost embedded hardware platform. In
this work we present our first step towards a full-featured 3D binaural system,
where we have implemented parametric DSP blocks on real-world hardware for
feasibility evaluation.

The article is organized as follows. Firstly, in Sect. 2, we will introduce pre-
vious works on the field, followed by the models of our choice for embedded
development and some considerations in Sect. 3. Then, the platform itself, tech-
nologic aspects and the employed algorithms adaptations are explained in Sect. 4.
The experiment set-up including performance and localization quality results are
shown in Sect. 5. Finally, Sect. 6 gives the summary, conclusions, and points out
future work.

2 Related Work

Many previous researchers have invested on binaural sound localization. Two
main areas of interest stand out: interpreting a dual-channel audio input so to
discover the approximate position of the sound source (e.g. [4, 5]); and manipu-
lation of a given single-channel input signal so to put it on a determined point in
space as perceived by a human user. These two areas can be seen as the inverse
of each-other, where the input of one is generally the output for the other. On
this article we will explore the second field of research, knowing that much can
be learned from the common physical principles involved.

Considering the problem of localizing a mono sound source for the human ear,
we can still divide it in two great fronts: model-based and empiric localization.
Many authors [1–3] rely on pre-recorded impulse-response databases and imple-
ment complex interpolations and predictive algorithms, varying from DSP-chip
based algorithms to full-fledged System-on-Chip (SoC) solutions. Hyung Jung
et al. [1] show a successful implementation of 5.1 surround sound system using
hand-chosen responses, which works perfectly considering only 5 possible audio
sources in space.

For more possible audio sources in a virtual space, almost infinite positions
theoretically, we must have a rather large database of known responses and very
complex interpolation algorithms, above all when considering as well the effects
of elevation. Most of these systems rely on a public domain database of high-
spatial-resolution HRTF [6]. Using such a database, implies storing it into the
target execution platform.

We have relied on the second approach: a parametric model. For this we as-
sume it is possible to approximate the physical response of the medium the sound
is travelling in, the time and frequency response involved in the human shape
(mainly the head and ears). We have searched successful models of such physical
concepts, starting with [7], where Rayleigh gives us the prime of Psychoacous-
tics. Most of our model was inspired by the various works of Algazi, Brown and

308 B.D. Bó Silva and M. Götz

Duda [8–13] ,who have much contributed to the field. Their models use simplis-
tic filters perfectly suitable for low-cost and satisfying results. For pinna-related
effects we have relied on the responses found in [14] and the spherical-model
approximations given by [15].

3 Fundamentals

Most binaural 3D sound systems rely on a simple concept: the HRTF - Head Re-
lated Transfer Funcion. This macro-block represents the shaping suffered by the
sound as it travels from source to the receiver’s eardrums. The HRTF is usually
divided in: ILD, ITD and PRTF, Interaural Level Difference, Interaural Time
Difference and Pinna-Related Transfer Function respectively. We will disregard
in this model the shoulder and torso effects, since they contribute mostly to el-
evation perception and our focus will be on azimuth. Fig. 1 shows the system’s
full conceptual block diagram.

Fig. 1. Full localization model

3.1 ITD - Interaural Time Difference

ITD is conveyed by the difference in length of the paths to the left and right
ears. This translates usually in a slight phase shift that is only perceivable for
very low frequencies. By modelling the head as a sphere and considering the
elevation angle φ to be always zero, that is, the sound source is always in the
same plane as the listener’s ears, we have the following model from [15]:

DL =

{
DLD , DLD < L
L+DLA , DLD ≥ L

DR =

{
DRD , DRD < L
L+DRA , DRD ≥ L

(1)

where ΔD = DL −DR is the path difference, related to the ITD through the
sound speed c. ITD = ΔD

c . The geometric parameters are shown in Fig. 2.
The total ITD will be, then, discrete and taken in samples, according to the

sampling frequency Fs. Both the linear and arc distances are solved using simple
trigonometry and depend mostly on one parameter: the radius of the head, ah.

A Structural Parametric Binaural 3D Sound Implementation 309

Fig. 2. ITD input parameters

3.2 ILD - Interaural Level Difference

ILD is given by the Head-Shadowing effect, studied and modelled by Rayleight
[7] as the solution of the Helmoltz equation for a spherical head. Brown shows
an approximate model by a minimum phase filter in [14], also found in [16]:

HHS(ω, θ) =
1 + j αω

2ω0

1 + j ω
2ω0

(2)

where HHS is the filter’s frequency response, dependent on input azimuth angle
θ, and α is given by:

α(θ) =
(
1 +

αmin

2

)
+

(
1− αmin

2

)
· cos

(
π
θ

θ0

)
(3)

The parameter θ0 fixes the minimum gain angle (αmin). Brown suggest that θ0
should be 150◦, for maximum match with Rayleigh’s model, but we’ve found
that it creates discontinuity in the frequency spectrum that is perceived as a
fast "warp" of the sound source, so we’ve preferred to make θ0 = 180◦ without
major losses to the original model. Then, by simple variable mapping we have
the filter responses for the left and right ears defined by:

H l
HS(ω, θ) = HHS(ω, θ −Θl) (4)

Hr
HS(ω, θ) = HHS(ω, θ −Θr) (5)

The ILD model result is shown in Fig. 3. We can see that it provides a valid
approximation to Rayleigh’s solution and at the same time allows a very simple
digital filter implementation. Notice symmetrical responses to the ear’s reference
angle overlap.

3.3 PRTF - Pinna-Related Transfer Function

With the ILD and the ITD we have modelled the general sound waveshape ar-
riving at the listener’s ears. The two previous blocks cover most of the physical

310 B.D. Bó Silva and M. Götz

Fig. 3. ILD model result for left and right ears with θ = {0, 180}

shaping, while the PRTF transforms the input wave even further, giving a more
natural feeling to the user. We have used the models suggested in [14], which
approximate the Pinna as a series of constructive and destructive interferences
represented by notch and resonance filters. According to Spagnol et al., Pinna
effects give many spectral cues to perceive elevation, we have found that adding
their filter the azimuth plane (φ = 0) we could create a rather superior localiza-
tion feeling.

Spangol’s general filter solutions are shown in Eq. 6 and 7. Table 1 shows
the coefficients derived from the mentioned study, pointing the reflection (refl)
and resonance (res) points with their central frequencies (fC) and gain (G).
The reflection coefficients will generate local minima in the frequency spectrum,
whereas resonance frequencies will generate maxima, as it can be seen in Fig. 4.

Hres(Z) =
V0(1− h)(1− Z−2)

1 + 2dhZ−1 + (2h− 1)Z−2
(6)

Hrefl(Z) =
1 + (1 + k)H0

2 + d(1− k)Z−1 + (−k − (1 + k)H0

2)Z−2

1 + d(1 − k)Z−1− kZ−2
(7)

Table 1. PRTF filter coefficients

Singularity Type fC [kHz] G [dB]
1 res 4 5
2 res 12 5
3 refl 6 5
4 refl 9 5
5 refl 11 5

A Structural Parametric Binaural 3D Sound Implementation 311

Fig. 4. PRTF filter result

3.4 RIR - Room Impulse Response

Considering the effects of the three previously mentioned models, we can achieve
an acceptable result. But it suffers from lateralization, where the listener some-
times perceives the sound as coming from inside the head. The digitally processed
waveshape does not have, yet, the necessary cues for proper localization. Brown
suggests that a very simple RIR can make a difference [13]. As we can see in
Fig. 1, there is a direct signal path that is not seen as dependent on the input
angle θ. That is a simple echo. By simply adding to the resulting binaural signals
the original mono input with delay and attenuation we can reduce lateralization
by a considerable amount, increasing externalization. We have used a 15ms delay
with 15dB attenuation.

3.5 System Response

The system’s final response is shown in Fig. 5. The visual representation uses
frequency as the radius, azimuth as argument and the system’s output is color-
coded in the z-axis. The polar plot clearly shows the different energy regions
dependant on the azimuth and the reference angle – left or right ear. The dis-
tinctive "waves" are due to the Pinna effects, whereas the global energy difference
is given by the Interaural Level Difference.

4 Development

Our main goal was to port the mentioned filters and models to an embedded
platform. We have chosen the Beagleboard [17], a community-supported open
hardware platform which uses Texas Instruments’ DM3730, containing one ARM
Cortex-A8 and one DSP C64x. Being derived from the OMAP platforms, this
chipset allows real-world performance validation using embedded Linux relying
on the two available cores: a General Purpose Processor (GPP) and a DSP

312 B.D. Bó Silva and M. Götz

Fig. 5. System’s final response in polar plot

Processor. We have loaded the Beagleboard with a custom lightweight Angstrom
distribution built using Narcissus [18]. Narcissus also generates a full-featured
development environment ready for cross-compiling.

The building environment has three standing points: gcc-arm generates an
ARM-compatible linux ELF executable; ti-cgt generates DSP-compatible func-
tions, bundled into a library file; then we call an external tool available for easy
co-processing on this hybrid chips – C6RunLib. This tool, supported by Texas
Instruments, relies on a kernel module called dsplink that handles communica-
tion between processors. C6RunLib acts as a linker, putting together the ARM
code with the DSP library and adding necessary code for remote procedure calls.
When a function that is run on the DSP side is called from within ARM code,
dsplink is called and uses shared memory to actually have the function operated
by the other core. We have not entered the details of C6RunLib’s inner workings,
but one important feature was missing: asynchronous cross-processor function
calls were not available – we have solved this issue by letting the ARM-side
thread hang while the DSP is busy operating the entry-point function.

The program consists of three main parts: User Interface, Audio Output and
Signal Processing. The latter is done on the DSP core, while the others are
performed by the GPP (ARM Processor). The User Interface allows the user
to dynamically control the azimuth angle θ, azimuth automatic change rate,
output volume, turn off the filters individually (so to benchmark localization
quality easily without the need to rebuild the solution) and chose among three
possible infinite loop audio inputs: noise, an A tone (440Hz) or a short phrase
from Suzanne Vega’s Tom’s Diner (benchmark track suggested in [16] for its
pure-voice contents). Audio Output and Signal Processing blocks require real
time operation to operate smoothly and are detailed on Sect. 4.2.

4.1 Algorithm Suiting

The four filter blocks were implemented using digital filters with some help from
TI’s DSPLIB library[19] for better performance. Algorithm suiting for real time

A Structural Parametric Binaural 3D Sound Implementation 313

digital processing was the first step to take. The delay filters (ITD and RIR)
are simple circular buffer filters, only the ITD has a variable delay given by
the azimuth. PRTF is modelled by a fixed-point 16-tap truncated FIR filter
calculated from Eq. 6 and 7 and using the coefficients from Table 1. Since PRTF
is not sensible to azimuth changes, it is actually processed before we split the
signal into two separate outputs, which is possible because all the filters are linear
and the azimuth change is considerably slower than the system’s response.

ILD algorithm is more complex because the filter’s coefficients change with the
azimuth. The minimum phase filter presented on Eq. 2 when sampled becomes:

HHS(Z, θ) =

(
α(θ)+μ
1+μ

)
+

(
μ−α(θ)
1+μ

)
Z−1

1 +
(

μ−1
1+μ

)
Z−1

(8)

where μ = ω0

Fs
= c

ah·Fs
. By solving Eq. 8 symbolically on the time domain,

being h[n] the related impulse response at sample n we have the following
generalization:

h[n] =

⎧
⎪⎨

⎪⎩

α+μ
μ+1 , n = 0

− 2μ(α−1)

(μ+1)2
, n = 1

h[n− 1] · (1−μ)
(μ+1) , n > 1

(9)

Using Eq. 9 the ILD is a time-variant fixed-point 16-tap FIR which is recalculated
for every input buffer (given the azimuth has changed). On top of the presented
model we have also added a low-pass filter to the input azimuth to avoid angle
"leaps".

4.2 Prototyping System

As discussed in Sect. 4, we have to build blocks that rely on real time operation
for our purposes. For audio output we have used Jack Audio Connection Kit
[20], an open library made for this kind of processing. It interfaces with Advance
Linux Sound Architecture (ALSA) and tries to guarantee audio transmission
without over or underruns. Jack is called by instantiating a deamon that waits
for a client to connect to its inputs and outputs. The client registers a callback
function that has access to the deamon’s buffers. In our application we have used
512 frames-long buffers at a 48kHz sampling frequency, meaning each buffer is
valid for around 10ms, which is our processing deadline and output latency. We
have not used Jack as the input source, instead the audio input is read from
a file and kept in memory. To simulate real time audio capture, this memory
area is used to feed new input every time the callback interrupt is called for new
output, thus validating the real time premise.

The Jack callback function then signals another thread that sends the input
signal to the DSP and receives back (always in a shared memory area) the pro-
cessed response. All 512-samples buffers are signed with an incremental integer
and constantly checked for skipped buffers, thus providing certainty that every
input is processed and that every output is played back. Along with the signal

314 B.D. Bó Silva and M. Götz

buffers, the main application sends a structure containing the controllable pa-
rameters discussed previously. Fig. 6 illustrates the system’s building blocks and
their mutual operation. The left and right trunks operate both at application
level (running on GPP) and are ruled by posix semaphores. The middle trunk
operates inside Jack’s callback function, which is triggered by the Jack daemon
once the client is properly installed. The rightmost branch is the C6RunLib func-
tion that is processed on the DSP side, remembering that the Sync thread stays
blocked during DSP operation.

Fig. 6. System thread schema

Fig. 7 shows the function which is operated on the DSP, it follows almost
exactly the flowchart presented previously. When done filtering the input signal,
the function will sign the output buffers and return, letting the caller thread
unblock and renders the newly processed buffers available for the next audio
output callback. We have found that the very first call to a function running
on the DSP side takes considerably longer than the subsequent ones because of
the time needed to load the application code to the other processor. This task is
masked by the facilities provided by C6RunLib but must be taken into account,
otherwise the system will always shut down on the first buffer because of this
latency and the fact that the callback function kills the program if an underrun
is detected.

5 Experimental Results

We have tested the system’s localization quality and perceived accuracy with a
set of user trials. Three main set-ups were tested. One in which another person
controls the azimuth freely and the subject must grade the localization feeling

A Structural Parametric Binaural 3D Sound Implementation 315

Fig. 7. Signal Processing Function

and try to point out where the sound is coming from. On another test subjects
were free to change azimuth themselves. The grades being "Good", "Average"
and "Poor". On a last test users were asked to point out where the sound source
was in virtual space. The accuracy test is divided in two parts: guessing the
azimuth angle of a "warping" sound source that instantly goes from one point to
another and of a "moving" source which moves slowly until rest. In the accuracy
test we have gathered mean and maximum perceived azimuth errors εμ and εM .
All users were given the same test points set in random order.

We have noticed that most subjects feel a stronger localization when they
have control over the azimuth, complying with the fact that a person with no
sensing disabilities will rely on a sum of those to pinpoint an object on space,
usually failing when depending solely on sound – create somewhat a placebo
effect. When trying to point where the sound source is in a virtual space, users
will always get the right quadrant if the sound source is "warping", but will
generally fail to pinpoint angle giving εμ = 43◦, εM = 70◦. When the subject is
able to hear the virtual source moving to a resting position accuracy increases
to as much as about 30 degrees without mistakes (εμ = 21◦, εM = 30◦), totalling
12 clear zones in the azimuth plane.

The quality tests were also repeated three times for each of the available input
samples. It was observed that the pure tone does not have enough spectral cues
for localization and generates confusion most of the time. Noise is next on the
list, but, for its high frequency components, it is still not as clear as it could be
since the complex frequency response of the implemented system is on the lower
side of the spectrum.

The mentioned accuracy results are valid for the third sample: human voice.
Because of the short bandwidth and, some authors will argue, an inherent capa-
bility to localize voice this third input sample grades enormously better than the
previous ones – which is largely consistent with the mathematical model. Lastly,
fewer tests were run turning some filtering stages on and off so to observe the

316 B.D. Bó Silva and M. Götz

real necessity of each one. It was seen that the ITD and ILD work very closely
together (although the ITD plays a void role with noise input, since phase cue
is basically non-existent because of high frequencies). PRTF helps in fixing the
sound source to the azimuth plane, the system without it was described as "noisy
and confusing" by subjects, inducing that the PRTF wraps the spectrum to a
more natural balance. Some subjects experienced lateralization when the RIR
was turned off, losing completely the source in the virtual space.

As for performance, the system was built considering the fact it would not
miss deadlines, so the described implementation was validated. We have tested
some other parameters to test the system working under stress. It was observed
that reducing the frame size to 256 samples (5ms deadline) would cause over-
runs depending on the operating system’s load. For example, the system would
run perfectly using its own video board and an attached USB keyboard, but
would fail through an SSH connection. Although the same number of samples
is processed per second, that is the sampling frequency remains unchanged, the
cross-processor calls create noticeable overhead – a problem that could be ap-
proached by getting into the inner workings of C6RunLib.

Also, we have made it possible for the program to run fully on the GPP side,
letting the DSP completely unused, and compared the CPU load reported by
the operating system. When the filters are run by the second processor, the
main CPU stays practically idle reporting in average 3% load. When running
the complete system on the GPP side, the CPU goes almost to maximum load,
floating most of the time around 97% . We were not able to sample the DSP load
because the benchmarking functions provided by the libraries would crash the
system. To give an approximation of DSP load, we have made the processing
functions run redundantly n times, reaching overall failure at n = 3, so we
estimate the DSP core load between 30% and 50% of its full capacity. The load
tests were performed with a constantly changing azimuth, so the filter parameters
would be constantly changing and we could observe the worst case scenario.

6 Conclusions

In this work we propose a full-featured 3D binaural system for sound localiza-
tion. We successfully aggregated various methods and models of parametric 3D
binaural, creating parametric DSP blocks. Furthermore, we have shown the fea-
sibility by implementing and evaluating these blocks on a low-cost embedded
platform. In our tests the azimuth angle was dynamically changed and clearly
perceived by the user with enough accuracy, specially for human voice sound
source.

Depending on the operating systems’s load, some buffers overrun occurs,
which decreases the output quality. This is caused probably by cross-processors
calls, which relies on C6RunLib library. So, next steps in our work will be the
C6RunLib internals analysis and propose some implementation solutions for this
problem. We will also improve the model to consider elevation and more complex
room responses.

A Structural Parametric Binaural 3D Sound Implementation 317

References

1. Kim, H.J., Jee, D.G., Park, M.H., Yoon, B.S., Choi, S.I.: The real-time imple-
mentation of 3D sound system using DSP. In: IEEE 60th Vehicular Technology
Conference, VTC2004-Fall, vol. 7, pp. 4798–4800 (September 2004)

2. Fohl, W., Reichardt, J., Kuhr, J.: A System-On-Chip Platform for HRTF-Based
Realtime Spatial Audio Rendering With an Improved Realtime Filter Interpola-
tion. International Journal on Advances in Intelligent Systems 4(3&4), 309–317
(2011)

3. Sakamoto, N., Kobayashi, W., Onoye, T., Shirakawa, I.: DSP Implementation of
Low Computational 3D Sound Localization Algorithm. In: 2001 IEEE Workshop
on Signal Processing Systems, pp. 109–116 (2001)

4. Raspaud, M., Viste, H., Evangelista, G.: Binaural Source Localization by Joint
Estimation of ILD and ITD. IEEE Transactions on Audio, Speech, and Language
Processing 18(1), 68–77 (2010)

5. Rodemann, T., Heckmann, M., Joublin, F., Goerick, C., Scholling, B.: Real-time
Sound Localization With a Binaural Head-system Using a Biologically-inspired
Cue-triple Mapping. In: 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 860–865 (October 2006)

6. Algazi, V.R., Duda, R.O., Thompson, D.M., Avendano, C.: The CIPIC HRTF
Database. In: Proc. 2001 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA 2001), New Paltz, NY, USA (October 2001)

7. Rayleigh, J.: The theory of sound. Number v. 1 in The Theory of Sound. Macmillan
(1894)

8. Algazi, V.R., Dalton Jr., R.J., Duda, R.O., Thompson, D.M.: Motion-Tracked Bin-
aural Sound for Personal Music Players. Audio Engineering Society Convention 119
(October 2005)

9. Algazi, V.R., Duda, R.O., Thompson, D.M., Avendano, C.: The Cipic HRTF
Database. CIPIC U.C. Davis (2001)

10. Avendano, C., Algazi, V.R., Duda, R.O.: A Head-and-Torso Model for Low-
Frequency Binaural Elevation Effects. In: IEEE Workshop on APplications of Sig-
nal Processing to Audio and Accoustics (1999)

11. Algazi, V.R., Avendano, C., Duda, R.O.: Estimation of a Spherical-Head Model
from Anthropometry. National Science Foundation (2001)

12. Brown, C.P., Duda, R.O.: An Efficient HRTF Model For 3-D Sound. Master’s
thesis, University Of Mariyland, San Jose State University (1997)

13. Brown, C.P., Duda, R.O.: A Sructural Model for Binaural Sound Synthesis. IEE
Transactions on Speech and Audio Processing 6 (1988)

14. Spagnol, S., Geronazzo, M., Avanzini, F.: Structural modeling of pinna-related
transfer functions. In: Proc. Int. Conf. on Sound and Music Computing (2010)

15. Miller, J.D.: Modeling Interneural Time Difference Assuming a Spherical Head.
Master’s thesis, Stanford University (2001)

16. Zölzer, U., Amatriain, X.: DAFX: digital audio effects. Wiley (2002)
17. GolinHarris: Beagleboard.org (2011), http://beagleboard.org
18. Narcissus: Narcissus Angstrom Distribution,

http://narcissus.angstrom-distribution.org/
19. TI: DSPLIB, http://processors.wiki.ti.com/index.php/DSPLIB
20. Davis, P.: Jack Audio Connection Kit, http://jackaudio.org/

http://beagleboard.org
http://narcissus.angstrom-distribution.org/
http://processors.wiki.ti.com/index.php/DSPLIB
http://jackaudio.org/

Modeling Time-Triggered Ethernet

in SystemC/TLM for Virtual Prototyping
of Cyber-Physical Systems

Zhenkai Zhang and Xenofon Koutsoukos

Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN, USA

{zhenkai.zhang,xenofon.koutsoukos}@vanderbilt.edu

Abstract. When designing cyber-physical systems (CPS), virtual pro-
totyping can discover potential design flaws at early design stages to
reduce the difficulties at the integration stage. CPS are typically com-
plex real-time distributed systems which require networks with deter-
ministic end-to-end latency and bounded jitter. Time-triggered Ethernet
(TTEthernet) integrates time-triggered and event-triggered traffic, and
has been used in many CPS domains, such as automotive, aerospace,
and industrial process control. In this paper, a TTEthernet model in
SystemC/TLM is developed to facilitate the design and integration of
CPS. The model realizes all the necessary features of TTEthernet, and
can be integrated with the hardware platform model for design space
exploration. We validate the model by comparing latency and jitter with
those obtained using a commercial software-based implementation. We
also compare our model with the TTEthernet modeled in OMNeT++
INET framework. Our model provides startup and restart services that
are necessary for maintaining synchronized operations in TTEthernet.
We evaluate these services and also the efficiency of the simulation.

Keywords: TTEthernet, SystemC, TLM, Virtual Prototyping.

1 Introduction

Cyber-physical systems (CPS) are complex heterogeneous systems whose design
flow includes three layers: the software layer, the network/platform layer, and the
physical layer [1]. The interactions within and across these layers are complex.
The physical layer interacts with the hardware platform through sensors and ac-
tuators. Embedded software runs on the hardware platform and communicates
via a network to realize the desired functionalities. Due to the high degree of
complexity, design flaws often appear at the integration stage. In order to dis-
cover potential design flaws at early stages, a virtual prototyping development
approach is required.

In virtual prototyping of CPS, modeling the hardware platform in a System-
Level Design Language (SLDL) is essential to quickly evaluate the interactions

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 318–330, 2013.
c© IFIP International Federation for Information Processing 2013

Modeling Time-Triggered Ethernet in SystemC/TLM 319

between the platform and the software layer and the physical layer at early design
stages. Since CPS are typically distributed real-time systems, the network also
plays an important role in design and integration.

In many CPS domains that require known and bounded network latency, such
as automotive, aerospace, and industrial process control, time-triggered Ethernet
(TTEthernet) has been used for real-time communication. Traditional Ethernet
cannot be used, since it suffers from cumulative delay and jitter. TTEthernet
integrates time-triggered traffic and event-triggered traffic together, and provides
the capability for deterministic, synchronous, and lossless communication while
supporting best-effort traffic service of Ethernet at the same time [2].

SystemC, which has become a de facto SLDL [3], is proposed to be one main
part of virtual prototyping of CPS [4]. It allows system modeling and simula-
tion at various levels of abstraction. In addition, the concept of transaction-level
modeling (TLM) is adopted in SystemC to separate the computation and com-
munication. A TLM communication structure abstracts away low-level commu-
nication details while keeping certain accuracy. Thus, both the software layer and
the network/platform layer can be modeled in SystemC/TLM at early design
stages making it suitable for virtual prototyping.

In this paper, we describe a TTEthernet model in SystemC/TLM for virtual
prototyping in order to take into account the network effects in a CPS. The
model in SystemC/TLM offers many advantages: (1) it is easy to acquire at early
design stages; (2) it is scalable to a large number of nodes; (3) the model can be
integrated with the hardware platform model in a straightforward manner; (4)
it provides efficient and accurate simulation.

The main contribution of this work is a TTEthernet model in SystemC/TLM
that realizes all the necessary features for facilitating the design and integration
of CPS. The model is validated by comparing latency and jitter with those
obtained using a commercial software-based implementation and the model in
OMNeT++ INET framework [5]. The model is also evaluated for its startup and
restart services and the simulation efficiency.

The rest of this paper is organized as follows: Section 2 gives the related
work including TTEthernet and related modeling efforts. Section 3 describes
the model in detail. Section 4 validates the model against a real implementation
and the model in OMNeT++ INET framework and also evaluates the services
in the model and the simulation efficiency. Section 5 concludes this paper.

2 Related Work

Time-triggered architecture (TTA) has been widely used in safety-critical CPS,
which require reliable time-triggered communication systems, such as TTP/C,
FlexRay, and TTEthernet [6]. Compared to the maximum bandwidth of TTP/C
(25Mbit/s) and FlexRay (10Mbit/s), the bandwidth of TTEthernet can reach
100Mbit/s or even 1Gbit/s, making it very attractive in many CPS domains. As
mentioned in [7], there are two versions of TTEthernet. The academic version
uses preemption mechanism and only supports time-triggered (TT) and event-

320 Z. Zhang and X. Koutsoukos

triggered (ET) traffic, while the industrial version uses non-preemptive integra-
tion of TT and ET and divides ET into rate-constrained and best-effort traffic
classes. In [8], the academic version of TTEthernet is introduced to integrate
TT and ET traffic together. In [9], an academic version of TTEthernet switch
is developed which preempts ET message transmission when a TT message ar-
rives to guarantee a constant transmission delay of TT messages caused by the
switch regardless of the load of ET traffic on the network. In [10], a prototypi-
cal TTEthernet controller is described and implemented in an FPGA. TTTech
Computertechnik AG company issued the TTEthernet specification in [11] and
also developed industrial products [12]. Finally, the TTEthernet specification is
standardized by SAE in [2].

Modeling TTEthernet has been used to simulate in-vehicle communication
systems. In [5], an extension to the OMNeT++ INET framework is made to
support simulation of TTEthernet. The model is based on standard Ethernet
model in the INET framework. Although the evaluation shows the model is in
good agreement with real implementation, the model does not consider different
protocol state machines for different roles of synchronization, which results in
some services of TTEthernet are simplified or not supported.

In order to support Ethernet networks in the system-level design in a SLDL,
various models/approaches have been proposed. In [13], a half-duplex Ethernet
based on CSMA/CD MAC protocol is simply modeled using SpecC and TLM
techniques. In [14], an Ethernet interface in SystemC/TLM-2.0 is modeled for
virtual platform or architectural exploration of Ethernet controllers. Another
approach is to integrate network simulators with simulation kernels of SLDLs.
In [15], the NS-2 network simulator is integrated into the SystemC/TLM de-
sign flow. The advantage of this approach is that network simulators have a
good support for almost every commonly used network. However, such an ap-
proach requires the integration of two discrete-event simulation kernels, which
can greatly reduce the simulation efficiency.

3 Modeling TTEthernet in SystemC/TLM

3.1 Framework

Our TTEthernet model in SystemC/TLM aims at facilitating the design and
integration of the network/platform layer in a CPS, especially if the system is a
distributed mixed time-triggered/event-triggered real-time system. As shown in
Fig. 1, the network/platform layer consists of several computational nodes which
communicate with each other through a TTEthernet network. The TTEthernet
model includes two separate parts: the TTEthernet controller and the TTEther-
net switch. The network is deployed in star topology or cascaded star topology
which uses switches to integrate each star topology.

In each node of the system, a TTEthernet controller communicates with other
designed hardware components through a memory-mapped bus. Standard TLM-
2.0 sockets are used for this purpose. As a target of TLM, the TTEthernet

Modeling Time-Triggered Ethernet in SystemC/TLM 321

Fig. 1. Network/Platform Layer Design Using TTEthernet Model in SystemC/TLM

controller implements a blocking transport interface method for fast but loosely-
timed simulation and non-blocking transport interface methods for slow but
approximately-timed simulation.

In order to simulate the bidirectional communication link between two ports
of the TTEthernet devices, a specific Ethernet socket is used to model the port.
As the TLM-2.0 Ethernet socket introduced in [14], our Ethernet socket is a
derived class from both initiator and target sockets of TLM-2.0. In order to
distinguish different ports of a TTEthernet device, tagged initiator and target
sockets are used as base classes of the Ethernet socket. For binding two Ether-
net ports, bind() and operator() are overwritten to bind the initiator socket of
each port to the target socket of the other port. For invoking transport interface
methods, the operator→ distinguishes which socket of a port should be accessed
according to the calling method. Since our TTEthernet model uses Ethernet
rather than memory-mapped bus, interoperability is not concerned by introduc-
ing new transaction type for Ethernet which is similar to the TLM Ethernet
payload type introduced in [14].

3.2 Clock Model

In TTEthernet, a synchronized global time is the base for all time-triggered op-
erations. Each TTEthernet device (controller/switch) is driven by a clock having
a clock drift. Thus, the clock synchronization service is crucial for the correct
operation. In order to simulate its synchronization service, each TTEthernet de-
vice needs to have an independent clock with its own drift and offset. However,
SystemC uses a discrete event simulation kernel which maintains a global time.
If we simulate every tick of a clock with a drift, the simulation overhead will
be too large, which can seriously slow down the simulation. Instead, we model
the clock as follows: a random ppm value is assigned to each clock in the in-
terval [-MAX PPM, -MIN PPM] ∪ [MIN PPM, MAX PPM]. According to the
time-triggered schedule, the duration in clock ticks from the current time to the

322 Z. Zhang and X. Koutsoukos

time when the next time-triggered action needs to take place is calculated. After
that, we can get the duration in simulation time by taking into account its clock
drift: durationinsimulationtime = durationinclock ticks×(tick time±drift),
and then we can arrange a clock event with this amount of time by using the
notification mechanism of sc event in SystemC.

Because the clock will be adjusted periodically by the synchronization ser-
vice, the arranged clock event will be affected (its occurrence in simulation time
becomes sooner or later). In order to simulate this properly, the arranged clock
event and its occurring time in clock ticks is stored in a linked list in an order of
occurring time. When a clock event occurs or its time has passed due to clock
adjustment, it will be deleted from the linked list and processes pending on it
will be resumed. When the clock is corrected, notifications of the arranged clock
events are canceled and new simulation times for the notifications of the events
are recalculated based on the corrected clock.

A timer model is also built on the clock model, which uses the drift of the
clock model to calculate the duration in simulation time and is used for timeout
events. In contrast to clock events, timeout events are not affected by clock
synchronization and only depend on how many ticks should pass before they
occur.

3.3 TTEthernet Traffic Classes

TTEthernet supports three traffic classes: time-triggered (TT), rate-constrained
(RC), and best-effort (BE). In order to recognize which traffic class a frame
belongs to, either encoding it in the Ethernet MAC destination address or using
EtherType field of the Ethernet frame header is feasible [2]. In our model, we
employ the destination address divided into two parts to identify critical traffic
(CT) including TT and RC. The first part (32 bits) of the destination address
shows whether a frame belongs to CT by checking this part against the result of
bitwise AND of CT marker and CT mask. The second part (16 bits) gives the
CT ID which is used for further checking and scheduling.

TT messages are used for applications with strict requirements like deter-
ministic end-to-end latency and bounded jitter. RC messages, compliant with
ARINC 664 standard part 7, are used for applications with less strict require-
ments, for which sufficient bandwidth should be allocated. BE messages, using
the remaining bandwidth of the network, form the standard Ethernet traffic
which has no guarantee of delivery and transmission latency.

TTEthernet also has a transparent traffic used for its synchronization proto-
col. The synchronization message is called protocol control frame (PCF), and has
three types: coldstart frames (CS) and coldstart acknowledgment frames (CA)
are used for startup and restart services, and integration frames (IN) are used
for synchronization service. In our model, the PCF traffic also uses the MAC
destination address to encode its identity.

Modeling Time-Triggered Ethernet in SystemC/TLM 323

Fig. 2. TTEthernet Device Main Structure

3.4 TTEthernet Device

The TTEthernet controller and switch have several common functions/services.
We extract all the common ones, and implement them in a class named tte device.
tte device is the abstract base class of tte controller and tte switch which has pure
virtual functions that need to be implemented by tte controller and tte switch
to define different behaviors of these two different devices. Fig. 2 shows the main
SystemC processes in tte device. There is an init method() SystemC method
process which is sensitive to a power-on event and initializes the device. This is
used to model different power-on times given in a configuration file of different
devices. After power-on, startup service of TTEthernet will try to bring the
device into synchronized operation mode.

Ports: An Ethernet socket is used to realize the functions of Ethernet ports.
The TLM-2.0 transport interface methods are implemented to transmit standard
Ethernet frames. Ethernet socket has both blocking transport interface and non-
blocking transport interface. Due to the star or cascaded star network topology of
TTEthernet, the collision domain is segmented and only two TTEthernet devices
which are directly connected may contend for the use of the medium. We model
TTEthernet working in full-duplex mode so that collisions become impossible;
moreover, the non-preemptive integration of TT and ET is used that is compliant
with the products in [12]. Thus, the efficient blocking transport method becomes
accurate enough to model the communication between two TTEthernet devices.

Each TTEthernet device (controller/switch) can have several Ethernet ports
according to its configuration. For a controller, multiple ports represent redun-
dancy which send the same frame in order to realize fault-tolerance. For a switch,
each port can be connected to a controller or a switch to create a separate
collision domain. Each port is associated with three dynamic thread processes
which are send thread(), recv thread(), and release ET(). The send thread() and
recv thread() processes with the scheduler model the data link layer of TTEther-
net, which uses TDMA MAC protocol. The send thread() process is responsible
for starting a frame transmission, and is controlled by the scheduler process

324 Z. Zhang and X. Koutsoukos

and the release ET() process via events. The release ET() process knows the
schedule and is responsible for signaling the send thread() process to send an
ET frame if there is enough gap for this frame before next TT frame dispatch-
ing time comes. The recv thread() process waits for an incoming frame delivered
by the b transport() method registered to the Ethernet socket. When a frame
is transmitted through the b transport() method, it will be processed by the
recv thread() process. According to the analysis of the destination address, ei-
ther a PCF handler process will be dynamically spawned, or one of the traf-
fic processing functions (TT, RC, or BE) will be called. The traffic processing
functions are pure virtual functions which need to be implemented by different
TTEthernet device to realize different behaviors.

Scheduler: Every TTEthernet device sends packets according to a static
schedule that relies on synchronized global time. The static schedule is generated
by an off-line scheduling tool and used by the TTEthernet device through a
configuration file. We use the off-line scheduling tool provided by TTTech [12],
which guarantees two TT frames never contend for transmission.

The exec sched thread() process implements the function of the scheduler and
is responsible for signaling the send thread() processes of the ports to start a
TT frame transmission according to the static schedule. It pends on a synchro-
nization event occurring when the device enters the synchronized states, and
starts executing the schedule when the event happens. If the device goes out of
the synchronized states, it also signals the exec sched thread() process to stop
executing the schedule. If the device is a synchronization master, the scheduler
process also signals send thread() processes to send out an integration PCF when
PCF’s dispatching time is reached (dispatching time is 0 in our model).

Protocol State Machine: Each TTEthernet device executes exactly one of
the protocol state machines to maintain its role for synchronization, which are
formulated in [2]. All TTEthernet devices can be classified into three different
roles: synchronization masters (SMs), synchronization clients (SCs), and com-
pression masters (CMs). Startup service of the protocol state machines tries to
establish an initial synchronized global time to make devices operate in synchro-
nized mode. When a device detects it is out of synchronization, restart service
of the protocol state machines will try to resynchronize itself.

The model has three SystemC thread processes to realize different protocol
state machines respectively, which are psm sm thread() for SM, psm sc thread()
for SC, and psm cm thread() for CM, as shown in Fig. 2. Each state has its
own sc event object which is pended on by the state. If a state has a transition
fired because of timeout, it also sets an event’s notification by using the timer
model, and pends on the event “OR” list of its own sc event object and the
timeout sc event object. The sc event object will be notified when any one of
transitions of this state is enabled, and corresponding transition flag will be set
showing the guard of this transition is met. By checking the flags in an order
that is defined in [2], priorities of concurrent enabled transitions are enforced
in the protocol state machines, which guarantees determinism. Since concurrent

Modeling Time-Triggered Ethernet in SystemC/TLM 325

sc event notifications will not queue up, events enabling concurrent transitions
will not queue up during execution of the protocol state machines.

Clique detections are used in TTEthernet to detect clique scenarios where dif-
ferent synchronized time bases are formed in a synchronization domain. When
cliques are detected, protocol state machines will try to reestablish synchro-
nization. The detect clique sync() method process is responsible for synchronous
clique detection and is sensitive to an event that will be notified when the accep-
tance window for receiving scheduled PCFs is closed. The detect clique async()
method process is responsible for asynchronous clique detection and is sensitive
to an event that will be notified when the acceptance window for receiving sched-
uled PCFs is closed in CMs or when the clock reaches the dispatching time in
SMs or SCs.

Synchronization Service: When operating in synchronized mode, TTEth-
ernet uses a two-step synchronization mechanism: SMs dispatch PCFs to CMs,
and CMs calculate the global time from the PCFs (i.e. “compress”) and dispatch
“compressed” PCFs to SMs and SCs. SMs and SCs receive “compressed” PCFs
and adjust their clocks to integrate into the synchronized time base.

When a PCF arrives, a dynamic PCF handler process (process PCF()) will
be spawned to cope with this PCF. Concurrent PCF handler processes may
exist due to multiple PCFs arriving with small time difference. Permanence
function [2] is used to reestablish the temporal order of the received PCFs. The
process PCF() implements the permanence function by using the timer model.
By checking the PCFs, the process also enables some transitions whose guards
only count on PCFs in the protocol state machines.

If the TTEthernet device is a CM, a dynamic compression process (compres-
sion()) may be spawned if there is no process handling corresponding integration
cycle of the PCF. The integration cycle filed of a PCF shows which round of
synchronization this PCF belongs to. Compression function [2] is used to collect
PCFs having the same integration cycle number within a configurable interval
and compress these PCFs for calculating the synchronized global time. The com-
pression() also uses the timer model to realize all the time delays needed by its
collection and delay phases.

When the acceptance window for receiving PCFs ends, the sync thread() pro-
cess will be resumed to calculate the clock correction from the PCFs that are
in-schedule. After a fixed delay (at least greater than half of the acceptance
window), the clock will be adjusted by the calculated correction value.

3.5 TTEthernet Controller and Switch

Both the TTEthernet controller and switch are derived from TTEthernet de-
vice, and implement the pure virtual functions to realize different behaviors of
processing the traffic.

The TTEthernet controller also acts as a TLM-2.0 target which receives trans-
actions containing Ethernet frames via a target socket. Extensions are made to
the generic payload to show which traffic class the Ethernet frame belongs to.
Each traffic class has its own transmission and reception buffers. In the case of a

326 Z. Zhang and X. Koutsoukos

write command, the controller puts the extracted Ethernet frame into the corre-
sponding traffic transmission buffer. When the controller receives a frame, it will
signal the processor to read it via interrupt, and it puts the received frame into
a transaction in response to a read command and sets the traffic class extension.

The TTEthernet switch uses critical traffic table and schedule table to route
and forward CT (TT and RC) frames, and uses static/dynamic routing tables
for BE frames. It also acts as a temporal firewall for TT traffic to segregate faulty
controllers if they are babbling. For RC traffic, it uses token bucket algorithm
to enforce a bandwidth allocation gap between two consecutive RC frames.

4 Experimental Results

In this section, we compare our TTEthernet model with the model in OM-
NeT++/INET framework [5] and a real TTEthernet implementation from TT-
Tech for validation. We also evaluate the startup and restart services as well as
the efficiency of the simulation.

Fig. 3. Experiment Scenarios

4.1 Validation

We set up a star topology which has four nodes connected to a central TTEth-
ernet switch with 100Mbit/s links as shown in Fig. 3 (a). Node 1 sends both
TT traffic and BE traffic to Node 2, and both Node 3 as well as Node 4 send
only BE traffic to Node 2. All the traffic goes through a TTEthernet switch.
The communication period is 10ms, and the time slot is 200μs. The maximum
clock drift is set as 200ppm for the models. Node 1 sends a TT frame at 1ms
offset of each period. The configuration files including their corresponding XML
files for the nodes and switch are generated by the TTTech toolchain [12]. From
the generated XML files, we extract parameters such as critical traffic table
and schedule table to configure our model and the model in OMNeT++. In this
setup, the switch dispatches the TT frame sent by Node 1 at 1.4ms offset of each
period. The metrics we measure are average end-to-end latency and jitter of TT

Modeling Time-Triggered Ethernet in SystemC/TLM 327

frames which are important factors for real-time communication systems. We
measure these metrics for different TT frame sizes under full link utilization of
BE traffic. Fig. 4 shows the results of our model in SystemC/TLM, the model in
OMNeT++ INET framework, and the software stack implementation in Linux
from TTTech [12].

Fig. 4. Average End-to-End Latency and Jitter of Different Frame Sizes

From the figure we can see the model in SystemC/TLM and the model in
OMNeT++ INET framework give very similar results. In [16], the method of
measuring end-to-end latency of software-based implementation of TTEthernet
is stated. According to [16], the measured latency gap (90μs) between frame
size of 123 and 124 bytes of the software-based implementation is caused by the
measuring port driver configuration. The measured jitter of the software-based
implementation is bounded by 30μs [16]. The hardware-based implementations
will bound the jitter more tightly [12].

4.2 Evaluation

We set up the network as shown in Fig. 3 (b) to evaluate the startup and restart
services implemented in our model. In this cluster, Node 1, Node 2, Node 5, and
Node6 are SMs; Switch 1, Switch 2, and Switch 3 are CMs; the rest are SCs.
The integration cycle is 10ms, and the parameters are generated by the TTTech
toolchain [12].

With different power-on times, we record the time when every powered device
in the cluster enters its synchronized state in Tab. 1. Since different power-on
times of Switch 2 may cause cliques in the cluster, we also record the time
when every powered device is resynchronized back to its synchronized state due
to clique detection and restart service. Since in this setup SCs only passively
receive PCFs, we set the power-on times of them as 0s.

When every device approximately starts at the same time, the devices will
be synchronized quickly which are shown in the first two cases. When the CMs
are powered later than the SMs, the time when every one is synchronized will
be delayed as shown in the third case. In the fourth case, Node 1, Node 2, and

328 Z. Zhang and X. Koutsoukos

Table 1. Startup and Restart Service Evaluation

N1 & N2 & N5 & N6 SW1 & SW2 & SW3 Sync Resync

0s/0s/0s/0s 0s/0s/0s 29.834ms -
0.1ms/1ms/0.5ms/1.2ms 1.1ms/0.8ms/1.5ms 30.845ms -

2ms/4ms/8ms/6ms 30ms/10ms/40ms 79.856ms -
0s/0s/0s/0s 0s/30ms/0s 38.677ms -
0s/0s/0s/0s 0s/50s/0s 29.776ms 50.0256s

Switch 1 establish a synchronized time base at about 29.8ms; likewise, Node
5, Node 6, and Switch 3 establish the other synchronized time base. Switch 2
which is the CM connecting with the other two CMs is powered just a little bit
later than the time when the two synchronized time bases are established. Since
during this small time interval the clock drifts have not caused the two time
bases to differ too much, Switch 2 will join in the synchronization quickly and
the two time bases will be merged into one time base. In the fifth case, two sepa-
rate synchronized time bases are established before Switch 2 is powered as well.
However, this time Switch 2 is powered much later (about 49.07s) than the time
when the two time bases are established. The clock drifts have caused the two
subsets of devices not to be synchronized over subset boundaries. When Switch
2 is started, asynchronous clique detection and restart service implemented in
our model result in a new synchronized global time, and at 50.0256s every device
is synchronized.

Finally, we evaluate the scalability and simulation efficiency of our approach.
We set up the evaluation using a central switch, and all the nodes are connected
to the switch. The simulation time is 1000s, and increasingly add a pair of
nodes into the network. Each pair of the nodes, such as Node 1 and Node 2,
communicates with each other using TT, RC, and BE traffic. Each node sends
out a TT frame, a RC frame, and a BE frame every 10ms. Thus, there are
300, 000× number of nodes frames totally. The result is shown in Fig 5.

Fig. 5. Used CPU Time of Different Number of Nodes

Modeling Time-Triggered Ethernet in SystemC/TLM 329

From the results we can see the model in SystemC/TLM has good simulation
efficiency when the number of nodes increases. The simulation speed of the model
in OMNeT++ INET framework is also evaluated under the same computation
environment (2.50GHz dual-core CPU and 6GB memory). We simulate the same
topology and traffic by using the fastest mode in OMNeT++ to get rid of the
influence of animation and text outputs.

5 Conclusions

Due to the complex interactions between different layers of a CPS, virtual pro-
totyping has become an important approach to discover potential design flaws
before the last integration stage. SystemC/TLM has been adopted for virtual
prototyping because of its capability of modeling both the software layer and
the network/platform layer of a CPS. TTEthernet has been used in many CPS
domains and provides bounded end-to-end latency and jitter.

In order to take into account the network effects caused by TTEthernet when
designing a CPS, a model in SystemC/TLM is proposed in this paper. The
developed model considers all the necessary features of TTEthernet and can
be integrated into the hardware platform model in a straightforward manner.
We validate the model against the model in OMNeT++ INET framework and
the software-based implementation from TTTech, and evaluate the startup and
restart services which are used to maintain the synchronization by powering on
the devices at different times.

The future work focuses on integrating this model into a mixed TT/ET dis-
tributed CPS simulation framework and using timed automata to verify this
model.

Acknowledgments. This work has been partially supported by the National
Science Foundation (CNS-1035655).

References

1. Sztipanovits, J., Koutsoukos, X.D., Karsai, G., Kottenstette, N., Antsaklis, P.J.,
Gupta, V., Goodwine, B., Baras, J.S., Wang, S.: Toward a Science of Cyber-
Physical System Integration. Proceedings of the IEEE 100(1), 29–44 (2012)

2. SAE Standard AS 6802: Time-Triggered Ethernet (2011)
3. IEEE Standard 1666-2011: Standard SystemC Language Reference Manual (2011)
4. Müller, W., Becker, M., Elfeky, A., DiPasquale, A.: Virtual Prototyping of Cyber-

Physical Systems. In: ASP-DAC 2012, pp. 219–226 (2012)
5. Steinbach, T., Kenfack, H.D., Korf, F., Schmidt, T.C.: An Extension of the OM-

NeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy.
In: SIMUTools 2011, pp. 375–382 (2011)

6. Kopetz, H., Bauer, G.: The Time-Triggered Architecture. Proceedings of the
IEEE 91(1), 112–126 (2003)

7. Steiner, W., Bauer, G., Hall, B., Paulitsch, M.: Time-Triggered Ethernet: TTEth-
ernet (November 2010)

330 Z. Zhang and X. Koutsoukos

8. Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K.: The Time-Triggered
Ethernet (TTE) Design. In: ISORC 2005 (2005)

9. Steinhammer, K., Grillinger, P., Ademaj, A., Kopetz, H.: A Time-Triggered Eth-
ernet (TTE) Switch. In: DATE 2006, pp. 794–799 (2006)

10. Steinhammer, K., Ademaj, A.: Hardware Implementation of the Time-Triggered
Ethernet Controller. In: IESS 2007, pp. 325–338 (2007)

11. Steiner, W.: TTEthernet Specification (2008)
12. TTTech Computertechnik AG: TTEthernet Products,

http://www.tttech.com/en/products/ttethernet/

13. Banerjee, A., Gerstlauer, A.: Transaction Level Modeling of Best-Effort Channels
for Networked Embedded Devices. In: Rettberg, A., Zanella, M.C., Amann, M.,
Keckeisen, M., Rammig, F.J. (eds.) IESS 2009. IFIP AICT, vol. 310, pp. 77–88.
Springer, Heidelberg (2009)

14. GreenSocs Ltd: Ethernet Communication Protocol using TLM 2.0. (2010),
http://www.greensocs.com

15. Bombieri, N., Fummi, F., Quaglia, D.: TLM/Network Design Space Exploration
for Networked Embedded Systems. In: CODES+ISSS 2006, pp. 58–63 (2006)

16. Bartols, F., Steinbach, T., Korf, F., Schmidt, T.C.: Performance Analysis of Time-
Triggered Ether-Networks Using Off-the-Shelf-Components. In: ISORCW 2011, pp.
49–56 (2011)

http://www.tttech.com/en/products/ttethernet/
http://www.greensocs.com

I/O Sharing in a Multi-core Kernel

for Mixed-Criticality Applications

Gang Li and Søren Top

Mads Clausen Institute for Product Innovation, University of Southern Denmark
{gangli,top}@mci.sdu.dk

Abstract. In a mixed-criticality system, applications with different
safety criticality levels are usually required to be implemented upon
one platform for several reasons(reducing hardware cost, space, power
consumption). Partitioning technology is used to enable the integration
of mixed-criticality applications with reduced certification cost. In the
partitioning architecture of strong spatial and temporal isolation, fault
propagation can be prevented among mixed-criticality applications (re-
garded as partitions). However, I/O sharing between partitions could be
the path of fault propagation that hinders the partitioning. E.g. a crashed
partition generates incorrect outputs to shared I/Os, which affects the
functioning of another partition. This paper focuses on a message-based
approach of I/O sharing in the HARTEX real-time kernel on a multi-
core platform. Based on a simple multi-core partitioning architecture, a
certifiable I/O sharing approach is implemented based on a safe message
mechanism, in order to support the partitioning architecture, enable in-
dividual certification of mixed-criticality applications and thus achieve
minimized total certification cost of the entire system.

Keywords: I/O sharing, multi-core systems, mixed-criticality, safety-
critical real-time kernel, safe inter-core communication.

1 Introduction

A computer-based system in critical applications should guarantee to be safe,
without making harm to humans or environment around, even in case of the
corruption of some certain parts of safety-critical applications. In the real life,
applications have different natural criticality levels. E.g. a KONE escalator 1

comprises a dual-channel safety-critical control logic system (an application) and
non-safety-critical systems such as display. The criticality level of an application
is defined as a Safety Integrity Level (SIL, a level of risk reduction) in the IEC
61508 [1], ranging from the least dependable SIL 1 to the most dependable SIL
4. The certification cost of an application with a SIL is in the direct proportion
to the SIL since the development and certification of higher SIL applications has
more rigorous requirements. When a system integrates different SIL applications

1 http://www.kone.com

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 331–342, 2013.
c© IFIP International Federation for Information Processing 2013

http://www.kone.com

332 G. Li and S. Top

on one platform with resources sharing(processor, memory or I/O) and no isola-
tion mechanism is taken into account, all the applications have to be certified to
the highest SIL, aiming at ensuring the dependability of the highest SIL appli-
cations. Otherwise, lower SIL applications with higher failure probability would
corrupt higher SIL applications. The entire system being certified to the highest
SIL definitely leads to unacceptable increase in the development and certifica-
tion cost. The basic approach introduces partitioning between mixed-criticality
applications in terms of logical and temporal behaviour, which can prevent the
propagation of a number of faults between applications. Each application is pre-
sumed to reside on a partition in the system.

Besides the traditional partitioning approach (federated architecture), the on-
going partitioning trends are to share a processing element for different SIL ap-
plications, or implement them on individual cores on a multi-core platform or
the combination of both, by using partitioning mechanisms that provides iso-
lation between applications. E.g. ARINC651 [2] standards proposed Integrated
Modular Avionics (IMA) architecture which enforces system-level spatial and
temporal isolation to integrate mixed-criticality applications onto a processor.
[3] implements mixed-criticality applications into different isolated cores on the
trusted MPSoC platforms. Due to such partitioning mechanisms, different SIL
applications on one processing element or platform can be certified individually
according to their own SILs, and the total cost of development and certification
is subsequently reduced. This is the exact objective of the ARTEMIS project
Reduced Certification Costs Using Trusted Multi-core Platforms(RECOMP) 2.

Besides performing partitioning mechanisms regarding processors and mem-
ory, I/O partitioning is also a big challenging issue when I/Os have to be shared
by mixed-criticality applications. Firstly, mixed-criticality applications are not
completely isolated if partitions can operate on shared I/Os directly. Shared
I/Os are usually related to the functions of both high SIL applications and low
SIL applications. A low SIL application could fail and possibly masquerade as
a high SIL application to perform incorrect input or output on its accessible
I/Os, which therefore results in the failure of the high SIL application. Addi-
tionally, even if the low SIL application doesn’t masquerade as the high SIL
application, it also possibly puts I/Os out of operation and thus the high SIL
application is unable to perform its critical operations. Secondly, even if each
partition works well from its own point of view, the I/O operation could also
fail. As seen in Fig.1, a safety-critical application (Partition 1) reaches the end
point of its statically-allocated time slice and has to handover I/O resources to
another partition when it’s in the critical section of operating on the shared
I/Os. This could be unacceptable for I/O operations. Furthermore, another ap-
plication (Partition 2) takes the turn and possibly changes the I/O configuration
or perform its desired operations on I/Os. In the next main frame (a periodical
interval), Partition 1 obtains the turn again and continues to perform the rest
of the operations. This raises the problem that Partition 2 maybe has modified
the I/O configuration or has performed some input or output in the critical sec-

2 http://www.recomp-project.eu

http://www.recomp-project.eu

I/O Sharing in a Multi-core Kernel for Mixed-Criticality Applications 333

Fig. 1. Preempted I/O access by partitions

tion of Partition 1, which affects the functioning of I/O operations or disturbs
the I/O operations (preempted I/O access) in Partition 1. This definitely makes
Partition 1 non-functional.

In this paper, Section 2 discusses safety requirements of message-based I/O
sharing approach on the basis of safety standards and our experiences. Section
3 introduces a simple multi-core partitioning architecture and then Section 3
investigates the design of message-based I/O sharing approach in our real-time
kernel (HARTEX) [4]. Section 5 gives an example how this I/O sharing approach
is used in an industrial safe stop component. Section 6 discusses related work
and Section 7 concludes.

2 Safety Requirements

To enable the integration of mixed-criticality applications onto a multi-core plat-
form, robust partitioning [5] is employed to provide an assurance of intended
isolation of independent applications (partitions) implemented upon one plat-
form. Regarding I/O sharing in the partitioning, informal requirements at the
architectural level are proposed:

1. A partition must be unable to masquerade as another partition to operate
on shared I/Os.

2. A partition must be unable to affect the shared I/O operations of another
partition in terms of logical and temporal behaviour.

3. A partition must be unable to affect the logical and temporal behaviour of
another partition through shared I/Os.

4. Any attempt of the incorrect access to I/Os must not lead to a unsafe state
and can be detected and recognized, and results in a corresponding action
to handle the violation.

Note that the second requirement enforces that a partition can’t affect I/O
operations of another partition, since the partition probably changes the I/O
configuration without notifying another partition or disturbs the I/O operations.
The third requires a partition to be isolated from another partition even if using
shared I/Os.

Since message passing is used to transfer data between partitions inside one
core or across multiple cores for I/O sharing, a set of safety requirements shall
be proposed to ensure safe communication according to the safety standard
IEC61508.

334 G. Li and S. Top

1. Protection shall be provided to message-based communication for detecting
message loss, repetition, insertion and resequencing.

2. Protection shall be provided to message-based communication for detecting
message data corruption, ensuring data integrity.

3. Protection shall be provided to message-based communication for detecting
message transmission delay, ensuring temporal behaviour.

4. Protection shall be provided to message-based communication for detecting
message masquerade, ensuring message correct identification recognition.

5. The message-based communication shall support mixed-criticality levels.
6. The message-based communication shall support the interaction across

mixed-criticality partitions.
7. Any fault of message-based communication shall not leads to a unsafe state

and can be handled after being detected.

The first to the fourth requirements ensures a safe message-based communication
that is the base of the I/O sharing. The fifth one requires that different SIL
communication services are provided to serve different SIL applications. The
sixth one enables the communication between mixed-criticality partitions, which
is required by the nature of applications. E.g. a high SIL control application needs
to send control results to a low SIL display application.

3 System Design

To fulfill the requirements presented above and achieve an easier certification,
one rule of thumb should be kept in our mind while designing the partitioning
multi-core system architecture and I/O sharing in the HARTEX real-time kernel:
simplification.

3.1 System Architecture

The proposed system architecture supports two levels of partitioning in the con-
text of a configurable multi-core platform(e.g. System on Chip (SoC) platform):
inter-core level and intra-core level as shown in Fig. 2. At the inter-core level,
physical separation of processing cores is exploited to a great extent for core inde-
pendence and isolation. Each core has a private memory(or a virtual private one),
and the multi-core HARTEX kernel employs the asymmetric multi-processing
(AMP) multikernel architecture proposed in [6]. This multi-core architecture
proposed is similar to a federated architecture but residing on a chip, in order to
achieve relatively effortlessly-certifiable partitioning and exploit the methodolo-
gies and frameworks used in distributed systems. Additionally, each core support
intra-core partitioning similar to IMA if mixed-safety applications have to be al-
located into one processing core. However, the intra-core partitioning is surely
of more certification cost since it shares more resources and complicates the ar-
chitecture of the kernel and hardware (involving Memory Management Unit or
Memory Protection Unit). Therefore, partitions with different SILs are recom-
mended to be allocated respectively into isolated cores at inter-core level. If the

I/O Sharing in a Multi-core Kernel for Mixed-Criticality Applications 335

Fig. 2. System architecture

Fig. 3. I/O sharing approach

inter-core isolation can satisfy the system partitioning needs, intra-core isolation
is no longer needed, avoiding the certification cost of intra-core isolation design.
Therefore, the intra-core isolation mechanism is designed as a configurable com-
ponent in the kernel. A violation handling mechanism of partitioning is required
to process violations in a unified manner.

In this two-level partitioning architecture, I/O sharing among partitions can
be addressed by a simple message-based approach, as shown in Fig.3. Each
shared I/O has a dedicated actor that can perform all possible operations on
the I/O. Tasks belonging to different partitions that require to share the I/O
are no longer able to access the I/O directly. The I/O is only accessible to its
hosted actor. The I/O with its actor works in an isolated partition and the other
partitions can perform their desired operations on the I/O by sending a request
via a safe message. The actor works as a server and processes all the requests
buffered in a waiting queue when the actor partition gets its turn to run. All
the execution of this approach is determined at the system integration time.
This approach has two advantages. Firstly, less software has to be certified to
the highest SIL among the mixed-criticality partitions. Each partition is isolated
from the I/O partition and other partitions, so the low SIL partitions are just
certified to their corresponding SILs. Of course, I/O actor has to be certified to
the highest SIL, which is essentially inevitable. Secondly, this is a simpler solu-
tion for I/O sharing on a multi-core platform, comparing to multi-core mutual
exclusion management. Therefore, it’s easier to certify.

4 Kernel Design for I/O Sharing

I/O sharing in the HARTEX multikernel enforces the existence of a safe mes-
sage passing manager and a certifiable I/O resource manager. A message across
partitions has to be validated to a level of dependability by applying a set of

336 G. Li and S. Top

Fig. 4. Producer-consumer communication in the HARTEX multikernel

measures. The I/O sharing needs to abstract all I/O operations into a server
model for message-based requests coming from the other partitions.

4.1 Safe Message Passing

Fig.4 presents the communication mechanism of the HARTEX multikernel in
general. Each core has a message manager and a communication stack (COMM
stack) for safe intra-core and inter-core communication. The message manager
and the communication stack are dedicated to implement the safety layer and
communication protocol respectively. The message manager takes the responsi-
bility of managing messages and applying safety-related communication mea-
sures. If a message passing failure occurs, the message manager reports the
failure to the Violation Manager in the HARTEX multikernel, which handles
all kinds of violations in a unified manner. Additionally, the message manager
pushes incoming requests of I/O sharing into I/O waiting queue. The communi-
cation stack is a typical layered network protocol for embedded systems, which
takes care of message routing for intra-core and inter-core communication. It
also provides timed-triggered communication that enables the communication
subsystem to transfer a message at a specific time instance.

The communication process is fully controlled by the trusted kernel execut-
ing in the supervisor mode. The message manager provides a number of safety
measures in the kernel space, listed in Table 1. A message can be configured to
have several of these safety measures applied according to its SIL requirement.
E.g. Cyclic Redundancy Check, Check Sum and Message Acceptance Filtering
measures can be applied to one message, by putting these measures IDs into the
message configuration. More safety-related measures can be added in the HAR-
TEXmultikernel. From Table 2, all the potential communication faults presented
in IEC 61508 can be alleviated by the listed safety measures. Note that the pad
in the table means all the measures labelled by pads should be applied together
to cover this kind of faults.

4.2 I/O Sharing Management

In a multi-core system, some I/Os are dedicatedly connected to a specific core,
but some can be connected to several cores (E.g. a LCD I/O interface connected

I/O Sharing in a Multi-core Kernel for Mixed-Criticality Applications 337

Table 1. safety communication measures in the HARTEX

Exploitation of interconnection
hardware redundancy

Cyclic Redundancy Check

Message via dual channels

Exploitation of time redundancy
Check sum

Double-sending of a message

Other measures

Message Acceptance Filtering

Message sequence index

Timed Message Scheduling

Table 2. Communication faults are coved by specific safety measures

Failure
types

Hardware
redundancy

Time redun-
dancy

Message fil-
tering

Sequence in-
dex

Time-
triggered
scheduling

Repetitions
√

Deletion
√

Insertion
√

Resequence
√

Corruption
√ √

Delay
√

Masquerade • • •

to multiple cores by a common bus). This raises issues from the multi-core point
of view. Firstly, some dedicated resources possibly need to be accessed by the
other cores. Secondly, multiple cores could use a shared exclusive resource con-
currently. This contention can reduce system scalability and performance, since
in the conventional way all the relevant states of a resource (E.g. free, being
occupied) should be maintained for state consistency among all the cores. This
complicated interaction causes the system to be of higher certification cost. More-
over, partitioning is not taken into account while sharing I/Os.

Our approach that improves the localizability of shared resources has been
proposed. Each shared I/O is designed to form a partition on a specified core,
and all the possible operations on the shared I/O are only performed by this
partition. A client-server model for a shared I/O is introduced such that the
operations on the I/O of all the other partitions (clients) are achieved by send-
ing request messages to the specified I/O partition. An I/O actor (as a server)
integrated with the resource manager on the host specified core receives re-
quest messages, validates the messages, performs corresponding operations on
the shared resource, and optionally feedbacks operation results to the requesting
cores. The I/O actor is isolated from the other partitions and the message-based
requests are guaranteed by the mentioned safety measures applied in the mes-

338 G. Li and S. Top

Fig. 5. Server-Client model of shared resource access mechanism

sages. Additionally, the upper limit of the number of requests from a partition
in one Main Frame is predetermined in the actor partition as well as specific
services of I/O operations that could be used by the partition. Fig. 5 illustrates
that tasks on the same core or on different cores can send I/O requests to the
resource server via the local message manager. The execution of the actor in the
separation kernel is dependent on the allocated time slices of the actor partition.

This approach has several advantages. Firstly, the relevant states of shared
resources are not necessary to be replicated among multiple cores. This ap-
proach directly facilitates higher system scalability and simplifies the system
architecture. Secondly, an I/O resource accessible only to a core are enabled to
be accessed by the other cores in a uniform manner by using this approach.
Thirdly, the core-level subsystem with localized I/Os has less interference with
the other cores logically besides the validated message requests, which facilitates
the partitioning architecture. Therefore, the system abstraction model is more
understandable and also easily analysed and certified. In the end, one crashed
partition which could use a shared I/O is unable to affect the I/O resource
utilization by the other cores, if the I/O actor partition works well and I/O
message-based requests are well-validated. Tasks with different SILs are enabled
to access the I/O without hindering the partitioning architecture, when the I/O
actor is certified to the highest SIL of these tasks.

To achieve the server-client model of resource sharing, each I/O resource needs
to be abstracted into an I/O actor model, which provides clients with all the
operation functions. These functions are invoked by the resource manager accord-
ing to the validated requests. E.g. a monitor can be simply abstracted into four
functions: Monitor config() function that can initialize and configure the moni-
tor, Monitor on() function that can turn on the monitor, Monitor off() function
that can turn off the monitor and Monitor display() function that can display
values on the monitor. Each function can get value parameters of a configurable
size in the message-based request. All the functions corresponding to different
operations have to take the I/O current configuration and states into consider-
ation before executing its desired operations.

I/O Sharing in a Multi-core Kernel for Mixed-Criticality Applications 339

Fig. 6. A safety-related module for a frequncy converter

5 A Case Study: A Safety-Related Module for a Frequent
Converter

There is a typical safety-critical application from industrial domain [7]: a safety-
related module for a frequency converter used to control the speed of an electrical
motor. E.g. controlling a rotating blade in a manufacturing machine. The fail-
ure of stopping the motor safely results in the harm to people or equipments.
Therefore, a safety-related module implementing a safe stop is highly required.
In Fig.6, the inputs of the safety-related module are a safe field bus (PROFISafe)
and the local emergency stop button. In addition, a reset switch is used to re-
cover the module into an initial state. According to standard IEC 61800-5-2,
a safe stop can be ensured by two functions Safe Torque Off and Safe Stop 1.
The safety function Safe Torque Off is achieved through the safety-related in-
terface terminal 37 which can remove the power from electronics and afterwards
the motor coasts. The Safe Stop 1 is to request an internal function of the fre-
quency converter to ramp down the speed of the motor via the terminal 27. Both
functions perform in conjunction to achieve a safe stop.

To achieve SIL 3 according to IEC 61508, 1oo2D structure [1] is selected for
acquiring the hardware fault tolerance of 1, which has two redundant isolated
channels with mutual diagnostics. An initial model of the safety-related model
in a high abstraction level is proposed in Fig.7. The model only takes care of
the high level components, their implementation in hardware or software, and
the interaction. It’s represented intuitively by the extended safety architecture
taxonomy [7]. Black color represents components implemented in hardware and
grey color means in software. Solid line represents safety-related components,
dotted line represents diagnostics components and dashed line represents non-
safety-related components.

As illustrated in Fig.7, only one multi-core chip comprising three isolated
cores is used to implement the two safety-related channels and a non-safety-
related channel respectively. Core 1 performs one safe-related channel and diag-
nostics, and similarly Core 2 performs the redundant safe-related channel and
diagnostics. Core 3 executes the non-safety-related reset handler as well as the
non-safety-related gateway. ”A” in the grey dotted circle in the left are actuators

340 G. Li and S. Top

Fig. 7. A high-level abstraction model of a safety-related module for a frequncey con-
verter on a multi-core chip

Fig. 8. I/O sharing in a safety-related module for a safe stop

that monitor their own emergency switches whether they are in the operational
state or not, and ”A” in the black line circle in the right are actuators that react
to the external environment. Here we focus on the partitions on Core 1 as an
example, aiming at investigating the sharing of the output port in the partition-
ing architecture. The safe-related channel (a component) can execute functional
operations and the diagnostics component monitors the channels, sensors and
actuators, which naturally constitutes two partitions. Both partitions share the
redundant output 1 but have to be isolated. A fault taking place in the safe
channel partition can not be propagated to the diagnostics partition, in order
to avoid that the fault affects the judgement of the diagnostics partition and
subsequently it is possibly undetectable.

In Fig.8, three partitions should be implemented upon Core 1: Safe Channel
partition, Diagnostics partition and I/O partition. The Safe Channel partition
performs the safety-related functions and sends safe messages to the Diagnostics
and I/O partitions. The Diagnostics partition checks the correctness of the safe
channel output, as well as the states of its objective sensor and actuator. If
any fault takes place, the Diagnostics partition sends safe messages to the I/O
partition to interact to the actuator, aiming at switching the system into a
safe state in case of the fault. All the possible operations on the output 1 are
abstracted into a well-defined model including the functional operations and
handlers in case of different faults. This architecture to a great extent simplifies
the development and certification of this case study.

I/O Sharing in a Multi-core Kernel for Mixed-Criticality Applications 341

6 Related Work

Exclusive shared I/O operations are usually executed under the protection of mu-
tual exclusion management, which is widely used in real-time operating systems.
However, the management of shared I/Os has to take into account the isolation
in a partitioning architecture that comprises mixed-criticality applications. The
traditional I/O sharing approach Time division multiple access (TDMA) to I/Os
can not fulfil the isolation requirements between partitions since it only solves
temporal isolation.

I/O virtualization is a new approach that ensures the division of I/O, where
each virtual machine (partition) with its own system image instance can operate
on I/Os independently. In the embedded system world, the XtratuM hypervisor
is in charge of providing virtualization services to partitions, and all I/Os are
virtualized as a secure I/O partition which can receive and handle I/O opera-
tion requests from the other partitions [8]. This is very similar to our separation
kernel but still a little different. The XtratuM hypervisor is a virtualization
layer that’s prone to high-performance applications comparing to the HARTEX
multikernel. The partition instance of the XtratuM can be a bare-machine ap-
plication, a real-time operation system or a general-purpose operation system.
The HARTEX multikernel focuses on fine-grained systems and its partition in-
stance is a set of basic executable tasks. Therefore, the HARTEX multikernel
leads to a small size of code (4300LOC) and simple architecture, and thus has
less certification cost. It has advantages when it comes to small applications.
Additionally, the HARTEX multikernel supports multi-core architecture with
safe communication. A strongly partitioned real-time system in [9] proposes the
Publish-Subscribe architecture in a microkernel for I/O sharing. Partition has
the Pseudo-Device Driver to access the I/Os by sending requests to the microker-
nel. The microkernel layer has device queues to buffer requests, physical device
drivers and a device scheduler to handle the requests. This benefits the system
with high I/O bandwidth since I/Os can be operated in all authorized partitions.
However, the approach results in poor portability and higher certification cost,
due to the fact that, besides more complicated design, the code size of the kernel
increases since the I/O drivers are added into the kernel and have to be certified
together with the kernel. Once moving the kernel to another platform, the entire
kernel has to be certified again with the drivers of the new platform, which is
required by the safety standard IEC 61508, and thus leads to poor portability.

7 Conclusion

This paper targets simplification and reduced certification cost of mixed-
criticality applications on a multi-core platform in the context of I/O sharing.
This is a part of our deliverables for the RECOMP project. According to guide-
lines in the IEC 61508, this paper contributes a set of requirements to enable I/O
sharing in a mixed-criticality system. Based on these requirements, a simplified
partitioning multi-core architecture has been proposed with several advantages

342 G. Li and S. Top

such as physical isolation between inter-core partitions, easy development and
reduced certification. Furthermore, the safe message-based communication in the
kernel can guarantee safe requests of accessing I/Os in the I/O partition with
different levels of dependability in the kernel space. The simple I/O sharing ap-
proach has been fully explored to support mixed-criticality partitions without
breaking the partitioning architecture. Therefore, a mixed-criticality system of
isolated partitions that have to share I/Os can be allocated into one platform
and partitions can be certified individually according to their own SILs and
consequently the total certification cost is reduced. Since taking the overall con-
sideration of hardware and software architecture, our I/O sharing approach in
the context of partitioning systems is simple, flexible and certifiable.

References

1. Functional safety of electrical/electronic/programmable electronic safety related sys-
tems (2010)

2. Arinc specification 651: Design guidance for integrated modular avionics (1991)
3. Ernst, R.: Certificationn of trusted mpsoc platforms. In: 10th International Forum

on Embedded MPSoC and Multi-core (2010)
4. Angelov, C.K., Ivanov, I.E., Burns, A.: Hartex: a safe real-time kernel for distributed

computer control systems. Softw. Pract. Exper. 32, 209–232 (2002)
5. Integrated modular avionics (ima) development guidance and certification consid-

erations (2005)
6. Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S., Roscoe,

T., Schüpbach, A., Singhania, A.: The multikernel: a new os architecture for scal-
able multicore systems. In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP 2009, pp. 29–44. ACM (New York (2009)

7. Berthing, J., Maier, T.: A taxonomy for modelling safety related architectures in
compliance with functional safety requirements. In: Saglietti, F., Oster, N. (eds.)
SAFECOMP 2007. LNCS, vol. 4680, pp. 505–517. Springer, Heidelberg (2007)

8. Masmano, M., Peiro, S., Sanchez, J., Simo, J., Crespo, A.: Io virtualisation in a
partitioned system. In: Proceeding of the 6th Embedded Real Time Software and
Systems Congress (2012)

9. Shah, R., Lee, Y.-H., Kim, D.Y.: Sharing I/O in strongly partitioned real-time
systems. In: Wu, Z., Chen, C., Guo, M., Bu, J. (eds.) ICESS 2004. LNCS, vol. 3605,
pp. 502–507. Springer, Heidelberg (2005)

Evaluating the Impact of Integrating a Security

Module on the Real-Time Properties
of a System�

Sunil Malipatlolla1 and Ingo Stierand2

1 OFFIS - Institute for Information Technology,
Oldenburg, Germany

sunil.malipatlolla@offis.de
2 Carl von Ossietzky Universität Oldenburg,

Oldenburg, Germany
stierand@informatik.uni-oldenburg.de

Abstract. With a rise in the deployment of electronics in today’s sys-
tems especially in automobiles, the task of securing them against various
attacks has become a major challenge. In particular, the most vulnera-
ble points are: (i) communication paths between the Electronic Control
Units (ECUs) and between sensors & actuators and the ECU, (ii) re-
mote software updates from the manufacturer and the in-field system.
However, when including additional mechanisms to secure such systems,
especially real-time systems, there will be a major impact on the real-
time properties and on the overall performance of the system. Therefore,
the goal of this work is to deploy a minimal security module in a target
real-time system and to analyze its impact on the aforementioned prop-
erties of the system, while achieving the goals of secure communication
and authentic system update. From this analysis, it has been observed
that, with the integration of such a security module into the ECU, the
response time of the system is strictly dependent on the utilized commu-
nication interface between the ECU processor and the security module.
The analysis is performed utilizing the security module operating at dif-
ferent frequencies and communicating over two different interfaces i.e.,
Low-Pin-Count (LPC) bus and Memory-Mapped I/O (MMIO) method.

Keywords: Security, FPGA, Interfaces, Real-Time Systems.

1 Introduction and Related Work

Real-time applications such as railway signaling control and car-to-car communi-
cation are becoming increasingly important. However, such systems require high
quality of security to assure the confidentiality and integrity of the information
during their operation. For example, in a railway signaling control system, the

� This work was supported by the Federal Ministry for Education and Research
(BMBF) under support code 01IS11035M, ’Automotive, Railway and Avionics
Multicore Systems (ARAMiS).

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 343–352, 2013.
c© IFIP International Federation for Information Processing 2013

344 S. Malipatlolla and I. Stierand

control center must be provided with data about position and speed of the ap-
proaching train so that a command specifying which track to follow may be sent
back. In such a case, it must be assured that the messages exchanged between
the two parties are not intercepted and altered by a malicious entity to avoid
possible accidents. Additionally, it is mandatory to confirm that the incoming
data to the control center is in fact from the approaching train and not from
an adversary. Similar requirements are needed in a car-to-car communication
system. Thus, there is a need to integrate a security mechanism inside such sys-
tems to avoid possible attacks on them. Furthermore, above considered systems
are highly safety relevant, thus the real-time properties typically play an impor-
tant role in such systems. In general, the goal of a real-time system is to satisfy
its real-time properties, such as meeting deadlines, in addition to guaranteeing
functional correctness. This raises the question, what will be the impact on these
properties of such a system when including, for example, security as an addi-
tional feature? To understand this, we integrate a minimal security module in
the target real-time system and evaluate its impact on the real-time properties
as a part of this work.

There exist some work in the literature which addresses the issue of includ-
ing security mechanisms inside real-time applications. For example, Lin et al.
[9] have extended the real-time schedulability algorithm Earliest Deadline First
(EDF) with security awareness features to achieve a static schedulability driven
security optimization in a real-time system. For this, they extended the EDF
algorithm with a group-based security model to optimize the combined security
value of selected security services while guaranteeing schedulability of the real-
time tasks. In a group-based security model, security services are partitioned
into several groups depending on the security type and their individual quality
so that a combination of both results in a better quality of security. However,
this approach had a major challenge as how to define a quality value for a certain
security service and to compute the overhead due to those services. In another
work, authors Marko et al. have designed and implemented a vehicular security
module, which provides trusted computing [12] like features in a car [13]. This
security module protects the in-vehicle ECUs and the communication between
them, and is designed for a specific use in e-safety applications such as emergency
breaking and emergency call. Further, the authors have given technical details
about hardware design and prototypical implementation of the security module
in addition to comparing its performance with existing similar security modules
in the market. Additionally, the automotive industry consortium, autosar, spec-
ified a service, referred to as Crypto Service Manager (CSM), which provides a
cryptographic functionality in an automobile, based on a software library or on
a hardware module [2]. Though the CSM is a service based on a software library,
it may be supported by cryptographic algorithms at the hardware level for se-
curing the applications executing on the application layer. However, to the best
of our knowledge, none of the aforementioned approaches addresses the issue of
analyzing the impact on the real-time properties of a system when integrating a
hardware security module inside it.

Evaluating the Impact of Integrating a Security Module 345

Fig. 1. System Scenario

The rest of the paper is organized as follows. Section 2 gives a detailed de-
scription of the system under consideration and its operation with the security
module internals and the adversarial model. Section 3 evaluates the system oper-
ation with three different test scenarios, and presents the corresponding analysis
results. Section 4 concludes the paper and gives some hints on future work.

2 System Specifications

2.1 System Model

The system under consideration is depicted in Figure 1. It comprises of a sensor,
an actuator, an electronic control unit (ECU) with a processor & a security
module, and an update server. The system realizes a simple real-time control
application, where sensor data are processed by the control application in order
to operate the plant due to an actuator. The concrete control application is not
of interest in the context of this paper. It might represent the engine control of
a car, or a driver assistant system such as an automatic breaking system (ABS).

The scenario depicted in Figure 1 consists of the following flow: Sensor peri-
odically delivers data from the plant over the bus (1), which is in an encrypted
form to avoid its interception and cloning by an attacker. The data is received
by the input communication task ComIn, which is part of the operating system
(OS). Each time the input communication task receives a packet, it calls the
security service (SecSrv), which is also part of the OS, for decryption of the
packet (2). The security service provides the hardware abstraction for security
operations, and schedules service calls. The decryption call from the communi-
cation task is forwarded to the security module (3), which processes the packet
data. The cryptographic operations of the security module modeled by Dec, Enc,
and Auth are realized as hardware blocks. The decrypted data is sent back to
the security service, which is in turn returned to the ComIn. Now the data is
ready for transmission to the application (4), which is modeled by a single task
App. The application task is activated by the incoming packet, and processes
the sensor data. The controller implementation of the task calculates respective

346 S. Malipatlolla and I. Stierand

actuator data and sends it to the communication task ComOut (5) for transmis-
sion to the Actuator. However, before sending the data to the Actuator, the
communication task again calls the security service (6), which in turn accesses
the security module for data encryption (7). After Enc has encrypted the data,
it is sent back to the communication task ComOut via SecSrv, which delivers the
packet to the Actuator (8). It is required that the control application finishes
the described flow within a single control period, i.e., before the next sensor
data arrives.

Additionally, the system implements a function for software updates. To up-
date the system with new software, the UpdateServer sends the data to the Upd
task (a) via a communication medium (e.g., over Internet) to the outside. This
received data must be authenticity verified and decrypted before loading it into
the system. For this, the Upd forwards the data to the SecSrv, which utilizes the
Auth block of the security module (b). Only after a successful authentication,
the data is decrypted and loaded into the system else it is rejected.

The security module, integrated into the ECU, is a hardware module com-
prising of cryptographic hardware blocks for performing operations such as en-
cryption, decryption, and authenticity verification. Though these operations are
denoted as tasks in the system view, they are implemented as hardware blocks.
Further, a controller (a state machine), a memory block, and an I/O interface
are included inside the security module (not depicted in Figure 1). Whereas the
controller executes the commands for the aforementioned cryptographic opera-
tions, the memory block acts as a data buffer. The commands arrive as requests
form the SecSrv on the processor, and the responses from the security module
are sent back. In essence, the SecSrv acts as a software abstraction of the hard-
ware security module, for providing the required cryptographic operations to the
executing tasks on the processor.

The security module is equipped with particular support for update function-
ality i.e., authenticity verification. In normal operation, the data is temporarily
stored in the memory block of the security module to compare the attached
Hash-based Message Authentication Code (HMAC) value by the update server
with the computed HMAC value in the security module before decrypting and
loading it. This kind of operation, where all update data is stored in memory of
the security module, and authentication being applied at once on the data, is
however not appropriate in the context of the considered real-time application.
This is because, while the security module is performing authentication, other
operations such as decryption of incoming sensor data or encryption of outgoing
actuator data are blocked. Given this, large update data can block the device
for a long time span, resulting in a violation of allowed delay by the control
algorithm.

To avoid such a situation in the considered scenario, for authenticity verifica-
tion, the HMAC is calculated in two steps. In the first step, a checksum of the
update data is calculated using a public hash algorithm such as Secure Hash Al-
gorithm (SHA-1). In the second step, the HMAC is computed on this checksum.
The Upd task thus calculates and sends only the checksum of the data instead of

Evaluating the Impact of Integrating a Security Module 347

whole data itself to the security module via SecSrv. Since the update process is
not time critical, Upd task is executed with low priority, preventing any undesired
interference with the real-time application. Therefore, only the interference for
authentication of the single checksum has to be considered. However, since the
update data being encrypted, Upd task needs to access the security module for its
decryption. To this end, the data is split into packets and decrypted piece-wise.
The impact of these operations has to be considered in the real-time analysis.

Another possibility to verify the authenticity of the update data would be to
compute the HMAC iteratively within the security module. For this, the update
data from the Upd task is sent to the security module in a block-by-block basis
via the SecSrv. The computed HMAC on the received block is stored inside
the memory block of the security module. Before sending the next block, the
SecSrv checks for any pending requests for encryption or decryption operation
from other high priority tasks. If there exists such a request, it is executed be-
fore sending the next block of data for HMAC computation. In order to handle
this procedure, the security module should be equipped with an additional hard-
ware block performing the scheduling of cryptographic operations. Further, the
communication interface between the SecSrv and the security module has to
be modified. Though, this method is currently not supported by our security
module it is definitely a desired feature.

The goal of the security module is to provide a secure communication path
between the sensor and the actuator and to provide authentic updates of the sys-
tem. For this, the cryptographic blocks of the security module utilize standard-
ized algorithms for providing the cryptographic operations such as encryption,
decryption, hash computation, and HMAC generation & verification. Having
said that, all the aforementioned cryptographic operations performed by the se-
curity module in the considered system utilize a single block cipher algorithm
i.e., Advanced Encryption Standard (AES) as the base [10]. It is a symmetric key
algorithm i.e., it utilizes a single secret key for both encryption and decryption
operations. In addition to being standardized by National Institute for Standards
and Technology (NIST), the AES-based security mechanisms consume very few
computational resources, which is essential in resource constrained embedded
systems.

2.2 Adversarial Model

To describe all possible attack points in the considered system, an adversar-
ial model is formulated as depicted in Figure 2. The model highlights all the
components (with a simplified ECU block) and the corresponding internal and
external communication paths (i.e., numbered circles) of the original system (c.f.
Figure 1). The adversary considered in the model is an active eavesdropper (c.f.
Dolev-Yao Model [5]), i.e., someone who first taps the communication line to
obtain messages and then tries everything in order to discover the plain text. In
particular he is able to perform different types of attacks such as classical crypt-
analysis and implementation attacks, as defined in taxonomy of cryptographic
attacks by Popp in [11]. While classical cryptanalysis attacks include cloning by

348 S. Malipatlolla and I. Stierand

Fig. 2. Adversarial Model

interception, replay, and man-in-the-middle attacks, the implementation attacks
include side-channel analysis, reverse engineering, and others.

For our analysis, we assume that the attacker is only able to perform clas-
sical cryptanalytic attacks on the external communication links (indicated by
thick arrows coming from adversary) i.e., from sensor to ECU, ECU to actuator,
and update server to ECU. In specific, under cloning by interception attack, the
adversary is capable of reading the packets being sent to the ECU and store
them for using during a replay attack. Whereas in a man-in-the-middle attack,
the adversary can either pose as an ECU to authenticate himself to the update
server or vice versa. In the former case, he would know the content of the update
data and in the latter he may update the ECU with a malicious data to destroy
the system. However, to protect the systems against the classical cryptanalytic
attacks, strong encryption and authentication techniques need to be utilized.
With reference to this, the security module in here provides techniques such as
confidentiality, integrity, and authenticity which overcome these attacks. We rule
out the possibility of attacker being eavesdropping the ECU’s internal commu-
nication (indicated by a dotted arrow coming from adversary) because such an
attack implies that the attacker is having a physical access to the ECU and thus
control the running OS and the tasks themselves.

3 System Analysis

To analyze the impact of including the security feature on the real-time proper-
ties of the system, we consider three different test cases as detailed in the sequel.
A brief description about the system set-up and the utilized tools is given before
delving into the obtained results with the test cases.

The control application is executed with a frequency of 10 kHz, i.e., the Sensor
sends each 100μs a data packet to the ECU. The update service is modeled as
a sporadic application with typically very large time spans between individual
invocations. All tasks of the processor are scheduled by a fixed priority scheduling
scheme with preemption, where lower priority tasks can be interrupted by higher
priority tasks. Furthermore, all tasks belonging to the OS (depicted by a dark
gray shaded area of Figure 1) get higher priority than the application tasks.
The priorities in descending order are ComIn, ComOut, SecSrv, App, and Upd.

Evaluating the Impact of Integrating a Security Module 349

Fig. 3. Scenario 1 w/o security feature

The operations of the security module are not scheduled, and the module can be
considered as a shared resource. The SecSrv task processes incoming security
operation requests for the security module in first-in-first-out (FIFO) order.

For all test cases, the processor of the ECU is a 50MHz processor (20ns cycle
time) that is equipped with internal memory for storing data and code. Internal
memory is accessed by reading and writing 16Bit words within a single processor
cycle. Communication between the ECU, the sensor, and the actuator is realized
by a controller area network (CAN) bus. For simplicity, we assume that all data
are transferred between the processor and the CAN bus interface via I/O regis-
ters of 16 bit width, and with a delay of four processor cycles. Communication
over CAN is restricted to 64Bit user data, and we assume that this is also the
size of packets transmitted between the ECU and the sensor/actuator. In order
to transmit 128Bit data as required by the operation of the security module,
each transmission consists of two packets. Receiving and transmitting data thus
requires 16 Byte data transfer between the CAN bus controller and the proces-
sor, summing up to 64 processor cycles (1.28μs). Storing the packet into the OS
internal memory costs additional 320ns. Bus latencies are not further specified
in our setting, as we concentrate on the timing of the ECU application.

The utilized AES algorithm inside the security module operates on 128Bit
blocks of input data at a time. Thus, all the blocks (enc, dec, and Auth) of
the security module, operate on same data size because they utilize the same
algorithm. The security module is implemented as a proof-of-concept on a Xilinx
Virtex-5 Field Programmable Gate Array (FPGA) [7] platform. The individual
cryptographic blocks of the security module are simulated and synthesized uti-
lizing the device specific tools. Utilizing an operating frequency of 358MHz for
the FPGA, the execution time for each of encryption, decryption, and authenti-
cation operations is determined (by simulation) to be 46ns for a 128Bit block of
input data. The timing parameters for other operating frequencies of the secu-
rity module are obtained by simple scaling. The utilized FPGA device supports
storage in the form of block RAM with 36 kb size, which is large enough to be
used as memory block of the security module.

We apply timing analysis in order to find the worst-case end-to-end response
time of the control application, starting from the reception of sensor data up to
the sending of actuator data (shown in Figure 3). Various static scheduling anal-
ysis tools are available for this task (e.g. [6,1]). The system however is sufficiently
small for amore precise analysis based on real-timemodel-checking [4]. To this end,

350 S. Malipatlolla and I. Stierand

Table 1. Analysis Results

Scenario 1 Scenario 2 Scenario 3
50MHz 50MHz 50MHz 358MHz

Task LPC LPC MMIO MMIO

App 50.0μs 50.0μs 50.0μs 50.0μs 50.0 μs

ComIn 1.6μs 1.6μs 1.6μs 1.6μs 1.6μs

ComOut 1.6μs 1.6μs 1.6μs 1.6μs 1.6μs

SecSrv — 80ns 80ns 80ns 80ns

Comm. CPU/SM — 1.46μs 1.46μs 400ns 200ns

Dec — 358ns 358ns 358ns 46ns

Enc — 358ns 358ns 358ns 46ns

Auth — — 358ns 358ns 46ns

Response Time 53.2μs 60.1μs 62.0μs 56.7μs 54.96 μs

the system is translated into a Uppaal model [3]. The worst-case response time is
obtained by a binary search on the value range of respective model variable.

3.1 Target System without any Security Features

In the first scenario, which is shown in Figure 3, the communication tasks send
the data directly to the control application and to the communication bus with-
out encryption or decryption. The resulting end-to-end response time is shown in
column “Scenario 1” of Table 1. As expected, the analysis shows that the execution
times are simply summed up for the involved tasks since no further interferences
occur in this simple setting. Indeed the situation would be different when multiple
application tasks are executed on the same ECU, which would cause additional
interferences.

3.2 Target System with Secure Communication Feature

In the second scenario, only the secure communication feature between the ECU
and the sensor and the actuator is enabled. The update service however is switched
off. This implies that the security module has to perform only encryption and de-
cryption but no authentication. For this scenario, we assume that the security
module communicates with the processor via a Low-Pin-Count (LPC) bus [8].
LPC is a 4Bit wide serial bus defined with a clock rate of 33MHz. According to the
specification [8], the transfer of 128Bit data plus 16Bit command requires about
1.46μs, when the bus operates with typical timing parameters. Each invocation
of the SecSrv involves a transfer of the data to or from the security module, plus
the execution time of the task of 80ns for internal copying operations. The secu-
rity module operating at a clock rate of 50MHz results in an individual execution
time of 358ns for encryption and decryption (from simulation results). With this
set-up, the timing analysis shows (column “Scenario 2” of Table 1), that enabling
only the secure communication feature results in a significant raise in the response
time of the system i.e., about 13% more than in the previous scenario.

Evaluating the Impact of Integrating a Security Module 351

3.3 Target System with Secure Communication and Secure Update
Features

For the third scenario, both secure communication and authentic update features
are enabled. This scenario has been analyzed with three different sets of timing
parameters.

The first setting assumes the same parameters as for Scenario 2. Hence the
security module operates at a clock rate of 50MHz, and communicates with the
processor via LPC. The results show a further raise in the end-to-end response
time of the application because the update service might call the authentication
service, which incurs an additional execution time to the pending encryption
and decryption operations of the security module. Thus, it can be seen that the
end-to-end response time is around 16% higher than in the first scenario.

For the second setting, we assume that the security module communicates
with the processor via a Memory-Mapped I/O (MMIO) interface. Memory trans-
fers are assumed to operate with 16Bit words, and a delay of four processor
cycles, resulting in transfer times of 80ns. A transfer between the processor and
the security module now sums up to 400ns.

The final setting works with a very fast security module, and memory transfers
only having two cycles delay. The security module operates at 358MHz, which
results in all cryptographic operations with 46ns of execution time.

Surprisingly, the end-to-end response time in the second and the final setting
has reduced and is only around 6.5% and 3.5% respectively. This implies that the
type of communication interface between the processor and the security module
has a significant impact on the resulting overall response time of the system.

In all settings, the software update function is assumed to perform the oper-
ations as discussed in Section 2. After calculating the checksum of the update
data, task Upd sends an authentication request to SecSrv. When the authenti-
cation is successful (which is always true in the considered scenario), the task
successively sends decryption requests for each packet of the update data, while
waiting for the reply before sending a new request. The results shown in the table
represent the worst-case behavior obtained with various values of the execution
time (between 10ns and 1μs) needed by Upd between successive decryption re-
quests. The impact of the operation of Upd remains rather small, which can be
explained by the fact that the task is executed with low priority. However, the
selection of the execution times was not exhaustive, and thus do not guarantee
absence of race conditions. To enforce limited impact of the update function, the
SecSrv should be modified by running with priority inheritance, where requests
are executed with the same priority as the calling task. A more comprehensive
analysis of this issue is subject of future work.

4 Conclusion

In this work, a real-time system integrated with a security module is analyzed to
determine the impact of the latter on the worst-case response time of the system.
For this, different communication interfaces such as LPC bus and MMIO method

352 S. Malipatlolla and I. Stierand

are utilized between the security module and the control unit processor of the
system, for performing cryptographic operations such as encryption, decryption,
and authentication. It is observed that the worst-case response time of the system
is high for a slower interface (i.e., LPC) and decreases drastically for a faster
interface (i.e., MMIO). Thus, when including a security mechanism in real-time
systems it is necessary to consider about the type of communication interface
being utilized. Though, the target system in here has a single ECU, a sensor,
and an actuator, the typical systems have multiple such components which need
a further investigation.

References

1. Anssi, S., Albers, K., Dörfel, M., Gérard, S.: chronVAL/chronSIM: A Tool Suite for
Timing Verification of Automotive Applications. In: Proc. Embedded Real-Time
Software and Systems, ERTS (2012)

2. Autosar Organization: Specification of Crypto Service Manager (2011),
http://www.autosar.org/download/R4.0/AUTOSAR SWS CryptoServiceManager.

pdf

3. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal 2004-11-17. Tech.
rep. Aalborg University, Denmark (November 2004)

4. Dierks, H., Metzner, A., Stierand, I.: Efficient Model-Checking for Real-Time
Task Networks. In: International Conference on Embedded Software and Systems,
ICESS (2009)

5. Dolev, D., Yao, A.C.: On the security of public key protocols. Tech. rep. Stanford
University, Stanford, CA, USA (1981)

6. Hamann, A., Jersak, M., Richter, K., Ernst, R.: A framework for modular analysis
and exploration of heterogeneous embedded systems. Real-Time Systems 33(1-3),
101–137 (2006)

7. Inc., X.: Xilinx, http://www.xilinx.com/support/documentation/virtex-5.htm
8. Intel: Low Pin Count (LPC) Interface Specification. Intel Corp. (August 2002)
9. Lin, M., Xu, L., Yang, L., Qin, X., Zheng, N., Wu, Z., Qiu, M.: Static security opti-

mization for real-time systems. IEEE Transactions on Industrial Informatics 5(1),
22–37 (2009)

10. National Institute of Standards and Technology (NIST): Advanced Encryption
Standard (AES) (2001)

11. Popp, T.: An Introduction to Implementation Attacks and Countermeasures. In:
Proceedings of IEEE/ACM International Conference on Formal Methods and Mod-
els for Co-Design (MEMOCODE 2009), pp. 108–115 (July 2009)

12. Trusted Computing Group, Inc.: Trusted Platform Module (TPM) specifications
(2010),
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

13. Wolf, M., Gendrullis, T.: Design, implementation, and evaluation of a vehicular
hardware security module. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp.
302–318. Springer, Heidelberg (2012)

http://www.autosar.org/download/R4.0/AUTOSAR_SWS_CryptoServiceManager.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_CryptoServiceManager.pdf
http://www.xilinx.com/support/documentation/virtex-5.htm
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

Author Index

Alho, Pekka 262
Amiar, Azzeddine 139
Ando, Yuki 171
Azumi, Takuya 1

Baldin, Daniel 293
Berkenbrock, Gian R. 39
Bousquet, Lydie du 139

Carro, Luigi 49, 73
Chang, Che-Wei 116
Chiou, Derek 151

Delahaye, Mickaël 139
Dömer, Rainer 1, 116
Dürr, Frank 193

Fakih, Maher 205
Falcone, Yliès 139
Fedosov, Dmitriy 14
Ferreira, Ronaldo R. 49
Fränzle, Martin 205

Gansel, Simon 193
Gerstlauer, Andreas 151
Gezgin, Tayfun 272
Gilles, Katharina 293
Glesner, Sabine 92
Götz, Marcelo 306
Groesbrink, Stefan 228, 293
Grüttner, Kim 205

Hara-Azumi, Yuko 1
Henkler, Stefan 272
Herber, Paula 92
Hermant, Olivier 14
Heuer, André 283
Honda, Shinya 171
Hruška, Tomáš 128

Jatzkowski, Jan 238

Kaufmann, Tobias 283
Kerstan, Timo 293
Klobedanz, Kay 238

Klös, Verena 92
Kotásek, Zdeněk 128
Koutsoukos, Xenofon 318
Kunzel, Gustavo 159

Le, Truong-Giang 14
Lee, Dongwook 151
Li, Gang 331

Maihöfer, Christian 193
Malipatlolla, Sunil 343
Manceny, Matthieu 14
Mariano, Artur 151
Mattila, Jouni 262
Moreira, Álvaro F. 49
Mueller, Wolfgang 238
Muller, Ivan 159

Netto, João Cesar 159
Nowotka, Dirk 218

Oertel, Markus 104
Oyama, Hiroshi 1

Parizi, Rafael B. 49
Pawlak, Renaud 14
Pereira, Carlos Eduardo 159
Pockrandt, Marcel 92
Pöttker, Fabiana 61
Přikryl, Zdeněk 128

Reinkemeier, Philipp 181
Renaux, Douglas P.B. 61
Rettberg, Achim 104, 205, 238, 272
Rioboo, Renaud 14
Ritt, Marcus 73
Rothermel, Kurt 193

Schirner, Gunar 26
Schnitzer, Stephan 193
Shibata, Seiya 171
Silva, Bruno Dal Bó 306
Silveira, Fernando 73
Šimková, Marcela 128
Steinfeld, Leonardo 73
Stierand, Ingo 181, 272, 343
Syahkal, Yasaman Samei 1

354 Author Index

Takada, Hiroaki 171
Tanaka, Kiyofumi 250
Tomiyama, Hiroyuki 171
Top, Søren 331
Torres, Frank Sill 82
Traub, Johannes 218

Wehrmeister, Marco A. 39
Weyer, Thorsten 283
Winter, Jean Michel 159

Zhang, Jiaxing 26
Zhang, Zhenkai 318

	Preface
	Table of Contents
	Design Methodologies
	TECSCE: HW/SW Codesign Framework for Data Parallelism Based on Software Component

	1 Introduction
	2 TECSCE
	2.1 TECS
	2.2 SCE
	2.3 Overview of TECSCE

	3 Case Study for Proposed Framework
	3.1 Target Application
	3.2 TECS Components for the Target Application
	3.3 cellPlugin

	3.4 cd2specc

	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	Programming Robots with Events
	1 Introduction
	2 Related Work
	3 Event-Based Programming with INI
	3.1 Overview
	3.2 Advanced Use of Events

	4 A Case Study with the Humanoid Robot Nao
	4.1 Introduction to Nao and Its Moving Mechanism
	4.2 An INI Tracking Program Running on Nao

	5 Conclusion and Future Work
	Acknowledgments.

	References

	Joint Algorithm Developing and System-Level Design: Case Study on Video Encoding

	1 Introduction
	2 Related Work
	3 Unified Algorithm-System Design Flow
	3.1 Algo2Spec: Specification Generation Tool

	4 Cross-Layer Decisions
	5 Case Study
	6 Conclusion
	References

	Automatic Execution of Test Cases on UML Models
of Embedded Systems
	1 Introduction
	2 Related Work
	3 Automated Testing for UML Models
	4 AT4U Validation: UAV Case Study
	5 Conclusions and Future Work
	References

	Non-functional Aspects of Embedded Systems
	Compiler Optimizations Do Impact the Reliability of Control-Flow Radiation Hardened Embedded Software
	1 Introduction
	2 Automatic Correction of Control-flow Errors
	2.1 Control-Flow Error Detection
	2.2 Control-Flow Error Correction

	3 Fault Model and Experimental Methodology
	4 Impact of Compiler Optimizations on Control-Flow Reliability of Embedded Software
	5 Related Work
	6 Conclusions and Future Work
	References

	Power Reduction in Embedded Systems Using a Design Methodology Based on Synchronous Finite State Machines
	1 Introduction
	2 Problem Domain
	2.1 Approaches for the Reduction of Energy Consumption in Embedded Systems
	2.2 Synchronous Finite State Machines

	3 Related Work
	4 Proposed Methodology
	4.1 Considerations on the Proposed Technique

	5 Experimental Results
	5.1 Tankless Gas Water Heater Description and Requirements
	5.2 Control Algorithm Design
	5.3 Control Algorithm Simulation
	5.4 Implementation

	6 Conclusion
	References

	Low-Power Processors Require Effective Memory Partitioning

	1 Introduction
	2 Banked Memory Energy Model
	2.1 Memory Energy Model

	3 EnergySavings
	3.1 Effective Energy Saving
	3.2 Energy Savings Limits

	4 Experiments
	5 Results and Discussion
	6 Conclusions
	References

	Enhancement of System-Lifetime by Alternating Module Activation
	1 Introduction
	2 Alternating Module Activation
	2.1 Basic Idea
	2.2 Control Circuitry

	3 Enhanced Alternating Module Activation
	3.1 Partial Concurrent Error Detection
	3.2 Selective Complete Deactivation of Instances
	3.3 Built-In Self-Test for Faulty Instance Identification
	3.4 Final Architecture and Control Scheme

	4 Technique for MTTF Comparison on Cell-Level
	4.1 Types of Modeling of Failure Mechanisms
	4.2 Cell models for MTTF Comparison

	5 Results of the Simulations
	5.1 Setup of the Test Environment
	5.2 Results and Discussion

	6 Conclusion
	References
	2.1 Verification Approaches
	2.2 Design and Verification of Processors
	OVM Testbench.
	Program Generator.
	Reference Methodology.
	Functional Coverage.
	– DUT (Device Under Test).
	– OVM Verification Environment.
	Input Ports Sequencer and Driver.
	Instruction Sequencer and Driver.
	Scoreboard.
	Halt Detection Unit.
	Data Monitor.
	Output Ports Monitor.
	Subscribers.

	Verification
	Model Checking Memory-Related Properties of Hardware/Software Co-designs

	1 Introduction
	2 Preliminaries
	2.1 SystemC/TLM
	2.2 Uppaal Timed Automata
	2.3 Transformation from SystemC to UPPAAL

	3 Related Work
	4 Formalization and Transformation of the SystemC Memory Model
	4.1 Assumptions
	4.2 Representation
	4.3 Transformation

	5 Verification of Memory Safety
	6 Evaluation
	7 Conclusion and Future Work
	References

	Reducing Re-verification Effort by Requirement-Based Change Management

	1 Introduction
	2 System Abstraction and Prerequisites
	3 Change Management Process
	4 Consistency of the System
	5 Automating Change Impact Analysis
	6 Guided Compensation Candidate Selection by Shifting
	7 Prototype
	8 Conclusion and Outlook
	References

	Formal Deadlock Analysis of SpecC Models Using Satisfiability Modulo Theories

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 SpecC SLDL
	3.2 Satisfiability Modulo Theories

	4 From SpecC to SMT Assertions
	4.1 Execution
	4.2 Communication
	4.3 From Time Stamps to SMT Assertions

	5 Experiments
	6 Conclusion
	References

	Automated Functional Verification of Application Specific Instruction-set Processors

	1 Introduction
	2 Verification in the Development Cycle of Processors
	2.1 Verification Approaches
	2.2 Design and Verification of Processors

	3 Codasip Framework
	4 Functional Verification Environments for Processors
	5 Experimental Results
	6 Conclusion and Future Work
	References

	Performance Analysis
	Compressing Microcontroller Execution Traces to Assist System Analysis

	1 Introduction
	2 Motivation
	3 Cyclic Trace Compression
	3.1 Preliminaries
	3.2 Properties of Generated Grammars
	3.3 Exploiting Cycles with Cyclitur

	4 Application Example
	5 Implementation and Evaluation
	5.1 CoMET
	5.2 Metrics of Experimental Evaluation
	5.3 Programs and Traces
	5.4 Results
	5.5 Cyclitur and Network Traces

	6 Related Work
	7 Conclusion and Perspectives
	References

	Hardware and Software Implementations of Prim’s Algorithm for Efficient Minimum Spanning Tree
Computation
	1 Introduction
	2 Prim’s Algorithm
	2.1 Performance Analysis
	2.2 Parallelism Analysis
	2.3 Related Work

	3 FPGA Implementation
	4 Experimental Setup
	5 Results
	6 Summary and Conclusions
	References

	A Passive Monitoring Tool for Evaluation of Routing in WirelessHART Networks

	1 Introduction
	2 Related Work
	3 The WirelessHART Networks

	3.1 Data-Link Layer
	3.2 Network Layer
	3.3 Transport Layer

	4 Routing Monitoring Tool Structure
	4.1 Capture
	4.2 Decoder
	4.3 Topology and Routes
	4.4 Visualizer

	5 Case Study
	5.1 Network Topology Evaluation
	5.2 Routes used for Devices to Propagate Data to Access Point

	6 Conclusion and Future Work
	References

	Automated Identification of Performance Bottleneck on Embedded Systems for Design Space Exploration

	1 Introduction
	2 Application Model and Target Architecture
	3 Exploration of Improvement Rate on Bottleneck Process
	3.1 Definition of Bottleneck Process
	3.2 Definition of Improvement Rate (IR)
	3.3 Exploration of the IRs on Bottleneck Processes
	3.4 Detail of Cost Function

	4 A Case Study
	4.1 Initial Design of AES Encryption and Decryption
	4.2 Improvement of Initial Design
	4.3 Summary of Case Study to Improvement AES Application

	5 Conclusion
	References

	ARAMIS Special Session
	Compositional Timing Analysis of Real-Time Systems Based on Resource Segregation Abstraction

	1 Introduction and Related Work
	2 Real-Time Interfaces
	3 Resource Segregation
	3.1 Interface Composability
	3.2 Refinement of Slot Reservations

	4 Periodic Resource Models and Resource Segregation
	4.1 Real-Time Component Model
	4.2 Resource Model and Schedulability

	5 Conclusion
	References

	Towards Virtualization Concepts for Novel Automotive HMI Systems

	1 Introduction
	2 Requirements
	3 Architecture
	4 Implementation
	5 Related Work
	6 Summary and Future Work
	References

	Exploiting Segregation in Bus-Based MPSoCs to Improve Scalability of Model-Checking-Based Performance Analysis for SDFAs

	1 Introduction
	2 Related Work
	2.1 Model-Checking
	2.2 Performance Analysis of SDFGs

	3 System Model Definition
	3.1 Model of Computation (MoC)
	3.2 Model of Architecture (MoA)
	3.3 System Synthesis
	3.4 Model of Performance (MoP)

	4 Compositional Performance Analysis Method
	4.1 Model-Checking Based Performance Analysis within a Slot
	4.2 Performance Analysis across the Slots

	5 Evaluation
	5.1 Performance Analysis
	5.2 Scalability

	6 Conclusion
	References

	Formal Verification of Concurrent Embedded Software
	1 Introduction
	2 The MEMICS Tool
	2.1 The MEMICS Frontend
	2.2 The MEMICS Intermediate Representation
	2.3 The MEMICS Core

	3 Results
	4 MEMICS and the ARAMiS Multicore Platform
	4.1 Combination: MEMICS↔Polyspace
	4.2 Combination: Bauhaus↔MEMICS

	5 Conclusions and Future Work
	References

	On the Homogeneous Multiprocessor Virtual Machine Partitioning Problem

	1 Introduction
	2 System Model

	2.1 Task Model and Virtual Machine Model
	2.2 Multi-core and Virtual Processor
	2.3 Notation

	3 The Homogeneous Multiprocessor Virtual Machine Partitioning Problem
	4 Scheduling Scheme
	5 Partitioning Algorithm
	6 Example
	7 Related Work
	8 Conclusion and Future Work
	References

	Real-Time Systems
	Fault-Tolerant Deployment of Real-Time Software in AUTOSAR ECU Networks

	1 Introduction
	2 Related Work
	3 AUTOSAR
	4 A Reconfigurable ECU Network Topology
	5 Fault-Tolerant Deployment Approach
	5.1 Modeling of Software Architecture
	5.2 Runnable and Task Mapping
	5.3 Communication and Bus Mapping

	6 Reconfiguration with AUTOSAR
	7 Conclusion
	References

	Adaptive Total Bandwidth Server: Using Predictive Execution Time

	1 Introduction
	2 Related Works
	3 The Adaptive Total Bandwidth Algorithm
	3.1 Prediction of Execution Time (PET)
	3.2 Definition of the Adaptive TB Server
	3.3 Example of Adaptive Total Bandwidth Server
	3.4 Adaptive Total Bandwidth Schedulability
	3.5 Implementation Complexity
	3.6 Affinity with Resource Reclaiming

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Results

	5 Conclusion
	References

	Real-Time Service-Oriented Architectures: A Data-Centric Implementation for Distributed and Heterogeneous Robotic System
	1 Introduction
	2 Real-Time Service Orientation for Robotic Systems
	2.1 Design Goals
	2.2 Reference Architecture
	2.3 Concurrency Model and Real-Time Performance
	2.4 Communication and Information Sharing
	2.5 Composition
	2.6 Fault Tolerance

	3 Implementation for a Remote Handling System
	4 Evaluation of the Experiment
	5 Conclusions
	References

	Contract-Based Compositional Scheduling Analysis for Evolving Systems

	1 Introduction
	2 Fundamentals
	2.1 Timed Automata: Syntax and Semantics

	3 Compositional Analysis
	3.1 State Abstraction
	3.2 Product Construction
	3.3 Resource Graph Computation

	4 Contract Based Analysis
	5 Conclusion and Future Work
	References

	Embedded System Applications
	Extending an IEEE 42010-Compliant Viewpoint-Based Engineering-Framework for Embedded Systems to Support Variant Management
	1 Introduction
	2 Fundamentals
	2.1 Variant Management in the Engineering of Embedded Systems
	2.2 Viewpoint-Specifications Based on IEEE Std. 1471 and IEEE Std. 42010
	2.3 The SPES 2020 Modelling Framework

	3 Integrating Variability in the SPES MF
	3.1 An Insight into the Nature of Variability within the SPES MF Viewpoints
	3.2 General Concept for Extending the SPES MF for Variant Management
	3.3 Specifying Crosscutting Aspects Conform to IEEE Std. 42010
	3.4 Specification of the Variability Perspective for the SPES MF

	4 Related Work
	5 Conclusion
	References

	Proteus Hypervisor: Full Virtualization and Paravirtualization for Multi-core Embedded
Systems
	1 Introduction and Related Work
	2 Approach
	2.1 Design
	2.2 Multi-core Processor Virtualization
	2.3 Full Virtualization and Paravirtualization
	2.4 Spatial and Temporal Separation

	3 Experimental Results
	3.1 Evaluation Platform: IBM PowerPC 405
	3.2 Memory Footprint
	3.3 Execution Time Overhead

	4 Conclusion
	References

	A Structural Parametric Binaural 3D Sound Implementation Using Open Hardware

	1 Introduction
	2 Related Work
	3 Fundamentals
	3.1 ITD - Interaural Time Difference
	3.2 ILD - Interaural Level Difference
	3.3 PRTF - Pinna-Related Transfer Function
	3.4 RIR - Room Impulse Response
	3.5 System Response

	4 Development
	4.1 Algorithm Suiting
	4.2 Prototyping System

	5 Experimental Results
	6 Conclusions
	References

	Real-Time Aspects in Distributed Systems
	Modeling Time-Triggered Ethernet in SystemC/TLM for Virtual Prototyping of Cyber-Physical Systems

	1 Introduction
	2 Related Work
	3 Modeling TTEthernet in SystemC/TLM
	3.1 Framework
	3.2 Clock Model
	3.3 TTEthernet Traffic Classes
	3.4 TTEthernet Device
	3.5 TTEthernet Controller and Switch

	4 Experimental Results
	4.1 Validation
	4.2 Evaluation

	5 Conclusions
	References

	I/O Sharing in a Multi-core Kernel for Mixed-Criticality Applications

	1 Introduction
	2 Safety Requirements
	3 System Design
	3.1 System Architecture

	4 Kernel Design for I/O Sharing
	4.1 Safe Message Passing
	4.2 I/O Sharing Management

	5 A Case Study: A Safety-Related Module for a Frequent Converter
	6 Related Work
	7 Conclusion
	References

	Evaluating the Impact of Integrating a Security Module on the Real-Time Properties of a System

	1 Introduction and Related Work
	2 System Specifications
	2.1 System Model
	2.2 Adversarial Model

	3 System Analysis
	3.1 Target System without any Security Features
	3.2 Target System with Secure Communication Feature
	3.3 Target System with Secure Communication and Secure Update Features

	4 Conclusion
	References

	Author Index

