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Abstract. This paper presents a parameterization technique of speech signal 
based on auditory filter modeling by the Gammachirp auditory filterbank 
(GcFB), which is designed to provide a spectrum reflecting the spectral proper-
ties of the cochlea filter, which is responsible of frequency analysis in the hu-
man auditory system. The center frequencies of the GcFB are based on the 
ERB-rate scale, with the bandwidth of the Gammachirp filter is measured in 
Equivalent Rectangular Bandwidth (ERB) of   human auditory filters. Our pa-
rameterization approach gives interesting results vs. other standard techniques 
such as LPC (Linear Prediction Coefficients), PLP (Perceptual Linear Predic-
tion), for recognition of isolated words of speech from the TIMIT database. The 
recognition system is implemented on HTK platform (Hidden Toolkit) based on 
the Hidden Markov Models with Gaussian Mixture observation continuous 
densities (HMM-GM). 
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1 Introduction 

The statistical modeling of speech is used in most of speech recognition applications. 
In fact, the statistical approach provides an appropriate framework to model speech 
variability in both time and frequency domains. The best models commonly used 
nowadays are based on the Hidden Markov Models with Gaussian Mixture conti-
nuous densities (HMM-GM). In this case speech signal is classically represented as a 
sequence of acoustic vectors computed in synchronous way. The most efficient repre-
sentations are based on spectral methods taking into account certain knowledge of 
speech production and perception proprieties [1]. 

Popular speech analysis techniques is based on simplified vocal tract models such 
as Linear Prediction Coefficients (LPC), whereas other techniques based on percep-
tual model of auditory system such as Mel-Frequency Cepstral Coefficients (MFCC) 
[2], and Perceptual Linear Prediction (PLP) [3]. Our technique is based on cochlear 
filter modeling in order to have a close parametric representation of the ear.  

In fact, an acoustic signal entering the ear induced a complex spatiotemporal pat-
tern of displacements along the length of the basilar membrane (BM) of the cochlear 
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filter. These mechanical displacements at any given place of the BM can be viewed as 
the output signal of a band-pass filter whose frequency response has a resonance peak 
at frequency which is characteristic of the place [4]. Filters with a so-called gamma-
tone impulse response are widely used for modeling of the cochlear filter [4.] 

Recently, the auditory filter system is known to be level-dependent as evidenced by 
psychophysical data on masking, [5], [6]. The Gammachirp filter was proposed by 
Irino and Patterson is an extension of the gammatone filter with a frequency modula-
tion term, or chirp term.  Indeed, in the analytic Gammachirp, the level-dependency 
of the filter shape was introduced as the level-dependency of the chirp parameter. This 
filter provides a well-defined impulse response; it would appear to be an excellent 
candidate for an asymmetric, level dependent auditory filterbank. [7], [8], [5] 

In this paper, we propose a parameterization technique based on the human audito-
ry system characteristics and relying on the Gammachirp auditory Filterbank (GcFB). 
The filterbank has 34 filters with center frequencies equally spaced on the ERB-rate 
scale from 50 to 8 kHz, which gives a good approximation to the frequency selective 
behavior of the cochlea. The Model training and recognition were performed using 
speech recognition toolkit HTK.3.4.1 [9]. One Hidden Markov model (HMM) with 
five states and four Gaussian Mixtures per state were trained for each vocabulary 
word. The recognition performance of this approach was evaluated using the TIMIT 
database. The obtained evaluation results are compared to those of the standards tech-
niques of parameterizations LPC and PLP.  

This paper is organized as follows: It starts with, an auditory filter model in Section 
2. Following this, section 3 gives the parameterization based an auditory filters mod-
eling. The main results are presented in section 4. Finally, the major conclusions are 
summarized in section 5.    

2 Auditory Filter Model  

The objective of auditory modeling is to find a mathematical model which represents 
some perceptual aspects and physiological of the human auditory system [10]. In 
time-domain of auditory models, the spectral analysis performed by the basilar mem-
brane is often simulated by the Gammachirp auditory filterbank [7], [6]. 

2.1 Gammachirp Auditory Filter. 

The Gammachirp auditory filter is widely used for auditory speech analysis. Irino and 
Patterson have developed a theoretically optimal auditory filter [5], [11], [12], [7], in 
which the complex impulse response of the Gammachirp, is given as 

 ϕππ jtjctfjtfbERBn
c eeattg ++−−= ln2)(21 00)(  (1) 

 
Where time t>0, a is the amplitude, n and b are parameters defining the envelope of 
the gamma distribution, and f0  is the asymptotic frequency [13]. ln(t) is the natural 
logarithm of time. c is a parameter for the frequency modulation or the chirp rate, ϕ  
is the initial phase,  and ERB(f0) is  the  equivalent  rectangular bandwidth of the 
auditory filter at f0 [14], [15]. 
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The bandwidth of the Gammachirp filter is set according to its equivalent rectangu-
lar bandwidth (ERB) of the human auditory filter. For auditory filter the ERB may be 
regarded as a measure of critical bandwidth [16], [14] and a good match with human 
data. The value of ERB at frequency f in Hz [15] is given by [16]. 

 ffERB 108.07.24)( +=  (2) 

 
The Fourier magnitude spectrum of the gammachirp filter is: 
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And )( jcn +Γ is the complex gamma distribution.  

2.2 Gammachirp Auditory Filterbank 

The used Gammachirp auditory filterbank (GcFB) is composed by 34 Gammachirp 
filters with center frequencies equally spaced between 50 Hz and 8 kHz on the ERB-
rate scale of Glasberg and Moore [14]. This is a warped frequency scale, similar to the 
critical band scale of the human auditory system, on which filter center frequencies 
are uniformly spaced according to their ERB bandwidth. The ERB-rate scale is an 
approximately logarithmic function relating frequency to the number of ERBs, ER-
Brate(f), which is given by [16]. 

 )1
1000

37.4
(log4.21)( 10 += f

fERBrate  (5) 

The basilar membrane motion (BMM) produced by the GcFB in response of the 
waveform is presented in Fig.1 [17]. It is drawn as a set of lines, and each individual 
line is the output of one of the channels in the auditory filterbank [17]. As shown in 
Fig.1, the concentrations of activity in channels above 191 Hz show the resonances of 
the vocal tract which represents the 'formants' of the waveform. 

Table 1. Used Gammachirp Parameters 

Parameter Value 
n 4  (default) 
b 1.019 (default) 
c 2 
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Conversion step is done. This step consists in the cubic-root amplitude compression 
operation. It aims to simulate the non-linear relation between the intensity of speech 
signal and its perceived loudness. The next step of our approach is the computation of 
the autoregressive all-pole model which is done via the inverse DFT and the Levin-
son-Durbin recursion [3]. In the last step, the obtained coefficients are converted by 
cepstral transformation in order to obtain the PLPGc cepstral coefficients. 

 

Fig. 2. Block diagram of the proposed technique PLPGc 

4 Experimental Results 

The proposed technique has been evaluated on the TIMIT database [18], composed 
of 9702 isolated words for the learning phase. For the recognition phase, 
we used 3525 isolated words. All words were extracted from TIMIT database. The 
signals of this database are sampled at 16 kHz. 

The Hidden Markov Model Toolkit (HTK) [9], is a portable toolkit for building 
and manipulating Hidden Markov Models with continuous Mixture Gaussian densi-
ties (HMM_GM). HTK is primarily used for speech recognition. The HMM topology 
is a 1st -order 5-states HMM model. The observation probability distribution is a 4 
Gaussian mixture density with diagonal covariance matrix. 12 static coefficients vec-
tors were computed using 25 ms hamming window, shifted with 10 ms steps. The 
Gammachirp filter was applied using the parameters given in the table 1.  

The tables 2, 3 and 4 represent the recognition rates of different techniques: PLPGc 
(proposed technique), LPC and PLP [3]. Every time we add one of the following pa-
rameter to the first 12 coefficients:  Energy (E), the first differential coeffi-
cients  (Δ) and second order differential coefficients (A). 

For HMM, we used 4 Gaussian Mixture, with 5 states of observation. 
We define the parameters below: HMM 4 GM:  Hidden Markov Models with 4-

Gaussian-Mixtures. H is the number of correct words, D is the number of deletions 
words, S is the number of substitutions words and N is the total number of words in 
the defining transcription files. The percentage number (%) is the recognition rate of 
words. 

As reported in the table 2 we can observe that an improvement of 2.52% relative 
increase of recognition rate is achieved with the PLPGc proposed technique of  
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parameterization over the baseline PLP method. In tests the energy was also added to 
the feature vector. It can be seen in table 3 that the recognition rate improves slightly, 
with the PLPGc technique compared with PLP method.  

The dynamic properties (E+Δ+A) were computed so that the final parameterization 
vector for techniques consisted of 39 coefficients (12 coefficients of the technique 
+E+Δ+A). The table 4 shows a small increase of recognition rate for the PLPGc pro-
posed technique of parameterization compared to this of the standard technique PLP. 
We also observed that the standard LPC technique generally decreases the recognition 
scores compared to PLP and PLPGc, as shown in tables 2, 3 and 4. 

Table 2. Recognition rate obtained by parameterization techniques in their brut state  

Technique 
_brut 

HMM 4 GM 
% N H S D 

PLPGc 92.00 3525 3243 282 0 
PLP 89.48 3525 3154 371 0 
LPC 58.55 3525 2064 1461 0 

Table 3. Recognition rate obtained by parameterization techniques combined with energy (_E) 

Technique 
     _E 

HMM 4 GM 
% N H S D 

PLPGc 93.67 3525 3302 223 0 
PLP 93.33 3525 3290 235 0 
LPC 70.07 3525 2470 1055 0 

Table 4. Recognition rate obtained by parameterization techniques combined with energy, 
differential coefficients first and second order (_E_Δ_A) 

Technique 
_E_ Δ_A 

HMM 4 GM 
% N H S D 

PLPGc 98.16 3525 3460 65 0 
PLP 97.93 3525 3452 73 0 
LPC 78.24 3525 2758 767  0 

5 Conclusion 

In this paper, we have proposed paramerization technique PLPGc of speech signals 
based on the auditory filter modeling which uses the Gammachirp auditory Filter-
bank. Experimental results using the TIMIT database have shown that the PLPGc 
technique increases the recognition rate relatively according to conventional tech-
niques such as PLP and LPC. 
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