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Abstract. In this paper, we present a fundamental frequency determination 
method dependent on the autocorrelation compression of the multi-scale 
product of speech signal. It is based on the multiplication of compressed copies 
of the original autocorrelation operated on the multi-scale product. The multi-
scale product is based on realising the product of the speech wavelet transform 
coefficients at three successive dyadic scales. We use the quadratic spline 
wavelet function. We compress the autocorrelation of the multi-scale product a 
number of times by integer factors (downsampling). Hence, when the obtained 
functions are multiplied, we obtain a peak with a clear maximum corresponding 
to the fundamental frequency. We have evaluated our method on the Keele 
database. Experimental results show the effectiveness of our method presenting 
a good performance surpassing other algorithms. Besides, the proposed 
approach is robust in noisy environment. 
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1 Introduction 

The fundamental frequency extraction is one of the most crucial tasks in speech 
processing. Pitch is used for speech in many applications including determination of 
emotional characteristics of speech, speaker recognition systems, and aids to the 
handicapped. Because of its importance, many solutions to this problem have been 
proposed [1]. All of the proposed schemes have their limitations due to the wide range 
of applications, and operating environments. Thus various methods for pitch 
determination have been developed and a comprehensive review of these methods can 
be found in [2], [3]. However, due to the non-stationarity and quasi-periodicity of the 
speech signal, the development of more robust pitch determination algorithms still 
remains an open problem. 

Most of the subsequent wavelet-based Pitch Detection Algorithms (PDAs) are 
originally inspired by the work presented by Kadambe and al [4].  

There are two important issues which need to be improved in the PDAs. First, we 
show the efficacy of a PDA at the beginning of a vowel. Second, we obtain a robust 
PDA in a noisy environment. 



34 M. A. Ben Messaoud, A. Bouzid, and N. Ellouze 

We present an approach for estimation and detection of the pitch, extracted from 
speech signals, in this paper. Our proposed algorithm operates an autocorrelation 
compression on the voiced speech multi-scale product analysis. This analysis 
produces one peak corresponding to the fundamental frequency F0. 

The evaluation of the PDAs is an indispensable stage. Eventually, evaluating a 
pitch detection algorithm means simultaneously evaluating the Gross Pitch Error and 
the Root Mean Square Error. 

The paper is presented as follows. After the introduction, we present our approach 
based on the multi-scale product analysis to provide the derived speech signal and the 
Autocorrelation Compression operated on the Multi-scale Product (ACMP) approach 
for the fundamental frequency estimation. Section 3 describes the pitch period 
estimation algorithm in clean and noisy voiced speech. In section 4, we give 
evaluation results and compare them with results of approaches for clean speech. 
Estimation results are also described for speech mixed with environmental noises at 
various SNR levels. 

2 Proposed Approach 

We propose an approach to estimate the fundamental frequency F0 based on the 
Autocorrelation Compression (AC) of the voiced sound Multi-scale Product (MP). It 
can be decomposed into three essential stages, as shown in figure 1. The first stage 
consists of computing the product of the voiced speech wavelet transform coefficients 
(WTC) at successive scales. In accordance with the fast change of the instantaneous 
pitch, the wavelet used in this analysis is the quadratic spline function at scales s1=2-1, 
s2=20 and s3=21. It is a smooth function with property of derivative. The second stage 
consists of calculating the Autocorrelation Function (ACF) of the obtained signal. 
Indeed, the product is decomposed into frames of 512 samples with an overlapping of 
50% points at a sampling frequency of 20 kHz. These two stages were described in 
our work reported by Ben Messaoud and al in [5]. The last stage consists of 
generating the functions obtained by the Autocorrelation compression and then 
multiplying them to provide a signal with a reinforced peak allowing an efficient 
estimation of the fundamental frequency value.  

The product ( )np of wavelet transforms coefficients of the function ( )nf at some 

successive dyadic scales is given as follows: 
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For the second stage, the product ( )np is split into frames of N length by 

multiplication with a hanning window [ ]w n : 
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Where i is the window index, and nΔ the overlap.  
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Then, we calculate the short-term autocorrelation function of each weighted 
block [ ]wip n as follows: 
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In the third stage, the Autocorrelation of the MP is compressed by integer factors (c = 
1, 2, 3) and the obtained functions are multiplied. So the fundamental frequency F0 
became stronger. 

The compression of each autocorrelation of the multi-scale product is described as 
follows: 
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Where C is the number of harmonics to be considered. 
The first peak in the original Autocorrelation Multi-scale Product (AMP) coincides 

with the second peak in the AMP compressed by a factor of two, which coincides 
with the third peak in the AMP compressed by a factor of three. Finally, we multiply 
to obtain one peak corresponding to pitch.  

 

 

 

 

 

Fig. 1. Block diagram of the proposed 
approach for pitch estimation 

Fig. 2. Product of the compression of the 
speech AMP 

The motivation for using the compression of the AMP is that for clean and noisy 
speech signals, multiplying the delay scale by integer factors should cause the peaks 
to coincide at F0. Indeed the AMP of a voiced speech frame is zero between the peaks, 
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the product of compression functions cancels out all the peaks falling between two 
harmonics of the F0. Thus, in general, finding the largest peak reflecting the product 
of the shifted AMP would mean finding the F0. The product of the functions issued 
from the compression of the AMP is presented in figure 2. 

3 Pitch Estimation Algorithm 

3.1 Pitch Estimation in Clean Voiced Speech 

Figure 3 shows a clean voiced speech signal followed by its MP. The MP has a 
periodic structure and reveals extrema according to the glottal closure and opening 
instants. 

 

Fig. 3. a) Voiced clean speech. b) Its multi-scale product. 

Figure 4.a) illustrates the multi-scale product autocorrelation function of a clean 
voiced speech signal. The calculated function is obviously periodic and has the same 
period as the MP. The obtained ACMP shows one peak occurring at the pitch period. 
The signals of the figures 4.b) and 4.c) represent respectively the AMP compressed 
with a factor c = 2 and c =3 of the voiced clean speech signal of the figure 3.a). The 
figure 4.d) corresponds to the multiplication of the functions issued from the 
compression of the AMP and shows one clear peak at the fundamental frequency.  

 

Fig. 4. ACMP of a voiced clean speech. a) Autocorrelation compression of MP with c=1. b) 
Autocorrelation compression of MP with c=2. c) Autocorrelation compression of MP with c=3. 
d) Autocorrelation functions multiplication. 
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Figure 5 treats the beginning of a voiced speech followed by its MP. Figure 6 
shows the efficacy of the ACMP method for pitch estimation particularly at the 
beginning of a vowel. Signals represented in the figure 6.a), 6.b), 6.c) and 6.d) 
illustrate the compression of the autocorrelation multi-scale product of the speech 
depicted in 5.a). 

 

Fig. 5. a) The beginning of a vowel. b) Its multi-scale product. 

 

Fig. 6. ACMP of a vowel beginning. a) Autocorrelation compression of MP with c=1. b) 
Autocorrelation compression of MP with c=2. c) Autocorrelation compression of MP with c=3. 
d) Autocorrelation functions multiplication. 

Figure 6 illustrates the efficacy of our approach for the fundamental frequency 
determination during a vowel onset. While the experimental results show that the 
other state of the art methods in literature give an F0 equals to zero at the beginning of 
vowel at this voiced region. 

3.2 Pitch Estimation in a Noisy Environment 

In this subsection, we try to show the robustness of our approach in the presence of 
the noise with high SNR levels. 

Figure 7 depicts a noisy voiced speech signal with an SNR of -5 dB followed by its 
MP. 
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Fig. 7. a) Voiced speech signal corrupted by -5dB white noise. b) Its multi-scale product. 

Figure 8 illustrates the ACMP approach. The MP in figure 7.b) lessens the noise 
effects leading to an autocorrelation function with clear maxima. The signal 
illustrated in figure 8.d) shows the autocorrelation compression of the MP with a peak 
giving the pitch estimation. 

 

Fig. 8. ACMP of a voiced noisy speech. a) Autocorrelation compression of MP with c=1. b) 
Autocorrelation compression of MP with c=2. c) Autocorrelation compression of MP with c=3. 
d) Autocorrelation functions multiplication.   

4 Results 

4.1 Evaluation Databases 

To evaluate the performance of our algorithm, we use the Keele pitch reference 
database [6]. The Keele database contains ten speakers sampling frequency of 20 
kHz. It includes reference files containing a pitch estimation of 25.6 ms segments 
with 10 ms overlapping. The reference pitch estimation is based on a simultaneously 
recorded signal of a laryngograph. 

We use common performance measures for comparing PDAs: The Gross Pitch 
Error (GPE) and the Root Mean Square Error (RMSE) [7]. The gross Pitch Error 
(GPE) is a standard error measure for the pitch tracking. It is defined as the 
percentage of estimated F0 deviates from the referenced F0 by more than 20% of 
voiced speech. The RMSE is defined as square root of the average squared estimation 
error with estimation errors which are smaller than the GPE threshold of 20 Hz. It 
should be noted that the pitch range of speech is 50 – 800 Hz. 
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4.2 Evaluation in a Clean Environment 

For comparison, the four PDAs are based on the same reference database. The speech 
signal must be segmented into frames of 25.6 ms segments with 10 ms overlapping and is 
weighted by a Hanning window. The PDA’s are only tested in the voiced frame. 

Table 1 presents the evaluation results of the proposed approach (ACMP) for 
fundamental frequency determination in a clean environment and compared to the 
existed methods [8], [9], and [11].  

Table 1. Pitch estimation Performance in a clean environment 

Method    GPE (%) RMSE (HZ) 
ACMP 0.64 1.43 

SWIPE’[8] 0.62 3.05 
SMP [9] 0.75 2.41 

NMF-PI [11] 0.93 2.84 

The ACMP shows a reduced GPE rate of 0.64 % and the lowest RMSE of 1.43 Hz. 
It’s obviously more accurate than the other methods. 

4.3 Evaluation in a Noisy Environment 

To test the robustness of our algorithm, we add various background noises (white, 
babble, and vehicle) at three SNR levels to the Keele database speech signals. For 
this, we use the noisex-92 database [10]. 

Table 2 presents the GPE of the ACMP, SMP, and NMF-PI methods in a noisy 
environment. 

Table 2. Pitch estimation Performance of GPE in a noisy environment 

GPE (%) 
Type 

of noise 
SNR       

level ACMP SMP [9] 
NMF-PI 

[11] 

White 
5 dB 0.84 1.00 1.08 
0 dB 1.02 1.20 1.14 
-5 dB 1.09 1.40 1.32 

Babble 
5 dB 1.03 2.61 1.51 
0 dB 1.46 4.56 2.93 
-5 dB 1.67 7.62 5.10 

Vehicle 
5 dB 3.67 6.41 3.94 
0 dB 4.92 7.04 5.22 
-5 dB 5.80 8.98 8.74 

As depicted in table 2, when the SNR level decreases, the ACMP algorithm 
remains robust even at -5dB. 

Table 3 presents the RMSE of the ACMP, SMP and NMF-PI methods in a noisy 
environment. 
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Table 3. Pitch estimation Performance of RMSE in a noisy environment 

RMSE (Hz) 
Type 

of noise SNR level ACMP SMP [9] 
NMF-PI   
[11] 

White 
5 dB 2.45 3.23 4.63 
0 dB 2.86 3.73 4.84 
-5 dB 3.57 4.67 4.95 

Babble 
5 dB 3.67 4.28 3.81 
0 dB 4.59 4.93 4.92 
-5 dB 5.21 6.38 6.53 

Vehicle 
5 dB 2.08 5.67 4.53 
0 dB 3.36 7.89 4.60 
-5 dB 5.09 11.57 6.28 

As depicted in table 3, the ACMP method presents the lowest RMSE values 
showing its convenience for pitch estimation in hard situations. 

5 Conclusion  

In this paper, we presented a pitch estimation method that relies on the compression 
of the autocorrelation applied on the speech multi-scale product. The proposed 
approach can be recapitulated in three essential stages. First, we have constituted the 
product of the voiced speech WTC at three successive dyadic scales (The wavelet is 
the quadratic spline function with a support of 0.8 ms). The voiced speech MP has a 
periodic and clean structure that matches well with the speech signal singularities and 
lessens the noise effects. Second, we have calculated the autocorrelation function of 
each weighted frame. Third, we have operated the compression of the obtained 
autocorrelation with various scales and their product.  

The experimental results show the robustness of our approach for noisy speech, 
and its efficacy for clean speech in comparison with state-of-the-art algorithms. 
Future work concerns the extension of the proposed approach to estimate F0 in 
monophonic music. 

References 

1. Hess, W.J.: Pitch Determination of Speech Signals, pp. 373–383. Springer (1983) 
2. Shahnaz, C., Wang, W.P., Ahmad, M.O.: A spectral Matching Method for Pitch 

Estimation from Noise-corrupted Speech. In: IEEE International Midwest Symposium on 
Circuits and Systems, pp. 1413–1416. IEEE Press, Taiwan (2009) 

3. Chu, C., Alwan, A.: A SAFE: A Statistical Approach to F0 Estimation Under Clean and 
Noisy Conditions. IEEE Trans. Audio, Speech and Language Process. 20, 933–944 (2012) 

4. Kadambe, S., Boudreaux-Bartels, G.F.: Application of the Wavelet Transform for Pitch 
Detection of Speech Signals. IEEE Trans. Information Theory 38, 917–924 (1992) 



 An Efficient Method for Fundamental Frequency Determination of Noisy Speech 41 

5. Ben Messaoud, M.A., Bouzid, A., Ellouze, N.: Autocorrelation of the Speech Multi-scale 
Product for Voicing Decision and Pitch Estimation. Springer Cognitive Computation 2, 
151–159 (2010) 

6. Meyer, G., Plante, F., Ainsworth, W.A.: A Pitch Extraction Reference Database. In: 4th 
European Conference on Speech Communication and Technology EUROSPEECH 1995, 
Madrid, pp. 837–840 (1995) 

7. Rabiner, L., Cheng, M., Rosenberg, A., McGonegal, C.: A comparative performance study 
of several pitch detection algorithms. IEEE Trans. on Acoustic, Speech, and Signal. 
Process. 24, 399–418 (1976) 

8. Camacho, A.: SWIPE: a Sawtooth Waveform Inspired Pitch Estimator for Speech and 
Music, Ph.D. dissertation, Dept. Elect. Eng., Florida Univ., USA (2007) 

9. Ben Messaoud, M.A., Bouzid, A., Ellouze, N.: Using Multi-scale Product Spectrum for 
Single and Multi-pitch Estimation. IET Signal Process. Journal 5, 344–355 (2011) 

10. Varga, A.: Assessment for Automatic Speech Recognition: II. Noisex-92: A Database and 
an Experiment to Study the Effect of Additive Noise on Speech Recognition Systems. 
Speech Communication 12, 247–251 (1993) 

11. Joho, D., Bennewitz, M., Behnke, S.: Pitch Estimation Using Models of Voiced Speech on 
Three Levels. In: 4th IEEE International Conference on Acoustics, Speech and Signal 
Processing, ICASSP 2007, pp. 1077–1080. IEEE Press, Honolulu (2007) 


	An Efficient Method for Fundamental Frequency
Determination of Noisy Speech

	1 Introduction
	2 Proposed Approach
	3 Pitch Estimation Algorithm
	3.1 Pitch Estimation in Clean Voiced Speech
	3.2 Pitch Estimation in a Noisy Environment

	4 Results
	4.1 Evaluation Databases
	4.2 Evaluation in a Clean Environment
	4.3 Evaluation in a Noisy Environment

	5 Conclusion
	References




