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Abstract. Reverberation Time (RT) estimation is of great importance
in de-reverberation techniques and characterizing room acoustics. Esti-
mating and updating the RT parameter of an enclosed environment could
be carried out either continuously or discretely in the free-decaying re-
gions of recorded reverberant signal. In this paper, we present a novel
continuous sub-band-based RT estimation method which employs the
general model for the Power Spectral Density (PSD) of the reverberant
signal. The temporal envelope of the observed reverberant PSD in each
sub-band is fitted to the temporal envelope of the proposed theoretical
PSD of the reverberant signal to estimate the RT value. In Comparison
to a well-known method for RT estimation, the proposed approach per-
forms both more accurately and faster, so that it can be used in real-time
applications for fast tracking of the RT value with high accuracy.

1 Introduction

Consider an enclosed environment, such as a classroom or corridor, in which a
sound from a source is radiated. The receiving object, for example microphone
or human being, in addition to the original radiated sound receives reverberated
sounds from the surfaces in the room. In fact, the receiving microphone records
the convolution of the original radiated signal with a decaying function called
Room Impulse Response (RIR). Reverberation Time (RT) is an important pa-
rameter to quantify the total reverberation effect of the enclosed environment. It
is defined as the time interval during which the energy of the reverberant signal
decreases 60dB after playing off the radiated signal.

Identifying the RT parameter of an RIR is a challenging subject in signal pro-
cessing. Some dereverberation techniques use an estimate of RT value [1][2][3].
RT estimation is also of interest for acousticians in architectural design of audi-
toriums and large chambers. There are some approaches for off-line measurement
of the RT by radiating either a burst of noise [4] or brief pulse [5] into the test
enclosure to determine the RIR. The RT can be inferred from the slope of the
measured RIR. These methods require careful experiments and sufficient excita-
tion signals. Therefore, RT estimation from a recorded reverberant signal with
speech as the excitation signal is more preferable. In completely blind approaches
of this category, no prior information of the room and the radiated speech is
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available. Hence these methods can be incorporated in hearing-aids or hands-
free telephony devices [6]. Generally, blind methods for RT estimation from the
recorded reverberant speech can be categorized in two classes. The first class con-
sists of locating free-decay regions in the reverberated signal, which carry more
information of the RIR [1] [7] [8]. However, these methods are more vulnerable
in noisy conditions as the free-decay regions have the lowest SNRs. Moreover, a
large number of these free-decay parts are required for reliable estimation of RT.
To overcome the need for long data recording, so that fast tracking of RT would
be possible, the approach proposed in [9] utilized a sub-band decomposition to
estimate RT in each sub-band of the free decay parts. In the second class, RT is
estimated continuously for each arbitrary frame of the reverberant signal [6] [10].
The final RT estimate is obtained using an order-statistics filter on a number of
accumulated RT estimates.

In this paper, we propose a continuous RT estimation method where the
excitation signal is an available speech signal. Therefore our approach is semi-
blind. We derive a theoretical model for the Power Spectral Density (PSD) of
the reverberated speech [11]. The PSD of the reverberant speech depends on the
RT parameter which is the desired parameter to be estimated. Through fitting
the theoretical PSD to the observed reverberant PSD, RT estimation algorithm
can be run segment-by-segment in each sub-band without need to seek for free-
decay parts. As the theoretical PSD non-linearly depends on RT, a Non-linear
Least Squares (NLS) method is employed in the estimation algorithm. Finally,
statistics can be inferred from the histogram constructed based on a number of
estimated RTs. Comparing different statistics, we show that the most frequently
occurring estimated RT during a time interval (mode of histogram) is an accurate
approximation to the real RT. We compare our continuous algorithm with a
rather newly developed method [7] which estimates RT only during free-decay
regions of the reverberant speech. Assuming that the offsets of speech signal
occur sharply, [7] uses an approximate model which stands for free-decay parts
of the reverberant speech and utilizes a Maximum Likelihood (ML) approach
for RT estimation. On the other hand, our approach utilizes an exact model
which stands for any arbitrary segment of the reverberant speech and therefore
will be shown that outperforms [7] in accuracy. Moreover, compared to [7], our
continuous approach speeds up tracking of RT.

Our proposed method can be incorporated in Public Address Systems (PAS)
in which the original signal is assumed to be available. For example, [11] proposed
a noise PSD estimator employed in the intelligibility improvement algorithm of a
PAS, assuming reverberant enclosure. In [11], it was assumed that reverberation
time of the enclosure is available. Using the RT estimation method we present in
this paper, the noise PSD estimator [11] would be applicable for the environments
with time-varying RT.

This paper is organized as follows. In Sec. 2, we derive a closed-form equation
for the PSD of reverberated signal. Then, the proposed RT estimation algorithm
and experimental results are presented in Sec. 3. Finally, we draw our conclusions
in Sec. 4.
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2 PSD of the Reverberated Speech

2.1 Time-Domain Model of Reverberant Speech

Assume a clean speech signal, s, is radiated through a loudspeaker in an en-
closure. A microphone at a specified distance from the loudspeaker records the
direct-path signal along with the reflections from the surfaces in the enclosure.
We can define the observed signal at the receiver side by the following equation

x(l) = g(l) ∗ s(l), (1)

in which l is the sample index, ∗ stands for convolution operator and g(l) models
both the late reverberation and the direct-path as below

g(l) =

{
α l = 0

h(l − 1) l ≥ 1,
(2)

where h is the RIR excluding the direct path. In Polack’s statistical model [12]
of the RIR, a specific RIR is an ensemble of the following stochastic process

h(l) = b(l)e−ηl for l ≥ 0, (3)

in which b(l) is a zero-mean Normal stochastic process with variance ν2 mod-
ulated with an exponential function with the decay rate η. The decay rate is

defined as η = 3ln(10)
RTfs

in which RT and fs are reverberation time and sampling
frequency, respectively. Assuming that the attenuation factor α and clean speech
signal s are available, we can rewrite (1) as

z(l) = g(l) ∗ s(l)− αs(l) = z(l) =

∞∑
p=0

hl(p)s(l − p− 1), (4)

in which z(l) is the reverberated speech signal excluding the direct path.

2.2 Derivation of the Reverberated PSD

It has been shown [13] that

Z(i, k) ≈
∞∑
p=0

hi+L
2
(p)S(i− p− 1, k), (5)

where S(i−p−1, k) is the kth Short Time Discrete Fourier Transform (STDFT)
coefficient of a frame of clean speech starting at sample point i−p− 1. Z(i, k) is
the kth STDFT coefficient of the reverberated speech frame with sample index
i and L shows the frame length. We derive a new equation for the PSD of
reverberated speech based on (5). By definition of PSD as σ2

Z(i, k) = V ar{Z} =

E
{
Z2(i, k)

} − E2 {Z(i, k)}, the first two moments of Z have to be derived.
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We assume the clean signal, and therefore its spectrum, to be available. The
first moment of Z is determined as follows:

mZ(i, k) = E {Z(i, k)|S} =

∞∑
p=0

E
{
hi+L

2
(p)S(i− p− 1, k)|S

}

=

∞∑
p=0

E
{
hi+L

2
(p)
}
S(i− p− 1, k) = 0, (6)

in which S = {S(i − 1, k), S(i − 2, k), ..., S(1, k)}. For the second moment we
have:

σ2
Z(i, k) = E

{
Z2(i, k)|S} = E

{ ∞∑
p=0

∞∑
q=0

hi+L
2
(p)hi+L

2
(q)S(i− p− 1, k)S(i− q − 1, k)|S

}

=
∞∑
p=0

∞∑
q=0

E
{
hi+L

2
(p)hi+L

2
(q)
}
S(i− p− 1, k)S(i− q − 1, k).

(7)

Refering to Polack’s model (3), the expectation E
{
hi+L

2
(p)hi+L

2
(q)
}

=

ν2
i+L

2

e
−2η

i+L
2
p
, q = p and E

{
hi+L

2
(p)hi+L

2
(q)
}
= 0, q �= p. Finally, we obtain

σ2
Z(i, k) =

∞∑
p=0

ν2
i+L

2
e
−2η

i+L
2
p
S2(i − p− 1, k). (8)

3 Experiments on the RT Estimation Algorithm

We tested our algorithm on six speech files of TIMIT database which were se-
lected from 6 different speakers, 3 males and 3 females and were concatenated
to construct the final test file. We generated 6 synthetic RIRs using Polack’s
model (3) with RT = [0.1, 0.2, 0.4, 0.6, 0.8, 1] sec and ν2 = 0.25. We made six
synthetically reverberated speech signals by convolving the test signal with the
RIRs. In all experiments, we set the upper limit of the summation in (8) to 4000.
Moreover, the clean and reverberated speech signals are segmented into 16msec
frames with the frameshift of one sample at the sampling frequency of 8000 Hz.
The hamming-windowed frames of both clean and reverberated speech signals
are transformed into Fourier domain with 128 DFT points.

3.1 Verification of the Theoretical Model

Here, we carry out an experiment to verify the theoretically-derived reverberant
PSD (8). First, for a synthetic RIR with RT = 0.3 sec (η = 0.0028) and ν2 =
0.25, we compute the theoretical PSD of the reverberated test speech (σ2

Z) based
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Fig. 1. Emperical CDF of the relative errors

on (8). Then, this theoretical PSD is compared with the observed PSD of the
reverberant speech. We can generate an ensemble of the reverberated test speech
by making a realization of the RIR with the above parameters. In application,
the PSD of the observed reverberant speech is estimated by Periodogrammethod
(σ̂2

Z), which is an approximate to the true PSD. A better approximation to the
true PSD can be made by ensemble averaging of the Periodogram-based PSDs.
In order to generate different ensembles of the reverberated speech, different
ensembles of the RIR are realized and convolved with the test signal. Comparing
the theoretical PSD with the observed PSD of the reverberated speech, the
relative error is defined as follows

Relative Error =
∣∣σ2

Z(i, k)− Ê
{
σ̂2
Z(i, k)

}∣∣ /σ2
Z(i, k), (9)

in which Ê
{
σ̂2
Z(i, k)

}
is the sample mean of the Periodogram-estimated PSDs of

reverberant speech. The Cumulative Distribution Function (CDF) of the relative
error values of all frames and frequency bins are shown in Fig. 1 with different
number of ensembles to obtain the sample mean Ê

{
σ̂2
Z(i, k)

}
. As the number

of ensembles increases, better fitting between the theoretical and the ensemble-
averaged PSDs is observed.

3.2 Proposed Method for RT Estimation

As shown in (8), the reverberated PSD non-linearly depends on the decay rate
η. The parameter η, and therefore RT , could be simply determined through
minimizing the squared error between the observed PSD and the theoretical
PSD of (8). In fact, for the observed PSD of reverberant speech estimated in kth

frequency bin of the ith frame, σ̂2
Z(i, k) , the parameter η is obtained as:

η̂(i, k) = Min
η

⎧⎨
⎩
(
σ̂2
Z(i, k)−

∞∑
p=0

ν2
i+L

2
e
−2η

i+L
2
p
S2(i− p− 1, k)

)2
⎫⎬
⎭ . (10)

3.3 Experimental Results of the Proposed RT Estimation Method

For each of 6 synthetically reverberated speech signals, the same experiment is
carried out as follows. First, the reverberated speech is segmented into 64 ms
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Fig. 2. Mean of Absolute Errors using different statistics (a) RT=1 s, (b) RT=800 ms,
(c) RT=600 ms, (d) RT=400 ms, (e) RT=200 ms, (f) RT=100 ms

blocks with a block shift of 3ms. Then each block is divided into frames with the
setup mentioned before. As mentioned, in frame scale, η can be estimated using
(10). For block scale estimation, the objective function to be minimized is

η̂(j, k) = Min
η

⎧⎨
⎩

M∑
i=1

(
σ̂2
Z(i, k)−

4000∑
p=0

ν2i+L
2
e
−2η

i+L
2
p
S2(i− p− 1, k)

)2
⎫⎬
⎭ , (11)

where j is the block index and i represents the frame number in the block. For
our setup, M is set to 384. To infer the fullband η from the subband block-based
estimated η parameters, different statistics could be employed. For example,
similar to the method proposed in [9], we employ the Median of Medians method.
First, the fullband RT of the jthblock is set to the median of the RT s derived in
all subbands of the block. Then, the fullband RT of the total reverberant speech
is estimated through computing median of all J fullband block-derived RT s

R̂T = Median
j=1,2,...,J

R̂T (j) = Median
j=1,2,...,J

{
Median

k=1,2,...,NFFT/2+1
R̂T (j, k)

}
. (12)

In another approach [7]1 the mode of the histogram of the block-estimated RT s
was considered as the final RT estimate. Hence, in our proposed approach we
compare different statistics together. First, we create the histogram of all ηs
derived from all frequency bands of the N consecutive blocks. We measure four
statistics from this histogram that are Median, Mode, Mean and Mean after re-
moving 30 percent of outliers (Trimmed Mean). The inferred statistics constitute

1 Implemented code is available at http://www.mathworks.com/matlabcentral/
fileexchange/35740-blind-reverberation-time-estimation

http://www.mathworks.com/matlabcentral/fileexchange/35740-blind-reverberation-time-estimation
http://www.mathworks.com/matlabcentral/fileexchange/35740-blind-reverberation-time-estimation
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Fig. 3. Average of Means of Abs. Errors using method 2 and Löllmann method [7].
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Fig. 4. Trend of the Average of Means of Absolute Errors in the intervals of 1.8 sec

Methods 1 to 4 in the depicted results in Fig. 2. Also, we can extract the Median
value of NFFT/2+ 1 estimated ηs in each block and then make the histogram
for the N Median values. Hence, the other four statistics 5 to 8 are Median of
Medians, Mode of Medians, Mean of Medians and Trimmed Mean of Medians.
The same idea can be used for the Mean value of the ηs extracted in each block.
Therefore, methods 9 to 12 involve Median of Means, Mode of Means, Mean of
Means and Trimmed Mean of Means. In our setup, we used 300 blocks to make
the histogram, which for the block shift of 3msec corresponds to the time inter-
val of 900 msec. Then, similar to [7], we smooth η using a recursive averaging
filter with the time-constant of 0.996. Finally, we obtain the estimated RT as

R̂T = 3×ln(10)
η̂fs

. The performance can be quantified by averaging the Absolute
Errors between the target RT and the estimated RT s as below

Mean of Absolute Errors =
1

J

J∑
j=1

∣∣∣R̂T (j)−RT
∣∣∣. (13)

In Fig. 2, Means of Absolute Errors for six reverberated speech signals are demon-
strated. The horizontal axis represents different statistics. As shown,method 2 has
the minimum Mean of Absolute Errors compared to the other methods.
Using method 2, Means of Absolute Errors for 6 reverberated signals are plotted
in Fig. 3, in which the performance of the method of Löllmann et al. [7] is depicted
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too. Besides, in real situations, the reverberation time varies with time, so that it
is of advantage to have a fast RT estimation algorithm. As our procedure is able
to extract the RT for any arbitrary segment of the reverberated speech, it is con-
siderably faster compared to [7] that estimates the RT in the free decay parts of
the reverberated speech. In order to illustrate the high speed of our algorithm, for
each of 6 reverberant speech signals, we compute the Mean of Absolute Errors in
the interval of 1.8 sec rather than the total reverberated speech. The average of the
short-time Means of Absolute Errors over the 6 reverberant signals is computed.
Fig. 4 demonstrates the trend of this average over time. Compared to [7], our algo-
rithm is able to detect the RT even in short segments of the reverberated speech.

4 Conclusion

In this paper we have proposed a continuous RT estimation algorithm based
on a general model we derived for PSD of reverberant speech. The presented
algorithm works on subband domain to extract the RT of any arbitrary segment
of the reverberant speech. Compared with a new method of Löllmann et al., our
approach achieves superior performance with fast adaptation speed.
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