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Abstract. Monitoring the breathing is required in many applications of medical
and health fields, but it can be used also in new game applications, for example.
In this work, an automatic system for monitoring the breathing is presented.
The system uses the acoustic signal recorded by a standard microphone placed
in the area of the nostrils. The system is based on a low-complex signal parame-
terization performed on non-overlapped frames. From this parameterization, a
reduced set of real parameters is obtained frame-to-frame. These parameters
feed a classifier that performs a classification in three stages: inspiration, transi-
tion or retention and expiration providing a fine monitoring of the respiration
process. As all of those algorithms are of low complexity and the auxiliary
equipment required could only be a standard microphone from a conventional
Bluetooth Headset, the system could be able to run in a smartphone device.

Keywords: Breathing monitoring, low-complex system, linear discriminant
analysis, smartphone app.

1 Introduction

The breathing is one of the body’s few autonomic functions that can be controlled and
can affect functioning of the autonomic nervous system [5]. This paper specifically
considers the fine real-time breathing monitoring using an acoustic signal recorded by
a standard microphone placed in the area of the nostrils. By analyzing this acoustic
signal, the breathing is continuously classified in terms of its cycles of inspiration-
expiration and an intermediate stage that we call retention. A real-time breathing
monitoring system can be used in some biofeedback applications and in this prelimi-
nary design it is thought to work in low noise environments.

The human breathing has been deeply studied in the context of respiratory illnesses
and has received great attention from the biofeedback framework. Following the bio-
feedback breathing approach, some relevant works have been done in relation with
stress and health [21-23],[25],[26], [30] especially in the area of respiratory illnesses
[22], [32]. Respiratory sinus arrhythmia (RSA) is the phenomenon by which respira-
tion modulates the heart rate in normal humans. As a result, the respiration affects the
arterial blood pressure and the volume pulse, so, nowadays, an important part of those
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biofeedback clinical studies relate the breath control with the heart rate coherence [28]
and with the idea of developing a non-pharmacological treatment for hypertension.
Many clinical studies are being done under this assumption [21], [31], [20], [10], [24].

Another interesting area in which the breathing monitoring can be of interest is the
area of emotion detection. As it was early reported in [27], emotions are associated with
distinct patterns of cardiorespiratory activity. According to [6][13], fast and deep breath-
ing can indicate excitement such as anger or fear, but sometimes also joy. Rapid shallow
breathing can indicate tense anticipation including panic, fear or concentration. Slow and
deep breathing indicates a relaxed resting state, while slow and shallow breathing can
indicate states of withdrawal, passive like depression or calm happiness. In the literature
several non-intrusive methods have been proposed to detect the breathing. Some other
classical methods are based on movement, volume and tissue composition detection.
Methods included in this category are the transthoratic impedance monitoring, the meas-
urement of chest and/or the abdominal circumference, the electromyography, various
motion detectors and the photoplethysmography. A good compilation of these methods
can be found in [11]. Recently, in [19], [12], [14] the breathing is detected using far-
infrared (FIR) cameras by monitoring the air flow temperature in the nasal hole due of
the inspiration and expiration. Those approaches involve some image processing tech-
niques and have to deal with practical questions as head rotation, distance between
camera and human and camera angle. Our approach follows the acoustic signal approxi-
mation like those appeared in [7], [8], where the respiratory sound is measured using a
microphone placed either close to the respiratory airways or over the throat to detect the
variation of sound. The acoustic breathing signal have been studied and modelled in
different works [16-17], [29], [33].

On the other hand, today the smartphones have become more ubiquitous and pro-
vide high computing and connectivity capabilities, incorporating high-resolution
touchscreens, portable media players, 3-axis accelerometers, 3-axis gyroscopes, cam-
eras and microphones, among other accessories. So it is reasonable to consider trying
advantage of those devices by developing biofeedback apps specifically for them, in
order to allow a patient to perform training at home. A potential advantage of using
smartphone’s apps is the opportunity to collect large amount of data -with user per-
mission if the apps are distributed for free- enabling large scale clinical studies.

Nowadays there are several applications available for Smartphone, mainly for i0OS
and Android operating systems, which work on different breathing aspects. Most of
these apps come from fields like health [2], [5] relaxation [3] or meditation [1] tech-
niques, and have a careful presentation but have a little control on monitoring the
quality of the exercise as most of those apps are limited to provide breathing rhythms
that should guide the exercise. Our system can overcome these limitations and pro-
vide an accurate control on breathing monitoring.

1.1  Acoustic Data Registration

A microphone detects the airflow due to the sound created by turbulence that occurs
in the human respiratory system because, even for shallow breathing, turbulence oc-
curs in parts of this system creating a noise which is transferred through tissue to the
surface of the skin [15]. Some works have analyzed the acoustic breathing signal from
the physical production and some models are proposed [16, 17, 29, 33]. In some of
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these the same studies the problematic of finding the best place to allocate the micro-
phone is addressed, finding different appropriate locations on the human body where
acoustic breathing signals may be detected.

In our case an inexpensive standard microphone from a conventional Bluetooth Head-
set is placed very close to the nostrils area with the amplifier gain near of its maximum.
The signal is sampled at 8000 Hz and it is processed in a personal computer (PC). The
recoding environment in which the user performs the breathing exercises is recom-
mended to be noiseless. By means of an envelope detector the cycles of breathing are
easy characterized as it is shown in figure 1. In order to detect the envelope, the input
signal is digitally rectified and filtered by an infinite impulse response filter of one single
pole at z = 0.995 that has been prepared to work frame-to-frame. The breathing signal
can be automatically segmented in its three stages using a threshold on the envelope.
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Fig. 1. On the top, 36 seconds of an acoustic breathing signal envelope. On the bottom, the
same detected envelope represented together with the breathing signal.

1.2  Low-Complex Parameterization Method

The proposed simple parameterization is as follows: The signal is segmented into
non-overlapped frames. The band of interest is divided into a given number of sub-
bands and the frame is parameterized with the energy that has in each of this sub-
bands. In order to simplify the process, a fast Fourier Transform (FFT) is performed
with a square window. Only the moduli of the discrete Fourier coefficients are con-
sidered and the values belonging to the same sub-band are added in order to obtain a
real parameter per sub-band. It means that if we consider, for example, a band parti-
tion in 4 sub-bands then only 4 real parameters are required to parameterize a frame.
Those parameters are normalized. The normalization value is a reference value ob-
tained from the highest parameter of a test signal.

To perform the experiments we have selected a group of 5 users and we have re-
corded their breathing for 5 minutes. In order to verify that the proposed parameteri-
zation is suitable for detecting the three stages considered in the respiration process, a
manual segmentation is performed considering different frame lengths and different
sub-band partitions. Figure 2 shows the process of the manual segmentation and the
parameterization process.
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Fig. 2. On the top, a frame of 200 ms is represented (in red) that corresponds to an expiration
breathing sound. In the middle, the modulus of the Fast Fourier Transform applied to this

frame. On the bottom, the frame parameterization obtained from the integration of all coeffi-
cients of each equal-spaced sub-band, considering a five sub-band partition.

2 Experiments

2.1  Classification Techniques

Many possible techniques for data classification are available. Among them, Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA) or Neural Net-
works (NN) are techniques commonly used for data classification and/or dimensional-
ity reduction [9]. In our experiments we will use LDA due to his properties: the
system works by projecting the data onto a lower-dimensional vector space such that
the ratio of the between-class distances to the within-class distance is maximized, thus
achieving maximum discrimination. The optimal projection (transformation) can be
readily computed by applying the eigendecomposition on the scatter matrices. See [9]
and [18] for details on the algorithm.

In our experiments we will hence use LDA and a variation of it, called Quadratic
discriminant Analysis (QDA). The difference of both systems relies on the assump-
tions made for the distributions of each class. While for LDA a normal distribution is
assumed with a pooled estimate of covariance, in QDA there is no assumption that the
covariance of each of the classes is identical, and for each class this covariance matrix
is estimated from training data.

2.2  Results and Discussion

In the following experiment we mixed all the users in order to have a more general
system, not focussed in one solely user. After applying the pre-processing step ex-
plained in Section 2.2, we obtained the total number of frames per class depicted in
Table 1, where CO is inspiration, C1 is expiration and C2 is retention.
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Table 1. Number of available frames for each class, for different considered configurations

Length of the frame\ class Co C1 C2
50 ms 156 112 132
100 ms 66 56 78
200 ms 33 28 39

For each frame we considered a different number of sub-band partitions (parame-
ters), ranging from 3 to 10. We explored all these 24 configurations (3 different frame
lengths x 8 different number of parameters considered) using LDA and QDA.

For the training and validation phases, Leave-One-Out (LOO) cross-validation was
used [9] in order to obtain solid results, due to the limited number of examples per
class (156 in the best case and 33 in the worst case). With this methodology for a data
set with N samples, a single sample is retained as a validation, and all the N-1 sam-
ples are used as a training data. Then cross-validation process is repeated N times,
using each time a different sample as a validation data. The obtained results once all
the samples have been used as a validation data are averaged in order to compute a
single measure of classification rate. The advantage of this method is that all observa-
tions are used for both training and validation, and each observation is used for vali-
dation exactly once. LOO could be computationally expensive because it requires
many repetitions of training, but it is successful in dealing with very small data sets as
it is our case.

In figure 1 we shown the evolution of the classification rate (in %), obtained with
the LOO cross-validation strategy when LDA is used as classification system. We can
observe that higher frame length obtains always better performance independently of
the number of parameters considered. The best case is a 93% of classification rate,
obtained with 4, 8, 9 or 10 sub-bands and frame length of 200 ms. For all the 3 cases,
8 parameters seems to be the best option, as the maximum classification rate is
achieved in all configurations (93% for 200 ms frame length, and 90.5% for 100 ms
and 50 ms frame length), but also 4 parameters is a good choice for 200 ms frame
length.

On the other hand, using QDA results are improved as shown in figure 2. The best
frame length is still 200 ms and the number of parameters is again 4 for this case,
where the maximum classification rate of 96% is achieved, representing an improve-
ment of 3 points compared to LDA case.

For the other frame lengths results also improve when QDA is used. For 100 ms
frame length we achieve 95% of classification rate, with again 4 parameters, repre-
senting an improvement of 4.5 points compared to LDA case, while for 50 ms frame
length we obtain a maximum of 94.75% of classification rate, for 8 parameters, that
represents an improvement of 4.25 points compared to LDA case.

It seems that high frame lengths tend to be more adapted to our parameterisation
system, and small number of parameters can be used. This result is interesting in the
sense that audio signal will be faster processed if we have an small number of frames
and also the classification system will be faster with less number of parameters.
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Fig. 3. Classification Rate (%) obtained for LDA, different number of sub-bands considered
(different number of parameters for the classification system), from 3 to 10, and different frame
lengths (50 ms, diamond marker; 100 ms, square marker; and 200 ms circle marker)
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Fig. 4. Classification Rate (%) obtained for QDA, different number of sub-bands considered
(different number of parameters for the classification system), from 3 to 10, and different frame
lengths (50 ms, diamond marker; 100 ms, square marker; and 200 ms circle marker)

3 Conclusions

In this work, a preliminary study for developing a system for monitoring the breathing
is presented. The system is designed in order to use the acoustic signal recorded by a
standard microphone placed in the area of the nostrils, and based on a low-complex
signal parameterization performed on non-overlapped frames. Parameters are ob-
tained from the moduli of the discrete Fourier Transform coefficients considering a
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predefined number of sub-bands, so that the values belonging to the same sub-band
are added in order to obtain a reduced set of real values frame-to-frame. These pa-
rameters feed a very simple classifier based on LDA that performs classification in
three stages: inspiration, retention (or transition phase) and expiration.

The best configuration obtained during the experiments is a frame length on 200
ms, 4 sub-bands for characterizing the acoustic signal, and QDA as a classification
system. With this configuration, and with a LOO scheme, we obtain a 96 % of classi-
fication rate, which is a promising result. This encourages us to explore this way for
designing a real system using only a smartphone. Increasing the number of sub-bands
does not significantly improve the classification results. All sub-band partitions ex-
plored have the same bandwidth however other irregular partitions could be consid-
ered. Frame windowing and frame overlapping are not considered because neither
significantly improve the classification and only increase the system complexity.
More users have to be tested in order to quantify the user dependency and the system
robustness.
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