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Abstract. This paper documents a comprehensive evaluation carried
out on automatic glottal inverse filtering and glottal source parameteri-
sation methods. The experiments consist of analysis of a wide variety of
synthetic vowels and assessment of the ability of derived parameters to
differentiate breathy to tense voice. One striking finding is that glottal
model-based parameters compared favourably to parameters measured
directly from the glottal source signal, in terms of separation of breathy
to tense voice. Also, certain combinations of inverse filtering and param-
eterisation methods were more robust than others.

1 Introduction

The production of voiced speech can be considered as: the sound source created
by the vibration of the vocal folds (glottal source) inputted through the resonance
structure of the vocal tract and radiated at the lips. Most acoustic descriptions
typically used in speech processing involve characterisation of mainly the vocal
tract contribution to the speech signal. However, there is increasing evidence that
development of independent feature sets for both the vocal tract and the glottal
source components can yield a more comprehensive description of the speech
signal. Recent developments in speech synthesis [1], voice quality modification
[2], voice pathology detection [3] and analysis of emotion in speech [4] have served
to highlight the potential of features related to the glottal source.

However, approaches for analysing the estimated glottal source are at times
believed to lack robustness in certain cases. For instance, higher pitch voices are
known to be problematic for inverse filtering [5] and particularly when combined
with a low first formant frequency. There can be strong source-filter interaction
effects [6] which seriously affect the linear model of speech exploited in inverse
filtering. Furthermore, precise glottal source analysis is often said to require
the use of high-quality equipment to record in anechoic or studio settings [5].
Despite these claims, some studies have found that glottal source parameters
derived from speech recorded in less than ideal recording conditions contribute
positively to certain analyses [7].

It follows that the purpose of this paper is to investigate the performance of
both inverse filtering and parameterisation steps typically used in glottal source
analysis. The evaluation of glottal source analysis methods is known to be prob-
lematic as it is not possible to obtain ‘true’ reference values. To deal with this,
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the current study presents two different evaluation procedures in order to pro-
vide a more thorough impression of the performance of the various methods.
Some similar work was recently carried out in [8] and the current study builds
on this by incorporating model-fitting based parameterisation methods.

2 State-of-the-Art

A description of the state-of-the-art in terms of automatic glottal inverse filter-
ing and glottal source parameterisation methods was previously given in [9] and
[5]. For the evaluation in the present study the following glottal inverse filter-
ing methods are evaluated: a closed-phase inverse filtering method (CPIF, [10]),
iterative and adaptive inverse filtering (IAIF, [11]) and mixed-phase decomposi-
tion based on the complex-cepstrum (CCEPS, [12]). Note that for these methods
glottal closure instants (GCIs) are detected using the SE-VQ algorithm [13]. For
the CPIF method, the glottal closed phase is determined by detecting glottal
opening instants (GOIs) using the algorithm described in [14].

The glottal source parameterisation methods are divided into two groups: di-
rect measures and model fitting. The direct measures used in the current study
are: the normalised amplitude quotient (NAQ, [15]), the quasi-open quotient
(QOQ, [16]) and the difference between the first two harmonics of the narrow-
band glottal source spectrum (H1-H2, [21]). These three parameters are chosen
as they were shown to be particularly effective at discriminating breathy to tense
voice in a previous study [17]. Two algorithms are included which involve fitting
the Liljencrants-Fant (LF) glottal source model [22] to the glottal source signal.
A standard time domain method is used (Strik-LF, [18]) and an algorithm based
on dynamic programming (DyProg-LF) described in [26]. One further algorithm
is used in the evaluation which provides an estimate of the Rd parameter of the
LF model by minimising a phase-based error criterion (Degott-LF, [20]).

3 Experimental Setup

As any single evaluation of glottal source analysis has its shortcomings, the
approach here is to evaluate both on synthetic and natural speech data.

3.1 Synthetic Testing

A frequently used evaluation procedure (see e.g., [18,8]) is to do analysis of
synthetic vowel segments where there are known reference values. This has the
advantage of allowing straightforward quantitative evaluation where systematic
modifications to both vocal tract and glottal source model settings can be in-
vestigated. The disadvantage, however, is that the stimuli will be a simplified
version of real speech and will not contain some of the known difficulties for
glottal source analysis (e.g., the presence of aspiration noise, source-filter inter-
action effects, etc.). In this paper, analysis is carried out on a large range of
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synthetic vowel segments with wide variation of glottal source and vocal tract
filter model settings. This is done in a similar fashion to that in [8]. The LF
glottal source model is used to generate the synthetic source signal and is varied
using f0 and three parameters which can be used to characterise its shape: Ra,
Rk and Rg. With each setting 10 LF pulses are concatenated to create the source
signal. An all-pole vocal tract model is used to modulate the source signal. Eight
vowel settings are used based on the analysis of spoken vowels (i.e. one vocal
tract model used to characterise each of the eight vowels). Note that the first
formant frequency (F1) is derived from the vocal tract model, and we consider
error rates as a function of F1. In total 198,720 synthetic signals (each contain-
ing 10 concatenated synthetic glottal pulses) are generated for analysis. A small
proportion of these variations result in improper LF model configurations (i.e.
when Rk > 2Rg−1 or when Ra > 1− 1+Rk

2Rg ), and these signals are not analysed.
In order to evaluate the performance of automatic inverse filtering the follow-

ing three parameters are considered: NAQ, QOQ and H1-H2. These parameters
are calculated from the synthetic source signal, as reference values. Then for each
synthetic vowel the three inverse filtering methods: CPIF, IAIF and CCEPS, are
used to estimate the source signal, which is subsequently parameterised. Relative
error scores are then computed for each parameter and then are analysed as a
function of f0 values and first formant frequency (F1, derived from the all-pole
settings).

3.2 Voice Quality Differentiation

One useful application of glottal source analysis is to automatically differentiate
voice quality. Furthermore, as NAQ, QOQ, and H1-H2 have been shown to be
suitable for separating breathy to tense voice (see for example: [17,15,16,21]) it is
reasonable to assume that quality of inverse filtering can be somewhat evaluated
on the basis of how well the extracted glottal source parameter differentiates the
voice quality. Such an approach has been used in previous studies [23,8] and can
allow quantitative evaluation on natural speech.

The speech data consist of all-voiced spoken sentences from two separate
databases. The use of all-voiced sentences allowed evaluation independent of
the effects of using automatic voicing decision algorithms. Furthermore, as voic-
ing transitions often display characteristics associated with laxer phonation this
would affect the results. The speech data from 6 speakers (3 male and 3 female)
were selected from the speech database first described in [13]. Participants were
asked to read a set of phonetically balanced TIMIT sentences in six different
phonation types (though only the 5 all-voiced breathy, modal and tense samples
are used here, i.e. 6-speakers × 5-sentences × 3-phonation types). Following a fi-
nal perceptual evaluation 10 of the intended tense utterances were not perceived
as such, and hence were discarded from the analysis. A further 10 all-voiced
sentences produced by 3 male speakers in breathy, modal and tense voice, were
recorded and added to the sentence dataset (giving a total of 60 breathy, 60
modal and 50 tense utterances). The three male speakers are all experienced
in voice-related research and individual utterances were re-recorded in several
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iterations until the sentences were deemed to properly represent the stated voice
quality mode for the entire utterance. All audio was captured in a semi-anechoic
studio using high quality recording equipment: a B & K 4191 free-field micro-
phone and a B & K 7749 pre-amplifier. The signals were digitised at 44.1 kHz
and were subsequently downsampled to 16 kHz.

For each included speech segment inverse filtering is carried out using CPIF,
IAIF and CCEPS, and parameterised using NAQ, QOQ and H1-H2. Further-
more,Rd and OQ parameters are derived from the model fitting by the Strik-LF
and DyProg-LF methods, following IAIF inverse filtering. Rd is also derived
using Degott-LF, which does not require prior inverse filtering. In order to have
a balanced dataset it is desirable to have a fixed number of datapoints per sen-
tence. To address this, parameter contours are derived using each of the methods.
These contours are then resampled to 10 samples which can capture variations
in the parameter contour but still maintaining a constant number of datapoints.
An explained variance metric is then derived as the squared Pearson’s R coeffi-
cient by treating median parameter values as the dependent variable and voice
quality label as the independent variable. A similar evaluation procedure was
carried out in [17].

4 Results

4.1 Synthetic Testing

The results from the synthetic testing are shown in Figure 1, with mean relative
error plotted as a function of f0 setting and F1 (derived from the vocal tract
models). The NAQ parameter is shown to be rather insensitive to variations
in f0 (Figure 1a). Below around 240 Hz the IAIF method produces the lowest
relative error; however from after this point the three inverse filtering methods
yield similar results. Although these results corroborate previous findings in [8]
for the performance of NAQ on synthetic data other studies on natural speech
have found that NAQ becomes less effective with wide f0 variation [19].

For F1, NAQ is shown to be insensitive to its variation. Again IAIF provides
the lowest relative error scores, although there is a sudden increase for the vowel
setting with an F1 of 344 Hz. This can be explained by the fact that this is a /u/
vowel setting with a very low second formant. IAIF may at times treat this as a
single formant resulting in incomplete formant cancellation thus affecting NAQ.
For QOQ, the closed-phase inverse filtering method (CPIF) provided the lowest
relative error scores. This is particularly true for higher f0 values, with both
IAIF and CCEPS showing significant increases in relative error from around 200
Hz. There is a clear effect of certain vowel settings on IAIF and CCEPS, but
they are clearly not as a result of F1. CPIF is not affected by the different vowel
settings. In the case of H1-H2, however, CPIF gave clearly the highest relative
error values. It is apparent from the analysis that even though the extracted time
domain waveform, using CPIF, is suitable for deriving time domain parameters,
it is considerably less so for the frequency domain one. The CPIF method is
unable to reliably extract the relative amplitude of the first few harmonics.
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Fig. 1. Mean relative error score for NAQ (top row), QOQ (middle row) and H1-H2
(bottom row) as a function of f0 (left column) and F1 (right column), for the three
inverse filtering methods: CPIF (blue), IAIF (red) and CCEPS (black)

4.2 Voice Quality Differentiation

The results from the voice quality differentiation experiments are summarised
Table 1. As expected, overall differentiation of voice quality is reduced when
analysing the continuous speech considered here compared to vowel data anal-
ysed in [17] (note that our analysis of the same vowel data, not presented here,
closely corroborates the trends seen in [17]). This is likely due to the difficulty
in inverse filtering some parts of continuous speech (e.g., certain voiced conso-
nants). However, similar trends to those in [17] are maintained with NAQ derived
following IAIF giving the best performance for the direct measure parameters
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(R2 = 0.28). Once more CCEPS is the most suitable decomposition method for
applying H1-H2 (R2 = 0.26). For QOQ, a serious degradation in performance is
observed for all decomposition methods. CPIF is observed to be the least effec-
tive inverse filtering method for voice quality classification. Note that it displays
considerably better performance on steady vowels (not presented here). In the
synthetic data experiments the glottal closed phase is known a priori, whereas
for the natural speech data used in these experiments the glottal closed phase
has to be estimated with automatic algorithms which will inevitably display a
certain degree of error.

Table 1. Explained variance (Pearson R2) for each parameter and inverse filtering
type combination. The glottal source parameter is treated as the dependent variable
and voice quality label as the independent variable.

NAQ H1-H2 QOQ
Strik-LF DyProg-LF Degott-LF
Rd OQ Rd OQ Rd

IAIF 0.28 0.22 0.20 0.21 0.24 0.39 0.34 0.28
CPIF 0.06 0.06 0.09

CCEPS 0.10 0.26 0.05

The performance for the model fitting methods is considerably better than
has previously been reported [17]. Here the DyProg-LF method gave the best
performing Rd values (R2 = 0.39). This is also the case for OQ (R2 = 0.34) and
in fact both Rd and OQ derived from DyProg-LF provided considerably better
voice quality differentiation than all the direct measure parameters. Another
interesting observation is that the traditional OQ method, derived using model
fitting methods, consistently outperformed QOQ.

5 Discussion

Perhaps the most striking finding in this study is the strong performance of LF
model based parameters at differentiating breathy to tense voice. Whereas the
standard time domain LF model fitting algorithm (Strik-LF, [18]) gave com-
parable performance to that in [17], more recent algorithms for deriving LF
model parameters (DyProg-LF, [26] and Degott-LF, [20]) compared favourably
with direct measure parameters. This is particularly the case for continuous
speech, where direct measure parameters suffered a serious degradation in per-
formance. Specifically for DyProg-LF, both the Rd and OQ parameters still pro-
vided strong differentiation of the voice quality in continuous speech. The reason
for the apparent robustness of the DyProg-LF method to continuous speech can
be explained by the suitability of dynamic programming for maintaining sensible
parameter contours even in “difficult” speech regions.

Although differentiation of voice quality does not directly measure the ac-
curacy of derived parameter values, strong performance does suggest that the
particular method is characterising salient glottal features.
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Evidence from the testing on synthetic speech signals indicates that certain
glottal inverse filtering methods are more suited to certain parameters. For in-
stance, closed-phase inverse filtering (CPIF) is shown to be particularly suitable
for deriving NAQ and QOQ, both time domain parameters. These parameters
derived following CPIF are also rather insensitive to changes in f0 and vocal
tract filter setting. However, for the frequency domain parameter, H1-H2, the
CPIF output is clearly less suitable. This finding may corroborate those in [8]
where CPIF is shown to produce higher levels of spectral distortion than the
other inverse filtering methods. However, the findings for IAIF conflict with
those in [8], as in the present results IAIF had a similar performance to the
other methods in terms of relative error on NAQ and QOQ, whereas in [8] it was
considerably worse. In fact IAIF displayed relatively stable performance across
the experiments and is shown to be particularly useful in combination with NAQ
for breathy-tense discrimination and accuracy on synthetic speech signals.

6 Conclusion

This study presents a general assessment of automatic glottal inverse filtering
and glottal source parameterisation methods. To overcome the known difficulty
of quantitative evaluation of glottal source analysis methods two different ex-
periments are conducted which, in combination, provide a more comprehensive
impression of the performance of the methods. Testing on synthetic signals re-
vealed that different glottal inverse filtering methods are more suited to certain
parameter estimation methods. The experiments on voice quality differentia-
tion show that more recent LF model fitting methods are more suited to the
continuous speech data than direct measures.
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