Recommendation with Differential Context Weighting

Yong Zheng, Robin Burke, and Bamshad Mobasher

Center for Web Intelligence, School of Computing, DePaul University
243 South Wabash Ave, Chicago, Illinois 60604
{yzheng8, rburke, mobasher}@cs.depaul.edu

Abstract. Context-aware recommender systems (CARS) adapt their recommen-
dations to users’ specific situations. In many recommender systems, particularly
those based on collaborative filtering, the contextual constraints may lead to spar-
sity: fewer matches between the current user context and previous situations. Our
earlier work proposed an approach called differential context relaxation (DCR),
in which different subsets of contextual features were applied in different compo-
nents of a recommendation algorithm. In this paper, we expand on our previous
work on DCR, proposing a more general approach — differential context weight-
ing (DCW), in which contextual features are weighted. We compare DCR and
DCW on two real-world datasets, and DCW demonstrates improved accuracy
over DCR with comparable coverage. We also show that particle swarm opti-
mization (PSO) can be used to efficiently determine the weights for DCW.

Keywords: recommender systems, collaborative filtering, context, context-aware
recommendation.

1 Introduction

Researchers in the domain of recommender systems started to realize that it is use-
ful to take contexts into account when making recommendations. Context-aware rec-
ommender systems (CARS) have shown improved accuracy in many recommendation
tasks, such as travel accommodation [22/14,29], food menus [24430]], movie recommen-
dation [3!13]], music recommendation [25/20], and mobile applications [28/7]].

The fundamental assumption of CARS is that a rating for an item is a function not
just of the user and item but also of the context in which the item is evaluated or used.
This suggests that ratings for context c; may be of limited value when predicting for
context co. However, if we partition all of our ratings by their contexts, the purpose of
collaborative recommendation is defeated — no two individuals are ever in exactly the
same situation and so prior ratings cannot be used to extrapolate future preferences.

Applying contexts in recommendation is therefore a matter of separating those as-
pects of the context that are relevant to the recommendation from those that are not. In
the movie example, “companion” is clearly an important contextual variable, but “time
of day” perhaps is not. Selecting contextual variables is clearly a blunt instrument. Al-
though additional contextual information fine-tunes the recommendation process, every
variable included also fragments the data, with the result that most researchers tend to
stick with a single contextual variable unless their data is particularly dense.

S. Carberry et al. (Eds.): UMAP 2013, LNCS 7899, pp. 152-[[64] 2013.
© Springer-Verlag Berlin Heidelberg 2013

Recommendation with Differential Context Weighting 153

Therefore, how to select contextual variables, and how to use and apply selected
contexts in recommendation algorithms are really serious problems, especially when
contextual information is not dense in the data. In our previous research, we sought to
escape from the dilemma of contextual variable selection through differential context re-
laxation (DCR) [29130]. DCR divides the recommendation algorithm into components
and allows each part to treat context differently — this is the “differential” part. Rather
than choose a priori among the possible contextual variables, we use an optimization
approach to select the best set of variables for each component. Because we think of
the contextual variables as constraints on the operation of the components, we consider
this a matter of finding the optimal relaxation of the context.

Although DCR does allow a recommender to take context into account and is an
improvement on global context selection, we found that in some cases, it did increase
sparsity more than was desirable. In this paper, we show that the DCR approach can
be extended to an algorithm — differential context weighting (DCW) in which the con-
tribution of each contextual variable is weighted. Below, we introduce DCR and DCW
and demonstrate the relative benefits of DCW in two real-world datasets.

Optimization is an important part of this research. The DCR algorithm requires an
optimal set of contextual variables for each component; DCW requires an optimal set of
weights for each contextual variables for each component. We show that particle swarm
optimization can be used to solve this non-linear optimization problem for our sample
datasets.

2 Related Work

Traditional recommendation problem can be modeled as a two-dimensional (2D) pre-
diction — R: Users X Items — Ratings, where the recommender system’s task is to
predict that user’s rating for that item. Context-aware recommender systems try to ad-
ditionally incorporate contexts to estimate user preferences, which turns the prediction
into a “multidimensional’” rating function — R: Users X Items X Contexts — Ratings [2].

Adomavicius, et al. [2] introduce a two-part classification of contextual information.
Their taxonomy is based on two considerations: what a recommender system knows
about a contextual factor and how the contextual factor changes over time. System
knowledge can be subdivided into fully observable, partially observable and unobserv-
able. The temporal aspect of a factor can be categorized as static or dynamic. This
analysis yields six possible classes for contextual factors, which characterizes possi-
ble contextual situations in the applications of CARS. In this paper, we are concerned
with static and fully observable factors — we have a set of known potential contextual
variables at hand which remain stable over time.

The problem of sparse contexts is a well-known one in CARS research. Users may
rate items in different contexts, but it is not guaranteed that we can find dense contextual
ratings under the same contexts, i.e. there may be very few users who have rated the
items in the same contexts. The solutions for this problem can be categorized into two
branches: context selection and context relaxation.

Context selection identifies the most influential contextual variables and then applies
them into recommendation algorithms. There are several different means of discovering

154 Y. Zheng, R. Burke, and B. Mobasher

influential contextual variables [6127U15]]. Odic et al. [S] summarized and categorized
those approaches into the relevancy assessment from the user survey and the relevancy
detection with statistical testing. However, each of these techniques has its drawbacks.
Survey assessment requires a lot of user effort. Statistical testing are not reliable unless
the data set is dense — items have been rated multiple times in different contexts.

The notion of context relaxation was first applied by De Pessemier et al. [9] in 2010.
The researcher sought to alleviate sparisty by removing one of the contextual variables
in a set of contextual features. We propose the different context relaxation model in
our previous work [29/30]. DCR allows the context relaxation to be realized by look-
ing at arbitrary subsets of the contextual variables instead of a single feature. More
significantly, DCR applies this relaxation approach to multiple components of the rec-
ommendation algorithm using different relaxations for different components. In this
paper, we propose DCW which weights contexts other than context selections or relax-
ations, and context weighting can be considered as a novel approach as another solution
for the problem of context sparsity. To our best knowledge, contexts were not weighted
in existing research on CARS.

Context-aware recommendation algorithms fall into three categories: contextual pre-
filtering, contextual post-filtering and contextual modeling [4] based on how and where
contextis applied in the recommendation process. As indicated by our previous work [29],
DCR can be considered a hybrid context-aware modeling approach because contexts are
applied in not only the neighborhood filtering process, but also the recommendation pro-
cess; and DCW is similar. Our approach is unique in that contextual constraints are ap-
plied differentially across the algorithm components, rather than being fixed for the entire
algorithm.

3 Differential Context Relaxation

As discussed above, the idea of DCR is that we treat a recommendation algorithm as
a collection of functional components and apply context relaxation differently in each
component. Furthermore, we treat the context as a set of constraints that the input to
the component must satisfy. Those constraints can be relaxed to manage the balance
between coverage and accuracy in recommendation.

For example, in movie recommendation as the example shown in Table [T, we might
know where the user watched a film (in a theater vs at home), companion (solo, family,
girlfriend, etc), and what day of the week. If we want to predict whether U1 will like the
movie Titanic at home (Location) with his sister (Companion) on a weekday (Time), we
could use only peers who had rated the movie under exactly the same circumstances.
This would amount to filtering the input to the neighborhood formation component
using the context C'. We might find that this produces too much sparsity — maybe there
are no neighbors that meet this constraint — as shown in Table[Il no users rated Titanic
in such contexts. It may be possible to form neighborhoods with a relaxed version of
C, perhaps by dropping one of the variables to make the constraint less restrictive, e.g.
relaxed contexts as {weekday, sister} or {weekday, home}. Or, there would be more
matched ratings if we just consider one dimension, e.g. {weekday}.

We take as our starting point the well-known Resnick’s algorithm for kNN user-
based collaborative filtering (uCF)recommendation as shown in Equation[I] where a is

Recommendation with Differential Context Weighting 155

Table 1. Example: users’ contextual ratings for movie Zitanic

User Time Location Companion Rating
Ul Weekend Home Girlfriend 4
U2 Weekday Home Girlfriend 5
U3 Weekday Theater Sister 4

9

Ul Weekday Home Sister

a user, ¢ is an item, and IV, is a neighborhood of k users similar to a. The algorithm
calculates P, ;, which is the predicted rating that user a is expected to assign to item 3.

> (rui — Tu) X sim(a,u)

u€EN,
> sim(a,u)
uEN,

P, =7q+ (D

To introduce DCR, let us define a context c as a vector of values (f1, fa, .., fr), one for
each contextual variable known to a recommendation application. Let s be a binary
vector (s1, S2, ..., Sn). The projection function 7(c, s) projects ¢ to a smaller set of
contextual features by applying s. The contextual value f; is included in the projection
if s; = 1. Two contextual profiles in two ratings, ¢ and d, match subject to the contextual
constraint s if 7(c, s) = 7(d, s). A relaxation of s, s is defined as any vector containing
fewer values of 1. Contexts that match under the constraint s will also match under any
relaxed version of s.

Let ¢ be the context for which a recommendation is sought, and let Cy, Cs, Cs, and
C}y be relaxations of the full set of contextual variables with corresponding selection
vectors Si, So, S3, and 54ﬂ The algorithm components are as follows:

Neighborhood Selection. The original neighborhood selection component of
Equation [T selects the k nearest neighbors for user a with a rating on 4, subject
to a minimum similarity threshold. In DCR, we instead select only neighbors as
N¢, who have issued their ratings for 7 in a context matching c under relaxation
Ch.

Neighbor Contribution. The computation of 7, in the original equation is replaced
by the one in which this average baseline rating for user v is computed using a
filtered set of ratings by the constraint C5. We will denote this filtered version of
the average with the notation 7, ¢,, and subtract it from the user’s rating r,, ; ¢, to
calculate the contribution of this neighbor towards the prediction.

User Baseline. The computation of 7, in the original equation we replace with the one
using the filtered ratings of the user a as above: 7q ;.

User Similarity. The computation of neighbor similarity sim(a,u) involves identify-
ing ratings r,, ; and r, ; where the users have rated items in common. For context-
aware recommendation, we have ratings r,, ; ¢ and r,_; . instead. We will consider

! Note that our previous work [29130] used only three components and did not examine con-
textual effects in the user similarity calculation. Our experiments show introducing context
relaxation to this additional component can help improve prediction accuracy and also save
coverage, it is because it helps discover better neighbors in CF.

156 Y. Zheng, R. Burke, and B. Mobasher

only ratings where 7(d, Cy) = 7(e, Cy). In other words, when comparing two rat-
ing profiles, we require that the ratings be issued in matching contexts relative to
Cjy. Unlike the other components, we do not require that d and e match the context
¢ in which recommendations are being made. We will indicate this version of sim-
ilarity with the function sim.(a, u, Cs) which is measured by Pearson correlation
coefficient in our experiments.

Thus the four-component DCR model is described in Equation R}
S (ruics — Tu,cs) X sime(a, u, Cy)

u€N¢c,
> sime(a,u, Cy)
u€ENc,

2

Pa,i,c = 'Fa,C;; +

DCR tries to find an optimal context relaxation for each component in recommendation
algorithm. In this process, it aims to achieve a balance of alleviating the problem of
sparse contexts and maximizing the contextual effect of each component. This approach
has several drawbacks:

— Context relaxation is still a strict action — the algorithm must choose to include or
exclude each variable relative to each component. It works well for dataset with
dense contextual ratings, but in datasets with less contextual information, sparsity
remains a problem.

— Algorithm components can be dependent. For example, the neighbor contribution
component is dependent on neighbor selection: it is not guaranteed that neighbor
u has ratings under C5, because « is selected by a different constraint C. In this
case, the model rolls back to the original component representation in uCF.

These considerations give rise to the idea of differential context weighting (DCW).

4 Differential Context Weighting

Binary selection can be considered a special case of weighting where only 0 and 1
values are permitted. DCW exploits this idea, using, instead of a selection vector s, a
vector of weights o, real values between 0 and 1. The weights are used to control the
contribution of each contextual feature to the recommendation algorithm components
in a manner similar to DCR. Feature weighted collaborative filtering is not novel, e.g.
Ujjin et al [26] applied feature weighting to neighborhood-based collaborative filtering.
This prior work did not include contextual features, however, and did not apply them
differentially compared with our work.

In DCW, we introduce the weighting vectors and the notion of similarity of contexts
to realize “differential” and “weighting”. We are no longer concerned with filtering
out certain ratings, but rather with assigning a score to all ratings based on context.
DCW assumes that the more similar the contexts of two ratings were given, the more
valuable those ratings will be in making predictions. Given a target context ¢, we need
to assess how much to weight a rating r,, ; ¢ issued in some different context d, subject

Recommendation with Differential Context Weighting 157

to a weighting vector o. Our metric for the similarity of contexts is a simple one: the
weighted Jaccard metric, J.

ZfECOd of

d =
J(e.d,0) Zfewd of

3)

If we revisit the example shown in Table [Il we see that it is possible to use all three
dimensions even if there are no users who have rated Titanic under the exact context
{weekday, home, sister}. Because U3 rated Titanic under a partially-matching context
{weekday, theater, sister}, it is possible to make use of this rating in making predictions
for U1 based on the proposed Jaccard metric above — more similar the contexts of two
ratings were given, these ratings are considered more reliable for further predictions.
However, there is a limit to this effect: our experiments show that contexts with low
similarity may add noise to the predictions. So, we use a set of similarity thresholds
€1...€4 to filter ratings, for the each component. Context matches below the threshold are
ignored. In addition, the weighting vectors assign different weights to each contextual
dimension to indicate the power of influence instead of assuming all dimensions have
equal effects.

As a result, DCW is supposed to be able to compensate the drawbacks of DCR —
weighting is not as strict as relaxation because we can include more contextual ratings
into calculations once it meets the minimal context similarity threshold, even if the algo-
rithm components are dependent. With these preliminaries above, DCW is reformulated
as Equation [l The key parameters in this equation are the four o vectors, one for each
component, that weight the contribution of each contextual variable in that component,
and the four € values that set the threshold of context similarity in each component.

Z (p(uaiaJZaGQ) - ﬁ(u,UQ,GQ)) X Simw(aaua0—4a€4)
UENG, 0y e
P,;,=pla 3) + e
i = Pla 0, €3) > simy(a,u, 04, €)
UENG, 01 ,eq

“)
Neighborhood Selection. In DCR, we selected neighbors among those who had rated
item ¢ in a context matching the target context c. In the weighted version, we select
neighbors by comparing their contexts for rating item ¢ with the target context ¢
and allowing them as neighbors if the context similarity is greater than a threshold
€1. However, it is possible that a neighbor u has rated an item in multiple contexts,
so we choose the maximally-similar context when applying the threshold. Alterna-
tives are to choose minimally-similar context or averagely-similar context. In our
experiments, we tried all three functions and the maximally-similar context is the
best choice. We will denote this operation with N, , ., defined as follows, where ¢
is the context of the current recommendation.

No.oe; = {u:max(J(c,d,0)) > €1}

Tu,i,d

158 Y. Zheng, R. Burke, and B. Mobasher

Neighbor Contribution. In DCR, we chose a subset of the neighbor’s ratings on which
to compute that user’s baseline and subtracted this average from the user’s rating
Tu,i,c. For DCW, it is possible that the user has multiple ratings for item ¢ in different
contexts that match the target context c to different degrees. These need to be com-
bined via a weighted average and then from them subtracted an overall weighted
average of all ratings issued in similar contexts. We will define our weighted aver-
age function for an item as follows:

Z?"u,i,da‘](c,d,g)>62 Tu,i,d X J(C7 d’ 0)

p(u,i,0,6) = S

This function selects all ratings for ¢ given by users u in contexts at least e, similar
to ¢, and applies a weighted average based on contextual similarity. Let I,, be the
set of all items rated by user u. The overall average across all items rated in similar
contexts is p defined here:

Zie]u p(’I,L, ia g, 62)

ﬁ(U,U,GQ): |I ‘

User Baseline. The user baseline is the overall average of the target user’s ratings of
items in similar contexts, which is simply p(a, o, €3).

User Similarity. In DCR, we used Pearson correlation to compute the similarity be-
tween users, filtering out pairs of ratings with non-matching contexts. For sim,,,
the weighted variant, we weight each comparison between ratings. We create the
set T,, by collecting all items ¢ and pairs of contexts ¢ and d for users a and w,
respectively, such that each has rated 7 in that context and J (¢, d, o) > €4.

Te, = {(i,e,d) 2 Frgicoruia N J(e,d,0) > ea}

Once we have all of the relevant ratings and their contexts, we can compute a
weighted version of the correlation function as shown in Equation[3l

z:(i,c,d)eTF4 (Ta,i,c - fa)(”'u,i,d - FU)J(Cv dv U)

®)
VE (aie =725 (ruie = 70)* L c.aper,, (e d:0)?

simy(a,u,0,€4) =

5 Optimization

The remaining work for DCR and DCW is to find the optimal binary selection vectors
or weighting vectors for algorithm components. In our DCR algorithm, we model re-
laxation as a process of binary selection — the vectors s1, So, s3 and s4 are used to filter
the contextual variables. In our prior work, the set of contextual variables was small
and simple enough that we could use exhaustive search of all possible constraints [29].
However, this approach is not at all scalable. Moreover, the optimization space is highly
non-linear and standard approaches such as gradient descent cannot be used. An effi-
cient non-linear optimizer is required.

Recommendation with Differential Context Weighting 159

Particle swarm optimization (PSO) [17]] is a form of swarm intelligence originally
introduced by Eberhart and Kennedy in 1995. It is a population-based optimization ap-
proach inspired by social behaviors in swarming and flocking creatures like bees, birds
or fish. It was introduced to the domain of information retrieval [12,11] and recom-
mender systems [1126/10] recently as a means of feature selection and feature weight-
ing. Binary particle swarm optimization (BPSO) is a discrete binary version of the
technique [18]].

In PSO, optimization is produced by computations using a number of particles placed
at different points in an optimization space. Each particle searches independently for the
optimum, guided by the local value and the communication with the other particles. In
our case, we use root mean square error (RMSE) as the value to be minimized and the
position in the space corresponds to a set of weights for the ¢ vectors. If there are five
contextual variables and four algorithm components, there will be a 20-dimensional
search space@ Each particle records its personal best performance and corresponding
best position. The algorithm also keeps track of the global best performance and corre-
sponding position. These values are updated for the whole swarm in each iteration.

PSO and BPSO have been successfully demonstrated as efficient non-linear optimiz-
ers. They are to understand and implement, and there are several open source libraries
onlinef. Our application of feature weighting for DCW is similar to the previous work
by Ujjin et al. [26] on uCF, where they applied PSO and found it outperformed genetic
algorithms. Furthermore, we realize DCR by feature selection and DCW by feature
weighting — BPSO and PSO use binary vectors and real-value vectors as the position
for particle respectively, a good match for the requirements for DCR and DCW.

6 Experiment Setup

We evaluated our DCR and DCW models on four real-world datasets. For reasons of
space, we discuss two of them in this paper.

Food Data is the “AIST context-aware food preference dataset” used and distributed
by the author Hideki Asoh ef al [24]. It is based on a survey of users’ ratings on a menu
under the context of different degrees of hunger: hungry/normal/full. The ratings were
collected in two situations: real hunger is current degree of hunger, and virtual hunger
is an imagined state of hunger. More information is shown in Table 2l

Movie Data is used by Adomavicius et al [3]] and Karatzoglou et al [16], where
the data was collected from a survey — subjects were requested to rate movies and re-
port on the movie watching occasion. Three contextual variables were captured: Time
(weekend, weekday), Companion (friends, parents, girlfriend or boyfriend, alone, sib-
lings,etc) and Location (home, cinema). More information is shown in Table

21t is 20-dimensional search space in DCR. Actually, there are additional dimensions due to
the need for e threshold values in DCW. In our experiments, we use the same threshold for all
components in the algorithm and so only one additional dimension is needed in DCW.

3 http://www.particleswarm.info/Programs.html

* As discussed in our prior work, we found that an improved version of BPSO [19] is was the
best solution for feature selection in DCR [30]. For DCW, we use the variant constriction-
factor PSO (CFPSO) [8], which promises quicker convergence than some other variants such
as FIPSO [23] and CLPSO [21].

http://www.particleswarm.info/Programs.html

160 Y. Zheng, R. Burke, and B. Mobasher

The rating scale for movie data is 1 to 13, and it is 1 to 5 for the food dataset.
After filtering out subjects with less than 5 ratings and subjects with incomplete user
profiles or item features, we got the final datasets shown in Table 2l where context-
linked features [30] include both user profiles and item features. And the number of
dimensions indicate the total amount of contexts and context-linked features.

Table 2. Description of Datasets

Dataset # of users # of items # of ratings # of dimensions Density of Contexts
Food Data 212 20 6360 6 Dense
Movie Data 69 176 1010 5 Sparse

The predictive performance was measured by RMSE evaluated using 5-fold cross val-
idation. We also measured coverage for each evaluation run, measured as the percentage
of predictions for which we can find at least one neighbor. If we find no neighbors, the
prediction is based on the user’s baseline as shown in Equations[1l 2 and [l We use a
threshold to guarantee a minimum degree of coverage. The reason for this is to avoid a
solution that works well in terms of RMSE but only fits a limited number of users. The
reason why we do not evaluate models on precision or recall is that the datasets are rel-
atively small and collected from surveys — it is possible users were required to rate all
items. Previous research [24/316] on these two data sets used prediction errors, also.

The result below shows values from four algorithms. The first algorithm is uCF as
described above, a context-free application of kNN collaborative filtering. We also im-
plemented contextual prefiltering to provide a non-differential context-aware algorithm
for comparison. This is just a variant of the DCR algorithm in which context is used
only to pre-filter the neighbors.

We did a number of experiments using DCR on these datasets, the results of which
are omitted for reasons of space. For the purposes of this paper, we compare against the
top performer: DCR optimized using a 3-particle version of BPSO Bl. Finally, the fourth
algorithm is DCW as described above.

There are several other DCW algorithm parameters worth mentioning. The minimal
coverage thresholds are set as 0.7 for the food data and 0.5 for the movie data. These
parameters were chosen based on performance on the standard collaborative recom-
mendation algorithm and not changed for the context-aware algorithms. As mentioned
above, we use the same e threhold values for all components to reduce the number of
dimensions in the optimization process. To reduce variability due to random particle
positioning, we use the same initial particle positions for BPSO and PSO.

7 Experimental Results

We applied PSO to identify optimal weights for the DCW algorithm and compared the
accuracy and coverage with those found with DCR. It is clear that feature weighting
does offer improved accuracy over feature selection.

> We examined different numbers of particles for BPSO and PSO, where using 3 particles
showed the best performances for these two datasets taking the running time into consider-
atoins. So we use 3-particle version of BPSO and PSO as comparisons.

Recommendation with Differential Context Weighting 161

1.25 4

a1
115 —/A /A y 94%

- 92%
Rmse 110 ; Coverage

7 7 7 - oon <%
(Bar) iZZ / / % o (Line)

0.90 + 80%

T

Standard CF Pre-Filtering DCR DCW
Food Data

2.90 100%

2.85 —/// 7
2.80 E/é ,é
.

- 90%

% - 80%

%—j 0% Corernge
e e = el
=S EE R

2.75

RMSE 2.70
(Bar) 2.65

Fig. 1. Performance Comparisons

Consider the relative performance of the algorithms as shown in Figure[Il For food
data and movie data, DCW shows strongly significant improvement comparing with
standard CF, contextual pre-filtering and DCR. DCW outperforms DCR significantly
in terms of RMSE, and it works well for the movie data where DCR does not offer
significant improvements over the baselines .

DCW achieves higher coverage than DCR for food data. Surprisingly, in the movie
data set, we see a small decline in coverage compared with DCR. We believe that the
reason for this result is that the optimization criterion in PSO was RMSE, so the sys-
tem may be minimizing RMSE at the expense of coverage in this dataset. One solution
would be to optimize using a combination of RMSE and coverage. From other experi-
mentation with this and other data sets, we believe that improvement over DCR in both
coverage and RMSE is possible for DCW.

Table Bl provides running time for the algorithms, showing the number of iterations
required to converge and the corresponding running time in seconds.

Table 3. Comparison of Running Performances Between BPSO and PSO

Food Data Movie Data

Iteration Running Time Iteration Running Time
DCRviaBPSO 11 66.9 18 4.9
DCW via PSO 13 248.4 66 232

% We use paired t-test to examine significance, where 0.05 is set as the threshold for p-value to
evaluate the significance and p-value lower than 0.01 indicates strong significance.

162 Y. Zheng, R. Burke, and B. Mobasher

The most significant difference between BPSO and PSO is that the value in the par-
ticle position — it is binary number for BPSO, switching between 0 and 1, and it is a
decimal value ranging between [0, 1] for PSO. The search space for BPSO is limited
because the combinations are countable. The unlimited search space of PSO results in
much greater search times. In Table [3] it is not surprising that PSO required more it-
erations to converge and the average running time per iteration is increased due to the
weighting process is more complex than selection. Our experiments find that the run
time performance of DCW via PSO depends two factors: one is the number of con-
textual dimensions used — more dimensions, more parameters require to be learned;
another one is the density of contextual ratings — more dense, the weighting calcula-
tions require more time. As shown by the food data which has more dimensions and
more dense data, the running time goes up significantly.

We see that the finer-grained application of context in DCW is able to improve the
predictions of DCR across multiple data sets. The results on coverage are inconsistent,
due to the use of RMSE as the optimization criterion. Improved RMSE comes at the
cost of greater computation time due to the learning complexity of PSO.

8 Conclusions and Future Work

This paper points out the drawbacks of DCR and introduces a generalization of DCR,
differential context weighting (DCW), where contextual variables are weighted rather
than selected, and it is demonstrated to compensate the drawbacks of DCR. DCW
achieves better accuracy as compared to DCR with acceptable coverage and even better
coverage than the baselines in our experiments. DCW also works when DCR does not
work significantly. BPSO and PSO are shown as efficient optimizers for DCR and DCW
respectively. However, DCW may require more costs due to the weighting process in
DCW and learning complexity in PSO.

One direction in the future work is to explore other forms of similarity of contexts
to DCW other than the simple Jaccard similarity, such as semantic similarities, which
may help further ameliorate the sparsity problem. For example, in our Movie data set,
the “companion” variable has values such as “friends”, “family”, “solo”. It may make
sense to treat “friends” and “family” as more similar than “friends” and “solo” because
they are settings involving a group of individuals. Also, DCR and DCW are considered
as general approaches to use context in recommendation and they can be integrated to
other recommendation algorithms in the future. We have successfully applied them to
item-based CF and slope one recommender, and we hope to further integrate them with
latent factor models in the future, such as matrix factorization.

References

1. Abdelwahab, A., Sekiya, H., Matsuba, 1., Horiuchi, Y., Kuroiwa, S.: Feature optimization
approach for improving the collaborative filtering performance using particle swarm opti-
mization. Journal of Computational Information Systems 8(1), 435-450 (2012)

2. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender sys-
tems. Al Magazine 32(3), 67-80 (2011)

10.

12.

14.

19.

20.

21.

Recommendation with Differential Context Weighting 163

. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual in-

formation in recommender systems using a multidimensional approach. ACM Transactions
on Information Systems (TOIS) 23(1), 103—-145 (2005)

. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender

Systems Handbook, pp. 217-253 (2011)

. Tasi¢, J.F., Kosir, A., Odic, A., Tkalcic, M.: Relevant context in a movie recommender sys-

tem: Users opinion vs. statistical detection. In: ACM RecSys 2012, Proceedings of the 4th In-
ternational Workshop on Context-Aware Recommender Systems (CARS 2012). ACM (2012)

. Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation

in mobile recommender systems. Personal and Ubiquitous Computing, 1-20 (2011)

. Bourke, S., McCarthy, K., Smyth, B.: The social camera: a case-study in contextual image

recommendation. In: Proceedings of the 16th International Conference on Intelligent User
Interfaces, pp. 13-22. ACM (2011)

. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a mul-

tidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 5873
(2002)

. De Pessemier, T., Deryckere, T., Martens, L.: Extending the bayesian classifier to a context-

aware recommender system for mobile devices. In: 2010 Fifth International Conference on
Internet and Web Applications and Services (ICIW), pp. 242-247. IEEE (2010)
Diaz-Aviles, E., Georgescu, M., Nejdl, W.: Swarming to rank for recommender systems
(2012)

. Diaz-Aviles, E., Nejdl, W., Schmidt-Thieme, L.: Swarming to rank for information retrieval.

In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation,
pp- 9-16. ACM (2009)

Drias, H.: Web information retrieval using particle swarm optimization based approaches.
In: 2011 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT), vol. 1, pp. 36-39. IEEE (2011)

. Gantner, Z., Rendle, S., Schmidt-Thieme, L.: Factorization models for context-/time-aware

movie recommendations. In: Proceedings of the Workshop on Context-Aware Movie Rec-
ommendation, pp. 14-19. ACM (2010)

Hariri, N., Mobasher, B., Burke, R., Zheng, Y.: Context-aware recommendation based on
review mining. In: Proceedings of the 9th Workshop on Intelligent Techniques for Web Per-
sonalization and Recommender Systems (ITWP 2011), p. 30 (2011)

. Huang, Z., Lu, X., Duan, H.: Context-aware recommendation using rough set model and

collaborative filtering. Artificial Intelligence Review, 1-15 (2011)

. Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: n-

dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of
the Fourth ACM Conference on Recommender Systems, pp. 79-86. ACM (2010)

. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International

Conference on Neural Networks, vol. 4, pp. 1942-1948. IEEE (1995)

. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: 1997

IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernet-
ics and Simulation, vol. 5, pp. 4104—4108. IEEE (1997)

Khanesar, M., Teshnehlab, M., Shoorehdeli, M.: A novel binary particle swarm optimization.
In: Mediterranean Conference on Control & Automation, MED 2007, pp. 1-6. IEEE (2007)
Lee, J.S., Lee, J.C.: Context awareness by case-based reasoning in a music recommenda-
tion system. In: Ichikawa, H., Cho, W.-D., Satoh, I., Youn, H.Y. (eds.) UCS 2007. LNCS,
vol. 4836, pp. 45-58. Springer, Heidelberg (2007)

Liang, J., Qin, A., Suganthan, P., Baskar, S.: Comprehensive learning particle swarm opti-
mizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary
Computation 10(3), 281-295 (2006)

164

22.

23.

24.

25.

26.

217.

28.

29.

30.

Y. Zheng, R. Burke, and B. Mobasher

Liu, L., Lecue, F., Mehandjiev, N., Xu, L.: Using context similarity for service recommen-
dation. In: 2010 IEEE Fourth International Conference on Semantic Computing (ICSC),
pp- 277-284. IEEE (2010)

Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better.
IEEE Transactions on Evolutionary Computation 8(3), 204-210 (2004)

Ono, C., Takishima, Y., Motomura, Y., Asoh, H.: Context-aware preference model based on
a study of difference between real and supposed situation data. In: Houben, G.-J., McCalla,
G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 102-113. Springer,
Heidelberg (2009)

Park, H.-S., Yoo, J.-O., Cho, S.-B.: A context-aware music recommendation system using
fuzzy bayesian networks with utility theory. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J.
(eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 970-979. Springer, Heidelberg (2006)
Ujjin, S., Bentley, P.: Particle swarm optimization recommender system. In: Proceedings of
the 2003 IEEE Swarm Intelligence Symposium, SIS 2003, pp. 124-131. IEEE (2003)
Vargas-Govea, B., Gonzédlez-Serna, G., Ponce-Medellin, R.: Effects of relevant contextual
features in the performance of a restaurant recommender system. In: ACM RecSys 2011,
The 3rd Workshop on Context-Aware Recommender Systems, CARS-2011 (2011)
Woerndl, W., Huebner, J., Bader, R., Gallego-Vico, D.: A model for proactivity in mobile,
context-aware recommender systems. In: Proceedings of the Fifth ACM Conference on Rec-
ommender Systems, pp. 273-276. ACM (2011)

Zheng, Y., Burke, R., Mobasher, B.: Differential context relaxation for context-aware travel
recommendation. In: Huemer, C., Lops, P. (eds.) EC-Web 2012. LNBIP, vol. 123, pp. 88-99.
Springer, Heidelberg (2012)

Zheng, Y., Burke, R., Mobasher, B.: Optimal feature selection for context-aware recommen-
dation using differential relaxation. In: ACM RecSys 2012, Proceedings of the 4th Interna-
tional Workshop on Context-Aware Recommender Systems (CARS 2012). ACM (2012)

	Recommendation with Differential Context Weighting
	1 Introduction
	2 Related Work
	3 Differential Context Relaxation
	4 Differential ContextWeighting
	5 Optimization
	6 Experiment Setup
	7 Experimental Results
	8 Conclusions and Future Work
	References

