
Linked Open Webble:

Connecting Webbles to the World Wide Web

Nicolas Spyratos and Tsuyoshi Sugibuchi

Laboratoire de Recherche en Informatique, Université Paris-Sud 11, France
{Nicolas.Spyratos,Tsuyoshi.Sugibuchi}@lri.fr

Abstract. Webble technology is a media technology allowing media
generation by direct manipulation. Webble users can build systems and
interfaces by interactively combining visual components, called webbles,
and dynamically connecting functions of components to create new, com-
posite components. A casual user can simply place one webble on another
and plug it in, and the combination will be able to run immediately as-
suming the connected functions are compatible. However, the current
webble technology provides virtually no means for (a) searching a poten-
tially huge pool of webbles to find those needed for a specific application
and (b) knowing whether the functions of two webbles are compatible
(and therefore whether the webbles can be connected). In this paper, we
propose an approach to a solution for this problem.

1 Introduction

Webble technology is a media technology allowing media generation by direct
manipulation [1]. Webble users can build systems and interfaces by interactively
combining visual components, called webbles, and dynamically connecting func-
tions of components to create new, composite components. Each function of a
webble is physically represented as a webble slot. Casual users can simply place
one webble over another (by drag-and-drop), plug it in, and the combination
will be able to run immediately, assuming that the connected functions are com-
patible.

Therefore, when a webble is dropped on another, one of two things can happen:
if the relevant slot types of the two webbles are compatible then the webbles are
effectively connected and the new, composite webble is available for further use;
otherwise there is no connection established and therefore no creation of a new,
composite webble. In other words, placing one webble on another and plugging
it in is not necessarily creating a connection, unless there is slot compatibility.

The long term vision of webble technology is to start with an open pool of
atomic webbles created by an initial group of technology oriented users, and
grow it to a world wide webble pool that can be accessed freely by casual or
professional users. The webble pool users will either use existing components for
their applications, or create new components from old and contribute to growing
the pool by making their webbles available to the webble community.

O. Arnold et al. (Eds.): WWS 2013, CCIS 372, pp. 66–78, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Linked Open Webble: Connecting Webbles to the World Wide Web 67

However, in the current version of webble technology, there is little or no help
provided to the casual user in order to (a) search a potentially huge pool of
webbles to find those needed for a specific application and (b) know whether the
functions of two webbles are compatible (and therefore whether the webbles can
be connected). As a consequence the user must try to connect webbles by trial
and error - a formidable task, as the number of slot combinations is huge even
in a pool of a few tens of webbles.

In this paper, we propose to solve this problem by introducing annotations
at two levels: at the webble level and at the slot level. Our claim is that if these
annotations are based on standard, controlled vocabularies then one can define
search mechanisms (based on those vocabularies) allowing to access webbles of
interest, and to have information about compatibility of their slots. Additionally,
the world of webbles can then communicate with other worlds using the same
vocabularies, and in particular it can communicate with the world wide web.

Today, there are several standard vocabularies, such as Dublin Core[2], IEEE’s
LOM [15], CIDOC-CRM[3], ACM’s CCS [16] and others. These vocabularies are
rather widely used today in several areas, including digital libraries, archives [4],
or distant learning systems, to mention just a few areas. Annotation framework
using such standard vocabularies or more sophisticated ontology representing
domain knowledge [5][6][7] is continuously very hot research topic and already in
use in various application domains. One of most successful examples is semantic
annotation of biomedical data. Nowadays various biomedical data are annotated
by using several standard vocabularies [8][9] and those annotations are widely
used for biomedical data analysis [10] and information retrieval[11].

Our proposal is also motivated by another simple observation regarding web-
ble technology. To begin with, from a programming point of view, webbles can
be regarded as a visual, dynamically typed programming language. Compared
to static typing, dynamic typing has the advantage of enabling the connection
of arbitrary pairs of slots during runtime. However, such over-flexibility entails
the risk of misconnections, as well as difficulties in choosing an appropriate com-
bination of slots from a huge number of possible combinations.

One possible solution is to enhance dynamic programming with optional type
annotation[12][13][14]. It is the kind of annotation that programmers optionally
embed into source code for indicating types of variables or function signatures.
Optional type annotation has no effect on the run-time semantics of the program-
ming language. However, it can be used for improving productivity and runtime
performance of dynamic programming languages by static type checking before
execution, JIT (just-in-time) compiler optimization and content suggestion in
IDEs (integrated development environments). Today, optional typing is a very
popular approach for introducing more stability and strictness to dynamic pro-
gramming languages while preserving their flexibility.

The idea of optional type annotation is not limited to the programming
world. In the world wide web, we also find various microformats for annotat-
ing pieces of HTML documents by using predefined, controlled vocabularies. For
instance, the hCard standard defines a set of class names for indicating contact

68 N. Spyratos and T. Sugibuchi

information. By using hCard, we can explicitly indicate telephone numbers like
0678901234. Microformats also enable us to pre-
serve expressiveness of HTML itself and to optionally introduce semantics of
data in HTML documents.

From these observations, we believe that there can be various useful applica-
tions of optional type annotation for webbles as well. However, we have to keep
in mind that webbles is not a RAD (Rapid Application Development) tool. It is
a media architecture. Therefore, we should not limit possible annotation types
for webbles only to those used for data types in programming.

For instance, if you make a dialog webble for entering book reference data,
it is a good idea to annotate both the webble and its slots, using the Dublin
Core vocabulary. In this way, if later on you develop a new application, say for
EPUB books, you can easily find that dialog from a webble repository and al-
most automatically connect it to your new application. This is possible because
Dublin Core is not only a programming technology but also a common vocab-
ulary used for annotating files of various media formats, including EPUB. We
can also imagine similar examples not only for Dublin Core, but also DBpedia,
YAGO, AAT, MeSH and any other controlled vocabularies used in the Web. By
annotating webbles with such widely used vocabularies, webbles can gradually
become citizens of the Linked Open Data (LOD) world.

In this paper, we introduce a generic and formal framework for annotating
webbles. The kind of vocabulary that we envisage can be a pre-defined vocabu-
lary specific for the webble framework, or the LOD world. The framework that
we propose here works with any kind of controlled vocabulary. Moreover, our
framework doesn’t touch the webble architecture itself - it just overlays an ad-
ditional, semantic layer on top of the naked webble architecture.

2 Webble Annotations

The current webble technology offers some means to attach annotations both at
webble level and at slot level. At webble level we find several kinds of annota-
tions in the current webble implementation: name, class name, developper, group
identifiers, description keywords and “metadata”. However, the terms in these
annotations do not come from any standard vocabulary and the mechanism for
creating metadata is rarely used (i.e. most webbles have empty metadata).

At slot level, we find two kinds of annotation: (a) a slot name and (b) a
slot type. However, none of these information items is exploited from the user’s
point of view. Moreover, there is no mechanism available to express attributes
(or properties) of a slot other than its name and type.

Another problem is that the names in these annotations do not come from
any standard vocabulary either. For instance, if someone wants to search webbles
by name, he has to read a document about webble file format to identify the
name of the annotation which represents webble names. This lack of relationship
with widely-used controlled vocabularies prevents visibility, searchability, and
reusability of webbles in the context of the world-wide-web.

Linked Open Webble: Connecting Webbles to the World Wide Web 69

To solve this problem, we propose to enrich the existing annotations of a
webble at both levels (i.e. at webble level and at slot level), and moreover use
annotations for designing search mechanisms and for reasoning about webbles.
The annotation framework that we propose in this paper aims at the following
goals:

Easy to define. To encourage webble developers and users to start annotating
webbles, we should keep the annotation model as simple as possible. From
user’s point of view, a webble annotation in our framework is just a set of
attribute-value pairs. Our framework also provides a controlled vocabulary
for webble annotation: it’s a small set of terms borrowed from RDF together
with a few webble-specific terms. Reasoning about annotations is based on
a set of entailment rules defined by the framework. However, as far as users
are concerned, reasoning is transparent: it is basically a kind of detail users
do not need to care about.

Annotation of both media containers and media contents. Webble is
not only a GUI toolkit, but also a media architecture. A webble can be a
container of media contents. When we annotate webbles, we need to distin-
guish between media containers and media contents. For example, suppose
an image webble has an annotation “dc:creator is Hokkaido university”. In
this case, Hokkaido university is a creator of what? The webble itself, or the
image displayed by the webble? Actually, we need to handle both cases. Out
framework allows users to annotate both webbles and contents represented
by webbles.

Cooperation with webble architecture. Our framework can cooperate with
the basic mechanisms of webbles, in particular, slot connection and webble
composition. It can map slot values to annotations, and it can reify annota-
tions as webbles. These features allow us to interactively annotate webbles
and media contents by using slot connections and webble compositions.

Easy to map to RDF. After annotating webbles, the next step is to make
webbles visible in the LOD world. A straightforward way to do this is to
represent webble annotations by using the standard metadata format in LOD
world, namely RDF. Our framework provides a simple mechanism to map
webble annotations to RDF graphs. From webble annotations, our framework
produces RDF graphs representing annotations of webbles, annotations of
contents, and the relationship between a webble and its contents.

Enhance the behavior of webbles. If the webbles are annotated, then the
webble runtime environment can use annotations for various use. In partic-
ular, RDF mapping of webble annotations enables us to use the powerful
reasoning system of RDF in order to control the behavior of webbles. In this
paper, we demonstrate rule-based restrictions of webble composition and slot
connection by using webble annotations.

2.1 Annotating Webbles and Their Slots

Figure 1 shows the work flow in an example that we shall use as a running
example throughout this paper. In this example, a user wants to create an image

70 N. Spyratos and T. Sugibuchi

Fig. 1. A example work flow

webble whose content (i.e. the image contained in the webble) is annotated by
the content of a metadata webble. To achieve this goal, the user has to do
the following: (1) search for webbles in repositories for creating the composite
webble satisfying his goal; (2) set slot values, define webble compositions and
slot connections to create the intended webble; and (3) possibly store the created
webble into a repository for future reuse. Figure 2 shows the structure of the
composite webble.

wi wm

DublinCore
Webble wm

Image
Webble wi

#url

#url

#title #creator …

Fig. 2. Structure of the example webbles

In the composite webble, we can see an image webble wi which can contain
and display an image, and a metadata webble wm which can contain metadata
defined in Dublin Core (hence its name “DublinCoreWebble”). The user wants
to compose these two webbles so that the metadata contained in wm is added to
the image displayed by wi.

This work flow can be done perfectly without any annotations at all. However,
from the practical point of view there are several problems.

1. How can the user efficiently search for webbles in a webble repository?
2. How can the user make this composition without tedious try-end-error

repetition?
3. How can the user expose results of the webble composition in a searchable

form for future reuse?

To solve these problems, we need (1) well-organized webble annotations on which
to base search mechanisms (2) a query language for searching webble repositiories
(3) a mechanism preventing users from performing forbidden operations, and (4)
a mapping rule from annotations of composite webbles to a searchable form.

Linked Open Webble: Connecting Webbles to the World Wide Web 71

In this paper, we first discuss webble annotations (point (1) above); then a
mapping rule from webble annotations to RDF (point (4) above); and finally we
demonstrate a plug-in type system to restrict user’s operations in order to avoid
errors (point (3) above). We do not address the issue of defining a query language
(point (2) above). To begin with, let’s define formally what an annotation is.

Definition 1 (Webble annotation and slot annotation). Let i be the iden-
tifier of a webble or of a slot. The annotation of i, denoted An(i), is defined to
be a set of attribute-value pairs, namely: An(i) = {(A1, v1), ..., (An, vn)}.
There are several important points to mention regarding the definition of a
webble annotation. Firstly, we assume that both webbles and slots are associated
with identifiers, and moreover that we can tell whether an identifier is a webble
identifier or a slot identifier (e.g. from its syntax). In the rest of this paper,
we use the following conventions: (1) if w denotes a webble then w denotes the
identifier of w, and (2) if s is a slot of webble w then w:#s denotes the identifier
of slot s of w.

Although we do not discuss how webble annotations are defined, we assume
two types of annotations: system annotations, defined by webble developers and
user annotations defined by users. Attributes and values of system annotations
are pre-defined by developers or dynamically assigned by webble runtime en-
vironments, while user annotations are defined by users who wish to append
application-specific inforation to webbles.

Finally, we assume that all attribute names A1. . .An come from some con-
trolled vocabulary. In particular, in order to be able to map webble annotations
to RDF, we will introduce a restriction such that every attribute name must be
the URL of an RDF property. Therefore in the rest of the paper we use only
URLs of RDF properties as attribute names.

Figure 3 shows an example annotation of an image webble wi. Basically all
annotations in this example are system annotations.

An(wi) = {(dc:title, "Image Webble"), (rdf:type, ImageWebble),

(dc:creator: "Hokkaido Univ."), (wb:hasSlot, wi:#url)}
An(wi:#url) = {(dc:title, "URL"), (rdf:type, TextSlot),

(wb:hasValue, http://a/b/c.jpeg)}

Fig. 3. Webble annotation example

In this example, some basic information (name, title, . . .) are described by
using terms from Dublin Core, whose name space is denoted as dc. The example
annotation also describes ownership and value of url slot by using wb:hasSlot

and wb:hasValue that come from a controlled vocabulary that we have specif-
ically designed for webble annotations. We call this vocabulary webble vocabu-
lary and in the rest of the paper its name space is denoted as wb. Note that
wb:hasValue is a typical dynamic annotation. Indeed, the value of this annota-
tion is dynamically assigned by a webble runtime environment to indicate the
slot value of an annotation.

72 N. Spyratos and T. Sugibuchi

An important point to notice here is that webble annotations describe only
webbles and their slots. Indeed, the example annotation of Figure 3 does not
say anything about the image http://a/b/c.jpeg displayed by the image web-
ble wi. In other words, webble annotations in this figure annotate only media
containers and do not annotate media contents.

2.2 Annotating Slot Values

To annotate media contents, our approach uses an entailment rule to infer anno-
tations of media contents from annotations of media containers and their state.
In other words, our framework assumes that metadata of a media content is
represented as state of a media container. Regarding the webble architecture,
the state of a webble is externalized as a set of slot values.

An(wm) = {(dc:title, "Metadata"), (rdf:type, DublinCoreWebble),

(wb:hasSlot, wm:#url), (wb:hasSlot, wm:#title), ...}
An(wm:#url) = {(dc:title, "URL"), (rdf:type, TextSlot),

(wb:hasValue, "") }
An(wm:#title) = {(dc:title, "Title"), (rdf:type, TextSlot)}

(wb:represents, dc:title), (wb:annotatesValueOf, wm:#url),

(wb:hasValue, "La Joconde") }
.

Fig. 4. Slot value annotation example

Figure 4 shows an example annotation of DublinCoreWebble wm and its slots
(only annotations of url slot and title slot are shown).

The properties wb:represents and wb:annotatesValueOf in the annotation
of title slot are terms from the webble vocabulary used for annotating values
of slots. Intuitively, the annotation of title slot says that “the value of title
slot represents dc:title of something specified by url slot”.

This statement is represented by three terms of webble vocabulary and one
entailment rule. Figure 5 illustrates the mechanism of slot value annotation.
In this figure, wb:represents associates slot t with an attribute name p.

s

vs

t

vt

wb:annotates
ValueOF

wb:
hasValue

wb:represents p

wb:
hasValue

p

Fig. 5. wb:represents and wb:annotatesValueOf

Linked Open Webble: Connecting Webbles to the World Wide Web 73

wb:annotatesValueOf associates slot t with slot s. The slots s and t have val-
ues vs and vt. For these annotations, webble vocabulary defines the following
entailment rule R1.

(wb : hasValue, vt) ∈ An(t) ∧ (wb : represents, p) ∈ An(t)∧
(wb : annotatesValueOf, s) ∈ An(t) ∧ (wb : hasValue, vs) ∈ An(s)

(p, vt) ∈ An(vs)

R1: Slot value annotation

By R1, the annotations in Figure 5 entails annotation (p, vt) ∈ An(vs), which is
illustrated as the dashed line arrow in the figure. The role of this entailment rule
R1 is to lift slot annotations to slot value annotations. By using this mechanism,
we can annotate media contents indicated by slot values.

Now we are ready to annotate contents specified by url slot. However, at
present, url slot of DublinCoreWebble wm has no value. To get the url of the
image displayed by the image webble wi, we can use webble composition and the
slot connection mechanism. By combining wm with wi as a child, and connecting
both url slots, the url slot of wm gets a url from url slot of wi. As a result, the
annotation of wm’s url slot gets the following attribute-value pair.

– An(wm:#url) = {..., (wb:hasValue, http://a/b/c.jpeg)}

Then, we apply entailment rule R1 to associate slot values with annotations of
slot values. In this example, rule R1 matches with s =wi:#url, t =wm:#url, vs =
http://a/b/c.jpeg, vt ="La Joconde", p =dc:title. As a result, this exam-
ple annotation entails (dc:title, "La Joconde") ∈ An(http://a/b/c.jpeg).
It is exactly an annotation of the image http://a/b/c.jpeg.

As we demonstrated here, our framework uses wb:hasValue, wb:represents,
wb:annotatesValueOf, and entailment rule R1 to associate slot values to anno-
tations. These three terms and one rule form the core of the webble vocabulary.
The full definition of the webble annotation core vocabulary can be found in the
appendix.

2.3 Mapping Annotations to RDF Graphs

Conceptually a webble annotation is just a set of attribute-value pairs. However,
by restricting attribute names to be only RDF properties, we can easily map
webble annotations to RDF graphs. The basic idea is that we can represent an
attribute-value pair (a, v) in annotation An(i) as an RDF statement “i a v” if
a is an RDF property.

Table 1 shows the mapping from webbles and webble annotations to RDF
graphs used in our framework. In our approach, each webble and each of its
slots is mapped to an RDF resource. Static structure (ownership of slots, etc.),
dynamic state (slot values) and annotations are mapped to RDF statements.

The graph in figure 6 shows an RDF representation of the example that we use
in this section. In this graph, statements mapped from webble annotations are

74 N. Spyratos and T. Sugibuchi

Table 1. Mapping from webbles and webble annotations to RDF graphs

Webbles and annotations RDF

webble w w

slot s of webble w w wb:hasSlot w:#s

value v of slot s of webble w w:#s wb:hasValue v

pair (a, v) in annotation An(i) i a v

webbles and annotations an RDF graph

wi wm

#url #url #title

wb:hasSlot wb:hasSlot wb:hasSlot

wb:annotates
ValueOF

http://a/b/c.jpeg

wb:
hasValue

wb:
hasValue

La Joconde

wb:
hasValue

dc:title

dc:title
wb:represents

Image
Webble

Metadata

dc:title dc:title

Fig. 6. RDF representation of webble annotation

represented as solid line arrows, and statements inferred by the entailment rule
are represented as dashed line arrows. An RDF representation of webble anno-
tations consists of graphs representing annotations of webbles and slots (webble
graph), and graphs representing annotations of contents (content graph). As we
can see from this example, our framework can produce “clean” content graphs,
that is, content metadata is represented by using only standard controlled vo-
cabularies without webble specific vocabularies. This is an advantage for inter-
operability of webble annotations with existing metadata standards. By storing
RDF representations of webbles into webble repositories, we can search webbles
by using SPARQL which is a query language for retrieveing information from
RDF documents.

2.4 Enhancing Webble Behavior Based on User Annotations

The webble architecture provides a webble composition mechanism and a slot
connection mechanism. The design of these mechanisms are intended to combine
arbitrary pairs of webbles and slots. As we mentioned in the introduction, such
over-flexibility entails the risk of misconnections. Regarding webble composition,
the current webble architecture does not provide any information for restricting
the combination of webbles to be combined. For slot connection, one possible
solution is type-checking of slots. However, basically, webbles are designed and
should be designed for preserving interoperability of webbles by choosing their

Linked Open Webble: Connecting Webbles to the World Wide Web 75

slot types from a small set of common slot types (string, integer, real, etc.).
Additionally, automatic data conversion is implemented between many combi-
nations of common slot types. As a result, selectiveness of slot types is usually
too low for helping users to avoid misconnections of slots (static type checking
in statically typed programming languages helps us in finding some errors but
it is still far from eliminating all errors).

As a consequence, if we want to introduce a mechanism which helps users in
reducing miscombination and misconnection of webbles, it has to be application
specific. For each application, we need to “plug-in” an additional type system
of webbles and slots specific for the application. For this purpose, we can use
user annotation of webbles. RDF mapping of webble annotations enable us to
define custom type systems by using RDF schema (RDFS) or more advanced
RDF vocabularies like OWL. Then we can annotate types of webbles and slots
used in applications.

By using the example illustrated in figure 2, suppose a user intends to combine
the image webble wi only with child webbles which describe metadata. In this
case, the user can introduce a custom type system of webbles, then declare
webbles by using this type system and check whether a webble can combine
with another.

Firstly, the custom type system has to be declared as a set of RDF triples.

– DublinCoreWebble rdfs:subclassOf wb:Webble

– DublinCoreWebble rdfs:subclassOf MetadataWebble

– CIDOCWebble rdfs:subclassOf MetadataWebble

– . . .

Then, the type of webbles acceptable as children by the image webble wi has to
be declared as part of wi’s annotation. In this example, the acceptable type is
declared by using wb:acceptsAsChild which is a term of webble vocabulary:

– An(wi) = {..., (wb:acceptsAsChild, MetadataWebble) }

Finally, we can check whether a webble can be combined with wi or not by
evaluating the following rule.

x wb:acceptsAsChild t ∧ y rdfs:subclassOf t

y can be combined with x as a child

In the same manner, we can also restrict possible combinations of slots to connect
by using annotations and rules. For instance, both image webble and Dublin
Core webble have url slot whose type is TextSlot. TextSlots can accept texts
in general as values. However, url slot of image webble has a URL of an image
as its value, and url slot of Dublin Core webble has a URL of a resource to
annotate in general as its value. We can declare such detailed information of slot
value domains as annotations.

– An(wi:#url) = {..., (wb:valueDomain, vra:Image)}
– An(wm:#url) = {..., (wb:valueDomain, rdfs:Resource)}

76 N. Spyratos and T. Sugibuchi

In the above example, vra:Image (which is a class defined by Visual Resource
Association [17]) is used to fix the domain of wi:#url slot to image URLs. The
domain of wm:#url slot is also fixed to URLs of resources in general by using
rdfs:Resource. By using this additional information about slot value domains,
we can check whether values of one slot can be set to another slot by using the
following rule:

x wb:valueDomain s ∧ y wb:valueDomain t ∧ s rdfs:subclassOf t

values of slot x can be set to slot y

In this paper, we do not discuss details about webble vocabulary and rules for
controlling behavior of webbles. The main point we would like to emphasise
here is that by introducing application specific type systems and rules, we can
carefully restrict the operations that users can perform. We believe that such
restrictions on user’s operations for avoiding misconnections of webbles is useful
and somehow indispensable when we provide webbles for casual users.

3 Conclusion

In this paper we have argued that if the webble technology is to be used in its full
strength it should be enhanced in two ways: (a) providing means for searching
a potentially huge pool of webbles and (b) controlling webble’s behavior by
introducing application specific type systems and rules. We have proposed webble
annotations as an unobtrusive way to remedy these two deficiencies of the current
webble technology. Additionally, by studying an important use case (annotation
of digital media contents) we have demonstrated the benefits of using standard,
controlled vocabularies in the definition of webble annotations.

We are currently researching several aspects of composite webbles. The main
concern is query formulation and evaluation for searching webbles in the web-
ble repository. In this paper, we have demonstrated how webble annotations
can be directly mapped to RDF graphs and how our mapping method produces
“clean” RDF graphs of content metadata. Therefore we can search media con-
tents in the webble repository by using the same manner for querying content
metadata. However, the question is how to search media containers in the same
repository. Webbles may have many slots and sometimes they are composite.
Annotations over such complex webbles are represented as complex RDF graphs
which is difficult to query. To allow typical users to search complex webbles
from the repository, we need to introduce a mechanism for “summarizing” web-
ble annotations into simpler forms to search. We have developed a theoretical
framework of metadata summarization in the context of composite document
repositories [18]. This framework works with metadata comprising a set of terms
from a controlled vocabulary. In future work, we will extend this framework to
handle metadata represented as RDF graphs.

Linked Open Webble: Connecting Webbles to the World Wide Web 77

References

1. Webble portal, http://cow.meme.hokudai.ac.jp/WebbleWorldPortal/
2. Dublin Core Metadata Initiative: http://dublincore.org/
3. The CIDOC CRM: http://www.cidoc-crm.org/
4. Gill, T.: Building semantic bridges between mquseums, libraries and archives: The

CIDOC Conceptual Reference Model. First Monday, vol. 9(5) (2004)
5. Handschuh, S., Staab, S.,, M.: CREAM: creating relational metadata with a

component-based, ontology-driven annotation framework. In: Proc. of the 1st
International Conference on Knowledge Capture, pp. 76–83 (2001)

6. Knight, C., Gasevic, D., Richards, G.: An ontology-based framework for bridg-
ing learning design and learning content. Journal of Educational Technology &
Society 9(1), 23–37 (2006)

7. Kitamura, Y., Washio, N., Koji, Y., Sasajima, M., Takafuji, S., Mizoguchi, R. An
ontology-based annotation framework for representing the functionality of engi-
neering devices. In: Proc. of Asme IDETC/CIE 2006 (2006)

8. Gene Ontology Consortium.Gene Ontology: tool for the unification of biology.
Nature genetics 25(1), 25–29 (2000)

9. Lipscomb, C. E. Medical subject headings (MeSH). Bulletin of the Medical Library
Association, 88(3), 265 (2000)

10. Al-Shahrour, F., Daz-Uriarte, R., Dopazo, J.: FatiGO: a web tool for fnding sig-
nifcant associations of Gene Ontology terms with groups of genes. Bioinformatics
20(4), 578–580 (2004)

11. Lu, Z.: PubMed and beyond: a survey of web tools for searching biomedical liter-
ature. Database: The Journal of Biological Databases and Curation (2011)

12. Bracha, G., Griswold, D.: Typechecking Smalltalk in a Production Environment.
In: Proc. of the OOPSLA 1993 Conference on Object-oriented Programming Sys-
tems, Languages and Applications, pp. 215–230 (1993)

13. PEP (Python Enhancement Proposals) 3107 Function Annotations:
http://www.python.org/dev/peps/pep-3107/

14. Bracha, G.: Optional Types in Dart.,
http://www.dartlang.org/articles/optional-types/

15. Learning Object Metadata, IEEE Standard 1484.12.1–2000 (2002)
16. The ACM Computing Classification System (2012),

http://www.acm.org/about/class/2012

17. Assem, M.V.: RDF/OWL Representation of VRA.,
http://www.w3.org/2001/sw/BestPractices/MM/vra-conversion.html

18. Sugibuchi, T., Tuan, L.A., Spyratos, N.: Metadata Inference for Description
Authoring in a Document Composition Environment. In: Agosti, M., Esposito,
F., Ferilli, S., Ferro, N. (eds.) IRCDL 2012. CCIS, vol. 354, pp. 69–80. Springer,
Heidelberg (2013)

http://cow.meme.hokudai.ac.jp/WebbleWorldPortal/
http://dublincore.org/
http://www.cidoc-crm.org/
http://www.python.org/dev/peps/pep-3107/
http://www.dartlang.org/articles/optional-types/
http://www.acm.org/about/class/2012
http://www.w3.org/2001/sw/BestPractices/MM/vra-conversion.html

78 N. Spyratos and T. Sugibuchi

Webble Core Annotation Vocabulary and Semantics

wb:Webble rdf:type rdfs:Class

wb:Slot rdf:type rdfs:Class

wb:hasSlot rdf:type rdfs:Property

wb:hasSlot rdfs:domain wb:Webble

wb:hasSlot rdfs:range wb:Slot

wb:hasValue rdf:type rdfs:Property

wb:hasValue rdfs:domain wb:Slot

wb:represents rdf:type rdfs:Property

wb:represents rdfs:domain wb:Slot

wb:represents rdfs:range rdfs:Property

wb:annotates rdf:type rdfs:Property

wb:annotates rdfs:domain wb:Slot

wb:annotates rdfs:range rdfs:Resource

wb:annotatesValueOf rdf:type rdfs:Property

wb:annotatesValueOf rdfs:domain wb:Slot

wb:annotatesValueOf rdfs:range wb:Slot

R1: Slot value annotation

(wb : hasValue, vt) ∈ An(t)∧
(wb : represents, p) ∈ An(t)∧

(wb : annotatesValueOf, s) ∈ An(t)∧
(wb : hasValue, vs) ∈ An(s)

(p, vt) ∈ An(vs)

R2: Webble or slot annotation

(wb : hasValue, vt) ∈ An(t)∧
(wb : represents, p) ∈ An(t)∧
(wb : annotates, s) ∈ An(t)∧

(p, vt) ∈ An(s)

	Linked Open Webble: Connecting Webbles to the World Wide Web
	1 Introduction
	2 Webble Annotations
	2.1 Annotating Webbles and Their Slots
	2.2 Annotating Slot Values
	2.3 Mapping Annotations to RDF Graphs
	2.4 Enhancing Webble Behavior Based on User Annotations

	3 Conclusion
	References

