
Statistical Stability in Chaotic Dynamics

J.F. Alves and M. Soufi

Abstract We present some results on the existence and continuous variation of
physical measures for families of chaotic dynamical systems. Quadratic maps and
Lorenz flows will be considered in more detail. A brief idea on the proof of a recent
theorem in Alves and Soufi (Nonlinearity 25:3527–3552, 2012) on the statistical
stability of Lorenz flows will be given.

1 Introduction

The theory of Dynamical Systems started in the work of Poincaré on the three-body
problem studies processes which evolve in time. The description of these processes
may be given by flows (continuous time) or iterations of maps (discrete time). The
main goals of this theory are: to describe the typical behavior of orbits as time goes
to infinity; and to understand how this behavior changes under perturbations of the
system and to which extent it is stable. In this work we are mostly concerned with
the stability of dynamical systems.

Ergodic Theory deals with measure preserving processes in a measure space. In
particular, it tries to describe the average time spent by typical orbits in different
regions of the phase space. According to Birkoff’s Ergodic Theorem, these times
are well defined for almost all points, with respect to any invariant probability
measure. However, the notion of typical orbit is usually meant in the sense of volume
(Lebesgue measure), which is not always an invariant measure.

It is a fundamental open problem to understand under which conditions the
behavior of typical (positive Lebesgue measure) orbits is well defined from the
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statistical point of view. In chaotic dynamical systems this can be precisely
formulated by means of Sinai-Ruelle-Bowen (SRB) measures, which were intro-
duced by Sinai for Anosov diffeomorphisms [23] and later extended by Ruelle and
Bowen for Axiom A diffeomorphisms [21] and flows [9]. In trying to capture the
persistence of the statistical properties of a dynamical system, Alves and Viana [4]
proposed the notion of statistical stability, which expresses the continuous variation
of SRB measures as a function of the dynamical system and is the problem that we
address in this work.

2 Physical Measures

Let M be a compact connected Riemannian manifold, f W M ! M a (possibly
piecewise) C k map, for some k > 1. We shall denote by � the Lebesgue measure
on the Borel sets of M .

The basin of an f -invariant probability measure � on the Borel sets of M is the
set of points x 2 M such that

lim
n!C1

1

n

n�1X

j D0

'.f j .x// D
Z

' d�; for any continuous ' W M ! R:

A probability measure � is called a physical measure if its basin has positive
Lebesgue measure.

Example 1. If p 2 M has an attracting periodic orbit of period k � 1, then the
average of Dirac measures on the orbit of p,

� D 1

k

�
ıp C � � � C ıf k�1.p/

�
;

is a physical measure.

Example 2. It follows from Birkhoff’s Ergodic Theorem that any ergodic invariant
probability measure which is absolutely continuous with respect to Lebesgue
measure is a physical measure. We shall refer to this special case of physical
measures as Sinai-Ruelle-Bowen (SRB) measures.

A probability measure � which is invariant under a flow .Xt /t is called a physical
measure if the basin of �, i.e. the set of points x such that

lim
T !C1

1

T

Z T

0

'.Xt .x// dt D
Z

' d�; for any continuous ' W M ! R;

has positive Lebesgue measure.
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We shall refer to statistical stability as the continuous variation of the physical
measures in the weak� topology as a function of the dynamical system. Strong
statistical stability means the continuous variation of the densities (if they exist)
of the physical measures in the L1-norm as a function of the dynamical system.

3 Quadratic Maps

In this section we consider some results on the statistical stability of the family of
quadratic maps, fa W Œ�1; 1� ! Œ�1; 1�, with a 2 Œ0; 2�, given for x 2 Œ�1; 1� by

fa.x/ D 1 � ax2:

The dynamics of the maps in this family has been exhaustively studied by many
authors in the last decades, serving as a model for many important results in the
field.

3.1 Physical Measures

The first result on the existence of SRB measures is for parameters for which the
critical point is nonrecurrent. Recall that a point is nonrecurrent if that point is not
accumulated by its orbit.

Theorem 1 (Misiurewicz [19]). If the orbit of 0 is nonrecurrent, then fa has an
SRB measure.

The set M of Misiurewicz parameters, i.e. the set of parameters a 2 Œ0; 2� for
which the orbit of 0 under fa is nonrecurrent, has the cardinality of the continuum
but zero Lebesgue measure. As the orbit of 0 is nonrecurrent for f2, then 2 2 M
and f2 has an SRB measure (f2 is actually conjugated to the tent map by a
diffeomorphism of (�1,1)).

The next result shows that SRB measures appear more generally from a measure
theoretical point of view.

Theorem 2 (Jakobson [14]). There is a positive Lebesgue measure set J of
parameters a 2 Œ0; 2� for which fa has an SRB measure.

In particular, for a in the set of Jakobson parameters, fa has no attracting periodic
orbit.

Theorem 3 (Lyubich [17]). For Lebesgue almost every a 2 Œ0; 2� the map fa has
either a periodic attracting orbit or an SRB measure.

Let P be the set of parameters in Œ0; 2� which have a physical measure.
By Lyubich Theorem, the set P has full Lebesgue measure in Œ0; 2�.
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3.2 Statistical Instability

Now we address ourselves to the statistical stability on the set of parameters whose
dynamics has a physical measure. The first result shows that we do not have
statistical stability inside that family.

Theorem 4 (Hofbauer-Keller [13]). The map P 3 a ! �a is not (weak�)
continuous at a D 2.

As mentioned before, f2 has an SRB measure. On the other hand, Hofbauer and
Keller showed that a D 2 is accumulated by a sequence of parameters an for which
fan has a physical measure which is a Dirac measure supported on a repelling fixed
point.

The next result shows that statistical instability is not a so uncommon phe-
nomenum.

Theorem 5 (Thunberg [24]).

1. P 3 a 7! �a is not (weak�) continuous at any Misiurewicz parameter;
2. P 3 a 7! �a is not (weak�) continuous at any full Lebesgue measure subset of

[0,2].

3.3 Statistical Stability

Here we see some results showing that when restricted to some special sets of
parameters we can have statistical stability, even in a strong sense. The first result is
for Misiurewicz parameters.

Theorem 6 (Rychlik-Sorets [22]). The map M 3 a ! �a is (strongly)
continuous.

The next result shows that we can have a similar result in a wider context.

Theorem 7 (Tsujii [25]). There is T � Œ0; 2� with positive Lebesgue measure and
positive density at 2 such that T 3 a ! �a is (weak�) continuous.

For the proof of the next result, Benedicks and Carleson developed a strat-
egy that enabled them to extend some results on the chaotic behavior of many
parameters (positive Lebesgue measure) in the quadratic family to the family of
two-dimensional Hènon diffeomorphisms; see [6].

Theorem 8 (Benedicks-Carleson [6]). There is BC � Œ0; 2� with positive
Lebesgue measure and positive density at 2 and constants c; ˛ > 0 such that
for each a 2 BC

1. j.f n
a /0.fa.0//j � ecn; 8n 2 N;

2. jf n
a .0/ � 0j � e�˛n; 8n 2 N.
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The proof on the existence of SRB measures for these parameters is stated in the
next result.

Theorem 9 (Benedicks-Young [7]). For each a 2 BC , the map fa has a unique
SRB measure.

However, we do not have statistical stability for the parameters BC when we
consider the full set of parameters P which have a physical measure.

Theorem 10 (Thunberg [24]). The map P 3 a ! �a is not (weak�) continuous
at any a 2 BC .

On the other hand, the next shows that restricting ourselves to the BC parameters
we do have statistical stability.

Theorem 11 (Freitas [11]). The map BC 3 a ! �a is (strongly) continuous.

In order to prove this result, Freitas showed that, for each a 2 BC , the expansion
and slow recurrence conditions stated by Benedicks and Carleson Theorem for the
critical orbit hold for Lebesgue almost every point in the phase space:

1. fa is nonuniformly expanding:

lim inf
n!1

1

n

n�1X

iD0

log.f 0
a .f i

a .x/// > c; Lebesgue a.e. x

2. fa has slow recurrence to the critical set: for each � > 0 there is ı > 0 such that

lim inf
n!1

1

n

n�1X

iD0

log dı.f
i

a .x/; 0/ > ��; Lebesgue a.e. x

where dı is the ı-truncated distance, defined as

dı.x; y/ D
� jx � yj if jx � yj � ı;

1 if jx � yj > ı:

This allows us to introduce the expansion time

Ea.x/ D min

(
N � 1 W 1

n

n�1X

iD0

log f 0
a .f i

a .x// > c; 8n � N

)
;

the recurrence time

Ra.x/ D min

(
N � 1 W 1

n

n�1X

iD0

log dı.f
i

a .x/; 0/ > ��; 8n � N

)
;
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and the tail set (at time n)

� n
a D ˚

x 2 I W Ea.x/ > n or Ra.x/ > n
�
:

Freitas [11] proved that there are C; � > 0 such that j� n
a j � Ce��n for all n � 1

and a 2 BC , which together with the following result gives the conclusion of
Theorem 11.

Theorem 12 (Alves [1]). Let A be a set of parameters for which there are C > 0

and � > 1 with j� n
a j � C n�� , for all n � 1 and all a 2 A . Then each fa with

a 2 A has an SRB measure �a and A 3 a 7�! d�a=d� is continuous.

4 Lorenz Flow

Lorenz [16] studied numerically the vector field X defined by
8
<

:

Px D a.y � x/;

Py D bx � y � xz;
Pz D xy � cz;

for the parameters a D 10, b D 28 and c D 8=3. The following properties are well
known for this vector field:

1. X has a singularity at the origin with eigenvalues

0 < ��3 � 2:6 < �1 � 11:83 < ��2 � 22:83I
2. There is trapping region U such that � D \t>0X

t .U / is an attractor and the
origin is the unique singularity contained in U ;

3. The divergence of X is negative:

divX D @ Px=dx C @ Py=dy C @Pz=d z D �.a C 1 C c/ < 0;

Thus X contracts volume, and in particular � has zero volume.
In experimental computations, Lorenz realized that the flow has sensitivity to the

initial conditions, i.e. even a small initial error lead to enormous differences in the
outcome.

4.1 Geometric Model

In the 1970s, Guckenheimer and Williams [12] introduced a geometric model for
the Lorenz flow. The vector field X is linear in a neighborhood of the singularity
.0; 0; 0/ whose eigenvalues satisfy

0 < ��3 < �1 < ��2:
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Fig. 1 The cross-section

X has a cross-section ˙ D fz D 1; jxj � 1=2; jyj � 1=2g intersecting the (two-
dimensional) stable manifold of the singularity 0 along a curve � which divides ˙

into two regions ˙C and ˙� (Fig. 1).
An easy calculation shows that the time needed to go from ˙˙ to S˙ D

fx D ˙1; jyj � 1; 0 � z � 1g is given by

	0.x; y; 1/ D � 1

�1

log jxj:

To complete the geometric model of Lorenz flow, it is assumed that the flow from
S˙ reaches ˙ in finite time T0. Hence, the return time from ˙ to itself is

	0.x; y; 1/ D � 1

�1

log jxj C T0:

Poincaré Return Map

The return map P W ˙ n � ! ˙ admits a stable foliation F on ˙ with the
following properties (Fig. 2):

• Invariant: the image under P of a stable leaf 
 (distinct from � ) is contained in
another stable leaf;

• Contracting: the diameter of P n.
/ goes to zero when n ! 1, uniformly over
all leaves;

• Quotient map: P induces a map f on the quotient space ˙=F �
Œ�1=2; 1=2� D I .

Assuming the strong dissipative condition at the singularity

��2

�1

> ��3

�1

C 2;
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Fig. 2 The return map

the foliation F is C 2, and the one-dimensional quotient map f is C 2 away from
the singularity. The map f has the following properties:

1. f is discontinuous at x D 0: lim
x!0C

f .x/ D �1=2 and lim
x!0�

f .x/ D 1=2I
2. f is differentiable on I n f0g and f 0.x/ >

p
2 for all x 2 I n f0g;

3. lim
x!0C

f 0.x/ D lim
x!0�

f 0.x/ D C1 (Fig. 3).

Attractor

The geometric model X admits a strange attractor, i.e. there is a compact set �

such that:

1. � is invariant under the flow;
2. � contains a dense orbit;
3. � contains the singularity O ;
4. There is an open neighborhood U of � such that � D \t>0Xt .U /I
5. The flow has sensitive dependence on the initial conditions in U .
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Fig. 3 The one-dimensional
map

Fig. 4 Lorenz attractor

The next result shows that the classical values of Lorenz equations do indeed
support a strange attractor (Fig. 4).

Theorem 13 (Tucker [26]). For the classical parameter values, Lorenz equations
support a robust strange attractor.

Robustness

Observe that all the properties in the geometric model for the Lorenz flow remain
valid under small perturbations. We consider a family L of Lorenz flows as a C 2

neighborhood of X such that for each Y 2 L :

1. The maximal forward invariant set �Y inside U is an attractor containing a
hyperbolic singularity;

2. ˙ is a cross-section for the flow with a return time 	Y and a Poincaré map PY ;
3. PY admits a C 2 uniformly contracting invariant foliation FY on ˙ with

projection along the leaves of FY onto I given by a map �Y ;
4. The quotient map fY on I is a C 2 piecewise expanding with two branches;

moreover, f 0
Y >

p
2 except at the unique discontinuity point cY and

lim
x!c˙

Y
f 0

Y .x/ D C1;

5. There is some constant C > 0 such that for each Y 2 L

	Y .x/ � �C log j�Y .x/ � cY j:
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4.2 Physical Measures

It is well know that a one-dimensional map with the properties of fY above, for
Y 2 L , has some SRB measure. Actually, we have the following folklore result;
see e.g. [27].

Theorem 14. For each Y 2 L , the map fY has a unique ergodic acip N�Y whose
density (wrt Lebesgue measure) has bounded variation.

The statistical stability for the maps fY with Y 2 L was proved by Keller.

Theorem 15 (Keller [15]). For each Y 2 L , the map fY is strongly statistically
stable.

It actually follows from the proof of this last result that the densities of the SRB
measures are uniformly bounded: there is C > 0 such that for any Y 2 L

����
d N�Y

d�

����1
� C:

Given Y 2 L , let PY W ˙ n�Y ! ˙ be its Poincaré map and N�Y be the physical
measure for the quotient map. Given a bounded function ' W ˙ ! R, define

'C.x/ WD sup
y2
.x/

'.y/ and '�.x/ WD inf
y2
.x/

'.y/;

where 
.x/ is the leaf in the foliation FY which contains x. The proof of the next
lemma follows standard arguments in hyperbolic dynamics; see e.g. [8].

Lemma 1. Given any continuous function ' W ˙ ! R, both limits

lim
n!1

Z
.' ı P n

Y /�d N�Y and lim
n!1

Z
.' ı P n

Y /Cd N�Y

exist and they coincide.

Using Riesz-Markov Representation Theorem we easily deduce the next result.

Corollary 1. There is a PY -invariant probability measure Q�Y on ˙ such that

Z
' d Q�Y D lim

n!1

Z
.' ı P n

Y /�d N�Y D lim
n!1

Z
.' ı P n

Y /Cd N�Y ;

for each continuous function ' W ˙ ! R.

One can check that Q�Y is a physical measure for the Poincaré map PY and using
more or less standard arguments we build a measure for Y ; see e.g. [5].
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Theorem 16. For Y 2 L , the physical measure � of Y on U is given by

Z
' d� D 1R

	d Q�
Z Z 	.x/

0

'.X.x; t//dt d Q�.x/

for any continuous ' W U ! R. The measure �Y is a unique physical measure
supported on the attractor �Y .

The next result gives the statistical stability of Lorenz flows.

Theorem 17 (Alves-Soufi [3]). Each Y 2 L is statistically stable.

Our goal in the subsections below is to give a brief idea about the proof of this
theorem.

Remark 1. As the physical measure is supported on attractor �Y , which has zero
Lebesgue measure, it makes no sense to talk about strong statistical stability. In the
sections below we shall give an idea of the proof of this last result.

4.3 Statistical Stability

Let Xn 2 L is a sequence converging to X0 2 L in the C 2 topology. We shall
simplify our notations and write Q�n D Q�Xn and �n D �Xn for all n � 0. We also
let � denote Lebesgue measure.

The next result gives the statistical stability of the Poincaré maps.

Proposition 1. Q�n �! Q�0 as n ! 1 in the weak� topology.

Proof. We need to show that for any continuous ' W ˙ ! R we have

lim
n!1

Z
'd Q�n D

Z
'd Q�0:

By definition

lim
n!1

Z
'd Q�n D lim

n!1 lim
m!1

Z
.' ı P m

n /� d N�n:

We have
ˇ̌
ˇ̌
Z

.' ı P m
n /�d N�n �

Z
.' ı P m

0 /�d N�0

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
Z

.' ı P m
n /�d N�n �

Z
.' ı P m

0 /�d N�n

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌
Z

.' ı P m
0 /�d N�n �

Z
.' ı P m

0 /�d N�0

ˇ̌
ˇ̌ :
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The second term tends to zero since it is less that k'k1kd N�n=d� � d N�0=d�k1 and

d N�n=d�
L1

�! N�0=d�; as n ! 1:

We are left to prove that the first term converges to zero when n ! 1.

ˇ̌
ˇ̌
Z

.' ı P m
n /�d N�n �

Z
.' ı P m

0 /�d N�n

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
Z

.' ı P m
n /�

d N�n

d�
d� �

Z
.' ı P m

0 /�
d N�n

d�
d�

ˇ̌
ˇ̌

�
Z

j.' ı P m
n /� � .' ı P m

0 /�j
ˇ̌
ˇ̌d N�n

d�

ˇ̌
ˇ̌ d�

� C

Z
j.' ı P m

n /� � .' ı P m
0 /�jd�

The contraction factor on the stable leaves of the cross-section ˙ can be taken the
same for all vector fields in L . So, the last expression can be made uniformly small.

ut
Proposition 2. �n �! �0 as n ! 1 in the weak� topology.

To prove this result we need to show that for any uniformly continuous and
bounded function ' W U ! R,

ˇ̌
ˇ̌
Z

' d�n �
Z

' d�0

ˇ̌
ˇ̌ (1)

can be made small when we take large n. Observe that (1) is bounded by the sum of
the terms

ˇ̌
ˇ̌ 1R

	nd Q�n

� 1R
	0d Q�0

ˇ̌
ˇ̌
Z Z 	0.x/

0

j'.X0.x; t//jdt d Q�0.x/; (*)

and

1R
	nd Q�n

ˇ̌
ˇ̌
ˇ

Z Z 	n.x/

0

'.Xn.x; t//dt d Q�n �
Z Z 	0.x/

0

'.X0.x; t//dt d Q�0

ˇ̌
ˇ̌
ˇ (**)

Lemma 2. lim
n!1

Z
	n d Q�n D

Z
	0 d Q�0.
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Proof. Let A be a small rectangle containing the singular curve of 	0 and 	n.
Observe that
ˇ̌
ˇ̌
Z

	n d Q�n �
Z

	0 d Q�0

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

A

	n d Q�n �
Z

A

	0 d Q�0

ˇ̌
ˇ̌C

ˇ̌
ˇ̌
Z

Ac

	n d Q�n �
Z

Ac

	0 d Q�0

ˇ̌
ˇ̌ :

Since 	0 and 	n are both integrable, then first term can be made small by taking A

small enough. The second term is bounded by

ˇ̌
ˇ̌
Z

Ac

	n d Q�n �
Z

Ac

	0 d Q�n

ˇ̌
ˇ̌ C

ˇ̌
ˇ̌
Z

Ac

	0 d Q�n �
Z

Ac

	0 d Q�0

ˇ̌
ˇ̌ :

In Ac we have bounded return time and so j	n � 	0j can be made arbitrarily small by
taking n large enough. The second term converges to zero as n goes to 1, because

Q�n

w�

��! Q�0. ut
The previous lemma gives the convergence of (*) to zero as n ! 1:

ˇ̌
ˇ̌ 1R

	n d Q�n

� 1R
	0 d Q�0

ˇ̌
ˇ̌
Z Z 	0.
/

0

j'.X0.x;t//jdt d Q�0.x/

�
ˇ̌
ˇ̌ 1R

	n d Q�n

� 1R
	0 d Q�0

ˇ̌
ˇ̌k'k1

Z
	0 d Q�0:

For (**) we use the next result.

Lemma 3. lim
n!C1

ZZ 	n.x/

0

'.Xn.x; t//dt d Q�n.x/D
ZZ 	0.x/

0

'.X0.x; t//dt d Q�0.x/:

Proof. Again let A be a small rectangle containing the singular curve of 	0 and 	n.
The difference

ˇ̌
ˇ̌
ˇ

Z Z 	n.x/

0

'.Xn.x; t//dt d Q�n.x/ �
Z Z 	0.x/

0

'.X0.x; t//dt d Q�0.x/

ˇ̌
ˇ̌
ˇ

is bounded by the sum of

ˇ̌
ˇ̌
ˇ

Z

A

Z 	n.x/

0

'.Xn.x; t//dt d Q�n.x/ �
Z

A

Z 	0.x/

0

'.X0.x; t//dt d Q�0.x/

ˇ̌
ˇ̌
ˇ ; (2)

and
ˇ̌
ˇ̌
ˇ

Z

Ac

Z 	n.x/

0

'.Xn.x; t//dt d Q�n.x/ �
Z

Ac

Z 	0.x/

0

'.X0.x; t//dt d Q�0.x/

ˇ̌
ˇ̌
ˇ : (3)
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Since
Z 	n.x/

0

'.Xn.x; t//dt and
Z 	0.x/

0

'.X0.x; t//dt are respectively Q�n and Q�0

integrable, (2) can be made arbitrarily small by taking A small enough. Observe
that (3) is bounded by the sum of

Z

Ac

ˇ̌
ˇ̌
ˇ

Z 	n.x/

0

'.Xn.x; t//dt �
Z 	0.x/

0

'.X0.x; t//dt

ˇ̌
ˇ̌
ˇ d Q�n.x/;

and
ˇ̌
ˇ̌
ˇ

Z

Ac

Z 	0.x/

0

'.X0.x; t//dt d Q�n.x/ �
Z

Ac

Z 	0.x/

0

'.X0.x; t//dt d Q�.x/

ˇ̌
ˇ̌
ˇ :

As the return times are bounded on Ac , by the continuous variation of trajectories in
finite periods of time, we can make the integrand in the first term small for large n.

The second term converges to zero as n goes to 1, because Q�n

w�

��! Q�0.
ut

This completes the proof of Proposition 2.

Remark 2. The previous lemmas are essentially consequence of the following two
key ingredients:

1. 	n.x; y; 1/ � � log jx � cnj 2 L1.�/, where the cn is the discontinuity point of
the quotient map fXn ; and

2. There exists C > 0 such that d N�n=d� � C for all n.

This implies that

Z
	nd N�n

uniformly bounded. By Hölder Inequality, the same arguments can be carried out
under the assumption that d N�n=d� is uniformly bounded in Lp.�/, for some
p < 1, as long as we have 	n 2 Lq.�/ for all q > 1.

5 Contracting Lorenz Flow

Now we consider a geometric Lorenz vector field X0 where replace the usual
expanding condition �3 C �1 > 0 in the Lorenz vector field by the contracting
condition

�3 C �1 < 0:
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Fig. 5 The map f0

Under these conditions there is still a trapping region U for X0 on which

� D \t�0X
t
0.U /

is a singular-hyperbolic attractor (Rovella attractor).
Rovella attractor is not robust. However, Rovella proved in [20] that the chaotic

attractor persists in a measure theoretical sense: there exists a one parameter family
.Xa/a2Œ0;1� of C 3 close vector fields to X0 which have a transitive non-hyperbolic
attractor.

5.1 Rovella Maps

As in the classical Lorenz flow, there is a Poincaré section for X0 whose return map
preserves a stable foliation. Under reasonable conditions, Rovella shows that the
quotient map f0 W I n f0g ! I satisfies (Fig. 5):

1. lim
x!0˙

f0.x/ D 	1I
2. ˙1 are pre-periodic and repelling;
3. f0 is C 3 on I n f0g with negative Schwarzian derivative.

The next result shows that for many parameters in the family .Xa/a the
corresponding one-dimensional quotient map behaves as the quadratic maps for the
parameters in the set BC .

Theorem 18 (Rovella [20]). There is a set R 
 Œ0; 1� with full density at 0 such
that:

1. For all a 2 R, fa is C 3 on I n f0g and satisfies

K2jxjs�1 � f 0
a .x/ � K1jxjs�1I
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2. There exists c > 0 such that for all a 2 R

.f n
a /0.˙1/ > ecn; for all n � 0I

3. There is ˛ > 0 such that for all a 2 R

jf n�1
a .˙1/j > e�˛n; for all n � 1:

The existence of physical measures for the one-dimensional Rovella maps can
also be proved in this case.

Theorem 19 (Metzger [18]). For each a 2 R, the map fa admits a unique SRB
measure �a.

We have statistical stability when restricted to set of Rovella parameters.

Theorem 20 (Alves-Soufi [2]). Rovella maps are nonuniformly expanding with
slow recurrence to the critical point. Moreover, there are constants C; 	 > 0 such
that for all n 2 N and a 2 R,

ˇ̌
ˇ� n

a

ˇ̌
ˇ � Ce�	 n:

The next corollary follows immediately from Theorems 12 and 20.

Corollary 2. The map R 3 a 7�! d�a=d� is (strongly) continuous.

5.2 A Final Remark

We obtain physical measures for the Rovella flows exactly as in the classical case.
However, the statistical stability for the Rovella flows is still an open problem.
We believe that at least when restricted to those flows corresponding to Rovella
parameters we have statistical stability. Comparing to the classical case, the main
difficulty lies in the fact that the density d�a=d� is no longer (uniformly) bounded.
In this direction, the following result has been obtained recently.

Theorem 21 (Cui-Ding [10]). For a 2 R, the density of �a with respect to the
Lebesgue measure belongs to some Lp.�/ with p > 1, where p depends only on the
(side) orders of the critical point.

As observed in Remark 2, statistical stability for the contracting Lorenz flows in
the Rovella parameters can be deduced, once we can show that d�a=d� is uniformly
bounded in Lp.�/, for some p > 1. That is an interesting open problem.
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