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Abstract. Librarians at the National Library of Medicine tag each
biomedical abstract to be indexed by their Pubmed information system
with terms from the Medical Subject Headings (MeSH) terminology. The
MeSH terminology has over 26,000 terms and indexers look at each arti-
cle’s full text to assign a set of most suitable terms for indexing it. Several
recent automated attempts focused on using the article title and abstract
text to identify MeSH terms for the corresponding article. Most of these
approaches used supervised machine learning techniques that use already
indexed articles and the corresponding MeSH terms. In this paper, we
present a novel unsupervised approach using named entity recognition,
relationship extraction, and output label co-occurrence frequencies of
MeSH term pairs from the existing set of 22 million articles already in-
dexed with MeSH terms by librarians at NLM. The main goal of our
study is to gauge the potential of output label co-occurrence statistics
and relationships extracted from free text in unsupervised indexing ap-
proaches. Especially, in biomedical domains, output label co-occurrences
are generally easier to obtain than training data involving document
and label set pairs owing to the sensitive nature of textual documents
containing protected health information. Our methods achieve a micro
F-score that is comparable to those obtained using supervised machine
learning techniques with training data consisting of document label set
pairs. Baseline comparisons reveal strong prospects for further research
in exploiting label co-occurrences and relationships extracted from free
text in recommending terms for indexing biomedical articles.

1 Introduction

Indexing biomedical articles is an important task that has a significant impact on
how researchers search and retrieve relevant information. This is especially essen-
tial given the exponential growth of biomedical articles indexed by PubMed R©,
the main search system developed by the National Center for Biotechnology
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Information (NCBI). PubMed lets users search over 22 million biomedical cita-
tions available in the MEDLINE bibliographic database curated by the National
Library of Medicine (NLM) from over 5000 leading biomedical journals in the
world. To keep up with the explosion of information on various topics, users
depend on search tasks involving Medical Subject Headings (MeSH R©) that are
assigned to each biomedical article. MeSH is a controlled hierarchical vocabulary
of medical subjects created by the NLM. Once articles are indexed with MeSH
terms, users can quickly search for articles that pertain to a specific subject of
interest instead of relying solely on key words based searches.

Since MeSH terms are assigned by librarians who look at the full text of an arti-
cle, they capture the semantic content of an article that cannot easily be captured
by key word or phrase searches. Thus assigningMeSH terms to articles is a routine
task for the indexing staff at NLM. This is empirically shown to be a complex task
with 48% consistency because it heavily relies on indexers’ understanding of the
article and their familiarity with the MeSH vocabulary [1]. As such, the manual
indexing task takes a significant amount of time leading to delays in the availabil-
ity of indexed articles. It is is observed that it takes about 90 days to complete 75%
of the citation assignment for new articles [2]. Moreover, manual indexing is also
a fiscally expensive initiative [3]. Due to these reasons, there have been many re-
cent efforts to come up with automatic ways of assigningMeSH terms for indexing
biomedical articles. However, automated efforts (including ours) mostly focused
on predicting MeSH terms for indexing based solely on the abstract and title text
of the articles. This is because most full text articles are only available based on
paid licenses not subscribed by many researchers.

Many efforts in MeSH term prediction generally rely on two different methods.
The first method is the k-nearest neighbor (k-NN) approach where k articles that
are already tagged with MeSH terms and whose content is found to be “close” to
the new abstract to be indexed are obtained. The MeSH terms from these k arti-
cles form a set of candidate terms for the new abstract. A second method is based
on applying machine learning algorithms to learn binary classifiers for eachMeSH
term. A new candidate abstract would then be put through all the classifiers and
the corresponding MeSH terms of classifiers that return a positive response are
chosen as the indexed terms for the abstract. We note that both k-NN and ma-
chine learning approachesneed large sets of abstracts and the correspondingMeSH
terms to make predictions for new abstracts. In this paper, we propose an unsuper-
vised ensemble approach to extract MeSH terms and test it on two gold standard
datasets. Our approach is based on named entity recognition (NER), relationship
extraction, knowledge-based graphmining, and output label co-occurrence statis-
tics. Prior attempts have used NER and graph mining approaches as part of their
supervised approaches and we believe this is the first time relationship extraction
and output label co-occurrences are applied for MeSH term extraction. Further-
more, our approach is purely unsupervised in that we do not use a prior set of
already tagged MEDLINE citations with their corresponding MeSH terms.

Before we continue, we would like to emphasize that automatic indexing at-
tempts, including our current attempt, are generally not intended to replace
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trained indexers but are mainly motivated to expedite the indexing process and
increase the productivity of the indexing initiatives at the NLM. Hence in these
cases, recall might be more important than precision although an acceptable
trade-off is necessary. In the rest of the paper, we first discuss related work and
the context of our paper in Section 2. We describe our dataset and methods in
Section 3. We provide an overview of the evaluation measures and present results
with discussion in Section 4.

2 Related Work

NLM initiated efforts in MeSH term extraction with their Medical Text Indexer
(MTI) program that uses a combination of k-NN based approach and NER
based approaches with other unsupervised clustering and ranking heuristics in a
pipeline [4]. MTI recommends MeSH terms for NLM indexers to assist in their
efforts to expedite the indexing process1. Another recent approach by Huang et
al. [2] uses k-NN approach to obtain MeSH terms from a set of k already tagged
abstracts and use the learning to rank approach to carefully rank the MeSH
terms. They use two different gold standard datasets one with 200 abstracts and
the other with 1000 abstracts. They achieve an F-score of 0.5 and recall 0.7 on the
smaller dataset compared to MTI’s F-score of 0.4 and recall 0.57. Several other
attempts have tried different machine learning approaches with novel feature
selection [5] and training data sample selection [6] techniques. A recent effort
by Jimeno-Yepes et al. [7] uses a large dataset and uses meta-learning to train
custom binary classifiers for each label and index the best performing model for
each label for applying on new abstracts; we request the reader to refer to their
work for a recent review of machine learning used for MeSH term assignment.
As mentioned in Section 1, most current approaches rely on large amounts of
training data. We take a purely unsupervised approach under the assumption
that we have access to output label2 co-occurrence frequencies where training
documents may not be available.

3 Our Approach

We use two different datasets, a smaller 200 abstract dataset and a larger 1000
abstract dataset used by Huang et al. [2]; besides results from their approach,
they also report on the results produced by NLM’s MTI system. We chose these
datasets and compare our results with their outcomes as they represent the k-NN
and machine learning approaches typically used by most researchers to address
MeSH term extraction. To extract MeSH terms, we used a combination of three
methods: NER, knowledge-based graph mining, and output label co-occurrence

1 For the full architecture of MTI’s processing flow, please see: http://skr.nlm.nih.
gov/resource/Medical Text Indexer Processing Flow.pdf

2 Here the ‘labels’ are MeSH terms; we use ‘label’ to conform to the notion of classes
in multi-label classification problems.

http://skr.nlm.nih.gov/resource/Medical_Text_Indexer_Processing_Flow.pdf
http://skr.nlm.nih.gov/resource/Medical_Text_Indexer_Processing_Flow.pdf
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statistics to extract candidate MeSH terms. We finally use semantic predications
to rank the candidates and also use the traditional Borda rank aggregation
method to rank various ranked lists of the candidate set. In this section we
elaborate on the specifics of each of these components of our approach. Before
we proceed, we first discuss the Unified Medical Language System (UMLS), a
biomedical knowledge base used in NER, graph mining methods, and extraction
of semantic predications.

3.1 Unified Medical Language System (UMLS)

The UMLS3 is a large domain expert driven aggregation of over 160 biomedical
terminologies and standards. It functions as a comprehensive knowledge base and
facilitates interoperability between information systems that deal with biomedi-
cal terms. It has has three main components: Metathesaurus, Semantic Network,
and SPECIALIST lexicon. The Metathesaurus has terms and codes, henceforth
called concepts, from different terminologies. Biomedical terms from different vo-
cabularies that are deemed synonymous by domain experts are mapped to the
same Concept Unique Identifier (CUI) in the Metathesaurus. The semantic net-
work acts as a typing system that is organized as a hierarchy with 133 semantic
types such as disease or syndrome, pharmacologic substance, or diagnostic proce-
dure. It also captures 54 important relations (called semantic relations) between
biomedical entities in the form of a relation hierarchy with relations such as
treats, causes, and indicates. The Metathesaurus currently has about 2.8 mil-
lion concepts with more than 12 million relationships connecting these concepts.
The relationships take the form C1 → < rel − type > → C2 where C1 and
C2 are concepts in the UMLS and < rel − type > is a semantic relation such
as treats, causes, or interacts. The semantic interpretation of these relationships
(also called triples) is that the C1 is related to C2 via the relation < rel−type >.
The SPECIALIST lexicon is useful for lexical processing and variant generation
of different biomedical terms.

3.2 Named Entity Recognition: MetaMap

NER is a well known application of natural language processing (NLP) tech-
niques where different entities of interest such as people, locations, and insti-
tutions are automatically recognized from mentions in free text (see [8] for a
survey). Named entity recognition in biomedical text is difficult because linguis-
tic features that are normally useful (e.g., upper case first letter, prepositions
before an entity) in identifying generic named entities are not useful when iden-
tifying biomedical named entities, several of which are not proper nouns. Hence,
NER systems in biomedicine rely on expert curated lexicons and thesauri. In
this work, we use MetaMap [9], a biomedical NER system developed by re-
searchers at the National Library of Medicine (NLM). So as the first step in

3 UMLS Reference Manual: http://www.ncbi.nlm.nih.gov/books/NBK9676/

http://www.ncbi.nlm.nih.gov/books/NBK9676/
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identifying MeSH terms for a given abstract, we extract non-negated biomedi-
cal named entities by running MetaMap on the abstract text using MetaMap’s
ability to identify negated terms. Once we obtain non-negated UMLS concepts
using MetaMap from the abstract text, we convert these concepts to MeSH
terms, when possible. Specifically, we first note that MeSH is one of the over 160
source vocabularies integrated into the UMLS Metathesaurus. As such, concepts
in MeSH also have a concept unique identifier (CUI) in the Metathesaurus. As
part of its output, for each concept, MetaMap also gives the source vocabulary.
The concepts from MetaMap with source vocabulary MeSH finally become the
set of extracted ‘candidate’ terms for each abstract. However, these MeSH term
sets may not be complete because of missing relationships between UMLS con-
cepts. That is, in our experience, although MetaMap identifies a medical subject
heading, it might not always map it to a CUI associated with a MeSH term; it
might map it to some other terminology different from MeSH, in which case we
miss a potential MeSH term because the UMLS mapping is incomplete. We deal
with this problem and explore a graph based approach in the next section. We
also note that just because a MeSH term appears in the abstract, it may not be
the case that the abstract should be tagged with that term (more on this later).

3.3 UMLS Knowledge-Based Graph Mining

As discussed in Section 3.2, the NER approach might result in poor recall because
of lack of completeness in capturing synonymy in the UMLS. However, using the
UMLS graph with CUIs as nodes and the inter-concept relationships connected
by relationship types parent and rel broad as edges (high level relationship types
in UMLS), we can map a original CUI without an associated MeSH term to a
CUI with an associated MeSH term. The parent relationship means that concept
C1 has C2 as a parent. The rel broad type means that C1 represents a broader
concept than C2. We adapt the approach originally proposed by Bodenreider et
al. [10] for this purpose. The mapping algorithm starts with a CUI c output by
MetaMap that is not associated with an MeSH term and tries to map it to an
MeSH term as follows.

1. Recursively, construct a subgraph Gc (of the UMLS graph) consisting of
ancestors of the input non-MeSH CUI c, using the parent and rel broad
edges. Build a set Ic of all the MeSH concepts associated with nodes added
to Gc along the way in the process of building Gc. Note that many nodes
added to Gc may not have associated MeSH terms.

2. Delete any concept c1 from Ic if there exists another concept c2 such that
– c1 is an ancestor of c2, and
– The length of the shortest path from c to c2 is less than the length of

the shortest path from c to c1.
3. Return the MeSH terms of remaining concepts in Ic and the corresponding

shortest distances from c.

Note the the algorithm essentially captures ancestors of the input concept and
tries to find MeSH headings in them.
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3.4 Candidate Set Expansion Using Output Label Co-Occurrences

Using NER and graph-based mining discussed in Sections 3.2 and 3.3, we obtain
a pool of candidate MeSH terms. However, note that the trained coders will
look at the entire full text to assign MeSH terms to the articles. Thus, merely
looking for MeSH terms mentioned in the title or the abstract may not be suf-
ficient. To further expand the pool of MeSH candidates we propose to exploit
the frequencies of term co-occurrences as noticed in already indexed articles.
To elaborate, we already have nearly 22 million articles that are manually as-
signed MeSH terms from which we can count the number of times different term
pairs co-occur in the form a matrix where both rows and columns are all pos-
sible MeSH terms (nearly 26,000). Before we go into specific details, we give a
high level overview of our approach to exploit output term co-occurrences. Intu-
itively, given a MeSH term that we already know with high confidence should be
assigned to a particular abstract, other terms that frequently co-occur with the
known term might also make good candidates for the input abstract. However,

1. there might be many highly co-occurrent terms; high co-occurrence does not
necessarily mean that the new term is relevant in the context of the current
abstract that is being assigned MeSH terms. To address this, we propose
to model the context using MeSH terms extracted from title and abstract
using NER and graph-mining (Sections 3.2 and 3.3). We still need a way
of applying this context to separate highly co-occurrent terms that are also
relevant for the current abstract.

2. Furthermore, we also need an initial seed set of high confidence candidate
terms to exploit the term co-occurrences.We propose to use, again, the MeSH
terms extracted from title and abstract using NER and graph-mining. The
title MeSH terms are directly included in the seed set of candidate terms.
However, the terms extracted using NER from the abstract are subject to
the context (as indicated in the first step in this list) and are only included
in the seed set if they are still deemed relevant after applying the context4.

Given the outline explained thus far, next we present specifics of how the highly
co-occurring terms are obtained from the seed set and how the context terms
(that is, MeSH terms from title and abstract) are used to select a few highly co-
occurrent terms that are also contextually relevant for the current article to be
indexed. Before we proceed, as a pre-processing step, we build a two dimensional
matrix M5 of row-normalized term co-occurrence frequencies where both rows
and columns are all possible MeSH terms and the cells are defined as

M[i][j] =
number of articles assigned both i-th and j-th MeSH terms

number of articles assigned the i-th term
.

4 This is needed because MeSH terms that are mentioned in the abstract may not be
relevant to the article. An example situation is when a list of diseases is mentioned
in the abstract although the article is not about any of them but about the biology
of a particular protein that was implicated in all those diseases.

5 We used the Compressed Sparse Row matrix class from the SciPy Python package
to efficiently represent and access the 26000 × 26000 matrix.
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Here M[i][i] = 1 because the numerator is just the same as the denomina-
tor. We note with this definition of M[i][j] is an estimate of the probability
P (j-th term|i-th term). Let T and A be the set of title and abstract MeSH
terms extracted using NER, respectively, and C = T ∪ A be the set of context
terms which includes the MeSH terms extracted from both title and abstract.
Let α and β be the thresholds used to identify highly co-occurrent terms and
to select a few of these terms that are also contextually relevant, respectively.
Details of these thresholds will be made clear later in this section. Next we show
the pseudocode of candidate term expansion algorithm.

Algorithm. Expand-Candidate-Terms (T ,A, α, β,M[ ][ ])

1: Initialize seed list S = T
2: Set context terms C = T ∪ A
3: S.append(Apply-Context(A, β, C,M[ ][ ]))

{Next, we iterate over terms in list S}
4: for all terms t in S do
5: Let H = [ ] be an empty list
6: for each i such that M[t][i] > α do
7: H.append(i-th MeSH term)
8: relevantTerms = Apply-Context(H,β, C,M[ ][ ])
9: relavantTerms = relevantTerms− S {avoid adding existing terms}
10: S.append(relevantTerms)
11: return S

Procedure. Apply-Context (H, β, C,M[ ][ ])

1: for all candidate terms t in H do
2: Set co-occurrence score F = 0
3: for each context term c in C do
4: F = F +M[c][t]
5: if F/|C| < β then
6: H.delete(t) {F/|C| is the average co-occurrence}
7: return H

Next, we discuss the Expand-Candidate-Terms algorithm. It takes the title
and abstract MeSH terms as input and also the thresholds α, to extract the
highly co-occurring terms with the seed terms, and β to apply context and prune
the expanded set of terms. We initialize the seed set to be just the title terms
(line 1). In line 3, we add to the seed set, abstract terms that have an average co-
occurrence score ≥ β with the context terms. In lines 4–10, we expand the seed
set to add new candidate terms. For each seed term t considered in the for loop
on line 4, we curate a list of highly co-occurring terms according to the term
pair co-occurrence matrix (lines 6–7). We then prune this list of terms based
on their average co-occurrence with context terms by calling Apply-Context in
line 8. To ensure termination and avoid looking at terms that we have already
expanded, we only append terms that are not already in S (lines 9–10).
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In the Apply-Context procedure, we add the co-occurrence scores of each
term in the list H with all terms in the context term set C (lines 3–4). We delete
all terms from H that have an average co-occurrence less than β. In our exper-
iments, 0.03 ≤ β ≤ 0.05 and 0.06 ≤ α ≤ 0.1 proved to be best ranges for the
thresholds. Using very low thresholds will increase the size of the expanded can-
didate set output by Expand-Candidate-Terms (line 11). Given this expanded
candidate set, we rank its terms to retain only a top few; in our experiments,
the candidate sets were found to have anywhere between 25 to 200 terms while
the label cardinality of our datasets is only close to 15.

3.5 Ranking Approaches and Semantic Predications

In this section, we explore different unsupervised ranking approaches to rank the
resulting candidate MeSH terms obtained using the methods from Section 3.4.
A straightforward method we use is to rank them based on the average co-
occurrence score computed in line 5 (F/|C|) of the procedure Apply-Context

from Section 3.4; a second approach we follow is to to rank by the number of
context terms in C with which the candidate term has a co-occurrence value ≥
the average co-occurrence on line 5. That is the number of terms c such that
M[c][t] ≥ F/|C| in Apply-Context. Both these approaches are based on our
co-occurrence frequency based methods.

We also experiment with a novel binning approach using binary relation-
ships (popularly called semantic predications) extracted from the abstract text
using the SemRep, a relationship extraction program developed by Thomas
Rindflesch [11] and team at the NLM. Semantic predications are of the form
C1 → < rel− type > → C2 discussed in Section 3.1. However, the relationships
come from the abstract text instead of the UMLS source vocabularies. The in-
tuition is that entities C1 and C2 that participate as components of binary
relationships should be ranked higher than those that do not participate in any
such relationship. By virtue of participating in a binary relationship asserted in
one of the sentences of the abstract text, we believe they garner more impor-
tance as opposed to just being mentioned in a list of things in the introductory
sentences of an abstract. Thus we divide the set of candidate terms from Sec-
tion 3.4 into two bins. The first bin contains those MeSH terms that participate
as a subject or an object of a semantic predication extracted from the text. The
second bin consists of those candidate terms that did not occur as either a sub-
ject or an object of some predication. Terms in the first bin are always ranked
higher than terms in the second bin. Within each bin, terms are ranked accord-
ing to their average co-occurrence score or according to the number of context
terms with which the candidate term has co-occurrence ≥ the average. We also
subdivided each main bin into two sub-bins where the first sub-bin consists of
those terms that are extracted from the abstract (using NER) and the second
that consists of only those terms that were extracted using the co-occurrence
statistics. Again, ranking within sub-bins is based on scores resulting from the
co-occurrence based expansion algorithms. Finally we used Borda’s [12] posi-
tional rank aggregation method to aggregate different full rankings produced by
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purely co-occurrence based scoring methods and bin-based scoring methods. In
all these approaches, ties are broken using the average co-occurrence score and
the rare ties where these scores are equal are broken by maintaining the original
order in which terms are added in the expansion algorithm.

Remark 1. We also curate a small set of generic MeSH terms that lead to very
large number of false positives (e.g., Disease, Persons, Patients), mostly generic
terms (including some check-tags6) and then apply a discount to the scores of
these terms if they are found in the candidate terms.

4 Experiments, Results, and Discussion

Before we discuss our findings, we establish the notation to be used for evaluation
measures. Let D be the set of all biomedical abstracts to be tagged with MeSH
terms; Let Ei and Gi, i = 1, . . . , |M |, be the set of extracted MeSH terms using
our methods from the PubMed citations (here, abstract and title fields) and the
corresponding correct gold standard terms, respectively, for the i-th citation.
Based on methods discussed in Section 3.5, we also impose a ranking on terms
in Bi and only use the top N terms for computing performance measures. Since
the task of assigning multiple terms to an abstract is the multi-label classification
problem, there are multiple complementary methods for evaluating automatic
approaches for this task. However, since we are using an unsupervised approach,
we limit ourselves to the micro precision, recall, and F-score used by Huang et
al [2]. The average micro precision Pμ and recall Rμ are

Pμ =

∑|D|
i=1 c(N,Di, Ei)

|D| ·N and Rμ =

∑|D|
i=1 c(N,Di, Ei)
∑|M|

i=1 |Gi|
,

where c(N,Di, Ei) is the number of true positives (correct gold standard terms)
in the top N ranked list of candidate terms in Ei for citation Di. Given this, the
micro F-score is Fμ = 2PμRμ/(Pμ + Rμ). We also define average precision of a
citation AP (Di) computed considering top N terms as

AP (Di, N) =
1

|Gi|

N∑

r=1

I(Er
i ) ·

c(r,Di, Ei)

r
,

where Er
i is the r-th ranked term in the set of predicted terms Ei for citation

Di and the function I(Er
i ) is a Boolean function with a value of 1 if Er

i ∈ Gi

and 0 otherwise. Finally, the mean average precision (MAP) of the collection of
citations D when considering top N predicted terms is given by

MAP (D,N) =
1

|D|

|D|∑

i=1

AP (Di, N).

6 Check-tags form a special small set of MeSH terms that are always checked by trained
coders for all articles. Here is the full check tag list: http://www.nlm.nih.gov/bsd/
indexing/training/CHK 010.htm

http://www.nlm.nih.gov/bsd/indexing/training/CHK_010.htm
http://www.nlm.nih.gov/bsd/indexing/training/CHK_010.htm
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Remark 2. In our experiments, MeSH terms that are associated with concepts at
a distance greater than 1 from the input concept in the graph mining approach
(Section 3.3) did not provide a significant improvement in the results. Hence here
we only report results when the shortest distance between the input concept and
the MeSH ancestors is ≤ 1.

We used two different datasets – the smaller dataset has 200 citations
and is called the NLM2007 dataset. The larger 1000 citation dataset is
denoted by L1000. Both datasets can be obtained from the NLM website:
http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/indexing/paperdat.zip.
Next, we present our best micro average precision, recall, F-score, and MAP in
Table 1 in comparison with the results obtained by supervised ranking method
by [2] and the results obtained when using NLM’s MTI program (as reported
by Huang et al. in their paper). From the table we see that the performance
of our unsupervised methods is comparable (except in the case of the MAP
measure) to that of the MTI method, which uses a k-NN approach. However, as
can be seen, a supervised ranking approach that relies on training data and uses
the k-NN approach performs much better than our approaches. We emphasize
that our primary goal has been to demonstrate the potential of unsupervised
approaches that can complement supervised approaches when training data is
available but can work with reasonable performance even when training data is
scarce or unavailable, which is often the case in many biomedical applications.
Furthermore, unlike in many unsupervised scenarios, we do not even have access
to the full artifact (here, full text of the article) to be classified, which further
demonstrates the effectiveness of our method.

Table 1. Comparison of micro measures with N = 25

NLM2007 dataset L1000 dataset
Rμ Pμ Fμ MAP Rμ Pμ Fμ MAP

Our method 0.54 0.32 0.40 0.36 0.56 0.29 0.38 0.38
MTI 0.57 0.31 0.40 0.45 0.58 0.30 0.39 0.46
Huang et al. 0.71 0.39 0.50 0.62 0.71 0.34 0.46 0.61

Next we contrast the performance of our unsupervised methods involving co-
occurrence statistics and semantic predication based ranking approaches with
some baseline methods that only use NER and graph-mining based approaches
in Table 2; we do not show MAP values because the baseline approaches do not
involve a ranking scheme. We see that graph-mining approach did not increase
recall by more than 2%7. However, our co-occurrence based candidate term ex-
pansion (Section 3.4) improved the recall by 18% in both the NLM2007 and
L1000 datasets with an increase in precision of at least 10% and an increase in

7 We note that this is because we only used it for a specific set of qualifier terms that
are in MeSH but needed a graph-based mapping to obtain the MeSH main headings.

http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/indexing/paperdat.zip
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Table 2. Comparison with baseline measures

NLM2007 dataset L1000 dataset
Rμ Pμ Fμ Rμ Pμ Fμ

Our best scores 0.54 0.32 0.40 0.56 0.29 0.38
NER only 0.35 0.20 0.25 0.36 0.19 0.25
NER+graph-mining 0.36 0.19 0.25 0.38 0.18 0.24

F-score of at least 14%. This shows that using simplistic approaches that rely
only on NER may not provide reasonable performance.

Whether using unsupervised or supervised approaches, fine tuning the param-
eters is always an important task. Next, we discuss how different thresholds (α
and β in Section 3.4) and different values of N effect the performance measures.
We believe this is important because low values for thresholds and high cut-off
values for N have the potential to increase recall by trading-off some precision.
We experimented with different threshold ranges for α and β and also different
values of N . We show some interesting combinations we observed for the L1000
dataset in Table 3. We gained a recall of 1% by changing N from 25 to 35 with
the same thresholds. Lowering the thresholds with N = 35 lead to a 5% gain in
recall with an equivalent decrease in precision, which decreases the F-score by
5% while increasing the MAP score by 1%.

Table 3. Different combinations of N , α, and β

L1000 dataset
Rμ Pμ Fμ MAP

N = 25, α = 0.10, β = 0.05 0.51 0.33 0.40 0.36
N = 25, α = 0.08, β = 0.04 0.56 0.29 0.38 0.38
N = 35, α = 0.08, β = 0.04 0.57 0.28 0.38 0.38
N = 35, α = 0.06, β = 0.03 0.62 0.23 0.33 0.39

Finally, among the ranking approaches we tried, the best ranking method is
Borda’s aggregation of the two ranked lists, the first of which is based on average
co-occurrence scores and the second is the semantic predication based binning
approach with average co-occurrence as the tie-breaker within each bin. This
aggregated ranking is used to obtain the best scores we reported in all the tables
discussed in this section. The semantic predication based binning provided a 3%
improvement in the MAP score both in the NLM2007 and L1000 datasets.

5 Conclusion

In this paper, we presented a novel unsupervised approach to assigning medi-
cal subject headings (MeSH terms) to biomedical articles. We deviate from the
traditional k-NN approach and supervised machine learning approaches and use
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named entity recognition, relationship extraction, and term pair co-occurrence
statistics to perform a constrained expansion of a seed set of terms. We use
semantic predications to bin candidate terms and then applied average co-
occurrence scores (computed using normalized co-occurrence frequencies with
certain context terms) to rank terms within the bins. We then used Borda’s
rank aggregation method to combine different ranked lists. Micro measures ob-
tained using our methods are comparable to those obtained using k-NN based
approaches such as the MTI program from NLM. More advanced learning-to-
rank approaches did better than our methods. However, we believe our methods
are an important contribution because they do not use any pre-labeled training
data and are more suitable when training data is not available or is very limited,
which can arise in biomedical and clinical domains. Furthermore, our methods
can complement supervised approaches for labels with fewer training examples.
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