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Abstract We analyze the spectral distribution of two different models of symmetric
random matrices with correlated entries. While we assume that the diagonals of
these random matrices are stochastically independent, the elements of the diagonals
are taken to be correlated. Depending on the strength of correlation the limiting
spectral distribution is either the famous semicircle law known for the limiting
spectral density of symmetric random matrices with independent entries, or some
other law related to that derived for Toeplitz matrices by Bryc W, Dembo A, Jiang T
(2006) Spectral measure of large random Hankel, Markov and Toeplitz matrices.
Ann Probab 34(1):1–38.

1 Introduction

The study of random matrices started in the 1920s with the seminal work of
Wishart [16]. His basic motivation was the analysis of data. On the other hand,
Wigner used the eigenvalues of random matrices to model the spectra of heavy-
nuclei atoms [15]. Nowadays, random matrix theory is a field with many applica-
tions from telecommunications to random graphs and with many interesting and
surprising results.

A central role in the study of random matrices with growing dimension
is played by their eigenvalues. To introduce them let, for any n 2 N,
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fan.p; q/; 1 � p � q � ng be a real-valued random field. Define the symmetric
random n � n matrix Xn by

Xn.q; p/ D Xn.p; q/ D 1p
n

an.p; q/; 1 � p � q � n:

We will denote the (real) eigenvalues of Xn by �
.n/
1 � �

.n/
2 � : : : �

.n/
n . Let �n be

the empirical eigenvalue distribution, i.e.

�n D 1

n

nX

kD1

ı
�

.n/
k

:

Wigner proved in his fundamental work [15] that, if an.p; q/ are independent,
normally distributed with mean 0 and variance 1, for off-diagonal elements, and
variance 2 on the diagonal, the empirical eigenvalue distribution �n converges
weakly (in probability) to the so-called semicircle distribution (or law), i.e. the
probability distribution � on R with density

1

2�

p
4 � x2 �Œ�2;2�.x/ dx:

An important step to show the universality of this result was taken by Arnold
[1], who verified that the convergence to the semicircle law also is true, if one
replaces the Gaussian distributed random variables by independent and identically
distributed (i.i.d.) random variables with a finite fourth moment. Also the identical
distribution may be replaced by some other assumptions (see e.g. [8]). There are
various ways to prove such a result. Among others, large deviations techniques as
developed in [4] can be applied as well as Stieltjes transforms [2] (the latter method
can also be applied to obtain results on the speed of convergence, see [12]). A still
very powerful instrument is the moment method, originally employed by Wigner.
To this end, it is useful to notice that, if Y is some random variable distributed
according to this semicircle distribution, its moments are given by

EŒY k� D
(

0; if k is odd;

C k
2
; if k is even;

where Ck , k 2 N, are the Catalan numbers defined by Ck D .2k/Š=.kŠ.k C 1/Š/.
Recently, it was observed by Erdös et al. [9] that the convergence of the spectral

measure towards the semicircle law holds in a local sense. More precisely, this can
be proved on intervals with width going to zero sufficiently slowly.

However, the assumption of the entries being independent cannot be renounced
without any replacement. Bryc, Dembo and Jiang [5] studied random symmetric
Toeplitz matrices and obtained a different limiting distribution. To be more precise,
they considered a family fXi; 0 � i � n�1g, n 2 N, of independent and identically
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distributed real-valued random variables, and assumed that Var.X1/ D 1. Then,
the scaled symmetric Toeplitz matrix Tn was defined by Tn.i; j / D 1=

p
n Xji�j j,

1 � i; j � n, i.e.

Tn D 1p
n

0

BBBBBBBBB@

X0 X1 X2 : : : Xn�2 Xn�1

X1 X0 X1 : : : Xn�3 Xn�2

: : :
: : :

: : :

: : :
: : :

: : :

Xn�2 Xn�3 Xn�4 : : : X0 X1

Xn�1 Xn�2 Xn�3 : : : X1 X0

1

CCCCCCCCCA

: (1)

In this situation the empirical spectral distribution of Tn converges weakly almost
surely to some non-random probability measure �T as n ! 1. This measure
does not depend on the distribution of X1. Moreover, it has existing moments of
all orders, is symmetric, and has an unbounded support. The aim of the present
note is, to investigate the borderline between convergence to the semicircle law
and the convergence to �T . To this end we will study random matrices with
independent diagonals, where the elements on the diagonals may be correlated. If
they are independent, we are, of course, back in the Wigner case, while for complete
correlation the matrix is a random Toeplitz matrix.

We will see that depending on the strength of the correlation, the empirical
spectral distribution either converges to the semicircle law, or to some mixture
of �T and the semicircle distribution. We hence have a sort of phase transition.
Similar results were obtained in [10] for the case of weak correlations and in [11]
for stronger correlations. A particularly nice example is borrowed from statistical
mechanics. There the Curie-Weiss model is the easiest model of a ferromagnet. Here
a magnetic substance has little atoms that carry a magnetic spin, that is either C1

or �1. These spins interact in cooperative way, the strength of the interaction being
triggered by a parameter, the so-called inverse temperature. The model exhibits
phase transition from paramagnetic to magnetic behavior (the standard reference
for the Curie-Weiss model is [7]). We will see that this phase transition can be
recovered on the level of the limiting spectral distribution of random matrices, if we
fill their diagonals independently with the spins of Curie-Weiss models. For small
interaction parameter, this limiting spectral distribution is the semicircle law, while
for a large interaction parameter we obtain a distribution which shows the influence
of �T .

The rest of this article is organized in the following way. In the two following
sections we will fix our notation. Section 2 contains a description of the measures �T

introduced above, while Sect. 3 describes the kind of matrices we will deal with in
a general framework. From here we follow two paths. Section 4 contains our results
for convergence towards the semicircle law, while Sect. 5 is devoted to the case of
strong correlations along the diagonals. The basic ideas of the proofs, however are
so similar, that we can treat them in a unified way. This is done in Sect. 6.
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2 The Measure �T

The limiting spectral distribution �T can be defined by its moments which are
described with the help of Toeplitz volumes.

Compared to [5], we will use a slightly different notation. This will make it easier
to understand the arguments of the following sections. Thus, denote by PP.k/,
k 2 N, the set of all pair partitions of f1; : : : ; kg. For any � 2 PP.k/, we write
i �� j if i and j are in the same block of � . To introduce Toeplitz volumes,
we associate to any � 2 PP.k/ the following system of equations in unknowns
x0; : : : ; xk :

x1 � x0 C xl1 � xl1�1 D 0; if 1 �� l1;

x2 � x1 C xl2 � xl2�1 D 0; if 2 �� l2;

:::

xi � xi�1 C xli � xli �1 D 0; if i �� li ;

:::

xk � xk�1 C xlk � xlk�1 D 0; if k �� lk:

(2)

Since � is a pair partition, we in fact have only k=2 equations although we
have listed k. However, we have k C 1 variables. If � D ffi1; j1g; : : : ; fik=2; jk=2gg
with il < jl for any l D 1; : : : ; k=2, we solve (2) for xj1 ; : : : ; xjk=2

, and leave
the remaining variables undetermined. We further impose the condition that all
variables x0; : : : ; xk lie in the interval I D Œ0; 1�. Solving the equations above in
this way determines a cross section of the cube I k=2C1. The volume of this will be
denoted by pT .�/. To give an example, consider the partition � D ff1; 3g; f2; 4gg.
Solving (2) for x3 D x0 � x1 C x2 and x4 D x1 � x2 C x3 D x0, we obtain a cross
section of I 3 given by

fx0 � x1 C x2 2 I g \ fx0 2 I g:

This set has the volume pT .�/ D 2=3.
Returning to the measure �T , it is shown in [5] that all odd moments are zero,

and for any even k 2 N, the k-th moment is given by

Z
xkd�T .x/ D

X

�2PP.k/

pT .�/:

Since jpT .�/j � 1 for any � 2 PP.k/ and #PP.k/ D .k � 1/ŠŠ, we have

ˇ̌
ˇ̌
Z

xkd�T .x/

ˇ̌
ˇ̌ � .k � 1/ŠŠ:
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In particular, Carleman’s condition holds implying that �T is uniquely deter-
mined by its moments. The results for the independent as well as the Toeplitz
case will follow directly from Theorems 1 and 2 in case we assume the uniform
boundedness of the moments of all orders.

3 Matrices with Independent Processes on the Diagonals

We want to study two different models of symmetric matrices with dependent
entries. Both models have the common property that entries from different diagonals
are independent while on each diagonal we have a stochastic process with a given
covariance structure. Therefore, consider for any n 2 N a family fan.p; q/; 1 �
p � q � ng of real-valued random variables. Introduce the symmetric random
n � n matrix Xn with

Xn.p; q/ D Xn.q; p/ D 1p
n

an.p; q/; 1 � p � q � n:

Put an.p; q/ D an.q; p/ if 1 � q < p � n. Since we will resort to the method
of moments, we first of all want to assume that

(A1) E Œan.p; q/� D 0, E
�
an.p; q/2

� D 1, and

mk WD sup
n2N

max
1�p�q�n

E

h
jan.p; q/jk

i
< 1; k 2 N: (3)

Note that the assumption of centered entries can be made without loss of
generality if the family fan.p; q/; 1 � p � q � ng consists of identically distributed
random variables. Indeed, assuming E Œan.p; q/� D bn for any 1 � p � q � n,
n 2 N, and some sequence .bn/n2N such that bn D o.n/ yields the same limiting
spectral distribution as in the centered case, if it exists. This follows from the rank
inequality for Hermitian matrices (cf. [3], Lemma 2.2). Changing the variance,
however, provides a different limit which is a scaled version of that we obtain with
assumption (A1). To make the condition of independent diagonals more precise, we
suppose that

(A2) For any n 2 N, j 2 f1; : : : ; ng, and distinct integers r1; : : : ; rj 2
f0; : : : ; n � 1g, the families fan.p; p C r1/; 1 � p � n � r1g; : : : ;

fan.p; p C rj /; 1 � p � n � rj g are independent.

So far, we know that if we also have independence among the entries on the
same diagonal, we will obtain the semicircle law as the limiting spectral distribution.
Although we will violate this assumption in our first model, the quickly decaying
dependency structure will ensure that nevertheless, we get the same limiting
distribution. In our second model, we will basically assume that the covariance is
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the same for any two entries on the same diagonal. If it is equal to the variance,
it is not surprising that the resulting limit is the same as in the Toeplitz case.
In general, we will find that we have a combination of the Toeplitz distribution
and the semicircle law.

4 Quickly Decaying Covariances

In our first model, the dependency structure within the diagonals is determined by
the conditions

(A3) The covariance of two entries on the same diagonal can be bounded by some
constant depending only on their distance, i.e. for any n 2 N and 0 � � �
n � 1, there is a constant cn.�/ � 0 such that

jCov.an.p; q/; an.p C �; q C �//j � cn.�/; 1 � p � q � n � �;

(A4) The entries on the diagonals have a quickly decaying dependency structure,
which will be expressed in terms of the condition

n�1X

�D0

cn.�/ D o.n/:

Theorem 1. Assume that the symmetric random matrix Xn satisfies the conditions
(A1)–(A4). Then, with probability 1, the empirical spectral distribution of Xn

converges weakly to the standard semicircle distribution.

Remark 1. Note that in order for the semicircle law to hold, it is not possible to
renounce condition (A4) without any replacement. To understand this, consider
a Toeplitz matrix. We clearly have cn.�/ D O.1/, and indeed, the empirical
distribution of a sequence of Toeplitz matrices tends with probability 1 to a
nonrandom probability measure with unbounded support.

4.1 Examples

We want to give some examples of processes that satisfy the assumptions of
Theorem 1. Obviously, this is the case if the entries fan.p; q/; 1 � p � q � ng are
independent satisfying (A1). The following three examples deal with finite Markov
chains, Gaussian Markov processes and m-dependent processes.

(i) Assume that fx.p/; p 2 Ng is a stationary Markov chain on a finite state space
S D fs1; : : : ; sN g, N � 2. Denote by % D .%1; : : : ; %N / the stationary
distribution, and suppose that
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EŒx.p/� D
NX

j D1

sj %.j / D 0; EŒx.p/2� D
NX

j D1

s2
j %.j / D 1:

If fx.p/; p 2 Ng is aperiodic and irreducible, we have that for some
constant C > 0 and some ˛ 2 .0; 1/,

max
i;j 2f1;:::;N g

jP.x.p/ D si j x.1/ D sj / � %.i/j � C˛p�1; p 2 N:

For more details, see [13], Theorem 4.9. In particular, we obtain

jCov.x.p/; x.1//j D
ˇ̌
ˇ̌
ˇ̌

NX

i;j D1

si sj

�
P.x.p/ D si j x.1/ D sj / � %.i/

�
%.j /

ˇ̌
ˇ̌
ˇ̌ � C˛p�1:

Now assume that the processes fa.p; p C r/; p 2 Ng, r 2 N0, are
independent copies of fx.p/; p 2 Ng, and put an.p; q/ WD a.p; q/ for any
n 2 N, 1 � p � q � n. Condition (A2) then holds by definition, and the
uniform moment bound in (A1) is given since we have a bounded support.
Furthermore,

jCov.an.p; q/; an.p C �; q C �//j � cn.�/;

where cn.�/ D c.�/ D C˛� . This is assumption (A3). Finally, (A4) follows
since

P1
�D0 c.�/ < 1, implying

Pn�1
�D0 c.�/ D o.n/.

(ii) Let fy.p/; p 2 Ng be a stationary Gaussian Markov process with mean 0 and
variance 1. In addition to this, assume that the process is non-degenerate in the
sense that E Œy.p/jy.q/; q � p � 1� ¤ y.p/. In this case, we can represent
y.p/ as

y.p/ D bp

pX

j D1

dj 	j ;

where f	j ; j 2 Ng is a family of independent standard Gaussian variables and
bp; d1; : : : ; dp 2 Rnf0g. We can now calculate

Nc.�/ WD Cov.y.p C �/; y.p// D bpC� bp

pC�X

iD1

pX

j D1

di djEŒ	i 	j � D bpC� bp

pX

j D1

d2
j :

Note that 1 D EŒy.p/2� D b2
p

Pp
j D1 d 2

j . As a consequence, we have

Nc.�/ D bpC�

bp

D bpC�

bpC��1

bpC��1

bpC��2

� � � bpC1

bp

D Nc.1/� :
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To see that j Nc.�/j < 1, we first compute Nc.1/y.1/ D b2b
2
1d 3

1 	1 D b2d1	1,
implying that y.2/ D b2d2	2 C Nc.1/y.1/. Using this identity to calculate the
variance, we can take account of the independence of 	2 and y.1/ to obtain

1 D EŒy.2/2� D b2
2d 2

2 C Nc.1/2:

Since b2; d2 ¤ 0, we conclude that j Nc.1/j < 1. In analogy to the first
example, we assume that the processes fa.p; p C r/; p 2 Ng, r 2 N0, are
independent copies of fy.p/; p 2 Ng, and put an.p; q/ WD a.p; q/ for any
n 2 N, 1 � p � q � n. Conditions (A1) and (A2) obviously hold. Defining
c.�/ WD j Nc.�/j, we further obtain

jCov.an.p; q/; an.p C �; q C �//j � c.�/:

Since j Nc.1/j < 1, we have
P1

�D0 c.�/ < 1, implying
Pn�1

�D0 c.�/ D o.n/.
Thus assumptions (A3) and (A4) are satisfied.

(iii) Assume that fz.p/; p 2 Ng is a stationary process of m-dependent random
variables, i.e. z.p/ and z.q/ are stochastically independent whenever
jp � qj > m. Moreover, suppose that z.1/ is centered with unit variance,
and has existing moments of all orders. Define

c.�/ WD jCov.z.1/; z.� C 1//j; � 2 N0:

Then, c.�/ D 0 for any � > m. Thus,
Pn�1

�D0 c.�/ D Pm
�D0 c.�/ D o.n/ for

any n � m C 1. Let fa.p; p C r/; p 2 Ng, r 2 N0, be independent copies of
fz.p/; p 2 Ng, and an.q; p/ WD a.p; q/ for any n 2 N, 1 � p � q � n. Then,
(A1)–(A4) are satisfied.

5 Constant Covariances

For our second model, we assume that

(A30) The covariance of two distinct entries on the same diagonal depends only
on n, i.e. for any 1 � � � n � 1 and 1 � p; q � n � � , we can define

cn WD Cov.an.p; q/; an.p C �; q C �//;

(A40) The limit c WD limn!1 cn exists.

To describe the limiting spectral distribution in this case, we want to resort to
pair partitions. However, we need a further notion which proved to be useful in [5]
when considering the limiting spectral distribution of Markov matrices.
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Definition 1. Let k 2 N be even, and fix � 2 PP.k/. The height h.�/ of � is the
number of elements i �� j , i < j , such that either j D i C 1 or the restriction of
� to fi C 1; : : : ; j � 1g is a pair partition.

Note that the property that the restriction of � to fi C 1; : : : ; j � 1g is a pair
partition in particular requires that the distance j � i � 1 � 1 is even. To give an
example how to calculate the height of a partition, take � D ff1; 6g; f2; 4g; f3; 5gg.
Considering the block f1; 6g, we see that the restriction of � to f2; 3; 4; 5g is a
pair partition, namely ff2; 4g; f3; 5gg. However, this is not true for both remaining
blocks. Hence, h.�/ D 1.

In the following, we will say that a pair partition � 2 PP.k/ is crossing if
there are i < j < l < m such that i �� l and j �� m. Otherwise, we call the pair
partition non-crossing. The set of all crossing pair partitions of f1; : : : ; kg is denoted
by CPP.k/, and the set of all non-crossing pair partitions by NPP.k/. Recall that
for even k 2 N, the Catalan number Ck=2 is given by Ck=2 D #NPP.k/.

We can now state the main result of this section.

Theorem 2. Assume that the symmetric random matrix Xn satisfies the conditions
(A1), (A2), (A30), and (A40). Then, with probability 1, the empirical spectral
distribution of Xn converges weakly to a deterministic probability distribution �c

with k-th moment

Z
xkd�c.x/ D

8
<̂

:̂

C k
2

C
X

�2CPP.k/

pT .�/c
k
2 �h.�/; if k is even;

0; if k is odd:

If k is even, we can also write
R

xkd�c.x/ D P
�2PP.k/ pT .�/ck=2�h.�/.

Remark 2. As for the limiting distribution in the Toeplitz case, we can verify the
Carleman condition to see that �c is uniquely determined by its moments.

Remark 3. If c D 0, Theorem 2 states that the limiting distribution is the semicircle
law since h.�/ < k=2 for any crossing partition � 2 CPP.k/. This result can
also be deduced from Theorem 1. Indeed, choose cn.�/ D jcnj for any � � 1, and
cn.0/ D 1. We then have for any 1 � p � q � n � � ,

jCov.an.p; q/; an.p C �; q C �//j D cn.�/:

Furthermore, we obtain
Pn�1

�D0 cn.�/ D 1 C .n � 1/jcnj D o.n/ since limn!1 cn D
c D 0. Consequently, (A3) and (A4) are satisfied.

5.1 Examples

We want to give some examples of processes satisfying the assumptions of
Theorem 2.
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(i) Consider a symmetric Toeplitz matrix as in (1). The limiting spectral distribu-
tion can be deduced from Theorem 2 as well. Indeed, assuming that the entries
are centered with unit variance and have existing moments of any order, we see
that all conditions are satisfied with c D cn D 1. Thus, we get

Z
xkd�1.x/ D

8
<̂

:̂

C k
2

C
X

�2CPP.k/

pT .�/ D
X

�2PP.k/

pT .�/; if k is even;

0; if k is odd;

as proven in [5].
(ii) Suppose that for any n 2 N, fxn.p/; 1 � p � ng is a family of exchangeable

random variables, i.e. the distribution of the vector .xn.1/; : : : ; xn.n// is the
same as that of .xn.
.1//; : : : ; xn.
.n/// for any permutation 
 of f1; : : : ; ng.
In this case, we can conclude that for any 1 � p < q � n, we have

Cov.xn.p/; xn.q// D Cov.xn.1/; xn.2// DW cn:

Now assume that cn ! c 2 R as n ! 1. Define for any n 2 N,
r 2 f0; : : : ; n � 1g, the process fan.p; p C r/; 1 � p � n � rg to be an
independent copy of fxn.p/; 1 � p � n�rg. Then, all conditions of Theorem 2
are satisfied if we ensure that the moment condition (A1) holds. The resulting
limiting distribution for different choices of c is depicted in Fig. 1.

An example for a process with exchangeable variables is the Curie-Weiss
model with inverse temperature ˇ > 0. Here, the vector xn D .xn.1/; : : : ; xn.n//

takes values in f�1; 1gn, and for any ! D .!.1/; : : : ; !.n// 2 f�1; 1gn, we
have

P.xn D !/ D 1

Zn;ˇ

exp

0

@ ˇ

2n

 
nX

iD1

!.i/

!2
1

A ;

where Zn;ˇ is the normalizing constant. Since P.xn.1/ D �1/ D P.xn.1/ D
1/ D 1=2, we obtain EŒxn.1/� D 0. Further, we clearly have EŒxn.1/2� D 1.
It remains to determine c D limn!1 cn. Therefore, we want to make use of the
identity

cn D Cov.xn.1/; xn.2// D EŒxn.1/xn.2/� D n

n � 1
EŒm2

n� � 1

n � 1
;

where mn WD 1=n
Pn

iD1 xn.i/ is the so-called magnetization of the system.
Since jmnj � 1, we see that mn is uniformly integrable. Thus, mn converges in
L 2 to some random variable m if and only if mn ! m in probability. In [6],
it was verified that mn ! 0 in probability if ˇ � 1, and mn ! m with m �
1=2 ım.ˇ/ C 1=2 ı�m.ˇ/ for some m.ˇ/ > 0 if ˇ > 1. The function m.ˇ/ is
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Fig. 1 Histograms of the empirical spectral distribution of 100 realizations of 1;000 � 1;000

matrices X1;000 with standard Gaussian entries. (a) c D 0:25. (b) c D 0:5. (c) c D 0:75

monotonically increasing on .1; 1/, and satisfies m.ˇ/ ! 0 as ˇ & 1 and
m.ˇ/ ! 1 as ˇ ! 1. We now obtain

c D lim
n!1 cn D

(
0; if ˇ � 1;

m.ˇ/2; if ˇ > 1:

Thus, the limiting spectral distribution of Xn is the semicircle law if ˇ � 1,
and approximately the Toeplitz limit if ˇ is large. This is insofar not surprising
as the different sites in the Curie-Weiss model show little interaction, i.e. behave
almost independently, if the temperature is high, or, in other words, ˇ is small.
However, if the temperature is low, i.e. ˇ is large, the magnetization of the
sites strongly depends on each other. The phase transition at the critical inverse
temperature ˇ D 1 in the Curie-Weiss model is thus reflected in the limiting
spectral distribution of Xn as well.



14 O. Friesen and M. Löwe

6 Proof of Theorems 1 and 2

The proofs of both theorems start with the same idea. We need to distinguish them
only as soon as the covariances have to be calculated. The main technique we want
to apply is the method of moments. The idea is to first determine the weak limit of
the expected empirical distribution. Afterwards, concentration inequalities can be
used to obtain almost sure convergence.

6.1 The Expected Empirical Spectral Distribution

To determine the limit of the k-th moment of the expected empirical spectral
distribution �n of Xn, we write

E

�Z
xkd�n.x/

�
D 1

n
E

h
tr
�
Xk

n

	 i

D 1

n
k
2 C1

nX

p1;:::;pkD1

E Œa.p1; p2/a.p2; p3/ � � � a.pk�1; pk/a.pk ; p1/� :

The main task is now to compute the expectations on the right hand side. How-
ever, we have to face the problem that some of the entries involved are independent
and some are not. To be more precise, a.p1; q1/; : : : ; a.pj ; qj / are independent
whenever they can be found on different diagonals of Xn, i.e. the distances jp1 �
q1j; : : : ; jpj � qj j are distinct. Hence, a first step in our proof is to consider the
expectation E Œa.p1; p2/a.p2; p3/ � � � a.pk�1; pk/a.pk; p1/�, and to identify entries
with the same distance of their indices. Therefore, we want to adapt some concepts
of [14] and [5] to our situation.

To start with, fix k 2 N, and define Tn.k/ to be the set of k-tuples of consistent
pairs, that is multi-indices .P1; : : : ; Pk/ satisfying for any j D 1; : : : ; k,

1. Pj D .pj ; qj / 2 f1; : : : ; ng2,
2. qj D pj C1, where k C 1 is cyclically identified with 1.

With this notation, we find that

1

n
E

h
tr
�
Xk

n

	 i D 1

n
k
2 C1

X

.P1;:::;Pk/2Tn.k/

E Œan.P1/ � � � an.Pk/� :

To reflect the dependency structure among the entries an.P1/ : : : an.Pk/, we want
to make use of the set P.k/ of partitions of f1; : : : ; kg. Thus, take � 2 P.k/. We say
that an element .P1; : : : ; Pk/ 2 Tn.k/ is a �-consistent sequence if

jpi � qi j D ˇ̌
pj � qj

ˇ̌ ” i �� j:
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According to condition (A2), this implies that an.Pi1/; : : : ; an.Pil / are stochas-
tically independent if i1; : : : ; il belong to l different blocks of � . The set of all
�-consistent sequences .P1; : : : ; Pk/ 2 Tn.k/ is denoted by Sn.�/. Note that
the sets Sn.�/, � 2 P.k/, are pairwise disjoint, and

S
�2P.k/ Sn.�/ D Tn.k/.

Consequently, we can write

1

n
E
�
tr
�
Xk

n

	� D 1

n
k
2 C1

X

�2P.k/

X

.P1;:::;Pk /2Sn.�/

E Œan.P1/ � � � an.Pk/� : (4)

In a next step, we want to exclude partitions that do not contribute to (4) as
n ! 1. These are those partitions satisfying either #� > k=2 or #� < k=2, where
#� denotes the number of blocks of � . We want to treat the two cases separately.

First case: #� > k=2. Since � is a partition of f1; : : : ; kg, there is at least
one singleton, i.e. a block containing only one element i . Consequently, an.Pi /

is independent of fan.Pj /; j ¤ ig if .P1; : : : ; Pk/ 2 Sn.�/. Since we assumed the
entries to be centered, we obtain

E Œan.P1/ � � � an.Pk/� D E

hY

i¤l

an.Pi /
i
E Œan.Pl /� D 0:

This yields

1

n
k
2 C1

X

.P1;:::;Pk/2Sn.�/

E Œan.P1/ � � � an.Pk/� D 0:

Second case: r WD #� < k=2. Here, we want to argue that � gives
vanishing contribution to (4) as n ! 1 by calculating #Sn.�/. To fix an element
.P1; : : : ; Pk/ 2 Sn.�/, we first choose the pair P1 D .p1; q1/. There are at most
n possibilities to assign a value to p1, and another n possibilities for q1. To fix
P2 D .p2; q2/, note that the consistency of the pairs implies p2 D q1. If now
1 �� 2, the condition jp1 � q1j D jp2 � q2j allows at most two choices for q2.
Otherwise, if 1 6�� 2, we have at most n possibilities. We now proceed sequentially
to determine the remaining pairs. When arriving at some index i , we check whether
i is in the same block as some preceding index 1; : : : ; i � 1. If this is the case, then
we have at most two choices for Pi and otherwise, we have n. Since there are exactly
r D #� different blocks, we can conclude that

#Sn.�/ � n2nr�12k�r � C nrC1 (5)

with a constant C D C.r; k/ depending on r and k.
Now the uniform boundedness of the moments (3) and the Hölder inequality

together imply that for any sequence .P1; : : : ; Pk/,

jE Œan.P1/ � � �an.Pk/�j �
h
E jan.P1/jk

i 1
k � � �

h
E jan.Pk/jk

i 1
k � mk: (6)
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Consequently, taking account of the relation r < k=2, we get

1

n
k
2 C1

X

.P1;:::;Pk/2Sn.�/

jE Œan.P1/ � � � an.Pk/�j � C
#Sn.�/

n
k
2 C1

� C
1

n
k
2 �r

D o.1/:

Combining the calculations in the first and the second case, we can conclude that

1

n
E
�
tr
�
Xk

n

	� D 1

n
k
2 C1

X

�2P.k/;

#�D k
2

X

.P1;:::;Pk /2Sn.�/

E Œan.P1/ � � � an.Pk/� C o.1/:

Now assume that k is odd. Then the condition #� D k=2 cannot be satisfied, and
the considerations above immediately yield

lim
n!1

1

n
E
�
tr
�
Xk

n

	� D 0:

It remains to determine the even moments. Thus, let k 2 N be even. Recall
that we denoted by PP.k/ � P.k/ the set of all pair partitions of f1; : : : ; kg.
In particular, #� D k=2 for any � 2 PP.k/. On the other hand, if #� D k=2

but � … PP.k/, we can conclude that � has at least one singleton and hence, as
in the first case above, the expectation corresponding to the �-consistent sequences
will become zero. Consequently,

1

n
E
�
tr
�
Xk

n

	� D 1

n
k
2 C1

X

�2PP.k/

X

.P1;:::;Pk /2Sn.�/

E Œan.P1/ � � � an.Pk/� C o.1/: (7)

We have now reduced the original set P.k/ to the subset PP.k/. Next we want
to fix a � 2 PP.k/ and concentrate on the set Sn.�/. The following lemma will
help us to calculate that part of (7) which involves non-crossing partitions.

Lemma 1 (cf. [5], Proposition 4.4.). Let S�
n .�/ 	 Sn.�/ denote the set of

�-consistent sequences .P1; : : : ; Pk/ satisfying

i �� j H) qi � pi D pj � qj

for all i ¤ j . Then, we have

#
�
Sn.�/nS�

n .�/
	 D o

�
n1C k

2

�
:

Proof. We call a pair .Pi ; Pj / with i �� j , i ¤ j , positive if qi �pi D qj �pj > 0

and negative if qi � pi D qj � pj < 0. Since
Pk

iD1 qi � pi D 0 by consistency,
the existence of a negative pair implies the existence of a positive one. Thus, we can
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assume that any .P1; : : : ; Pk/ 2 Sn.�/nS�
n .�/ contains a positive pair .Pl ; Pm/.

To fix such a sequence, we first determine the positions of l and m, and then fix the
signs of the remaining differences qi �pi . The number of possibilities to accomplish
this depends only on k and not on n. Now we choose one of n possible values for
pl , and continue with assigning values to the differences jqi � pi j for all Pi except
for Pl and Pm. Since � is a pair partition, we have at most nk=2�1 possibilities for
that. Then,

Pk
iD1 qi � pi D 0 implies that

0 < 2.ql � pl/ D ql � pl C qm � pm D
X

i2f1;:::;kg;
i¤l;m

pi � qi :

Since we have already chosen the signs of the differences jqi � pi j, i ¤ l; m, as
well as their absolute values, we know the value of the sum on the right hand side.
Hence, the difference ql � pl D qm � pm is fixed. We now have the index pl , all
differences jqi � pi j ; i 2 f1; : : : ; kg, and their signs. Thus, we can start at Pl and
go systematically through the whole sequence .P1; : : : ; Pk/ to see that it is uniquely
determined. Consequently, our considerations lead to

#
�
Sn.�/nS�

n .�/
	 � C n

k
2 D o

�
n1C k

2

�
: ut

A consequence of Lemma 1 and relation (6) is the identity

1

n
E
�
tr
�
Xk

n

	� D 1

n
k
2 C1

X

�2PP.k/

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � � �an.Pk/� C o.1/: (8)

As already mentioned, the sets S�
n .�/ help us to deal with the set NPP.k/ of

non-crossing pair partitions.

Lemma 2. Let � 2 NPP.k/. For any .P1; : : : ; Pk/ 2 S�
n .�/, we have

E Œan.P1/ � � � an.Pk/� D 1:

Proof. Let l < m with l �� m. Since � is non-crossing, the number l � m � 1 of
elements between l and m must be even. In particular, there is l � i < j � m with
i �� j and j D i C 1. By the properties of S�

n .�/, we have an.Pi / D an.Pj /,
and the sequence .P1; : : : ; Pl ; : : : ; Pi�1; PiC2; : : : ; Pm; : : : ; Pk/ is still consistent.
Applying this argument successively, all pairs between l and m can be eliminated
and we see that the sequence .P1; : : : ; Pl ; Pm; : : : ; Pk/ is consistent, that is ql D pm.
Then, the identity pl D qm also holds. In particular, an.Pl / D an.Pm/. Since this
argument applies for arbitrary l �� m, we obtain
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E Œan.P1/ � � � an.Pk/� D
Y

l<m;
l�� m

E Œan.Pl/an.Pm/� D 1: ut

By Lemma 2, we can conclude that

1

n
k
2 C1

X

�2NPP.k/

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � � an.Pk/� D 1

n
k
2 C1

X

�2NPP.k/

#S�

n .�/:

The following lemma allows us to finally calculate the term on the right hand
side.

Lemma 3. For any � 2 NPP.k/, we have

lim
n!1

#S�
n .�/

n
k
2 C1

D 1:

Proof. Since � is non-crossing, we can find a nearest neighbor pair i �� i C 1.
Now fix .P1; : : : ; Pk/ 2 S�

n .�/, and write Pl D .pl ; plC1/, l D 1; : : : ; k, where
k C 1 is identified with 1. Then the properties of S�

n .�/ ensure that .pi ; piC1/ D
.piC2; piC1/. Hence, we can eliminate the pairs Pi ; PiC1 to obtain a sequence
.P

.1/
1 ; : : : ; P

.1/

k�2/ WD .P1; : : : ; Pi�1; PiC2; : : : ; Pk/ which is still consistent. Denote
by � 0 the partition obtained from � by deleting the block fi; i C 1g, and relabeling
any l � i C 2 to l � 2. Since � is non-crossing, we have � 0 2 NPP.k � 2/.
Moreover, .P

.1/
1 ; : : : ; P

.1/

k�2/ 2 S�
n .� 0/. Thus we see that any .P1; : : : ; Pk/ 2 S�

n .�/

can be reconstructed from a tuple .P
.1/
1 ; : : : ; P

.1/

k�2/ 2 S�
n .� 0/ and a choice of piC1.

The latter admits n � .k � 2/=2 possibilities since fi; i C 1g forms a block on its
own in � . Consequently,

#S�
n .�/

n
k
2 C1

D #S�
n .� 0/
n

k
2

C o.1/: (9)

Now if k D 2, we get S�
n .�/ D f..p; q/; .q; p// W p; q 2 f1; : : : ; ngg, implying

#S�
n .�/=n2 D 1. For arbitrary even k 2 N, the statement of Lemma 3 follows then

by induction using the identity in (9). ut
Taking account of the relation #NPP.k/ D Ck=2, we now arrive at

1

n
E
�
tr
�
Xk

n

	�

D C k
2

C 1

n
k
2 C1

X

�2CPP.k/

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � � an.Pk/� C o.1/; (10)
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with CPP.k/ being the set of all crossing pair partitions of f1; : : : ; kg. At this point,
we have to distinguish between Theorems 1 and 2. Indeed, to obtain the semicircle
law, we need to show that the sum over all crossing partitions is negligible in the
limit. However, the limiting distribution in Theorem 2 indicates that we do have a
contribution.

6.2 Convergence of the Expected Empirical Spectral
Distribution in Theorem 1

The convergence of the expected empirical spectral distribution to the semicircle
distribution follows directly from relation (10) and

Lemma 4. For any crossing � 2 CPP.k/, we have

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � � an.Pk/� D o
�
n

k
2 C1

�
:

Proof. Let � be crossing and consider a sequence .P1; : : : ; Pk/ 2 S�
n .�/. Write

Pl D .pl ; plC1/. Note that if there is an l 2 f1; : : : ; kg with l �� l C 1, where
k C 1 is identified with 1, we immediately have an.Pl / D an.PlC1/. In particular,

E Œan.Pl /an.PlC1/� D 1:

The sequence .P
.1/
1 ; : : : ; P

.1/

k�2/ WD .P1; : : : ; Pl�1; PlC2; : : : ; Pk/ is still consis-
tent, and

E Œan.P1/ � � �an.Pk/� D E

h
an.P

.1/
1 / � � � an.P

.1/

k�2/
i

:

Define �.1/ 2 CPP.k �2/ to be the pair partition induced by � after eliminating
the indices l and l C 1. In particular, .P

.1/
1 ; : : : ; P

.1/

k�2/ 2 S�
n .�.1//. Since there

are at most n choices for plC1 when .P
.1/
1 ; : : : ; P

.1/

k�2/ is fixed, we have for any
.Q1; : : : ; Qk�2/ 2 S�

n .�.1//,

#f.P1; : : : ; Pk/ 2 S�
n .�/ W .P

.1/
1 ; : : : ; P

.1/

k�2/ D .Q1; : : : ; Qk�2/g � n:

Let r denote the maximum number of pairs of indices that can be eliminated in
this way. Since � is crossing, there are at least two pairs left and hence, r � k=2�2.
Define �.r/ 2 CPP.k � 2r/ and .P

.r/
1 ; : : : ; P

.r/

k�2r / 2 S�
n .�.r// to be the partition

and the sequence left after this elimination. By induction, we conclude that for any
.Q1; : : : ; Qk�2r / 2 S�

n .�.r//, we have the estimate

#f.P1; : : : ; Pk/ 2 S�
n .�/ W .P

.r/
1 ; : : : ; P

.r/

k�2r / D .Q1; : : : ; Qk�2r /g � nr :
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Since E Œan.P1/ � � � an.Pk/� D EŒan.P
.r/
1 / � � � an.P

.r/

k�2r /�, we obtain

X

.P1;:::;Pk /2S�

n .�/

jE Œan.P1/ � � � an.Pk/�j

� nr
X

.Q1;:::;Qk�2r /2S�

n .�.r//

jE Œan.Q1/ � � � an.Qk�2r /�j : (11)

Choose i ��.r/ iCj such that j is minimal. For any sequence .Q1; : : : ; Qk�2r / 2
S�

n .�.r//, put Ql D .ql ; qlC1/, l D 1; : : : ; k � 2r . We want to count the number
of such sequences given that qi and qiCj C1 are fixed. Therefore, we start with
choosing one of n possible values for qiC1. Then, the fact that i is equivalent to
i C j ensures that we can also deduce the value of

qiCj D qiC1 � qi C qiCj C1:

Hence, Qi and QiCj are fixed. Since j is minimal, any element in fi C1; : : : ; i C
j � 1g is equivalent to some element outside the set fi; : : : ; i C j g. There are n

possibilities to fix QiC1 D .qiC1; qiC2/ because qiC1 is already fixed. Proceeding
sequentially, we have n possibilities for the choice of any pair Ql with l 2 fi C
2; : : : ; i C j � 2g, and there is only one choice for QiCj �1 since qiCj is already
chosen. We thus made nj �2 choices to fix all pairs Ql , l 2 fi C 1; : : : ; i C j � 1g.
For any Ql with l 2 f1; : : : ; k � 2rgnfi; : : : ; i Cj g, there are at most n possibilities
if it is not equivalent to one pair that has already been chosen. Otherwise, there is
only one possibility. Since there were k=2 � r � j new equivalence classes left, we
have at most nk=2�r�j choices for those pairs. Hence, assuming that the elements qi

and qiCj C1 are fixed, we have at most

nnj �2n
k
2 �r�j D n

k
2 �r�1

possibilities to choose the rest of the sequence .Q1; : : : ; Qk�2r / 2 S�
n .�.r//. Note

that jEŒan.Ql/an.Qm/�j � .EŒan.Ql/
2�/1=2.EŒan.Qm/2�/1=2 D 1. Since �.r/ is a

pair partition, we thus get

jE Œan.Q1/ � � � an.Qk�2r /�j � jEŒan.Qi /an.QiCj /�j:
By assumption (A3), the expectation on the right hand side depends only on the

absolute value of the difference

minfqi ; qiC1g � minfqiCj ; qiCj C1g D maxfqi ; qiC1g � maxfqiCj ; qiCj C1g:
Now the definition of S�

n .�.r// ensures that qi � qiC1 D qiCj C1 � qiCj .
In particular, minfqi ; qiC1g�minfqiCj ; qiCj C1g D qi �qiCj C1 D qiCj �qiC1, and

EŒan.Qi/an.QiCj /� D cn.jqi � qiCj C1j/:
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Consequently, estimating the term in (11) further, we obtain

X

.P1;:::;Pk /2S�

n .�/

jE Œan.P1/ � � � an.Pk/�j � n
k
2 �1

nX

qi ;qiCj C1D1

cn.jqiCj C1 � qi j/

� C n
k
2

n�1X

�D0

cn.�/ D o
�
n

k
2 C1

�
;

since
Pn�1

�D0 cn.�/ D o.n/ by condition (A4). ut

6.3 Convergence of the Expected Empirical Spectral
Distribution in Theorem 2

We again start with the identity in (10). Since we consider only pair partitions,
we know that the expectation on the right hand side is of the form

E Œan.p1; q1/an.p1 C �1; q1 C �1/� � � �E Œan.pr ; qr /an.pr C �r ; qr C �r /� ;

for r WD k=2 and some choices of p1; q1; �1; : : : ; pr ; qr ; �r 2 N. In order to calculate
this expectation, assumption (A30) indicates that we only need to distinguish for
any i D 1; : : : ; k, whether we have �i D 0 or not. In the first case, we get the
identity E Œan.pi ; qi /an.pi C �i ; qi C �i /� D 1, in the second we can conclude
that E Œan.pi ; qi /an.pi C �i ; qi C �i /� D cn. Fix some pair partition � 2 PP.k/,
and take .P1; : : : ; Pk/ 2 S�

n .�/. Motivated by these considerations, we put Pi D
.pi ; qi /, and define

m .P1; : : : ; Pk/ W D #f1 � i < j � k W an.Pi / D an.Pj /g
D #f1 � i < j � k W .pi ; qi / D .qj ; pj /g:

Obviously, we have 0 � m .P1; : : : ; Pk/ � k=2. With this notation, we find that

1

n
k
2 C1

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � � � an.Pk/� D 1

n
k
2 C1

k=2X

lD0

c
k
2 �l

n #A.l/
n .�/ ; (12)

where

A.l/
n .�/ WD f.P1; : : : ; Pk/ 2 S�

n .�/ W m .P1; : : : ; Pk/ D lg:

The following lemma states that if a pair Pi ; Pj contributes to m.P1; : : : ; Pk/,
then we can assume that the block fi; j g in � is not crossed by any other block.
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Lemma 5. Let � 2 PP.k/ and fix i �� j , i < j . Define

S�
n .�I i; j / WD f.P1; : : : ; Pk/ 2 S�

n .�/ W Pi D .pi ; qi /; Pj D .pj ; qj /; pi D qj ; qi D pj g:

Assume that there is some i 0 �� j 0 such that i < i 0 < j , and either j 0 < i or
j < j 0. Then,

#S�
n .�I i; j / D o

�
n

k
2 C1

�
:

Proof. To fix some .P1; : : : ; Pk/ 2 S�
n .�I i; j /, we first choose a value for pi D qj

and qi D pj . This allows for at most n2 possibilities. Hence, Pi and Pj are
fixed. Now consider the pairs PiC1; : : : ; Pi 0�1. piC1 is uniquely determined by
consistency. For qiC1, there are at most n choices. Then, piC2 D qiC1. If i C 2 ��

i C1, we have one choice for qiC2. Otherwise, there are at most n. Proceeding in the
same way, we see that we have n possibilities whenever we start a new equivalence
class. Similarly, we can assign values to the pairs Pj ; : : : ; Pi 0C1 in this order.
Now Pi 0 is determined by consistency. When fixing Pi�1; : : : ; P1; Pk; : : : ; Pj C1,
we again have n choices for any new equivalence class. To sum up, we are left with
at most

n2n
k
2 �2 D n

k
2

possible values for an element in S�
n .�I i; j /. ut

Recall Definition 1 where we introduced the notion of the height h.�/ of a pair
partition � . Lemma 5 in particular implies that only those .P1; : : : ; Pk/ 2 S�

n .�/

with

0 � m .P1; : : : ; Pk/ � h.�/

contribute to the limit of (12). Indeed, if m.P1; : : : ; Pk/ > h.�/, we can find some
i �� j , i < j , such that .P1; : : : ; Pk/ 2 S�

n .�I i; j / and neither j D i C 1 nor is
the restriction of � to fi C1; : : : ; j �1g a pair partition. Hence, the crossing property
in Lemma 5 is satisfied, and .P1; : : : ; Pk/ is contained in a set that is negligible in
the limit. The identity in (12) thus becomes

1

n
k
2 C1

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � � an.Pk/� D 1

n
k
2 C1

h.�/X

lD0

c
k
2 �l

n #B.l/
n .�/ C o.1/;

where

B.l/
n .�/ WD ˚

.P1; : : : ; Pk/ 2 S�

n .�/ W m .P1; : : : ; Pk/ D l I
an.Pi / D an.Pj /; i < j ) j D i C 1 or � j

fiC1;:::;j �1g
is a pair partition



:
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In the next step, we want to simplify the expression above further by showing
that B

.l/
n .�/ D ; whenever 0 � l < h.�/. This is ensured by

Lemma 6. Let � 2 PP.k/. For any .P1; : : : ; Pk/ 2 S�
n .�/, we have

m.P1; : : : ; Pk/ � h.�/:

Proof. If h.�/ D 0, there is nothing to prove. Thus, suppose that h.�/ � 1 and take
some i �� j , i < j , such that either j D i C 1 or j � i � 1 � 2 is even and the
restriction of � to fi C 1; : : : ; j � 1g is a pair partition. Fix .P1; : : : ; Pk/ 2 S�

n .�/,
and write Pl D .pl ; plC1/ for any l D 1; : : : ; k. We need to verify that piC1 D pj .
If we achieve this, the definition of S�

n .�/ will also ensure that pi D pj C1. As
a consequence, the �-block fi; j g will contribute to m.P1; : : : ; Pk/. Since there
are h.�/ such blocks, we will obtain m.P1; : : : ; Pk/ � h.�/ for any choice of
.P1; : : : ; Pk/ 2 S�

n .�/.
If j D i C 1, we immediately obtain piC1 D pj . To show this property in the

second case, note that the sequence .PiC1; : : : ; Pj �1/ solves the following system
of equations:

piC2 � piC1 C pl1C1 � pl1 D 0; if i C 1 �� l1;

piC3 � piC2 C pl2C1 � pl2 D 0; if i C 2 �� l2;

:::

piCmC1 � piCm C plmC1 � plm D 0; if i C m �� lm;

:::

pj � pj �1 C plj �i�1C1 � plj �i�1 D 0; if j � 1 �� lj �i�1:

Start with solving the first equation for piC2 which yields

piC2 D piC1 � pl1C1 C pl1 :

Then, insert this in the second equation, and solve it for piC3 to obtain

piC3 D piC1 � pl1C1 C pl1 � pl2C1 C pl2 :

In the j � i � 1-th step, we substitute pj �1 D piC.j �i�1/ in the j � i � 1-th
equation, and solve it for pj D piC.j �i�1/C1. We then have

pj D piC1 �
j �i�1X

mD1

.plmC1 � plm/:
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Since the restriction of � to fi C1; : : : ; j �1g is a pair partition, we can conclude
that the sets fl1; : : : ; lj �i�1g and fi C 1; : : : ; j � 1g are equal. Hence, we obtainPj �i�1

mD1 .plmC1 � plm/ D pj � piC1, implying pj D piC1. ut
With the help of Lemma 6, we thus arrive at

1

n
k
2 C1

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � � �an.Pk/� D #B
.h.�//
n .�/

n
k
2 C1

c
k
2 �h.�/
n C o.1/:

Note that any element .P1; : : : ; Pk/ 2 S�
n .�/ satisfying the condition

an.Pi / D an.Pj /; i < j ) j D i C 1 or �jfiC1;:::;j �1g is a pair partition;

(13)

fulfills the condition m.P1; : : : ; Pk/ D h.�/ as well. Indeed, (13) guarantees that
m.P1; : : : ; Pk/ � h.�/, and Lemma 6 ensures that m.P1; : : : ; Pk/ � h.�/. Thus,
we can write

B.h.�//
n .�/ D f.P1; : : : ; Pk/ 2 S�

n .�/ W
an.Pi / D an.Pj /; i < j ) j D i C 1 or �jfiC1;:::;j �1g is a pair partition



:

Now any element in the complement of B
.h.�//
n .�/ satisfies for some i �� j the

crossing assumption in Lemma 5. This yields

#
�
B

.h.�//
n .�/

�c

n
k
2 C1

D o.1/:

Since B
.h.�//
n .�/ [

�
B

.h.�//
n .�/

�c D S�
n .�/, we obtain that

1

n
k
2 C1

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � � an.Pk/� D #S�
n .�/

n
k
2 C1

c
k
2 �h.�/
n C o.1/: (14)

To calculate the limit on the right-hand side, we have

Lemma 7 (cf. [5], Lemma 4.6). For any � 2 PP.k/, it holds that

lim
n!1

#S�
n .�/

n
k
2 C1

D pT .�/;

where pT .�/ is the Toeplitz volume defined by solving the system of equation (2).
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Proof. Fix � 2 PP.k/. Note that if P D f.pi ; piC1/; i D 1; : : : ; kg 2 S�
n .�/,

then x0; x1; : : : ; xk with xi D piC1=n is a solution of the system of equation (2).
On the other hand, if x0; x1; : : : ; xk 2 f1=n; 2=n; : : : ; 1g is a solution of (2) and
piC1 D nxi , then either f.pi ; piC1/; i D 1; : : : ; kg 2 S�

n .�/ or f.pi ; piC1/; i D
1; : : : ; kg 2 Sn.�/ for some partition � 2 P.k/ such that i �� j ) i �� j , but
#� < #� .

In (2), we have k C 1 variables and only k=2 equations. Denote the k=2 C 1

undetermined variables by y1; : : : ; yk=2C1. We thus need to assign values from the
set f1=n; 2=n; : : : ; 1g to y1; : : : ; yk=2C1, and then to calculate the remaining k=2

variables from the equations. Since the latter are also supposed to be in the range
f1=n; 2=n; : : : ; 1g, it might happen that not all values for the undetermined variables
are admissible. Let pn.�/ denote the admissible fraction of the nk=2C1 choices for
y1; : : : ; yk=2C1. By our remark at the beginning of the proof and estimate (5), we
have that

lim
n!1

#S�
n .�/

n
k
2 C1

D lim
n!1 pn.�/;

if the limits exist. Now we can interpret y1; : : : ; yk=2C1 as independent random
variables with a uniform distribution on f1=n; 2=n; : : : ; 1g. Then, pn.�/ is the
probability that the computed values stay within the interval .0; 1�. As n ! 1,
y1; : : : ; yk=2C1 converge in law to independent random variables uniformly dis-
tributed on Œ0; 1�. Hence, pn.�/ ! pT .�/. ut

Applying Lemma 7 and assumption (A40) to Eq. (14), we arrive at

lim
n!1

1

n
k
2 C1

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � � �an.Pk/� D pT .�/c
k
2 �h.�/:

Substituting this result in (10), we find that for any even k 2 N,

lim
n!1

1

n
E
�
tr
�
Xk

n

	� D C k
2

C
X

�2CPP.k/

pT .�/c
k
2 �h.�/:

To obtain the alternative expression for the even moments in Theorem 2, note
that the considerations above were not restricted to crossing partitions. In particular,
we can start from identity (8) instead of (10) to see that

lim
n!1

1

n
E
�
tr
�
Xk

n

	� D lim
n!1

X

�2PP.k/

#S�
n .�/

n
k
2 C1

c
k
2 �h.�/

n D
X

�2PP.k/

pT .�/c
k
2 �h.�/:
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6.4 Almost Sure Convergence

The aim of this part of the proof is to show almost sure convergence in both
situations, that of Theorem 1 and that of Theorem 2. Therefore, we want to follow
the ideas used in [5], Proposition 4.9, to verify the same for Toeplitz matrices. This is
possible since the arguments only rely on the fact that the diagonals are independent.
The particular dependency structure can be neglected. We want to start with the
proof of a concentration inequality for the moments of the spectral measure. The
obtained bound will enable us to use the Borel-Cantelli lemma.

Lemma 8. Suppose that conditions (A1) and (A2) hold. Then, for any k; n 2 N,

E

h�
tr
�
Xk

n

	 � E
�
tr
�
Xk

n

	�	4i � C n2:

Proof. Fix k; n 2 N. Using the notation

P D .P1; : : : ; Pk/ D ..p1; q1/; : : : ; .pk; qk//; an.P / D an.P1/ � � � an.Pk/;

we have that

E

h�
tr
�
Xk

n

	 � E
�
tr
�
Xk

n

	�	4i

D 1

n2k

X

�.1/;:::;�.4/2P.k/

X

P .i/2Sn.�.i//;

iD1;:::;4

E

h 4Y

j D1

�
an.P .j // � E

�
an.P .j //

�	 i
: (15)

Now consider a partition � of f1; : : : ; 4kg. We say that a sequence
.P .1/; : : : ; P .4// is �-consistent if each P .i/; i D 1; : : : ; 4, is a consistent sequence
and

ˇ̌
q

.i/

l � p
.i/

l

ˇ̌ D ˇ̌
q.j /

m � p.j /
m

ˇ̌ ” l C .i � 1/k �� m C .j � 1/k:

Let Sn.�/ denote the set of all �-consistent sequences with entries in f1; : : : ; ng.
Then, (15) becomes

E

h�
tr
�
Xk

n

	 � E
�
tr
�
Xk

n

	�	4i

D 1

n2k

X

�2P.4k/

X

.P .1/;:::;P .4//2Sn.�/

E

h 4Y

j D1

�
an.P .j // � E

�
an.P .j //

�	 i
: (16)
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We want to analyze the expectation on the right hand side. Therefore, fix a � 2
P.4k/. We call � a matched partition if

1. Any block of � contains at least two elements,
2. For any i 2 f1; : : : ; 4g, there is a j ¤ i and l; m 2 f1; : : : ; kg with

l C .i � 1/k �� m C .j � 1/k:

In case � does not satisfy (i), we have a singleton fl C .i � 1/kg, implying that
EŒan.P .i//� D 0. As a consequence,

X

.P .1/;:::;P .4//2Sn.�/

E

h 4Y

j D1

�
an.P .j // � E

�
an.P .j //

�	 i D 0: (17)

If � does not satisfy (ii), we can conclude that for some i 2 f1; : : : ; 4g, the term
an.P .i//�E

�
an.P .i//

�
is independent of an.P .j //�E

�
an.P .j //

�
, j ¤ i . Thus, (17)

holds in this case as well. To sum up, we only have to consider matched partitions
to evaluate the sum in (16). Let � be such a partition and denote by r D #� the
number of blocks of � . Note that condition (i) implies r � 2k. We want to count
all � consistent sequences .P .1/; : : : ; P .4//. Therefore, first choose one of at most
nr possibilities to fix the r different equivalence classes. Afterwards, we fix the
elements p

.1/
1 ; : : : ; p

.4/
1 , which can be done in n4 ways. Since now the differences

jq.i/

l �p
.i/

l j are uniquely determined by the choice of the corresponding equivalence
classes, we can proceed sequentially to see that there are at most two choices left
for any pair P

.i/

l . To sum up, we have at most

24kn4nr D C nrC4

possibilities to choose .P .1/; : : : ; P .4//. If now r � 2k � 2, we can conclude that

#Sn.�/ � C n2kC2: (18)

It remains to consider the cases in which r D 2k � 1 and r D 2k, respectively.
To begin with, let r D 2k � 1. Then, we have either two equivalence classes with
three elements or one equivalence class with four. Since � is matched, there must
exist an i 2 f1; : : : ; 4g and an l 2 f1; : : : ; kg such that P

.i/

l is not equivalent to
any other pair in the sequence P .i/. Without loss of generality, we can assume that
i D 1. In contrast to the construction of .P .1/; : : : ; P .4// as above, we now alter
our procedure as follows: We fix all equivalence classes except of that P

.1/

l belongs
to. There are nr�1 possibilities to accomplish that. Now we choose again one of
n4 possible values for p

.1/
1 ; : : : ; p

.4/
1 . Hereafter, we fix q

.1/
m , m D 1; : : : ; l � 1, and

then start from q
.1/

k D p
.1/
1 to go backwards and obtain the values of p

.1/

k ; : : : ; p
.1/

lC1.
Each of these steps leaves at most two choices to us, that is 2k�1 choices in total. But
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now, P
.1/

l is uniquely determined since p
.1/

l D q
.1/

l�1 and q
.1/

l D p
.1/

lC1 by consistency.
Thus, we had to make one choice less than before, implying (18).

Now, let r D 2k. In this case, each equivalence class has exactly two elements.
Since we consider a matched partition, we can find here as well an l 2 f1; : : : ; kg
such that P

.1/

l is not equivalent to any other pair in the sequence P .1/. But in addition

to that, we also have an m 2 f1; : : : ; kg such that, possibly after relabeling, P
.2/
m is

neither equivalent to any element in P .1/ nor to any other element in P .2/. Thus, we
can use the same argument as before to see that this time, we can reduce the number
of choices to at most C nrC2 D C n2kC2. In conclusion, (18) holds for any matched
partition � . To sum up our results, we obtain that

E

h�
tr
�
Xk

n

	� E
�
tr
�
Xk

n

	�	4i

D 1

n2k

X

�2P.4k/;

� matched

X

.P .1/;:::;P .4//2Sn.�/

E

h 4Y

j D1

�
an.P .j // � E

�
an.P .j //

�	 i � C n2;

which is the statement of Lemma 8. ut
From Lemma 8 and Chebyshev’s inequality, we can now conclude that for any

" > 0 and any k; n 2 N,

P

�ˇ̌
ˇ̌1
n

tr
�
Xk

n

	 � E

�
1

n
tr
�
Xk

n

	�ˇ̌ˇ̌ > "

�
� C

"4n2
:

Applying the Borel-Cantelli lemma, we see that

1

n
tr
�
Xk

n

	 � E

�
1

n
tr
�
Xk

n

	� ! 0; a.s.: (19)

Let Y be a random variable distributed according to the semicircle law or
according to the distribution given by the moments in Theorem 2, depending on
whether we want to prove Theorems 1 or 2. The convergence of the moments of the
expected empirical distributions and relation (19) yield

1

n
tr
�
Xk

n

	 ! EŒY k�; a.s.:

Since the distribution of Y is uniquely determined by its moments, we obtain
almost sure weak convergence of the empirical spectral distribution of Xn to the
distribution of Y .
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