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Preface

Random matrices are of central importance in many areas of probability theory, and
the analysis of their theoretical aspects has been the object of very active research
over the past 20 years and will certainly continue in the future because of many still
open questions. Applications can be found in, for example, mathematical statistics,
mathematical physics, random graphs, or telecommunications.

The present collection of research papers focuses on two of their most relevant
aspects:

• The spectra of high-dimensional random matrices

and

• Iterated random functions driven by random matrices

The contributions to this volume are based on talks given at the workshop “Random
matrices and iterated random functions” organized as part of the scientific program
of the Collaborative Research Center 878 from October 4 to October 7, 2011, at the
University of Münster.

While the contributions to Random Matrix Theory are centered around questions
about universality of the limiting behavior of random matrices and their relation
to free probability, the (larger) section on iterated functions systems focuses on
questions concerning their long-time behavior (ergodicity) and information about
their stationary distributions (tail behavior).

Discussions among the participants of the workshop were also concerned with
possible connections between these two fields of probability. Such connections
would doubtlessly stimulate the research in both areas.

We thank all authors who contributed to this volume and hope that we have been
able to gather an inspiring collection of papers. We are grateful to the CRC 878 for
financial support of the workshop and to Olga Friesen and Sebastian Mentemeier
for helping us with the production of this book.

Münster, Germany Gerold Alsmeyer
Matthias Löwe
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Part I
Random Matrices



On the Limiting Spectral Density of Symmetric
Random Matrices with Correlated Entries

Olga Friesen� and Matthias Löwe

Abstract We analyze the spectral distribution of two different models of symmetric
random matrices with correlated entries. While we assume that the diagonals of
these random matrices are stochastically independent, the elements of the diagonals
are taken to be correlated. Depending on the strength of correlation the limiting
spectral distribution is either the famous semicircle law known for the limiting
spectral density of symmetric random matrices with independent entries, or some
other law related to that derived for Toeplitz matrices by Bryc W, Dembo A, Jiang T
(2006) Spectral measure of large random Hankel, Markov and Toeplitz matrices.
Ann Probab 34(1):1–38.

1 Introduction

The study of random matrices started in the 1920s with the seminal work of
Wishart [16]. His basic motivation was the analysis of data. On the other hand,
Wigner used the eigenvalues of random matrices to model the spectra of heavy-
nuclei atoms [15]. Nowadays, random matrix theory is a field with many applica-
tions from telecommunications to random graphs and with many interesting and
surprising results.

A central role in the study of random matrices with growing dimension
is played by their eigenvalues. To introduce them let, for any n 2 N,
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4 O. Friesen and M. Löwe

fan.p; q/; 1 � p � q � ng be a real-valued random field. Define the symmetric
random n � n matrix Xn by

Xn.q; p/ D Xn.p; q/ D 1p
n
an.p; q/; 1 � p � q � n:

We will denote the (real) eigenvalues of Xn by �.n/1 � �.n/2 � : : : �.n/n . Let �n be
the empirical eigenvalue distribution, i.e.

�n D 1

n

nX

kD1
ı
�
.n/
k

:

Wigner proved in his fundamental work [15] that, if an.p; q/ are independent,
normally distributed with mean 0 and variance 1, for off-diagonal elements, and
variance 2 on the diagonal, the empirical eigenvalue distribution �n converges
weakly (in probability) to the so-called semicircle distribution (or law), i.e. the
probability distribution � on R with density

1

2�

p
4 � x2 �Œ�2;2�.x/ dx:

An important step to show the universality of this result was taken by Arnold
[1], who verified that the convergence to the semicircle law also is true, if one
replaces the Gaussian distributed random variables by independent and identically
distributed (i.i.d.) random variables with a finite fourth moment. Also the identical
distribution may be replaced by some other assumptions (see e.g. [8]). There are
various ways to prove such a result. Among others, large deviations techniques as
developed in [4] can be applied as well as Stieltjes transforms [2] (the latter method
can also be applied to obtain results on the speed of convergence, see [12]). A still
very powerful instrument is the moment method, originally employed by Wigner.
To this end, it is useful to notice that, if Y is some random variable distributed
according to this semicircle distribution, its moments are given by

EŒY k� D
(
0; if k is odd;

C k
2
; if k is even;

where Ck , k 2 N, are the Catalan numbers defined by Ck D .2k/Š=.kŠ.k C 1/Š/.
Recently, it was observed by Erdös et al. [9] that the convergence of the spectral

measure towards the semicircle law holds in a local sense. More precisely, this can
be proved on intervals with width going to zero sufficiently slowly.

However, the assumption of the entries being independent cannot be renounced
without any replacement. Bryc, Dembo and Jiang [5] studied random symmetric
Toeplitz matrices and obtained a different limiting distribution. To be more precise,
they considered a family fXi; 0 � i � n�1g, n 2 N, of independent and identically
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distributed real-valued random variables, and assumed that Var.X1/ D 1. Then,
the scaled symmetric Toeplitz matrix Tn was defined by Tn.i; j / D 1=

p
n Xji�j j,

1 � i; j � n, i.e.

Tn D 1p
n

0

BBBBBBBBB@

X0 X1 X2 : : : Xn�2 Xn�1
X1 X0 X1 : : : Xn�3 Xn�2

: : :
: : :

: : :

: : :
: : :

: : :

Xn�2 Xn�3 Xn�4 : : : X0 X1

Xn�1 Xn�2 Xn�3 : : : X1 X0

1

CCCCCCCCCA

: (1)

In this situation the empirical spectral distribution of Tn converges weakly almost
surely to some non-random probability measure �T as n ! 1. This measure
does not depend on the distribution of X1. Moreover, it has existing moments of
all orders, is symmetric, and has an unbounded support. The aim of the present
note is, to investigate the borderline between convergence to the semicircle law
and the convergence to �T . To this end we will study random matrices with
independent diagonals, where the elements on the diagonals may be correlated. If
they are independent, we are, of course, back in the Wigner case, while for complete
correlation the matrix is a random Toeplitz matrix.

We will see that depending on the strength of the correlation, the empirical
spectral distribution either converges to the semicircle law, or to some mixture
of �T and the semicircle distribution. We hence have a sort of phase transition.
Similar results were obtained in [10] for the case of weak correlations and in [11]
for stronger correlations. A particularly nice example is borrowed from statistical
mechanics. There the Curie-Weiss model is the easiest model of a ferromagnet. Here
a magnetic substance has little atoms that carry a magnetic spin, that is either C1
or �1. These spins interact in cooperative way, the strength of the interaction being
triggered by a parameter, the so-called inverse temperature. The model exhibits
phase transition from paramagnetic to magnetic behavior (the standard reference
for the Curie-Weiss model is [7]). We will see that this phase transition can be
recovered on the level of the limiting spectral distribution of random matrices, if we
fill their diagonals independently with the spins of Curie-Weiss models. For small
interaction parameter, this limiting spectral distribution is the semicircle law, while
for a large interaction parameter we obtain a distribution which shows the influence
of �T .

The rest of this article is organized in the following way. In the two following
sections we will fix our notation. Section 2 contains a description of the measures �T
introduced above, while Sect. 3 describes the kind of matrices we will deal with in
a general framework. From here we follow two paths. Section 4 contains our results
for convergence towards the semicircle law, while Sect. 5 is devoted to the case of
strong correlations along the diagonals. The basic ideas of the proofs, however are
so similar, that we can treat them in a unified way. This is done in Sect. 6.
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2 The Measure �T

The limiting spectral distribution �T can be defined by its moments which are
described with the help of Toeplitz volumes.

Compared to [5], we will use a slightly different notation. This will make it easier
to understand the arguments of the following sections. Thus, denote by PP.k/,
k 2 N, the set of all pair partitions of f1; : : : ; kg. For any � 2 PP.k/, we write
i �� j if i and j are in the same block of � . To introduce Toeplitz volumes,
we associate to any � 2 PP.k/ the following system of equations in unknowns
x0; : : : ; xk :

x1 � x0 C xl1 � xl1�1 D 0; if 1 �� l1;
x2 � x1 C xl2 � xl2�1 D 0; if 2 �� l2;

:::

xi � xi�1 C xli � xli�1 D 0; if i �� li ;
:::

xk � xk�1 C xlk � xlk�1 D 0; if k �� lk:

(2)

Since � is a pair partition, we in fact have only k=2 equations although we
have listed k. However, we have k C 1 variables. If � D ffi1; j1g; : : : ; fik=2; jk=2gg
with il < jl for any l D 1; : : : ; k=2, we solve (2) for xj1 ; : : : ; xjk=2 , and leave
the remaining variables undetermined. We further impose the condition that all
variables x0; : : : ; xk lie in the interval I D Œ0; 1�. Solving the equations above in
this way determines a cross section of the cube I k=2C1. The volume of this will be
denoted by pT .�/. To give an example, consider the partition � D ff1; 3g; f2; 4gg.
Solving (2) for x3 D x0 � x1 C x2 and x4 D x1 � x2 C x3 D x0, we obtain a cross
section of I 3 given by

fx0 � x1 C x2 2 I g \ fx0 2 I g:

This set has the volume pT .�/ D 2=3.
Returning to the measure �T , it is shown in [5] that all odd moments are zero,

and for any even k 2 N, the k-th moment is given by

Z
xkd�T .x/ D

X

�2PP.k/
pT .�/:

Since jpT .�/j � 1 for any � 2 PP.k/ and #PP.k/ D .k � 1/ŠŠ, we have

ˇ̌
ˇ̌
Z
xkd�T .x/

ˇ̌
ˇ̌ � .k � 1/ŠŠ:
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In particular, Carleman’s condition holds implying that �T is uniquely deter-
mined by its moments. The results for the independent as well as the Toeplitz
case will follow directly from Theorems 1 and 2 in case we assume the uniform
boundedness of the moments of all orders.

3 Matrices with Independent Processes on the Diagonals

We want to study two different models of symmetric matrices with dependent
entries. Both models have the common property that entries from different diagonals
are independent while on each diagonal we have a stochastic process with a given
covariance structure. Therefore, consider for any n 2 N a family fan.p; q/; 1 �
p � q � ng of real-valued random variables. Introduce the symmetric random
n � n matrix Xn with

Xn.p; q/ D Xn.q; p/ D 1p
n
an.p; q/; 1 � p � q � n:

Put an.p; q/ D an.q; p/ if 1 � q < p � n. Since we will resort to the method
of moments, we first of all want to assume that

(A1) E Œan.p; q/� D 0, E
�
an.p; q/

2
� D 1, and

mk WD sup
n2N

max
1�p�q�nE

h
jan.p; q/jk

i
<1; k 2 N: (3)

Note that the assumption of centered entries can be made without loss of
generality if the family fan.p; q/; 1 � p � q � ng consists of identically distributed
random variables. Indeed, assuming E Œan.p; q/� D bn for any 1 � p � q � n,
n 2 N, and some sequence .bn/n2N such that bn D o.n/ yields the same limiting
spectral distribution as in the centered case, if it exists. This follows from the rank
inequality for Hermitian matrices (cf. [3], Lemma 2.2). Changing the variance,
however, provides a different limit which is a scaled version of that we obtain with
assumption (A1). To make the condition of independent diagonals more precise, we
suppose that

(A2) For any n 2 N, j 2 f1; : : : ; ng, and distinct integers r1; : : : ; rj 2
f0; : : : ; n � 1g, the families fan.p; p C r1/; 1 � p � n � r1g; : : : ;
fan.p; p C rj /; 1 � p � n � rj g are independent.

So far, we know that if we also have independence among the entries on the
same diagonal, we will obtain the semicircle law as the limiting spectral distribution.
Although we will violate this assumption in our first model, the quickly decaying
dependency structure will ensure that nevertheless, we get the same limiting
distribution. In our second model, we will basically assume that the covariance is
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the same for any two entries on the same diagonal. If it is equal to the variance,
it is not surprising that the resulting limit is the same as in the Toeplitz case.
In general, we will find that we have a combination of the Toeplitz distribution
and the semicircle law.

4 Quickly Decaying Covariances

In our first model, the dependency structure within the diagonals is determined by
the conditions

(A3) The covariance of two entries on the same diagonal can be bounded by some
constant depending only on their distance, i.e. for any n 2 N and 0 � � �
n � 1, there is a constant cn.�/ � 0 such that

jCov.an.p; q/; an.p C �; q C �//j � cn.�/; 1 � p � q � n � �;

(A4) The entries on the diagonals have a quickly decaying dependency structure,
which will be expressed in terms of the condition

n�1X

�D0
cn.�/ D o.n/:

Theorem 1. Assume that the symmetric random matrix Xn satisfies the conditions
(A1)–(A4). Then, with probability 1, the empirical spectral distribution of Xn
converges weakly to the standard semicircle distribution.

Remark 1. Note that in order for the semicircle law to hold, it is not possible to
renounce condition (A4) without any replacement. To understand this, consider
a Toeplitz matrix. We clearly have cn.�/ D O.1/, and indeed, the empirical
distribution of a sequence of Toeplitz matrices tends with probability 1 to a
nonrandom probability measure with unbounded support.

4.1 Examples

We want to give some examples of processes that satisfy the assumptions of
Theorem 1. Obviously, this is the case if the entries fan.p; q/; 1 � p � q � ng are
independent satisfying (A1). The following three examples deal with finite Markov
chains, Gaussian Markov processes and m-dependent processes.

(i) Assume that fx.p/; p 2 Ng is a stationary Markov chain on a finite state space
S D fs1; : : : ; sN g, N � 2. Denote by % D .%1; : : : ; %N / the stationary
distribution, and suppose that
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EŒx.p/� D
NX

jD1
sj %.j / D 0; EŒx.p/2� D

NX

jD1
s2j %.j / D 1:

If fx.p/; p 2 Ng is aperiodic and irreducible, we have that for some
constant C > 0 and some ˛ 2 .0; 1/,

max
i;j2f1;:::;N g

jP.x.p/ D si j x.1/ D sj /� %.i/j � C˛p�1; p 2 N:

For more details, see [13], Theorem 4.9. In particular, we obtain

jCov.x.p/; x.1//j D
ˇ̌
ˇ̌
ˇ̌
NX

i;jD1
si sj

�
P.x.p/ D si j x.1/ D sj / � %.i/

�
%.j /

ˇ̌
ˇ̌
ˇ̌ � C˛p�1:

Now assume that the processes fa.p; p C r/; p 2 Ng, r 2 N0, are
independent copies of fx.p/; p 2 Ng, and put an.p; q/ WD a.p; q/ for any
n 2 N, 1 � p � q � n. Condition (A2) then holds by definition, and the
uniform moment bound in (A1) is given since we have a bounded support.
Furthermore,

jCov.an.p; q/; an.p C �; q C �//j � cn.�/;

where cn.�/ D c.�/ D C˛� . This is assumption (A3). Finally, (A4) follows
since

P1
�D0 c.�/ <1, implying

Pn�1
�D0 c.�/ D o.n/.

(ii) Let fy.p/; p 2 Ng be a stationary Gaussian Markov process with mean 0 and
variance 1. In addition to this, assume that the process is non-degenerate in the
sense that E Œy.p/jy.q/; q � p � 1� ¤ y.p/. In this case, we can represent
y.p/ as

y.p/ D bp
pX

jD1
dj 	j ;

where f	j ; j 2 Ng is a family of independent standard Gaussian variables and
bp; d1; : : : ; dp 2 Rnf0g. We can now calculate

Nc.�/ WD Cov.y.p C �/; y.p// D bpC� bp
pC�X

iD1

pX

jD1
didjEŒ	i 	j � D bpC� bp

pX

jD1
d2j :

Note that 1 D EŒy.p/2� D b2p
Pp

jD1 d 2j . As a consequence, we have

Nc.�/ D bpC�
bp
D bpC�
bpC��1

bpC��1
bpC��2

� � � bpC1
bp
D Nc.1/� :
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To see that j Nc.�/j < 1, we first compute Nc.1/y.1/ D b2b
2
1d

3
1 	1 D b2d1	1,

implying that y.2/ D b2d2	2 C Nc.1/y.1/. Using this identity to calculate the
variance, we can take account of the independence of 	2 and y.1/ to obtain

1 D EŒy.2/2� D b22d 22 C Nc.1/2:

Since b2; d2 ¤ 0, we conclude that j Nc.1/j < 1. In analogy to the first
example, we assume that the processes fa.p; p C r/; p 2 Ng, r 2 N0, are
independent copies of fy.p/; p 2 Ng, and put an.p; q/ WD a.p; q/ for any
n 2 N, 1 � p � q � n. Conditions (A1) and (A2) obviously hold. Defining
c.�/ WD j Nc.�/j, we further obtain

jCov.an.p; q/; an.p C �; q C �//j � c.�/:

Since j Nc.1/j < 1, we have
P1

�D0 c.�/ < 1, implying
Pn�1

�D0 c.�/ D o.n/.
Thus assumptions (A3) and (A4) are satisfied.

(iii) Assume that fz.p/; p 2 Ng is a stationary process of m-dependent random
variables, i.e. z.p/ and z.q/ are stochastically independent whenever
jp � qj > m. Moreover, suppose that z.1/ is centered with unit variance,
and has existing moments of all orders. Define

c.�/ WD jCov.z.1/; z.� C 1//j; � 2 N0:

Then, c.�/ D 0 for any � > m. Thus,
Pn�1

�D0 c.�/ D
Pm

�D0 c.�/ D o.n/ for
any n � mC 1. Let fa.p; p C r/; p 2 Ng, r 2 N0, be independent copies of
fz.p/; p 2 Ng, and an.q; p/ WD a.p; q/ for any n 2 N, 1 � p � q � n. Then,
(A1)–(A4) are satisfied.

5 Constant Covariances

For our second model, we assume that

(A30) The covariance of two distinct entries on the same diagonal depends only
on n, i.e. for any 1 � � � n � 1 and 1 � p; q � n � � , we can define

cn WD Cov.an.p; q/; an.p C �; q C �//;

(A40) The limit c WD limn!1 cn exists.

To describe the limiting spectral distribution in this case, we want to resort to
pair partitions. However, we need a further notion which proved to be useful in [5]
when considering the limiting spectral distribution of Markov matrices.
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Definition 1. Let k 2 N be even, and fix � 2 PP.k/. The height h.�/ of � is the
number of elements i �� j , i < j , such that either j D i C 1 or the restriction of
� to fi C 1; : : : ; j � 1g is a pair partition.

Note that the property that the restriction of � to fi C 1; : : : ; j � 1g is a pair
partition in particular requires that the distance j � i � 1 � 1 is even. To give an
example how to calculate the height of a partition, take � D ff1; 6g; f2; 4g; f3; 5gg.
Considering the block f1; 6g, we see that the restriction of � to f2; 3; 4; 5g is a
pair partition, namely ff2; 4g; f3; 5gg. However, this is not true for both remaining
blocks. Hence, h.�/ D 1.

In the following, we will say that a pair partition � 2 PP.k/ is crossing if
there are i < j < l < m such that i �� l and j �� m. Otherwise, we call the pair
partition non-crossing. The set of all crossing pair partitions of f1; : : : ; kg is denoted
by CPP.k/, and the set of all non-crossing pair partitions by NPP.k/. Recall that
for even k 2 N, the Catalan number Ck=2 is given by Ck=2 D #NPP.k/.

We can now state the main result of this section.

Theorem 2. Assume that the symmetric random matrix Xn satisfies the conditions
(A1), (A2), (A30), and (A40). Then, with probability 1, the empirical spectral
distribution of Xn converges weakly to a deterministic probability distribution �c
with k-th moment

Z
xkd�c.x/ D

8
<̂

:̂

Ck
2
C

X

�2CPP.k/
pT .�/c

k
2�h.�/; if k is even;

0; if k is odd:

If k is even, we can also write
R
xkd�c.x/ DP�2PP.k/ pT .�/c

k=2�h.�/.

Remark 2. As for the limiting distribution in the Toeplitz case, we can verify the
Carleman condition to see that �c is uniquely determined by its moments.

Remark 3. If c D 0, Theorem 2 states that the limiting distribution is the semicircle
law since h.�/ < k=2 for any crossing partition � 2 CPP.k/. This result can
also be deduced from Theorem 1. Indeed, choose cn.�/ D jcnj for any � � 1, and
cn.0/ D 1. We then have for any 1 � p � q � n � � ,

jCov.an.p; q/; an.p C �; q C �//j D cn.�/:

Furthermore, we obtain
Pn�1

�D0 cn.�/ D 1C .n� 1/jcnj D o.n/ since limn!1 cn D
c D 0. Consequently, (A3) and (A4) are satisfied.

5.1 Examples

We want to give some examples of processes satisfying the assumptions of
Theorem 2.
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(i) Consider a symmetric Toeplitz matrix as in (1). The limiting spectral distribu-
tion can be deduced from Theorem 2 as well. Indeed, assuming that the entries
are centered with unit variance and have existing moments of any order, we see
that all conditions are satisfied with c D cn D 1. Thus, we get

Z
xkd�1.x/ D

8
<̂

:̂

Ck
2
C

X

�2CPP.k/
pT .�/ D

X

�2PP.k/
pT .�/; if k is even;

0; if k is odd;

as proven in [5].
(ii) Suppose that for any n 2 N, fxn.p/; 1 � p � ng is a family of exchangeable

random variables, i.e. the distribution of the vector .xn.1/; : : : ; xn.n// is the
same as that of .xn.
.1//; : : : ; xn.
.n/// for any permutation 
 of f1; : : : ; ng.
In this case, we can conclude that for any 1 � p < q � n, we have

Cov.xn.p/; xn.q// D Cov.xn.1/; xn.2// DW cn:

Now assume that cn ! c 2 R as n ! 1. Define for any n 2 N,
r 2 f0; : : : ; n � 1g, the process fan.p; p C r/; 1 � p � n � rg to be an
independent copy of fxn.p/; 1 � p � n�rg. Then, all conditions of Theorem 2
are satisfied if we ensure that the moment condition (A1) holds. The resulting
limiting distribution for different choices of c is depicted in Fig. 1.

An example for a process with exchangeable variables is the Curie-Weiss
model with inverse temperature ˇ>0. Here, the vector xnD .xn.1/; : : : ; xn.n//
takes values in f�1; 1gn, and for any ! D .!.1/; : : : ; !.n// 2 f�1; 1gn, we
have

P.xn D !/ D 1

Zn;ˇ
exp

0

@ ˇ

2n

 
nX

iD1
!.i/

!21

A ;

where Zn;ˇ is the normalizing constant. Since P.xn.1/ D �1/ D P.xn.1/ D
1/ D 1=2, we obtain EŒxn.1/� D 0. Further, we clearly have EŒxn.1/

2� D 1.
It remains to determine c D limn!1 cn. Therefore, we want to make use of the
identity

cn D Cov.xn.1/; xn.2// D EŒxn.1/xn.2/� D n

n � 1EŒm
2
n� �

1

n � 1;

where mn WD 1=n
Pn

iD1 xn.i/ is the so-called magnetization of the system.
Since jmnj � 1, we see that mn is uniformly integrable. Thus, mn converges in
L 2 to some random variable m if and only if mn ! m in probability. In [6],
it was verified that mn ! 0 in probability if ˇ � 1, and mn ! m with m �
1=2 ım.ˇ/ C 1=2 ı�m.ˇ/ for some m.ˇ/ > 0 if ˇ > 1. The function m.ˇ/ is
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Fig. 1 Histograms of the empirical spectral distribution of 100 realizations of 1;000 � 1;000

matrices X1;000 with standard Gaussian entries. (a) c D 0:25. (b) c D 0:5. (c) c D 0:75

monotonically increasing on .1;1/, and satisfies m.ˇ/ ! 0 as ˇ & 1 and
m.ˇ/! 1 as ˇ!1. We now obtain

c D lim
n!1 cn D

(
0; if ˇ � 1;
m.ˇ/2; if ˇ > 1:

Thus, the limiting spectral distribution of Xn is the semicircle law if ˇ � 1,
and approximately the Toeplitz limit if ˇ is large. This is insofar not surprising
as the different sites in the Curie-Weiss model show little interaction, i.e. behave
almost independently, if the temperature is high, or, in other words, ˇ is small.
However, if the temperature is low, i.e. ˇ is large, the magnetization of the
sites strongly depends on each other. The phase transition at the critical inverse
temperature ˇ D 1 in the Curie-Weiss model is thus reflected in the limiting
spectral distribution of Xn as well.
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6 Proof of Theorems 1 and 2

The proofs of both theorems start with the same idea. We need to distinguish them
only as soon as the covariances have to be calculated. The main technique we want
to apply is the method of moments. The idea is to first determine the weak limit of
the expected empirical distribution. Afterwards, concentration inequalities can be
used to obtain almost sure convergence.

6.1 The Expected Empirical Spectral Distribution

To determine the limit of the k-th moment of the expected empirical spectral
distribution �n of Xn, we write

E

�Z
xkd�n.x/

�
D 1

n
E

h
tr
�
Xk
n

	 i

D 1

n
k
2C1

nX

p1;:::;pkD1

E Œa.p1; p2/a.p2; p3/ � � � a.pk�1; pk/a.pk ; p1/� :

The main task is now to compute the expectations on the right hand side. How-
ever, we have to face the problem that some of the entries involved are independent
and some are not. To be more precise, a.p1; q1/; : : : ; a.pj ; qj / are independent
whenever they can be found on different diagonals of Xn, i.e. the distances jp1 �
q1j; : : : ; jpj � qj j are distinct. Hence, a first step in our proof is to consider the
expectation E Œa.p1; p2/a.p2; p3/ � � �a.pk�1; pk/a.pk; p1/�, and to identify entries
with the same distance of their indices. Therefore, we want to adapt some concepts
of [14] and [5] to our situation.

To start with, fix k 2 N, and define Tn.k/ to be the set of k-tuples of consistent
pairs, that is multi-indices .P1; : : : ; Pk/ satisfying for any j D 1; : : : ; k,

1. Pj D .pj ; qj / 2 f1; : : : ; ng2,
2. qj D pjC1, where k C 1 is cyclically identified with 1.

With this notation, we find that

1

n
E

h
tr
�
Xk
n

	 i D 1

n
k
2C1

X

.P1;:::;Pk/2Tn.k/
E Œan.P1/ � � �an.Pk/� :

To reflect the dependency structure among the entries an.P1/ : : : an.Pk/, we want
to make use of the set P.k/ of partitions of f1; : : : ; kg. Thus, take � 2 P.k/. We say
that an element .P1; : : : ; Pk/ 2 Tn.k/ is a �-consistent sequence if

jpi � qi j D
ˇ̌
pj � qj

ˇ̌ ” i �� j:
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According to condition (A2), this implies that an.Pi1/; : : : ; an.Pil / are stochas-
tically independent if i1; : : : ; il belong to l different blocks of � . The set of all
�-consistent sequences .P1; : : : ; Pk/ 2 Tn.k/ is denoted by Sn.�/. Note that
the sets Sn.�/, � 2 P.k/, are pairwise disjoint, and

S
�2P.k/ Sn.�/ D Tn.k/.

Consequently, we can write

1

n
E
�
tr
�
Xk
n

	� D 1

n
k
2 C1

X

�2P.k/

X

.P1;:::;Pk /2Sn.�/
E Œan.P1/ � � �an.Pk/� : (4)

In a next step, we want to exclude partitions that do not contribute to (4) as
n!1. These are those partitions satisfying either #� > k=2 or #� < k=2, where
#� denotes the number of blocks of � . We want to treat the two cases separately.

First case: #� > k=2. Since � is a partition of f1; : : : ; kg, there is at least
one singleton, i.e. a block containing only one element i . Consequently, an.Pi /
is independent of fan.Pj /; j ¤ ig if .P1; : : : ; Pk/ 2 Sn.�/. Since we assumed the
entries to be centered, we obtain

E Œan.P1/ � � �an.Pk/� D E

hY

i¤l
an.Pi /

i
E Œan.Pl /� D 0:

This yields

1

n
k
2C1

X

.P1;:::;Pk/2Sn.�/
E Œan.P1/ � � �an.Pk/� D 0:

Second case: r WD #� < k=2. Here, we want to argue that � gives
vanishing contribution to (4) as n ! 1 by calculating #Sn.�/. To fix an element
.P1; : : : ; Pk/ 2 Sn.�/, we first choose the pair P1 D .p1; q1/. There are at most
n possibilities to assign a value to p1, and another n possibilities for q1. To fix
P2 D .p2; q2/, note that the consistency of the pairs implies p2 D q1. If now
1 �� 2, the condition jp1 � q1j D jp2 � q2j allows at most two choices for q2.
Otherwise, if 1 6�� 2, we have at most n possibilities. We now proceed sequentially
to determine the remaining pairs. When arriving at some index i , we check whether
i is in the same block as some preceding index 1; : : : ; i � 1. If this is the case, then
we have at most two choices forPi and otherwise, we have n. Since there are exactly
r D #� different blocks, we can conclude that

#Sn.�/ � n2nr�12k�r � C nrC1 (5)

with a constant C D C.r; k/ depending on r and k.
Now the uniform boundedness of the moments (3) and the Hölder inequality

together imply that for any sequence .P1; : : : ; Pk/,

jE Œan.P1/ � � �an.Pk/�j �
h
E jan.P1/jk

i 1
k � � �

h
E jan.Pk/jk

i 1
k � mk: (6)
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Consequently, taking account of the relation r < k=2, we get

1

n
k
2C1

X

.P1;:::;Pk/2Sn.�/
jE Œan.P1/ � � �an.Pk/�j � C #Sn.�/

n
k
2 C1 � C

1

n
k
2�r D o.1/:

Combining the calculations in the first and the second case, we can conclude that

1

n
E
�
tr
�
Xk
n

	� D 1

n
k
2 C1

X

�2P.k/;
#�D k

2

X

.P1;:::;Pk /2Sn.�/
E Œan.P1/ � � �an.Pk/�C o.1/:

Now assume that k is odd. Then the condition #� D k=2 cannot be satisfied, and
the considerations above immediately yield

lim
n!1

1

n
E
�
tr
�
Xk
n

	� D 0:

It remains to determine the even moments. Thus, let k 2 N be even. Recall
that we denoted by PP.k/ � P.k/ the set of all pair partitions of f1; : : : ; kg.
In particular, #� D k=2 for any � 2 PP.k/. On the other hand, if #� D k=2

but � … PP.k/, we can conclude that � has at least one singleton and hence, as
in the first case above, the expectation corresponding to the �-consistent sequences
will become zero. Consequently,

1

n
E
�
tr
�
Xk
n

	� D 1

n
k
2C1

X

�2PP.k/

X

.P1;:::;Pk /2Sn.�/
E Œan.P1/ � � �an.Pk/�C o.1/: (7)

We have now reduced the original set P.k/ to the subset PP.k/. Next we want
to fix a � 2 PP.k/ and concentrate on the set Sn.�/. The following lemma will
help us to calculate that part of (7) which involves non-crossing partitions.

Lemma 1 (cf. [5], Proposition 4.4.). Let S�
n .�/ 	 Sn.�/ denote the set of

�-consistent sequences .P1; : : : ; Pk/ satisfying

i �� j H) qi � pi D pj � qj
for all i ¤ j . Then, we have

#
�
Sn.�/nS�

n .�/
	 D o

�
n1C

k
2

�
:

Proof. We call a pair .Pi ; Pj /with i �� j , i ¤ j , positive if qi�pi D qj �pj > 0
and negative if qi � pi D qj � pj < 0. Since

Pk
iD1 qi � pi D 0 by consistency,

the existence of a negative pair implies the existence of a positive one. Thus, we can
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assume that any .P1; : : : ; Pk/ 2 Sn.�/nS�
n .�/ contains a positive pair .Pl ; Pm/.

To fix such a sequence, we first determine the positions of l and m, and then fix the
signs of the remaining differences qi�pi . The number of possibilities to accomplish
this depends only on k and not on n. Now we choose one of n possible values for
pl , and continue with assigning values to the differences jqi � pi j for all Pi except
for Pl and Pm. Since � is a pair partition, we have at most nk=2�1 possibilities for
that. Then,

Pk
iD1 qi � pi D 0 implies that

0 < 2.ql � pl/ D ql � pl C qm � pm D
X

i2f1;:::;kg;
i¤l;m

pi � qi :

Since we have already chosen the signs of the differences jqi � pi j, i ¤ l; m, as
well as their absolute values, we know the value of the sum on the right hand side.
Hence, the difference ql � pl D qm � pm is fixed. We now have the index pl , all
differences jqi � pi j ; i 2 f1; : : : ; kg, and their signs. Thus, we can start at Pl and
go systematically through the whole sequence .P1; : : : ; Pk/ to see that it is uniquely
determined. Consequently, our considerations lead to

#
�
Sn.�/nS�

n .�/
	 � Cnk

2 D o
�
n1C

k
2

�
: ut

A consequence of Lemma 1 and relation (6) is the identity

1

n
E
�
tr
�
Xk
n

	� D 1

n
k
2 C1

X

�2PP.k/

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � � �an.Pk/�C o.1/: (8)

As already mentioned, the sets S�
n .�/ help us to deal with the set NPP.k/ of

non-crossing pair partitions.

Lemma 2. Let � 2 NPP.k/. For any .P1; : : : ; Pk/ 2 S�
n .�/, we have

E Œan.P1/ � � �an.Pk/� D 1:

Proof. Let l < m with l �� m. Since � is non-crossing, the number l �m � 1 of
elements between l and m must be even. In particular, there is l � i < j � m with
i �� j and j D i C 1. By the properties of S�

n .�/, we have an.Pi / D an.Pj /,
and the sequence .P1; : : : ; Pl ; : : : ; Pi�1; PiC2; : : : ; Pm; : : : ; Pk/ is still consistent.
Applying this argument successively, all pairs between l and m can be eliminated
and we see that the sequence .P1; : : : ; Pl ; Pm; : : : ; Pk/ is consistent, that is ql D pm.
Then, the identity pl D qm also holds. In particular, an.Pl / D an.Pm/. Since this
argument applies for arbitrary l �� m, we obtain
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E Œan.P1/ � � �an.Pk/� D
Y

l<m;
l��m

E Œan.Pl/an.Pm/� D 1: ut

By Lemma 2, we can conclude that

1

n
k
2C1

X

�2NPP.k/

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � � an.Pk/� D 1

n
k
2C1

X

�2NPP.k/
#S�

n .�/:

The following lemma allows us to finally calculate the term on the right hand
side.

Lemma 3. For any � 2 NPP.k/, we have

lim
n!1

#S�
n .�/

n
k
2 C1 D 1:

Proof. Since � is non-crossing, we can find a nearest neighbor pair i �� i C 1.
Now fix .P1; : : : ; Pk/ 2 S�

n .�/, and write Pl D .pl ; plC1/, l D 1; : : : ; k, where
k C 1 is identified with 1. Then the properties of S�

n .�/ ensure that .pi ; piC1/ D
.piC2; piC1/. Hence, we can eliminate the pairs Pi ; PiC1 to obtain a sequence
.P

.1/
1 ; : : : ; P

.1/

k�2/ WD .P1; : : : ; Pi�1; PiC2; : : : ; Pk/ which is still consistent. Denote
by � 0 the partition obtained from � by deleting the block fi; i C 1g, and relabeling
any l � i C 2 to l � 2. Since � is non-crossing, we have � 0 2 NPP.k � 2/.
Moreover, .P .1/

1 ; : : : ; P
.1/

k�2/ 2 S�
n .�

0/. Thus we see that any .P1; : : : ; Pk/ 2 S�
n .�/

can be reconstructed from a tuple .P .1/
1 ; : : : ; P

.1/

k�2/ 2 S�
n .�

0/ and a choice of piC1.
The latter admits n � .k � 2/=2 possibilities since fi; i C 1g forms a block on its
own in � . Consequently,

#S�
n .�/

n
k
2C1 D

#S�
n .�

0/
n
k
2

C o.1/: (9)

Now if k D 2, we get S�
n .�/ D f..p; q/; .q; p// W p; q 2 f1; : : : ; ngg, implying

#S�
n .�/=n

2 D 1. For arbitrary even k 2 N, the statement of Lemma 3 follows then
by induction using the identity in (9). ut

Taking account of the relation #NPP.k/ D Ck=2, we now arrive at

1

n
E
�
tr
�
Xk
n

	�

D Ck
2
C 1

n
k
2C1

X

�2CPP.k/

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � �an.Pk/�C o.1/; (10)
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with CPP.k/ being the set of all crossing pair partitions of f1; : : : ; kg. At this point,
we have to distinguish between Theorems 1 and 2. Indeed, to obtain the semicircle
law, we need to show that the sum over all crossing partitions is negligible in the
limit. However, the limiting distribution in Theorem 2 indicates that we do have a
contribution.

6.2 Convergence of the Expected Empirical Spectral
Distribution in Theorem 1

The convergence of the expected empirical spectral distribution to the semicircle
distribution follows directly from relation (10) and

Lemma 4. For any crossing � 2 CPP.k/, we have

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � �an.Pk/� D o
�
n
k
2C1

�
:

Proof. Let � be crossing and consider a sequence .P1; : : : ; Pk/ 2 S�
n .�/. Write

Pl D .pl ; plC1/. Note that if there is an l 2 f1; : : : ; kg with l �� l C 1, where
k C 1 is identified with 1, we immediately have an.Pl / D an.PlC1/. In particular,

E Œan.Pl /an.PlC1/� D 1:

The sequence .P .1/
1 ; : : : ; P

.1/

k�2/ WD .P1; : : : ; Pl�1; PlC2; : : : ; Pk/ is still consis-
tent, and

E Œan.P1/ � � �an.Pk/� D E

h
an.P

.1/
1 / � � �an.P .1/

k�2/
i
:

Define �.1/ 2 CPP.k�2/ to be the pair partition induced by � after eliminating
the indices l and l C 1. In particular, .P .1/

1 ; : : : ; P
.1/

k�2/ 2 S�
n .�

.1//. Since there

are at most n choices for plC1 when .P .1/
1 ; : : : ; P

.1/

k�2/ is fixed, we have for any
.Q1; : : : ;Qk�2/ 2 S�

n .�
.1//,

#f.P1; : : : ; Pk/ 2 S�
n .�/ W .P .1/

1 ; : : : ; P
.1/

k�2/ D .Q1; : : : ;Qk�2/g � n:

Let r denote the maximum number of pairs of indices that can be eliminated in
this way. Since � is crossing, there are at least two pairs left and hence, r � k=2�2.
Define �.r/ 2 CPP.k � 2r/ and .P .r/

1 ; : : : ; P
.r/

k�2r / 2 S�
n .�

.r// to be the partition
and the sequence left after this elimination. By induction, we conclude that for any
.Q1; : : : ;Qk�2r / 2 S�

n .�
.r//, we have the estimate

#f.P1; : : : ; Pk/ 2 S�
n .�/ W .P .r/

1 ; : : : ; P
.r/

k�2r / D .Q1; : : : ;Qk�2r /g � nr :
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Since E Œan.P1/ � � �an.Pk/� D EŒan.P
.r/
1 / � � �an.P .r/

k�2r /�, we obtain

X

.P1;:::;Pk /2S�

n .�/

jE Œan.P1/ � � �an.Pk/�j

� nr
X

.Q1;:::;Qk�2r /2S�

n .�
.r//

jE Œan.Q1/ � � �an.Qk�2r /�j : (11)

Choose i ��.r/ iCj such that j is minimal. For any sequence .Q1; : : : ;Qk�2r / 2
S�
n .�

.r//, put Ql D .ql ; qlC1/, l D 1; : : : ; k � 2r . We want to count the number
of such sequences given that qi and qiCjC1 are fixed. Therefore, we start with
choosing one of n possible values for qiC1. Then, the fact that i is equivalent to
i C j ensures that we can also deduce the value of

qiCj D qiC1 � qi C qiCjC1:

Hence,Qi andQiCj are fixed. Since j is minimal, any element in fiC1; : : : ; iC
j � 1g is equivalent to some element outside the set fi; : : : ; i C j g. There are n
possibilities to fix QiC1 D .qiC1; qiC2/ because qiC1 is already fixed. Proceeding
sequentially, we have n possibilities for the choice of any pair Ql with l 2 fi C
2; : : : ; i C j � 2g, and there is only one choice for QiCj�1 since qiCj is already
chosen. We thus made nj�2 choices to fix all pairs Ql , l 2 fi C 1; : : : ; i C j � 1g.
For anyQl with l 2 f1; : : : ; k�2rgnfi; : : : ; iCj g, there are at most n possibilities
if it is not equivalent to one pair that has already been chosen. Otherwise, there is
only one possibility. Since there were k=2� r � j new equivalence classes left, we
have at most nk=2�r�j choices for those pairs. Hence, assuming that the elements qi
and qiCjC1 are fixed, we have at most

nnj�2n
k
2 �r�j D nk

2 �r�1

possibilities to choose the rest of the sequence .Q1; : : : ;Qk�2r / 2 S�
n .�

.r//. Note
that jEŒan.Ql/an.Qm/�j � .EŒan.Ql/

2�/1=2.EŒan.Qm/
2�/1=2 D 1. Since �.r/ is a

pair partition, we thus get

jE Œan.Q1/ � � �an.Qk�2r /�j � jEŒan.Qi /an.QiCj /�j:
By assumption (A3), the expectation on the right hand side depends only on the

absolute value of the difference

minfqi ; qiC1g �minfqiCj ; qiCjC1g D maxfqi ; qiC1g �maxfqiCj ; qiCjC1g:
Now the definition of S�

n .�
.r// ensures that qi � qiC1 D qiCjC1 � qiCj .

In particular, minfqi ; qiC1g�minfqiCj ; qiCjC1g D qi�qiCjC1 D qiCj �qiC1, and

EŒan.Qi/an.QiCj /� D cn.jqi � qiCjC1j/:



On the Limiting Spectral Density of Symmetric Random Matrices with . . . 21

Consequently, estimating the term in (11) further, we obtain

X

.P1;:::;Pk /2S�

n .�/

jE Œan.P1/ � � �an.Pk/�j � nk
2�1

nX

qi ;qiCjC1D1
cn.jqiCjC1 � qi j/

� C n
k
2

n�1X

�D0
cn.�/ D o

�
n
k
2C1

�
;

since
Pn�1

�D0 cn.�/ D o.n/ by condition (A4). ut

6.3 Convergence of the Expected Empirical Spectral
Distribution in Theorem 2

We again start with the identity in (10). Since we consider only pair partitions,
we know that the expectation on the right hand side is of the form

E Œan.p1; q1/an.p1 C �1; q1 C �1/� � � �E Œan.pr ; qr /an.pr C �r ; qr C �r /� ;

for r WD k=2 and some choices of p1; q1; �1; : : : ; pr ; qr ; �r 2 N. In order to calculate
this expectation, assumption (A30) indicates that we only need to distinguish for
any i D 1; : : : ; k, whether we have �i D 0 or not. In the first case, we get the
identity E Œan.pi ; qi /an.pi C �i ; qi C �i /� D 1, in the second we can conclude
that E Œan.pi ; qi /an.pi C �i ; qi C �i /� D cn. Fix some pair partition � 2 PP.k/,
and take .P1; : : : ; Pk/ 2 S�

n .�/. Motivated by these considerations, we put Pi D
.pi ; qi /, and define

m.P1; : : : ; Pk/ W D #f1 � i < j � k W an.Pi / D an.Pj /g
D #f1 � i < j � k W .pi ; qi / D .qj ; pj /g:

Obviously, we have 0 � m.P1; : : : ; Pk/ � k=2. With this notation, we find that

1

n
k
2 C1

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � � �an.Pk/� D 1

n
k
2C1

k=2X

lD0
c
k
2�l
n #A.l/n .�/ ; (12)

where

A.l/n .�/ WD f.P1; : : : ; Pk/ 2 S�
n .�/ W m.P1; : : : ; Pk/ D lg:

The following lemma states that if a pair Pi ; Pj contributes to m.P1; : : : ; Pk/,
then we can assume that the block fi; j g in � is not crossed by any other block.
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Lemma 5. Let � 2 PP.k/ and fix i �� j , i < j . Define

S�
n .�I i; j / WD f.P1; : : : ; Pk/ 2 S�

n .�/ W Pi D .pi ; qi /; Pj D .pj ; qj /; pi D qj ; qi D pj g:

Assume that there is some i 0 �� j 0 such that i < i 0 < j , and either j 0 < i or
j < j 0. Then,

#S�
n .�I i; j / D o

�
n
k
2C1� :

Proof. To fix some .P1; : : : ; Pk/ 2 S�
n .�I i; j /, we first choose a value for pi D qj

and qi D pj . This allows for at most n2 possibilities. Hence, Pi and Pj are
fixed. Now consider the pairs PiC1; : : : ; Pi 0�1. piC1 is uniquely determined by
consistency. For qiC1, there are at most n choices. Then, piC2 D qiC1. If i C 2 ��
iC1, we have one choice for qiC2. Otherwise, there are at most n. Proceeding in the
same way, we see that we have n possibilities whenever we start a new equivalence
class. Similarly, we can assign values to the pairs Pj ; : : : ; Pi 0C1 in this order.
Now Pi 0 is determined by consistency. When fixing Pi�1; : : : ; P1; Pk; : : : ; PjC1,
we again have n choices for any new equivalence class. To sum up, we are left with
at most

n2n
k
2 �2 D nk

2

possible values for an element in S�
n .�I i; j /. ut

Recall Definition 1 where we introduced the notion of the height h.�/ of a pair
partition � . Lemma 5 in particular implies that only those .P1; : : : ; Pk/ 2 S�

n .�/

with

0 � m.P1; : : : ; Pk/ � h.�/
contribute to the limit of (12). Indeed, if m.P1; : : : ; Pk/ > h.�/, we can find some
i �� j , i < j , such that .P1; : : : ; Pk/ 2 S�

n .�I i; j / and neither j D i C 1 nor is
the restriction of � to fiC1; : : : ; j�1g a pair partition. Hence, the crossing property
in Lemma 5 is satisfied, and .P1; : : : ; Pk/ is contained in a set that is negligible in
the limit. The identity in (12) thus becomes

1

n
k
2 C1

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � �an.Pk/� D 1

n
k
2C1

h.�/X

lD0
c
k
2�l
n #B.l/

n .�/C o.1/;

where

B.l/n .�/ WD
˚
.P1; : : : ; Pk/ 2 S�

n .�/ W m.P1; : : : ; Pk/ D l I
an.Pi / D an.Pj /; i < j ) j D i C 1 or � j

fiC1;:::;j�1g is a pair partition


:
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In the next step, we want to simplify the expression above further by showing
that B.l/

n .�/ D ; whenever 0 � l < h.�/. This is ensured by

Lemma 6. Let � 2 PP.k/. For any .P1; : : : ; Pk/ 2 S�
n .�/, we have

m.P1; : : : ; Pk/ � h.�/:

Proof. If h.�/ D 0, there is nothing to prove. Thus, suppose that h.�/ � 1 and take
some i �� j , i < j , such that either j D i C 1 or j � i � 1 � 2 is even and the
restriction of � to fi C 1; : : : ; j � 1g is a pair partition. Fix .P1; : : : ; Pk/ 2 S�

n .�/,
and write Pl D .pl ; plC1/ for any l D 1; : : : ; k. We need to verify that piC1 D pj .
If we achieve this, the definition of S�

n .�/ will also ensure that pi D pjC1. As
a consequence, the �-block fi; j g will contribute to m.P1; : : : ; Pk/. Since there
are h.�/ such blocks, we will obtain m.P1; : : : ; Pk/ � h.�/ for any choice of
.P1; : : : ; Pk/ 2 S�

n .�/.
If j D i C 1, we immediately obtain piC1 D pj . To show this property in the

second case, note that the sequence .PiC1; : : : ; Pj�1/ solves the following system
of equations:

piC2 � piC1 C pl1C1 � pl1 D 0; if i C 1 �� l1;
piC3 � piC2 C pl2C1 � pl2 D 0; if i C 2 �� l2;

:::

piCmC1 � piCm C plmC1 � plm D 0; if i Cm �� lm;
:::

pj � pj�1 C plj�i�1C1 � plj�i�1 D 0; if j � 1 �� lj�i�1:

Start with solving the first equation for piC2 which yields

piC2 D piC1 � pl1C1 C pl1 :

Then, insert this in the second equation, and solve it for piC3 to obtain

piC3 D piC1 � pl1C1 C pl1 � pl2C1 C pl2 :

In the j � i � 1-th step, we substitute pj�1 D piC.j�i�1/ in the j � i � 1-th
equation, and solve it for pj D piC.j�i�1/C1. We then have

pj D piC1 �
j�i�1X

mD1
.plmC1 � plm/:
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Since the restriction of � to fiC1; : : : ; j �1g is a pair partition, we can conclude
that the sets fl1; : : : ; lj�i�1g and fi C 1; : : : ; j � 1g are equal. Hence, we obtainPj�i�1

mD1 .plmC1 � plm/ D pj � piC1, implying pj D piC1. ut
With the help of Lemma 6, we thus arrive at

1

n
k
2C1

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � � �an.Pk/� D #B.h.�//
n .�/

n
k
2C1 c

k
2 �h.�/
n C o.1/:

Note that any element .P1; : : : ; Pk/ 2 S�
n .�/ satisfying the condition

an.Pi / D an.Pj /; i < j ) j D i C 1 or �jfiC1;:::;j�1g is a pair partition;
(13)

fulfills the condition m.P1; : : : ; Pk/ D h.�/ as well. Indeed, (13) guarantees that
m.P1; : : : ; Pk/ � h.�/, and Lemma 6 ensures that m.P1; : : : ; Pk/ � h.�/. Thus,
we can write

B.h.�//
n .�/ D f.P1; : : : ; Pk/ 2 S�

n .�/ W
an.Pi / D an.Pj /; i < j ) j D i C 1 or �jfiC1;:::;j�1g is a pair partition



:

Now any element in the complement of B.h.�//
n .�/ satisfies for some i �� j the

crossing assumption in Lemma 5. This yields

#
�
B
.h.�//
n .�/

�c

n
k
2C1 D o.1/:

Since B.h.�//
n .�/ [

�
B
.h.�//
n .�/

�c D S�
n .�/, we obtain that

1

n
k
2 C1

X

.P1;:::;Pk /2S�

n .�/

E Œan.P1/ � � �an.Pk/� D #S�
n .�/

n
k
2C1 c

k
2 �h.�/
n C o.1/: (14)

To calculate the limit on the right-hand side, we have

Lemma 7 (cf. [5], Lemma 4.6). For any � 2 PP.k/, it holds that

lim
n!1

#S�
n .�/

n
k
2 C1 D pT .�/;

where pT .�/ is the Toeplitz volume defined by solving the system of equation (2).
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Proof. Fix � 2 PP.k/. Note that if P D f.pi ; piC1/; i D 1; : : : ; kg 2 S�
n .�/,

then x0; x1; : : : ; xk with xi D piC1=n is a solution of the system of equation (2).
On the other hand, if x0; x1; : : : ; xk 2 f1=n; 2=n; : : : ; 1g is a solution of (2) and
piC1 D nxi , then either f.pi ; piC1/; i D 1; : : : ; kg 2 S�

n .�/ or f.pi ; piC1/; i D
1; : : : ; kg 2 Sn.�/ for some partition � 2 P.k/ such that i �� j ) i �� j , but
#� < #� .

In (2), we have k C 1 variables and only k=2 equations. Denote the k=2 C 1
undetermined variables by y1; : : : ; yk=2C1. We thus need to assign values from the
set f1=n; 2=n; : : : ; 1g to y1; : : : ; yk=2C1, and then to calculate the remaining k=2
variables from the equations. Since the latter are also supposed to be in the range
f1=n; 2=n; : : : ; 1g, it might happen that not all values for the undetermined variables
are admissible. Let pn.�/ denote the admissible fraction of the nk=2C1 choices for
y1; : : : ; yk=2C1. By our remark at the beginning of the proof and estimate (5), we
have that

lim
n!1

#S�
n .�/

n
k
2C1 D lim

n!1pn.�/;

if the limits exist. Now we can interpret y1; : : : ; yk=2C1 as independent random
variables with a uniform distribution on f1=n; 2=n; : : : ; 1g. Then, pn.�/ is the
probability that the computed values stay within the interval .0; 1�. As n!1,
y1; : : : ; yk=2C1 converge in law to independent random variables uniformly dis-
tributed on Œ0; 1�. Hence, pn.�/! pT .�/. ut

Applying Lemma 7 and assumption (A40) to Eq. (14), we arrive at

lim
n!1

1

n
k
2C1

X

.P1;:::;Pk/2S�

n .�/

E Œan.P1/ � � �an.Pk/� D pT .�/c k2 �h.�/:

Substituting this result in (10), we find that for any even k 2 N,

lim
n!1

1

n
E
�
tr
�
Xk
n

	� D Ck
2
C

X

�2CPP.k/
pT .�/c

k
2�h.�/:

To obtain the alternative expression for the even moments in Theorem 2, note
that the considerations above were not restricted to crossing partitions. In particular,
we can start from identity (8) instead of (10) to see that

lim
n!1

1

n
E
�
tr
�
Xk
n

	� D lim
n!1

X

�2PP.k/

#S�
n .�/

n
k
2 C1 c

k
2�h.�/
n D

X

�2PP.k/
pT .�/c

k
2�h.�/:
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6.4 Almost Sure Convergence

The aim of this part of the proof is to show almost sure convergence in both
situations, that of Theorem 1 and that of Theorem 2. Therefore, we want to follow
the ideas used in [5], Proposition 4.9, to verify the same for Toeplitz matrices. This is
possible since the arguments only rely on the fact that the diagonals are independent.
The particular dependency structure can be neglected. We want to start with the
proof of a concentration inequality for the moments of the spectral measure. The
obtained bound will enable us to use the Borel-Cantelli lemma.

Lemma 8. Suppose that conditions (A1) and (A2) hold. Then, for any k; n 2 N,

E

h�
tr
�
Xkn
	 � E

�
tr
�
Xkn
	�	4i � C n2:

Proof. Fix k; n 2 N. Using the notation

P D .P1; : : : ; Pk/ D ..p1; q1/; : : : ; .pk; qk//; an.P / D an.P1/ � � �an.Pk/;

we have that

E

h�
tr
�
Xk
n

	 � E
�
tr
�
Xk
n

	�	4i

D 1

n2k

X

�.1/;:::;�.4/2P.k/

X

P .i/2Sn.�.i//;
iD1;:::;4

E

h 4Y

jD1

�
an.P

.j // � E
�
an.P

.j //
�	 i

: (15)

Now consider a partition � of f1; : : : ; 4kg. We say that a sequence
.P .1/; : : : ; P .4// is �-consistent if each P .i/; i D 1; : : : ; 4, is a consistent sequence
and

ˇ̌
q
.i/

l � p.i/l
ˇ̌ D ˇ̌

q.j /m � p.j /m

ˇ̌ ” l C .i � 1/k �� mC .j � 1/k:

Let Sn.�/ denote the set of all �-consistent sequences with entries in f1; : : : ; ng.
Then, (15) becomes

E

h�
tr
�
Xk
n

	 � E
�
tr
�
Xk
n

	�	4i

D 1

n2k

X

�2P.4k/

X

.P .1/;:::;P .4//2Sn.�/

E

h 4Y

jD1

�
an.P

.j // � E
�
an.P

.j //
�	 i

: (16)
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We want to analyze the expectation on the right hand side. Therefore, fix a � 2
P.4k/. We call � a matched partition if

1. Any block of � contains at least two elements,
2. For any i 2 f1; : : : ; 4g, there is a j ¤ i and l; m 2 f1; : : : ; kg with

l C .i � 1/k �� mC .j � 1/k:

In case � does not satisfy (i), we have a singleton fl C .i � 1/kg, implying that
EŒan.P

.i//� D 0. As a consequence,

X

.P .1/;:::;P .4//2Sn.�/

E

h 4Y

jD1

�
an.P

.j // � E
�
an.P

.j //
�	 i D 0: (17)

If � does not satisfy (ii), we can conclude that for some i 2 f1; : : : ; 4g, the term
an.P

.i//�E �an.P .i//
�

is independent of an.P .j //�E �an.P .j //
�
, j ¤ i . Thus, (17)

holds in this case as well. To sum up, we only have to consider matched partitions
to evaluate the sum in (16). Let � be such a partition and denote by r D #� the
number of blocks of � . Note that condition (i) implies r � 2k. We want to count
all � consistent sequences .P .1/; : : : ; P .4//. Therefore, first choose one of at most
nr possibilities to fix the r different equivalence classes. Afterwards, we fix the
elements p.1/1 ; : : : ; p

.4/
1 , which can be done in n4 ways. Since now the differences

jq.i/l �p.i/l j are uniquely determined by the choice of the corresponding equivalence
classes, we can proceed sequentially to see that there are at most two choices left
for any pair P .i/

l . To sum up, we have at most

24kn4nr D C nrC4

possibilities to choose .P .1/; : : : ; P .4//. If now r � 2k � 2, we can conclude that

#Sn.�/ � C n2kC2: (18)

It remains to consider the cases in which r D 2k � 1 and r D 2k, respectively.
To begin with, let r D 2k � 1. Then, we have either two equivalence classes with
three elements or one equivalence class with four. Since � is matched, there must
exist an i 2 f1; : : : ; 4g and an l 2 f1; : : : ; kg such that P .i/

l is not equivalent to
any other pair in the sequence P .i/. Without loss of generality, we can assume that
i D 1. In contrast to the construction of .P .1/; : : : ; P .4// as above, we now alter
our procedure as follows: We fix all equivalence classes except of that P .1/

l belongs
to. There are nr�1 possibilities to accomplish that. Now we choose again one of
n4 possible values for p.1/1 ; : : : ; p

.4/
1 . Hereafter, we fix q.1/m , m D 1; : : : ; l � 1, and

then start from q
.1/

k D p.1/1 to go backwards and obtain the values of p.1/k ; : : : ; p
.1/

lC1.
Each of these steps leaves at most two choices to us, that is 2k�1 choices in total. But
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now,P .1/

l is uniquely determined since p.1/l D q.1/l�1 and q.1/l D p.1/lC1 by consistency.
Thus, we had to make one choice less than before, implying (18).

Now, let r D 2k. In this case, each equivalence class has exactly two elements.
Since we consider a matched partition, we can find here as well an l 2 f1; : : : ; kg
such thatP .1/

l is not equivalent to any other pair in the sequenceP .1/. But in addition

to that, we also have an m 2 f1; : : : ; kg such that, possibly after relabeling, P .2/
m is

neither equivalent to any element in P .1/ nor to any other element in P .2/. Thus, we
can use the same argument as before to see that this time, we can reduce the number
of choices to at most C nrC2 D C n2kC2. In conclusion, (18) holds for any matched
partition � . To sum up our results, we obtain that

E

h�
tr
�
Xk
n

	� E
�
tr
�
Xk
n

	�	4i

D 1

n2k

X

�2P.4k/;

� matched

X

.P .1/;:::;P .4//2Sn.�/

E

h 4Y

jD1

�
an.P

.j //� E
�
an.P

.j //
�	 i � C n2;

which is the statement of Lemma 8. ut
From Lemma 8 and Chebyshev’s inequality, we can now conclude that for any

" > 0 and any k; n 2 N,

P

�ˇ̌
ˇ̌1
n

tr
�
Xk
n

	 � E

�
1

n
tr
�
Xk
n

	�ˇ̌ˇ̌ > "
�
� C

"4n2
:

Applying the Borel-Cantelli lemma, we see that

1

n
tr
�
Xk
n

	 � E

�
1

n
tr
�
Xk
n

	�! 0; a.s.: (19)

Let Y be a random variable distributed according to the semicircle law or
according to the distribution given by the moments in Theorem 2, depending on
whether we want to prove Theorems 1 or 2. The convergence of the moments of the
expected empirical distributions and relation (19) yield

1

n
tr
�
Xk
n

	! EŒY k�; a.s.:

Since the distribution of Y is uniquely determined by its moments, we obtain
almost sure weak convergence of the empirical spectral distribution of Xn to the
distribution of Y .
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Asymptotic Eigenvalue Distribution of Random
Matrices and Free Stochastic Analysis

Roland Speicher�

Abstract This is a survey on some recent work on free stochastic calculus and
free Malliavin calculus. It is hoped that these theories will in the long run provide
us with tools for qualitative descriptions of the asymptotic eigenvalue distribution
of selfadjoint polynomials of independent Gaussian random matrices. The main
concrete results center around the free Fourth Moment Theorem, which says that for
a sequence of random variables which are constrained to live in a fixed free chaos,
the convergence to the semicircle distribution can be controlled by the convergence
of the second and the fourth moments.

1 Random Matrices

Our main interest lies in distributions of polynomials of free semicircular elements.
Since those distributions arise as limits of eigenvalue distributions of quite natural
random matrix models we will first look, to motivate the kind of questions, on those
random matrices.

1.1 Wigner’s Semicircle Law

Let XN D .XN .i; j //
N
i;jD1 be an N � N Gaussian random matrix. This means

that
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Fig. 1 Eigenvalue distribution of a N � N Gaussian random matrix, for N D 10; 100; 1;000;

4;000; the solid curve is the semicircular distribution

• XN is selfadjoint, X�
N D XN

• fXN.i; j / j 1 � i � j � N g are i.i.d. random variables (say real-valued), with
normal distribution of mean zero and variance 1=N

Then, Wigner’s famous semicircle law [1, 15] says that, for N ! 1, we
have convergence of the empirical eigenvalue distribution of XN to the semicircle
distribution. The latter lives on the interval Œ�2; 2� and has there the density
1=.2�/

p
4 � x2dx.

Numerical simulations for this approximation of the semicircle are shown in
Fig. 1.

One way to capture the essence of Wigner’s semicircle law is the statement that
the moments trŒXn

N � of the Gaussian random matrices converge, forN !1, almost

surely to the corresponding moments 1
2�

R C2
�2 x

n
p
4 � x2dx of the semicircular

distribution. With tr we denote the normalized trace on matrices,

tr
�
.aij/

N
i;jD1

	 WD 1

N

NX

iD1
aii:

We write XN ! s to indicate the above kind of convergence and say that XN
converges in distribution to s. The limiting element s is a semicircular element
living in an abstract non-commutative probability space .A ; '/, where A is a unital
algebra and ' W A ! C a unital linear functional; s is determined by the fact that
its moments '.sn/ are the moments of the semicircular distribution. The notation
XN ! s means here, by definition, the almost sure convergence

lim
N!1 trŒXn

N � D '.sn/ 8n 2 N:

See, e.g., [9, 14].
(Note that for the case of one random matrix the use of a non-commutative prob-

ability space is quite artificial; we can just take a classical random variable s with
semicircle distribution and put A equal to the algebra generated by s, and take as
' the expectation. Since the semicircular distribution is determined by its moments,
XN ! s is then the same as weak convergence of the empirical eigenvalue
distribution of XN to the semicircular distribution. However, in the multivariate
case, where we consider several matrices, we will be leaving the commutative world,
and the above non-commutative frame will then be unavoidable.)
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Fig. 2 Eigenvalue distributions of p.x1/ D x21 (left), p.x1; x2/ D x1x2 C x2x1 (middle) and
p.x1; x2; x3/ D x1x

2
2x1Cx1x23x1C2x2 (right), where x1, x2, and x3 are independent 4;000�4;000

Gaussian random matrices; in the first two cases the asymptotic eigenvalue distribution can be
calculated by free probability tools as the solid curve, for the third case no explicit solution exists

1.2 Polynomials in Independent Gaussian Random Matrices

Consider now m independent Gaussian random matrices X.1/
N ; : : : ; X

.m/
N . Then, by

Voiculescu’s multivariate generalization [12] of Wigner’s semicircular law, we know
that those converge, for N !1, tom free semicircular elements s1; : : : ; sm, living
in some non-commutative probability space .A ; '/. We will define later the exact
meaning of “freeness”; for the moment it suffices to say that this means that it allows
in principle to calculate all mixed moments

'.si.1/ � � � si.n// D lim
N!1 trŒXi.1/

N � � �Xi.n/
N �:

In particular, for any selfadjoint polynomial p inm non-commuting variables we
have that

p.X
.1/
N ; : : : ; X

.m/
N /! p.s1; : : : ; sm/:

(A selfadjoint polynomial p.x1; : : : ; xm/ in m non-commuting variables x1; : : : ; xm
is one for which we have p� D p, if we declare the variables to be selfadjoint,
x�
i D xi for all i D 1; : : : ; m. This guarantees that the application of this polynomial

to any m-tuple of selfadjoint operators yields a selfadjoint operator.)
So, in principle, we know everything about the limiting eigenvalue distribution of

p.X
.1/
N ; : : : ; X

.m/
N /. However, in practice, unless the polynomial is very simple (like

the sum of one-variable polynomials), we cannot say anything concrete about this
distribution. (For more information on the methods and results in the simple cases
one might consult, e.g., [2, 9].)

In Fig. 2 we present histograms for eigenvalue distributions for various polyno-
mials. One dimensional cases like p.x/ D x2 can be calculated directly by classical
means, and some special multivariate cases like p.x1; x2/ D x1x2Cx2x1 are simple
enough to be calculated by free probability methods. However, for more generic
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polynomials, like p.x1; x2; x3/ D x1x
2
2x1 C x1x

2
3x1 C 2x2, there is no hope to

derive any explicit formula for the limiting eigenvalue distribution.
Where we have hope and what the following will be about, are qualitative

features of the distributions which arise in this way.

2 Distribution of Non-commuting Variables

2.1 How Can We Deal with Multivariate Situations?

Let us start with some general remarks on understanding the distribution of non-
commuting variables X1; : : : ; Xm? In particular, we want to point out that there is
quite a difference between the commutative and the non-commutative situation in
the multivariate case m > 1.

In the case of commuting variables, the distribution of one variable is a
probability measure on R, the distribution ofm commuting variables is a probability
measure on R

m – which is not so much of a difference.
In the case of non-commuting variables, the distribution of one variable is still

a probability measure on R, but the distribution of m > 1 variables is something
quite different: analytically, it is a state on the algebra generated by the variables; or
combinatorially, it is the collection of all their mixed moments, and there are much
more mixed moments in non-commuting variables than in commuting ones.

At the moment we are still lacking the deeper analytic tools to deal directly with
the distribution of several non-commuting variables. (Voiculescu’s free analysis is
aiming in this direction, see [13]; see also the Introduction of [5] for a discussion of
the problem of multivariate non-commutative distributions.) What we will consider
in the following is a kind of reduction to the one-dimensional classical case.
Namely, in order to understand our non-commuting variables X1; : : : ; Xm, we will
be satisfied with understanding all selfadjoint polynomials in X1; : : : ; Xm. The
distribution of each such polynomial is just a probability measure on R, so we
might be able to use classical tools to deal with those. However, we should somehow
understand all such polynomials.

2.2 Conjectures on Distributions of Several Non-commuting
Variables?

There is no hope to have explicit formulas for the asymptotic eigenvalue distri-
butions of general polynomials p in independent Gaussian random matrices or,
equivalently, the distribution of polynomials p in free semicircular variables,

lim
N!1p.X

.1/
N ; : : : ; X

.m/
N / D p.s1; : : : ; sm/:
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However, from the one-variable case and numerical simulations we expect that
the distributions for such situations share some common qualitative features. In
particular, we believe that for an arbitrary selfadjoint polynomial p the following
should be true for the distribution of p.s1; : : : ; sm/.

• It should have no atoms.
• It should have a density with respect to Lebesgue measure.
• This density should also have some nice regularity properties.

There is at least one statement which we can infer from general operator algebraic
results. Namely, the facts that polynomials in semicircular elements can be realized
in the C �-algebra of the free group and that the latter has no non-trivial projections
imply that the support of the distribution of p.s1; : : : ; sm/ has to be an interval;
see, e.g., [7]. The above mentioned regularity properties can then be stated a bit
more precisely by conjecturing that the density is continous or even analytic on the
interior of this interval. (The example of the square of the semicircle, p.s/ D s2,
shows that the density can go to infinity at the boundary of the support. see Fig. 2.)

2.3 A Side-Remark: The Linearization Trick

One possible simplification in this business is the following linearization trick.
Instead of looking on all polynomials, it might be enough to consider just linear
polynomials in X1; : : : ; Xm. In the commutative case this is actually enough; know-
ing the distribution of all linear combinations of the random variables X1; : : : ; Xm
is equivalent to the knowledge of the joint distribution of the random variables (and
thus to the knowledge of the distribution of arbitrary polynomials in the variables).
In the non-commutative case this is not true any more; what one needs there are all
operator-valued linear polynomials, i.e., matrices have to be allowed as coefficients
in the linear combinations. This is much more general than just scalar-valued
linear polynomials, but on the other hand for many calculations the nature of the
coefficients is not important, so much of the theory has still the flavour of the usual
linear theory.

A striking example of how far this linearization trick can be pushed is the
following result of Haagerup and Thorbjornsen [6] (see also [7]) about the largest
eigenvalue of any selfadjoint polynomial in independent Gaussian random matrices:

�max
�
p.X

.1/
N ; : : : ; X

.m/
N /

	! kp.s1; : : : ; sm/k almost surely,

where kp.s1; : : : ; sm/k denotes the operator norm of the operator p.s1; : : : ; sm/ (for
example, in a concrete realization of s1; : : : ; sm as operators on some Hilbert space).

We will, however, not follow this direction, but will try to understand the
distribution of general polynomials p.s1; : : : ; sm/ in free semicircular elements by
invoking free stochastic calculus.
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3 Free Stochastic Calculus

Our approach to the question of qualitative features of distributions of polynomials
in free semicircular elements will rely on stochastic calculus, the rough idea being
to built a polynomial p.s1; : : : ; sm/ in a differential way and control the differential
changes along the way by free stochastic calculus and free Malliavin calculus. So,
in the following we will first recall a bit of free stochastic calculus before we come
back to our original problem.

As a general reference to basic free probability notions we refer to [9, 14]. Free
stochastic calculus was introduced by Biane and Speicher in [3], a good summary
can also be found in [8].

3.1 Freeness

Definition 1. Let .A ; '/ be a non-commutative probability space; i.e., A is a unital
algebra and ' W A ! C is a unital linear functional. Unital subalgebras .Ai /i2I (for
some index set I ) are free if '.a1 � � �an/ D 0 whenever for each k D 1; : : : ; n we
have ak 2 Ai.k/ for some i.k/ 2 I such that i.k/ 6D i.kC1/ for all k D 1; : : : ; n�1
and such that '.ak/ D 0 for all k D 1; : : : ; n.

Random variables xi 2 A (i 2 I ) are free, if their generated unital subalgebras
are free.

3.2 Free Brownian Motion

Definition 2. A free Brownian motion is given by a family .S.t//t�0 of random
variables S.t/ 2 A (t � 0), living in a non-commutative probability space .A ; '/,
where A is a von Neumann algebra and ' a faithful trace, such that

• S.0/ D 0
• Each increment S.t/�S.s/ (0 � s < t) is semicircular with mean 0 and variance
t � s, i.e.,

d�S.t/�S.s/.x/ D 1

2�.t � s/
p
4.t � s/ � x2dx

• Disjoint increments are free: for 0 < t1 < t2 < � � � < tn, the increments S.t1/,
S.t2/ � S.t1/, . . . , S.tn/ � S.tn�1/ are free.

A free Brownian motion can also be realized concretely: by the sum of creation
and annihilation operators on the full Fock space; and as the limit of matrix-valued
(Dyson) Brownian motions. This latter realization is as follows.
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Let .XN .t//t�0 be a symmetric N �N -matrix-valued Brownian motion, i.e.,

XN.t/ D

0

B@
B11.t/ : : : B1N .t/
:::

: : :
:::

BN1.t/ : : : BNN.t/

1

CA

where

• Bij are, for i � j , independent classical Brownian motions
• Bij.t/ D Bji.t/.

Then,
�
XN.t/

	
t�0 !

�
S.t/

	
t�0, in the sense that almost surely

lim
N!1 tr

�
XN.t1/ � � �XN.tn/

	 D '�S.t1/ � � �S.tn/
	 8 0 � t1; t2; : : : ; tn

3.3 Stochastic Analysis on “Wigner” Space

3.3.1 Definition of Free Stochastic Integrals

Starting from a free Brownian motion
�
S.t/

	
t�0 we define multiple Wigner integrals

I.f / D
Z
� � �
Z
f .t1; : : : ; tn/dS.t1/ : : : dS.tn/

for scalar-valued functions f 2 L2.RnC/, by avoiding the diagonals, i.e. we under-
stand in the above that all times ti are different. The definition is made rigorous, by
first defining I.f / for step functions f which have no support on the diagonals; for
those one establishes an Ito isometry

kI.f /k2 D kf kL2.Rn/;

and then uses this to extend the definition to all f 2 L2.RnC/. The integral I.f / is
then an element in the L2-space of the free Brownian motion. The 2-norm on A is
as usual given by kAk22 WD '.AA�/, and the L2-space is then the completion of A
with respect to k � k2.

3.3.2 A Side Remark: Free Stochastic Integrals are Usually Bounded
Operators

We want to remark that free stochastic integrals are not just elements in the
L2-space, but usually are bounded operators and thus their distribution has compact
support. Note that the fact that all our S.t/ and their increments are bounded does
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not imply the same property for the integrals (as they are limits of sums), but one
needs the freeness of the increments as the essential input to prove this. More
precisely, we have the following estimate (which is the analogue of a Haagerup
inequality) [3, 4]:


Z
� � �
Z
f .t1; : : : ; tn/dS.t1/ : : : dS.tn/

 � .nC 1/kf kL2.Rn
C
/:

The operator norm in the above can be recovered from the moments of the
variables even without having the free Brownian motion concretely realized as
operators on a Hilbert space in the following way:

kAk D lim
m!1

2m
p
'..AA�/m/:

3.3.3 Ito Formula and Multiplication of Multiple Wigner Integrals

The Ito formula shows up in the multiplication of two multiple Wigner integrals.
As first example, consider the product of two first order Wigner integrals.

Z
f .t1/dS.t1/ �

Z
g.t2/dS.t2/ D

“
f .t1/g.t2/dS.t1/dS.t2/C

Z
f .t/g.t/dS.t/dS.t/„ ƒ‚ …

dt

D
“

f .t1/g.t2/dS.t1/dS.t2/C
Z
f .t/g.t/dt:

We have invoked here the free Ito formula dS.t/dS.t/ D dt . This is the same
as the Ito formula for classical Brownian motion dB.t/dB.t/ D dt . In order to
see a difference between the classical and the free situation, we consider a more
complicated case, the product of a first order with a second order integral.

“
f .t1; t2/dS.t1/dS.t2/ �

Z
g.t3/dS.t3/ D

•
f .t1; t2/g.t3/dS.t1/dS.t2/dS.t3/

C
“

f .t1; t /g.t/dS.t1/ dS.t/dS.t/„ ƒ‚ …
dt

C
“

f .t; t2/g.t/ dS.t/dS.t2/dS.t/„ ƒ‚ …
dt'ŒdS.t2/�D0

:

In the classical case, the last term would also contribute as dB.t/dB.t2/dB.t/ D
dB.t2/dB.t/dB.t/ D dB.t2/dt , whereas in the free case this term vanishes
according to the general version of the free Ito formula

dS.t/AdS.t/ D '.A/dt for A adapted:

(Adapted means here as in the classical case that A is only a function of the free
Brownian motion up to time t .)
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3.3.4 Contractions

For a systematic description of the product of two Wigner integrals it is useful to
introduce the notion of contraction of functions. This is defined as follows. Consider
f 2 L2.RnC/ and g 2 L2.RmC/. Then we define, for 0 � p � min.n;m/, the p-th

contraction of f and g, f
p
_ g 2 L2.RnCm�2p

C /, by

f
p
_ g.t1; : : : ; tmCn�2p/ WD
Z
f .t1; : : : ; tn�p; s1; : : : ; sp/g.sp; : : : ; s1; tn�pC1; : : : ; tnCm�2p/ds1 � � �dsp

With this definition we have the following general formula for the product of two
Wigner integrals.

I.f / � I.g/ D
min.n;m/X

pD0
I.f

p
_ g/ .f 2 L2.RnC/; g 2 L2.RmC//

3.3.5 Free Chaos Decomposition

As for classical Brownian motion one has now the canonical isomorphism

L2.fS.t/ j t � 0g/ OD
1M

nD1
L2.RnC/; f OD

1M

nD0
fn;

via

f D
1X

nD0
I.fn/ D

1X

nD0

Z
� � �
Z
fn.t1; : : : ; tn/dS.t1/ : : : dS.tn/:

This decomposition of the L2-space of free Brownian motion as a direct sum of
Wigner integrals is called free chaos decomposition and the set fI.fn/ j fn 2
L2.RnC/g is called the n-th free chaos.

4 Distributions in Chaoses

4.1 Conjectures on Distributions in Fixed or Finite Chaoses

Since free semicircular elements s1; : : : ; sm can in this frame be realized as elements
in the first chaos (namely, as stochastic integrals over characteristic functions
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of disjoint intervals of length 1), polynomials in our free semicircular elements,
p.s1; : : : ; sm/, are then, by the Ito formula, realized as elements from finite chaos

fI.f / j f 2
M

finite

L2.RnC/g

Thus our conjectures on qualitative features of the distribution of p.s1; : : : ; sm/ can
now also be rephrased as follows.

The distribution of selfadjoint elements from a finite chaos with no constant
(n D 0) contribution should have no atoms and they should have a density with
respect to Lebesgue measure.

Motivated by the corresponding situation from classical chaos decomposition
we conjecture also that selfadjoint variables I.f / and I.g/ from different chaoses
cannot have the same distribution.

It might not be clear to the reader why our original problem (on densities of
polynomials in free semicircular elements) should be more accessible if reformu-
lated in the language of stochastic integrals. As an answer to this we can only offer
the observation that stochastic analysis offers some additional tools to attack this
question. In particular, it is our hope that free Malliavin calculus, when sufficiently
developed, should be able to answer our questions. It should be remarked that
classical Malliavin calculus is indeed answering the classical analogue of our
question – i.e., it allows to prove that selfadjoint elements from finite chaos of
classical Brownian motion (like polynomials in independent normal variables) have
a smooth density.

4.2 The Free Fourth Moment Theorem

Most of the above conjectures are still open, but we have at least some positive
results which show that looking on elements from a fixed chaos can give some
quite unexpected constraints. Namely, we have the following free analogue of a
striking classical result of Nualart and Peccati [11]. There, f �, for f 2 L2.RnC/, is
defined by

f �.t1; : : : ; tn/ WD f .tn; : : : ; t1/:

The condition f � D f just ensures that I.f / is a selfadjoint operator.

Theorem 1 ([8]). Consider, for fixed n, a sequence f1; f2; � � � 2 L2.RnC/ with
f �
k D fk and kfkk2 D 1 for all k 2 N. Then the following statements are

equivalent.

1. We have limk!1 'ŒI.fk/
4� D 2:

2. We have for all p D 1; 2; : : : ; n � 1 that
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lim
k!1fk

p
_ fk D 0 in L2.R2n�2p

C /:

3. The selfadjoint variable I.fk/ converges in distribution to a semicircular
variable of variance 1.

The striking direction of these equivalences is that (1) implies (3); i.e., if we
constrain our variables to live in one fixed chaos then, under fixed second moment,
the convergence of the fourth moment implies the convergence of all other moments.
The second condition is the key for the proof of this. Convergence of the fourth
moments implies the vanishing of the non-trivial contractions; but all moments
can be calculated in terms of contractions and the vanishing of the non-trivial ones
implies then that this calculations reproduces just the Catalan numbers, which are
the moments of a semicircular variable.

As a consequence of the above theorem we get that we can at least distinguish
elements from the first chaos (all of which are semicircular variables) from all the
other chaoses.

Corollary 1 ([8]). For n � 2 and f 2 L2.RnC/, the law of I.f / is not semicircular

4.3 Quantitative Estimates

In the classical case one can refine the qualitative statement of convergence to a
normal variable to quantitative estimates of the distance to a normal variable in terms
of differences of the fourth moments. Such estimates exist for various distances (like
Kolmogorov or Wasserstein distance). In the free case, those “classical” distances do
not fit too well with the non-commutative nature of the problem (i.e., even though
in the end one wants to compare just two single variable distributions, i.e., two
probability distributions, the constraint that they live in some fixed free chaos puts
them into a quite non-commutative context). The following distance seems to be
more appropriate for our free setting.

4.3.1 Distance Between Operators

Given two self-adjoint random variablesX; Y , we define their distance

dC2 .X; Y / WD supfj'Œh.X/�� 'Œh.Y /�j W I2.h/ � 1gI

where I2.h/ is formally the norm k@h0k of the non-commutative derivative of the
classical derivative of h; the non-commutative derivative @ is defined by

@Xn D
n�1X

kD0
Xk ˝Xn�1�k:
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One way to make this rigorous is as follows. If h is the Fourier transform of a
complex measure � on R,

h.x/ D O�.x/ D
Z

R

eix	 �.d	/

then we define

I2.h/ D
Z

R

	2 j�j.d	/:

The above definitions are motivated by the fact that @h0 is essentially the Ito
correction term showing up in the free Ito formula applied to dh.St/.

4.3.2 The Free Gradient Operator

As in the classical setting we have a free version of a Malliavin calculus. The basic
definitions and properties were given in [3]; however, the more advanced features
of this theory still have to be developed.

Here is the definition of the free Malliavin gradient operator. Since it is related
with the non-commutative derivative, it will, like @, also map into the tensor product.

Definition 3. For f 2 L2.RnC/ we define the free (Malliavan) gradient rI.f / of
I.f / by

rt
�Z

f .t1; : : : ; tn/ dSt1 � � � dStn
�
WD

nX

kD1

Z
f .t1; : : : ; tk�1; t; tkC1; : : : ; tn/dSt1 � � � dStk�1

˝ dStkC1
� � � dStn:

rt I.f / is to be considered as a function in t , taking on values in the tensor product
L2 ˝ L2.

The adjoint ofr is the free Skorohod integral, denoted by ı. It maps bi-processes,
i.e., functions which take values in the tensor product into the L2-space of our free
Brownian motion.

4.3.3 Estimate of the Distance Against the Gradient

Let us denote by N the number operator, which acts just by multiplication by n in
the n-the chaos, i.e.,

NI.f / D nI.f /; for f 2 L2.RnC/:
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Since one has, as in the classical case, ır D N , one can derive the following
estimate.

Theorem 2 ([8]). Let F D F � be an element from a finite chaos with mean 0 and
variance 1. Then we have the following estimate for the distance between F and a
semicircular variable S of mean 0 and variance 1:

dC2 .F; S/ �
1

2
' ˝ '

�ˇ̌
ˇ̌
Z
rs.N�1F /].rsF /� ds � 1˝ 1

ˇ̌
ˇ̌
�
:

The symbol ] denotes here the following product in the tensor product:

.a1 ˝ b1/].a2 ˝ b2/ WD a1a2 ˝ b2b1:

In the classical case one can estimate the corresponding expression of the above
gradient, for F living in some n-th chaos, in terms of the fourth moment of the
considered variable, thus giving a quantitative estimate for the distance between
the considered variable (from a fixed chaos) and a normal variable in terms of the
difference between their fourth moments. In the free case such a general estimate
does not seem to exist; at the moment we are only able to do this for elements F
from the second chaos.

Corollary 2 ([8]). Let F D I.f / D I.f /� (f 2 L2.R2C)) be an element from the
second chaos with variance 1, i.e., kf k2 D 1, and let S be a semicircular variable
with mean 0 and variance 1. Then we have

dC2 .F; S/ �
1

2

r
3

2

p
'.F 4/� 2:

4.3.4 A Multivariate Fourth Moment Theorem

In the long run, we are looking for multivariate versions of the above results. On the
qualitative level, this extension is quite straightforward and does not require new
ideas. Here we have the following result.

Theorem 3 ([10]). Let, for each i D 1; : : : ; d , .f .i/

k /k2N be a sequence inL2.RniC/,
such that for all i; j

lim
k!1'ŒI.f

.i/

k / � I.f .j /

k /� D ıij :

The following statements are equivalent.

1. ..I.f .1/

k /; : : : ; I.f
.d/

k // converges in distribution to a free semicircular family
.s1; : : : ; sd / as k !1.

2. For each i D 1; : : : ; d , I.f .i/k / converges to si as k !1.
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3. For each i D 1; : : : ; d , the fourth moments of I.f .i/k / converge to 2:

lim
k!1'ŒI.f

.i/

k /4� D 2:

However, when it comes to quantitative results, nothing is known at the moment
for the multivariate situation. In particular, we still don’t know what a reasonable
multivariate version for the distance dC2 should be.
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Spacings: An Example for Universality
in Random Matrix Theory

Thomas Kriecherbauer and Kristina Schubert

Abstract Universality of local eigenvalue statistics is one of the most striking
phenomena of Random Matrix Theory, that also accounts for a lot of the attention
that the field has attracted over the past 15 years. In this paper we focus on the
empirical spacing distribution and its Kolmogorov distance from the universal limit.
We describe new results, some analytical, some numerical, that are contained in
Schubert K (2012) On the convergence of the nearest neighbour eigenvalue spacing
distribution for orthogonal and symplectic ensembles. PhD thesis, Ruhr-Universität
Bochum, Germany. A large part of the paper is devoted to explain basic definitions
and facts of Random Matrix Theory, culminating in a sketch of the proof of a weak
version of convergence for the empirical spacing distribution 
N (see (23)).

1 Introduction

The roots of the theory of random matrices reach back more than a century.
They can be found, for example, in the study of the Haar measure on classical
groups [15] and in statistics [36]. The field experienced a first boost in the 1950s
due to a remarkable idea of E. Wigner. He suggested to model the statistics of
highly excited energy levels of heavy nuclei by the spectrum of random matrices.
Arguably the most striking aspect of his investigations was how well the random
eigenvalues described the distribution of spacings between neighbouring energy
levels. Even more surprising were the subsequent discoveries that the eigenvalue
spacing distributions are also relevant in a number of different areas of physics
(e.g. as a signature for quantum chaos) and somewhat exotically also in number
theory for the description of zeros of zeta functions (see [1, Chap. 2 and Part III]
for recent reviews). Due to these developments Random Matrix Theory became
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an active area of research that was prospering for many years mainly in the realm
of physics. It was only about 15 years ago that random matrices started to attract
broader interest also within mathematics stretching over a variety of different
areas. The reason for this second boost was the discovery [3] that after appropriate
rescaling the length of the longest increasing subsequence of a random permutation
on N letters displays for large N the same fluctuations as the largest eigenvalue
of a N � N random matrix (from a particular set of ensembles). Again it turned
out that the distribution of the largest eigenvalue (in the limit N ! 1) defines a
fundamental distribution that comes up in a number of seemingly unrelated models
of combinatorics and statistical mechanics (e.g. growth models, interacting particle
systems; see [11] and [19] for recent reviews).

In summary, we have seen that the statistics of eigenvalues of random matrices
display a certain degree of universality by describing the fluctuations in a varied list
of stochastic, combinatorial and even deterministic (zeros of zeta functions) settings.
In this paper, however, we will be concerned with a second aspect of universality
that is known as the universality conjecture in random matrix theory. It states that in
the limit of large matrix dimensions local eigenvalue statistics (see the beginning of
Sect. 3 for an explanation of the meaning of this term) only depend on the symmetry
class (cf. Sect. 2) of the matrix ensemble but not on other details of the probability
measure. We will discuss this conjecture in the context of the nearest neighbour
spacing distribution that has received much less attention in the literature than other
statistical quantities such as k-point correlations or gap probabilities. We focus on
the question of convergence of the empirical spacing distribution of eigenvalues.

Besides the standard monograph [25], a number of books have appeared recently
[2, 5, 6, 12, 30], which present nice introductions into various aspects of Random
Matrix Theory. An impressive collection of topics from Random Matrix Theory and
its applications can be found in [1]. However, in all these books the information on
the convergence of the empirical spacing distribution is somewhat sparse, except
for [5] and [18] in the case of unitary ensembles (ˇ D 2). It is one of the goals of
this paper to give a concise and largely self-contained update of [5,18] w.r.t. spacing
distributions including also orthogonal (ˇ D 1) and symplectic (ˇ D 4) ensembles.

The paper is organised as follows. First, we introduce in Sect. 2 three important
types of matrix ensembles that generalize the classical Gaussian ensembles. In order
to define our prime object of study, the empirical spacing distribution (Sect. 3.2),
we first discuss the spectral limiting density for all three types of ensembles in
Sect. 3.1. From Sects. 4 to 6 we only treat invariant ensembles. We first state how
k-point correlations are related to orthogonal polynomials and recall what is known
about their convergence (Sect. 4). These results are used in Sect. 5 to sketch the proof
of a first convergence result (23) for the empirical spacing distribution. Our main
new result Theorem 4, that is proved in [27], is stated in Sect. 6 together with related
results for circular ensembles from the literature. We close by mentioning numerical
results of [27]. They indicate that a version of the Central Limit Theorem, similar
to the one proved in [29] for COE and CUE, should also hold for the ensembles
discussed in this paper.
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2 Random Matrix Ensembles

Starting with the classical Gaussian ensembles we introduce in the present section
three different types of generalisations, Wigner ensembles, Invariant ensembles,
and ˇ-ensembles. Together they constitute a large part of the ensembles studied in
Random Matrix Theory. Some references are provided where the reader can learn
about the main techniques to analyse these ensembles. The concept of symmetry
classes is briefly discussed.

We begin by defining one of the most prominent matrix ensembles, the Gaussian
Unitary Ensemble (GUE). GUE is a collection of probability measures on Hermitian
N�N matricesX ,N 2 N, where the diagonal entries xjj and the real and imaginary
parts of the upper triangular entries xjk D ujk C ivjk, j < k are all independent and
normally distributed with xjj � N .0; 1=

p
N/, ujk, vjk � N .0; 1=

p
2N/. GUE has

the following useful properties.

1. The entries are independent as far as the Hermitian symmetry permits.
2. The probability measure is invariant under conjugation by matrices of the unitary

group, i.e. under change of orthonormal bases. In fact, this explains why the
ensemble is called “unitary” (and the reference to Gauss is due to the normal
distribution). Moreover, one can compute the joint distribution of the eigenvalues
explicitly. The vector of eigenvalues .�1; : : : ; �N / is distributed on R

N with
Lebesgue-density

Z�1
N;ˇ

Y

j<k

j�k � �j jˇ
Y

i

e�ˇN�2i =4 d�i ; ˇ D 2; (1)

where ZN;ˇ denotes some norming constant.

Each of these properties comes with a set of techniques to analyse statistics of
eigenvalues. In turn, these techniques can be applied to a large number of matrix
ensembles that share this particular property. More precisely:

1. Wigner ensembles have independent entries as far as the symmetry of the matrix
permits. The distributions of the entries do not need to be normal or identical,
but must satisfy some conditions on the moments. Except for the Gaussian case,
Wigner ensembles are not unitarily invariant and the joint distribution of eigen-
values is generally not known. Many results for such ensembles (e.g. Wigner
semi circle law, distribution of the largest eigenvalue) can be obtained via the
method of moments, i.e. by analysing the moments of the empirical measure
of the eigenvalues (see e.g. [14], cf. Sect. 3). More recently, very powerful new
techniques have been introduced by Erdös et al. and independently by Tao and
Vu (see e.g. [10, 31] and references therein).

2. Invariant ensembles keep the property of invariance under conjugation by unitary
matrices. The ensembles considered in this class all have in common that the joint
distribution of eigenvalues is given by a measure of the form
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Z�1
N;ˇ

Y

j<k

j�k � �j jˇ
Y

i

d�N .�i /; ˇ D 2 (2)

where �N denotes some (positive) finite measure on R with sufficient decay
at infinity to guarantee finiteness of the measure on R

N . As we explain in
Sect. 4 it is exactly the structure of (2), i.e. a product measure with dependencies
introduced by the square of the Vandermonde determinant, for which the method
of orthogonal polynomials can be applied. Note that such measures, with �N
supported on discrete sets, were also central for proving the appearance of local
eigenvalue statistics in some of the models from statistical mechanics described
in the Introduction (see e.g. [19] for an elementary exposition in the case of
interacting particle systems).

Using these two types of generalisations of GUE we may already generate a great
number of matrix ensembles. These consist of Hermitian matrices only and we say
that they belong to the same symmetry class. By the universality conjecture we
expect that in the limit N !1 all these ensembles display the same local spectral
statistics.

If one replaces in the definition of GUE above the Hermitian matrices by
real symmetric resp. by quaternion self-dual matrices, keeping the independence
of the entries as well as their normal distributions (with appropriately chosen
variances), one obtains the Gaussian Orthogonal Ensemble (GOE) resp. the Gaus-
sian Symplectic Ensemble (GSE). These ensembles can be generalised as above,
yielding again Wigner ensembles or invariant ensembles and the only difference
compared to the discussion above is that in (1) and (2) we have to choose ˇ D 1

resp. ˇ D 4. In this way we have introduced two more symmetry classes which then
together constitute all classes from Dyson’s threefold way. As it was discovered
some 30 years after Dyson’s classification result from 1962, it is useful and natural
to enlarge this list to a grand total of 10 symmetry classes, thus providing a
significant increase in applications of Random Matrix Theory in physics, statistics
and mathematics alike (see [37] for a recent survey). It should be noted that from
the perspective of invariant matrix ensembles the resulting joint distributions of the
eigenvalues are of the form (2) with ˇ 2 f1; 2; 4g for all ten symmetry classes.
As we will argue in Sect. 6 there exists a large class of invariant ensembles from all
ten symmetry classes for which the localised and appropriately rescaled empirical
spacing distributions (see Sect. 3) converge to universal limits that only depend on
the value of ˇ. The method of orthogonal polynomials mentioned above can also be
applied for ˇ D 1, 4. However, it is more technical and its range of applicability is
less general than in the case ˇ D 2, see e.g. [6].

There is a third property of Gaussian ensembles that leads to a different
type of generalisation. The basic observation is the following. If one applies the
Householder transformation to GOE in a suitable way, one obtains probability
measures on N � N Jacobi matrices (i.e. real symmetric, tridiagonal matrices
with positive off-diagonal entries). By construction they induce the same joint
distributions of eigenvalues as (1) with ˇ D 1. For this ensemble, the entries are
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again independent (as symmetry permits) with normal distributions on the diagonal
and some �-distributions for the off-diagonal entries. General ˇ-ensembles are now
generated by modifying the variances of the �-distributions on the off-diagonals.
For any ˇ > 0 this can be done in such a way that the joint distribution of
eigenvalues is given by (1) with the prescribed value of ˇ. A key insight into
the analysis of these ensembles is that for large matrix dimensions eigenvalues of
the Jacobi matrices may be approximated by the spectrum of a specific stochastic
Schrödinger operator, see e.g. [26]. Note that the local eigenvalue statistics of
ˇ-ensembles are different for each value of ˇ. Obviously, they reduce to the classical
Gaussian ensembles if and only if ˇ 2 f1; 2; 4g.

3 The Empirical Spacing Distribution: Localised
and Rescaled

In this section we define the empirical spacing distribution as one prime example
for local eigenvalue statistics. By the latter we mean, firstly, that the spectrum is
localised by considering only some part of the spectrum and, secondly, that the
spectrum is being rescaled such that the average distance between neighbouring
eigenvalues is constant and of order 1 in the considered spectral region. In order to
perform such operations we must first understand the limiting spectral density of the
ensemble.

3.1 The Limiting Spectral Density

We denote the ordered eigenvalues of a matrix H from one of the ensembles
described in Sect. 2 by �.N/1 .H/ � �.N/2 .H/ � : : : � �.N/N .H/. The corresponding
N -tuple �.N/.H/ thus defines a point in the Weyl chamber that we denote by
WN :D fx 2 R

N W x1 � : : : � xN g. Moreover, we abbreviate �.N/j .H/ by �j
from now on to keep the notation manageable.

We associate to each � 2 WN its counting measure ı� :D 1
N

PN
jD1 ı�j which

defines a probability measure on R. By the limiting spectral density we mean a
function  W R! Œ0;1/ satisfying for all s 2 R that

EN;ˇ

�Z s

�1
dı�

�
!
Z s

�1
 .t/ dt as N !1 :

It is known for ample classes of both Wigner ensembles and invariant ensembles
as well as for ˇ-ensembles that the spectral density exists. For Wigner ensembles
one can show mainly by combinatorial methods that on average the moments of ı�
converge to the moments of the semi-circle distribution (Wigner semi-circle law).
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The first steps of the proof are provided by the simple observation that for k 2 N

one has

EN;ˇ

�Z

R

tk dı�.t/

�
D 1

N
EN;ˇ.tr .Hk//

together with an expansion of the right hand side as a sum of expectations of
products of entries of H that can be simplified by using the independence of the
entries (method of moments, see e.g. [14]).

Next we turn to ˇ-ensembles. Here the limiting spectral density is again given
by the Wigner semi-circle law. The proof, however, follows a different path. Recall
that the joint distribution of eigenvalues is given by (1). Its density can therefore be
rewritten in the form

Z�1
N;ˇ exp

��ˇN2I.ı�/
�

with I.�/ WD �1
2

Z

x¤y

log jx � yjd�.x/d�.y/C
Z
x2

4
d�.x/ :

(3)

We may think of I as a functional defined on all probability measures on R. It is a
well known fact in logarithmic potential theory that I has a unique minimizer that
is given by the semi-circle law. Since we have the factor N2 in the exponent in (3)
it is intuitively clear that for large N only those vectors � will be relevant for which
the corresponding counting measure ı� is close to the minimizer of I . This idea
can be used to prove the Wigner semi-circle law for ˇ-ensembles. Moreover, this
idea can also be applied to prove the existence of the limiting spectral density for a
large class of invariant ensembles (see e.g. [17]). Indeed, let us assume that in (2)
the measure d�N has a Lebesgue-density of the form

d�N .x/ D e�NV.x/dx satisfying lim
jxj!1

V.x/

log jxj D 1 ; (4)

in order to guarantee that the measure (2) is finite. Under mild regularity assump-
tions on V one can proof that the functional

IV .�/ :D �1
2

Z

x¤y
log jx � yjd�.x/d�.y/C

Z
V.x/d�.x/ ; (5)

defined on the probability measures on R has an unique minimizer �V with a
Lebesgue-density  D  V . As argued above, one can show that  is the limiting
spectral density of the ensemble (see e.g. [5, Chap. 6] for an elementary exposition).
In the literature on invariant ensembles one also finds a slightly more general setting
where in the formula (4) for the density of d�N the function V is replaced by
N -dependent functions VN that converge to some function V satisfying the growth
condition (4).
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Note, that for invariant ensembles the limiting spectral density depends on V and
is therefore not an universal quantity. This is not a contradiction to the universality
conjecture of Dyson since the limiting spectral density is a global quantity whereas
the universality conjecture only refers to local eigenvalue statistics.

3.2 The Empirical Spacing Distribution

We use the limiting spectral density in order to rescale the eigenvalues. Let a
denote a point in the interior of the support of  where the limiting density
is positive, i.e.  .a/ > 0. We assume further that a is a point of continuity
for  . For eigenvalues �i that are close to a the expected distance of neighbouring
eigenvalues is given to leading order by .N .a//�1. Therefore we introduce the
rescaled and centred eigenvalues

Q�i :D .�i � a/N .a/: (6)

Considering only eigenvalues �i that lie in an (N -dependent) interval IN that is
centred at a and has vanishing length jIN j ! 0 for N ! 1, we expect that their
rescaled versions Q�i have a spacing that is close to 1 on average. We introduce

AN :D N .a/.IN � a/ D fN .a/.t � a/ j t 2 IN g

and observe that �i 2 IN if and only if Q�i 2 AN . Therefore and by the expected
unit spacing of the rescaled eigenvalues we conclude that the length of AN gives
the average of the number of eigenvalues �i that lie in IN to leading order. For our
considerations we assume that this number and hence N jIN j D jAN j= .a/ tends
to infinity for N !1. We summarize our assumptions on the length of IN .

jIN j ! 0 ; N jIN j ! 1 for N !1: (7)

Finally, we define our main object of interest, the empirical spacing distribution.
As above we denote the eigenvalues of a random matrix H by �1 � : : : � �N and
their rescaled versions (6) by Q�1 � : : : � Q�N . Furthermore, let IN be an interval
centred at a and satisfying (7). Then the empirical spacing distribution for H ,
localised in IN , is given by


N .H/ :D 1

jAN j
X

�iC1;�i2IN
ıQ�iC1�Q�i : (8)

Recall from the discussion above that the expected number of spacings considered
in 
N .H/ is given by jAN j�1. This explains the pre-factor 1=jAN j in the definition
of 
N .H/, which is asymptotically the same as 1=.jAN j � 1/.
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4 Universality of the k-Point Correlation Functions
for Invariant Ensembles

In this section we state results on the convergence of k-point correlation functions
for invariant ensembles, as well as their connection to orthogonal polynomials.

We recall that we consider invariant ensembles where the joint distribution of the
eigenvalues has a density of the form (see (2) and (4))

P
.ˇ/
N .�1; : : : ; �N / :D 1

ZN;ˇ

Y

i<j

j�j � �i jˇ
NY

kD1
w.ˇ/N .�k/; � 2 R

N (9)

with w.ˇ/N .x/ D e�NV.x/. In the proof of the main theorem (Theorem 4) we will

use asymptotic results for the marginal densities of P .ˇ/
N with respect to k variables.

The latter are called the k-point correlation functions, for which we will now give a
precise definition.

Definition 1.

(i) For k 2 N; k � N , ˇ 2 f1; 2; 4g and .�1; : : : ; �k/ 2 R
k we set

R
.ˇ/

N;k.�1; : : : ; �k/ :D NŠ

.N � k/Š
Z

RN�k

P
.ˇ/
N .�1; : : : ; �N / d�kC1 : : : d�N :

(ii) For k 2 N; k � N and ˇ 2 f1; 2; 4g the rescaled k-point correlation functions
are given by

B
.ˇ/

N;k.
Q�1; : : : ; Q�k/ :D .N .a//�k R.ˇ/N;k

 
aC

Q�1
N .a/

; : : : ; aC
Q�k

N .a/

!

D .N .a//�k R.ˇ/N;k .�1; : : : ; �k/ :

We observe that R.k/N;k.t1; : : : ; tk/ and B.ˇ/

N;k.t1; : : : ; tk/ are invariant under permuta-
tions of the indices f1; : : : ; kg.

We now sketch how the k-point correlation functions can be analysed using the
method of orthogonal polynomials. We start with the simplest case ˇ D 2. Define
KN;2WR2 ! R with

KN;2.x; y/ :D
N�1X

jD0
'
.N/
j .x/'

.N/
j .y/; (10)

'
.N/
j .x/ :D p.N/j .x/

q
w.2/N .x/;
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and p.N/j .x/ D �.N/j xj C : : : with �.N/j > 0 denotes the j -th normalised orthogonal

polynomial with respect to the measure w.2/N .x/dx on R, i.e.

Z

R

p
.N/
j .x/p

.N/

k .x/w.2/N .x/dx D ıjk:

The convergence of the appropriately rescaled kernel KN;2

lim
N!1

1

N .a/
KN;2

�
aC x

N .a/
; aC y

N .a/

�
D sin.�.x � y//

�.x � y/ D: K2.x; y/

(11)

has by now been proved in quite some generality (see e.g. [23] and references
therein). Usually uniform convergence of (11) is only shown for x; y in bounded
sets. For our purposes it is convenient to extend this result for x; y in the growing
set AN .

Theorem 1 (cf. [8, 27]). Let V WR ! R be real analytic such that (4) holds and
let V be regular in the sense of [8, (1.12),(1.13)]. Moreover, we assume a 2 R

with  .a/ > 0 ( being defined as the density of the minimizer of IV , see (5)).
Let .cN /N2N be a sequence satisfying cN !1; cNN ! 0 asN !1. Then we have
for N !1

sup
x;y2Œ�cN ;cN �

ˇ̌
ˇ̌ 1

N .a/
KN;2

�
aC x

N .a/
; aC y

N .a/

�
�K2.x; y/

ˇ̌
ˇ̌ D O

�cN
N

�

(12)

sup
x;y2Œ�cN ;cN �

ˇ̌
ˇ̌ @
@x

�
1

N .a/
KN;2

�
aC x

N .a/
; aC y

N .a/

�
�K2.x; y/

�ˇ̌
ˇ̌ D O

�cN
N

�
:

(13)

Remark 1.

(i) The estimate in (13) will be needed to treat the cases ˇ D 1 and ˇ D 4.
(ii) The proof of Theorem 1 is essentially contained in [8] although not stated

explicitly (a formula somewhat close is presented in [8, (6.18)]). In particular,
there is no information on the derivatives in (13). Nevertheless the underlying
Riemann-Hilbert analysis also provides (12) and (13), where we use an
efficient path, which we have taken from [34]. A sketch of the required
refinements and the extension to unbounded sets can be found in [27].

(iii) To unify the notation with the cases ˇ D 1 and ˇ D 4 treated below we set

OKN;2.x; y/ :D 1

N .a/
KN;2.x; y/ (14)
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and hence (12) reads

OKN;2

�
aC x

N .a/
; aC y

N .a/

�
D K2.x; y/C O .N / (15)

with N D cN
N
! 0 as N ! 1. The error term is uniform for x; y 2

Œ�cN ; cN �.
Theorem 1 can be used to derive some results about the rescaled correlation
function, where one uses a well known determinantal formula expressing B.2/

N;k in
terms of KN;2 (see e.g. [5] and Lemma 1 below). Observe that in the considered
setting the term O

�
cN
N

	
in the asymptotic behaviour of KN;2 (see Theorem 1) is

replaced by O.jIN j/ in statement .iii/ of Lemma 1.

Lemma 1. Let the assumptions of Theorem 1 be satisfied. Furthermore, let
a; ; IN , AN be defined as in Sect. 3. Then the following holds

(i) For t1; : : : ; tk 2 R we have

B
.2/

N;k
.t1; : : : ; tk/ D .N .a//�k det

�
KN;2

�
aC ti

N .a/
; aC tj

N .a/

��

1�i;j�k
;

where KN;2 is given in (10).
(ii) For N sufficiently large we have for all k � N

jB.2/

N;k.t1; : : : ; tk/j � 2k for t1; : : : ; tk 2 AN :

(iii) For t1; : : : ; tk 2 AN we have

B
.2/

N;k .t1; : : : ; tk/ D W .2/

k .t1; : : : ; tk/C kŠ � k � 2kO.jIN j/; (16)

with

W
.2/

k .t1; : : : ; tk/ :D det

�
sin.�.ti � tj //
�.ti � tj /

�

1�i;j�k
(17)

and the constant implicit in the error term in (16) is uniform in k, t1; : : : ; tk
and in N .

It should be noted that with Lemma 1 we have derived all information on the
convergence of the k-point correlation functions that is needed to prove the main
result Theorem 4 for ˇ D 2.

We now turn to the cases ˇ D 1; 4. For technical reasons we restrict the
discussion of the case ˇ D 1 to even values of N . Our presentation follows closely
the monograph [6]. Similar to statement .i/ of Lemma 1 the k-point correlation
function for ˇ D 1 and ˇ D 4 can be represented in terms of functions SN;ˇ ,
which are related to KN;2. It is convenient to express the correlation functions in
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terms of the Pfaffian. We remind the reader that for real skew-symmetric 2m � 2m
matrices the determinant is a perfect square. Consequently, the Pfaffian which is
defined to be the square-root of the determinant for such matrices can be expressed
as a polynomial in the entries. Indeed,

Pf.A/ D 1

2mmŠ

X


2S2m
.sgn
/a
1
2a
3
4 : : : a
2m�1
2m ;

where S2m denotes the permutation group on f1; : : : ; 2mg. See also [6] for an
elementary exposition on the use of Pfaffians in Random Matrix Theory. According
to [6, (4.128),(4.135)] the correlation functions can be expressed via

R
.ˇ/

N;k.�1; : : : ; �k/ D Pf.K J /; with K :D .KN;ˇ.�i ; �j //i;jD1;:::;k (18)

and

J :D diag.
; : : : ; 
/ 2 R
2N�2N ; 
 :D

�
0 1

�1 0
�
:

In (18) the termsKN;ˇ.x; y/; ˇ D 1; 4 denote 2 � 2 matrices with

KN;4.x; y/ :D

0
B@

SN;4.x; y/
@
@y
SN;4.x; y/

� R yx SN;4.t; y/ dt SN;4.y; x/

1
CA

and

KN;1.x; y/ :D

0
B@

SN;1.x; y/
@
@y
SN;1.x; y/

� R y
x
SN;1.t; y/ dt � 1

2
sgn.x � y/ SN;1.y; x/

1
CA :

The convergence of the (rescaled) matrix kernels KN;ˇ is e.g. considered in [6],
but as in the case ˇ D 2 the known results only apply to the convergence on compact
sets and need to be refined to uniform convergence on AN (recall jAN j ! 1
as N ! 1). Before we can state Theorem 2 we introduce some more notation
(in analogy to (14) for ˇ D 2). For ˇ D 1; 4 let bKN;ˇ.x; y/ 2 R

2�2 denote a
rescaled version of KN;ˇ.x; y/ given by

bKN;ˇ.x; y/ :D 1

N .a/

 
1p

N .a/
0p

N .a/

!
KN;ˇ.x; y/

 p
N .a/ 0

0 1p
N .a/

!
:

(19)
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We denote the components of the rescaled matrices bKN;ˇ.x; y/ by

 
bSN;ˇ.x; y/ 1DN;ˇ.x; y/
bIN;ˇ.x; y/ bSN;ˇ.y; x/

!
:D bKN;ˇ.x; y/:

Theorem 2 ([6, 27, 28]). Let V be a polynomial of even degree with positive
leading coefficient and let V be regular in the sense of [8, (1.12),(1.13)]. Moreover,
we assume a 2 R with  .a/ > 0 ( is defined as in Theorem 1) and letK2 be given
in (11). Let .cN /N2N be a sequence satisfying cN ! 1; cNp

N
! 0 as N ! 1.

Then we have

(i) For ˇ D 1 and N even

sup
x;y2Œ�cN ;cN �

ˇ̌
ˇ̌
bSN;1

�
aC x

N .a/
; aC y

N .a/

�
�K2.x; y/

ˇ̌
ˇ̌ D O

�
1p
N

�

sup
x;y2Œ�cN ;cN �

ˇ̌
ˇ̌
bDN;1

�
aC x

N .a/
; aC y

N .a/

�
� @

@x
K2.x; y/

ˇ̌
ˇ̌ D O

�
1p
N

�

sup
x;y2Œ�cN ;cN �

ˇ̌
ˇ̌cIN;1

�
aC x

N .a/
; aC y

N .a/

�
�
Z x�y

0

K2.t; 0/dt � 1

2
sgn.x � y/

ˇ̌
ˇ̌

D O

�
cNp
N

�

(ii) For ˇ D 4 and N even

sup
x;y2Œ�cN ;cN �

ˇ̌
ˇ̌1SN=2;4

�
aC x

N .a/
; aC y

N .a/

�
�K2.2.x � y//

ˇ̌
ˇ̌ D O

�
1p
N

�

sup
x;y2Œ�cN ;cN �

ˇ̌
ˇ̌ 1DN=2;4

�
aC x

N .a/
; aC y

N .a/

�
� @

@x
K2.2.x � y//

ˇ̌
ˇ̌ D O

�
1p
N

�

sup
x;y2Œ�cN ;cN �

ˇ̌
ˇ̌1IN=2;4

�
aC x

N .a/
; aC y

N .a/

�
�
Z x�y

0
K2.2t/dt

ˇ̌
ˇ̌ D O

�
cNp
N

�

Remark 2. The proof of Theorem 2 can be derived from [6, 28] and Theorem 1
as follows (details will be given in a later publication): We use the notation Ox D
aC x

N .a/
; Oy D aC y

N .a/
and set

�N;ˇ. Ox; Oy/ :D 1

N .a/

�
SN;ˇ. Ox; Oy/�KN;2. Ox; Oy/

	 D OSN;ˇ. Ox; Oy/ � 1

N .a/
KN;2. Ox; Oy/:

As V is a polynomial, we can apply Widom’s formalism [35] to derive a repre-
sentation of �N;ˇ in terms of orthogonal polynomials. Together with the estimates
contained in [28] and [6, Sect. 6.3.1] (generalised to the case of varying weights) we
obtain
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sup
x;y2Œ�cN ;cN �

ˇ̌
�N;ˇ. Ox; Oy/

ˇ̌ D O
�
N� 1

2

�

sup
x;y2Œ�cN ;cN �

ˇ̌
ˇ̌ 1

N .a/

@

@ Oy�N;ˇ. Ox; Oy/
ˇ̌
ˇ̌ D O

�
N� 1

2

�
:

The claim of Theorem 2 then follows from Theorem 1 and from the assumption
cNp
N
! 0 for N !1, which implies cN

N
D O

�
1p
N

�
.

Finally, we introduce some more notation (recall that K2 was introduced in (11)):

S1.x; y/ :D K2.x; y/; D1.x; y/ :D @

@x
K2.x; y/;

I1.x; y/ :D
Z x�y

0

K2.t; 0/dt � 1
2

sgn.x � y/

S4.x; y/ :D K2.2x; 2y/; D4.x; y/ :D @

@x
K2.2x; 2y/; I4.x; y/ :D

Z x�y

0
K2.2t; 0/dt

and

Kˇ.x; y/ :D
�
Sˇ.x; y/ Dˇ.x; y/

Iˇ.x; y/ Sˇ.y; x/

�
:

Remark 3. (i) With this notation the result of Theorem 2 reads: There exists a
sequence N such that N ! 0 for N !1 and

bKN;ˇ

�
aC x

N .a/
; aC y

N .a/

�
D Kˇ.x; y/CO.N / (20)

uniformly for x; y 2 AN .
(ii) Theorems 1 and 2 have been stated for invariant matrix ensembles satis-

fying (2) and (4) and do not cover all ten symmetry classes (cf. Sect. 2).
However, the statements of Theorems 1 and 2 hold mutatis mutandis for all
invariant ensembles for which universality has been proved using a Riemann
Hilbert analysis in the analytic setting (see e.g. [9, 21, 34] for varying and
non-varying Laguerre-type ensembles, [20] for Jacobi-type ensembles and [7]
for non-varying Hermite-type ensembles). In this way all symmetry classes are
covered. The work of McLaughlin and Miller [24] shows that one can expect
that some finite regularity assumption on V combined e.g. with the convexity
of V should also suffice.

From (20) one can deduce the analogue of Lemma 1 for ˇ D 1; 4 using e.g. the
formulae in [32]. In particular, one can derive the convergence of the rescaled
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correlation functions B.ˇ/

N;k . For ˇ D 1; 4 we set (analogue to (17) for ˇ D 2,
see also (18))

W
.ˇ/

k .t1; : : : ; tk/ :D Pf.K J / with K :D .Kˇ.ti ; tj //1�i;j�k; t1; : : : ; tk 2 R:

(21)

Lemma 2. Suppose that the assumptions of Theorem 2 hold. Then the following
holds for ˇ 2 f1; 4g.

(i) There exists C > 0 such that for all 1 � k � N; t1; : : : ; tk 2 AN we have

B
.ˇ/

N;k.t1; : : : ; tk/ D W .ˇ/

k .t1; : : : ; tk/C kŠ � Ck O.N /: (22)

The constant implicit in the O-term is uniform in k;N and in t1; : : : ; tk and
N ! 0 as N !1 as in Remark 3 .i/.

(ii) The functionW .ˇ/

k is a symmetric function on R
k for all k 2 N.

(iii) For k 2 N, t1; : : : ; tk and c 2 R: W
.ˇ/

k .t1Cc; : : : ; tkCc/ D W .ˇ/

k .t1; : : : ; tk/:

(iv) There exists a constant C > 1 such that for all 1 � k � N we have

ˇ̌
ˇB.ˇ/

N;k .t1; : : : ; tk/
ˇ̌
ˇ � Ck k

k
2 for t1; : : : ; tk 2 AN

ˇ̌
ˇW .ˇ/

k .t1; : : : ; tk/
ˇ̌
ˇ � Ck k

k
2 for t1; : : : ; tk 2 R:

(v) For all t 2 R: W
.ˇ/
1 .t/ D 1:

Remark 4. We note that for the results presented in Sect. 5.1 it is not necessary to
keep track of the k-dependence of the error in (22). However, this estimate is needed
in the proof of Theorem 4.

5 The Expected Empirical Spacing Distribution
and Gap Probabilities

The basic result that we want to explain in this section is the convergence of the
expected spacing distribution, i.e.

lim
N!1EN;ˇ

�Z s

0

d
N .H/

�
D
Z s

0

d�ˇ (23)

for some probability measures �ˇ . The limiting spacing distributions �ˇ depend
on ˇ, but are universal otherwise (see Remark 5 at the end of this section). In
our exposition we restrict ourselves to prove the convergence of EN;ˇ

�R s
0
d
N .H/

	

for N ! 1. This is the content of Sect. 5.1. It is not entirely obvious to show that
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the limit actually defines a probability measure. One way to prove this is to make a
connection between EN;ˇ

�R s
0
d
N .H/

	
and the gap probabilities and to use that the

latter can be expressed in terms of Painlevé V transcendents. We will discuss this
connection in Sect. 5.2.

5.1 Convergence of the Expected Empirical Spacing
Distribution

In this section we will show the existence of

lim
N!1EN;ˇ

�Z s

0

d
N .H/

�

and derive a representation for this limit. As
R s
0
d
N .H/ is a function of the ordered

eigenvalues of H the expectation is obtained by integration over the Weyl chamber
with respect to B.ˇ/

N;N .t/dt (see Definition 1).
The first step in the proof is the introduction of related counting measures

�N .k;H/ for k � 2. Recall that the eigenvalues of the random matrixH are denoted
by �1 � : : : � �N and their rescaled versions by Q�1 � : : : � Q�N (see (6)). We define

�N .k;H/ :D 1

jAN j
X

i1<:::<ik;
�i1 ;�ik2IN

ı.Q�ik�Q�i1 /; k � 2: (24)

Observe that the normalizing factor 1
jAN j corresponds to the fact that we expect

jAN j D N .a/jIN j eigenvalues �i 2 IN (see discussion below (8)). The measures
�N .k;H/ are related to 
N (see Lemma 3 below) and the main advantage ofR s
0
d�N .k;H/ over

R s
0
d
N .H/ is that it is a symmetric function of the eigenvalues

of H , if we replace f�ik �f�i1 in (24) by max1�j�k f�ij �min1�j�k f�ij . This allows
us to calculate the expectation of

R s
0 d�N .k;H/ by integration over RN (instead of

WN ) with respect to 1
N Š
B
.ˇ/
N;N .t/dt (see (9)) . Thus we can exploit the invariance of

the k-point correlation functions under permutations of the arguments together with
their uniform convergence given in Lemma 1 resp. in Lemma 2.

By combinatorial arguments (see e.g. Corollary 2.4.11, Lemmas 2.4.9 and 2.4.12
in [18]) one can show the following connection between 
N .H/ and �N .k;H/.

Lemma 3 (cf. Chap. 2 in [18] ).

(i) For N 2 N we have

Z s

0

d
N .H/ D
NX

kD2
.�1/k

Z s

0

d�N .k;H/: (25)
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(ii) For N 2 N andm � N we have

Z s

0

d
N .H/ �
mX

kD2
.�1/k

Z s

0

d�N .k;H/ form odd

Z s

0

d
N .H/ �
mX

kD2
.�1/k

Z s

0

d�N .k;H/ form even:

We can use Lemma 3 to prove the following theorem, which states the point wise
convergence of the empirical spacing distribution.

Theorem 3 (cf. [5] for ˇ D 2). Suppose that the assumptions of Theorem 1
(ˇ D 2) resp. of Theorem 2 (ˇ D 1; 4) are satisfied. Then we have for ˇ D 1; 2; 4,
s 2 R andW .ˇ/

k as in (21) (ˇ D 1; 4) resp. in (17) (ˇ D 2)

lim
N!1EN;ˇ

�Z s

0
d
N .H/

�
D
X

k�2
.�1/k

Z

0�z2�:::�zk�s
W
.ˇ/

k
.0; z2; : : : ; zk/dz2 : : : dzk:

(26)

In particular, we claim that the series on the right hand side of the equation
converges.

Proof. The proof is in the spirit of [18, Chap. 5]. Taking expectations in (25) leads to

EN;ˇ

�Z s

0

d
N .H/

�
D

NX

kD2
.�1/kEN;ˇ

�Z s

0

d�N .k;H/

�
: (27)

We start with the calculation of the expectation on the right hand side of (27).
Observe that we can rewrite

Z s

0

d�N .k;H/ D 1

jAN j
X

T	f1;:::;N g;jT jDk
�. Q�T /

with

Q�T :D . Q�i1 ; : : : ; Q�ik / for T D fi1; : : : ; ikg with 1 � i1 < : : : < ik � N

and

�.tt ; : : : ; tk/ :D �.0;s/
�

max
iD1;:::;k

ti � min
iD1;:::;k ti

� kY

iD1
�AN .ti /;

where �.0;s/ resp. �AN denote the characteristic functions on .0; s/ resp. on AN .
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Using the symmetry of the joint density of the eigenvalues with respect to
permutations of the variables (see (9) and Definition 1) we conclude

EN;ˇ

�Z s

0

d�N .k;H/

�
D 1

N Š

Z

RN

0

@ 1

jAN j
X

T	f1;:::;N g;jT jDk
�.tT /

1

AB.ˇ/
N;N .t/dt

D 1

jAN j
1

N Š

 
N

k

!Z

RN

�.t1; : : : ; tk/B
.ˇ/
N;N .t/dt

D 1

jAN j
Z

Wk\AkN
�.t1; : : : ; tk/B

.ˇ/

N;k.t1; : : : ; tk/dt1 : : : dtk:

(28)

It is straightforward to prove the following bound

1

jAN j
Z

Wk\AkN
�.t1; : : : ; tk/dt1 : : : dtk � sk�1

.k � 1/Š

which, together with the uniform convergence of Lemmas 1 .iii/ and 2 .i/, leads to

1

jAN j
Z

Wk\AkN
�.t1; : : : ; tk/B

.ˇ/

N;k.t1; : : : ; tk/dt1 : : : dtk

D 1

jAN j
Z

Wk\AkN
�.t1; : : : ; tk/W

.ˇ/

k .t1; : : : ; tk/dt1 : : : dtk C Os;k.N /;

where the constant implicit in the O-notation may depend on s and k as indicated
by the subscripts. Using the translation invariance of W .ˇ/

k (see (17) for ˇ D 2 and
Lemma 2 .iii/ for ˇ D 1; 4) together with the change of variables z1 D t1; zi D
ti � t1; i D 2; : : : ; k and the definition of � we have

1

jAN j
Z

Wk\AkN

�.t1; : : : ; tk /W
.ˇ/

k .t1; : : : ; tk/dt1 : : : dtk

D
Z

0�z2�:::�zk�s

W
.ˇ/

k .0; z2; : : : ; zk/dz2 : : : dzk

� 1

jAN j
Z

AN

0

@
Z

0�z2�:::�zk�s

W
.ˇ/

k .0; z2; : : : ; zk/

0

@1�
kY

jD2

�AN .z1 C zj /

1

A dz2 : : : dzk

1

A dz1

D
Z

0�z2�:::�zk�s

W
.ˇ/

k .0; z2; : : : ; zk/dz2 : : : dzk C Os;k

�
1

jAN j
�
:
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Hence we obtain

lim
N!1EN;ˇ

�Z s

0

d�N .k;H/

�
D
Z

0�z2�:::�zk�s
W

.ˇ/

k .0; z2; : : : ; zk/dz2 : : : dzk:

(29)

For later reference we observe that by the upper bounds on W
.ˇ/

k provided in
Lemma 1 (ˇ D 2) and in Lemma 2 (ˇ D 1; 4) we have

lim
N!1EN;ˇ

�Z s

0

d�N .k;H/

�
� Cksk�1

�
1p
k � 1

�k�1
: (30)

It remains to show that in (27) the limit N ! 1 may be interchanged with the
infinite summation over k. Taking expectations in Lemma 3 .ii/ together with the
convergence in (29) implies form odd

mX

kD2
.�1/k lim

N!1EN;ˇ

�Z s

0

d�N .k;H/

�
� lim inf

N!1 EN;ˇ

�Z s

0

d
N .H/

�
(31)

lim sup
N!1

EN;ˇ

�Z s

0

d
N .H/

�
�

mC1X

kD2
.�1/k lim

N!1EN;ˇ

�Z s

0

d�N .k;H/

�
: (32)

Inequality (30) ensures the convergence of the series in (31) and (32) if we
take m!1. Sending m ! 1 in (31) and (32) implies that the limit

EN;ˇ

�Z s

0

d
N .H/

�
exists for N !1. We obtain

lim
N!1EN;ˇ

�Z s

0

d
N .H/

�
D

1X

kD2
.�1/k lim

N!1EN;ˇ

�Z s

0

d�N .k;H/

�

which, together with (29), completes the proof. ut
Remark 5. In the above theorem we have obtained a representation for the limit of
the expected spacing distribution in terms of W .ˇ/

k , which is hence universal in the
sense that the limit does neither depend on V nor on the details of the localisations,
i.e. on the point a or on the interval IN as long as the assumptions of Theorem 1
resp. Theorem 2 are satisfied.

However, formula (26) is somewhat complicated. In the next section we show
how it is related to the so-called gap probabilities that have an explicit representation
in terms of particular Painlevé V functions.
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5.2 Spacing Distributions and Gap Probabilities

A gap probability is the probability of having no eigenvalues in a given interval.
Observe that for finite N and ˇ D 2 we have (see e.g. [5, p. 108])

PN;2.f Q�1; : : : ; Q�N g \ .0; s/ D ;/ D 1

N Š

Z

.Rn.0;s//N
B
.2/
N;N .t1; : : : ; tN / dt1 : : : dtN

D
NX

kD0

.�1/k
kŠ

Z s

0

: : :

Z s

0

det
�
KN;2.ti ; tj /

	
1�i;j�k dt1 : : : dtk

D det.1 �KN;2jL2.0;s//:

Here KN;2jL2.0;s/ denotes the integral operator on L2.0; s/ with kernel KN;2 and
the last equality is just a standard expansion for the corresponding Fredholm
determinant. Recall that KN;2 ! K2 for N ! 1 (Theorem 1). Furthermore, one
can also show that the corresponding Fredholm determinants converge (see [6] and
also [33]). This motivates that the large N -limit

G2.s/ :D det.1 �K2jL2.0;s//

is called the gap probability (for ˇ D 2). For ˇ D 1 and 4 the gap probabilities
Gˇ are defined as square roots of determinants of operators on L2.0; s/ � L2.0; s/
(see e.g. [6, Corollary 6.12]).

By the standard expansion of the Fredholm determinant we have

G2.s/ D
1X

kD0

.�1/k
kŠ

Z s

0

: : :

Z s

0

W
.2/

k .t1; : : : ; tk/dt1 : : : dtk: (33)

Using more involved arguments the analogue of Eq. (33) (with W .2/

k replaced by

W
.ˇ/

k and G2 replaced byGˇ) can also be shown for ˇ D 1 and ˇ D 4 (see e.g. [27,
Sect. 7.1]). The following theorem relates the derivatives of the gap probabilities to
the limiting spacing distributions for all ˇ 2 f1; 2; 4g (see e.g. [5, p. 126] for ˇ D 2).

Lemma 4. For ˇ D 1; 2; 4 we have

�G 0̌ .s/ D 1 � lim
N!1EN;ˇ

�Z s

0

d
N .H/

�
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Proof. We introduce the function

QGˇ."; s/ :D
1X

kD0

.�1/k
kŠ

Z s

"
: : :

Z s

"
W
.ˇ/
k
.t1; : : : ; tk/dt1 : : : dtk

D1 � s C "C
1X

kD2
.�1/k

Z s

"

�Z

t1�t2�:::�tk�s
W
.ˇ/

k
.t1; : : : ; tk/dt2 : : : dtk

�
dt1:

(34)

Here we have used W .ˇ/
1 .t/ D 1 for all t 2 R (cf. Lemmas 1 and 2). Then the

translation invariance of W .ˇ/

k implies QGˇ."; s/ D fGˇ.0; s � "/ D Gˇ.s � "/
and hence @

@"

ˇ̌
"D0 QGˇ."; s/ D �G 0̌ .s/. Differentiating each term of the series

in (34) (which is absolutely convergent, see (30)) we obtain the desired result from
Theorem 3. ut
Remark 6. As mentioned above there is a remarkable identity that allows to express
the gap probabilities Gˇ; ˇ 2 f1; 2; 4g in terms of Painlevé V functions. More
precisely, let 
 be the solution of

.s
 00/2 C 4.s
 0 � 
/.s
 0 � 
 C .
 0/2/

with boundary condition


.s/ � � s
�
� s2

�2
� s3

�3
C O.s4/ for s ! 0:

Then in the case ˇ D 2 we have (see [16])

G2.s/ D exp

�Z �s

0


.t/

t
dt

�
:

For ˇ D 1 and ˇ D 4 see [2] and [13] for analogue formulae.

We recall that Lemma 4 together with the Painlevé representations forGˇ are useful
to verify that �ˇ as defined through (23) is indeed a probability measure (see [27,
Chaps. 6 and 7]).

6 Results

In this section we state our new result (Theorem 4) for the expected empirical
spacing distribution for invariant orthogonal and symplectic ensembles. We include
a brief discussion of related results that can be found in the literature.
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Except for the point wise convergence for ˇ D 2 presented in Theorem 3 (cf. [8])
the empirical spacing distribution has so far only been considered for circular
ensembles. In the case ˇ D 2 the circular unitary ensemble (CUE) is given by
the unitary group U.N/ with the normalised translation invariant Haar measure.
The joint distribution of the complex eigenvalues ei�1; : : : ; ei�N in the CUE and in
the related orthogonal and symplectic ensembles (ˇ D 1; 4) is given by

dPN;ˇ.�/ D 1

ZN;ˇ

Y

j<k

ˇ̌
ei�k � ei�j ˇ̌ˇ d�1 : : : d�N ; ˇ D 1; 2; 4: (35)

As the expected spectral density is constant for these ensembles, the eigenvalues can
be normalised to have mean spacing one by the linear rescaling

e�i :D N�i

2�
:

Observe that we do not need to localise the spectrum in these cases.
It is a result of Katz and Sarnak in [18, Chaps. 1 and 2] that for circular ensembles

with ˇ D 2 the expected empirical spacing distribution converges to the same
measure �2 that we have defined in (23). Moreover, they show a stronger version of
convergence, i.e. the vanishing of the expected Kolmogorov distance

lim
N!1EN;ˇ

�
sup
s2R

ˇ̌
ˇ̌
Z s

0

d
N .H/ �
Z s

0

d�2

ˇ̌
ˇ̌
�
D 0: (36)

Here 
N is defined as the (normalised) counting measure of the nearest neighbour
spacings between e�j ’s. The definition of 
N is similar to (8) with the pre-factor
altered to 1=.N � 1/ and without the restriction to IN in the sum.

In [29] the convergence in (36) is sharpened, proving almost sure convergence,
and generalised to COE (ˇ D 1), but not to ˇ D 4. Moreover, Soshnikov shows in
[29] for both CUE and COE a central limit theorem for spacings. For example, he
proves that the appropriately normalised random variables

	N .s/ D
R s
0
d
N .H/ � EN;ˇ

�R s
0
d
N .H/

	
p
N

converge to a Gaussian process 	 with E.	.s// D 0 and for which E.	.s/	.t// can
be expressed in terms of the k-point correlations of (35).

Another interesting result [2, Sect. 4.2] concerns the theory of determinantal
point processes. In [2] it is shown that for such point processes with constant
intensities generated by a suitable class of kernels (including in particular the
sine-kernel K2) the linear statistics of the empirical spacing distribution converge
almost surely to the linear statistics of�2 as the number of considered points tends to
infinity. This result does not deal with the distribution of the eigenvalues of random
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matrices for finite N . Nevertheless, it is conceivable that this result might be useful
for proving the convergence of the empirical spacing distribution.

We now turn to our recent results. We show in [27] that the analogue
version of (36) is valid for orthogonal and symplectic invariant ensembles
satisfying (2) and (4). In fact, we reduce the question of convergence of the expected
Kolmogorov distance of the empirical spacing distribution to the convergence of the
corresponding kernel functions. All information that is needed on the convergence
KN;ˇ ! Kˇ is summarised in the following

Assumption 1. We consider invariant ensembles with joint distribution of the
eigenvalues given by (2) and (4) for ˇ 2 f1; 2; 4g. We assume that the limiting
spectral density exists and we choose a, IN and the rescaling of the eigenvalues
as in Sect. 3.2. We assume that there exists a sequence N such that N ! 0 for
N ! 1; such that for the rescaled (matrix) kernels OKN;ˇ (see (14) and (19)) we
have

bKN;ˇ

�
aC x

N .a/
; aC y

N .a/

�
D Kˇ.x; y/C O.N / (37)

uniformly for x; y 2 AN .

Our main theorem then reads

Theorem 4 ([27]). Under Assumption 1 we have

lim
N!1EN;ˇ

�
sup
s2R

ˇ̌
ˇ̌
Z s

0

d
N .H/�
Z s

0

d�ˇ

ˇ̌
ˇ̌
�
D 0; (38)

where �ˇ is defined through (23).

In particular, our theorem covers all invariant ensembles for which the convergence
of KN;ˇ to Kˇ has been proved using a Riemann-Hilbert approach (see e.g.
Theorems 1 and 2). Observe that our formulation of Theorem 4 also includes all
ensembles for which (37) will be established in the future.

The proof follows the path devised by Katz and Sarnak in [18] for ˇ D 2

and extends their methods in two ways. On the one hand, we have to consider the
additional localisation that is needed in our setting. We can use the same methods
as in [18] to express the expected empirical distribution of the spacings in terms
of the rescaled k-point correlation functions B.ˇ/

N;k (see (27) and (28)). On the other
hand, we generalise their methods to ˇ D 1 and ˇ D 4. Here the relation between
the matrix-kernel functionsKN;ˇ and the expected empirical spacing distribution is
more involved. Moreover, for ˇ D 4 subtle cancellations have to be used to establish
convergence.

The proof of the main theorem comes in three steps: The first step is the point
wise convergence as shown in Theorem 3. This convergence is well known although
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it seems that the details have so far only been worked out in the case ˇ D 2

(see e.g. [2, 6]). In order to obtain the convergence of

EN;ˇ

�ˇ̌
ˇ̌
Z s

0

d
N .H/ �
Z s

0

d�ˇ

ˇ̌
ˇ̌
�

(39)

for any given s 2 R, we bound the variance of
R s
0
d�N .k;H/ in the second step.

As stated above, this is the most challenging part in generalising the method of Katz
and Sarnak to ˇ D 1; 4. Here we found the representation of the k-point correlation
functions in terms of KN;ˇ as provided in [32] useful. Finally, the desired result is
obtained by controlling the s-dependence of the bound on (39) together with tail
estimates on �ˇ . Details of the proof can be found in [27].

7 Numerical Results

In addition to the analytical considerations that led to Theorem 4, the work [27]
also contains numerical experiments in MATLAB in order to determine the rate
of convergence in (38). We summarise some of the findings of [27] in the present
section.

We conduct our experiments for the three classical Gaussian ensembles GOE,
GUE, GSE and for general ˇ-ensembles with ˇ 2 f7; 15:5; 20g. We also include
real, complex and quaternionic Wigner matrices with i.i.d. entries that are drawn
e.g. from beta, poisson, exponential, uniform or chi-squared distributions. Observe
(see Sect. 3.1) that in all these cases the limiting spectral density  is given by the
Wigner semi-circle law. We may adapt the parameters such that the support of  is
the interval Œ�1; 1�.

A little thought shows that the localisation and rescaling procedure to define d
N
(see (8)) will not lead to an optimal and natural rate of convergence. Firstly, the
rate will depend on the number of eigenvalues, i.e. on the length of IN . Secondly,
the linear rescaling (6) is not optimal since the density  is approximated on all
of IN by the constant  .a/. A far better rescaling in this respect (but less suitable
for analytical considerations) is the so-called unfolding, that we explain now. Let
I � Œ�1; 1� D supp. / be an interval. Denote by

F.t/ :D 2

�

Z t

0

p
1 � s2�Œ�1;1�ds

the distribution function of the semi-circle law. The rescaling is then given by

Q�i :D NF.�i/:
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Fig. 1 Data set and best linear fit for ˇ-ensemble with ˇ D 4 and I D Œ�0:5; 0:5�

Observe that in an average sense

Q�iC1 � Q�i 
 NF 0.�i /.�iC1 � �i / 
 N .�i / 1

N .�i /
D 1:

The spacing distribution corresponding to the unfolded statistics is given by



.unf/
N .H/ :D 1

jfi W �i 2 I gj � 1
X

�i ;�iC12I
ıQ�iC1�Q�i :

We restrict our attention to intervals I D Œ�0:1I 0:1�, I D Œ�0:5I 0:5�, I D
Œ�0:75I 0:75� and some non-centred intervals such as I D Œ0:4I 0:6�

We provide numerical evidence for the claim that the leading asymptotic of the
considered expected Kolmogorov distance is CN�1=2, i.e.

EN :D EN;ˇ

�
sup
s2R

ˇ̌
ˇ̌
Z s

�1
d


(unf)
N .H/�

Z s

�1
d�ˇ

ˇ̌
ˇ̌
�
� CN�1=2 (40)

for some constant C that depends mildly on the chosen ensemble and on the choice
of I . In Figs. 1–3 we have plotted y :D � logEN against x :D logN . We see in
all three cases that our numerical approximations to y, obtained by Monte Carlo
simulations, cluster impressively close to a straight line

y.x/ � ax C b; i.e. EN � e�bN�a:

In all our experiments [27] we found a 2 Œ0:48I 0:53� and b 2 Œ�1; 0:5�, see also
Table 1.

One important issue in the numerical experiments is the approximation of the
liming measures �ˇ resp. their densities pˇ. For ˇ D 1; 2; 4 we use the MATLAB
toolbox by Bornemann (cf. [4]) for a fast and precise evaluation of the related gap
probabilities. Then we obtain the limiting densities pˇ by numerical differentiation.
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Fig. 2 Data set and best linear fit for ˇ-ensemble with ˇ D 20 and I D Œ0:4; 0:6�

Fig. 3 Data set and best linear fit for real Wigner matrices with unfolded statistics and beta
(2,5)-distributed entries and I D Œ�0:5; 0:5�
Table 1 Best fit straight lines for ˇ-ensembles with unfolded statistics

Ensemble Interval I Best linear fir

ˇ D 1 I D Œ0:7I 0:9� y D 0:5077x � 0:9758

ˇ D 2 I D Œ�0:1I 0:1� y D 0:4958x � 0:6325

ˇ D 4 I D Œ�0:75I 0:75� y D 0:4965x C 0:3356

ˇ D 7 I D Œ�0:1I 0:1� y D 0:4991x � 0:6357

ˇ D 15:5 I D Œ�0:5I 0:5� y D 0:4945x C 0:1765

ˇ D 20 I D Œ0:4I 0:6� y D 0:5042x � 0:7474

For ˇ 2 RC n f1; 2; 4g no such precise numerical schemes for the evaluation of pˇ
are available. Instead, we use the generalised Wigner surmise (see [22]), which is
only an approximation to the limiting distribution. One may wonder how one can
test numerically a limiting law without knowing its precise form. Looking at (40)
one notes that the numerics will not detect the replacement of

R s
�1 d�ˇ by an

approximation
R s

�1 d O�ˇ as long as their deviation is small compared to EN . As it
turns out, the Wigner surmise approximates the true limiting law well enough to
confirm (40) for the range of N and ˇ that we have tested. Moreover, since in all
our experimentsEN took values below 0:02 we may safely infer that the difference
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between the distribution functions of the Wigner surmise and the true distribution is
less than 0:01 for all values of ˇ that we have investigated, i.e. ˇ 2 f7; 15:5; 20g.
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15. Hurwitz, A.: Über die Composition der quadratischen Formen von beliebig vielen Variablen.
Nachr. Ges. Wiss. Göttingen, 309–316 (1898)
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Stein’s Method and Central Limit Theorems
for Haar Distributed Orthogonal Matrices:
Some Recent Developments

Michael Stolz

Abstract In recent years, Stein’s method of normal approximation has been applied
to Haar distributed orthogonal matrices by several authors. We give an introduction
to the relevant aspects of the method, highlight a few results thus obtained, and
finally argue that the quantitative multivariate central limit theorem for traces
of powers that was recently obtained by Döbler and the author for the special
orthogonal group remains true for the full orthogonal group.

1 Introduction

The observation that random matrices, picked according to Haar measure from
orthogonal groups of growing dimension, give rise to central limit theorems, dates
back at least to Émile Borel, whose 1905 result on random elements of spheres can
be read as saying that if the upper left entry of a Haar orthogonal n � n matrix is
scaled by

p
n, it converges to a standard normal distribution as n tends to infinity.

See [5] for more historical background. Borel’s observation may be seen as an early
result in random matrix theory, but it must be emphasized that from this point of
view it is rather atypical. In the best known random matrix models, such as the
Gaussian Unitary Ensemble (GUE) or Wigner matrices, the distributions of the
individual matrix entries are either known or subject to certain assumptions, and
one is interested in various global and local features of the eigenvalues of the random
matrix. On the other hand, for Haar orthogonal matrices or, more generally, for Haar
distributed elements of a compact matrix group, properties of the distributions of the
individual entries have to be inferred from the distribution of the matrix as a whole.
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Nevertheless, GUE matrices and Wigner matrices give rise to central limit
theorems in a different way: If Mn is an n � n GUE matrix, say, with (necessarily
real) eigenvalues �1; : : : ; �n, then the empirical eigenvalue distribution

Ln WD Ln.Mn/ WD 1

n

nX

jD1
ı�j

is known to converge to Wigner’s semicircular distribution 
 in various senses. Then
for suitable real valued test functions f the fluctuation

n

�Z
fdLn � E

�Z
fdLn

��

tends to a Gaussian limit as n!1, see, e.g., [17].
This type of question also makes sense for Haar distributed matrices from a

compact group. For the unitary group, the uniform distribution on the unit circle
T of the complex plane replaces the semicircular distribution. If f W T ! R is
continuous and of bounded variation, then the fluctuation on the unitary group has
a pointwise expression

n.Ln.f /� E.Ln.f /// D f .�n1/C : : :C f .�nn/� n Of .0/ (1)

D
1X

jD1
Of .j /Tr.M j

n /C
1X

jD1
Of .j /Tr.M j

n /:

This expansion shows that if f is a trigonometric polynomial, a CLT for fluctuations
will be equivalent to a CLT for random vectors of the form

.Tr.Mn/;Tr.M2
n /; : : : ;Tr.Md

n //:

This CLT was established in the famous paper of Diaconis and Shahshahani [7]
from 1994 that turned traces of powers into a popular subject in the theory of
Haar distributed matrices. It was used as a stepping stone for the treatment of more
general test functions by Diaconis and Evans [6] in 2001.

Diaconis and Shahshahani proved their theorem using the method of moments.
In the orthogonal case, in which the reasoning above remains true with some caveats,
it turned out that the moment

E
�
.Tr.Mn//

a1.Tr.M2
n //

a2 : : : .Tr.Md
n //

ad
	

actually coincided with the corresponding moment of the Gaussian limit distribution
(to be described in Lemma 4 below) as soon as
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2n � ka WD
dX

jD1
jaj (2)

(see [29] for the threshold given here). This led Diaconis to conjecture that the speed
of convergence should be rather fast. Subsequently, only a few years later, Stein [28]
proved superpolynomial, and Johansson [15] finally exponential convergence.

During the last decade several authors, certainly inspired by Stein’s paper,
have turned to the broader approach to normal approximation that bears the name
“Stein’s method” to investigate the speed of convergence in various CLTs for
Haar orthogonals (and Haar distributed elements of other compact matrix groups),
obtaining worse rates of convergence, but a wider range of results. It is the aim
of this survey paper to introduce the relevant techniques, present some results on
the linear combinations and traces of powers problems, and extend the multivariate
traces of powers result from the special orthogonal to the full orthogonal group.

2 Univariate Normal Approximation via Stein’s Method

Consider random variables W and Z, with distributions P and Q, respectively.
A useful recipe to quantify the distance between P and Q is to choose a family H
of test functions and define

dH .P;Q/ WD sup
h2H
jE.h.W //� E.h.Z//j:

Well-known examples are H D f1��1;z� j z 2 Rg, giving rise to the Kolmogorov
distance

dH .P;Q/ D sup
z2R
jP.W � z/ � P.Z � z/j;

and H D fh W R
d ! R;Lipschitz with constant � 1g; which defines the

Wasserstein distance.
Stein’s method, developed by Charles Stein since the early 1970s (see [26]),

serves to bound distances of this type. Stein himself developed his method for
normally distributed Z, his student L.H.Y. Chen developed a parallel theory for the
Poisson distribution, see [1] for a monographic treatment. Nowadays, the methods
for normal and Poisson limits are still the best developed instances of Stein’s
approach, but progress has been made on other distributions as well (see, e.g., [3]
and [9]). In accordance with the nature of the limit theorems to be discussed in this
survey, we will focus on the normal case and start with a sketch of the case of a
univariate normal distribution. A much more detailed picture of the fundamentals
(and a lot more) of Stein’s method of normal approximation can be found in the
recent textbook [4].
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Write ' for the density of the univariate standard normal distribution. Since ' is
strictly positive, for h measurable and Ejh.Z/j <1 we may define

fh.x/ WD 1

'.x/

Z x

�1
.h.y/� E.h.Z/// '.y/ dy:

Then it can be verified by partial integration that fh solves the Stein equation

f 0.x/ D xf .x/C h.x/ � E.h.Z//:

For Z a standard normal random variable and W such that h.W / is integrable for
all h 2H , this implies that

jE.h.W // � E.h.Z//j D jE.f 0
h.W // � E.Wfh.W //j: (3)

So to bound the distance, defined by the class H of test functions, between the
law of W and the standard normal distribution, which is the law of Z, it suffices
to bound the right hand side of the last equation for all Stein solutions fh, where h
runs over H . Note that this right-hand side involves only W , not Z. A crucial fact
to be used in what follows is that estimates on fh and its first and second derivatives
are available that require only little information about h. To be specific, one has that
if h is absolutely continuous, then

(i) kfhk1 � 2kh0k1.
(ii) kf 0

hk1 �
p
2=� kh0k1:

(iii) kf 00
h k1 � 2kh0k1:

Actually there are several approaches to bound the right-hand side of (3), see, e.g.,
[23]. The orthogonal group examples will use “exchangeable pairs”, a device that
was introduced by Stein in his monograph [27] of 1986. To illustrate the main ideas
of this variant of the method, we will extract a few steps from an argument that Stein
provided in his book.

An exchangeable pair is a pair .W;W 0/ of random variables, defined on the same
probability space and taking values in the same state space, such that .W;W 0/ and
.W 0;W / have the same distribution. An elementary, but crucial, consequence is that

E g.W;W 0/ D 0

for any antisymmetric function g defined on pairs of elements of the state space.
For concreteness, we assume for now that W and W 0 are real-valued. In later
applications they will be elements of a finite dimensional real vector space.

One further condition that has to be imposed on .W;W 0/ is that there exist 0 <
� < 1 such that

E.W 0jW / D .1 � �/W:
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This “regression condition” is quite natural in the context of normal approximation,
since it is known to hold if .W;W 0/ has a bivariate normal distribution. Actually, it is
desirable to weaken the condition to the effect that the regression property needs to
hold only approximately, and indeed this may be done, as shown by Rinott and Rotar
in [25]. But for our purely illustrative purposes, we assume the condition as it stands.

Since � is assumed to lie strictly between 0 and 1, W , W 0 must be centered, as

E.W / D E.W 0/ D E.E.W 0jW // D E..1 � �/W / D .1� �/E.W /:

Making the specific choice

g.x; y/ WD .x � y/.f .x/C f .y//

of an antisymmetric function, where f is a function that will be specialized to a
Stein solution later on, one obtains that

0 D E..W �W 0/.f .W /C f .W 0//

D E..W �W 0/.f .W 0/� f .W //C 2E..W �W 0/f .W //

D E..W �W 0/.f .W 0/� f .W //C 2E.f .W /E..W �W 0/jW //
D E..W �W 0/.f .W 0/� f .W //C 2�E.Wf .W //:

From this one concludes that

E.Wf .W // D 1

2�
E..W �W 0/.f .W / � f .W 0//

D 1

2�
E

�Z W

W 0

.W �W 0/f 0.t/dt

�

D 1

2�
E

�Z 0

�.W�W 0/

f 0.W C t/.W �W 0/dt

�

D 1

2�
E

�Z

R

f 0.W C t/K.t/dt

�
;

where

K.t/ D .W �W 0/
�
1f�.W�W 0/�t�0g � 1f0<t��.W�W 0/g

	
:

On the other hand, a similar argument yields

E.f 0.W // D E

�
f 0.W /.1 � 1

2�
E..W �W 0/2jW /

�
C 1

2�
E

�Z

R

f 0.W /K.t/dt

�
:
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Assume h Lipschitz with minimal constant kh0k1, and choose the Stein solution fh
in the place of f . Then it follows from the above that

jE.h.W //� E.h.Z//j D jE.f 0
h .W //� E.Wfh.W //j

� E

ˇ̌
ˇ̌f 0
h .W /

�
1 � 1

2�
E..W �W 0/2jW /

�ˇ̌
ˇ̌

C 1

2�
E

�Z

R

jf 0
h.W /� f 0

h.W C t/jK.t/dt

�
:

Observing that

jf 0
h.W / � f 0

h .W C t/j � kf 00
h k1jt j � 2kh0k1jt j

and recalling the bound

kf 0
hk1 � .2=�/kh0k1

on the solutions of Stein’s equation, one finally arrives at a bound

jE.h.W //�E.h.Z//j

� 2

�
kh0k1 E

�ˇ̌
ˇ̌1� 1

2�
E..W �W 0/2jW /

ˇ̌
ˇ̌
�
C kh

0k1
2�

E.jW �W 0j3/:

Since this bound in particular holds for all 1-Lipschitz functions h, this means that
the Wasserstein distance between the distribution ofW and the standard normal law
has been bounded from above by the expression

2

�
E

�ˇ̌
ˇ̌1 � 1

2�
E..W �W 0/2jW /

ˇ̌
ˇ̌
�
C 1

2�
E.jW �W 0j3/: (4)

This is a crude version of a bound. In the proofs of the orthogonal group results to
be presented in what follows, more elaborate results will be required. In particular,
in a situation which exhibits continuous rather than discrete symmetries, such as
in a Lie group context, it may be an advantage to consider a continuous family
of exchangeable pairs simultaneously, yielding theorems of the type given in
Proposition 1 below. Nonetheless, the proof of the present crude version illustrates
how the exchangeability condition and the regression condition fit together.

It should be noted that there is no guarantee at all that (4) will yield a reasonable
bound. The true challenge is to find an exchangeable pair such that the moments of
W �W 0 which appear in (4) get small in the relevant limit, satisfying a regression
condition for which � does not become too small in this limit.
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3 Stein’s Method in the Multivariate Case

Against the backdrop of the sketch of univariate normal approximation that has been
provided above, it does not seem straightforward to extend Stein’s approach to the
multivariate case. For instance, it is not obvious which differential operator should
be used to construct a Stein equation. The most popular choice is the Ornstein-
Uhlenbeck (OU) generatorL D ��x � r. To see that it serves this purpose, denote
by .Tt / the operator semigroup corresponding to the OU process in R

d , and by �d
the d -dimensional standard normal distribution. It is known that the OU process is
stationary w.r.t. �d . Hence, for f from a suitable class of test functions, one has that

d

dt

Z
Tt fd�d D 0;

hence
Z
Lfd�d D 0:

This observation was exploited by Götze [13] in 1991 in his treatment of the
multivariate CLT in euclidean space. On the other hand, a multivariate version of
the exchangeable pairs method is only a recent achievement. The handy version that
will be presented below, due to E. Meckes [20], builds upon her previous joint work
with Chatterjee [2] from 2008 as well as on a paper of Reinert and Röllin [24] that
appeared in 2009.

For a vector x 2 R
d let kxk2 denote its euclidean norm induced by the

standard scalar product on R
d that will be denoted by h�; �i. For A;B 2 R

d�k let
hA;BiHS WD Tr.ATB/ D Tr.BTA/ D Tr.ABT / DPd

iD1
Pk

jD1 aij bij be the usual

Hilbert-Schmidt scalar product on R
d�k and denote by k � kHS the corresponding

norm. For random matricesMn;M 2 R
k�d , defined on a common probability space

.˝;A ;P/, we will say that Mn converges to M in L1.k � kHS/ if kMn � M kHS

converges to 0 in L1.P/:
For A 2 R

d�d let kAkop denote the operator norm induced by the euclidean
norm, i.e., kAkop D supfkAxk2 W kxk2 D 1g: We now state a multivariate normal
approximation theorem, due to E. Meckes ([20, Theorem 4]) that has been used
in [10] to treat the multivariate CLT for traces of powers of Haar orthogonals.Z D
.Z1; : : : ; Zd /

T denotes a standard d -dimensional normal random vector,˙ 2 R
d�d

a positive definite matrix and Z˙ WD ˙1=2Z with distribution N.0;˙/.

Proposition 1. Let W;Wt.t > 0/ be R
d -valued L2.P/ random vectors on the

same probability space .˝;A ;P/ such that for any t > 0 the pair .W;Wt / is
exchangeable. Suppose there exist an invertible non-random matrix �, a positive
definite matrix ˙ , a random vector R D .R1; : : : ; Rd /

T , a random d � d -matrix
S , a sub-
-field F of A such that W is measurable w.r.t. F and a non-vanishing
deterministic function s W �0;1Œ! R such that the following three conditions are
satisfied:
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1

s.t/
EŒWt �W jF �

t!0�! ��W CR in L1.P/: .i/

1

s.t/
EŒ.Wt �W /.Wt �W /T jF �

t!0�! 2�˙ C S in L1.k � kHS/: .ii/

lim
t!0

1

s.t/
E

h
kWt �W k22 1fkWt�W k22>�g

i
D 0 for each � > 0: .iii/

Then

dW .W;Z˙/ � k��1kop

�
EŒkRk2�C 1p

2�
k˙�1=2kop EŒkSkHS�

�
: (5)

It should be remarked that the more complete statement of this theorem given in
[20, Theorem 4] also treats the case that ˙ is only positive semidefinite.

4 Exchangeable Pairs and Quantitative Borel Type
Theorems

As mentioned in the introduction, the historical precursor of CLTs for Haar
distributed orthogonal matrices is Borel’s result about the first coordinate of a
random unit vector in euclidean space. This result is a special case (for A.n/

specialized to a matrix with 1 in the .1; 1/ coordinate and 0 elsewhere) of the
following result, due to D’Aristotile, Diaconis, and Newman [5]:

Theorem 1. For n 2 N choose (deterministic) A.n/ 2 R
n�n such that

Tr.A.n/.A.n//0/ D n and let Mn 2 On be distributed according to Haar measure.
Then Tr.A.n/Mn/ converges in distribution to N.0; 1/ as n tends to infinity.

Quantitative versions of this result, both with a rate of order 1
n�1 in total variation

distance and with only slightly different constants, have been proven by E. Meckes
in [19] and by Fulman and Röllin in [12]. In both papers the method of exchangeable
pairs is applied, but the specific exchangeable pairs are quite different. Meckes uses
a family .W;W�/, where W D Tr.AM/ and W� D Tr.AM�:/ Here, for any � > 0,
the matrix M� is defined by M� D HB�H

TM , where H is a Haar orthogonal
independent of M , and

B� D

0
BBBBBB@

p
1 � �2 �

�� p1 � �2 0

1

0
: : :

1

1
CCCCCCA
:



Stein’s Method and Central Limit Theorems for Haar Distributed Orthogonal . . . 81

Fulman and Röllin, on the other hand, obtain a family .Tr.AM0/;Tr.AMt// (t >0)
of exchangeable pairs from a Brownian motion on On that is started in Haar
measure, which is the stationary distribution of this process. This construction will
be explained more carefully below in the context of the multivariate CLT for traces
of powers.

5 Exchangeable Pairs and Vectors of Traces of Powers

Let M DMn be distributed according to Haar measure on Kn D SOn orKn D On.
For d 2 N; r D 1; : : : ; d , consider the r-dimensional real random vector

W WD W.d; r; n/ WD .fd�rC1.M/; fd�rC2.M/; : : : ; fd .M//;

where

fj .M/ D
(

Tr.M j /; j odd;

Tr.M j / � 1; j even

Theorem 2. If Kn D SOn and n � 4d C 1 or Kn D On and n � 2d , the
Wasserstein distance between W and Z˙ is

dW .W;Z˙/ D O

0

@
max

n
r7=2

.d�rC1/3=2 ; .d � r/3=2
p
r
o

n

1

A : (6)

In particular, for r D d we have

dW .W;Z˙/ D O

�
d7=2

n

�
;

and for r � 1

dW .W;Z˙/ D O

�
d3=2

n

�
:

If 1 � r D bcdc for 0 < c < 1, then

dW .W;Z˙/ D O

�
d2

n

�
:

For the special orthogonal group this result is proven in [10] (where the conditions
on n in the special orthogonal and symplectic cases have been interchanged in the
statement of the main result). The main steps of this proof will be indicated in Sect. 6
below, where it will also be shown how to adapt this strategy of proof to On in the
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place of SOn. The univariate version of this theorem, including the construction of
the exchangeable pair that will be explained below, is due to Fulman [11].

Remark 1. In the case of a single fixed power, the rate of convergence in Theorem 2
is clearly significantly worse than the exponential rate that was obtained by
Johansson [15] in the context of limit theorems for Toeplitz determinants. The merit
of Theorem 2 may be seen in the fact that it is multivariate and that the powers under
consideration may grow with n. That the latter property yields practical benefits is
demonstrated by Döbler and the author in [8]. There this property is used to prove,
actually in the case of the unitary group, that the fluctuation of the linear eigenvalue
statistic in (1) will converge to a normal limit with a rate of O.n�.1��// for any � > 0
if the test function f is of class C1.

6 On the Proof of the Multivariate Traces of Powers Result

The aim of this section is to summarize the main steps of the proof of Theorem 2, as
provided in [10], for the special orthogonal group, and indicate how this argument
can be supplemented to yield a proof of the full orthogonal case.

The overall strategy is to apply Proposition 1 to the traces of powers problem.
To do so, one has to find a suitable family of exchangeable pairs. The following
construction has been proposed by Fulman in [11] to treat the univariate case. See
[14, Sect. V.4] for the relevant facts about diffusions on manifolds.

Let .Mt/t�0 be Brownian motion on the compact connected Lie group K D
SOn, started in the Haar measure �K on K , which is known to be its stationary
distribution. What is more, .Mt / is reversible w.r.t. �K . In particular, for any t > 0

and measurable f , .f .M0/; f .Mt// is an exchangeable pair. Let .Tt /t�0 be the
associated semigroup of transition operators on C2.K/ corresponding to .Mt/. Its
infinitesimal generator is the Laplace-Beltrami operator �, and the map .t; g/ 7!
.Ttf /.g/ satisfies the heat equation on K . Hence

Ttf .g/ D T0f .g/C t d

dt

ˇ̌
ˇ̌
tD0

Ttf .g/CO.t2/

D f .g/C t.�f /.g/C O.t2/; (7)

and basic Markov process theory yields an expansion that will be useful to establish
the regression property that is fundamental for applying the method of exchangeable
pairs:

EŒf .Mt /jM0� D .Ttf /.M0/ D f .M0/C t.�f /.M0/CO.t2/: (8)

To study traces of powers within this framework, it is useful to express them
via power sum symmetric polynomials. To this end, consider g 2 C

n�n with
eigenvalues c1; : : : ; cn (with multiplicities). Then
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Tr.gk/ D ck1 C : : :C ckn ;

i.e., the power sum symmetric polynomial pk D Xk
1 C : : : C Xk

n evaluated at
.c1; : : : ; cn/ 2 C

n. As pk is symmetric in its arguments, we may unambiguously
consider pk as a function on C

n�n. For k; l 2 N we write

pk;l .g/ WD pk.g/pl.g/ D Tr.gk/Tr.gl /;

which is but a special instance of the general definition of power sum symmetric
polynomials, as in [18]. Recalling the notation introduced in Sect. 5, we have that

fj .M/ D
(
pj .M/; j odd;

pj .M/� 1; j even.

Setting

W WD .fd�rC1.M/; fd�rC2.M/; : : : ; fd .M//

and

Wt WD .fd�rC1.Mt /; fd�rC2.Mt/; : : : ; fd .Mt//;

we see from the discussion above that for any t > 0 the pair .W;Wt / is
exchangeable.

We will have to verify that this family of exchangeable pairs satisfies the
regression property in the refined form of .i/, .ii/ from Proposition 1. Obviously,
the expansion (8) may be used to this end, as soon as one is able to describe the
action of the Laplacian on the polynomials pj in an explicit way. Fortunately, such
formulae are available from work of Rains [22] and Lévy [16]. The latter reference
provides a conceptual account of how they follow from an extension of Schur-Weyl
duality to the universal enveloging algebra of the Lie algebra ofK , hence to invariant
differential operators on K . In concrete terms, we have the following lemma:

Lemma 1. For the Laplacian�SOn on SOn,

�SOnpj D �
.n � 1/
2

jpj � j
2

j�1X

lD1
pl;j�l C j

2

j�1X

lD1
p2l�j : (i)

�SOnpj;k D �
.n � 1/.j C k/

2
pj;k � j

2
pk

j�1X

lD1
pl;j�l � k

2
pj

k�1X

lD1
pl;k�l

� jkpjCk C
j

2
pk

j�1X

lD1
pj�2l C k

2
pj

k�1X

lD1
pk�2l C jkpj�k:

(ii)



84 M. Stolz

The expansion (8) and Lemma 1 make it possible to identify the vector R and the
matrices� and S in Proposition 1. By way of illustration, one may argue as follows:

Lemma 2. For all j D d � r C 1; : : : ; d

EŒWt;j �Wj jM� D EŒfj .Mt /�fj .M/jM� D t �
�
� .n � 1/j

2
fj .M/C Rj CO.t/

�
;

where

Rj D �j
2

j�1X

lD1
pl;j�l .M /C j

2

j�1X

lD1
p2l�j .M/ if j is odd,

Rj D � .n � 1/j
2

� j
2

j�1X

lD1
pl;j�l .M /C j

2

j�1X

lD1
p2l�j .M/ if j is even.

Proof. First observe that always fj .Mt/ � fj .M/ D pj .Mt/� pj .M/, no matter
what the parity of j is. By (8) and Lemma 1

EŒpj .Mt/ � pj .M/jM� D t.�pj /.M/C O.t2/

D t
 
� .n � 1/j

2
pj .M/� j

2

j�1X

lD1
pl;j�l .M /

C j
2

j�1X

lD1
p2l�j .M/

!
CO.t2/ ;

and the claim follows from the definition of fj in the even and odd cases. ut
From Lemma 2 and the compactness of the groupK we conclude

1

t
EŒWt �W jM�

t!0�! ��W CR almost surely and in L1.P/ ;

where � D diag
�
.n�1/j
2

; j D d � r C 1; : : : ; d
�

and R D .Rd�rC1; : : : ; Rd /T .

Thus, Condition .i/ of Proposition 1 is satisfied, and we have identified � and R.
The verification of .i i/, and identification of ˙ and S , is based on the following
lemma, which is proven along the same lines as Lemma 2.

Lemma 3. For all j; k D d � r C 1; : : : ; d

EŒ.pj .Mt/ � pj .M//.pk.Mt/ � pk.M//jM� D t �jkpj�k.M/ � jkpjCk.M/
	CO.t2/:

With Lemma 3 in hand, we obtain that
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1

t
EŒ.Wt;j �Wj /.Wt;k �Wk/jM�D 1

t
EŒ.fj .Mt/� fj .M//.fk.Mt/� fk.M//jM�

D 1

t
EŒ.pj .Mt /� pj .M//.pk.Mt/ � pk.M//jM�

D jkpj�k.M/� jkpjCk.M/C O.t2/

t!0! jkpj�k.M/� jkpjCk.M/ a.s. and in L1.P/ ;

for all j; k D 1; : : : ; d . Noting that for j D k the last expression is j 2n�j 2p2j .M/

and that 2�˙ D diag..n � 1/j 2 ; j D d � r C 1; : : : ; d / we see that Condition
.i i/ of Proposition 1 is satisfied with the matrices˙ D diag.d � r C 1; : : : ; d / and
S D .Sj;k/j;kDd�rC1;:::;d given by

Sj;k D
(
j 2.1 � p2j .M//; j D k
jkpj�k.M/� jkpjCk.M/; j 6D k :

To proceed further, i.e., to verify Condition .iii/ of Proposition 1 and bound the right
hand side of (5), one has to be able to integrate products of traces of powers with
respect to Haar measure. Such formulae are available from the moment-based proof
of the CLT for vectors of traces of powers given by Diaconis and Shahshahani in
[7], and subsequent work. A version for the special orthogonal group, due to Pastur
and Vasilchuk [21], is as follows:

Lemma 4. If M D Mn is a Haar-distributed element of SOn, n � 1 � ka,
Z1; : : : ; Zr iid real standard normals, then

E

0

@
rY

jD1
.Tr.M j //aj

1

A D E

0

@
rY

jD1
.
p
jZj C �j /aj

1

A D
rY

jD1
fa.j /; (9)

where

fa.j / WD

8
ˆ̂̂
<

ˆ̂̂
:

1 if aj D 0;
0 if jaj is odd; aj � 1;
j aj =2.aj � 1/ŠŠ if j is odd and aj is even; aj � 2;
1CPbaj =2c

dD1 j d
�aj
2d

	
.2d � 1/ŠŠ if j is even; aj � 1:

Here we have used the notations .2m � 1/ŠŠ D .2m � 1/.2m� 3/ � : : : � 3 � 1;

ka WD
rX

jD1
jaj ; and �j WD

�
1; if j is even;
0; if j is odd:
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Using Lemma 4, it is tedious, but straightforward, to complete the proof of
Theorem 2 in the special orthogonal case.

It should be evident from this sketch that an extension of Theorem 2 to the full
orthogonal group will be proven once one has extended the construction of the
exchangeable pair in a way that preserves the expansion (8), and verified the validity
of Lemma 1 for the full orthogonal group. Lemma 4 for the full orthogonal group is
due to Diaconis and Shahshahani [7], and the condition on n can be even weakened
to 2n � ka as a consequence of the invariant-theoretic proof given in [29] (which
does not directly carry over to the special orthogonal group).

In a nutshell, the arguments involving the Laplacian extend to the full orthogonal
group because the special orthogonal group is the connected component of the full
orthogonal group that contains the identity. Consequently, both groups share the
same Lie algebra, and the action of one-parameter semigroups, hence of differential
operators, can be extended from SOn to On in a canonical way. Although this has
already been briefly discussed by Fulman and Röllin [12] in the context of linear
functions of matrix entries, it is perhaps useful to close this survey by expanding a
bit on this argument in the present situation.

The full orthogonal group has two connected components, consisting of orthog-
onal matrices of determinant 1 and �1, respectively. Writing J for the diagonal
matrix diag.�1; 1; 1; : : : ; 1/, the connected components of the group K WD On are
the cosets KC WD SOn and K� WD JSOn. For any f 2 C.K/ denote by fC 2
C.KC/ and f� 2 C.K�/ its restrictions to KC and K�, respectively. Then we may
extend the family .Tt / of transition operators from C.KC/ to C.K/ by requiring that
for f 2 C.K/ there hold .Ttf /C D Tt.fC/ and .Ttf /� D Tt.f� ı �J / ı �J , where
�J is the left translation .x 7! Jx/. To verify that the process that corresponds
to the extended semigroup is reversible w.r.t. Haar measure, one deduces from the
invariance of Haar measure under translations and from reversibiliy of the process
on the special orthogonal group that for f; g 2 C.K/ one has

Z

K�

.Ttf /�.x/ g�.x/ �K.dx/ D
Z

K�

..Tt .f� ı �J // ı �J /.x/ g�.x/ �K.dx/

D
Z
1KC

.Jx/ ..Tt .f� ı �J //.Jx/ g�.x/ �K.dx/

D
Z

KC

.Tt .f� ı �J //.x/ g�.Jx/ �K.dx/

D
Z

KC

.f� ı �J /.x/ Tt .g� ı �J /.x/ �K.dx/

D
Z

K�

f�.x/ .Tt .g� ı �J // ı �J /.x/ �K.dx/

D
Z

K�

f�.x/ .Ttg/�.x/ �K.dx/:
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Since a Laplacian is invariant under translations, the action of � D �KC
on C2.K/

in particular satisfies

�.f ı �J / D .�f / ı �J : (10)

So we have that for any x 2 K�

d

dt
.Ttf /�.x/ D d

dt
Tt.f� ı �J /.Jx/ D �.f� ı �J /.Jx/ D �.f�/.x/:

That Lemma 1 extends to the full orthogonal group is a direct consequence of (10).
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Large Deviation Tail Estimates and Related
Limit Laws for Stochastic Fixed Point Equations

Jeffrey F. Collamore and Anand N. Vidyashankar

Abstract We study the forward and backward recursions generated by a stochastic

fixed point equation (SFPE) of the form V
dD AmaxfV;DgCB , where .A;B;D/ 2

.0;1/ � R
2, for both the stationary and explosive cases. In the stationary case

(when EŒlog A� < 0/, we present results concerning the precise tail asymptotics
for the random variable V satisfying this SFPE. In the explosive case (when
EŒlog A� > 0/, we establish a central limit theorem for the forward recursion
generated by the SFPE, namely the process Vn D An maxfVn�1;Dng C Bn, where
f.An; Bn;Dn/ W n 2 ZCg is an i.i.d. sequence of random variables. Next, we
consider recursions where the driving sequence of vectors, f.An; Bn;Dn/ W n 2
ZCg, is modulated by a Markov chain in general state space. We demonstrate an
asymmetry between the forward and backward recursions and develop techniques
for estimating the exceedance probability. In the process, we establish an interesting
connection between the regularity properties of fVng and the recurrence properties
of an associated 	-shifted Markov chain. We illustrate these ideas with several
examples.
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G. Alsmeyer and M. Löwe (eds.), Random Matrices and Iterated Random Functions,
Springer Proceedings in Mathematics & Statistics 53,
DOI 10.1007/978-3-642-38806-4 5, © Springer-Verlag Berlin Heidelberg 2013

91

mailto:collamore@math.ku.dk
mailto:avidyash@gmu.edu


92 J.F. Collamore and A.N. Vidyashankar

1 Introduction

In this article, we consider stochastic fixed point equations (SFPE) of the form

V
dD f .V /; (1)

where f is a known random function and V is an unknown random variable in
R, independent of f . Such equations arise in a variety of applications, ranging
from collective risk theory, queuing theory, financial time series modeling, and life
insurance mathematics, to problems in branching processes and computer science.
In these applications, it is often of interest to describe the tail behavior of the random
variable V in (1).

Early work on this problem can be traced to the celebrated paper of Kesten [22],
who considered the linear recursion

V
dD AV C B; .A;B/ 2 R

2; (2)

in a higher dimensional setting, and applied the results to describe the tail behavior
of certain martingale limits that arise in multi-type branching processes in random
environments. In this context, he showed that if E Œlog A� < 0 (hereafter referred to
as the stationary case) and appropriate regularity conditions are satisfied, then

P fV > ug � Cu�	 as u!1; (3)

where 	 is the nonzero solution to the equation E
�
A	
� D 1. This result was later

extended in R
1 to more general recursions by Goldie [19]; see Sect. 2.1 below.

Identifying and characterizing the constant C in (3) is much more of a delicate
affair compared to the problem of characterizing 	. While 	 only depends on the
multiplicative factor A of the given recursion, the value of the constant C depends
on the pair .A;B/ in (2) or, more generally, on the function f in (1). For the linear
recursion (2), a nonrigorous approach—following earlier work by Yakin and Pollak
[34] on likelihood ratio testing and sequential change point problems in statistics—
was suggested in [32]. Quite recently, a rigorous solution was provided in [17] for
the linear recursion (2) and independent random variablesA and B using a coupling
argument. A rigorous probabilistic solution—which holds for a general class that
subsumes the models considered in Goldie [19]—was recently developed by the
authors in [9].

In this article, we begin by giving a characterization of the constant C in the

stationary case for the SFPE V
dD AmaxfV;Dg C B and its extension to random

maps. Next, we study the forward recursion Vn WD An maxfVn�1;Dng C Bn in
the explosive case; that is, when E Œlog A� > 0. We show that .Vn=Pn/ ! W as
n!1 w.p. 1 for a certain random variablePn and establish a central limit theorem
for Vn. Finally, we provide a nontrivial extension of the results in [9] to the Markov
case; that is, the case when f.An; Bn;Dn/ W n D 1; 2; : : :g is a Markov sequence
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and Vn WD An maxfVn�1;Dng C Bn (or a related backward recursion as described
in Sects. 2.1 and 3.1 below). While Markovian extensions of Goldie’s [19] result
have been considered in [30] for the linear recursion (2) and in [8] for a wider
class of backward recursions, a unified treatment encompassing an estimate for the
pair .C; 	/ has not been systematically given. Here we present a unified approach,
which builds upon work developed by the authors in [9] and earlier work of one
of the authors in [8]. A key idea that facilitates this unification is the observation
that, if the sequence f.An; Bn/ W n D 1; 2; : : :g possesses a regenerative structure,
then the process fVn W n D 0; 1; : : :g inherits this regenerative property and the
original forward recursion of the SFPE can be expressed as a forward recursion of
another SFPE (but belonging to the same class of SFPEs under investigation); i.e., a
forward recursion with a different driving sequence. A similar result also holds for
the case of backward sequences. Expectedly, the driving sequence will now involve
the regeneration times of the modulating Markov sequence.

We illustrate our results with a variety of examples drawn from insurance,
financial mathematics, branching processes, and statistical inference.

2 Recursions Driven by i.i.d. Sequences

2.1 The Stationary Case

Our starting point is the SFPE

V
dD f .V / � FY .V /; (4)

where FY .V / � F.V; Y / for some deterministic function F W R � R
d ! R,

assumed throughout the article to be measurable and to be continuous in its first
component. In this representation, the random function f is determined by an
environmental random vector Y and independent of V . Moreover, we implicitly
assume the shape condition

FY .v/ D Av C o.v/ a.s. as v !1; (5)

where A takes values on the positive real axis. In the following discussion, we will
assume without loss of generality that Y D .log A; Y 0/ for some Y 0 2 R

d�1.
To assure that (4) has a stationary solution, we need the multiplicative factor

A in (5) to be contracting; that is, E Œlog A� < 0. Let �.˛/ WD EŒA˛� and
�.˛/ WD log�.˛/ denote the moment generating function and the cumulant
generating function of the random variable (r.v.) log A, respectively, where ˛ 2 R.
Also, let �A denote the probability distribution of A. For any function g, let dom.g/
denote the domain of g. We assume

E
�
A	
� D 1; for some 	 2 .0;1/\ dom�0: (6)
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To determine the tail behavior of V , one approach is to observe that the SFPE (4)
induces a renewal equation. Namely,

e	vP fV > evg D e	v
n
P fV > evg�P fAV > evg

o
Ce	v

Z

R

P fV > ev�xg�A.dx/:

Hence, setting Z.v/ D e	vP fV > evg and z.v/ equal to the first term on the right-
hand side of the previous equation, we obtain that

Z.v/ D z.v/CZ � �A;	 .v/; where �A;	 .dx/ D e	x�A.dx/; (7)

which is closely related to the renewal equation. Thus, if we knew that the function
z were directly Riemann integrable, then the renewal theorem could be invoked
to obtain that Z.v/ ! C as v ! 1 and, consequently, P fV > ug � Cu�	 as
u!1.

Typically, it is impossible to verify that z is directly Riemann integrable.
However, this assumption can be avoided by using a smoothing argument introduced
in [19]. This techniques yields the following very general theorem, proved by Goldie
([19], Theorem 2.3), building upon the previous work of Kesten [22].

Theorem 1. Assume that there exists a nonnegative random variable A which is
nonarithmetic and satisfies (6), and assume that

E
hˇ̌
ˇ
�
f .V /C

		 � �.AV /C		
ˇ̌
ˇ
i
<1:

Then

lim
u!1 u	P fV > ug D C; (8)

where

C D 1

	�0.	/
E
h�
f .V /C

		 � �.AV /C		
i
: (9)

While this estimate is easily obtained from the renewal theorem under weak
assumptions, this approach has certain limitations. For instance, it is not possible to
establish the finiteness and positivity of the constant C without further assumptions.
Furthermore, the expression for C in (9) is defined in terms of V and, thus, is
not particularly fruitful in practical problems. A useful characterization in terms
of the forward process fVng in (10) below would, in particular, facilitate statistical
inference and numerical procedures such as importance sampling.

To address the above difficulties associated with (9), an alternative approach was
recently developed in Collamore and Vidyashankar [9]. This approach is based on
the observation that the process Vn WD FYn.Vn�1/ (obtained via forward iterations of
the SFPE, see below) is Markovian and behaves like a multiplicative random walk



Large Deviation Tail Estimates and Related Limit Laws for SFPEs 95

for large values of Vn�1. Thus, we may use nonlinear renewal theory to characterize
this process for “large” Vn�1, and then adapt methods from Markov chain theory to
quantify the discrepancy between these two processes.

To describe this approach, we first need to introduce the forward and backward
sequences generated by a given SFPE. Let fYn W n D 1; 2; : : :g be an i.i.d. sequence
having the same probability law as Y in (4). The forward sequence fVng is defined
by

Vn.v/ D FYn ı FYn�1 ı � � � ı FY1.v/; n D 1; 2; : : : ; V0 D vI (10)

while the backward sequence fZng is defined by

Zn.z/ D FY1 ı FY2 ı � � � ı FYn.z/; n D 1; 2; : : : ; Z0 D z: (11)

The Furstenberg-Letac principle states that—although the sample paths of the
forward and backward sequences are manifestly different—the forward sequence
converges in distribution to a random variable V provided that the backward
sequence converges a.s. to a random variable Z and is independent of the initial
value; furthermore, the distributions of V and Z are the same [18,23]. This leads to
the issue of determining which sequence—the forward or backward sequence—is
more amenable for analysis, and this, of course, is problem-dependent. In Collamore
and Vidyashankar [9], it is suggested that the forward sequence is preferable for
understanding the tail behavior of V described by Theorem 1, and this approach
also appears advantageous for the Monte Carlo simulation of these probabilities
(cf. [10]). Generally speaking, the advantage of the forward sequence is that this
process is a recurrent Markov chain and hence has useful ergodic properties (while
the backward sequence converges a.s., which is useful when analytic, rather than
probabilistic, methods are employed).

We now specialize to the quasi-linear recursion

V
dD FY .V /; FY .v/ D Amax fv;Dg C B; (12)

where Y � .log A;B;D/ 2 R
3. This SFPE is often called “Letac’s Model E”

and, as we will see in Sect. 2.3, has wide applied relevance. This class of models is
roughly equivalent to the class considered by Goldie in [19].

First introduce the following regularity conditions.

Hypotheses:

.H0/ The random variable A has an absolutely continuous component with respect
to Lebesgue measure with a nontrivial density in a neighborhood of R.

.H1/ �.	/ D 0 for some 	 2 .0;1/\ dom .�0/.

.H2/ E
�jBj	� <1 and E

�
.AjDj/	 � <1.

.H3/ P fA > 1;B > 0g > 0 or P fA > 1;B � 0;D > 0g > 0.
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Let PV denote the transition kernel of fVng. Also, let B.Rd / denote the Borel
sets on R

d , d � 1. Then under Hypotheses .H0/, .H1/, and .H2/, the forward
process fVng is a Markov chain satisfying the minorization condition

ı1C .v/�.E/ � PV .v;E/; v 2 R; E 2 B.R/; (M )

where ı is a positive constant, C a nontrivial set in R, and � a probability measure;
see [9], Lemma 5.1. Hence by a classical result of Athreya and Ney [4] and
Nummelin [28], it follows that the forward process fVng admits a regeneration
structure. More precisely, we can find a sequence of independent times 0 � T0 <

T1 < � � � such that:

(i) �i WD Ti � Ti�1 is an i.i.d. sequence, i 2 ZC;
(ii) fVTi�1 ; : : : ; VTi�1g form independent blocks, i 2 ZC;

(iii) VTi � �, independent of its past.

Let � denote a typical regeneration time, that is to say, the first regeneration time
assuming that regeneration has occurred at time zero. Then by Nummelin [29],
p. 75, it follows as a consequence of the regeneration lemma that

P fV > ug D E ŒNu�

E Œ� �
; where Nu WD

��1X

nD0
1.u;1/.Vn/: (13)

In particular, Nu counts the number of exceedances of fVng occurring over a
single regeneration cycle, and this number tends to zero as u!1. Thus fNu > ug
is a rare event, and quantifying E ŒNu� for large u is a large deviation problem. It
is natural to characterize this probability using a change of measure of the driving
sequence fYng in (12).

Let � denote the probability law of Y � .log A;B;D/, and let 	 be given as in
(6), and define

�	.E/ D
Z

E

e	xd�.x; y; z/; E 2 B.R3/: (14)

Then �	 is itself a probability measure and, with respect to this measure, we easily
obtain that the process fVng is transient ([9], Lemma 5.2). Set Tu D inffn W Yn > ug,
and consider the dual change of measure:

L
�

log An;Bn;Dn

	 D
�
�	 for n D 1; : : : ;Tu;

� for n > Tu:
(15)

Let EDŒ�� denote the expectation with respect to this dual measure and E	 Œ�� denote
the expectation with respect to �	 .

To estimate EDŒNu�, it is helpful to observe that this expectation splits into two
parts, one describing the “short term” behavior over a regeneration cycle, and the
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other describing the “long term” behavior. By Collamore and Vidyashankar [9],
Proposition 6.1, conditional on V0 � �, we have that as u!1,

E ŒNu� � E	
�
W 	1f�D1g

� � u�	ED

"
Nu

�
VTu

u

��	#
; (16)

where W WD limn!1 Vn=.A1 � � �An/. It is worth noting that in a wide variety of
examples, including all of the examples in Sect. 2.3 below, the random variable W
reduces to the perpetuity sequence

W D V0 C B1

A1
C B2

A1A2
C � � � ;

which, in (16), is killed upon regeneration of the transient process fVng.
Notice that under the shape condition (5), the process fVng resembles a multi-

plicative random walk when this process is far away from the origin. Moreover, the
exceedance probabilities for the multiplicative random walk are well-known from
classical risk theory (cf. [2]) and for perturbed random walks from nonlinear renewal
theory (cf. [33]). Trivially, in (16),

.VTu=u/�	 D exp f�	 .logVTu � log u/g ;

where the exponent on the right-hand side describes the overjump of the perturbed
random walk flog.Vn _ 1/g over a barrier at level log u. Consequently, using
extensions of results from [33], the second quantity on the right-hand side of (16)
can be identified, as u ! 1, as u�	EŒN �

u �, where N �
u denotes the number of

exceedances above level log u which occur for the random walk Sn DPn
iD1 log Ai

over its regeneration cycle, that is to say, over a cycle starting at the origin and
continuing until time �� D inffn W Sn � 0g. Thus, the first term on the right of (16)
describes the discrepancy between the decay constant arising for the process fVng
and that arising for the corresponding multiplicative random walk.

To make these ideas rigorous, set A0 D 1 and B0 � � (where � is given as in
.M //. Now define the perpetuity sequence associated with fVng by

Z.p/
n D

nX

iD0

Bi

A0 � � �Ai ; n D 0; 1; : : : ; (17)

and define the conjugate sequence associated with fVng by

Z.c/
n D min

(
Z.p/
n ; 0;

n̂

kD1

k�1X

iD0

Bi

A0 � � �Ai �
Dk

A0 � � �Ak�1

)
: (18)
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It is easily seen that both of these quantities are backward sequences in the sense of
(11); specifically, (17), resp. (18) are generated by the recursions

F
.p/
Y .v/ D v

A
C B

A
and F

.c/
Y D

1

A
min

n LD; v
o
C B

A
;

where LD0 WD �B0 and LDi WD �AiDi � Bi for i D 1; 2; : : : :
Our main result in this section is the following:

Theorem 2. Assume (12), and suppose that .H0/, .H1/, .H2/, and .H3/ are
satisfied. Then

lim
u!1 u	P fV > ug D C (19)

for a finite positive constant C . Moreover, C D limn!1Cn, where

Cn D 1

	�0.	/EŒ� �
E	

���
Z.p/
n �Z.c/

n

	C�	
1f�>ng

�
; (20)

and Rn WD C � Cn D o.e��n/ as n!1; for some � > 0.

For the proof of Theorem 2, see [9]. In particular, nonnegativity of the constant
follows immediately from .H3/ and the fact that zero is contained in the collection
minimized on the right-hand side of (18).

As demonstrated in [9], this method generalizes to a number of related problems.
For example, it is shown that the method yields a useful upper bound, akin
to the Lundberg inequality from insurance mathematics. Moreover, the method
provides a simple characterization for the extremal index of fVng (thus producing a
considerable simplification of that developed for the special case of the ARCH(1)
process in [15]). For details, see [9], Sect. 2.3.

Finally, the results can be generalized to a wider class of SFPEs. The main
assumptions needed are the presence of a cancellation condition, namely

Amaxfv;D�g CB� � f .v/ � Amaxfv;Dg C B;
together with the Lipschitz condition

sup
v¤w

jf .v/ � f .w/j
jv � wj D L; EŒlog L� < 0;

where the approximating Letac models appearing in the cancellation condition are
assumed to satisfy .H0/–.H3/. Then we obtain a complete analog of Theorem 2,
although the constant C is now expressed recursively and hence does not assume a
simple analytical form. For details, see [9], Sect. 2.4.
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2.2 The Explosive Case

While the previous section was concerned with the stationary case, namely when
E Œlog A� < 0, in this section we present new results for the case E Œlog A� � 0.
Note by Jensen’s inequality that E ŒA� � 1, and by the non-degeneracy of A it
follows that E ŒA� > 1. Our first result concerns the distributional behavior of logVn
when 1 < E ŒA� <1. In the following, we denote the variance of a random variable
A by Var.A/.

Theorem 3. Let fVng denote the forward process generated by Letac’s Model E, as
given in (10) and (12). Further assume that EŒlog.jBj=A/� <1, E Œlog jDj� <1,
and E Œlog A� > 0. Then:

(i) Vn diverges to infinity w.p. 1.
(ii) Setting � D E Œlog A�, 
2 D Var.log A/, and Rn D n� 1

2 
�1flog.Vn/ � n�g,
then fRng converges in distribution to a standard normal distribution as n !
1.

Proof. Using the forward recursion, we can express Vn as follows:

Vn D .A1 � � �An/max fJ1;n; J2;ng ; (21)

where

J1;n D
nX

iD0

Bi

A1 � � �Ai

and

J2;n D
n_

kD1

"
nX

iDk

Bi

A1 � � �Ai C
Dk

A1 � � �Ak�1

#
�

n_

kD1
J2;n;k :

Now, by taking logarithms on both sides of (21), we get that

Rn D
Pn

jD1
�
log Aj � �

	
p
n


C log max fJ1;n; J2;ngp
n


: (22)

It is worthwhile to notice that the second term is well-defined since, by our
assumptions, Vn > 0 and

Qn
iD1 Ai > 0. To complete the proof, we need to show

that the second term converges to zero in probability.
To this end, we begin by noticing that

J1;n D
nX

iD0

Bi

Ai
� 1

A1 � � �Ai�1 : (23)
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Under our assumptions, J1;n is a perpetuity generated by the driving sequence
.B=A; 1=A/. Also E Œlog .1=A/� < 0. Hence J1;n converges to J1;1 with probability
one, by Theorem 1.3 of [1]. Furthermore, the random variable J1;1 does not have
an atom at zero. Next consider the term J2;n. To this end, notice that

J2;n;k � JC
2;n;k �

nX

iDk

jBi j
A1 � � �Ai C

jDkj
A1 � � �Ak�1

�
1X

iD1

jBi j
A1 � � �Ai C

1X

kD1

jDkj
A1 � � �Ak�1

� J;

where J <1 w.p. 1 by another application of Theorem 1.3 in [1]. Then

sup
n2ZC

J2;n � J: (24)

One can strengthen this bound to a convergence result for J2;n by utilizing

max
1�k�n fJ2;n;k � J2;1;kg ! 0 w.p.1: (25)

That is, using standard arguments, one can show that J2;n converges to J2;1 w.p. 1,
where J2;1 D maxk J2;k and J2;1 does not have an atom at 0. Thus it follows that

lim
n!1

log max fJ1;n; J2;ngp
n

D 0 (26)

in probability, which completes the proof of the theorem. ut
From the proof of the above theorem, we can extract the path properties of fVng.

We state this as a theorem.

Theorem 4. Let fVng denote the forward process generated by Letac’s Model E, as
given in (10) and (12). Further assume that EŒlog.jBj=A/� <1, E Œlog jDj� <1,
and E Œlog A� > 0. Then

lim
n!1

Vn

A1 � � �An D V1 w.p. 1; (27)

where the limit V1 is nondegenerate.

The above theorem studies the asymptotic behavior of fVng under a ran-
dom normalization instead of a deterministic normalization. Under further strong
assumptions, [20] studies the path properties of fVng under a deterministic nor-
malization. (Consult [20] and references therein for further central limit theorems
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related to the explosive case.) Extensions of this idea for Letac’s Model E are
currently being investigated by the authors.

2.3 Examples and Applications

We now turn to a few examples.

Example 1. The simplest example is the reflected random walk,

Wn D .Xn CWn�1/C; n D 1; 2; : : : ; W0 D 0; (28)

where fXig is an i.i.d. sequence of random variables, which is equivalent to the
multiplicative process Vn D An maxfVn�1; 1g, where An D exp Xn and Vn D
exp Wn.

Extremes of these processes play a prominant role in queuing theory (cf. [21])
and in collective risk theory. In the classical ruin problem of Lundberg [24] and
Cramér [12], one lets u denote the initial capital of the company, c the constant rate
of premiums income, and f�ig the i.i.d. claims losses, which are assumed to arise
according to a Poisson process, fNtg. Then the total capital of the company at time
t is given by

Yt D uC ct �
NtX

iD1
�i : (29)

Now consider the probability of ruin, namely �.u/ WD P fYt < 0; for some t � 0g.
Using Sparre-Andersen’s random walk representation of the risk process together
with classical duality, this probability may be equated to P fW > ug, where W WD
limn!1Wn and Xi WD �i � c�i in (28). For details, see [2].

Example 2. Consider a modification of the previous example, where the insurance
company invests its excess capital, earning i.i.d. returns fRng on these investments.
The total capital of the company is then the solution to the recursive sequence of
equations

QYn D Rn QYn�1 �Ln; n D 1; 2; : : : ; QY0 D u; (30)

where Ln WD �.Yn � Yn�1/ are the discrete-time losses of the insurance business,
governed by the Cramér-Lundberg process described in (29). Next, define the
discounted loss process at time n to be the perpetuity sequence

Ln WD L1

R1
C L2

R1R2
C � � � C Ln

R1 � � �Rn : (31)
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Fig. 1 A sample path of the cumulative loss process. Ruin occurs when this negative-drift process
reaches a positive barrier at u, where u is the initial capital. This contrasts with the backward
process in Example 1, which is a multiplicative random walk process

Then by a simple argument, the probability of ruin is equivalent to Q�.u/ WD
P fLn > u; for some ng. The process fLng is illustrated in Fig. 1 and is a backward
recursion generated by the function FY .v/ D v=R C L=R. In contrast with
the previous example—whose backward recursion can be shown to be a random
walk—the backward process appearing here has dependent increments and is
evidently not Markovian.

To determine the probability of ruin, we need to solve for the tail of the r.v. L �
supn2ZC

Ln. To this end, observe that R�1
2 L2 C � � � C .R2 � � �RnC1/�1LnC1

dD Ln;

and hence by (31),

Ln
dD B C ALn�1; where A D 1

R1
and B D L1

R1
: (32)

Now setting QL D
�

supn2ZC

Ln

�
_ 0 yields the SFPE

QL dD
�
A QL C B

�C
: (33)

(Alternatively, by a slight variation of this argument, one can also show that L

satisfies the SFPE L
dD AmaxfL ; 0g C B . However, the tail behavior of L is

identical to that of QL .)
As with the previous example, there exists an interesting duality in the sense of

Siegmund [31] or Asmussen and Sigman [3]. Namely the process f QYng is dual to
the forward process generated by the SFPE (33); cf. [3], p. 12. While the forward
process is Markovian, the process f QYng is actually studied via the complicated
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backward process fLng. As the forward process is simpler than this backward
process, it is convenient to first convert the backward process, via its SFPE, into
a forward process.

Example 3. Consider a single-type branching process in a random environment.
Then the population size at time n is given by

Zn D
 
Zn�1X

iD1
�n;i

!
CQn;

where f�n;i W i D 1; : : : ; Zn�1g represents the number of children in the nth genera-
tion, and Qn represents the number of immigrants in the nth generation. Assume
that the probability laws of these quantities are random, modulated by an i.i.d.
environmental sequence f�ng. Thus �n;i � p.�/ for all i , and Qn � q.�/
independent of f�n;i W i � 1; n � 1g. Let Fn denote the 
-field generated by
f�0; : : : ; �ng, and let F1 denote the 
-field generated by f�0; �1; : : :g, and consider
Vn WD E ŒZnjF1�. It is easily seen using the branching property that

Vn D E Œ�n;i jF1� Vn�1 C E ŒQnjF1� :

Assuming that E Œlog E Œ�n;1jFn�� < 0 and letting n ! 1 in the above equation,
one obtains the linear recursion

V
dD AV C B; (34)

where V WD limn!1 Vn. A multidimensional extension of this model was the focus
of the well-known paper of Kesten [22].

The recursion (34) also appears in many other settings, including the ARCH(1)
and GARCH(1,1) processes used for financial time series modeling (cf. [5, 16]), or
the perpetuity sequences used for modeling the future liabilities of a life insurance
company. For details, see [8], Sect. 3.

It is worth noting that in all of the above examples, it can be shown that the
conjugate sequence in Theorem 2 may be taken to be zero, and thus the constant C
is determined solely by a perpetuity sequence which is killed in the event that fVng
returns, in the 	-shifted measure, to its regeneration set; cf. [9], Corollary 2.1.

We conclude this section by remarking that in several real applications in the
stationary case, simulation methods are typically used to obtain the tail probabilities,
and this can be computationally expensive. Thus, a precise description of the tails of
V facilitates inference concerning the extreme percentiles of the distribution of V .
Such estimates are of considerable interest in risk management. Estimation of 	
has received much attention in the literature in risk theory, and detailed information
concerning the Edgeworth expansion is available (see for instance [6]). However,
inference concerning C and the pair .C; 	/ are not addressed in the literature. In
an ongoing work, we use the change of measure arguments developed in [9] to
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describe a method-of-moments approach to the joint estimation of .C; 	/. It turns
out that in finite samples, the correlation between estimates of C and 	 is negative,
and a detailed mathematical description is currently being carried out in [11].

3 Recursions Driven by Markov-Dependent Sequences

Characterizing the constant C in the Markov case is much more challenging than
the i.i.d. case. As explained in Sect. 1, the values of the constant C depend on
the entire driving sequence f.log An;Bn;Dn/ W n D 1; 2; : : :g and their inherent
dependence structure. In the i.i.d. case, the recursions simplify, but in the Markov
case, an important asymmetry is introduced between the forward and backward
sequences, which we explain below in Sect. 3.1.

In spite of this complication, it is possible to adopt some of the principles from
the i.i.d. case by utilizing the regeneration technique of Athreya-Ney-Nummelin
[4, 28], which states that the process contains independent blocks of random length
which are i.i.d. Using this observation, we may derive appropriate SFPEs for
Markov recursions and apply the results of the previous section. This is possible
since, somewhat unexpectedly, the k-step composition of a recursion driven by
Letac’s Model E retains the general form of Letac’s Model E, but with a new driving
sequence (which here will be indexed by the regeneration times of the Markov
chain fXng).

While the form of this constant will necessarily be complicated, we note in
Remark 1 below that this constant reduces to the same general form as in the i.i.d.
case in some important examples.

3.1 Forward and Backward Markov Sequences

Consider the forward and backward sequences associated with the SFPE FY .v/ D
Amaxfv;Dg C B; where Y � .log A;B;D/. By (10), the forward sequence is
given by

Vn D An max fVn�1;Dng C Bn; n D 1; 2; : : : ; V0 D v; (35)

while by (11), the backward sequence is given by

Zn D A1 max
˚
Z
.1/
n�1;D1


C B1; n D 1; 2; : : : ; Z0 D z; (36)

whereZ.1/
n�1 is defined as Zn�1, but with fY1; : : : ; Yn�1g replaced with fY2; : : : ; Yng,

i.e., the driving sequence is shifted forward by one unit of time. In contrast to the
previous sections, we now assume that this driving sequence is Markov-dependent,
that is, Yn D g.Xn/, where fXng is a Markov chain taking values in a state space
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.S;S / and g W S ! R
3. We will assume throughout this discussion that fXng is

aperiodic, irreducible (with respect to its maximal irreducibility measure '), and
countably generated. Thus, we adopt the basic set-up described in [29] or [25].

Markov-dependent forward and backward sequences arise widely in applications.
Natural examples in the forward case include the GARCH(1,1) or ARCH(1)
processes or branching processes with Markov-dependent innovations. While such
examples are easily motivated in the case of the forward sequence (35), the utility
of the backward sequence (36) is less transparent but can be motivated by a couple
of elementary examples.

To this end, we return to the ruin problem with investments described in
Example 2. In that example, we observed that the probability of ruin is P fL > ug,
where L � supn2ZC

Ln and Ln denotes the discounted losses of the company
which accumulate by time n. Now by iterating the sequence fLng, we obtain after
an elementary argument that

Ln D Amax
˚
L

.1/
n�1; 0


C AL;

where L
.1/
n�1 denotes that the driving sequence has been shifted forward by one unit

in time; cf. the discussion following (33). Now if we set the initial state z D 0 and
.B;D/ D .AL; 0/, then this last equation assumes the same form as (36), and our
objective is to determine the maximum of the backward sequence fLng.

A second example is the classical ruin problem mentioned in Example 1. In that
example, the corresponding backward process is the multiplicative random walk
Wn WD A1 � � �An (where Ai D exp Xi is defined as in Example 1), and ruin can be
shown to occur when QL > eu, where

QL WD sup
n2ZC

QLn and QLn WD maxfW1; : : : ;Wng:

By repeating the above argument, we obtain that

QLn D Amax
˚ QL .1/

n�1; 1


;

which has the same form as (36) after setting z D 1 and .B;D/ D .0; 1/.
In the above examples we see, rather generally, that forward sequences often arise

in problems involving the steady-state limit of a given recursion, while backward
sequences typically arise in problems involving maxima. Heuristically, these can
be viewed as dual problems in the sense of Siegmund [31] or Asmussen and
Sigman [3].

To analyze the processes (35) and (36), we again utilize the regeneration
technique of Athreya-Ney-Nummelin, applied to the Markov chain fXng (rather
than to fVng), to derive an SFPE having the same form as (12); thus, in particular,
Theorem 2 can be applied to describe the stationary limiting behavior, also in the
Markov-modulated case.
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Let P denote the transition kernel of fXng, and introduce the minorization
condition

h.x/�.E/ � P.x;E/; x 2 S; E 2 S ; (M0)

where h.x/ D ı01C0.x/ for some nontrivial set C0 and positive constant ı0, where
� is a probability measure on .S;S /.

The regeneration lemma [4, 28] yields the existence of a sequence of stopping
timesK0;K1; : : : such that

(i) i WD Ki �Ki�1 is an i.i.d. sequence, i � 1;
(ii) f.XKi�1 ; YKi�1/; : : : ; .XKi�1; YKi�1/g form independent blocks, i � 1.

(iii) XKi � �, independent of the past.

A standard calculation shows that both the recursions (35) and (36) have a
nice compositional property, namely, if we calculate the k-step evolution of the
process, then it can be viewed as a recursion involving the function FY .v/ D
Amaxfv;Dg C B; but with Yn � .log An;Bn;Dn/ replaced with a new driving
sequence. Specifically, after a tedious computation, we obtain that the k-step
evolution satisfies

Vk D max
n OA V0; OD

o
C OB; k 2 ZC; (37)

where

OA WD A1 � � �Ak;

OB WD
kX

iD1
Bi .AiC1 � � �Ak/;

OD WD
k_

jD1

"
Dj .Aj � � �Ak/�

j�1X

iD1
Bi .AiC1 � � �Ak/

#

(where A1 � � �Aj�1 D 1 when j D 1). Next observe that (37) has the same general
form as (35), but with .A;B;AD/ replaced with . OA ; OB; OD/. A similar expression
is also obtained for the backward recursion.

This compositional property now carries over to the stopping timesKi �1. Thus,
in the case of the forward recursion, we obtain for Vi WD VKi�1 that

Vi D max fAiVi�1;Di g CBi ; i D 1; 2; : : : : (38)

In this recursion, the driving sequence Yi WD .log Ai ;Bi ;Di / is defined as OY WD
.log OA ; OB; OD/ in (37), except that the deterministic interval [1, k] in (37) must be
replaced with the random interval ŒKi�1;Ki�1� in (38). (When i D 0, Ki�1 � 1 in
these definitions.) Thus,
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Ai WD AKi�1 � � �AKi�1;

Bi WD
Ki�1X

jDKi�1
Bj .AjC1 � � �AKi�1/;

Di WD
Ki�1_

jDKi�1

2

4Dj .Aj � � �AKi�1/�
j�1X

kDKi�1
Bk.AkC1 � � �AKi�1/

3

5 : (39)

From (38), we obtain that V WD limi!1 Vi satisfies the SFPE

V
dD max fA V ;Dg CB; (40)

where .A ;B;D/
dD .Ai ;Bi ;Di /, and, as we will observe more formally below,

fVig has the same steady-state limit as the original process fVng and, thus, this
steady-state limit is characterized as the solution to (40).

In the case of the backward sequence, the regeneration technique works similarly.
It is just a matter of writing down the iterates, but now backward in time, to obtain
for Zi WD maxfZn W 0 � n � Ki � 1g that

Zi D max
˚
A1Z

.1/
i�1;D1


CB1; i D 1; 2; : : : ; (41)

where, following our usual convention, Z
.1/
i�1 has the same distribution as Zi�1 but

with the relevant driving sequence shifted forward by one unit in time, and for each
positive integer i ,

Ai WD AKi�1 � � �AKi�1;

Bi WD
Ki�1X

jDKi�1
.AKi�1 � � �Aj�1/Bj ;

Di WD
Ki�1_

jDKi�1

2

4.AKi�1 � � �Aj /Dj �
Ki�1X

kDjC1
.AKi�1 � � �Ak�1/Bk

3

5 : (42)

(Once again, when i D 0, Ki�1 � 1 in these definitions.)
Setting Z D supi Zi in (41), we obtain the SFPE

Z
dD max fA Z ;Dg CB; (43)

where .A ;B;D/
dD .Ai ;Bi ;Di /.

It is important to observe that we obtain different distributions for .B;D/ in the
forward and backward cases, even though we have started with the same recursion,
FY .v/ D Amaxfv;Dg C B , to generate the sequences (35) and (36). Thus, there
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is an asymmetry between the forward and backward sequences, although the
multiplicative term A —which determines the polynomial rate of decay—remains
the same. (We note that this feature appears even in the polynomial models with
i.i.d. recursions, as described in [9], Example 3.5).

We may now apply Theorems 2 and 3 directly to the SFPEs (38) and (43), but
before doing so we will need to verify that the required moment conditions are
satisfied. Since our random variables are formed over regeneration cycles, this issue
is somewhat subtle and we address it in the next section.

3.2 Characterizing Moments over Regeneration Cycles

3.2.1 Moment Properties of A

Let gA.Xn/ D log An, and for each ˛ 2 R define

OP˛.x;E/ WD
Z

E

e˛gA.x/P.x; dy/ and OPk
˛ D OP˛ ı OPk�1

˛ ; k > 1:

Let .�.˛//�1 denote the convergence parameter of the kernel OP˛ (for the definition,
see [29], p. 27), and let �.˛/ D log�.˛/: Set Sn DPn

iD1 log Ai , and define

� .˛/ D lim sup
n!1

1

n
log E

�
e˛Sn

�
; ˛ 2 R:

Roughly, the convergence parameter measures the growth rate of OPk
˛ .x;E/ as k !

1, where E is a “small set” satisfying .M0/, while the “Gärtner-Ellis” limit � .˛/
measures the growth rate of this quantity whenE D S. It is well known that�.˛/ �
� .˛/ for all ˛ [8, 27]. Now assume that

� .	/ D 0; for some 	 2 .0;1/\ dom�0: (44)

Then it follows after a short argument that�.	/ D 0; see [8], p. 1426. Then by [27],
we have under appropriate conditions that 1 D E

�
.AKi�1 � � �AKi�1/	

� WD E
�
A 	

�
.

(See, in particular, Lemma 4.1 of [27] and its proof.) Thus, the solution 	 to (44)
yields the polynomial decay rate in Theorem 2, provided that appropriate moment
conditions are satisfied.

Consequently, we obtain an explicit characterization of the decay constant in
the Markov case, which is now the solution to the equation�.	/ D 0, but where the
cumulant generating function is replaced with the function� now derived from the
convergence parameter or, alternatively, with the Gärtner-Ellis limit (as would be
expected from the large deviation theory for Markov chains).
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3.2.2 Moment Properties of .B; D/: Preliminary Considerations

For notational convenience, assume that regeneration occurs at time zero, and let
 denote the subsequent regeneration time. Then, using the above expressions for
.B;D/ we see that in the forward case, the required moment conditions .H2/ will
be satisfied provided that E

�
B	

f

�
<1, where

Bf WD
�1X

iD0
QBi.AiC1 � � �A�1/; QBi WD jBi j C jAiDi j (45)

and in this expression, we take .A0; B0;D0/ to have the distribution of this triplet
upon regeneration. Similarly, in the backward case, it is sufficient to verify that
E
�
B
	

b

�
<1, where

Bb WD
�1X

iD0
.A0 � � �Ai�1/ QBi ; QBi D jBi j C jAiDi j: (46)

These last two equations are manifestations of nearly the same mathematical
quantity, as can be seen by constructing the time-reversed Markov process (whose
existence is assured by [26]). Thus we extend fVn W n 2 Ng to a doubly-infinite
sequence fVn W n 2 Zg, where these two sequences are identical for n 2 N. Then, by
comparing (45) to this same quantity but over its prior regeneration cycle—that is,
a cycle commencing at time Q < 0 and terminating at time 0—we obtain that

Bf
dD

�QX

iD1
QBi.AiC1 � � �A1/: (47)

As with Bb , this quantity may be viewed as a perpetuity sequence, but now
computed backward in time (and shifted by one time unit compared with (46)).
Consequently, the mathematical analysis is similar for the forward and backward
sequences and, to avoid repetition, we will focus on verifying moment conditions
for backward sequences in the sequel.

3.2.3 The Moments of Bb Under Some Simplifying Assumptions

Our next objective is to relate the moments of Bb to the moments of the regeneration
times of the 	-shifted Markov chain, whose finiteness would then be assured if the
Markov chain were .�.˛//�1-geometrically recurrent with ˛ D 	. In the interest of
simplicity, we will first develop this correspondence under a number of simplifying
assumptions and later indicate how these assumptions can be removed.

Assume, for the moment, that Di � 0 for all i and that fBi g is an i.i.d. sequence
which is independent of the Markov-dependent sequence fAig. Next, introduce the
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strong minorization condition

a�.E/ � P.x;E/; x 2 S; E 2 S ; (M1)

where a > 0 and � is a probability measure.
If the kernel OP˛ is .�.˛//�1-recurrent, then there exists a right invariant function

r˛ satisfying the equation OP˛r˛ D �.˛/r˛ . Otherwise, OP˛ is .�.˛//�1-transient and
there exists a right subinvariant function r˛ ([29], Sect. 5.1). For any ˛ 2 dom .�/,
introduce the ˛-shifted transition kernel

Q˛.x;E/ D
Z

E

e˛gA.x/r˛.y/

�.˛/r˛.x/
P.x; dy/; x 2 S; E 2 S :

ThenQ˛ is a probability kernel when OP˛ is .�.˛//�1-recurrent (and a subprobability
kernel in the transient case). Let E˛Œ�� denote expectation with respect to this shifted
measure.

Observe that the minorization .M0/ (or the stronger condition (M1)) induces a
minorization for Q˛; in particular, using the definition of Q˛ together with .M0/,
we obtain

h˛.x/�˛.E/ � Q˛.x;E/; x 2 C; E 2 S ; (M˛)

where, for some normalizing constant L,

h˛.x/ D Lh.x/

�.˛/r˛.x/
e˛gA.x/ ^ 1 and �˛.dy/ D 1

L
r˛.y/�.dy/:

Here L is a normalizing constant, chosen such that �˛ is a probability measure.
(We may assume that � has been selected in a suitable way so that L <1.) Thus, a
minorization exists, and hence a regeneration structure for the 	-shifted chain. Also
set Oh˛.x/ D h.x/e˛gA.x/=�.˛/.
Lemma 1. Assume fBi g is i.i.d. and independent of fAi g with E

�
B
	
i

�
< 1, and

assume that Di � 0 for all i and .M1/ is satisfied. Then

E	 Œ� <1H) E
�
B
	

b

�
<1:

Proof. For the proof, introduce the notation h˝ �.x; dy/ WD h.x/�.dy/.
Using the series representation for a regeneration cycle (as in [28], p. 313 or

Lemma 4.1 of [27]), we obtain

E	 Œ  � 1jX0 D x� D E	

" 1X

nD1
1f>ng

ˇ̌
ˇX0 D x

#

D
1X

nD1

Z

S

�
Q	 � h	 ˝ �	

	n
.x; dy/
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� 1

r	.x/

1X

nD1

� OP	 � Oh	 ˝ �
�n
r	.x/

D 1

r	.x/

1X

nD1
E
h
e	S

0

n�11f>ngr	.Xn/
ˇ̌
ˇX0 D x

i
; (48)

where S 0
n WD

Pn
iD0 log Ai . In the previous display, the inequality follows directly

from the definitions of h	 , Oh	 , �	 , OP	 , and Q	 (and we obtain an inequality here due
to the additional term “^1” appearing in the definition of h	).

Next observe that under the strong minorization .M1/, the function r	 is bounded
below by a constant ([7], Remark 2.3). It follows that

E

" 1X

nD1
.A0 � � �An�1/	1f>ng

ˇ̌
ˇ̌ X0 D x

#
�Mr	.x/; for some M <1:

Using independence and the moment assumption on fBig, we conclude that this
expression also holds with .A0 � � �An�1Bn/ in place of .A0 � � �An�1/ and M

replaced with some finite constantM 0. (Since fBig is i.i.d. and independent of fAig,
the B-sequence is independent of the regeneration times.) Consequently,

E
�
B	

b

� �M 0
Z
r	.x/�.dx/:

In the minorization .M1/, we may assume that the measure � has been chosen such
that the integral on the right-hand side of the last expression is finite. Thus we obtain
E
�
B
	

b

�
<1; as required. ut

3.2.4 The Moments of Bb in the General Case

The previous argument can be modified to incorporate a nontrivial sequence
fDi g and Markov dependence in the entire driving sequence f.log Ai ; Bi ;Di /g.
Following Collamore ([8], Sect. 6.1), one approach is to replace the kernel OP	 in the
above argument with OR	 , where for any ˛,

OR˛.x;E/ WD
Z

E

e˛F.x;y/P.x; dy/; x 2 S; E 2 S ;

for .fA.Xn/; fB.Xn// D
�
log An; log . QBn C 1/

	
and

F.x; y/ D fA.x/C .fB.y/ � fB.x// :
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If the minorization has been chosen so that QB0 is deterministically bounded from
above by a constant, then the previous lemma can be repeated to obtain the same
result as before, although theQ-shifted measure is formed with respect to the kernel
OR	 rather than OP	 . That is to say, we now define

QQ˛.x;E/ D
Z

E

e˛F.x;y/ Qr˛.y/
Q�.˛/Qr˛.x/

P.x; dy/; x 2 S; E 2 S ;

where Qr˛ and Q�.˛/ are the eigenvectors and eigenvalues corresponding to the kernel
OR˛. Let QE˛Œ�� denote expectation with respect to this measure. In addition, assume

that � .	/ D Q� .	/ D 0, where

Q� .˛/ WD lim sup
n!1

1

n
log E

�
e˛Sn. QBn C 1/˛

�
:

Then we obtain:

Lemma 2. Assume .M1/. Then

QE	 Œ� <1H) E
�
B	

b

�
<1:

Finally, we observe that .M1/may be weakened to .M0/ by first introducing the
“augmented kernel”

Pa.x;E/ WD P.x;E/C a�.E/;

and then computing the 	-shifted measure using this kernel in place of P ; cf. [7, 8].
Under this construction, the right invariant function r	;a is uniformly positive, as
required in the proofs of Lemmas 1 and 2, and the eigenvalue �a.	/ # 1 as a # 0.

3.2.5 Toward a Complete Result in the Markov Case

The moment assumptions in Lemmas 1 and 2, expressed in terms of the 	-shifted
measures, are not particularly natural to verify in practice, where it would be
preferable to express these conditions in terms of the transition kernel of the original
process. Moreover, there is also a need to verify the further moment assumption on
A , equivalent to the assumption that E

�
A 	.log A /

�
<1. Now under appropriate

conditions, it is known ([27], pp. 581–582) that

E
�
A 	 .log A /

� D E	 Œlog A � D E	 Œ�E	 Œlog AjX � ��;

where � denotes the stationary measure of fXng.
Roughly speaking, a sufficient condition for the above results to hold is the

geometric 	-recurrence of the kernels OP	 and OR	 (cf. [29], Proposition 5.25). Thus, it
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is of some theoretical and applied interest to understand how geometric 	-recurrence
relates to the underlying properties of the given Markov chain.

An effort to draw this connection has been given in [8]. Let h W S! Œ0;1/, and
define:

Lah D fx 2 S W h.x/ � ag; a � 0I
QSn D flog A1 C � � � C log An�1g C log. QBn C 1/; n D 1; 2; : : : I
Sh
n D h.X1/C � � � C h.Xn/; n D 1; 2; : : : I

�h.˛; ˇ/ D lim sup
n!1

1

n
log E

h
e˛

QSnCˇSh
n

i
; .˛; ˇ/ 2 R

2:

Assume the existence of a nonnegative h-function such that the following condition
holds.

Minorization:

.M/ For any a > 0 sufficiently large, there exist a constant ıa > 0 and a
probability measure �a on .S;S / with �a.Lah/ > 0 such that

ıa1Lah.x/�a.E/ � P.x;E/; x 2 S; E 2 S :

Also impose the following additional assumptions on the process.

Hypotheses:

.H1/ For the function h given in .M/, there exist points ˛ > r and ˇ > 0 such that
�h.˛; ˇ/ <1.

.H2/ For any a > 0, there exist nontrivial setsE1; : : : ; El � S, possibly dependent
on a, and a finite constant Ja such that

P.x;E/ � Ja inf

(
lX

i D 1

P.xi ; E/ W xi 2 Ei ; 1 � i � l
)
; x 2 Lah; E 2 S :

We also need to assume the usual regularity assumptions, now with respect
the random variables formed over a regeneration cycle. We collect these
assumptions as an additional hypothesis:

.H3/ Hypotheses .H0/ and .H3/ hold with respect to .A ;B;D/.

In Collamore [8], it is shown that if .M/, .H1/, and .H2/ hold, then

E ŒA ˛� <1 and E
�
B˛
b

�
<1; for some ˛ > 	:
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Moreover, E
�
B˛
f

�
< 1; provided that these conditions hold with respect to

the time-reversed Markov chain (which we implicitly assume in the following
development when the forward recursion is considered).

Note that the property described in .M/ always holds for Harris chains when P
is replaced by Pka ; see [25]. Also, we note that a regeneration structure we need
would still exist if .M0/ were weakened to a condition on Pk rather than P , that
is, to Harris recurrence; see [29], p. 134. Finally, it seems plausible that condition
(H2) could possibly be removed, since this is mainly used in [8] to assure that the
relevant eigenvectors are bounded from above by a constant.

Combining the results of [9] and [8], we obtain an extension of Theorem 3.
First let fZ .p/

n g and fZ .c/
n g denote the perpetuity and conjugate sequences, defined

as in (17) and (18), but with .Ai ; Bi ;Di / replaced with .Ai ;Bi ;Di /. Then set
Z .p/ D limn!1 Z

.p/
n and Z .c/ D limn!1 Z

.c/
n . Also, let f QVng denote the forward

process generated by the sequence fAi ;Bi ;Di g according to Letac’s Model E, and
set � D inffi W QVi 2 C g, that is, the first passage time of this Markov chain into its
C -set. ( QVi � Vi if it is a forward process we study, but not if it is a backward
process.) Finally, recall that �.˛/ denotes the convergence parameter associated
with the kernel OP.˛/, as defined in Sect. 3.2.1.

Theorem 5. Assume that (44) holds and that .M/, .H1/, .H2/, and .H3/ are
satisfied. Then

lim
u!1 u	P fW > ug D C (49)

for a finite positive constant C , where W WD limn!1 Vn in the forward case and
W WD supn Zn in the backward case. Moreover, the constantC may be identified as

C D 1

	�0.	/EŒ� �
E	
�
.Z .p/ �Z .c//	1f�D1g

�
: (50)

Remark 1. In specific examples, the constant C can be identified more explicitly
and put into the same general form as in the i.i.d. case studied in Theorem 2. In
particular, if fVng is obtained from the forward recursion Vn D AnVn�1 C Bn and
the sequence fBng is supported on Œ0;1/, then the conjugate term in (50) is zero
(since all nonzero terms in (18) would then be positive), and so it follows from (50)
and (39) that

Z .p/ D V0 C B1

A1
C B2

A1A2
C � � � ; (51)

where, as in Theorem 2, the initial distribution (corresponding to the distribution of
the random variable V0) is obtained from the regeneration measure of the Markov
chain fVKi W i D 0; 1; : : :g. We remind the reader that the sequence fKig represents
the regeneration times of the Markov chain fXng, and that .An; Bn/ is modulated by
this chain fXng, that is, .An; Bn/ D g.Xn/.
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Moreover, the stopping time � can also be viewed—as in Theorem 2—as a
first passage time. Specifically, in Nummelin’s split-chain construction [28, 29],
regeneration of the Markov chain fXng occurs when Yn WD .Xn; �n/ 2 C0 � f1g,
where f�ng is an i.i.d. Bernoulli sequence with Pf�n D 1g D ı0 and .C0; ı0/
appear in the minorization .M0/ of the Markov chain fXng. Now, f� D 1g
corresponds to the event that fVKi g never returns to its C -set (namely, the interval
C D Œ�M;M�); that is to say, fVng never returns to C at a regeneration time of
fXng. But this is the same as the condition that f.Vn; Yn/ W n D 0; 1; : : :g never
returns to the set C � C0 � f1g.

Now if fVng is a perpetuity sequence (thus obtained from backward recursion of
the SFPE f .v/ D Av C B rather than forward recursion of this SFPE), then (42)
must be employed in place of (39), which does not simplify in the same way as
(51). However, in this case, it is plausible to employ [26] to obtain the time-reversed
process of f.Vn; An; Bn/ W n D 0; 1; : : :g, and to observe that this time-reversed
process assumes the form of the forward sequence Vn D QAnVn�1 C QBn, where
. QAn; QBn/ D .A�n; B�n/ for the extended process f.An; Bn/ W n 2 Zg. Since the
limiting distribution of this forward process agrees with the limiting distribution of
the original perpetuity sequence, we expect an expression of the form (51), also for
the case of perpetuities.

Remark 2. In [8], Sect. 3, the conditions of Theorem 5 are verified for a variety of
problems which are of applied interest. One application considered in [8] is the ruin
problem with investments (described above in Example 2), but where the investment
returns are Markov-dependent, governed by any one of the following:

(i) A discrete-time Black-Scholes model under Markov regime switching, where
the regime switching is determined by an underlying finite-state or uniformly
recurrent Markov chain.

(ii) The logarithmic returns f� log Ai g are modeled as an AR(p) process or, with
slight modifications of the assumptions, an ARMA(p; q) process.

(iii) The insurance company invests a fixed fraction of its surplus capital in a stock
and a fixed fraction in a bank account, where the returns on the bank investment
are at a deterministic rate r > 1, while the returns on the stock investment
follow the stochastic volatility model suggested in [13, 14]. Specifically, the
investment returns are modeled as Rn D 
n�n, where f�ng is an i.i.d. Gaussian
sequence and flog
ng is modeled, say, as an ARMA(p; q) process.

Another application considered in [8] is a GARCH(1,1) process with regime
switching, where the regime shifts are (as in (i)) modulated by an underlying finite-
state Markov chain.

The proof of Theorem 3.1 is a direct consequence of Theorem 2.1 of [9] and
Theorem 4.1 of [8]. In the forward case, it also needs to be observed that the limit
over regeneration cycles agrees with the steady-state limit of the original sequence.
But this equivalence is obtained along the lines of [8], p. 1428.
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Homogeneity at Infinity of Stationary Solutions
of Multivariate Affine Stochastic Recursions

Yves Guivarc’h and Émile Le Page

Abstract We consider a d -dimensional affine stochastic recursion of general type
corresponding to the relation

XnC1 D AnC1Xn CBnC1; X0 D x: (S)

Under natural conditions, this recursion has a unique stationary solution R, which
is unbounded. If d > 2, we sketch a proof of the fact that R belongs to the
domain of attraction of a stable law which depends essentially of the linear part
of the recursion. The proof is based on renewal theorems for products of random
matrices, radial Fourier analysis in the vector space Rd , and spectral gap properties
for convolution operators on the corresponding projective space. We state the
corresponding simpler result for d D 1.

1 Notations and Main Result

Let V D R
d be the d -dimensional Euclidean space endowed with the scalar product

< x; y >D Pd
iD1 xiyi and the corresponding norm jxj D .

Pd
iD1 jxi j2/1=2. We

denote by G D GL.V / (resp.H DAff.V /) the linear (resp. affine) group of V and
we fix a probability measure� (resp. �) onG (resp.H ) such that � is the projection
of �. We consider the affine stochastic recursion .S/ on V defined by

XnC1 D AnC1Xn C BnC1; X0 D x; (S)
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where .An; Bn/ are i.i.d. random variables with law �, hence An (resp. Bn) are i.i.d.
random matrices (resp. vectors). We assume that .S/ has a stationary solution R
which satisfies in distribution

R D AR1 C B

where R1 has the same law as R and is independent of .A;B/. We are interested in
the “asymptotic shape” of the law � of R. Our focus will be on the case d > 1. For
d D 1, corresponding results are described in Sect. 4.

We denote by � � � the convolution of a probability measure � on H with a
positive Radon measure � on V i.e. � � � D R

ıhx d�.h/ d�.x/. Also �n denotes
the nth convolution iterate of �. With these notations, the law �n of Xn is given by
�n D �n � ıx , and a �-stationary (probability) measure � satisfies � � � D �.

We denote by ˝ the product space H˝N, by P the product measure �˝N on ˝ ,
and by E the corresponding expectation operator. Provided that

E.j log jAjj/C E.j log jBjj/ <1;

it is well known (see [12] for example) that a �-stationary measure � exists and is
unique if the top Lyapunov exponent

L� D lim
n!1

1

n
E.log jAn : : : A1j/

is negative. For informations on products of random matrices we refer to [2, 5, 9].
Since the properties of � play a dominant role for the “shape” of �, we give now

a few corresponding notations. Let S (resp. T ) be the closed subsemigroup of G
(resp.H ) generated by the support supp� (resp. supp�) of � (resp. �) and write

Sn D An : : : A1; k.s/ D lim
n!1.E.jSnj

s//1=n .s � 0/:

Then log k.s/ is a convex function on I� D fs � 0I k.s/ < 1g and we write
s1 D supfs � 0I k.s/ <1g.

We denote by S
d�1 (resp. Pd�1) the unit sphere (resp. projective space) of V and

observe that in polar coordinates:

V nf0g D S
d�1 � R

�C:

If PV denotes the factor space of V nf0g by the group f˙Id g, we have also

PV D P
d�1 � R

�C:

For x 2 V nf0g; g 2 G, we write Qx (resp. Nx) for the projection of x 2 V on S
d�1

(resp. Pd�1), g � Qx (resp. g � Nx) for the projection of gx on S
d�1 (resp. Pd�1).
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For some moment conditions on �, the quantity �.g/ D sup.jgj; jg�1j/ will be
used. The dual map g� of g 2 GL.V / is defined by < g�x; y >D< x; gy > and
the push-forward of � by g! g� will be denoted ��.

From now on, we assume d > 1. An element g 2 G is said to be proximal if
g has a unique simple dominant eigenvalue �g 2 R with j�gj D limn!1 jgnj1=n.
In this case we have the decomposition V D Rwg ˚ V <

g where wg is a dominant
eigenvector and V <

g a g-invariant hyperplane. We say that a semigroup ofG satisfies
condition i � p if this semigroup contains a proximal element and does not leave
any finite union of subspaces invariant.

One can observe that, if d > 1, the set of probability measures � on G such that
S satisfies condition i � p is open and dense in the weak topology. Also, condition
i � p is satisfied for S if and only if it is satisfied for the closed subgroup Zc.S/,
the Zariski closure of S , which is a Lie group with a finite number of components.
Thus condition i � p is in particular satisfied, if Zc.S/ D G.

It is known that, if the probability measure � satisfies E.j log jAjj/ < 1 and
supp� generates a closed semigroup S satisfying condition i � p, then the top
Lyapunov exponent of � is simple (see [2]). In this case log k.s/ is strictly convex
and analytic on Œ0; s1Œ (see [9]). Also the set Sprox of proximal elements in S is
open and the set of corresponding positive dominant eigenvalues generates a dense
subgroup of R�C. Furthermore, the action of � on P

d�1 has a unique �-stationary
measure � and supp� is the uniqueS -minimal subset of Pd�1; the set�.S/ D supp�
is the closure of f NwgIg 2 Sproxg and has positive Hausdorff dimension.

Under condition i � p and for the action of S on S
d�1, there are two cases

I, II, say, regarding the existence of a convex S -invariant cone in V . In case I
(non-existence), the inverse image Q�.S/ of �.S/ in S

d�1 is the unique S -minimal
invariant set in S

d�1. In case II (existence), Q�.S/ splits into two symmetric S -
minimal subsets Q�C.S/ and Q��.S/.

Returning to the affine situation, we need to consider the compactification
V [ S

d�11 of V by the sphere at infinity S
d�11 and we identify Q�.S/ (resp.

Q�C.S/; Q��.S/) with the corresponding subset Q�1.S/ (resp. Q�1C .S/; Q�1� .S/) of
S
d�11 . We observe that Sd�11 isH -invariant and the correspondingH -action reduces

to the G-action.
If h D .g; b/ is such that jgj < 1, then h has a fixed point x 2 V , and this point

is attractive, i.e. for any y 2 V; limn!1 hny D x. The set�a.T / of such attractive
fixed points of elements h 2 T plays an important role in the description of supp �,
for � �-stationary.

On the other hand, if for some s > 0 we have k.s/ > 1 and condition i � p is
satisfied, then one can show the existence of g 2 S with limn!1 jgnj1=n > 1. This
implies that supp� is unbounded, if supp� has no fixed point in V .

We have the following basic (see [10], Proposition 5.1)

Proposition 1. Assume E.log �.A//C log jBj/ <1 and

L� D lim
n!1

1

n
E.log jSnj/ < 0:



122 Y. Guivarc’h and É. Le Page

Then Rn DPn
1 A1 : : : Ak�1Bk converges P-a.e. to

R D
1X

1

A1 : : : Ak�1Bk;

and for any x 2 V; Xn converges in law to R. If ˇ 2 I� satisfies k.ˇ/ < 1;

E.jBjˇ/ <1, then E.jRjˇ/ <1.
The law � of R is the unique �-stationary measure on V . The closure �a.T / D

�a.T / in V is the unique T -minimal subset of V and �a.T / D supp �. If the
semigroup S satisfies condition i � p and supp� has no fixed point in V , then
�.W / D 0 for any affine subspaceW . Furthermore, if T contains an element .g; b/
with limn!1 jgnj1=n > 1, then �a.T / is unbounded.

The first part of the proposition is well known (see for example [12]).
For s � 0, we denote by ls (resp. hs) the s-homogeneous measure (resp. function)

on R
�C given by l s.dt/ D t�.sC1/dt; l0 D l (resp. hs.t/ D t s). We observe that

the cone of Radon measures on PV which are of the form � ˝ l s with � a positive
measure on P

d�1 is G-invariant. Also g.�˝ ls/ D .�s.g/�/˝ ls with

�s.g/� D
Z
jgxjsıg�xd�.x/:

One can show that if the subsemigroup S associated to � satisfies condition i � p
and s 2 I�, there exists a unique probability measure �s on P

d�1 such that equation
� � .�s ˝ l s/ D k.s/�s ˝ l s is satisfied. Furthermore �s gives mass zero to any
projective hyperplane and supp �s D �.S/.

We denote by Q�s the unique symmetric positive measure on S
d�1 with projection

�s on P
d�1 and (in case II) by Q�sC; Q�s� its normalized restrictions to Q�C.S/; Q��.S/

hence Q�s D 1
2
. Q�sC C Q�s�/. Then we have

� � . Q�s ˝ ls/ D k.s/ Q�s ˝ ls

and

� � . Q�sC ˝ ls/ D k.s/ Q�sC ˝ ls; � � . Q�� ˝ l s/ D k.s/ Q�s� ˝ ls:

If there exists ˛ 2 I� such that k.˛/ D 1, the measures Q�˛ ˝ l˛; Q�˛C˝ l˛; Q�˛�˝ l˛
enter in an essential way in the description of the “shape” of �. We need first to
discuss the action of S on S

d�11 , if supp � is unbounded. In this case supp � \ S
d�11

is a non trivial closed S -invariant set, hence three cases can occur, in view of the
above discussion of minimality.

CASE I: S has no proper convex invariant cone and �a.T /  Q�1.S/.
CASE II’: S has a proper convex invariant cone and �a.T /  Q�1.S/.



Homogeneity at Infinity of Stationary Solutions of Multivariate Affine . . . 123

CASE II”: S has a proper convex invariant cone and �a.T / contains only one of
the sets Q�1C .S/; Q�1� .S/, say Q�1C .S/ hence Q�1� .S/ \�a.T / D ;.

The push-forward of a measure � on V by the dilation x ! tx .t > 0/ will be
denoted t:�. For d > 1, our main result in [10] is the following

Theorem 1. With the above notations, assume that S satisfies condition i � p,
that T has no fixed point in V , that L� < 0, and that there exists ˛ > 0 with
k.˛/ D 1 and E.jAj˛�ı.A// < 1; E.jBj˛Cı/ < 1 for some ı > 0. Then supp �
is unbounded and we have the following vague convergence on V nf0g:

lim
t!0C t

�˛.t:�/ D C.
˛ ˝ l˛/ D �;

where C > 0; 
˛ is a probability on S
d�1 and the Radon measure � satisfies

� �� D �. Moreover,


˛ D

8
ˆ̂<

ˆ̂:

Q�˛ in Case I;

CC Q�˛C C C� Q�˛� for some CC; C� > 0 in Case II’;

Q�˛C in Case II”:

The measures Q�˛ ˝ l˛ (case I), Q�˛C ˝ l˛ and Q�˛� ˝ l˛ (cases II’, II”) are minimal
�-harmonic measures.

The above convergence is valid on any Borel function f with 
˛ ˝ l˛-negligible
set of discontinuities such that jwj�˛j log jwj1C"jf .w/j is bounded for some � > 0,
hence

lim
t!0C t

�˛
E.f .tR// D �.f /:

The theorem shows that � belongs to the domain of attraction of a stable law, a
fact conjectured by F. Spitzer. It plays a basic role in the study of slow diffusion for
random walk in a random medium on Z (see [7]), and also in extreme value theory
for GARCH processes. The proof of the theorem shows that the above convergence
is valid on the sets HC

w D fx 2 V I< x;w > 1g for w 2 V nf0g under the weaker
hypothesis E.jAj˛ log �.A/ C jBj˛Cı/ < 1. Then, using [1], it follows that the
theorem is valid if ˛ … N. Actually, [1] implies also the validity of the theorem
under the above weaker hypothesis, in the following situations:

CASE I and ˛ … 2N,
CASE II” and ˛ > 0,
CASE II’ and CC D C�; ˛ … 2N.

As observed in [14], the condition CC D C� occurs if � is symmetric, in
particular if the law of B is symmetric (for example if B is Gaussian). In the
context of extreme value theory the convergence stated in the theorem says that
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� has “multivariate regular variation”. This property is basic for the development of
the theory for “ARCH processes” (see [14]).

The proof given in [10] (Theorem 6) is long. For a short survey of earlier work,
see [8]. Here we will give a sketch of a few main points of the proof.

2 Some Tools for the Proof of the Theorem

2.1 The Renewal Theorem for Products of Random Matrices
(d > 1)

We use the notations already introduced above: � is a probability measure on
G D GL.V /, S the closed subsemigroup of G generated by supp�; L� the top
Lyapunov exponent of �; � the �-stationary measure on P

d�1 etc. Under condition
i � p, the following is the d -dimensional analog of the classical renewal theorem
(see [4]) and follows from the general renewal theorem of Kesten [13] for Markov
random walks on R.

Theorem 2. Assume that the semigroup S associated with � satisfies condition
i �p, that log �.g/ is�-integrable, and thatL�D limn!1 1

n

R
log jgjd�n.g/> 0.

Then, for any w 2 V ,
P1

0 �k � ıw is a Radon measure on PV and we have

lim
w!0

1X

0

�k � ıw D 1

L�
�0 ˝ l:

in the sense of vague convergence. This convergence is also valid on any bounded
continuous function f on PV with

P1
�1 supfjf .w/jI 2l � jwj � 2lC1g <1.

As proved in [10], if S satisfies i � p, s 2 I� and
R jgjs log �.g/d�.g/ < 1,

then the top Lyapunov exponent L�.s/ D limn!1 1
n

R jgjs log jgjd�n.g/ exists,

is simple and satisfies L�.s/ D k0.s�/

k.s/
< 1. Also there exists a unique positive

function es on P
d�1 such that �s.es/ D 1 and

� � ıw.e
s ˝ hs/ D k.s/.es ˝ hs/.w/:

Then, using [13] again, we have the following result which includes information on
the fluctuations of Snw:

Theorem 3. Assume that L� < 0; ˛ 2 I� exists with ˛ > 0; k.˛/ D 1;R jgj˛ log �.g/d�.g/ < 1, and S satisfies condition i � p. Then we have the
following vague convergence on PV , for any w 2 PV
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lim
t!0C t

�˛
1X

0

�k � ıtw D .e˛ ˝ h˛/.w/
L�.˛/

�˛ ˝ l˛:

This convergence is actually valid on any continuous function f on PV such that
f˛.w/ D jwj�˛f .w/ is bounded and

P1
�1 supff˛.w/I 2l � jwj � 2lC1g <1.

In particular for some A > 0 and any w 2 V

lim
t!1 t˛ Pfsup

n�1
jSnwj > tg D A.e˛ ˝ h˛/.w/:

The last formula is the so-called Cramér estimate of ruin in collective risk
systems if d D 1 [4].

For the convergence proof in Theorem 1, we will need an analogue of Theorem 3
with PV replaced by V nf0g. For u 2 S

d�1, the function e˛.u/ can be lifted to S
d�1

and we have
Z
jguj˛ e

˛.g:u/

e˛.u/
d�n.g/ D 1

for any n 2 N. Hence the family of probability measures jguj˛ e˛.g:u/
e˛.u/ d�

˝n.g/ with

g D g1 : : : gn defines a projective system on the spaces G˝n and one can consider
the projective limit Q˛

u on G˝N. Referring again to [13], we get the following

Theorem 4. Assume � and ˛ are as in Theorem 3. Then, for any u 2 S
d�1, we

have the vague convergence

lim
t!0C t

�˛
1X

0

�k � ıtu D 1

L�.˛/
e˛.u/ Q�˛u ˝ l˛;

where Q�˛u is a probability measure on S
d�1 and Q�˛u ˝ l˛ is a �-harmonic Radon

measure on V nf0g. The convergence is valid on any continuous function f such
that f˛.w/ D jwj�˛f .w/ is bounded and satisfies

1X

�1
supfjf˛.w/jI 2l � jwj � 2lC1g <1:

There are two cases:

Case I: Q�˛u D Q� has support Q�.S/.
Case II: Q�˛u D p˛C.u/ Q�˛C C p˛�.u/ Q�˛�, where p˛C.u/ (resp. p˛�.u/) is the entrance
probability under Q˛

u of Sn � u into the convex envelope of Q�C.S/ (resp. Q��.S/).

These results improve earlier ones by Kesten [12] and Le Page [16].
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2.2 A Spectral Gap Property for Convolution Operators
(d > 1)

As above we consider the operatorP on PV defined by Pf .w/ D .��ıw/.f / and its
action on s-homogeneous functions. The Euclidean norm on V extends to a norm
on the wedge product

V2
V : For x; y; x0; y0 2 V , we put

< x ^ y; x0 ^ y0 > WD det

�
< x; x0 > < x; y0 >
< y; x0 > < y; y0 >

�
:

This allows to consider the distance ı on P
d�1 defined by ı.x; y/ D jx ^ yj, where

x; y correspond to unit vectors Qx; Qy in S
d�1. We will denote byH".P

d�1/ the space
of "-Hölder functions on P

d�1 with respect to the distance ı. We write

Œ'�" D sup
x 6Dy
j'.x/ � '.y/j
ı.x; y/"

; j'j D sup
x

j'.x/j; j'j" D Œ'�" C j'j;

and we observe that ' ! j'j" defines a norm on H".P
d�1/.

If z 2 C; z D s C it, and the z-homogeneous function f on PV is of the form
f D ' ˝ hz, with ' 2 H".P

d�1/, the action of P on f defines an operator P z

on ' by

Pf D P z' ˝ hz; i.e. P z'.x/ D
Z
'.g � x/ jgxjz d�.g/:

Then we have the following (see [10], Theorem A)

Theorem 5. Let d > 1 and assume that the closed subsemigroup S generated by
supp� satisfies condition i � p. For s 2 I�, assume

R jgjs�ı.g/d�.g/ < 1 for
some ı > 0. Then, for any " > 0 sufficiently small, the operator P s on H".P

d�1/
has a spectral gap, with dominant eigenvalue k.s/:

P s D k.s/.�s ˝ es C Us/;

where �s ˝ es is the projection on Ces defined by �s; es and Us is an operator
with spectral radius less than 1 which commutes with �s ˝ es . Furthermore, if
=z D t 6D 0; z D s C it, then the spectral radius of P z is less than k.s/.

If s D 0; P s reduces to convolution by � on P
d�1 and convergence to the

unique �-stationary measure �0 D � was a basic property studied in [5]. In
this case the spectral gap property is a consequence of the simplicity of the top
Lyapunov exponent of � (see [2, 9]). The spectral gap properties of P s are basic
ingredients for the study of precise large deviations for the product of random
matrices Sn D An : : : A1 (see [16, 18]). Here the theorem will be used for the study
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of s-homogeneous P -eigenmeasures on PV and V nf0g. In the context of V nf0g we
need to replace Pd�1 by S

d�1 and to use an analogous theorem (see [10]).

2.3 A Choquet-Deny Property for Markov Walk

Here .S; ı/ is a compact metric space and P is a Markov kernel on S�R D Y which
commutes with the R-translations and acts continuously on the space Cb.S �R/ of
continuous bounded functions on S �R. Such a set of datas will be called a Markov
walk on R. We define for t 2 R the Fourier operator P it on C.S/ by

P it'.x/ D P.' ˝ eit/.x; 0/;

where eit is the Fourier exponential on R; eit.r/ D eitr. For t D 0; P it D P0 is
equal to NP , the factor operator on S defined by P . We assume that for " > 0 P it

preserves the space of "-Hölder functionsH".S/ on .S; ı/ and is a bounded operator
on H".S/.

We denote Œ'�" D supx 6Dy
j'.x/�'.y/j
ı.x;y/"

; j'j D supx j'.x/j for � 2 C.S/.

Moreover, we assume that P it and P satisfy the following conditionD:

1. For any t 2 R, one can find n0 2 N; �.t/ 2 Œ0; 1Œ and C.t/ � 0 for which

Œ.P it/n0'�" � �.t/Œ'�" C C.t/j'j:

2. For any t 2 R, the equation P it' D ei�'; ' 2 H".S/; ' 6D 0, has only the
trivial solution ei� D 1; t D 0; ' D constant.

3. For some ı > 1 W Mı D supx2S
R jajıP..x; 0/; d.y; a// <1.

Conditions 1 and 2 above imply that NP has a unique stationary measure � and the
spectrum of NP in H".S/ is of the form f1g [ �, where � is a compact subset of
the open unit disk (see [11]). They imply also that for any t 6D 0, the spectral radius
of P it is less than one.

If Y D PV , P is the convolution operator by � on PV D P
d�1 � RC .d > 1/,

hence S D P
d�1 and R

�C D expR. Theorem 5 implies that condition D is satisfied
if I� 6D 0 and condition i � p is valid.

Furthermore, for s 2 I� one can also consider the Markov operator Qs on PV
defined by

Qsf D 1

k.s/es ˝ hs P.fe
s ˝ hs/:

If for some ı > 0;
R jgjs�ı.g/d�.g/ < 1, Theorem 5 implies that conditions D

are also satisfied by Qs .
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We will say that a Radon measure � on Y D S �R is translation-bounded if for
any compact K � Y there exists C.K/ > 0 such that �.K C t/ � C.K/ for any
t 2 R, whereK C t is the set obtained fromK by translation with t . Then we have
the following Choquet-Deny type property

Theorem 6. With the above notations if the Markov operator P on Y D S � R

satisfies the condition D. Then any translation-boundedP -harmonic measure on Y
is proportional to � ˝ l with l D dt .

This theorem can be used for Y D PV and P D Q˛ if 0 < ˛ < s1.

2.4 A Weak Renewal Theorem

As in the Sect. 2.3, we consider a Markov walk P on R with compact factor space
S , a probability � on S such that � ˝ l is P -invariant. A path starting from S for
this Markov chain will be denoted .Xn; Vn/ withXn 2 S; Vn 2 R and the canonical
probability measure on the paths starting from x 2 S will be denoted by a

Px. We
write also a

P� D
R

a
Pxd�.x/.

For a non negative Borel function on S � R, we write U D P1
0 P

k .
We observe that if .x; t/ 2 S � R,  D 1K , then U .x; t/ is the expected
number of visits to K starting from .x; t/ 2 S � R. In other words U .x; t/ D
Ex

�P1
0  .Xk; t C Vk/

	
. Then we have the following weak analogue of the renewal

theorem.

Proposition 2. Suppose that  is a bounded, non-negative and compactly sup-
ported Borel function on S�R. Further suppose that the potentialU DP1

0 P
k 

is locally bounded and that, for any " > 0,

lim
n!1

a
Pv

� ˇ̌
ˇ̌Vn
n
� �

ˇ̌
ˇ̌ > "

�
D 0 with � < 0

holds true. Then

lim
t!1

1

t

Z t

0

ds

Z

s

U .x; s/d�.x/ D 1

j� j
Z Z 1

�1
 .x; s/d�.x/ds:

If  is a non-negative Borel function on S such that limt!1U .x; t/ D 0 �-a.e.,
then  D 0 � ˝ l-a.e.

3 Elements of Proof of Theorem 1

3.1 Convergence for Radon Transforms

For a finite measure � on V we write O�.w/ D �.HC
w / where u D tw; t > 0; u 2

S
d�1; HC

w D fx 2 V I< x;w >> 1g. We observe that O� can be considered as an
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integrated form of the Radon transform of �. Observe that 1� � �.w/ D .���ıw/. O�/,
hence convolution equations on G � V can be transformed to functional equations
for Radon transforms.

We will not be able to apply directly the renewal Theorem 4 to the convolution
equation��� D � corresponding toR D AR1CB but rather to functional equations
for O� and ��. We denote by �1 the law of R � B and we begin with the

Proposition 3. With the hypothesis of Theorem 4, we denote by � Q�˛u the positive
kernel on S

d�1 given by Theorem 4 and associated with ��. Then one has the
equations on V nf0g

� D
1X

0

�k � .� � �1/; O�.w/ D
1X

0

..��/k � ıw/. O� � O�1/:

For u 2 S
d�1, if ˛ 2�0; s1Œ; k.˛/ D 1, the function t ! t˛�1. O� � O�1/.u; t/ is

Riemann-integrable on �0;1Œ and one has, with r˛.u/ D
R1
0
t˛�1. O� � O�1/.u; t/dt

lim
t!1 t˛ O�.u; t/ D

�e˛.u/
L�.˛/

� Q�˛u .r˛/ D C.
˛ ˝ l˛/.HC
u /;

where C � 0 and the probability 
˛ on Q�.S/ satisfies � � .
˛ ˝ l˛/ D 
˛ ˝ l˛ .
There exists b > 0 such that PfjRj > tg � bt�˛ . Furthermore supp� is unbounded
and: In case I: 
˛ D Q�˛, in case II: C
˛ D CC Q�˛C C C� Q�˛�; CC; C� � 0.

Sketch of Proof

Since jg�j D jgj, the function k.s/ is equal to the corresponding function for ��,
condition i � p is satisfied for �� and L��.˛/ D L�.˛/. We observe that the
stationarity equation R � B D AR1 can be written in distribution as � � �1 D
� � � � �. Also �.f0g/ D 0, hence we get

� D
1X

0

�k � .� � �1/; O�.w/ D
1X

0

..��/k � ıw/. O� � O�1/

on V nf0g.
In order to use Theorem 4, we need to regularize O� � O�1 by multiplicative

convolution on R
�C with 1Œ0;1�, hence to consider

r˛.u; t/ D 1

t

Z t

0

x˛�1. O� � O�1/.u; x/dx:
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Clearly jr˛.u; t/j � ˛�1t˛�1. By using the conditions E.jAj˛Cı/ < 1 and
E.jBj˛Cı/ < 1, one can show the existence of ı0 > 0; c.ı0/ > 0 such that for
t � 1;

jr˛.u; t/j � c.ı0/t�ı0

:

Then Theorem 4 can be applied to f˛.w/ D r˛.u; t/, whence, by a Tauberian
argument as in [6], we get the convergence of t˛ O�.u; t/ towards 1

L�.˛/
�e˛.u/� Q�˛u .r˛/.

From the existence of ˛ 2�0; s1Œ with k.˛/ D 1, one can deduce the existence of
g 2 S with jgj > 1, hence supp� is unbounded.

The above formulae and the description of �e˛; 
˛ in terms of Q�˛; Q�˛C; Q�˛� give
the harmonicity equation��.
˛˝l˛/ D 
˛˝l˛ . The boundedness of t˛P fjRj > tg
follows from the convergence of t˛ O�.u; t/.

3.2 Homogeneity at Infinity of �

The boundedness of t˛P fjRj > tg stated in Proposition 3 implies that the family of
Radon measures ft�˛.t:�/I t 2 RCg is relatively compact in the vague topology.

Proposition 4. Given the situation of Theorem 1, assume that � is a vague limit
of a sequence t�˛n .tn � �/ as tn ! 1. Then � is translation-bounded and satisfies
� � � D �. If � and 
 ˝ l˛ satisfy

�.HC
u / D .
 ˝ l˛/.HC

u /;

for any u 2 S
d�1 and some positive measure 
 on S

d�1, then � D 
 ˝ l˛.

This proposition is based on the moment conditions satisfied by R;A;B , and on
Theorem 6. Using furthermore Propositions 4 and 3, we get the

Theorem 7. With the hypothesis of Theorem 1, we have the following vague
convergence

lim
t!0C t

�˛.t:�/ D � D C.
˛ ˝ l˛/;

where C � 0.
The above convergence is also valid on any Borel function f such that the set

of discontinuities of f is .
˛ ˝ l˛/-negligible and such that for some " > 0, the
function jwj�˛j log jwjj1C"jf .w/j is bounded.
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3.3 Positivity of CC; C�

We need to consider processes (dual to Xn) and taking values in .V nf0g/ � R or
S
d�1 � R and we write

S 0
n D A�

n : : : A
�
1 :

LetM be a S�-minimal subset of Sd�1 i.e.M D Q�.S�/ in case I andM D Q�C.S�/
(or . Q��.S�// in case II. We denote by ��

a .T / the set of u 2 S
d�1 such that the

projection of � on the line Ru.u 2 S
d�1/ is unbounded in direction u. The following

is the essential step in the discussion of positivity.

Proposition 5. With the hypothesis of Theorem 1, if ��
a .T /  M , then for any

u 2 M

CM.u/ D lim
t!1 t˛Pf< R; u >> tg > 0:

In order to explain the main points of the proof, we need to introduce some
notations. We observe that Rn satisfies the recursion

< RnC1;w >D< Rn;w > C < BnC1; S 0
nw >;

hence .S 0
nw; rC < Rn;w >/ is a Markov walk on V nf0g�R based on S

d�1 �R. If
we write

t 0 D r�1; w D jwju; p D r jwj�1

with u 2 S
d�1 this Markov walk can be expressed on .Sd�1 �R/ � R

� as

unC1 D g�
nC1:un; pnC1 D pnC < bnC1; un >

jg�
nC1unj

; t 0nC1 D t 0n.jg�
nC1unjpnC1p�1

n /
�1:

We denote by � OP the corresponding Markov kernel. Since .S 0
nw; rC < Rn;w >/

has equivariant projection S 0
nw on V nf0g, we have � OP .�e˛˝h˛/ D� e˛˝h˛ , hence

we can consider the new relativized kernel � OP˛ and the corresponding Markov walk
.un; pn; t 0n/ over the chain .un; pn/ 2 X DM � R.

We denote

�q˛.u; g/ D jg�uj˛
�e˛.g�:u/

�e˛.u/

and for h D .g; b/ 2 H;

hup D 1

jg�uj.pC < b; u >/I
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then the Markov kernel � OQ˛ of the chain .un; pn/ is given by

� OQ˛'.u; p/ D
Z
'.g� � u; hup/�q˛.u; g/d�.h/:

We have L�.˛/ > 0 and M is minimal, hence it is easy to show that � OQ˛ has a
unique stationary measure  on X , and with respect to the Markov measure � OQ˛

u on
X � ˝ we have E

˛
u .logC jpj/ < 1 and lim supn!1 jS 0

nujjpnj D 1. We observe
that, since L�.˛/ > 0, the Markov walk .un; pn; t 0n/ on X � R

� has negative drift,
in additive notation.

The condition��
a .T / M implies

.M��0;1Œ/ > 0; lim sup
n!1

jS 0
nujpn D1;

for p > 0.
We now consider the following N [ f1g-valued stopping time � on X � ˝

defined by

� D Inf fn > 1Ip�1 < Rn; u >> 0g;

and we observe that, by definition of pn :

� D Inf fn > 1Ip�1pnjS 0
nuj > 1g;

hence p�1p� > 0. Hence � (resp. p�1p� jS 0
�ujj/ can be interpreted as the first ladder

epoch (resp. height) of the Markov walk p�1pnjS 0
nuj (see [4]).

Using Poincaré’s recurrence theorem and limn!1 jS 0
nuj D 1 � OQ˛

u -a.e. we infer
that � <1 � OQ˛

 -a.e.

Let � OP � ; � OQ� be the stopped kernels of � OP ; � OQ, respectively, defined by � and
let � OP �

˛ ;
� OQ˛;� be the corresponding relativised Markovian kernels. Then we have

the

Lemma 1. With tw D u 2 S
d�1; t > 0, we write on X � R

�

 .w; p/ D Pfp�1 < R; u >> tg;  � .v; p/ D Pft < p�1 < R; u >< t C p�1 < R� ; u >g
 ˛ D .�e˛ ˝ h˛/�1 ;  ˛� D .�e˛ ˝ h˛/�1 � :

Then  DP1
0 .

� OP � /k � ;  
˛ DP1

0 .
� OP �

˛ /
k ˛� .

The proof is analogous to the first part of Proposition 3, in order to get the Poisson
equation  � D  �� OP � . Since p�1p� > 0, the operator � OQ˛;� preserves XC D
M��0;1Œ. If ��

a .T /  M , then .XC/ > 0. Since E
˛
 .logC jpj/ < 1, one can

show that the Markov kernel � OQ˛;�
x has an ergodic stationary measure �C which is
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absolutely continuous with respect to 1XC
. Also we have, using the interpretation

of � as a return time in the dynamical system associated with � OQ˛
x and the bilateral

shift,

E
˛
0 .�/ D

Z
E
˛
u .�/d

�C.u; p/ <1; �˛� D E
˛
�

C

.log.p�1p� jS 0
�uj// 2�0;1Œ

with �˛� D L�.˛/E˛0 .�/.
Now we can consider the Markov walk defined by � OP �

˛ on XC �R
�C. In view of

the above observations we can apply Proposition 2 to � OP �
˛ and �C˝l . We recall that,

in additive notation, this Markov walk has negative drift ��˛� < 0. If for some u 2
M we haveCM.u/ D 0, then forp > 0 and u D tw .t > 0/ limt!1  ˛.w; p/ D 0.

Using Proposition 3 we get limt!1  ˛.w; p/ D 0 for any u D tw 2 M . In
particular, this is valid �C-a.e., hence Proposition 2 implies  ˛� D 0 �C˝ l-a.e., i.e.

Pft < p�1 < R; u >< t C p�1 < R� ; u >g D 0:

Since p�1 < R� ; u >> 0, we get p�1 < R; u >� 0 �C ˝ P-a.e., i.e. < R; u >�
0 P-a.e. This contradicts��

a .T /  M . One can show that ��
a .T / D S

d�1 in cases
I, II’ and��

a .T /  Q�C.S�/ in case II”, hence CC > 0.

4 The One-Dimensional Case

If d D 1, the notations and definitions introduced in Sect. 1 make sense. Then
G D R

� and H D H1 is the affine group “ax C b” of the line. Condition i � p is
always satisfied for any probability � on R

�, and the analogue of Proposition 1 is
valid verbatim. For the analogue of Theorem 1 one needs to consider the possibility
that S resp. � are arithmetic, i.e. S is contained in a subset of R� of the form f˙ang
for some a > 0. The function k.s/ has the explicit form

k.s/ D
Z
jajsd�.a/:

Also L� D
R

log jajd�.a/ D k0.0/. Then, Theorem 1 has the following
analogue, with weaker moment conditions.

Theorem 8. Assume that the probability measure � onH1 and � on R
� satisfy the

following conditions

(a) E.log jAj/ < 0; k.˛/ D 1, for some ˛ > 0.
(b) S is non arithmetic and T has no fixed point.
(c) E.jBj˛/ <1 and EjAj˛j log jAjj/ <1.



134 Y. Guivarc’h and É. Le Page

Then one has the following convergences:

lim
t!1 t˛PfR > tg D CC

lim
t!1 jt j

˛
PfR < �tg D C�:

Either supp� D R and then CC; C� > 0 or supp� is a half-line Œc;1Œ (resp.
� �1; c�) and then CC > 0; C� D 0 (resp. C� > 0;CC D 0).

With respect to [6], the main new situation occurs for the discussion of positivity
of CC, if An > 0 and the r.v. Bn may have arbitrary sign. The proof [17] uses
only the classical renewal theorem and a spectral gap property for the Markov chain
pn on R. If supp� does not preserve a half-line � � 1; c�, one considers � as the
entrance time of pn into �0;1Œ. The spectral gap property gives the finiteness of
E
˛
p.�/ for any p 2 R; using Wald’s identity for the random walk log jSnj, one

gets the finiteness and positivity of log jS� j and then one concludes as for d > 1.
Under stronger assumptions, the positivity of CC has been obtained also in the more
general context of [3], using a complex analytic method for Mellin transform due to
E. Landau, and familiar in analytic number theory. The positivity of CC C C� was
obtained in [6], using P. Levy’s symmetrisation method. For an analytic proof of
these facts, using also Wiener-Ikehara theorem, see ([10], Appendix). In contrast to
Theorem 1 and due to the Diophantine character of the hypothesis, the convergences
stated in Theorem 8 are not robust under perturbation of � in the weak topology.
From that point of view, the respective roles of stable laws and of the Gaussian law
are different for d D 1 and for d > 1.
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14. Klüppelberg, C., Pergamenchtchikov, S.: Extremal behaviour of models with multivariate
random recurrence representation. Stoch. Process. Appl. 117(4), 432–456 (2007)
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On Solutions of the Affine Recursion
and the Smoothing Transform
in the Critical Case

Sara Brofferio, Dariusz Buraczewski, and Ewa Damek

Abstract In this paper we present a new result concerning description of asymp-
totics of the invariant measure of the affine recursion in the critical case. We discuss
also relations of this model with the smoothing transform.

1 The Affine Recursion

We consider the random difference equation:

X Dd AX C B; (1)

where .A;B/ 2 R
C � R and X are independent random variables. This equation

appears both in numerous applications outside mathematics (in economy, physics,
biology) and in purely theoretical problems in other branches of mathematics. It is
used to study e.g. some aspects of financial mathematics, fractals, random walks in
random environment, branching processes, Poisson and Martin boundaries.

It is well known that if EŒlogA� < 0 and EŒlogC jBj� < 1, then there exists a
unique solution to (1). The solution is the limit in distribution of the Markov chain

Xx
0 D 0;

Xx
n D AnXx

n�1 C Bn;
(2)
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which is called the affine recursion (since the formula reflects the action of .An; Bn/,
an element of the affine group, on the real line). To simplify our notation we will
write Xn D X0

n .
The most celebrated result is due to Kesten [19] (see also Goldie [13]), who

proved that if EA˛ D 1 for some ˛ > 0 (and some other assumptions are satisfied),
then

lim
t!1 t˛PŒjX j > t� D CC;

i.e. if � is the law of X , then �.dx/ � dx
x1C˛ at infinity.

We are interested here in the critical case, when E logA D 0. Then, Eq. (1)
has no stochastic solutions. Nevertheless this equation can be written in terms of
measures:

� � � D �; (3)

where � is the distribution of .A;B/, and � � � is defined as follows

� � �.f / D
Z Z

f .ax C b/�.dx/�.da; db/:

In 1997 Babillot et al. [4] proved that under the following hypotheses

E
�
.j logAj C logC jBj/2C"� <1; PŒAx C B D x� < 1 for all x 2 R and PŒA D 1� < 1

(4)

there exists a unique (up to a constant factor) Radon measure �, which is a solution
to (3). The measure � is an invariant measure of the process (2).

Recently we studied behavior of � at infinity and we proved that for any c2 >
c1 > 0,

lim
x!1 �.c1x; c2x/ D CC log.c2=c1/;

for some strictly positive constant CC, [5, 7]. In other words we proved that the
measure � behaves at infinity like CC dx

x
. Unfortunately this result was proved under

very strong hypotheses. We assumed that exponential moments are finite, i.e.

E
�
Aı C A�ı C jBjı� <1 for some ı > 0; (5)

moreover in [7] we needed also absolute continuity of the measure �, the law of
logA.

In this paper we consider the affine recursion (2), whenB is strictly positive, that
implies also that the support of � must be contained in .0;1/. It turns out, in these
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settings the assumptions of our previous results can be weakened and exponential
moments are not really needed. We restrict ourself to the aperiodic case, i.e. we
assume the law of logA is not contained in any set of the form pZ for some
positive p. Our main result is the following

Theorem 1. Assume that (4) is satisfied, the measure � is aperiodic and the
following holds

E
�
.j logAj C logC B/4C"

�
<1; (6)

and

E
�j logBj� <1; B � 0; a.s. (7)

Then for every function � 2 Cc.RC/

lim
z!C1

Z

RC

�.uz�1/�.du/ D CC
Z

RC

�.u/
du

u

for some strictly positive constant CC.
Moreover for every c1 < c2

lim
z!1 �

�
u W c1z < u < c2z

	 D CC log
c2

c1
: (8)

Notice that comparing with the main result of [5] we replace requirements
of exponential moments (5) by much weaker assumption (6) and we assume
additionally positivity of B . The integral condition in (7) is needed to control
behavior of B and of the invariant measure in some small neighborhood of 0, and it
is unnecessary if B > ı a.s. for some ı > 0.

A complete proof of this result will be given in Sect. 3. The idea is the
following. First one has to find some preliminary estimates of the measure �
under the hypothesis (4). Here we will just deduce from results contained in [5],
that there exists a slowly varying function L.z/ such that the family of measures
ız�1��
L.z/ converges weakly to C dx

x
, i.e. the measure �.dx/ behaves at infinity like

L.x/ dx
x

(Proposition 1). Next applying the duality principle ([12], p. 609), thanks
to positivity of B , we prove that the measure � is indeed bounded by the logarithm,
more precisely we will show �.0; z/ � C.1C log z/ (Proposition 2). Finally for an
arbitrary compactly supported function � on R

C we consider the function

f�.x/ D
Z

RC

�.ue�x/�.du/;

defined on R, as a solution of the Poisson equation

� �R f� D f� C  � (9)
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where  � is defined by the formula above, i.e.  � D � �R f� � f� . Then knowing
already some estimates of the function f� (and our preliminary estimates are
sufficient for that purpose) one can describe its asymptotics. There are two different
methods. The first one bases on the classical results of Port and Stone [24, 25],
who just solved explicitly the Poisson equation in the case when � is absolutely
continuous. Nevertheless for our purpose much less is needed and the appropriate
argument was given in [5]. The second method was introduced by Durrett and
Liggett [11]. Thanks to the duality lemma they reduce the Poisson equation to the
classical renewal equation, i.e. to an equation of the form (9), but with � replaced
by a measure with drift and  � replaced by some other function. In order to prove
Theorem 1 we follow here the arguments given in [5]. The second method in the
context of the affine recursion was considered by Kolesko [20] and in more general
settings of Lipschitz recursions by two of the authors [6].

2 The Smoothing Transform

The measure � described in Theorem 1 is not a probability measure, but only a
Radon measure. However it turns out that this measure appears in a natural way
while studying purely probability objects. Here we will shortly present how this
result and the methods can be used to study the smoothing transform.

To define the (inhomogeneous) smoothing transform take .B;A1; A2; : : :/ to be
a sequence of positive random variables and let N be a random natural number. On
the set P.R/ of probability measures on the real line the smoothing transform is
defined as follows

� 7! L

� NX

jD1
AjXj C B

�
;

where X1;X2; : : : is a sequence of i.i.d random variables with common distribution
�, independent of .B;A1; A2; ::/ and N . L .X/ denotes the law of the random
variable X . A fixed point of the smoothing transform is given by any � 2 P.R/
such that, if X has distribution �, the equation

X Dd
NX

jD1
AjXj C B; (10)

holds true. Notice that if N and Ai ; B are constants, the equation above character-
izes stable laws as a particular case of (10).

We are interested also in a more specific case of (10). Taking B D 0 we obtain
the homogeneous smoothing transform, i.e.

X Dd
NX

iD1
AiXi : (11)
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Both stochastic equations described above are important from the point of
view of applications. Equation (11) plays it role in description of e.g. interacting
particle systems [11] and the branching random walk [1, 16]. In recent years, from
very practical reasons, the inhomogeneous equation has gained importance. This
equation appears e.g. in the stochastic analysis of the Pagerank algorithm (which in
the heart of the Google engine) [17, 18] as well as in the analysis of a large class of
divide and conquer algorithms including the Quicksort algorithm [23, 26].

Although (10) and (11) look similar to (1), often they turn out to have completely
different properties. While studying Eqs. (10) and (11) main concern is to describe
the right hypotheses for the following issues: existence of solutions, characterization
of all the solutions and finally, description of their properties.

2.1 Homogeneous Smoothing Transform

We start first with description of the homogeneous smoothing transform. The
properties of fixed points of Eq. (11) are governed by the convex function

m.�/ D E

� NX

jD1
A�j

�
: (12)

To exclude the trivial case we make the assumption EN > 1. The first question that
can be asked here is about existence of solutions of (11) and if there are any, what
are all of them. The most important results are contained in the work of Durrett and
Liggett [11] and in a series of papers of Liu e.g. [21]. They proved that the set of
solutions of (11) is nonempty if and only if there is ˛ � 1 such that m.˛/ D 1

and m0.˛/ � 0. Moreover the parameter ˛ describes the asymptotic of the Laplace
transform of solutions. Their proofs goes via the Poisson equation as described in
the previous section (of course some additional assumptions are needed). All their
results are formulated in terms of the Laplace transform, but applying the Tauberian
theorem for ˛ < 1 they give the correct asymptotics ofX , a solution of (11). Namely
they imply

lim
t!1

t˛PŒX > t� D C1 if m0.˛/ < 0 and lim
t!1

t˛

log t
PŒX > t� D C2 if m0.˛/ D 0:

Unfortunately the Tauberian theorem does not give the optimal answer when ˛ D 1,
e.g. if m0.˛/ D 0 one can only deduce the weaker asymptotics

Z x

0

PŒX > t�dt � C2 logx as x !1:

Thus, the results of [11, 21] are sharp only for ˛ < 1.
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It turns out that to study the case ˛ D 1 one has to reduce the problem to
the random difference equation (1). For reader’s convenience we sketch here the
arguments due to Guivarc’h [15], which work in the case whenN is constant andAi
are i.i.d. For the general case see [8, 22].

Let X be a solution to (11). We introduce probability measures: let � be the law
of X , � the law of

PN
iD2 AiXi , � the law of A. We define new measures: �.dx/ D

x�.dx/, Q�.da/ D a�.da/. Then, it turns out that the measure � is � invariant for
�.da db/ D N Q�.da/˝ �.db/ defined on R

C � R
C, i.e. � and � satisfy (3). Indeed

for any compactly supported function on R
C we have

�.f / D
Z

RC

f .x/�.dx/ D
Z

RC

f .x/x�.dx/ D E
�
f .X/X

�

D E

�
f

� NX

iD1
AiXi

� NX

iD1
AiXi

�
D NE

�
f

�
A1X1 C

NX

iD2
AiXi

�
A1X1

�

D N

Z Z Z
f .ax C b/ax�.da/�.dx/�.db/

D
Z Z

f .ax C b/�N Q�.da/˝ �.db/
	
�.dx/

D
Z Z

f .ax C b/�.da db/�.dx/

Assume now that m.1/ D 1, m0.1/ < 0 and there exists ˇ > 1 such that m.ˇ/ D 1.
Then observe, that � is a probability measure and moreover

Z
log a�.da db/ D N

Z
log a Q�.da/ D N

Z
a log a�.da/ D m0.1/ < 0;

Z
aˇ�1�.da db/ D N

Z
aˇ�.da/ D m.ˇ/ D 1:

One can easily check also other assumptions of the Kesten theorem, thus �.dx/ �
CC dx

x.ˇ�1/C1 D CC dx
xˇ

, �.dx/ � CC dx
xˇC1 and finally P ŒX > t� � CCt�ˇ (we refer

to [15, 22] for all the details).
Exactly the same argument is valid in the critical case when m.1/ D 1 and

m0.1/ D 0. In fact this is the case which appear in the literature in the context of
branching random walks [1,16]. Then we reduce the problem to the affine recursion
in the critical case and applying Theorem 1 one proves that P ŒX > t� � CCt�1
(see [8] for more details).

2.2 Inhomogeneous Smoothing Transform

The inhomogeneous smoothing transform has been studied for a relatively short
time. The problem of existence of solutions was investigated in recent papers of
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Alsmeyer and Meiners [2,3]. Their results are similar to those described above (and
also formulated in terms of the function m). They proved that if m.˛/ D 1 and
m0.˛/ < 0 for some ˛ � 1 (the contracting case) or m.˛/ D 1 and m0.˛/ D 0 for
some ˛ < 1 (the critical case) then the set of solutions of (10) is not empty.

To study asymptotics one cannot reduce the problem as in the homogeneous case
to the affine recursion. Nevertheless one can apply exactly the same methods, which
give results for the affine recursion. This problem was studied by Jelenkovic and
Olvera-Cravioto [17, 18] in the contracting case. Assuming that for some ˇ > ˛:
m.ˇ/ D 1 and m0.ˇ/ > 0 and extending the Goldie’s implicit renewal theory [13],
they proved that PŒX > t� � CCt�ˇ . Positivity of the limiting constant CC was
recently proved in [9]. The critical case is the subject of the forthcoming paper [10].

3 Proof of Theorem 1

3.1 Preliminary Estimates

In order to prove that the sequence ız�1 � � has a limit, one has to prove first that
divided by an appropriately chosen slowly varying function it is weakly convergent.

Proposition 1. Suppose that (4) is satisfied and logA is aperiodic. Let � be an
invariant Radon measure not reduced to a mass point at 0. Then there exists a

positive slowly varying function L on R
C such that the family of measures

ız�1��
L.z/

converges weakly to C da
a

for some strictly positive constant C .

Proof. This proposition was indeed proved in [5] (Theorem 2.1). However the result
stated there was written in the multidimensional settings and for this reason was
slightly weaker than we need here. More precisely, it was proved in [5] that the
family of measures is weakly compact and all accumulation points are invariant
under the action of the group generated by the support of A. Nevertheless notice
that in our settings this group is just RC, thus any accumulation point � must be
of the form �.da/ D C�

da
a

. Moreover the slowly varying function is of the form
L.z/ D ız�1 � �.˚/, where ˚ a compactly supported Lipschitz function (for the
precise definition of L see [5]). Since

lim
z!1

ız�1 � �.˚/
L.z/

D 1 D �.˚/;

the constant C� must be equal .
R
˚.a/ da

a
/�1 and does not depend on �. ut
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3.2 Logarithmic Estimates

Proposition 1 implies in particular that the function z 7! �.0; z/ is bounded by some
slowly varying function. Now we are going to prove that thanks to our addition
assumptions this function is bounded just by a multiple of the logarithm.

For this purpose, let us recall the following [4] explicit construction of the
measure �. Define a random walk on R

S0 D 0;
Sn D log.A1 : : : An/; n � 1; (13)

and consider the downward ladder times of Sn:

L0 D 0;
Ln D inf

˚
k > Ln�1ISk < SLn�1



:

(14)

Let L D L1. The Markov process fXx
Ln
g satisfies the recursion

Xx
Ln
DMnX

x
Ln�1
CQn;

where .Qn;Mn/ is a sequence of i.i.d. random variables. Notice that fXLng
is a contracting affine recursion possessing a stationary measure. Indeed since
EŒlog2A� < 1, we have �1 < ESL < 0. Moreover EŒlogC.Qn/� < 1 (see
[14]). Therefore there exists a unique stationary measure �L of the process fXLng.
Next we define the measure �0 putting

�0.f / D
Z

RC

E

h L�1X

nD0
f .Xx

n /
i
�L.dx/; (15)

for any continuous compactly supported function f .
One can easily prove that �0 is � invariant. At this point we cannot deduce that

�0 D C� for some positive constant C , since we don’t know whether �0 is a Radon
measure. However this will be proved below.

Proposition 2. Assume that (4) and (7) are satisfied. Then �0 is a multiple of �.
Moreover there exists a constant C such that for every bounded nonincreasing
nonnegative function f on R

C

Z

RC

f .u/�.du/ < C

�
kf k1 C

Z 1

1=e

f .y/
dy

y

�

In particular for every " > 0
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Z

RC

1

log1C".2C u/
�.du/ <1 (16)

and for z > 1=e

�.0; z/ < C.2C log z/: (17)

Proof. Notice that since Xx
n � A1 : : : Anx

�0.f / D
Z

RC

E

� L�1X

nD0
f .Xx

n /

�
�L.dx/ �

Z

RC

E

� L�1X

nD0
f
�
eSnx/

	�
�L.dx/:

Define the stopping time T 0 D inf
˚
n W Sn � 0



, where Sn D Pn

kD1 logAi .
Let fWig be a sequence of i.i.d. random variables with the same distribution as the
random variable ST 0 (recall 0 < EST 0 < 1). Using the duality principle [12] we
obtain

�0.f / �
Z

RC

E

� L�1X

nD0
f
�
eSnx/

	�
�L.dx/ D

Z

RC

E

� 1X

nD0
f
�
eW1C���CWnx

	�
�L.dx/:

(18)

Let U be the potential associated with the random walk W1 C : : :CWn, i.e.

U.a; b/ D E
�
#n W a < W1 C : : :CWn � b

�
:

By the renewal theorem U.k; k C 1/ is bounded, thus we have

�0.f / �
Z

RC

E

� 1X

nD0
f
�
eW1C���CWnx

	�
�L.dx/

�
1X

kD0

Z

RC

U.k; k C 1/f �ekx	�L.dx/

� C
1X

kD0

Z

RC

f
�
ekx

	
�L.dx/:

Next we divide the integral into two parts. First we estimate the integral over .1;1/
1X

kD0

Z 1

1

f
�
ekx

	
�L.dx/ �

1X

kD0
f
�
ek
	 �

1X

kD�1

Z kC1

k

f
�
ey
	
dy

D
Z 1

�1
f
�
ey
	
dy D

Z 1

1=e

f .y/
dy

y
:
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Secondly, for 0 < x < 1 we write

1X

kD0

Z 1

0

f
�
ekx

	
�L.dx/ �

Z 1

0

� j log xjX

kD0
C

1X

kDj log xj

�
f
�
ekx

	
�L.dx/

� Ckf k1
Z 1

0

ˇ̌
logx

ˇ̌
�L.dx/C

1X

kD0
f
�
ek
	

� Ckf k1
Z 1

0

ˇ̌
logx

ˇ̌
�L.dx/C

Z 1

1=e

f .y/
dy

y
:

We will justify that the first term above is finite. Notice that if x; y 2 R
C and

x C y < 1 then
ˇ̌
log.x C y/ˇ̌ < ˇ̌

logx
ˇ̌
. Observe also that Xx

Ln
� Xy

Ln
for x � y.

We write

Z 1

0

ˇ̌
logx

ˇ̌
�L.dx/ D

Z

RC

E

hˇ̌
logXx

L

ˇ̌ � 1fXxL<1g
i
�L.dx/

�
Z

RC

E

hˇ̌
logX0

L

ˇ̌ � 1fX0L<1g
i
�L.dx/

� E

�ˇ̌
ˇ log

�A1A2 : : : ALB1
A1

�ˇ̌
ˇ
�

� E
�jSLj C j logB1j C j logA1j

�
<1:

Therefore

�0.f / � C
�
kf k1 C

Z 1

1=e

f .y/
dy

y

�
:

Taking f D 1Œ0;x� we prove that �0 is a Radon measure. Since �0 is also � invariant,
� must be just a multiple of �0 (recall that in the class of Radon measures the solution
of (3) is unique up to a multiplicative constant, [4]). In particular the last inequality
is valid for � instead of �0. Putting f .u/ D 1

log1C".2Cu/
and next f .u/ D 1Œ0;z�.u/ we

complete the proof. ut

3.3 Translation of the Invariant Measure �.

It will be convenient for our purpose to change slightly the measure � and to consider
the measure Q� defined by

Q�.f / D
Z

RC

f .x � 1/�.dx/:
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The crucial property of Q� is that its support is contained in .1;1/, so it does not
contain 0, that allows us to avoid some technical problems. Let Q� be the law of the
random pair .A;ACB � 1/, then Q� is Q� invariant:

Q� � Q�.f / D E

� Z

RC

f
�
A.x C 1/C B � 1	 Q�.dx/

�

D E

� Z

RC

f
�
Ax C B � 1	�.dx/

�
D
Z

RC

f .x � 1/�.dx/ D Q�.f /:

Notice that both measures � and Q� have the same behavior at infinite, and the family
of measure ız�1 � � and ız�1 � Q� converge to the same limit (of course assuming
that they really converge, what we still have to prove). Thus, for our purpose it is
sufficient to consider Q�. However notice that although both measures � and Q� are
similar they satisfy slightly different hypotheses. The projections on the A-part of �
and Q� coincide and one can easily prove that Q� fulfills hypotheses (4) and (6). But
the random variableACB �1may happen to be negative with positive probability,
thus Q� may not satisfy assumption (7). Nevertheless, we are only interested in
behaviour of � and Q� at infinity, so we will use the fact, that we already know,
that Q� satisfies both (16) and (17).

From now we consider measures Q� and Q� instead � and �, but to simplify our
notation we will just write � and �. However the reader should be aware that we are
in a slightly different settings and from now instead of (7) we assume:

• Hypothesis (4) and (6) are satisfied;
• The measure � satisfy (16) and (17).

3.4 The Poisson Equation

In order to understand the asymptotic behavior of the measure � one has to consider
the function

f�.x/ D
Z

Rd

�.ue�x/�.du/

that is a solution of the Poisson equation

� �R f� D f� C  � (19)

for a peculiar choice of the function  � , that is

 � D � �R f� � f�:
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Under a number of assumptions concerning  � one can describe asymptotic
behavior f� . Here we formulate the known results, based on the methods introduced
by Port and Stone [24,25], which we are going to use. For proofs we refer to [5,24].

Let � be a centered aperiodic probability measure on R with the second moment

2 D R

R
x2�.dx/. The Fourier transform of�, O�.�/ D R

R
eix��.dx/ is a continuous

bounded function, whose Taylor expansion near zero is O�.�/ D 1CO.�2/ and such
that j1 � O�.�/j > 0 for all � 2 R n f0g. We consider the set F .�/ of functions  
that can be written as  .x/ D 1

2�

R
R
e�ix� O .�/d� for some bounded, integrable,

complex valued function O verifying the following hypothesis

• Its Taylor expansion near 0 is

O .�/ D J. /C i�K. /CO.�2/

for two constants J. / and K. /,

• The function � 7! O .��/
1� O�.�/ � 1Œ�a;a�c .�/ is integrable for some a 2 R.

The following result was proved in [5].

Theorem 2. There exists a potential A, that is well defined on F .�/ and such
that A .x/ is a continuous solution of the Poisson equation (19). Furthermore if
J. / � 0 then A is bounded from below and

lim
x!˙1

A .x/

x
D ˙
�2J. /: (20)

If additionally J. / D 0, then A is bounded and has a limit at infinity

lim
x!˙1A .x/ D �
�2K. /: (21)

Corollary 1. If J. / D 0, then every continuous solution of the Poisson equation
bounded from below is of the form

f D A C C0
for some constant C0. Thus every continuous solution of the Poisson equation is
bounded and the limit of f .x/ exists when x goes toC1.

Conversely if there exists a bounded solution of the Poisson equation, then A 
is bounded and J. / D 0. In particular the first part of corollary is valid.

The next lemma describes a class of functions in F .�/ that we will be used later
on and that have the same type of decay at infinity as �. In particular we see that if
� has exponential moment then F .�/ contains functions with exponential decay.

Lemma 1. Let Y a random variable with the law �, then the function

r.x/ D E ŒjY � xj � jxj�
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is nonnegative and

Or.�/ D C �
O�.�/ � 1
�2

for � 6D 0. Moreover if EjY j4C" <1 for some " > 0 then

r.x/ � C

1C jxj3C" ;

r is in F .�/ and for every function � 2 L1.R/ such that x2� is integrable the
convolution r �R � is in F .�/.

Proof. The first part of the Lemma follows from the formula

r.x/ D
� �2EŒ.Y C x/1YCx�0� for x � 0
2EŒ.Y C x/1YCx>0� for x < 0

(22)

and was proved in [5]. For the second part we just notice, that the last formula
implies for positive x:

jr.x/j D 2

Z

y<�x
jy C xj�.dy/ D 2 �

1X

mD1

Z

�.mC1/x�y<�mx
jy C xj�.dy/

� 2 �
1X

mD1
mx

Z

jyj>mx
�.dy/ � 2 �

1X

mD1
mx

Z

R

jyj�
m4C"x4C"

�.dy/ � C

x3C"
:

It is clear that if EjY j4C" < 1 then r 2 F .�/. If  D r � � with � and
x2� in L1.R/ then it is easily checked that both  and x2 are integrable. Since
O D Or O� D C O��1

�2
O� and O� vanish at infinity then  2 F .�/ ut

Lemma 2. If � is a continuous function on R
C such that for ˇ > 2

j�.u/j � C

.1C logC u/ˇ
;

then the functions f� and �� f� are well defined. Furthermore if � is Lipschitz and
ˇ > 4, then

Z

R

Z

G

Z

RC

ˇ̌
ˇ�.e�x.auC b//� �.e�xau/

ˇ̌
ˇ�.du/�.db da/dx <1: (23)

and

j �.x/j � C

1C jxj� ;

for � D minfˇ � 1; 3C "g.
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Proof. Assume first x < �1. In view of (17) we have

ˇ̌
f�.x/

ˇ̌ D
Z

u>1

ˇ̌
�.e�xu/

ˇ̌
�.du/ �

Z

u>1

C

logˇ.e�xu/
�.du/

� C
1X

nD0

Z

en�u<enC1

1

.n � x/ˇ �.du/

� C
1X

n>jxj

1

nˇ

Z

enCx�u<enCxC1

�.du/

� C
1X

mD1

X

mjxj�n<.mC1/jxj

1

mˇjxjˇ
Z

enCx�u<enCxC1

�.du/

� C
1X

mD1

1

mˇjxjˇ
Z

u<e.mC1/jxj

�.du/ � C

jxjˇ�1
1X

mD1

1

mˇ�1

� C

jxjˇ�1 :

To proceed with positive x notice that, by (17), for every y 2 R
C and ˇ0 > 2,

arguing as above, we obtain:

Z

Rd

1

1C � logC.yjuj/	ˇ0
�.du/ �

Z

yjuj<1

�.du/C
1X

nD0

Z

en�yjuj<enC1

1

1C nˇ0
�.du/

� C C C j logyj C C
1X

nD1

1

1C nˇ0
�1
� C.1C j logyj/

(24)

Hence jf�.x/j � C.1C x/ if x > 0.
Finally f� is continuous, hence for x 2 .�1; 0/ is bounded. Thus

jf�.x/j � C
�
.1C jxj/1x>0 C 1

1C jxjˇ�1 1x�0
�

Consider now the convolution of f� with �. First if x > 0, then

ˇ̌
� � f�.x/

ˇ̌ � C
Z

R

�
1C jx C yj	�.dy/ � C �1C jxj	:
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Next if x < �1, then since Ej logAj4C" <1, we have

ˇ̌
� � f�.x/

ˇ̌ �
Z

R

C

1C jx C yjˇ�1 �.dy/

�
Z

2jyj<jxj
C

1C jx C yjˇ�1 �.dy/C
C

jxj4C"
Z

2jyj�jxj
jyj4C"�.dy/

� C

1C jxj�0 ;

for �0 D minfˇ � 1; 4C "g. The function � � f� is also continuous, hence finally
we obtain

j� � f�.x/j � C
�
.1C jxj/1x>0 C 1

1C jxj�0 1x�0
�
:

Next we have

Z 0

�1

Z

G

Z

Rd

ˇ̌
ˇ�.e�x.auC b//� �.e�xau/

ˇ̌
ˇ�.du/�.db da/dx

�
Z 0

�1

Z

G

Z

Rd

ˇ̌
�.e�x.auC b//ˇ̌�.du/�.db da/dx

C
Z 0

�1

Z

G

Z

Rd

ˇ̌
�.e�xau/

ˇ̌
�.du/�.db da/dx

�
Z 0

�1

Z

Rd

ˇ̌
�.e�xu/

ˇ̌
�.du/dxC

Z 0

�1

Z

G

Z

Rd

ˇ̌
�.e�xau/

ˇ̌
�.du/�.db da/dx

�
Z 0

�1

ˇ̌
fj�j.x/

ˇ̌
dxC

Z 0

�1

ˇ̌
� � fj�j.x/

ˇ̌
dx

and in view of our previous estimates both integrals above are finite.
For x > 0 we divide the integral of

ˇ̌
�.e�xau/ � �.e�x.b C au//

ˇ̌
into several

parts and we use the following inequality, being a consequence of the Lipschitz
property of �:

j�.s/ � �.r/j � C js � r j� max
	2fjsj;jr jg

1

1C .logC 	/ˇ0
;

where � < 1 � 2=ˇ and ˇ0 D ˇ.1 � �/ > 2. We denote by �A the law of A.
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Case 1. First we assume jbj � e x2 . Then by (24)

Z

jbj�e x2

Z

RC

ˇ̌
ˇ�.e�xau/ � �.e�x.b C au//

ˇ̌
ˇ�.du/�.db da/

� C
Z

jbj�e x2

Z

RC

e��x jbj�
�

1

1C .logC.e�xajuj//ˇ0

C 1

1C .logC.e�x jauC bj//ˇ0

�
�.du/�.db da/

� Ce��x=2
�Z

RC

Z

RC

1

1C .logC.e�xajuj//ˇ0
�.du/�A.da/

C
Z

RC

1

1C .logC.e�x juj//ˇ0
�.du/

�

� Ce��x=2
�
1C x C

Z

RC

j log aj�A.da/

�
< Ce��x=4:

Case 2. We assume au < 2jauC bj and jbj > e x2 . Notice first

Z

jbj>e x2
�.db da/ � C

1C x4C"
Z

RC

�
1C � logC jbj	4C"

�
�.db da/ � C

1C x4C" :

and

Z

jbj>e x2
.j log aj C log jbj/ �.db da/

� C

1C x3C"
Z

G
.1C�j logajClogC jbj	3C".logC jbjCj log aj/�.db da/ � C

1C x3C" :

Then, proceeding as previously, we have

Z Z
ajuj<2jauCbj

jbj>e x2

ˇ̌
ˇ�.e�xau/� �.e�x.b C au//

ˇ̌
ˇ�.du/�.db da/

� 2
Z Z

ajuj<2jauCbj
jbj>e x2

max
nˇ̌
�.e�xau/

ˇ̌
;
ˇ̌
�.e�x.b C au//

ˇ̌o
�.du/�.db da/
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� C
Z

jbj>e x2

Z

Rd

1

1C .logC.e�xajuj//ˇ �.du/�.db da/

� C
Z

jbj>e x2
�
x C j log aj C 1	�.da db/ � C

1C x3C" :

Case 3. The last case is ajuj � 2jauC bj and jbj > e
x
2 . Then juj < 2jbj

a
and we

obtain

Z Z
ajuj�2jauCbj

jbj>e x2

ˇ̌
ˇ�.e�xau/� �.e�x.b C au//

ˇ̌
ˇ�.du/�.db da/

� C
Z

jbj>e x2

Z

juj< 2jbj

a

�.du/�.db da/

� C
Z

jbj>e x2
�
1C log jbj C j logaj	�.db da/ � C

1C x3C" :

We conclude (23) and the required estimates for  � . ut
Proof (Proof of Theorem 1). First, we are going to prove that the limit

lim
x!C1

Z

RC

�.ue�x/�.du/ D T .�/ WD �2
�2K. �/ (25)

exists and is finite for a class of very particular functions, namely for functions of
the form

�.u/ D
Z

R

r.t/�.etu/dt; (26)

where

r.t/ D E Œj � logA1 � t j � jt j� (27)

and � is a nonnegative Lipschitz function on R
C such that �.u/ � e�� j log jujj for

some � > 0.
For this purpose we are going to prove that  � is an element of F .�/ and

J. �/ D 0. Then, by Corollary 1, the function f�.x/, is a solution of the
corresponding Poisson equation, and thus it is bounded and has a limit when x
converge toC1.
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In view of (7),

j�.u/j � C
Z

R

1

1C jt � log jujj3C" e
�� jt jdt

� C

1C j log jujj3C"
Z

R

1C jt � log jujj3C" C jt j3C"
1C jt � log jujj3C" e�� jt jdt

� C

1C j log jujj3C"
Z

R

.1C jt j3C"/e�� jt jdt � C

1C j log jujj3C" :

Thus by Lemma 2, f� , f� , � � f� and � � f� are well defined. Furthermore since
� is Lipschitz  � is bounded, and x2 �.x/ is integrable on R. We cannot guarantee
that � is Lipschitz, but we can observe that

f�.x/ D
Z

Rd

Z

R

r.t/�.e�xCtu/dt�.du/ D
Z

Rd

Z

R

r.t C x/�.etu/dt �.du/ D r �R f�.x/

and

� � f�.x/ D r �R .� � f�/.x/:

Hence

 � D f� � � � f� D r � .f� � � � f�/ D r �R  �:

Therefore, by Lemma 1,  � 2 F .�/.
Furthermore J. �/ D 0. In fact,

Z

R

 �.x/dx D
Z

G

Z

RC

Z

R

�
�
�
e�xClog.jauj/

�
� �r

�
e�xClog jauCbj

��
dx�.du/�.db da/

D
Z

G

Z

RC

�Z

R

�.e�x/dx �
Z

R

�.e�x/dx

�
�.du/�.db da/ D 0:

Observe that we can apply the Fubini theorem since � is Lipschitz and, by Lemma 2,
the absolute value of the integrand in the second line above is integrable. Hence

J. �/ D
Z

R

 �.x/dx D
Z

R

r �  �.x/dx D
Z

R

r.x/dx �
Z

R

 �.x/dx D 0:

By Corollary 1, we have

f� D A � C C� (28)

where C� is a constant. Thus, f� is bounded.
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In particular the same holds for f˚� , where

˚�.u/ D
Z

R

r.t/e�� jtClog jujjdt:

Since zero does not belong to the support of �, limx!�1 f�.x/ D 0 and by
Theorem 2

�C� D lim
x!�1A �.x/ D 
�2K. �/:

Thus when x goes to �1 the limit of h� exists which is possible only if h� is
constant and is equal to �
�2K. �/. Finally

lim
x!C1f�.x/ D lim

x!C1A �.x/ � 
�2K. �/ D �2
�2K. �/

and we obtain (25).
Fix a � > 0. Since ˚� > 0 for every function � 2 Cc.RC/ there exists a constant

C� such that j�j � C�˚� . Thus the family of measures on R
C

ı.0;e�x / �G �.�/ D
Z

RC

�.e�xu/�.du/

is bounded, hence it is relatively compact in the weak topology. Let � be an
accumulation point for a subsequence fxng that is

lim
n!1 ı.0;e�xn / �G �.�/ D �.�/ 8� 2 Cc.RC/: (29)

The measure � is R
C invariant [5], thus � must be of the form �.da/ D C�

dx
x

.
A standard argument proves indeed that for any continuous non negative function
such that � � C�˚� , not necessarily compactly supported,

�.�/ D lim
n!1 ı.0;e�xn / �G �.�/:

In particular the last formula holds for ˚�.u/ D
R
R
r.t/e�� jtClog jujjdt , since

�.˚�/ D C�
R
R

�

C

˚�.u/ du
u . Then:

C� D T .˚�/R
R

�

C

˚�.u/
du
u

does not depend on �. Thus, finally, we deduce that the limit

lim
z!C1

Z

RC

�.uz�1/�.du/
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exists for every function � 2 Cc.R
C/ and defines a Radon measure � on R

C.
This limiting measure must be R

C invariant, therefore is of the form C du
u , that by

a standard argument implies also (8). For the proof of strict positivity of C see [5]
(Theorem 5.1). ut
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Power Laws on Weighted Branching Trees

Predrag R. Jelenković and Mariana Olvera-Cravioto

Abstract Consider distributional fixed-point equations of the form

R
DD f .Q;Ci ; Ri ; 1 � i � N/;

where f .�/ is a possibly random real-valued function, N 2 f0; 1; 2; 3; : : : g [ f1g,
fCigi2N are real-valued random weights and fRigi2N are iid copies of R, inde-

pendent of .Q;N;C1; C2; : : : /;
DD represents equality in distribution. Fixed-point

equations of this type are important for solving many applied probability problems,
ranging from the average case analysis of algorithms to statistical physics. In this
paper we present some of our recent work from [26–28, 36] that studies the
power tail asymptotics of such solutions. We exemplify our techniques primarily

on the nonhomogeneous equation, R
DD PN

iD1 CiRi C Q, for which the power
tail of the solution, P.R > t/, can be determined by three different factors: the
multiplicative effect of the weights Ci ; the sum of the weights

P
Ci ; and the

innovation variable Q.

1 Introduction

Our recent work on the analysis of recursions on weighted branching trees is
motivated by the study of the nonhomogeneous linear fixed-point equation
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R
DD

NX

iD1
CiRi CQ; (1)

where .Q;N;C1; C2; : : : / is a real-valued random vector with N 2 N [ f1g,
N D f0; 1; 2; 3; : : : g, P.jQj > 0/ > 0, and fRigi2N is a sequence of iid random
variables independent of .Q;N;C1; C2; : : : / having the same distribution asR. This
recursion has been proposed as a stochastic approximation of Google’s PageRank
algorithm and possibly other ranking schemes of large information sets, e.g., the
World Wide Web (WWW); see [26, 46, 47] and the references therein. There it
is argued that the stochastic approach is helpful in understanding the qualitative
behavior of PageRank given the large scale nature of the WWW. These types of
weighted recursions, also studied in the literature on weighted branching processes
[42] and branching random walks [10], are found in the probabilistic analysis of
other algorithms as well [1, 40, 43]. The homogeneous (Q � 0) version of (1)
has been studied extensively in the literature of weighted branching processes and
multiplicative cascades, see [2, 6, 10, 17, 23, 24, 30, 33, 34, 38, 48] and the references
therein.

We now give some more details on the PageRank motivation that was mentioned
above. PageRank assigns to each page a numerical weight that measures its relative
importance with respect to other pages. We think of the Web as a very large
interconnected graph where nodes correspond to pages. The Google trademarked
algorithm PageRank defines the page rank as:

R.pi/ D 1 � d
n
C d

X

pj2M.pi /

R.pj /

L.pj /
; (2)

where, using Google’s notation, p1; p2; : : : ; pn are the pages under consideration,
M.pi/ is the set of pages that link to pi , L.pj / is the number of outbound links
on page pj , n is the total number of pages on the Web, and d is a damping factor,
usually d D 0:85. While in principle the solution to (2) reduces to the solution of
a large system (possibly billions) of linear equations, we believe that finding page
ranks in such a way is unlikely to be insightful.

In particular, the division by the out-degree, L.pj / in Eq. (2), was meant to
decrease the contribution of pages with highly inflated referencing, i.e., those
pages that basically point/reference possibly indiscriminately to other documents.
However, the stochastic approach reveals that highly ranked pages are essentially
insensitive to the parameters of the out-degree distribution, and high ranks most
likely occur either due to a pointer by a very highly ranked neighbor, or by pointers
of a very large number of neighbors. Hence, PageRank may not reduce the effects
of overly inflated referencing.

A stochastic approach to analyze (2) is to multiply it by n and consider a typical
node on the graph
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R
DD .1 � d/C d

NX

iD1

Ri

Di

; (3)

where d > 0, dEŒ1=D� < 1, N is a random variable independent of the Ri ’s and
Di ’s, the Di ’s are iid random variables satisfying Di � 1, and the Ri ’s are iid ran-
dom variables having the same distribution as R. In terms of recursion (2), R is the
scale-free rank of a random page, N corresponds to the in-degree of that node, the
Ri ’s are the ranks of the pages pointing to it, and theDi ’s correspond to the so-called
effective degrees of each of these pages. The experimental justification of these
independence assumptions can be found in [45]. This stochastic setup was first intro-
duced in [47], where the process resulting after a finite number of iterations of (3)
was analyzed. Further generalization of (3) leads to (1), which was recently analyzed
in [26, 46].

Furthermore, in computer science, a well known divide-and-conquer paradigm
is used for designing efficient algorithms, where a problem is recursively divided
into two or more sub-problems, until the sub-problems become simple enough to be
solved directly. Such approach naturally leads to a recursive analysis, which in the
case of randomized algorithms, often results in stochastic recursions of the type in
(1). Among these, the most widely analyzed algorithm is Quicksort, whose analysis,
after an appropriate normalization introduced in [41], reduces to the stochastic fixed
point equation

R
DD UR1 C .1 � U /R2 CQ;

where U is uniform, Q D Q.U /, fR1;R2g are independent copies of R and
independent of .U;Q/; for recent work see [18, 39] and the references therein.
Similar binary equations also appear in the analysis of sequential absorption
(packing) problems on a line, see Eq. (19) in [9]. Such problems are used for
modeling memory fragmentation, advance reservation, particle absorption, e.g.,
see [15] and the references therein. Multidimensional versions of the fixed-point
equation (1) have been considered in [39, 40] and more recently in [13].

In general, many applied probability problems, appearing in the average case
analysis of algorithms and statistical physics, reduce to distributional fixed-point
equations of the form

R
DD f .Q;Ci ; Ri ; 1 � i < N C 1/; (4)

where f .�/ is a possibly random real-valued function, N 2 N [ f1g, the fCigi2N
are real-valued random weights and fRigi2N are iid copies of R, independent of
.Q;N;C1; C2; : : : /. For example, as discussed in [27], one can study the following
distributional equations
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R
DD
 

N_

iD1
CiRi

!
_Q; R

DD
 

N_

iD1
CiRi

!
CQ; R

DD
 

NX

iD1
CiRi

!
_Q: (5)

The solutions to equations of this type can be recursively constructed on a weighted
branching tree, where N represents the generic branching variable and the fCigi2N
are the branching weights. For this reason, we also refer to (4) as recursions
on weighted branching trees. The maximum recursion, the first one in (5), was
previously studied in [5] under the assumption that Q � 0, N D 1, and the fCig
are real-valued deterministic constants, and the case of Q � 0 and fCig � 0 being
random was studied earlier in [25]. Furthermore, these max-plus type stochastic
recursions appear in a wide variety of applications, see [1] for a recent survey.

Special cases of the preceding recursions are important in many applied prob-
ability areas. For example, selecting N D 1 in (1) yields the fixed-point equation
satisfied by the first order autoregressive process. When Q D 1; Ci � 1, the steady
state solution to (1) represents the total number of individuals born in an ordinary
branching process. Similarly, by setting N D Q � 1 and Xi D logCi in the first
equation in (5), one obtains the well studied supremum of a random walk and in
particular the waiting time in the GI/GI/1 queue. By choosing the distributions of
N , Q or Ci appropriately, all of these recursions can lead to heavy-tailed solutions.

In this paper we present some of our recent work from [26–28, 36] that studies
the power-tail asymptotics of the solution R to the preceding distributional fixed-
point equations; all the omitted proofs can be found in these references. We will
exemplify our techniques primarily on the nonhomogeneous equation (1), for which
the tail of the solution, P.R > t/, can be determined by three different factors:
the multiplicative effect of the weights Ci ; the sum of the weights

P
Ci ; and the

innovation variable Q. In addition, to simplify the exposition, we only present the
results for the case where .Q;N;C1; C2; : : : / is nonnegative and, when appropriate,
we comment on the corresponding real-valued extensions.

First, we study the multiplicative effect of the weights by extending the implicit

renewal theory of Goldie [19], which was derived for equations of the form R
DD

f .Q;C;R/ (equivalently N � 1 in our case), to cover recursions on weighted
branching trees. The extension of Goldie’s theorem is presented in Theorem 1 of
Sect. 3, and it enables the characterization of the power-tail behavior of the solutions
R to many equations of the form in (4), e.g., those stated in (1) and (5). One of the
observations that allows this extension is that an appropriately constructed measure
on a weighted branching tree is a renewal measure, see Lemma 1.

Then, in Sect. 4, we develop the necessary large deviations techniques that will
enable us to study the tail behavior of P.R > t/ when it is determined by the sum
of the weights,

P
Ci , or the innovation variable Q. The key technical contribution

is the derivation of uniform bounds (in n and x) for the distribution of the sum of
the weights in the nth generation of a weighted branching tree, P.Wn > x/, given
in Propositions 1 and 2. These uniform bounds are used to establish the geometric
rate of convergence of the iterations of the fixed-point equation (1) to the solution
R constructed in Sect. 5.
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Next, we exemplify the techniques we have developed on the nonhomogeneous
linear recursion (1). In this regard, in Sect. 5, we first construct an explicit solution
(13) to (1) on a weighted branching tree and then provide sufficient conditions
for the finiteness of moments and the uniqueness of this solution under iterations
in Lemmas 5 and 6, respectively. However, the fixed-point equation (1) can
have additional stable solutions that do not satisfy Lemma 6, as it was recently
discovered in [3]. Earlier work for the case when fCig;Q are deterministic real-
valued constants can be found in [4, 42]. Furthermore, it is worth noting that our
moment estimates are explicit, see Lemma 4, which may be of independent interest.
Our first main result about the constructed solution R to (1) is given in Theorem 2,
where through the extension of the Implicit Renewal Theorem it is shown that the
multiplicative nature of the weights can lead to a power-tail behavior. Informally,
our result shows, under some moment conditions, that

P.R > x/ � H

x˛
as x !1;

where ˛ is a solution to E
hPN

iD1 C ˛
i

i
D 1. In addition, for integer power

exponent (˛ 2 f1; 2; 3; : : : g) the constantH can be explicitly computed as stated in
Corollary 1. Furthermore, for non integer ˛, we will explain how Lemma 2 can be
used to obtain an explicit bound on H .

When the conditions for the Implicit Renewal Theorem fail, the tail behavior

of R can be determined by P
�PN

iD1 Ci > x
�

or P.Q > x/. Using our work on

the large deviations of weighted random sums we give the corresponding results in

Theorems 3 and 4, respectively. In particular, it is shown that if P
�PN

iD1 Ci > x
�

or P.Q > x/, are regularly varying with index ˛ > 1, and certain moment
conditions are satisfied, then, respectively,

P.R > x/ � HSP

 
NX

iD1
Ci > x

!
or P.R > x/ � HQP.Q > x/

as x ! 1, for some explicit constants HS;HQ > 0. Lastly, we point out that we
focus here only on the heavy-tailed solutions to (1), but it is known that (1) can also
have light-tailed solutions, see [20] for the N � 1 case and the discussion after
Theorem 2.2 in [34] for the general branching case.

We conclude the paper with a brief analysis of other non-linear recursions, e.g.,
those stated in (5), that could be studied using the extension of the Implicit Renewal
Theorem. The main difficulty in applying Theorem 1 is in verifying the conditions
of the theorem for a specific fixed-point equation. In this regard, we argue that the
two technical lemmas, Lemmas 7 and 8, can be helpful for this purpose.

The rest of the paper is organized as follows. Section 2 contains the construction
of the weighted branching tree. In Sect. 3 we present the extension of the implicit
renewal theorem to trees and, in Sect. 4, we derive the uniform large deviation
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bounds for P.Wn > x/. Section 5 exemplifies our techniques on the nonhomo-
geneous linear equation (1), and Sect. 6 briefly discusses how the developed tools
can be applied to other fixed-point equations, e.g., those in (5).

2 Weighted Branching Tree

First we construct a random tree T . We use the notation ; to denote the root node
of T , and An, n � 0, to denote the set of all individuals in the nth generation of
T , A0 D f;g. Let Zn be the number of individuals in the nth generation, that is,
Zn D jAnj, where j � j denotes the cardinality of a set; in particular,Z0 D 1.

Next, let NC D f1; 2; 3; : : : g be the set of positive integers and let
U DS1

kD0.NC/k be the set of all finite sequences i D .i1; i2; : : : ; in/, where
by convention N

0C D f;g contains the null sequence ;. To ease the exposition, for
a sequence i D .i1; i2; : : : ; ik/ 2 U we write ijn D .i1; i2; : : : ; in/, provided k � n,
and ij0 D ; to denote the index truncation at level n, n � 0. Also, for i 2 A1
we simply use the notation i D i1, that is, without the parenthesis. Similarly, for
i D .i1; : : : ; in/we will use .i; j / D .i1; : : : ; in; j / to denote the index concatenation
operation, if i D ;, then .i; j / D j .

We iteratively construct the tree as follows. Let N be the number of individuals
born to the root node ;, N; D N , and let fNigi2U;i¤; be iid copies of N . Define
now

A1 D fi 2 N W 1 � i � N g; An D f.i; in/ 2 U W i 2 An�1; 1 � in � Nig: (6)

It follows that the number of individuals Zn D jAnj in the nth generation, n � 1,
satisfies the branching recursion

Zn D
X

i2An�1

Ni:

Now, we construct the weighted branching tree TQ;C as follows. We start by
assigning the vector .Q;; N;; C.;;1/; C.;;2/; : : : / � .Q;N;C1; C2; : : : / to the root
node ;. Next, let f.Qi; Ni; C.i;1/; C.i;2/; : : : /gi2U;i¤; be a sequence of iid copies of
.Q;N;C1; C2; : : : /. Recall that N; determines the number of nodes in the first
generation of T according to (6), and assign to each node in the first generation
its corresponding vector .Qi ;Ni ; C.i;1/; C.i;2/; : : : / from the preceding iid sequence.
In general, for n � 2, to each node i 2 An�1 we assign its corresponding vector
.Qi; Ni; C.i;1/; C.i;2/; : : : / from the sequence and construct An D f.i; in/ 2 U W i 2
An�1; 1 � in � Nig. For each node in TQ;C we also define the weight ˘.i1;:::;in/ via
the recursion

˘i1 D Ci1 ; ˘.i1;:::;in/ D C.i1;:::;in/˘.i1;:::;in�1/; n � 2;
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Fig. 1 Weighted branching tree

where ˘ D 1 is the weight of the root node. Note that the weight ˘.i1;:::;in/ is equal
to the product of all the weights C.�/ along the branch leading to node .i1; : : : ; in/, as
depicted in Fig. 1. In some places, e.g., in the following section, the value ofQ may
be of no importance, and thus we will consider a weighted branching tree defined by
the smaller vector .N;C1; C2; : : : /. This tree can be obtained from TQ;C by simply
disregarding the values for Q.�/ and is denoted by TC .

The objective of this paper is to present a variety of results that analyze recursions
and fixed-point equations embedded in this weighted branching tree.

3 Implicit Renewal Theorem on Trees

In this section we present an extension of Goldie’s Implicit Renewal Theorem [19]
to weighted branching trees. The observation that facilitates this generalization is the
following lemma which shows that a certain measure on a tree is actually a product
measure; a similar measure was used in a different context in [11]. Throughout the
paper we use the standard convention 0˛ log 0 D 0 for all ˛ > 0, and the notation
xC D maxfx; 0g, x� D �minfx; 0g.
Lemma 1. Let TC be the weighted branching tree defined by the nonnegative
vector .N;C1; C2; : : : /, where N 2 N [ f1g. For any n 2 N and i 2 An, let
Vi D log˘i. For ˛ > 0 define the measure

�n.dt/ D e˛tE
2

4
X

i2An
1.Vi 2 dt/

3

5 ; n D 1; 2; : : : ;

and let �.dt/ D �1.dt/. Suppose that there exists j � 1 with P.N � j; Cj >

0/ > 0 such that the measure P.logCj 2 du; Cj > 0;N � j / is nonarithmetic,
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E
hPN

iD1 C
�
i

i
< 1 for some 0 � � < ˛, and E

hPN
iD1 C ˛

i

i
D 1. Then, �.�/ is a

nonarithmetic probability measure on R that places no mass at �1 and has mean

� ,
Z 1

�1
u �.du/ D E

2

4
NX

jD1
C ˛
j logCj

3

5 :

Furthermore, �n.dt/ D ��n.dt/, where ��n denotes the nth convolution of � with
itself.

Note that E
hPN

iD1 C
�
i

i
< 1 and E

hPN
iD1 C ˛

i

i
< 1 for 0 � � < ˛ implies

E
hPN

iD1 C ˛
i .logCi/�

i
<1, and therefore the mean of �.�/ is well defined.

We now present Theorem 3.1 of [27], which is a generalization of Goldie’s
Implicit Renewal Theorem [19] that enables the analysis of recursions on weighted
branching trees. Note that except for the independence assumption, the random vari-
able R and the vector .N;C1; C2; : : : / are arbitrary, and therefore the applicability
of this theorem goes beyond the recursions that we study here. When this theorem
is applied to specific recursions, one can use the nature of the recursion to verify
the conditions of the theorem. Typically, it is the absolute integrability in (7) that
requires the most work. Throughout the paper we use g.x/ � f .x/ as x ! 1 to
denote limx!1 g.x/=f .x/ D 1.

Theorem 1. Let .N;C1; C2; : : : / be a nonnegative random vector, where N 2 N [
f1g. Suppose that there exists j � 1 with P.N � j; Cj > 0/ > 0 such that the
measure P.logCj 2 du; Cj > 0;N � j / is nonarithmetic. Assume further that

0 < E
hPN

jD1 C ˛
j logCj

i
< 1, E

hPN
jD1 C ˛

j

i
D 1, E

hPN
jD1 C

�
j

i
< 1 for

some 0 � � < ˛, and that R � 0 is independent of .N;C1; C2; : : : / with EŒRˇ� <
1 for any 0 < ˇ < ˛. If

Z 1

0

ˇ̌
ˇ̌
ˇ̌P.R > t/ �E

2

4
NX

jD1
1.CjR > t/

3

5

ˇ̌
ˇ̌
ˇ̌ t
˛�1dt <1; (7)

then

P.R > t/ � Ht�˛; t !1;

where 0 � H <1 is given by

H D 1

E
hPN

jD1 C ˛
j logCj

i
Z 1

0

v˛�1
0

@P.R > v/ �E
2

4
NX

jD1
1.CjR > v/

3

5

1

A dv:
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Remark 1. (i) As pointed out in [19], the statement of the theorem only has content
when R has infinite moment of order ˛, since otherwise the constant H is zero.
(ii) This theorem was recently generalized in Theorem 3.4 of [28] to incorporate
real-valued weights fCig and real-valued R. The proof utilizes the matrix analogue
of the renewal theorem from [44]. (iii) When the flogCig are lattice-valued, a
similar version of the theorem was derived by using the corresponding Renewal
Theorem for lattice random walks, see Theorem 3.7 in [28]. (iv) To see that

the condition E
hPN

jD1 C
�
j

i
< 1 for some 0 � � < ˛ is needed, consider

the following example. Fix k � 2 to be such that A D P1
jDk 1=.j.log j /3/

and B D P1
jDk.log j C 3 log log j /=.j.log j /3/ are both smaller than 1/2, and

choose C D eX where X is exponentially distributed with mean .1 � A/. Now
set Cj D C=.j.log j /3/ for j � k and Cj D 0 otherwise (N D 1). Then,

E
hP1

jDk Cj
i
D 1 and E

hP1
jDk Cj logCj

i
D A�1.1 � A � B/ > 0, but

E
hP1

jDk C
�
j

i
D 1 for any 0 � � < 1. (v) As noted in [19], the early ideas

of applying renewal theory to study the power tail asymptotics of autoregressive
processes (perpetuities) is due to [31] and [22].

Sketch of the proof of Theorem 1. Let TC be the weighted branching tree defined
by the nonnegative vector .N;C1; C2; : : : /. For each i 2 An and all k � n define
Vijk D log˘ijk ; note that ˘ijk is independent of Nijk but not of Nijs for any
0 � s � k � 1. Also note that ijn D i since i 2 An. Let Fk , k � 1, denote
the 
-algebra generated by

˚
.Ni; C.i;1/; C.i;2/; : : : / W i 2 Aj ; 0 � j � k � 1



, and let

F0 D 
.;;˝/,˘ij0 � 1. Assume also that R is independent of the entire weighted
tree, TC . Then, for any t 2 R, we can write P.R > et / via a telescoping sum as
follows

P.R > et /

D
n�1X

kD0

0

@E

2

4
X

.ijk/2Ak
1.˘ijkR > et/

3

5 � E
2

4
X

.ijkC1/2AkC1

1.˘ijkC1R > et /

3

5

1

A

C E
2

4
X

.ijn/2An
1.˘ijnR > et /

3

5

D
n�1X

kD0
E

2

4
X

.ijk/2Ak

0

@1.˘ijkR > et/ �
NijkX

jD1
1.˘ijkC.ijk;j /R > et /

1

A

3

5

C E
2

4
X

.ijn/2An
1.˘ijnR > et /

3

5
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D
n�1X

kD0
E

2

4
X

.ijk/2Ak
E

2

41.R > et�Vijk / �
NijkX

jD1
1.C.ijk;j /R > et�Vijk /

ˇ̌
ˇ̌
ˇ̌Fk

3

5

3

5

C E
2

4
X

.ijn/2An
1.˘ijnR > et /

3

5 :

Now, define the measures �n according to Lemma 1 and let

�n.dt/ D
nX

kD0
�k.dt/; g.t/ D e˛t

0

@P.R > et /� E
2

4
NX

jD1
1.CjR > e

t /

3

5

1

A ;

r.t/ D e˛tP.R > et/ and ın.t/ D e˛tE
2

4
X

.ijn/2An
1.˘ijnR > et /

3

5 :

Recall that R and .Nijk; C.ijk;1/; C.ijk;2/; : : : / are independent of Fk , from where it
follows that

E

2

41.R > et�Vijk /�
NijkX

jD1
1.C.ijk;j /R > et�Vijk /

ˇ̌
ˇ̌
ˇ̌Fk

3

5 D e˛.Vijk�t /g
�
t � Vijk

	
:

Then, for any t 2 R and n 2 N,

r.t/ D
n�1X

kD0
E

2

4
X

.ijk/2Ak
e˛Vijkg.t � Vijk/

3

5C ın.t/ D .g � �n�1/.t/C ın.t/:

Next, using the assumptions of the theorem, one can show that ın.t/ ! 0 as
n!1, and furthermore,

r.t/ D g � �.t/;

where �.dt/ D P1
kD0 ��k.dt/; see [27, 28] for more details. Now, the result would

follow from the key renewal theorem for two-sided random walks if it were not
for the fact that g is not necessarily directly Riemann integrable. To overcome this
difficulty one can introduce a smoothing transform, similarly as it was done in [19],
and apply the two-sided key renewal theorem [8] to the transformed equation to
show that

e�t
Z et

0

v˛P.R > v/dv! H; t !1:
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Finally, by a version of the monotone density theorem (see Lemma 9.3 in [19]), one
derives

P.R > t/ � Ht�˛; t !1;

where

H D 1

�

Z 1

�1
g.t/ dt

D 1

�

Z 1

0

v˛�1
0

@P.R > v/ � E
2

4
NX

jD1
1.CjR > v/

3

5

1

Adv

and � was defined in Lemma 1.

4 Large Deviations Analysis

In this section we give the main technical result that allows the analysis of the
solutions to recursions on weighted branching trees when the conditions for the
Implicit Renewal Theorem do not apply, but either the sum of the weights,

PN
iD1 Ci ,

or the innovation, Q, has a heavy-tailed distribution. The analysis in these cases is
based on a uniform bound for the tail distribution of the sum of the weights on the
nth generation of a weighted branching tree, which we formally define below.

Let fWn W n � 0g be the process constructed on TQ;C via

W0 D Q; Wn D
X

i2An
Qi˘i; n � 1: (8)

Since the tree structure repeats itself after the first generation,Wn satisfies

Wn
DD

NX

kD1
CkW.n�1/;k; (9)

where fW.n�1/;kg is a sequence of iid random variables independent of
.N;C1; C2; : : : / and having the same distribution as Wn�1.

We now proceed to compute explicit moment bounds for Wn. The next lemma
is the key to this analysis; a generalization to real-valued random variables can be
found in [28].

Lemma 2. For any k 2 N[f1g let fCigkiD1 be a sequence of nonnegative random
variables and let fYigkiD1 be a sequence of nonnegative iid random variables,
independent of the fCig, having the same distribution as Y . For ˇ > 1 set
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p D dˇe 2 f2; 3; 4; : : : g, and if k D1 assume that
P1

iD1 CiYi <1 a.s. Then,

E

2

4
 

kX

iD1
CiYi

!ˇ
�

kX

iD1
.CiYi /

ˇ

3

5 � �E �Y p�1�	ˇ=.p�1/
E

2

4
 

kX

iD1
Ci

!ˇ3

5 :

Remark 2. Note that the preceding lemma does not exclude the case when

E

��Pk
iD1 CiYi

�ˇ� D 1 but E

��Pk
iD1 CiYi

�ˇ �Pk
iD1.CiYi /ˇ

�
<1.

We now give estimates for the ˇ-moments of Wn for ˇ 2 .0; 1� and ˇ > 1 in
Lemmas 3 and 4, respectively; their proofs can be found in [27]. Throughout the

rest of the paper define �ˇ D E
hPN

iD1 C
ˇ
i

i
for any ˇ > 0, and � � �1.

Lemma 3. For 0 < ˇ � 1 and all n � 0,

EŒW ˇ
n � � EŒQˇ��nˇ:

Lemma 4. Forˇ >1 supposeEŒQˇ�<1,E

��PN
iD1 Ci

�ˇ�
<1, and �_ �ˇ <1.

Then, there exists a constantKˇ <1 such that for all n � 0,

EŒW ˇ
n � � Kˇ.� _ �ˇ/n:

The main technical result of this section provides a uniform bound (uniform in n

and x) for P.Wn > x/ under the assumption that either P
�PN

iD1 Ci > x
�
2 R�˛

or P .Q > x/ 2 R�˛, where R�˛ is the family of regularly varying functions with
index �˛. For completeness we give the definition below.

Definition 1. A function f is regularly varying at infinity with index �, denoted
f 2 R�, if f .x/ D x�L.x/ for some slowly varying functionL; and L W Œ0;1/!
.0;1/ is slowly varying if limx!1L.tx/=L.x/ D 1 for any t > 0.

We now state the two main results of this section; their proofs are given in [36].

Proposition 1. Let ZN D PN
iD1 Ci and suppose P.ZN > x/ 2 R�˛ with ˛ > 1.

Assume further that EŒQ˛C�� < 1 and �˛C� < 1 for some � > 0. Fix � _ �˛ <
� < 1. Then, there exists a finite constant K D K.�; �/ > 0 such that for all n � 1
and all x � 1,

P.Wn > x/ � K�nP.ZN > x/: (10)

Remark 3. Note that we can easily obtain a weaker uniform bound by applying the
moment estimate on EŒW ˇ

n � from Lemma 4, i.e., P.Wn > x/ � EŒW
ˇ
n �x

�ˇ �
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Kˇ.� _ �ˇ/nx�ˇ for some 0 < ˇ < ˛, so the tradeoff in (10) is a slightly
larger geometric term for a lighter tail distribution. However, the assertion in (10) is
considerably more difficult to prove.

The corresponding result for the case when P.Q > x/ 2 R�˛ is given below.

Proposition 2. Suppose P.Q > x/ 2 R�˛, with ˛ > 1, EŒZ˛C�
N � < 1 for some

� > 0, and let �_ �˛ < � < 1. Then, there exists a finite constantK D K.�; �/ > 0
such that for all n � 1 and all x � 1,

P.Wn > x/ � K�nP.Q > x/:

5 The Linear Recursion R
DD PN

i D1 Ci Ri C Q

This section focuses on the analysis of the linear nonhomogeneous equation (1),
and it is further divided into the three possible sources of power-law tails of
the solution R. Before we proceed with the analysis, we give below an explicit
construction of R on the weighted branching tree TQ;C and show that, under
appropriate conditions, this solution is the unique limit under iterations of (1).
Recall that throughout the paper we assume that the vector .Q;N;C1; C2; : : : / is
nonnegative.

Define the process fR.n/gn�0 according to

R.n/ D
nX

kD0
Wk; n � 0; (11)

that is, R.n/ is the sum of the weights of all the nodes on the tree up to the nth
generation. It is not hard to see that R.n/ satisfies the recursion

R.n/ D
N;X

jD1
C.;;j /R.n�1/

j CQ; D
NX

jD1
CjR

.n�1/
j CQ; n � 1; (12)

where fR.n�1/
j g are independent copies of R.n�1/ corresponding to the tree starting

with individual j in the first generation and ending on the nth generation; note that
R
.0/
j D Qj .
Next, define the random variable R according to

R , lim
n!1R.n/ D

1X

kD0
Wk; (13)
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where the limit is properly defined by (11) and monotonicity. Hence, it is easy to
verify, by applying monotone convergence in (12), that R must solve

R D
N;X

jD1
C.;;j /R.1/

j CQ; D
NX

jD1
CjR

.1/
j CQ;

where fR.1/
j gj2N are iid, have the same distribution as R, and are independent of

.Q;N;C1; C2; : : : /.
The derivation provided above implies in particular the existence of a solution in

distribution to (1). Moreover, under additional technical conditions,R is the unique
solution under iterations as it will be defined and shown in the following section.
The constructed R, as defined in (13), is the main object of study in the remainder
of this section. Note that, in view of the very recent work in [3], (1) may have other
stable-law solutions that are not considered here. The lemma below gives sufficient
conditions for the finiteness of moments of R, see [27] for a proof.

Lemma 5. Assume that EŒQˇ� < 1 for some ˇ > 0. In addition, suppose that

either (i) �ˇ < 1 if 0 < ˇ < 1, or (ii) .� _ �ˇ/ < 1 and E

��PN
iD1 Ci

�ˇ�
< 1

if ˇ � 1. Then, EŒR�� < 1 for all 0 < � � ˇ, and in particular, R < 1 a.s.

Moreover, if ˇ � 1, R.n/
Lˇ! R, where Lˇ denotes ˇ-norm convergence.

Remark 4. It is interesting to observe that for ˇ > 1 the conditions �ˇ < 1 and

E

��PN
iD1 Ci

�ˇ�
< 1 are consistent with Theorem 3.1 in [2], Proposition 4 in

[24] and Theorem 2.1 in [34], which give the conditions for the finiteness of the
ˇ-moment of the solution to the related critical (�1 D 1) homogeneous (Q � 0)
equation.

Next, we show that under some technical conditions, the iteration of recursion (1)
results in a process that converges in distribution to R for any initial condition R�

0 .
To this end, consider a weighted branching tree TQ;C , as defined in Sect. 2. Now,
define

R�
n , R.n�1/ CWn.R

�
0 /; n � 1;

where R.n�1/ is given by (11),

Wn.R
�
0 / D

X

i2An
R�
0;i˘i; (14)

and fR�
0;igi2U are iid copies of an initial valueR�

0 , independent of the entire weighted
tree TQ;C . It follows from (12) and (14) that, for n � 0,
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R�
nC1 D

NX

jD1
CjR

.n�1/
j CQCWnC1.R�

0 /

D
NX

jD1
Cj

0

@R.n�1/
j C

X

i2An;j
R�
0;i

nY

kD2
C.j;:::;ik /

1

ACQ; (15)

where fR.n�1/
j g are independent copies of R.n�1/ corresponding to the tree starting

with individual j in the first generation and ending on the nth generation, and An;j
is the set of all nodes in the .nC 1/th generation that are descendants of individual
j in the first generation. It follows that

R�
nC1 D

NX

jD1
CjR

�
n;j CQ;

where fR�
n;j g are the expressions inside the parenthesis in (15). Clearly, fR�

n;j g
are iid copies of R�

n , thus we have shown that R�
n is equal in distribution to the

process derived by iterating (1) with an initial condition R�
0 . The following lemma

shows that R�
n ) R for any initial condition R�

0 satisfying a moment assumption,
where) denotes convergence in distribution; see [27] for a proof.

Lemma 6. For any initial condition R�
0 � 0, if EŒQˇ�; EŒ.R�

0 /
ˇ� < 1 and �ˇ D

E
hPN

iD1 C
ˇ
i

i
< 1 for some 0 < ˇ � 1, then

R�
n ) R;

with EŒRˇ� < 1. Furthermore, under these assumptions, the distribution of R is
the unique solution with finite ˇ-moment to recursion (1).

Remark 5. (i) Note that when EŒN � < 1 the branching tree is a.s. finite and no
conditions on the fCig are necessary forR <1 a.s. This corresponds to the second
condition in Theorem 1 of [12]. (ii) In view of the same theorem from [12], one
could possibly establish the convergence ofR�

n ) R <1 under milder conditions.
However, since in this paper we only study the power tails of R, the assumptions of

Lemma 6 are not restrictive. (iii) Note that if E
hPN

iD1 C ˛
i

i
D 1 with ˛ 2 .0; 1�,

then there might not be a 0 < ˇ < ˛ for which E
hPN

iD1 C
ˇ
i

i
< 1, e.g., the case of

deterministic Ci ’s that was studied in [42].
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5.1 The Case When the Weights fCi g Dominate

In this section we characterize the tail behavior of the distribution of the solution
R to the nonhomogeneous equation (1), as defined by (13), when its power-law tail
behavior is due to the multiplicative effect of the weights fCig. The main result is
given in the following theorem, which is an application of Theorem 1; see the proof
of Theorem 4.1 in [27] and the remark at the end of this subsection. A generalization
to real-valued weights can be found in Theorem 4.6 in [28].

Theorem 2. Let .Q;N;C1; C2; : : : / be a nonnegative random vector, with N 2
N [ f1g, P.Q > 0/ > 0, and let R be the solution to (1) given by (13). Suppose
that there exists j � 1 with P.N � j; Cj > 0/ > 0 such that the measure
P
�
logCj 2 du; Cj > 0; N � j / is nonarithmetic, and that for some ˛ > 0,

0 < E
hPN

iD1 C ˛
i logCi

i
<1, E

hPN
iD1 C ˛

i

i
D 1, and EŒQ˛� <1. In addition,

assume

1. E
hPN

iD1 Ci
i
< 1 and E

h�PN
iD1 Ci

�˛i
<1, if ˛ > 1; or,

2. E

��PN
iD1 C

˛=.1C�/
i

�1C��
<1 for some 0 < � < 1, if 0 < ˛ � 1.

Then,

P.R > t/ � Ht�˛; t !1;

where 0 � H <1 is given by

H D 1

E
hPN

iD1 C ˛
i logCi

i
Z 1

0

v˛�1
 
P.R > v/ � E

"
NX

iD1
1.CiR > v/

#!
dv

D
E
h�PN

iD1 CiRi CQ
�˛ �PN

iD1.CiRi/˛
i

˛E
hPN

iD1 C ˛
i logCi

i :

Remark 6. (i) The nonhomogeneous equation has been previously studied for
the special case when Q and the fCig are deterministic constants. In particular,
Theorem 5 of [42] analyzes the solutions to (1) whenQ and the fCig are nonnegative
deterministic constants, which, when

PN
iD1 C ˛

i D 1, ˛ > 0, implies that Ci � 1

for all i and
P

i C
˛
i logCi � 0, falling outside of the scope of this theorem.

As previously mentioned, the additional stable-law solutions found recently in
[3] for Q and fCig random also fall outside of the scope of this theorem and
do not satisfy the conditions of Lemma 6. (ii) When ˛ > 1, the condition

E
h�PN

iD1 Ci
�˛i

< 1 is needed to ensure that the tail of R is not dominated

by
PN

iD1 Ci . In particular, if the fCig are iid and independent of N , the condition
reduces to EŒN˛� < 1 since EŒC˛� < 1 is implied by the other conditions; see
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Theorems 4.2 and 5.4 in [26]. Furthermore, when 0 < ˛ � 1 the condition

E
h�PN

iD1 Ci
�˛i

<1 is redundant since E
h�PN

iD1 Ci
�˛i � E

hPN
iD1 C ˛

i

i
D 1,

and the additional condition E

��PN
iD1 C

˛=.1C�/
i

�1C��
< 1 is needed. When the

fCig are iid and independent of N , the latter condition reduces to EŒN 1C�� < 1
(given the other assumptions), which is consistent with Theorem 4.2 in [26].
(iii) Note that the second expression for H is more suitable for actually computing
it, especially in the case of ˛ being an integer, as will be stated in the forthcoming
Corollary 1, after which we will also explain how Lemma 2 can be used to derive
an explicit upper bound on H when ˛ > 1 is not an integer. Regarding the lower

bound, the elementary inequality
�Pk

iD1 xi
�˛ � Pk

iD1 x˛i for ˛ � 1 and xi � 0,

(see Exercise 4.2.1, p. 102 in [14]), yields

H � E ŒQ˛�

˛E
hPN

iD1 C ˛
i logCi

i > 0:

Similarly, for 0 < ˛ < 1, using the corresponding inequality
�Pk

iD1 xi
�˛ �

Pk
iD1 x˛i for 0 < ˛ � 1, xi � 0, we obtainH � E ŒQ˛�=

�
˛E

hPN
iD1 C ˛

i logCi
i�
:

(iv) Let us also observe that the solution R, given by (13), to equation (1) may be
a constant (non power law) R D r > 0 when P.r D Q C r

PN
iD1 Ci / D 1.

However, similarly as in remark (i), such a solution is excluded from the theorem
since P.r D Q C rPN

iD1 Ci/ D 1 implies EŒ
P

i C
˛
i logCi � � 0; ˛ > 0. (iv) The

strict positivity of the constant H for the real-valued case has very recently been
established in [7], and a version where the weights fCig are positive matrices andQ
is a positive vector can be found in [35].

As indicated earlier, when ˛ � 1 is an integer, we can obtain the following
explicit expression for H .

Corollary 1. For integer ˛ � 1, and under the same assumptions of Theorem 2,
the constant H can be explicitly computed as a function of EŒRk�, 0 � k � ˛ � 1,
and the mixed moments of order up to ˛ of .Q;N;C1; C2; : : : / according to the
following expression

H D 1

˛E
hPN

iD1 C ˛i logCi
iE

2

4Q˛ C
X

j2B˛�1.N /

 
˛

j0; j1; j2; : : :

!
Qj0

NY

iD1
C
ji
i EŒR

ji �

3

5 ;

where j D .j0; j1; j2; : : : /,Bp.n/ D f.j0; j1; j2; : : : / 2 N
nC1
C WPn

kD0 jk D p; 0 �
ji < pg. In particular, for ˛ D 1,
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H D EŒQ�

E
hPN

iD1 Ci logCi
i ;

and for ˛ D 2,

H D
EŒQ2�C 2EŒR�E

h
Q
PN

iD1 Ci
i
C 2.EŒR�/2E

hPN
iD1

PN
jDiC1 CiCj

i

2E
hPN

iD1 C 2
i logCi

i ;

EŒR� D EŒQ�

1 �E
hPN

iD1 Ci
i :

Proof. Using the multinomial expansion we obtain for any k 2 N

E

" 
NX

iD1
CiRi CQ

!˛
�

NX

iD1
.CiRi /

˛

#

D E
2

4Q˛ C
X

j2B˛�1.N /

 
˛

j0; j1; j2; : : :

!
Qj0

NY

iD1
.CiRi /

ji

3

5 :

Next, condition on F D 
.Q;N;C1; C2; : : : / to obtain

E

2

4
X

j2B˛�1.N /

 
˛

j0; j1; j2; : : :

!
Qj0

NY

iD1
.CiRi /

ji

3

5

D E
2

4
X

j2B˛�1.N /

 
˛

j0; j1; j2; : : :

!
Qj0

NY

iD1
C
ji
i E

h
R
ji
i

ˇ̌
ˇF

i
3

5

D E
2

4
X

j2B˛�1.N /

 
˛

j0; j1; j2; : : :

!
Qj0

NY

iD1
C
ji
i EŒR

ji �

3

5 : ut

For the case when ˛ > 1 is not an integer, the same arguments used in the proof
of Lemma 2 (see Lemma 4.1 in [27]) lead to

E

" 
NX

iD1
CiRi CQ

!˛
�

NX

iD1
.CiRi /

˛

#

� E

2

64Q˛ C
0

@
X

j2Bp.N/

 
p

j0; j1; j2; : : :

!
Qj0

NY

iD1
.CiRi /

ji

1

A
˛=p
3

75
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where j and Bp.n/ are defined as in Corollary 1 and p D d˛e. Then condition on
F D 
.Q;N;C1; C2; : : : / and use Jensen’s inequality to obtain

H � 1

˛E
hPN

iD1 C
˛
i logCi

iE

2
64Q˛ C

0

@
X

j2Bp.N /

 
p

j0; j1; j2; : : :

!
Qj0

NY

iD1

C
ji
i EŒR

ji �

1

A
˛=p
3
75 :

Note that the moments EŒRji �, ji � d˛e � 1, can be computed recursively as in
Corollary 1. For the case N � 1 the recent work in [16] provides a computable
expression for H .

Two results that facilitate the verification of the conditions in Theorem 1 are
given below in Lemmas 7 and 8 (Lemmas 4.6 and 4.7 in [27]). The first of these
results transforms the integral conditions in Theorem 1 into an expression that
can be verified by using the specific recursion being analyzed. These lemmas can
be directly applied to analyze other max-plus recursions as well, such as those
mentioned in (5). We illustrate the use of these results by giving a heuristic proof of
Theorem 2 at the end of this section.

Lemma 7. Suppose .N;C1; C2; : : : / is a nonnegative random vector, with N 2
N [ f1g and let fRigi2N be a sequence of iid nonnegative random variables
independent of .N;C1; C2; : : : / having the same distribution as R. For ˛ > 0,
suppose that

PN
iD1.CiRi/˛ < 1 a.s. and EŒRˇ� < 1 for any 0 < ˇ < ˛.

Furthermore, assume that E

��PN
iD1 C

˛=.1C�/
i

�1C��
< 1 for some 0 < � < 1.

Then,

0 �
Z 1

0

 
E

"
NX

iD1
1.CiRi > t/

#
� P

�
max
1�i�N CiRi > t

�!
t˛�1 dt

D 1

˛
E

"
NX

iD1
.CiRi /

˛ �
�

max
1�i�N CiRi

�˛#
<1:

Lemma 8. Let .Q;N;C1; C2; : : : / be a nonnegative vector with N 2 N[f1g and
let fRig be a sequence of iid random variables, independent of .Q;N;C1; C2; : : : /.

Suppose that for some ˛ > 1 we have EŒQ˛� < 1, E
h�PN

iD1 Ci
�˛i

< 1,

EŒRˇ� <1 for any 0 < ˇ < ˛, and
PN

iD1 CiRi <1 a.s. Then

E

" 
NX

iD1
CiRi CQ

!˛
�

NX

iD1
.CiRi/

˛

#
<1:
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We now give some of the key high-level heuristics behind the proof of Theorem 2.
The first technical condition to check is that EŒRˇ� < 1 for all 0 < ˇ < ˛,
which follows from the assumptions in the theorem and our moment estimates from
Lemmas 3 and 4. The majority of the work in the proof goes into verifying the
absolute integrability condition (7). In order to do this, we first observe that

P.R > t/ D P
 

NX

iD1
CiRi CQ > t

!

 P

 
NX

iD1
CiRi > t

!

for large t since EŒQ˛� < 1 and the weighted sum
P
CiRi is expected to have

infinite ˛-moment. Then, under the condition E
h�PN

iD1 Ci
�˛i

< 1 (˛ > 1), we

expect the weighted sum to behave as the maximum according to the well-known
heavy-tailed one-big-jump principle, i.e.,

P

 
NX

iD1
CiRi > t

!

 P

�
max
1�i�N CiRi > t

�
:

The last observation is that

P

�
max
1�i�N CiRi > t

�

 E

"
NX

iD1
1.CiRi > t/

#
;

for large t , which is made rigorous in Lemma 7. Hence, the proof is enabled by
adding and subtracting the term P .max1�i�N CiRi > t/ inside the integrand in
(7). The rigorous justification of these ideas is quite involved, in part because one
has to understand the second order properties of the preceding approximations, i.e.,
the error term; we refer the reader to [26–28] for the details.

5.2 The Case When the Sum of the Weights
PN

i D1 Ci

Dominates

In this section we focus on the case where P.ZN > x/ 2 R�˛ for some ˛ > 1,
and �_ �˛ < 1. The approach we follow is to first describe the asymptotic behavior
of finitely many iterations of (1), those given by R.n/, and then use the uniform
bound given in Proposition 1 to control the difference jR � R.n/j. The first lemma
given below is based on the use of some asymptotic limits for randomly stopped and
randomly weighted sums recently developed in [37].

Lemma 9. Let ZN D PN
iD1 Ci and suppose P.ZN > x/ 2 R�˛ with ˛ > 1,

EŒQ˛C�� < 1, �˛C� < 1 for some � > 0, and � < 1. Then, for any fixed
n 2 f1; 2; 3; : : : g,
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P.R.n/ > x/ � .EŒQ�/˛

.1� �/˛
n�1X

kD0
�k˛.1 � �n�k/˛ P.ZN > x/ (16)

as x !1, where R.n/ was defined in (11).

Remark 7. In terms of the ranking example given in the introduction, Q usually
refers to a nonnegative personalization parameter that determines what page to go
to in case the algorithm reaches a page with no outbound links (see [46] for more
details).

From Lemma 9 one can already guess that, provided �_�˛ < 1, the tail behavior
of R will be

P.R > x/ � .EŒQ�/˛

.1 � �/˛
1X

kD0
�k˛P.ZN > x/

as x ! 1, assuming that the exchange of limits is justified. As mentioned above,
this exchange represents the main technical difficulty. This result was proved in [26]
for the case whereQ;N; fCig are all independent and the fCig are iid using sample-
path arguments, and in [46] for the case where .Q;N / is independent of fCig and
the fCig are iid, using transform methods and Tauberian theorems. A version of the
results presented here that can be applied when Q is a real-valued random variable
can be found in [36].

The uniform bound given by Proposition 1 is the key to establishing that jR �
R.n/j goes to zero geometrically fast, which is more precisely stated in the following
lemma.

Lemma 10. Let ZN D PN
iD1 Ci and suppose P.ZN > x/ 2 R�˛ with ˛ > 1,

EŒQ˛C�� < 1 and �˛C� < 1, for some � > 0. Assume � _ �˛ < 1, then, for any
fixed 0 < ı < 1, n0 2 f1; 2; : : : g and � _ �˛ < � < 1, there exists a finite constant
K > 0 that does not depend on ı or n0 such that

lim
x!1

P
�jR � R.n0/j > ıx	

P.ZN > x/
� K�n0C1

ı˛C1n0
:

Combining Lemmas 9 and 10 one can obtain the following result. The proofs of
all the results in this subsection can be found in [36].

Theorem 3. Let ZN D PN
iD1 Ci and suppose P.ZN > x/ 2 R�˛ with ˛ > 1,

EŒQ˛C�� < 1 and �˛C� <1, for some � > 0. Assume � _ �˛ < 1, then,

P.R > x/ � .EŒQ�/˛

.1 � �/˛.1 � �˛/P.ZN > x/

as x !1, where R was defined in (13).
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Remark 8. (i) For the case where the fCig are iid and independent of N , and
P.N > x/ 2 R�˛, Lemma 3.7(2) in [29] gives

P.ZN > x/ � .EŒC1�/˛P.N > x/ as x !1:

(ii) Given the previous remark, it follows that Theorem 3 generalizes both Theo-
rem 5.1 in [26] (forQ;N; fCig all independent and fCig iid) and the corresponding
result from Sect. 3.4 in [46] (for .Q;N / independent of fCig, fCig iid, EŒQ� < 1

and EŒC � D .1 � EŒQ�/=EŒN �). (iii) In view of Lemma 9, the theorem shows that
the limits limx!1 limn!1P.R.n/ > x/=P.ZN > x/ are interchangeable.

5.3 The Case When Q Dominates

This section of the paper treats the case where the heavy-tailed behavior of R arises
from the fQig, known in the autoregressive processes literature as innovations. This
setting is well known in the special case N � 1, since then the linear fixed-point
equation (1) reduces to

R
DD CRCQ;

where .C;Q/ are generally dependent. This fixed-point equation is the one satisfied
by the steady state of the autoregressive process of order one with random
coefficients, RCA(1) (see [12, 19, 21, 31]).

That the innovations fQig can give rise to heavy tails when the ˛ mentioned
above does not exist is also well known, see, e.g., [21, 32]; the main theorem
of this subsection provides an alternative derivation of the forward implication in
Theorem 1 from [21] (see also Proposition 2.4 in [32]) for Q;N � 0.

The results presented here are very similar to those in Sect. 5.2, and so are their
proofs, which can also be found in [36] and include the case whereQ is real-valued.

Lemma 11. Suppose P.Q > x/ 2 R�˛, with ˛ > 1, andEŒZ˛C�
N � <1, for some

� > 0. Then, for any fixed n 2 f1; 2; 3; : : : g,

P.R.n/ > x/ �
nX

kD0
�k˛ P.Q > x/

as x !1, where R.n/ was defined in (13).

As for the case when ZN D PN
iD1 Ci dominates the asymptotic behavior of R,

we can expect that,

P.R > x/ � .1 � �˛/�1P.Q > x/;
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and the technical difficulty is in justifying the exchange of the limits. The same
techniques used in Sect. 5.2 can be used in this case as well. We point out that even
though the condition � < 1 is not necessary for the proportionality constant in
Lemma 11 to be finite, it is required for the finiteness of EŒR�.

The corresponding version of Lemma 10 is given below.

Lemma 12. Let ZN D PN
iD1 Ci and suppose P.Q > x/ 2 R�˛ with ˛ > 1,

EŒZ˛C�
N � < 1 for some � > 0, and EŒQˇ� < 1 for all 0 < ˇ < ˛. Assume

� _ �˛ < 1, then, for any fixed 0 < ı < 1, n0 2 f1; 2; : : : g and � _ �˛ < � < 1,
there exists a finite constantK > 0 that does not depend on ı or n0 such that

lim
x!1

P
�jR � R.n0/j > ıx	

P.Q > x/
� K�n0C1

ı˛C1n0
:

The main theorem of this section is given below.

Theorem 4. SupposeP.Q > x/ 2 R�˛, with ˛ >1,EŒQˇ�<1 for all 0<ˇ <˛.
Assume � _ �˛ < 1, and EŒZ˛C�

N � <1 for some � > 0. Then,

P.R > x/ � .1 � �˛/�1P.Q > x/

as x !1, where R was defined in (13).

Remark 9. (i) This result generalizes Theorem 1 in [21] for the case N � 1 (the
forward implication, ˛ > 1) to the weighted branching tree when Q � 0. It also
generalizes the results in [26, 46] in the same way as Theorem 3 does for the case
where ZN dominates. (ii) It is also worth pointing out that the same sample-path
techniques used here can be used to study the intermediate case where P.Q >

x/ � KP.ZN > x/ for some constantK > 0, which is also analyzed in [46] under
stronger conditions than those stated above.

6 Other Recursions

In this section we show how our techniques can be applied to study other recursions
on trees, e.g., those stated in (5). In particular, we start with the following non-linear
equation

R
DD
 

N_

iD1
CiRi

!
_Q; (17)

where .Q;N;C1; C2; : : : / is a nonnegative random vector with N 2 N [ f1g,
P.Q > 0/ > 0 and fRigi2N is a sequence of iid random variables that have
the same distribution as R and is independent of .Q;N;C1; C2; : : : /. Note that
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in the case of page ranking applications, where the fRi g represent the ranks of
the neighboring pages, the potential ranking algorithm defined by the preceding
recursion, determines the rank of a page as a weighted version of the most highly
ranked neighboring page. In other words, the highest ranked reference has the
dominant impact. Similarly to the homogeneous linear case, this recursion was
previously studied in [5] under the assumption that Q � 0, N D 1, and the fCig
are real-valued deterministic constants. The more closely related case ofQ � 0 and
fCig � 0 being random was studied earlier in [25].

Using standard arguments, we start by constructing a solution to (17) on a tree
and then we show that this solution is finite a.s. and unique under iterations (under
some moment conditions), similarly to what was done for the nonhomogeneous
linear recursion in Sect. 5. Our main result of this section is stated in Theorem 5.

Following the same notation as in Sect. 5, define the process

Vn D
_

i2An
Qi˘i; n � 0; (18)

on the weighted branching tree TQ;C , as constructed in Sect. 2. Recall that the
convention is that .Q;N;C1; C2; : : : / D .Q;; N;; C.;;1/; C.;;2/; : : : / denotes the
random vector corresponding to the root node.

With a possible abuse of notation relative to Sect. 5, define the process fR.n/gn�0
according to

R.n/ D
n_

kD0
Vk; n � 0:

Just as with the linear recursion from Sect. 5, it is not hard to see that R.n/ satisfies
the recursion

R.n/ D
0

@
N;_

jD1
C.;;j /R.n�1/

j

1

A _Q; D
0

@
N_

jD1
CjR

.n�1/
j

1

A _Q; (19)

where fR.n�1/
j g are independent copies of R.n�1/ corresponding to the subtree

starting with individual j in the first generation and ending on the nth generation.
One can also verify that

Vn D
N;_

kD1
C.;;k/

_

.k;:::;in/2An
Q.k;:::;in/

nY

jD2
C.k;:::;ij /

DD
N_

kD1
CkV.n�1/;k;

where fV.n�1/;kg is a sequence of iid random variables independent of .N;C1;
C2; : : : / and having the same distribution as Vn�1.
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We now define the random variable R according to

R , lim
n!1R.n/ D

1_

kD0
Vk: (20)

Note that R.n/ is monotone increasing sample-pathwise, so R is well defined. Also,
by monotonicity of R.n/, (19) and monotone convergence, we obtain that R solves

R D
0

@
N;_

jD1
C.;;j /R.1/

j

1

A _Q; D
0

@
N_

jD1
CjR

.1/
j

1

A _Q;

where fR.1/
j gj2N are iid copies of R, independent of .Q;N;C1; C2; : : : /. Clearly

this implies that R, as defined by (20), is a solution in distribution to (17). However,
this solution might be1. Now, we establish the finiteness of moments of R, and in
particular that R <1 a.s., in the following lemma.

Lemma 13. Assume that �ˇ D E
hPN

iD1 C
ˇ
i

i
< 1 and EŒQˇ� < 1 for some

ˇ > 0. Then, EŒR� � < 1 for all 0 < � � ˇ, and in particular, R < 1 a.s.

Moreover, if ˇ � 1, R.n/
Lˇ! R, where Lˇ stands for convergence in .Ej � jˇ/1=ˇ

norm.

Just as with the linear recursion from Sect. 5, we can define the process fR�
n g as

R�
n , R.n�1/ _ Vn.R�

0 /; n � 1;

where

Vn.R
�
0 / D

_

i2An
R�
0;i˘i; (21)

and fR�
0;igi2U are iid copies of an initial valueR�

0 , independent of the entire weighted
tree TQ;C . It follows from (19) and (21) that

R�
nC1 D

N_

jD1
Cj

0

@R.n�1/
j _

_

i2An;j
R�
0;i

nY

kD2
C.j;:::;ik /

1

A _Q D
N_

jD1
CjR

�
n;j _Q;

where fR.n�1/
j g are independent copies of R.n�1/ corresponding to the subtree

starting with individual j in the first generation and ending on the nth generation,
and An;j is the set of all nodes in the .n C 1/th generation that are descendants of
individual j in the first generation. Moreover, fR�

n;j g are iid copies of R�
n , and thus,

R�
n is equal in distribution to the process obtained by iterating (17) with an initial

condition R�
0 . This process can be shown to converge in distribution to R for any

initial condition R�
0 satisfying the following moment condition.
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Lemma 14. For any R�
0 � 0, if EŒQˇ�; EŒ.R�

0 /
ˇ� < 1 and �ˇ < 1 for some

ˇ > 0, then

R�
n ) R;

with EŒRˇ� < 1. Furthermore, under these assumptions, the distribution of R is
the unique solution with finite ˇ-moment to recursion (17).

We now state the main result of this section; see Theorem 5.1 in [27].

Theorem 5. Let .Q;N;C1; C2; : : : / be a nonnegative random vector, with N 2
N [ f1g, P.Q > 0/ > 0 and R be the solution to (17) given by (20). Suppose that
there exists j � 1 with P.N � j; Cj > 0/ > 0 such that the measure P.logCj 2
du; Cj > 0;N � j / is nonarithmetic, and that for some ˛ > 0, EŒQ˛� < 1,

0 < E
hPN

iD1 C ˛
i logCi

i
<1 and E

hPN
iD1 C ˛

i

i
D 1. In addition, assume

1. E
h�PN

iD1 Ci
�˛i

<1, if ˛ > 1; or,

2. E

��PN
iD1 C

˛=.1C�/
i

�1C��
<1 for some 0 < � < 1, if 0 < ˛ � 1.

Then,

P.R > t/ � Ht�˛; t !1;

where 0 � H <1 is given by

H D 1

E
hPN

iD1 C ˛
i logCi

i
Z 1

0

v˛�1
 
P.R > v/ � E

"
NX

iD1
1.CiR > v/

#!
dv

D
E
h�WN

iD1 CiRi
�˛ _Q˛ �PN

iD1.CiRi /˛
i

˛E
hPN

iD1 C ˛
i logCi

i :

As an illustration of the generality of the developed techniques, we now discuss
another example that is closely related to recursion (17), which is given by

R
DD
 

N_

iD1
CiRi

!
CQ; (22)

where .Q;N;C1; C2; : : : / is a nonnegative vector with N 2N [ f1g, P.Q>0/ >

0, and fRigi2N is a sequence of iid random variables independent of .Q;N;C1;
C2; : : : / having the same distribution as R. Its analysis could follow very closely
the steps used for the linear and maximum recursions, except that the constructed
solutionR would be less explicit. More specifically, one could iterate (22), similarly
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as it was done in (19) for the maximum recursion. To this end, an iterationR.n/ could
be constructed as a function of the weights of the first n generations of the tree, and
would solve

R.n/ D
0

@
N_

jD1
CjR

.n�1/
j

1

ACQ;

where fR.n�1/
j g is the corresponding iteration obtained on a subtree that starts on

node j in the first generation and ends on the nth generation; clearly fR.n�1/
j g is a

sequence of iid random variables. Furthermore, it appears thatR.n/ is monotonically
increasing in n, see Eq. (37) in [1], and thus its limit R D R.1/ D limn!1R.n/ is
properly defined. In addition, by using monotonicity arguments, one can show that

R.1/ D
0

@
N_

jD1
CjR

.1/
j

1

ACQ;

where fR.1/
j g is the corresponding iterative solution constructed on the infinite

subtree that starts at node j in the first generation. Hence, such a constructed R
is a solution to (22). Also, since R is bounded from above by the solution (13) to
the nonhomogeneous linear equation, sufficient conditions for the finiteness of its
moments can be obtained from the corresponding results for the solution in (13).
Recursion (22) was termed “discounted tree sums” in [1]; for additional details on
the existence and uniqueness of its solution see Sect. 4.4 in [1].

Similarly one could study the third equation from (5),

R
DD
 

NX

iD1
CiRi

!
_Q;

by first constructing iteratively an endogenous solution on the weighted branching
tree and then develop the conditions for the finiteness of its moments, etc.
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The Smoothing Transform: A Review
of Contraction Results

Gerold Alsmeyer

Abstract Given a sequence .C; T / D .C; T1; T2; : : :/ of real-valued random
variables, the associated so-called smoothing transform S maps a distribution F
from a subset � of distributions on R to the distribution of

P
i�1 TiXi C C , where

X1;X2; : : : are iid with common distribution F and independent of .C; T /. This
review aims at providing a comprehensive account of contraction properties of S
on subsets � specified by the existence of moments up to a given order like, for
instance, Pp.R/ D fF W R jxjp F.dx/ < 1g for p > 0 or P

p
c .R/ D fF 2

Pp.R/ W R x F.dx/ D cg for p � 1. The metrics used here are the minimal `p-
metric and the Zolotarev metric �p, both briefly introduced in Sect. 3.

1 Introduction

Any temporally homogeneous Markov chain on the real line or a subset thereof may
be described via a random recursive equation with no branching, viz.

Xn D �n.Xn�1/ (1)

for n � 1 and iid random functions �1; �2; : : : independent of X0. Namely, if P
denotes the one-step transition kernel of the chain and

G.x; u/ WD inffy 2 R W P.x; .�1; y�/ � ug; x 2 R; u 2 .0; 1/

its associated pseudo-inverse, then one can choose �n.x/ WD G.x;Un/ for n � 1,
where U1; U2; : : : are iid Unif (0,1) random variables. Provided that the �n have
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additional smoothness properties, for instance, to be (a.s.) globally Lipschitz
continuous and contractive in a suitable stochastic sense, stability properties of
.Xn/n�0 may be studied within the framework of iterated random functions, see [17]
for a survey and [16, 34] for two more recent contributions of interest. Moreover,
any stationary distribution � of the chain is then characterized by the distributional
identity

X
dD �.X/ (2)

where X has law � , � denotes a generic copy of the �n independent of X , and
dD means equality in distribution. Equation (2) is called a stochastic fixed-point
equation (SFPE) and � (and also X ) a solution to it. The case when � is a random
affine linear function and solutions are called perpetuities has received particular
interest in the literature, see e.g. [5, 20, 44] and further references therein.

A random recursive equation with branching occurs if the right-hand side of (1)
involves multiple copies of Xn�1, i.e.

Xn D �n.Xn�1;1; Xn�1;2; : : :/

for n � 1, where .Xn�1;k/k�1 is a sequence of iid copies of Xn�1 and further
independent of �n. Again, of particular interest and also the topic of this article
is the situation when the �n are random affine linear functions, a generic copy thus
being of the form

�.x1; x2; : : :/ D
X

k�1
Tkxk C C

for a sequence of real-valued random variables .C; T1; T2; : : :/. This leads to the
so-called (going back to Durrett and Liggett [18]) smoothing transform(ation)

S W F 7! L

0

@
X

k�1
TkXk C C

1

A (3)

which maps a distribution F 2 P.R/ to the law of
P

k�1 TkXk C C , where
X1;X2; : : : are independent of .C; T1; T2; : : :/ with common distribution F . It has
been studied by many authors due to its occurrence in various fields of applied
probability: probabilistic combinatorial optimization [1], stochastic geometry and
random fractals [21,33,37], the analysis of recursive algorithms and data structures
[22, 36, 39, 41] and branching particle systems [10, 25].

On the event where

N WD
X

k�1
1fTk¤0g
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is infinite, the sum
P

k�1 TkXk in (3) is understood as the limit of the finite partial
sums

Pn
kD1 TkXk in the sense of convergence in probability. Then S .F / is indeed

defined for all F 2P.R/ if

P.N <1/ D 1; (A0)

but exists only for F from a subset of P.R/ (always containing ı0) otherwise.
Subsets of interest here are typically characterized by the existence of moments of
certain order, viz.

Pp.R/ WD
�
F 2P.R/ W

Z
jxjp F.dx/ <1

�
;

for any p > 0 or, more specifically, the sets of all centered, respectively centered
and standardized distributions on R, that is

P1
0 .R/ WD

�
F 2P1.R/ W

Z
x F.dx/ D 0

�
;

P2
0;1.R/ WD

�
F 2P2

0 .R/ W
Z
x F.dx/ D 0 and

Z
x2 F.dx/ D 1

�
:

Section 4 will provide conditions for S to be a self-map on some � 	Pp.R/, and
these do not necessarily include (A0). Under the standing assumption that

P.N � 2/ > 0; (A1)

our goal is then to give a systematic account of conditions under which S is, in
some sense, contractive on � with respect to a suitable complete metric � and
therefore possessing a unique fixed point in � , characterized by the SFPE

X
dD
X

k�1
TkXk C C (4)

when stated in terms of random variables, where X1;X2; : : : are iid copies of X
and independent of .C; T1; T2; : : :/. Three types of contraction on .�; �/ will be
discussed:

• Contraction, i.e. �.S .F /;S .G// � ˛ �.F;G/ for all F;G 2 � and some
˛ 2 .0; 1/.

• Quasi-contraction, which holds if S n is a contraction for some n 2 N.
• Local contraction, i.e. �.S n.F /;S nC1.F // � c ˛n for some F 2 � , ˛ 2 .0; 1/

and c 2 R>.

The metrics to be considered here because of their good performance in connection
with S are the minimal Lp-metric `p and the Zolotarev metric �p for p > 0, both
briefly introduced in Sect. 3.
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Our review draws on results in [35, 38, 40, 42] supplemented by a number of
extensions so as to provide a more complete picture. The last two references may
also be consulted for multivariate extensions not discussed here. Further information
on the set of solutions to (4), especially for the homogeneous case .C D 0/, has
been obtained by many authors, see [2, 3, 6, 9, 11, 14, 15, 18, 26, 31], but will not
either be an issue here. The same goes for results on the tail behavior of solutions,
see [7, 23, 27–30, 32].

The rest of this paper is organized as follows. In Sect. 2, a brief introduction of the
weighted branching model associated with S is given. It provides the appropriate
framework to study the iterates S n of S (Sect. 2). As already mentioned, Sect. 3
collects useful information on the probability metrics `p and �p and Sect. 4 gives
conditions for S to be a self-map of Pp.R/ or subsets thereof. An auxiliary
result on the behavior of the mean values of S n.F / for F 2 P1.R/ and as
n ! 1 is stated in Sect. 5. After these preliminaries, all contraction results for
S are presented in the main Sect. 6, with proofs for some of these results included.
Finally, an Appendix provides a short survey of some useful results in connection
with Banach’s fixed-point theorem, the latter being stated there as well. It also
lists some well-known martingale inequalities which form an essential tool for the
proofs of the contraction results and are included here to make the presentation more
self-contained.

2 The Iterates of S and Weighted Branching

In order to study contraction properties of S , a representation of .S n.F //n�1, the
sequence of iterates of S applied to some F 2P.R/, in terms of random variables
is needed. The weighted branching model to be introduced next and taken from [40]
provides an appropriate framework.

Consider the infinite Ulam-Harris tree

T WD
[

n�0
N
n; N

0 WD f¿g;

of finite integer words having the empty word ¿ as its root. As common, we
write v1 : : : vn as shorthand for .v1; : : : ; vn/, jvj for the length of v, and uv for the
concatenation of u and v. If v D v1 : : : vn, put further vj0 WD ¿ and vjk WD v1 : : : vk
for 1 � k � n. The unique shortest path (geodesic) from the root ¿ to v, or the
ancestral line of v when using a genealogical interpretation, is then given by

vj0 D ¿ ! vj1 ! : : :! vjn � 1 ! vjn D v:

The tree T is now turned into a weighted (branching) tree by attaching a random
weight to each of its edges. Let Ti.v/ denote the weight attached to the edge .v; vi/
and assume that the T .v/ WD .Ti .v//i�1 for v 2 T form a family of iid copies of
T D .Ti /i�1. The number of nonzero weights Ti.v/ is denotedN.v/, thus
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N.v/ WD
X

i�1
1fTi .v/¤0g

dD N:

Put further L.¿/ WD 1 and then recursively

L.vi/ WD L.v/Ti .v/

for any v 2 T and i 2 N, which is equivalent to

L.v/ D Tv1 .¿/Tv2.vj1/ � : : : � Tvn.vjn � 1/
for any v D v1 : : : vn 2 T. Hence, L.v/ equals the total weight of the minimal path
from ¿ to v obtained upon multiplication of the edge weights along this path.

With the help of a weighted branching model as just introduced, we are now able
to describe the iterations of the homogeneous smoothing transform in a convenient
way. Namely, if S is given by (3) with C D 0, X WD fX.v/ W v 2 Tg denotes
a family of iid random variables independent of T WD .T .v//v2T with common
distribution F , and

Yn WD
X

jvjDn
L.v/X.v/

for n � 0, then S n.F / D L .Yn/ holds true for each n � 0. We call .Yn/n�0
weighted branching process (WBP) associated with T˝ X WD .T .v/; X.v//v2T. In
the special case when X.v/ D 1 for v 2 T, it is simply called weighted branching
process associated with T.

It is not difficult to extend the previous weighted branching model so as to
describe the iterations of S in the nonhomogeneous case when P.C D 0/ < 1.
To this end, let C˝ T D .C.v/; T .v//v2T denote a family of iid copies of .C; T /,
T WD .Ti /i�1, and X be independent of C˝ T. Then defining Y.¿/ D X.¿/ and

Yn WD
n�1X

kD0

X

jvjDk
L.v/C.v/C

X

jvjDn
L.v/X.v/

for n � 1, it is readily verified that S n.F / D L .Yn/ holds true for each n � 0.
In this case, we call Y WD .Yn/n�0 the weighted branching process associated with
C˝ T˝ X WD .C.v/; T .v/; X.v//v2T.

We proceed to a description of the recursive structure of WBPs after the
following useful definition of the shift operators Œ��v, v 2 T. Given any function
� of C˝ T˝ X and any v 2 T, put

Œ�.C˝ T˝ X/�v WD � ..C.vw/; T .vw/; X.vw//w2T/ ;

which particularly implies

Œ�.C˝ T˝ X/�v D � .ŒC˝ T˝ X�v/ :
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If we think of C˝ T˝X as the family of random variables associated with T, then
ŒC˝ T˝ X�v equals its subfamily and copy associated with the subtree T.v/ rooted
at v which is isomorphic to T. Obviously, L WD .L.v//v2T is a function of T, and
one can easily verify that ŒL�v D .ŒL.w/�v/w2T with

ŒL.w/�v WD Tw1 .v/Tw2.vw1/ � : : : � Twn.vw1 : : :wn�1/

if w D w1 : : :wn. Hence, ŒL.w/�v gives the total weight of the minimal path from v
to vw. Notice that, for all v;w 2 T,

L.vw/ D L.v/ � ŒL.w/�v
and therefore

ŒL.w/�v D L.vw/
L.v/

for all w 2 T if L.v/ ¤ 0. For later use, we put

Fn WD 
 .T .v/ W jvj � n � 1/ (5)

for n � 1 and let F0 be the trivial 
-field. Observe that Fn  
.L.v/ W jvj � n/
for each n � 0.

Finally, we define

m.�/ WD E

0

@
X

i�1
jTi j�

1

A (6)

for � � 0 which plays an important role in the study of S . For instance, it is well-
known that, if C D 0 (homogeneous case), T � 0 and N is bounded, then S has
nontrivial fixed points in P.R�/ iff m.˛/ D 1 and

m0.˛/ D E

0

@
X

i�1
jTi j� log jTi j

1

A � 0

for some ˛ 2 .0; 1�, see [18]. The function m is convex on f� W m.�/ < 1g,
satisfies m.0/ D EN and possesses at most two values ˛ < ˇ such that m.˛/ D
m.ˇ/ D 1. If this is the case, then m0.˛/ < 0 and m0.ˇ/ > 0. The value ˛ is called
characteristic exponent of T , owing to its role in connection with the existence of
fixed points of S . Under appropriate regularity assumptions, the valueˇ determines
the tail index of fixed points of S , see [7,27–29]. As for the contractive behavior of
S on Pp.R/ or subsets thereof, we will see that m.p/ < 1 constitutes a minimal
requirement.
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3 Probability Metrics

3.1 The Minimal Lp-Metric

Given a probability space .˝;A;P/, letLp.P/ D Lp.˝;A;P/ for p > 0 denote the
vector space of p times integrable random variables on .˝;A;P/. Then kXkp WD
.EjX jp/1^.1=p/ defines a complete (pseudo-)norm on Lp.P/ if p � 1, but fails to do
so if 0 < p < 1. On the other hand,

`p.X; Y / WD kX � Y kp
provides us with a complete (pseudo-)metric on Lp.P/ for each p > 0.

A pair .X; Y / of real-valued random variables defined on .˝;A;P/ is called
.F;G/-coupling if L .X/ D F and L .Y / D G. In this case, we will use the
shorthand notation .X; Y / � .F;G/ hereafter. For a distribution function F on R,
let F�1 denote its pseudo-inverse, thus F �1.u/ WD inffx 2 R W F.x/ � ug for
u 2 .0; 1/. Then F �1.U / has distribution F if L .U / D Unif .0; 1/. Now, for each
p > 0, the mapping `p WPp.R/ �Pp.R/! R�, defined by

`p.F;G/ WD inf
.X;Y /�.F;G/ kX � Y kp; (7)

is a metric on Pp.R/, called minimal Lp-metric (also Mallows metric in [40]).
Moreover, the infimum in (7) is attained, namely

`p.F;G/ D kF �1.U /�G�1.U /kp
for any Unif .0; 1/ random variable U . The following characterization of conver-
gence with respect to `p is easily verified.

Proposition 1. Let p > 0 and .Fn/n�0 be a sequence of distributions in Pp.R/.
Then the following assertions are equivalent:

(a) Fn
`p�! F , i.e. limn!1 `p.Fn; F / D 0.

(b) Fn
w! F and limn!1

R jxjp Fn.dx/ D
R jxjp F.dx/ <1.

(c) Fn
w! F and x 7! jxjp is ui with respect to the Fn, that is

lim
a!1 sup

n�1

Z

.�a;a/c
jxjp Fn.dx/ D 0:

Moreover, the space .Pp.R/; `p/ is complete for each p > 0.

For any distribution F 2 P1.R/ with mean value EF WD R
x F.dx/, let F 0

denote its centering, thus F 0.t/ WD F.t CEF / for t 2 R. The next lemma provides
information about the relation between `p.F;G/ and `p.F 0;G0/ for p � 1.
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Lemma 1. Given p � 1, distributions F;G 2 Pp.R/ with mean values EF;EG
and a Unif .0; 1/ random variable U , it holds true that

`p.F
0;G0/ D k.F�1.U /� EF / � .G�1.U /� EG/kp; (8)

`p.F;G/ D k..F 0/�1.U /C EF /� ..G0/�1.U /C EG/kp; (9)

and therefore

j`p.F;G/ � `p.F 0;G0/j � jEF � EGj: (10)

If p D 2, then furthermore

`22.F;G/ D `22.F
0;G0/C .EF � EG/2: (11)

Proof. For (8) and (9), it suffices to note that F 0.t/ D F.tCEF / obviously implies
.F 0/�1.t/ D F�1.t/ � EF for all t 2 R. If p D 2, then (9) with X WD .F 0/�1.U /
and Y WD .G0/�1.U / yields

`22.F;G/ D E
�
.X � Y /C .EF � EG/

	2

D E.X � Y /2 C 2.EF � EG/E.X � Y /C .EF � EG/2

D `22.F
0;G0/C .EF � EG/2;

where EX D EY D 0 has been utilized. ut

3.2 The Zolotarev Metric

We now turn to an alternative probability metric which is better tailored to situations
where S is contractive on subsets of Pp.R/ with specified moments of integral
order � p.

Let C 0.R/ denote the space of continuous functions f W R ! R and C m.R/

for m 2 N the subspace of m times continuously differentiable complex-valued
functions. For p D mC ˛ with m 2 N0 and 0 < ˛ � 1, put

Fp WD
˚
f 2 C m.R/ W jf .m/.x/ � f .m/.y/j � jx � yj˛ for all x; y 2 R



:

which obviously contains the monomials x 7! xk for k D 1; : : : ; m as well as
x 7! sign.x/jxjp=cp and x 7! jxjp=cp for some cp 2 R>. Finally, if p > 1 and
thusm 2 N, then denote by Pp

z .R/, z D .z1; : : : ; zm/ 2 R
m, the set of distributions

on R having kth moment zk for k D 1; : : : ; m.
Zolotarev [46] introduced the metric �p on Pp.R/, defined by

�p.F;G/ WD sup
f 2Fp; .X;Y /�.F;G/

ˇ̌
E
�
f .X/ � f .Y /	ˇ̌ (12)
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and nowadays named after him. Via a Taylor expansion of the functions f 2 Fp in
(12), it can be shown that �p.F;G/ is finite for all F;G 2 Pp.R/ if 0 < p � 1,
and for all F;G 2Pp

z .R/ and z 2 R
m if p > 1. On the other hand, in the last case

�p.F;G/ D 1 for distributions F;G 2 Pp.R/ that do not have the same integral
moments up to order m. We thus see that �p defines a proper probability metric on
Pp.R/ only for 0 < p � 1 and on Pp

z .R/ for any z 2 R
m, otherwise. Here we

should add that �p.F;G/ D 0 implies F D G because Cm
b .R/ WD ff 2 Cm.R/ W

f .m/ is boundedg is a measure determining class for each m 2 N0.
Given a probability space .˝;A;P/, �p can also be defined on Lp D Lp.P/, viz.

�p.X; Y / WD sup
f 2Fp

ˇ̌
E
�
f .X/ � f .Y /	ˇ̌ ; (13)

and constitutes a pseudo-metric there if 0 < p � 1. If p > 1, then this is true only
on Lpz D L

p
z .P/ WD fX 2 Lp.P/ W EXk D zk for k D 1; : : : ; mg for any z 2 R

m.
Recall that a pseudo-metric has the same properties as a metric with one exception:
�p.X; Y / D 0 does not necessarily imply X D Y (here not even with probability
one: just take two iid X; Y which are not a.s. constant).

A pseudo-metric � on a set of random variables is called simple if it depends only
on the marginals of the random variables being compared, and compound otherwise.
It is called .p;C/-ideal if

�.cX; cY / D jcjp �.X; Y / (14)

for all c 2 R and

�.X CZ; Y CZ/ � �.X; Y / (15)

for anyZ independent ofX; Y and with well-defined �.XCZ; Y CZ/. Obviously,
�p is simple, namely

�p.X; Y / D �p.F;G/

for any random variables X; Y with respective laws F;G, whereas the Lp-pseudo-
metrics `p are compound. It will be shown in Proposition 2(a) below that �p is also
.p;C/-ideal on any Lpz for z 2 R

m. As for the minimal Lp-metric, one can easily
see that it is .r;C/-ideal for r D p ^ 1.

In the following, P
p
� .R/; L

p
� stand for Pp.R/; Lp if 0 < p � 1, and for

P
p
z .R/; L

p
z for arbitrary z 2 R

m if p > 1. The subsequent propositions gather
some useful properties of �p . For a proof we refer to Zolotarev’s original work [46]

Proposition 2. Let p D mC ˛ for some m 2 N0 and 0 < ˛ � 1. Then �p, defined
by (12) or (13), has the following properties:

(a) �p is a .p;C/-ideal pseudo-metric on Lp�.
(b) For any X; Y 2 Lp�,
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�p.X; Y / � � .1C ˛/
� .1C p/ �p.X; Y /; (16)

where �p.X; Y / WD `p.X; Y / if 0 < p D ˛ � 1, and

�p.X; Y / WD `p.X; Y /
˛ kXkmp Cm`p.X; Y /

�
`p.X; Y /C kY kp

	m�1

if s � 1.

Convergence with respect to the Zolotarev metric is characterized by a second
proposition which may be deduced with the help of the previous one. It particularly
shows that �p-convergence and `p-convergence are equivalent.

Proposition 3. Under the same assumptions as in the previous result, the following
properties hold true for �p:

(a) �p.Fn; F / ! 0 implies `p.Fn; F /! 0 and thus particularly Fn
w! F for any

F;F1; F2; : : : 2P
p
� .R/.

(b) Conversely, `p.Fn; F / ! 0 implies �p.Fn; F / ! 0 and therefore, by (16),
�p.Fn; F /! 0 for any F;F1; F2; : : : 2P

p
� .R/.

(c) The metric space .Pp
� .R/; �p/ is complete.

4 Conditions for S to Be a Self-Map of Pp.R/

In order to study the contractive behavior of S on Pp.R/ for p > 0, we must first
provide conditions that ensure that S is a self-map on this subset of distributions
on R. In other words, we need conditions on .C; T / D .C; .Ti /i�1/ such that

X

i�1
TiXi C C 2 Lp

whenever the iid X1;X2; : : : are in Lp . Choosing X1 D X2 D : : : D 0, we see that
C 2 Lp is necessary, so that we are left with the problem of finding conditions
on T such that

P
i�1 TiXi 2 Lp if this is true for the Xi . The main result is

stated as Proposition 4 below and does not need N D P
i�1 1fTi¤0g to be a.s.

finite. Therefore,
P

i�1 TiXi 2 Lp is generally to be understood in the sense of
Lp-convergence of the finite partial sums

Pn
iD1 TiXi , which particularly implies

convergence in probability. Before stating the result let us define

Pp
c .R/ WD

�
F 2Pp.R/ W

Z
x F.dx/ D c

�

and also Lpc WD fX 2 Lp W EX D cg for p � 1 and c 2 R.
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Proposition 4. Let T D .Ti /i�1 and .Xi /i�1 be independent sequences on a given
probability space .˝;A;P/ such that X1;X2; : : : are iid and in Lp . Then each of
the following set of conditions implies

P
i�1 TiXi 2 Lp:

(i) 0 < p � 1 and
P

i�1 jTi jp 2 L1.
(ii) 1 < p � 2,

P
i�1 Ti 2 Lp and

P
i�1 jTi jp 2 L1.

(iii) 2 � p <1,
P

i�1 Ti 2 Lp and
P

i�1 T 2i 2 Lp=2.
(iv) 1 < p � 2,

P
i�1 jTi jp 2 L1 and EX1 D 0.

(v) 2 � p <1,
P

i�1 T 2i 2 Lp=2 and EX1 D 0.

Conversely, if 1 < p <1, then

(a)
P

i�1 TiXi 2 Lp for any choice of T -independent and iid X1;X2; : : : in Lp

implies
P

i�1 Ti 2 Lp and
P

i�1 T 2i 2 Lp=2.
(b)

P
i�1 TiXi 2 Lp for any choice of T -independent and iid X1;X2; : : : 2 Lp0

implies
P

i�1 T 2i 2 Lp=2.
It should be observed that, in view of (iii) and (v), the implications in the converse

parts (a) and (b) are in fact equivalences if p � 2. It is tacitly understood there that
the underlying probability space .˝;A;P/ is rich enough to carry T -independent
iid X1;X2; : : : with arbitrary distribution in Pp.R/, which is obviously the case
if it carries a sequence of iid Unif .0; 1/ variables. Our proof will show that it is
even enough if there exist T -independent iid X1;X2; : : : taking values ˙1 with
probability 1=2 each.

Proof. (i) If 0 < p � 1, the subadditivity of x 7! xp for x � 0 immediately
implies under the given assumptions that

E

0

@
X

i�1
jTiXi j

1

A
p

�
X

i�1
EjTiXi jp D EjX1jp

X

i�1
EjTi jp < 1

and thus the almost sure absolute convergence of
P

i�1 TiXi as well as its
integrability of order p.

(ii) Here we argue that .
Pn

iD1 TiXi /n�1 forms a Cauchy sequence in .Lp.P/; k�kp/
and is therefore Lp-convergent. First note that E.

P
i�1 jTi jp/ D

P
i�1 EjTi jp

implies Ti 2 Lp for each i � 1, which in combination with Xi 2 Lp for
each i � 1 ensures that

Pn
iDm TiXi 2 Lp for all n � m � 1. Denoting by �

the expectation of the Xi , we have that .
Pk

iDm Ti.Xi � �//m�k�n conditioned
upon T forms an Lp-martingale, for T and .Xi/i�1 are independent. Since
1 < p � 2, the even function x 7! jxjp is convex with concave derivative on
R� which allows us to make use of the Topchiı̆-Vatutin inequality (see (44) in
the Appendix). This yields

E

 ˇ̌
ˇ̌
ˇ

nX

iDm
Ti .Xi � �/

ˇ̌
ˇ̌
ˇ

p ˇ̌
ˇ̌
ˇT
!
� 2EjX1 � �jp

nX

iDm
jTi jp a.s.
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and then by taking unconditional expectations



nX

iDm
Ti .Xi � �/


p

� 2 kX1 � �kp


nX

iDm
jTi jp



1=p

1

:

Since
P

i�1 jTi jp 2 L1, the right-hand side converges to zero as m; n !
1. By using the second assumption

P
i�1 Ti 2 Lp , we infer that

limm;n!1 kPn
iDm Tikp D 0 as well, whence finally



nX

iDm
TiXi


p

�


nX

iDm
Ti .Xi � �/


p

C j�j


nX

iDm
Ti


p

! 0 (17)

as m; n!1.

(iii) Here we use the same Cauchy sequence argument as in (ii), but make use of
Burkholder’s inequality (see (18) in the Appendix). This yields

E

 ˇ̌
ˇ̌
ˇ

nX

iDm
Ti .Xi � �/

ˇ̌
ˇ̌
ˇ

p ˇ̌
ˇ̌
ˇT
!
� bpp E

0

@
 

nX

iDm
T 2i .Xi � �/2

!p=2 ˇ̌
ˇ̌
ˇT

1

A a.s.

for a constant bp 2 R> which only depends on p. Next, put ˙mWn WD
.
Pn

iDm T 2i /1=2 for n � m � 1. Given T and ˙mWn ¤ 0, the vector

�
T 2m
˙2
mWn
; : : : ;

T 2n
˙2
mWn

�

defines a discrete probability distribution on fm; : : : ; ng, which in combination
with the independence of T and .Xi /i�1, the convexity of x 7! xp=2 for x � 0
and p � 2 and an appeal to Jensen’s inequality yields

E

0

@
 

nX

iDm
T 2i .Xi � �/2

!p=2 ˇ̌
ˇ̌
ˇT

1

A D E

0

@
 

nX

iDm

T 2i
˙2
mWn
˙2
mWn.Xi � �/2

!p=2 ˇ̌
ˇ̌
ˇT

1

A

� E

 
nX

iDm

T 2i
˙2
mWn
˙
p
mWnjXi � �jp

ˇ̌
ˇ̌
ˇT
!

D
 
˙
p
mWn

nX

iDm

T 2i
˙2
mWn

!
EjX1 � �jp

D ˙
p
mWn EjX1 � �jp a.s. on f˙mWn > 0g:
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But if ˙mWn D 0, the inequality is trivially satisfied. Since, by assumption,
E˙

p
m;n ! 0 as m; n ! 1, we now obtain by taking unconditional

expectations and letting m; n tend to infinity that

lim
m;n!1E

ˇ̌
ˇ̌
ˇ

nX

iDm
Ti.Xi � �/

ˇ̌
ˇ̌
ˇ

p

� bpp EjX1 � �jp lim
m;n!1E˙p

m;n D 0:

The remaining argument via (17) is identical to the one in the previous case
and thus not repeated here.

(iv), (v) If� D EX1 D 0, the assumption in
P

i�1 Ti 2 Lp can be dropped because
then the second term on the right-hand side in (17) vanishes.

The converse part:

(a) By choosing Xi D 1 for i � 1, we find that
P

i�1 Ti 2 Lp and are thus left
with a proof of

P
i�1 T 2i 2 Lp=2. Let now X1;X2; : : : be iid random variables

taking values ˙1 with probability 1=2 each. Then EX1 D 0, X1 2 Lp for any
p > 1, and .

Pn
iD1 TiXi /n�0 conditioned on T forms a Lp-bounded martingale.

By another appeal to Burkholder’s inequality (49) (lower bound) and observing
X2
1 D 1, it follows that

E

 ˇ̌
ˇ̌
ˇ

nX

iD1
TiXi

ˇ̌
ˇ̌
ˇ

p ˇ̌
ˇ̌
ˇT
!
� app

 
nX

iD1
T 2i

!p=2
a.s.

for a constant ap 2 R> which only depends on p. Consequently,

E

0

@
X

i�1
T 2i

1

A
p=2

� 1

a
p
p

E

ˇ̌
ˇ̌
ˇ̌
X

i�1
TiXi

ˇ̌
ˇ̌
ˇ̌

p

< 1

which proves the remaining assertion.
(b) Here it suffices to refer to the last argument. ut

In the following, we say that the smoothing transform S exists in Lp-sense if S
is a self-map on Pp.R/. As a direct consequence of Proposition 4, one can easily
deduce:

Corollary 1. The smoothing transform S exists

• In Lp-sense for 0 < p � 1 if C 2 Lp and
P

i�1 jTi jp 2 L1.
• In Lp-sense for 1 < p < 2 if C;

P
i�1 Ti 2 Lp and

P
i�1 jTi jp 2 L1.

• From P
p
0 .R/!Pp.R/ for 1 < p < 2 if C 2 Lp and

P
i�1 jTi jp 2 L1.

• From P
p
0 .R/!P

p
0 .R/ for 1 < p � 2 if C 2 Lp0 and

P
i�1 jTi jp 2 L1.

• In Lp-sense for 2 � p <1 iff C;
P

i�1 Ti 2 Lp and
P

i�1 T 2i 2 Lp=2.
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• From P
p
0 .R/!P

p
0 .R/ for 2 � p <1 iff C 2 Lp0 and

P
i�1 T 2i 2 Lp=2.

• From P
p
0 .R/!Pp.R/ for 2 � p <1 iff C 2 Lp and

P
i�1 T 2i 2 Lp=2.

Conversely, if S exists

• In Lp-sense for 1 < p < 2, then C;
P

i�1 Ti 2 Lp and
P

i�1 T 2i 2 Lp=2.
• From P

p
0 .R/!P

p
0 .R/ for 1 < p < 2, then C 2 Lp0 and

P
i�1 T 2i 2 Lp=2.

In the particularly important case when T1; T2; : : : are nonnegative, a necessary
and sufficient condition for S to exist in Lp-sense can be given for all p > 0 and
follows directly from the previous result if p > 0.

Corollary 2. Let T1; T2; : : : be nonnegative and 0 < p < 1. Then the smoothing
transform S exists in Lp-sense iff C;

P
i�1 Ti 2 Lp .

Proof. We must only consider the case 0 < p � 1 and verify that C;
P

i�1 Ti 2 Lp
is necessary for S to exist in Lp-sense. But choosing Xi D 0, we find C 2 Lp ,
while choosing Xi D 1 for all i � 1 then further implies

P
i�1 Ti 2 Lp . ut

5 Convergence of Iterated Mean Values

By Theorem 15 in the Appendix, the convergence of S n.F / to a fixed point in
.Pp.R/; `p/ follows if S is a continuous locally contractive self-map of this space,
thus

`p.S
nC1.F /;S n.F // � c ˛n (18)

for suitable c � 0, ˛ 2 Œ0; 1/ and all n � 0. In order to infer uniqueness of the fixed
point, one may consider expected values if p � 1, which provides the motivation
behind the subsequent lemma (see [40, Lemma 1]). Recall that EF WD R

x F.dx/

for a distribution F 2P1.R/.

Lemma 2. Suppose that S exists inLp-sense for some p � 1 and let F 2Pp.R/.
Then

(a) E.
P

i�1 Ti / 2 .�1; 1/ implies

lim
n!1 ES n.F / D EC

1 � E.
P

i�1 Ti /
;

and the convergence rate is geometric.
(b) jE.Pi�1 Ti /j > 1 and EF C .E.Pi�1 Ti /� 1/�1 EC ¤ 0 imply

lim
n!1 jES n.F /j D 1:
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(c) jE.Pi�1 Ti /j > 1 and EF C .E.Pi�1 Ti /� 1/�1 EC D 0 imply

lim
n!1 ES n.F / D EF D EC

1 � E.
P

i�1 Ti /
:

(d) E.
P

i�1 Ti / D 1 and EC ¤ 0 imply

lim
n!1 jES n.F /j D 1:

(e) E.
P

i�1 Ti / D 1 and EC D 0 imply ES n.F / D EF for all n � 0.
(f) E.

P
i�1 Ti / D �1 implies

ES2n.F / D EF and ES 2nC1 D EC � EF

for all n � 0.

Proof. Fix any n � 1 and let .C; T /,X1;X2; : : : be independent such that L .Xi/ D
S n�1.F / for each i � 1. Since

P
i�1 Ti 2 L1 by Corollary 1, we infer upon setting

ˇ WD E.
P

i�1 Ti / that

ES n.F / D EC C E

0

@
X

i�1
TiXi

1

A D EC C ˇ EX1 D EC C ˇ ES n�1.F /

(19)

and then inductively

ES n.F / D EC

n�1X

kD0
ˇk C ˇnEF:

All assertions are easily derived from this equation. ut

6 Contraction Results for S

In view of the results in Sect. 4, Banach’s fixed-point theorem (see the Appendix
for a statement of this result along with some generalizations) ensures existence and
uniqueness of a fixed point of S on any of

• Pp.R/ for p > 0,
• P

p
0 .R/ (a closed subset of Pp.R/) for p � 1,

• P
p
0;1.R/ (a closed subset of Pp.R/) for p � 2,

• `p-neighborhoods of a fixed distribution F 2P.R/,
• P

p
z .R/ for p D mC ˛ > 1 .m 2 N, ˛ 2 .0; 1�/ and z 2 R

m,

provided that S is contractive there with respect to `p (or �p in the last case).
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Conditions on .C; T / for this to happen will now be presented in a systematic
way. Section 6.1 provides a condition on T , different for the cases 0 < p � 1 and
p > 1, under which S is a contraction on Pp.R/ for p > 0 (besides the canonical
assumption C 2 Lp). Situations when S is still a quasi-contraction on Pp.R/ or
Pp

c .R/ for p > 1 and c 2 R are discussed in Sect. 6.2. An even weaker property,
namely local contractive behavior of S , which still entails existence and uniqueness
of a geometrically attracting fixed point, is studied for the case p > 2 in Sect. 6.3.
All results presented this far are based on the minimal Lp-metric and mainly based
on [40]. In Sect. 6.4, `p-neighborhoods of a fixed distribution F 2 P.R/ to be
defined there are considered. Drawing on [42], we provide conditions ensuring
contraction or quasi-contraction of S on such neighborhoods, an interesting feature
being here that F does not need to be an element of Pp.R/. Finally, Sect. 6.5 deals
with the contractive behavior of S with respect to the Zolotarev metric �p, p > 1,
on subsets of Pp.R/ with specified moments of integral order is shown under a
simple condition on T . The contraction lemma used there is from [38, Proposition 1]
(see also [35, Lemma 3.1] for an extension).

6.1 Contraction on Pp.R/

Suppose first that 0 < p � 1. Due to the fact that the function x 7! xp is then
subadditive on R�, this case is the simplest one.

Theorem 1. Let 0 < p � 1. If

C 2 Lp and m.p/ < 1;

then S defines a contraction on .Pp.R/; `p/ and has a unique geometrically
attracting fixed point G0 in this space.

Proof. By virtue of the subsequent lemma, S forms an m.p/-contraction. Hence,
the assertions follow from Banach’s fixed-point theorem (Theorem 13 in the
Appendix) in combination with (20). ut
Lemma 3. Let 0 < p � 1, C 2 Lp and

P
i�1 jTi jp 2 L1. Then

`p.S .F /;S .G// � m.p/ `p.F;G/ (20)

for all F;G 2Pp.R/.

Proof. Pick any F;G 2 Pp.R/ and let .X1; Y1/; .X2; Y2/; : : : be iid and .C; T /-
independent random variables with L .X1/ D F; L .Y1/ D G and kX1 � Y1kp D
`p.F;G/. We note that S exists in Lp-sense by Corollary 1. Since x 7! xp is
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subadditive for x � 0 and .
P

i�1 TiXi C C;
P

i�1 TiYi C C/ � .S .F /;S .G//,
we infer

`p.S .F /;S .G// �


X

i�1
TiXi �

X

i�1
TiYi


p

D E

ˇ̌
ˇ̌
ˇ̌
X

i�1
Ti .Xi � Yi/

ˇ̌
ˇ̌
ˇ̌

p

� kX1 � Y1kp E
0

@
X

i�1
jTi jp

1

A D m.p/ `p.F;G/;

which is the assertion. ut
Turning to the case p > 1, the result corresponding to Theorem 1 is due to

Rösler [40, Theorem 8] (for the case p D 2, see also [38, Proposition 3]).

Theorem 2. Let p � 1. If

C 2 Lp and



X

i�1
jTi j


p

< 1;

then S is a contraction on .Pp.R/; `p/ and has a unique geometrically attracting
fixed point in this space.

Since m.p/ � kPi�1 jTi jkp for p � 1, we see that in general it takes a stronger
condition for contraction of S than in the case 0 < p � 1.

Proof. Pick any F;G 2 Pp.R/ and then as usual iid and .C; T /-independent
random variables .X1; Y1/; .X2; Y2/; : : : such that .X1; Y1/ � .F;G/ and kX1 �
Y1kp D `p.F;G/. Setting ˙n WD Pn

iD1 jTi j, it follows by a similar argument as in
the proof of Proposition 4(iii) that

E

  
nX

iD1
jTi.Xi � Yi /j

!p ˇ̌
ˇ̌
ˇT
!
� ˙p

n EjX1 � Y1jp D ˙p
n `

p
p.F;G/ a.s.

for all n � 1 and therefore upon taking expectations, letting n! 1 and using the
monotone convergence theorem

`p.S .F /;S .G// �


X

i�1
jTi.Xi � Yi/j


p

�


X

i�1
jTi j


p

`p.F;G/:

which proves that S is a contraction on .Pp.R/; `p/ and thus possesses a unique
geometrically attracting fixed point in this set by Banach’s fixed-point theorem. ut
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6.2 Conditions for Quasi-contraction if p > 1

Having settled the case 0 < p � 1 with just one condition, viz. m.p/ < 1, giving
contraction of S and a unique fixed point on .Pp.R/; `p/, the case 1 < p < 1
exhibits a more complex picture as shown by three subsequent theorems, which for
p D 2 are all from [40]. The afore-mentioned contraction condition, which figured
in the previous subsection, is now replaced with

Cp.T / WD m.p/ _ E

0

@
X

i�1
T 2i

1

A
p=2

(21)

which is still m.p/ if 1 < p � 2, but equals
P

i�1 T 2i
p=2
p=2

if p � 2. Plainly, the
conditions collapse into one if p D 2.

Theorem 3. Let p > 1. If

C 2 Lp0 and Cp.T / < 1;

then S defines a quasi-contraction on .Pp
0 .R/; `p/ and has a unique geometrically

attracting fixed point G0 in this space.

Theorem 4. Let p > 1. If

C;
X

i�1
Ti 2 Lp; Cp.T / < 1 and

ˇ̌
ˇ̌
ˇ̌E

0

@
X

i�1
Ti

1

A

ˇ̌
ˇ̌
ˇ̌ < 1;

then S defines a quasi-contraction on .Pp.R/; `p/ and has a unique geometrically
attracting fixed point G0 in this space.

Theorem 5. Let p > 1 and c 2 R. If

C 2 Lp0 ;
X

i�1
Ti 2 Lp; Cp.T / < 1; and E

0

@
X

i�1
Ti

1

A D 1;

then S defines a quasi-contraction on .Pp
c .R/; `p/ and has a unique geometrically

attracting fixed point Gc in this space. Moreover, if even
P

i�1 Ti D 1 a.s. holds
true, then the Gc form a translation family, i.e. Gc D ıc �G0 for all c 2 R.

We proceed to the statement of two contraction lemmata, treating the cases

• p D 2 and Cp.T / D m.p/ D kPi�1 T 2i kp=2p=2 < 1.
• p > 1 and Cp.T / < 1.
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The proofs of the previous theorems require only the last of these lemmata, but we
have included the other one because the provided contraction constant is better for
p D 2. Recall that F 0 denotes the centering of F if F 2P1.R/.

Lemma 4. Assuming C 2 L2 and
P

i�1 T 2i 2 L1, the following assertions hold
true:

(a) S exists from P2
0 .R/!P2.R/ and

`22.S .F 0/;S .G0// �


X

i�1
T 2i


1

`22.F
0;G0/ (22)

for all F;G 2P2.R/.
(b) If also

P
i�1 Ti 2 L2, then S exists in the L2-sense and

`22.S .F /;S .G// �


X

i�1
T 2i


1

`22.F
0;G0/C



X

i�1
Ti



2

2

�
EF � EG

	2

(23)

for all F;G 2P2.R/.

Proof. See [40, Lemma 2] ut
The corresponding lemma for p > 1, which appears to be new to our best

knowledge (however, see [38, Eq. (2.10)] for part (a) in the case 1 < p � 2), is
technically more difficult to prove because pth powers of sums can be written out
term-wise only for integral p.

Lemma 5. Let 1 < p < 1, C 2 Lp and
P

i�1 jTi jp 2 L1. Then the following
assertions hold true:

(a) S exists from Pp
0 .R/!Pp.R/ and

`p.S
n.F 0/;S n.G0// � bp Cp.T /

n=p `p.F
0;G0/ (24)

for all F;G 2Pp.R/ and n � 1.
(b) If also

P
i�1 Ti 2 Lp , then S exists in Lp-sense and

`p.S
n.F /;S n.G//

� bp

h
Cp.T /

n=p `p.F
0;G0/C n�pn�1

p

ˇ̌
EF � EG

ˇ̌i
(25)

� bp

�
n�p

p
C 2

�
np `p.F;G/ (26)

for all F;G 2Pp.R/ and n � 1, where
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p WD
ˇ̌
ˇ̌
ˇ̌E

0

@
X

i�1
Ti

1

A

ˇ̌
ˇ̌
ˇ̌ _ Cp.T /

1=p

and �p WD


X

i�1
.Ti � ETi /


p

C b�1
p



X

i�1
Ti


p

:

If 1 < p � 2, we can choose bp D 21=p in both parts.

Proof. The existence of S in the claimed sense is again guaranteed by Corollary 1.

(a) Given any F;G 2 Pp.R/, let .X.v/; Y.v//v2T be a family of iid random
vectors which is independent of C ˝ T D .C.v/; T .v//v2T (having the usual
meaning) and satisfies .X.v/; Y.v// � .F 0;G0/ and kX.v/ � Y.v/kp D
`p.F

0;G0/. Consider two WBP .Z0
n/n�0 and .Z00

n /n�0 associated with C˝T˝
X D .C.v/; T .v/; X.v//v2T and C ˝ T ˝ Y, respectively, so that L .Z0

n/ D
S n.F 0/ and L .Z00

n / D S n.G0/ for each n � 0 (see Sect. 2). Furthermore,

Zn WD Z0
n �Z00

n D
X

jvjDn
L.v/.X.v/� Y.v//; n � 0

defines a WBP associated with T˝X� Y D .T .v/; X.v/� Y.v//v2T such that

`p.S
n.F 0/;S n.G0// � kZ0

n �Z00
nkp D kZnkp

for all n � 0, because .Z0
n; Z

00
n / � .S n.F 0/;S n.G0//. Write Zn as

Zn D Lp- lim
k!1

kX

jD1
L.vj /.X.vj /� Y.vj //

for a suitable enumeration v1; v2; : : : of Nn and observe that, conditioned on
T, the right-hand sum forms an Lp-martingale in k � 1. As in the proof of
Proposition 4, we must distinguish the cases 1 < p � 2 and p � 2 to complete
our argument.

Case 1: 1 < p � 2. Then we infer with the help of the Topchiı̆-Vatutin
inequality (44) in the Appendix that

E.jZnjpjT/ � 2 lim
k!1

kX

jD1
jL.vj /jp EjX.vj / � Y.vj /jp

D 2
X

j�1
jL.vj /jp EjX.vj /� Y.vj /jp

D 2 `p.F
0;G0/p

X

jvjDn
jL.v/jp a.s.
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One can easily verify that E.
P

jvjDn jL.v/jp/ D k
P

i�1 jTi jpkn1 . Hence, we
obtain (24) by taking unconditional expectation in the previous estimation.

Case 2: p � 2. Put ˙2
1 WD

P
i�1 Ti .¿/2. By proceeding as in the proof of

Proposition 4(iii), but withX.i/�Y.i/ instead ofXi�� andm D 1, n D1,
it then follows by use of Burkholder’s inequality and Jensen’s inequality that

E

0

@

ˇ̌
ˇ̌
ˇ̌
X

i�1
Ti .¿/.X.i/� Y.i//

ˇ̌
ˇ̌
ˇ̌

p ˇ̌
ˇ̌
ˇT

1

A

� bpp E

0

B@

0

@
X

i�1
Ti .¿/2.X.i/ � Y.i//2

1

A
p=2 ˇ̌

ˇ̌
ˇT

1

CA

� bpp ˙
p
1 E

0

B@

0

@
X

i�1

Ti .¿/2

˙2
1

.X.i/� Y.i//2
1

A
p=2 ˇ̌

ˇ̌
ˇT

1

CA

� bpp ˙
p
1 EjX.1/� Y.1/jp

� bpp ˙
p
1 `

p
p.F

0;G0/ a.s.

and thereby

`p.S .F 0/;S .G0// �


X

i�1
Ti .X.i/ � Y.i//


p

� bp k˙kp `p.F 0;G0/;

where bp only depends on p. This proves (24) for n D 1. But in the same
manner, we obtain for general n

`p.S
n.F /;S n.G// �



X

jvjDn
L.v/.X.v/� Y.v//


p

� bp k˙nkp `p.F 0;G0/;

where ˙2
n WD

P
jvjDn L.v/2. Hence, the proof of (24) will be complete once

we have shown that

k˙nkp � k˙knp (27)

for all n � 1. To this end put ˙.v/ WD P
i�1 Ti .v/2 for v 2 T and recall

from (5) that Fk D 
.T .v/ W jvj � k � 1/ for k � 1. Then



210 G. Alsmeyer

E.˙p
n jFn�1/ D E

0
B@

0

@
X

jvjDn�1
L.v/2˙.v/2

1

A
p=2 ˇ̌

ˇ̌
ˇFn�1

1
CA

D ˙
p
n�1 E

0
B@

0

@
X

jvjDn�1

L.v/2

˙2
n�1

˙.v/2

1

A
p=2 ˇ̌
ˇ̌
ˇFn�1

1
CA

� ˙
p
n�1 E

0

@
X

jvjDn�1

L.v/2

˙2
n�1

˙.v/p
ˇ̌
ˇ̌
ˇFn�1

1

A

D ˙
p
n�1 k˙kpp a.s.

for each n � 2, which clearly gives (27) upon taking expectations and
iteration.

(b) Let us first note that it suffices to show (25) because then (26) can be easily
deduced with the help of (10) and the obvious inequality jEF � EGj �
`p.F;G/, namely

Cp.T /
n=p `p.F

0;G0/C n�pn�1
p

ˇ̌
EF � EG

ˇ̌

� Cp.T /
n=p `p.F;G/C

�
n�p

p
C 1

�
np
ˇ̌
EF � EG

ˇ̌

�
�
n�p

p
C 2

�
np `p.F;G/

for all F;G 2Pp.R/.
Similar to the proof of part (b) of the previous lemma, we obtain with the

help of part (a) and Minkowski’s inequality that

`p.S
n.F /;S n.G// �



X

jvjDn
L.v/

��
X.v/� Y.v/	C .EF � EG/

�

p

�


X

jvjDn
L.v/

�
X.v/� Y.v/	


p

C jEF � EGj


X

jvjDn
L.v/


p

D kZnkp C jEF � EGj


X

jvjDn
L.v/


p

� bp Cp.T /
n=p `p.F

0;G0/C jEF � EGj


X

jvjDn
L.v/


p

(28)
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for all n � 1, where bp can be chosen as 21=p if 1 < p � 2. This leaves
us with the task to give an estimate for an WD kPjvjDn L.v/kp , which will
be accomplished by another martingale argument involving the Topchiı̆-Vatutin
inequality if 1 < p � 2, and the Burkholder inequality if p � 2.

Case 1: 1 < p � 2. We put U.v/ WD P
i�1 Ti .v/, ˛ WD Cp.T /

1=p , ˇ WD
EU.v/ and � WD kU.v/�ˇkp D kPi�1 Ti �ˇkp . Since

P
i�1 Ti 2 Lp and

p > 1, we have jˇj � a1 <1. By a similar argument as in (a), we see thatP
jvjDn L.v/.U.v/� ˇ/ conditioned on Fn is the limit of an Lp-martingale

(use that U.v/ is independent of Fn), whence the Topchiı̆-Vatutin inequality
yields

E

0

@

ˇ̌
ˇ̌
ˇ̌
X

jvjDn
L.v/.U.v/� ˇ/

ˇ̌
ˇ̌
ˇ̌

p ˇ̌
ˇ̌
ˇFn

1

A � 2 � p
X

jvjDn
jL.v/jp a.s.

As a consequence,

anC1 D


X

jvjDn
L.v/U.v/


p

�


X

jvjDn
L.v/.U.v/� ˇ/


p

C jˇjan

� 21=p�



X

jvjDn
jL.v/jp



1=p

1

C jˇjan

D 21=p� ˛n C jˇjan (29)

for all n � 1, which leads to

anC1 � 21=p�

n�1X

kD0
jˇjk˛n�k C jˇjna1

� .nC 1/.21=p� C a1/.jˇj _ ˛/n D .nC 1/21=p�pnp (30)

for all n � 1. Since this inequality trivially holds for n D 0, we finally obtain
the asserted inequality (25) from (28) and (30).

Case 2: p � 2. In this case, we obtain with the Burkholder inequality that

E

0

@

ˇ̌
ˇ̌
ˇ̌
X

jvjDn

L.v/.U.v/� ˇ/

ˇ̌
ˇ̌
ˇ̌

p ˇ̌
ˇ̌
ˇFn

1

A � bpp E

0
B@

0

@
X

jvjDn

L.v/2.U.v/� ˇ/2

1

A
p=2 ˇ̌

ˇ̌
ˇFn

1
CA

� bpp �
p ˙p

n a.s.
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which upon taking expectations on both sides and using (29) provides us with



X

jvjDn
L.v/.U.v/� ˇ/


p

� bp � k˙1knp D bp � ˛
n

and thus (see also (29))

anC1 �


X

jvjDn
L.v/.U.v/� ˇ/


p

C jˇjan � bp � ˛
n C jˇjan (31)

for all n � 1. For the remaining arguments we can refer to the previous case.
ut

Now we can turn to the proofs of the theorems stated above.

Proof (of Theorem 3). As EC D 0 is assumed, S defines a self-map of Pp
0 .R/ by

Corollary 1. It is also an ˛-contraction on .Pp
0 .R/; `p/ with ˛ WD kPi�1.Ti /2k1=pp=2

if p D 2 [by Lemma 4(a)], and an ˛m-quasi-contraction with ˛m WD bp ˛
m for

suitable m � 1 if p > 1 [by Lemma 5(a)]. Therefore, the assertion follows from
Banach’s fixed-point Theorem 13 or its generalization Theorem 14 in combination
with the contraction inequality (22) or (24), respectively. ut
Proof (of Theorem 4). The existence of S in Lp-sense follows again from
Corollary 1, while contraction inequality (26) shows that S is a quasi-contraction
on Pp.R/, viz.

`p.S
n.F /;S n.G// � c n `p.F;G/

for any  2 .0; p/, F;G 2 Pp.R/, n � 1 and a suitable c D c./ > 0. All
assertions now follow from Banach’s fixed-point Theorem 14 for quasi-contractions.

ut
Proof (of Theorem 5). First note that EC D 0 and E.

P
i�1 Ti / D 1 entail

ES .F / D EF D c for all F 2 P
p
c .R/. Hence, S is a self-map of P

p
c .R/

for any c 2 R. Moreover, (25) simplifies to

`p.S
n.F /;S n.G// � bp



X

i�1
T 2i



n=2

p=2

`p.F;G/

for all n � 1 and F;G 2 P
p
c .R/ because `p.F;G/ D `p.F

0;G0/. Hence S is
also a quasi-contraction on P

p
c .R/ and therefore has a unique fixed point Gc by

Theorem 14. It remains to verify that Gc D ıc � G0 in the case when
P

i�1 Ti D 1
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a.s. By the uniqueness property ofGc , it suffices to verify that S .ıc�G0/ D ıc�G0.
Choose iid .C; T /-independent random variablesX1;X2; : : : with law G0. Then

S .ıc �G0/ D L

0

@
X

i�1
Ti .Xi C c/C C

1

A D L

0

@
X

i�1
TiXi C c C C

1

A

D ıc �L

0

@
X

i�1
TiXi C C

1

A D ıc �S .G0/ D ıc �G0

yields the desired conclusion. ut

6.3 Conditions for Local Contraction if p > 2

If p > 2 and
P

i�1 Ti 2 Lp is replaced by the generally stronger conditionP
i�1 jTi j 2 Lp , then we can trade in the contraction condition kPi�1 T 2i kp=2 < 1

for a weaker one and still obtain local contraction in the sense that

lim
n!1��n`p.S n.F /;S n.G// D 0

for some � 2 .0; 1/ and all F;G 2 Pp.R/ or 2 P
p
0 .R/. As a consequence,

existence and uniqueness of a geometrically attractive fixed point in these sets still
holds. For integral p > 2, the following two theorems are again due to Rösler [40,
Theorems 9 and 10]. Note that m.q/ _ m.p/ < 1 for 0 < q < p < 1 implies
m.r/ < 1 for any r 2 Œq; p� because m is convex on Œ2; p�.

Theorem 6. Let p > 2. If

C 2 Lp0 ;
X

i�1
jTi j 2 Lp and m.2/_m.p/ < 1;

then S is a self-map of P
p
0 .R/ with a unique geometrically `p-attracting fixed

pointG0 in this set.

Theorem 7. Let p > 2. If

C;
X

i�1
jTi j 2 Lp; m.2/ _m.p/ < 1 and

ˇ̌
ˇ̌
ˇ̌E

0

@
X

i�1
Ti

1

A

ˇ̌
ˇ̌
ˇ̌ < 1;

then S exists in Lp-sense and has a unique geometrically `p-attracting fixed point
G0 in .Pp.R/; `p/.
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Proof (of Theorem 6). Here we will proceed in a different way than before and prove
that S is locally contractive on .Pp

0 .R/; `p/ in the sense of Theorem 15 (see (32)
below). In particular, we will not make use of the Contraction Lemma 5. The first
step is to show the result for integral p > 2 (as in [40]).

So let 2 < p 2 N. We prove by induction that, for each q 2 f1; : : : ; pg, there
exists �q 2 .0; 1/ such that

`qq.S
n.F /;S n.G// � cq �

n
q (32)

for all F;G 2 P
p
0 .R/, n � 1 and a suitable cq 2 R> which may depend on F;G.

Observe that this corresponds to (42) when choosing F D S .G/.
Hereafter, K 2 R> shall denote a generic constant which may differ from line

to line but does not depend on n. Recall from above that m.2/ _ m.p/ < 1 entails
m.q/ < 1 for all q 2 Œ2; p�.

If q D 1 orD 2, we may invoke Lemma 4 to find

`21.S
n.F /;S n.G// � `22.S

n.F /;S n.G// � m.2/n `22.F;G/

for all n � 1 and F;G 2P2
0 .R/, which clearly shows (32) in this case. We further

see that S forms a contraction on .P2
0 .R/; `2/ and hence possesses a unique fixed

pointG0 in this space. Since P2
0 .R/ P

p
0 .R/, it follows thatG0 is also the unique

fixed point in Pp.R/ once (32) has been verified for q D p.
For the inductive step suppose that (32) holds for any r 2 f1; : : : ; q � 1g and

let .Ui /i�1 be a sequence of iid Unif .0; 1/ random variables which are further
independent of .C; T /. Fixing any F;G 2 P

q
0 .R/ throughout the rest of the

proof, put

Yn;i WD S n.F /�1.Ui/ �S n.G/�1.Ui/; n � 1

and note that kYn;ikr D `r .S n.F /;S n.G// for all i � 1; n � 0 and r 2 Œ1; q�.
Since

`qq.S
nC1.F /;S nC1.G// � E

ˇ̌
ˇ̌
ˇ̌
X

i�1
TiYn;i

ˇ̌
ˇ̌
ˇ̌

q

� lim
m!1E

 
mX

iD1
jTiYn;i j

!q

we will further estimate the last expectation for arbitrary m 2 N by making use of
the multinomial formula which provides us with

E

 
mX

iD1
jTiYn;i j

!q
D E

 
mX

iD1
jTiYn;i jq

!
C E

0

BB@
X

0�r1;:::;rm<q;
r1C:::CrmDq

qŠ

r1Š � : : : � rmŠ
mY

jD1
jTj Yn;j jrj

1

CCA :
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The first term on the right-hand side obviously equals m.q/ `
q
q.S n.F /;S n.G//,

while the second may be further computed as follows by conditioning upon T and
using the fact that the Yn;i for any fixed n are iid:

E

0
B@

X

0�r1 ;:::;rm<q;

r1C:::CrmDq

qŠ

r1Š � : : : � rmŠ
mY

jD1
jTjYn;j jrj

1
CA

D E

0
B@

X

0�r1 ;:::;rm<q;
r1C:::CrmDq

qŠ EjYn;1jr1 � : : : � EjYn;1jrm
r1Š � : : : � rmŠ

mY

jD1
jTj jrj

1
CA

D
0

@
mY

jD1
`
rj
rj .S

n.F /;S n.G//

1

A E

0

B@
X

0�r1 ;:::;rm<q;
r1C:::CrmDq

qŠ

r1Š � : : : � rmŠ
mY

jD1
jTj jrj

1

CA

� K �n E

 
mX

iD1
jTi j

!q

where the inductive hypothesis has been utilized to give the last estimate with � WD
max1�s�q�1 �s . The reader should notice that the constantK is not only independent
of n but of m as well. Hence, by taking the limit m!1, we find that

`qq.S
nC1.F /;S nC1.G// � m.q/ `qq.S

n.F /;S n.G//CK �n

for all n � 0 and thereupon

`qq.S
nC1.F /;S nC1.G// � m.q/nC1 `qq.F;G/CK

nX

kD1
�km.q/n�k

�
�
`qq.F;G/CKn

�
.m.q/ _ �/nC1

for all n � 0 which implies (32) for any �q 2 .m.q/ _ �; 1/. By an appeal to
Theorem 15, we conclude that, for any F 2 P

p
0 .R/, S n.F / converges to a fixed

point in this set which must be unique by what has been stated above.
We turn to the second step which aims at an extension of the assertion to general

p > 2 with integer part Op, say. Let r 2 N be such that 2r < p � 2rC1 and
s WD p=2rC1 2 .0; 1�. From the first part of the proof, we know that (32) holds
true for every q 2 f1; : : : ; Opg, and since `˛.�; �/ is nondecreasing in ˛, this readily
extends to all q 2 Œ1; Op �. We will show hereafter that (32) is also true for q D p

(and thus for all q 2 Œ1; p�) which finally proves the theorem in full generality.
Let us introduce the following operator � and its k-fold iterations �k : For any

nonnegative random variableW define
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�W WD .W � EW /2; �2W D
�
.W � EW /2 � VarW

�2
; etc.

and�0W WD W . Naturally,�W D1 is stipulated if EW D 1. We note that

E�kW � E.�k�1W /2 � 2E.�k�2W /4 � : : : � 2k�1
EW 2k (33)

holds true for any k � 1.
By repeated use of the Burkholder inequality (49) (in the by now familiar manner

after conditioning on T ) and the subadditivity of x 7! x˛ for x � 0 and 0 < ˛ � 1,
we now obtain
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1
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s

C
r�1X

jD0
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	1=2jC1



X

i�1
jTi j



1=2
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1

CA
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X

i�1
jTi jp

�
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1=2rC1

1

C
r�1X

jD0

�
E�jY 2n;1

	1=2jC1



X

i�1
jTi j



1=2

p

1

CA

� K

0

B@
�rY 2n;1

1=2rC1

s



X

i�1
jTi jp



1=2rC1

1

C
r�1X

jD0

�
E�jY 2n;1

	1=2jC1



X

i�1
jTi j



1=2

p

1

CA

for all n � 1. Use (33), the definition of Yn;1, and (32) for Op to infer

�
E�jY 2n;1

	1=2jC1 �
�
2j�1

EY 2
jC1

n;1

�1=2jC1

� 2 kYn;1k2jC1

� 2 kYn;1k Op D 2 ` Op.S n.F /;S n.G// � 2 c Op �nOp
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for any j 2 f0; : : : ; r � 1g and n � 0. By combining this with kPi�1 jTi jpk1 D
m.p/ < 1, the above estimation finally provides us with

`p.S
nC1.F /;S nC1.G// �



X

i�1
TiYn;i


p

� K �nC1

for all n � 0 and a suitable � 2 .0; 1/. ut
Proof (of Theorem 7). We are now in a more comfortable situation because the
bulk of work has already been carried out in the previous proof. First note that all
assumptions of Theorem 4 with p D 2 are fulfilled which allows us to infer the
existence of a unique fixed point G0 2 P2.R/. By Lemma 2(a), its mean value
equals c WD EG0 D .1 � ˇ/�1EC with ˇ WD E.

P
i�1 Ti /. One can easily check

that, if F 2 P
p
c .R/, then ESn.F / D c for all n � 0 and that this further implies

S n.F /c D S n.F c/ (recall that F c D F 0.� � c/) and thereupon

`p.S
nC1.F c/;S n.F c// D `p.S

nC1.F /c;S n.F /c/

D `p.S
nC1.F /0;S n.F /0/

(34)

for all F 2Pp.R/ and n � 0.
Now fix any F 2 Pp.R/, define Yn;i as in the previous proof, but for the pair

.S .F c/; F c/. Then (32) for q D p can be shown as in the previous proof, giving

`pp.S
nC1.F c/;S n.F c// �



X

i�1
TiYn;i



p

p

� cp�
n
p

for all n � 0 and suitable constants cp 2 R> and �p 2 .0; 1/. Note further that

ES nC1.F /� ES n.F / D ˇn .ES .F / � EF /

for all n � 0, as has been shown in the proof of Lemma 2 (see (19)). By combining
these facts with (10) and (34), we finally obtain

`p.S
nC1.F c/;S n.F c//

� `p.S
nC1.F /0;S n.F /0/C ˇ̌ES nC1.F /� ES n.F /

ˇ̌

D `p.S
nC1.F /0;S n.F /0/C ˇ̌ES nC1.F /� ES n.F /

ˇ̌

D `p.S
nC1.F c/;S n.F c//C ˇ̌ES nC1.F /� ES n.F /

ˇ̌

� c1=pp �n=pp C ˇn jES .F /� EF j
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for all n � 0, that is geometric contraction of every iteration sequence in Pp.R/. By
invoking Theorem 15, we conclude thatG0 is the unique geometrically `p-attracting
fixed point in this set. ut

6.4 Contraction on `p-Neighborhoods of Fixed Distributions

A somewhat different approach than before is taken by Rüschendorf [42] who
provides conditions for contraction of S in `p-neighborhoods of a fixed distribution
F 2P.R/, namely

U p.F / WD ˚
G 2P.R/ W `p.F;G/ <1




for p > 0, and

U p
c .F / WD

˚
G 2P1

c .R/ W `p.F;G/ <1



for p � 1 and c 2 R. He embarks on the observation that, for `p.F;G/ to be finite,
it only takes to find an .F;G/-coupling .X; Y / such that X � Y 2 Lp but not that
X; Y are themselves in Lp . Of course, if F 2 Pp.R/, then U p.F / D Pp.R/.
Besides the contraction condition Cp.T / D m.p/ < 1, familiar from previous
results, he requires a bounded jump-size condition, namely

`p.F;S .F // <1; (35)

which is quite common in the study of iterated function systems on complete
separable metric spaces. In that context, F is an arbitrary reference point and S
a generic copy of the iid random Lipschitz functions to be iterated, see e.g. [19,
Theorem 3]. Here the condition serves to ensure that S is a self-map of U p.F / as
the following proposition shows.

Proposition 5. Let p > 0 and F 2 P.R/ be such that (35) holds true. Then S
defines a self-map of U p.F /. Moreover, if F 2 P1.R/, C 2 L1 and p � 1, then
S defines a self-map of U

p
c .F / for any c such that c D c E.

P
i�1 Ti / C EC ,

thus for all c 2 R if  WD E.
P

i�1 Ti / D 1 and EC D 0, and for c D .1 �
E.
P

i�1 Ti //�1EC if  ¤ 1.

Proof. The following choices of random variables may take to enlarge the
underlying probability space. Let .X; Y / be a .F;S .F //-coupling such that
`p.F;S .F // D kX �Y kp . Then pick iid copiesX1;X2; : : : ofX which are further
independent of .C; T / and put Y 0 WD P

i�1 TiXi C C . Finally, let X 0 be such that
the conditional law of X 0 given Y 0 D y is the same as the conditional law of X
given Y D y for all y 2 R, thus .X 0; Y 0/ is a copy of .X; Y /. Now, if G 2 U p.R/,
we can choose the Xi along with iid Zi , independent of .C; T / and with common
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distribution G, such that the .Xi ; Zi / are iid as well and � WD kXi �Zikp <1. It
follows that

`p.F;S .G// � `p.F;S .F // C `p.S .F /;S .G//

� `p.F;S .F // C


X

i�1
Ti .Xi �Zi/


p

D `p.F;S .F // C


X

i�1
Ti


p

� < 1

and therefore that S is a self-map of U p.F /. The second assertion follows in a
similar manner. ut

The following results, containing those for 0 < p � 2 and N a fixed integer
stated in [42], are the “local” counterparts of Theorems 1 and 3–5 and proved in
the same way once having observed that Contraction Lemma 3 remains valid for
F;G 2 U p

c .F0/ with F0 2 P.R/, and the Contraction Lemmata 4, and 5 remain
valid for F;G 2 U p

c .F0/ with F0 2P1.R/ and c 2 R (see also [42, Lemma 2.1]).
We therefore refrain from giving proofs again.

Theorem 8. If 0 < p � 1 and m.p/ < 1, and if F 2P.R/ satisfies (35), then S
is a contraction on .U p.F /; `p/ with a unique geometrically attracting fixed point.

Theorem 9. If p > 1, C 2 L10 and Cp.T / < 1, and if F 2 P1.R/ satisfies
(35), then S is a quasi-contraction on .U p

0 .F /; `p/ with a unique geometrically
attracting fixed point.

Theorem 10. If p > 1, C 2 L1, Pi�1 Ti 2 Lp , Cp.T / < 1 and jE.Pi�1 Ti /j <
1, and if F 2P1.R/ satisfies (35), then S is a quasi-contraction on .U p.F /; `p/

with a unique geometrically attracting fixed point.

Theorem 11. If p > 1, C 2 L10,
P

i�1 Ti 2 Lp , Cp.T / < 1 and E.
P

i�1 Ti / D 1,
and if F 2 P1.R/ satisfies (35), then S is a quasi-contraction on .U p

c .F /; `p/

with a unique geometrically attracting fixed point for any c 2 R.

If 1 < p � 2, then Cp.T / D m.p/ should be recalled. Moreover, if N is a
fixed integer, then

P
i�1 Ti D

PN
iD1 Ti 2 Lp follows from m.p/ < 1. With these

observations, one can readily check that the results in [42] are really contained in
the ones stated before.

Validity of the bounded jump-size condition (35) is usually difficult to check.
In fact, it trivially holds whenever F is fixed point of S . Since, furthermore,
U p.F / D U p.G/ for all G 2 U p as well as U

p
c .F / D U

p
c .G/ for all

G 2 U
p
c , the previous results may also be interpreted as follows: Under the

respective conditions on p and .C; T /, condition (35) holds true for some F only if
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F is in finite `p-distance to a fixed point of S . In contrast to the results from the
previous subsections, this fixed point and thus F do not need to be elements of Lp .

Let us finally note that Rüschendorf, as an interesting consequence of his results,
provides conditions which entail a certain one-to-one correspondence between the
fixed points of a nonhomogeneous smoothing transform S and its homogeneous
counterpart S0 (same T , but C D 0), see [42, Theorem 3.1] for details.

6.5 Contraction on Subsets of Pp.R/ with Specified Integral
Moments .p > 1/

Let p D m C ˛ > 1 hereafter, where m 2 N and ˛ 2 .0; 1�, and assume that S
exists in Lp-sense so that, by Corollary 1, C;

P
i�1 Ti 2 Lp . This final subsection

is devoted to situations when S , while not necessarily an `p-(quasi-)contraction on
Pp.R/, turns out to be contractive with respect to the Zolotarev metric �p on subsets
with specified integral moments. Recall that P

p
z .R/ for z D .z1; : : : ; zm/ 2 R

m

equals the set of distributions F 2 Pp.R/ such that
R
xk F.dx/ D zk for k D

1; : : : ; m.
In order for S to be a self-map of P

p
z .R/, we must have that, given any iid

X1;X2; : : : with law in P
p
z .R/,

zk D E

0

@
X

i�1
TiXi C C

1

A
k

D
X

j0Cj1C:::Dk

kŠQ
i�0 ji Š

0
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zji

1

AE

0
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i�1
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ji
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1

A

D zk E

0

@
X

i�1
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1

AC ECk C
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j0Cj1C:::Dk
j0_j1_:::<k

kŠQ
i�0 ji Š

0

@
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i�1
zji

1

AE

0

@Cj0
Y

i�1
T
ji
i

1

A

for k D 1; : : : ; m, because X1;X2; : : : and .C; T / are independent. In other words,
z must satisfy a – form � 2 nonlinear – system of equations, and one can easily see
that this system may have a unique solution as well as infinitely many.

Theorem 12. Suppose that m.p/ < 1 and that S exists in Lp-sense. Then S is a
�p-contraction on Pp

z .R/ for any z 2 R
m such that S is a self-map of Pp

z .R/. In
particular, it has a unique geometrically �p-attracting fixed-point in this set.

Proof. Since .Pp
z .R/; �p/ is a complete metric space (see Proposition 3), the result

follows directly with the help of the Contraction Lemma 6 below and Banach’s
fixed-point theorem. ut
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Lemma 6. Let .C; T / D .C; T1; T2; : : :/, .Xn/n�1 and .Yn/n�1 be independent
sequences of real-valued random variables in Lp such that

(A1) X1;X2; : : : are independent with L .Xn/ D Fn for n � 1.
(A2) Y1; Y2; : : : are independent with L .Yn/ D Gn for n � 1.
(A3) For each n � 1, Fn;Gn 2P

p
z .R/ for some z 2 R

m.
(A4)

P
i�1 TiXi C C;

P
i�1 TiYi C C 2 Lp .

Then

�s

0

@
X

i�1
TiXi C C;

X

i�1
TiYi C C

1

A �
X

i�1
EjTi jp �s.Fi ; Gi /: (36)

In particular, if z 2 R
m, then

�p.S .F /;S .G// � m.p/ �p.F;G/: (37)

for all F;G 2 Pp
z .R/, whenever S , the smoothing transform associated with

.C; T /, exists in Lp-sense and is a self-map of Pp
z .R/.

Proof. First note that �p.
P

i�1 TiXi C C;
P

i�1 TiYi C C/ <1 because (A3) and
(A4) ensure that

P
i�1 TiXiCC;

P
i�1 TiYiCC 2 Lpz . Denote by� the distribution

of .C; T / and let t D .t1; t2; : : :/ in the subsequent integration with respect to �.
Then, by multiple use of properties (14) and (15) of �p (in lines 5, 8 and 9), we infer
for each n 2 N that

�p

 
nX

iD1
TiXi C C;

nX

iD1
TiYi C C

!

D sup
f 2Fp

ˇ̌
ˇ̌
ˇE
 
f

 
nX

iD1
TiXi C C

!
� f

 
nX

iD1
TiYi C C

!!ˇ̌
ˇ̌
ˇ

�
Z

sup
f 2Fp

ˇ̌
ˇ̌
ˇE
 
f

 
nX

iD1
tiXi C c

!
� f

 
nX

iD1
tiYi C c

!!ˇ̌
ˇ̌
ˇ �.dc; dt/

D
Z
�p

 
nX

iD1
tiXi C c;

nX

iD1
tiYi C c

!
�.dc; dt/

�
Z
�p

 
nX

iD1
tiXi ;

nX

iD1
tiYi

!
�.dc; dt/

�
Z nX

kD1
�p

0

@
nX

iDk
tiXi C

k�1X

jD1
tj Yj ;

nX

iDkC1
tiXi C

kX

jD1
tj Yj

1

A �.dc; dt/
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D
Z nX

kD1
�p .tkXk C Sk; tkYk C Sk/ �.dc; dt/

2

4where Sk WD
nX

iDkC1
tiXi C

k�1X

jD1
tj Yj and is independent of Xk; Yk

3

5

�
Z nX

kD1
�p .tkXk; tkYk/ �.dc; dt/

D
Z nX

kD1
jtkjp �p .Xk; Yk/ �.dc; dt/

D
nX

iD1
EjTi jp �p.Fi ; Gi /

which proves (36) by letting n tend to infinity and using

lim
n!1 �p

 
nX

iD1
TiXi C C;

nX

iD1
TiYi C C

!
D �p

0

@
X

i�1
TiXi C C;

X

i�1
TiYi C C

1

A :

The second inequality (37) follows from the first one when choosing Fi D F and
Gi D G for all i � 1. ut

7 Concluding Remarks

Having provided a comprehensive account of results describing the contractive
behavior of the smoothing transform on Pp.R/ or subsets thereof for p > 0, we
would like to finish this review with some remarks on what has not been covered.

Naturally, other metrics than `p and �p could have been studied as well. For
instance, with OF .t/ WD R

eitx F.dx/ denoting the Fourier transform of F , the
Fourier metric

rp.F;G/ WD
Z 1

0

j OF .t/ � OG.t/j
t1Cp

dt; F;G 2Pp
c .R/

for p 2 .1; 2/ was introduced and shown to be complete on P
p
c .R/ by Baringhaus

and Grübel [8, Lemma 2.1]. For homogeneous S with a.s. finite N , they further
showed that it is a contraction on .Pp

c .R/; rp/ if m.p/ < 1 and E.
P

i�1 Ti / D 1.
The result was later extended by Iksanov [26, Proposition 6] to the case of general
N (see also [8, Sect. ]). As one can easily see, the result further extends to the
nonhomogeneous case with C 2 L10.
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Since contraction (with respect to `p or �p) on subsets � of Pp.R/ for some
p > 0 particularly entails that, for some fixed point of S , the set � is attracting with
respect to weak convergence, one may ask about more general results describing
such sets without moment assumptions, thus within P.R/. As an example in this
direction, we mention the following result obtained by Durrett and Liggett [18,
Theorem 2(b)]: If C D 0, T � 0, N is a.s. bounded and T has characteristic
exponent ˛ 2 .0; 1� (see at the end of Sect. 2), then, given any fixed point F 2
P.R�/ of S with Laplace transform QF , S n.G/ converges weakly to F whenever

lim
t#0

1 � QF .t/
1 � QG.t/ D 1:

An extension of their result under relaxed conditions on N appears in [31,
Theorem 1.3]. Results of this type could also be formulated for the general
smoothing transform and fixed points on the whole real line when substituting
Fourier transforms for Laplace transforms. However, we refrain from supplying any
further details.

8 Appendix

8.1 Banach’s Fixed-Point Theorem

Let f W X ! X be a continuous self-map of a metric space .X; �/ and denote by
f n D f ı : : :ıf (n-times) its n-fold composition for n � 1. If there exists an initial
value x0 2 X such that the sequence xn WD f .xn�1/ D f n.x0/, n � 1, converges to
some x1 2 X, then the continuity of f implies that x1 is a fixed point of f , for

x1 D lim
n!1xn D f

�
lim
n!1xn�1

�
D f .x1/: (38)

The map f is called a contraction or more specifically ˛-contraction if there exists
˛ 2 Œ0; 1/ such that

�.f .x/; f .y// � ˛ �.x; y/ (39)

for all x; y 2 X. If (39) holds true when replacing f with f n for some n � 2, then
f is called quasi-contraction or ˛-quasi-contraction.

Under a contraction, the distance between two iteration sequences .f n.x//n�1
and .f n.y//n�1 is therefore decreasing geometrically fast, viz.

�.f n.x/; f n.y// � ˛n �.x; y/
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for all n � 1. If the space .X; �/ is complete, then this entails geometric convergence
to a unique fixed point of f as the following classic result shows.

Theorem 13 (Banach’s fixed-point theorem). Every contraction f W X ! X on
a complete metric space .X; �/ possesses a unique fixed point 	 2 X. Moreover,

�.	; f n.x// � ˛n

1 � ˛ �.f .x/; x/ (40)

holds true for all x 2 X and n � 1, where ˛ denotes the contraction parameter of f .

The next result shows that Banach’s fixed-point theorem essentially remains valid
for quasi-contractions.

Theorem 14 (Banach’s fixed-point theorem for quasi-contractions). Every
quasi-contractionf W X! X on a complete metric space .X; �/ possesses a unique
fixed point 	 2 X, and

�.	; f n.x// � ˛n

1 � ˛ max
0�r<m �.f

mCr .x/; f m.x// (41)

for some m � 1, ˛ 2 Œ0; 1/ and all x 2 X, n � 1.

Proof. Pick m;˛ such that f m forms an ˛-contraction on .X; �/ with unique fixed
point 	. Writing n 2 N in the form kmCr with unique k2N0 and r 2f0; : : : ; m�1g,
we infer with the help of (40)

�.	; f n.x// � max
0�j<m�.	; f

kmCj .x// � ˛

1 � ˛ max
0�j<m�.f

mCj .x/; f j .x//

and thus (41), in particular �.	; f n.x// ! 0. Since f is continuous, the latter
implies that 	 is also the (necessarily unique) fixed point of f . ut

Replacing the global by a local contraction property along an iteration sequence,
existence of a fixed point still follows, but it needs no longer be unique.

Theorem 15. Let .X; �/ be a complete metric space and f W X ! X an arbitrary
self-map. Suppose there exist x0 2 X and constants c � 0 and ˛ 2 Œ0; 1/ such that

�.f nC1.x0/; f n.x0// � c˛n (42)

for all n � 1. Then 	 D limn!1 f n.x0/ exists and it is a fixed point of f if the map
is continuous. Moreover,

�.	; f n.x0// � c˛n

1 � ˛ (43)

for all n � 1.
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Proof. Putting xn WD f n.x0/ and using (42), we obtain

�.xmCn; xm/ �
mCn�1X

kDm
�.xkC1; xk/ �

mCn�1X

kDm
c˛k � c˛m

1� ˛

for all m; n � 1, that is, .xn/n�0 is a Cauchy sequence in X and thus convergent to
some 	 2 X, for .X; �/ is complete. If f is continuous, then f .	/ D 	 (see (38)).
Finally, (43) follows from (42) when observing that

�.	; f n.x0// D �.	; xn/ �
X

k�n
�.xk; xkC1/: ut

8.2 Convex Function Inequalities for Martingales and Their
Maxima

Let .Mn/n�0 be a martingale with natural filtration .Fn/n�0 and increments Dn D
Mn � Mn�1 for n � 1. In the following, we list some powerful martingale
inequalities that provide bounds for the �-moments E�.Mn/, when � W R ! R�
denotes an even convex function with �.0/ D 0 and some additional properties. This
includes the standard class �.x/ D jxjp for p � 1. SettingM1 WD lim infn!1Mn,
all provided upper bounds remain valid for n D 1 when observing that Fatou’s
lemma implies

E�.M1/ � lim inf
n!1 E�.Mn/:

We begin with the class of � that have a concave derivative in R> and thus
encompasses �.x/ D jxjp for 1 � p � 2. The subsequent result is cited from
[4] and an improvement (with regard to the appearing constant) of a version due
to Topchiı̆ and Vatutin [43]. In the more general framework of Banach spaces
of a given type, the inequality (with a non-specified constant) is actually due to
Woyczynski [45, Proposition 2.1].

Theorem 16 (Topchiı̆-Vatutin inequality). Let � W R ! R� be an even convex
function with concave derivative on R> and �.0/ D 0. Then

E�.Mn/� E�.M0/ � c

nX

kD1
E�.Dk/; (44)

for all n 2 N0 and c D 2. The constant may be chosen as c D 1 if .Mn/n�0
is nonnegative or has a.s. symmetric conditional increment distributions, and the
same holds generally true, if �.x/ D jxj or �.x/ D x2, in the last case even with
equality sign in (44).
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We continue with two famous convex function inequalities by Burkholder, Davis,
and Gundy [13] which are valid for a much larger class of convex functions �.

Theorem 17 (Burkholder-Davis-Gundy inequalities). Let � W R ! R� be an
even convex function satisfying �.0/ D 0 and �.2t/ � � �.t/ for all t � 0 and
some � > 0. Put En.�/ WD E .max0�k�n �.Mk//. Then

a� E�

0

@
 

nX

kD1
D2
k

!1=21

A � E.�/ � b� E�

0

@
 

nX

kD1
D2
k

!1=21

A (45)

and

En.�/ � c�

2

4E�

0

@
 

nX

kD1
E
�
D2
kjFk�1

	
!1=21

AC E

�
max
0�k�n

�.Dk/

�3

5 (46)

for all n 2 N0 and constants a� ; b� ; c� 2 R> depending only on � . The last
inequality actually remains valid if, ceteris paribus, � is merely nondecreasing
instead of convex on R�.

Of special importance in connection with the smoothing transform is the case
when Mn is a weighted sum of iid zero-mean random variables and �.x/ D jxjp
for some p > 0. We therefore note:

Corollary 3. If �.x/ D jxjp (thus � D 2p) for some p > 0 andMn DPn
kD1 tkXk

for t1; t2; : : : 2 R and iid X1;X2; : : : 2 Lp0 , then (46) takes the form

En.�/ � cp

2

4kX1kp2
 

nX

kD1
t2k

!p=2
C E

�
max
1�k�n jtkXkj

p

�3

5 ; (47)

for all n 2 N0 and a constant cp only depending on p, giving in particular

EjMnjp � cp

2

4kX1kp2
 

nX

kD1
t2k

!p=2
C kX1kpp

nX

kD1
jtkjp

3

5 : (48)

Finally, we state the classical Lp-inequality by Burkholder [12], valid for p > 1
only. The case p D 1 is different but will not be considered here.

Theorem 18 (Burkholder inequality). Let p > 1. Then

ap



 
nX

kD1
D2
k

!1=2
p

� kMnkp � bp



 
nX

kD1
D2
k

!1=2
p

(49)
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for n 2 N0 and constants ap; Bp 2 R> only depending on p. Admissible choices are
ap D .18p3=2=.p � 1//�1 and bp D 18p3=2=.p � 1/1=2 (see [24, Theorem 2.10]).
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Precise Tail Index of Fixed Points
of the Two-Sided Smoothing Transform

Gerold Alsmeyer, Ewa Damek, and Sebastian Mentemeier

Abstract We consider real-valued random variables R satisfying the distributional
equation

R
dD

NX

kD1
TkRk CQ;

where R1;R2; : : : are iid copies of R and independent of T D .Q; .Tk/k�1/. N is
the number of nonzero weights Tk and assumed to be a.s. finite. Its properties are
governed by the function

m.s/ WD E

NX

kD1
jTkjs :

There are at most two values ˛ < ˇ such that m.˛/ D m.ˇ/ D 1. We consider
solutions R with finite moment of order s > ˛. We review results about existence
and uniqueness. Assuming the existence of ˇ and an additional mild moment
condition on the Tk , our main result asserts that

lim
t!1 tˇP.jRj > t/ D K > 0:
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the main contribution being that K is indeed positive and therefore ˇ the precise
tail index of jRj, for the convergence was recently shown by Jelenkovic and
Olvera-Cravioto [10].

1 Introduction

Given a sequence T WD .Q; Tk/k�1 of real-valued random variables such that

N WD
X

k�1
�fTk¤0g (1)

is a.s. finite and (w.l.o.g.) jT1j � : : : � jTN j > 0 D jTNC1j D : : :, we consider
the associated two-sided smoothing transform (homogeneous, if Q � 0, nonhomo-
geneous otherwise)

S W F 7! L

 
NX

kD1
TkRk CQ

!
(2)

which maps a distribution F on R to the law of
PN

kD1 TkRkCQ, whereR1;R2; : : :
are iid random variables with distribution F and independent of T. If S .F / D F ,
then F as well as any random variableR with this distribution is called a fixed point
of S . In terms of random variables the fixed-point property may be expressed as

R
dD

NX

kD1
TkRk CQ (3)

where
dDmeans equality in distribution. (3) is called a stochastic fixed point equation

(SFPE).
It is well known that properties of fixed points of S are intimately related to the

behavior of the convex function

m.s/ WD E

 
NX

kD1
jTkjs

!
: (4)

There are at most two values 0 < ˛ < ˇ such that m.˛/ D m.ˇ/ D 1. Assuming
that both values exist, we are interested in nonzero solutions R to (3) with finite
moment of order s > ˛. For a statement about existence and essential uniqueness
of solutions with finite ˛-moment see Lemma 4 below. On the other hand, there are
in general also solutions which have infinite ˛-moment. For the case of nonnegative
weights, they were first studied by Durrett and Liggett [7]. In the case of the
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two-sided smoothing transform, they are studied in recent work by Meiners [15]
containing also a characterization of the complete set of fixed points.

For the particular solution with finite moment of order s > ˛, the main result of
the present paper is that, under natural assumptions,

lim
t!1 tˇP.jRj > t/ D K > 0; (5)

the main contribution actually being that the constant K is positive and thus ˇ the
precise tail index of jRj. The convergence was recently derived by Jelenkovic and
Olvera-Cravioto [10] via an extension of Goldie’s implicit renewal theorem [8] to
the branching case .P.N > 1/ > 0/, see Theorem 1 below. In the homogeneous case
with nonnegative i.i.d. weights, (5) was first shown by Guivarc’h [9], see also [14]
and the references therein.

Our result is obtained by extending r 7! E jRjr as a holomorphic function and by
showing that it has a singularity at ˇ if and only if K > 0. This technique was first
used in [5] in the study of solutions to multidimensional affine recursions. We are
grateful to Mariusz Mirek (personal communication) for drawing our attention to it
in the context of the branching equation (3) considered here.

We have organized this work as follows. Section 2 introduces notation and basic
assumptions, provides information about the chosen setup and reviews preliminary
results. Our main results are stated in Sect. 3. Proofs are given in Sect. 4 with some
more technical calculations deferred to Sect. 5.

2 Preliminaries

2.1 Notations and Assumptions

For m.s/ defined in (4), note that m.0/ D EN may be infinite. We put

D WD fs � 0 W m.s/ <1g; s0 WD inf D and s1 WD sup D:

If D is nonempty, then m is a convex function on D. Since m can be seen as
the Laplace transform of an intensity measure (see [3, (1.8)]), we further have the
following result (with <z denoting the real part of a complex number z):

Lemma 1. Suppose D D fs � 0 W m.s/ <1g has inner points, i.e. s0 < s1. Then
the functionm extends holomorphically to the strip s0 < <z < s1.

Our standing assumption throughout this paper is that

9 s0 < ˛ < ˇ < s1 W m.˛/ D m.ˇ/ D 1: (A)

Thenm0.˛/ < 1 andm0.ˇ/ > 1 (Fig. 1).
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Fig. 1 Three distinct cases for the values of ˛ and ˇ

The existence of a solution R to the SFPE (3) with finite moment of order s > ˛
and a power law behavior of type (5) imposes some restrictions on the range of ˛ to
be discussed below. Our assumptions are:

• 1 � ˛ < 2 if Q D 0 a.s. (homogeneous case),
• 0 < ˛ < 2 if P.Q D 0/ < 1 (nonhomogeneous case).

Next are further moment conditions imposed on Q and
PN

kD1 Tk . There are
situations, in which these quantities govern the tail behavior of R, see [12] for a
detailed discussion and references. The condition onQ is quite obvious,viz.

E jQjs <1 for all s < s1: (B)

We will impose conditions on the weight sums
PN

kD1 jTkjs and .
PN

kD1 jTkj/s by
introducing two functions that dominate m.s/ for s � 1 and s � 1, respectively.
Define

�.s/ WD E

 
NX

kD1
jTkj

!s
(6)

and, for � > 0,

m�.s/ WD E

 
NX

kD1
jTkjs

!1C�
: (7)

Then m.s/ � �.s/ for s � 1, while m.s/ � 1C m�.s/ for s � 1. These functions
appear quite naturally in existence theorems for solutions, see below and [1]. Put

D� WD fs � 0 W �.s/ <1g; s1 WD supD�I
D� WD fs � 0 W m�.s/ <1g; s� WD supD�:
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Our analysis will often require the study of certain moments of order s � ˇ and the
distinction between the cases when s > 1; D 1; < 1. Corresponding to these cases
are three different sets of assumptions we introduce now, namely:

ˇ < s1I (C)

Œˇ � ı0; ˇ� � D�0 for some ı0; �0 > 0I (D)

Œˇ � ı0; 1� � D�0 for some ı0; �0 > 0: (D*)

Since D�1 � D�2 for �1 � �2, we may define

Os1 WD 1 ^ lim
�!0

s�

and then note that condition (B) implies

E jQjs <1 for all s < maxfs1; Os1g: (8)

Finally, if ˛ � 1, we have to assume that the mean version of the SFPE (3) has a
solution, viz.

r D r E

 
NX

kD1
Tk

!
C EQ (E)

for some r 2 R. Note that r is unique, unless E.
PN

kD1 Tk/ D 1 and EQ D 0.

2.2 Discussion of the Restrictions on ˛

The afore-stated restrictions on the range of ˛, called characteristic exponent of T
or S in [2–4], will now be justified by a number of lemmata. The first one settles
the restriction ˛ � 1 in the homogeneous case.

Lemma 2. Suppose that ˛ < 1, Q D 0 and let R be a solution to (3) with finite
moment of order s > ˛. Then R D 0 a.s.

Proof. Plainly, we may assume s 2 .˛; 1/ and m.s/ < 1, for such s exists by (A).
Then (3) in combination with the subadditivity of x 7! xs for x � 0 provides us
with

EjRjs D E

ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk

ˇ̌
ˇ̌
ˇ

s

�
1X

kD1
EjTkRkjs

D EjRjs
1X

kD1
EjTkjs D EjRjs m.s/

and thus EjRjs D 0. ut
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Lemma 3. Let R be a nonzero solution to (3) with finite moment of order s � 2.
Then m.2/ � 1 and thus ˛ � 2.

Proof. Let ET and VarT denote conditional expectation and conditional variance
with respect to T. Introduce i.i.d. copies R1;R2; : : : of R, which are independent of
T and defined on the same probability space. Put R� WD PN

kD1 TkRk C Q. Then

R� dD R, for R is a solution to (3), and R� satisfies (3) not only in distribution,
but even a.s. Since the results we obtain are distributional properties, we may w.l.o.g.
assume that R itself satisfies (3) a.s. Then

VarR D E.VarTR/C Var.ETR/: (9)

Moreover,

VarTR D VarT

"
NX

kD1
TkRk CQ

#
D

NX

kD1
T 2k Var.R/; (10)

whence, upon taking unconditional expectation, we obtain

1 > VarR � E.VarTR/ D E

"
NX

kD1
T 2k

#
VarR D m.2/VarR > 0 (11)

and thus m.2/ � 1 as claimed. ut
If ˛ D 2, then (10) implies EVarTR D VarR and thus, by (9), Var.ETR/ D 0.

Consequently, ETR is a.s. constant, in fact

ER D ETR D
NX

kD1
TkERCQ P-a.s.

or, equivalently,

Q D
 
1 �

NX

kD1
Tk

!
ER P-a.s.

In the homogeneous case, we infer that ER D 0 or
PN

kD1 Tk D 1 a.s. must hold.
The first subcase, studied by Caliebe and Rösler [6], leads to mixtures of centered
normal distributions, the mixing distribution being the law of a positive constant
times the nonnegative, mean one solution to the SFPE

W
dD

NX

kD1
T 2k Wk: (12)
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The latter solution exists and is unique if �.s/ < 1 for some s > 2 (see also
[3, Theorem 2.1]). In the second subcase, viz.

PN
kD1 Tk D 1 a.s., we have that if R

is a solution, then so are all R C m, m 2 R. Consequently, all shifts of solutions
in the first subcase are solutions in the second subcase. If m.s/ < 1 for s 2 .2; 3�,
then [1, Theorem 6.16] gives that there is a unique solution with fixed first and
second moment whence, under our standing assumption (A), solutions are mixtures
of normal distributions.

The following result provides the extension to the nonhomogeneous case
(see also [3, Theorem 2.3] for the case of nonnegative Tk).

Proposition 1. Suppose that P.Q ¤ 0/ > 0, ˛ D 2 and that, for some s > 2,
m.s/ < 1 and �.s/ <1. Suppose further that

Q D r.1 �
NX

kD1
Tk/ P-a.s. (13)

for some r ¤ 0. Then, for any v � 0, there is a unique solution R to the SFPE (3)
with mean r and variance v2. It is symmetric about r and has characteristic function
given by

�R.t/ D E

�
exp

�
irt � v

2t2W

2

��
; (14)

where W is the unique mean one solution to (12).

Proof. If m.s/ < 1, �.s/ < 1 for some s > 2, then the smoothing transform is a
contraction with respect to the Zolotarev metric �s as defined in [16] on the subsets
of probability measures with fixed first and second moment. This fact is easily
derived from (a straightforward extension of) Lemma 3.1 in the afore-mentioned
reference. Hence we conclude that S has a unique fixed point with mean r and
arbitrary variance v2 � 0. Therefore, it remains to verify that R with characteristic
function given by (14) does indeed solve our SFPE (3). To this end, let F be the
law of R. Then, with R1;R2; : : : and W1;W2; : : : being i.i.d. copies of R and W ,
respectively, and also independent of T, we obtain

�S .F /.t/ D E

"
exp

 
it

NX

kD1
TkRk CQ

!#

D E

"
exp.itQ/ET

 
NY

kD1
exp.itTkRk/

!#

D E

"
exp.itQ/

NY

kD1
�R.tTk/

#
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D E

"
exp

 
itr

 
1 �

NX

kD1
Tk

!!
NY

kD1
ET

�
exp

�
irtTk � v

2t2T 2k Wk

2

��#

D E

"
exp

 
itr

 
1 �

NX

kD1
Tk

!
C irt

NX

kD1
Tk � v

2t2

2

NX

kD1
T 2k Wk

!#

D E

�
exp

�
irt � v

2t2W

2

��

D �R.t/;

where we have used assumption (13) on Q in line four and the fixed-point
property (12) forW in the last line. ut

Summarizing the situation in the case ˛ D 2 and P.
PN

kD1 Tk D 1/ < 1, the law
of R in (14) is a W -mixture of normal laws with some fixed mean r 2 R and
variance v2w. It exhibits a power law behavior only if this is true for (the law of)
W which in turn is a fixed point of the smoothing transform pertaining to .T 2k /k�1,
the latter having characteristic exponent 1. With regard to (5), it is therefore no loss
of generality to assume ˛ < 2 hereafter.

2.3 Existence and Uniqueness of a Fixed Point with Finite
˛-Moment

The following lemma compiles results about existence and uniqueness of a solution
to (3) with finite moment of order ˛ and may be deduced from results in
[17, Sect. 3] and [16, Sect. 3]; see also [1] for a review. Our Lemma corresponds
to [1, Theorem 6.16].

Lemma 4. Assume (A), (B) and ˛ < 2.

(a) If ˛ < 1, then there exists a unique solution R to (3) such that E jRjs <1 for
all s < ˇ. It is nonzero iff P.Q ¤ 0/ > 0.

(b) If ˛ � 1 and (C), (E) are valid, then there is a unique solution R to (3)
with ER D r (determined by (E)) and E jRjs < 1 for all s < ˇ. For the
nonhomogeneous equation R is always nonzero, and for the homogeneous one
R is nonzero iff r ¤ 0.

Remark 1. Since for the homogeneous equation two nonzero solutions with distinct
means are proportional, we may in fact speak of the unique nonzero solution with
the property EjRjs <1 for s < ˇ when stipulating ER D 1.

The following lemma sheds some light on the role of the function �.s/.
As before, ET denotes conditional expectation with respect to T D .Q; .Tk/k�1/.
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Lemma 5. Let s � 1 and �.s/ <1. Then E jRjs <1 implies

ET

 
NX

kD1
jTkRkj

!s
� C

 
NX

kD1
jTkj

!s
E jRjs (15)

for some C > 0 which only depends on s.

Proof. This follows by an application of one of the Burkholder-Davis-Gundy
inequalities (see e.g. [1, Theorem 8.5]) when observing that, given T and with
r D ER,

NX

kD1
Tk.Rk � r/ D

X

k�1
Tk.Rk � r/�fN>ng

is the limit of the zero-mean martingale .
Pn

kD1 Tk.Rk � r//n�0, which in fact
consists of finite weighted sums of i.i.d. random variables; see also the proof of
[1, Proposition 4.1]. ut

Note that for s � 1, we have the bound

ET

 
NX

kD1
jTkRkj

!s
�
 

NX

kD1
jTkjs

!
E jRjs (16)

due to subadditivity of x 7! xs for x � 0. Taking unconditional expectation in (15)
and (16), we arrive

E

 
NX

kD1
jTkRkj

!s
�
(
C�.s/EjRjs; if s � 1;
m.s/EjRjs; if s � 1: (17)

2.4 The Implicit Renewal Theorem by Jelenkovic
and Olvera-Cravioto

Our analysis embarks on the following result about the tails of fixed points of
two-sided smoothing transforms due to Jelenkovic and Olvera-Cravioto [10]:

Theorem 1. Suppose that (A) holds, that P.Tj < 0/ > 0 for some j � 1 and that
P.log jTkj 2 �; N � k/ is nonlattice for some k � 1. Further assume (C) if ˇ > 1,
and (D) if ˇ � 1. Let R be the unique solution to (3). Then

lim
t!1 tˇP.jRj > t/ D K.ˇ/

m0.ˇ/
;



238 G. Alsmeyer et al.

where

K.ˇ/ WD
Z 1

0

0

@P.jRj > t/ �
X

k�1
P.jTkRkj > t/

1

A tˇ�1 dt:

Proof. As will be explained at the beginning of Sect. 5, conditions (C) and (D) imply
the finiteness of

Z 1

0

ˇ̌
ˇ̌
ˇ̌P.R > t/ �

X

k�1
P.TkRk > t/

ˇ̌
ˇ̌
ˇ̌ t
ˇ�1 dt (18)

and

Z 1

0

ˇ̌
ˇ̌
ˇ̌P.R < �t/ �

X

k�1
P.TkRk < �t/

ˇ̌
ˇ̌
ˇ̌ t
ˇ�1 dt; (19)

respectively. Taking this for granted here, the stated result is [10, Theorem 3.4]. ut

3 Main Result

We are now ready for our main result which, loosely speaking, asserts that either R
has power tails of order ˇ, or a finite moment of order s > ˇ.

Theorem 2. Under the assumptions of Theorem 1, the following assertions hold
true:

(a) If ˇ > 1 and (A), (B), (C) hold true, then either K.ˇ/ > 0, or E jRjs <1 for
all s < s1.

(b) If ˇ � 1 and (A), (B), (C), (D*) hold true, then eitherK.ˇ/ > 0, or E jRjs <1
for all s < s1.

(c) If ˇ < 1 and (A), (B), (D) hold true, then either K.ˇ/ > 0, or E jRjs <1 for
all s < Os1.

The following proposition provides a sufficient condition for K.ˇ/ > 0.

Proposition 2. Keeping the assumptions of Theorem 2, let k 2 N be such that
P.log jTkj 2 �; N � k/ is nonlattice and assume that E jTkj� D 1 for some ˇ <

� < s1 in parts (a), (b), resp. ˇ < � < Os1 in part (c). Then

K.ˇ/ > 0 iff P

 
r

NX

kD1
Tk CQ D r

!
< 1 for all r ¤ 0;
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the latter condition being equivalent to

P

 
NX

kD1
Tk D 1

!
< 1

in the homogeneous case.

Note that the existence of � is only a mild condition because

P

�
max
1�k�N jTkj > 1

�
D P.jT1j > 1/ > 0:

Namely, if the latter failed to hold, thenm.s/ would be decreasing function and thus
m.s/ < 1 for all s > ˛. But this is impossible as m.ˇ/ D 1.

Note further that P.r
PN

kD1 Tk CQ D r/ < 1 is obviously necessary for heavy
tail behaviour, for otherwise R � r would be the unique solution with ER D r .

4 Proof of the Main Theorem

We start with two lemmata about holomorphic functions, the first one giving a
basic property of the so-called Mellin transform of a measurable function and being
proved in the Appendix.

Lemma 6. Let f W R� ! R be a measurable function such that

Z 1

0

t s�1 jf .t/j dt <1

for s 2 f
0; 
1g � R>. Then its Mellin transform

g.z/ WD
Z 1

0

t z�1f .t/dt (20)

is well defined and holomorphic in the strip 
0 < <z < 
1.

The next lemma, a proof of which may for instance be found in [18, Theorem
II.5b], will play a crucial role in the proof of our main result and is historically due
to Landau. Its first application in the given context appears in [5].

Lemma 7. Given the situation of Lemma 6, suppose further that f is monotonic.
Let 
1 WD supfs > 0 W g.s/ <1g denote the abscissa of convergence of g . Then
g cannot be extended holomorphically onto any neighborhood of 
1.
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Defining G.s/ WD s�1
E jRjs and 
 WD supfs > 0 W G.s/ < 1g, we have as an

immediate consequence:

Corollary 1. The function G cannot be extended holomorphically onto any neigh-
bourhood of 
 .

Put

K.s/ WD
Z 1

0

 
P.jRj > t/ �

1X

kD1
P.jTkRkj > t/

!
t s�1 dt (21)

and suppose that (C) is valid. In order to show with the help of Lemma 6 that K
has a holomorphic extension onto a neighborhood of ˇ, the following proposition is
crucial. Its proof will be given in Sect. 5.

Proposition 3. Assuming (A), (B) and 
 � ˇ, it follows that K.
 C ı/ < 1 for
some ı > 0 provided that, furthermore,

• (C) holds true and 
 < s1 if 
 > 1,
• (C), (D*) hold true and 
 < s1 if 
 D 1,
• (D) holds true and 
 < Os1 if 
 < 1.

Proof (of Theorem 2). Our proof consists of two steps (tacitly assuming the
respective assumptions of the theorem for the cases ˇ >;D; < 1):

STEP 1. K.ˇ/ D 0 iff 
 > ˇ.
STEP 2. If K.ˇ/ D 0 and 
 > ˇ, then 
 D s1, resp.D Os1

Before proceeding with these steps, we make the following observation (under
the assumptions of the theorem): Lemmata 4 and 5 ensure that E

PN
kD1 jTkRkjs and

E jRjs are both finite for ˛ < s < ˇ. Therefore, we may compute

K.s/ D
Z 1

0

 
P.jRj > t/�

1X

kD1
P.jTkRkj > t/

!
t s�1 dt

D
Z 1

0

P.jRj > t/ts�1 dt �
Z 1

0

1X

kD1
P.jTkRkj > t/ts�1 dt

D 1

s
E jRjs � 1

s
E

"
NX

kD1
jTkRkjs

#

D 1

s
.1 �m.s//E jRjs

giving

K.s/

1 �m.s/ D G.s/ (22)
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for all s 2 .˛; ˇ/. By Lemma 6 .with f .t/DP.jRj > t/C P1
kD1 P.jTkRkj > t//

and Lemma 1, both sides extend to holomorphic functions onto the strip ˛ <<z<ˇ,
and (22) remains valid in this strip by the identity theorem for holomorphic
functions.

STEP 1. Notice that .1�m.z//�1 has a pole of order 1 at ˇ, form0.ˇ/ > 0, but is
holomorphic otherwise in a neighborhood of ˇ. By Proposition 3 and Lemma 6,
K.z/ is holomorphic in the strip ˛ < <z < ˇ C ı for some ı > 0. Hence,
if K.ˇ/ D 0, then the left-hand side (LHS) of (22) has a holomorphic extension
to a neighborhood of ˇ, and this is also an extension of the RHS, giving 
 > ˇ.
On the other hand,K.ˇ/ > 0 entails G.ˇ/ D 1, i.e. 
 � ˇ.

STEP 2. Now assume K.ˇ/ D 0 and 
 > ˇ, but 
 < s1, resp. 
 < Os1. Then,
for all ˇ < <z < 
 , we have

K.z/

1 �m.z/ D G.z/;

whence by another appeal to Proposition 3 together with Lemmata 1 and 6,
the LHS extends holomorphically onto ˇ < <z < 
 C ı for some ı > 0, giving
an holomorphic extension of the RHS. But this is a contradiction to Corollary 1.

ut
We finish this section with the proof of Proposition 2.

Proof (of Proposition 2). First of all, if K.ˇ/ > 0, then the uniqueness of R as a
solution to (3) implies that P.r

PN
kD1 Tk CQ D r/ < 1 for any r ¤ 0. In order to

show the converse, suppose that K.ˇ/ D 0 and thus EjRjs < 1 for any s < s1,
resp. < Os1. W.l.o.g. let k D 1, so that E jT1j� D 1 is assumed. Putting B WDPN

kD2 TkRk CQ, the random variable R satisfies the SFPE

R
dD T1R1 C B: (23)

Since E jRj� < 1, m.�/ < 1, and (if � > 1) �.�/ < 1, we find that the
following conditions are fulfilled:

E jBj� <1 (by Lemma 5);
E jT1j� D 1;
P.log jT1j 2 �/ is nonarithmetic;
E jT1j� logC jT1j <1.

These conditions render uniqueness of R as a solution to (23) and allow to invoke
the results by Kesten [13, Theorem 5] and Goldie [8, Theorem 4.1] to infer that
EjRj� <1 and thus t� P.jRj > t/ D o.1/ as t !1 can only hold if

T1r C B D r a.s. for some r 2 R
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or, equivalently,R D r a.s. (by uniqueness) which in turn is equivalent to

r

NX

kD1
Tk CQ D r a.s.

This completes our proof of the proposition. ut

5 Bounds for K(s)

We proceed to a proof of Proposition 3. This proof with r D ˇ and .�/˙ instead of
j�j also shows the finiteness of (18) and (19), thus completing the argument in the
proof of Theorem 1.

Proof (of Proposition 3). By using [8, Lemma 9.4] (in corrected form), and upon
defining

H.s/ WD E

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk CQ

ˇ̌
ˇ̌
ˇ

s

�
ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk

ˇ̌
ˇ̌
ˇ

s ˇ̌
ˇ̌
ˇ ;

I.s/ WD E

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk

ˇ̌
ˇ̌
ˇ

s

�
NX

kD1
jTkRkjs

ˇ̌
ˇ̌
ˇ ;

J.s/ WD E

"
NX

kD1
jTkRkjs � sup

1�k�N
jTkRkjs

#
;

we obtain the following estimate forK.s/:

K.s/ D
Z 1

0

st s�1
ˇ̌
ˇ̌
ˇP
 ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk CQ

ˇ̌
ˇ̌
ˇ > t

!
�

1X

kD1
P.jTkRkj > t/

ˇ̌
ˇ̌
ˇ dt

�
Z 1

0

st s�1
ˇ̌
ˇ̌
ˇP
 ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk CQ

ˇ̌
ˇ̌
ˇ > t

!
� P.

ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk

ˇ̌
ˇ̌
ˇ > t/

ˇ̌
ˇ̌
ˇ dt

C
Z 1

0

st s�1
ˇ̌
ˇ̌
ˇP
 ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk

ˇ̌
ˇ̌
ˇ > t

!
� P

 
sup

1�k�N
jTkRkj > t

!ˇ̌
ˇ̌
ˇ dt

C
Z 1

0

st s�1
 1X

kD1
P.jTkRkj > t/ � P

 
sup

1�k�N
jTkRkj > t

!!
dt
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D H.s/ C E

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk

ˇ̌
ˇ̌
ˇ

s

� sup
1�k�N

jTkRkjs
ˇ̌
ˇ̌
ˇ C J.s/

� H.s/C I.s/C 2J.s/:

As for the second to last line, we note that the appearing integrand is indeed
nonnegative because it is equal to sts�1

P
k�2 P.Yk > t/ where .Yk/k�1 denotes

the decreasing order statistic of .jTkRkj/k�1. Then use Fubini’s theorem as in
[11, Lemma 4.6] to see that the pertinent integral equals J.s/. The proof is
completed by the next three lemmata which will show that, for some ı > 0, H.s/,
I.s/ and J.s/ are bounded for all 
 < s < 
 C ı. ut
Lemma 8. Suppose that (B) holds and 
 � ˇ. If 
 � 1, suppose further (C) be
true and 
 < s1. Then

H.s/ WD E

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk CQ

ˇ̌
ˇ̌
ˇ

s

�
ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk

ˇ̌
ˇ̌
ˇ

s ˇ̌
ˇ̌
ˇ <1

for all 
 � s < 
 C ı and some ı > 0.

Proof. If s � 1, then (recalling (8))

H.s/ � EjQjs < 1:

If s > 1, choose ı 2 .0; 1� such that 
 C ı < s1. Now for 1 < s < 
 C ı, use the
inequalities

jas � bsj � s.a _ b/s�ıja � bjı;
.aC b/s � 2s�1.as C bs/;

valid for a; b � 0, to infer (with a D jPN
kD1 TkRk CQj and b D jPN

kD1 TkRkj)

H.s/ � s.1 _ 2s�ı�1/E
2

4jQjs C
ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk

ˇ̌
ˇ̌
ˇ

s�ı
jQjı

3

5 :

The last expectation is finite because, by Lemma 5 and Hölder’s inequality,

E

2

4
ˇ̌
ˇ̌
ˇ

NX

kD1
TkRk

ˇ̌
ˇ̌
ˇ

s�ı
jQjı

3

5 � C EjRjs�ı E
2

4
ˇ̌
ˇ̌
ˇ

NX

kD1
jTkj

ˇ̌
ˇ̌
ˇ

s�ı
jQjı

3

5

� C �.s/.s�ı/=s.EjQjs/ı=s

for some constant C 2 R> ut
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Lemma 9. Let 
 � ˇ. Suppose that (C) holds and 
 < s1 if 
 > 1, that (D*)
holds if 
 D 1, and that (D) holds and 
 < Os1 if 
 < 1. Then J.s/ < 1 for all
0 < s < 
 C ı and some ı > 0.

Proof. If 
 � 1, pick ı 2 .0; ı0/ such that 
Cı

�ı < 1C"0 (and 
Cı < Os1 if 
 < 1).

If 
 > 1, pick ı > 0 such that Œ
 � ı; 
 C ı� � .1; s1/.
If 0 < s < 
 � ı, then J.s/ <1 follows from the obvious estimate

J.s/ �
X

k�1
EjTkjs EjRjs D m.s/EjRjs:

So let s 2 .
�ı; 
Cı/ hereafter. Then one can follow the proof of [11, Lemma 4.6]
(replacing .˛; ˇ/ and CiRi there with .s; 
 � ı/ and jTkRkj, respectively) to obtain
the bound

J.s/ � C
�
E jRj
�ı�s=.
�ı/

E

2

4
 

NX

kD1
jTkj
�ı

!s=.
�ı/3

5 < 1

D C
�
E jRj
�ı�s=.
�ı/

m"0

�
s

1C "0
�
< 1

for some constant C 2 R>. Here we should note that, if 
 � ı < 1, the second
expectation on the right-hand side is indeed finite because s=.
 � ı/ < 1C �0 and

 � ı < Os1 ensures m"0.
 � ı/ < 1. If 
 � ı � 1 then we arrive at the same

conclusion, for
PN

kD1 jTkj
�ı � �PN
kD1 jTkj

	
�ı
. ut

Lemma 10. Let 
 � ˇ. Assume (C) and 
 < s1 if 
 > 1, (D*) if 
 D 1, and (D)
and 
 < Os1 if 
 < 1. Then I.s/ <1 for all 0 < s < 
 C ı and some ı > 0.

Proof. The first part of the proof follows the argument given for [10, Lemmata 4.8

and 4.9]. Put S WD PN
kD1 TkRk , S˙ D

�PN
kD1 TkRk

�˙
, S˙ WD PN

kD1.TkRk/˙

and S˙.s/ WDPN
kD1

�
.TkRk/

˙	s . Then

I.s/ D E jjS js � SC.s/ � S�.s/j
D E

ˇ̌
.SC/s C .S�/s � SC.s/� S�.s/

ˇ̌

� E
ˇ̌
.SC/s � SC.s/

ˇ̌C E j.S�/s � S�.s/j ;

whence it suffices to show E
ˇ̌
.S˙/s � S˙.s/

ˇ̌
< 1 and, by an obvious reflection

argument, only E
ˇ̌
.SC/s � SC.s/

ˇ̌
<1. As in [10], we estimate

E
ˇ̌
.SC/s � SC.s/

ˇ̌ � ESC.s/�fSC�S�g C E
�
SsC � .SC � S�/s

	
�fSC>S�g

C EjSsC � SC.s/j
(24)
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The first two expectations on the right-hand side can be bounded by a constant times

�
EjRjs=.1C�/

�1C�
E

 
NX

kD1
jTkjs=.1C�/

!1C�

if 
 < 1 (choose a D s=.1C�/ and b D s�=.1C�/ in the proof of [10, Lemma 4.9]),
and by a constant times

EjRjEjRjs�1E
 

NX

kD1
jTkj

!s

if 
 � 1. These bounds are finite if 0 < s < 
 C ı for sufficiently small ı > 0 and
� < �0 with �0 given by (D) or (D*).

It remains to show finiteness of the final expectation in (24), viz. of

L.s/ WD E

ˇ̌
ˇ̌
ˇ

 
NX

kD1
.TkRk/

C
!s
�

NX

kD1

�
.TkRk/

C	s
ˇ̌
ˇ̌
ˇ

for all 0 < s < 
 C ı and some ı > 0. We will do so by distinguishing the cases

(i) 
 < 1; (ii) 
 D 1; (iii) 1 < 
 � 2 and (iv) 
 > 2:

(i) If 
 < 1, then for each 0 < s � 1 (see also [10, proof of Lemma 4.9])

L.s/ D E

"
NX

kD1

�
.TkRk/

C	s �
 

NX

kD1
.TkRk/

C
!s#

� E

"
NX

kD1

�
.TkRk/

C	s � max
1�k�N

�
.TkRk/

C	s
#

� E

"
NX

kD1
jTkRkjs � max

1�k�N
�
.TkRk/

C	s � max
1�k�N

..TkRk/
�/s
#

� E

"
NX

kD1
jTkRkjs � max

1�k�N jTkRkj
s

#
D J.s/;

and the latter function is finite by Lemma 9.
(ii) Next, let 
 D 1. Fix � such that 1� ı0 < � < 1 and .1C�0/� > 1, where ı0; �0

are given by condition (D*). Then choose ı < minf.1C �0/� � 1; �; 2� � 1g D
.1C �0/� � 1. Let 1 < s < 1C ı and note that s� � < 1. Applying Lemma 11
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to f .x/ D xs (thus 	 D s � 1) and the � chosen above, we infer for a suitable
constant C 2 R>

L.s/ D E

ˇ̌
ˇ̌
ˇ

 
NX

kD1
.TkRk/

C
!s
�

NX

kD1

�
.TkRk/

C	s
ˇ̌
ˇ̌
ˇ

� C E

2

4
N�1X

jD1

 
jX

kD1
jTkRkj

!s��
jTjC1RjC1j�

3

5

D C E

2

4
N�1X

jD1
ET

0

@
 

jX

kD1
jTkRkj

!s��
jTjC1RjC1j�

1

A

3

5

D C E jRj� E
2

4
N�1X

jD1
jTjC1j� ET

 
jX

kD1
jTkRkj

!s��3

5

� C E jRj� E
2

4
N�1X

jD1
jTjC1j�

 
ET.

jX

kD1
jTkRkj/�

!.s��/=�3

5

� C E jRj� E
2

4
N�1X

jD1
jTjC1j�

 
ET

jX

kD1
jTkRkj�

!.s��/=�3

5

D C .E jRj�/s=� E
2

4
 

NX

kD1
jTkj�

!s=�3

5 < 1

where Jensen’s inequality and then subadditivity have been utilized in line 5.
Finiteness of the final expectation is guaranteed by (D*).

(iii) Turning to the case 1 < 
 < 2, we proceed in the same manner. Applying
again Lemma 11 to f .x/ D xs for 0 < s < s1 ^ 2, but now with � D 1,
we obtain for some C 2 R>

L.s/ � C EjRjE
2

4
NX

jD1
jTj jET

 
NX

kD1
jTkRkj

!s�13

5

� C EjRjE
2

4
NX

jD1
jTj j

 
ET

NX

kD1
jTkRkj

!s�13

5

� C.EjRj/s E
 

NX

kD1
jTkj

!s
< 1

where finiteness of the last expectation is guaranteed by (C).
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(iv) Finally left with the case 
 � 2, we fix again ı < 1 sufficiently small such that
s C ı < s1. For s 2 .
; 
 C ı/ and small � > 0, define

p.�/ WD 


s � 2 � � and q.�/ WD p.�/

p.�/ � 1 D

 � �.s � 2/

2C 2� � .s � 
/ � �s :

As one can readily check, lim�!0 p.�/ > 1 and 1 < lim�!0 q.�/ < 
 . So we
may fix � > 0 so small (depending on ı) that p D p.�/ and q D q.�/ for this
� satisfy

1 < p <1; 1 < q < 
 and .s � 2/p < 
:
In the following estimation, C denotes a generic finite positive constant which
may differ from line to line. Using Lemma 12 from the Appendix with
f .x/ D xs , we obtain

L.s/ � C E

2

4
 

NX

iD1

.TiRi /
C

!s�2 X

1�j¤k�N

.TjRj /
C.TkRk/

C

3

5

� C E

2

4
 

NX

iD1

jTiRi j
!s�2 X

1�j¤k�N

ˇ̌
TjRj

ˇ̌ jTkRk j
3

5

D C E

0

@ET

2

4
 

NX

iD1

jTiRi j
!s�2 X

1�j¤k�N

ˇ̌
TjRj

ˇ̌ jTkRk j
3

5

1

A

D C E

0

@
X

1�k¤l�N

ET

2

4
 

NX

iD1

jTiRi j
!s�2

jTkRk j jTlRl j
3

5

1

A

� C E

0

B@
X

1�k¤l�N

0

@ET

 
NX

iD1

jTiRi j
!p.s�2/1

A
1=p

�
ET jTkRk jq jTlRl jq

�1=q
1

CA

� C E

2

64
X

1�k¤l�N

0

@
 

NX

iD1

jTi j
!p.s�2/

E jRjp.s�2/
1

A
1=p

�
E jRjq 	2=q jTk j jTl j

3

75

D C
�
E jRjp.s�2/ 	1=p�E jRjq 	2=q E

2

4
 

NX

iD1

jTi j
!s�2 0

@
X

1�k¤l�N

jTkj jTl j
1

A

3

5

� C
�
E jRjp.s�2/ 	1=p�E jRjq 	2=q E

2

64

 
NX

iD1

jTi j
!s�2 0

@
NX

jD1

ˇ̌
Tj
ˇ̌
1

A
2
3

75

D C
�
E jRjp.s�2/ 	1=p�E jRjq 	2=q E

 
NX

kD1

jTk j
!s

< 1

where Lemma 5 has been used for line 6. ut
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The previous proof gives rise to a Corollary which may be interesting in its own
right:

Corollary 2. Let .Rk/k�1 be a sequence iid random variables independent of the
random weights .Tk/k�1. Let 
 > 1, 0 < ı < 1 and suppose that EjR1js < 1 for
s < 
 and E.

PN
kD1 jTkj/
Cı <1. Then

E

ˇ̌
ˇ̌
ˇ

 
NX

kD1
.TkRk/

C
!s
�

NX

kD1
..TkRk/

C/s
ˇ̌
ˇ̌
ˇ <1

for all 
 < s � 
 C ı.
Proof. If 
 � 2 or 
Cı � 2, then the result is contained in the proof of Lemma 10.
If 
 < 2, but s WD 
Cı > 2, then observe that case (iv) also works when 
 < 2 < s.

ut
Remark 2. In the case when 
 > 1 is not an integer, the finiteness of L.s/ for
0 < s < 
 C ı and some ı > 0 sufficiently small may alternatively be inferred by
the same arguments as in [10, Proof of Lemma 5.2].

Appendix

Proof (of Lemma 6). We have the uniform bound

Z 1

0

ˇ̌
t z�1f .t/

ˇ̌
dt D

Z 1

0

t<z�1 jf .t/j dt

�
Z 1

0

t
0�1 jf .t/j dtC
Z 1

1

t
1�1 jf .t/j dt <1:

In order to show holomorphicity, take any closed path c in the strip 
0 < <z < 
1,
then we may use Fubini’s theorem to infer

Z

c

g.z/d z D
Z

c

�Z 1

0

t z�1f .t/dt

�
d z

D
Z 1

0

�Z

c

t z�1d z

�
f .t/dt D 0:

In fact, g is the Mellin-Transform of the measure f .t/dt. ut
Lemma 11. Let f W R� ! R� be a differentiable function such that f .0/ D 0

and f 0 is Hölder continuous of order 	 2 .0; 1�, i.e.

jf 0.x1/ � f 0.x2/j � C jx1 � x2j	
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for some C 2 R> and all x1; x2 2 R�. Then

ˇ̌
ˇ̌
ˇf .sn/�

nX

kD1
f .xk/

ˇ̌
ˇ̌
ˇ � C

n�1X

jD1
s
1C	��
j x

�
jC1 (A.1)

for any 1C	
2
� � � 1 and x1; : : : ; xn 2 R�, where sn WDPn

jD1 xj .

Proof. We will use induction over n � 2. For n D 2, use f .0/ D 0 to obtain

jf .x C y/ � f .x/ � f .y/j D
ˇ̌
ˇ̌
Z 1

0

�
f 0.x C sy/� f 0.sy/

�
y ds

ˇ̌
ˇ̌ � Cx	y;

(A.2)

for all x; y 2 R� which gives the result if � D 1. Otherwise, pick any 0 < 
 < 1.
Then (A.2) provides us with

jf .x C y/� f .x/ � f .y/j2 � .Cx	y/1C
 .Cxy	 /1�


D C2x	.1C
/C1�
y	.1�
/C1C
 ;

which proves (A.1) for n D 2 with � D 	.1�
/C1C

2

. For the inductive step
n � 1! n, we note that

ˇ̌
ˇ̌
ˇ̌f .sn/�

nX

jD1
f .xj /

ˇ̌
ˇ̌
ˇ̌ � jf .sn/� f .sn�1/ � f .xn/j C

ˇ̌
ˇ̌
ˇ̌f .sn�1/�

n�1X

jD1
f .xj /

ˇ̌
ˇ̌
ˇ̌

� C

0

@s1C	��n�1 x�n C
n�2X

jD1
s
1C	��
j x

�
jC1

1

A

D C

n�1X

jD1
s
1C	��
j x

�
jC1

which proves our claim. ut
Lemma 12. Let f W R� ! R� be a twice continuously differentiable function
such that f 00 is nonnegative and increasing. Then

ˇ̌
ˇ̌
ˇf .sn/�

nX

kD1
f .xk/

ˇ̌
ˇ̌
ˇ � f 00.sn/

X

i¤j
xixj : (A.3)

for all x1; : : : ; xn 2 R�, where sn WDPn
jD1 xj .
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Proof. We will use induction over n � 2. For n D 2, use f .0/ D 0 to obtain

f .x C y/ � f .x/ � f .y/ D
Z 1

0

�
f 0.x C sy/ � f 0.sy/

�
y ds

D
Z 1

0

�Z 1

0

d

dr
f 0.rxC sy/ dr

�
y ds

D
Z 1

0

Z 1

0

f 00.rxC sy/ xy dr ds

By assumption f 00.rxC sy/ � f 00.x C y/ for all r; s 2 Œ0; 1�, whence

0 � f .x C y/� f .x/ � f .y/ � f 00.x C y/ xy

as asserted. For the inductive step n � 1! n, we note that

ˇ̌
ˇ̌
ˇ̌f .sn/�

nX

jD1
f .xj /

ˇ̌
ˇ̌
ˇ̌ � jf .sn/� f .sn�1/ � f .xn/j C

ˇ̌
ˇ̌
ˇ̌f .sn�1/�

n�1X

jD1
f .xj /

ˇ̌
ˇ̌
ˇ̌

� f 00.sn/ xn sn�1 C f 00.sn�1/
X

1�i¤j�n�1
xixj

� f 00.sn/
X

1�i¤j�n
xixj :

which proves our claim for general n � 2. ut
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Conditioned Random Walk in Weyl Chambers
and Renewal Theory

C. Lecouvey, E. Lesigne, and M. Peigné

Abstract We present here the main result from [8] and explain how to use
Kashiwara crystal basis theory to associate a random walk to each minuscule
irreducible representation V of a simple Lie algebra; the generalized Pitman
transform defined in [10] for similar random walks with uniform distributions yields
yet a Markov chain when the crystal attached to V is endowed with a probability
distribution compatible with its weight graduation. The main probabilistic argument
in our proof is a quotient version of a renewal theorem that we state in the context
of general random walks in a lattice [8]. We present some explicit examples, which
can be computed using insertion schemes on tableaux described in [9].

1 Introduction

1.1 The Pitman Transform for the Brownian Motion

Let .B.t//t�0 be a standard Brownian motion on R starting at 0. We denote by
m.t/ the minimum process defined by m.t/ WD inf

0�s�t B.s/: The Pitman transform

of .B.t//t�0 is given by

PB.t/ WD B.t/ � 2m.t/:

The reader will find a proof of the following statement in [11] and references therein:
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Laboratoire de Mathématiques et Physique Théorique, Parc de Grandmont 37200 Tours, France
e-mail: lecouvey@lmpt.univ-tours.fr; lesigne@lmpt.univ-tours.fr; peigne@lmpt.univ-tours.fr
The figures have been drawn with the help of J.R. Licois
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Theorem 1. The process PB.t/ is a 3-dimensional Bessel process; in particular, it
has the same law as the Brownian motion on �0;C1Œ conditioned to stay positive.

A Brownian motion trajectory B(t) and its Pitman transform 

B(t) m(t) and –m(t) PB(t)

0.00 0.25 0.50 0.75 1.00

PB(t)

There exists a multi-dimensional generalization of this theorem, called the
generalized Pitman transform (see [1]): it corresponds for instance to the motion
of the eigenvalues of some Hermitian Brownian motion in SU.2/.

1.2 The Pitman Transform for the Simple Random Walk

We consider the simple random walk Sk WD X1 C � � � C Xk on the set Z with
increments˙1:

P.Xk D 1/ D P.Xk D �1/ D 1

2
:

The Pitman transform of this random walk is the process .Pk WD Sk � 2mk/k�0
where mk D min.0; S1; � � � ; Sn/; it is a Markov chain on N with transition
probabilities

8a 2 N p.a; aC 1/ D aC 2
2.aC 1/ and p.a; a � 1/ D a

2.aC 1/ :

By a straightforward computation, one gets

8a 2 N p.a; a˙ 1/ D lim
k!C1P.S1 D a˙ 1=S0 D a; S1 � 0; � � � ; Sk � 0/:

To obtain this equality, one may notice for instance that for any a; k � 0 one gets

P.S1 D aC 1=S0 D a; S1; � � � ; Sk � 0/ D P.mk�1 � �a � 1/
P.mk�1 � �a � 1/C P.mk�1 � �aC 1/
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and use classical estimations of the probability P.mk�1 � �a � 1/ for the simple
random walk.

We may represent the process .Pk/k�0 as a process in the plane. We fix the
standard basis f�!{ ;�!| g in R

2; the vector�!{ corresponds to the stepC1 and�!| to the
step �1. We consider for instance the following trajectory

and its geometrical representation in the plane

C

2 The Ballot Problem in R
n; n � 2

The Pitman transform of the simple random walk on Z can be seen as a transform
of some process on N

2, the so-called “Bertrand’s ballot problem” in combinatorics.
We generalize here this correspondence in any dimension.

2.1 Cones and Paths

We fix a basis B D f�!e 1; � � � ;�!e ng of Rn and introduce the following cone

C D fx 2 R
n j x1 � � � � � xn � 0gI



256 C. Lecouvey et al.

we denote by VC WD fx 2 R
n j x1 > � � � > xn > 0g its interior. We will consider

the collection of paths in Z
n D

nM

iD1
Z
�!e i starting at 0 and with increments in

f�!e 1; : : : ;�!e ng:
A path of length ` in Z

n will be a word w D x1 � � �x` on the alphabet f1; : : : ; ng
and its weight the n-uple wt.w/ D .�1; : : : ; �n/ where �i is the number of letters
i in w. We are interested with (infinite) paths which remain inside C, that is to say
(infinite) words w D x1x2 � � � such that, for any ` � 1 and i 2 f1; � � � ; n � 1g the
number of i in fx1; : : : ; x`g is greater or equal to the number of i C 1.

Example. The word w D 112321231 has weight .4; 3; 2/ and the corresponding
path remains in C.

2.2 The Simple Random Walk on N
n

We fix a probability vectorp D .p1; � � � ; pn/ in R
n (that is pi � 0 for any 1 � i � n

and p1C� � �Cpn D 1/ and consider a sequence .X`/`�1 of i. i. d. random variables
defined on a probability space .˝; T ;P/ such that

8i 2 f1; � � � ; ng P.X` D �!e i / D pi :

The random walk .S` D X1 C � � � CX`/`�0 has the transition probability matrix

˘.˛; ˇ/ D
�
pi if ˇ � ˛ D �!e i 2 B,
0 otherwise.

If ˇ WD ˛ C `1�!e 1 C � � � C `n�!e n, with ˛ 2 N
n; `1 � � � ; `n � 0, all the paths joining

˛ to ˇ have length ` D `1 C � � � C `n and the same probability p`11 � � � � � p`nn ; then

˘`.˛; ˇ/ D `Š

`1Š � � � `nŠp
`1
1 � � � � � p`nn :

2.3 The Conditioned Random Walk in C

Let ˘C be the restriction of ˘ to the cone C. One gets the

Proposition 1. If m WD E.X`/ 2 VC (or equivalently p1 > � � � > pn) then

8� 2 C P�

�
S` 2 C;8` � 0

�
> 0:
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Moreover, the function h W � 7! P�

�
S` 2 C;8` � 0

�
is ˘C-harmonic.

The transition matrix PC of the random walk .S`/`�0 conditioned to stay inside C is
the h-Doob transform of˘C given by:

8�;� 2 C PC.�; �/ D h.�/

h.�/
˘C.�; �/:

The aim of this work is to explain how to compute PC and the value of h.�/; � 2
C, when m D .p1; � � � ; pn/ 2 VC. Following N. O’Connell [10], we will use the
representation theory and generalize the Pitman transform in this discrete context.

2.4 The Representation Theory of sln.C/

2.4.1 Weights of sln.C/

We consider the weight lattice P WD Z
n D Ln

iD1 Z
�!e i ; the cone of dominant

weights is PC WD
nM

iD1
N
�!e i . The roots of sln.C/ are the vectors˙.�!e i � �!e j / with

1 � i < j � n; the set of positive roots is RC WD f�!e i � �!e j ; 1 � i < j �g and
the simple roots are the n � 1 vectors �!e i � �!e iC1; 1 � i � n � 1.
We denote by I the set of irreducible finite dimensional representations of sln.C/.
It is a classical fact that the elements of I are labelled by the dominant weights: for
any � 2 PC, we denote by V.�/ the corresponding irreducible finite dimensional
representation and the map �  ! V.�/ is a one-to-one correspondence between
PC and I: For instance, the natural representation C

n of sln.C/ is labelled
V.1; 0; � � � ; 0„ ƒ‚ …

n�1 times

/, or simply V.1/.1

We now introduce some usual quantities in representation theory: the multiplicities
f� and f�=� related to the decompositions of the representationsV.1/˝` and V.�/˝
V.1/˝`; ` � 1; � 2 PC; in direct sum of elements of I. Namely, for any ` 2 N and
� 2 PC, one has the decomposition

V.1/˝` D
M

�2PC

V.�/˚f� and V.�/˝ V.1/˝` D
M

�2PC

V.�/˚f�=� :

This leads to the

1in order to simplify the notations, we will omit the (last) coordinates 0 which appear in � 2 PC
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Proposition 2. For any � D .�1; � � � ; �n/ and � D .�1; � � � ; �n/ in PC such that
� � � (i-e �i � �i for any i D 1; � � � ; n), the number of paths between � and �
which stay inside C is equal to f�=�; in particular, the number of paths between 0
and � which stay inside C is equal to f�:

Consequently, the representation theory is a powerful tool to compute the exact
number of paths staying inside C; it will be also useful to estimate the probability
of the set of such trajectories for a large class of random walks.

2.4.2 The Notion of Crystal

One may associate to each V.�/ 2 I its Kashiwara crystal B.�/. This is the
combinatorial skeleton of the Uq.sln.C//-module with dominant weight � 2 PC: it
has a structure of a colored and oriented graph (see [5, 6]).

Example. The crystal of V.1/ D C
n is

B.1/ W 1 1! 2
2! 3

3! � � � n�2! n � 1 n�1! n:

The crystal B.�/ ˝ B.�/ associated with V.�/ ˝ V.�/ may be constructed from
B.�/ andB.�/; its set of vertices is the direct product of the ones ofB.�/ andB.�/,
the crystal structure (that is the choice of the arrows between vertices) being given
by some technical rules presented for instance in [8], Theorem 5.1. One important
property of the crystal theory is that the irreducible components of V.�/˝V.�/ are
in one-to-one correspondence with the connected components of B.�/˝ B.�/.
Example. The crystals B.1/ and B.1/˝2 for sl3.C/

The crystal B.1/ of V.1/ D C
3 is 1 1→ 2 2→ 3.

The crystal B.1/˝2 associated with V.1/˝2 is

The two connected components are labelled by their source vertex, namely 1 ⊗ 1

and 1 ⊗ 2 .

The letters which appear in the source vertex 1 ⊗ 1 are both equal to 1, this vertex

corresponds to the irreducible component V (2, 0, 0) � V (2); in the same way, the

source vertex 1 ⊗ 2 corresponds to V (1, 1, 0) � V (1, 1) ; so

V.1/˝2 ' V.2/˚ V.1; 1/:
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This corresponds to the fact that the two words (11) and (12) are the only ones
“allowed” paths of length 2 which remain inside C � R

3.

2.4.3 Relation Between the Crystal and the Set of Words

The word w D x1 � � �x` on the alphabet f1; : : : ; ng may be identified with the vertex

b D x1 ˝ � � � ˝ x` 2 B.1/˝`

We denote by B.b/ the connected component of B.1/˝` which contains b.
The Pitman transform will be the map P defined by

P W B.1/˝` ! C

b 7! weight of the source vertex of B.b/:

2.4.4 The Probability Distribution on the Crystal

The probability of the letter i is pi ; it will be the probability of the vertex i 2 B.1/.
The word x1 � � �x` has probability p�11 � � �p�nn where .�1; � � � ; �n/ is the weight of
this word; this is also the probability of the vertex b D x1 ˝ � � � ˝ x` 2 B.1/˝`:
Finally, we have fixed a probability p on B.1/, endowed B.1/˝N with p˝N and
set .S`/ WD the sequence of weights of the corresponding process on B.1/˝N.
The Pitman process .H`/` is the sequence of weights defined as the images by P of
the k-vectors .S`/1�`�k; k � 1.

2.4.5 The Character and the Schur Functions

Let h be the sub-algebra of diagonal matrices of sln.C/; any representation M of
sln.C/ may be decomposed in weight spaces

M WD
M

�2P
M�

with M� WD fv 2 M=h.v/ D �.v/v for any h 2 hg. The character function of M
is the Laurent polynomial sM defined by

8x 2 C
n sM .x/ WD

X

�2P
dimM� x

�
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When M is an irreducible representation V.�/, the character function is called the
Schur function and denoted s�.

Example. The Schur function of the natural representation of sl.n;C/:
For any � D .�1; � � � ; �n/ 2 PC and x D .x1; � � � ; xn/ 2 R

n, we denote by
a�.x/ the Vandermonde function

a�.x/ WD det.x
�j
i / D

x
�1
1 x

�2
1 � � � x�n1

x
�1
2 x

�2
2 � � � x�n2

:::
:::

:::
:::

x�1n x�2n � � � x�nn

:

For ı D .n � 1; n� 2; � � � ; 0/, one gets

aı.x/ WD
xn�1
1 xn�2

1 � � � 1
xn�1
2 xn�2

2 � � � 1
:::

:::
:::
:::

xn�1
n xn�2

n � � � 1

D
Y

1�i<j�n
.xi � xj /:

For any � 2 PC, the Schur function s� of V.�/ is given by

s�.x/ WD a�Cı.x/
aı.x/

I (1)

in particular, the Schur function of V.1/ D V.1; 0; � � � ; 0/ D C
n is

s1.x/ WD a.1;0;��� ;0/Cı.x/
aı.x/

D 1

aı.x/
�
xn1 x

n�2
1 � � � 1

xn2 x
n�2
2 � � � 1

:::
:::

:::
:::

xnn x
n�2
n � � � 1

D x1 C � � � C xn: (2)

One may now state the following

Theorem 2 ([10]).

• The process .H`/`�0 is a Markov chain on C with transition probability

PH.�; �/ D s�.p1; � � � ; pn/
s�.p1; � � � ; pn/1B.� � �/:

• The transition matrix PC of the r.w. .S`/`�0 conditioned to stay inside C is equal
to PH.
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• In particular, one gets

P0.S` 2 C;8` � 0/ D
Y

˛2RC

.1 � p�˛/ D
Y

1�i<j�n

�
1 � pi

pj

�
:

3 The Probabilistic Argument

We present here the probabilistic ingredients which allow to link up the random walk
conditioned to stay inside C and the Pitman process. The details are given for the
ballot problem, as in [10], and remain valid in a more general context (see Sect. 4).

3.1 The Markov Chain .H`/`�0

Using the crystal basis theory, one may check that .H`/`�0 is a Markov chain with
transition matrix

PH.�; �/ D f�=� s�.p/

s�.p/s1.p/

with f�=� 2 f0; 1g; for the ballot problem, we have s1.p/ D p1C � � � C pn D 1 and
so PH.�; �/ D f�=�s�.p/=s�.p/.

We denote by˘C the restriction of˘ to the cone C; the matrixPH is the -Doob
transform of the substochastic matrix ˘C with  .�/ WD s�.p/

p�
: We are going to

prove that  coincides up to a multiplicative constant with the function h given in
Proposition 1.

3.2 The Doob Theorem

Let E be a countable set and Q sub-stochastic matrix transition on E . Let G
be the Green kernel associated with Q. Fix an origin x� 2 E such that
0 < G.x�; y/ < C1 for any y 2 E and let K be the Martin kernel defined by

8x; y 2 E K.x; y/ D G.x; y/

G.x�; y/
:

Let h be an strictly positive and Q-harmonic function on E , let Qh be the
h-Doob transform of Q and consider a Markov chain .Y h

` /`�0 on E with transition
matrixQh. One gets the classical following result:
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Theorem 3 (Doob, [3]). Let f W E ! R such that

8x 2 E lim
`!C1K.x; Y h

` .!// D f.x/ P.d!/� a:s:

Then there exits c > 0 such that f D ch.

In our case, we take E D C with origin x� D 0, the sub-stochastic matrix Q is ˘C
and h.�/ D h.�/ D P�.S` 2 C;8` � 0/. By the Strong Law of Large Numbers,
one gets

S` � `mC o.`/ P � a:s:

N. O’ Connell directly checks, using the explicit expression of the Schur function
s� given in (1), that for m inside the cone C and any sequence �` D `mC o.`/

K.�; �`/ D p�� f�`=�
f�`

! s�.p/

p�
as `! C1:

Unfortunately, such an explicit formula for the Schur function does not exists in the
more general situation we want to consider and we avoid his approach as follows:
using the theory of crystal bases, we may decompose the Martin kernel and write

K.�;�`/ D 1

p�

X

� weight of V.�/

f�=� � p� � G.0; �` � �/
G.0; �`/

for any � and �` D `mC o.`/ 2 C with ` large enough. It remains to prove that,
for any � 2 C

G.0; �` � �/
G.0; �`/

! 1 when `! C1:

3.3 A Quotient Renewal Theorem in the Cone

We consider here a sequence .X`/`�1 of independent and identically distributed
Z
n-valued random variables with law � and set S` WD X1C � � �CX` for any ` � 1.

The central argument of our approach is the following:

Theorem 4 ([8, 9]). Assume that the law � is aperiodic on Z
n, its support is

bounded and the mean vector m WD E.X`� lies inside the cone C. Let ˛ < 2=3

and .�`/`; .h`/` be two sequences in Z
n such that lim `�˛k�` � `mk D 0 and

lim `�1=2kh`k D 0. Then, when ` tends to infinity, we have
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X

k�1
P .S1 2 C; : : : ; Sk 2 C; SkD�`Ch`/ �

X

k�1
P .S1 2 C; : : : ; Sk 2 C; SkD�`/ :

The first ingredient of the proof is the following

Lemma 1 (R. Garbit (2008) [4]). Under the same hypotheses as above, for any
˛ > 1

2
, there exists c D c˛ > 0 such that, for all ` large enough and � 2 C

P .S1 �m 2 C; : : : ; S` � `m 2 C; S` D `mC �/ � exp .�c`˛/ :

The second ingredient is a version of the renewal limit theorem due to H. Carlson
and S. Wainger [2]. We assume that m WD E.X`/ is nonzero. Let .�!�1 ; : : : ;��!�n�1/ be
an orthonormal basis of the hyperplanem?. If x 2 R

n, denote by x0 its orthogonal
projection on m? expressed in this basis and let B be the covariance matrix of
the random vector X 0̀. Let NB be the .n � 1/-dimensional Gaussian density with
covariance matrixB and V be the n-dimensional volume of the fundamental domain
of the group generated by the support of the law of X`. The following result may be
deduced from [2], the proof of the present statement is detailed in [7]:

Theorem 5. We assume the random variables X` have an exponential moment.
Fix ˛ < 2=3 and let .�`/ be a sequence of real numbers such that�` D m`Co.`˛/.
Then, when ` goes to infinity, we have

X

k�0
P.Sk D �`/ � V

kmk`
�.n�1/=2NB

�
1p
`
�0
�
:

We will apply this result along the sequences .�`/` D .S`.!//` for almost all
! 2 ˝ , which is possible since, for any � > 0, one gets S` � `mC o.` 12C�/ a.s.

4 Generalization: The Pitman Transform for Minuscule
Representations

We consider in [8] a representation V.ı/ of a simple Lie algebra g overC and endow
the associated crystal B.ı/ with a probability distribution p D .pb/b2B.ı/ which is
compatible with the weight graduation ofB.ı/. We consider a random walk .S`/`�0
with independent increments of law p and transition matrix ˘ ; this random walk
will take values in the weight lattice P associated with g, we will have P � 1

r
Z
n

for some 2 N
� depending on g (see the table below).

As in the previous section, we construct a Markov chain .H`/` in the Weyl
chamber C � P , with transition matrix PH, which will play the role of the Pitman
process. We prove that .H`/` coincides with the -Doob transform of the restriction
to C of the transition matrix of .S`/` (for some explicit function expressed in terms
of characters) if and only if V.ı/ is minuscule, that is when the orbit of ı under
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the action of the Weyl group of g contains all the weights of V.ı/. The minuscule
representations are given in the following table

Type Minuscule weights N Decomposition on the basis B

An !i ; i D 1; : : : ; n nC 1 !i D "1 C � � � C "i

Bn !n n !n D 1
2
."1 C � � � C "n/

Cn !1 n !1 D "1

Dn !1; !n�1; !n n !1 D "1; !nCt D 1
2 ."1 C � � � C "n/C t "n, t 2 f�1; 0g

E6 !1; !6 8 !1 D 2
3
."8 � "7 � "6/; !6 D 1

3
."8 � "7 � "6/C "5

E7 !7 8 !7 D "6 C 1
2
."8 � "7/:

When V.ı/ is minuscule, we also prove that for any m in the interior VC of C, one
may choose the probability p D .pb/b2B.ı/ on the crystal B.ı/ (and so the random
walk .S`/l�0 on Z

n) in such a way its drift is m.
The main result of [8] and [9] may be stated as follows

Theorem 6 ([8, 9]). If the representation V.ı/ is minuscule and m D E.X/ 2 VC,
then the transition matrix of the r.w. .S`/`�0 conditioned to stay inside C is equal to
PH. In particular, for any � 2 PC, one gets

P�.S` 2 C;8` � 0/ D p��s�.p/
Y

˛2RC

.1 � p�˛/:

Furthermore, when �.`/ D `mC o.`˛/ with ˛ < 2=3, one gets

lim
`!1

f `
�.`/=�

f `
�.`/;�

D s�.p/:

The same result holds for direct sums of distinct minuscule representations and also
for some super Lie algebras, for instance g.m; n/ (see [7]).

Example. Case of a C2 representation: sp.4;C/.
We consider the representation V D V.!1/. The corresponding crystal is

B.!1/ W 1 1! 2
1! 2

1! 1:

The probability p D .p�!
e 1
; p��!e 1 ; p�!

e 2
; p��!e 2/ is such that

p�!e 1 � p��!e 1 D p�!e 2 � p��!e 2 :

In this case, one fixes 0 < p2 < p1 < 1 with p1 C p2 < 1 and sets

p�!e 1 D p1; p��!e 1 D
c

p1
; p�!e 2 D p2 and p��!e 2 D

c

p2

with c D p1p2. 1
p1Cp2 � 1/ (so that p1 C p2 C c

p1
C c

p2
D 1/.
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A random path in the plane and its Pitman transform, for the vectorial representation
of sp.4;C/

P0

�
S` 2 C;8` � 1

�
D
�
1 � p2

p1

��
1 � c

p1p2

��
1 � c

p1

��
1 � c

p2

�
:
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