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Preface

Welcome to the proceedings of the 14th European Workshop on Dependable
Computing, held in Coimbra, Portugal.

EWDC is a privileged forum for discussion of current and emerging trends
on dependability area, fostering a close and fruitful contact between researchers
from both academia and industry. After the first series, started in 1989 and held
on a yearly basis until 2000, EWDC was revived in 2009, running since then every
two years, alternatively with the European Dependable Computing Conference
(EDCC). In 2009 EWDC was held in Toulouse, and in 2011 in Pisa.

The University of Coimbra had the pleasure of hosting the 2013 edition of the
workshop. Established in 1289, this is one of the oldest universities in Europe. It
is located in Coimbra, a small city built around the university, again along the
European tradition of university towns.

EWDC 2013 focused on dependability and security of software and services.
This is a challenging theme, especially when considering that information sys-
tems are more and more based on complex, heterogeneous, dynamic software
and services, which are characterized by demanding quality attributes. Inter-
operability in the presence of dependability and security guarantees, as well as
techniques and tools to assess the impact of accidental and malicious threats,
are among the crucial aspects to be addressed.

The technical program included nine full papers and six short papers, ac-
cepted from 24 submissions, with some interesting contributions from joint work
between academia and industry. All these papers were blind-reviewed by the Pro-
gram Committee (PC) members and external reviewers. A total of 72 reviews
were received, and each paper was reviewed by three referees.

For the first time in EWDC, some authors were invited to submit fast-
abstracts, having the opportunity to present at the workshop work in progress
or new ideas addressing very interesting issues in the dependability area. Six
fast-abstracts were accepted.

We thank the PC members and external reviewers for their invaluable con-
tribution in the rigorous review process. A special appreciation to the EWDC
Steering Committee members for their precious guidance.

We hope EWDC 2013 yields a positive impact in the research projects and
careers of all participants, and that these proceedings will be a valuable source
of knowledge for future readers.

May 2013 Marco Vieira
João Carlos Cunha
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Enhancing Intrusion Detection in Wireless

Sensor Networks through Decision Trees

Alessia Garofalo, Cesario Di Sarno, and Valerio Formicola

Department of Technology, University of Naples Parthenope, Naples, Italy
{alessia.garofalo,cesario.disarno,

valerio.formicola}@uniparthenope.it

http://www.dit.uniparthenope.it/FITNESS/

Abstract. Wireless Sensor Networks (WSNs) are being increasingly
adopted also in very sensitive applications where it is of paramount
importance to ensure that the sensor network is protected from cyber-
security threats. In this paper we present a new IDS architecture designed
to ensure a trade-off between different requirements: high detection rate
is obtained through decision tree classification; energy saving is obtained
through light detection techniques on the motes. A dataset including
sinkhole attack has been created and employed to evaluate the effective-
ness of the proposed solution. Such a dataset has been made available,
and will facilitate future comparisons of alternative solutions.

Keywords: Decision Tree, Anomaly Detection, Misuse Detection,
Wireless Sensor Networks, Intrusion Detection Systems.

1 Rationale and Contribution

Wireless Sensor Networks (WSNs) are being increasingly adopted also in very
sensitive applications such as forest fire detection [1], power transmission and
distribution [2], localization [3], military applications [4], Critical Infrastructures
(CIs) [5], underwater infrastructures monitoring (Underwater Wireless Sensor
Networks) [6].

In such a context, it is of paramount importance to ensure that the sen-
sor network is protected from cyber−security threats. Unfortunately achieving
this objective is made particularly challenging by a number of characteristics
of WSNs, the most relevant being: limited computational resources, preventing
the implementation of strong cryptographic mechanisms; and their deployment
in wild unattended environments, where it is easy for the attacker to physically
access the devices (e.g. to read cryptographic keys directly from the memory).

Since it is commonly agreed that attacks cannot be always avoided or pre-
vented, intrusion detection is thus needed as an additional line of defense. De-
tecting intrusions is the goal of Intrusion Detection Systems (IDSs) that already
represent a key tool for ensuring cyber security in traditional computer based
systems. Besides detection capabilities IDSs can also offer additional mecha-
nisms, such as diagnosis [7] and prevention [8]. IDSs architectures for WSNs are

M. Vieira and J.C. Cunha (Eds.): EWDC 2013, LNCS 7869, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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currently being investigated and many solutions have been proposed in the liter-
ature. Unfortunately, no widely agreed solutions are currently available and this
is due to many reasons, the most important ones being i) the high heterogeneity
of technologies and protocols behind the term WSN; ii) the lack of means for
actually comparing the effectiveness of different IDS solutions.

As for i) it is of great importance to develop solutions that can be applied
to the standards (e.g. protocols, routing algorithms, operating systems) mostly
adopted by industries, and to develop systems that can be used independently
of the specific network topology. A first contribution of this paper is the imple-
mentation of a novel IDS solution for WSNs. The proposed solution is based
on the architecture presented in [9] and exploits statistical models and cognition
based detection techniques [10], in particular [11] Decision Trees, to achieve high
detection rates and low power consumption. Our solution specifically addresses
mesh networks. For such topology in WSNs, only few works are available. Ex-
isting solutions often suggest IDS architectures, and the related characteristics,
exploiting, and thus taking advantage, of components offered by the specific
network topology. If no network topology is mentioned, then a hierarchical de-
tection mechanism is often obtained through election mechanisms [12]. On the
contrary, our purpose is to investigate a specific network topology and at the
same time to provide solutions that can be used in other topologies. So, the best
choice to us was to consider all nodes in the network as peers, thus as part of a
mesh network (more details are provided in following sections). The developed
solution targets the Ad hoc On Demand Distance Vector (AODV) [13] routing
protocol. This choice was made since AODV is both widely adopted and it is
also the underlying routing protocol for the Zigbee standard specification.

With respect to ii), as an example there is no WSN dataset including secu-
rity attack traces that can be used for comparing detection capabilities of dif-
ferent IDS architectures or implementations. Currently, publicly available WSN
datasets typically contain sensor readings and/or functional parameters [14] [15]
[16]. On the contrary, to the best of our knowledge, no dataset is currently avail-
able about WSN cyber security issues, i.e. about WSN routing attacks. A second
contribution of this paper is therefore the production of the dataset, including
sinkhole attack, that was employed for setting up the detection parameters of
our IDS. The dataset is further described in Sect. 4 and is made available for
further researches and for comparisons to our work [17].

The paper is organized as follows. Section 2 provides an overview of intrusion
detection, reviews related work and compares available IDS solutions to our
work. Section 3 describes the IDS architecture used in this work, its components
and corresponding detection activities. Section 4 presents the experimental setup
and Sect. 5 describes the cyber attack that was implemented. Section 6 presents
the experimental results obtained, and Sect. 7 discusses the results achieved.

2 Background and Related Work

The National Institute of Standards and Technology (NIST) [18] identifies two
main approaches to intrusion detection, misuse detection and anomaly detection.
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In misuse detection, only known attacks can be detected: also, all known attack
patterns need to be previously described e.g. through separate signatures. In
anomaly detection, the system activity is monitored and an attack is detected
whenever the current behaviour of the system is considered to be different than
the one expected when no attack occurs.

Learning techniques for intrusion detection activities can be divided in super-
vised, unsupervised and semi-supervised. In supervised learning, a training set
has to be provided where each information is typically composed by several at-
tributes that describe the features of a target system. In the provided training
set, a target attribute has to be given that represents the goal to be learned− e.g.
if the goal is to detect cyber attacks, the target attribute may have the values ”no
attack”, ”under DoS attack”, ”under sinkhole attack”. So, in supervised learn-
ing the IDS learns how to detect previously labeled attacks through available
attributes. Instead, in unsupervised learning a normal behaviour is described
with no a priori knowledge: when the behaviour of the system does not match
the expected normal behaviour it is marked as abnormal − e.g. in the case of in-
trusion detection from cyber attacks, the system is detected as under attack, but
nothing can be said about which specific attack is occurring. Semi−supervised
learning is an hybrid approach between supervised and unsupervised learning
[19] [20] [21].

Our work proposes a novel IDS for WSNs that aims to achieve high detection
accuracy and light detection mechanisms on motes. This work improves aspects
of the architecture proposed in [9], where an IDS is proposed and validated
for WSNs within CIs. In [9], a hybrid architecture is proposed where intrusion
detection activities are performed both by a Central Agent and a number of
Local Agents. However, details are not provided about the implementation of
the Central Agent: this aspect is instead investigated in our work.

In [22], the same architecture as [9] is used; additionally, an implementation of
the Central Agent is proposed and it makes use of Hidden MarkovModel (HMM).
However, configuration of HMM is not simple and it is also based on a priori
knowledge of several characteristics of the target system, but these information
can be unavailable.

In our work, sinkhole [23] attack was considered on a WSN simulated through
NS−3 [24]; the implementation proposed for Central Agent uses Decision Trees
(DT): advantages and characteristics of this approach are detailed in following
sections. Our experimental campaign shows that different DT techniques do not
achieve comparable detection capabilities, so the choice of a specific learning
method is an important task when the IDS is featured by DT learning.

Recently, several intrusion detection techniques were developed in order to find
suitable solutions for security issues of WSNs. They are called centralized when
a base station provides all intrusion detection capabilities, whereas decentralized
solutions make use of the sensors’ capabilities for performing intrusion detection
activities.
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Currently, IDSs rarely choose fully centralized approaches, since the IDS
would represent a single point of failure, and a slow reaction time would also be
experienced. Also, all motes should often send information to the central IDS,
thus consuming additional resources. This issue could be mitigated by lowering
the frequency of communications, but this would also imply in less effective de-
tection mechanisms. Moreover, centralized solutions are vulnerable to routing
level attacks. In [25], a centralized approach is chosen because of the computa-
tion and resource constraints that would be experienced by deploying an IDS
on motes. While low resource consumption is claimed, it is not proved: as an
example higher communication costs due to the IDS are not considered. From
the point of view of intrusion detection accuracy, the IDS in [25] claims to obtain
high detection rates but the work cannot be compared to ours since it does not
provide data used for their experiments.

More research work can be found on decentralized solutions: i.e. intrusion
detection mechanisms are used only on WSN motes. Typically those solutions
imply either high energy consumption or low detection accuracy. Also, the pro-
posed architectures should take into account the low availability of resources,
otherwise for instance the intrusion detection activities could discharge batteries
very quickly and the service provided by the WSN would soon become not avail-
able. In [26], a fully decentralized architecture for anomaly detection is proposed:
high detection and low false positive rates are claimed to be achieved, but we
are not able to compare our work to theirs, since test data are not made avail-
able for comparisons. In [26] no considerations or experimental tests were made
about energy consumption: also, each node is assumed to have enough resources
in order to perform the required computations. Authors are aware that the tech-
nique they propose cannot be applied to all sensor networks: we can say that
the proposed detection mechanisms can hardly be used on existing WSNs. Our
solution is instead energy-aware since detection activities were chosen according
to the low availability of computational resources on motes.

As discussed in next section, DT learning has significant advantages and the
most relevant issues can be mitigated. DTs have already been demonstrated to be
effective, while compared to other detection techniques, for traditional IP-based
networks. As an example, in [27] a DT algorithm is compared with a different
supervised learning method: experimental results show that the detection rate
of the decision tree is higher than the other one for almost all the cyber attacks
the techniques were tested for. However, we are not aware of application of DT
to WSNs.

As we already introduced, the main purpose of our solution is to enhance
cyber security on WSNs and at the same time to take into account the specific
characteristics of WSNs. So, our target is to reach acceptable solutions for a
set of requirements, including low energy consumption for motes, high detection
rate, low false positive rate.
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3 Intrusion Detection Architecture for Wireless Sensor
Networks

The IDS architecture proposed in [9] and considered for improvements in this
work is shown in Fig. 1. The IDS is composed by a Central Agent (CA) and
several Local Agents (LAs): each LA is deployed on a WSN node and the CA
is deployed on a server that acts as a base station for the WSN. Aspects about
fault tolerance are beyond the scope of the architecture.

Fig. 1. IDS architecture

3.1 IDS Local Agent

The main components of the LAs are:

1. Local Packet Monitor: it monitors the traffic flowing through the node where
the LA is deployed

2. Control Data Collector: it performs measures of parameters that have to be
sent to the CA

3. Local Detection Engine: it performs local detection activities, raises security
alerts, receives response messages from the CA, and is in charge of recovery
activities when required

The Local Detection Engine performs detection activities by making use of data
gathered by the Control Data Collector and related to monitored nodes - the
choice of the nodes to be monitored by each LA is performed by the CA. When
a potential attack is detected, a ’weak’ detection event occurs: in that case, the
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potentially compromised node is added to a blacklist and all routes containing
that node are replaced so to forward packets through a different node. Also,
the LA sends a security alert to the CA and waits for a response confirming or
rejecting the alert. If the response is not received, the LA repeats the process
and forwards data (including the alert) through different nodes until a response
is received by the CA. When this happens, the blacklist is emptied or freezed
according to the decision of the CA. Also, after the alert is confirmed the LA
performs reactions chosen by the CA, otherwise the LA returns to regular mode.
Further details can be found in [9]. We highlight that there is no interaction be-
tween LAs, since the final decision about a potential attack is performed through
interactions with the CA (as shown in the following section). The computation
of the final decision is only demanded to the CA, and this allows to reduce the
computation on the mote and also LAs are fully independent from each other,
so attacks to a specific LA do not have direct consequences on other LAs.

The chosen anomaly detection technique makes use of threshold metrics [10]:
that is, specific events are counted over a given time window. If the number of
events exceeds a given threshold, an alarm is raised. In this work, events related
to cyber security of the system are chosen and counted. The events are counted
through Exponential Moving Average (EMA): in its expression, a factor called
smoothing factor is defined that gives higher weight to most recent data.

EMAt = EMAt−1 + α (Mt − EMAt−1) , α = 2/ (N+1) (1)

In (1), EMAt is the current value for EMA, EMAt−1 is the last value obtained
through EMA, α is the smoothing factor, N is the window size, Mt is the current
value for the parameter being counted.

Equation (1) was chosen over Moving Average (MA) since it only requires
the storage of last value obtained at run time, instead the expression of MA
would require to store all data collected in the given window. The expression for
MA is:

MAt =
1

N

N−1∑
i=0

Mt−i (2)

being MAt the current value of the MA, Mt−i the value for the parameter being
counted at time t−i, N the size of the considered window. Equation (2) shows
that the choice of MA would imply storage of all data in the moving window:
specifically, space requirements grow linearly as the window size increases.

In (1) instead, the required storage size is not dependent on the size of the
chosen window. So, even if a very large window size is chosen, space requirements
of (1) are not so high to let this method be not usable on the mote. Also, the
computations required by (1) are not highly resource-consuming: for each time
slot, the only activity performed by a LA during intrusion detection activities is
to update values in (1), compare the obtained result with the estimated thresh-
old, and eventually send an alert to the CA. So, usage of EMA allows higher
energy saving on the mote with reference to MA.



Enhancing Intrusion Detection Systems for Wireless Sensor Networks 7

3.2 IDS Central Agent

The CA improves the detection capabilities of the proposed architecture through
the validation of security alerts raised by LAs when an attack is detected. In this
work we assume that the CA and LAs are free from faults or failures because
we are focusing on intrusion detection capabilities of IDS.

The activities performed on the CA make use of a supervised technique and
they are composed of two stages, called profiling and misuse detection. In the
preliminary (profiling) stage, the CA collects data related to all nodes and gains
knowledge of the specific characteristics of the network. This allows to define
rules for detection of previously chosen cyber attacks. Also, in this stage the
CA defines the nodes to be monitored by each LA (election mechanisms are
beyond the scope of this work). In themisuse detection stage, the CA periodically
receives information collected by each sensor for detection purposes: also, the
CA validates or rejects incoming security alerts raised by LAs. In this stage,
detection activities are performed at runtime by comparing current information
to the definition of security attacks that was made in the previous stage.

Detection activities on the CA are based on Decision Trees and they are
detailed in the following.

Decision Trees. As introduced in Sect. 2, Decision Tree (DT) learning is a
promising approach for performing intrusion detection activities. DTs make use
of supervised training: they need to be provided a training dataset and the target
feature to be learned. The purpose of DTs is to split a given dataset into homo-
geneous subsets: specifically, the subsets to be created represent homogeneous
data with reference to a specific parameter that belongs to the dataset. In the
case of intrusion detection activities, the DT searches the available dataset for
the features that better describe the conditions under given cyber attacks and
under no attack.

In DTs, the attribution of a node to a certain class depends on the technique
selected. Each technique is characterized by different parameters that aim to
describe how homogeneous are data within a candidate subset (a branch or a
leaf) of the DT. When the tree is built, the sequences of the conditions allowing to
attribute data to certain classes can be used, e.g. in the form of if-else conditions,
to detect if cyber attacks are occurring in the target system. It is thus clear that
the DT is only able to forecast all cyber attacks that were provided during the
training.

A disadvantage of DTs is overfitting. Overfitting occurs when an overcomplex
model is built, thus the built model fits the dataset too much and incurs in loss of
generality. This can be avoided through pruning techniques: when postpruning
is used, nodes that cause overfitting in the tree are removed after the tree is
built completely; instead, in prepruning the tree is built only partially according
to some given criteria that mitigate overfitting. Further details can be found
in [28].



8 A. Garofalo, C. Di Sarno, and V. Formicola

Intrusion Detection through Decision Trees. In this work, detection ac-
tivities on the CA are performed through DTs. The parameters chosen during
our experimental campaign are shown in Sect. 6: all parameters are estimated
through EMA as described in the previous section for LAs.

As already described, several techniques can be used to attribute nodes to spe-
cific classes: some of these techniques make use of similar parameters since they
represent improvements of the same algorithm over time. In this work, techniques
with different parameters were compared: they are Classification And Regression
Tree (CART) [29], CHi-squared Automatic Interaction Detection (CHAID) [30],
C5.0 [31].

In the profiling stage the Decision Tree is built by using the attributes in the
provided dataset that identify at best the target cyber attacks and the normal
network state (that is, when no attack is occurring). As discussed, the tree built
contains information to detect cyber attacks, so the CA is able to distinguish
all the types of attack that were already provided in the reference dataset. After
that, in the misuse detection stage the collected information is used to compare
the behaviour of the system with the features of attacks previously learned and
the normal behaviour.

4 IDS Experimental Setup

In this work, a WSN was simulated to perform preliminary tests of the pro-
posed architecture. The simulation was made through ns-3 [32]: the simulations
reproduce conditions when no attack is occurring and when a cyber attack is
performed. Specifically, a network is simulated where monitoring activities are
performed. Under these conditions, data are periodically collected and forwarded
to a target destination, so route update requests are periodically performed when
the collected data have to be sent. During a given attack window, the attacker
sends two different malicious packets to try to perform the attack described in
the following. In the dataset, 4 hours of simulated data are collected for 20 nodes:
the attacker is supposed to have successfully compromised one of these nodes, so
he/she tries to perform malicious activities within the given attack window. The
attacked routing protocol is AODV. The dataset used in this work is available on
our research group website [17]: Table 1 shows the setup parameters that were
used to generate the dataset.

5 Attack Model and Implementation

The attack implemented in the provided dataset is a routing attack known as
sinkhole. The purpose of sinkhole is to induce attacked nodes to send traffic
through a compromised node: when the attack is successful, more severe at-
tacks can be launched through the compromised node, e.g. collected data can be
tampered, selectively dropped and so on.

So, when a sinkhole attack is performed, the attacker makes a route through
the compromised node to a given destination look attractive to attacked nodes:
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Table 1. Simulation parameters for the test dataset

Network Simulator NS-3 [32]
Implemented Attacks Sinkhole [23]
Routing Protocol AODV [13]
Number of devices simulated Nd = 20
Simulation time [hours] 4
Number of attackers 1
Sinkhole attack time window t ∈ [6400, 8000]s

to do this, e.g. the attacker advertises a route to the WSN base station through a
packet containing information about high quality routing metrics of the compro-
mised node, such as low distance from the destination (the metrics are related
to the specific routing protocol used in the network). When the attacked node
receives the packet, it compares the information obtained to its route: if the new
route is more attractive than his, it is replaced with the old one. In that case,
the attack is successful: from this moment on, all the traffic directed from the
attacked node to the WSN base station is sent through the compromised node.

In the simulated dataset, the routing protocol is Ad hoc On demand Distance
Vector (AODV) [13]. AODV makes use of four message types: RREQ (Route
REQuest), RREP (Route REPly), RERR (Route ERRor), RREP-ACK (Route
REPly ACKnowledgement). These messages are used respectively to request a
route to a given destination, to reply to a RREQ message by providing informa-
tion about the requested route, to notify e.g. that a route has to be deleted, to
return an acknowledgment when a RREP message is received.

Sinkhole attack to AODV routing protocol was launched as follows:

if (isAttackTimeWindow)

then SendSinkholeRREQ(myIP) and SendSinkholeRREP(myIP)

In this work, the attacker is assumed to have already compromised a legitimate
node in the WSN: periodically, when routing activities are performed by the
compromised node, a check is made whether actual time belongs to the attack
time window. When the condition is met, the attacker launches the sinkhole
attack, so a legitimate routing request is performed for a path to the WSN base
station through a RREQ message. When no attack is being performed, RREQ
messages are sent only when knowledge of a specific route is necessary. So, the
attacker does not need to alter the format of this message for its purposes,
however the message is forced to be sent.

After the RREQ message is sent, the attacker itself sends a route response
through a RREP message. The message is tampered with high quality route
metrics in agreement with AODV protocol: according to RREP message format,
the message has to contain a low distance from the route destination (expressed
as low number of hops) and a recent timestamp to prove that the route is the
most recent (through a high sequence number). When the tampered RREP is
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sent, other nodes check the new route: if the new route is more attractive than
the one they own, their old route is replaced with the new one and the attack is
successful.

6 Experimental Campaign and Results Analysis

This section shows the preliminary results obtained through the dataset de-
scribed in Sect. 4. In following tables, detection capabilities were measured
through False Positive Rate (FPR), False Negative Rate (FNR), True Nega-
tive Rate (TNR), True Positive Rate (TPR), Accuracy (ACC). FPR represents
the rate of cases of no attack identified incorrectly, FNR represents the rate
of cases of attack identified incorrectly, TNR represents the rate of cases of no
attack identified correctly, TPR represents the rate of cases of attack identified
correctly, ACC is the total rate of correct detections.

FPR =
FP

FP + TN
, FNR =

FN

FN + TP
, TNR =

TN

TN + FP
, (3)

TPR =
TP

TP + FN
, ACC =

TP + TN

TP + TN + FP + FN
(4)

So, FPR and FNR represent rates of incorrect detections, whereas TPR and
TNR represent rates of correct detections: finally, ACC represents the overall
accuracy of the detection activity - in (3) and (4), TP = true positive, FN =
false negative, FP = false positive, TN = true negative.

Table 2 shows the setting parameters for the simulation of LAs. Table 3 shows
the parameters monitored for both Local Agents and Central Agent through
EMA. A higher number of parameters was initially taken into account by evalu-
ating the characteristics of AODV routing algorithm (that was detailed in pre-
vious section). After that, tests were performed on the target dataset and they
revealed the presence of redundant information, so they were excluded.

Table 2. Setting parameters for each Local Agent

Number of monitored nodes per Local Agent Nn = 3
Sliding window size N for EMA 3
EMA update delay [s] 1
Training Data 50% of dataset [17]
Validation Data 50% of dataset [17]

As for simulations of CA, in the experimental campaign a number of tests were
made about detection through Decision Tree. As introduced in previous sections,
Decision Trees can be built through different methods, and different results are
obtained according to the specific method chosen. So, different Decision Trees
techniques were tested, and after that they were compared in order to choose
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the one with better results. Also, in Decision Trees different parameters describe
each specific learning method: so, each method was tested with different values
of its specific parameters, then the final values were chosen for each method with
reference to the best results in terms of the metrics shown in (3) and (4).

The final values for each decision tree algorithm were obtained by performing
several tests and choosing the settings which produce the best results in terms
of the metrics defined in (3) and (4). The settings are shown in Table 4. The
compared techniques were Classification And Regression Tree (CART) [29], CHi-
squared Automatic Interaction Detection (CHAID) [30], C5.0 [31]: as already
introduced, the specific parameters shown in the table are related to the specific
learning characteristics of each decision tree.

Table 3. Parameters monitored by Local Agents and Central Agent

EMARREQ Mean number of exchanged RREQ messages per second
EMARREP Mean number of exchanged RREP messages per second
EMARERR Mean number of exchanged RERR messages per second
EMADROP Mean number of dropped messages per second
EMAFWD Mean number of forwarded messages per second
EMAROUTE Mean number of route update per second
EMAhf Mean number of hop count change frequency per route per second
EMAsf Mean number of sequence number update frequency per route per second
EMAhr Mean hop count update range per route per second
EMAsr Mean sequence number update range per route per second
MON Monitored nodes

Table 4. Setting parameters for comparison of data mining techniques on Central
Agent

CART [29] Maximum tree depth 20
Maximum surrogates 8
Impurity measure Gini index
Minimum impurity change 10−4

CHAID [30] Maximum tree depth 20
Alpha for splitting 0.05
Alpha for merging 0.05
Epsilon for convergence 10−3

Maximum iterations for convergence 100

C5.0 [31] Pruning severity 100
Number of folds for cross-validation 10
Minimum records per child 2

All techniques Training Data 50% of available dataset [17]
Validation Data 50% of available dataset [17]
Sliding window size N for EMA 3
EMA update delay [s] 1
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Table 5 shows the final results achieved in our experimental campaign through
the different learning methods: the most effective technique was CART. As a
matter of fact, it is the only technique that achieves both low FPR and low
FNR. Also, CART has high TPR and high TNR: that means that this technique
detects correctly attacks and no attack much better then CHAID and C5.0.
These two methods have been estimated as more accurate as they have higher
ACC, but they rarely detect the sinkhole attack (TPR is low and FNR is high
with reference to CART). Through this experimental campaign, CHAID was not
capable of detecting attacks: conditions under no attack are correctly detected
(TNR = 1, FPR = 0); also, attacks are never detected (TPR = 0), instead they
are always detected as no attack (FNR = 1).

In Table 5, experimental results presented in [33] are also shown. In this
work, sinkhole attack was simulated on AODV routing protocol by extending
an available simulation package, then performances of the proposed architecture
are tested through these simulations. As already discussed, to the best of our
knowledge neither the work [33] nor other works provide an attack dataset for
comparisons. However, we take into consideration results in [33] as a prelimi-
nary mean for understanding the orders of magnitude of performances that are
currently obtained through architectures similar to ours. In Table 5, we can see
that our IDS that makes use of CART has not only comparable, but also higher
performances than the solution proposed in [33].

Table 5. Performances of the proposed IDS through different decision tree techniques
and comparisons to PCADID architecture proposed in [33]

Architecture Tested Decision Tree FPR FNR ACC TPR TNR

IDS proposed in Fig.1 CART 0.02 7∗10−4 0.978 0.999 0.978
IDS proposed in Fig.1 CHAID 0 1 0.994 0 1
IDS proposed in Fig.1 C5.0 3∗10−6 0.968 0.995 0.032 0.999

PCADID [33] - 0.15 - - 0.932 -

7 Summary and Conclusions

In this paper, an IDS for WSNs was presented that aims not to optimize one
specific requirement, but to address several existing issues and to achieve an
acceptable trade-off among them - our main targets are high intrusion detec-
tion rate, implementation of anomaly detection techniques on WSNs that allow
low energy consumption, implementation of intrusion detection techniques on
mesh networks. As a matter of fact, the proposed architecture can be especially
addressed for applications whose main purpose is to monitor and keep under con-
trol environmental parameters, as in environmental monitoring. In such cases,
ensuring at any time the minimal working conditions for WSNs is a key aspect
in order to keep the monitoring activities always available.
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Since datasets are not currently available for comparing existing works with
our results, this work also provides a reference dataset [17] created through ns-3:
the dataset contains normal and malicious network traffic and it was used to
obtain the experimental results shown. This dataset is available for comparisons
with future works. Even though comparisons cannot be made through a reference
dataset, we made considerations about a work [33] which tests intrusion detection
capabilities of a IDS against the same cyber attack and on the same routing
protocol as the ones we considered: comparisons to our experimental results
show that better performances are obtained in our work both in terms of correct
detection of attacks and in terms of low false positives.

We plan to enhance intrusion detection activities by introducing additional ap-
proaches that are already proved to be successful in other different environments.
For instance, the IDS could improve its detection capabilities by making use of
additional specific information whether the specific WSN allows it; also, informa-
tion for detecting attacks could be collected at different architectural levels [34] or
through diverse sources [35]. Our work also aims at further improvements about
the aspect of energy consumption: for instance, an estimation of the effective re-
sources consumption on motes for the proposed techniques can be made. After
that, threshold metrics on LAs could be investigated further in order to define at
best the normal behaviour and the alert threshold i.e. if communications are only
made when necessary, a higher amount of energy is saved.
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Abstract. This position paper describes initial efforts and ideas for the
development of a middleware framework to support the operation of
adaptive Wireless Sensor Networks applications with real-time and de-
pendability requirements. We identify a set of underlying services that
need to be implemented as part of this framework, explaining why they
are needed and what they provide. In order to illustrate how this middle-
ware can be used and its potential benefits, we consider the well-known
LQER routing protocol to show how it must be changed to incorporate
probabilistic real-time requirements and meet them in a dependable way.

Keywords: Wireless sensor networks, dependability, timeliness,
middleware.

1 Introduction

Wireless sensor networks (WSNs) have a number of unique capabilities which
make them suitable for many different classes of applications. This includes
weather monitoring, industrial monitoring and quality control, object tracking
and medical monitoring. But the nice features of WSN, like small size, reduced
price and ease of use and deployment in the field, also pose a set of challenges
to the application/system developer. WSNs have limited power supply, limited
memory and processing power, and may need to operate under harsh conditions
on unpredictable environments, making them more susceptible to external faults.
The primary focus of the research community has been on addressing these
challenges, designing protocols and techniques which try to be as energy efficient
as possible, and also robust against the potential faults.

A problem that has been far less considered is that of achieving depend-
able solutions. Dependability can be defined as “the ability to deliver a service
that can justifiably be trusted” [2], and can be broken down into six attributes:
availability, reliability, safety, confidentiality, integrity and maintainability. These
attributes, and dependability in general, are particularly important in WSN ap-
plications involving the control of critical infrastructures, real-time coordination
of robots or other vehicles, or involving life-care services.
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Since applications using sensor networks rely on the availability and timeliness
of the collected sensor data, one way of looking at dependability in this context
is to reason in terms of these attributes. In fact, timeliness is not by itself an
attribute of dependability, but instead the probability that timeliness require-
ments are met (i.e., that the system is reliable with respect to timing faults).
In [5] the authors explore the concept of perception quality, and observe that
as time passes, the quality of our perception of a sensed environment variable
diminishes. In other words, the similarity between the real observed event and
its systems internal representation tends to grow weaker the longer the sensing
took place. As such, a dependable network is understood as one that is able to
deliver the sensed data within a temporal bound, and do that with a desired
probability.

In this paper we provide initial ideas for a middleware aimed at supporting
dependable applications and services with timeliness requirements, running over
wireless sensor networks. Achieving hard-real time properties in WSNs is an
unrealistic objective [10]. Therefore, our work is intended to support adaptive
services and applications, which are able to adjust their behavior at run-time
to meet available resources and environment conditions. Dependability objec-
tives are achieved through the adaptation process rather than by securing some
fixed temporal bound. In practice, assumed bounds will be secured with a given
probability, and the middleware will bring awareness about the relation between
bounds and the probability of securing them at any given moment. The resulting
programming model will be adequate to develop these applications in environ-
ments that exhibit uncertain temporal bounds with some degree of stability.

The paper is organized as follows. In Section 2 we go over related work on the
topics of dependability and timeliness in WSNs. Then, Section 3 addresses the
middleware design, underlying assumptions, goals and architecture. In Section
4 we provide a brief overview of how the middleware can be used to address
timeliness requirements, considering a routing protocol as a toy example. Section
5 concludes the paper and refers to future work.

2 Related Work

2.1 Dependability in WSNs

A lot of research has been done on solving particular issues inherent to wire-
less sensor networks, such as energy conservation [1] or traffic reduction [8], a
topic that has not received as much attention has been that of dependability.
The dependability of a system reflects the trust a user has in that system, i.e.,
that the system will operate as expected [2]. Although dependability has several
attributes, availability and reliability are the more relevant ones to our focus
on timeliness. For a system to be highly available it means that its downtime
is very small (which is usually expressed as a percentage of uptime in a given
time frame). Reliability stands for the probability that in a time interval [0,t] the
system will operate properly and continuously. In the context of wireless sensor
networks, a dependable, reliable network, is a network where for a long sensing
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period the data is sensed, sent and delivered to the destination with a very small
(or no) downtime and with a very small loss of data [12]. When considering also
timeliness requirements, as we do, timing faults must be avoided, and this need
must be reflected in the notion of dependability.

In [12], the authors propose an event-based middleware service to improve the
dependability of the network. This service uses the publish-subscribe scheme,
and divides the network into clusters, where the cluster-heads serve as event
brokers to the remaining nodes in a cluster (the publishers, or event sources)
and to the base-station, which acts as subscriber. When a cluster-head fails, a
network reconfiguration phase is triggered and the other cluster-heads have the
responsibility of “adopting” the nodes of the failed cluster.

In contrast with the previous example, we want to provide support for aware-
ness of the timeliness of the network operation, as a means to allow applications
to adapt when some nodes fail or stop responding and when the communication
latency varies over time (e.g., due to interferences, mobility, or other factors).
We thus provide enriched dependability guarantees.

2.2 Timeliness in WSN

Timeliness has been often overlooked in detriment of energy consumption. But
as WSNs delve evermore into the realm of time-sensitive applications and sce-
narios, it becomes increasingly important to address timeliness requirements in
the context of these networks. One issue that must be addressed is the very def-
inition of timeliness. In classical real-time computing, timeliness usually stands
for the execution of actions in a bounded and fixed, well-known, amount of time.
However, strictly satisfying deadlines requires a set of assumptions and system
models that do not hold for WSNs [9]. In WSNs, by their very nature, guarantees
about communication latency cannot be given in a strict sense. The network does
not exhibit deterministic behavior due to the open environment and resources
sharing. Communication is subject to varying and uncertain message delays and
loss, which makes worst case analysis very difficult or even impossible [9]. Thus,
the singular constraints of WSNs require a different characterization for the
notion of timeliness.

In [9], a generalized notion of timeliness is introduced, which takes into ac-
count the particular nature of WSNs. This notion is built on top of the idea
that applications should not request infeasible degrees of performance from the
network (a request for a strict deadline on an individual message, is an example
of such a request, mainly because of the uncertainty associated with end to end
latency in WSNs). The authors define formally, that the generalized notion of
timeliness is composed by a time interval, which delimits the target end-to-end
transmission interval for a sequence of messages, and by a level of confidence,
the probability of successful end-to-end transmissions within the time interval.

We have also previously exploited the idea of providing probabilistic guar-
antees in alternative to strict hard real-time guarantees [6]. We argue that no
matter the approach used to make WSNs more predictable, perturbations are
still likely to occur, and as such, instead of specifying fixed upper bounds on
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system variables (latency, maximum number of omissions, etc.) monitoring and
adaptation techniques should be used to characterize and deal with the uncer-
tainty. Therefore, we proposed a technique based on non-parametric statistics,
a lightweight method of statistical inference, which can be used to character-
ize environment conditions or, in other words, the state of the network. This
information can then be used for adaptation purposes. Our current work ex-
ploits the availability of such monitoring service, including it in a middleware
layer designed to support the development of adaptive real-time applications on
WSNs.

3 Middleware Description

The middleware is designed with the following two principles in mind:

Principle 1: Realistic assumptions about WSNs technology and deployment.
Principle 2: Probabilistic timeliness as opposed to hard real-time guarantees.

One of the problems with previous work done on the topic of timeliness
and real-time in WSNs has been that it is based on naive assumptions that
severely restrict their applicability to real-world systems [10]. Following Princi-
ple 1 we will stay clear of such assumptions, whether they are about network
and environment conditions, the goals of the architecture, or the applications
using it.

Another reason to stay clear of restrictive assumptions is to allow the middle-
ware to be applicable to a broader range of environments. The middleware design
should, as much as possible, be independent of the underlying network topology
and dynamics and of the expected applications and services running on top of
it. Lets consider, for example, routing protocols as potential services running
on top of the middleware. Both a flat, multi-route protocol, and an hierarchi-
cal cluster-based protocol should be able to take advantage of the middleware
although it was not designed specifically for either of them.

One assumption about the environment that is necessary, is that its behaviour,
while uncertain, has limited dynamics, i.e. the environment does not change to
rapidly in relation to the perception capabilities of the system. The results in
[7] validate this assumption, showing that adaptation can be done which is very
close to the theoretical perfect adaptation. This implies that the environment
dynamics are limited, otherwise this match would not occur, since the bound
values would be very different by the time the adaptation was complete.

As stated earlier, achieving hard real-time guarantees is an unrealistic goal
for wireless sensor networks. Therefore, in accordance with Principle 2, the de-
sign takes from the work in [6] and [9] and exploits the notion of probabilistic
timeliness guarantees.

With these principles in mind, we propose a middleware design that can be
described as a set of components or services that should run at each node in the
network and that provide other applications and services with useful information
about the runtime state of the network to support adaptation
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The main component is the monitoring service. This service is responsible for
monitoring system metrics, such as communication latency or node connectivity,
node energy or packet loss rate. The monitoring service itself can be designed
as a set of components, one for each monitored metric, and a communication
interface. The other components are in essence auxiliary to the monitoring com-
ponent, providing services it needs to accomplish its goal. These components are
the clock service and the non-parametric statistics service.

The clock service is explicitly included as an independent service, as it con-
stitutes a fundamental abstraction for distributed monitoring of time intervals
or, in this case, of communication latencies. Without a notion of global time it
would be impossible for the monitoring system to perform measurements of end-
to-end latencies, as required to provided the intended service. We are aware that
techniques based on round-trip delay measurements can be used to measure com-
munication latencies, which could lead to the idea that no global notion of time is
needed. However, these techniques requiring message exchanges are just implicit
forms of clock synchronization, even if no clocks are explicitly synchronized. On
the other hand, a clock service providing global time can be implemented with-
out the need to exchange messages, therefore standing as a building block on
its own. For instance, it might be possible that nodes have GPS-synchronized
clocks, or that they use the power lines for clock synchronization. If these meth-
ods are not available then a clock synchronization algorithm, such as the one in
[11] could be used.

The non-parametric statistics service [6] is the component responsible for re-
alizing the statistical operations over sample data provided at its input interface.
The monitoring service collects the required sample data, that is, measurements
of message delays for messages exchanged with neighbor nodes, and feeds the
statistics service to obtain the probabilistic distribution for these message de-
lays. Based on that, it will be possible to answer questions like “what is the
probability that a message will be delivered within X time units?”. Of course, it
may be possible to disseminate latency measurements to other nodes and hence
feed the statistics service with the necessary data to raise awareness about the
(probabilistic) latency to any other node in the network. In many cases, namely
if there is a sink node in the network, the relevant latency measurements will
concern the communication between nodes and the sink.

The monitoring component we have just described will be accessed by other
services or applications through an interface. As an example, consider the
interface for end-to-end latency estimates:

(latency l) <- getLatency (node n, probability p)

(probability p) <- getProbability (node n, latency l)

These two simple functions provide the basic service of the monitoring compo-
nent. In the first function a node can inquire the monitoring service about the
latency between itself and a node n that will hold with a given probability p.
For example, a sensor node that is sending temperature measurements to a sink
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node can become aware of the the latency bound that will hold with a certain
probability, say, 0.98. If this latency is too high (which can imply that the sink
may sometimes have a temporally inconsistent view of the temperature), then
maybe the node will decide to increase the frequency of updates in order avoid
such temporal inconsistencies with the indicated probability (0.98).

The second function is the complement of the first. In this case the application
will inquire the middleware about the probability that a given latency l to a node
n will hold. For example, the same temperature sensor node may want to know
how probable it is that the latency to the sink will be, at most, 200ms. If the
probability happens to be very low, then this may trigger some reconfiguration of
adaptation of the node behavior in order to achieve a more predictable behavior.

A similar style of interface can be designed for other monitored metrics, and
more powerful constructs can be built, in addition to these operations and maybe
using them. The tradeoff between providing a richer middleware is the over-
head in terms of needed resources, which are scarce in WSNs. This is why a
non-parametric approach, which is light-weight, is considered for the statistics
service.

4 Sample Application

In the following paragraphs we provide an example of how the support middle-
ware could be used to enhance an existing service, by allowing this service to
perform in a probabilistic real-time way, instead of being simply best-effort.

We consider a routing service, and focus on the modification of the LQER
(Link Quality Estimation based Routing for Wireless Sensor Networks) proto-
col [3]. LQER is inspired by MCR (Minimum Cost Routing) [13] and MHFR
(Minimum Hop Field based Routing), and utilizes the concept of a dynamic
sliding window of length k for storing historical data of link quality, i.e., the
success or failure of the last k transmissions on a given link.

The LQER protocol starts with the minimum hop field establishment, which
has the goal of setting up the optimal path to send data to the sink, for each
node. In this stage the sink broadcasts an ADV (advertisement) message which
contains the hop count to the sink (0 at the sink). This message will be prop-
agated through the network using the flooding algorithm and when a node n
receives an ADV message from a node m, it will compare its hop count (hn) to
the advertised hop count of node m (hm). If hm + 1 is smaller than hn then hn

is set to hm + 1 and n broadcasts the ADV message with hop count equal to
hn. If hm + 1 is equal to hn then n adds m to its forwarding table but does not
broadcast the ADV message. If hm + 1 is bigger than hn, then n simply ignores
the message. At the end of this stage each node should be able to calculate the
minimum hop count to the sink and have a forwarding node set.

Once the minimum hop field for each node has been established, nodes can
start routing messages to the sink. When a node needs to send a message to the
sink it will choose the node from its forwarding table with the best link quality,
that is the node which has the largest value of m

k where m is the number of
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successful transmissions among the last k transmissions in the sliding window
for that link. After the message is forwarded, the sliding window is updated to
account for the success or failure of that transmission.

LQER uses loss as a link quality metric, but the use of the support middleware
allows us to consider other time related metrics, such as the probability of success
to meet a certain deadline (expressed as the end-to-end latency to the sink) or the
estimated end-to-end latency for a desired probability of success. The necessary
adaptations for the protocol to operate with these metrics, take place in the Link
Quality Table Maintenance Algorithm and the Link Quality Estimation Routing
Algorithm. Bellow we provide an overview of the baseline algorithms and of the
necessary adaptations for each of the two discussed metrics to be used.

The majority of the changes happens in the Link Quality Table Maintenance
Algorithm. Instead of storing the success or failure of a given transmission on
some link, the algorithm first queries the middleware (calls the function get-
Probability) for the probability of sending data through that link within some
deadline (which may be a configuration parameter of the routing protocol). Then,
it stores the returned value, by first deleting the oldest value on the table and
inserting the new one. When choosing a node from the forwarding table, the al-
gorithm will choose the node with the highest average of the probability values
stored in the Link Quality Table.

The changes necessary to use the second metric are very similar to the above,
but instead of querying the middleware for the probability of meeting a dead-
line, the algorithm provides a probability and receives from the middleware an
estimate of the best possible end-to-end latency for that probability (calls get-
Latency). When choosing a node from the forwarding table, the algorithm will
choose the node with the smallest average of the end-to-end latency values in
the Link Quality Table.

5 Conclusions

In this paper we proposed a support middleware for applications with depend-
ability and timeliness requirements. We defined the middleware as a set of com-
ponents, a main monitoring service and a suite of auxiliary components, which
provide, through a programming interface, useful functions to applications run-
ning on WSNs. We showed what those functions might look like and provided
an example to illustrate how they may be used to in a protocol that takes
into account probabilistic timeliness requirements instead of simply exhibiting
best-effort behavior.

Our future work will focus on implementing the proposed middleware and
an example application, so as to study and evaluate the achievable benefits in
terms of the capability to effectively support adaptive real-time applications. We
intend to measure the overhead introduced by the middleware, in comparison to
a baseline implementation providing best-effort service.
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Abstract. We present a formal analysis of the dynamic domain estab-
lishment protocol in the Cloud logging service. The protocol is used to
establish a trust channel between the log as a service client agent (LCA)
and the log as a service server agent (LSA). Formal specification and ver-
ification have been carried out using the specification language HLPSL
and AVISPA, a state-of-the-art verification tool for security protocols.
AVISPA has revealed two main security flaws, one of which (previously
unheard of, up to our knowledge) allows an intruder to impersonate the
LCA to join the dynamic domain, and may launch a denial-of-service
attack. To address this problem, we propose to use explicit identity in-
formation in one’s signature. The other one is the information leakage
problem, to solve this problem we propose a modification of the protocol
by adding a key update protocol. After these modifications, this protocol
has been verified with AVISPA to be safe from these two attacks.

Keywords: Cloud computing, dynamic domain establishment, security
protocol, formal analysis.

1 Introduction

In Cloud computing, there are enormous processes running at distributed and
heterogeneous resources[1]. They produce a huge number of log records (in a
variety of different forms), stored in many different places. So it is very difficult
to handle these log records, let alone to manage them safely and automatically.
But logging services are very important in Cloud computing. For example, in
order to establish trust in Clouds, we can link together log records that are
produced by multiple devices so that we can reconstruct the complete history
of an event or result. Besides, logging services facilitate the communication and
recording of diagnostic audit trails, as well as provide means to help achieve a
number of security-related objectives[2]:

1. reconstruction of events—audit trails are used to reconstruct events when
a problem occurs, while damages are assessed by analysing audit trails of
system activity to identify how, when and why operations have stopped;
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2. intrusion detection—again, to identify malicious attempts to penetrate a
system and gain unauthorised access to resources;

3. problem analysis—status of processes running in critical applications or
services can be monitored with real-time auditing.

However, there are few people that put emphasis on the security of logging. So
in the area where logging services are needed, a lot of problems appear. For
example, Cloud provenance is based on logging services and it is very important
for establishing trust in Clouds. In Cloud provenance, there are some limitations
associated with it. For instance, current provenance mechanisms are object spe-
cific, that is, they do not automate the process of managing different log records
and linking dependent log records together. Log and audit records are not reason-
ably protected, which in turn affects the credibility of provenance in the Cloud.
Moreover, Cloud provenance mechanisms are deployed and fully controlled by
Cloud providers, that is, Cloud users do not have control over such mechanisms,
and neither can they access log and audit records. In order to overcome these
limitations, Imad M. Abbadi has proposed a framework for establishing trust
in Cloud provenance [3,4]. In the Abbadi’s framework, he addressed the above
problems by 1. Move log records from their originating distributed processes to
a centralized repository; 2. Make log records be easily queried using standard
mechanisms; 3. Associate individual log records with metadata.

Most importantly, Imad M. Abbadi has proposed a dynamic domain[5] con-
cept to securely and easily manage log records. The most common threat on a
logging service arises when an attacker compromises it, gains unauthorised ac-
cess to all log data being forwarded from log generators (e.g. systems, software,
middleware services), and modifies it to record fabricated data. To mitigate this
type of attack, the logging service needs to be deployed independently from any
parent application, on a strongly isolated compartment that provides robust
memory protection. It needs to be a small and simple software designed to resist
such attacks, and this should make attestation between the log generators and
the logging service more feasible. The logging service needs to be able to verify
the software configurations of all log generators. Such a verification mechanism
is required to protect the logging service from an attacker submitting arbitrary
logs, performing denial of service attacks, and also to filter out untrustworthy
logging requests from a compromised log generator. So it is very useful to apply
a dynamic domain to supply logging services.

A dynamic domain represents a group of devices that need to securely share
a pool of content[6]. Each dynamic domain has a unique identifier iD, a shared
unique symmetric key kD and a specific PKLd composed of all devices in the
dynamic domain. kD is shared by all authorized devices in a dynamic domain
and is used to protect the dynamic domain contents whilst in transit. This key
is only available to devices that are members of the domain. Thus, only such
devices can access the pool of content bound to the domain. Each device is re-
quired to securely generate for each dynamic domain a symmetric key kC , which
is used to protect the dynamic domain contents when stored in the device. Imad
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M. Abbadi has defined a dynamic domain called LaaSD (Log as a Service Do-
main). In an LaaSD, klaas is used to protect log records when transferred within
the LaaSD and klaas−cca is used to protect log records when transferred from
Cloud entities to the LaaSD. LaaSD consists of a platform that hosts Cloud LaaS
applications. The architecture of an LaaSD is described in Fig. 1 as follows.

Fig. 1. The structure of an LaaSD

The LaaS application is used to move disperse log records to a centralized
provenance system. Before an LaaSD can be taken into use, there are some
operations needed to be performed. For example, the LaaS server agent ini-
tialization, the LaaS client agent initialization, the LaaSD establishment, LaaS
client agents and an LaaS server agent mutual authentication, LaaS client agents
joining the domain. Imad M. Abbadi has provided some protocols to accomplish
these operations in his paper. We’ve found some faults in his protocols and these
faults will result in the failure of the Abbadi’s goals. These attacks we discover
are new. We believe that the attacks we discover demonstrate that our approach
is a successful way to automatically detecting errors in security protocols.

1.1 Structure of This Paper

The rest of this paper is organised as follows. In the next section we introduce the
dynamic domain protocol. In Section 3 we provide the protocol formalization.
In Section 4 we present the authentication flaw and the information leakage
vulnerability we’ve found in the protocols. In Section 5 we present our solutions
to these flaws and in Section 6 we draw some final remarks.

2 The Dynamic Domain Establishment Protocol

In this section we describe the dynamic domain establishment protocol[5]. Actu-
ally, there is no official description of this protocol; hence, in order to understand
it, we have analyzed the whole protocol. The whole protocol includes seven algo-
rithms. From Algorithm 1 to Algorithm 5, there are mainly some initialization
steps in them, and these steps don’t include the interactions between the LSA
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and the LCA. Algorithm 6 and Algorithm 7 are initiated to add the LCA devices
into the LaaSD managed by the LSA. The LSA sends an attestation request to
the LCA to prove its trustworthiness, the LCA then sends the attestation out-
come to the LSA. These steps are achieved using Algorithm 6. Adding a device
into the dynamic domain uses Algorithm 7, which starts upon successful com-
pletion of Algorithm 6. The objective of Algorithm 7 is to securely transfer the
key klaas and klaas−cca to the LCA. Both keys are sealed on the device hosting
the LCA, so that they are only released to the LCA when its execution environ-
ment is as expected. If the execution status of the device running the LCA is
trusted, the LSA checks if the device’s public key is included in the public key
list of the domain. If so, it securely releases the domain-specific key klaas and
the LCA-CCA-specific key to the LCA using Algorithm 7. The keys are sealed
on the LCA’s device, so that they are only released to the LCA when its exe-
cution environment is as expected. Upon the successful completion of the above
algorithms, the LaaS client and server agents establish a trust secure communi-
cation channel that is used to transfer the LaaSD key and policy to the LCA.
These two algorithms include the following two protocols which are the core
protocols in the Abbadi’s framework. The TPM (Trusted Platform Module) is
very important in these two protocols. It is a hardware module that provides an
interface to help users to produce and store keys. It can help users to utilize the
keys stored in it to encrypt or decrypt messages. It also has protected storage
and protected capabilities. The protocols are described as follows.
Protocol 1:

1.LSA → TPMLSA : TPMGetRandom.
2.TPMLSA → LSA : N1

3.LSA → TPMLSA : TPMLoadKey2(PrLSA−AIK)
4.LSA → TPMLSA : TPMSign(N1)
5.TPMLSA → LSA → LCA : N1||CertLSA||SignLSA(N1)
6.LCA → TPMLCA : TPMGetRandom.
7.TPMLCA → LCA : N2

8.LCA → TPMLCA : TPMLoadKey2(PrLCA−AIK)
9.LCA → TPMLCA : TPMCertifyKey(SHA1(N2||N1||ALSA||ilaas), PuLCA)
10.TPMLCA → LCA : N2||N1||ALSA||PuLCA||SLCA||ilaas||SignLCA(N2||N1

||ALSA||ilaas||PuLCA||SLCA)
11.LCA → LSA : N2||N1||ALSA||PuLCA||SLCA||ilaas||CertLCA||SignLCA

(N2||N1||ALSA||ilaas||PuLCA||SLCA)
In Protocol 1, the LSA first requests its TPM to produce a random number,

so the LSA sends to its TPM a command: TPMGetRandom (message 1). The
LSA’s TPM produces a random number N1 and sends it to the LSA (message
2). In order to provide a signature, the LSA asks its TPM to load its private AIK
(Attestation Identity Key) through the command TPMLoadKey2(PrLSA−AIK)
(message 3). After verifying that the current PCR (Platform Configuration Reg-
ister, a register in the TPM) value matches the one associated with PrLSA−AIK

(the private key of AIK), the LSA’s TPM loads that key. After its TPM has
loaded an AIK, the LSA sends a command TPMSign(N1) to its TPM, to get



28 W. Hu and D. Ji

its signature on N1 (message 4). The LSA’s TPM sends its signature and a
certificate to the LSA and then the LSA forwards it to the LCA (message 5).
The LCA requests its TPM to produce a random number, so the LSA’s TPM
produces a random number N2 and sends it to the LSA (message 6, message 7).
The LCA asks its TPM to load its private AIK (message 8). The LCA requires
its TPM to produce SHA1(N2||N1||ALSA||ilaas) and the signature on this data,
so the LCA’s TPM produces that data according to the command and sends it
to the LCA (message 9, message 10). Finally, the LCA sends the data produced
by its TPM to the LSA (message 11). In this protocol, TPMLCA is the TPM
of the device running the LCA; TPMLSA is the TPM of the device running the
LSA; ALSA is an identifier for the CSA (Cloud Server Agent) device included
in CertLSA; ilaas is an laaSD-specific identifier; CertLSA is the LSA device cer-
tificate and CertLCA is the joining LCA device certificate; SLCA is the platform
state at release as stored in the PCR inside the TPMLCA; PuLCA is the public
key of the LCA and PrLCA−AIK is the LCA’private AIK.
Protocol 2:

1.LSA → TPMLSA : TPMLoadKey2(PrLSA)
2.LSA → TPMLSA : TPMUnseal(klaas||klaas−cca||ilaas||PKL)
3.LSA → TPMLSA : TPMCertifyKey(SHA1(N2||ALCA||ePuLCA

(klaas||klaas−cca)))
4.LSA → LCA : N2||ALCA||PuLSA||SLSA||ePuLCA(klaas||klaas−cca)||

SignLSA(N2||ALCA||ePuLCA(klaas||PuLSA||SLSA))
In Protocol 2, the LSA first requests its TPM to load its private key PrLSA

(message 1). Then the LSA requests its TPM to unseal klaas||klaas−cca||ilaas||
PKL (message 2). After that, the LSA requests its TPM to sign SHA1(N2||
ALCA||ePuLCA(klaas||klaas−cca)) (message 3). At last, the LSA sends N2||ALCA||
PuLSA||SLSA||ePuLCA(klaas||klaas−cca)||SignLSA(N2||ALCA||ePuLCA(klaas||Pu

LSA||SLSA)) to the LCA, mainly to allocate two keys to the LCA (message
4). In this protocol, ALCA is an identifier for the LaaS client device included
in CertLCA; klaas is the LaaSD-specific content protecting key and klaas−cca

is the LCA-CCA-specific key for protecting content transferred between CCA
and LaaS and to establish trust between both entities; PKL is the public key
list used in the domain; SLSA is the platform state at release as stored in the
PCR inside the TPMLSA; PrLSA is the non-migratable private key of the LSA
and it is bound to TPMLSA and to the platform state SLSA; PuLSA is the non-
migratable public key of the LSA; ePuLCA(Y ) denotes the asymmetric encryption
of data Y using key PuLCA.

3 Protocol Formalization

In this section, we give a formal specification of the dynamic domain establish-
ment protocol first in Alice-Bob notation and then in the form of HLPSL (High
Level Protocol Specification Language). We notice that there are some inter-
nal operations in Abbadi’s protocols. These operations are included in the steps
where users’ TPMs take part in. We remove these steps in the protocols because
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they have no influence on the interactions between the LCA and the LSA. This
simplification is based on the assumption that the channels between users and
their TPMs are secure. By this means, we derive a precise model that ignores
some unnecessary states and still captures the original protocols. Finally, we
formally specify the security properties to be verified later in Section 3.2.

3.1 Alice-Bob Formalization

For the protocols described in Section 2, we can define a protocol formalization
in Alice-Bob notation by removing the steps that are irrelevant for our analysis.
Our formal model is built upon the protocols between the LCA and the LSA.
We notice that in these protocols there are several redundant steps, which can
be actually omitted without altering the security analysis. To make the proto-
cols more clear, we capture the most important steps of the protocols. These
simplifications allow for a shorter and simpler formalization, which is presented
in Protocol 3 as follows.
Protocol 3:

1.LSA → LCA : N1||CertLSA||SignLSA(N1)
2.LCA → LSA : N2||N1||ALSA||PuLCA||SLCA||ilaas||CertLCA||SignLCA

(N2||N1||ALSA||ilaas||PuLCA||SLCA)
3.LSA → LCA : N2||ALCA||PuLSA||SLSA||ePuLCA(klaas||klaas−cca)||

SignLSA(N2||ALCA||ePuLCA(klaas||PuLSA||SLSA))
The steps that either the LSA or the LCA interacts with the TPM don’t

affect the mutual authentication between the LSA and the LCA, so we remove
them. It is important to notice that this formalization still captures the original
protocols; in fact, we’ve formalized and analyzed also the longer version of the
protocols obtaining the same result. By analyzing the longer protocols, we’ve
found another kind of attack and we will talk about it later.

3.2 HLPSL Formalization

For a protocol to be verified with AVISPA’s[7] back-end model checking engines,
it must first be encoded in HLPSL—an expressive, modular, role-based formal
language that allows for the detailed specification of the protocol in question.
An HLPSL[8] model typically includes the roles played in the security protocol,
as well as the environment role and the security goals that have to be satisfied.
The conceptual model of our HLPSL formalization is not very complex, we just
use four roles to model the protocol. Translating the protocol into HLPSL is not
very difficult, since it is written in Alice-Bob notation.

A role in HLPSL uses channels defined by the environment role for sending and
receiving messages. The message sequences between each role have a one-to-one
mapping to the Alice-Bob notation defined in the previous section. AVISPA an-
alyzes protocols under the assumptions of a perfect cryptography and that the
protocol messages are exchanged over a network controlled by a Dolev-Yao in-
truder. That is, the intruder can intercept, modify, and generate messages under
any party name, but he cannot break cryptography without the decryption key.



30 W. Hu and D. Ji

We first specify the sequence of actions of each kind of protocol participant
in a module, which is called a basic role. Each basic role contains a set of state
transition definitions and local variables. In addition, each basic role contains
a set of shared constants defined by the environment role to model the shared
knowledge between different roles. In our protocol, there are two basic roles,
which are called ddp Init and ddp Resp. These roles describe what information
the participants can use initially(parameters), their initial states, and ways in
which the states can change (transitions).

The basic roles are composed together in a composed role called session.
Session role has no transition section, but rather it instantiates the two basic
roles, glues them together so they can execute together. Session role describes
sessions of the protocol. Each transition represents the receipt of a message
and the sending of a reply message, and the local variables are set during a
state transition. The transition section of our protocol model contains a set of
transitions. A transition consists of a trigger, or precondition, and an action to
be performed when triggering event occurs.

The last role to be defined in the protocols is the environment role, which is
a top-level role that contains global constants and a composition of the sessions,
where the intruder may play some roles as a legitimate user. There is also a
statement which describes the initial knowledge of the intruder.

An HLPSL model is a state machine, and an AVISPA model checking engine
tries to reach all possible states of the protocol to find an insecure state that vio-
lates at least one of the protocol’s safety properties—referred as ”security goals”
in AVISPA. There are two types of security goal supported by HLPSL—secrecy
and authentication(includes weak authentication and strong authentication)[9].
Each security goal, declared with a unique constant identifier, is an invariant
that must hold true for all reachable states. Three special statements in HLPSL
are used to specify the condition of a desired security goal. For secrecy goals,
the secret statement specifies which value should be kept secret among whom;
and if the intruder learns the secret value, then he has successfully attacked the
protocol. For authentication goal, a pair of statements (witness and request)
are used to check that a principal is right in believing that his intended peer is
presented in the current session, and agrees on a certain value.

Our HLPSL model specifies five security goals based on the Alice-Bob formal-
ization in Section 3.1. The security goals of our HLPSL model are specified as
follows: authentication on n1, authentication on n2, weak authentication on n1,
weak authentication on n2, secrecy of sec k1, sec k2. For the secrecy goal, we use
secrecy of sec k1, sec k2 which specifies that if the intruder learns a secret value
that is not explicitly a secret between him and someone else, then the intruder
has successfully attacked the protocol. For the authentication goal, we mean to
check that a principal is right in believing that his intended peer is present in
the current session, has reached a certain state, and agrees on a certain value,
which is typically fresh. Weak authentication is violated whenever there is a
request (b,a,id,m) but no matching witness event witness (a,b,id,m). It means
that a party b believes a message m to come from a, but a has never sent m,
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at least not for this purpose. Strong authentication is violated whenever weak
authentication is, or whenever a request event occurs more frequently than the
corresponding witness event.

In general, there is no bound on the number of parties and sessions of the
protocol that can be executed in parallel. While one can bound the number of
parties, by the argumentations or by the symbolic sessions technique of OFMC,
the problem of an unbounded number of sessions cannot be solved in general
since it gives rise to undecidability. Moreover, there are two similar problems
of unboundedness in the protocol: there is no bound on the number of payload
messages to be exchanged or on the number of new message sequences that can
be started, i.e., the protocol contains unbounded loops. All these problems give
rise to an unbounded number of steps of honest parties, while OFMC currently
requires analysis settings with bounded numbers of steps of honest parties. There
is also no bound on the complexity of messages that the adversary can generate.
However, OFMC implements the lazy intruder technique, which uses a symbolic
representation to avoid explicitly enumerating the possible messages that the
Dolev-Yao adversary can generate, and which allows for an analysis without
restricting this parameter of the problem.

We have therefore analyzed the protocol with OFMC under the following
execution and analysis settings: there are at most two parallel protocol sessions,
the client can start at most two message-sending sequences per protocol session.
OFMC hasn’t reported any attacks on the protocol for these analysis settings.
Our protocol model specifies five security goals given above based on the Alice-
Bob formalization. We’ve first checked the goal of mutual authentication, then
we check the goal of secrecy. We’ve found that these goals are not achieved and
the results are showed as follows. The source code is listed in Appendix A.

4 Attacks on the Dynamic Domain Establishment
Protocol

In this section we present and discuss the results obtained by analyzing the
HLPSL formalization presented in Section 3.2 using AVISPA (and in particular
the OFMC model checker). This analysis has shown that the dynamic domain
establishment protocol is subject to a masquerade attack and there exists an
information leakage problem and the Cuckoo attack.

Masquerade Attack. The goal of this protocol is to establish a mutual au-
thentication between the LSA and the LCA. After that, the LSA allocates the
domain keys klaas and klaas−cca to the LCA. We use SPAN and AVISPA to
verify these goals. The attack is found when we require the authentication on
n2 goal to be satisfied, in a scenario represented by an environment role with
two parallel sessions between the two agents. The result is shown as the first
alternative in the message sequence chart in Fig.2 and then in the attack trace
as shown in Fig.3. Indeed, in the sequence of events found by OFMC (shown in
Fig.2), the intruder reuses the message produced by the lca to fool the lsa to
believe its forged identity of the lca, gaining the access to the dynamic domain.



32 W. Hu and D. Ji

Fig. 2. The result produced by SPAN

From the results produced by the tools, we can get the attack steps as follows.
(We use I (X) to stand for I impersonates the identity of X)

1.I(LCA) → LSA : start
2.LSA → I(LCA) : N1||CertLSA||SignLSA(N1)

1′.I(LSA) → LCA : N1||CertLSA||SignLSA(N1)
2′.LCA → I(LSA) : N2||N1||ALSA||PuLCA||SLCA||ilaas||CertLCA||SignLCA

(N2||N1||ALSA||ilaas||PuLCA||SLCA)
3.I(LCA) → LSA : N2||N1||ALSA||PuLCA||SLCA||ilaas||CertLCA||SignLCA(N2

||N1||ALSA||ilaas||PuLCA||SLCA)
4.LSA → I(LCA) : N2||ALCA||PuLSA||SLSA||ePuLCA(klaas||klaas−cca)||

SignLSA(N2||ALCA||ePuLCA(klaas||PuLSA||SLSA))

We’ve found that, an attacker can successfully break the authentication be-
tween the LSA and the LCA. After these steps are executed, the LSA thinks
it is the LCA who starts this operation, and accepts its identity. But in fact,
the LCA doesn’t start this operation and it is still waiting for the LSA (which
is I in fact) to finish this operation. This attack can make the logging services
crash down. The probable utilize of this vulnerability is that, an intruder can
pretend to be a legal user to join the LaaSD. After he joins in the domain, he can
do some malicious operations within the domain. For example, he can launch a
denial-of-service attack after joining in the dynamic domain.

Information Leakage Problem. By analyzing the whole protocols, we’ve
found that the key distributing protocol is not safe. With the help of AVISPA,
we’ve found that an information leakage problem appears, when the LSA allo-
cates the same keys to a newly joined LCA device. The newly joined LCA device
can utilize these keys to decrypt some messages shared within the domain long
time ago, then it can learn some information that shouldn’t be known by it.
Besides, when a device departs from the domain, information leakage problem
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may appear again. After an LCA device departs from the domain, it shouldn’t
own the domain’s secret keys, if no measures are taken, it will be very dangerous
for the domain’s members to communicate using those keys.

Cuckoo Attack. The Abbadi’s framework is based on trusted computing, and
the TPM plays an important role in his protocol. At present, there is a famous
attack called the Cuckoo Attack[10] that can attack a computer with a TPM
in it.

Fig. 3. The result produced by AVISPA

In one implementation of the cuckoo attack, malware on the user’s local ma-
chine sends messages intended for the local TPM (TPML) to a remote attacker
who feeds the messages to a TPM (TPMM) inside a machine the attacker phys-
ically controls. Given physical control of TPMM , the attacker can violate its
security guarantees via hardware attacks. Thus, at a logical level, the attacker
controls all communication between the verifier and the local TPM, while having
access to an oracle that provides all of the answers a normal TPM would, with-
out providing the security properties expected of a TPM. Then the attacker can
pretend to be the LSA by forging its certificate. Certificate is very important in
Abbadi’s protocol, so this attack is really a big disaster to the dynamic domain.

5 Fixing the Protocol

In this section, we discuss how to repair the security flaws described above.
The way to deal with the masquerade attack is to change the identity label

from ALSA and ALCA to the LSA and the LCA. Because identity is very im-
portant in authentication protocol, so it is necessary to add this information in
one’s signature. After this fixing, we’ve checked the protocol again, and this time
there is no authentication error in the protocol.

The way to deal with the information leakage problem is to add a key update
protocol in the dynamic domain. In Abbadi’s dynamic domain establishment
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protocol, every device in the domain will be allocated with two symmetrical
keys klaas and klaas−cca when it joins the domain. These keys are used within
the domain. If every time a device joins the dynamic domain, these keys are
different, then the information leakage problem can be settled. Besides, after a
device leaves, there needs a way to update these keys too, so that no one can
make use of these risky keys. Following Abbadi’s method, we put forward a key
update protocol as follows.
Protocol 4.

1.LSA → TPMLSA : TPMGetRandom.
2.TPMLSA → LSA : k′laas.
3.LSA → TPMLSA : TPMGetRandom.
4.TPMLSA → LSA : k′laas−cca.
5.LSA → TPMLSA : TPMLoadKey2(Pr).
6.LSA → TPMLSA : TPMSeal(k

′
laas||k′laas−cca||ilaas||PKLlaas).

7.LSA → TPMLSA : TPMCertifyKey(SHA1(LCA1||ePuLCA1
(k′laas||

k′laas−cca)), PuLSA)
8.LSA → LCA1 : LCA1||PuLSA||SLSA||ePuLCA1

(k′laas||k′laas−cca)||SignLSA

(LCA1||ePuLCA1
(k′laas||k′laas−cca)||PuLSA||SLSA)

9.LSA → LCA2 : LCA2||PuLSA||SLSA||ePuLCA2
(k′laas||k′laas−cca)||SignLSA

(LCA2||ePuLCA2
(k′laas||k′laas−cca)||PuLSA||SLSA)

...
n.LSA → LCAn : LCAn||PuLSA||SLSA||ePuLCAn

(k′laas||k′laas−cca)||SignLSA

(LCAn||ePuLCAn
(k′laas||k′laas−cca)||PuLSA||SLSA)

Through this protocol, the LSA can assign two new keys k′laas and k′laas−cca

to every LCA that belongs to the dynamic domain. When a new LCA device
requires to join the domain and after the successful completion of Protocol 3, Pro-
tocol 4 should be executed to update the domain symmetric keys. When an LCA
device, for example LCAi, requires to apart from this domain, Protocol 4 should
be executed except one step that assigns the domain symmetric keys to LCAi,
that is: i.LSA → LCAi : LCAi||PuLSA||SLSA||ePuLCAi

(k′laas||k′laas−cca)||SignL

SA(LCAi||ePuLCAi
(k′laas||k′laas−cca)||PuLSA||SLSA). We’ve checked this proto-

col with AVISPA, finding it is safe in secrecy. It is necessary for the domain to
adopt this protocol to assure it works well.

The solutions to the Cuckoo attack are provided as follows. (1) Removing
network access. It seems that the Cuckoo attack can be prevented by severing
the connection between the local malware and the adversary’s remote PC. The
assumption is that without a remote TPM to provide the correct responses, the
infected machine must either refuse to respond or allow the true TPM to commu-
nicate with the user’s device. (2) Eliminating malware. Another approach is to
try to remove the malware on domain user’s local computer. Unfortunately, this
approach is both circular and hard to achieve. (3) Establishin a secure channel.
Such a secure channel may be established using hardware or cryptographic tech-
niques. This solution removes every opportunity for user errors, does not require
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the preservation of secrets, and does not require software updates. Unfortunately,
the cost and industry collaboration required to introduce a new interface make
it unlikely to be deployed in the near future.

6 Conclusions

In this paper, we have presented a formal analysis of the dynamic domain estab-
lishment protocol. We have given a protocol formalization first in an Alice-Bob
notion and then in HLPSL. By using AVISPA, we’ve found two main security
flaws, including a masquerade attack: an intruder can intercept user session
information, and reuse it to illegitimately join the domain. In order to fix this
problem, we have corrected the protocol by adding an identity in one’s signature.
In order to fix the other problem, we have put forward a key update protocol. In
our opinion, the key update protocol can be used in many occasions as well as
the dynamic domain. As we know, key management is very important in infor-
mation security area, but many people ignore the importance of key updating.
These solutions have been formally verified using AVISPA.

Our approach can be applied in the area where security protocols are used.
We believe that this is a practical and useful way of analyzing security protocols,
allowing for the fast exploration of the state space, and capable of discovering
new attacks. The limitations of our approach is that it can only verify authen-
tication and secrecy goals, and the concurrency numbers of protocol sessions
and protocol parties are limited. Our approach doesn’t support channels beside
Dolev-Yao ones and we assume the channels between users and their TPMs
are secure. Besides, we haven’t considered attacks on the encryption methods
used, only on the protocol itself. All of these limitations in our approach can be
studied in the future.

References

1. Armbrust, M., Fox, A., Joseph, A.D., Katz, R., et al.: A view of Cloud computing.
Communications of the ACM 53(4), 50–58 (2010)

2. Huh, J.H., Martin, A.: Trusted logging for grid computing. In: Third Asia-
Pacific Trusted Infrastructure Technologies Conference, pp. 30–42. IEEE Computer
Society (2008)

3. Abbadi, I.M., Alawneh, M.: A framework for establishing trust in the Cloud. Com-
puters and Electrical Engineering 38, 1073–1087 (2012)

4. Abbadi, I.M., Martin, A.: Trust in Cloud. Information Security Technical Re-
port 16, 108–114 (2011)

5. Abbadi, I.M.: A framework for establishing trust in Cloud provenance. Interna-
tional Journal of Information Security 12(2), 111–128 (2013)

6. Abbadi, I.M.: Clouds’ infrastructure taxonomy, properties, and management ser-
vices. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.)
ACC 2011, Part IV. CCIS, vol. 193, pp. 406–420. Springer, Heidelberg (2011)

7. Hussein, M., Seret, D.: A comparative Study of Security Protocols Validation Tools:
HERMES vs AVISPA. In: Proceedings of IEEE International Conference on Ad-
vanced Communication Technology, ICACT 2006, pp. 497–502. IEEE Computer
Society (2006)



36 W. Hu and D. Ji

8. Chevalier, Y., Compagna, L., Cuellar, J., Drielsma, P.H., et al.: A High Level Pro-
tocol Specification Language for Industrial Security-Sensitive Protocols. In: Proc.
SAPS 2004, pp. 281–285. Austrian Computer Society (2004)

9. Sun, S.T., Hawkey, K., Beznosov, K.: Systematically breaking and fixing OpenID
security: Formal analysis, semi-automated empirical evaluation, and practical coun-
termeasures. Computers & Security 31(4), 465–483 (2012)

10. Parno, B.J.: Trust extension as a mechanism for secure code execution on commod-
ity computers. Thesis for the Ph. D. Degree, School of Electrical and Computer
Engineering Carnegie Mellon University, pp. 62–70 (2010)

Appendix A. DDP Source Code

role ddp_Init ( LSA,LCA:agent,

Pklsa,Pks:public_key,

Klaas_cca,Klaas:symmetric_key,

Snd,Rec:channel(dy))

played_by LSA

def=

local State :nat,

Pklca :public_key,

N1,N2,Ilaas :text,

SLCA,ALSA :text

const alca,slsa :text,

sec_k1,sec_k2 :protocol_id

init State:=0

transition

1.State=0

/\Rec(start)

=|>

State’:=1

/\N1’:=new()

/\Snd(N1’.{Pklsa.LSA}_inv(Pks).{N1’}_inv(Pklsa))

/\witness(LSA,LCA,n1,N1’)

2.State=1

/\Rec(N2’.N1.ALSA’.Pklca.SLCA’.Ilaas’.{Pklca.LCA}_inv(Pks)

.{N2’.N1.ALSA’.Ilaas’.Pklca.SLCA’}_inv(Pklca))

=|>

State’ :=2

/\Snd(N2’.alca.Pklsa.slsa.{Klaas.Klaas_cca}_Pklca.Pklsa.slsa.

{N2’.alca.{Klaas.Klaas_cca}_Pklca.Pklsa.slsa}_inv(Pklsa))

/\request(LSA,LCA,n2,N2’)
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/\secret(klaas,sec_k1,{LCA,LSA})

/\secret(klaas_cca,sec_k2,{LCA,LSA})

end role

role ddp_Resp ( LCA,LSA:agent,

Pklsa,Pks:public_key,

Klaas,Klaas_cca:symmetric_key,

Snd,Rec:channel(dy))

played_by LCA

def=

local State :nat,

Pklca :public_key,

N1,N2 :text,

SLSA,ALCA :text

const alsa,slca,ilaas :text,

sec_k1,sec_k2 :protocol_id

init State:=0

transition

1.State = 0

/\Rec(N1’.{Pklsa.LSA}_inv(Pks).{N1’}_inv(Pklsa))

=|>

State’:=1

/\N2’:=new()

/\Snd(N2’.N1’.alsa.Pklca.slca.ilaas.{Pklca.LCA}_inv(Pks).{N2’.N1’

.alsa.ilaas.Pklca.slca}_inv(Pklca))

/\witness(LCA,LSA,n2,N2’)

2.State=1

/\Rec(N2.ALCA’.Pklsa.SLSA’.{Klaas.Klaas_cca}_Pklca.Pklsa.SLSA’

.{N2.ALCA’.{Klaas.Klaas_cca}_Pklca.Pklsa.SLSA’}_inv(Pklsa))

=|>

State’:=2

/\request(LCA,LSA,n1,N1)

/\secret(Klaas,sec_k1,{LCA,LSA})

/\secret(Klaas_cca,sec_k2,{LCA,LSA})

end role
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role session ( LSA,LCA:agent,

Klaas,Klaas_cca: symmetric_key,

Pklsa,Pklca,Pks:public_key) def=

local SC,RC,SS,RS: channel (dy)

composition

ddp_Init(LCA,LSA,Pklsa,Pks,Klaas,Klaas_cca,SC,RC)

/\ ddp_Resp(LSA,LCA,Pklca,Pks,Klaas,Klaas_cca,SS,RS)

end role

role environment() def=

const n1,n2 :protocol_id,

lsa,lca,i :agent,

klaas,klaas_cca :symmetric_key,

pklsa,pklca,pks,pki :public_key

intruder_knowledge={lsa,lca,pki,inv(pki),pks,alsa,alca,slsa,slca,

{pki.i}_inv(pks)}

composition

session(lca,lsa,klaas,klaas_cca,pklca,pklsa,pks)

/\session(lca,i,klaas,klaas_cca,pklca,pki,pks)

/\session(i,lsa,klaas,klaas_cca,pki,pklsa,pks)

end role

goal

authentication_on n1

authentication_on n2

weak_authentication_on n1

weak_authentication_on n2

secrecy_of sec_k1, sec_k2

end goal

environment()



Model-Driven Evaluation of User-Perceived

Service Availability

Andreas Dittrich and Rafael Rezende

ALaRI Advanced Learning and Research Institute
Università della Svizzera italiana (USI)

Via G. Buffi 13, CH-6904 Lugano, Switzerland
{andreas.dittrich,rafael.ribeiro.rezende}@usi.ch

http://www.usi.ch/

Abstract. Service-oriented architecture (SOA) has emerged as an ap-
proach to master growing system complexity by proposing services as
basic building elements of system design. However, it remains difficult to
evaluate dependability of such distributed and heterogeneous function-
ality as it depends highly on the properties of the enabling information
and communications technology (ICT) infrastructure. Moreover, every
specific pair service client and provider can utilize different ICT compo-
nents, constituting for the user-perceived view of a service.

We provide a model-driven methodology to automatically create re-
liability block diagrams of such views. Given a service description, a
network topology model and a pair service client and provider, it iden-
tifies relevant ICT components and generates a user-perceived service
availability model (UPSAM). We then use this UPSAM to calculate the
steady-state availability of different views on an exemplary mail service
deployed in the network infrastructure of University of Lugano, Switzer-
land.

Keywords: Service networks, Service dependability, Availability, Qual-
ity of service, Service network management, Modeling, Object oriented
modeling, Design engineering.

1 Introduction

Growing functional and non-functional requirements have increased IT system
complexity significantly during the last decade. At the same time, modern busi-
ness operation is relying ever more on IT services and thus, predictable ser-
vice delivery with time, performance and dependability constraints. In order to
tame complexity and enable efficient design, operation and maintenance, various
modeling techniques have been proposed. Service-Oriented Architecture (SOA)
proposes a formalism where services are the basic building elements of system
design. [4]

Meeting non-functional property requirements is crucial for successful service
provision. However, non-functional properties like service availability are highly
dependent on the properties of the underlying information and communications
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technology (ICT) infrastructure. This work focusses on user-perceived service
availability: Given an ICT infrastructure with a set of providing service instances
and a set of service clients. The user-perceived availability is the probability for
a service provided by one or more of these instances to perform its required
function when requested from a specific client.

To assess the user-perceived service availability for any client within the net-
work, information about the system availability is not sufficient, because every
specific pair service requester and provider can utilize different ICT components.
This is why, although services are usually well-defined within business processes,
assessing service availability remains uncertain. The underlying infrastructure
varies according to the position of the service requester – represented by a per-
son or even an information and communications technology (ICT) component
– and the concrete providing service instance. Evaluation of user-perceived ser-
vice availability should employ a model of the ICT infrastructure where service
properties are linked to component properties.

One important concept in service-oriented architecture is composition, the
possibility to combine the functionality of multiple services to provide more
complex functionality as a composite service with a single interface. If the in-
dividual services within the composition are indivisible entities regarding their
functionality, they can be called atomic services. For instance, an email service
can be divided into atomic services authenticate, send mail and fetch mail. In
this sense, email corresponds to a composite service constituted by the atomic
services authenticate, send mail and fetch mail.

This paper provides a methodology to evaluate user-perceived service avail-
ability. Given a set of input models that describe the service network topology,
its services and actors, it generates and solves specific user-perceived service
availability models (UPSAM) for different user perspectives. These models are
expressed as reliability block diagrams (RBD) and evaluate steady-state service
availability. The evaluation can be useful when designing a service network to
estimate the expected quality of service provision. After deployment, it can be
used to detect bottlenecks in the network or to evaluate the impact of planned
changes to the ICT infrastructure. The methodology could be extended to pro-
vide evaluation of different dependability properties that also cover dynamic
network behaviour during service usage.

The following section provides an overview of related work. Section 3 states
the scientific problem of evaluating user-perceived service availability, followed
by an approach to solve it in Section 4. Given a service description, a network
topology model and a pair service provider and requesting client, we employ
a methodology to automatically identify relevant ICT components and from
that generate the UPSAM. Finally, Section 5 demonstrates the feasibility of our
approach in a representative case study by applying it to an exemplary email
service within parts of the service network infrastructure of University of Lugano,
Switzerland. We extract the UPSAM of that service for different service clients
and calculate and compare their availability. Section 6 summarizes our work by
pointing out the main contributions and remaining open issues.
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2 Related Work

Service-Oriented Architecture (SOA) [4] provides a set of methodologies where
system components are designed as interoperable services. In this paper, a service
is defined according to [6] as ”an abstraction of the infrastructure, application or
business level functionality. It consists of a contract, interface, and implementa-
tion. [...] The service interface provides means for clients to connect to the service,
possibly but not mandatory via network.” The same authors define a composite
service as a composition of basic indivisible services called atomic services, which
are shaped according to their business functionalities. Their definition focuses
on the optimal re-usability, in order to avoid redundant atomic services with
similar or the same purpose. Milanovic et al. also propose a methodology for the
automatic generation of service availability models based on run-time monitor-
ing [7,5,6]. In their methodology, a configuration management database system
collects information about the network topology for further service deployment
and steady-state availability analysis.

A different definition of services is proposed by the Service Availability Fo-
rum (SAF) [11] through the Availability Management Framework (AMF). In
their specification, AMF components are the basic entities of the framework and
consist of a set of software or hardware resources. In contrast to Milanovic et
al. in [5], where infrastructure and services are modeled independently, SAF de-
scribes AMF components as intrinsic service providers, which can be grouped
into bigger logical units called service units (SU).

Salehi et al. [10] proposes a UML-based AMF configuration language (UACL)
to facilitate the generation, analysis and management of the AMF configura-
tions. The language has been implemented by means of a Unified Modeling Lan-
guage (UML) [9] profile. Dependability Analysis Modeling (DAM) [2] consists
also of a UML profile for dependability modeling. It correlates service and ICT
components, and describes them with a complete set of properties, although no
transformation is provided by the methodology.

The authors of [17] provide a stochastical model to assess user-perceived web
servide availability and demonstrate that there can be significant differences
between the system and user-perceived perspectives. In [12] a new status-based
model to estimate user-perceived availability proposed. Both works do not model
the providing infrastructure in detail, however.

In order to assess the service dependability from different user perspectives,
an extraction of relevant network parts is presented in [3]. Given a model of
the network topology, a service description and a pair service requester and
provider, a model-to-model transformation is applied to obtain a user-perceived
service infrastructure model (UPSIM): Given an ICT infrastructure that contains
a providing service instance pi and a service client cj . The UPSIM is that part of
the infrastructure which includes all components, their properties and relations
hosting the atomic services used to compose a specific service provided by pi
for cj . The approach in [3] uses a subset of UML elements as well as UML
profiles and stereotypes to impose specific dependability-related attributes to
ICT components.
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The paper at hand builds on the work in [3] with a methodology to obtain as
output a specific availability model expressed as reliability block diagram (RBD)
to evaluate service availability for different user perspectives. The case study
in Section 5 uses an implementation of that methodology that is extensively
described in [8].

3 Problem Statement

The availability of a service, as any non-functional property, depends on the
underlying ICT infrastructure required for service execution. Moreover, a ser-
vice may require a different set of ICT components for each user perspective
within the infrastructure, as the service can be invoked for different pairs of ser-
vice requester and provider. Also, the topology and services may change due to
reconfiguration, addition or removal of components, upgrades and so on.

This dynamicity represents one of the main challenges of availability evalua-
tion, especially during run-time, when changes need to be instantly considered in
the availability models. A methodology is needed to support the model-driven
evaluation of user-perceived service availability. The methodology should in-
clude:

1. A model to describe the ICT infrastructure, including availability properties
for each component.

2. A model to describe services in hierarchical manner.
3. A formalism to relate an abstract service to parts of a concrete deployed

infrastructure for any specific user perspective.
4. A mechanism to generate and solve a user-perceived service availability model

(UPSAM) for such a user perspective.

The complete methodology should be automated as much as possible to support
quick model updates in dynamic environments and to eliminate human errors
during update or upgrade procedures. Preferably, the methodology should be
defined and implemented using well-known standards and open-source tools to
support external verification and to facilitate its dissemination.

4 Methodology

Since user-perceived non-functional service properties depend on the underlying
infrastructure, the methodology consists of generating a user-perceived service
availability model UPSAM from a service description, a network topology and a
mapping between them. The UPSAM is then evaluated using an external tool for
availability analysis. Infrastructure and services are represented in UML models
as in [3]:

– Class diagrams are used to describe structural units of the network (e.g.:
routers, clients, servers), their properties and relations in distinct classes.
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– Object diagrams describe a deployed network structure/topology composed
of class instances, namely objects with all properties of the parent class, and
links as instances of their relations.

– Activity diagrams are used for service description and represent the service
as a flow of actions.

We are using the input model specifications from [3] but enhance the described
workflow. Instead of generating a user-perceived service infrastructure model
(UPSIM), we output a reliability block diagram (RBD) for that part of the net-
work that is relevant for service provision for a specific pair service requester
and provider. Figure 1 presents an overview of the methodology.

UML
metamodel

UML native
importer

Service mapping
metamodel

Service mapping
importer

Path discovery
algorithm

M
o
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e
l
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e

User-perceived Service Availability Model
Reliability Block Diagram

User-perceived steady-state availability
SHARPE tool

System structure model
UML Class/Object Diagram

Service model
UML Activity Diagram

Atomic service mapping
XML file

VIATRA

Fig. 1. Implementation of the model transformation

Following is a step-by-step description of the methodology. Steps 1 to 7 have
been adapted from [3] for the scope of this work where necessary. Steps 8 to
10 are the main contribution of this work and are described in more detail in
Section 4.1. Apart of the last Step 10, the workflow is based on the open-source
development tool Eclipse [13], using both the UML2-compliant [9] modeling tool
Papyrus [14] and the model transformation plug-in VIATRA2 [15]. Extensive
details about the implementation of all steps can be found in [8].

1. Identify ICT components and create respective UML classes for each type.
For subsequent availability analysis, an elementary UML availability profile
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(see Figure 2) is applied to classes. This results in a class diagram containing
the description of every ICT component.

2. Model the complete ICT infrastructure using UML object diagrams with
instances of the classes from Step 1.

3. Identify and iteratively describe services using UML activity diagrams with
atomic services as building blocks (Actions). This step results in a collection
of service models with no correlation to the infrastructure.

4. Generate service mapping pairs by mapping atomic services from Step 3 to
respective requester and provider ICT components from the infrastructure
object diagram (Step 2).

5. Import ICT infrastructure and service UML models to the VIATRA2 model
space. VIATRA2 creates entities for model elements, their relations and for
atomic services.

6. Import service mapping pairs to the VIATRA2 model space using a custom
service mapping importer.

7. For each atomic service, discover all acyclic paths between requester and
provider, provided by the mapping in Step 4. Resulting paths are stored
separately in the model space for further manipulation.

8. Generate atomic UPSAMs. For each atomic service, Paths extracted from
Step 7 are merged into a single network topology, corresponding to the user-
perceived service infrastructure. The atomic UPSAM is obtained as an RBD
from that infrastructure.

9. Generate composite UPSAM. According to the service model from Step 3,
the atomic UPSAMs are combined into a single RBD.

10. Calculate the user-perceived availability with the Symbolic Hierarchical Au-
tomated Reliability and Performance Evaluator (SHARPE)[16] using the
composite UPSAM from the previous step.

Steps 1 to 3 are done manually using a UML modeling tool like Papyrus [14]
and kept unaltered as long as the ICT infrastructure and services descriptions
do not change. The mapping (Step 4) is a simple XML structure where changes
will eventually be performed in order to analyze different user-perspectives on a
service. This can be done manually or automated. Steps 5 through 10 are then
fully automatable.

The availability profile presented in Figure 2 contains elementary properties
required for stead-state availability analysis:mean time between failures (MTBF)
andmean time to repair (MTTR). Additionally, the redundantComponents prop-
erty specifies internal redundancy, which can be used to implicitly define a large
set of ICT components into a single object in the infrastructure model.

4.1 User-Perceived Service Availability Model Generation

Since all the atomic services within a given composite service may be executed,
the paths found in Step 7 are merged into one model which corresponds to the
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<<Stereotype>>
Component

MTBF:Real
MTTR:Real
redundantComponents:Integer

<<Stereotype>>
Device

<<Stereotype>>
Connector

<<metaclass>>
Class

<<metaclass>>
Association

Fig. 2. Elementary availability profile

partial infrastructure required for proper service delivery of a given service pair.
The UPSAM is a transformation of that partial infrastructure. The instanceSpec-
ifications of the components within that partial infrastructure have the same sig-
nature as in the original ICT infrastructure from Step 1. Therefore, they maintain
the same set of properties as the classes they instantiate. It is thus guaranteed
that a subsequent availability analysis will find specific required properties for
every element of the UPSAM.

As a consequence of Step 7, each atomic service has its own set of paths. All
ICT components forming the path are translated into serialized blocks inside the
RBD, given that all of them must be working in order to traverse the path. If
an ICT component has n redundant components, the RBD will have n parallel
blocks with the same characteristics. This corresponds to the redundantCompo-
nents property of the profile.

An atomic service is available if all ICT components of at least one of its paths
are available. This introduces path redundancy inside the service network, and is
represented within the RBD by placing blocks related to these paths in parallel.
Identical blocks within those parallel paths are then merged into a single block.
Let us demonstrate this using Figure 3 as an example of an ICT infrastructure
model.

C

D E

F

G

BA

Fig. 3. ICT Infrastructure model example
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All components have an internal redundancy of 0, only component B has
an internal redundancy of 2 (redundantComponent=2). The following paths are
identified from component A to G:

A→B→C→D→F→G
A→B→C→E→F→G

Components A,B,C and F,G are represented as a series of blocks, as they are
common for both paths. Blocks D and E are in series within their respective
paths but parallel to each other. Thus, they are represented as a pair of parallel
blocks in between the two sequences obtained previously. Knowing that B has an
internal redundancy of two extra components, it is represented as three parallel
blocks B. The resulting RBD is presented in Figure 4. Note that the order of
the blocks does not affect the resulting steady-state availability.

A

B

B

B

C

D

E

F G

Fig. 4. Reliability Block Diagram of the example ICT infrastructure model

5 Case Study

We will now demonstrate the evaluation of user-perceived availability using the
methodology from Section 4 with an exemplary Send mail service. It consists of
resolving the mail exchanger (MX) address via the domain name system (DNS)
and then sending an email message over that MX by means of the common
simple mail transfer protocol (SMTP). During SMTP communication, the MX
checks the credentials provided by the client with an external authentication
server. This service represents a widespread use-case in today’s service networks.
In detail, the service is composed of three atomic services: Resolve mail server
address, Dispatch email via SMTP and Check authentication. The UML activity
diagram representing the Send mail flow of actions of the composite service is
shown in Figure 5.

We simplify the fault model by taking only the steady-state availability of ICT
components into account. This means we assume that all faults from classes fail
stop to byzantine1 are combined in the steady-state availability of the individual
ICT components. We also disregard service discovery: The DNS server address
is known a priori to the client as is the authentication server address to the MX.

1 An ordered fault classification can be found in [1].
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Resolve Mail
Server Address

Dispatch email
via SMTP

Check
authentication

Fig. 5. Send mail service represented in UML activity diagram

The underlying network on which the service is deployed is based on the
network of University of Lugano, Switzerland. The network core consists of the
central switches with redundant connections and is nearly identical to the real
infrastructure, while the tree-formed peripheral parts connected to the core have
been reduced for demonstration purposes. As described in Section 4, the ICT
infrastructure is represented by a UML object diagram, where each node is an
instance of a specific ICT component class described in a UML class diagram.
The links between nodes are also represented as instances of associations from
the UML class diagram. For simplification purposes, associations are given the
maximum availability of 1 – meaning that they are always available – so that their
respective RBD blocks can be omitted in latter illustrations without affecting
the steady-state availability. The full topology is shown in Figure 6.
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Fig. 6. Network infrastructure presented in UML Object Diagram
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As an example for an ICT component description in UML, Figure 7 shows
a fraction of the UML class diagram (Step 1 of the methodology) containing
the description of the devices and their connections as, respectively, classes and
associations. The type RServer represents a server containing an internal redun-
dancy of one extra component (redundantComponents=1) which signifies that
there are actually two servers with one server to fail over. Type C2960 represents
a switch.

<<component>>
RServer

<<Component>>
MTBF=60000
MTTR=0.1
redundantComponents=1

<<component>>
C2960

<<Component>>
MTBF=183498
MTTR=0.5
redundantComponents=0

<<communication,connector>>

Fig. 7. Predefined network elements represented in UML Class Diagram

The complete list of ICT components including relevant availability data is
presented in Table 1. In the UML object diagram of the real topology in Figure 6
(Step 2 of the methodology) each node is represented by a unique identification
and the respective type, in the format id:Type. Types HP2650, C3750, C6500
and C2960 are switches, the other types should be self-explanatory. Given that
RServer has redundantComponent=1, the dns is then known to have redundancy
although represented by a single node.

Table 1. Specification of ICT components

Type Manufacturer Model MTBF(hours) MTTR(hours) RC*

C2960 Cisco Catalyst 2960-48FPD-L 183498 0.5 0

C6500 Cisco Catalyst 6500 61320 0.5 0

C3750 Cisco Catalyst 3750G-24TS 188575 0.5 0

HP2650 Hewlett-Packard ProCurve 2650 199000 0.5 0

Server Dell PowerEdge T620 60000 0.1 0

RServer Dell PowerEdge T620 60000 0.1 1

Comp HP Compaq DC7800 3000 24.0 0

Printer Canon IR3245N 2880 1.0 0

*redundantComponent

In this case study, the ICT components t1 and backup were chosen as clients
to compare two views on a composite service as perceived by different clients.
Components dns, email and auth play the roles of dns server, mail server and
authentication server. The mappings between atomic services and the ICT in-
frastructure (Step 4 of the methodology) for the clients t1 and backup are given
in Table 2 and Table 3, respectively. It can be seen that only minor changes to
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Table 2. Service mapping pairs of the Send mail service for client t1.

Atomic Service Requester Provider

Resolve mail server address t1 dns

Dispatch email via SMTP t1 email

Check authentication email auth

Table 3. Service mapping pairs of the Send mail service for client backup.

Atomic Service Requester Provider

Resolve mail server address backup dns

Dispatch email via SMTP backup email

Check authentication email auth

the input models are necessary to change the user-perceived view on a service:
Only the requesting instance in the mapping is changed, the network model and
service description remain untouched.

In the following, we will demonstrate how to generate the UPSAM for the
first atomic service, Resolve mail server address. Generation for the subsequent
atomic services is omitted but will follow the exact same procedure. Starting
from t1 in the network shown in the infrastructure model of Figure 6, the path
discovery algorithm (Step 7 in the methodology) identifies eight acyclic ways to
reach dns :

t1→e1→d1→c1→d4→dns
t1→e1→d1→c1→c2→d4→dns
t1→e1→d1→c1→d2→c2→d4→dns
t1→e1→d1→c1→d3→c2→d4→dns
t1→e1→d1→c2→d4→dns
t1→e1→d1→c2→c1→d4→dns
t1→e1→d1→c2→d2→c1→d4→dns
t1→e1→d1→c2→d3→c1→d4→dns

Paths are then merged and transformed into a single reliability block diagram,
the UPSAM, shown in the upper part of Figure 8. Basically, this procedure –
corresponding to Step 8 of the methodology – reduces common nodes of differ-
ent paths and excludes those which do not affect the overall availability of the
service. For instance, in order to pass through d2, nodes c1 and c2 must be
available, in addition to the common nodes t1, e1, d1, d4 and dns. However,
their availability implies that there is already at least one path guaranteed to be
available between d1 and d4. This is because associations have an availability of
1 and there are associations between c1 and d1,d4 as well as between c2 and
d1,d4. For this reason, the node d2 does not affect the overall availability and is
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t1 e1 d1

c1

c2

d4

dns1

dns2

backup d3

c1

c2

d4

dns1

dns2

Fig. 8. User-perceived service availablity models (UPSAM) of atomic service Resolve
mail server address for requesters t1 and backup.

excluded from the UPSAM. Furthermore, redundant components are expanded:
The dns component is converted into a pair of parallel blocks dns1 and dns2.
Figure 8 shows the UPSAM for requester t1 side by side with the analogously
created UPSAM for requester backup. We see only minor differences in the two
models because to reach dns, both requesters have to use almost the same part
of the network. Both have to traverse the network core, only the entry points are
different. The next atomic service Dispatch email via SMTP paints a different
picture. To reach the mail exchanger, requester backup does not need to traverse
the network core, drastically reducing the number of blocks in the reliability
block diagram. The UPSAM are depicted in Figure 9.

t1 e1 d1

c1

c2

d3 email

backup d3 email

Fig. 9. User-perceived service availablity models (UPSAM) of atomic service Dispatch
email via SMTP for requesters t1 and backup.

Now, a composite UPSAM is created from the atomic UPSAMs according to
the service description in Figure 5. Although the Send mail service described in
the activity diagram contains a parallel execution, every single atomic service
must be concluded in order to accomplish the execution of the composite ser-
vice. For this reason, the resulting UPSAMs of the individual atomic services are
put in series to compose the overall UPSAM of the composite service Send mail,
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Resolve mail
server address

Dispatch email
via SMTP

Check
authentication

Fig. 10. Service availablity model of the Send mail service

as presented in Figure 10. This corresponds to Step 9 of the methodology. For
the sake of clarity, atomic services have been combined into single blocks in the
figure.

As the last step, we use SHARPE [16] to solve the obtained UPSAM to cal-
culate the steady-state availability for the composite service Send mail. Results
are shown in Table 4. We included results for the same service as requested by
client backup to show how two different user perspectives on the same service
differ in their availability.

Table 4. Service availability of Send mail service from different user perspectives

Service Requester t1 Requester backup

Resolve mail server address (atomic) 0.999912118 0.999992884

Dispatch email via SMTP (atomic) 0.999910452 0.999993942

Check authentication (atomic) 0.999993942 0.999993942

Send mail (composite) 0.999816521 0.999980768

In fact, altough the availability is reasonably high for both clients, it is ten
times higher when the same service is requested by client backup instead of client
t1 (1.6 hours downtime per year for client backup versus 10 minutes for client
t1 ). These differences are expected to be of a much higher magnitude in more
heterogeneous networks with a significant variability in availability of the various
component types, especially when taking into account different link qualities.
This justifies the approach of considering user-peceived service availability.

6 Conclusion and Outlook

Assessing non-functional service properties like availability remains challenging.
This is because service dependability depends highly on the properties of the
providing ICT infrastructure. This infrastructure, however, changes for every
different client. Thus, every client has another view on the service’s availability.
This is especially true in today’s heterogeneous and widespread networks where
the variability of availability among clients can be very high. Assessing system
or service availability with aggregation functions might give an overview but
falls short of providing a realistic picture of a service’s dependability for specific
clients.

We provided an automated methodology that evaluates user-perceived service
availability. Given a set of input models – representing the network topology,
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the service description and a pair requester, provider – that part of the ICT
infrastructure providing the service for the given service pair is extracted and
transformed into a reliability block diagram which is solved to obtain the steady-
state availability of the given service. The methodology uses a hierarchical service
model where on the highest level there is a composite service composed of atomic
services which in turn map to ICT infrastructure components. The reliability
block diagram for the client-specific infrastructure providing a composite service
consitutes the user-perceived service availability model (UPSAM).

The case study demonstrates the feasibility of the approach by applying it
to an exemplary mail service deployed on parts of the network of University of
Lugano, Switzerland. We showed how the availability of the same service can
differ considerably even in such a high-availability network when requested from
two different users. The methodology is thus able to provide a fine-grained view
on service availability as experienced from different points of the network.

Future work will focus on the complexity of the various methodology steps.
Especially, the path discovery algorithm and creation of the composite reliability
block diagram need optimization when applied to networks with a high degree
of connectivity, such as wireless mesh networks. Also, combining sets of compo-
nents with a low variability in user-perceived availability to reduce the size of the
topology graph will be considered. Finally, extending the methodology to evalu-
ate different dependability properties like interval availability, performability or
responsiveness remains an open issue.
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Abstract. Cloud Computing has been receiving great attention in the
last few years due to the benefits it provides in terms of flexibility, scala-
bility, virtualization and service provision. Nevertheless, many companies
remain reluctant to such a cutting-edge technology due to the serious
security issues affecting virtualized environments, especially in critical
application scenarios where high safety and dependability levels are re-
quired. This work is aimed at discussing and presenting the main security
threats for cloud computing infrastructures, as well as proposing a novel
architecture in charge of reacting to security attacks in Infrastructure
as a Service platforms. The basic idea is to migrate the attacked virtual
appliance and to reconfigure the network by means of Software Defined
Networking approach. The paper presents the architecture we have in
mind and that will be deployed and validated against a real world dis-
tributed Air Traffic Control system, for which missing dependability and
security targets would result in huge business and human losses.

1 Introduction

Cloud Computing (CC) is a model for enabling flexible and ubiquitous network
access to a pool of shared computing resources. The Infrastructure as a Service
(IaaS) service model has paved its way as a scalable, efficient and flexible solution
since it allows consumers to deploy virtual resources such as networks, storage
and virtual machines without any dependence on the physical infrastructure.
In the case of private clouds, the cloud infrastructure and the shared resources
are operated solely for a given organization which can even let cloud mainte-
nance to third parties. By using the cloud, critical systems could be tested and
reproduced, thus improving their dependability. Also, they can be rapidly recon-
figured in case of failure by leveraging resources redundancy which character-
izes any cloud infrastructure, with a direct return on business. Notwithstanding
these incomparable benefits, CC adoption in critical industry is hampered by the
security pitfalls it still exhibits, as well as by the the lack of mechanisms intended
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at increasing isolation and protection from internal and external threats. Cloud
security issues have been widely studied by researchers in the last few years, in
order to find effective solutions that can encourage critical systems industries to
move towards such architectures.

This work comes from an industrial experience in the Air Traffic Control
(ATC) field, in which a private cloud testbed has been set up according to the
IaaS service model to reproduce real systems in house, as well as to investi-
gate the possibility of interconnecting remote ATC centers through the cloud.
It presents a novel architecture for detecting malicious activities and automati-
cally implementing recovery strategies in the cloud infrastructure, when one of
the virtual nodes is compromised. The idea is to define and realize mechanisms
based on the so-called Software Defined Network (SDN) paradigm, thanks to
which the forwarding plane is decoupled from the control plane, and the net-
work behaviour can be easily programmed through a global view of the network
itself. By automatically migrating virtual resources from the compromised node
in a remote datacenter we are confident to increase the overall system security
level.

The rest of the paper is organized as follows. Section II formalizes some of
the most relevant cloud security issues, while section III briefly introduces the
Software Defined Networking (SDN) approach and one of its implementation,
namely the OpenFlow protocol. Section IV presents the state of the art and
discusses the main related works that propose the use of such an approach for
security purposes. Section V illustrates the proposed architecture for anomalies
detection and for the implementation of the mitigation strategies. Last, section
VI describes the real world critical system representing the case study for the
architecture.

2 Security Issues in IaaS Cloud Computing Environment

A lot of papers in the literature propose interesting countermeasures to the most
common security flaws in the IaaS Cloud Computing environments. One of the
most discussed and well-known issues is data protection and availability: when
the user entrusts his data to the cloud, he is not aware of the location where they
will be stored and the way they will be treated. Different ways to use encryption
are proposed, such as the one based on attributes: the decision of which users
can decrypt a ciphertext is taken on the basis of the attributes and policies
associated with the message and the user.

Although the great advantages that come along with the application of cloud
computing, new security challenges related to the virtualization must also be
taken into account. One of the most serious problem in the cloud infrastructure
is related to the VMs image management risk: before even securing the running
VM and the customer data, it is needed to be sure about the integrity of the
virtual image which is about to be spawned in the cloud infrastructure. If an
insider attacker gets access to the location where the VM images are stored, he
has the chance to modify the way VMs will behave according to his malicious
intention. That is why VMs images should be patched for security reasons and
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scanned with the aim of finding malicious software. Another important task is the
verification of the running VMs integrity and the behaviour of the components
of the platform. The cloud infrastructure gives the chance to the end user to
orchestrate, provision and manage all the implemented services through a set
of APIs, that constitute the unique entry point for users to interact with the
platform. Nevertheless, if the exposed APIs are vulnerable, there may arise lots
of security threats, such as: clear text authentication, anonymous access, reusable
token and weak access controls.

In this work, the focus is on a private cloud IaaS for which dependability and
security issues are fewer than in public clouds. Here, indeed, network and data
are stored and managed by third parties and off premises, differently from a
private cloud environment. However, there still arise internal security threats: in
this case, insider attacks come from the cloud platform users or the administrator
himself.

3 OpenFlow and Software Defined Networking

Software Defined Networking (SDN) paradigm, which has rapidly changed the
perspective of doing network research, is based on a sharp distinction between
the infrastructure layer, composed by network devices, and the control layer
where the network intelligence is deployed (the OpenFlow Controller). Using
this approach, the forwarding plane is decoupled from the control plane, and the
network behaviour can be easily programmed through a global view of the net-
work. The OpenFlow Protocol constitutes the interface between the two layers,
allowing to control and to define traffic management strategies to be performed
by the switch devices in the infrastructure. OpenFlow is also attracting lot of
interest in cloud computing platforms as a leading technology for implementing
Networking as a Service. The need to have fully-virtualized networks becomes the
main focus of the cloud computing community: being the hypervisor the heart
of hardware-virtualization, it is needed to find solutions allowing to reach the
same level of abstraction with physical network resources. Indeed OpenFlow can
be used to guarantee the programmability of the networking level for the VMs.
Concerning security requirements, the dynamic nature of CC systems makes
the traditional solutions inefficient rising the need to find new approaches for
protecting the infrastructure from different kind of attacks. OpenFlow can be
considered as a leading technology for implementing an architecture that is aware
of dynamic application security policies at a low cost.

4 Related Work

Some recent works propose OpenFlow as an effective solution for security and in-
troduce OpenFlow-based platforms for implementing several security techniques.
In [5], authors argue that the SDN paradigm can make the implementation of
traffic anomaly detection easier by using the well-known NOX [6] OpenFlow con-
troller in SOHO (small office/home office) networks. They implement four dif-
ferent anomaly detection algorithms as applications on the controller and point
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out that SDN allows to implement line-rate detection of network vulnerabilities
exploitation and also risk mitigation.

Braga et al. [7] face a well-known security issue, which is the Distributed
Denial of Service. Their proposal aims at minimizing the overhead due to the
extraction of network features used in the detection process, by requesting the
flows to the OF switches.

Wang et al. [8] suggest a flexible security management architecture for large-
scale production networks to overcome the drawbacks of the existing static solu-
tions, by considering the peculiarities of data center networks. The architecture
they propose is composed by a control component having the view of both the
global state of the network, and the designed security policies, besides one or
more security elements which are responsible for detecting anomalies in the traf-
fic patterns. The programmability of the network flows enables the check of the
global security policies and the fast reaction to alarms. However, such a dis-
tributed architecture requires a deep analysis to verify if the introduced latency
(caused by the presence of the security elements) does affect user experience.

This work differs from the ones proposed in the literature, in the sense that
it proposes an architecture in which the SDN paradigm is used to implement
mitigation and recovery strategies in case of disasters and security breaches.

5 Description of the Proposed Architecture

Our idea is to design and implement an OpenFlow-based architecture in order
to fit the dynamic nature of cloud computing infrastructures. It relies on the
OpenvSwitch [9] technology, that is used as the virtual switch to provide con-
nectivity to the virtual guests. OpenvSwitch implements a number of interesting
features that led us to choose it since the architecture we are introducing relies
on VLANs to guarantee level-2 isolation, and on the use of vNICs in bond-
ing configuration for failover reasons. Moreover, the OpenvSwitch is OpenFlow
1.0 protocol compliant. We also evaluated some of the available open source
OpenFlow Controllers and our choice fell on Floodlight [10], a Java event-based
Controller. The features we took into account are the modularity of its core func-
tionalities, the availability of REST APIs (which makes it consistent with the
CC services provisioning) and its performances compared to the other available
controllers.

As shown in Fig. 1, at the switch edge on the virtualization layer we use
an Attack Detector agent, which is responsible of sniffing and analysing all the
traffic coming from and arriving on the VLANs of the virtual networks. When
abnormal activity is detected, the agent sends alerts through a secure channel (a
Transport Layer Security socket) to a central Reaction Decider which is imple-
mented on the OpenFlow Controller. The latter is also in charge of programming
the flow tables of the OpenvSwitches and selecting the best countermeasure to
adopt in relation to the severity level of the attack and the number of affected
nodes. Starting from the assumption that the Cloud infrastructure is made
of geographically distributed datacenters (as you can see in the cloud layer),
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Fig. 1. Different views of the architecture

once an attack is detected, a mitigation and recovery strategy for the involved
nodes is triggered. Such a strategy consists in dynamically activating a migration
of the virtual guests under attack in a remote datacenter belonging to the same
cloud infrastructure by interacting with the cloud platform manager. Once the
migration process is terminated, the Floodlight Controller is in charge of pro-
gramming the OpenvSwitches’ flow tables in order to redirect the traffic related
to the migrated node towards its new location. The aim is to guarantee trans-
parency of the virtual appliance, so that a legitimate user or machine can access
the services hosted on the attacked node without being aware of the migration
process. Moreover, in order to further increase network security in the connec-
tion between the distributed data-centers, we use a mechanism that splits packets
into parts and then redirects them to disjoint paths, so that an intruder is not
able to reconstruct the flowing traffic. This is done by using a traffic engineer-
ing mechanism based on the MPLS (MultiProtocol Label Switching) technology
[11]. The confidentiality is guaranteed because if a malicious user is able to in-
tercept the traffic between two nodes of the network passing through different
paths, he should be aware of the splitting mechanism in order to reconstruct the
original message from the parts he has collected. Besides the mechanism we use
is not overhead-heavy compared to the use of end-to-end encryption.

6 Case Study: A Testbed for Air Traffic Control

Air Traffic Control (ATC) are very demanding and software-intensive systems.
They are safety critical, highly distributed and hard real time. Among the di-
mensional architectural requirements of this type of systems there are ultrahigh
availability (6 nines), high performance, modifiability, scalability and usability.
In the ATC field, ATC centers belonging to the same system are often deployed
over different cities in a given country, either for fault tolerance purposes and
remote connection needs at country level. For this reason, CC represents the key
technology these industries need: first, setting up an extended enterprise private
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CC platform allows to connect geographically distributed ATC centers for de-
pendability purposes, e.g., by realizing a failover configuration among centers
in order to increase overall system availability. Second, it can be leveraged in
pre-operational phases by setting up testbed platforms in the cloud to perform
distributed testing campaigns on complex systems from different premises, to
reproduce real world scenarios in house and to validate the system in a number
of operational use cases.

The use case scenario in which we intend to test and evaluate the proposed
OpenFlow-based architecture is a Private Enterprise CC Infrastructure that
hosts an Area Control Center (ACC), the main operative center in an ATC sys-
tem. ACC is the infrastructure responsible for controlling aircraft in a particular
volume of airspace at high altitudes between airport approaches and departures.
By using this case study, we aim at validating our architecture on a very complex
real world system which is one of the main industrial assets. In order to perform
a preliminary assessment of the whole architecture, we implemented a proof of
concept deploying an ACC (accounting for a total of 32 nodes) on a Private IaaS
Infrastructure realized by using the OpenNebula [14] OpenSource solution. We
simulated some Distributed Denial of Service attacks and used the Snort [12]
Intrusion Detection system to trigger the mitigation strategy already presented.
We are now investigating the presence of vulnerabilities of the testbed nodes
which can be exploited as an attack surface. To this aim we exploited a linux-
based distribution, namely Backtrack [13], which is widely used for penetration
testing and security assessment.

7 Conclusions and Future Work

CC perfectly fits IT companies’ needs for elasticity and scalability by extremely
reducing CapEx/OpEx costs and datacenter start-up time. Anyway there are
still open research issues about the security level and performances achievable
when moving services in the cloud. In this work we built a private Enterprise
CC platform to host an entire Air Control Center and then we designed an ar-
chitecture with the aim of automatically reacting to attacks towards the ACC
nodes. For the proof of concept, we used a simple DDoS attack which is de-
tected by the agent and the raised alarm is sent to a central decider, which is
in charge of triggering the mitigation strategy. The decider is implemented on
an OpenFlow Controller which has a global view of the network and it interacts
with the cloud manager in order to activate the migration of the attacked node in
a remote data-center. In the connection between the two data-centers, confiden-
tiality is guaranteed thanks to the use of an MPLS-based splitting mechanism
which makes the eavesdropping of the packets very hard to possible attackers.
Finally, the Controller can then reconfigure traffic flows in order to guarantee the
transparency of the location of the node after the mitigation process. Our future
work consists in an evaluation of the proposed architecture and the use of clas-
sical anomaly detection with other mechanisms aimed at identifying malicious
patterns on a per-user or per-application basis.
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Abstract. Device drivers account for a substantial part of the operating system 
(OS), since they implement the code that interfaces the components connected 
to a computer system. Unfortunately, in the large majority of cases, hardware 
vendors do not release their code, making the analysis of failures attributed to 
device drivers extremely difficult. Although several instrumentation tools exist, 
most of them are useless to study device drivers as they work at user level. This 
paper presents Intercept, a tool that profiles Windows Device Drivers (WDD) 
and logs the driver interactions with the OS core at function level. The tool 
helps to understand how a WDD works and can provide support for several  
activities, such as debugging, robustness testing, or reverse engineering. Expe-
riments using Ethernet, Wi-Fi and Bluetooth device drivers show that Intercept 
is able to record function calls, parameters and return values, with small over-
heads even when the device driver under test is subject to a heavy workload. 

Keywords: Device drivers, profiling, dependability. 

1 Introduction 

Device drivers (DD) play an important role in the computer industry as they are re-
sponsible for interfacing the multitude of devices that can be connected to a system. 
Therefore, their aggregated size can be a substantial part of modern operating sys-
tems. Nevertheless, most system administrators, users, and programmers still view 
them as an obscure and complex section of the operating system, which in part can be 
explained due to the DD necessity of addressing low level hardware details and OS 
internals. In the past, DD misbehavior has been pointed out as a prime cause for sys-
tem crashes [3], and some researchers have showed that faults in DD can have a 
strong impact in the overall system dependability [4,5,6,7]. 

The recognized complexity associated with DD is aggravated as most vendors do 
not release openly the code, or even the hardware specifications. Therefore, the de-
velopment, testing and analysis of DD becomes a complex task, and typically can 
only be achieved through the use of reverse engineering techniques and other forms of 
instrumentation. Although several instrumentation tools exist, most of them work at 
user level, making them useless to study the device drivers’ behavior. 
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In the paper we present Intercept, a tool that instruments Windows Device Drivers 
(WDD) by logging data about the interactions with the OS core. It operates without 
access to the driver's source code and with no changes to the driver’s binary file. As 
its name indicates, the tool intercepts all function calls between the DD and the OS 
core, ensuring that various data can be collected, such as the name of the functions 
that are invoked, their parameters and return values, and the content of particular 
areas of memory. Although simple in concept, it enables the users to expose a DD 
behavior and data structures, which provide a practical approach towards its  
understanding.  

In the case of DD involved with communications, which are the focus of the paper, 
Intercept can be used as a building block of other tools by providing the contents of 
packets and the context of their arrival/departure. For this purpose, Intercept can log 
the network traffic information in the format used by Libpcap [17], which can then be 
analyzed by popular tools such as WireShark [18]. Intercept can be very helpful in 
debugging processes since it gives a higher level vision of what is happening between 
the OS core and the driver, and at the same time offering information on the parame-
ter contents and address locations. Combined with debugging tools from Microsoft, 
such as WinDbg [20], this data is useful to reduce the time for locating functions, OS 
resources and global variables. Currently, we are using Intercept as a component of a 
testing tool for DD. Some preliminary results are presented at the end of the paper. 

2 Related Work 

In the past, several tools have been proposed for various types of code analysis. For 
example, CodeSurfer [11] can perform program slicing to support a better understand-
ing of the code behavior.  BitBlaze [10] combines dynamic and static analysis  
components to extract information from malware. Other tools like Coverity [12], Path 
Finder [14] or CoreDet [13] rely either on C or Java language constructs and LLVM 
compilers [15] to transform the source code to their analysis format. Unfortunately, 
these tools depend on the existence of the source code. Binary programs have been 
addressed by RevGen [16], which translates them to LLVM intermediate  
representations, enabling the code to be checked with off-the-shelf analysis tools.  

These tools, although producing valuable information, only reveal a part of the 
scope of the analysis, which is the static organization of the software. To obtain a 
vision over the dynamic behavior of the component, it is usually necessary to resort to 
debuggers or instrumentation tools that are able to trace the execution and record the 
instructions that were run. SytemTap [21] and Ftrace [22] are examples of existing 
tracing tools, but they only support the Linux OS. 

Detours [1] is a library for intercepting arbitrary Win32 binary functions on x86 
machines. The interception code is applied dynamically at runtime by replacing the 
first few instructions of the target function with an unconditional jump to a  
user-provided detour function.  The removed instructions from the target function are 
preserved in a trampoline function, which also has an unconditional branch to the 
remainder of the target function.  The detour function can either completely replace 
the target function or extend its semantics by invoking the target function as a  
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subroutine through the trampoline. Detours experiments were based on Windows 
applications and DLLs, but were not applied to device drivers.  

PIN [2] is a software system that performs run-time binary instrumentation of 
Windows applications. PIN collects data by running the applications in a process-
level virtual machine. It intercepts the process execution at the beginning and injects a 
runtime agent that is similar to a dynamic binary translator. To use PIN, a developer 
writes a “Pintool” application in C++ using the PIN API consisting of instrumenta-
tion, analysis and callback routines. The “Pintool” describes where to insert instru-
mentation and what it should do. Instrumentation routines walk over the instructions 
of an application and insert calls to analysis routines. Analysis routines are called 
when the program executes an instrumented instruction, collecting data about the 
instruction or analyzing its behavior. Callbacks are invoked when an event occurs, 
such as a program exit. Several applications were instrumented using PIN, such as 
Excel and Illustrator. PIN executes in user level ring3, and therefore can only capture 
user-level code. DynamoRio [24] is an example of dynamic binary translation  
technique similar to the one used by PIN [2]. 

NTrace [23] is a dynamic tracing tool for the Windows kernel capable of tracing 
system calls, including the ones involving drivers. The used technique is based on 
code modification and injection of branch instructions to jump to tracing functions. It 
relies on the properties introduced by the Microsoft Hot patching infrastructure, 
which by definition start with a mov edi, edi instruction. NTrace replaces this 
instruction with a two-byte jump instruction.  However, due to the space constraints, 
the jump cannot direct control into the instrumentation routine. It rather redirects to 
the padding area preceding the function. The padding area is used as a trampoline into 
the instrumentation proxy routine.  

Intercept uses an alternative approach to instrument device drivers in Windows, 
which requires no changes to the binary code and supports callbacks. It uses a DD 
loader to point all imported functions from a driver to its own interception layer.  
Callback functions registered by the driver are also captured and directed to the  
interception layer. No extra code needs to be developed for normal operation --- a 
complete log is generated describing how the driver behaves as a result of the experi-
ments. However, extensibility is achieved by changing the actions performed by the  
interception layer, allowing more complex operations to be carried out. 

3 Device Drivers 

DD are extensible parts of the OS, exporting interfaces that support the interactions 
with the hardware devices. They are called when either the OS requires some action 
to be carried out by the device or the other way around. Depending on the type of 
device, the DD can operate in two different ways. In the first one, the DD accesses the 
device in a periodic fashion (pooling) --- the DD programs a timer with a certain val-
ue and whenever the timer expires the device is checked to see if it needs servicing 
(and proceeds accordingly). In the second way, the device triggers an interrupt to 
request the processor’s attention. Each interrupting device is assigned an identifier 
called the interrupt request (IRQ) number. When the processor detects that an  



64 M. Mendonça and N. Neves 

interrupt has been generated on an IRQ, it stops the current execution and invokes an 
interrupt service routine (ISR) registered for the corresponding IRQ to attend to the 
request of the device. In either case, these critical pieces of code must be quickly  
executed to prevent the whole system from being stopped. 

The rest of this section provides context on the operation of WDD. Some of this in-
formation was obtained by reading available literature, while other had to be  
discovered by reverse engineering the operation of Windows.  

3.1 Windows Device Drivers 

The Windows Driver Model (WDM) defines a unified approach for all kernel-mode 
drivers. It supports a layered driver architecture in which every device is serviced by a 
driver stack. Each driver in this chain isolates some hardware-independent features 
from the drivers above and beneath it avoiding the need for the drivers to interact 
directly with each other. The WDM has three types of DD, but only a few driver 
stacks contain all kinds of drivers: 

• Bus driver – There is one bus driver for each type of bus in a machine (such as 
PCI, PnP and USB). Its primary responsibilities include: the identification of all 
devices connected to the bus; respond to plug and play events; and generically  
administer the devices on the bus. Typically, these DD are given by Microsoft; 

• Function driver – It is the main driver for a device. Provides the operational inter-
face for the device, handling the read and write operations. Function drivers are 
typically written by the device vendor, and they usually depend on a specific bus 
driver to interact with the hardware; 

• Filter drivers – It is an optional driver that modifies the behavior of a device. There 
are several kinds of filter drivers such as: lower-level and upper-level filter drivers 
that can change input/output requests to a particular device.  

The WDM specifies an architecture and design procedures for several types of devic-
es, like display, printers, and interactive input. For network drivers, the Network 
 Driver Interface Specification (NDIS) defines the standard interface between the 
layered network drivers, thereby abstracting lower-level drivers that manage hardware 
from upper-level drivers implementing standard network transports (e.g., the TCP 
protocol). Three types of kernel-mode network drivers are supported in Windows: 

• Miniport drivers - A Network Interface Card (NIC) is normally supported by a 
miniport driver that has two basic functions: manage the NIC hardware, including 
the transmission and reception of data; interface with higher-level drivers, such as 
protocol drivers through the NDIS library. The NDIS library encapsulates all  
operating system routines that a miniport driver must call (functions 
NdisMXxx() and NdisXxx()). The miniport driver, in turn, exports a set of en-
try points (MPXxx() routines) that NDIS calls for its own purposes or on behalf of 
higher-level drivers to send packets. 

• Protocol Drivers - A transport protocol (e.g. TCP or IP) is implemented as a proto-
col driver. At its upper edge, a protocol driver usually exports a private interface to 
its higher-level drivers in the protocol stack. At its lower edge, a protocol driver  
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interfaces with miniport drivers or intermediate network drivers. A protocol driver 
initializes packets, copies data from the application into the packets, and sends the 
packets to its lower-level drivers by calling NdisXxx() functions. It also exports 
a set of entry points (ProtocolXxx() routines) that NDIS calls for its own 
purposes or on behalf of lower-level drivers to give received packets. 

• Intermediate Drivers - These drivers are layered between miniport and protocol 
drivers, and they are used for instance to translate between different network me-
dia. An intermediate driver exports one or more virtual miniports at its upper edge. 
A protocol driver sends packets to a virtual miniport, which the intermediate driver 
propagates to an underlying miniport driver. At its lower edge, the intermediate 
driver appears to be a protocol driver to an underlying miniport driver. When the 
miniport driver indicates the arrival of packets, the intermediate driver forwards the 
packets up to the protocol drivers that are bound to its miniport. 

Windows drivers expose functions that provide services to the OS. However, only one 
function is directly known by the OS, as it is the only one that is retrieved from the 
binary file when the driver is loaded. By convention, the function name is Drive-
rEntry(). This function is called when the OS finishes loading the binary code of 
the driver, and its role is to initialize all internal structures of the driver and hardware, 
and indicate to the OS the exported driver functions by calling NdisMRegister-
MiniportDriver(). Example exported miniport driver functions to NDIS are: 
MPInitialize() and MPSendPackets(). 

Generically, a packet transmission is accomplished in a few steps with NDIS. The 
protocol driver sends the packet by calling NDIS function NdisSendPackets(), 
which in turn passes the packet to the miniport driver by invoking  MPSendPack-
ets()exported by the miniport driver. The miniport driver then forwards the packet 
to the NIC for transmission by calling the associated NdisSendPackets(). On 
the other way around, when a NIC receives a packet, it can post a hardware interrupt 
that is handled by NDIS or the NIC's miniport driver. NDIS notifies the NIC's  
miniport driver by calling the appropriate MPXxx() function. The miniport driver 
sets up the data transfer from the NIC and then indicates the presence of the received 
packet to higher-level drivers by calling the NdisMIndicateReceivePack-
et(). The upper level protocol driver then calls NdisReturnPacket() to  
retrieve the packet. 

3.2 Windows Device Drivers File Structure 

Windows normally organizes the information about a DD in several files. Files with 
the extension “.inf” contain plain text and are divided in several sections. They have 
relevant context data such as the vendor of the driver, the type and the compatibility 
with devices, and startup parameter values. They are used during driver installation to 
match devices with drivers and to find the associated “.sys” files. Files with the exten-
sion “.sys” are the binary executable images of the DD, and they are loaded to memo-
ry to provide services to the OS. The binary files follow the PEF file format [8], the 
same format used to represent applications and DLLs.  
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Fig. 1. Intercept architecture 

The PEF file structure contains binary code and dependencies from other software 
modules (organized as tables). The binary code is mostly ready to be loaded into 
memory and run. However, since it can be placed anywhere in memory, there is the 
need to fix up the relative addresses of the function calls. Functions that refer to ex-
ternal modules are located in the imported functions table. This table contains the 
names of the external modules (DLLs, .sys, .exe), the function names and the address 
location in the memory of the running system. The addresses are resolved by the 
Windows Driver Manager when it loads the driver for execution. 

The driver is placed in execution by calling the DriverEntry() function. The 
address of this function is also obtained from the PEF file, and is located in the  
AddressOfEntryPoint field of the Optional Header section. 

4 Intercept 

Intercept logs information about the interactions between the OS core and the device 
driver under test (DUT). The data is collected during the whole period of execution, 
starting when the driver is loaded and ending when it is uninstalled. It includes among 
others, the list of functions that are used, the order by which they are called, and pa-
rameter and return values. This information is quite comprehensive, and it helps not 
only to understand the driver-OS core interactions, but also to realize how drivers deal 
with the hardware in terms of programming and access to specific storage areas.  

4.1 Architecture 

The architecture of Intercept is represented in Fig. 1. It can be divided in two main 
components: the Intercept Windows Device Driver (IWDD) and the Intercept User 
Interface (IUI). The first is a Windows driver that provides all the necessary functions 
to load, execute and intercept the DUT. The second is an application that allows users 
to setup the interception process and control the IWDD activity. 
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The components of IWDD are the following. The Controller provides an interface 
for the IUI application to control the behavior of the IWDD, allowing for instance the 
definition of the level of detail of logging and the selection of which functions should 
be logged. The Loader & Connector (LC) is responsible for loading the “DUT.sys” 
file into the memory space of IWDD. It also links all functions that the DUT calls 
from external modules to the functions offered by the Interception layer. The Inter-
ception Layer provides the environment for the DUT to run, and intercepts all calls 
performed by the OS to the DUT and the other way around. The Log Unit (LGU) 
receives the log entries from the Interception layer and saves them to a file. This is 
performed in a separate task to decouple the write delays from the remaining 
processing, and therefore increase the system performance. 

Intercept is installed by replacing in the system the DUT with its own driver (the 
IWDD). When the OS attempts to load the DUT, in fact it ends up loading IWDD. 
Later on, IWDD brings to memory the DUT for execution. Setting up the interception 
of a DUT involves the following steps:  

1. The user indicates the DUT of interest through the IUI interface, where a list of  
devices present in the OS is displayed;  

2. The IUI locates the “DUT.inf” and “DUT.sys” files, and makes a copy of them to a 
predefined folder. A copy of the “IWDD.sys” file is also placed in the same folder; 

3. The IUI replaces in the “DUT.inf” file all references to “DUT.sys” with 
“IWDD.sys”. The IUI also removes references to the security catalogue, since 
IWDD is not currently digitally signed. This way, when the OS interprets the 
“DUT.inf” file, it will install “IWDD.sys” instead; 

4. The Windows Device Manager (WDM) is used to uninstall the “DUT.sys”, and 
then it is asked to check for new hardware, to detect that there is a device without a 
driver. At that time, the location of the predefined folder is provided, and Windows 
interprets the modified “DUT.inf” file. Since there is a match with the hardware 
identification of the device, it proceeds to load “IWDD.sys”. 

4.2 Start Up Process for Interception 

After “IWDD.sys” is loaded, the following sequence of actions occurs: 

1. The WDM calls the DriverEntry(DriverObject *drvObj, 
PUNICODE_STRING RegPath) function of IWDD, so that it can initialize and 
register the callback functions. Parameter *drvObj is a complex structure where 
some of the exported callback functions can be registered. Parameter RegPath is 
the path of the Windows Register location where the driver should store informa-
tion. Since the DD functionality is to be provided by the original DUT implementa-
tion, at this stage the control is given to the LC unit to load the DUT’s code; 

2. The LC unit interprets the “DUT.sys” file contents, relocates the addresses, and 
goes through the table of imported functions to link them to the Interception layer. 
Technically this is achieved by having in the Interception layer a table containing 
entries with a “name” and an “address” for each function. The “name” is the Win-
dows function name that can be found in the imported table of the DUT and the 
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“address” is a pointer to the code of the function. The address of the function in the 
Interception layer is placed in the imported function table of the DUT's. In the end, 
all imported functions of the DUT point to functions in the IWDD.  

3. Next, the “DUT.sys” binary is merged and linked to the IWDD. The LC unit also 
finds the address of the DUT’s  DriverEntry(), which is then executed.  As 
with any other driver, the DUT has to perform all initializations within this  
function, including running NdisMRegisterMiniportDriver() to register 
its exported functions to handle packets. However, since the DUT's imported  
functions were substituted by IWDD functions, a call to  
NdisMRegisterMiniportDriver() in fact corresponds to a call to 
_IWDD_NdisMRegisterMiniportDriver()1. In the particular case of this 
function, the DUT gives as parameters the callback functions to be registered in the 
NDIS library. In the Interception layer, the implementation of this function swaps 
the function addresses with its own functions, making the interception effective  
also for functions that will be called by the OS to the DUT. 

4  When the DUT's DriverEntry()finishes, it returns a drvObj parameter con-
taining potentially also some pointers to callback functions. Therefore, before giv-
ing control back to the OS, IWDD replaces all callback entries in drvObj with its 
own intercept functions, which in turn will call the DUT’s routines. This way this 
type of callback function is also intercepted. 

4.3 Tracing the Execution of the DUT 

The DUT starts to operate normally, but every call performed by the OS to the DUT, 
and vice versa, is intercepted. The Interception layer traces all execution of the DUT, 
recording information about which and when functions are called, what parameter 
values are passed, which return values are produced and when the function exits. The 
log uses a plain text format and data is recorded to a file.  

All functions implemented in the Interception layer make use of routines 
_IWDD_DbgPrint() and _IWDD_Dump(char *addr, long size). The 
first works like the C language printf() function, and is used to write formatted 
data to the log file, such as strings and other information types. The second function is 
used to dump into the log file the contents of memory of a certain range of bytes start-
ing at a given memory addresses. Together, these two functions can give a clear  
insight of the DUT’s and OS’s interaction. 

Typically, the Interception layer creates a log entry both when entering and leaving 
a function. Whenever input parameter values are involved, they are also logged before 
calling the intended function, either in the DUT’s code or in the OS. Output parame-
ters and return values are saved before the function ends execution. Complex  
structures, such as NetBuffers, NetBufferLists or MDLs [9], are decomposed 
by specific routines so that the values in each field of the structure can be stored. 

The interception of functions and the trace of its related information is a time con-
suming activity that may interfere with the DUT and the overall system performance. 

                                                           
1 The prefix _IWDD_ is used to identify a function provided by the IWDD. 
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To reduce overheads, the storage process is handled by a separate thread. During the 
IWDD startup process, the LGU unit creates a queue and a dedicated thread 
(DThread), whose task is to take elements from the queue and write them into the 
log file. The queue acts as a buffer to adapt to the various speeds at which information 
is produced and consumed by the thread. The access to the queue is protected by a 
lock mechanism to avoid race conditions. A call to _IWDD_DbgPrint() or 
_IWDD_Dump() copies the contents of the memory to the queue, and signals the 
thread to wake up and store the information. 

In the standard mode of operation, the log file is created when the thread is in-
itiated. Each time the thread awakes, the data is removed from the queue and written 
to the file. When the file reaches a pre-determined value, it is closed and a new one is 
created. However, in case of a crash, the information in cache can be lost. To cope 
with this situation, the thread can also be configured to open, write synchronously and 
close the file each time it consumes data from the queue. However, this comes at the 
expense of a higher overhead. 

5 Experimental Results 

The objective of the experiments is twofold. First, we want to get some insights into 
the overheads introduced by Intercept, while a DD executes a common network task -
-- a file transfer by FTP. Second, we want to show some of the usage scenarios of the 
tool, such as determining which functions are imported by the drivers and what  
interactions occur while a driver runs. 

5.1 Test Environment 

The experiments were performed with three standard drivers, implementing different 
network protocols, namely Ethernet, Wi-Fi and Bluetooth. Table 1 summarizes the 
installation files for each DUT. 

Table 1. Device drivers under test 

Driver  Type Files 
Ethernet netrtx32.inf, rtlh.sys 
Wi-Fi netathr.inf, atrh.sys 
Bluetooth  netbt.inf, btnetdrv.sys 

 
The corresponding hardware devices were connected to a Toshiba Satellite A200-

263 Laptop computer. The Ethernet and Wi-Fi cards were built-in into the computer, 
while the Bluetooth device was a SWEEX Micro Class II Bluetooth peripheral [19] 
linked by USB. In the tests, we have used Intercept both with Windows Vista and 
Windows 8. 

The overhead experiments were based on the transmission of a file through FTP. 
The FTP server run in an HP 6730b computer. The FTP client was the Microsoft FTP 
client application, which was executed in the laptop together with Intercept. Different 
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network connections were established depending on the DUT in use. For the Ethernet 
driver an Ethernet network of 100Mbps using a TP-Link 8 port 10/100Mbps switch 
was setup to connect the two systems. For the Wi-Fi and Bluetooth drivers an ad-hoc 
connection was established. 

5.2  Overhead of Intercept 

To evaluate the overheads introduced by Intercept, we have run a set of experiments 
consisting on the transfer of a file of 853548 bytes length between a FTP server and a 
client. Any file could have been used for the transfer. We selected this file because it 
was the first log produced by Intercept during the experiments.  

For each driver five FTP transfers were performed, and the average results are pre-
sented in the tables. Table 2 summarizes the results for the execution time and transfer 
speeds. Column “Driver ID” represents the DUT, either in Windows Vista (xx_Vista) 
or in Windows 8 (xx_Win8). The columns under the label “Intercept off” display the 
average transfer time and average speed when the Intercept tool is not installed in the 
client system. The columns under label “Intercept on” correspond to the case when 
the Intercept tool is being used. 

The results between Intercept off and on show a performance degradation, which 
was expected as Intercept records all the activity of the drivers, and performs tasks 
such as decoding parameter structures and return values of all functions. Nevertheless, 
these overheads are relatively small: between 2% and 7% for the Ethernet driver, 2% 
to 3% for the Bluetooth driver and 14% to 15% for the Wi-Fi driver. These observa-
tions were more or less expected since the Wi-Fi drivers have more imported func-
tions, are longer in size and require more processing when compared with the other 
drivers. The same Bluetooth driver was used in both OS which can explain the  
similarity of the degradation. The differences between the overheads on the Ethernet 
and Wi-Fi networks can be related to changes in the drivers, since we have used the  
standard drivers that came with the Windows installation. 

Table 2. FTP file transfer time and speed values (Time in seconds; Speed in Kbytes/second) 

Driver  
ID 

FTP Transfer 
Intercept off (average) Intercept on (average) Time 

Overhead Time Speed Time Speed 
Eth_Vista 0,198 6238 0,202 6204 2% 
Eth_Win8 0,136 6503 0,146 5963 7% 

WiFi_Vista 9,300 97 10,650 84 15% 
WiFi_Win8 0,276 3076 0,314 2872 14% 
Bth_Vista 5,890 145 6,012 142 2% 
Bth_Win8 5,612 152 5,760 148 3% 

 
During the experiments we saw that for each transmitted byte, Intercept generated 

between 9 to 23Kbytes of data. Not surprisingly the Wi-Fi driver was the one that 
generated a higher amount of data, which can be interpreted as a synonymous of  
increased complexity. 
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Table 3. Top 5 most used functions by each driver 

Function Eth 
Vista

WiFi 
Vista 

Bth 
Vista 

NdisMSynchronizeWithInterruptEx - 69301 - 
InterruptHandler 880 33931 - 
MiniportInterruptDpc - 32774 - 
NdisAcquireReadWriteLock - 6345 - 
NdisReleaseReadWriteLock - 6345 - 
NdisMIndicateReceiveNetBufferLists - - 1032 
NdisAllocateMdl 1096 - - 
NdisFreeMdl 1096 - - 
NdisAllocateNetBufferAndNetBufferList 1024 - - 
NdisFreeNetBufferList 1024 - - 
NdisAllocateMemoryWithTagPriority - - 520 
NdisFreeMemory - - 520 
MPSendNetBufferLists - - 503 
NdisMSendNetBufferListsComplete - - 503 

5.3 Understanding the Dynamics of Function Calls 

The dynamics of function calls during a driver’s execution is determined by its work 
load. Intercept can support various kinds of profiling analysis about the usage of func-
tions by a certain device driver under a specific load. For example, in our FTP transfer 
scenario, Table 3 represents the top 5 most called functions by each DUT from instal-
lation and until deactivation (in Windows Vista). Based on the number of function 
calls it becomes clear that the Wi-Fi driver is the one that shows more activity in the 
system. Focusing on the top 3 functions from this driver, the NdisMSynchroni-
zeWithInterruptEx is the most used function. Drivers must call this function 
whenever two threads share resources that can be accessed at the same time. On a 
uniprocessor computer, if one driver function is accessing a shared resource and is 
interrupted, to allow the execution of another function that runs at a higher priority, 
the shared resource must be protected to prevent race conditions. On an SMP  
computer, two threads could be running simultaneously on different processors and 
attempting to modify the same data. Such accesses must be synchronized.  
InterruptHandler is the second most executed function. This function runs 

whenever the hardware interrupts the system execution to notify that attention is re-
quired. From the 33931 interrupts, 32774 calls were deferred for later execution with 
MiniportInterruptDpc. By inspecting the remaining functions used by the Wi-
Fi driver, which are lock related, it becomes evident that the driver is relying heavily 
on multithreading and synchronization operations.  

Several other metrics can be obtained with Intercept, such as the minimum, aver-
age and maximum usage of each individual resource, DMA transfers, restarts, pauses, 
most used sections of the code, to name only a few. Intercept can also be employed 
when particular information needs to be collected. As an example, we wanted to find 
out what data is returned by the FTP server after the client connects. Fig. 2 shows a 
call performed by the DUT to the OS notifying NDIS that a new frame has just ar-
rived. In this case it is possible to observe the banner received from the FTP server, 
i.e., “220-Welcome to Cerberus FTP Server”.  
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Another parameter is the resources allocated for the hardware. This allocation was 
performed automatically by the system according to the PCI standard, which releases 
the programmers from doing it. However, the driver only gets to know it when this 
function is called. In this example some of resources assigned to the Wi-Fi hardware 
were: Memory start: 0xd4000000 and Memory length: 0x00010000. 

5.5 Understanding Particular (Complex) Interactions with the OS 

Intercept can be used to comprehend how certain complex operations are performed 
by the driver.  For example, in Windows, a driver can remain installed but disabled. 
By analyzing the log produced by Intercept during the disabling process, it is possible 
to observe that the OS first calls the drivers’ MiniportPause to stop the flow of 
data through the device. Second, the OS calls MiniportHalt to obtain the re-
sources that were being utilized. Both these two functions were registered during the 
initialization process, at the time using the NdisMRegisterMiniportDriver 
function. Finally, the OS calls the Unload function to notify the driver that is about 
to be unload. The Unload function was also registered by the driver in the OS when 
the DriverEntry routine returned, by setting the address of this function in the 
DriverUnload field of the Driver_Object structure. As soon as the Unload 
function starts it is possible to observe in the log that the driver calls the MPDrive-
rUnload callback function. When this function ends the unload process ends and the 
driver is disabled. 

Another example corresponds to uninstalling the driver. With the information 
logged by Intercept, it was found that there is no difference between disabling and 
uninstalling a driver, except from the fact that uninstalling the driver removes it from 
the system.  

The detailed information stored by Intercept in the log also helps to determine if all 
resources allocated by the driver are returned to the OS core. This can assist for in-
stance to detect drivers with bugs. Table 4 represents the use of five resources utilized 
by the Wi-Fi driver. It is possible to observe a match between the number of resource 
allocations and releases, which gives evidence that the driver released all those  
allocated resources. 

Table 4. Top 5 allocation/release resources functions 

Allocation function #Calls Release function #Calls 
_IWDD_NdisFreeIoWorkItem 1158 _IWDD_NdisAllocateIoWorkItem 1158 
_IWDD_NdisMAllocateNetBufferSGList 1041 _IWDD_NdisMFreeNetBufferSGList 1041 
_IWDD_NdisMAllocateSharedMemory 803 _IWDD_NdisMFreeSharedMemory 803 
_IWDD_NdisAllocateNetBuffer 256 _IWDD_NdisFreeNetBuffer 256 
_IWDD_NdisAllocateNetBufferList 256 _IWDD_NdisFreeNetBufferList 256 

6 Using Intercept as a Component of a Testing Tool 

Currently, we are developing a testing tool that uses Intercept as a building block. 
Due to its detailed logs, the tester can fully understand the driver’s dynamics, and thus 
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plan and design tests that target specific and elaborate conditions. The new tool uses a 
file that describes the test pattern. Whenever a function is intercepted by the Intercep-
tion Layer, it calls the _Inject_decison function to evaluate the conditions and 
execute the test accordingly. 

As a demonstration of the results of this ongoing work, an experiment was per-
formed during the initialization of the Wi-Fi driver in Windows 8. The test targeted 
the NdisMMapIoSpace function that maps a given bus-relative "physical" range of 
device RAM. When successful, this function returns NDIS_STATUS_SUCCESS and 
the value of the output parameter VirtualAddress contains the start of the  
memory map. Other outcomes are exceptions that should be handled quietly. 

Four test scenarios were planned by returning to the driver three possible exceptional 
values (as described in the Microsoft documentation) NDIS_STATUS_RESOURCE_ 
CONFLICT, NDIS_STATUS_RESOURCES, NDIS_STATUS_FAILURE and one 
unspecified value (NDIS_STATUS_FAILURE+1), while maintaining Virtua-
lAddress equal to NULL. The DUT handled correctly the tests and ended quietly, 
and appropriately deallocated all resources, as confirmed by the Intercept logs.  

Four additional test scenarios were performed with the same return values but as-
signing a specific value to VirtualAddress. These tests all resulted in a crash 
with the DUT being the culprit. It was concluded that the driver is using the value of 
VirtualAddress before checking the return value, which is worrisome in case 
Windows does not clear the VirtualAddressis field.  

7 Conclusions 

The paper presents Intercept, a tool that instruments WDD by logging the driver inte-
ractions with the OS at function level. It uses an approach where the WDD binary is 
in full control and the execution traced to a file recording all function calls, parameter 
and return values. The trace is directly generated in clear text with all the involved 
data structures.  

An experiment with three network drivers was used to demonstrate some of the  
instrumentation capabilities of Intercept. The performance of the tool was also eva-
luated in a FTP file transfer scenario, and the observed overheads were small given 
the amount of information that is logged, all below 15%. 

As is, Intercept gives a clear picture of the dynamics of the driver, which can help 
in debugging and reverse engineering processes with low performance degradation. 
Intercept is also currently being used as a building block of a testing tool. Preliminary 
results show the ability to identify bugs in drivers, by executing tests based on the 
knowledge obtained from the driver’s dynamics. 
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Abstract. Current integration scales are increasing the number and
types of faults that embedded systems must face. Traditional approaches
focus on dealing with those transient and permanent faults that impact
the state or output of systems, whereas little research has targeted those
faults being logically, electrically or temporally masked -which we have
named fugacious. A fast detection and precise diagnosis of faults occur-
rence, even if the provided service is unaffected, could be of invaluable
help to determine, for instance, that systems are currently under the in-
fluence of environmental disturbances like radiation, suffering from wear-
out, or being affected by an intermittent fault. Upon detection, systems
may react to adapt the deployed fault tolerance mechanisms to the diag-
nosed problem. This paper explores these ideas evaluating challenges and
requirements involved, and provides an outline of potential techniques to
be applied.

Keywords: Fault detection, transient faults, intermittent faults,
permanent faults, fault diagnosis, VLSI design workflow.

1 Introduction

Current embedded VLSI systems are widespread and operate in multitude of
applications in different markets, ranging from life support, industrial control,
or airborne electronics to consumer goods. It is unquestionable that the former
require different degrees of fault tolerance, given the human lives or great in-
vestments at stake, but it is not so obvious to admit that unexpected failures in
consumer products can undermine their success in the marketplace [1]. Hence,
there is great interest in protecting equipment from eventual faults, which in
turn involves providing a certain degree of service reliability over the whole life-
time. Specifically this relies on controlled operation of both software and hard-
ware. While it is clear that potential programming bugs will affect the software
behaviour, recent studies on complete systems highlight the disastrous impact
which even transient faults happening in the hardware may have in the code
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execution of critical applications [2]. Therefore in order to achieve dependable
devices it is no longer possible to preclude hardware implications from software
design.

In the design stage of a product it is foreseeable an evolution in its oper-
ational state, from an ideal scenario to another posing several dependability
threats. Since a set of specifications has to be met, a conservative approach is
taken and security margins are applied to compensate for expected negative ef-
fects which may hinder correct service delivery. But that evolution can be no
longer predicted accurately enough [3], leaving the only alternative to adapt the
system to unexpected changes during its service lifetime. Hence, it is a growingly
important requisite to create an information flow from environment to hardware
and finally software. A major source of such sudden changes in a system is the
occurrence of faults.

To explain why faults appear, there are a number of reasons to be men-
tioned. For instance, manufacturing capabilities have been evolving at a fast
pace, bringing a new breadth of improvements to embedded systems in terms of
logic density, processing speed and power consumption. However, those benefits
become threats to the dependability of systems, causing higher temperatures,
shorter timing budgets and lower noise margins which increase fault proneness.
In addition, deep-submicron technologies have both decreased the probability
of manufacturing defect-free devices, and increased the likelihood of problem-
atic events originated by wear-out. Moreover, the susceptibility of extremely
integrated electronics to α-particles and neutrons, arriving from outer space or
radioactive materials grows steadily, yielding a non-negligible degree of so called
soft errors [4], which affect temporarily the correctness of processing.

The mentioned faults can be classified in permanent or transient categories.
Research in the field has focused mainly in tackling permanent faults, disregard-
ing transient faults when their effect is not visible as errors in the captured data.
For instance, transient faults with short activation times (percentage of time in
which it is affecting the system relative to clock period), which have been shown
difficult to detect by conventional means [5], may not produce incorrect outputs
at once, but are a good indication of a problematic environment. We have named
them fugacious. According to [6], out-of-range supply voltages, abnormal noise,
temperature, etc. are triggers for such transient faults, which if repeated are
called intermittent faults. Whether the final nature of the fault is transient or
intermittent will depend on the wear-out conditions. For that reason we must
make an effort to be able to detect and diagnose such types of faults, because
these will provide valuable information when taking decisions for the evolution
of the system. An example would be to change the data codification in a bus
to a more robust scheme in the hardware, or to enable additional processing
iterations or variable checks in the software, for redundancy purposes. Studies
devoted to detection and diagnosis of fugacious faults are scarce or non-existent.
However, certain known detection techniques could be applied to fugacious faults
with limited success [24], since only a reduced period of time is monitored.



78 J. Espinosa et al.

The contribution of this paper is based in 2 major points: (i) to identify and
ponder the challenges of detection and diagnosis of fugacious faults in VLSI
systems and (ii) to provide insight on methods and technologies to cover such
challenges.

The rest of the paper is structured as follows. Section 2 justifies the impor-
tance of on-line detection, and underlines the difficulties of detecting transient
and intermittent faults with short activation times. Furthermore it presents the
different fault models while providing an overview on diagnosis of such faults. A
set of methods and technologies is presented in Section 3 to cope with the task.
Finally, Section 4 indicates the following actions to be taken and related issues.

2 The Problem of Fast Fault Detection and Diagnosis

According to Avizienis [7] the basic criterion to catalogue faults in permanent or
transient type is the persistence. This can however be an incomplete information
to comprise the whole picture and thus, activation reproducibility is the concept
introduced to better describe the observed situations. For permanent faults, dif-
ferent activation patterns lead to solid, hard faults when these are systematically
reproducible or to elusive, soft faults when they are not. Depending on circum-
stances those soft faults can be intermittent in time. For transient faults, elusive
activation is the most common but certain circumstances can likewise make them
manifest intermittently.

Such differentiated activation patterns require tailored fault tolerant tech-
niques of detection and diagnosis for dependability threats caused by faults
and errors. In several situations including high availability or high performance
systems, a concurrent detection (on-line) becomes critical. Next the existing
scenario related to such concepts is explained.

2.1 On-Line Detection of Faults and Errors

In order to test proper development of the systems several methods have been
described. From post-manufacture checking by means of test vectors or burn-in
testing used to discard flawed units, to assigning slots of regular service time
for test, for instance, many off-line techniques are currently employed. But the
advantage of on-line detection is clear. A loose detection or notification latency,
can have disastrous consequences in certain situations [8]. Besides, the longer
a fault is present in the system without detection the higher the probability
of facing a multiple fault situation. Provided that the latter is a problem of
increased complexity we find justified interest in early detection.

There is long tradition in the dependability community to develop on-line er-
ror detectors. Typically, they are based in the use of special data codification or
in the replication and comparison of outputs or state variables. But the relation-
ship between a fault occurred at the processing network and an error manifested
in the outputs or state variables is a limiting factor known as observability [9].
When the observability in an output is null for a given fault, no matter which
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input data combination was applied the fault will not show at the output. Like-
wise if more than one output is observable for that fault, multiple alterations
would be detectable at those outputs. This can be specially important when
using encoded circuits, where several properties describe different types of such
circuits according to the consequences of a set of faults [10].

– Fault-Secure. Circuits where in presence of a fault either the outputs are
correct or they are not a valid code word.

– Self-Checking. If for every fault of the fault models and for every input either
the output is correct or it is detected as error.

– Self-Testing. Circuits in which for every fault of the fault set there is at least
one possible input which causes the error to be detected.

– Totally Self-Checking. Circuits that are simultaneously Fault-Secure and
Self-Testing.

– Code-disjoint. Circuits where a non-code word input generates a non-code
output. This allows detection of erroneous inputs or cascading of blocks.

Therefore when employing codification it will be desirable to maximise the
observability in order to achieve a good fault coverage.

There are 3 possible causes for fault filtering: electrical, logical or temporal.
When dealing with permanent faults, temporal causes are discarded and due to
the nature of hard faults, logical filtering can only be short in time. For those
reasons any checking methodology will obtain positive results with hardly any
misses meanwhile the observability is good enough.

Nevertheless, detection of transient or elusive and intermittent faults is not so
straightforward. On the one hand, and according to field data from digital sys-
tems [11], transient faults have been shown to account for up to 80% of failures.
These can be caused by several reasons as it is known. Among those reasons, the
arrival of α-particles, protons or neutrons from radiation is one of the most stud-
ied and popular. If we pay attention to the evolution of transient fault duration
produced by one of these particles impacting a CMOS node, the result is directly
proportional to the feature size of the electronics [12]. However, the operational
frequency of devices has not been following the historic monotonic growing trend,
due to well known power dissipation issues. Consequently transients produced
by radiated particles and charge build-ups are narrower and narrower compared
to the clock periods. This paves the way to believe that although the number
of faults affecting a system may be high, chances are these would not be easily
captured by clock edges at the storage elements (heavy temporal filtering, see
Figure 1) . The derivatives of this are that the moment a fault is detected many
more could have already happened and the available time for reaction could be
too short. Therefore for self-awareness purposes it is desirable to detect them.

On the other hand, intermittent errors caused as studied by Nightingale [13]
a total of 39% of all hardware errors which, according to reports by Microsoft
from 950.000 computers, induced a crash in the operating system. This gives a
hint on the number of intermittent faults that can be happening in the system
if we consider that not all of them will end in an operating system crash. Other
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examples of can be found in certain cruise control modules for vehicles [14] which
hit a return rate of 96% due to undetected intermittent failures. These figures
can be uneven depending on the context of operation since, as distinguished
by Savir [15], random originated intermittent faults appear and disappear in
an unpredictable fashion whether systematic intermittent faults evolution can
be numerically characterized [16]. This enables a proper decision on the best
moment to apply recovery actions to maximise availability. Such systematic in-
termittent faults start by small fluctuations which grow in time and intensity
until their effect is severe [17]. In order to set focus on the considered problem,
a description of fault models is required.

2.2 Considered Fault Models

According to the presented concept of activation time, and the activation re-
producibility described earlier, we have established the name of fugacious faults
to refer to a set of 3 different types of faults. The fugacious transient faults
are defined as those which remain active less than a clock cycle of the system.
Likewise, fugacious intermittent faults are those transient faults which activate
at least twice in a clock period. Finally, permanent faults are active the whole
time span of the clock period, that means for us a fault lasting more than one
clock period will be considered permanently active.

2.3 Fault Diagnosis

Multiple efforts have been conducted towards an effective diagnosis of different
types of faults based on their activation reproducibility. As demonstrated in [18]
there are important benefits for the Mission Time Degradation and Mean Time
To Failure (MTTF) Degradation associated to correctly discriminating transient
from permanent faults. It is clear that no equal treatment has to be given to
both of them. For instance, transient faults will require no corrective action at



Detection and Diagnosis of Fugacious Hardware Faults 81

all when hardware redundancy provides a voted fault tolerance. Disregarding
the affected element for a certain period of time will negatively affect the de-
pendability of the system. Furthermore, given the nature of intermittent faults
and their proneness to become permanent, a proper distinction provides insight
on the convenience to isolate or recover the functional unit. Intermittent faults
diagnosis is a hot-topic in the field. An analytical model for a fault controller was
presented in [19], using a thresholds-based α count methodology to discriminate
transient from intermittent faults. Its Stochastic Activity Networks (SAN) anal-
ysis is specifically based on the time step, where transient faults last for less than
one step and intermittent faults repeat their appearance in subsequent steps. Its
drawbacks are it requires a long latency to discriminate, and infrastructure to
detect and accumulate the respective faults. Other recent studies which also em-
ploy SAN with thresholds [20] applied to real systems only consider intermittent
errors captured in state variables, which last more than one clock cycle.

In the case of fugacious faults, we take into account events of a quickly ’evanes-
cent’ nature where the capture and diagnosis procedure must have intrinsically
low latency. It must be able to process two or more faults per cycle in order to
discriminate an intermittent activation from a transient activation, avoiding a
new constraint in the frequency requirements.

3 Solutions for Detection and Diagnosis

Our effort has been focused in two directions: determining an appropriate struc-
ture to detect and diagnose the set of faults we have previously presented and
defining a procedure to apply such structure to the standard design flow.

3.1 Architecture of a Faults Detection and Discrimination System

In every VLSI circuit we can find combinational stages separated by registers.
Since the pursued goal is to have accurate and flawless computations, we will
require 2 conditions:

– To produce correct results.
– To sense any deviations in the datapath which may be out of reach by just

checking registered values.

The steps to take in order to reach these goals start by considering hardware
replication and comparison. The large number of commercial systems utilizing
such technique tells about the effectiveness of the approach at the expense of
important amounts of hardware. The foremost advantage is quick on-line miti-
gation (when a voter is included), and usually there is no need to include voters
in every stage but just in critical ones. Nevertheless, for detection and diagnosis
a lighter, cheaper technique would enable the possibility to deploy detection to
a larger number of partitions spread around the system. The use of codification
may well fill the gap and combine with replication in a wise manner.
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An interesting feature of codification is that systematic codes do not require to
alter the original bits, thus alleviating the decoding of outputs in the datapath. In
order to minimise speed penalty applied to outputs, this makes a great advantage
[21]. Berger codes and parity groups are the most popular systematic codes
and have been profoundly studied. In [22] conditions for fault secureness in
parity predictors are derived. Furthermore [23] presents a generic optimisation
technique for parity prediction functions, to achieve quick and small circuits.

The envisioned topology using codification would follow that in Figure 2. In
it, a Detection Block would receive inputs directly from partition input registers,
and also from outputs prior to registering. A properly selected codification could
reduce block area and optimise the speed. This block would include thus a set of
Commercial Off-The-Shelf (COTS) encoder and decoder which can be a single
bit parity prediction/decoding pair in its simplest form.
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Fig. 2. Global scheme of the faults detection and diagnosis infrastructure. Timing
Control Unit handles temporisation of Detection decoder.

Is that enough to handle every type of fault? The answer is ’no’. Coding
functions are effective techniques to detect permanent errors, or transient errors
which are not time filtered. For effective detection of transient faults of a limited
activation time (smaller than a clock period in general), additional elements are
required. An example using triplication was presented in [24], where intermittent
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faults were not considered at all, and the sensing time was rather reduced. On-
line detection of intermittent faults has been previously devised in different ways.
One proposed idea was to inject a carrier signal in the line under study and
monitor the correct behaviour of it [25]. Again, the cost is rather high: an injector
and receiver for the lines under analysis, plus extra wear-out due to increased
switching of the lines. A cheaper detection can be achieved by monitoring those
coded lines devoted to detection.

To avoid those shortcomings, an additional element included is the Timing
Control Unit (TCU). Its function is to adjust the timings of detection elements
with one goal in mind, i.e. to increase the observation window. The term refers to
the percentage of the clock period when the lines under study are monitored for
any potential faults. If we reduce the switching interval as opposed to the stability
interval of the signals, we will have increased the observation window and thus
the effectiveness of the detection (see Figure 3). The reason for preferring this
method to the observation of a reduced period of time assuming equiprobable
distribution of faults is clear, i. e. to gain in speed of detection.
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enlarged observation
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Fig. 3. Observation window enlarged by means of reducing period of signal switching

Finally once gathered, the detection information could be codified against
faults using a code (ξ1) and passed to a Diagnosis Block, where the same or
a different code (ξ2) can be used to notify the diagnosed output to a fault
controller.

Inside the Diagnosis Block, inputs must be analysed and discriminated to offer
5 different output possibilities:

– Transient fault.
– Permanent fault.
– Intermittent fault.
– No fault.
– Error in diagnosis infrastructure.

To achieve the goal, the Diagnosis Block will be built using a fault-tolerant (FT)
encoder designed to minimise resources taken. By providing all these different
outputs and doing so in a fault tolerant codification, the most adequate decision
will be enabled to be taken at the fault controller. Hence, smart reactions can be
applied well in advance to an eventual collapse of fault tolerance infrastructure.
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3.2 Workflow to Apply in the Proposed Technique

In order to automate the process of deploying a detection and diagnosis infras-
tructure to a generic design block, a suggested procedure is shown in Figure 4.
What is depicted is a typical semi-custom design flow for VLSI products, where
the standard steps are on the left hand side. Technology files can represent a sil-
icon foundry design kit or an FPGA manufacturer primitives library. Likewise,
Physical element can be a layout file or a programming bitstream for an FPGA.
On the right we find detail of 2 interventions in the flow.
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Fig. 4. Tools interaction

A first intervention comes before the Synthesis and after Design Entry. This
step comprises an addition of required infrastructure in the Detection Block,
i.e. the COTS components and Timing Control Unit. Entry files are modified
as required and new timing constraints are generated for the TCU, to drive the
remainder of the design flow.

A second intervention happens in a loop between Gate-level and Physical
stages of the design. The purpose is to check timings against new constraints,
mainly affecting the TCU, and refine the implementation in a loop by tweaking



Detection and Diagnosis of Fugacious Hardware Faults 85

in one of the 2 re-entry points A or B. If path B is selected, a faster process will
be obtained as a result, but deep knowledge of the underlying technology will
be required and we will find a side effect of loss of portability. With path A, a
more general solution will be obtained at the cost of speed of implementation.

The challenge in the integration of processes is derived from the difficulty to
achieve the optimum observation window for the whole range of process variabil-
ity. Other difficulties can come from the capabilities and restricted information
offered by technology suppliers.

4 Ongoing Work

An initial implementation is currently under development, where an FPGA-
based design flow has been chosen to support initial testing. Following the
presented ideas, we have been able to develop first modification point working
models. To reach optimal performance, we need first is to maximise the detection
capabilities of the structure, both in area and time. This means achieving a high
degree of observability at the check lines.

As for the second modification our efforts are devoted to achieve low perfor-
mance penalty results and at the same time maximising the period in which
lines are under surveillance. We need the least possibly intrusive system in order
not to give in too much in exchange for detection. This is vital when applied to
extreme performance demanding systems.

Last but not least, keeping the additional area small can be complex in certain
circuits, if a powerful logic optimisation is not wisely applied. The upper limit
will be that imposed by pure replication but this should be perfectly reducible
without loosing much of the observability. An associated parameter to area in-
crease is the power drain due to new infrastructure. As usual in engineering,
specifications and market constraints drive the balance between detection and
diagnosis capability and power/area/performance penalty.
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Abstract. GraphSeq is a graph matching tool previously developed in
the framework of a scenario-based test approach. It targets mobile com-
puting systems, for which interaction scenarios must consider the evolu-
tion of the spatial configuration of nodes. GraphSeq allows the analysis
of test traces to identify occurrences of the successive configurations of
a scenario. This paper presents a recent improvement made to the tool,
to allow for better performance in the average cases. It consists in re-
arranging the configuration patterns extracted from the scenario, so that
the most discriminating nodes are matched first. The improvement is as-
sessed using randomly generated graphs and a test trace from a case
study in ad hoc networks.

Keywords: Graph matching, Performance, Testing, Mobile computing
systems.

1 Introduction

Mobile computing systems involve devices (handset, PDA, laptop, intelligent car,
...) that move within some physical areas, while being connected to networks by
means of wireless links. Compared to “traditional” distributed systems, such
systems execute in an extremely dynamic context. The movement of devices
yields an unstable topology of connection. Links with other mobile devices or
with infrastructure nodes may be established or destroyed depending on the
location. Moreover, mobile nodes may dynamically appear and disappear as
devices are switched on and off, run out of power or go to standby.

Our work addresses a passive testing approach for such systems. Passive test-
ing (see e.g., [1]) is the process of detecting errors by passively observing the
execution trace of a running system. In our case, the properties to be checked
are specified using graphical interaction scenarios. Figure 1 gives a schematic
view of the approach. The system under test (SUT) is run in a simulated envi-
ronment, using a synthetic workload. The SUT may involve both fixed nodes and
mobile devices. The movement of the latter ones is managed according to some
mobility model, a context simulator being in charge of producing location-based
data. Execution traces are collected, including both communication messages
and location-based data. The traces are then automatically analysed with re-
spect to predefined scenarios, representing test requirements or test purposes.
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Fig. 1. Overview of the scenario-based approach

Test requirements specify mandatory (positive requirement) or forbidden (nega-
tive requirement) interactions. Any observed violation of a requirement must be
reported. Test purposes specify interactions of interest, which we would like to
observe at least once during testing. If the interaction appears in the trace, the
test purpose is reported as covered.

Scenarios are described using a formal UML-based language called TERMOS
(Test Requirement Language for Mobile Settings). TERMOS is a specialization
of UML Sequence Diagrams [7]. Its genesis can be found in our earlier work
[5,6,11]. We first noticed that the spatial configurations of nodes should be a
first class concept [5]. As a result, a scenario should have both (i) a spatial
view, depicting the dynamically changing topology of nodes as a sequence of
graphs, and (ii) an event view representing the communications between nodes.
To account for both views, the checking of test traces against scenarios should
combine graph matching [6] and event order analysis [11]. In this paper, we focus
on the graph matching part, which was implemented by a tool called GraphSeq.

The spatial configurations of a scenario provide a sequence of graphs (the
patterns) and GraphSeq search for all occurrences of this sequence of patterns
in mobility traces. The addressed graph matching problem is inherently costly,
with a worst case complexity exponential in the size and number of the patterns.
We present a functionality added to the original version of GraphSeq, in order to
improve performance of the average cases. It consists in re-arranging the order of
nodes in the patterns, so that GraphSeq tries to match the most discriminating
nodes first. The improvement is measured using random graphs and a test trace
from a case study in ad hoc networks.

Section II of this paper gives an overview of the TERMOS language. Section
III describes the re-arrangement functionality we implemented. Section IV gives
performance results. Section V discusses related work. Section VI concludes.

2 Overview of TERMOS

Figure 2 shows an exemplary TERMOS scenario, with its spatial and event
views. Note that the shown syntax is not exactly the UML-based one presented
in [11]. We adopt here a more compact representation that conveys the same
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concepts. The scenario is extracted from a Group Membership Protocol (GMP)
case study we performed [10]. In this GMP, groups split and merge according
to the location of mobile nodes. The protocol uses the concept of safe distance
to determine which nodes should form a group. Figure 2 presents a negative re-
quirement (indicated by a false assertion). It describes a pathological interleaving
of concurrent split and merge operations that should never occur.

The spatial view contains a set of spatial configurations for the nodes of the
scenario. In [11], we depicted them using UML diagrams, but conceptually they
consist of labelled graphs. The modeller chooses the labels that are meaningful
for the target application. Edge labels characterize the connection of nodes,
while node labels (not shown here) are used for contextual attributes of nodes.
In Figure 2(a), nodes can have two types of connection, depending on their
distance: Safe and NotSafe. Wildcards ‘*’ indicate don’t care connection types.

The event view shows the interaction of nodes. Lifelines are drawn for the
nodes and the partial orders of their communications are shown. The successive
spatial configurations underlying the communications are made explicit: the sce-
nario has an initial configuration and configuration change events are represented
(e.g., a change from C1 to C2 in Figure 2(b)).

We interpret TERMOS scenarios as generic patterns, instances of which are
searched for in the execution trace. In Figure 2, the nodes ni are symbolic. Any
subset of four SUT nodes can match them during execution, by exhibiting the
proper spatial configurations and communication events. The search for scenario
instances involves two steps:

1. Determine which physical nodes of the trace exhibit the sequence of
configurations of the scenario, and when they do so.

2. Analyze the order of events in the identified SUT configurations.
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Fig. 2. A TERMOS scenario for groups of mobile nodes
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(id1, v1, *) (id2, 1, 2)

(id3, v1, *)

Safe
*

Fig. 3. A pattern graph with various forms of label

Step 1 amounts to a graph matching problem: we search for a sequence of
graph patterns (coming from the scenario) to appear in a sequence of SUT con-
figurations (retrieved from the location-based data in the trace). Step 2 requires
an interpretation of the event view in terms of partial orders of events. The TER-
MOS semantics encodes the partial orders in a symbolic automaton to categorize
trace fragments as valid, invalid or inconclusive.

In the processing of a scenario, the costliest part is Step 1. For example,
we had a GMP execution with 15 nodes moving according to the Reference
Point Group Mobility model, during 15 minutes. We checked the logged trace
against the scenario of Figure 2. It took about one hour and fifty minutes for the
graph matching, while less than five seconds for the event checking in all found
configurations. Clearly, an improvement of the graph matching performance is
the key for better efficiency.

3 Improvement: Re-arranging Patterns

GraphSeq takes as input two sequences of graphs: (1) a sequence of pattern
graphs coming from a scenario description, (2) a sequence of concrete configu-
ration graphs extracted from an execution trace. It compares the two sequences
of graphs and returns all matches for the pattern sequence. A match identifies a
subset of concrete nodes that exhibit the searched sequence of patterns.

The patterns may involve label variables and wildcards, as illustrated by
Figure 3. Nodes have at most three labels. The first one is mandatory and
has the form of a variable; it is a symbolic id to be matched by the concrete
id of a physical node. The other two labels may be used to represent additional
contextual attributes. They may have the form of constant values, variables or
wildcards. In Figure 3, the pattern indicates that the concrete nodes playing the
role of id1 and id3 have their first optional attribute at unknown, but identical,
values. Each instance of the pattern determines a valuation for the variables.
GraphSeq will explore all possibilities, with a sequential reasoning to account
for successive patterns. The worst cases are exponential in the size and number
of patterns. They occur when every pattern node can be mapped to every con-
crete node, and the choices made at some point of the sequence of graphs does
not restrict the choices for the rest of the sequence.

Fortunately, such worst cases are unlikely to correspond to meaningful sce-
narios. Rather, the specified patterns should possess some specificities that make
them of interest for the application. An idea is then to re-arrange the patterns
so that the most discriminating nodes are matched first. To introduce the idea,
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let us take the example of the C1 pattern in Figure 2(a). In the encoding sup-
plied to GraphSeq, the first node of the pattern is n1. This node has don’t care
values for its optional labels (like have other nodes in this example) and also
has don’t care values for most of its connections to other nodes of the pattern.
It is thus not discriminating: many concrete nodes are likely to match n1, and
GraphSeq will explore all possibilities. If the pattern is re-arranged so that n2
appears first, GraphSeq will have fewer possibilities to explore, because n2 is
more discriminating as regards its connections to other nodes.

We thus introduce a pre-processing step in GraphSeq. Given a pattern, a
fitness score rewards the discriminative power of each node appearing in it.
Then, the pattern is re-arranged so that the nodes are sorted in descending
order of fitness, making the graph matching algorithm consider the fittest nodes
first. Algorithm 1 shows the computation of the fitness score of a node. It rewards
pre-determined attribute values and a high number of pre-determined connection
types with other nodes.

Fitness = 0;

// Reward the node if optional labels are discriminating
for each optional label li

if li is a constant value or a variable that appeared in a previous pattern then
Fitness += 2;

endif
endfor

// Reward the node if its connection types with other nodes are discriminating
for each other node nk of the pattern

if connection to nk is not a don’t care then
Fitness += 1;

endif
endfor

Algorithm 1. Fitness score for a node appearing in pattern Pi

4 Experimental Results

The functionality optimizing the order of nodes in patterns was integrated into
GraphSeq, in such a way that it can be activated/deactivated by the user. This
allows us to assess its effect on the efficiency of the search for matches. Given
two sequences of graphs to be compared, we successively run the tool with and
without activation of the functionality to compare the obtained durations.

All experiments were performed on the same platform, a computer with two
2.26GHz quad core and 48GB of ram. The current implementation of GraphSeq
is not multi-threaded and uses only one core. Some runs required an amount of
memory greater than the available RAM. In such cases, we decided to forbid the
use of virtual memory, which would anyway considerably decrease performance.
A run is stopped whenever it consumes more than 90% of memory or its duration
exceeds three hours.

We first considered the GMP scenario of Figure 2. We ran again the analysis of
the GMP mobility trace, using the new version of GraphSeq with the optimiza-
tion deactivated. The trace involves 15 concrete nodes exhibiting a sequence of
850 concrete configurations. It took GraphSeq 6600.78 seconds to analyze them
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and find 59 matches for the scenario. With the optimization activated, it took
GraphSeq only 40.63 seconds to find the same matches, more than 160 times
faster than previously.

To further assess the improvement, we used randomly generated sequences
of graphs. A generation function was available from previous work: when we
developed the GraphSeq algorithms, we also developed a test tool to verify the
correctness of the matching. The tool generates pairs of pattern and concrete
configuration sequences, and by construction there is at least one match for each
pair. It can then be verified whether this match is correctly found by GraphSeq.
The size and number of graphs can be tuned. The test tool proved very useful to
debug GraphSeq and perform regression testing of its successive versions. Here,
we use it for evaluation purposes.

Table 1 shows the results of running GraphSeq on randomly generated se-
quences of graphs. The first column indicates some generation parameters. For
example, quadruplet (5, 5, 5..35, 700..2100) means that:

– the generated pattern graphs have 5 nodes;
– the lenght of the pattern sequences is of 5 successive graphs;
– the concrete configuration graphs have a number of nodes in the range of

5..35;
– the lenght of the concrete configuration sequence is in the range of 700...2100

graphs.

We generated 20 pairs of sequences for each experimental quadruplet, yielding 20
runs of GraphSeq without and with optimization. The table gives the number
of aborted runs in each case, due to either excessive memory consumption or
excessive time duration. It was never the case that a run successfully completes
with the optimization deactivated while being aborted with optimization. For the
longest pattern sequences (second and fourth row of the table), the optimization
proved very effective to allow completion of runs that had to be stopped in the
original version of GraphSeq.

Table 1. Runs with random sequences of graphs. Graph generation is characterized by
a quadruplet (number of nodes per pattern, number of patterns, range for the number
of nodes per concrete configurations, range for the number of concrete configurations).
There are 20 runs in each experimental setting.

� Aborted runs Duration of completed runs in
seconds: μ(σ)[median] p-Value

w/o opt opt w/o opt opt
(5, 5, 5..35,
700..2100)

Mem: 2
Time: 0

Mem: 0
Time: 0

1110.29 (2335.47)
[140.14]

382.55 (1369.86)
[18.72] < 10−5

(5, 10, 10..40,
700..2100)

Mem: 7
Time: 3

Mem: 0
Time: 0

511.82 (635,93)
[226.50]

213.18 (31.96)
[207,76] 0.037

(10, 5, 5..35,
1200..3600)

Mem: 0
Time: 2

Mem: 0
Time: 1

909.22 (1786.19)
[43.38]

259.93 (799.54)
[39.68] 0.001

(10, 10, 10..40,
1200..3600)

Mem: 6
Time: 8

Mem: 0
Time: 0

281.92(396.61)
[95.67]

47.07(6.16)
[47.33] 0.031



94 P. André, N. Rivière, and H. Waeselynck

The duration values of completed runs could be compared. The tables give
the mean, median and standard deviation we observed. The high value of σ
indicates that, for a given setting of the graph generation, the difficulty of the
generated matching problems still largely varies. Moreover, the mean and median
could be quite different indicating the values are not normally distributed. We
observed lower mean and median when GraphSeq had optimization activated.
To determine whether the improvement is statistically significant, we performed
a paired difference test. We used the Wilcoxon T test since a normal distribution
cannot be assumed. The p-values are reported in the tables.The null hypothesis
can be rejected with a 95% confidence level for all experiments.

We conclude that the proposed pattern re-arrangement facility yields a
significant improvement of GraphSeq.

5 Related Work

Subgraph isomorphism detection is a problem well studied in the literature [9,4].
In GraphSeq, the core functionality to check whether a pattern appears as a sub-
graph of a concrete configuration is reused from an existing graph tool developed
by colleagues at LAAS [3].

The salient feature of GraphSeq is its algorithm to match sequences of graphs:
the sequence of symbolic configurations of the scenario, and the sequence of
concrete configurations traversed during SUT execution. While the problem of
comparing two graphs has been extensively studied, there has been relatively
little work on the comparison of sequences of graphs (see [2] for a survey on
graph matching). The closest work we found is for the analysis of video images.
In [8], the authors search for sequences of patterns (called pictorial queries) into
a sequence of graphs extracted from video images. A difference with our work,
however, is that a pattern node corresponds to at most one object in an image. In
our case, several instances of a pattern may be found in a concrete configuration,
with different possible valuations for the variables (including node ids). Hence,
to the best of our knowledge, the sequential reasoning implemented by GraphSeq
is original.

6 Conclusion

In this paper, we have presented an improvement made to our graph matching
tool GraphSeq. Its principle is simple: reward pattern nodes according to their dis-
criminating power, and re-arrange the encoding of the patterns so that the fittest
nodes are matched first. While simple, the proposed optimization proved very ef-
fective to improve performance. A mobility trace issued from a case study, a group
membership protocol in ad hoc networks, could be processed 160 times faster than
previously. These promising results were confirmed by experiments on a sample of
randomly generated sequences of graphs. The duration values were found signifi-
cantly higher with than without optimization. Moreover, for the largest configura-
tions we generated, the optimization made it possible to complete a significantly
higher number of runs than the original version of GraphSeq. This of course does
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not change the theoretical limitation of the tool due to the exponential complexity
of the matching problem. But it improves our ability to handle the cases we are
targetting in practice, that is, scenarios with small-size patterns that are unlikely
to correspond to the worst cases (in the worst cases, no node would be discrimi-
nating, hence jeopardizing the node re-arrangement functionality).

GraphSeq is an important component of our scenario-based test platform for
mobile computing systems. It addresses the processing of the spatial view of
TERMOS scenarios, where the movement of nodes is abstracted by a sequence
of labelled graphs. Another tool, integrated into the Papyrus UML environment,
uses the outputs of GraphSeq to process the event view showing inter-node
communication. The complete processing of a TERMOS scenario is dominated
by the duration of the graph matching, which is the costliest part of test trace
analysis. By significantly improving the performance of GraphSeq, we thus also
significantly improve the overall approach.
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Abstract. The dependability of a complex distributed system needs
to be assured against the several conditions, namely states, in which it
can operate. Generating a workload able to cover a desired target state
of a distributed system is still a difficult task, since the relationship
between the workload and states is nontrivial due to system complexity
and non-deterministic factors. This work discusses our ongoing work on a
state-driven workload generation approach for distributed systems, based
on an evolutionary algorithm, and its preliminary implementation for
testing a fault-tolerant distributed system for flight data processing.

Keywords: Distributed Systems, State-based Testing, Fault Tolerance,
Fault Injection, Workload, Genetic Algorithms, Off-line synchronization.

1 Introduction

In order to assess and to improve the dependability of a complex distributed sys-
tem, verification techniques have to inspect those operating conditions, namely
states, that can expose the system to failures.

The relationship between the application states and dependable behavior was
shown in several past studies [1,2,3]. This is particularly important in the case
of fault injection, as revealed by several studies on the assessment through fault
injection of distributed filesystems [4,5], DBMSs [6], and multicast and group
membership protocols [7,8,5]. These studies emphasized that the success of re-
covery is influenced by the state of the distributed system. For instance, if we
consider a DBMS that has to guarantee the ACID properties to distributed
transactions, its recovery mechanisms (e.g., the rollback to a previous state)
can be affected by several factors, such as the presence of several transactions
that access to the same resources or that are nested. It is thus evident how a
state-driven workload, i.e., a workload that brings the system in target states
during the analysis, is important to assure the significance and the efficiency of
experiments, by covering the states where the system has to be tested.

It is well-known that generating a state-drivenworkload for distributed systems
is a difficult and time-consuming task, since the relationship between the workload
and states is nontrivial, due to system complexity and non-deterministic factors,
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such as concurrency and network delays. Past studies proposed the generation of
synthetic randomly-generated workloads [9,10], or relied on realistic workloads
derived from performance benchmarks [6,11,12]. Nevertheless, these approaches
are not meant to cover hard-to-reach. Other approaches generate a workload from
stochastic or non-deterministicmodels of the system, but do not scale well for com-
plex systems [13,14]. Therefore, the automatic generation of state-driven work-
loads is a relevant but still open issue in distributed systems.

This paper discusses our ongoing work on the automatic generation of state-
driven workloads for distributed systems. We propose the use of an agent, which
iteratively explores the space of workloads using an evolutionary algorithm. At
each iteration, the agent modifies the workload and evaluates its goodness, until
the system converges to the target states. To this aim, the approach allows to
specify the desired mean probability of reaching the target state for a specified
amount of time, thus enabling the injection of faults in the target state. The
approach is fully automated and does not rely on a detailed characterization
of the relationship between workloads and states, and can therefore be adopted
for testing the actual implementation of complex distributed systems. We also
discuss a preliminary implementation of the approach for testing a fault-tolerant
distributed system for flight data processing.

The paper is organized as follows. Section 2 discusses previous studies on
state-based and fault injection testing of distributed systems. Section 3 provides
basic concepts and assumptions, and Section 4 describes the proposed approach.
Section 5 describes how the approach has been implemented in a real-world
distributed system, and provides preliminary results. Section 6 concludes the
paper and describes future developments of the work.

2 Related Work

While the problem of testing stateful non-distributed systems has been studied
in depth [15], the state-based testing of distributed system poses additional and
still unsolved challenges, in particular in testing the actual implementation of
a distributed system. Studies on the verification of distributed systems can be
classified into two classes: the analytical-simulation studies and the experimental
ones.

Analytical and simulation studies are based exclusively on analytical or be-
havioral descriptions of the system, such as Finite State Machines (FSM), Petri
Nets (PN), and Computational Tree Logic (CTL). They assess properties or
conditions of the system through mathematical proofs, simulations or model
checking methods on models [16]. These approaches require abstract models of
the system, which have to be hand-written by the tester, or extracted from the
system [17]. They are suitable for the verification of the high-level design of the
system (e.g., testing protocols or distributed algorithms), but need to be com-
plemented with experimental approaches in order to test low-level design and
implementation aspects of the system.
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Experimental studies, in which our work is included, exercise and asses the
actual implementation of a system, by allowing to analyze a system during its
execution. They include, for instance, fault injection methods, which assess fault
tolerance mechanisms and algorithms through the deliberate injection of faults
in the actual system or in a prototype [7]. In these studies, the problem of the
state and of workload generation has been approached in several ways.

In some studies, a model of the system is adopted for automatically generating
test cases for the system. For instance, conformance testing approaches generate
test cases aimed at covering the states of the model and at assuring that the sys-
tem evolves as described in the model. These approaches are based on a detailed
model of the target system, which describes the expected behavior[18,19,20].
Since in most cases distributed systems are non-deterministic (i.e., the system
may evolve in more than one way given the same inputs, due to random factors),
the model is also non-deterministic. Some approaches, such as those described
in [13,14], generate sequences of inputs able to drive the system state in spite
of random factors, but their application in complex systems is limited by scala-
bility issues due to the space explosion problem, and by restrictive assumptions
they implicitly make about the behavior of the system (for instance, they only
consider “stable” states, in which the system waits for inputs or events [18]).

Other studies, including ones on fault injection, do not rely on a system model
to generate a workload, but they assess its performance or dependability by
adopting a workload representative of the real system workload that will be
experienced during operation [6,11,12], in a similar way to performance bench-
marks of non-distributed systems [21]. In other cases, synthetic workloads are
randomly generated, in which the tester provides a probability distribution over
the input space of the system [9,22,23], or provides a high-level description of
the synthetic workload, e.g., using the Synthetic Workload Specification Lan-
guage [24]. In such studies, the system states that are tested are only those ones
exercised by the considered workload, and they do not consider the problem of
tuning the workload in order to bring the system in “hard-to-reach” states. In
particular, many fault injection studies randomly inject faults during an experi-
ment, repeating this process several times and performing a very high number of
experiments [25,26,8], which can be ineffective at uncovering vulnerable states of
the system. More sophisticated fault injection approaches trigger the injection
when a specific state of the system occurs [27,28,5]. For instance, Loki [5] con-
siders the global state of a distributed system for triggering fault injection: in
order to assure that a fault has been injected in a desired state, it performs an
off-line analysis of execution traces and repeats the experiment if the injection
has been triggered in a wrong state. However, these approaches still rely on a
workload provided by the tester, either hand-written or using a representative
workload, which does not assure that all important states are covered during
testing. Compared to these works, our approach actively tunes the workload
in order to cover a specific state specified by the tester, thus complementing
experimental assessment approaches such as Loki.
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3 Basic Concepts and Assumptions

According to the traditional definition [29], a Distributed System (DS) is com-
posed by processes, which execute concurrently on a set of nodes, and by a
network, which is the only medium through which the processes interact. Each
process has its own clock and encapsulates some local resources. Local resources
cannot be read or updated by any other process without an explicit request.
Therefore, processes cannot share memory and the interactions among them
only occur through messages exchanged on the network.

In order to design an approach for generating state-driven workloads, we make
some practical assumptions about the architecture of a distributed system. We
consider distributed systems in which a set of services is exported by a frontend
process, which masks the complexity of the system to its users (Fig. 1). A client
sends requests to the frontend process by means of one or more messages, the
frontend interacts with the other processes of the DS and, once the computation
has finished, replies to the client. This view of DSs applies to several systems,
including orchestrated web services and three-tier web applications [29].

More formally, the frontend exports a set of services U = {u1, u2, . . . , un} by
an interface: each service can be invoked by the clients and it triggers different
functionalities and actions in the DS depending on the actual values of the
parameters sent in its requests. Without loss of generality, we assume that the
tester defines the sets Mui before the assessment of the target system, where
mi,j ∈ Mui is the j-th combination of parameters for the service ui that a client
can invoke on the frontend. A service request for the service ui is a message
produced by the client with parameters mi,j at time t ∈ T = {0, . . . , tmax} of
the experiment, and can be represented by a pair r ∈ Mui × T . A workload is
a set of service requests generated during an execution, and it is a subset W of
the set W ∗ representing the space of all possible requests that can be submitted
to the system: W ⊆ W ∗ =

⋃
ui∈U{(mi,j , t),mi,j ∈ Mui , t ∈ T }. In other words,

a workload is an element of the powerset (the set of all subsets) of W ∗, that is,
W ∈ P(W ∗).

The aim of the Workload Generator (WG) is to select a W ∈ P(W ∗) such
that the DS reaches a target state (or any state from a set of target states),
specified by the tester, during the execution of W . The state of an individual
process in the DS is referred to as local state of the process, whereas the global
state of the DS, denoted with s ∈ S, is the union of all the local states. The
state of the process and of the DS is determined by the tester according to some
high-level specification of the system, which takes into account the state of local
resources as well as the state of computations performed by each process. An
example of local state of a process could be down if the process is failed, or up
otherwise; or initializing and waiting for ack to distinguish between differ-
ent states of a computation. The global state of the system is specified by the
tester through a system model. For instance, if we want test the correctness of
a deadlock detection mechanism in a distributed DBMS, the system model and
the global state would reflect the contents of the lock table and the distributed
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Fig. 1. The distributed system architecture considered in this work

transactions being performed. The system model could be represented using any
formalism, such as Finite State Machines and Petri Nets.

A distributed system is intrinsically concurrent. The rate at which each pro-
cess executes and the timing of the messages exchanged on the network are
unknown. Moreover, the exchange of messages through the network is affected
by several factors, including the delays for accessing to the network and for
transmitting the contents of messages, and the delays introduced by the OS and
by a middleware layer at both the ends of a communication. It follows that it
is often impractical to predict the evolution of a DS, since it is difficult to pre-
cisely model all the factors that affect the system, especially when the system in
the very complex and includes third-party and off-the-shelf hardware and soft-
ware components. Moreover, the same sequence of client requests can produce
different evolutions of the system due the randomness of these factors.

When an experiment is executed, the workload W causes the system to tra-
verse one or more states, and to sojourn in each of them for a finite time. Let
the execution report be the sequence {en}n∈N, where en = (sn, dn) represents
the state sn traversed by the system during its n-th evolution of an execution,
with a sojourn time dn. Let SG ⊂ S be the subset of target states in which the
tester aims to bring the distributed system: the minimum sojourn time τ is the
time required by the tester to evaluate a property of the target system in SG,
and represents a constraint for the WG. The target hit ratio, pSG,τ (RW ), applied
on the set of execution reports RW = {r1, . . . , rN} obtained from one or more
executions under workload W , estimates the probability that the workload W
brings the system in the target state for a sojourn time greater than τ during
an execution:

pSG,τ (RW ) = P{The DS reaches SG for more than τ at least one time when executing W}

=
|{ri ∈ RW : ∃(sk, dk) ∈ ri : (sk ∈ SG) ∧ (dk > τ)}|

|RW | (1)
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where the | · | operator represents the cardinality of a set. For instance, if the
fault tolerance of the DS is being evaluated through fault injection, the DS has
to sojourn in the target state long enough to allow a fault injection tool to
detect the state and to inject a fault before the DS leaves the target state. In
this scenario, pSG,τ would represent the likelihood of a correct fault injection
experiment, i.e., the fault is injected while the system is in the desired state.

The problem of generating a state-driven workload consists in searching for a
workload W such that

pSG,τ (RW ) > pd , (2)

that is, the likelihood to spend a period τ in the target state is high enough
(i.e., greater that pd) to allow an accurate and reproducible test. The search is
conducted by the tester before performing the desired test. Eq. 2 provides a stop
criterion for the search. Then, the tester supplies again W to the system, and
performs the test when the system reaches a target state (e.g., it performs the
actual fault injection experiment).

4 Proposed Approach

The proposed approach is based on a Workload Generator (WG) agent that
interacts with the Distributed System Under Test (DS-UT) in a closed-loop
configuration, as shown in Figure 2. The WG exercises the DS with a workload,
analyzes its behavior, and modifies the workload until a specified target state is
reached.

The WG follows a system model of the DS, which is adopted by the tester to
specify the states of the system, and enables the WG to understand whether a
target state has been reached (i.e., the system model is adopted for computing
the execution reports from the raw events occurred and collected during the
execution).

The WG works iteratively, by alternating at each iteration an off-line and
an on-line phase. In the on-line phase, the WG executes the DS several times.
At each execution, it first brings the DS in its initial state s0 through a reset
operation, it feeds the DS with a workload W , and observes its evolution for
a fixed time period. Then, after the DS has stopped, there is an off-line phase
in which the WG analyzes the behavior of the system through logs collected
during execution, and evaluates whether the target state has been reached. If
this was not the case, a new workload is computed and used in the next iteration.
The distinction between the off-line and on-line phases allows to reduce the
intrusiveness of the WG on the DS under test, since only minimal information
is collected during the execution of the system, and most of the processing for
analyzing the system evolution and computing the workload occurs in the off-line
phase.

We divide the discussion of the proposed approach in three parts: modeling
the system states, monitoring the execution of the DS, and driving the DS by
tuning the workload.
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Fig. 2. The architecture of the proposed Workload Generator. Dotted lines represent
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Modeling
Our approach is based on a system model of the DS under test, which allows
to compute the execution report {(sn, dn)}n∈N, and to evaluate how close the
workload brings the system to the target states.

Since the complexity of the system under test is typically very high, we assume
that the system model provides an abstract and simplified view of the system.
In particular, we do not require the system model to characterize the timing of
events in the system, but only the relationship between events and states. As
discussed in Section 3, timings in complex distributed systems, including com-
munication and computation delays, can be unfeasible to characterize even in
a probabilistic way, since they are tightly depending on each other, and involve
third-party and off-the-shelf components, whose internals are unknown. More-
over, the timing of events also depends on the state of the system and on its
workload (e.g., communication delays depend on the number of processes ac-
cessing the network at a given time): since the workload is iteratively modified
by the WG to drive the DS in the target state, the characterization of delays
would not hold when the workload is changed by the WG.

Petri Nets (PN) are the formalism that we adopt for modeling the DS under
test, as they are a popular formalism that fits well for modeling concurrent sys-
tems. In the system model, transitions are triggered by local events occurring at
the processes of the DS. Since the timings of events are not modeled, transitions
are not timed, but only express the relationship between events and the state
of the DS. The state is represented by the marking of the PN. In our approach,
the system model is used in the off-line phase (after exercising the DS using a
workload) to obtain, from raw event logs of an execution, the sequence of states
that the system has followed during the execution.
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Monitoring
The monitoring is realized by the Logger and the Synchronization Algorithm
(Fig. 2). The process for generating an execution report is summarizing in Fig. 3.
Each process of the DS logs the local events, timestamping the records with its
own clock. When the experiment is over, the logs of local events are collected,
and an offline synchronization algorithm, which is described later, performs the
temporal sorting. Then, the State Analyzer obtains a sequence of markings of
the system model, by mapping events in the logs to transitions in the model,
and generates the execution report.

Regarding the synchronization, in order to obtain the evolution of the sys-
tem from the analysis of events, we adopt an off-line synchronization algorithm
to align the events of an execution on a single global timeline [5,30]. Off-line
synchronization has been preferred over on-line synchronization approaches [29],
such as NTP, since on-line synchronization protocols exchange packets during
the execution of the system and can thus interfere with its evolution. Off-line
synchronization is performed after execution, by correcting the timestamps of
events recorded during the execution. The correction is performed using an esti-
mate of the drift rate of the clocks, which is obtained by analyzing the round-trip
time of a set of messages exchanged before and after the execution. Since the
clock drift rate can only be estimated, the exact timing of an event is unknown;
instead, the off-line synchronization algorithm provides, for each occurred event,
a lower and an upper bound for the event on the global timeline, which represent
the uncertainty interval in which the event has occurred. When the uncertainty
intervals of two events are not overlapped, their ordering and the evolution of
the system can be determined. When overlaps occur, the state of the DS is un-
known in the overlapped region of the global timeline. More details about off-line
synchronization algorithms can be found in [5,30].
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Fig. 3. The process for issuing execution reports. When the State Analyzer cannot
determine the system state, due to the synchronization accuracy, it assigns the dummy
state S?.
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Driving
In our approach the WL Navigator and the WL Feeder drive the DS in the target
states. The Feeder is the active part of the agent, which interacts with the DS
generating the requests, i.e., the workload. The workload is synthesized by the
Feeder on the basis of a workload configuration wc ∈ Wc, which characterize the
timing and the type of requests, either deterministically or statistically, through
a set of parameters. The Navigator is the “smart” part of the agent, which
searches for a proper workload configuration and analyzes the feedback from the
system.

The distinction between Feeder and Navigator eases the search process, as the
number of parameters in a workload configuration is a compact representation
of a set of request W ∈ P(W ∗) (actually, |Wc| � |P(W ∗)|), and frees the search
algorithm from subtle details about individual interactions with the DS.

Herein, we consider a workload configuration wc ∈ Wc defined the following
vector of parameters:

wc =
〈
Tm1,1 , Tm1,2 , . . . , TmN,1, TmN,2, . . . , Dp1 , . . . , DpM

〉
. (3)

These parameters are used by the Feeder to generate a set of requests W ⊆ W ∗

to submit to the DS. In our case, the Feeder periodically invokes each service
ui using parameters mi,j , with a period of Tmi,j , ∀mi,j . The Navigator explores
several combinations of values for the Tmi,j parameters, in order to find a com-
bination able to reach the target state. Moreover, we consider an additional set
of parameters, Dpk

, which represent delay factors to introduce in one or more
processes in the DS. Since the system may evolve very quickly, the target state
could be reached only for short periods of time, leading to a low probability of
hitting the target state for a sufficient time (Eq. 2). The introduction of small
delays, by either slowing down a process (e.g., reducing its CPU quota by tun-
ing its scheduling priority) or by forcing the process to sleep for short periods of
time, increases the likelihood of sojourning in the target state for long enough.

The search for a proper workload proceeds through iterations. At each it-
eration, the Navigator changes the workload configuration on the basis of the
feedback of the previous iterations, until a target state has been reached. To do
so, two elements need to be defined, namely (i) a search algorithm to explore
the space of workload configurations Wc, in order to find a workload W suitable
for reaching the target state, and (ii) a criterion for assessing the “quality” of
the current workload with respect to the target state.

We adopted in the Navigator a genetic algorithm (GA) [31]. A genetic algo-
rithm evaluates a population of solutions (individuals) during the off-line phase
of each iteration; then, a new population is generated from the previous one,
by randomly mutating and combining previous individuals, on the basis of their
quality (fitness).

Each individual of the population represents a workload configuration. An
individual wc is evaluated by executing the system under the workload W ,
generated by the Feeder using wc, and by evaluating a fitness function on the
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execution traces, which is computed by the Performance Evaluator component
(Fig. 2). The definition of the fitness function is an important aspect of our
approach, since it drives the Navigator in the search for the target state. The
pSG,τ (RW ) (Eq. 2) cannot be used as fitness function, as it is not able to compare
two different solutions that do not reach the target states (it would be 0 for both
solutions). Instead, we propose a fitness function that evaluates the “distance”
between the tentative solution and the target states, and the “continuity” of
periods spent in the target state. Considering a set of execution reports obtained
from one or more executions under workload W , RW , the fitness function is
defined as

fα,ε(RW ) =
1

|RW |
∑

rw∈RW

⎛
⎝ ∑

(s,d)∈rw

dα · 10−ε·dist(s)

⎞
⎠ (4)

where theα rewards the continuity of the sojourn times (permanence bonus), while
the ε penalizes the distance from the target states (distance bonus). When two so-
lutions have a different distance, the closest solution is privileged (the distance
bonus predominates); when two solutions have the same distance, the most con-
tinuous solution is privileged (the permanence bonus predominates). The times are
normalized, i.e.,

∑
(s,d)∈rw

d = 1 ∀rw ∈ RW and d ≥ 0 ∀(s, d) ∈ rw.

The function dist is a distance measure between any state and the target
states, which is introduced to reward the workloads that are closer to the tar-
get states. We propose two different measures for the Petri net model we have
adopted:

1. The minimum difference of tokens between the marking of the actual state
and any target state: this measure is coarse and imprecise, however, is fast
to calculate and it is easy to understand. Given a vector marking M , and
let G be the set of target markings of a PN with m places, we have:

dist(M,G) = arg min
M ′∈G

⎛
⎝ ∑

0≤i<m

|Mi −M ′
i |

⎞
⎠ (5)

2. The difference in the breadths on the reachability graph between the state
and any target state, i.e., the minimum number of transitions (events) that
have to happen to reach the closer target state. To compute this distance,
we need to do a breadth-first search in the PN. Since we might not reach any
target states, and because we do not need a precise value in the applications if
the distance is greater than a fixed threshold, then we can limit the expansion
of the PN at a depth R. Let BFS be an R-bounded breadth first visit, we
have the follow:

dist(M,G,R) = arg min
M ′∈G

(BFS (M,M ′, R)) (6)

In particular, we could save in memory all the states that are within range R
from all the target states, avoiding to search in a graph each time. Whenever
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we would need to compute the distance of a node, we would just need to
check if M is in memory. If there is, then we would know the distance, else
dist(M,G,K) > R.

To select the α and ε parameters of the fitness function, the following heuristics
can be adopted. Considering any two states sl, sl+1 ∈ S such that dist(sl+1) =
dist(sl) + 1, it is possible select the parameters α, ε, according to the following
system of inequalities:⎧⎪⎨

⎪⎩
fα,ε

(
{r1w = {(sl, θ · τ)1}}

)
≥ fα,ε

(
{r2w = {(sl, τ)1, . . . , (sl, τ)k}}

)
fα,ε

(
{r3w = {(sl, η)1}}

)
≥ fα,ε

(
{r4w = {(sl+1, 1)1}}

)
θ > 1; 0 < η < 1

(7)

The first inequality expresses that it is better to sojourn in a state sl for a θ · τ
time, rather than visiting the same state up to k times for the same τ time. In
this way, the tester can control the amount of reward to provide through the
permanence bonus. The second inequality expresses that it is better to remain
at least a η time in a state sl, rather than to stay full-time in a state sl+1, one
level farther from the target states; this inequality can be adopted to control the
level bonus. Developing the system we obtain the following relations:{

(θτ)α

10εl
≥ kτα

10εl
⇒ α ≥ log k

log θ
ηα

10εl ≥ 1
10ε(l+1) ⇒ ε ≥ −α log η

(8)

For instance, if we prefer staying in a state for a 25% longer time instead of
visiting ten times a state for the same duration, and if we want that the so-
journing for the 1% of total time in a “close” state sl is better than staying for
the 100% of total time in a “far” state sl+1, then we have: α ≥ log 10

log 1.25 ≥ 10.318,
ε ≥ −α log 0.01 = 2α ≥ 20.636.

5 Preliminary Implementation

Herein, we present a preliminary implementation of our approach for testing
a Flight Data Processing System (FDPS). FDPS is a distributed software de-
veloped in C++ which uses CARDAMOM, a fault-tolerant CORBA-compliant
middleware. It is a part of an Air Traffic Control (ATC) system, in charge of
managing Flight Data Plans (FDPs). An FDP is a data structure containing
information about a flight; the goal of FDPS is to keep FDPs up-to-date. For
example, FDPS has to analyze the actual position of aircrafts, retrieved from
radar tracks, and update flight routes consequently, in order to efficiently allocate
the flight space and to avoid flight collisions.

The architecture of FDPS (Fig. 4) is composed by a Façade component, which
acts as the frontend of the system and is replicated by the CARDAMOM Fault-
Tolerance (FT) Service, and by a set of three Processing Servers (PSs), managed
by the Load-Balancing (LB) Service. Service requests are delivered to the Façade
by the middleware: the Façade forwards requests to a specific PS according to
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Fig. 4. A simplified view of the architecture of FDPS

a round robin scheduler; once the requests are completed, they are sent back to
the Façade, which disseminates the updated FDP through a Data Distribution
Service (DDS) and replies the clients.

The requests are relative to a specific flight track that is identified by means
of an FDP-ID number: for each FDP-ID, the Façade dispatches no more than
one request at time towards the PSs, and enqueues the others. The state of
requests for each FDP is stored in a FDP Table of the Façade. Because the PSs
are managed with a mono-threaded policy, the middleware in turn enqueues the
requests forwarded to a PS if that PS is busy. The FT Service performs a warm
replication of the Façade process: FDP Tables are checkpointed at each update
and transmitted to backup replicas, which are activated in the case of failure of
the primary replica.

Since our aim is to test the fault-tolerance and load-balancing mechanisms, in
this case study we include in the system model (and thus in the definition of the
state) the number and type of requests in the FDP Tables, and the number of
requests enqueued at each PS. The system model was not included in this paper
due to space constraints; it is described in [32].

In our preliminary implementation, we considered only one service u1 of the
DS, the update interface, which is invoked by specifying the FDP-ID. For each
FDP-ID, we composed the workload configuration with two parameters, Tm1,i

and Di: the first one specifies the period between two requests for the i-th FDP-
ID; the second one imposes on PSs the time to spend in processing the respective
update invocations. The Feeder interacts with FDPS through the middleware
(Fig. 5). We fixed six FDP-IDs and set the domains for the parameters of the
workload configuration ranging from 500ms to 5s, with a step of 500ms. In our
tests, the application has been deployed on 100Mbps Ethernet LAN, using 3
Processing Servers, one active Façade and one backup Façade replica.

We conducted a preliminary experiment in order to evaluate the feasibility of
the proposed approach. The Navigator was configured to drive the system in a
state fulfilling the following conditions: (i) one PS is idle, the other two PSs are
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WL Navigator

WL FeederFDP1: (T1,1, D1)
FDP2: (T1,2, D2)

FDP1 stream

FDP2 stream

FDPS

PSs

T-Period

ORB

D-Delay

WL Configuration

Workload

Fig. 5. The interaction among the WL Navigator, the WL Feeder and FDPS. The
Feeder generates a request stream for each FDP-ID. Each request stream is config-
ured through two parameters: a period between requests (T-Period), and a delay in
processing of the requests associated with that stream (P-Delay).

busy, (ii) there are requests enqueued by the middleware for the two busy PSs,
and (iii) there are between 1 and 5 enqueued requests for each FDP Table. This
scenario is interesting because it represents an hard-to-reach condition, as also
discussed in [33]: there should be an idle Processing Server, while the other two
PSs should be busy and have requests enqueued by the middleware for them (i.e.,
the enqueued requests should not be forwarded to the idle PS). This condition
is actually possible since the round robin scheduler selects the PS for a request
regardless of whether it is busy.

In the experiment, we aimed at reaching this target state with a high probabil-
ity pG,τ(RW ) for at least 0.25s. The WG found a solution with pSG,τ (RW ) � 66%
in the first population, after 30 minutes. At the fourth population of solutions
and 2 hours, the best solution found by the WG was able to reach the target
state with pSG,τ (RW ) = 100%.

6 Conclusion and Future Work

In this paper, we discussed an approach for state-driven workload generation in
complex distributed systems. Our approach, based on a genetic algorithm, itera-
tively tunes the workload until a desired target state is reached. Our preliminary
implementation on a real-world case study (a Flight Data Processing System)
confirmed the feasibility of the approach and provided encouraging results. In
future work, we will perform a more throughout evaluation of the approach,
by evaluating fault tolerance mechanisms in the FDPS through fault injection.
Moreover, we aim to further develop our implementation of the approach, in
order to make it portable to other systems and to freely distribute it.
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Abstract. Functional safety is becoming increasingly important in the automo-
tive industry to deal with the growing reliance on the electrical and/or electronic 
(E/E) systems and the associated complexities. The introduction of ISO 26262, 
a new standard for functional safety in road vehicles, has made it even more 
important to adopt a systematic approach of evaluating functional safety. How-
ever, standard assessment methods of benchmarking functional safety of  
automotive systems are not available as of today. This is where the BeSafe 
(Benchmarking of Functional Safety) project comes into the picture. BeSafe 
project aims to lay the foundation for benchmarking functional safety of auto-
motive E/E systems. In this paper, we present a brief overview of the project 
along with the benchmark targets that we have identified as relevant for the  
automotive industry, assuming three abstraction layers (model, software, hard-
ware). We then define and discuss a set of benchmark measures. Next, we pro-
pose a benchmark framework encompassing fault/error models, methods and 
the required tool support. This paper primarily focuses on functional safety 
benchmarking from the Safety Element out of Context (SEooC) viewpoint. Fi-
nally, we present some preliminary results and highlight potential future works. 

Keywords: Functional Safety, Fault Tolerance, Fault Injection, Robustness, 
Benchmarking, Safety Element out of Context (SEooC). 

1 Introduction 

Safety has always been an important property in the automotive industry. The safety 
provided can loosely be divided into passive safety, aiming at mitigating the effects of 
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a crash, and active safety, aiming at preventing a crash altogether. An aspect, which is 
gaining in importance increasingly in the automotive industry, is that of functional 
safety. This is due to the fact that electronics have invaded virtually all vehicle func-
tions and about 90% of all vehicle innovations are centered around software and 
hardware [1]. As opposed to passive and active safety provided by dedicated systems 
and functions, functional safety is an inherent attribute in systems indicating their 
ability to remain safe under various conditions, with and without faults. ISO 26262 
[2], a new standard for functional safety in road vehicles, defines functional safety as 
absence of unreasonable risk due to hazards caused by malfunctioning behavior of 
E/E systems. 

The bases of functional safety are the avoidance of faults (e.g. systematic software 
faults) or else the detection and handling of faults (e.g. random hardware faults) in 
order to mitigate their effects and thus prevent the violation of a safety goal by the 
embedded system [3]. To this end, ISO 26262 [2] provides requirements on an auto-
motive safety lifecycle of electrical and/or electronic (E/E) systems within road ve-
hicles. Furthermore, AUTOSAR (AUTomotive Open System ARchitecture) is a key 
enabling technology to manage the growing E/E complexity and provides mechan-
isms as well as systematic design approach to facilitate achieving functional safety of 
software-based systems [3]. However, standard assessment methods of evaluating 
functional safety of automotive systems are not available as of today. This is where 
the BeSafe (Benchmarking of Functional Safety) project [4] comes into the picture. 

BeSafe project aims to lay the foundation for benchmarking functional safety of 
automotive E/E systems. A common way of evaluating functional safety will improve 
the industry’s ability to provide safer vehicles. Benchmarking is also a way of eva-
luating to what extent the expected requirements of a system have been fulfilled. Con-
sequently, benchmarking functional safety will be a valuable help in evaluating the 
fulfillment of safety goals and safety requirements, and will thus be a stepping stone 
in fulfilling the requirements stemming from the standards such as ISO 26262 [2] and 
IEC 61508 [5]. 

In the project, we identify benchmark targets in automotive electronic systems, as-
suming three different abstraction layers - model, software and hardware. We define 
benchmark measures, considering Safety Element out of Context (SEooC) as defined 
in Part 10 of ISO 26262 and with respect to a context. We then propose methods both 
experimental, for example, fault injection, and analytical, for example, probabilistic 
analysis of performing benchmarking along with required tool support. Finally, we 
are aiming for a functional safety benchmark framework that describes processes, 
methods and tools, defines how to use benchmark results, and establishes link to stan-
dards such as ISO 26262. 

The rest of the paper is organized as follows: Section 2 summarizes works related 
to benchmarking of safety and dependability, Section 3 provides an overview of the 
BeSafe project, Section 4 introduces benchmark targets. Section 5 presents the pro-
posed benchmark measures whereas Section 6 highlights methods and tools that are 
required for performing benchmarking of functional safety. Finally, Section 7 dis-
cusses preliminary results and Section 8 provides concluding remarks. 
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2 Related Work 

The use of benchmarks has led to accelerated progress with respect to the meas-
ured capabilities in many areas. For example, performance benchmarking is now a 
well-established area that is led by organizations such as TPC (Transaction 
Processing Performance Council) and SPEC (Standard Performance Evaluation 
Corporation), and supported by major companies in the computer industry [6]. 
SPEC benchmark suites have driven the tremendous performance development of 
microprocessors. 

Prior studies proposed a plethora of techniques to assess various dependability 
aspects of computer systems. However, only few reported works focus on dependa-
bility and robustness benchmarking. For example, the Dependability Benchmarking 
(DBench) project [6] presents a framework for defining dependability benchmark 
for computer systems, with particular emphasis on off-the-shelf (OTS) and OTS-
based systems and proposes a benchmark validation approach. Furthermore, several 
earlier studies address benchmarking of software robustness [7] [8] [9]. Only re-
cently, researchers have proposed a guidance framework for dependability assess-
ment of AUTOSAR-based systems [10]. However, such approaches are not suitable 
for benchmarking functional safety in the automotive industry if we consider stan-
dard benchmarks that are currently in use, for example, for performance ben-
chmarking.  

Since 1997, benchmarking of vehicles with respect to safety has been performed in 
the Euro NCAP [11], assessing the ability of new cars to protect drivers, passengers, 
and pedestrians. This has led to safer cars as well as an increase in public awareness 
concerning vehicle safety. Euro NCAP results have also become a force in sales and 
marketing of new vehicles. The benchmarking of active safety systems is not yet 
standardized in the same way as for passive safety, but efforts in this direction are 
underway. For example, the eValue project [12] aims at defining a range of scenarios 
for standardized assessment of active safety systems.  For functional safety, however, 
there are almost no standardized ways of assessment. 

3 Overview of BeSafe 

BeSafe project aims to lay the foundation for functional safety benchmarks for auto-
motive electronic systems. We define a number of Benchmark Targets (BTs). A BT 
can in principle be any system or sub-system which has clear boundaries, and is 
equivalent to the word element used in ISO 26262 [2]. For each BT, we define a set of 
measures relevant for providing a useful benchmark along with methods for assessing 
those measures, and then evaluate those measures on the selected BTs.  

Alongside the work on measures for the selected benchmark targets, the BeSafe 
project will define a general benchmarking framework in which the benchmarks will 
operate. This framework will include methodology and process, and tool support – 
both in terms of tools for performing the actual benchmarks and in terms of  
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supporting the benchmark measures in development tools. The contents of the 
benchmark result will be made up of multiple measures as defined by the project. 
Both quantitative and qualitative measures will be included, and the generation of the 
measurements considers analytical measurements, the process by which the element is 
developed, and empirical measurements, based on the realizations of the element 
(e.g., fault injection or robustness testing). 

Each included measure will have a clear relation to the functional safety properties 
of the benchmark target. However, a single measure is typically not sufficient for the 
benchmark results to be useful. Instead the whole vector of measures will be consi-
dered for any particular use of a benchmark result. We focus on four generic uses 
which are of particular interest to benchmarking of functional safety: (a) comparison. 
Compare suitability of an element with respect to functional safety, during system 
development/integration; (b) profiling. Profile an element for identifying and hig-
hlighting strengths and weaknesses with respect to safety; (c) requirements. Safety-
related requirements on the system, or its elements, can be communicated using 
benchmark details for a common understanding; and (d) properties. In a composition-
al way, safety benchmarks can aid in assessing system safety properties given safety 
profiles of its elements. We consider a generic “V” process model as our reference 
process to enable straight-forward mapping from BeSafe to ISO 26262. Moreover, we 
define a use case space in order to identify the realm in which the use cases for the 
BeSafe project reside. This use case space is a generic description of roles/actors (e.g., 
functional safety assessor, software developer, software supplier, E/E architect), activ-
ities (e.g., specification, evaluation, verification, assessment), process steps (e.g., 
concept phase, product development, production and operation), artifacts (e.g., E/E 
architecture, Function, ECU design, Software element) and so on. 

The BeSafe is a 3-year (April 2011 – March 2014) research project funded by Vin-
nova (Swedish Governmental Agency for Innovation Systems) within Vehicle Devel-
opment Program (FFI - Fordonsutveckling). The consortium consists of six partners 
that include Swedish automotive industries, university and research institute: Volvo 
AB, Volvo Cars Corporation, Scania AB, QRTECH, Chalmers University of Tech-
nology and SP Technical Research Institute of Sweden.  

4 Benchmark Targets 

This area deals with benchmarking of individual components and subsystem which 
are integrated in in-vehicle software. Some examples of such components could be 
individual modules in AUTOSAR or the entire AUTOSAR Basic Software (BSW)/ 
Run-time Environment (RTE). Approaches for assessment of application software 
components (SW-Cs) are also of interest and are considered. AUTOSAR BSWs such 
as CAN Transport Layer (CanTp), CAN Interface (CanIf) and CAN State Manager 
(CanSM) are considered as benchmark targets to demonstrate the effectiveness of 
proposed benchmark measures. Benchmark targets also include the error handling 
mechanisms on application level [13] as specified by AUTOSAR to evaluate the  
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effectiveness of those mechanisms. Furthermore, Simulink models that are used to 
generate code of AUTOSAR SW-Cs are potential benchmark targets to perform ben-
chmarking at the model level. 

The use case of a four-wheel brake-by-wire (BBW) consists of five ECUs (Elec-
tronic Control Unit) connected to a bus, see Figure 1. Each wheel has one correspond-
ing ECU, and the central brake controller is located on the brake pedal ECU. The 
overall functionalities of the BBW are as follows: 

• The brake pedal, connected to the central ECU, provides driver input for the re-
quested brake torque. The brake torque calculator computes the driver requested 
torque and sends the value to the vehicle brake controller function. 

• The vehicle brake controller then decides the required torque on each wheel. Each 
of the required brake torque values for the individual wheels is sent, together with 
the current measured vehicle speed, to the respective wheel ECUs. 

• Based on the torque request received, current vehicle speed and wheel angular 
speed, the local brake-function decides appropriate braking force to apply to the 
wheel. 

SW-Cs are based on AUTOSAR platform and developed as SEooC. The use case 
focuses on fault injection and interface testing of AUTOSAR SW-Cs. Test cases are 
generated based on operational conditions and functional description, including as-
sumed safety requirements associated with the BBW at the SW-C level. 

Benchmark targets also include software applications that can potentially be used 
in automotive domains. These applications can be found in embedded benchmark 
suites. MiBench [14] is one of these benchmark suites that contains more than twelve 
software components that are used in automotive domains. Fault injection can then 
help us benchmark the error sensitivity of these automotive applications for further in 
context assessment of the safety in a particular vehicle subsystem. 
 

  

Fig. 1. Overview of the BBW 
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5 Benchmark Measures 

In this section, we present and discuss a set of measures that can potentially be used 
for benchmarking of functional safety. The project considers measures for both expe-
rimental and analytical approaches. However, in this paper, we primarily discuss 
measures that are related to experimental approach of benchmarking. 

5.1 Safety Element Out of Context (SEooC) and in a Context 

Benchmark measures for a particular benchmark target (BT) can be developed either 
out of context or with respect to a context. The notion of “out of context” implies 
benchmarking a BT without prior knowledge of how the BT will actually be inte-
grated and used in a complete system such as a vehicle as well as the impact of any 
failure of the BT on the system level. According to Part 10 of ISO 26262, a Safety 
Element out of Context (SEooC) is a safety-related element which is not developed 
for a specific “item”. This means it is not developed in the context of a particular 
vehicle and is developed, based on assumptions, in accordance with ISO 26262. For 
example, a particular safety-critical software component can be developed and tested 
without exactly knowing the safety requirements of the system in which the compo-
nent will actually be integrated. As a result, the software component required to be 
benchmarked “out of context” - independent of the target system.  

In case of out of context measures, failure mode distribution that is derived through 
experiments such as fault injections and robustness testing are considered as one of 
the benchmark metrics. Fault injections can be performed to carry out robustness 
evaluation of a particular BT, considering a suitable fault or error model and results 
can be categorized as follows: (i) correct completion, (ii) incorrect completion, (iii) 
hang or silent, and (iv) abort or crash. From the BT point of view, correct completion 
in presence of faults or errors may include providing correct functionality, i.e., no 
impact of the fault/error, correct error code return or exception raised and handled, 
safe shutdown of functionality or service, fail signal and graceful degradation. Incor-
rect completion may include incorrect error code return, value failure (benign – value 
close to nominal, critical – value far from nominal) and timing failure. The hang or 
silent category may include outcomes such as lack of reporting an error or exception 
when one should be reported, not detecting the presence of erroneous input, appear-
ance of looping indefinitely and not producing any new data or output. Finally, abort 
or crash may consider abnormal early program exit, restart of a task that failed so as 
to recover and system-killer or catastrophic. Benchmark measure is thus a vector of 
four elements to represent the failure mode distribution.  

In case of measures related to a context, failure severity distribution that takes into 
account the impact of any failure of a particular BT on the system level is of particu-
lar interest. For example, the failure severity may be categorized as follows in de-
creasing order of severity (Severity 1 is the most severe): (a) Severity 1: Not accepta-
ble, (b) Severity 2: Acceptable but non-optimal, and (c) Severity 3: Correct or ex-
pected. Severity level 1 may include failures that leave the failure of a software com-
ponent undetected at the system level and may cause unpredictable system behavior. 
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Severity level 2 may include failure mode that does not provide the specified functio-
nality at the system level in an optimal way and at the same time, does not compro-
mise safety at the system level. Finally, Severity level 3 includes failure mode that 
behaves as specified or expected at the system level in an optimal way. Note that 
failure severity distribution proposed in this paper as a benchmark measure is differ-
ent from the classes of severity that are defined in Part 3 of ISO 26262 and used for 
ASIL determination through hazard analysis and risk assessment. 

Once the various severity levels are defined, it is required to perform mapping of 
the failure modes that are derived from the out of context benchmarking to failure 
severities with respect to a context. Benchmark measure is then a vector of three ele-
ments (Severity 1, Severity 2 and Severity 3). This mapping process requires exact 
knowledge of the functional safety requirements. For example, assuming the Engine 
Control System Model presented in the DBench project [6], one possible mapping 
between failure modes and failure severities is shown in Table 1. It is notable that 
depending on the context, the same failure mode of an “out of context” software com-
ponent may be mapped to different failure severity levels with respect to a context. 
Indeed, in this paper, we focus on benchmarking functional safety assuming SEooC. 

Table 1. Illustration of mapping between failure modes and failure severities 

Failure mode / Failure severity Severity 1 Severity 2 Severity 3 

i. Correct completion    X 

ii. Incorrect completion (value failure – produced 
value is close to the nominal value, benign) 

 
X 

 

iii. Incorrect completion (value failure – produced 
value is far from the nominal value, critical) X 

  

5.2 Measures 

In this section, we describe some examples of safety and dependability benchmarks 
measures that are being investigated in the BeSafe project. These measures directed 
towards three specific benchmark targets, namely, AUTOSAR basic software mod-
ules, generic software components and Simulink models. 

5.3 Measures for AUTOSAR 

AUTOSAR specifies certain error handling mechanisms for certain types of errors for 
a number of basic software modules (BSW) [3]. For example, the error list of CAN 
stack includes CAN Bus Off, CAN Controller Hardware Timeout, CAN Transmission 
Buffer Full, etc. Furthermore, AUTOSAR specifies the way the architecture reacts to 
these errors according to the FDIR process (Fault Detection, Isolation and recovery) 
[13]. AUTOSAR details the specific items regarding error handling for each module 
as follows: (a) Detection: how the module detects or is notified of an error, (b) Reac-
tion: the internal reaction of the module (e.g. internal stage change), (c) Report: how 
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the error is notified to other modules in the stack or to the AUTOSAR infrastructure, 
and (d) Recovery: how if the error is recovered or mitigated by the module. The goal 
is to provide an overview of dysfunctional behavior of the BSW and clarify error 
handling mechanisms to guarantee the same behavior for any BSW implementation as 
well as to permit a safer exchange of module [3]. Since the error list and the corres-
ponding error handling mechanisms are standardized in AUTOSAR, it is possible to 
develop benchmark measures for BSWs.  

Benchmark measures may simply consist of a checklist of each fault/error and cor-
responding handling mechanism (detection, reaction, report and recovery) for a par-
ticular implementation of a particular AUTOSAR BSW. Accordingly, a failure mode 
distribution that consists of the following categories can be derived for a particular 
AUTOSAR BSW: (i) No Impact, (ii) No Detection + (No Reaction/Report + No Re-
covery), (iii) Detection + No Reaction/Report + (No Recovery), (iv) Detection + 
Reaction/Report + (No Recovery), and (v) Detection + Reaction/Report + Recovery. 
This failure mode distribution can then be used as benchmark measures.  Again, the 
failure mode distribution can be derived out of context and the results may then be 
mapped to failure severity with respect to a context. Benchmarking of functional safe-
ty of AUTOSAR BSWs thus consists of measures to conform whether a particular 
implementation of a particular BSW has fulfilled the requirements. Benchmark meas-
ures of BSWs may include answers in the form of yes/no or Euro NCAP-like rating. 
This can also be used for comparison across different implementations of the  
same AUTOSAR BSW and for profiling an arbitrary implementation of an 
AUTOSAR BSW. 

Finally, AUTOSAR specifies mechanisms such as plausibility check, substitute 
values, voting, and program flow monitoring for error handling on application level 
[13]. Based on this, benchmark measures can be defined to evaluate the efficiency of 
such error management mechanisms. The benchmark measures can then be used for 
profiling and requirements to select a suitable subset of available error handling me-
chanisms for implementing fault-tolerant embedded applications. 

5.4 Hardware Error Sensitivity Measures for Generic Software Components 

In BeSafe, we use the term generic software components for small pieces of software, 
e.g., library routines, which provide generic functions such as sorting, checksum calcu-
lation and basic math.  A generic software component is a building block that can be a 
part of an AUTOSAR Basic Software Module, or an AUTOSAR Software Component 
(SW-C).  We use injection of bit flip faults in main memory and CPU registers as a 
way to measure the hardware error sensitivity of generic software components. We use 
this technique to compare the effectiveness of different software-implemented  
hardware fault tolerance (SIHFT) techniques. One possible way to measure 1  the  
 

                                                           
1  All measures are conditional probabilities. For example, given that an error has occurred, 

Detected by Hardware corresponds to the conditional probability that the error is detected by 
hardware exceptions. 
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hardware error sensitivity is by means of an estimated probability distribution over the 
following experiment outcomes: 

• No Impact: Program terminates normally and the error does not affect its output. 
• Time Out: The program fails to terminate within a predefined time which is set to 

be approximately 10 times larger than the execution time of the workload. 
• Detected by Hardware: Processor detects an error by raising a hardware exception. 
• Detected by Software: Errors that are detected by software detection techniques. 
• Corrected by Software: Errors that are corrected by software correction techniques. 
• Value Failure: The program terminates normally, but the output is erroneous and 

there is no indication of failure (silent data corruption). 

We consider an injected bit-flip to be covered if the outcome of the experiment is No 
Impact, Detected by Hardware, Detected by Software, Corrected by Software, or 
Time Out. Bit-flips resulting in Value Failure are considered to be non-covered. We 
thus define error coverage as the probability that a fault does not cause Value Failure. 

5.5 Benchmark Measures for Simulink Models 

Matlab/Simulink is a graphical block diagram language that is widely used for model-
based development of systems. In the BeSafe project, we investigate benchmark 
measures for software described using Simulink blocks. Example of measures suitable 
for Simulink models are: 

• Error detection coverage: Given that an error has occurred, this is the conditional 
probability that the error is detected. 

• Error recovery/masking coverage: Given that an error has occurred, this is the 
conditional probability that the error is detected and correctly recovered/masked. 

• Error detection latency: Number of cycles/iterations between an error has occurred 
and when the error is detected.  

• Failure mode distribution: Vector of elements with the distribution of workload 
outcomes. Possible workload outcomes include: no impact, incorrect output, hang, 
detected by error detection mechanism, etc.  

Some of the benchmark measures listed above are also valid for software and one 
project outcome is a comparison of results from fault injection experiments performed 
on both models and software. 

5.6 Classification of Benchmark Measures 

Benchmark measures must consider multi-dimensional aspects of functional safety 
and the requirements of relevant standards and specifications such as AUTOSAR and 
ISO 26262. Benchmark targets need to be analyzed and evaluated from different di-
mensions to formulate a complete set of benchmark measures as shown in Table 2. 
For example, ISO 26262-6 specifies that software design and implementation shall 
enforce low complexity for all ASIL (ASIL A – ASIL D). In this case, for example, 
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software complexity metrics such as cyclomatic complexity with a preset threshold 
value can be used as a benchmark measure to verify whether a particular implementa-
tion of a SW-C (developed as SEooC) conforms to the complexity requirements.  
This can be done either by software developers during unit implementation (coding) 
and testing or by integrators during integration and testing.  

Table 2. Dimensions and classifications of benchmark measures 

Measurement dimension Measurement classification 

Extent Generic; Application specific 

Abstraction layer Model; Software; Hardware 

Context Safety Element out of Context (SEooC); Safety Element in a  Context 

Method Experimental; Analytical; Formal analysis; Software metrics 

Goal Robustness; Performance; Conformance; Coverage; Latency 

Software Development 
Lifecycle 

Requirements/specifications; Architectural design; Unit design, imple-
mentation and testing; Integration and testing; Verification of safety 
requirements 

Standards and specifications AUTOSAR; ISO 26262; IEC 61508 

6 Benchmark Framework 

In this section, we present a benchmark framework that consists of fault/error models, 
methods and tools to facilitate performing benchmarking of functional safety. 

6.1 Fault/Error Models 

One aspect of functional safety benchmarking is robustness evaluation. Evaluating 
robustness of software implies analyzing software behavior by employing either 
invalid inputs or stressful environmental conditions [8]. Fault/Error model can poten-
tially consist of set of corrupted parameters and this can be done via selective substi-
tutions of parameter values or can be caused by bit-flips (fault) in registers or memory 
of the underlying ECU.  In the project, three fault/error models are considered: (a) 
data type, (b) fuzzing, and (c) bit-flip. ISO 26262-6 also (strongly) recommends fault 
injection that includes injection of arbitrary values (e.g., by corrupting values of va-
riables, by introduing code mutations, or by corrupting values of CPU registers). 

Orthogonal Defect Classification (ODC) is a measurement technology that is con-
sistently applied to a large number of IBM projects [15]. In ODC, the fault type 
represents the defect in the source code, i.e. the cause of an error. ODC employs six 
fault types (Assignment, Checking, Algorithm, Timing/Serialization, Interface, Func-
tion) related to code. Data type error model belongs to the Assignment class of ODC, 
though it could also be a Checking defect, resulting from a failing or missing check of 
a data value [16]. Fuzzing belongs to either Assignment or Checking classes in ODC 
[16]. Bit-flip belongs to the Assignment class of ODC defects [16].  
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Sensor fault models such as stuck-out of range, stuck-in range, oscillations and off-
sets will also be evaluated. Sensor failures are typically of permanent nature and are 
assumed to stress the benchmark target differently compared to experiment conducted 
with e.g. transient bit-flip faults. In addition, we will use bit-flips for hardware fault 
sensitivity benchmarking of software components. Note that sensor fault models and 
bit-flips are also presented in Annex D of Part 5 of ISO 26262. 

6.2 Methods and Tools 

This paper focuses on experimental benchmarking of functional safety although the 
project considers both experimental and analytical approaches. Furthermore, this pa-
per emphasizes experimental benchmarking based on fault injection. In this regard, it 
is notable that ISO 26262 strongly recommends adopting fault injection and interface 
tests, for example, during software unit testing and integration testing.  

6.2.1 Software-Implemented Fault Injection for AUTOSAR Based Systems 
One approach is to intercept call to/from SW-C interface of an AUTOSAR-based 
system. This facilitates implementing data type and fuzzing error models to evaluate 
robustness of the SW-Cs. This detects data errors as specified in AUTOSAR [13]. 
Furthermore, error handling mechanisms as suggested by AUTOSAR [13] can suc-
cessively be incorporated into a SW-C to evaluate the effectiveness of those mechan-
isms. This will eventually provide a set of error handling mechanisms that are most 
effective in error handling for a particular SW-C and facilitate benchmarking of those 
mechanisms.  Approaches adopted by Ballista [8] and Fuzzing [7] can be applied in 
the context of AUTOSAR for evaluating robustness of BSWs. The robustness metrics 
based on CRASH [8] can be adopted as well. It is of particular interest to see how the 
results of fault injections based on bit-flips correspond to the results that are obtained 
by applying Ballista and fuzzing approaches. The software-implemented fault injec-
tion tool B-FEAT (BeSafe Fault Injection and Analysis Tool) will successively incor-
porate various fault/error models to evaluate software robustness with a view of  
benchmarking functional safety. 

6.2.2 Benchmarking of Software Components with Respect to Hardware 
Faults 

Here, we focus on out of context benchmarking of software components. Our fault 
injection tool, Goofi-2, [17] helps us evaluate the error sensitivity of software compo-
nents with respect to transient hardware faults that manifest as bit flips.  

The error sensitivity of a software component depends on several sources of varia-
tion, such as the inputs processed by the program, the way the source code of a  
program is implemented, the compiler optimization level, the microprocessor archi-
tecture, and the fault models used in the experiments. 

Programs under test are executed on a PowerPC based microcontroller from Frees-
cale. Goofi-2 uses a debugger with a NEXUS [18] interface to inject faults into the 
microprocessor instruction set architecture registers and main memory. We define 
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fault injection experiment as injecting one fault, single bit-flips or multiple bit-flips 
according to the fault model, and monitoring its impact on the workload. A fault in-
jection campaign is a set of fault injection experiments with the same fault model on a 
given workload. 

The fault injection tool defines faults as time-location pairs according to a fault-
free execution of a workload. Where locations are randomly selected bits to be flipped 
from the memory words or the instruction set architecture registers, and time is a 
point in the execution trace. The analysis in [19] is used to exclude unreachable loca-
tions of the workloads from the fault space. In this way, the fault injection takes place 
on a register or memory location, just before it is read by executing instruction.  

6.2.3 Benchmarking Simulink Models  
We use a tool called MODIFI [20] to perform benchmark experiments on Simulink 
models. The purpose of the tool is to carry out early dependability evaluation of Si-
mulink models, exercise and evaluate added error detection and recovery mechanisms 
in the model, as well as to create test cases for fault injection on the real system.  

Mechanisms to inject faults are implemented using model blocks, which are in-
serted and activated during the execution of the model. Input to the model is provided 
by a stimulus file that include, e.g., sensor values and user inputs. The model is ex-
ecuted by the tool, which also creates an output file with values from the model such 
as actuator outputs. The output file is then compared by the tool to a fault-free execu-
tion of the model to find potential violations of safety requirements. The tool includes 
fault models for sensor faults and bit-flip faults, and can be easily extended with addi-
tional fault models.  

Model-based development can be used in the context of ISO 26262 and ISO 
61508, e.g., see [21] and [22]. As models can capture a system’s specification and 
design, model-implemented fault injection can be used for verification activities that 
are performed in early phases of the development. One example in the context of 
ISO26262 is verification of the functional safety concept, which is performed during 
the concept phase. The functional safety concept includes, among others, fault toler-
ance mechanisms which later should be implemented in hardware or software parts. 
During the design phase, fault injection in models can provide evidence that the fault 
tolerance mechanisms are capable of preventing faults from violating top-level safety 
requirements. In later phases of the development, model-implemented fault injection 
can be used to, e.g., assess the effectiveness of fault tolerance mechanisms which 
have been implemented in models.  

In the BeSafe project, we use a brake-by-wire (BBW) system, which has been de-
veloped by Volvo AB for research purposes, to evaluate benchmarks for Simulink 
models. Using the BBW system, we will benchmark different implementations of 
AUTOSAR fault handling mechanisms, e.g., several implementations of a plausibility 
check. Results from fault injection at the model level will be compared with fault 
injection experiments carried out at the software level. Table 3 summarizes methods 
for benchmarking of functional safety. 
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Table 3. Summary of methods for benchmarking of functional safety 

Method Abstraction 
Layer 

Benchmark 
Target 

Fault/Error 
Model 

Tool 
support 

Use case 

Software 
implemented 
fault injection 

Software AUTOSAR SW-
Cs and BSWs  
 

Data type and 
fuzzing 

B-FEAT Profiling, Com-
parison, Re-
quirements 

Software 
implemented 
fault injection 

Software Software com-
ponents, e.g. 
MiBench suite  

Bit-flips Goofi-2 Profiling, Com-
parison, Re-
quirements 

Model 
implemented 
fault injection 

Model  Simulink models Bit-flip and 
sensor  faults 

MODIFI Profiling, Com-
parison, Re-
quirements 

7 Preliminary Results and Analysis 

In this section, a sample of fault injection outcomes is presented. These results are 
obtained using Goofi-2 tool by injecting faults in instruction set architecture registers 
and memory words. We conducted 12,000 experiments for each workload.   

As mentioned, the error sensitivity of a software component depends on several 
sources of variation, such as the inputs processed by the program, the way the 
source code of a program is implemented, the compiler optimization level, the 
microprocessor architecture, and the fault models. To this end, we have addressed 
variations in the inputs processed by a number of programs in [23]. For example, 
Figure 2 shows how different inputs contributed to the error coverage of the soft-
ware implementation of the CRC 32-bit check. The inputs to the CRC program are 
strings of 0 to 99 characters, with CRC-1 corresponding to the smallest input and 
CRC-5 to the longest one. 

 

 

Fig. 2. Error coverage variation with respect to different inputs 
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Fig. 3. Average failure mode distribution for the CRC program 

Figure 3 also shows the average distribution of failure modes over all inputs of the 
CRC program. It is noticeable that 43% of the injected faults were detected by hard-
ware exceptions, while still around 30% of the faults resulted in value failures. There-
fore, in [23], we equipped software components like CRC with software-implemented 
hardware fault tolerance (SIHFT) techniques to increase the error coverage. 

In addition, we plan to investigate several other sources of variation to improve our 
understanding on how to benchmark the error sensitivity of software components. 

8 Conclusions 

In this paper, we introduce the BeSafe (Benchmarking of Functional Safety) project 
that aims to establish the foundation of benchmarking functional safety of the auto-
motive E/E systems with the goal of bridging the present-day gap in the standard 
assessment methods of evaluating functional safety. To achieve the goal, we identify 
the relevant benchmark targets and fault/error models as well as define benchmark 
measures. Based on those, we propose a preliminary benchmark framework that con-
sists of methods and the required tool support to carry out benchmarking activities 
and present preliminary results. In future, we plan to enhance our focus on analytical 
benchmarking along with experimental benchmarking. Furthermore, we intend to 
incorporate the processes to perform benchmarking and how to use the results into the 
framework. Finally, we plan to demonstrate the applicability of the benchmark 
framework by using both generic applications and AUTOSAR-based systems, and 
extend the framework to establish links to relevant standards such as ISO 26262. 

Acknowledgement. Authors would like to thank Dr. Martin Hiller who initiated and 
coordinated the BeSafe project while he was working at Volvo AB.  The project is 
funded (50% of the total project budget) by Vinnova (Swedish Governmental Agency 
for Innovation Systems) within the Vehicle Development Program (Diary number: 
2010-02114).   

No Impact
24%

Value Failure
32%

Detected by 
Hardware

43%

Timeout
1%



 Towards Benchmarking of Functional Safety in the Automotive Industry 125 

 

References 

1. Lemke, K., Paar, C., Wolf, M.: Embedded Security in Cars. Springer, Berlin (2006) 
2. ISO Standard,  

http://www.iso.org/iso/catalogue_detail?csnumber=43464  
3. Technical Safety Concept Status Report, http://www.autosar.org/download/ 

R4.0/AUTOSAR_TR_SafetyConceptStatusReport.pdf  
4. BeSafe Project, http://www.vinnova.se/sv/Resultat/Projekt/Effekta/ 

BeSafe/ 
5. IEC 61508 Functional safety of electrical/electronic/programmable electronic safety-

related systems, http://www.iec.ch/zone/fsafety 
6. Kanoun, K., et al.: DBench Dependability Benchmarks. Final Project Report, Dependabili-

ty Benchmarking Project (IST-2000-25425) (May 2004) 
7. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX utilities. 

Communications of the ACM 33(12), 32–44 (1990) 
8. Koopman, P., Devale, K., Devale, J.: Interface Robustness Testing: Experience and Les-

sons Learned from the Ballista Project. In: Kanoun, K., Spainhower, L. (eds.) Dependabili-
ty Benchmarking for Computer Systems, pp. 201–226. John Wiley & Sons (2008) 

9. Mukherjee, A., Siewiorek, D.P.: Measuring software dependability by robustness ben-
chmarking. IEEE Trans. on Software Engineering 23(6), 366–378 (1997) 

10. Piper, T., Winter, S., Manns, P., Suri, N.: Instrumenting AUTOSAR for dependability as-
sessment: A guidance framework. In: Proc. of the 42nd DSN 2012 (2012) 

11. Euro NCAP, http://www.euroncap.com/home.aspx 
12. eValue (Testing and Evaluation Methods for ICT-based Safety Systems), project ICT-

2007-215607 in EU FP7, http://www.evalue-project.eu/ 
13. Explanation of Error Handling on Application Level, http://www.autosar.org/ 

download/R4.0/AUTOSAR_EXP_ApplicationLevelError.pdf  
14. MiBench Version 1.0, http://www.eecs.umich.edu/mibench/ 
15. Christmansson, J., Chillarege, R.: Generation of an Error Set that Emulates Software 

Faults – Based on Field Data. In: Proc. of the 26th Annual Int. Symposium on Fault-
Tolerant Computing, FTCS 1996 (1996) 

16. Johansson, A., Suri, N., Murphy, B.: On the Selection of Error Model(s) for OS Robust-
ness Evaluation. In: Proc. of the 37th DSN 2007 (2007) 

17. Skarin, D., Barbosa, R., Karlsson, J.: GOOFI-2: A tool for experimental dependability as-
sessment. In: Proc. of the 40th DSN 2010 (2010) 

18. Nexus 5001TM Forum, IEEE-ISTO (1999), http://www.nexus5001.org/  
19. Barbosa, R., Vinter, J., Folkesson, P., Karlsson, J.M.: Assembly-level pre-injection analy-

sis for improving fault injection efficiency. In: Dal Cin, M., Kaâniche, M., Pataricza, A. 
(eds.) EDCC 2005. LNCS, vol. 3463, pp. 246–262. Springer, Heidelberg (2005) 

20. Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: A MODel-
Implemented Fault Injection Tool. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, 
vol. 6351, pp. 210–222. Springer, Heidelberg (2010) 

21. Conrad, M.: Testing-based translation validation of generated code in the context of IEC 
61508. Formal Methods in System Design 35(3), 389–401 (2009) 

22. Conrad, M.: Verification and Validation According to ISO 26262: A Workflow to Facili-
tate the Development of High-Integrity Software, http://www.mathworks. 
com/tagteam/71300_1D-4.pdf  

23. Di Leo, D., Ayatolahi, F., Sangchoolie, B., Karlsson, J., Johansson, R.: On the Impact of 
Hardware Faults - An Investigation of the Relationship between Workload Inputs and 
Failure Mode Distributions. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, 
vol. 7612, pp. 198–209. Springer, Heidelberg (2012) 



Fault Injection in the Automotive Standard
ISO 26262: An Initial Approach

Ludovic Pintard1,4, Jean-Charles Fabre1,2, Karama Kanoun1,3,
Michel Leeman4, and Matthieu Roy1,3

1 CNRS, LAAS, 7 avenue du colonel Roche, BP 54200, F-31031 Toulouse, France
firstName.lastName@laas.fr

2 Univ de Toulouse, INPT, LAAS, F-31400 Toulouse, France
3 Univ de Toulouse, LAAS, F-31400 Toulouse, France

4 VALEO, 2 rue André Boulle, 94046 Créteil cedex, France
firstName.lastName@valeo.com

Abstract. Complexity and criticality of automotive electronic embed-
ded systems is steadily increasing today. A new standard —ISO 26262—
recommends methods and techniques, such as fault injection, to improve
safety. A first goal is to use fault injection earlier at the design stage,
particularly on models providing an appropriate level of abstraction, to
identify errors in the handling of safety requirements. A second objective
is to use the results of these model-based analyzes to efficiently identify
targets and check their implementation by fault injection. Hence, a ver-
ification approach, based on fault injection, has to be defined to com-
plement conventional testing methods and analyzes traditionally used in
automotive development process. The paper discusses the various steps
of this approach, the link between abstraction and implementation, and
gives a brief illustration on a real automotive application.

Keywords: fault injection, automotive systems, ISO 26262, develop-
ment process.

Introduction

As safety is a non-negotiable requirement for automotive critical embedded sys-
tems, the development process is evolving to assure that they should not lead
to severe hazards. To respond to this trend a new standard have been pro-
posed. ISO 26262, published in November 2011, defines the safety aspects of
the development of electric and electronic automotive systems. A significant as-
pect of ISO 26262 is that it recommends fault injection to verify if systems are
safe. To this end, this paper explores the integration of fault injection tech-
niques throughout the development process, to perform efficient fault removal
activities.

To illustrate our approach described in this paper, we use an electronic auto-
motive component, the Electronic Steering Column Lock (ESCL), that has strong
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Fig. 1. ESCL Component and its Environment at System Level

safety requirements. Indeed, according to a conventional automotive scale of crit-
icality, the highest Automotive Safety Integrity Level (ASIL D) is allocated to
this component.

The ESCL, as shown in Fig. 1, is a component intended to manage the locking/
unlocking of the steering column of a vehicle, so that if a thief tries to steal
the vehicle, he cannot turn the vehicle wheels. However, this component may
endanger the safety of the driver, since a spurious blocking of the steering column
when the vehicle is at high speed could obviously threaten passengers safety.

The article is structured as follows. Section 1 describes the problem statement.
In Section 2, we discuss the motivation and the benefits of using fault injection at
the design stage, particularly on models. We briefly describe conventional fault
injection on implementation in Section 3, and conclude on the lessons learnt.

1 Problem Statement

The new ISO 26262 standard highly recommends the use of fault injection tech-
niques throughout the development process to verify safety requirements and
safety mechanisms. Requirements of ISO 26262 highlight several targets for fault
injection into the V-Cycle represented in Fig. 2.

The possible targets can be classified in two categories, namely (1) during
the design steps down to the implementation, and (2) up to the verification and
the validation of the integrated system. In the left side of the cycle, targets are
models or representations of the system before the implementation. The right
side of the cycle corresponds to an implementation of the system components,
their integration and their validation.

Models: The standard recommends fault injection on models of system level and
hardware level. There are two goals: i) to check that specifications related to
the behavior in the presence of faults do not contain any omission or error, and
ii) to ensure if the system implements appropriate mechanisms to prevent the
violation of safety properties.

Components: These are effective targets linked to the verification of a sys-
tem implementation, from the unit tests, through the integration phase, to the
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verification and validation of the complete system. At this stage, we seek to char-
acterize the effectiveness of fault tolerance mechanisms (detection and recovery
of errors) that have been implemented to increase safety as well as reliability
and availability.

A first challenge is to define fault injection methods throughout the devel-
opment process of an electronic/electrical system and particularly explore the
possible contribution of fault injection at each stage of the process to improve the
quality of the design. In a certain sense, we introduce the notion of multi-level
fault injection and aim at analyzing possible links between targets, objectives
and results at various development stages. This paper reports on our initial
approach to tackle this problem.

Concerning integration, our second objective is to analyze how fault injec-
tion experiments related to a system can benefit from the results obtained to
its components by fault injection. However, the composition of fault injection
experiments in a hierarchical way is out of the scope of this paper, but will be
highly explored during the project.

Fault injection [1] is a mature technology that has been successfully applied
using several techniques on different targets [3–5, 7, 8, 14], that are usually com-
ponents implementation. However, to the best of our knowledge, fault injection
has not been studied throughout a development process at various development
or abstraction levels in cooperation with usual testing methods.

2 Fault Injection During System Design

2.1 Fault Injection before Implementation

The high-level specifications of the system are progressively refined to provide
detailed specifications of the hardware and of the software before implementa-
tion. During this refinement process, the form in which the specifications are
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written may evolve. These specifications can be expressed in natural language,
or in the form of a well-structured and formalized model (e.g., in an enterprise
proprietary language), or in the form of a formal model, based on a standard
formal language. Two kinds of requirements are usually distinguished: functional
requirements and safety requirements.

At the initial step, the requirements are related to very high-level functions of
the system, without addressing the system structure. A functional model may
exist or can be built. Faults can be defined only at the same level of abstraction.
Fault injection consists in assuming (or simulating) a failure of a basic function,
and analyzing the impact of this failure on the other system functions and on
the overall system functions. In this case, fault injection constitutes a way i) to
check the impact of the failure of each basic function on the other function(s), and
ii) to ensure that the safety requirements are satisfied. Hence, fault injection can
be seen as a method very similar to the well-known and widely used approach,
usually referred to as Failure Mode and Effect Analysis, FMEA [2], or Failure
Mode and Effect and Criticality Analysis, FMECA (depending on whether the
criticality is analyzed or not).

The primary benefit of fault injection is the same as for FMECA: the early
identification of all critical system failure modes so they can be eliminated or
minimized through design modification at the earliest phase in the development
process. Another benefit is to identify the parts of the system and functions that
require error detection and/or fault-tolerance mechanisms.

As for FMECA, the results of the fault injection analysis become more precise
when more details about system functions are available (i.e., when the abstrac-
tion level of the system functional description becomes lower).

From the system requirements, a functional model is created. A fault injection
"experiment" consists in selecting a failure mode of a function (or a component)
and analysing its resultant effects on system operation, taking into account the
overall safety requirements. The effects are usually defined with respect to the
impact of the failures on the safety properties; they are referred to as "system
failure modes". Each fault injection experiment corresponds to a single failure
mode of one basic function (or of one component). A function or a component,
with several potential failure modes, requires one experiment per failure mode.
Indeed, each fault injection experiment corresponds to one line of a FMECA
worksheet (or spreadsheet). Examples of information items that can be included
in one line (or provided after a fault injection experiment) are: identification
of the basic function (or component) analyzed, its potential failure mode ad-
dressed, the potential causes of this failure mode, the local effect of the failure
mode, the next assembly layer effect, system level effect, the risk level, detection
mechanisms to put in place, actions for further investigation.

Even though, the analyses can be performed manually for high-level prelimi-
nary design, the support of a modelling formalism and a tool becomes mandatory
as soon as detailed information becomes available.

From a modelling point of view, at a high-level, the analyses can be performed
based on data flow diagrams and/or state charts, to help the analyst to propagate
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errors between the components of the system. When more details are available,
languages such as UML (Unified Modelling Language) or AADL (Architecture
Analysis Design Language) can be used. Their main advantage is that they
have been extended to perform quantitative dependability assessment of critical
systems (see e.g., [9, 10]).

Finally, several simulation modelling languages have been used for fault in-
jection. At these levels, the model can be very similar to the real implementa-
tion of the system (see e.g., VHDL [6], SystemC [11], Matlab/Simulink [12] or
SCADE [13]).

2.2 Illustration on a Case Study

The first objective of our method is to determine a high-level abstraction of our
system. Fig. 1 presents the relation between ESCL and its environment. Indeed,
a component has dependencies with other components. The dependencies are
related to the inputs and outputs, because they link the components. Hence,
fault injection at this level consists in propagating component failures and errors
through the relationships between blocks.

Then, we have to define the safety requirements this system has to verify.
There are two safety requirements, called safety goals according to ISO 26262,
that must be ensured:

– SG1 = The ESCL must not lock the steering column when the vehicle speed
is greater than 10 km/h. (ASIL D)

– SG2 = If the steering column is locked, the ESCL must prevent to start the
engine of the vehicle. (ASIL A)

For example, SG2 will be specified at this level as follow: the ESCL should not
send erroneous messages, via the LIN bus, stating that the steering column is
unlocked while it is locked.

All safety requirements, at each level, are important because they define a
set of invariants that must be satisfied by the system. Would an invariant be
violated, a hazard may occur. To satisfy these properties, the design should
explicitly exhibit each safety mechanism that deals with a property. Here, the
criticality of a mechanism can be defined according to the ASIL level of the
safety requirement, and so, the targeted safety mechanisms must be evaluated
by fault injection techniques.

Then, the error model has to be defined. At this level, we can identify the hard-
ware architecture of our case study with five components, and the associated five
links. There are four electrical links, with four failures modes: i) there is no power
when it is required, ii) there is power while it is not required, iii) oversupply,
iv) and under-supply. The failure modes of the fifth link, a bidirectional LIN
bus, are the following: no message transmitted, erroneous message transmitted,
corrupted message.

Following the approach described in Section 2.1, the fault injection applied
to the functional description of the ESCL enables the identification of criti-
cal blocks and their effect on the system. Considering the link between them,
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we can identify whether a safety property may be violated. A critical path is the
propagation of an error through the link that violates the safety properties.

Let’s take the example of a corrupted message from the Body Controller
Module ordering to lock the column when the vehicle is at high-speed. This
could violate SG1, and the study of the architecture allows to check whether a
safety mechanism exists — here, the ABS/ESP switches off the ESCL when the
speed is larger than a threshold and hence the ESCL will not lock the column.
The system level architecture shown on figure Fig. 1 can be considered as the
first modeling level. However, this description is at a too high level to verify the
real hardware architecture or the software architecture of the ESCL.

Considering the hardware, a more detailed model should be used to describe
the architecture in terms of subcomponents: sensors, micro-controllers, memo-
ries, power supply units. This detailed architecture is represented on Fig. 3.
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Fig. 3. Architectural Model of ESCL Component

Considering the software, modules and their dependencies can be modeled
through function and procedure calls on a static view with a communication
diagram, and then with sequence diagrams for the dynamic representation of
the interactions. The robustness of implemented components running on the
hardware must be evaluated according to a fault model:
– Hardware errors: errors on the inputs of the micro-controller, errors at the

interfaces of software module due to a corruption of the memory, or error in
sequences and with timing constraints.

– Software errors: coding faults should be represented by malfunctions on the
interface of each software module.

3 Fault Injection during Verification

On the right-hand side of the V-cycle, an implementation of the system is avail-
able, in the form of a hardware support system, a set of software components,
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and later on in the form of a global system in which the software components
are integrated on the hardware system. All conventional fault injection methods
are applicable.

Our recommendation is to use the results of the analyses carried out during the
design phase to guide fault injection experiments in the verification phase. For
example, fault injection campaigns will focus on critical components identified
earlier. In our case study, we concentrate our analysis on the internal architecture
of an ESCL component. The goal could be to activate error detection and error
recovery mechanisms according to a fault model and evaluate their robustness.
The aim of the experiments will be for example to:

– Check the correct implementation of the system together with the associated
error detection and fault-tolerance mechanisms.

– Assess the error detection coverage and error recovery coverage of safety
mechanisms.

In addition to the conventional aims of fault injection experiments targeting
concrete components, the objective is also to find complementarities with usual
testing methods applied in the automotive industrial domain in order to optimize
the validation process.

Conclusion

The use of fault injection in the development of safety critical embedded automo-
tive systems is explicitly mentioned in the ISO 26262 development standard. One
can easily understand that similar types of techniques are nowadays used dur-
ing the testing phase of embedded automotive systems. Such techniques include
in particular FMECA analyses. However, advocating fault injection at various
levels of the development of the system poses several challenges, not only with
respect to the ISO 26262 application in the automotive domain, but raises more
general scientific challenges. In particular, how to handle the complementari-
ties between FMECA and fault injection at various stages of the development
process.

We observed that FMECA is similar to fault injection when targeting models.
Indeed, these concepts should mutually enrich each other because they share the
same objectives. Yet, in practice, FMECA is often applied to coarse grain models.
The short-term objective of this work is to show that the concept of FMECA
can be applied to more fine grain structural and behavioral models, reaching
finally the implementation. Conventional fault injection is the major technique
on implemented components, but one can understand that FMECA and Fault
Injection are overlapping concepts as models become more and more detailed.
Conversely, fault injection automatized on a detailed model can produce similar
results as those expected with FMECA.

In this paper, we have shown how model-based fault injection could be of
interest to identify drawbacks in the handling of safety requirements but also to
guide lower layers fault injection experiments, for instance with the identification
of key targets for conventional verification by SWIFI.
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Abstract. Smart grids provide efficiency in energy distribution, easy
identification of disturbance sources, and fault prediction. To achieve
these benefits a continuous monitoring of voltage and current phasors
must be performed. Phasor Measurement Units (PMUs) allow measure-
ments of the phasors. A Wide Area Measurement System uses PMUs
placed in different locations to assess the status of the power grid. To
correctly analyze the phasors provided by PMUs, phasors must refer to
the same time. For this reason each PMU uses the clock provided by
a GPS receiver. GPS receiver is vulnerable to spoofing attack and it
is a single point of failure. In this context we examined Network Time
Protocol (NTP) as an alternative time source when the GPS receiver is
compromised. In this paper a resilient architecture is proposed that is
able to detect and react to the GPS spoofing attack. Experimental tests
have shown the effectiveness of our solution.

Keywords: Smart Grid, Wide Area Monitoring System, GPS Spoofing
Attack, Phasor Measurement Unit.

1 Introduction

Power grids were designed in order to meet requirements that were defined in
the 20th century when the goal was ”to keep lights turned on”. Today, the re-
quirements expected to be fulfilled by power grids have changed. The increasing
load and consumption demands increase electricity issues, such as blackouts,
and overloads. In July, 2012 for two days, India experienced blackouts that in-
volved a large portion of the country’s power grid. Specifically, a 9% gap was
estimated between the effective energy requirements and the available energy
amount [1] [2]. In the afternoon of September 8, 2011, an 11 minutes-long sys-
tem disturbance occurred in the Pacific Southwest, leading to cascading outages
and leaving approximately 2.7 million customers without power. The failure of
the power grid was due to the bad redistribution of the power flow caused by
the failure of a transmission line. Other examples of power grid blackouts due
to different types of failure are reported in [3] [4] [5] [6] whereas a security anal-
ysis of the technologies which enable data collection in power grid and in other
critical infrastructures is provided in [7] [8] [9].
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Smart Grid systems represent the natural evolution of the power grid. The
term smart grid defines a self healing network equipped with dynamic optimiza-
tion techniques that use real time measurements to minimize network losses,
maintain voltage levels, and increase reliability. Operational data collected by
the smart grid are analyzed and they allow system operators to rapidly iden-
tify the best strategy to secure against attacks, vulnerabilities, faults and so on,
caused by various contingencies [10]. In order to monitor the status of the smart
grid Wide Area Monitoring Systems (WAMSs) are used. WAMSs make use of
devices distributed throughout the power grid that measure the key parameters
to detect anomalous conditions.

Today Phasor Measurement Units (PMUs) are the most commonly used de-
vices in WAMS. In particular, PMUs are devices that perform measurements of
real-time phasors of voltages and currents to provide information about power
grid status. The time synchronization between different PMUs is required to
understand the global status of the power grid at the same time. This is because
events occurring in one part of the grid affect operations elsewhere, and they also
extend to other systems beyond the grid that rely on stable power. Time syn-
chronized measurements produced by PMUs are called synchrophasors. In order
to obtain simultaneous measurements of phasors detected from different PMUs
installed across a wide area of the power system, it is necessary to synchronize
these times, so that all phasor measurements belonging to the same time are
truly simultaneous. Each PMU uses a Global Positioning System (GPS) receiver
[11] to take a unique timestamp within the global system. One of the main prob-
lems affecting smart grid monitoring is the spoofing of the GPS signal provided
to the GPS receiver [12]. The GPS signal can be forged in order to mislead the
GPS receiver that uses it. This type of attack is called ”GPS spoofing” [13] and
more details are provided in Section 4. If an attacker forges the timestamps pro-
vided by GPS to a PMU, it could cause variations in measured phase angles. The
difference in the phase angle between two PMUs indicates that the power be-
tween the regions measured by each PMU has changed. These variations could
compromise the stability of the system in such a way that grid operators or
automatic response systems would make incorrect decisions as powering up or
shutting down generators. Incorrect decisions can cause blackouts or damages.

Many techniques are available in order to detect the GPS spoofing attack.
These techniques are based on different approaches as: monitoring the absolute
GPS signal strength; monitoring the relative GPS signal strength; monitoring
satellite identification codes and the number of satellite signals received [14].
While different techniques are available to detect GPS spoofing attack no reme-
diation technique was proposed.

In this paper we propose an architecture resilient to GPS spoofing attack. In
particular our architecture provides capabilities of detection and remediation for
the GPS spoofing attack. To design this architecture we analyzed requirements
in terms of maximum time delay required by PMUs to avoid loss of synchro-
nization. Also we analyzed the time accuracy provided by the GPS receiver to
the PMUs. Thus we identified a particular implementation of the Network Time
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Protocol (NTP) that offers the same accuracy as GPS receiver and that satisfies
the PMU time requirements to avoid synchronization losses. So we developed
a new component called ”Spoofing Detector” placed between PMU device and
the two time sources. The main time source is provided by the GPS receiver
while backup time source is provided by NTP. Spoofing Detector detects the
GPS spoofing attack and activates the remediation i.e. it switches from main
to backup time source to provide PMU device with correct timestamp even un-
der attack. Our architecture provides intrusion tolerance capabilities using both
detection techniques of GPS spoofing attack and two external time sources.

The paper is organized as follows. Section 2 provides an overview about
WAMS with reference to power grid. Section 3 describes the PMU devices
and the way how they perform measurements of the synchrophasors. Section 4
presents the GPS spoofing attack that affects each PMU that uses a GPS re-
ceiver. In this section several techniques are discussed to detect this attack. Sec-
tion 5 presents the synchronization protocol NTP as a candidate backup time
source to use when the GPS receiver is compromised. Section 6 describes the
resilient architecture proposed to detect and react to the GPS spoofing attack.
Section 7 provides details about the implementation of the proposed architecture.
Section 8 describes an attack model on the architecture proposed and presents
the experimental results obtained.

2 Background

2.1 Wide Area Monitoring System

The power grid is composed of three main components: power plant, transmis-
sion substation and distribution grid. The power plant produces simultaneously
three different phases of AC power with 120 degrees offset from each other. The
three-phase power feeds a transmission substation. This substation uses large
transformers to increase the generator’s voltage up to extremely high voltages
to reduce transmission line losses on long-distance. Distribution grid is the final
stage of energy conversion before the electricity is supplied to end users.

The simplified architecture adopted today to monitor the power grid is shown
in Figure 1.

PMUs are devices that use GPS signals as a common time source and analyze
the waveforms of different transmission lines at different locations across a wide-
area system at the same moment. In particular they perform a sampling of
the waveforms provided by transmission lines and generate the phasors. These
phasors are timestamped using the same clock provided by the GPS receiver.
These synchronized phasors are called synchrophasors. Such timestamps can be
used to compare collected synchrophasors with microsecond precision. In fact,
the Phasor Data Concentrator (PDC) gathers the data provided by different
PMUs and it performs a comparison between the synchrophasors to assess the
status of power grid. A PDC can exchange phasors with PDCs at other locations
to perform wide are monitoring.
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Fig. 1. Smart Grid Monitoring Architecture

The reference standard for PMU is IEEE Standard C37.118 [15]. It discusses
about the definition of a synchronized phasor, time synchronization, method to
verify compliance of measurements with the reference standard, and message
formats for communication with a Phasor Measurement Unit (PMU).

3 Phasor Measurement Unit (PMU)

PMU devices are used in WAMSs in order to monitor power grids. In particular,
PMUs analyze the 50/60 Hz AC waveforms provided by the power grid and
they calculate the synchrophasors. The typical sinusoidal waveform analyzed by
a PMU is:

z(t) = Am ∗ cos(ωt+ φ); ω = 2πf ; (1)

where f is the instantaneous frequency and Am is the magnitude of the sinusoidal
waveform. Waveform (1) can be represented as the phasor:

z̄ = Zr + jZi =
Xm√
2
∗ ejφ; (2)

where Xm√
2
represents the Root Mean Square (RMS) value of the waveform and

φ is its phase angle relative to a cosine function at the frequency of the nominal
system synchronized to Universal Time Coordinated (UTC). The time synchro-
nization is provided by a GPS receiver. The advantage of referring phase angle
to a global reference time is helpful in capturing the wide area snapshot of
the power grid. The most common technique for determining the phasor rep-
resentation of an input signal is to use data samples taken from the waveform,
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and apply the Discrete Fourier Transform (DFT) to compute the phasor. Also,
the obtained representation of the phasor is independent from the frequency of
the signal z(t).

So, the PMU calculates the voltage and current synchrophasors. Different
PMUs are installed in different locations in order to obtain the global status of
the power grid. In particular, the IEEE Standard C37.118 standard [15] defines
the transmission rate of data generated by PMU. This rate changes if the system
is 50 or 60 Hz. In Figure 2, the number of frames per second transmitted by PMU
is shown for different types of systems.

Fig. 2. PMU: phasor data transmission rate

Important topics covered by the mentioned standard concern the application
of timestamps, the definition of the message format for communications between
PMUs and the method to verify the measurement accuracy. The accuracy is ex-
pressed as the magnitude of the vector difference between the theoretical phasor
and the phasor estimated by the measuring device, expressed as a fraction of the
magnitude of the theoretical phasor. The magnitude of the vector difference is
called Total Vector Error (TVE) and it is given by the following formula:

TV E =

√
(Zr(n)− Zr)2 + (Zi(n)− Zi)2

(Z2
r + Z2

i )
(3)

where n represents the measurement time, Zr(n) and Zi(n) are the values mea-
sured by PMU, while Zr and Zi are the theoretical values of the input signal
at the instant of time of measurement, determined by (2). The loss of synchro-
nization occurs when the TVE value exceeds the value limit of 1%. There are
three types of errors that can increase the TVE value: phase-angle measurement
error; magnitude measurement error and time synchronization error. In this pa-
per we analyze only the case of error in time synchronization. This is because
when a GPS spoofing attack is performed successfully, the remediation archi-
tecture that we propose must satisfy specific time constraints to avoid losses in
synchronization.

If a PMU is not accurately synchronized with UTC, then the measured phase
will not match the true signal phase. In particular a phase error of 0.01 radians
in (3) will cause 1% TVE. So we can calculate the maximum allowed time error
before the synchronization loss using the following equation:

Δt =
φ

2πf
(4)
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In (4), if we replace φ with the phase error that generates the maximum TVE
value allowed and we consider power systems with nominal frequency of 50 Hz,
then the maximum time error is Δt = 31.8μs. If the power system works with
60 Hz as nominal frequency then the maximum time error is Δt = 26.5μs.

Today, GPS systems represent the most commonly adopted method to pro-
vide time synchronization with the PMU devices. In particular, they provide a
accuracy of about 100 ns that satisfies the requirements described above.

4 GPS Spoofing Attack and Detection Techniques

In section 3 we have argued about the importance of the PMUs synchronization.
We showed how even a small time error can cause loss of synchronization. For this
reason, PMU devices rely on the GPS receiver to obtain high accuracy. The GPS
receiver is known to be vulnerable to GPS spoofing attacks. The goal of GPS
spoofing attacks is to provide a forged version of the GPS signal to take control
of a GPS receiver. So if an attacker successfully performs a GPS spoofing attack
he/she can compromise the monitoring system of the power grid. This attack
was discovered and highlighted in 2001 by U.S. Department of Transportation
during a study performed on vulnerabilities of the transportation infrastructure
that uses GPS signal [16].

The first step needed to perform a GPS spoofing attack is to acquire and
to track the GPS signals to obtain a reference signal. Then a forged signal is
generated and summed to the original GPS signal. The new signal is used to
synchronize the spoofed signal with the authentic signal received. So the attacker
produces a signal perfectly aligned with the authentic signals but with lower
power. The generated spoofed signal is comparable to the noise of the target
receiver in terms of power. Then the attacker increases the power of the forged
signal until it overcomes the authentic signal. In this way, the forged signal shows
higher Signal-to-Noise Ratio (SNR). So, the GPS receiver tracks the fake GPS
signal (instead of the authentic signal) due to its higher SNR. After that, the
attacker has successfully taken control of the GPS receiver. Then he/she slowly
moves the spoofed signal from the authentic signal. The GPS signal received is
considered to be completely captured when the spoofed signal is delayed by 2μs
from the authentic signal as described in [17].

Thus the attacker could increase the time delay until it overcomes the 1%
TVE as defined in the section 3.

Several techniques have been proposed in order to detect the GPS spoofing
attack. These techniques are based on:

– monitoring the absolute GPS signal strength. This technique is based on
comparisons between the observed signal strength and the expected signal
strength. If their difference is greater than a fixed threshold, an alert is
generated;

– monitoring the signal strength received from each satellite. The idea is to
compare the observed signal strength with the expected signal strength for
each satellite. The attacker will generate forged signal of equal strength for
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each artificial satellite through the GPS satellite simulator. Instead, the sig-
nals provided by real satellites will change over time for each satellite. So an
alert is generated if the signal characteristics are constant over time for each
satellite;

– monitoring the relative GPS signal strength. This technique implies that the
average signal strength is recorded and compared periodically. An alert is
generated if a large change in relative signal strength is detected.

Further techniques that can be used to detect GPS spoofing attack are provided
in [18] [19].

5 Network Time Protocol

Network Time Protocol (NTP) is widely used to synchronize system clocks
among a set of distributed time servers and clients. NTP architecture is orga-
nized in layers, where synchronization flows from primary servers (higher layer)
to the secondary servers and clients (lowest layer). The primary servers must
be reliably synchronized to a GPS receiver and they must provide accurate and
precise timestamps, even in case of a significant network jitter. Also the protocol
must mitigate errors due to network disruptions or server failures. The synchro-
nization process between a client and a server starts with a request from the
client as shown in Figure 3. In particular the client sends current time T1 to the

Fig. 3. NTP: client-server synchronization

server. The server saves this time T1 together with the current time T2. Then
the server sends the client the current time T3 together with the saved times T1

and T2. When the client receives the message, it reads its time T4 and computes
two values: offset of the clock α and round-trip delay β related to the server. The
offset is computed as: α = 1

2 [(T2 − T1) + (T3 − T4)] whereas the round-trip delay
is computed as: β = (T4−T1)− (T3−T2). Both values α and β are minimized by
a clock filter algorithm to obtain the synchronization of the client. More details
about NTP are provided in [20] [21].

6 Anti GPS Spoofing Architecture

In this section we describe our architecture for remediation when a GPS spoofing
attack is successfully performed. The proposed architecture is shown in Figure 4.
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The idea is to increase the resilience to attacks using the concepts of redundancy
and diversity. In fact, GPS spoofing attack can succeed because each PMU uses
the timestamps provided by a unique time source i.e. GPS receiver. Also GPS
receiver is a single point of failure for each PMU. Our approach is to use multiple
time sources to provide timestamps to PMUs. To identify which technology can
be used as a backup time source for PMUs, we analyzed PMUs requirements in
terms of maximum time delay to avoid synchronization losses. Also we analyzed
the accuracy provided by the GPS receiver so that the backup time source can
provide coherent timestamps. We selected NTP as a technology that satisfies
both requirements of maximum allowed delay by PMUs and expected accuracy
by GPS receiver. The resulting NTP precision depends on the communication
network behavior.

Fig. 4. GPS Spoofing Remediation Architecture

In the following, we assume that an NTP server is available and provides
synchronization to many clients. The NTP server in Figure 4 is synchronized
through a GPS receiver. NTP clients are synchronized with the correct time
provided by NTP server. In our architecture we can see that PMU devices are
not directly connected to the GPS receiver as in the standard monitoring model
shown in Figure 1, but they are linked to the Spoofing Detector component.
Of course the redundancy with two time sources is not sufficient to ensure in-
trusion tolerance. In fact to perform a voting with quorum at least three time
sources are required. However we obtained the same results through only two
time sources i.e. GPS Receiver and NTP client, because the Spoofing Detec-
tor uses a technique that allows to detect clock anomalous behaviours. In fact,
Spoofing Detector component implements one of the techniques described in
Section 4 to detect the GPS spoofing attack. The Spoofing Detector listens to
the signal provided by the GPS receiver in order to recognize the characteristics
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of the GPS spoofing attack. When an anomalous condition according to the cho-
sen detection technique is found, then the remediation technique is activated.
In particular, the Spoofing Detector component performs a switch of the tim-
ing source from GPS receiver to the NTP client. The NTP client replaces the
compromised GPS receiver. In this way, PMUs always use a correct time source
while measuring synchrophasors. NTP client is warm component i.e. it is always
enabled and synchronized with NTP server.

The PDC component monitors the difference between the phases provided by
different PMUs. Also the PDC uses information provided by Spoofing Detectors
to avoid the generation of false alerts when an unexpected delay occurs during
the synchronization of NTP clients.

In the proposed architecture, each PMU and NTP server uses a different GPS
receiver. Also the GPS receiver of the NTP server is located very far from other
GPS receivers. Then, when a spoofed GPS signal is propagated to compromise
a GPS receiver belonging to a PMU device, we assume that the spoofed signal
does not affect the GPS receiver of the NTP server.

7 Implementation Details

As we have shown in section 3, PMUs require strong time constraints to avoid
synchronization losses. Our architecture works correctly when NTP protocol pro-
vides the same or better accuracy compared to GPS receiver. To obtain the max-
imum accuracy in NTP, modifications to operating system kernel are required.
In particular the clock discipline algorithm in the synchronization daemon must
be replaced with a module that offers the same functionality and operates in
the kernel module. The clock discipline algorithm is the algorithm used to ad-
just the system clock in accordance with a final offset. While clock corrections
are performed once per second in the classic synchronization daemon, they are
performed every tick interrupt in the kernel. Using a specific implementation
of NTP, it is possible to get an accuracy of the order of nanoseconds when an
accurate reference clock is available [22] [23].

We use a dedicated network to reduce the network communication delay. Also
all clients are linked to the primary NTP server to obtain a better accuracy.

Spoofing Detector component implements one of the techniques mentioned
in section 4 to detect the GPS spoofing attack. The implemented technique is
based on monitoring relative GPS signal strength. In particular, initially the
component records a valid signal for a defined time interval. Then, it calculates
the average value of the recorded signal and stores it. Finally, the alert threshold
must be chosen. The choice of the threshold is very important because if it is
set too low the component will perform many wrong switches of the chosen
reference source; at the other side, if the threshold is too high the attack detection
will be slow. Since the maximum time error allowed for PMUs to avoid the
synchronization loss is about 20μs, then a slow detection can compromise the
synchronization of PMUs.

The component was developed in C++ in order to obtain good performances.
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8 Attack Model and Experimental Results

In the first experiment we used two PMUs with a power grid that works at 60
Hz. The GPS receiver of a PMU is compromised by a spoofing attack. Instead,
the GPS receiver of the other PMU works correctly and we use it as refer-
ence. In Figure 5 we show the attack model. In Figure 6 we show the difference

Fig. 5. Attack model used to compromise a GPS receiver of the PMU

between the phase angle measured by the compromised PMU and the phase
angle measured by the reference PMU over time. Before the attack occurs, the
synchrophasors measured by the two PMUs are overlapping vectors. This means
that the phase angles of the two PMUs are aligned, so their difference is equal
to zero.

At time t = 300 seconds the attacker tries to compromise the GPS receiver
of a PMU through a spoofing attack. We have done many experiments in order
to find the time required to perform a spoofing attack. In particular, in our
case the time required is 2 minutes and 20 seconds. This time is in agreement
also with another study [24], where the authors claim that about 2 minutes
are needed to perform a spoofing attack. So at time t = 440 seconds the GPS
receiver is completely compromised and the error time introduced for perfect
synchronization with the attacker is 2μs. The relation between phase angle and
time error is provided by (4).

From now on, the purpose of the attacker is to introduce a higher error in
the phase angle of the synchrophasors generated by the compromised PMU to
overcome the maximum time error allowed before losing the synchronization. To
achieve this goal, the attacker provides a constant acceleration of 3m

s2 . A higher
acceleration could desynchronize the GPS receiver from the attacker. We can see
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Fig. 6. Difference between PMUs’ phase angles when one of them is compromised

Fig. 7. Performance of the proposed resilient architecture

that at time t = 470 seconds the time error introduced is about 12.65μs and the
difference of phase angles is about 0.0048 radiants. As described in section 3,
the maximum tolerated error phase before the loss of synchronization is 0.01
radiants so, no loss of synchronization is occurring yet. At time t = 510 seconds,
the difference between phase angles is greater than the maximum error phase
allowed to obtain a TVE value under 1%. So the synchronization of the PMU
attacked is lost. In Figure 7 we show the performance of our resilient architec-
ture. In particular, we show the detection and remediation activities performed
when spoofing attack occurs. At the time when the signal strength measured by
Spoofing Detector overcomes 2% (blue line) of the average signal strength, our
resilient architecture performs a change of time source. The threshold that al-
lows the remediation to be activated was estimated through experimental tests.
So at time t = 440 seconds the architecture has successfully detected the attack.
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The detection delay causes a time error of 2μs. At this time the attacker in-
creases the acceleration of 3m

s2 to quickly reach the desynchronization from the
correct time source. It is possible to use the available error time (i.e. 24.5μs) to
activate the remediation before the loss of synchronization. During the change of
the timing source from GPS receiver to NTP client, the strength of the spoofed
signal grows because the attacker tries to complete the spoofing attack. After
the reference source time is changed, then the correct time is again provided to
the PMU by the NTP client.

9 Conclusions

In this paper we discussed the usage of WAMS in smart grid. WAMSs use mea-
surements of different PMUs to obtain information about power grid status.
The comparison between measurements provided by different PMUs are useful
if referred to the same time. So all PMU devices use a unique reference clock pro-
vided by GPS receivers. GPS receivers are vulnerable to GPS spoofing attacks.
We reviewed several techniques to detect this type of attack. Also we presented
a new resilient architecture that implements one of the proposed techniques to
detect the spoofing attack. Also, the architecture implements a remediation tech-
nique when the attack is detected. The remediation technique is based on the
use of the synchronization protocol NTP. When the attack is detected the time
source switches from GPS receiver to NTP client. Experimental tests show the
effectiveness of our solution.

In the future we plan to improve the detection time of spoofing attack. In
fact, we think that times provided by NTP client and GPS receiver can be used
together, to reduce detection latency. However the Spoofing Detector component
of the proposed architecture could become more complex. We will perform other
experimental tests in order to evaluate the impact of a greater complexity of the
Spoofing Detector component on the reaction time of the architecture.
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Abstract. The Spanning Tree Protocol (STP) is known to have sta-
bility problems and poor convergence intervals. Several protocols and
variants exist targeting the replacement of STP variants, most of them
proprietary and with limited scope of operation. The recent protocols,
IETF TRILL and IEEE SPB, target mainly data center networks, are
based on complex concepts, require great processing power from switches
and huge investment in new gear.

In this paper we propose Self-Configurable Switches Protocol (SCS)
as an alternative to all these protocols. It has the following advantages: it
is configuration-free, thus less vulnerable to human mistakes; it enhances
the network stability and performance when comparing with STP; and
it is suitable to the range of equipment and networks that typically run
STP variants, minimizing the need for potential large investments re-
quired by TRILL and SPB. This paper describes the main characteris-
tics, processes and mechanisms of SCS, presents some lab and simulation
experiments with STP and SCS, and provides demonstrations that SCS
provides a more reliable service than STP variants, and a more cost
effective alternative to TRILL and SPB network dependability.

Keywords: Layer 2 networks, dependability, Spanning Tree Protocol,
TRILL, SPB, 802.1aq, Self-Configurable Switches.

1 Introduction

The Spanning Tree Protocol (STP) [14] is a protocol widely used in switched
networks. Its goal is to define a loop-free path (a tree) for distributing traffic
within a mesh of switches. For preventing loops, STP allows switched networks
to be fully meshed, but effectively it only explores inter-switch links that are
part of the current active spanning tree; the other links remain inactive until
being included in the forwarding path of the spanning tree when necessary.

STP presents three issues regarding dependability. The first is the instability
created while a spanning tree is being calculated, which can be endless due to
critical race conditions. The second is the fact that proper configuration is critical
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to leverage STP with an admissible behavior (see example below). The third is
that traffic paths along the switched network do not make use of the redundancy
allowed by the meshed architecture, neither take the best paths towards the
destinations; instead, they disable all the redundant links and follow a single
traffic path between all switches. The consequences of this are threefold: (i)
traffic is likely not to follow the shortest path from the source to the destination;
(ii) hosts may experience congestion due to the overload of the spanning tree;
and (iii) spanning tree reconvergence always induces service disruption.

Just to illustrate the risks posed by STP we give an example (extracted
from [5]). In November 13th, 2002, the Beth Israel Deaconess Medical Cen-
tre (BIDMC) network, running STP, crashed repeatedly over four days, forcing
the hospital to revert back processes thirty years, into 1970’s paper systems.
All redundancy in power supply, servers and data storage systems was useless,
since the core network was not functional at all. After several dramatic days, it
was found that the network problem was originated by the violation of STP hop
count limit. In consequence, BIDMC spent near three million dollars to redesign
and replace its entire network. This 2002 example sounds like a history from
a long time ago; however, and unfortunately, it keeps pretty actual nowadays
and all the major efforts done to compensate STP/RSTP/MSTP flaws aren’t
sufficient for current network stability, feasibility and availability requirements.

The fundamental motivation for our work was to create an alternative to con-
trol Ethernet networks enabling them to get self-configured, i.e. without the need
for any human configuration, neither all the underlying complexity and invest-
ments required by TRILL [13] or SPB [1]. Additionally, we also add the moti-
vation to enable the network’s internal configuration to evolve seamlessly when
switches or links are added or removed, thus breaking with the STP paradigm
that can lead to network forwarding outages due to dramatic spanning tree re-
configurations. And, finally, a third motivation for our work was to improve
the exploitation of meshed switches by distributing the traffic load among all
possible links, instead of concentrating traffic in a single spanning tree.

Our contribution is a replacement for STP (and its variants), denoted by Self-
Configurable Switches (SCS). SCS involves a very limited and risk-free human
intervention and does its entire configuration autonomously. Unlike STP, where
switches are labeled with critical priority values, and thus are not all equal (for
creating hierarchies from which spanning trees are derived), in SCS the switches
are all equal, in the sense that no switch has more responsibilities than others.

Each SCS switch builds its own view of the network topology, and uses it
to manage how multicast and broadcast traffic is propagated throughout the
network. SCS uses a gossip-based protocol to spread topology information along
the network, but without the requirement of achieving a single, uniform set of
information in all switches.

SCS prevents loops in traffic by using a controlled flooding strategy. Flooding
traffic is unicasted to switches and then, locally, flooded to end-hosts (i.e. any-
thing other than an SCS switch). For unicasting flooding traffic among switches
we use Delegation Tables and a novel Ethernet packet (unicast flood packet,
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UFP). Delegation Tables indicate whether a switch should act as a forwarder
of an UFP from a switch towards other switches. The UFP differs from the
standard Ethernet packet by carrying two extra fields: time to live (TTL) and
unicast flooding source switch (UFS). TTL enables a last resort mechanism
to prevent problems created by loops; it should be seldom used. UFS enables
switches to reason about how to conduct the dissemination of a received UFP
using the local Delegation Tables.

SCS was evaluated through simulation with NS-3 and complemented with
STP experiments in a lab environment. We created a set of scenarios where STP
is known to have problems, and we confirmed those problems in a laboratory
infrastructure running several STP variants. We ran NS-3 simulations with those
same scenarios to observe the behavior of SCS and to confirm its advantage over
STP. In all cases, the SCS network evolved automatically, quickly and seamlessly
to a stable configuration, while with STP variants we observed most of the
expected problems.

This paper is organized as follows. Section 2 presents background information
about STP, its variants and the recent IEEE and IETF proposals to replace
them. The SCS protocol is described in Section 3 and Section 4 presents SCS
implementation and evaluation. Section 5 exposes SCS dependability evaluation
and finally Section 6 presents the conclusions and the ideas for future work.

2 Related Work

The objective of STP is to build a loop-free Layer 2 topology, sourced at a switch
(Root Bridge) and spanning to all other network switches. The operation is quite
simple, and STP only has to determine if the switch port should be forwarding
or blocking frames towards it in order to prevent loops. Currently, STP entails
many design and performance issues to be used in production networks.

Rapid Spanning Tree Protocol (RSTP) [2] supersedes STP mainly to optimize
convergence times and increase stability. However, Myers et al. [12] showed that
RSTP is not scalable and when critical nodes like Root Bridges fail, convergence
times are far away from the ones advertised (if the network manages to converge
at all). Generally, RSTP fast convergence in the order of milliseconds depends
on several factors, like the type of ports, failure location, network topology and
switch role. Furthermore, in some situations RSTP is permeable to race con-
ditions and exhibits the classic count-to-infinity behavior [12]. Several authors
addressed recently this issue – RSTP with Epochs [8,9], Reliable RSTP [3], Delay
RSTP [4] – but none was adopted by standards.

Multiple Spanning Trees protocol (MSTP) allows groups of VLANs to be
mapped into different spanning trees and the coexistence of multiple, indepen-
dent, spanning tree instances to run simultaneously for those groups, and keeping
the same issues as RSTP.

All STP variants concentrate unicast traffic in the current spanning tree,
because the switches’ forwarding tables are originally fed with flooding traf-
fic. Thus, STP creates an unbalanced link utilization, wasting useful network
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resources (links between switches) and reducing aggregate bandwidth by forc-
ing all host-to-host paths onto one tree [15]. Complementary, hosts’ traffic gets
more vulnerable to flooding scenarios, caused by malicious or faulty applica-
tions/systems, than it would be if the network could maximize the exploitation
of different paths along a Layer 2 network.

Being somehow complex and processor intensive, IETF’s TRILL [13] radically
changes the Layer 2 switching concept, “routerializing” switches. Using the Inter-
mediate System-to-Intermediate System (IS-IS or ISIS) [7,6] link state routing
protocol, it creates large groups of links that appear to IP devices like single
links. Inheriting ISIS equal-cost multipath capability and optimal path calcula-
tions, TRILL supports load balancing and optimal path forwarding for unicast
traffic. However, for multicast and broadcast traffic it uses a configurable number
of distribution trees, which requires the problematic election and maintenance
of multi-destination trees.

802.1aq Shortest Path Bridging (SPB) is the IEEE’s proposal to replace STP,
RSTP and MSTP, and a standard since March 2012 [1]. It also uses the ISIS
to discover and advertise network topology and compute shortest path from all
switches in the SPB network [10]. SPB is very similar to TRILL on many factors.
Hence, their ISIS inheritance allows fast convergence, equal-cost load balancing
and shortest paths calculations. However, they have completely different for-
warding paradigms: TRILL acts like a Layer 3 protocol, rewriting the Layer 2
address hop-by-hop, whereas SPB behaves like a regular Layer 2 protocol, keep-
ing frames unchanged until getting to their destination. Both are complex and
processor intensive and require ISIS expertise to manage the network. Also, the
size of forwarding databases will pull up switches’ resource demands.

To overcome the issues of previous approaches, we propose SCS that is a
lightweight protocol, with low requirements in terms of administration (reduc-
ing the impact of human errors), and providing resilience, load balancing and
stability. The similarities between SCS and both TRILL and SPB are marginal.
TRILL uses only TTL mechanisms for preventing flooding traffic to loop forever;
SCS will only use TTL as a last resort mechanism for the same goal (in nor-
mal circumstances, it should not be necessary at all). Each SPB switch uses the
knowledge of the complete network topology, and computes from it many multi-
destination trees, to decide if a flooding packet is to be accepted or dropped
(Reverse Path Forwarding Check, RPFC). SCS uses much less topological in-
formation (mainly the set of reachable switches) and some delegation rules per
switch to take forwarding decisions about flooding traffic.

3 Contribution: Self-Configurable Switches

The SCS paradigm is considerably different from STP. STP aims to create a
unique, loop-free topology within the network, breaking all redundant paths. By
the contrary, SCS assumes the network as looped and works over it using as much
as equal cost paths as possible in order to maximize the redundancy provided
and the investment made. Furthermore, SCS empowers an Ethernet switch with
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Fig. 1. Overview of SCS main characteristics. The 4 SCS switches form two different
SCS domains: one with key 4, another with key 2. SCS switches handle interfaces as:
undefined (disconnected or connected to an SCS switch with a different key), host (con-
nected to anything but an SCS switch) and bridge (connected to an SCS switch with
the same key). Flooding packets from hosts are flooded to all hosts in each SCS switch
and unicasted encapsulated in UFPs between SCS switches. In case of redundancy, any
of the links between a pair of switches can be used for transmitting a UFP, but only
one each time.

self-configuring capabilities, mainly to deal with multicast, broadcast and unicast
traffic that must be transferred throughout all switch ports, but also to handle
topology changes that might occur in the network.

3.1 SCS Main Characteristics

This section briefly presents the main concepts, mechanisms and features that are
assumed by SCS. Some of these concepts are graphically presented in Figure 1.

(Almost-)Zero configurations: Only a non-secret, 6-bit key is required to be
configured on SCS switches – neighborship key. This key, shared by all switches
running under a common administration, identifies the ones that are allowed to
establish neighbor relationships between them, creating an SCS domain. If this
key mismatches, the SCS switches will not establish a neighborship (see Fig-
ure 1). All other processes and mechanisms inherent to SCS are self-configurable
and self-assessed by the switch itself.

Two interface types: SCS classifies the interfaces by the type of network de-
vice attached to it (see Figure1). Interfaces connecting SCS switches belonging to
the same administration domain are automatically classified as bridge interfaces.
Interfaces connecting SCS switches belonging to other administration domains
remain virtually disconnected (thus undefined), for safety reasons. Any other
type of network device that connects to an SCS switch uses host interfaces, even
legacy STP switches. This interface classification is very important to deal with
the traffic that needs to be flooded throughout the network, as SCS methods are
quite different for host and bridge interfaces, as it will be explained later.

Switches mainly remain as switches: SCS does not change the way current
switches transparently forward traffic to known destinations. However, the way
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Fig. 2. Format of an UFP (below), a particular type of SCS frame, encapsulating an
original Ethernet frame (top)

it deals with traffic to unknown destinations is radically different on bridge
interfaces; for host interfaces, switches’ behavior remains unchanged.

Regular switches act as follows regarding unicast traffic:

1. If targeting a known destination, then it is forwarded through a known port.
2. Otherwise, it is flooded throughout all ports, except the incoming one.

What SCS does differently is the way flooded traffic is forwarded, breaking up the
second rule, which relates with broadcast, multicast and unknown destination
unicast traffic. SCS changes this second rule to the two following ones:

2a. Traffic targeting an unknown destination is flooded throughout all local
host interfaces, except the incoming one.

2b. This traffic is also encapsulated in unicast flooding packets (UFPs, see
Figure 2) and unicasted towards all neighbor SCS switches (via bridge in-
terfaces). Neighbors will then continue the flooding, following rule 2a and
partially this one.

This SCS behavior removes all flooded traffic from inter-switch links, manag-
ing efficiently the traffic flooding within looped topologies: it unicasts flooding
packets towards all neighbor switches and asks some of them to forward those
packets onwards.

Flooding propagation protection: A loop in an Ethernet network, if not
properly tackled, may cause flooded traffic to be indefinitely forwarded between
switches and raise serious connectivity problems. SCS protects against such
events by using two complementary mechanisms within UFPs (see Figure 2):

1. They contain an indication about the SCS switch responsible for its creation
(unicast flooding source switch, UFS). UFS helps UFP receivers to take the
appropriate decisions about its forwarding to other switches or if the UFP
effectively looped.

2. They contain a TTL counter to limit an occasional traffic replication over a
network loop. We anticipate that such loops can occur by accident during
forwarding adaptations caused by topology changes. However, with a stable
network configuration, TTL’s are not required to prevent propagation loops.

SCS frames’ format: SCS protocol messages are encapsulated in the payload
of Ethernet frames, using a new EtherType: 0x0834 (see Figure 2).
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Optimized frame forwarding: SCS optimizes traffic flow as it favors redun-
dant paths, potentiating traffic load balancing. SCS load balancing is not a
typical routing protocol load balancing scheme, where traffic can flow via equal
cost redundant paths (some even over unequal cost). In turn, SCS allows load
balance of traffic in terms of link occupation, i.e., as SCS does not block any link,
they are all available to be used. That way, for certain destinations, some links
will be used, while for other, different links will be selected. This brings extra
advantages for network resource utilization, as traffic flow in a stable network is
deterministic, like in STP, but now through all available links on the network.
For parallel links, the load balance scheme is simplified, as the SCS switch will
replicate all entries known through a link in its forwarding table to all other
parallel links to the same neighbor, allowing traffic load balancing in a round-
robin fashion over those parallel links without the need for any link aggregation
protocol or technique.

Inverted flooding: Ethernet switches promiscuously listen the incoming traf-
fic, remember the source address of that traffic, and forward traffic based on
that learning method. If the destination is unknown, the switch floods the traffic
throughout all ports, except the incoming one, even for unicast traffic: this is
known as unknown unicast flooding. This flooding is fundamental to find the
right path to forward packets along the Ethernet network, and in principle it
should be re-executed upon a topology change. Instead, under the same circum-
stances SCS switches proactively inform the entire network of possible forwarding
path changes by advertising the MAC address of all host interfaces, allowing all
neighbor switches to quickly update their forwarding tables accordingly.

3.2 SCS Processes and Protocols

SCS Protocol comprises four distinct internal processes to control both data
and control planes. For data plane, it uses the Forwarding process and the data
plane component of the Flooding process. For control plane, SCS protocol uses
Neighborship process, Topology process and the control plane component of the
Flooding process – the flooding process has both data and control components.

Forwarding process: This process defines the way frames are forwarded within
an SCS network. As previously stated, SCS does not change the overall trans-
parent switching characteristic of a regular switch, so the switch forwards traffic
as before. The major difference over today switches’ forwarding table is the op-
timization that allows the presence of several entries to the same MAC Address,
allowing traffic load balance over parallel links towards the same neighbor.

Neighborship process: This process is a control plane mechanism and it is
the basis of the SCS Protocol. It classifies the neighborship into three states: up,
down and delayUp. In the up state, the switch processes and forwards traffic
from/to that particular neighbor. In the down state, the switch does not accept
neither forward frames from/to that neighbor. The delayUp state is just a tran-
sition state between down and up states that protects SCS networks from events
due to flapping links.
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Three mechanisms control the entire course of the Neighborship process:
Neighbor Auto-discovery Mechanism, Relationship Mechanism and Purging
Mechanism. The Neighbor Auto-discovery Mechanism is responsible for discov-
ery and establish of neighbor relationships between adjacent SCS switches, via
the exchange of SCS Hello messages. The Relationship Mechanism manages
the neighbor relationship between adjacent SCS switches, defining the state
maintenance or transition through the observation of periodic transmission of
SCS Hello messages, or the lack of it. The Purging Mechanism, for conditions
intrinsically associated with physical connectivity losses, is accountable for neigh-
bor relationship removals. All three mechanisms are also responsible for trigger-
ing events on other SCS processes, accordingly to the events/state transitions
observed.

Topology process: The Topology process is another fundamental control plane
engine. Basically, it provides an SCS switch with the knowledge of all other
SCS switches running on campus, besides its own adjacent neighbors, and the
cost to reach all them. The core function of the Topology Process relies on
the Topology Change Mechanism, which uses dedicated messages (SCS Update

packets) to exchange information between neighbor switches. SCS Update control
frames are triggered whenever a switch needs to advertise a change towards all
other switches in the network: install, clear or query a topology record or install
or remove a delegation record. The two last ones will be described in the control
plane component of the Flooding Process.

Flooding process: The Flooding process comprises both data and control plane
components. The data plane component of the Flooding Process defines the way
an SCS switch forwards traffic that needs to be flooded throughout the network,
whereas the control plane component defines the flooding control mechanism to
avoid unnecessary data replication and looped frames within the network.

The Flooding process data plane defines how to forward frames with un-
known destination address, specifically broadcast, multicast and unicast frames
for which the switch does not have an entry on its forwarding table and, conse-
quently, does not know where to forward them. SCS protocol differentiates the
flooding method by the type of the incoming port interface: host or bridge:

Host: Upon receiving a flooding frame, the switch will forward the frame
throughout all other host ports; for all bridge interfaces, which connect adja-
cent SCS neighbors, the switch must create an UFP containing the unknown
destination traffic and unicast them via the bridge interface.

Bridge: The switch is actually receiving an UFP from a neighbor. It will for-
ward the original Ethernet frame (encapsulated in the UFP) throughout all
host interfaces and unicast the UFP via the bridge interfaces for which it is
delegated. The concept of delegation will be clarified below. UFPs contain
a TTL field (just to circumscribe eventual loop occurrence) that is decre-
mented on each switch hopping.
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Fig. 3. SCS Delegation example. An UFP created by switch S5 will be transmitted to
S1, in order to reach S1, S3 and S2. S1, being a delegate of S5 for S3 and S2, sends
the UFP to S3, in order to reach S3 and S2. Finally, S3, being a delegate of S1 for S2,
sends the UFP to S2. Along this path the UFP remains unchanged, apart from a TLL
decrement.

The UFP encapsulation is performed in a way that allows switches to update
their forwarding tables with the source MAC address of the original Ethernet
frame. For unicast traffic this enables a major performance improvement, as
it reduces the occurrence of flooding caused by unknown destinations.

The Flooding process control plane defines all the procedures that allow switches
to know how to process received flooded traffic, both locally via host interfaces
and remotely via bridge interfaces. Among several loop avoidance and forwarding
mechanisms, the control plane component of the Flooding Process relies mainly
on a mechanism called SCS Delegation to deal with traffic that needs to be
flooded.

The SCS Delegation mechanism concerns with the optimized path calcula-
tion to all known destinations behind non-adjacent switches. Delegation involves
managing two tables, Flood Table and Delegation Table. For each frame flooded
throughout the network, the original switch will use its Flood Table and all
participating switches will use their own Delegation Table. Delegations can be
progressive, meaning a switch S1 may be delegate of S5 towards some destina-
tion S2, but S1 can also delegate to another switch S3 the responsibility to reach
S2. Figure 3 illustrates this delegation example.

3.3 Reconfiguration Actions

Network reconfigurations take place when a link is added or removed. In the next
paragraphs we will briefly describe what happens when a single link between a
pair of switches is added or removed.

When a new link is added, a new neighborship is created and the Neighbor-
ship table1 of both switches is updated. Next, the Topology Change mechanism
takes place where each switch imports the Topology Table of the new neighbor,

1 This table is a special part of the Topology Table, containing only entries with metric
1 and link status information.
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updates its Topology Table and flags those changes to the other directly at-
tached neighbors. As a new topology exists, all other switches will compare the
new paths with their own information and if any change is necessary they will
update their Topology Tables and inform their own other neighbors, about that
change. Also, if needed, their Flood Tables are also updated. In case where a
Flood Table is updated, those changes are flagged to the corresponding neighbors
in order for them to update their Delegation Tables accordingly.

This recursive, multi-branch update process terminates gradually when each
switch receives a useless topology update, which is discarded. Hopefully, the
network was reconfigured to a topology that provides the shortest path between
switches (but not necessarily the most efficient one, because the load of the
paths’ links is not considered).

In the case of a link removal, a neighborship is removed. Therefore, each
directly involved switch updates its Neighborship Table and starts the Topology
Change mechanism: update the Topology Table (remove all direct or indirect
entries using the interface of the removed link, inform neighbors about those
changes, change Flood Tables, if needed, and, if so, flag their neighbors to change
their Delegation Tables. In the event of the link removal causing a switch Sx to
lose a path towards a particular switch Sy, Sx will query their directly attached
neighbors for a path to that particular Sy switch.

Recursively, the other switches, upon receiving topology updates and path
queries, will start their own Topology Change mechanisms to update their tables
with the most recent information received and then answer back with their best
path to the queried destinations. At the end, the network was reconfigured to a
topology that, once again, provides the shortest path between the switches.

3.4 Reconfiguration Example

In this section we will illustrate a network self-reconfiguration with an example.
In this example we will consider a set of 4 switches where a link between two
of them (S2 and S4) is created or destroyed (see Figure 4). As the network
is symmetrical, what happens in S2 and S1 will happen as well in S3 and S4,
respectively. Therefore, we will resume our explanation mainly to what happens
in S1 and S2.

When the link is established, S2 receives the list of peers known by S4 and
the metric towards them. Then, it updates its entry for S4 (Intf24, metric 1) and
add a new path to S3 (via S4, metric 2). These updates are transmitted to the
other neighbors (S1).

S1 already has a path with metric 2 to S4, via S3, therefore it adds a redundant
entry to S4 via S2 (or Intf12). However, S1 already uses S3 as its delegate to reach
S4, therefore it will not elect S2 as its delegate to reach S4 as well (otherwise,
we would have more than one flooding message reaching S4, when starting in
S1). Regarding the path to S3 via S2, S1 ignores it since it has a better path.
Its redundant path to S4 via S2 is forwarded to all neighbors (S3), but S3 will
ignore it for the same reason (already has a better path to S4). At this point,
all updates in Topology Tables initiated by S2 have terminated.
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Topology Table Flood Table Delegation Table
Peer Intf Metric Delegate to Intf Src Flood to

S2 12 1 12 S2 S3
S1 S3 13 1 12 S2 S4

S4 13 2 S3 13 S3 S2
S1 21 1

S2 S3 21 2 S1
S4 21 3 S1
S1 31 1 31 S1 S4

S3 S2 31 2 S1 34 S4 S1
S4 34 1 34 S4 S2

S2 12 1 12 S2 S3
S1 S3 13 1

S4 13 2 S3 13 S3 S2
S4 12 2
S1 21 1

S2 S3 21 2 S1
S4 24 1
S3 24 2
S1 31 1 31 S1 S4

S3 S2 31 2 S1 34 S4 S1
S4 34 1
S2 34 2

Fig. 4. Reconfiguration of switches’ tables (Topology, Flood and Delegation) when a
link between S2 and S4 is added or removed. Entries that do not appear or are different
in both scenarios are highlighted. For simplicity sake, the tables of S4 where omitted.

S2 also knows that it was using S1 as a delegate to forward flooding traffic to
S3 and S4, but the later is no longer needed, because now it is neighbor of S4.
Therefore, it removes the delegation to S4 from S1, keeping only the delegation
for S3. This delegation is maintained, because the path from S2 to S3 via S4 is
not shorter than the existing one (via S1).

When the link between S2 and S4 is removed, S2 removes from its topology
entry all entries regarding interface Intf24. Consequently, it loses indirect con-
nectivity with S4, keeping indirect connectivity with S3 through S1. S2 informs
S1 about these changes (deleted path to S4, with metric 1, and path to S3, with
metric 2). Finally, as S2 loses a path towards S4, it also asks its neighbors (S1)
for a path to S4.

Regarding S2’s topology update, S1 ignores updates regarding S3 (it has a
better path) and uses the updates about S4 to remove its path to S4 through
Inft12. It also queries its Flood Table and sees that no change is needed (none
in this case, as its uses S3, and not S2, to flood traffic to S4). Finally, it forwards
its topology update (removed path to S4 with metric 2) to all neighbors (S3).
Since S3 has a direct link to S4, the update is discarded.

When S1 receives S2’s request for a path to S4, it replies its best path towards
S4 (via S3, metric 2). S2 updates its Topology and Flood Tables accordingly
(Intf 21, metric 3, flooding via S1), and signals S1 that for now on it will be
S2’s delegate to flood towards S4. Accordingly, S1 creates a new entry in its
Delegation Table in order to allow traffic sourced in S2 to reach S4.

This example shows that SCS does not have to keep, on each switch, the
full network topology, as TRILL and SPB do (provided by ISIS). Furthermore,
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in SCS we don’t need to compute multi-destination distribution trees on each
switch (TRILL computes at least one global tree, SPB computes one per each
possible source switch for detecting loops with RPFC, see Section 2).

4 Implementation and Evaluation

The SCS feasibility to succeed STP variants was assessed using SCS simulated
on NS-32 and the STP in real laboratory setups, for the same topologies. This
section presents a brief explanation on how SCS was adapted to be simulated
on NS-3 and some results of the assessment tests.

4.1 SCS Implementation in NS-3

SCS code was adapted to be simulated over NS-3 (version 3.13), in order to
test the SCS algorithm and evaluate its potential and performance over different
network topologies. Overall, NS-3 simulation models for wired networks are quite
realistic; therefore, it is our conviction that it was a good choice to assess and
evaluate SCS.

The SCS switch abstraction in NS-3 was accomplished by attaching the ex-
isting BridgeNetDevice to a redesigned Node enhanced with the SCS protocol,
which works at both control and data plane. All the SCS intelligence, methods,
tables, headers, frames and algorithms were developed from scratch within the
Node class.

4.2 Assessment Tests

We focused our assessment tests in scenarios that are known to create problems
to the original STP, or the successor RSTP or even to the improved MSTP. SCS
handled all those scenarios without any problem, presenting a superior response
in all of them [11]. To assess macroscopically SCS activities we simulated a host
continuous initiating, with a 1 second pace, a request/reply dialog with another
host, and we provoked some change in the topology between them that caused a
network reconfiguration. Here is a summary of part of the results assessed3, for
a total of 8 network scenarios with no more than 15 switches each:

– Networks with a large4 diameter, conservative STP timers. The observed
STP convergence time varied between 30 to 50 seconds, while with SCS it
varied between 0 to 3 seconds.

– Convergence black holes. Single link failure and restore, in STP, created black
holes (total absence of communications) for 30 seconds. SCS was mainly
unaffected, taken 3 seconds to converge in the worst-case scenario.

2 http://www.nsnam.org
3 Other results, such as the immunity to STP issues when an SCS network is used by
STP networks on its edge, where omitted for simplicity sake.

4 Close to the maximum recommended diameter of 7 for STP.

http://www.nsnam.org
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– Count-to-infinity. With RSTP or MSTP, stale Bridge Protocol Data Units
for a faulty Root Bridge might persist in the network. SCS converged without
problems.

– Topological limitations. STP variants are not suitable for all network topolo-
gies. In ring topologies, for example, RSTP is unable to converge in a timely
manner, if it converges at all. The assessed SCS convergence is significantly
better, always within the range 0-3 seconds.

– Unknown unicast flooding storms. All STP variants are vulnerable to this
phenomenon when the topology changes and forwarding tables need to be
flushed and rebuild. SCS avoids this problem by keeping forwarding tables
and rebuilt them quickly with the inverted flooding process.

– Least cost path. All STP variants create a single forwarding path (the span-
ning tree), concentrating traffic on that single path. Therefore, they trans-
form a well-designed, high-performance and redundant network into a single
communication path between all network switches, reducing all investment
in bandwidth and redundancy to simple dormant links. SCS, in turn, leaves
an highly redundant network as is, uses all available links and always creates
optimal paths (in terms of number of hops), thus leveraging all the network’s
available bandwidth and redundant paths.

Wrapping up, in the tests conducted SCS outperformed STP variants in all
aspects: minimum and non-critical human configuration (SCS keys); topology
independence; fast and deterministic convergence upon network changes; optimal
paths; and link load balance. From all these factors, we can conclude that SCS is
better suited than STP variants to provide a more dependable Layer 2 network.

Finally, it is worth mention that we did not tested SCS against TRILL and
SPB because we did not had any equipment with these protocols for running
the same tests we did with STP variants.

5 Dependability Evaluation

In this section we will informally demonstrate that SCS has several properties
in terms of dependability, which make it a good replacement for STP variants.

Claim: The reconfiguration of network paths, upon adding or removing links
between SCS switches, evolves seamlessly.
Demonstration: In both cases, link addition or removal, the network gets
gradually reconfigured, without the need to reconfigure all the entries in all
the tables. The reconfiguration is a sort of “update wave” that starts in the
switches that detected the network change, and goes from switch to switch,
recursively following the links of their neighbors, until reaching switches where
nothing changes, and where a particular update branch terminates. At the end,
the entire network is aware about the presence of a new switch or aware of the
absence of an existing switch, or even about novel paths to reach a particular
switch.
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This initial update wave is followed by a distributed multitude of smaller scale
update waves: the updates of Delegation Tables in neighbor switches. These do
not propagate to other switches and in many situations may not happen at all.

In both update phases, no global agreement has to be reached, and the sys-
tem does not need to stop in the meanwhile. The reconfiguration takes place
seamlessly: when a link is added, the service is always assured and improved as
the update goes; when a link is removed, some traffic may follow for a while a
path to nowhere, but the network will eventually fix that situation in a short
period of time.

Claim: SCS network reconfigurations converge to optimal states.
Demonstration: Whenever there is a network topological change, SCS
switches propagate it to adapt the tables they use to unicast and flooding traffic.
Such adaptation happens only in one case: the information received is useful to
provide a better service than before. If this is true, the adaptation happens and
is propagated to neighbors; otherwise, it terminates. Therefore, assuming that
network topological modifications do not happen continuously, network reconfig-
urations converge to an optimal state, in terms of minimum cost to flood traffic
from each switch to all the other ones.

Claim: Network loops are expected.
Demonstration: Being a loop preventive protocol, STP targets a loop-free
network topology. So if STP fails to prevent a loop, how will the loop be open?
The answer is: it will not. There are several enhancements to STP to do so,
but most require human configuration. That way, not only STP networks are
permeable to the occurrence of loops but also to human errors.

SCS, in turn, expects loops and consequently copes with them. SCS both
prevents and detects looping frames, not topological loops. It prevents looping
frames by controlling the flooded traffic via UFP encapsulations and delegations
and by detecting abnormal situations using many built-in mechanisms; as a last
resort, delegated traffic carry a TTL field. This topic will be addressed in the
next claim.

Claim: SCS does not loop traffic forever.
Demonstration: Inside an SCS network of switches, all flooding traffic travels
encapsulated within UFPs. Therefore, we need to prove that an UFP cannot
loop forever.

If the network loops an UFP, this means that an UFP will arrive to a switch
that has previously handled it (déjà vu). If this is the originating switch (its
MAC equals the UFS field of the UFP), then the UFP is discarded for breaking
a potential loop. If it is not the originating switch, then two scenarios can be
considered:

– The UFP is not arriving from the interface where the traffic from its UFS is
supposed to arrive from. For instance, in the example of Figure 4, an UFP
from S3 arrives at S1 from Intf12. In this case the packet is discarded for
breaking a potential loop.
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– The UFP arrives from the expected interface. Reasoning recursively, this is
a strange situation that can only happen if that interface changed from the
first time the packet has passed in the switch to this last one, possibly due to
updates in the local Delegation Table. In this case, we cannot know if such
update in fact happened, and therefore we forward the UFP as ordinarily,
using the forwarding rules for its UFS. However, the UFP will not loop
forever due to its TTL, which is decremented on each hop.

Concluding, we are able to detect and discard most UFPs that could create
loops, and even in rare scenarios involving critical races between the update of
Delegation Tables and the actual forwarding of UFPs, loops are prevented using
UFPs TTL.

Claim: SCS networks are more protected against targeted menaces and much
more resilient over external events.
Demonstration: STP variants misuse network resources as a single distribu-
tion tree is calculated. That tree is easily identified and it is sourced on the
STP Root Bridge. If the Root Bridge – or some of its links – is lost, the overall
network stability is threatened due to the need of recalculating the entire tree.
Moreover, the network availability is completely dependent on the location of
switches in the tree, in case of inter-switch link failures.

SCS switches do not participate in any kind of Root Bridge election, neither
build hierarchical topologies based on some switch being superior over others.
SCS switches create neighborship relations with directly attached switches, one
for each link between them, being then responsible for advertising to its neighbors
all the paths it knows towards all other SCS switches in the network (that it
knows about). With that information exchanged, they construct their own view
of the network, creating a simple, local topology database.

In a well redundant network running SCS, link failures present low risk to
the overall network service availability, as the probability of that link failure
presenting a major topology change is extremely reduced. Moreover, switch fail-
ures have predictable effects on the network: they only affect the communication
paths actually exploring the failing switches, unlike STP variants.

Claim: Unknown unicast storms are constrained and network convergence is
enhanced.
Demonstration: Unknown unicast flooding is an issue in STP networks, espe-
cially during topology changes. If an attacker manages to induce an STP network
to be in topology change state, unicast traffic would start to be flooded and could
be unduly sniffed. Conversely, under the same circumstances, SCS switches use
the Inverted Flooding feature to proactively inform the entire network of pos-
sible forwarding path changes by advertising its attached host MAC addresses,
allowing all neighbor switches to quickly update their forwarding tables accord-
ingly. This way, network flooding is reduced significantly and overall network
convergence is incredibly much faster.
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6 Conclusions

The SCS protocol has a single objective: replace STP variants and, consequently,
enhance the overall network dependability. SCS is well suited for this purpose,
as it provides self-configuring capabilities, optimized forwarding paths for uni-
cast and multi-destination traffic, high performance and traffic load sharing over
redundant paths. During the SCS assessment tests, many experiments and sim-
ulations were performed to attest SCS behavior against STP, RSTP and MSTP,
revisiting the problems those protocols face and observing how SCS overcomes all
of them, one-by-one, providing at the same time all the aforementioned charac-
teristics and proving its suitability to replace all STP variants. To better under-
stand its limitations and challenges on real world networks, a physical prototype
using OpenFlow5 is currently under development.

As future work, and to further expand SCS functionality, there are four spe-
cific areas that could be explored: alternative routing metrics, traffic segregation,
multicast and security. Currently SCS uses only a single metric for choosing
broadcast traffic paths: the number of hops to target switches. In the future
we want to improve its metrics in order to accommodate other factors, such as
latency and bandwidth. Regarding traffic segregation, SCS might allow traffic
distribution over redundant topologies creating multiple SCS domains, redun-
dant of each other. VLAN topologies could be mapped into those SCS domains
to create broadcast domain isolation and redundant topologies. Multicast traffic
forwarding should be taken into consideration, in order to filter multicast traffic
to only those switches and hosts which requested it. Security should be always
taken into consideration and, currently, SCS does not target secure communica-
tions neither switches’ protection.
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Abstract. The explosion of social networks is pervading every form of
business. When used inside corporate networks, they can create potential
vulnerabilities as employees at the lower levels in the organization chart
may become influential thanks to social connections. This unexpected in-
fluence could be dangerous if the employee behaves maliciously reducing
thus the trustworthiness of the overall organization. The paper is a first
attempt in understanding this phenomenon by proposing a model for cor-
porate networks that is able to measure the influence of each employee
on the overall organizational chart, that is, to which extent an employee
is able to spread (mis)information through the corporate network. The
evaluation is done considering the Enron case.

Keywords: Corporate Social Network, Influential Entities, Trustwor-
thiness, Misinformation Spreading, Complex Systems.

1 Introduction

Increasing the dependability and the security of a system has been one of the
main challenges in the last three decades for a large community of researchers
[1]; verification, testing, software injection have been some of the means used to
achieve such an increment. Along the years, the meaning of system has radically
changed. We passed from single to networked computing systems, from Super-
visory Control And Data Acquisition systems (SCADA) to cloud systems etc.
In some of such systems humans are part of it. For example a SCADA operator
is responsible for applying pre-agreed rules and operations in response to some
event appeared on a SCADA console. The paper considers a system being a
group of employees belonging to the same company and structured according to
an organization chart. Employees do not follow any specified rules when receiv-
ing information and they exchange information following two patterns: (i) formal
communication going from a chief to his/her staff and (ii) informal communi-
cation moving among people without any role distinction (for example during
a coffee-break). The latter form of communication has exploded in the recent
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years thanks to the diffusion of online social networks (starting from e-mails
to the more recent Facebook, LinkedIn etc.). Their role is gaining even more
importance as they may be used as tools for improving the efficiency of a large
company, e.g., to find employees with required expertise for executing a certain
task [2].

The paper presents a first attempt to model corporate networks encompassing
hierarchical and social network relationships. Thanks to this model, we were able
to identify unexpected influential employees and measure their effectiveness, i.e.,
their ability to reach (directly or indirectly) through their connections most of
the people in the company even though, according to their ranking in the chart,
they are not assumed to influence such large group of people. These persons are
potential vulnerabilities for the company as they could be exploited as vectors
(voluntary or not) by competitors for intelligence operations (with possible in-
formation leakage) and for misinformation campaigns [3]. All these facts turn
out into a decrease of trustworthiness of the overall corporate network. Thus,
understanding such vulnerabilities can improve the dependability of the overall
organization seen as a single integrated system.

The paper then focuses on (mis)information spreading by identifying, based
on a real data set from Enron scandal [4], which are such unexpected influential
employees. We present results for two different instances of corporate networks:
the first allows only top-down communications on the organization chart, the
second one considers that a unit head can be influenced with some probability
by its staff.

The rest of the paper is structured as follows: Section 2 presents the related
work, Section 3 introduces a social corporate networking model. Then results on
the (mis)information spreading are discussed in Section 4 and Section 5 concludes
the paper.

2 Related Work

In the context of information propagation in social networks, two distinct is-
sues have recently gained particular attention: influence propagation (and con-
sequently influence maximization) and misinformation spreading containment.

Informally, the influence maximization problem can be defined as the problem
of finding the set of the most “influential” individuals that, if selected to be the
early adopters of an information, can maximize the number of users in the social
network that will adopt the same information later on. The influence propagation
problem has been studied for the first time by Domingos and Richardson in
[5]. The authors formalized the problem as an optimization problem and they
applied probabilistic data mining techniques to analyze the diffusion processes
in the context of viral marketing.

Kempe et al. in [6] provided a different formalization in the form of a dis-
crete algorithmic optimization problem, in which they add a constraint on the
amount of resources that can be used to spread the information. In particular,
they provide two models, namely Independent Cascade Model (ICM) and Lin-
ear Threshold Model (LTM), for the spreading of influence and proved that the
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k-budgeted version of the influence maximization problem is NP-Hard but ad-
mits an approximation algorithm for both models. Bharathi et al. [7] extended
ICM to address the possibility of concurrent competing campaigns (spreading
good and bad information) and they modeled the problem as a two-player game.
Budak et al. in [3] considered the strategy of using a good information dissemi-
nation campaign to fight against the propagation of misinformation started from
a single adversary by individuating the Eventual Influence Limitation problem.
They described two variants of ICM, proved it is NP-hard and provided a greedy
algorithm suffering, of scalability problems for large networks. To address such
point, several heuristics have been defined; examples are degree centrality [6,3],
Page Rank [8] and degree discount [9]. The probabilistic diffusion of information
could resemble the topic of information dissemination by means of gossip-based
protocols in large scale systems [10], [11] gossiping algorithms are designed in
settings where processors follow a protocol in order to maximize the diffusion
of information minimizing the worst case performance in terms of messages ex-
changed or communication rounds.

3 Corporate Networks

We first introduce the model of corporate networks and recall the one of on-
line social networks [3]. For each model, we describe the relationship graph and
the corresponding diffusion model (i.e. node behavior). Then we merge them to
create the corporate social network model.
Corporate Network model. Hierarchical relationships among entities in a
company can be represented by a directed weighted graph H(V,Eh, wh) where
V represents the set of employees, each edge (u, v) ∈ Eh is a directed link from
the node u to v and it may represent the relation ”u is chief of v” or ”v is
member of u’s staff”. Concerning the weight of edges, the following rules hold:

– wh(u, v) = 1 for any edge (u, v) ∈ Eh representing the relation ”u is chief
of v”. This means that a node that receives an information from a superior
will surely assume that information.

– wh(u, v) = P < 1 for any edge (u, v) ∈ Eh representing the relation ”v is
member of u’s staff”. This means that v that receives an information from
u will assume that information with probability P .

As information diffusion mechanism we adopt the Independent Cascade Model
(ICM). According to this model, each entity can be in active or inactive state.
Initially a set A0 ⊆ V of vertices is active. The process unfolds in discrete
steps during which every active vertex tries to activate every inactive neighbour.
When a vertex u is firstly activated, it is given a single chance to activate each
currently inactive neighbor v and it succeeds according to a given probability
pu,v independently of the previous history. In case of success, v will become
active in step t+1; in any case, u cannot make any further attempts to activate
v in subsequent rounds. The process runs until no more activations are possible.
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When considering ICM applied to a corporate network graph, the edge weights
correspond to the activation probabilities.

On-line Social Network Model. As in [3], we represent an On-line social Net-
work (OSN) as an edge-weighted directed graph S = (V,Es, ws) where the set
of vertices is represented by the set of employees belonging to the social network
and the set of edges is represented by the social relationships among employees
(i.e. given two vertices u and v ∈ V representing users in the social network,
there exists an edge (u, v) ∈ Es, going from u to v, if and only if user u has a
social relation with v). For each edge (u, v) ∈ Es, the weight ws(u, v) represents
the influence that u has on v. Also in this case, the diffusion model considered
is ICM.
In the specific case of companies, social networks can be represented by corpo-
rate social network tools, internal messaging systems (e.g. e-mails, internal chat
service) etc...

Corporate Social Network Model. Merging the two previous graphs for the
same organization, we obtain the corporate social network graph, i.e., HS =
(V,Ehs, whs) where V is the set of employees and there exists an edge between
two nodes u and v in Ehs only if there is that edge either in Eh or in Es.
Concerning weights, we associate to each edge the weight it had originally either
in Eh or in Es. If ad edge uv was present in both graphs H and S, then we
associate with uv the minimum between the sum of the original weights and 1.
Nodes follow ICM to spread information.
Figure 1 depicts the union of two graphs H and S.

v

w

Eh

Es

wh(v,w)=1

wh(w,v) ≤ 1
Employee

Fig. 1. Corporate social network graph highlighting the two graphs H and S

4 Identifying Influential Nodes

4.1 The Problem

In the context of corporate networks, employees with high impact in terms of
information spreading over the company become of primary importance for an
attacker (e.g., a competitor) because the latter may exploit such points of the
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network to spread misinformation, malware, viruses or execute intelligence op-
erations. Among those, there may exist a subset of entities particularly weak, in
the sense that they may be bribed to inject bad information in the network (e.g.
low-level employees).

As a consequence, it becomes extremely important for the administrators to
identify such entities in order to monitor and avoid such kind of attack. We will
formalize the f -influencial Nodes Identification problem as follows:
Given a direct weighted graph G = (V,E,w) representing a network, identify the
subset of nodes that, if injected with misinformation, will influence at least a
fraction f of V .

4.2 Evaluation

For the evaluation of the f -influencial Nodes Identification problem, we consider
the case of Enron corporation. Enron bankrupted in 2001 and thus the Federal
Energy Regulatory Commission, during its investigation on the frauds occurred
before the Enron crash, made available part of the email exchanges among 151
Enron employees containing 252,759 messages distributed in around 3000 user
defined folders [4]. Thus from this dataset we derived the S graph with the rules
described in Section 3.2 where the weight associated with the edge between two
nodes u and v is determined by the number of e-mails sent by u to v normalized
to represent the influence probability of u over v.

As far as the organizational chart of the Enron is concerned, no public full
chart was ever disclosed, however we found two documents [12] and [13] that we
used to reconstruct part of the original chart: one document contains a list of
Enron employees with the positions covered inside the organization, the other
contains a partial chart of the leading positions for the year 2000.

Based on this information, we derived an organizational chart for the Enron
employees by building up a direct balanced tree resulting of height 8 and labeled
trough a breadth-first-visit where approximately 60% of the nodes are leaves
(from label 68 to 151).

From the chart and applying the rules stated in Section 3.1, we derived the
H graph. Finally, we obtained the HS graph using the rules of Section 3.3.

In order to discover the f -influential weak nodes we study the spread of in-
formation with 10000 Monte Carlo simulations from any single node in three
different settings and the corresponding graphs H , S and HS. The same exper-
iment is repeated by considering two different values of P : P = 0 and P = 0.5.
Let us recall that P is the probability associated to edges (u, v) representing the
”u is member of v’s staff” relationship. P is the same for any of such edges to
model the following cases:

– P = 0 corresponds to an organizational instance where supervisors don’t
listen at people in their staff.

– P = 0.5 models the situation in which a supervisor can either decide to
accept or not an information coming from a person from his/her staff. The
value of f in the experiments is set to 0.5 in order to discover which are the
nodes that are able to contact the majority of the nodes.
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(a) 0.45-influential Nodes evaluation for P = 0
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Fig. 2. Number of nodes reached by each one of the 151 Enron employees (nodes
ordered by rank) considering the influence given by the organizational chart (H); by
the social network graph (S) and by the corporate social network graph (HS)

Figure 2(a) and Figure 2(b) show the results of the experiments. On the x
axis we represent the employee positions in the organizational hierarchy in a non
increasing order (on the left side there are the CEOs while, on the right, from id
68 on there are employees at the lowest-level of the tree); the y axis shows the
amount of the spreading cascade achieved by the corresponding individual.

In both figures the results relative to the graph derived by the organization
chart (H graph) show trivially that nodes that are located at the upper levels
of the tree are the most influential, this influence tends to zero when the leaves
of the tree are reached. The difference between results presented in Figure 2(a)
and Figure 2(b) on H graphs depends on P . In Figure 2(b) each node in the
organizational chart is able to influence its parent in the tree, thus allowing an
overall greater influence.

In the social network graph (S graph) no sensible spreading cascades were
observed, both because the probabilities over the edges are able to prevent the
information from following long paths and because the average weighted out-
degree of the nodes in the social network is relatively low.

What has been surprising from the study is that when considering the cor-
porate social network graph (HS graph) shown in Figure 3, there are a number of
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Fig. 3. The Enron HS graph. Black edges represent hierarchical relationships while
gray edges represent social relationships.

unexpected nodes that are able to carry out an effective spread of information
similar to the ones done by the nodes placed in the very upper layers of the
organizational tree. This is due to the fact that such nodes exploit their (direct
and transitive) social connections to inject information at higher levels of the
hierarchy. As an example, Figure 2(a) reveals that node 57 and node 85 (red
nodes in Figure 3) reach f = 0.8 i.e., the 80% of the total number of nodes and
5 employees cover more than half of nodes (i.e., f ≥ 0.5). All these nodes belong
to low levels of the organizational tree. Qualitatively, Figure 2(b) follows the
same behavior, but the information spreading of each node is amplified thanks
to the fact that P > 0 in the organization graph.

5 Concluding Remarks and Future Work

This paper considers the impact of the existence of social network-based commu-
nications inside a company and how they may impact the influence of employees.

In this paper, we introduced a model for corporate social networks that com-
bines hierarchical and social connections. On this model we analyzed the practi-
cal problem of assessing the influence of each employee, by running some exper-
iments working on the Enron dataset. From our preliminary analysis, we found
that there exist several employees, at different points of the organization chart,
that are able to reach a large percentage of people by exploiting both their so-
cial and hierarchal links. Such employees may represent a potential threat for
the company as they could be exploited by a competitor to leak confidential
information, to inject misinformation or to vector a virus. Thus the task of iden-
tifying and monitoring such “weak points” can be used by a chief security officer
of the corporate network to increase the trustworthiness and the robustness of
the organization with respect to insider threats.



172 R. Baldoni et al.

As future works, we plan to address other relevant problems in the context
of corporate networks. In particular, an interesting problem is to find clusters
of employees in the corporate network (obtained by considering both the social
and the hierarchical graphs), that are instead hidden when considering only the
organization chart. Such clusters represent connections among employees that
are not working together and may represent a vulnerability from the informa-
tion confidentiality point of view; information may in fact be spread, trough the
social links, to parts of the network that are not the supposed recipients.

Acknowledgements. This work has been partially supported by the Italian
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the Project of National Research Interest (PRIN) TENACE: Protecting National
Critical Infrastructures from Cyber Threats.
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Abstract. Programs increasingly rely on the use of complex component
libraries, such as in-memory databases. As any other software, these li-
braries have bugs that may lead to the application failure. In this work we
revisit the idea of software component replication for masking software
bugs in the context of multi-core systems. We propose a new abstraction:
a Macro-Component. A Macro-Component is a software component that
includes several internal replicas with diverse implementations to detect
and mask bugs. By relying on modern multicores processing capacity it is
possible to execute the same operation in multiple replicas concurrently,
thus incurring in minimal overhead. Also, by exploring the multiple ex-
istent implementations of well-known interfaces, it is possible to use the
idea without incurring in additional development cost.

1 Introduction

Despite the large number of techniques developed for detecting and correcting
software bugs during development and testing phases, software bugs remain a
major problem in production releases [13,4]. Software updates or patches, de-
signed to correct existing bugs often end up introducing new bugs - studies show
that up to 70% of patches are buggy [22].

Multicore processors have made a push for increased concurrency in applica-
tions, leading to an increase of concurrency related bugs. This problem is being
actively investigated, with a large number of works addressing the subject in the
last few years [19,14,10,16,4,23].

The increasing complexity of software has led programmers to build their
applications relying on the (re)use of third party off-the-shelf libraries and com-
ponents, such as in-memory databases and XML parsers. If some of these com-
ponents undergo systematic quality control procedures, others are provided by
communities that cannot afford such procedures. If in the former case compo-
nents already include bugs [8], we can expect the situation to be far worse in the
latter case. Thus, these components become an important source of bugs for ap-
plications. The situation is magnified by the fact that application programmers
have little or no control over these components.
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For dealing with faults caused by software bugs, several fault tolerance tech-
niques have been proposed [17]. Some of these techniques improve software qual-
ity by relying on replication and redundancy techniques, normally combined with
design diversity. The drawbacks of these approaches are an increase in develop-
ment time and costs, since diverse solutions need to be designed, implemented
and tested, and a compromise in application performance, due to result and
state validation.

In this work we revisit the idea of software component replication for de-
tecting and masking bugs, by proposing the Macro-Component abstraction. A
Macro-Component is a software component that includes internally several di-
verse component replicas that implement the same interface. Assuming that
different component replicas exhibit different bugs [3,6,7], by executing each op-
eration in all replicas and comparing the obtained results, it is possible for a
Macro-Component to detect and mask software bugs.

By exploring the power of multicore processors, the same operation can be
concurrently executed in multiple replicas with minimal overhead. By explor-
ing the multiple available implementations for the same standard interfaces, it
is possible to create Macro-Components without incurring in additional devel-
opment time or cost. This allows to put in practice the old idea of N-Version
Programming [3] at the component level.

Although the idea seems simple, putting it to work involves a number of tech-
nical challenges that we explore in the remaining of this paper. In particular,
we show how to minimize computational overhead by executing operations in
as few replicas as possible and by minimizing the required number of coordina-
tion points among replicas. Our preliminary results suggest that this approach
is promising, exhibiting acceptable performance. The results also show an im-
portant result for the practicality of the solution: the amount of memory used
is not directly proportional to the number of replicas. The reason for this is
that a large number of objects can be shared among the replicas - e.g. strings in
database fields.

The remainder of this paper is organized as follows. The next section dis-
cusses related work. Section 3 introduces theMacro-Component model. Section 4
presents our current prototype, the implementation of Macro-Components for
in-memory databases and presents some preliminary evaluation. Section 5 con-
cludes the paper with some final remarks.

2 Related Work

Macro-Components share an identical model with n-Version Programming (NVP)
[3,1]. Contrarily to the original NVP, Macro-Components work at the component
granularity [18], taking advantage of third party components to minimize the
impact in development time and costs. Additionally, unlike previous works, our
design addresses modern multicore processors, which seem an suitable architec-
ture to make software component replication work with minimum performance
impact.
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Fig. 1. Macro-Component

Replication has been a highly researched topic in distributed systems [9],
with most of the proposed techniques addressing only fail stop faults. Byzantine
fault tolerance techniques [12,20,2] have been proposed for dealing with other
fault models. Some works, e.g. Eve [11], have been addressing replication in
distributed settings with multicore machines. In our design, we re-use some of
the ideas proposed in these works.

Most of the research on concurrency bugs has focused on techniques for finding
and avoiding bugs [10,13,14,4,23]. Our work share some of the goals with these
works, but differs from most of these approaches by relying on diverse replication.

Gashi et al. [6,7] have also focused on using third party components for im-
proving fault tolerance in SQL Database Servers and Anti-Virus engines. Our
proposal differs from these works, as it provides a generic framework and runtime
support for producing fault tolerant components, based on diverse implementa-
tions of the same common interface.

3 Macro-Components

A Macro-Component is a software component implemented using a set of diverse
components (called replicas) that implement the same interface, as presented in
figure 1. Diversity allows for each replica to have its own implementation while
offering the same functionality and maintaining the same abstract state as all
other replicas. This provides the means for Macro-Components to detect buggy
behaviour of replicas, by identifying state or result divergences amongst replicas,
thus preventing these bugs from being exposed and affecting the reliability of
applications.

With this approach, an application can use a Macro-Component as it would
use any other component. The only difference is that a Macro-Component has
improved reliability. Thus, a single application may include a large number of
Macro-Components.

Next, we detail how Macro-Components can be used to address several goals.

Detecting and Masking Bugs: Macro-Components, as NVP, follows the assump-
tions that different implementations incur in different bugs, and that a divergent
result from the majority occurs due to the presence of bugs. Thus, to detect
buggy behaviour, diversity in component replicas is crucial, and detection is
achieved by comparing the results from the several replicas. Whenever a method
is invoked on a Macro-Component, the following steps (illustrated in figure 2a)
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(a) Detecting buggy replicas (b) Returns first result

(c) Background validation (d) Resuming execution

Fig. 2. Macro-Component Method Calls

occur: i) the corresponding method is invoked on all component replicas; ii) repli-
cas execute the same method concurrently; iii) wait for f +1, i.e., the majority,
equal results from component replicas; and iv) return the result from the major-
ity of replicas.

For keeping the overhead low, unlike solutions that validate both results and
object state [24,21], Macro-Components detect buggy behaviour primarily by
validating results, while object state is compared periodically in background.
Whenever inconsistent results are detected, the corresponding faulty replicas are
marked for recovery, and temporarily removed from the set of active replicas.
Also, if some replica is unable to produce a result within a certain time limit,
the replica is considered faulty and threads executing in the replica are aborted.
The time limit is defined by the time taken by the majority of the replicas to
reply plus an additional tolerance.

Detecting Concurrency Bugs: Macro-Components are not restricted, in any
way, to the use of diverse replicas. When using homogenous replicas, Macro-
Components can still be used for detecting and masking concurrency bugs.

To this end, the following approaches are possible. First, the imposed overhead
due to the Macro-Component runtime may result in different inter-leavings of
concurrent operations in different replicas. Second, it is possible to impose ran-
dom delays on the method execution in different replicas, thus leading to different
inter-leavings. Third, it is possible to execute method invocations sequentially
in some of the replicas (as in [5]).
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For minimizing the overhead, the latter two solutions can be used only when
some problem is detected by running operations in the default mode. Addition-
ally, sampling can be used when the latter two approaches are being used.

4 Implementation and Runtime

We are currently building a system for supporting applications that use Macro-
Components, in Java. In this section, we present our current prototype.

A Macro-Component is composed by three main components: the manager,
responsible for coordinating method execution on the replicas, the validator, re-
sponsible for validating the results returned by the replicas, and the replicas, the
components responsible for maintaining the state. Applications remain oblivious
to the replicated nature of Macro-Components since it offers a single copy view of
the underlying state. To this end, each replica maintains an associated version,
that registers the number of updates performed on the replica. The manager
guarantees that operations execute on replicas in the same state, i.e., with the
same version. This version is kept in shared memory, as an atomic counter.

The supporting runtime guarantees that when a method call is performed on
a Macro-Component, the equivalent method is concurrently executed in all repli-
cas. To this end, method calls are recorded as tasks and queued for execution.
These tasks represent the method to be executed, and the replica in which the
method is to be executed on. For each replica, an associated thread is responsi-
ble for dequeuing assigned tasks and execute them on that replica. Our current
prototype currently supports concurrent execution only for operations that do
not modify the state of the Macro-Component - operations that modify the state
of the Macro-Component are currently executed serially.

This decouples the execution of the callee from the method, i.e., the thread
calling the method can be different from the thread that executes it. This allows
Macro-Components to provide independent execution models, allowing methods
to execute asynchronously from the application threads.

We currently support two execution model. The first, based on non-transparent
speculation of results, provides improved performance. The second, based on a
prior verification of execution correctness, allows for transparent replacement of
components by their Macro-Components siblings.

In the speculative execution mode, a Macro-Component returns the result
from the fastest replica (figure 2b), while validating the result on background
(figure 2c). If the result is found to be incorrect, the execution must be cancelled
and re-started with the correct value (figure 2d). This approach can even im-
prove the performance over standard components, when there are no faults, by
exploring the differences in performances for the different replicas.

We currently do not support automatic transparent speculation. Thus, the
Macro-Component notifies an error on a previous call when somemethod is called
or when the application queries theMacro-Component for errors.This requires the
application to be modified to include support for such calls. In general, this is not
too complex as the verification calls can be added in the end of methods that use
Macro-Components (or before some externalization of results is done).
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In the prior-verification model, the results of a method is only returned when
a majority of the replicas has returned the same result.

4.1 Database Macro-Component

Wenowdescribe the design and implementation ofMacroDB, aMacro-Component
for in-memory database systems.MacroDB is composed by a set of database repli-
cas, each potentially supported by a different in-memory database engine. Appli-
cations remain oblivious of the replicated nature of the system since it offers them
a standard JDBC interface, and standard transaction isolation levels.

Applications do not communicate directly with the database engines, instead
they communicate with the manager, a JDBC compliant front-end which co-
ordinates client operations in the underlying replicas. The manager receives
statements from clients and forwards them, without modification, to the repli-
cas, guaranteeing their ordered execution by the runtime support system. For
statements inside a transaction, the first result is returned to the application
while it is compared in background with the results from other replicas. Addi-
tionally, (read-only) queries execute initially only on f + 1 replicas (with f the
number of replicas that can be faulty) - the queries are only executed in other
replicas if returned results differ. When the application wants to commit a trans-
action, if there has been any error detected on the previously returned results,
the commit fails. Otherwise, the commit executes is all replicas and returns to
the application after it is confirmed. This approach combines the speculative
and prior-verification execution models in a way that is transparent to database
applications.

MacroDB is still under active development, missing the code for verifying
state divergence and the wrappers to support the small differences in multiple
database engines [20]. Even though, our solution is already operational with an
homogeneous configuration, with all replicas running the same database engine.
To provide an approximate value on the overhead that our runtime incurs for pro-
viding fault-tolerance, we ran the TPC-C benchmark on the Macro-Component,
and compared the obtained results against the standalone database version. In
all cases, the HSQLDB in-memory database was used. The results, presented on
figure 3, show a small overhead for MacroDB version, averaging a 4% decrease
in performance.
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Although these are preliminary results, we expect that relying on multiple
database engines can improve this overhead, as the result from the fastest replica
will be returned in each case. On the other hand, the performance will be pe-
nalized by checking for the difference in the database state.

As an additional test, we also measured the memory overhead imposed by
replicating the database. Contrarily to what was expected, the memory overhead
is not proportional to the number of replicas, as presented in figure 4. This is
due to the fact that replicas share immutable Java objects, such as Strings.
The obtained results show that, a MacroDB configured with HSQL replicas,
uses at most 2.5 times more memory than the standalone engine, when using
a 4 replica configuration. This makes deploying MacroDB practical on single
machine multicores, even with large numbers of replicas.

5 Final Remarks

In this paper we revisited software component replication techniques, present-
ing a new abstraction for improving software fault tolerance, called Macro-
Component. Macro-Components put in practice the old idea of N-Version Pro-
gramming [3] at the component level. Existing software products can benefit
from improved fault tolerance, simply exchanging components by their Macro-
Component siblings, preventing developers from rewriting code, and preserving
development methodologies.

We have presented the design of a system that supports the use of Macro-
Components in applications. Our design focused on keeping the overhead low, by
minimizing the overhead of computational resources by executing operations in
as few replicas as possible and by minimizing the required number of coordina-
tion points among replicas. Our preliminary results suggest that this approach
is promising, exhibiting acceptable performance. The results also show an im-
portant result for the practicality of the solution: the amount of memory used
is not directly proportional to the number of replicas.

Our current prototype still misses some important features, namely result and
state comparison, and improved recovery of replicas. We are currently conducting
additional experiments to evaluate our prototype with standard benchmarks.
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Abstract. Component Based Software Engineering (CBSE) is a popular and 
widely adopted software engineering paradigm that has proven his usefulness 
and success to increase reusability and efficiency in various application 
domains. In this paper, we propose a common metamodel to support CBSE 
requirements taking into account the specificities of each domain. The resulting 
modeling framework serves primarily to capture the basic concepts of concerns 
related to component systems development based on the clear separation 
between the development process, interactions and the domain knowledge. 

1 Introduction 

Component-Based Software Engineering (CBSE) [1] has emerged as a promising key 
technology for developing and maintaining complex systems. CBSE focuses on 
building large software systems by integrating previously existing software 
components. The system is constructed by the composition and the connection of 
these components. It is a good solution to optimize time and cost of software design 
while still guaranteeing the quality of the software [2]. 

Various component models have been proposed to deal with system complexity in 
industrial and academic domains. Variety of those model's applications in constructing 
systems has proved their usefulness and success. Among these approaches, we can find 
general-purpose software component models such as Enterprise Java Beans (EJB) [3], 
CORBA Component Model (CCM) [4] which are well-established for CBSE in generic 
problem domains. On the other hand, to address a specific domain challenge, specific 
component models like KOALA [5] are proposed to deal with specialized domains like 
distributed, embedded or real time systems. 

Our first objective is to combine these two approaches – generic and specific 
component models – in order to propose a metamodel that overcome some of draw 
backs and take advantage of each approach.  In other terms, we propose a common 
representation of generic and specific component models taking into account domain 
specific concerns at the design level. 

Model-Driven Engineering (MDE) [9] is also another emerging approach in system 
development. The use of models has become a major paradigm in software 
engineering. Its use represents a significant advance in terms of level of abstraction, 
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continuity, generality, and scalability. In this paper, we deal with these two 
technologies−CBSE and MDE−to propose a model-based component framework to 
get a common representation of component for several domains. The main motivation 
of this work is that the reuse of knowledge and expertise at high level is fundamental 
to guarantee quality systems. Inspired by the MDE methodology in which software is 
developed by constructing high level models, we propose a generic component 
metamodel−to capture generic concepts of CBSE approach –and then separate 
domain independent aspects of component model from those that are domain specific. 
The remainder of this paper is organized as follow. In Section 2, we present the 
proposed approach and describe the GRIMACE metamodel.  Section 3 concludes the 
paper and presents ongoing work. 

2 The GRIMACE Approach 

The key idea presented in this work is to propose a common representation to target 
several domains of systems applications (e.g. distributed, embedded, real time, etc.). 
This representation allows to work at a higher abstraction level, which may 
significantly reduce the cost of system engineering. Our goal is to define the 
component based systems as easily and quickly as possible. To do this, the modeling 
framework must include simple abstractions known by the software developer. Our 
proposed architecture is based on models, which specify different levels of 
abstraction, helping developers to manage the inherent complexity of applications and 
facilitating the communication between the different contributors of software 
development.  

2.1 An Overview 

The approach is based on three levels of abstraction (see Fig. 1): GRIMACE 
metamodel, DICM model and DSCM model. In the following, we detail each of these 
models. 

GeneRIc MetAmodel for domain Component modElling (GRIMACE). In This level –
Metamodel level (M2) –we present a generic component metamodel that represents as 
its name suggests the abstract concepts of component based approach proposed by a 
large set of component models to describe software architectures. It provides the basic 
modeling elements for component based system: Component, Connector, Interface, 
Ports, etc. These elements are the basis for instantiating different component model.  

Domain Independent Component Model (DICM). This model is an instance of 
GRIMACE. This level is intended to generically represent component independently 
from the application domain. Hence, we will focus on the representation of generic 
component concepts, interaction and connection between component conforming to 
the component metamodel (GRIMACE). A DICM model is conform to the  
GRIMACE Meta-model. Therefore each element of DICM is associated with an 
element of  GRIMACE. 
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Abstract. Transfer to industry is typically understood by academia as
a transfer of methodologies and technologies, thus neglecting transfer
of knowledge. However, academia is very well placed to improve indus-
try competitiveness through continuous training. Coping with transfer of
knowledge is not only a matter of providing courses, but also of consid-
ering the lifelong training requirements of professionals and the profes-
sional competence framework existing in each domain of expertise. The
RISKY project takes into account the current european framework for
the transfer of competences across Europe, and the existing certifications
promoted by professional bodies, in order to develop and use methods
and tools adapted to the training of Security and Safety professionals.

Keywords: Safety, Security, Vocational Education and Training, Com-
petences Assessment.

1 Introduction

Although the IEEE-CS and the ACM [1] curriculum guidelines are between those
more widely followed in universities, they present important lacks on training
related to Safety and Security. The industry demands professionals with prac-
tical skills in these important domains of expertise. This is mainly why related
vocational training typically relies on the use of use cases providing return of
experience to learners [2]. However, existing certifications are either very domain
specific (like those promoted by CISCO [3]) or very dependent on professional
bodies and associations (like those promoted by TÜV [4] and ISACA [5]).

In order to place some order, Europe is currently promoting different initiatives,
such as the Europeane-CompetenceFramework1, the Europeane-Skills Forum2

and the Leonardo da Vinci programme3 in order to stablish a common European

1 http://www.ecompetences.eu
2 http://eskills-week.ec.europa.eu
3 http://ec.europa.eu/education/lifelong-learning-programme/ldv_en.htm

M. Vieira and J.C. Cunha (Eds.): EWDC 2013, LNCS 7869, pp. 185–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.upv.es/entidades/DISCA/indexi.html
http://www.ecompetences.eu
http://eskills-week.ec.europa.eu
http://ec.europa.eu/education/lifelong-learning-programme/ldv_en.htm


186 J. Gracia-Morán et al.

framework for competence-based training and evaluation. Although not specifi-
cally focused on security and safety, the goal of these initiatives is to ease the ex-
change of professional competences across Europe.

This work presents the RISKY approach [6], which aims at providing a work-
based learning pedagogical approach to Safety and Security. The main idea is to
work closely with professional needs and to design courses according to trainees
profile and their job requirements. This will give trainees the opportunity to
adjust their skills and competences to cover professional profile requirements.

Section 2 summarizes conventional academia approaches to Safety and Se-
curity training. Section 3 shows the framework for the European Credit for
Vocational Education and Training. Section 4 describes the RISKY approach,
and finally, Section 5 concludes this paper.

2 Conventional Training on Safety and Security

As just commented, undergraduate programs in computing usually follow the
curriculum guidelines provided by IEEE-CS and ACM [1]. However, Safety and
Security is very shallowly addressed by such training referential. Master and
PhD training tries to fix this lack. The MSc program proposed by the RESIST4

NoE is an example of this. It focuses on Resilient Computing and it structures
the curriculum in 120 ECTS5. After such training, the student can integrate the
industry or perform a PhD to integrate the industry about 3 years later. In both
cases, the main problem is that the transfer of knowledge is implicit, since it does
not exist any explicit identification of the set of competences provided by the
program. Which is thus the profile of professionals issued from such program?
What are they able to do? Which kind of tasks are they able to cope with? Re-
formulating existing training programs to provide explicitly competences (skills
and abilities) may help future employers in the selection of personnel issued from
Security and Safety programs.

3 Vocational Training in Europe from the Perspective of
Safety and Security: Situation and Challenges

The formative path of a Safety and Security professional is a continuous training
process. Different organizations promote their own qualifications, divided in a
great number of expertise levels based mainly in the number of professional years
of experience [6]. Also, each certification provides their own learning outcomes,
being very difficult to set common learning paths between certifications.

On the other hand, professional training differs from undergraduate, MSc or
PhD training in the sense that it must be further based on experience. This
is why Work-Based Learning (WBL) [2] is preferred in such kind of training

4 http://www.resist-noe.org/Publications/Deliverables/D37-Curriculum.pdf
5 http://ec.europa.eu/education/lifelong-learning-policy/ects_en.htm

http://www.resist-noe.org/Publications/Deliverables/D37-Curriculum.pdf
http://ec.europa.eu/education/lifelong-learning-policy/ects_en.htm
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context. WBL promotes not only the acquisition of knowledge, but also the de-
velopment of skills and the assimilation of attitudinal patterns. In other words, it
promotes the use of competences (understood as knowledge, skills and attitudes)
in practical work situations.

However, the definition of which are the specific competences required from
Safety and Security engineers is not an easy issue, since it must take into con-
sideration the actual, and possible future, necessities of ICT professionals. In
addition to this, such competences must be common to, and thus accepted by,
all European countries. In this sense, different initiatives, such as the European

e-Competence Framework1, the European e-Skills Forum2 and the Leonardo
da Vinci programme3, try to identify common Europe-wide competences for
professionals working in different domains.

Beyond the development of competences, one should not forget that training
professionals implies working with learners with high potential mobility, which
can devote a limited amount of time to their studies and whose prior learning
can be quite heterogeneous. As a result, units of content should be follow the
design of knowledge pills, they should remain available 24/7/365 (so they must
be online) and, for each unit, the prior leaning should be precisely identified,
and assessed as well as the expected unit learning outcomes (knowledge, skills
and attitudes).

Agreeing on such learning outcomes, and thus on the related competences, is
quite challenging. The European Credit for Vocational Education and Training
or ECVET “aims for better compatibility between the different vocational educa-
tion and training (VET) systems in place across Europe”. As it is done with the
ECTS5, qualifications are defined based on learning outcomes. Procedures and
rules are necessary for the assessment, transfer, accumulation and recognition
of the obtained credits. This feature makes ECVET a very flexible system, as
long as ECVET learning outcomes are assessed and validated for transfer credits
among different learning paths, that can be taken in different countries or differ-
ent educational contexts. This idea is currently implemented in the europass7

initiative, where the proposal is to use five documents to describe the skills and
qualifications of professionals in Europe.

4 The RISKY Approach

The RISKY project is an ECVET-compliant competence- and WBL-based train-
ing framework for Security and Safety professionals. The RISKY project em-
braces WBL approaches as leading methodologies for leveraging the competences
of learners towards credited qualifications. Fig. 1 provides a high-level standpoint
of the RISKY approach.

A particular instantiation of the RISKY approach implementation was held on
June 2012 at NOT premises (Polish Federation of Engineering Associations) in
Ostro�l ↪eka (Poland) [7]. A half day seminar was prepared to make professionals
aware of the importance of Safety and Security training in their businesses.

7 http://europass.cedefop.europa.eu/en/home

http://europass.cedefop.europa.eu/en/home
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Fig. 1. Proposed roadmap for WBL in the context of the RISKY project

20 professionals with good technical skills, but low to medium security- and very
low functional safety-awareness, coming from small and medium NOT-adhered
enterprises assisted to the event. A 30 minutes lecture was prepared revolving
the IEC 61508 standard. Such a lecture could be declined from different expertise
levels. So assessing the prior learning of the attendees was of prime importance
to correctly focus the aim and scope of the lecture. This information, provided
by NOT Ostro�l ↪eka in our case, reflected that attendees had a very low level of
expertise in the functional safety domain.

Having this in mind, and considering the aforementioned timing constraints,
a simple case study was devised to embrace the WBL approach promoted by
RISKY. This case study guided learners, by means of simple but effective ex-
amples, through the safety life cycle phases defined by the IEC 61508 standard,
unveiling the competences required by safety practitioners in each phase.

As defined in the proposed approach, learning outcomes should be assessed to
determine whether they have been achieved or not. In our case, the goal of the
lecture was just to increase the awareness of attendees towards the functional
safety domain. After the seminar, attendees were invited to join a group, which
is currently being dynamised by NOT Ostro�l ↪eka, for discussing topics related to
safety with polish small and medium enterprises.

5 Conclusions. Future Work

This paper summarizes the work attained so far by the RISKY consortium. The
goal is to approach Security and Safety professionals in order to adapt existing
WBL training methodologies to their needs, while attending to ECVET-related
constraints.

Acknowledgements. This work has been funded by the RISKY Leonardo
da Vinci project (#2011-1-FR1-LEO05-24482) from the European Commission.
This publication reflects the views only of the authors, and the Commission
cannot be held responsible for any use which may be made of the information
contained therein.
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Abstract. A flood monitoring system incorporates water sensor networks, fore-
cast simulations models, and a decision-support web-based system. The objec-
tive of the system is to achieve reliable flood protection and response. This is 
challenging because of the inherent presence of a cascade of uncertainties in the 
forecast models, and also uncertainties affecting the timeliness and quality of 
raw sensor data that is used in the forecasting processes. Achieving real-time 
and accurate data collection is difficult due to the pervasive nature of the moni-
toring networks and because sensors and sensor nodes are vulnerable to external 
disturbances affecting data accuracy. In this paper we motivate for the need of 
dependable data collection in harsh coastal and marine environments, we over-
view the main challenges that need to be addressed and we introduce some ini-
tial ideas on what needs to be done in order to deal with external disturbances 
causing faulty measurements. 

Keywords: Marine sensors, reliable measurements, dependable sensors, failure 
detection. 

1 Introduction 

Preventive strategies against natural and man-made disasters are currently being im-
proved and their effectiveness will lessen the impact of the hazards. Thus, the availa-
bility of reliable systems delivering reliable information from reliable sources is vital 
for the protection of human lives as well as material and natural assets. In flood  
managing those systems need to issue alerts or to support decisions on mitigation 
measures to be performed in areas at risk, with the help of reliable forecasts and de-
pendable real-time monitored data, such as water level, flow or precipitation level. 

The systems which integrate monitoring networks, large-scale distributed computa-
tion (using shared heterogeneous pooled resources across administrative domains) 
either for forecasting/simulations or data analysis, and a web-based system to support 
posterior on-time decisions, are addressed as pervasive management support (PMS) 
systems [1], used mainly to manage environmental threats. 

Although PMS systems are complex, the constrained time frame of a response is 
desirably short, for successful protection of people and assets. When it exceeds the 
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target response time, warnings are useless and might carry significant financial penal-
ties and loss of human lives, so both hardware and software failures are not tolerable 
at critical moments in any of the tiers. 

2 Real-Time Environment Monitoring 

Water bodies monitoring for early flood detection and enhanced response has become 
a vital infrastructure system in order to provide accurate, reliable and timely informa-
tion to assist local authorities and experts in responding flood events. The availability, 
coupled with reliability, of the near real-time monitoring information is a difficult 
requirement in effective implementations of monitoring networks. So, in the last 
years, many studies on wireless sensor networks have been performed, in order to 
cover the usually large monitoring area [2] and to fulfill the requirements. 

The quality of flood forecasting also depends on the quality of measurements, or 
on the forecasts of precipitation and other forcings. The better the estimation of the 
input of water during an event, the better is the chance of producing accurate fore-
casts. The most common problems in measuring networks are the accuracy of the 
sensor measurements, the possibility of the equipment getting damaged in environ-
ment-related events (leading to data unavailability or data corruption) and the occu-
pancy of the area to be monitored (with influence on the probability that some hazard 
will happen). Thus some calibration of the effective values of the monitored parame-
ters is generally necessary. 

Nowadays the use of real-time sensors in flood monitoring is an important non-
structural measure of flood control. One of the most used infrastructures to build the 
monitoring network of a PMS system is a wireless sensor network [2-4], where the 
monitoring system can be decomposed into a set of remote wireless communication 
systems, which log water condition data, and transfer the data to a web-based infor-
mation center to build a real-time web-based management system. These wireless 
remote sensors are scattered in the field and separated from each other by a large dis-
tance. 

3 Coastal Sensors Network Challenges 

The increasing level of heterogeneity is a relevant issue in modern distributed sys-
tems. Generic instruments or applications that were built or studied to be adaptive, 
autonomic, dependable, secure and scalable, and tested on controlled situations, now 
need to operate in increasingly-varied environments, such as a pervasive and complex 
marine environment, combined with different types of sensors measuring several 
parameters (many interconnected). 

In the design of context-aware monitoring networks, the first thought is that there 
should be a deep understanding of application requirements in order to develop soft-
ware and hardware that automatically adapts to aspects of the environment, such as 
sensor’s current location and activity, the time of day, and the presence of other fac-
tors in the vicinities [5]. 
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As mentioned above, real-time accurate monitoring of hydraulic parameters is key 
for flood forecasting. But for these hydraulic applications the sensors may have tech-
nological limitations, and so besides the regular requirements a number of additional 
ones are necessary [3]: 

• Power lifetime – the power sources are often not available at all the locations of 
interest. Moreover, these locations are usually unsafe, unprotected, and, if renewa-
ble energy devices are used, they are prone to vandalism or theft. Thus, it is imper-
ative the use of sensor nodes with low-consumption, with standard batteries that 
should last several months cycle; 

• Sensor hardware compatibility – most hydrologic sensor nodes include a data log-
ger device connected through a cable to the measurement instruments. The data 
logger must offer interfaces to communicate with a range of specific sensor hard-
ware, which involves issues of power supply, and selective time for power dis-
patching, involving a optimal power management and facilitation of the expansion 
of connected instruments; 

• Reliability – the harsh weather conditions may cause failures in the measurements 
and in the wireless communication over the monitoring network. Backup mechan-
isms in local sensor data loggers must be used to avoid information losses in unex-
pected crashes; 

• Long-range communication – hydraulic measurement locations are commonly 
sparse over large areas, and not even in the same area of the control center. 

Thus, with these requirements, it is imperative to understand the different factors that 
affect the operation of the floating or diving sensors. Each type has its own and 
unique characteristics that should be reflected on the sensor’s measurements. A care-
ful study on these factors should be conducted and a comparative analysis of the dif-
ferent characteristics should be carried out. 

4 Study Considerations and Future Approaches  

The paper introduces an on-going research for the development of a framework that 
will support the dependability on aquatic real-time forecasting systems, starting by the 
study on the influence of external factors related with coastal and marine environment 
on the sensor network behavior, more specifically on the sensors measurements, and 
their consequences on the forecasts and alert systems that will be fed with the moni-
tored data. The correct modeling of the impact of external factors such as weather 
events and conditions and marine interferences as a cause of measurement failures in 
interference-prone wireless sensor networks [6-8] is of the utmost importance to de-
fine and develop system solutions providing awareness of the delivered sensor data 
quality, aiming at achieving dependable reliable coastal and marine sensor networks. 

The first step is to identify and characterize the probable factors of disturbances, 
possibly done through a statistic analysis of the negative influence of natural envi-
ronmental events on the measurement process of the available sensors on the field. 
This statistical validation of the measurements can offer a robust and inexpensive way 
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to minimize the influence of these faults on future flood monitoring systems, provid-
ing a simple method to increase the fault tolerance aspect of those particular sensors, 
and the confidence of the data provided. 

A second step would be the development of solutions to automatically adjust the 
sensors measurements to each disturbance accordingly, contributing to an important 
increase on the quality of the measurements, thus supplying other layers of PMS sys-
tems with dependable monitoring data. 

However, on further steps, much has to be done in studying all aspects of the criti-
cality of the sensor network in the monitoring process, including the timeliness re-
quirements of the flood warning systems. Future work will include studying the real 
impact of networking faults and temporal uncertainties and devising solutions to deal 
with them, namely using approaches based on redundancy and sensor fusion. 

Acknowledgements. This study was funded by FCT through the Multiannual Fund-
ing Program and through PhD Grant (SFRH/BD/82489/2011) with the support of NTI 
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(PTDC/AAC-AMB/113469/2009), SPRES (Interreg Atlantic Area Transnational 
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Abstract. Wireless ad hoc networks are spontaneous, self-healing and
self-managing systems strongly raising in the last decade. However, their
deployment in privacy- or life-critical scenarios still requires a deeper
analysis to determine their robustness to faults/attacks and their ability
to recover from situations degrading performance and dependability. Un-
fortunately, several challenges limit the development of practical assess-
ment approaches for ad hoc networks. This paper focuses on identifying
these challenges to provide potential evaluators with a guide of the sen-
sitive points that require an especial attention to improve the credibility
of results when addressing the resilience evaluation of ad hoc networks.

1 Introduction

Wireless technology is being deployed in many different kinds of devices nowa-
days, so the number of devices that are able to exchange information through
a wireless environment is growing fast. According to [1], by the year 2020 each
person will own almost 7 devices with connection capabilities. These devices will
require the deployment of self-managing and self-adaptive networks that enable
the coexistence and interoperation of multiple heterogeneous devices in constant
evolution. Ad hoc networks perfectly suit this requirement, but before they can
be deployed in an everyday-life scenario, at home, work or leisure activities, a
deeper analysis of their performance and resilience (dependability in spite of
changes) must be done.

Many studies have been done to evaluate the performance of ad hoc network
with respect to the number of works focusing on their resilience evaluation.
Even though there are different evaluation strategies that can be found in the
literature, such as, (i) simulation based on network models; (ii) prototyping
based on real devices and network deployments; and (iii) emulation encompassing
both real and simulated aspects, few proposals consider the evaluation of ad
hoc networks in presence of threats, taking into account both performance and
resilience measures.
� This work is partially supported by the Spanish project ARENES (TIN2012-38308-
C02-01), the ANR French project AMORES (ANR-11-INSE-010), and the Intel
Doctoral Student Honour Programme 2012.
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The misbehaviour of ad hoc networks in critical scenarios such as Vehicu-
lar Ad Hoc Networks (VANETs) and Wireless Sensor Networks (WSNs), may
cause important economic or human damages. Even the reputation of Wireless
Mesh Networks (WMNs) providers may be strongly affected. Thus, resilience
evaluation in ad hoc networks should be no longer an option, but a must.

This paper points out the challenges that still remain unaddressed in the
resilience evaluation of ad hoc networks. With this purpose, the rest of this
paper addresses the challenges affecting the resilience evaluation process of this
type of networks. Thus, Section 2 presents some of the most important challenges
to be faced during the configuration of experiments, Section 3 shows those from
the experimental stage, and Section 4 identifies those regarding the analysis of
resilience evaluation results. Finally Section 5 concludes the paper.

2 Challenges of the Experiments Configuration

Including a resilience-aware point of view within traditional performance eval-
uation involves addressing the notion of resilience when determining (i) the set
of measures to characterise the system, (ii) the properties of both the system
and target under evaluation, and (iii) the necessary operational profile (compris-
ing the work-, perturbation- and change-load conditions) that will be used to
exercise the resilience of the system.

Most of previous works done around the evaluation of ad hoc networks charac-
terise the quality of the system through performance measures as throughput, de-
lay, routing overhead, packet delivery ratio or jitter exhibited by the network [2].
But surprisingly, very few proposed measures to quantify dependability-related
aspects. For instance, in [3] the route availability is measured as the percentage
of time that a route is available when it is needed. However, there is a lack of
dependability measures characterising specific ad hoc features impacting in the
resilience of routing protocols, such as the average failure recovery time (under-
stood as the time required to reconfigure the network topology in order to get a
new valid route when an existing one is lost).

Most of times, evaluators may face a problem that appears with the need
of deploying evaluation targets (discovering, routing, synchronisation and any
other communication protocol) within ad hoc networks to support their assess-
ment. The main cause of this problem is the heterogeneity of devices that may
compose an ad hoc network (motes, sensors, laptops, smartphones and so on),
and the potential different technologies (Bluetooth, Zigbee, IEEE 802.11X, etc.)
they may use. Considering this combination of technologies, and the different
kinds of ad hoc networks (WSN, WMN, VANET, etc.), defining an operational
profile that includes work-, perturbation- and change-load it is a challenging
task. The workload must be specific for each type of network, as the workload
for a WSN would not reflect the real behaviour of a WMN. The same occurs with
the perturbation-load (faults and attacks), which should reflect those perturba-
tions that affect a certain kind of ad hoc network, and the change-load [4], that
represents the set of changes that impact a system, like the particular mobility
of the nodes.
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3 Challenges of the Execution of Experiments

The execution of experiments, especially in practical evaluation platforms, pres-
ents challenges related to their design, implementation and deployment. On the
one hand, different sources of uncertainty may affect evaluation results, on the
other, addressing scalability and portability issues is essential for the practical
use of experimental platforms for ad hoc networks.

An important challenge relates to the sources of indeterminism existing in ad
hoc networks. These sources (interferences, noise, environment obstacles, etc.)
limit the reproducibility of experiments since they introduce uncertainty in the
considered experimental conditions. They have also a negative impact on the
controllability of the experimental procedure itself, specially when the condi-
tions used to warm-up and animate the system under evaluation/benchmarking,
or start and stop each experiment or evaluation campaign, rely on the triggering
of a particular environmental condition, or the computatiton of a concrete statis-
tic. An obvious solution can be to rely on simulation to avoid such real-world
problems, but the price to pay is a reduction of the accuracy of results.

Likewise, the use of real devices will certainly limit the number of nodes that
an evaluation platform may contain, thus affecting the scalability. This problem
causes that evaluation platforms that make use of real devices rarely expand
beyond 10 or 20 nodes [5]. A possible approach to solve this problem consists
in simulating the experiments with the very same configuration as used in real
deployments, and comparing the trend of results obtained looking for similarities.
Unfortunately, to date, simulators are far from recreating the exact conditions of
real experiments. The incomplete characterisation of aspects such as the mobility
patterns of nodes (including the human factor within network deployment), or
the influence of radio channel within network models to approach reality, is a
challenging task.

Once again the use of real devices may hinder the portability of a platform. Up
to now, the portability of real frameworks has been a hard task in the domain of
ad hoc networks given the complexity of redeploying testbeds. Making evaluation
platforms more portable would open new opportunities so that platforms could
be used by different evaluators, thus sharing the experience of evaluation among
users all around the world, consequently improving the knowledge about their
behaviour.

4 Challenges of the Analysis of Results

The analysis of results is crucial as the conclusions of the resilience evaluation will
rely on this stage. The first challenge consists in determining how to select and
filter the adequate information from the whole set of measurements obtained by
each node for each experiment, regardless whether this information is located in
the same physical repository (typical in case of simulations), or it is distributed
into different stores (usual in real-world experiments). Specially in case of con-
sidering the execution of experiments that may require several repetitions, it
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will be essential to aggregate filtered measurements for all the experiments ex-
ecuting the same configuration. Finally, it will be necessary to compute proper
statistic indicators to correlate filtered and aggregated measurements. Statistical
confidence intervals may result very useful to justify the reliability of population
samples. Strikingly, despite their benefits, very few evaluators use them.

Once measures processed, resilience evaluators face a crucial problem that
strongly influences the analysis of results. To be useful, the measures extracted
must be correctly interpreted following systematic criteria. The context where
the ad hoc network is deployed is a key factor that should be taken into account,
as measures of the same network in different contexts could be interpreted in
many different ways. Despite the importance of this point, a lot of works on
the bibliography still analyse measures generically without applying a proper
interpretation about where the network is deployed in.

5 Conclusions

This study is motivated by the lack of works addressing the complex problem
of resilience evaluation of ad hoc networks. Listed challenges defy the ability of
evaluators to deploy more practical experimentation in this domain. So tack-
ling and covering the issues presented in this paper becomes essential to reduce
the gap between the networks we may deploy, and the systems we are able to
evaluate.
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Abstract. As technology shrinks, higher operating frequencies, reduced feature 
sizes and lower supply voltages allow greater performance, but the reliability 
has been affected negatively. Smaller devices and wire spacing lead to an in-
crease in the occurrence of multiple adjacent faults. Thus, the system reliability 
is seriously affected. Error correction codes are a powerful technique that al-
lows higher reliability using information redundancy. This paper focuses on the 
use of interleaved codes to tolerate faults in on-chip interconnection lines. Inter-
leaving has been extensively used in memories, but not in system buses. To il-
lustrate the features of this technique, an example has been included. 

Keywords: Error Correction Codes, Hamming Codes, Interleaving, Multiple 
Adjacent Faults. 

1 Problem Description 

The advances in integration have allowed increasing circuit operating frequencies 
while reducing sizes and supply voltages, achieving a greater performance. This trend 
has resulted in smaller devices and shorter wire spacing. However, these advances 
have had a negative impact on the reliability of modern circuits. The increase of man-
ufacturing residuals and process variations in new VLSI technologies are raising the 
fault rate in such circuits [1]. Faults in microprocessors can lead to hardware errors 
and failures, which will be propagated to upper system levels [2]. Hardware mitiga-
tion techniques allow faster responses and reduce the failures propagated to upper 
levels [3]. 

Error control codes (ECCs) protect data using information redundancy [4]. On-chip 
parallel interconnection lines suffer different kinds of faults. Fault mechanisms can 
lead to single or multiple faults. Even more, multiple faults are frequently observed as 
adjacent faults, which usually manifest as a burst error (a multiple error that spans l 
bits in a word [4]; the separation l is known as burst length). Their causes can be bad 
solder joints, crosstalk or manufacturing residuals affecting several neighbor locations 
[5], for example. Single event effects (SEE) [6] are also a cause of adjacent faults in 
nano-scale devices. As stated above, the spacing of wires in a bus is decreased, but 
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random errors (see Fig. 2(a)), only 1-bit errors are 100% corrected, and only 2-bit 
errors are 100% corrected or detected. Also, a high percentage of detection is 
achieved even for a big amount of random errors. This is one of the advantages of the 
interleaving approach: as there are different encoded sub-words, the detection in one 
of them is enough to arrive to the global error detection condition. 

The potential of this approach can be appreciated in Fig. 2(b), where all possible 
burst errors are considered. As expected, all burst errors with length up to 4 are 100% 
corrected, and all of them with length up to 8 are 100% corrected or detected. In addi-
tion, the detection percentage is very high, as just commented, even for longer bursts. 
It is remarkable that 0% of errors are corrected under the presence of 5-bit or 9-bit 
burst errors. In a burst error, by definition, at least the first and the last bits are in er-
ror. In case of a 5-bit or a 9-bit burst error, those bits belong to the same sub-word (as 
the sub-words are interleaved), impeding the correction. 

(a)

  

(b)

  

Fig. 2. Error coverage for IxH(32, 16) code: (a) random errors; (b) burst errors 

2.2 Advantages and Drawbacks 

IxH technique presents a remarkable property: the length of the tolerated burst errors 
can be configured during the design phase. The redundancy will depend on it, and  
on the length of each sub-word. The coverage obtained with this method may be 
enough for many applications. The actual redundancy required, or the power, area and  
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temporal overhead, will depend on both the code used and the implementation tech-
nology. The idea is to use simple codes (like Hamming) to keep these parameters low. 

The main drawback is that only 1-bit random errors are 100% corrected. If higher 
level of correction or detection is required, more complex codes can be used, with the 
cost of greater redundancy. 

3 Conclusions and Future Work 

This paper presents the use of interleaved error correction codes to harden on-chip 
parallel interconnection lines. Interleaving gets good results under the presence of 
adjacent faults. 

The resulting error detection and correction features, as well as the simplicity of 
the encoder and decoder circuits, will depend on the code to be interleaved. As an 
example, a SEC-DED (8, 4) extended Hamming code illustrates the implementation 
of the technique. The results show the expected coverage, as well as a very high per-
centage of error detection, which may be interesting in microprocessors with recovery 
mechanisms. 

The implementation of the presented approach in the VHDL model of a micropro-
cessor and its validation using simulated fault injection is the first step of our future 
work. In addition, a deeper analysis of the redundancy required, as well as the power, 
area and temporal overhead, must be done. Also, this technique should be compared 
with other existing proposals. 
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Abstract. The increasing complexity on the vehicles electrical and/or electronic 
components has introduced a challenge to automotive safety. Standardization 
efforts have already been made, leading to the ISO-26262 functional safety and 
the AUTOSAR architecture definition, providing a development process that 
addresses safety and quality issues. With the goal of ensuring safety properties, 
this paper presents a fault injection tool (csXception®), developed by Critical 
Software, and the first steps towards injecting faults on ARM® Cortex-M3 mi-
crocontroller using the SCIFI technique for assessing AUTOSAR systems. 

Keywords: Fault Injection, automotive safety, csXception®, ISO-26262, 
AUTOSAR, SCIFI. 

1 Introduction 

Nowadays, the percentage of the E/E (electrical and/or electronic components) em-
bedded on automobiles can be up to 40% of the overall cost of a vehicle, and this 
value can be even bigger in luxury models. Cars contain on average 30 to 50 electron-
ic control units (ECU), and although today’s average cars contain about 10 million 
lines of code, it is expected that this number will grow to 300 millions in a decade. [1]  

The new automotive standard, ISO-26262, defines stringent requirements in order 
to guarantee the dependability and quality of automotive systems. Fault injection 
techniques provide a way to cover and simulate the extreme/limit or abnormal cases, 
and this is recognized in the standard. A case study applied to AUTOSAR based ar-
chitectures is considered appropriate for demonstration of these techniques. 

2 State of the Art: Fault Injection 

Fault Injection evaluates the dependability of a target system, studying generated 
errors and failures. In complex systems it’s hard to understand what causes some 
error/failures, or how/where they begin [2]. Fault Injection deals with the calcu-
lated/controlled insertion of artificial faults into a target system, or a simulation of it. 
The most common techniques are described next. 
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• Hardware Implemented Fault Injection (HWIFI): uses extra hardware to inject 
faults on a target system. Example: Produce radiation on the target system. 

• Software Implemented Fault Injection (SWIFI): uses software applications to 
inject and control fault injections on a target system. Example: change a register 
value during program execution. 

• Scan-Chain Implemented Fault Injection (SCIFI): takes advantage of the boun-
dary scan-chains and internal scan-chains present in target system providing more 
reachability, controllability and observability [3]. 

• Robustness Fault Injection: tests for abnormal inputs to reachable interfaces or 
function calls - oriented to a particular programming language. Example: inject 
possibly wrong values on methods/functions input values. 

3 ISO-26262 Standard 

The main purpose of ISO-26262 is to ensure the safety of road vehicles by providing 
a set of guidelines to help product development. ISO-26262 introduced the ASIL 
(Automotive Safety Integrity Levels) classification, based on the combination driv-
er/other road user’s probability of exposure to the hazards, as shown on Fig. 1. 

 

 

Fig. 1. ASILS’s risk estimation 

Table 1 shows the ASIL levels for each test activity of the ISO-26262. 

Table 1. Fault Injection mapping on ISO-26262 test activities 

ISO-26262 test activities ASILs  

System Level (Part 4) 
Correctness of implementation of system design specification and technical 

safety requirements. B, C, D 

Effectiveness of diagnostic coverage of hardware fault detection mechanisms. C, D 
Correctness of implementation of system design specification, technical and 

functional safety requirements. C, D 

Effectiveness of diagnostic failure coverage of safety mechanisms at item 
level. 

C,D 

Correctness of implementation of functional safety requirements. A, B, C, D 
Effectiveness and failure coverage of safety mechanisms at vehicle level. C, D 

Hardware Level (Part 5) 
Hardware integration tests to verify completeness and correctness of safety 

mechanisms implementation with respect to hardware safety requirements. C, D 

Software Level (Part 6) 
Software unit testing D 

Software integration testing C, D 
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From here one can conclude that fault injection is recommended for all the ISO-
26262 test activities, namely for the ones with higher levels of criticality (C and D). 

Every safety requirement is assigned an ASIL of the scale A, B, C or D, with D be-
ing the most safety-critical level. This functional safety standard divides the product 
development process in three main parts: system level integration (part 4), hardware 
development (part 5) and software development (part 6). ISO-26262 is the first stan-
dard to present fault injection as highly recommended technique to be used at differ-
ent criticality levels. Depending on the level where it is used, the purpose differs. 

4 The prototype: ARM® Cortex-M3 Plug-In 

The application of the Cortex-M on automotive industry, particularly on systems with 
safety functions (airbag, anti-lock braking, etc.), is widespread. An example is the 
Toshiba electrical vehicle motor control system [6], implemented by means of ARM® 
Cortex-M3 microcontrollers and compliant with the ISO-26262 standard. 

In order to inject faults one needs to define a fault model. It is an engineering mod-
el of erroneous events. Typically, fault models are defined considering four dimen-
sions (Location, Duration, Trigger, Type), each one with its own characteristics. An 
example of the contents such a model for the ARM® Cortex-M3 is shown in Table 2. 

Table 2. Cortex-M3 plug-in fault model example 

Fault Id Location Duration Trigger Type 

GPR1 General Purpose Register #1 One clock cycle Instruction 

Execution 

Bit-flip 

PSR Program Status Register One clock cycle Memory 

Access 

Reset-value 

OCF On-chip Flash One clock cycle Timeout Specific-value 

5 Case Study: Fault Injection in AUTOSAR® 

AUTOSAR® (AUTomotive Open System ARchitecture) is an architecture that pro-
vides a basic infrastructure to support the development of vehicular software, user 
interfaces and management for all the application domains. [5] 

The main goal of this work is to provide possible fault injection approaches for the 
validation of AUTOSAR systems, under the goal of assessing the effectiveness of the 
safety mechanisms in place within the actual architecture. 

The first fault injection approach will be to perform Software Component corrup-
tion. This mainly involves the corruption of key components by injecting faults on the 
AUTOSAR communication layers and forcing the breaking of communications with 
RTE (Runtime environment) component. Corrupting NVRAM manager, Watchdog 
manager or Communication Hardware abstraction will also be addressed. 
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Fig. 2. Proposed csXception ARM® Cortex-M3 solution with AUTOSAR architecture 

6 Conclusions and Future Work 

Fault injection is an important tool to help ensuring compliance with ISO-26262. In 
the automotive market, AUTOSAR is becoming the “de facto” architecture for devel-
oping components. Though both explicitly mention fault related approaches, neither 
of the standards details the recommended fault injection approach to be used. 

Future work on this subject includes the completion of the failure modes and fault 
model, along with the integration of these concepts within the ARM® Cortex-M3 
fault injection prototype. For this, knowledge exchange is foreseen with several auto-
motive OEMs that will provide the required know-how, thus, helping in building a 
realistic and accurate fault model for the automotive domain. 

The csXception® tool will be upgraded and a relevant fault model will be defined 
for usage by the research community. Currently, a study is being done by Critical 
Software and University of Coimbra in order to identify the key research groups and 
researches in fault injection and dependability. 

Acknowledgments. This work has been partially supported by the project CECRIS 
(Certification of CRItical Systems, http://www.cecris-project.eu), Marie Curie Indus-
try-Academia Partnerships and Pathways (IAPP) number 324334 (FP7). 

References 

1. The Economist, Tech. View: Cars and software bugs, 
http://www.economist.com/blogs/babbage/2010/05/ 
techview_cars_and_software_bugs (visited on: April 09, 2013)  

2. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. IEEE Comput-
er 30(4), 75–82 (1997) 

3. Ziade, H., Ayoubi, R., Velazco, R.: A survey on fault injection techniques. The Interna-
tional Arab Journal of Information Technology 1(2), 171–186 (2004) 

4. ISO International Standard, ISO-26262: Road vehicles – Functional safety  
5. AUTOSAR, http://www.autosar.org (visited on: February 11 2013)  
6. Toshiba, Automotive Cortex M3 Line-up, http://www.toshiba-components. 

com/automotive/autocortexm3.html (visited on: February 15, 2013)  



Author Index

Alves, João 16
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Käck, Andreas 111
Kanoun, Karama 126
Karlsson, Johan 111

Leeman, Michel 126
Lopes, João 148
Lourenço, João 173

Manetti, Vittorio 54
Marotta, Antonio 54
Marques, Lúıs 16
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