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Abstract. The reliable operation of brain-computer interfaces (BCIs) based on 
spontaneous electroencephalogram (EEG) signals requires an accurate classifi-
cation and recognition of multichannel EEG. The design of EEG representa-
tions and classifiers for BCI are open research questions whose difficulty stems 
from the need to extract complex spatial and temporal patterns from noisy mul-
tidimensional time series obtained from EEG measurements. This paper pro-
poses a Genetic algorithm (GA) and Support Vector Machine (SVM) hybrid 
approach to accomplish this EEG classification task for potential BCI applica-
tions. An Oddball stimulus program and evoked event-related coherence pro-
gram were designed to evaluate our method. The present study systematically 
evaluates the performance of the one channel pair event-related coherence fea-
ture set for EEG signal classification of auditory task. A GA approach for fea-
ture selection is presented which used to reduce the dimension of event-related 
coherence feature parameters. With the base classifiers of SVM, classification 
experiments are carried out upon real EEG recordings. Experimental results 
suggest the feasibilities of the new feature set, and we also derive some valua-
ble conclusions on the performance of the EEG signal classification methods. 
The high recognition rates and the method's procedural and computational sim-
plicity make it a particularly promising method for achieving real-time BCI sys-
tem based on evoked potential event-related coherence in the future. 
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1 Introduction 

The electroencephalography(EEG) classification is one important part of the brain 
computer interface (BCI)[1], EEG is relatively more convenient, harmless and inex-
pensive than other methods[2] which provides a direct measure of cortical activity 
with millisecond temporal resolution[3]. By training the computer to recognize and 
classify EEG signals, users could manipulate the machine by merely thinking about 
what they want it to do within a limited set of choices[4]. Particularly relevant to the 
present study is a growing number of EEG classification studies which depends on 
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both the features and the classification algorithm employed. A great variety of fea-
tures have been attempted to design BCI such as amplitude values of EEG signals [5], 
Band Powers (BP) [6], Power Spectral Density (PSD) values [7] [8], Auto Regressive 
(AR) and Adaptive Auto Regressive (AAR) parameters [9] [10], Time-frequency 
features [11] and inverse model-based features [12] [13] [14]. The used classification 
algorithms divided into five different categories: linear classifiers, neural networks, 
nonlinear Bayesian classifiers, nearest neighbor classifiers and combinations of clas-
sifiers in BCI systems [15]. However, as we know it may be difficult to build a good 
single classifier if feature parameters are high dimensionality and the training set is 
comparatively small. 

Finding a suitable representation of EEG signals is the key to learning a reliable 
discrimination [16, 17].Oscillatory states are the most remarkable features of EEG 
activity, according to this view, the rhythmic synchronization during oscillatory states 
can serve to enhance perception, learning, and the transmission of neuronal signals 
between different regions of the brain[18].The EEG coherence analysis gives impor-
tant information on EEG changes in long distance connections in brain areas upon 
application of perception/cognitive stimulations[19]. Until now, there is no study in 
the literature related to the analysis of event-related coherence as the feature parame-
ters in the EEG signals classification. In a number of experiments, we found that the 
event-related coherence (ERCoh) from two bipolar channels (F4-M2) over the frontal 
and temporal areas during auditory change could be significant differentiated at dif-
ferent times (p=0.035), primarily within low alpha (8-10Hz) frequency band. Based 
on experience with the auditory change study, we sought to replicate the design using 
an ERCoh-based BCI. Furthermore, we discriminate the standard and deviant audito-
ry stimulus. This article combined feature selection technique with the aim of reduc-
ing the number of required trials. The classifier used is a Support Vector Machine 
[20]. The results show that, the classification accuracy of the proposed method reach-
es 93% as compared to the current reported best accuracy of 84%. To this end, firstly, 
we designed the Oddball stimulus program and evoked potential event-related cohe-
rence experimental program, the collected EEG signals is pre-processed and pattern 
recognition which contained evoked potential signal, the evoked potential event-
related coherence BCI system is established based on signal acquisition and 
processing model. The high recognition rates and the method's procedural and com-
putational simplicity make it a particularly promising method for achieving real-time 
BCI system based on evoked potential event-related coherence in the future. 

2 Method and Experiments 

This research attempts to find a new feature parameter set and optimum algorithm to 
deal with the EEG signal to achieve the increase in the accuracy. The proposed model 
in five phases (see Fig.1), preprocessing, feature extraction, feature selection, classifi-
cation, with EEG signal finally is classified into standard auditory stimuli or deviant 
auditory stimuli. 
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Fig. 1. Event-related coherence BCI system model 

2.1 Preprocessing 

The continuous electroencephalogram (EEG) was collected with Neuroscan NuAmps 
Amplifier, using Quick Cap with 64-channel Ag/AgCl electrodes according to the 
extended international 10-20 system. The reference electrode was placed on the nose 
tip. The vertical EOG was recorded from the right eye by supra- and infra-orbital 
electrodes, and horizontal EOG were recorded from electrodes on the outer canthi of 
both eyes. EEG and EOG signals were amplified from DC to 100 Hz at a sampling 
rate of 500 Hz. The electrode impedance was less than 5 kΩ throughout the experi-
ment. After EOG artifact correction, the EEG was transformed offline to the epoch 
from 50ms pre-stimulus to 550ms post-stimulus. The trials contaminated with arti-
facts greater than ±100μV were rejected before averaging. The EEG segments were 
averaged separately for 150 ms with 50ms duration conditions, and the averaged 
ERPs were smoothed through a low-pass digital filter at 20 Hz (24 dB/octave). 

2.2 Feature Extraction 

We found that the event-related coherence (ERCoh) from two bipolar channels (F4-
M2) over the frontal and temporal areas during auditory change could be significant 
differentiated at different times (p=0.035), primarily within low alpha (8-10Hz) fre-
quency band. So we extracted the event-related coherence of F4-M2 during auditory 
change in the low alpha frequency band. Event-related coherence is a frequency de-
pendent measure of the degree of linear relatedness between two channels. This sym-
metric measurement is computed from a collection of EEG epochs sampled from 
either ongoing or event-related activity. High coherence implies that amplitudes at a 
given frequency are correlated across EEG samples, moreover, that tends to be a con-
stant phase angle (or time lag) between the two signals [21]. 
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Where ix  and iy  is a pair of real numbers sampled on occasion i. Each time series 
can be translated to the frequency domain as a frequency spectrum of complex num-

bers ( )ix f  and ( )iy f . The result is a complex correlation spectrum; finally, the 
coherence spectrum consists of set of real numbers ranging between 0 and 1, with 0 in 
the case of independence and 1 in the case of a perfect linear relationship. For each 
frequency, this number measures the proportion of variance in the data that can be 
accounted for a best-fit linear relationship between the two variables. ERCoh is com-
puted from epoch EEG data using the coherence formulas already given. However, 
the frequency of interest is preselected, and the results are a function of time with 
respect to the event at time zero. The real and imaginary parts come from sweep-by-
sweep complex demodulation rather than from sweep-by -sweep FFT. 

2.3 Feature Selection 

Reducing the number of features will help the classifier learn a more robust solution 
and achieve a better generalization performance. Feature selection algorithms fall into 
two categories based on whether or not they perform feature selection independently 
of the learning algorithm that constructs the classifier. If the technique performs fea-
ture selection independently of the learning algorithm, it follows a filter approach. 
Otherwise, it follows a wrapper approach [22]. Genetic algorithms can find the most 
efficient features of the whole space, it has been demonstrated the most efficient fea-
ture selection method for learning areas and hence has less chance to get local optimal 
solution than other algorithms [23] [24] [25].  

Genetic algorithm belongs to the wrapper approach; therefore, classifier is very 
important, and we use support vector machine (SVM) classifier in this paper. The 
algorithm flow is shown in Figure 2.  

 

Fig. 2. The genetic algorithm flow 

Encode Problem. Firstly, we must encode the problem. Here, we use a binary coded 
chromosome GA to select optimum feature descriptor subset for event-related cohe-
rence. Each code, namely a chromosome, corresponds to a solution of the problem. 
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Each gene on chromosome represents an input of the independent feature and its val-
ue can only be "0" or "1". If a gene’s value is "1", it indicates that the corresponding 
feature is involved in the selected feature descriptor subset. On the contrary, the "0" 
indicates that the corresponding feature is not involved in the selected feature descrip-
tor subset. 

Initial Population. Let m as the number of feature descriptors, N the size of popula-
tion. Commonly, population size N is 20 100N< <  and we use 60 in this paper. 
Chromosome of m genes is used to represent whether the corresponding feature is 
involved in the selected feature descriptor subset. In initial popula-
tion { }1 2, , , NP p p p=  , the genes of all individuals are randomly generated. Namely, 

each gene in a chromosome has value "0" or "1" randomly.  

Fitness Function. Classification accuracy of SVM classifier is used to evaluate the 
fitness of individuals. In detail, we use the reciprocal of sum of the test set’s squared 
errors as the fitness function, it is quite straightforward to see that. 
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using feature descriptor subset which kp represents, 1 1{ , , , }nT t t t=  represent the true 
value of the test set, and n is the test data size.  

Selection Operator. The selection operator determines an individual’s genetic proba-
bility to the next generation population based on the individual’s fitness. The 
processing is as follows: 

Firstly, sum the fitness of all individual in the population: 
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Secondly, calculate the relative fitness of individual kp in the population, which indi-

cates the probability of the individual selected and inherited to the next generation: 

 ( )Pr ( )k kp f p F=  (4) 

Finally, the simulated roulette to generate a random number between (0, 1), to deter-
mine the number of each individual selected. Obviously, larger individual’s selection 
probability will lead to more repeatedly selected. Crossover operator uses single-point 
mode. The mutation operator in this paper uses the single-point mutation. We proceed 
with the next generation until the process reaches the maximum iteration 300 genera-
tion. When the process ends, the fittest individual is output as the optimum feature 
selection result. 
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2.4 Experiments 

To this end, we designed an experiment which Fourteen healthy right-handed volun-
teers (4 males, 10 females; age=24.1±5.7 years) participated in this study. To elimi-
nate circadian rhythm effects, the present experiment was carried out between 10:00 
a.m. and 3:00 p.m. The task was an adaptation of the novelty “oddball” paradigm with 
an auditory modality, in which two types of stimuli, 1000 Hz frequent (75%) tones as 
non-target standard stimuli, infrequent (15%) 2000 Hz tones as targets, and rare 
(15%), All stimuli were presented binaurally at a sound level of 90 dB, with an expo-
sure time of 100 ms and an inter-stimulus interval (ISI) of 600ms. The experimental 
session consisted of four blocks of 100 trials each, with a short time break between 
blocks. The EEG signal was recorded while participants were watching a self-
selected, subtitled and silent film. Participants were instructed to ignore the acoustic 
stimuli. The continuous electroencephalogram (EEG) was collected with Neuroscan 
NuAmps Amplifier, using Quick Cap with 64-channel Ag/AgCl electrodes according 
to the extended international 10-20 system. 

The event-related coherence was analyzed for low alpha (8-10 Hz) frequencies 
ranges, the 10 trials are were divided into one epoch in the time range of 50ms before 
and 550ms after the onset of auditory stimuli. The event-related coherence values for 
F4-M2 electrode pair were averaged across the single trials if the number of accepted 
trails is greater than three. The event-related coherence 302 dimension feature set is 
selected to form the new feature subset by genetic algorithm. The feature subset is 
examined with the classifier SVM, finally, the number of feature subset is 13  
dimensions. 

2.5 Results 

SVM follows a procedure to find the separating hyperplane with the largest margin 
between two classes. It is based on statistical learning theory. The open source 
LibSVM is used to realize the SVM classifier. Firstly, to the single subject, we train 
the models using the two kinds(standard, deviant) of samples epoch which every 
epoch is consisted with 10 single trails and test is the same, the number of accept 
trails is greater than three to compute the event-related coherence, the accuracy rate is 
as shown in Table 1. Secondly, we choose ten subjects to analysis by the same me-
thod, the train set is 600 standard auditory stimuli and 100 deviant stimuli, and the test 
is 213 standard stimulus and 34 deviant stimulus group. The classified method is dif-
ferent. One is GMM(Gaussian mixture model) classifier, one is SVM(Support Vector 
Machine), the other is that the event-related coherence feature is selected and classi-
fied by GA and SVM, Results are as shown in table 2. Finally, the number of feature 
select subset is 13 dimensions, the selected feature is concentrated period of time 
from 100ms to 150ms and from 250ms to 300ms. 

Table 1. Results of classification of single subject 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Accuracy 93.2% 87.2% 93.1% 93.8% 86.1% 
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Table 2. Results of classification of ten subjects (difference methods) 

 GMM SVM GA+SVM  

Ten subjects 53.8% 82.8% 86.6% 
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Fig. 3. The event-related coherence (Fisher-Z)(the blue is standard, the yellow is deviation) 

3 Conclusions 

In this paper we have presented an approach to auditory recognition based on the 
processing of EEG signals because the event-related coherence of auditory standard 
and deviation are significant differentiated (see Fig 3). Usually, the EEG signals are 
recorded from an electrode hat with many electrodes, such as 64, 128, and 256. Even 
if some electrodes unrelated to the desired task are removed, the number of remaining 
electrodes may still be large. In order to develop a reliable and efficient EEG signal 
classification system with less number of electrodes, we designed this experiment, 
among all fourteen subjects, we choose the relatively stable ten subject data sample 
and preprocess a total of 947 EEG epochs from two kinds of auditory stimuli. The 
number of data points in each epoch F4-M2 electrode pair is 302 depends on the 
event-related coherence. The classification ability of event-related coherence feature 
set can be measured through classification accuracy. From table 1, the best classifica-
tion results in these sessions were 93.8% for subject S4, the time taken for the least 
three trails is lesser than 2s (1800ms). We made significant improvements in the accu-
racy and speed by employing powerful machine learning algorithms for classification 
and developing a new dynamic feature in this method. Two-class experiments show 
that utilization of the event-related coherence parameters as features and genetic algo-
rithm as feature selection improve correct classification at the cost of decreased com-
plexity and computations.  

Two bipolar EEG channels prior to the reported multichannel experiment even 
though in the multichannel experiment no feedback was given. it can be expected that 
in the latter case the classification accuracy is lower [26] . However, There are short-
comings in my paper, firstly, one difficulty encountered in such a study concerns the 
lack of published objective comparisons between classifiers [15] [27]. Secondly, one 
of the major limitations on this research is the lack of the number of the subjects. In 
the future, find the best parameter configuration and adaptive method for each subject 
should be investigated. Apart from the current considered base classifiers, the  



 EEG Signal Classification Using the Event-Related Coherence and Genetic Algorithm 99 

performance of some other classifiers such as k-nearest-neighbor [29] can be further 
investigated as well. Although our studies were done on healthy subjects, there is a 
chance that BCI systems such as the one presented in this paper may someday provide 
potentially the only communication channel for severely disabled people who are 
otherwise unable to articulate their thoughts and needs[28]. 
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