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Abstract. The subword complexity of an infinite word counts the num-
ber of subwords of a given length, while the abelian complexity counts
this number up to letter permutation. Although a lot of research has
been done on the subword complexity of morphic words, i.e., words ob-
tained as fixed points of iterated morphisms, little is known on their
abelian complexity. In this paper, we undertake the classification of the
asymptotic growths of the abelian complexities of fixed points of binary
morphisms. Some general results we obtain stem from the concept of
factorization of morphisms. We give an algorithm that yields all canon-
ical factorizations of a given morphism, describe how to use it to check
quickly whether a binary morphism is Sturmian, discuss how to fully fac-
torize the Parry morphisms, and finally derive a complete classification
of the abelian complexities of fixed points of uniform binary morphisms.

1 Introduction

The subword complexity of an infinite word w, denoted ρw, is the function map-
ping each positive integer n to the number of distinct subwords of w of length n.
On the other hand, the abelian complexity of w, denoted ρabw , is the function map-
ping each positive integer n to the number of distinct Parikh vectors of subwords
of w of length n. Here, we assume the standard alphabet Ak = {0, . . . , k − 1},
and the Parikh vector of a finite word over Ak is the vector whose ith entry is
the number of occurrences of letter i− 1 in the word.

An infinite word is a morphic word if it is the fixed point of some morphism
at some letter. For compactness of notation, we frequently denote a morphism
ϕ over Ak, ϕ : A∗

k → A∗
k, as an ordered k-tuple ϕ = (w0, . . . , wk−1), where
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ϕ (a) = wa for each a ∈ Ak. The fixed point of ϕ at a, denoted ϕω (a), is the
limit as n→ ∞ of ϕn (a). The fixed point exists precisely when the limit exists.

A lot of research has been done on the subword complexity of morphic words,
e.g., Ehrenfeucht and Rozenberg [9] showed that the fixed points of uniform
morphisms, i.e., morphisms ϕ over Ak satisfying |ϕ(a)| = |ϕ(b)| for all a, b ∈ Ak,
have at most linear subword complexity, Berstel and Séébold [3] gave a charac-
terization of Sturmian morphisms, i.e., morphisms ϕ over the binary alphabet
A2 = {0, 1} such that ϕω (0) exists and is Sturmian, in other words, ρϕω(0) (n) =
n+1 for all n, and Frid [11] obtained a formula for the subword complexity of the
fixed points of binary uniform morphisms. On the other hand, abelian complex-
ity is a relatively new research topic. Balková, Br̆inda, and Turek [2] studied the
abelian complexity of infinite words associated with quadratic Parry numbers,
Currie and Rampersad [6] studied recurrent words with constant abelian com-
plexity, and Richomme, Saari, and Zamboni [14] investigated abelian complexity
of minimal subshifts.

In this paper, we are interested in classifying the asymptotic growths of the
abelian complexities of words obtained as fixed points of iterated morphisms over
A2 at 0. This classification has already been done for the subword complexity of
morphisms over Ak [7–10, 12] (see also [4, Section 9.2]). Pansiot’s classification
of the asymptotic growths of the subword complexity of morphic words not
only depends on the type of morphisms but also on the distribution of so-called
bounded letters [12]. We assume without loss of generality that the first letter in
the image of 0 is 0 and we assume that all of our morphisms are nonerasing. Also
for conciseness, we frequently use the term “abelian complexity of a morphism”
(when referring to its fixed point at 0).

As mentioned above, we are mainly concerned with the asymptotic behaviors
of the abelian complexities rather than their specific values. Some general results
we obtain stem from the concept of factorization of morphisms. We mainly ex-
amine the monoid of binary morphisms under composition, but we also consider
factorization in a more general setting.

The binary morphism types whose asymptotic abelian complexities we clas-
sify are the following: morphisms with ultimately periodic fixed points (Propo-
sition 1(10)), Sturmian morphisms (Proposition 2(2)), morphisms with equal
ratios of zeroes to ones in both images (Theorem 3), Parry morphisms, i.e.,
morphisms of the type (0p1, 0q) with p ≥ q ≥ 1 or of the type (0p1, 0q1) with
p > q ≥ 1 studied in [2] and cyclic shifts of their factorizations (Proposition 2(4)
along with Corollaries 2 and 3), most morphisms where the image of 1 contains
only ones (Theorem 4), and most uniform morphisms and cyclic shifts of their
factorizations (Theorem 6).

All of the asymptotic abelian complexity classes we obtain, where f (n) = 1
if log2 n ∈ Z, and f (n) = logn otherwise, are the following (listed in increasing
order of growth): Θ (1), e.g., (01, 10), Θ̃ (f (n)), e.g., (01, 00), Θ (logn), e.g.,

(001, 110), Θ
(
nloga b

)
for a > b > 1, e.g., (0001, 0111), Θ

(
n

logn

)
, e.g., (001, 11),

and Θ (n), e.g., (0001, 11).
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The contents of our paper are as follows. In Section 2, we discuss some pre-
liminaries and simple results. In Section 3, we study morphism factorizations.
We give an algorithm that yields all canonical factorizations of a morphism ϕ
over Ak into two morphisms each over an alphabet of at most k letters and we
describe how to use it for checking quickly whether a binary morphism is Stur-
mian. In Section 4, we obtain our main results. Among other things, we show
how to fully factorize the Parry morphisms and we also derive a complete classi-
fication of the abelian complexities of fixed points of uniform binary morphisms.
Finally in Section 5, we conclude with suggestions for future work. Some proofs
have been omitted and others have only been outlined due to the 12-page space
constraint.

2 Preliminary Definitions and Results

Given C ≥ 0, a (finite or infinite) word w over Ak is called C-balanced if for all
letters a in w and for all integers 0 < n ≤ |w| (or just 0 < n if w is infinite), the
difference between the maximum and the minimum possible counts of letter a
in a length-n subword of w is less than or equal to C.

Given an infinite word w overA2, zM (n) (resp., zm (n)) denotes the maximum
(resp., minimum) number of zeroes in a length-n subword of w. For ease of
notation, z (v) denotes the number of zeroes in a binary word v (as opposed to
the standard |v|0). The number of ones in v is then |v| − z (v).

Here are some facts about abelian complexity and zero counts.

Proposition 1. If w is an infinite word over Ak, then the following hold:

1. ρabw (n) = Θ (1) if and only if w is C-balanced for some C [14, Lemma 2.2];
2. If w is Sturmian, then ρabw (n) = 2 for all n [5];
3. ρabw (n) = O

(
nk−1

)
[14, Theorem 2.4];

4. ρabw (n) ≤ ρw (n);
5. If k = 2, then ρabw (n) = zM (n)− zm (n) + 1;
6. If k = 2, then zM (m+ n) ≤ zM (m) + zM (n);
7. If k = 2, then zm (m+ n) ≥ zm (m) + zm (n);
8. If k = 2, then zM (n+ 1)− zM (n) ∈ {0, 1} and zm (n+ 1)− zm (n) ∈ {0, 1};
9. If k = 2, then

∣
∣ρabw (n+ 1)− ρabw (n)

∣
∣ ≤ 1 for all positive integers n;

10. If w is ultimately periodic, then ρabw (n) = Θ (1).

Here are some morphisms that are classified based on prior results. For 3, any
such word is ultimately periodic.

Proposition 2. The fixed points at 0 of the following morphisms over A2 have
Θ (1) abelian complexity:

1. The Thue-Morse morphism (01, 10) [14, Theorem 3.1];
2. Any Sturmian morphism (this includes (01, 0)) [14, Theorem 1.2];
3. Any morphism whose fixed point contains finitely many zeroes or ones (this

includes (01, 11));
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4. Any morphism of the form (0p1, 0q) with p ≥ q ≥ 1 or of the form (0p1, 0q1)
with p > q ≥ 1 [2, Corollary 3.1].

Let f (x) be a real function, and define

fm (x) := inf
a≥x

f (a) , fM (x) := sup
a≤x

f (a) .

Now, let g (x) be also a real function. We write f (x) = Ω̃ (g (x)) if fm (x) =
Ω (gm (x)) and fM (x) = Ω (gM (x)), f (x) = Õ (g (x)) if fm (x) = O (gm (x))
and fM (x) = O (gM (x)), and f (x) = Θ̃ (g (x)) if fm (x) = Θ (gm (x)) and
fM (x) = Θ (gM (x)).

3 Morphism Factorizations

Some more general results we obtain stem from the concept of factorization of
morphisms. We mainly examine the monoid of binary morphisms under compo-
sition, but we also consider factorization in a more general setting.

Let ϕ be a morphism overAk. If ϕ cannot be written as φ◦ζ for two morphisms
φ : A∗

k′ → A∗
k, ζ : A∗

k → A∗
k′ where neither is a permutation of Ak′ , then ϕ is

irreducible over Ak′ . Otherwise, ϕ is reducible. (We use the convention that a
permutation of the alphabet is not irreducible.) If ϕ = φ◦ ζ for some morphisms
φ : A∗

k′ → A∗
k, ζ : A∗

k → A∗
k′ , we say that ϕ factors as φ ◦ ζ over Ak′ .

Here are two propositions that together lead to a factorization algorithm.

Proposition 3. Let ϕ = (w0, w1, . . . , wk−1) be a morphism over Ak. If there
exist v0, v1, . . . , vk′−1 ∈ A+

k such that w0, w1, . . . , wk ∈ {v0, v1, . . . , vk′−1}∗, then
there exists a morphism ζ : A∗

k → A∗
k′ such that ϕ = φ ◦ ζ, where φ =

(v0, v1, . . . , vk′−1). Conversely every factorization ϕ = φ◦ ζ, where φ : A∗
k′ → A∗

k

and ζ : A∗
k → A∗

k′ , corresponds to vi = φ (i) for i = 0, 1, . . . , k′ − 1, where
w0, w1, . . . , wk−1 ∈ {v0, v1, . . . , vk′−1}∗.
Proposition 4. Let σ be a function that permutes elements of a k-tuple and
let ψσ be the morphism corresponding to the k-tuple obtained by applying σ to
(0, 1, . . . , k − 1). Let ϕ be a morphism over Ak that factors as ϕ = φ◦ζ for some
morphisms φ and ζ. Then, ϕ = σ (φ) ◦ ψσ (ζ).
Proposition 4 allows us to define the notion of a canonical factorization. Let ϕ
be a morphism over Ak that factors as ϕ = φ ◦ ζ for some morphisms φ and
ζ. Let v = ζ (0) ζ (1) · · · ζ (k − 1). We say that the factorization ϕ = φ ◦ ζ is
canonical if v [0] = 0 and the first occurrence of each letter a, a �= 0, in v is
after the first occurrence of letter a− 1 in v. It is clear from Proposition 4 that
given a factorization φ◦ ζ of ϕ we can put it in canonical form by applying some
permutation σ to the letters in the images in ζ and to the order of the images
in φ. Hence, every factorization of ϕ corresponds to one in canonical form.

Before we give our factorization algorithm, here is an important note: the
monoid of binary morphisms does not permit unique factorization into irre-
ducible morphisms, even if the factorizations are canonical. Indeed, letting
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ϕ = (00, 11), we have ϕ = (0, 11) ◦ (00, 1) = (00, 1) ◦ (0, 11). These are dis-
tinct canonical factorizations of ϕ into irreducibles.

We now give an algorithm, Algorithm 1, that yields all canonical factoriza-
tions over Ak′ of a given morphism ϕ into two morphisms. The basis of this
algorithm is the subroutine it calls, Algorithm 2, which creates a factorization
by recursively finding v0, v1, . . . , vk′−1, as specified in Proposition 3, and then
backtracking to find more factorizations. It always attempts to match or create
a vi at the beginning of the shortest image in the morphism, as that has the
fewest possibilities to consider. Algorithm 1 works as follows:

– Call Algorithm 2 with ϕ, k′, and an empty list. Given morphism ϕ′, integer
k′′, and a list of words v0, . . . , vm, Algorithm 2 does the following:

1. If ϕ′ has no letters, return {(v0, . . . , vm) ◦ ϕ′};
2. If k′′ > 0, try each prefix of a minimal-length image in ϕ′ as vm+1. Call

this same subroutine each time with k′′ − 1, pruning that prefix off that
image. Consolidate the results of the recursive call and add to the set of
factorization pairs with appropriate right factor;

3. Try matching each vi to a prefix of a minimal-length image in ϕ′. If
there is a match, call this same subroutine with k′′, pruning that prefix
off that image. Consolidate the results of the recursive call and add to
the set of factorization pairs with appropriate right factor;

4. Return the set of factorization pairs.

– Put the resulting factorizations into canonical form.

Theorem 1. Algorithm 1 can be applied recursively (and optionally along with
a lookup table to avoid recomputing things) to obtain complete (canonical) fac-
torizations of a given morphism into irreducible morphisms.

Proof. Algorithm 1’s correctness follows from Propositions 3 and 4. To obtain
all factorizations (not just canonical ones), run Algorithm 1 and then apply all
possible permutations to the resulting factorizations. 	

Given as input ϕ = (01, 00) and k′ = 2, Algorithm 1 outputs the canonical
factorizations (0, 1) ◦ (01, 00), (01, 0) ◦ (0, 11), and (01, 00) ◦ (0, 1):

ϕ′ k′′ v0 v1 ϕ′ k′′ v0 v1 ϕ′ k′′ v0 v1
(01, 00) 2 (01, 00) 2 (01, 00) 2
(1, 00) 1 0 (ε, 00) 1 01 (ε, 00) 1 01
(ε, 00) 0 0 1 (ε, 0) 1 01 0 (ε, ε) 1 01 00
(ε, 0) 0 0 1 (ε, ε) 0 01 0
(ε, ε) 0 0 1

We conclude this section with a discussion on checking whether a binary
morphism ϕ is Sturmian. Berstel and Séébold in [3] prove that ϕ is Sturmian
if and only if ϕ (10010010100101) is 1-balanced and primitive (not a power of a
shorter word). This leads to an algorithm for deciding whether a given morphism
is Sturmian. While the resulting algorithm is typically fast to give a negative
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answer, a positive answer requires computing (essentially) |ϕ (10010010100101)|
balance values and checking for primitivity. (Also, a check that our morphism’s
fixed point does not contain finitely many zeroes is needed.)

Richomme in [13] gives a note that leads to an alternative approach. The
note says that a binary morphism is Sturmian if and only if it can be written
as compositions of the morphisms (1, 0), (0, 01), (10, 1), (0, 10), and (01, 1). No
canonical factorization of a Sturmian morphism ever contain (1, 0) or (10, 1), but
these two can be combined to form (01, 0), which we must add to our list. Hence,
we have the criterion that a binary morphism is Sturmian if and only if it has a
canonical factorization that is a composite of (0, 01), (01, 0), (0, 10), and (01, 1).
(We also disallow composites that are powers of the morphisms with ultimately
periodic or finite fixed points so we can keep our fixed points aperiodic.) The
task of factoring a Sturmian morphism is well suited to repeated application of
Algorithm 1. In fact, we can speed up the algorithm specifically in this case by
pre-seeding v0 and v1 with each of the possible factors for a Sturmian morphism
(as in, directly calling Algorithm 2 with ϕ, 2, and [v0, v1], where (v0, v1) is equal
to each of the four possible morphisms). This algorithm is fast in both cases
where the given morphism is or is not Sturmian.

4 Main Results

We have the following theorem which we can prove using the following lemma,
commonly known as Fekete’s Lemma.

Lemma 1. Let {an}n≥1 be a sequence such that am+n ≥ am+an (resp., am+n ≤
am + an). Then, limn→∞ an

n exists and equals sup an
n (resp., inf ann ).

Theorem 2. Let w be an infinite binary word and ψ be a binary morphism.
Then, ρabψ(w) (n) = Õ

(
ρabw (n)

)
.

This leads to the following corollary.

Corollary 1. Let φ and ψ be binary morphisms. Then,

ρab(ψ◦φ)ω(0) (n) = Θ̃
(
ρab(φ◦ψ)ω(0) (n)

)
.

The following result is a generalization of one direction of [14, Theorem 3.3].
Note that it holds for alphabets of any size.

Theorem 3. Let ψ be a morphism over Ak such that there exist positive in-
tegers n0, n1, . . . , nk−1 such that for all a, b ∈ Ak, ψ (a)

na and ψ (b)
nb are

abelian equivalent (have the same Parikh vector). Then, for any infinite word
w over Ak, ρ

ab
ψ(w) (n) = Θ (1). In particular, if the fixed point of ψ at 0 exists,

ρabψω(0) (n) = Θ (1).

The following criterion allows the classification of more morphisms.
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Theorem 4. Let ϕ be a binary morphism such that ϕ (1) = 1m for some m ≥ 1.
Let c be the number of zeroes in ϕ (0). Assume that c+m > 2 (so that the fixed
point at 0 can exist), and, if m = 1, then assume ϕ (0) ends in 1. Then, one of

the following cases holds: ρabϕω(0) (n) = Θ (n) if c > m, ρabϕω(0) (n) = Θ
(

n
logn

)
if

c = m, ρabϕω(0) (n) = Θ
(
nlogm c

)
if 1 < c < m, and ρabϕω(0) (n) = Θ (1) if c = 1.

Proof. First, the case whereΘ (1) if c = 1 follows from the fact that ϕω (0) = 01ω.
Next, all other cases use the fact that ρabϕω(0) is monotone increasing (ϕω (0)

contains arbitrarily long blocks of ones). Finally, in each case, we consider limits
of ratios of the maximal number of zeroes in a subword and the target complexity
and can show that they exist and are between 0 and ∞. 	


4.1 Factorization of Parry Morphisms

When we say Parry morphisms, we mean those studied in [2] that we stated
have fixed points with bounded abelian complexity in Proposition 2(4). We de-
scribe all canonical factorizations of such morphisms, which allow us to construct
additional morphisms with bounded abelian complexity, due to Corollary 1.

The following theorem states how to fully factor the two types of Parry mor-
phisms.

Theorem 5. – If ϕ = (0p1, 0q1) with 1 ≤ q < p, then all factorizations of ϕ
are of the form (

∏m
i=1 φi) ◦ (01, 1), where φi = (0pi , 1) for some prime pi or

φi = (0, 01).
– If ϕ = (0p1, 0q) with 1 ≤ q ≤ p, then for all choices of a nonnegative odd

integer N , of a sequence of nonnegative integers a0, a1, . . . , aN with all but
possibly the last positive, and of integers q0, q

′ with q0 ≥ 0 and q′ > 0 where

N−1
2∏

i=0

a2i + q0 +

N−1
2∑

i=0

⎛

⎝a2i+1

i∏

j=0

a2j

⎞

⎠ = p, q′
N−1

2∏

i=0

a2i = q,

there exists a complete canonical factorization:

ϕ = (0, 01)
q0 ◦

⎛

⎝
N−1

2∏

j=0

((m2j∏

i=1

(0pi,2j , 1)

)

◦ (0, 01)a2j+1

)⎞

⎠

◦ (01, 0) ◦
⎛

⎝
m′
∏

i=1

(
0, 1q

′
i

)
⎞

⎠ ,

where each of the m2j’s is a positive integer, all of the pi,2j’s are prime,
∏m2j

i=1 pi,2j = a2j, all of the q
′
i’s are prime, and

∏m′

i=1 q
′
i = q′.

In both cases, any composites of the necessary forms yield a Parry morphism
of the proper type (where for the complicated case, all we require is that the
complicated p value exceed the complicated q value).
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Proof. To prove this result, we need to show how to completely canonically factor
various types of morphisms:

1. Every complete canonical factorization of the morphism (0, 1q) has the form
(0, 1p1) ◦ (0, 1p2) ◦ · · · ◦ (0, 1pm) for p1, . . . , pm primes such that

∏m
i=1 pi = q.

Also, if
∏m
i=1 pi = q, then (0, 1p1) ◦ (0, 1p2) ◦ · · · ◦ (0, 1pm) = (0, 1q).

2. Every complete canonical factorization of (0p, 1) has the form (0p1 , 1) ◦
(0p2 , 1) ◦ · · · ◦ (0pm , 1) for p1, . . . , pm primes such that

∏m
i=1 pi = p, and

if
∏m
i=1 pi = p, then (0p1 , 1) ◦ (0p2 , 1) ◦ · · · ◦ (0pm , 1) = (0p, 1).

3. Every complete canonical factorization of (0p, 0q1) has the form
∏m
i=1 φi,

where φi = (0pi , 1) for some prime pi, or φi = (0, 01). Also, any composite
of the form

∏m
i=1 φi, where φi = (0pi , 1) for some prime pi or φi = (0, 01),

yields a morphism of the form (0p, 0q1).

4. Every complete canonical factorization of (0p1, 1) has the form (0p1 , 1) ◦
(0p2 , 1) ◦ · · · ◦ (0pm , 1) ◦ (01, 1) for p1, . . . , pm primes such that

∏m
i=1 pi = p,

and if
∏m
i=1 pi = p, then (0p1 , 1) ◦ (0p2 , 1) ◦ · · · ◦ (0pm , 1) ◦ (01, 1) = (0p1, 1).

5. Every complete canonical factorization of (0p1, 0q) has the form

(
m∏

i=1

φi

)

◦ (01, 0) ◦
⎛

⎝
m′
∏

j=1

(0, 1qj)

⎞

⎠ ,

where φi = (0pi , 1) for some prime pi or φi = (0, 01), and each of the qj ’s
is prime (we allow the second product to be empty, in which case m′ = 0).
Also, any composite of the form

(
m∏

i=1

φi

)

◦ (01, 0) ◦
⎛

⎝
m′
∏

j=1

(0, 1qj)

⎞

⎠ ,

where φi = (0pi , 1) for some prime pi or φi = (0, 01), and each of the qj ’s is
prime (and m′ = 0 is allowed), yields a morphism of the form (0p1, 0q).

6. Every complete canonical factorization of (0p1, 0q1) with p > q has the form
(
∏m
i=1 φi) ◦ (01, 1), where φi = (0pi , 1) for some prime pi or φi = (0, 01).

Also, any composite of the form (
∏m
i=1 φi) ◦ (01, 1), where φi = (0pi , 1) for

some prime pi or φi = (0, 01) yields a morphism of the form (0p1, 0q1) with
p > q.

The result for the first type of Parry morphism follows directly from item 6.
We now prove the result for the second type of Parry morphism. By item 5, all
complete canonical factorizations of ϕ = (0p1, 0q) are of the form

ϕ =

(
m∏

i=1

φi

)

◦ (01, 0) ◦
⎛

⎝
m′∏

j=1

(0, 1qj)

⎞

⎠ ,
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where φi = (0pi , 1) for some prime pi or φi = (0, 01), and each of the qj ’s is
prime. We can use item 2, item 1, and the fact that (0, 01)

m
= (0, 0m1) to assert

ϕ = (0, 0q01) ◦
⎛

⎝

N−1
2∏

j=0

((0a2j , 1) ◦ (0, 0a2j+11))

⎞

⎠ ◦ (01, 0) ◦
(
0, 1q

′)
, (1)

for some odd N ≥ 0, some q0 ≥ 0, some q′ > 0, and some sequence a1, a2, . . . , aN
all positive except for possibly the last, which is nonegative (all of these are
integers). This factorization is (probably) not complete. Item 2, item 1, and
the fact that (0, 01)

m
= (0, 0m1) combine to give the complete form, which is

precisely what the theorem requires (and is not restated here).
We begin by defining two sequences: pi = 1 if i = 0, ai−1pi−1 if i is odd,

and pi−1 otherwise, and qi = q0 if i = 0, ai−1pi−1 + qi−1 if i is even, and qi−1

otherwise. We can prove by induction on m that

(0, 0q01) ◦
⎛

⎝
m∏

j=0

((0a2j , 1) ◦ (0, 0a2j+11))

⎞

⎠ = (0p2m+2 , 0q2m+21) .

As this is the beginning of the factorization in Eq. (1), this implies that ϕ =

(0pN+1, 0qN+11)◦ (01, 0)◦
(
0, 1q

′
)
= (0pN+1, 0qN+11)◦

(
01, 0q

′
)
, which is equal to

(
0pN+1+qN+11, 0q

′pN+1

)
. So, we have p = pN+1 + qN+1 and q = q′pN+1. We can

then prove by induction on m that

p2m =

m−1∏

i=0

a2i, q2m = q0 +

m−1∑

i=0

⎛

⎝a2i+1

i∏

j=0

a2j

⎞

⎠ .

Substituting N+1
2 for m proves the desired formulas:

N−1
2∏

i=0

a2i + q0 +

N−1
2∑

i=0

⎛

⎝a2i+1

i∏

j=0

a2j

⎞

⎠ = pN+1 + qN+1 = p,

q′
N−1

2∏

i=0

a2i = q′pN+1 = q,

thereby completing this direction of the proof.
The converses follow from the various preceding items. 	


Theorem 5, when combined with Corollary 1, yields the following corollaries.

Corollary 2. Let ϕ be a morphism with a complete canonical factorization of
the form

(
m0∏

i=1

φ0,i

)

◦ (01, 1) ◦
⎛

⎝
m1∏

j=1

φ1,j

⎞

⎠ ,
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for some integers m0,m1 ≥ 0, where φm,n = (0pn , 1) for some prime pn or
φm,n = (0, 01). Then ρabϕω(0) (n) = Θ (1).

Corollary 3. Let ϕ be a morphism with a (probably not complete) canonical
factorization that is a cyclic shift of the following composite:

(0, 0q01) ◦
⎛

⎝
N−1

2∏

j=0

((0a2j , 1) ◦ (0, 0a2j+11))

⎞

⎠ ◦ (01, 0) ◦
(
0, 1q

′)

for some odd N ≥ 0 (in case N = −1, the product term is absent), some q0 ≥ 0,
some q′ > 0, and some sequence a0, a1, . . . , aN all nonnegative. If

N−1
2∏

i=0

a2i + q0 +

N−3
2∑

i=0

⎛

⎝a2i+1

i∏

j=0

a2j

⎞

⎠ ≥ q′
N−1

2∏

i=0

a2i,

then ρabϕω(0) (n) = Θ (1).

An example of a morphism classifiable by Corollary 2 is (001001, 00101), which
has a complete canonical factorization (0, 01) ◦ (01, 1) ◦ (0, 01) ◦ (00, 1), which
satisfies the conditions of Corollary 2. An example of a morphism classifiable by
Corollary 3 is (0011, 0), which has a complete canonical factorization (0, 11) ◦
(0, 01)◦ (01, 0). This is a cyclic shift of (0, 01)◦ (01, 0)◦ (0, 11), so we have q0 = 1,
q′ = 2, and N = −1.

4.2 Classification of Uniform Morphisms

We now derive a complete classification of the abelian complexities of fixed points
of uniform binary morphisms.

Let ϕ be a uniform binary morphism with fixed point at 0. The length of ϕ
(denoted � (ϕ) or just � if ϕ is unambiguous) is equal to |ϕ (0)| (which equals
|ϕ (1)|). The difference of ϕ (denoted d (ϕ) or just d if ϕ is unambiguous) equals
|z (ϕ (0))− z (ϕ (1))|. The delta of ϕ (denoted Δ (ϕ) or just Δ if ϕ is unambigu-
ous) equals zM (� (ϕ)) −max {z (ϕ (0)) , z (ϕ (1))}, where zM (� (ϕ)) denotes the
maximum number of zeroes in a subword of length � (ϕ) of ϕω(0). Also, if ϕ is
unambiguous, we denote z (ϕ (0)) by z0, z (ϕ (1)) by z1, and ρ

ab
ϕω(0) (n) by ρ

ab (n).

Theorem 6. Let ϕ be a uniform binary morphism, and define f (n) = 1 if
log2 n ∈ Z, and f (n) = logn otherwise. Then the following hold:

ρab (n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ (1) , d = 0;

Θ (1) , ϕ = ((01)� �
2� 0, (10)� �

2� 1)if � is odd;

Θ (1) , ϕ =
(
01�−1, 1�

)
;

Θ̃ (f (n)) , d = 1, Δ = 0, and not earlier cases;

O (logn) , d = 1, Δ > 0;

Θ
(
nlog� d

)
, d > 1.
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Proof. We prove the fourth case. Assume that d = 1, Δ = 0, and we are not in
the second or third case. We can show that there exist integers i and j such that
ϕ2 (0) [i] = ϕ2 (1) [i] = 0 and ϕ2 (0) [j] = ϕ2 (1) [j] = 1. We can also show that
d
(
ϕ2
)
= 1 and Δ

(
ϕ2
)
= 0, so ρab

(
�2n− 1

)
= ρab

(
�2n+ 1

)
= ρab

(
�2n
)
+ 1.

Consider the sequence defined by a0 = 1 and ai = �2ai−1 + 1. It can be easily
shown by induction that ai =

∑i
j=0 �

2j . Also, we know that ρab (ai) = i. Hence,

we have ρab
(∑i

j=0 �
2j
)

= i, so the ai’s give a subsequence of ρab (n) with

logarithmic growth. We now show that ρab (n) is O (logn) completing our proof
that it is Θ̃ (f (n)). Let c be the maximum value of ρab (n) for n < �. For
r ∈ {0, . . . , �− 1}, we can show that that

ρab (�n+ r) ≤ dρab (n)− d+ 2 + 2Δ+ ρab (r) ≤ ρab (n) + 1 + c.

As we increase by (approximately) a factor of � in the argument, we can increase
by at most a constant in value. This is logn behavior, as required.

In the fifth case, d = 1 and Δ > 0, and the inequality ρab (�n+ r) ≤ dρab (n)−
d + 2 + 2Δ + ρab (r) leads similarly to ρab (n) = O(log n). The same inequality
leads to the O(nlog� d) bound in the sixth case, and a similar inequality yields
the Ω(nlog� d) bound. 	

Note that some uniform morphisms have nontrivial factorizations. Hence, The-
orem 6 gives a classification of the abelian complexities of some nonuniform
morphisms as well via Corollary 1. For example, (01, 00) = (01, 0) ◦ (0, 11) and
(0, 11) ◦ (01, 0) = (011, 0). Let ϕ = (01, 00) and ψ = (011, 0). Since ρabϕω(0) (n) =

Θ̃ (f (n)), ρabψω(0) (n) = Θ̃ (f (n)) as well, though ψ is not uniform.

Referring to the fifth case of Theorem 6, we conjecture an Ω (logn) bound
abelian complexity for all uniform binary morphisms with d = 1 and Δ > 0.

Conjecture 1. Let ϕ be a uniform binary morphism with d = 1 and Δ > 0. For
all h ≥ 1 and n ≥ �h, ρab (n) ≥ h+ 2.

5 Future Work

Problems to be considered in the future include: prove (or disprove) the con-
jectured Ω (logn) bound for uniform binary morphisms with d = 1 and Δ > 0,
carry out worst and average case running time analyses on the factorization al-
gorithm, examine additional classes of morphisms, and attempt to extend some
results to k > 2. Most of our results about abelian complexity are about binary
words. A notable exception is Theorem 3.

In general, if the alphabet size k is greater than 2, we lose the property
that for an infinite word w,

∣
∣ρabw (n+ 1)− ρabw (n)

∣
∣ ≤ 1. We also can no longer

reduce questions about abelian complexity to simply counting zeroes. In general,
if w is an infinite word over a k-letter alphabet, Proposition 1(3) says that
ρabw (n) = O

(
nk−1

)
. If w is required to be the fixed point of a morphism, we can

give a better bound. Corollary 10.4.9 in [1] says that if w is the fixed point of a
morphism, then ρw (n) = O

(
n2
)
. Hence, by Proposition 1(4), if w is the fixed

point of a morphism, then ρabw (n) = O
(
n2
)
, no matter how large k is.
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In many cases, we can give an even better upper bound. Allouche and Shallit
[1] define a primitive morphism as a morphism ϕ for which there exists an integer
n ≥ 1 such that given any letters a and b in the alphabet, a occurs in ϕn (b). Then
[1, Theorem 10.4.12] states that if w is the fixed point of a primitive morphism,
then ρw (n) = O (n). Hence if w is the fixed point of a primitive morphism, then
ρabw (n) = O (n), no matter how large k is.

Finally, we note that the truth value of Corollary 1 has not been examined
in depth for alphabets of size greater than 2. Our proof of Theorem 2 certainly
depends on the alphabet size, but we have not yet seen a counterexample to
it for a larger alphabet. Since binary morphisms can be factorized over larger
alphabets, the truth of Corollary 1 would allow us to classify the abelian com-
plexities of the fixed points of many morphisms with k > 2 simply based on the
results we have here for binary morphisms.
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