
Marie-Pierre Béal
Olivier Carton (Eds.)

 123

LN
CS

 7
90

7

17th International Conference, DLT 2013
Marne-la-Vallée, France, June 2013
Proceedings

Developments
in Language Theory

Lecture Notes in Computer Science 7907
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marie-Pierre Béal Olivier Carton (Eds.)

Developments
in Language Theory

17th International Conference, DLT 2013
Marne-la-Vallée, France, June 18-21, 2013
Proceedings

13

Volume Editors

Marie-Pierre Béal
Université Paris-Est Marne-la-Vallée
LIGM
5 Bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France
E-mail: beal@univ-mlv.fr

Olivier Carton
Université Paris Diderot
LIAFA
UMR 7089, 75205 Paris cedex 13, France
E-mail: olivier.carton@liafa.univ-paris-diderot.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38770-8 e-ISBN 978-3-642-38771-5
DOI 10.1007/978-3-642-38771-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939199

CR Subject Classification (1998): F.1, F.4, F.2, G.2, E.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 17th International Conference on Developments in Language Theory (DLT
2013) was held at Université Paris-Est, Marne-la-Vallée, France, during June
18-21, 2013.

The DLT conference series is one of the major international conference series
in language theory. It started in Turku, Finland, in 1993. It was held initially
once every two years. Since 2001, it has been held every year, odd years in Europe
and even years on other continents.

The scope of the conference includes, among others, the following topics and
areas: combinatorial and algebraic properties of words and languages; grammars,
acceptors and transducers for strings, trees, graphs, arrays; algebraic theories
for automata and languages; codes; efficient text algorithms; symbolic dynam-
ics; decision problems; relationships to complexity theory and logic; picture de-
scription and analysis; polyominoes and bidimensional patterns; cryptography;
concurrency; cellular automata; bio-inspired computing; quantum computing.

The papers submitted to DLT 2013 were from 23 countries including Belgium,
Canada, China, Czech Republic, Estonia, Finland, France, Germany, Hungary,
India, Italy, Japan, Republic of Korea, Latvia, Poland, Portugal, Russian Fed-
eration, Slovakia, South Africa, Sweden, Turkey, UK, and USA.

There were 63 submissions. Each submission was reviewed by at least three
referees and discussed by the Program Committee for presentation at the con-
ference. The Committee decided to accept 34 papers. There were five invited
talks given by Rūsiņš Freivalds (University of Latvia), Artur Jeż (University
of Wroc�law and Max Planck Institut für Informatik, Saarbrücken), Raphaël
Jungers (UCL Louvain), Christof Löding (RWTH Aachen), and Jean-Éric Pin
(CNRS LIAFA Paris). This volume of Lecture Notes in Computer Science con-
tains the papers that were presented at DLT 2013 including the abstracts or full
papers of the invited lectures.

We warmly thank all the invited speakers and all the authors of the submitted
papers. We would also like to thank all the members of the Program Commit-
tee and the external referees (listed in the proceedings) for their hard work in
evaluating the papers. We also thank all members of the Organizing Committee,
and specially Arnaud Carayol who headed this Committee. We wish to express
our sincere appreciation to the conference sponsors: the University Paris-Est
Marne-la-Vallée, ESIEE Paris, the LabEx Bézout, the Computer Science Re-
search Laboratory Gaspard-Monge, the CNRS and the European Association
for Theoretical Computer Science. Finally, we wish to thank the editors of the
Lecture Notes in Computer Science series and Springer.

March 2013 Marie-Pierre Béal
Olivier Carton

Organization

Program Committee

Marie-Pierre Béal (Co-chair) Université Paris-Est, France
Arnaud Carayol Université Paris-Est, CNRS, France
Olivier Carton (Co-chair) Université Paris Diderot, France
Alessandro De Luca Università di Napoli Federico II, Italy
Volker Diekert Universität Stuttgart, Germany
Anna Frid Sobolev Institute in Mathematics, Russia
Nataša Jonoska University of South Florida, USA
Jarkko Kari University of Turku, Finland
Michal Kunc Masaryk University Brno, Czech Republic
Martin Kutrib Universität Giessen, Germany
Slawomir Lasota Warsaw University, Poland
Pierre McKenzie Université de Montréal, Canada
Giovanni Pighizzini Università degli Studi di Milano, Italy
Benjamin Steinberg Carleton University, Canada
Klaus Sutner Carnegie Mellon University, USA
Mikhail Volkov Ural State University, Russia
Hsu-Chun Yen National Taiwan University, Taiwan
Zoltán Ésik University of Szeged, Hungary

Organizing Committee

Yasmina Abdeddäım Université Paris-Est, ESIEE, France
Arnaud Carayol (Head) Université Paris-Est, CNRS, France
Olivier Carton Université Paris Diderot, France
Didier Caucal Université Paris-Est, CNRS, France
Claire David Université Paris-Est, France
Philippe Gambette Université Paris-Est, France
Matthew Hague Université Paris-Est, France
Antoine Meyer Université Paris-Est, France
Cyril Nicaud Université Paris-Est, France
Corinne Palescandolo Université Paris-Est, CNRS, France
Carine Pivoteau Université Paris-Est, France
Chloé Rispal Université Paris-Est, France

Steering Committee

Marie-Pierre Béal Université Paris-Est Marne-la-Vallée, France
Véronique Bruyère University of Mons, Belgium

VIII Organization

Cristian S. Calude University of Auckland, New Zealand
Volker Diekert Universität Stuttgart, Germany
Juraj Hromkovic ETH Zurich, Switzerland
Oscar H. Ibarra University of California, Santa Barbara, USA
Masami Ito Kyoto Sangyo University, Japan
Nataša Jonoska University of South Florida, USA
Juhani Karhumäki (Chair) University of Turku, Finland
Antonio Restivo University of Palermo, Italy
Grzegorz Rozenberg Leiden University, The Netherlands
Wojciech Rytter Warsaw University, Poland
Arto Salomaa University of Turku, Finland
Kai Salomaa Queen’s University, Canada
Mikhail Volkov Ural State University, Russia
Takashi Yokomori Waseda University, Japan

Additional Reviewers

Marcella Anselmo
Sergey Avgustinovich
Nicolas Bedon
Francine Blanchet-Sadri
Guillaume Blin
Michael Blondin
Janusz Brzozowski
Michelangelo Bucci
Michaël Cadilhac
Alan Cain
Julien Cassaigne
Giusi Castiglione
Didier Caucal
Alessandra Cherubini
Matthieu Constant
Erzsébet Csuhaj-Varjú
Wojciech Czerwiński
Claire David
Aldo de Luca
Frank Drewes
Joost Engelfriet
Thomas Fernique
Gabriele Fici
Emmanuel Filiot
Achille Frigeri
Dora Giammarresi
Amy Glen

Hermann Gruber
Christoph Haase
Matthew Hague
Vesa Halava
Benjamin Hellouin de Menibus
Ulrich Hertrampf
Mika Hirvensalo
Piotr Hofman
Štěpán Holub
Markus Holzer
Juha Honkala
Hendrik Jan Hoogeboom
Dag Hovland
Oscar Ibarra
Szabolcs Iván
Sebastian Jakobi
Emmanuel Jeandel
Galina Jirásková
Mark Kambites
Juhani Karhumäki
Jonathan Kausch
Sergey Kitaev
Ines Klimann
Bartek Klin
Ondřej Kĺıma
Eryk Kopczyński
Steffen Kopecki

Organization IX

Andreas Krebs
Manfred Kufleitner
Alexander Lauser
Ranko Lazić
Peter Leupold
Markus Lohrey
Christof Löding
Maria Madonia
Andreas Malcher
Roberto Mantaci
Sabrina Mantaci
Tomáš Masopust
Ian McQuillan
Katja Meckel
Carlo Mereghetti
Antoine Meyer
Nelma Moreira
Judit Nagy-György
Christos Nomikos
Dirk Nowotka
Zoltán Németh
Pascal Ochem
Alexander Okhotin
Vincent Penelle
Dominique Perrin
Joni Pirnot
Alberto Policriti
Libor Polák
Damien Pous
Elena Pribavkina
Julien Provillard
Svetlana Puzynina

Narad Rampersad
Bala Ravikumar
Rogério Reis
Antonio Restivo
Gwenaël Richomme
Aleksi Saarela
Ville Salo
Kai Salomaa
Aristidis Sapounakis
Shinnosuke Seki
Frédéric Servais
Arseny Shur
Pedro V. Silva
Micha�l Skrzypczak
Frank Stefan
Howard Straubing
K.G. Subramanian
Tony Tan
Szymon Toruńczyk
Ilkka Törmä
Antti Valmari
György Vaszil
Stéphane Vialette
Tobias Walter
Pascal Weil
Armin Weiss
Matthias Wendlandt
Ryo Yoshinaka
Luca Zamboni
Georg Zetzsche
Charalampos Zinoviadis

Sponsoring Institutions

University Paris-Est Marne-la-Vallée
ESIEE Paris
LabEx Bézout
Laboratoire d’informatique Gaspard-Monge UMR 8049
CNRS
European Association for Theoretical Computer Science

Table of Contents

Invited Talks

Ultrametric Finite Automata and Turing Machines 1
Rūsiņš Freivalds

Recompression: Word Equations and Beyond . 12
Artur Jeż

Joint Spectral Characteristics: A Tale of Three Disciplines 27
Raphaël M. Jungers

Unambiguous Finite Automata . 29
Christof Löding

An Explicit Formula for the Intersection of Two Polynomials of Regular
Languages . 31

Jean-Éric Pin

Regular Papers

Two Dimensional Prefix Codes of Pictures . 46
Marcella Anselmo, Dora Giammarresi, and Maria Madonia

Adjacent Ordered Multi-Pushdown Systems . 58
Mohamed Faouzi Atig, K. Narayan Kumar, and Prakash Saivasan

Cuts in Regular Expressions . 70
Martin Berglund, Henrik Björklund, Frank Drewes,
Brink van der Merwe, and Bruce Watson

Quantum Finite Automata and Linear Context-Free Languages:
A Decidable Problem . 82

Alberto Bertoni, Christian Choffrut, and Flavio D’Alessandro

On the Asymptotic Abelian Complexity of Morphic Words 94
Francine Blanchet-Sadri and Nathan Fox

Strict Bounds for Pattern Avoidance . 106
Francine Blanchet-Sadri and Brent Woodhouse

A Fresh Approach to Learning Register Automata 118
Benedikt Bollig, Peter Habermehl, Martin Leucker, and
Benjamin Monmege

XII Table of Contents

Suffixes, Conjugates and Lyndon Words . 131
Silvia Bonomo, Sabrina Mantaci, Antonio Restivo,
Giovanna Rosone, and Marinella Sciortino

Extremal Words in the Shift Orbit Closure of a Morphic Sequence 143
James D. Currie, Narad Rampersad, and Kalle Saari

Inner Palindromic Closure . 155
Jürgen Dassow, Florin Manea, Robert Mercaş, and Mike Müller

On the Dual Post Correspondence Problem . 167
Joel D. Day, Daniel Reidenbach, and Johannes C. Schneider

Brzozowski Algorithm Is Generically Super-Polynomial for
Deterministic Automata . 179

Sven De Felice and Cyril Nicaud

A Coloring Problem for Sturmian and Episturmian Words 191
Aldo de Luca, Elena V. Pribavkina, and Luca Q. Zamboni

The Chomsky-Schützenberger Theorem for Quantitative Context-Free
Languages . 203

Manfred Droste and Heiko Vogler

Operational Characterization of Scattered MCFLs 215
Zoltán Ésik and Szabolcs Iván

Abelian Repetitions in Sturmian Words . 227
Gabriele Fici, Alessio Langiu, Thierry Lecroq, Arnaud Lefebvre,
Filippo Mignosi, and Élise Prieur-Gaston

Composition Closure of ε-Free Linear Extended Top-Down Tree
Transducers . 239

Zoltán Fülöp and Andreas Maletti

Subword Complexity and k -Synchronization . 252
Daniel Goč, Luke Schaeffer, and Jeffrey Shallit

Some Decision Questions Concerning the Time Complexity of Language
Acceptors . 264

Oscar H. Ibarra and Bala Ravikumar

Unambiguous Conjunctive Grammars over a One-Letter Alphabet 277
Artur Jeż and Alexander Okhotin

Alternative Automata Characterization of Piecewise Testable
Languages . 289

Ondřej Kĺıma and Libor Polák

Table of Contents XIII

Finite Automata with Advice Tapes . 301
Uğur Küçük, A.C. Cem Say, and Abuzer Yakaryılmaz

One-Way Multi-Head Finite Automata with Pebbles But No States 313
Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

Regular Expressions with Binding over Data Words for Querying
Graph Databases . 325

Leonid Libkin, Tony Tan, and Domagoj Vrgoč

Factorizations and Universal Automaton of Omega Languages 338
Vincent Carnino and Sylvain Lombardy

Deciding Determinism of Unary Languages Is coNP-Complete 350
Ping Lu, Feifei Peng, and Haiming Chen

Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure . . . 362
Victor Marsault and Jacques Sakarovitch

3-Abelian Cubes Are Avoidable on Binary Alphabets 374
Robert Mercaş and Aleksi Saarela

Repetition Avoidance in Circular Factors . 384
Hamoon Mousavi and Jeffrey Shallit

Operator Precedence ω-Languages . 396
Federica Panella, Matteo Pradella, Violetta Lonati, and
Dino Mandrioli

New Results on Deterministic Sgraffito Automata . 409
Daniel Pr̊uša, Frantǐsek Mráz, and Friedrich Otto

On the Number of Abelian Bordered Words . 420
Narad Rampersad, Michel Rigo, and Pavel Salimov

Proof of a Phase Transition in Probabilistic Cellular Automata 433
Damien Regnault

Languages with a Finite Antidictionary: Growth-Preserving
Transformations and Available Orders of Growth . 445

Arseny M. Shur

Author Index . 459

Ultrametric Finite Automata

and Turing Machines�

Rūsiņš Freivalds

Institute of Mathematics and Computer Science, University of Latvia,
Raiņa bulvāris 29, Riga, LV-1459, Latvia

Rusins.Freivalds@lu.lv

Abstract. We introduce a notion of ultrametric automata and Turing
machines using p-adic numbers to describe random branching of the
process of computation. These automata have properties similar to the
properties of probabilistic automata but complexity of probabilistic au-
tomata and complexity of ultrametric automata can differ very much.

1 Introduction

Pascal and Fermat believed that every event of indeterminism can be described
by a real number between 0 and 1 called probability. Quantum physics introduced
a description in terms of complex numbers called amplitude of probabilities and
later in terms of probabilistic combinations of amplitudes most conveniently
described by density matrices.

String theory [18], chemistry [15] and molecular biology [3, 12] have introduced
p-adic numbers to describe measures of indeterminism.

Popularity of usage of p-adic numbers can be explained easily. There is a well-
known difficulty to overcome the distinction between continuous and discrete
processes. For instance, according to Rutherford’s model of atoms, the electrons
can be situated only on specific orbits. When energy of an electron increases,
there is a quantum leap. Niels Bohr proposed, in 1913, what is now called the
Bohr model of the atom. He suggested that electrons could only have certain
classical motions:

1. Electrons in atoms orbit the nucleus.

2. The electrons can only orbit stably, without radiating, in certain orbits
(called by Bohr the “stationary orbits”): at a certain discrete set of dis-
tances from the nucleus. These orbits are associated with definite energy
levels. In these orbits, the electron’s acceleration does not result in radiation
and energy loss as required by classical electromagnetics.

� The research was supported by Project 271/2012 from the Latvian Council of
Science.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 R. Freivalds

3. Electrons can only gain and lose energy by jumping from one allowed orbit to
another, absorbing or emitting electromagnetic radiation with a frequency
determined by the energy difference of the levels according to the Planck
relation.

One of the methods to model such quantum leaps is to consider p-adic numbers
and there norms. The p-adic numbers can have continuum distinct values but
their norms can have only denumerable values. If a variable gradually changes
taking p-adic values, its norm performs quantum leaps. Hence usage of p-adic
numbers as measures of indeterminism provides a mechanism which is similar to
probabilistic model but mathematically different from it.

There were no difficulties to implement probabilistic automata and algo-
rithms practically. Quantum computation [11] has made a considerable theo-
retical progress but practical implementation has met considerable difficulties.
However, prototypes of quantum computers exist, some quantum algorithms are
implemented on these prototypes, quantum cryptography is already practically
used. Some people are skeptical concerning practicality of the initial spectac-
ular promises of quantum computation but nobody can deny the existence of
quantum computation.

We consider a new type of indeterministic algorithms called ultrametric algo-
rithms. They are very similar to probabilistic algorithms but while probabilistic
algorithms use real numbers r with 0 ≤ r ≤ 1 as parameters, ultrametric algo-
rithms use p-adic numbers as the parameters. Slightly simplifying the description
of the definitions one can say that ultrametric algorithms are the same proba-
bilistic algorithms, only the interpretation of the probabilities is different.

Our choice of p-adic numbers instead of real numbers is not quite arbitrary.
In 1916 Alexander Ostrowski proved that any non-trivial absolute value on the
rational numbers Q is equivalent to either the usual real absolute value or a
p-adic absolute value. This result shows that using p-adic numbers is not merely
one of many possibilities to generalize the definition of deterministic algorithms
but rather the only remaining possibility not yet explored.

Moreover, Helmut Hasse’s local-global principle states that certain types of
equations have a rational solution if and only if they have a solution in the real
numbers and in the p-adic numbers for each prime p.

There are many distinct p-adic absolute values corresponding to the many
prime numbers p. These absolute values are traditionally called ultrametric. Ab-
solute values are needed to consider distances among objects. We have used to
rational and irrational numbers as measures for distances, and there is a psycho-
logical difficulty to imagine that something else can be used instead of irrational
numbers. However, there is an important feature that distinguishes p-adic num-
bers from real numbers. Real numbers (both rational and irrational) are linearly
ordered. p-adic numbers cannot be linearly ordered. This is why valuations and
norms of p-adic numbers are considered.

The situation is similar in Quantum Computation. Quantum amplitudes are
complex numbers which also cannot be linearly ordered. The counterpart of

Ultrametric Finite Automata and Turing Machines 3

valuation for quantum algorithms is measurement translating a complex number
a+bi into a real number a2+b2. Norms of p-adic numbers are rational numbers.

Ultrametric finite automata and ultrametric Turing machines are reasonably
similar to probabilistic finite automata and Turing machines.

Below we consider ultrametric versus deterministic Turing machines with one
input tape which can be read only 1-way and a work tape which is empty at the
beginning of the work.

The problem of more adequate mechanism to describe indeterminism in finite
automata and Turing machines has been raised many times (see, e.g. [1, 5–7]).
Ultrametric finite automata and Turing machines were introduced in [8]. This
paper contains more explicit motivation of the research, more examples and more
complete proofs.

2 p-adic Numbers

Let p be an arbitrary prime number. We will call p-adic digit a natural number
between 0 and p − 1 (inclusive). A p-adic integer is by definition a sequence
(ai)i∈N of p-adic digits. We write this conventionally as

· · ·ai · · ·a2a1a0

(that is, the ai are written from left to right).
If n is a natural number, and

n = ak−1ak−2 · · · a1a0

is its p-adic representation (in other words n =
∑k−1

i=0 aip
i with each ai a

p-adic digit) then we identify n with the p-adic integer (ai) with ai = 0 if i ≥ k.
This means that natural numbers are exactly the same thing as p-adic integer
only a finite number of whose digits are not 0. The number 0 is the p-adic integer
all of whose digits are 0, and that 1 is the p-adic integer all of whose digits are
0 except the right-most one (digit 0) which is 1.

To have p-adic representations of all rational numbers, 1
p is represented as

· · · 00.1, the number 1
p2 as · · · 00.01, and so on. For any p-adic number it is

allowed to have infinitely many (!) digits to the left of the “decimal” point but
only a finite number of digits to the right of it.

However, p-adic numbers is not merely one of generalizations of rational num-
bers. They are related to the notion of absolute value of numbers.

If X is a nonempty set, a distance, or metric, on X is a function d from pairs
of elements (x, y) of X to the nonnegative real numbers such that

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X .

A set X together with a metric d is called a metric space. The same set X can
give rise to many different metric spaces.

The norm of an element x ∈ X is the distance from 0:

4 R. Freivalds

1. ‖ x ‖= 0 if and only if x = y,
2. ‖ x.y ‖=‖ x ‖ . ‖ xy ‖,
3. ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖.

We know one metric on Q induced by the ordinary absolute value. However,
there are other norms as well.

A norm is called ultrametric if the third requirement can be replaced by the
stronger statement: ‖ x+ y ‖≤ max{‖ x ‖, ‖ y ‖}. Otherwise, the norm is called
Archimedean.

Definition 1. Let p ∈ {2, 3, 5, 7, 11, 13, · · ·} be any prime number. For any
nonzero integer a, let the p-adic ordinal (or valuation) of a, denoted ordpa, be the
highest power of p which divides a, i.e., the greatest m such that a ≡ 0(modpm).
For any rational number x = a/b, denote ordpx to be ordpa−ordpb. Additionally,
ordpx = ∞ if and only if x = 0.

Definition 2. Let p ∈ {2, 3, 5, 7, 11, 13, · · ·} be any prime number. For arbitrary
rational number x, its p-norm is:

||x||p =

{
1

pordpx , if x �= 0,

¬pi, if x = 0 ;

Rational numbers are p-adic integers for all prime numbers p. The nature of
irrational numbers is more complicated. For instance,

√
2 just does not exist as a

p-adic number for some prime numbers p. More precisely,
√
a can be represented

as a p-adic number if and only if a is a quadratic residue modulo p, i.e. if the
congruence x2 = a(modp) has a solution. On the other hand, there is a continuum
of p-adic numbers not being real numbers. Moreover, there is a continuum of 3-
adic numbers not being 5-adic numbers, and vice versa.

p-adic numbers are described in much more detail in [10, 13].

3 First Examples

The notion of p-adic numbers widely used in mathematics but not so much in
Computer Science. The aim of our next sections is to show that the notion of
ultrametric automata and ultrametric Turing machines is natural.

In mathematics, a stochastic matrix is a matrix used to describe the tran-
sitions of a Markov chain. A right stochastic matrix is a square matrix each of
whose rows consists of nonnegative real numbers, with each row summing to 1. A
stochastic vector is a vector whose elements consist of nonnegative real numbers
which sum to 1. The finite probabilistic automaton is defined as an extension
of a non-deterministic finite automaton (Q,Σ, δ, q0, F), with the initial state q0
replaced by a stochastic vector giving the probability of the automaton being in
a given initial state, and with stochastic matrices corresponding to each symbol
in the input alphabet describing the state transition probabilities. It is impor-
tant to note that if A is the stochastic matrix corresponding to the input symbol

Ultrametric Finite Automata and Turing Machines 5

a and B is the stochastic matrix corresponding to the input symbol b, then
the product AB describes the state transition probabilities when the automaton
reads the input word ab. Additionally, the probabilistic automaton has a thresh-
old λ being a real number between 0 and 1. If the probabilistic automaton has
only one accepting state then the input word x is said to be accepted if after
reading x the probability of the accepting state has a probability exceeding λ.
If there are several accepting states, the word x is said to be accepted the total
of probabilities of the accepting states exceeds λ.

Ultrametric automata are defined exactly in the same way as probabilistic
automata, only the parameters called probabilities of transition from one state
to another one are real numbers between 0 and 1 in probabilistic automata, and
they are p-adic numbers called amplitudes in the ultrametric automata. Formulas
to calculate the amplitudes after one, two, three, · · · steps of computation are
exactly the same as the formulas to calculate the probabilities in the probabilistic
automata. Following the example of finite quantum automata, we demand that
the input word x is followed by a special end-marker. At the beginning of the
work, the states of the automaton get initial amplitudes being p-adic numbers.
When reading the current symbol of the input word, the automaton changes the
amplitudes of all the states according to the transition matrix corresponding to
this input symbol. When the automaton reads the end-marker, the measurement
is performed, and the amplitudes of all the states are transformed into the p-
norms of these amplitudes. The norms are rational numbers and it is possible
to compare whether or not the norm exceeds the threshold λ. If total of the
norms for all the accepting states of the automaton exceeds λ, we say that the
automaton accepts the input word.

Paavo Turakainen considered various generalizations of finite probabilistic au-
tomata in 1969 and proved that there is no need to demand in cases of proba-
bilistic branchings that total of probabilities for all possible continuations equal
1. He defined generalized probabilistic finite automata where the “probabilities”
can be arbitrary real numbers, and that languages recognizable by these gen-
eralized probabilistic finite automata are the same as for ordinary probabilistic
finite automata. Hence we also allow usage of all possible p-adic numbers in p-
ultrametric machines. Remembering the theorem by P.Turakainen [17] we start
with the most general possible definition hoping to restrict it if we below find
examples of not so natural behavior of ultrametric automata. (Moreover, we
do not specify all the details of the definitions in Theorems 1-4, and make the
definition precise only afterwards. The reader may consider such a presentation
strange but we need some natural examples of ultrametric automata before we
concentrate on one standard definition.)

However, it is needed to note that if there is only one accepting state then the
possible probabilities of acceptance are discrete values 0, p1, p−1, p2, p−2, p3, · · ·.
Hence there is no natural counterpart of isolated cut-point or bounded error for
ultrametric machines. On the other hand, a counterpart of Turakainen’s theorem
for probabilistic automata with isolated cut-point still does not exist. We also did

6 R. Freivalds

not succeed to prove such a theorem for ultrametric automata. Most probably,
there are certain objective difficulties.

Theorem 1. There is a continuum of languages recognizable by finite ultramet-
ric automata.

Proof. Let β = · · · 2a32a22a12a02 be an arbitrary p-adic number (not p-adic
integer) where p ≥ 3 and all ai ∈ {0, 1}. Denote by B the set of all possible such
β. Consider an automaton Aβ with 3 states, the initial amplitudes of the states
being (β,−1,−1). The automaton is constructed to have the following property.
If the input word is 2a02a12a22a32 · · · 2an2 then the amplitude of the first state
becomes · · · 2an+42an+32an+22an+12. To achieve this, the automaton adds −2,
multiplies to p, adds −an and again multiplies to p.

Now let β1 and β2 be two different p-adic numbers. Assume that they have
the same first symbols am · · · 2a32a22a12a02 but different symbols am+1 and
bm+1. Then the automaton accepts one of the words am+12am · · · 2a32a22a12a02
and rejects the other one bm+12am · · · 2a32a22a12a02. Hence the languages are
distinct.
�

Definition 3. Finite p-ultrametric automaton is called integral if all the pa-
rameters of it are p-adic integers.

Automata recognizing nonrecursive languages cannot be considered natural.
Hence we are to restrict our definition.

Theorem 2. There exists a finite integral ultrametric automaton recognizing the
language {0n1n}.

Proof. When the automaton reads 0 it multiplies the amplitude to 2, and when
it reads 1 it multiplies it to 1

2 . The norm of the amplitude equals p0 iff the
number of zeros is equal to the number of ones.
�
We consider the following language.

L = {w|w ∈ {0, 1}∗ and w = wrev}

Theorem 3. For every prime number p ≥ 5, there is an integral p-ultrametric
automaton recognizing L.

Proof. The automaton has two special states. If the input word is

a(1)a(2) · · ·a(n)a(n+ 1)a(n+ 2) · · ·a(2n+ 1)

then one of these states has amplitude

a(1)pn+· · ·+a(n)p+1+a(n+1)p0+a(n+2)p−1+· · ·+a(2n)p−n+1+a(2n+1)p−n

and the other one has amplitude

−a(1)p−n−· · ·−a(n)p−1−a(n+1)p0−a(n+2)p+1−· · ·−a(2n)p+n−1+a(2n+1)p+n

If the sum of these two amplitudes equals 0 then the input word is a palindrome.
Otherwise, the sum of amplitudes has a norm removed from p0.
�

Ultrametric Finite Automata and Turing Machines 7

Definition 4. A square matrix with elements being p-adic numbers is called
balanced if for arbitrary row of the matrix the product of p-norms of the ele-
ments equals 1.

Definition 5. A finite ultrametric automaton is called balanced if all the ma-
trices in its definition are balanced.

Theorem 4. If a language M can be recognized by a finite ultrametric automa-
ton then M can be recognized also by a balanced finite ultrametric automaton.

Proof. For every state of the automaton we add its duplicate. If the given state
has an amplitude γ then its duplicate has the amplitude 1

γ . Product of balanced
matrices is balanced.
�
Definition 6. A balanced finite ultrametric automaton is called regulated if
there exist constants λ and c such that 0 < c < 1 and for arbitrary input word x
the norm cλ <‖ γ ‖p< λ

c . We say that the word x is accepted if ‖ γ ‖p> λ and
it is rejected if ‖ γ ‖p≤ λ.

Theorem 5. (1) If a language M is recognized by a regulated finite ultrametric
automaton then M is regular.
(2) For arbitrary prime number p there is a constant cp such that if a language
M is recognized by a regulated finite p-ultrametric automaton with k states then

there is a deterministic finite automaton with (cp)
k.l̇ogk states recognizing the

language M .

4 Non-regulated Finite Automata

Since the numbers 1 and 0 are also p-adic numbers, every deterministic finite
automaton can be described in terms of matrices for transformation of ampli-
tudes. Hence every regular language is recognizable by a regulated p-ultrametric
automaton. There is a natural problem : are there languages for which regu-
lated p-ultrametric automata can have smaller complexity, i.e. smaller number
of states.

The following 3 theorems seem to present such an example but there is a
catch: these automata are not regulated because the norm of the amplitude to
be measured can be arbitrary small (for lengthy input words).

Theorem 6. For arbitrary prime number p ≥ 3 the language

Lp−1 = {1n | n ≡ p− 1(mod p)}

is recognizable by a p-ultrametric finite automaton with 2 states.

Proof. A primitive root modulo n is any number g with the property that any
number coprime to n is congruent to a power of g modulo n. In other words, g is a
generator of the multiplicative group of integers modulo n. Existence of primitive
roots modulo prime numbers was proved by Gauss. The initial amplitude 1 of
a special state in our automaton is multiplied to an arbitrary primitive root
modulo p. When the end-marker is read the amplitude −1 of the other state is
added to this amplitude. The result has p-norm p0 iff n ≡ p− 1.
�

8 R. Freivalds

Theorem 7. For arbitrary prime number p ≥ 3 the language

Lp = {1n | n ≡ p(mod p)}

is recognizable by a p-ultrametric finite automaton with 2 states.

Proof. The value 1 of the amplitude of the second state is added to the amplitude
of the accepting state at every step of reading the input word. The result has
p-norm p0 iff n ≡ p.
�
Theorem 8. For arbitrary natural number m there are infinitely many prime
numbers p such that the language

Lm = {1n | n ≡ 0(mod m)}

is recognizable by a p-ultrametric finite automaton with 2 states.

Proof. Dirichlet prime number theorem, states that for any two positive coprime
integers m and d, there are infinitely many primes of the form m + nd, where
n ≥ 0. In other words, there are infinitely many primes which are congruent to
m modulo d. The numbers of the form mn+ d form an arithmetic progression

d, m+ d, 2m+ d, 3m+ d, . . . ,

and Dirichlet’s theorem states that this sequence contains infinitely many prime
numbers.

Let p be such a prime and g be a primitive root modulo p. Then the sequence of
remainders g, g2, g3, · · · modulo p has period m and n ≡ 0(mod m) is equivalent
to gn ≡ d(mod p). Hence the automaton multiplies the amplitude of the special
state to g and and adds −d when reading the end-marker.
�

5 Regulated Finite Automata

We wish to complement Theorem 5 by a proof showing that the gap between the
complexity of regulated finite ultrametric automata and the complexity of deter-
ministic finite automata is not overestimated. It turns out that this comparison
is related to well-known open problems.

First, we consider a sequence of languages where the advantages of ultrametric
automata over deterministic ones are super-exponential but the advantages are
achieved only for specific values of the prime number p.

It is known that every p-permutation can be generated as a product of se-
quence of two individual p-permutations:

a =

(
1 2 3 · · · p− 1 p
2 3 4 · · · p 1

)

b =

(
1 2 3 · · · p− 1 p
2 1 3 · · · p− 1 p

)
.
A string x ∈ {a, b}∗ is in the language Mp if the product of these p-permutations
equals the trivial permutation.

Ultrametric Finite Automata and Turing Machines 9

Theorem 9. (1) For arbitrary prime p, the language Mp is recognized by a p-
ultrametric finite automaton with p+ 2 states.
(2) If a deterministic finite automaton has less than p! = cp. log p states then it
does not recognize Mp.

Idea of the Proof. The ultrametric automaton gives initial amplitudes
0, 1, 2, · · · , p− 1 to p states of the automaton and after reading any input letter
only permutes these amplitudes. After reading the endmarker from the input
the automaton subtracts the values 0, 1, 2, · · · , p− 1 from these amplitudes.
�

6 1-Way Pushdown Automata

Let A = {a, b, c, d, e, f, g, h, k, l,m, p, q, r, s, t, u, v}. Now we consider a language
T in the alphabet A ∪ {#} for which both the deterministic and probabilistic
1-way pushdown automata cannot recognize the language but there exists an
ultrametric 1-way pushdown automaton recognizing it.

The language T is defined as the set of all the words x in the input alphabet
such that either x is in all 9 languages Ti described below or in exactly 6 of them
or in exactly 3 of them or in none of them where

T1 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projab(x) = projab(y)},

T2 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projcd(x) = projcd(y)},

T3 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projef (x) = projef (y)},

T4 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projgh(x) = projgh(y)},

T5 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projkl(x) = projkl(y)},

T6 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projmp(x) = projmp(y)},

T7 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projqr(x) = projqr(y)},

T8 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projst(x) = projst(y)},

T9 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projuv(x) = projuv(y)}.

Theorem 10. For the language T we have the following properties.

(1) There is a regulated 3-ultrametric 1-way pushdown automaton recognizing
the language T .

(2) No deterministic 1-way pushdown automata can recognizing the language T .
(3) No probabilistic 1-way pushdown automata can recognizing the language T

can have bounded error.

10 R. Freivalds

7 Turing Machines

We denote by pUP the class of all languages recognizable by p-ultrametric Turing
machines in a polynomial time. This is a large class of languages.

Theorem 11. If a language M is recognizable by a probabilistic Turing machine
in a polynomial time then for arbitrary p ≥ 3 there is a p-ultrametric Turing
machine recognizing M in a polynomial time.

Proof. The class PP of all languages recognizable in a polynomial time has
natural complete problems, for example, MAJSAT . MAJSAT is a decision
problem in which one is given a Boolean formula F . The answer must be YES if
more than half of all assignments x1, x2, · · · , xn make F true and NO otherwise.
Hence M is reducible to MAJSAT in deterministic polynomial time. On the
other hand, MAJSAT is recognizable by a p-ultrametric Turing machine in a
polynomial time. This machine considers in parallel all possible assignments for
x1, x2, · · · , xn and adds a p-adic number 2−n to the amplitude α of a special
state. F is in MAJSAT iff the resulting amplitude α has p-norm 0.
�

Definition 7. A discrete Riemann surface on the rectangle [a, b] × [c, d] is a
map from (x, y, z) (where x ∈ [a, b], y ∈ [c, d] and z is a string of symbols from
a finite alphabet Σ whose length equals y − c) to a finite alphabet Δ. For each
triple its neighbors are defined as the triples:
(1) (x, y′, z) where either y′ = y + 1 or y′ = y + 1,
(2) (x′, y, z′) where either x′ = x− 1 and z′ is z with the last symbol omitted, or
x′ = x+ 1 and z′ is z with the one symbol attached at its end.

Definition 8. A discrete Dirichlet condition is a 5-tuple consisting of: (1) a
map from (x, y) where y = c to Δ, (2) a map from (x, y) where y = d to Δ,
(3) (x, y) where x = a to Δ, (4) (x, y) where x = b to Δ, and (5) neighboring
conditions that may forbid some simultaneous maps of neighboring triples.

Definition 9. The discrete Dirichlet problem is whether or not it is possible a
Riemann surface consistent with the given discrete Dirichlet condition.

Theorem 12. For arbitrary prime number p ≥ 3, there is a pUP -complete
language.

Idea of the Proof. The language consists of all discrete Dirichlet conditions
such that the discrete Dirichlet problem has a positive answer. The map in
the Riemann surface can be used to describe the work of a ultrametric Turing
machine. The symbols ofΔ for all possible values of x for a fixed y and z describe
the configuration of the tape at the moment y with the choices z made before
the moment y and the amplitudes accumulated. The discrete Dirichlet problem
asks whether the ultrametric machine accepts the input word. The difference
d− c represents the computation time allowed.
�

Ultrametric Finite Automata and Turing Machines 11

References

1. Ablayev, F.M., Freivalds, R.: Why Sometimes Probabilistic Algorithms Can Be
More Effective. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986.
LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)

2. Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Mat. Sem. Univ. Ham-
burg, B.5, 353–363 (1927)

3. Dragovich, B., Dragovich, A.: A p-Adic Model of DNA Sequence and Genetic Code.
p-Adic Numbers, Ultrametric Analysis, and Applications 1(1), 34–41 (2009)

4. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Com-
putability Theory, pp. 473–503. North-Holland, Amsterdam (1999)

5. Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In:
Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502,
pp. 565–613. Springer, Heidelberg (1991)

6. Freivalds, R.: How to Simulate Free Will in a Computational Device. ACM Com-
puting Surveys 31(3), 15 (1999)

7. Freivalds, R.: Non-Constructive Methods for Finite Probabilistic Automata. Inter-
national Journal of Foundations of Computer Science 19(3), 565–580 (2008)

8. Freivalds, R.: Ultrametric automata and Turing machines. In: Voronkov, A. (ed.)
Turing-100. EPiC Series, vol. 10, pp. 98–112. EasyChair (2012)

9. Garret, P.: The Mathematics of Coding Theory. Pearson Prentice Hall, Upper
Saddle River (2004)

10. Gouvea, F.Q.: p-adic Numbers: An Introduction (Universitext), Springer, 2nd edn.
Springer (1983)

11. Hirvensalo, M.: Quantum Computing. Springer, Heidelberg (2001)
12. Khrennikov, A.Y.: Non Archimedean Analysis: Quantum Paradoxes, Dynamical

Systems and Biological Models. Kluwer Academic Publishers (1997)
13. Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edn. Grad-

uate Texts in Mathematics, vol. 58. Springer (1984)
14. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.

Problems in Information Transmission 1, 1–7 (1965)
15. Kozyrev, S.V.: Ultrametric Analysis and Interbasin Kinetics. p-Adic Mathematical

Physics. In: Proc. of the 2nd International Conference on p-Adic Mathematical
Physics, American Institute Conference Proceedings, vol. 826, pp. 121–128 (2006)

16. Madore, D.A.: A first introduction to p-adic numbers,
http://www.madore.org/~david/math/padics.pdf

17. Turakainen, P.: Generalized Automata and Stochastic Languages. Proceedings of
the American Mathematical Society 21(2), 303–309 (1969)

18. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical
Physics. World Scientific, Singapore (1995)

19. Weyl, H.: The concept of a Riemann surface. Dover Publications, New York (2009)

http://www.madore.org/~david/math/padics.pdf

Recompression: Word Equations and Beyond

Artur Jeż1,2,�

1 Max Planck Institute für Informatik,
Campus E1 4, DE-66123 Saarbrücken, Germany

2 Institute of Computer Science, University of Wrocław
ul. Joliot-Curie 15, 50-383 Wrocław, Poland

aje@cs.uni.wroc.pl

Abstract. We present the technique of local recompression on the ex-
ample of word equations. The technique is based on local modification
of variables (replacing X by aX or Xa) and replacement of pairs of
letters appearing in the equation by a ‘fresh’ letter, which can be seen
as a bottom-up building of an SLP (Straight-Line Programme) for the
solution of the word equation, i.e. a compression.

Using this technique we give a simple proof that satisfiability of word
equations is in PSPACE. Furthermore we sketch the applications for some
problems regarding the SLP compressed strings.

1 Introduction

Local Recompression. We demonstrate the technique of local recompression.
It was developed for compressed membership problem for finite automata [6]
and it was later found that it is applicable also to other problems for compressed
data [4,5]. However, its most unexpected and surprising application is in the area
of word equations, for which it gives simple proofs for many previously known
results. In this paper we explain the technique using the word equations as the
working example. In this way we obtain a nondeterministic algorithm that works
in time O(log Npoly(n)) and in O(n2) space, where n is the size of the input
equation and N the size of the smallest solution. Furthermore, for O(1) variables
a more careful analysis yields that the space consumption is O(n), thus showing
that this case is context-sensitive. Lastly, the algorithm can be easily generalised
to a generator of all solutions.

Word Equations. The problem of word equations is one of the oldest in com-
puter science: given words U and V , consisting of letters (from Σ) and variables
(from X) we are to check the satisfiability, i.e. decide whether there is a substi-
tution for variables that turns this formal equation into an equality of strings.
It is useful to think of a solution S as a homomorphism S : Σ ∪ X �→ Σ∗,
which is an identity on Σ. In the more general problem of solving the equation,
� Supported by NCN grant number 2011/01/D/ST6/07164, 2011–2014 and by Hum-

boldt Foundation Research Fellowship.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 12–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Recompression: Word Equations and Beyond 13

we are to give representation of all solutions of the equation. This problem was
first solved by Makanin [13] and the currently best PSPACE algorithm is due to
Plandowski [16].

Local Recompression and Word Equations. The idea of the technique is
easily explained in terms of solutions of the equations rather than the equations
themselves: consider a solution S(U) = S(V) of the equation U = V . In one
phase we first list all pairs of different letters ab that appear as substrings in S(U)
and S(V). For a fixed pair ab of this kind we greedily replace all appearances of
ab in S(U) and S(V) by a ‘fresh’ letter c. (A slightly more complicated action is
performed for pairs aa, for now we ignore this case to streamline the presentation
of the main idea). There are possible conflicts between such replacements for
different types of pairs (consider string aba, in which we try to replace both
pairs ab and ba), we resolve them by introducing some arbitrary order on types
of pairs and performing the replacement for one type of pair at a time, according
to the order. When all such pairs are replaced, we obtain another equal pair of
strings S′(U ′) and S′(V ′) (note that the equation U = V may have changed,
say into U ′ = V ′). Then we iterate the process. In each phase the strings are
shortened by a constant factor, hence after O(log N) phases we obtain constant-
length strings. The original equation is solvable if and only if the obtained strings
are the same.

The problematic part is that the operations are performed on the solutions,
which can be large. If we simply guess S and then perform the compressions, the
running time is polynomial in N . Instead we perform the compression directly
on the equation (the recompression): the pairs ab appearing in the solution are
identified using only the equation and the compression of the solution is two-fold:
the pairs ab from U and V are replaced explicitly and the pairs fully within some
S(X) are replaced implicitly, by changing S (which is not stored). However, not
all pairs of letters can be compressed in this way, as some of them appear on the
‘crossing’ between a variable and a constant: consider for instance S(X) = ab,
a string of symbols Xc and a compression of a pair bc. This is resolved by local
decompression: when trying to compress the pair bc in the example above we
first replace X by Xb (implicitly changing S(X) from ab to a), obtaining the
string of symbols Xbc, in which the pair bc can be easily compressed.

Example 1. Consider an equation aXca = abY a with a solution S(X) = baba
and S(Y) = abac. In the first phase, the algorithm wants to compress the
pairs ab, ca, ac, ba, say in this order. To compress ab, it replaces X with bX ,
thus changing the substitution into S(X) = aba. After compression we obtain
equation a′Xca = a′Y a. Notice, that this implicitly changed to solution into
S(X) = a′a and S(Y) = a′ac. To compress ca (into c′), we replace Y by Y c,
thus implicitly changing the substitution into S(Y) = a′a. Then, we obtain the
equation a′Xc′ = a′Y c′ with a solution S(X) = a′a and S(Y) = a′a. Remaining
pairs no longer appear in the equation, so we proceed to the next phase.

14 A. Jeż

Related Techniques. While the presented method of recompression is rela-
tively new, some of its ideas and inspirations go quite back. It was developed
in order to deal with fully compressed membership problem for NFA and the
previous work on this topic by Mathissen and Lohrey [12] already implemented
the idea of replacing strings with fresh letters as well as modifications of the
instance so that this is possible. Furthermore they identified the importance of
maximal blocks of a single letter and dealt with them appropriately. However,
the replacement was not iterated, and the newly introduced letters could not be
further compressed.

The idea of replacing short strings by a fresh letter and iterating this procedure
was used by Mehlhorn et. al [14] in their work on data structure for equality
testing for dynamic strings.

A similar technique, based on replacement of pairs and blocks of the same
letter was proposed by Sakamoto [19] in the context of constructing a smallest
grammar generating a given word. His algorithm was inspired by a practical
grammar-based compression algorithm RePair [9]. It possessed the important
features of the method: iterated replacement, and ignoring letters recently in-
troduced. However, the analysis that stressed the modification of the variables
was not introduced and it was done in a different way.

2 Toy Example: Equality of Strings

In this section we introduce the first ‘half’ of the recompression technique and ap-
ply it in the trivial case of equality testing of two explicit strings (say u, v ∈ Σ∗),
i.e. their representation is not compressed. This serves as an easy introduction.

In case of equality testing, our approach is similar to the one of Mehlhorn
et al. [14] from their work on equality testing for dynamic strings. The proposed
method was based on iterative replacement of strings: they defined a schema,
which replaced a string s with a string s′ (where |s′| ≤ c|s| for some constant
c < 1) and iterated the process until a length-1 string was obtained. Most im-
portantly, the replacement is injective, i.e. if s1 �= s2 then they are replaced with
different strings.1 In this way, for each string we calculate its unique signature
and two strings are equal if and only if their signatures are.

The second important property of this schema is that the replacement is
‘local’: s is partitioned into blocks of O(1) letters and each of them is replaced
independently.

The recompression, as presented in this section, is a variant of this approach,
in which a different replacement schema is applied. To be more specific, our
algorithm is based on two types of ‘compressions’ performed on strings:

pair compression of ab For two different letters ab appearing in v or u replace
each of ab in v and u by a fresh letter c.

a’s block compression For each maximal block a�, with � > 1, that appears
in v replace all a�s in v and u by a fresh letter a�.

1 This is not a information-theory problem, as we replace only strings that appear in
the instance and moreover can reuse original letters.

Recompression: Word Equations and Beyond 15

By a maximal block we denote a substring of the form ak that cannot be extended
by a to the left nor to the right. By a fresh letter we denote any letter that does
not appear in v or u. We adopt the following notational convention throughout
rest of the paper: whenever we refer to a letter a�, it means that the last block
compression was done for a and a� is the letter that replaced a�.

Clearly, both compressions operations preserve the equality of strings.

Lemma 1. Let v′, u′ be obtained from v and u by a pair compression (or block
compression). Then v = u if and only if v′ = u′.

Algorithm 1. SimpleEqualityTesting
1: while |v| > 1 and |u| > 1 do
2: L ← list of letters appearing in u and v
3: for each a ∈ L do compress blocks of a

4: P ← list pairs appearing in u and v
5: for each ab ∈ P do compress pair ab

6: Naively check the equality

Using those two operations, we
can define SimpleEqualityTesting,
which tests the equality of two
strings.

Its crucial property is that in
each iteration of the main loop the
lengths of v and u shorten by a
constant factor.

Lemma 2. When |v|, |u| > 1 then one iterations of the main loop of SimpleE-
qualityTesting shortens those lengths by a constant factor. In particular, there
are O(log(min(|v|, |u|))) such iterations.

Proof. We call one iteration of the main loop a phase. We first show that for
two consecutive letters of v (the proof for u is the same) at least one of them is
compressed in this phase.

Claim 1. Consider any two consecutive letters a and b in v or u at the beginning
of the phase. Then at least one of those letters is compressed till the end of the
iteration of the .

Proof. Suppose for the sake of contradiction that both of them are not com-
pressed. If they are the same, then they are compressed during the blocks com-
pression, contradiction. So suppose that they are different. Since none of them
is compressed during the block compression ab ∈ P and we try to compress this
appearance during the pair compressions. This fails if and only if one of letters
from this appearance was already compressed when we considered ab during the
pair compression. �	
So each uncompressed letter can be associated with a letter to the left and to the
right, which were compressed (the first and last letter can be only associated with
a letter to the right/left, respectively). Since when a substring is compressed, it is
of length at least two, this means that no compressed letter is associated with two
uncompressed letters. So, for a pattern v there are at most |v|+2

3 uncompressed
letters and at least 2|v|−2

3 compressed ones. Hence, the length of the pattern at
the end of a phase is at most

|v| + 2
3

+ 1
2

· 2|v| − 2
3

= 2|v| + 1
3

≤ 5
6

|v| ,

where the last inequality holds in the interesting case of |v| > 1. �	

16 A. Jeż

Now, by iterative application of Lemma 1 each compression performed by Sim-
pleEqualityTesting preserves the equality of strings, so it returns a proper answer.

Theorem 1. SimpleEqualityTesting properly tests the equality of v and u.

3 Word Equations

We shall now adopt the local recompression to word equations. Observe that in
this problems we also want to test equality of two strings, which are unfortunately
given implicitly. We start with some necessary definitions.

By Σ we denote the set of letters appearing in the equation U = V or are
used for representation of compressed strings, X denotes a set of variables. The
equation is written as U = V , where U, V ∈ (Σ ∪ X)∗. By |U |, |V | we denote
the length of U and V , n denotes the length of the input equation.

A substitution is a morphism S : X ∪ Σ �→ Σ∗, such that S(a) = a for
every a ∈ Σ, substitution is naturally extended to (X ∪ Σ)∗. A solution of an
equation U = V is a substitution S, such that S(U) = S(V); a solution S is a
length-minimal, if for every solution S′ it holds that |S(U)| ≤ |S′(U)|.

We want to replace pairs of letters (and blocks) appearing in S(U) and S(V).
Since we do not know S, we face the first problem: how to actually list all the
pairs and maximal blocks? Clearly some non-deterministic guessing is needed
and the below Lemma 3 shows that in fact those guesses can be very local: it
is enough to guess the first (say a) and last (say b) letter of S(X) as well as
the lengths of the a-prefix and b-suffix of S(X), for each X . Before Lemma 3,
though, we need to classify the appearances of pairs and letters:

Definition 1. Given an equation U = V , a substitution S and a substring
u ∈ Σ+ of S(U) (or S(V)) we say that this appearance of u is explicit, if it
comes from substring u of U (or V , respectively); implicit, if it comes (wholly)
from S(X) for some variable X; crossing otherwise. A string u is crossing (with
respect to S) if it has a crossing appearance and non-crossing otherwise.

We say that a pair of ab is a crossing pair (with respect to S), if ab is crossing.
Otherwise, a pair is non-crossing (with respect to S). Similarly, a letter a ∈ Σ
has a crossing block (with respect to S), if there is a block of as which has a
crossing appearance.

Unless explicitly stated, we consider crossing/non-crossing pairs ab in which
a �= b.

Lemma 3 (cf. [18, Lemma 6]). Let S be a length-minimal solution of U = V .

– If ab is a substring of S(U), where a �= b, then ab is an explicit pair or a
crossing pair.

– If ak is a maximal block in S(U) then there is an appearance of ak which is
crossing or explicit.

Recompression: Word Equations and Beyond 17

Thus, to determine the set of pairs appearing in S(U), S(V) (for a length-
minimal S) it is enough to guess the first (a) and last (b) letter of each S(X)
and the lengths of the a-prefix, b-suffix of S(X), as those determine all crossing
pairs and (lengths of) crossing blocks.

Note that we need to (at least temporarily) store the guessed lengths of the
prefixes/suffixes, so it would be unfortunate if they are unbounded. However, it is
known that for length-minimal solutions this is not the case, as they can be upper
bounded using the well-known exponential bound on exponent of periodicity:

Lemma 4 (Exponent of periodicity bound [8]). If solution S is length-
minimal and w� �= ε is a substring of S(U), then � ≤ 2c(|U|+|V |) for some constant
0 < c < 2.

The compression of crossing/non-crossing pairs (blocks) are essentially different,
as shown in the rest of this section.

Compression of Noncrossing Pairs and Blocks. When ab is non-crossing,
each of its appearance in S(U) is either explicit or implicit. Thus, to perform the
pair compression of ab on S(U) it is enough to separately replace each explicit
pair ab in U and change each ab in S(X) for each variable X . The latter is of
course done implicitly (as S(X) is not written down anywhere).

Algorithm 2. PairCompNCr(a, b)
1: let c ∈ Σ be an unused letter
2: replace each explicit ab in U and V by c

Similarly when none block of a
has a crossing appearance, the a’s
blocks compression consists simply
of replacing explicit a blocks.

Algorithm 3. BlockCompNCr(a)
1: for each explicit a’s �-block in U or V do
2: let a� ∈ Σ be an unused letter
3: replace explicit a’s �-blocks in U or V by a�

We need some notions to formally state that the satisfiability of an equation
is preserved by our procedures, especially that there are some nondeterministic
choices involved. We say that a nondeterministic procedure preserves unsatis-
fiability, when given a unsatisfiable word equation U = V it cannot transform
it to a satisfiable one, regardless of the nondeterministic choices; such a pro-
cedure preserves satisfiability, if given a satisfiable equation U = V for some
nondeterministic choices it returns a satisfiable equation U ′ = V ′. Sometimes
we explicitly state for which choices the satisfiability is preserved.

Lemma 5. PairCompNCr(a, b) preserves the unsatisfiability; if ab is a non-
crossing pair for some solution S then it preserves satisfiability.

BlockCompNCr(a) preserves unsatisfiability; if a has no crossing blocks for
some solution S then it preserves satisfiability.

18 A. Jeż

Crossing Pairs and Blocks Compression. The presented algorithms cannot
be directly applied to crossing pairs or to compression of a’s blocks that have
crossing appearances. However, it is still possible to perform a reduction from
the difficult (crossing) to the easy (non-crossing) case, at least for a fixed pair.
To do this, we modify the instance: if a pair ab is crossing because there is a
variable X such that S(X) = bw for some word w and a is to the left of X , it is
enough to left-pop b from S(X): replace each X with bX and implicitly change
S, so that S(X) = w; similar action is applied to variables Y ending with a and
with b to the right (right-popping a from S(X)). Afterwards, ab is non-crossing
with respect to S.

Lemma 6. Pop(a, b) preserves satisfiability and unsatisfiability. If U = V is
satisfiable then for some nondeterministic choices the obtained U ′ = V ′ has a
solution S′ such that ab is non-crossing (with respect to S′).

It introduces at most 2n new letters to the equation.

Algorithm 4. Pop(a, b)
1: for X ∈ X do
2: if b is the first letter of S(X) then � Guess
3: replace each X in U and V by bX
4: � Implicitly change S(X) = bw to S(X) = w
5: if S(X) = ε then � Guess
6: remove X from the equation
7: � Do a symmetric action for the last letter

By Lemma 6 the pair ab
is non-crossing after Pop(a, b)
hence we can compress ab us-
ing PairCompNCr.
Lemma 7. PairComp(a, b) pre-
serves satisfiability and unsat-
isfiability.

Algorithm 5. PairComp(a, b)
1: run Pop(a, b)
2: run PairCompNCr(a, b)

The problems with crossing blocks can be solved in a similar fashion: a has a
crossing block, if aa is a crossing pair. So we ‘left-pop’ a from X until the first
letter of S(X) is different than a, we do the same with the ending letter. This can
be alternatively seen as removing the whole a-prefix (a-suffix, respectively) from
X : suppose that S(X) = a�war, where w does not start nor end with a. Then
we replace each X by a�Xar, implicitly changing the solution to S(X) = w. The
obtained equation has a solution for which a has no crossing blocks.

Algorithm 6. CutPrefSuff(a)
1: for X ∈ X do
2: guess �, r � S(X) = a�war

3: replace each X in U and V by a�Xar

4: � implicitly change S(X) = a�war to S(X) = w
5: if S(X) = ε then � Guess
6: remove X from the equation

Recompression: Word Equations and Beyond 19

Lemma 8. CutPrefSuff preserves unsatisfiability and satisfiability. If U = V is
satisfiable then for appropriate nondeterministic choices it returns an equation
U ′ = V ′ that has a solution S′ for which a has no crossing blocks.

After CutPrefSuff we can compresses maximal a blocks.

Algorithm 7. BlockComp(a)
1: run CutPrefSuff(a)
2: BlockCompNCr(a)

Lemma 9. BlockComp preserves unsatisfiability and satisfiability.
It introduces at most 2n letters to the equation.

The uncrossing procedures (Pop, CutPrefSuff) pop the letters into the equation
and so increase equations size. The good news is that the number of crossing
pairs and crossing blocks depends solely on the number of variables and not on
the size of the actual equation. In particular, it can be bounded in terms of the
input equation’s size.

Lemma 10. There are at most 2n crossing pairs and at most 2n letters with a
crossing blocks.

The proof is obvious: every crossing pair can be associated with an appearance
of a variable in the equation and at most two pairs can be associated with a
given appearance, the same applies to blocks.

Main Algorithm. Now, the algorithm for testing satisfiability of word equa-
tions can be conveniently stated. We refer to one iteration of the main loop in
WordEqSat as one phase.

Algorithm 8. WordEqSat Checking the satisfiability of a word equation
1: while |U | > 1 or |V | > 1 do
2: L ← letters in U = V without crossing blocks � Guess
3: L′ ← letters in U = V with crossing blocks � Guess, O(n) many
4: for a ∈ L do BlockCompNCr(a)
5: for a ∈ L′ do BlockComp(a)
6: P ← noncrossing pairs in U = V � Guess
7: P ′ ← crossing pairs in U = V � Guess, O(n) many
8: for ab ∈ P do PairCompNCr(a, b)
9: for ab ∈ P ′ do PairComp(a, b)

10: Solve the problem naively � With sides of length 1, the problem is trivial

Theorem 2. WordEqSat nondeterministically verifies the satisfiability of word
equations. It can verify an existence of a length-minimal solution of length N in
O(poly(n) log N) time and O(n2) space.

20 A. Jeż

As in case of Lemma 2 for SimpleEqualityTesting, the crucial property is that one
phase of WordEqSat halves the solution’s length, which is formally stated in the
below lemma:

Lemma 11. Let U = V have a solution S. For appropriate nondeterministic
choices the equation U ′ = V ′ obtained at the end of the phase has a solution S′

such that i) at least 2/3 of letters in U or V are compressed in U ′ or V ′; ii) at
least 2/3 of letters in S(U) are compressed in S′(U ′).

Lemma 11 is enough to show the bound on used memory: on one hand the Pop
and CutPrefSuff introduce O(n) new letters per uncrossed pair or letter and as
there are O(n) such pairs and letters, see Lemma 10, in total there are O(n2)
letters introduced to the equation in one phase. On the other hand U and V are
shortened by a constant factor; together those two yield a quadratic bound on
|U ′| and |V ′|. Moreover, Lemma 11 alone yields that for some choices there are
O(log N) phases.

4 Speeding Up the Recompression

The satisfiability problem for word equations is NP-hard and so ‘efficiency’ of the
implementation of the recompression (running time, exact space consumption)
is in general not crucial. However, in some cases (one variable, O(1) variables)
the exact running time and space usage are in fact important, moreover, ap-
plication of the recompression to SLPs, as described in Section 6, usually yield
deterministic polynomial time algorithms, for which the running time is crucial.
In this section we present some improvements of the recompression, which are
important in some applications, listed in Sections 5 and 6.

4.1 Limiting the Number of Crossing Pairs

The number of crossing pairs can be bounded by 2nv, where nv is the number of
appearance sof variables in the equation. Using a simple preprocessing this can
be reduced to 2|X |, where |X | is the number of different variables in the equation.
The idea is quite simple: for each variable X we left-pop and right-pop a letter
from it, in this way each appearance of X is always preceeded (succeeded) by
the same letter.

Algorithm 9. Preproc
1: for X ∈ X do
2: let a be the first letter of S(X) � Guess
3: replace each X in U and V by aX
4: � Implicitly change S(X) = aw to S(X) = w
5: if S(X) = ε then � Guess
6: remove X from the equation
7: � Do a symmetric action for the last letter

Recompression: Word Equations and Beyond 21

Lemma 12. After Preproc there are at most 2|X | crossing pairs. Preproc intro-
duces one symbol to the left and one to the right of each appearance of a variable
in the equation.

The proof is fairly obvious. The Preproc is run before the calculation of the cross-
ing pairs. It introduces in total O(nv) letters to the equation, so asymptotically
does not influence the size of the size of the stored equation. However, for O(1)
variables the improved estimation on the umber of crossing pairs is crucial.

4.2 Parallel Compression of Crossing Pairs

The Pop and PairComp work for a fixed pair and it seems that they cannot
uncross and compress arbitrary pairs in parallel. However, they can process in
parallel pairs of a specific form: consider a partition of alphabet Σ to Σ� and
Σr. Then two pairs from Σ�Σr cannot overlap and so all such pairs can be
compressed in parallel. Furthermore, they can all be uncrossed in parallel, using
a variant of Pop.

Algorithm 10. PopImp(Σ�, Σr)
1: for X ∈ X do
2: let b ← the first letter of S(X) � Guess
3: if b ∈ Σr then
4: replace each X in U and V by bX
5: � Implicitly change S(X) = bw to S(X) = w
6: if S(X) = ε then � Guess
7: remove X from the equation
8: � Do a symmetric action for the last letter

It can be shown that PopImp uncrosses all pairs from Σ�Σr

Lemma 13. Pop(Σ�, Σr) preserves satisfiability and unsatisfiability. If U = V
is satisfiable then for some nondeterministic choices the obtained U ′ = V ′ has a
solution S′ such that no pair from Σ�Σr is crossing (with respect to S′).

It introduces at most 2n new letters to the equation.
Thus after PopImp(Σ�, Σr) we can compress all pairs from Σ�Σr.

Still it is left to define a partition (Σ�, Σr). There are basically two ways of
doing so: either we generate a set of partitions, such that each crossing pair is in
at least one of those partitions, or we can choose a special partition, such that
a constant fraction of all appearances of crossing pairs are in this partition.

Lemma 14. For solution S of an equation U = V there exists a partition
(Σ�, Σr) such that at least one fourth of appearances of pairs in S(U) = S(V) is
in Σ�Σr.

For an equation U = V there exists a partition (Σ�, Σr) such that at least one
fourth of appearances of pairs in U = V is in Σ�Σr.

For a set of crossing pairs P ′ there exists a set of partitions with O(log |P ′|)
partitions such that each element of P ′ is in at least one of those partitions.

22 A. Jeż

Each of the claims follows by the same probabilistic argument: suppose that we
partition Σ randomly, with each element going to Σ� or Σr with probability 1/2.
Then a fixed appearance of a pair of different letters is covered by this random
partition with probability 1/4 and so the expected number of pairs covered in
S(U) = S(V) (or U = V , or in P ′) is 1/4, so there is a partition for which this is
indeed 1/4 of all pairs. For the last claim of the lemma note that one partition
reduces the size of P ′ by 3/4, so we need to iterate it O(log |P ′|) times.

Thus there are two ways to use the partitions: either we find (guess) the
O(log |P ′|) partitions and compress pairs in each of them, or we find only two
partitions: one which covers 1/4 of pairs in S(U) = S(V) (so that the length
of the solution drops by a constant factor) and one that covers 1/4 of pairs in
U = V (so that the length of U and V drop by a constant factor). Both version
lead to smaller running time and smaller equation size.

4.3 Uncrossing Blocks in Parallel

It is relatively easy to show that all blocks of letters can be uncrossed in par-
allel, reducing the running time and the number of letters introduced into the
equations during the block compression. To this end it is enough to apply Cut-
PrefSuff once, but pop the a-prefix and b-suffix from each variable regardless of
what letter a and b are.

Algorithm 11. CutPrefSuffImp
1: for X ∈ X do
2: guess a �, b and r � S(X) = a�wbr

3: replace each X in U and V by a�Xbr

4: � implicitly change S(X) = a�wbr to S(X) = w
5: if S(X) = ε then � Guess
6: remove X from the equation

Lemma 15. CutPrefSuffImp preserves unsatisfiability and satisfiability. If U =
V is satisfiable then for appropriate nondeterministic choices it returns an equa-
tion U ′ = V ′ that has a solution S′ which has no crossing blocks.

Using CutPrefSuffImp instead of CutPrefSuff guarantees that only O(nv) new
letters are introduced into U = V .

5 Other Results for Word Equations

Using the approach of recompression we can give (alternative and often simpler)
proofs of some (old and new) results on word equations.

Double Exponential Bound on Minimal Solutions. The running time of
WordEqSat is polynomial in n and log N and it is easy to also lower-bound it in
terms of log N . On the other hand the length of the stored equations is O(n),
which yields that there are exponentially (in n) many different configurations.
Comparing those two bounds yields a doubly exponential bound on N .

Recompression: Word Equations and Beyond 23

Exponential Bound on Exponent of Periodicity. For a word w the expo-
nent of periodicity per(w) is the maximal k such that uk is a substring of w,
for some u ∈ Σ+; Σ-exponent of periodicity perΣ(w) restricts the choice of u to
Σ. This notion is naturally transferred to equations: For an equation U = V ,
define the exponent of periodicity as maxS [per(S(U))], where the maximum is
taken over all length-minimal solutions S of U = V ; define the Σ-exponent of
periodicity of U = V in a similar way.

One of the important part of Makanin’s work was to bound the exponent of
periodicity in terms of the equations size. This notion remained important in the
following work on word equations and the tight exponential bound was shown
by Kościelski and Pacholski [8]. WordEqSat uses only Σ-exponent of periodicity
(to bound the lengths of the a-prefixes and suffixes), which can be shown by
restricting the proof of Kościelski and Pacholski [8] to algebraic estimations. On
the other hand, a more involved analysis of WordEqSat shows that in order to
show the upper bound on exponent of periodicity it is enough to show prove
bounds on Σ-exponent of periodicity and on running time, both of which we
already have.

Linear Space for O(1) Variables (New). Using the methods described in
Section 4 it can be enforced that WordEqSat stores equations of linear length.
However, the letters in such an equation can be all different, even if the in-
put equation is over two letters. Hence the (nondeterministic) space usage is
O(n log n) bits. For O(1) variables (and unbounded number of appearances) we
improve the bit consumption to only constant larger than the input. To this
end it is enough to improve the encoding of the words in the equation. Let
LinWordEqSat denotes such modified WordEqSat.

Theorem 3. LinWordEqSat preserves unsatisfiability and satisfiability. For k
variables, it runs in (nondeterministic) O(mkck) space, for some constant c,
where m is the size of the input measured in bits.

One Variable (New). The word equations with one variable are solvable in P
(in fact, this is true even for two variables [1,2]). The naive algorithm takes O(n3)
time. First non-trivial bound was given by Obono, Goralcik and Maksimenko,
who devised an O(n log n) algorithm [15]. This was improved by Dąbrowksi and
Plandowski [3] to O(n + #X log n), where #X is the number of appearances of
the variable in the equation.

The WordEqSat determinises in case of one variable and its natural imple-
mentation runs in O(n + #X log n), so the same running time as algorithm of
Dąbrowksi and Plandowski [3]. Using a couple of heuristics as well as a better
run-time analysis this can be lowered to O(n), in the RAM model [7].

Representation of All Solutions. Plandowski [17] gave an algorithm that
generated a finite, graph-like representation of all solutions of a word equation.
It is based on the idea that his algorithm not only preserves satisfiability and
unsatisfiability, but it in some sense operates on the solutions: when it transforms

24 A. Jeż

U = V to U ′ = V ′ then solutions of U ′ = V ′ correspond to solutions of U = V .
Moreover, each solution of U = V can be represented in this way for some
U ′ = V ′. Hence, all solutions can be represented as a graph as follows: nodes
are labelled with equations of the form U = V and a directed edge leads from
U = V to U ′ = V ′ if for some nondeterministic choices the former equation is
transformed into the latter by the algorithm. Furthermore, the edge describes,
how the solutions of U ′ = V ′ can be changed into the solutions of U = V (i.e. it
says what strings should be substituted for letters in U ′ = V ′ to obtain U = V).

Nevertheless the necessary changes to the original algorithm were non-trivial
and the proof of its correctness involved. On the other hand, the algorithm
presented in this paper generalises easily to a generator of all solutions.

Theorem 4 (cf. [17]). The graph representation of all solutions of an equation
U = V can be constructed in PSPACE. The size of the constructed graph is at
most exponential.

6 Applications to Straight Line Programmes

A Straight-Line Programme (SLP) is a context free grammar G over the alphabet
Σ in which every nonterminal generates exactly one string. It is known that SLPs
are closely related to practical compression standards (LZW and LZ) in the sense
that they are polynomially equivalent to LZ, which is the most powerful among
block-based compression standards. The SLPs are widely studied because they
offer a very well-structured representation of text, which is suitable for later
processing and algorithms, see a recent survey by Lohrey [11].

Since each nonterminal of SLPs defines a unique word, we can imagine them
as a collection of word equations Xi = αi, where the SLP contains the rule
Xi → αi. Thus it is clear that the recompression can be applied to SLPs as
well. Furthermore, the nondeterminism disappears in this case: it was needed to
determine the first/last letter of S(X) and the lengths of the a-prefix/a-suffix of
S(X) and those can be calculated in the SLP case by a bottom-up procedure.

Using the recompression, we obtained a couple of results for problems related
to SLPs.

Fully Compressed Membership Problem. In the fully compressed mem-
bership problem we are given an automaton (NFA or DFA) whose transitions
are labelled with compressed words, i.e. SLPs. We are to decide, whether it ac-
cepts the input word, which is also supplied as an SLP. It was known that this
problem is in PSPACE and NP-hard for NFAs (P-hard for DFAs) and it was
conjectured that indeed it is in NP(P, respectively). This was established using
the recompression approach [6], and in fact the method was devised do deal with
this problem.

Fully Compressed Pattern Matching. In the fully compressed pattern
matching we are given two strings, s and p, represented as SLPs, and we are

Recompression: Word Equations and Beyond 25

to return all appearances of p in s. The previous-best algorithm for this problem
had a cubic running time [10], a recompression-based approach yields a quadratic
algorithm [4].

Smallest Grammar Problem. The main disadvantage of the SLP compres-
sion is that the problem of outputting the smallest grammar generating a given
text is hard: even the size of this grammar is hard to approximate within a con-
stant factor. There are however several algorithms that achieve an O(log(N/n))
approximation ration, where N is the size of the input text, and n the size of the
smallest grammar. Using a recompression we obtain a (yet another) very simple
algorithm achieving this bound [5].

Acknowledgements. I would like to thank P. Gawrychowski for initiating my
interest in compressed membership problems, which eventually led to this work
and for pointing to relevant literature [12,14]; J. Karhumäki, for his question,
whether the techniques of local recompression can be applied to the word equa-
tions; W. Plandowski for his comments and suggestions and questions concerning
the space consumption that led to linear space algorithm for O(1) variables.

References

1. Charatonik, W., Pacholski, L.: Word equations with two variables. In: Abdulrab,
H., Pécuchet, J.P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 43–56. Springer,
Heidelberg (1993)

2. Da̧browski, R., Plandowski, W.: Solving two-variable word equations. In: Díaz, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 408–419. Springer, Heidelberg (2004)

3. Dąbrowski, R., Plandowski, W.: On word equations in one variable. Algorith-
mica 60(4), 819–828 (2011)

4. Jeż, A.: Faster fully compressed pattern matching by recompression. In: Czumaj,
A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS,
vol. 7391, pp. 533–544. Springer, Heidelberg (2012)

5. Jeż, A.: Approximation of grammar-based compression via recompression. In:
Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 165–176. Springer,
Heidelberg (2013)

6. Jeż, A.: The complexity of compressed membership problems for finite automata.
Theory of Computing Systems, 1–34 (2013),
http://dx.doi.org/10.1007/s00224-013-9443-6

7. Jeż, A.: One-variable word equations in linear time. In: Fomin, F.V., Freivalds,
R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS. Springer, Heidelberg
(to appear, 2013)

8. Kościelski, A., Pacholski, L.: Complexity of Makanin’s algorithm. J. ACM 43(4),
670–684 (1996)

9. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compres-
sion Conference, pp. 296–305. IEEE Computer Society (1999)

10. Lifshits, Y.: Processing compressed texts: A tractability border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

http://dx.doi.org/10.1007/s00224-013-9443-6

26 A. Jeż

11. Lohrey, M.: Algorithmics on SLP-compressed strings: A survey. Groups Complexity
Cryptology 4(2), 241–299 (2012)

12. Lohrey, M., Mathissen, C.: Compressed membership in automata with compressed
labels. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651,
pp. 275–288. Springer, Heidelberg (2011)

13. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 2(103), 147–236 (1977) (in Russian)

14. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time. Algorithmica 17(2), 183–198 (1997)

15. Obono, S.E., Goralcik, P., Maksimenko, M.N.: Efficient solving of the word equa-
tions in one variable. In: Prívara, I., Rovan, B., Ruzicka, P. (eds.) MFCS 1994.
LNCS, vol. 841, pp. 336–341. Springer, Heidelberg (1994)

16. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.
J. ACM 51(3), 483–496 (2004)

17. Plandowski, W.: An efficient algorithm for solving word equations. In: Kleinberg,
J.M. (ed.) STOC, pp. 467–476. ACM (2006)

18. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution
of words equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998)

19. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. J. Discrete Algorithms 3(2-4), 416–430 (2005)

Joint Spectral Characteristics:

A Tale of Three Disciplines�

Raphaël M. Jungers

ICTEAM Institute, Université catholique de Louvain and FNRS
raphael.jungers@uclouvain.be

Joint spectral characteristics describe the stationary behavior of a discrete time
linear switching system. Well, that’s what an electrical engineer would say. A
mathematician would say that they characterize the asymptotic behavior of a
semigroup of matrices, and a computer scientist would perhaps see them as
describing languages generated by automata.

Because of their connections with these wide research topics, joint spectral
characteristics have been at the center of rich and diverse research efforts in
recent years (see [7,11,15] for general surveys). They are notoriously very hard
to compute (NP-hardness, Undecidability, etc. are the rule rather than the ex-
ception [16,10]), but it turns out that one can often get around these difficulties,
and modern optimization techniques seem particularly useful for studying them
[14,13].

I will survey and connect several powerful and interesting results, emphasizing
the role of optimization methods. I will present applications, ranging from wire-
less control protocols to viral diseases treatment, malicious agents tracking, etc...
I will emphasize the numerous connections with language and automata theory.
In particular, I will cover the asymptotics of repetition-free languages [8,4,9,5],
the capacity of codes avoiding forbidden differences [12,6,3], and recent results
linking automata theory with the generation of Linear Matrix Inequalities for
computing the joint spectral radius [1,2]. I will present several open problems
and promising research directions.

References

1. Ahmadi, A.A., Jungers, R.M., Parrilo, P., Roozbehani, M.: Analysis of the joint
spectral radius via Lyapunov functions on path-complete graphs. In: Proceedings
of: Hybrid Systems: Computation and Control (HSCC 2011), Chicago (2011)

2. Ahmadi, A.A., Jungers, R.M., Parrilo, P., Roozbehani, M.: When is a set of LMIs
a sufficient condition for stability? In: Proceedings of: ROCOND 2012, Aalborg
(2012)

3. Asarin, E., Dima, C.: On the computation of covert channel capacity. RAIRO -
Theoretical Informatics and Applications 44(1), 37–58 (2010)

4. Berstel, J.: Growth of repetition-free words–a review. Theoretical Computer
Science 340(2), 280–290 (2005)

� Work supported by the Communauté française de Belgique - Actions de Recherche
Concertées, and by the Belgian Programme on Interuniversity Attraction Poles ini-
tiated by the Belgian Federal Science Policy Office.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 27–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

28 R.M. Jungers

5. Blondel, V.D., Cassaigne, J., Jungers, R.M.: On the number of α-power-free words
for 2 < α ≤ 7/3. Theoretical Computer Science 410, 2823–2833 (2009)

6. Blondel, V.D., Jungers, R., Protasov, V.Y.: On the complexity of computing the
capacity of codes that avoid forbidden difference patterns. IEEE Transactions on
Information Theory 52(11), 5122–5127 (2006)

7. Jungers, R.M.: The joint spectral radius, theory and applications. LNCIS, vol. 385.
Springer, Heidelberg (2009)

8. Jungers, R.M., Protasov, V.Y., Blondel, V.D.: Overlap-free words and spectra of
matrices. Theoretical Computer Science 410, 3670–3684 (2009)

9. Karhumäki, J., Shallit, J.: Polynomial versus exponential growth in repetition-free
binary words. Journal of Combinatorial Theory Series A 105(2), 335–347 (2004)

10. Kozyakin, V.A.: Algebraic unsolvability of problem of absolute stability of desyn-
chronized systems. Automation and Remote Control 51, 754–759 (1990)

11. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)
12. Moision, B.E., Orlitsky, A., Siegel, P.H.: On codes that avoid specified differences.

IEEE Transactions on Information Theory 47, 433–442 (2001)
13. Parrilo, P.A., Jadbabaie, A.: Approximation of the joint spectral radius of a set of

matrices using sum of squares. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.)
HSCC 2007. LNCS, vol. 4416, pp. 444–458. Springer, Heidelberg (2007)

14. Protasov, V.Y., Jungers, R.M., Blondel, V.D.: Joint spectral characteristics of ma-
trices: a conic programming approach. SIAM Journal on Matrix Analysis and Ap-
plications 31(4), 2146–2162 (2010)

15. Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability criteria for
switched and hybrid systems. SIAM Review 49(4), 545–592 (2007)

16. Tsitsiklis, J.N., Blondel, V.D.: The Lyapunov exponent and joint spectral radius of
pairs of matrices are hard- when not impossible- to compute and to approximate.
Mathematics of Control, Signals, and Systems 10, 31–40 (1997)

Unambiguous Finite Automata

Christof Löding

RWTH Aachen, Germany
loeding@cs.rwth-aachen.de

In general, a nondeterministic automaton or machine (for example a finite au-
tomaton, pushdown automaton or Turing machine) is called unambiguous if
each input is accepted by at most one run or computation. Each deterministic
automaton is obviously unambiguous. However, in many settings, unambiguous
automata are more expressive or admit more succinct automata than determin-
istic models, while preserving some good algorithmic properties. The aim of this
talk is to survey some classical and some more recent results on unambiguous
finite automata over different kind of input structures, namely finite words, in-
finite words, finite trees, and infinite trees.

A typical example is the inclusion problem for automata on finite words,
which is solvable in polynomial time for unambiguous automata [9], while it is
PSPACE-complete for general nondeterministic automata (see Section 10.6 of
[1]). This result can be lifted to unambiguous automata on finite ranked trees
[8], and can, for example, be used to derive efficient inclusion tests for certain
classes of automata on unranked trees [7].

The method of [9] uses a counting argument for the number of accepting runs
for words up to a certain length. This method cannot be used for unambiguous
Büchi automata in the setting of infinite input words. As a consequence, the
question whether inclusion testing for unambiguous Büchi automata can be done
efficiently, is still open. Partial results for a stronger notion of unambiguity taken
from [5], and for subclasses of Büchi automata have been obtained in [3] and [6].

Concerning infinite trees, the situation becomes different because unambigu-
ous automata are not expressively equivalent to unrestricted nondeterministic
automata anymore. The proof of this result, presented in [4], relies on the fact
that it is not possible to define in monadic second-order logic a choice function
on the infinite binary tree. Since not all regular languages of infinite trees are
unambiguous, a natural decision problem arises: “Given a regular language of
an infinite tree, does there exist an unambiguous automaton for it?” It is still
unknown whether this problem is decidable, only partial solutions for specific
cases have been obtained [2].

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, New York (1974)

2. Bilkowski, M.: Ambiguity property for complements of deterministic tree languages.
Presentation at the Annual Workshop of the ESF Networking Programme on Games
for Design and Verification, Oxford (2010)

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 29–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

30 C. Löding

3. Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly unambigu-
ous Büchi automata. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010.
LNCS, vol. 6031, pp. 118–129. Springer, Heidelberg (2010)

4. Carayol, A., Löding, C., Niwiński, D., Walukiewicz, I.: Choice functions and well-
orderings over the infinite binary tree. Central European Journal of Mathemat-
ics 8(4), 662–682 (2010)

5. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci.
297(1–3), 37–81 (2003)

6. Isaak, D., Löding, C.: Efficient inclusion testing for simple classes of unambiguous
ω-automata. Information Processing Letters 112(14-15), 578–582 (2012)

7. Martens, W., Niehren, J.: On the minimization of xml schemas and tree automata
for unranked trees. J. Comput. Syst. Sci. 73(4), 550–583 (2007)

8. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3),
424–437 (1990)

9. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM
Journal on Computing 14(3), 598–611 (1985)

An Explicit Formula for the Intersection

of Two Polynomials of Regular Languages

Jean-Éric Pin�

LIAFA, University Paris-Diderot and CNRS, France

Abstract. Let L be a set of regular languages of A∗. An L-polynomial
is a finite union of products of the form L0a1L1 · · · anLn, where each ai is
a letter of A and each Li is a language of L. We give an explicit formula
for computing the intersection of two L-polynomials. Contrary to Arfi’s
formula (1991) for the same purpose, our formula does not use comple-
mentation and only requires union, intersection and quotients. Our result
also implies that if L is closed under union, intersection and quotient,
then its polynomial closure, its unambiguous polynomial closure and its
left [right] deterministic polynomial closure are closed under the same
operations.

1 Introduction

Let L be a set of regular languages of A∗. An L-polynomial is a finite union of
products of the form L0a1L1 · · ·anLn, where each ai is a letter of A and each Li

is a language of L. The polynomial closure of L, denoted by Pol(L), is the set of
all L-polynomials.

It was proved by Arfi [1] that if L is closed under Boolean operations and
quotient, then Pol(L) is closed under intersection. This result was obtained by
giving an explicit formula for computing the intersection of two polynomials of
regular languages.

It follows from the main theorem of [6] that Arfi’s result can be extended to
the case where L is only closed under union, intersection and quotient. However,
this stronger statement is obtained as a consequence of a sophisticated result
involving profinite equations and it is natural to ask for a more elementary
proof.

The objective of this paper is to give a new explicit formula for computing
the intersection of two L-polynomials. Contrary to the formula given in [1], our
formula only requires using union, intersection and quotients of languages of L.
Our proof is mainly combinatorial, but relies heavily on the notion of syntactic
ordered monoid, a notion first introduced by Schützenberger [14] (see also [10]).
The main difficulty lies in finding appropriate notation to state the formula, but
then its proof is merely a verification.

� Work supported by the project ANR 2010 BLAN 0202 02 FREC.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 31–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

32 J.-É. Pin

Our result also leads to the following result, that appears to be new: if L is
closed under union, intersection and quotient, then its unambiguous polynomial
closure and its left [right] deterministic polynomial closure are closed under the
same operations.

Let us mention also that our algorithm can be readily extended to the setting
of infinite words by using syntactic ordered ω-semigroups [8].

2 Background and Notation

2.1 Syntactic Order

The syntactic congruence of a language L of A∗ is the congruence on A∗ defined
by u ∼L v if and only if, for every x, y ∈ A∗,

xuy ∈ L ⇐⇒ xvy ∈ L

The monoidM = A∗/∼L is the syntactic monoid of L and the natural morphism
η : A∗ → M is called the syntactic morphism of L. It is a well-known fact that
a language is regular if and only if its syntactic monoid is finite.

The syntactic preorder1 of a language L is the relation �L over A∗ defined
by u �L v if and only if, for every x, y ∈ A∗, xuy ∈ L implies xvy ∈ L.
The associated equivalence relation is the syntactic congruence ∼L. Further, �L

induces a partial order on the syntactic monoid M of L. This partial order � is
compatible with the product and can also be defined directly on M as follows:
given s, t ∈ M , one has s � t if and only if, for all x, y ∈ M , xsy ∈ η(L) implies
xty ∈ η(L). The ordered monoid (M,�) is called the syntactic ordered monoid
of L.

Let us remind an elementary but useful fact: if v ∈ L and η(u) � η(v), then
u ∈ L. This follows immediately form the definition of the syntactic order by
taking x = y = 1.

2.2 Quotients

Recall that if L is a language of A∗ and x is a word, the left quotient of L by x is
the language x−1L = {z ∈ A∗ | xz ∈ L}. The right quotient Ly−1 is defined in a
symmetrical way. Right and left quotients commute, and thus x−1Ly−1 denotes
either x−1(Ly−1) or (x−1L)y−1. For each word v, let us set

[L]↑v = {u ∈ A∗ | η(v) � η(u)}
[L]=v = {u ∈ A∗ | η(u) = η(v)}

1 In earlier papers [6,10,13], I used the opposite preorder, but it seems preferable to
go back to Schützenberger’s original definition.

An Explicit Formula for the Intersection of Two Polynomials 33

Proposition 2.1. The following formulas hold:

[L]↑v =
⋂

{(x,y)∈A∗×A∗| v∈x−1Ly−1}
x−1Ly−1 (1)

[L]=v = [L]↑v −
⋃

η(v)<η(u)

[L]↑u (2)

[L]↑v =
⋃

η(v)�η(u)

[L]=u (3)

Proof. A word u belongs to the right hand side of (1) if and only if the condition
v ∈ x−1Ly−1 implies u ∈ x−1Ly−1, which is equivalent to stating that v �L u,
or η(v) � η(u), or yet u ∈ [L]↑v. This proves (1). Formulas (2) and (3) are
obvious.

Let us make precise a few critical points. First, v always belongs to [L]↑v. This
is the case even if v cannot be completed into a word of L, that is, if v does not
belong to any quotient x−1Ly−1. In this case, the intersection on the right hand
side of (1) is indexed by the empty set and is therefore equal to A∗.

Secondly, the intersection occurring on the right hand side of (1) and the
union occurring on the right hand side of (2) are potentially infinite, but they
are finite if L is a regular language, since a regular language has only finitely
many quotients.

3 Infiltration Product and Infiltration Maps

The definition below is a special case of a more general definition given in [7].
A word c1 · · · cr belongs to the infiltration product of two words a1 · · · ap and
v = b1 · · · bq, if there are two order preserving maps α : {1, . . . , p} → {1, . . . , r}
and β : {1, . . . , q} → {1, . . . , r} such that

(1) for each i ∈ {1, . . . , p}, ai = cα(i),

(2) for each i ∈ {1, . . . , q}, bi = cβ(i),

(3) the union of the ranges of α and β is {1, . . . , r}.
For instance, the set {ab, aab, abb, aabb, abab} is the infiltration product of ab
and ab and the set {aba, bab, abab, abba, baab, baba} is the infiltration product of
ab and ba.

A pair of maps (α, β) satisfying Conditions (1)–(3) is called a pair of infiltra-
tion maps. Note that these conditions imply that p+ q � r.

In the example pictured in Figure 1, one has p = 4, q = 2 and r = 5. The
infiltration maps α and β are given by α(1) = 1, α(2) = 2, α(3) = 3, α(4) = 4
and β(1) = 3, β(2) = 5.

34 J.-É. Pin

a1 a2 a3 a4

b1 b2

c1 c2 c3 c4 c5

α :

β :

Fig. 1. A pair of infiltration maps

In order to state our main theorem in a precise way, we need to handle the
intervals of the form {α(i)+1, . . . , α(i+1)−1}, but also the two extremal intervals
{1, . . . , α(1)− 1} and {α(p)+1, . . . , r}. As a means to get a uniform notation, it
is convenient to extend α and β to mappings α : {0, . . . , p+ 1} → {0, . . . , r+ 1}
and β : {0, . . . , q+1} → {0, . . . , r+1} by setting α(0) = β(0) = 0 and α(p+1) =
β(q+1) = r+1. The two extremal intervals are now of the standard form {α(i)+
1, . . . , α(i+1)−1}, with i = 0 and i = p, respectively. Further, we introduce the
two maps ᾱ : {0, . . . , r} → {0, . . . , p} and β̄ : {0, . . . , r} → {0, . . . , q} defined by

ᾱ(i) = max{k | α(k) � i} and β̄(i) = max{k | β(k) � i}.

For instance, one gets for our example:

ᾱ(0) = 0 ᾱ(1) = 1 ᾱ(2) = 2 ᾱ(3) = 3 ᾱ(4) = 4 ᾱ(5) = 4

β̄(0) = 0 β̄(1) = 0 β̄(2) = 0 β̄(3) = 1 β̄(4) = 1 β̄(5) = 2

These two functions are conveniently represented in Figure 2

0 1 2

3

0 1 2 3 4

0

1

2

4

5

ᾱ

β̄

Fig. 2. Graphs of ᾱ and β̄ : for instance, ᾱ(3) = 3 and β̄(3) = 1

The next lemmas summarize the connections between α and ᾱ. Of course, similar
properties hold for β and β̄.

An Explicit Formula for the Intersection of Two Polynomials 35

Lemma 3.1. The following properties hold:

(1) ᾱ(α(k)) = k, for 0 � k � p.

(2) ᾱ(s+ 1) � ᾱ(s) + 1, for 0 � s � r − 1.

(3) k � ᾱ(s) if and only if α(k) � s, for 0 � k � p and 0 � s � r.

(4) k � ᾱ(s) if and only if α(k+1) � s+1, for 0 � k � p−1 and 0 � s � r−1.

Proof. These properties follow immediately from the definition of ᾱ.

Lemma 3.2. For 0 � s � r − 1, the conditions ᾱ(s + 1) = ᾱ(s) + 1 and
α(ᾱ(s+ 1)) = s+ 1 are equivalent.

Proof. Put k = ᾱ(s) and suppose that ᾱ(s+ 1) = k+ 1. Since k+ 1 � ᾱ(s+ 1),
Lemma 3.1 (3) shows that α(k + 1) � s + 1. Further, since k � ᾱ(s), Lemma
3.1 (4) shows that α(k + 1) � s + 1. Therefore α(k + 1) = s + 1 and finally
α(ᾱ(s+ 1)) = s+ 1.

Conversely, suppose that α(ᾱ(s+ 1)) = s+ 1. Putting ᾱ(s+ 1) = k + 1, one
gets α(k + 1) = s + 1 and Lemma 3.1 (4) shows that k � ᾱ(s). By Lemma
3.1 (2), one gets ᾱ(s + 1) � ᾱ(s) + 1 and hence k � ᾱ(s). Thus ᾱ(s) = k and
ᾱ(s+ 1) = ᾱ(s) + 1.

Let us denote by Pα(s) the property ᾱ(s+ 1) = ᾱ(s) + 1.

Lemma 3.3. For 0 � s � r − 1, one of Pα(s) or Pβ(s) holds.

Proof. Since the union of the ranges of α and β is {1, . . . , r}, there is an integer
k � 0 such that either α(k+1) = s+1 or β(k+1) = s+1. In the first case, one
gets ᾱ(s + 1) = ᾱ(α(k + 1)) = k + 1 and Lemma 3.1 (3) shows that ᾱ(s) � k.
Since ᾱ(s+ 1) � ᾱ(s) + 1 by Lemma 3.1 (2), one also has k � ᾱ(s) and finally
ᾱ(s) = k, which proves Pα(s). In the latter case, one gets Pβ(s) by a similar
argument.

4 Main Result

Let a1, . . . , ap, b1, . . . , bq be letters of A and let K0, . . . ,Kp, L0, . . . , Lq be lan-
guages of A∗. Let K = K0a1K1 · · · apKp and L = L0b1L1 · · · bqLq.

A word of K∩L can be factorized as u0a1u1 · · · apup, with u0 ∈ K0, . . . , up ∈
Kp and as v0b1v1 · · · bqvq, with v0 ∈ L0, . . . , vq ∈ Lq. These two factorizations
can be refined into a single factorization of the form z0c1z1 · · · crzr, where c1 · · · cr
belongs to the infiltration product of a1 · · ·ap and b1 · · · bq.

For instance, for p = 4 and q = 2, one could have r = 5, with the relations
c1 = a1, c2 = a2, c3 = a3 = b1, c4 = a4 and c5 = b2, leading to the factorization
z0c1z1c2z2c3z3c4z4c5z5, as pictured in Figure 3.

36 J.-É. Pin

u0 a1 u1 a2 u2 a3 u3 a4 u4

v0 b1 v1 b2 v2

z0 c1 z1 c2 z2 c3 z3 c4 z4 c5 z5

Fig. 3. A word of K ∩ L and its factorizations

The associated pair of infiltration maps (α, β) is given by

α(1) = 1 α(2) = 2 α(3) = 3 α(4) = 4

β(1) = 3 β(2) = 5

Two series of constraints will be imposed on the words zi:

z0 ∈ K0, z1 ∈ K1, z2 ∈ K2, z3 ∈ K3 and z4c5z5 ∈ K4,

z0c1z1c2z2 ∈ L0, z3c4z4 ∈ L1 and z5 ∈ L2.

We are now ready to state our main result. Let us denote by I(p, q) the set of pairs
of infiltration maps (α, β) with domain {1, . . . , p} and {1, . . . , q}, respectively.
Since r � p+ q, the set I(p, q) is finite.

Theorem 4.1. Let K = K0a1K1 · · · apKp and L = L0b1L1 · · · bqLq be two prod-
ucts of languages. Then their intersection is given by the formulas

K ∩ L =
⋃

(α,β)∈I(p,q)

U(α, β) (4)

where

U(α, β) =
⋃

(z0,...,zr)∈C(α,β)

U0c1U1 · · · crUr (5)

and, for 0 � i � r,

Ui = [Kᾱ(i)]↑zi ∩ [Lβ̄(i)]↑zi (6)

and C(α, β) is the set of (r + 1)-tuples (z0, . . . , zr) of words such that

(C1) for 0 � k � p, zα(k)cα(k)+1zα(k)+1 · · · cα(k+1)−1zα(k+1)−1 ∈ Kk,

(C2) for 0 � k � q, zβ(k)cβ(k)+1zβ(k)+1 · · · cβ(k+1)−1zβ(k+1)−1 ∈ Lk.

For instance, if (α, β) is the pair of infiltration maps of our example, one would
have

U(α, β) =
⋃

(z0,...,z5)∈C(α,β)

([K0]↑z0 ∩ [L0]↑z0)a1([K1]↑z1 ∩ [L0]↑z1)a2

([K2]↑z2 ∩ [L0]↑z2)b1([K3]↑z3 ∩ [L1]↑z3)a4([K4]↑z4 ∩ [L1]↑z4)b2([K4]↑z5 ∩ [L2]↑z5)

An Explicit Formula for the Intersection of Two Polynomials 37

and the conditions (C1) and (C2) would be

(C1) z0 ∈ K0, z1 ∈ K1, z2 ∈ K2, z3 ∈ K3, z4c5z5 ∈ K4,

(C2) z0c1z1c2z2 ∈ L0, z3c4z4 ∈ L1 and z5 ∈ L2.

Before proving the theorem, it is important to note that if the languages K0,
. . . , Kp, L0, . . . , Lq are regular, the union indexed by C(α, β) is actually a finite
union. Indeed, Proposition 2.1 shows that, if R is a regular language, there are
only finitely many languages of the form [R]z.

Proof. Let U be the right hand side of (4). We first prove that K ∩L is a subset
of U . Let z be a word of K∩L. Then z can be factorized as u0a1u1 · · ·apup, with
u0 ∈ K0, . . . , up ∈ Kp and as v0b1v1 · · · bqvq, with v0 ∈ L0, . . . , vq ∈ Lq. The
common refinement of these two factorizations leads to a factorization of the form
z0c1z1 · · · crzr, where each letter ck is either equal to some ai or to some bj or
both. This naturally defines a pair of infiltration maps α : {1, . . . , p} → {1, . . . , r}
and β : {1, . . . , q} → {1, . . . , r}. Conditions (C1) and (C2) just say that the
factorization z0c1z1 · · · crzr is a refinement of the two other ones. Now, since, for
0 � i � r, the word zi belongs to [Kᾱ(i)]↑zi ∩ [Lβ̄(i)]↑zi , the word z belongs to
U . Thus K ∩ L ⊆ U .

We now prove the opposite inclusion. Let r � p + q be an integer, let α :
{1, . . . , p} → {1, . . . , r} and β : {1, . . . , q} → {1, . . . , r} be two infiltration maps
and let (z0, . . . , zr) ∈ C(α, β) and c1, . . . , cr satisfying (C1) and (C2). It suffices
to prove that U0c1U1 · · · crUr is a subset of K ∩ L. We need a stronger version
of (C1) and (C2).

Lemma 4.2. The following relations hold:

(C3) for 0 � k � p, Uα(k)cα(k)+1Uα(k)+1 · · · cα(k+1)−1Uα(k+1)−1 ⊆ Kk,

(C4) for 0 � k � q, Uβ(k)cβ(k)+1Uβ(k)+1 · · · cβ(k+1)−1Uβ(k+1)−1 ⊆ Lk.

Coming back once again to our main example, these conditions would be

(C3) U0 ⊆ K0, U1 ⊆ K1, U2 ⊆ K2, U3 ⊆ K3, U4c4U5 ⊆ K4,

(C4) U0c1U2c2U2 ⊆ L0, U3c4U4 ⊆ L1, U5 ⊆ L5.

Proof. Let ηk be the syntactic morphism of Kk. To simplify notation, let us set
i = α(k) + 1 and j = α(k + 1)− 1. Since α(k) = i− 1 < i < · · · < j < α(k + 1),
one gets ᾱ(i − 1) = ᾱ(i) = . . . = ᾱ(j) = k. Let ui−1 ∈ Ui−1, ui ∈ Ui, . . . ,
uj ∈ Uj . Then ui−1 ∈ [Uk]↑zi−1 , ui ∈ [Uk]↑zi , . . . , uj ∈ [Uk]↑zj and by definition,
ηk(zi−1) � ηk(ui−1), ηk(zi) � ηk(ui), . . . , ηk(zj) � ηk(uj). Therefore we get

ηk(zi−1cizi · · · cjzj) = ηk(zi−1)ηk(ci)ηk(zi) · · · ηk(cj)ηk(zj)
� ηk(ui−1)ηk(ci)ηk(ui) · · · ηk(cj)ηk(uj) = ηk(ui−1ciui · · · cjuj)

Now, since zi−1cizi · · · cjzj ∈ Kk by (C1), we also get ui−1ciui · · · cjuj ∈ Kk,
which proves (C3). The proof of (C4) is similar.

Now, since ᾱ and β̄ are surjective, Lemma 4.2 shows that U0c1U1 · · · crUr is a
subset of K ∩ L, which concludes the proof of the theorem.

38 J.-É. Pin

Example 4.3. Let K = b∗aA∗ba∗ and L = a∗bA∗ab∗. The algorithm described
in Theorem 4.1 gives for K ∩ L the expression aa∗bA∗ba∗a ∪ bb∗aA∗ba∗a ∪
aa∗bA∗ab∗b ∪ bb∗aA∗ab∗b ∪ aa∗ba∗a ∪ bb∗ab∗b.

Corollary 4.4. Let L be a lattice of regular languages closed under quotient.
Then its polynomial closure is also a lattice closed under quotient.

5 Some Variants of the Product

We consider in this section two variants of the product introduced by
Schützenberger in [15]: unambiguous and deterministic products. These prod-
ucts were also studied in [2,3,4,5,9,11,12,13].

5.1 Unambiguous Product

The marked product L = L0a1L1 · · ·anLn of n nonempty languages L0, L1, . . . ,
Ln of A∗ is unambiguous if every word u of L admits a unique factorization
of the form u0a1u1 · · ·anun with u0 ∈ L0, u1 ∈ L1, . . . , un ∈ Ln. We require
the languages Li to be nonempty to make sure that subfactorizations remain
unambiguous:

Proposition 5.1. Let L0a1L1 · · · anLn be an unambiguous product and let i1,
. . . , ik be a sequence of integers satisfying 0 < i1 < . . . < ik < n. Finally,
let R0 = L0a1L1 · · · ai1−1Li1−1, R1 = Li1ai1+1L1 · · · ai2−1Li2−1, . . . , Rk =
Likaik+1Lik+1 · · ·anLn. Then the product R0ai1R1 · · ·aikRk is unambiguous.

Proof. Trivial.

The unambiguous polynomial closure of a class of languages L of A∗ is the
set of languages that are finite unions of unambiguous products of the form
L0a1L1 · · · anLn, where the ai’s are letters and the Li’s are elements of L. The
term closure actually requires a short justification.

Proposition 5.2. Any unambiguous product of unambiguous products is unam-
biguous.

Proof. Let

L0 = L0,0a1,0L1,0 · · · ak0,0Lk0,0

L1 = L0,1a1,1L1,1 · · · ak1,1Lk1,1

... (7)

Ln = L0,na1,nL1,n · · · akn,nLkn,n

be unambiguous products and let L = L0b1L1 · · · bnLn be an unambiguous prod-
uct. We claim that the product

L0,0a1,0L1,0 · · ·ak0,0Lk0,0b1L0,1a1,1L1,1 · · · bnL0,na1,nL1,n · · · akn,nLkn,n

An Explicit Formula for the Intersection of Two Polynomials 39

is unambiguous. Let u be a word of L with two factorizations

x0,0a1,0x1,0 · · ·ak0,0xk0,0b1x0,1a1,1x1,1 · · · bnx0,na1,nx1,n · · · akn,nxkn,n

and

y0,0a1,0y1,0 · · · ak0,0yk0,0b1y0,1a1,1x1,1 · · · bny0,na1,ny1,n · · · akn,nykn,n

with x0,0, y0,0 ∈ L0,0, . . . , xkn,n, ykn,n ∈ Lkn,n. Setting

x0 = x0,0a1,0x1,0 · · ·ak0,0xk0,0 y0 = y0,0a1,0y1,0 · · · ak,0yk0,0

x1 = x0,1a1,1x1,1 · · ·ak1,1xk1,1 y1 = y0,1a1,1y1,1 · · · ak1,1yk1,1

...
... (8)

xn = x0,na1,nx1,n · · ·akn,nxkn,n yn = y0,na1,ny1,n · · · akn,nykn,n

we get two factorizations of u: x0b1x1 · · · bnxn and y0b1y1 · · · bnyn. Since the
product L0b1L1 · · · anLn is unambiguous, we have x0 = y0, . . . , xn = yn. Each
of these words has now two factorizations given by (8) and since the products of
(7) are unambiguous, these factorizations are equal. This proves the claim and
the proposition.

We now consider the intersection of two unambiguous products.

Theorem 5.3. If the products K = K0a1K1 · · ·apKp and L = L0b1L1 · · · bqLq

are unambiguous, the products occurring in Formula (4) are all unambiguous.

Proof. Let (α, β) be a pair of infiltration maps, and let Ui = [Kᾱ(i)]↑zi∩[Lβ̄(i)]↑zi ,
for 0 � i � r. We claim that the product U = U0c1U1 · · · crUr is unambiguous.
Let

u = u0c1u1 · · · crur = u′
0c1u

′
1 · · · cru′

r (9)

be two factorizations of a word u of U such that, for 0 � i � r, ui, u
′
i ∈ Ui. We

prove by induction on s that us = u′
s.

Case s = 0. By the properties of α and β, we may assume without loss of general-
ity that α(1) = 1, which implies that c1 = a1. It follows from (C3) that U0 ⊆ K0.
Now the product K0a1(K1a2K2 · · · apKp) is unambiguous by Proposition 5.1,
and by (C3), U1c2U2 · · · crUr is contained in K1a1K2 · · · apKp. Therefore, u ad-
mits the two factorizations u0a1(u1c2u2 · · · crur) and u′

0a1(u
′
1c2u

′
2 · · · cru′

r) in
this product. Thus u0 = u′

0.

Induction step. Let s > 0 and suppose by induction that ui = u′
i for 0 � i � s−1.

If s = r, then necessarily us = u′
s. If s < r, we may assume without loss of

generality that s is in the range of α. Thus α(k) = s for some k and cs = ak.
We now consider two cases separately.

If α(k + 1) = s + 1 (and cs+1 = ak+1), it follows from (C3) that u has two
factorizations

(u0c1u1 · · · cs−1us−1)akusak+1(us+1cs+1us+2 · · · crur) and

(u0c1u1 · · · cs−1us−1)aku
′
sak+1(u

′
s+1cs+1u

′
s+2 · · · cru′

r)

40 J.-É. Pin

over the product (K0a1K1 · · ·as−1Ks−1)akKsak+1(Ks+1ak+2Ks+2 · · ·apKp).
Since this product is unambiguous by Proposition 5.1, we get us = u′

s.
If α(k + 1) �= s+ 1, then s+ 1 = β(t+ 1) for some t and cs+1 = bt+1. Setting

i = β(t), we get ci = bt and it follows from (C4) that u has two factorizations

(u0c1u1 · · · ci−1ui−1)bt(uici+1ui+1 · · · csus)bt+1(us+1cs+2us+2 · · · crur) and

(u0c1u1 · · · ci−1ui−1)bt(u
′
ici+1u

′
i+1 · · · csu′

s)bt+1(u
′
s+1cs+2u

′
s+2 · · · cru′

r)

over the product (L0b1L1 · · · bt−1Lt−1)btLtbt+1(Lt+1bt+1Lt+2 · · · bpLp). This
product is unambiguous by Proposition 5.1, and thus

uici+1ui+1 · · · csus = u′
ici+1u

′
i+1 · · · csu′

s

Now the induction hypothesis gives ui = u′
i, . . . , us−1 = u′

s−1 and one finally
gets us = u′

s.

We state separately another interesting property.

Theorem 5.4. Let K = K0a1K1 · · · apKp and L = L0b1L1 · · · bqLq be two un-
ambiguous products and let (α, β) and (α′, β′) be two pairs of infiltration maps
of I(p, q). If the sets U(α, β) and U(α′, β′) meet, then α = α′ and β = β′.

Proof. Suppose that a word u belongs to U(α, β) and to U(α′, β′). Then u has
two decompositions of the form

u = u0c1u1 · · · crur = u′
0c

′
1u

′
1 · · · c′r′u

′
r′

Condition (C1) [(C2)] and the unambiguity of the product K0a1K1 · · · apKp

[L0b1L1 · · · bqLq] show that, for 0 � i � p and for 0 � j � q,

uα(i)cα(i)+1uα(i)+1 · · · cα(i+1)−1uα(i+1)−1 =

u′
α′(i)c

′
α′(i)+1u

′
α′(i)+1 · · · cα′(i+1)−1uα′(i+1)−1 ∈ Ki

(10)

uβ(j)cβ(j)+1uβ(j)+1 · · · cβ(j+1)−1uβ(j+1)−1 =

u′
β′(j)c

′
β′(j)+1u

′
β′(j)+1 · · · cβ′(j+1)−1uβ′(j+1)−1 ∈ Lj

(11)

We prove by induction on s that, for 1 � s � min(r, r′), the following properties
hold:

E1(s) : us−1 = u′
s−1 and cs = c′s,

E2(s) : ᾱ(s) = ᾱ′(s) and β̄(s) = β̄′(s),

E3(s) : for i � ᾱ(s), α(i) = α′(i) and for j � β̄(s), β(j) = β′(j).

Case s = 1. We know that either α(1) = 1 or β(1) = 1 and that either α′(1) = 1
or β′(1) = 1. Suppose that α(1) = 1. We claim that α′(1) = 1. Otherwise, one
has β′(1) = 1. Now, Formula (10) applied to i = 0 gives

u0 = u′
0c

′
1u

′
1 · · · cα′(1)−1u

′
α′(1)−1

An Explicit Formula for the Intersection of Two Polynomials 41

and Formula (11) applied to j = 0 gives

u0c1u1 · · · cβ(1)−1uβ(1)−1 = u′
0.

Therefore u0 = u′
0 and α′(1) = 1, which proves the claim. It follows also that

a1 = cα(1) = cα′(1) and thus c1 = c′1. We also have in this case ᾱ(1) = ᾱ′(1) = 1.
A similar argument shows that if α′(1) = 1, then α(1) = 1. Therefore, the
conditions α(1) = 1 and α′(1) = 1 are equivalent and it follows that ᾱ(1) = ᾱ′(1).
A dual argument would prove that the conditions β(1) = 1 and β′(1) = 1 are
equivalent and that β̄(1) = β̄′(1).

Induction step. Let s be such that 1 � s+1 � min(r, r′) and suppose by induction
that the properties E1(i), E2(i), E3(i) hold for 1 � i � s.

Lemma 5.5. Suppose that Pα(s) holds and let k = ᾱ(s). Then

s � α′(k + 1)− 1 (12)

and

us = u′
sc

′
s+1u

′
s+1 · · · cα′(k+1)−1u

′
α′(k+1)−1 (13)

Proof. Applying (10) with i = k, we get

uα(k)cα(k)+1uα(k)+1 · · · csus =

u′
α′(k)c

′
α′(k)+1u

′
α′(k)+1 · · · cα′(k+1)−1u

′
α′(k+1)−1 (14)

Since ᾱ(s) = ᾱ′(s) by E2(s), one has ᾱ′(s) = k and α′(k + 1) � s + 1 by
Lemma 3.1, which gives (12). Further, since k = ᾱ(s), it follows from E3(s)
that α(k) = α′(k). Now, for i � s, E1(i) implies that ui−1 = u′

i−1 and ci = c′i.
It follows that the word uα(k)cα(k)+1uα(k)+1 · · · cs is a prefix of both sides of
(14). Therefore, this prefix can be deleted from both sides of (14), which gives
(13).

We now establish E1(s+ 1).

Lemma 5.6. One has us = u′
s and cs+1 = c′s+1. Further, Pα(s) and Pα′(s) are

equivalent and Pβ(s) and Pβ′(s) are equivalent.

Proof. Let us prove that u′
s is a prefix of us. By Lemma 3.3, either Pα(s) or

Pβ(s) holds. Suppose that Pα(s) holds. Then by Lemma 5.5, u′
s is a prefix of us.

If Pβ(s) holds, we arrive to the same conclusion by using (11) in place of (10)
in the proof of Lemma 5.5.

Now, a symmetrical argument using the pair (ᾱ′, β̄′) would show that us is a
prefix of u′

s. Therefore, us = u′
s. Coming back to (13), we obtain α′(k+1) = s+1

and since by E2(s), k = ᾱ(s) = ᾱ′(s), one gets α′(ᾱ′(s) + 1) = s + 1, which,
by Lemma 3.2, is equivalent to Pα′(s). Thus Pα(s) implies Pα′(s) and a dual
argument would prove the opposite implication.

We also have cs+1 = cα(k+1) = ak+1 = c′α′(k+1) = c′s+1 and thus cs+1 = c′s+1.
Finally, a similar argument works for β.

42 J.-É. Pin

We now come to the proof of E2(s + 1) and E3(s + 1). Since Pα(s) and Pα′(s)
are equivalent, the next two lemma cover all cases.

Lemma 5.7. If neither Pα(s) nor Pα′(s) hold, then ᾱ(s + 1) = ᾱ′(s + 1) and
for i � ᾱ(s + 1), α(i) = α′(i). Similarly, if neither Pβ(s) nor Pβ′(s) hold, then
β̄(s+ 1) = β̄′(s+ 1) and for i � β̄(s+ 1), β(i) = β′(i).

Proof. We just prove the “α part” of the lemma. If neither Pα(s) nor Pα′(s)
hold, then ᾱ(s + 1) = ᾱ(s) and ᾱ′(s + 1) = ᾱ′(s). Since ᾱ(s) = ᾱ′(s) by E2(s),
one gets ᾱ(s+1) = ᾱ′(s+1). The second property is an immediate consequence
of E3(s).

Lemma 5.8. If both Pα(s) and Pα′(s) hold, then ᾱ(s + 1) = ᾱ′(s + 1) and
for i � ᾱ(s + 1), α(i) = α′(i). Similarly, if both Pβ(s) and Pβ′(s) hold, then
β̄(s+ 1) = β̄′(s+ 1) and for i � β̄(s+ 1), β(i) = β′(i).

Proof. Again, we just prove the “α part” of the lemma. If both Pα(s) and Pα′(s)
hold, then ᾱ(s+ 1) = ᾱ(s) + 1 and ᾱ′(s+ 1) = ᾱ′(s) + 1. Since ᾱ(s) = ᾱ′(s) by
E2(s), one gets ᾱ(s + 1) = ᾱ′(s + 1). Property E3(s) shows that for i � ᾱ(s),
α(i) = α′(i). Since ᾱ(s+ 1) = ᾱ(s) + 1, it just remains to prove that

α(ᾱ(s+ 1)) = α′(ᾱ(s+ 1)) (15)

But Lemma 3.2 shows that α(ᾱ(s+1)) = s+1 and α′(ᾱ′(s+1)) = s+1, which
proves (15) since ᾱ(s+ 1) = ᾱ′(s+ 1).

This concludes the induction step and the proof of Theorem 5.4.

Corollary 5.9. Let L be a lattice of regular languages closed under quotient.
Then its unambiguous polynomial closure is also a lattice closed under quotient.

If L is a Boolean algebra, then one can be more precise.

Corollary 5.10. Let L be a Boolean algebra of regular languages closed under
quotient. Then its unambiguous polynomial closure is also a Boolean algebra
closed under quotient.

Let us conclude with an example which shows that, under the assumptions of
Theorem 5.4, the sets U(α, β) cannot be further decomposed as a disjoint union
of unambiguous products.
Let K = K0aK1 and L = L0aL1 with K0 = L1 = 1+ b+ c+ c2 and L0 = K1 =
a+ ab+ ba+ ac+ ca+ ac2 + bab+ cac+ cac2. Then

K ∩ L = aa+ aab+ aba+ aac+ aca+ aac2 + abab+ acac+ acac2 +

baa+ baab+ baba+ baac+ baac2 + babab+ caa+

caab+ caac+ caca+ caac2 + cacac+ cacac2

An Explicit Formula for the Intersection of Two Polynomials 43

One can write for instance K ∩L as (1 + b+ c)aa(1 + b+ c+ c2) + (1 + b)a(1 +
b)a(1+b)+(1+c)a(1+c)a(1+c+c2) but the three components of this language
are not disjoint, since they all contain aa. Note that the words acab, abac, baca
and caba are not in K ∩ L.

The syntactic ordered monoid of K0 and L1 has 4 elements {1, a, b, c} and
is presented by the relations a = ba = b2 = bc = ca = cb = 0 and c2 = b. Its
syntactic order is defined by a < b < c < 1.

The syntactic ordered monoid of L0 and K1 has 13 elements:

{1, a, b, c, a2, ab, ac, ba, ca, c2, ac2, bab, cac}

and is defined by the relations cac2 = bab and

b2 = bc = cb = a2 = aba = aca = bac = cab = c2a = c3 = 0.

The syntactic order is:

1a

b c

a2

abac baca

c2ac2

bab

cac

There is only one pair of infiltration maps (α, β) of I(1, 1) that defines a nonempty
set U(α, β). This pair is defined as follows: α(1) = 1 and β(1) = 2. The triples
(z0, z1, z2) of C(α, β) are exactly the triples of words such that z0az1az2 ∈ K∩L.
In particular, z0 ∈ {1, b, c}, z1 ∈ {1, b, c} and z2 ∈ {1, b, c, c2}. Now, one has

[K0]↑1 = 1 [K0]↑b = 1 + b+ c+ c2 [K0]↑c = 1 + c

[K1]↑1 = 1 [K1]↑b = 1 + b [K1]↑c = 1 + c [K1]↑c2 = 1 + c+ c2

[L0]↑1 = 1 [L0]↑b = 1 + b [L0]↑c = 1 + c

[L1]↑1 = 1 [L1]↑b = 1 + b+ c+ c2 [L1]↑c = 1 + c [L1]↑c2 = 1 + b+ c+ c2

44 J.-É. Pin

which gives the following possibilities for the triples (U0, U1, U2), for the following
triples z = (z0, z1, z2):

z = (1, 1, 1) U0 = 1 U1 = 1 U2 = 1

z = (b, b, b) U0 = 1 + b U1 = 1 + b U2 = 1 + b

z = (c, c, c) U0 = 1 + c U1 = 1 + c U2 = 1 + c

z = (b, c, c2) U0 = 1 + b U1 = 1 + c U2 = 1 + c+ c2

z = (c, c, c2) U0 = 1 + c U1 = 1 + c U2 = 1 + c+ c2

5.2 Deterministic Product

The marked product L = L0a1L1 · · · anLn of n nonempty languages L0, L1,
. . . , Ln of A∗ is left deterministic [right deterministic] if, for 1 � i � n, the set
L0a1L1 · · ·Li−1ai [aiLi · · · anLn] is a prefix [suffix] code. This means that every
word of L has a unique prefix [suffix] in L0a1L1 · · ·Li−1ai [aiLi · · · anLn]. It is
observed in [3, p. 495] that the marked product L0a1L1 · · · anLn is deterministic
if and only if, for 1 � i � n, the language Li−1ai is a prefix code. Since the
product of two prefix codes is a prefix code, we get the following proposition.

Proposition 5.11. Any left [right] deterministic product of left [right] deter-
ministic products is left [right] deterministic.

Proof. This follows immediately from the fact that the product of two prefix
codes is a prefix code.

Factorizing a deterministic product also gives a deterministic product. More
precisely, one has the following result.

Proposition 5.12. Let L0a1L1 · · · anLn be a left [right] deterministic product
and let i1, . . . , ik be a sequence of integers satisfying 0 < i1 < . . . < ik < n.
Finally, let R0 = L0a1L1 · · · ai1−1Li1−1, . . . , Rk = Likaik+1Lik+1 · · ·Ln−1anLn.
Then the product R0ai1R1 · · · aikRk is left [right] deterministic.

Proof. Trivial.

The left [right] deterministic polynomial closure of a class of languages L of A∗

is the set of languages that are finite unions of left [right] deterministic products
of the form L0a1L1 · · · anLn, where the ai’s are letters and the Li’s are elements
of L.

We can now state the counterpart of Theorem 5.3 for deterministic products.

Theorem 5.13. If the products K = K0a1K1 · · · apKp and L = L0b1L1 · · · bqLq

are deterministic, the products occurring in Formula (4) are all deterministic.

Proof. Let i ∈ {0, . . . , r}. By construction, there exists k � 0 such that i + 1 =
α(k + 1) or i+ 1 = β(k + 1). By Lemma 4.2, there exists j � i such that either
Ujcj+1Uj+1 · · ·Ui ⊆ Kk and cα(k+1) = ak+1 or Ujcj+1Uj+1 · · ·Ui ⊆ Lk and

An Explicit Formula for the Intersection of Two Polynomials 45

cα(k+1) = bk+1. Suppose we are in the first case and that Uici+1 is not a prefix
code. Then Ujcj+1Uj+1 · · ·Uici+1 is not a prefix code and thus Kkak+1 is not
a prefix code. This yields a contradiction since the product K0a1K1 · · · apKp is
deterministic.

Corollary 5.14. Let L be a lattice of regular languages closed under quotient.
Then its deterministic polynomial closure is also closed under quotient.

Acknowledgements. I would like to thank Mário J. J. Branco for his careful
reading of a first version of this article.

References

1. Arfi, M.: Opérations polynomiales et hiérarchies de concaténation. Theoret. Com-
put. Sci. 91, 71–84 (1991)

2. Branco, M.J.J.: On the Pin-Thérien expansion of idempotent monoids. Semigroup
Forum 49(3), 329–334 (1994)

3. Branco, M.J.J.: The kernel category and variants of the concatenation product.
Internat. J. Algebra Comput. 7(4), 487–509 (1997)

4. Branco, M.J.J.: Two algebraic approaches to variants of the concatenation product.
Theoret. Comput. Sci. 369(1-3), 406–426 (2006)

5. Branco, M.J.J.: Deterministic concatenation product of languages recognized by
finite idempotent monoids. Semigroup Forum 74(3), 379–409 (2007)

6. Branco, M.J.J., Pin, J.-É.: Equations defining the polynomial closure of a lattice of
regular languages. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 115–126. Springer,
Heidelberg (2009)

7. Lothaire, M.: Combinatorics on words, Cambridge Mathematical Library.
Cambridge University Press, Cambridge (1997)

8. Perrin, D., Pin, J.-E.: Infinite Words. Pure and Applied Mathematics, vol. 141,
Elsevier (2004) ISBN 0-12-532111-2

9. Pin, J.-E.: Propriétés syntactiques du produit non ambigu. In: de Bakker, J.W.,
van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 483–499. Springer, Heidel-
berg (1980)

10. Pin, J.-E.: A variety theorem without complementation. Russian Mathematics
(Iz. VUZ) 39, 80–90 (1995)

11. Pin, J.-E., Straubing, H., Thérien, D.: Locally trivial categories and unambiguous
concatenation. J. of Pure and Applied Algebra 52, 297–311 (1988)

12. Pin, J.-E., Thérien, D.: The bideterministic concatenation product. Internat. J.
Algebra Comput. 3, 535–555 (1993)

13. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.
Systems 30, 1–39 (1997)

14. Schützenberger, M.-P.: Une théorie algébrique du codage, in Séminaire Dubreil-
Pisot, année 1955-56, Exposé No. 15, 27 février 1956, 24 pages, Inst. H. Poincaré,
Paris (1956)

15. Schützenberger, M.-P.: Sur le produit de concaténation non ambigu. Semigroup
Forum 18, 331–340 (1976)

Two Dimensional Prefix Codes of Pictures�

Marcella Anselmo1, Dora Giammarresi2, and Maria Madonia3

1 Dipartimento di Informatica, Università di Salerno I-84084 Fisciano (SA) Italy
anselmo@dia.unisa.it

2 Dipartimento di Matematica, Università di Roma “Tor Vergata”,
via della Ricerca Scientifica, 00133 Roma, Italy

giammarr@mat.uniroma2.it
3 Dipartimento di Matematica e Informatica, Università di Catania,

Viale Andrea Doria 6/a, 95125 Catania, Italy
madonia@dmi.unict.it

Abstract. A two-dimensional code is defined as a set X ⊆ Σ∗∗ such that any
picture over Σ is tilable in at most one way with pictures in X . The codicity
problem is undecidable. The subclass of prefix codes is introduced and it is proved
that it is decidable whether a finite set of pictures is a prefix code. Further a
polynomial time decoding algorithm for finite prefix codes is given. Maximality
and completeness of finite prefix codes are studied: differently from the one-
dimensional case, they are not equivalent notions. Completeness of finite prefix
codes is characterized.

1 Introduction

The theory of word codes is a well established subject of investigation in theoretical
computer science. Results are related to combinatorics on words, formal languages,
automata theory and semigroup theory. In fact the aim is to find structural properties of
codes to be exploited for their construction. We refer to [7] for complete references.

During the last fifty years, many researchers investigated how the formal language
theory can be transferred into a two-dimensional (2D) world (e.g. [8,11,12,4,18]). Ex-
tensions of classical words to two dimensions bring in general to the definition of poly-
ominoes, labeled polyominoes, directed polyominoes, as well as rectangular labeled
polyominoes usually referred to as pictures. Some different attempts were done to gen-
eralize the notion of code to those 2D objects. A set C of polyominoes is a code if
every polyomino that is tilable with (copies of) elements of C, it is so in a unique way.
Most of the results show that in the 2D context we loose important properties. A major
result due to D. Beauquier and M. Nivat states that the problem whether a finite set
of polyominoes is a code is undecidable, and the same result holds also for dominoes
([6]). Related particular cases were studied in [1]. In [14] codes of directed polyomi-
noes equipped with catenation operations are considered, and some special decidable
cases are detected. Codes of labeled polyominoes, called bricks, are studied in [17] and
further undecidability results are proved.

� Partially supported by MIUR Project “Aspetti matematici e applicazioni emergenti degli au-
tomi e dei linguaggi formali”, by 60% Projects of University of Catania, Roma “Tor Vergata”,
Salerno.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 46–57, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Two Dimensional Prefix Codes of Pictures 47

As major observation, remark that all mentioned results consider 2D codes inde-
pendently from a 2D language theory. In this paper we consider codes of pictures, i.e.
rectangular arrays of symbols. Two partially operations are generally considered on pic-
tures: the row/column concatenations. Using these operations, in [10] doubly-ranked
monoids are introduced and picture codes are studied in order to extend syntactic prop-
erties to two dimensions. Unfortunately most of the results are again negative. Even the
definition of prefix picture codes in [13] does not lead to any wide enough class.

We study picture codes in relation to the family REC of picture languages recognized
by tiling systems. REC is defined by naturally extending to two-dimensions a character-
ization of finite automata by means of local sets and alphabetic projections ([12]). But
pictures are much more difficult to deal with than strings and in fact a crucial difference
is that REC is intrinsically non-deterministic and the parsing problem is NP-complete
([16]). In [2,3] unambiguous and deterministic tiling systems, together with the corre-
sponding subfamilies DREC and UREC, are defined; it is proved the all the inclusions
are proper. Moreover the problem whether a given tiling system is unambiguous is un-
decidable. Despite these facts, REC has several remarkable properties that let it be the
most accredited generalization to 2D of regular string languages.

In this paper the definition of code is given in terms of the operation of tiling star as
defined in [18]: the tiling star of a set X is the set X∗∗ of all pictures that are tilable
(in the polyominoes style) by elements of X . Then X is a code if any picture in X∗∗ is
tilable in one way. Remark that if X ∈ REC then X∗∗ is also in REC. By analogy to
the string case, we denote by flower tiling system a special tiling system that recognizes
X∗∗ and show that if X is a picture code then such flower tiling system is unambiguous
and therefore X∗∗ belongs to UREC. This result sounds like a nice connection to the
word code theory, but, unfortunately, again we prove that it is undecidable whether a
given set of pictures is a code. This is actually not surprising because it is coherent with
the known result of undecidability for UREC.

Inspired by the definition of DREC, we propose prefix codes. Pictures are then con-
sidered with a preferred scanning direction: from top-left corner to the bottom-right cor-
ner. Intuitively, we assume that if X is a prefix code, when decoding a picture p starting
from top-left corner, it can be univocally decided which element in X we can start with.
The formal definition of prefix codes involves polyominoes. In fact, in the middle of the
decoding process, the already decoded part of p is not necessarily rectangular, i.e. it is
in general a polyomino. More precisely, we get a special kind of polyominoes that are
vertically connected and always contain the whole first row of their minimal bounding
box: we refer to them as comb polyominoes. Remark that this makes a big difference
with the word code theory where a (connected) part of a word is always a word.

We define X to be a prefix set of pictures by imposing that any comb polyomino
that is tilable by pictures in X cannot “start” with two different pictures of set X .
We prove that it can be always verified whether a finite set of picture is a prefix set
and that, as in 1D case, every prefix set of picture is a code. Moreover we present
a polynomial time decoding algorithm for finite prefix codes. We extend to picture
codes also the classical notions of maximal and complete codes. We present several
results regarding the relations between these two notions and give a characterization for
maximal complete finite prefix codes.

48 M. Anselmo, D. Giammarresi, and M. Madonia

2 Preliminaries

We introduce some definitions about two-dimensional languages (see [12]).
A picture over a finite alphabet Σ is a two-dimensional rectangular array of elements

of Σ. Given a picture p, |p|row and |p|col denote the number of rows and columns,
respectively; |p| = (|p|row, |p|col) denotes the picture size. The set of all pictures over
Σ of fixed size (m,n) is denoted by Σm,n, while Σm∗ and Σ∗n denote the set of all
pictures over Σ with fixed number of rows m and columnsn, respectively. The set of all
pictures over Σ is denoted by Σ∗∗. A two-dimensional language (or picture language)
over Σ is a subset of Σ∗∗.

The domain of a picture p is the set of coordinates dom(p) = {1, 2, . . . , |p|row} ×
{1, 2, . . . , |p|col}. We let p(i, j) denote the symbol in p at coordinates (i, j). Positions
in dom(p) are ordered following the lexicographic order: (i, j) < (i′, j′) if either
i < i′ or i = i′ and j < j′. Moreover, to easily detect border positions of pictures,
we use initials of words “top”, “bottom”, “left” and “right”: then, for example the tl-
corner of p refers to position (1, 1). A subdomain of dom(p) is a set d of the form
{i, i+ 1, . . . , i′} × {j, j +1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ |p|row, 1 ≤ j ≤ j′ ≤ |p|col,
also specified by the pair [(i, j), (i′, j′)]. The subpicture of p associated to [(i, j), (i′, j′)]
is the portion of p corresponding to positions in the subdomain and is denoted by
p[(i, j), (i′, j′)]. Given pictures x, p, with |x|row ≤ |p|row and |x|col ≤ |p|col, we say
that x is a prefix of p if x is a subpicture of p corresponding to its top-left portion, i.e. if
x = p[(1, 1), (|x|row, |x|col)].

Let p, q ∈ Σ∗∗ pictures of size (m,n) and (m′, n′), respectively, the column con-
catenation of p and q (denoted by p� q) and the row concatenation of p and q (denoted
by p� q) are partial operations, defined only if m = m′ and if n = n′, respectively, as:

p � q = p q p� q =
p
q

.

These definitions can be extended to define two-dimensional languages row- and
column- concatenations and row- and column- stars ([2,12]).

In this paper we will consider another interesting star operation for picture language
introduced by D. Simplot in [18]. The idea is to compose pictures in a way to cover a
rectangular area without the restriction that each single concatenation must be a � or
� operation. For example, the following figure sketches a possible kind of composition
that is not allowed applying only � or a � operations.

Definition 1. The tiling star ofX , denoted by X∗∗, is the set of pictures p whose domain
can be partitioned in disjoint subdomains {d1, d2, . . . , dk} such that any subpicture ph
of p associated with the subdomain dh belongs to X , for all h = 1, ..., k.

Two Dimensional Prefix Codes of Pictures 49

Language X∗∗ is called the set of all tilings by X in [18]. In the sequel, if p ∈ X∗∗,
the partition t = {d1, d2, . . . , dk} of dom(p), together with the corresponding pictures
{p1, p2, . . . , pk}, is called a tiling decomposition of p in X .

In this paper, while dealing with tiling star of a set X , we will need to manage also
non-rectangular “portions” of pictures composed by elements of X : those are actually
labeled polyominoes, that we will call polyominoes, for the sake of simplicity.

We extend notations and definitions from pictures to polyominoes by simply defin-
ing the domain of a (labeled) polyomino as the set of pairs (i, j) corresponding to all
positions occupied inside its minimal bounding box, being (1, 1) the tl-corner position
of the bounding box. See the examples below.

a b a a
a a a a
b b a a
a b a a

a b
a
b a a

a b a a

a b a a
a a a
b

(a) (b) (c)

Then we can use notion, for a picture x, to be subpicture or prefix of a polyomino c.
Observe that the notion of prefix of polyomino makes sense only if the domain of the
polyomino contains (1, 1). If C is a set of polyominoes, Pref(C) denotes the (possibly
empty) set of all pictures that are prefix of some element in C.

Moreover, we can extend to polyominoes the notion of tiling decomposition in a set
of pictures X . We can also define a sort of tiling star that, applied to a set of pictures
X , produces the set of all polyominoes that have a tiling decomposition in X . If a
polyomino p belongs to the polyomino star of X , we say that p is tilable in X .

Let us now recall definitions and properties of recognizable picture languages. Given
a finite alphabetΓ , a two-dimensional languageL ⊆ Γ ∗∗ is local if L coincides with the
set of pictures whose sub-blocks of size (2, 2), are all in a given finite set Θ of allowed
tiles (considering also border positions). Language X ⊆ Σ∗∗ is recognizable if it is the
projection of a local language over alphabet Γ (by means of a projection π : Γ → Σ).
A tiling system for X is a quadruple specifying the four ingredients necessary to rec-
ognize X : (Σ,Γ,Θ, π). The family of all recognizable picture languages is denoted by
REC. A tiling system is unambiguous if any recognized picture has a unique pre-image
in the local language, and UREC is the class of languages recognized by an unam-
biguous tiling system [3]. REC family shares several properties with the regular string
languages. In particular, REC is closed under row/column concatenations, row/column
stars, and tiling star ([12,18]). Note that the notion of locality/recognizability by tiles
corresponds to that of finite type/sofic subshifts in symbolic dynamical systems [15].

3 Two-Dimensional Codes

In the literature, many authors afforded the definition of codes in two dimensions. In
different contexts, polyomino codes, picture codes, and brick codes were defined. We
introduce two-dimensional codes, according to the theory of recognizable languages,
and in a slight different way from all the mentioned definitions.

50 M. Anselmo, D. Giammarresi, and M. Madonia

Definition 2. X ⊆ Σ∗∗ is a code iff any p ∈ Σ∗∗ has at most one tiling decomposition
in X .

We consider some simple examples. Let Σ = {a, b} be the alphabet.

Example 1. Let X =

{
a b ,

a
b
,
a a
a a

}
. It is easy to see that X is a code. Any picture

p ∈ X∗∗ can be decomposed starting at tl-corner and checking the size (2, 2) subpicture
p[(1, 1), (2, 2)]: it can be univocally decomposed in X . Then, proceed similarly for the
next contiguous size (2, 2) subpictures.

Example 2. Let X =

{
a b , b a ,

a
a

}
. Set X is not a code. Indeed picture

a b a
a b a

has

the two following different tiling decompositions in X : t1 =
a b a
a b a

and t2 =
a b a
a b a

.

In the 1D setting, a string language X is a code if and only if a special flower automa-
ton for X∗ is unambiguous (cf. [7]). In 2D an analogous result holds for a finite picture
language X , by introducing a special tiling system recognizing X∗∗, we call the flower
tiling system of X , in analogy to the 1D case. The construction (omitted for lack of
space) goes similarly to the ones in [12,18], assigning a different “colour” to any differ-
ent picture in X . In this way, one can show that, a finite languageX is a code if and only
if the flower tiling system of X is unambiguous. Unfortunately such result cannot be
used to decide whether a finite language is a code: the problem whether a tiling system
is unambiguous is undecidable [3]. As a positive consequence we obtain the following
non-trivial result; recall that in 2D not any recognizable language can be recognized in
a unambiguous way.

Proposition 1. Let X be a finite language. If X is a code then X∗∗ is in UREC.

The unambiguity of a tiling system remains undecidable also for flower tiling systems.
In fact, according to the undecidability of similar problems in two dimensions (codic-
ity is undecidable for polyomino codes, picture codes, and brick codes), the codicity
problem is undecidable also in our setting.

2D-CODICITY PROBLEM

INPUT: X ⊆ Σ∗∗, X finite
OUTPUT: TRUE if X is a code, FALSE otherwise.

Proposition 2. The 2D-CODICITY PROBLEM is undecidable.

Proof. (Sketch) The Thue system word problem reduces to the 2D-CODICITY PROB-
LEM. The well-known undecidability of the Thue system word problem (see e.g. [9])
will imply the undecidability of the 2D-CODICITY PROBLEM. For a given Thue sys-
tem (Σ,S) and two words u, v ∈ Σ∗ we construct the set XS,u,v of square bricks over
an alphabet that extends Σ, in the way defined in [17], Section 3. Each square brick
can be regarded to as a picture, and hence XS,u,v can be consider as a picture language
XS,u,v ⊆ Σ∗∗. The authors of [17] show that u and v are equivalent iff XS,u,v is not
a brick code. The proof is completed by showing that XS,u,v is a brick code iff it is a
picture code.
�

Two Dimensional Prefix Codes of Pictures 51

Next step will be to consider subclasses of codes that are decidable. In 1D an important
class of codes is that one of prefix codes. In the next section we consider a possible
extension of the definition to two dimensions.

4 Prefix Codes

In Section 2 we reported the definition of prefix of a picture p, as a subpicture x cor-
responding to the top-left portion of p. Such definition “translates” to 2D the classic
notion of prefix of a string. Starting from this, one could merely define a set of picture
X to be prefix whenever it does not contain pictures that are prefixes of other pictures
in X . Unfortunately this property would not guarantee the set to be a code. Consider
for example the set X introduced in Example 2. No picture in X is prefix of another
picture in X ; nevertheless X is not a code.

The basic idea in defining a prefix code is to prevent the possibility to start decoding
a picture in two different ways (as it is for the prefix string codes). One major difference
going from 1D to 2D case is that, while any initial part of a decomposition of a string
is still a string, the initial part of a decomposition of a picture, at an intermediate step,
has not necessarily a rectangular shape. Starting from the tl-corner of a picture, it is
possible to reconstruct its tiling decomposition in many different ways, obtaining, as
intermediate products, some (labeled) polyominoes whose domain contain always the
tl-corner position (1, 1). If we proceed by processing positions (i, j) in lexicographic
order, the domains of these polyominoes will have the peculiarity that if they contain a
position (h, k) then they contain also all positions above it up to the first row. We name
these special polyominoes as follows.

Definition 3. A corner polyomino is a labeled polyomino whose domain contains po-
sition (1, 1). A comb polyomino is a corner polyomino whose domain is the following
set of positions for some n, h1, h2, · · · , hn ≥ 1:

(1, 1) (1, 2) (1, n)

(2, 1)
... (2, n)

... (h2, 2)
...

(h1, 1) (hn, n)

In other words, a comb polyomino is a column convex corner polyomino whose domain
contains all positions in the first row of its minimal bounding box. See the figure in Sec-
tion 2, where (b) is a corner (but not a comb) polyomino, and (c) is a comb polyomino.
In the literature these corner polyominoes correspond to labeled directed polyominoes
while comb polyominoes correspond to labeled skyline or Manhattan polyominoes ro-
tated by 180 degrees. Now we can define the comb star, a sort of tiling star that, applied
to a set of pictures X , produces a set of comb polyominoes. This set of comb polyomi-
noes tiliable in X will be denoted by X ** and will be called the comb star of X .

Comb polyominoes and comb star are used to define prefix sets. A set of pictures
X is prefix if any decomposition of a comb polyomino in X ** can “start” (in its tl-
corner) in a unique way with a picture of X . To give a formal definition, recall that a

52 M. Anselmo, D. Giammarresi, and M. Madonia

picture p is a prefix of a (comb) polyomino c if the domain of c includes all positions in
dom(p) = {1, 2, . . . , |p|row} × {1, 2, . . . , |p|col}, and c(i, j) = p(i, j) for all positions
(i, j) ∈ dom(p).

Definition 4. A set X ⊆ Σ∗∗ is prefix if any two different pictures in X cannot be both
prefix of the same comb polyomino c ∈ X **.

Example 3. Let X ⊆ Σ∗∗. One can easily show the following. If |Σ| = 1 then X is
prefix if and only if |X | = 1. If |X | = 2 and |Σ| ≥ 2, then X is prefix if and only if the
two pictures in X are not the power of a same picture (cannot be obtained by column
and row concatenation of a same picture). Any set X ⊆ Σm,n containing pictures on
Σ of fixed size (m,n), is always prefix.

Example 4. It is easy to verify that the set X of Example 1 is prefix. On the contrary,
the set X of Example 2 is not prefix: two different elements of X are prefixes of the

comb polyomino c =
a b a
a b a

that belongs to X **.

Example 5. Let X = { a b a , a b b ,
b
b

,
a a
a a

,
a a
a b

,
a a
b a

,
a a
b b

,
b a
a a

,
b a
a b

,
b b
a a

,

b b
a b

}. Language X is prefix: no two pictures in X can be overlapped in order to be

both prefixes of the same comb polyomino.

Let us introduce another notion related to tiling that will be useful for the proofs in the
sequel: the notion of covering. For example, in the figure below, the picture with thick
borders is (properly) covered by the others.

Definition 5. A picture p is covered by a set of pictures X , if there exists a corner
polyomino c such that p is prefix of c and the domain of c can be partitioned in rectan-
gular subdomains {d1, ..., dh} such that each di corresponds to a picture in X and the
tl-corner of each di belongs to the domain of p. Moreover p is properly covered if the
subdomain containing position (1, 1) corresponds to a picture different from p itself.

Proposition 3. A set X is prefix if and only if every x ∈ X cannot be properly covered
by pictures in X.

Proof. Assume there exists x ∈ X properly covered by pictures in X , let c be the
corresponding corner polyomino, and t its tiling decomposition. Then c can be “com-
pleted” to a comb polyomino, by filling all the empty parts of c, that contradict column
convexity of c, up to the first row. Indeed it is possible to concatenate some copies of
elements of X , that occurr in t, and cover the bottom and right border positions of x

Two Dimensional Prefix Codes of Pictures 53

(the tl-corner of each subdomain in t belongs to dom(x)). For example in the figure
before Definition 5, one may concatenate a copy of the first two pictures crossing the
right border. Conversely, if there exist x, y ∈ X both prefixes of a comb polyomino c,
with a tiling decomposition t in X then, if the subdomain of t containing position (1, 1)
does not correspond to x (to y, resp.), one can properly cover x (y, resp.), by taking
only the elements of X whose tl-corners belongs to the domain of x (y, resp.).
�

Definition 4 seems to be a right generalization of prefix set of strings since it implies the
desired property for the set to be a code. Remark that the following result holds without
the hypothesis of finiteness on X , and its converse does not hold.

Proposition 4. If X ⊆ Σ∗∗ is prefix then X is a code.

Proof. (Sketch) Suppose by contradiction that there exists a picture u ∈ Σ∗∗ that
admits two different tiling decompositions in X , say t1 and t2. Now, let (i0, j0) the
smallest position (in lexicographic order) of u, where t1 and t2 differ. Position (i0, j0)
corresponds in t1 to position (1, 1) of some x1 ∈ X , and in t2 to position (1, 1) of some
x2 ∈ X , with x1 �= x2. See the figure below, where a dot indicates position (i0, j0) of
u in t1 (on the left) and t2 (on the right), respectively.

x1
� x2

�

Consider now the size of x1 and x2 and suppose, without loss of generality, that
|x1|row > |x2|row and |x1|col < |x2|col (equalities are avoided because of the prefix
hypothesis). In this case, x1 together with other pictures placed to its right in the de-
composition t1 would be a proper cover for x2 that, by Proposition 3, contradicts the
hypothesis of X prefix set.

�

Proposition 4 shows that prefix sets form a class of codes: the prefix codes. Contrarily
to the case of all other known classes of 2D codes, the family of finite prefix codes has
the important property to be decidable. Using results in Proposition 3 together with the
hypothesis that X is finite, the following result can be proved.

Proposition 5. It is decidable whether a finite set of picture X ⊆ Σ∗∗ is a prefix code.

We now present a decoding algorithm for a finite prefix picture code.

Proposition 6. There exists a polynomial algorithm that, given a finite prefix code X ⊆
Σ∗∗ and a picture p ∈ Σ∗∗, finds, if it exists, a tiling decomposition of p in X , otherwise
it exits with negative answer.

Proof. Here is a sketch of the algorithm and its correctness proof. The algorithm scans
p using a “current position” (i, j) and a “current partial tiling decomposition” T that
contains some of the positions of p grouped as collections of rectangular p subdomains.
Notice that, at each step, the partial decomposition corresponds to a comb polyomino.

54 M. Anselmo, D. Giammarresi, and M. Madonia

1. Sort pictures in X with respect to their size (i.e. by increasing number of rows and,
for those of same number of rows, by increasing number of columns).

2. Start from tl-corner position of p ((i, j) = (1, 1)) and T = ∅.
3. Find the smallest picture x ∈ X that is a subpicture of p when associated at subdo-

main with tl-corner in (i, j) and such that positions of this subdomain were not yet
put in T . More technically: let (rx, cx) indicate the size of x. We find the smallest
x such that x is subpicture of p at subdomain dh = [(i, j), (i+ rx − 1, j + cx − 1)]
and positions in dh are not in the current T .

4. If x does not exist then exit with negative response, else add the subdomain dh to
T and set (i, j) as the smallest position not yet added to (subdomains in) T .

5. If (i, j) does not exist then exit returning T , else repeat from step 3.

It is easy to understand that if p /∈ X∗∗ then at step 3, the algorithm will not find any x,
and will exit giving no decomposition in step 4. Suppose now that p ∈ X∗∗ that is there
exists a (unique) decomposition T for p. At each step, the algorithm chooses the right
element x to be added to the current decomposition. This can be proved by induction
using an argument similar to the one in the proof of Proposition 4. Recall that x is the
smallest (as number of rows) picture that is a subpicture of p at current position (i, j).
If there is another element y that is subpicture of p at position (i, j), y cannot be part of
a decomposition T of p otherwise y possibly together with other pictures to its right in
T would be a cover for x and this contradicts the fact that X is prefix.

Regarding the time complexity, the most expensive step is the third one that it is
clearly polynomial in the sum of the areas of pictures in X and in the area of p. We
remark that, using a clever preprocessing on the pictures in X , it can be made linear in
the area of set X and picture p.
�

To conclude remark that, moving to the context of recognizable picture languages, the
problem of finding a decomposition of p, corresponds to check whether picture p be-
longs to the REC language X∗∗ or, equivalently, if p can be recognized by means of
the flower tiling system for X∗∗. In the general case the parsing problem in REC is NP-
complete ([16]) and there are no known (non deterministic) cases for which the parsing
problem is feasible. The presented algorithm shows that, in the case of X finite prefix
set, the parsing problem for language X∗∗ can be solved in polynomial time.

5 Maximal and Complete Codes

Maximality is a central notion in theory of (word) codes: the subset of any code is
a code, and then the investigation may restrict to maximal codes. In 1D maximality
coincides with completeness, for thin codes. In this section we investigate on maximal
and complete 2D codes: we show that, differently from the 1D case, complete codes
are a proper subset of maximal codes. Moreover we give a full characterization for
complete prefix codes. For lack of space all proofs are sketched.

Definition 6. A code X ⊆ Σ∗∗ is maximal over Σ if X is not properly contained in
any other code over Σ that is, X ⊆ Y ⊆ Σ∗∗ and Y code imply X = Y . A prefix code
X ⊆ Σ∗∗ is maximal prefix over Σ if it is not properly contained in any other prefix
code over Σ, that is, X ⊆ Y ⊆ Σ∗∗ and Y prefix imply X = Y .

Two Dimensional Prefix Codes of Pictures 55

Example 6. The set X = Σm,n of all pictures on Σ of fixed size (m,n), is a prefix
code (see Example 3). It is also maximal as a code and as a prefix code.

Let us state the following decidability result.

Proposition 7. It is decidable whether a finite prefix set X is maximal prefix.

Proof. The algorithm first tests whether there exists a picture p ∈ Σ∗∗ with |p|row ≤
rX and |p|col ≤ cX , such that X ∪{p} is still prefix. If no such picture exists, then also
no picture p′ with |p′|row > rX and |p′|col > cX exists such that X ∪ {p′} is prefix (p′

belongs to a corneromino that covers a picture in X iff its prefix of size (rX , cX) does).
Then the algorithm considers pictures p with |p|row = m < rX and |p|col = cX + 1.
Using the fact that the language of pictures with m rows that are covered byX is regular
over the alphabet Σm, it is possible to find a picture with m rows that can be added to
X , or to state that no picture with m rows can be added to X .
�

Any prefix code that is maximal, is trivially maximal prefix too. In 1D the converse
holds for finite sets. In 2D the converse does not hold. Proposition 8 gives an example
of a prefix maximal set that is not a maximal code. Let us show some preliminary result.
Informally speaking, a picture p is unbordered if it cannot be self overlapped.

Lemma 1. Let X ⊆ Σ∗∗, |Σ| ≥ 2. If there exists a picture p /∈ Pref(X **), then there
exists an unbordered picture p′, with p prefix of p′, and p′ /∈ Pref(X **).

Proof. Suppose |p| = (m,n), let p(1, 1) = a and let b ∈ Σ \ {a}. The picture p′

can be obtained by the following operations: surround p with a row and a column of a;
then row concatenate a picture of size (m,n + 1) filled by b, unless for its bl position;
finally column concatenate a picture of size (2m + 1, n + 1) filled by b, unless for its
bl position. The resulting picture is a picture p′ of size (2m+ 1, 2n+ 2) having p as a
prefix. It is possible to claim that p′ is unbordered, by focusing on the possible positions
of the subpicture p[(1, n+ 1), (m+ 1, n+ 1)] when p eventually self overlaps.
�

Proposition 8. There exists a finite prefix code that is maximal prefix but not maximal
code.

Proof. Let X be the language of Example 5. Applying Proposition 7 one can show
that X is a maximal prefix set. On the other hand, X is not a maximal code. Consider

picture p =
b b a b
b b b x
a b y z

, with x, y, z ∈ Σ; p /∈ Pref(X **). By Lemma 1, there exists

also an unbordered picture p′, such that p is a prefix of p′, and p′ /∈ Pref(X **). Let
us show that X ∪ {p′} is still a code. Indeed suppose by contradiction, that there is a
picture q ∈ Σ∗∗ with two different tiling decompositions, say t1 and t2, in X ∪ {p′}.
By a careful analysis of possible compositions of pictures in X , one can show that if
there exists a position (i, j) of q, where t1 and t2 differ, while they coincide in all their
tl-positions, then this leads to a contradiction if j = 1, otherwise it implies that there
exists another position to the bottom left of (i, j), where t1 and t2 differ, while they
coincide in all their tl positions. Repeating the same reasoning for decreasing values of
j, this leads again to a contradiction.
�

56 M. Anselmo, D. Giammarresi, and M. Madonia

In 1D, the notion of maximality of (prefix) codes is related to the one of (right) com-
pleteness. A string language X ⊆ Σ∗ is defined right complete if the set of all prefixes
of X∗ is equal to Σ∗. Then a prefix code is maximal if and only if it is right complete.
Let us extend the notion of completeness to 2D languages and investigate the relation
of completeness with maximality for prefix codes.

Definition 7. A set X ⊆ Σ∗∗ is br-complete if Pref(X **) = Σ∗∗.

Differently from the 1D case, in 2D, the br-completeness of a prefix set implies its prefix
maximality, but it is not its characterization.

Proposition 9. Let X ⊆ Σ∗∗ be a prefix set. If X is br-complete then X is maximal
prefix. Moreover the converse does not hold.

Proof. It is easy to prove by contradiction that a br-complete prefix language is also
maximal prefix. For the converse, let X as in Example 5. Applying Proposition 7, one
can show that X is a maximal prefix set. Let us show that X is not br-complete. Con-

sider p =
b b a b
b b b x
a b y z

with x, y, z ∈ Σ: there is no comb polyomino c ∈ X ** that has p

as a prefix. Indeed, from a careful analysis of possible compositions of pictures in X , it
follows that the symbol b in position (2, 3) of p cannot be tiled by pictures in X .
�
In 2D br-complete languages are less rich than in 1D. Complete picture languages are
indeed only languages that are somehow “one-dimensional” complete languages, in
the sense specified in the following result. Note that the result shows in particular that
completeness of finite prefix sets is decidable.

Proposition 10. Let X ⊆ Σ∗∗ be a maximal prefix set. X is br-complete if and only if
X ⊆ Σm∗ or X ⊆ Σ∗n.

Proof. First observe that when X is a br-complete prefix set, then no two pictures in
X can overlap in a way that their tl corners match (otherwise one of them would be
covered by X). Suppose that X is br-complete, but X � Σm∗, for any m. Then there
exists x1, x2 ∈ X , of size (m1, n1) and (m2, n2), respectively, with m1 > m2. We
claim that in this case, n1 = n2. Indeed if n1 �= n2, then two cases are possible:
n1 > n2 or n1 < n2. Define y = x1[(1, 1), (m2, n1)]. In the first case, picture p1, in
figure, with t, z ∈ Σ∗∗, does not belong to Pref(X **), against X br-complete. In the
second case, picture p2, in figure, with t ∈ Σ∗∗, does not belong to Pref(X **), against
X br-complete. Now, for any picture x ∈ X , the same technique applies either to the
pair x, x1 or x, x2, concluding that X ⊆ Σ∗n, for some n.

p1 =
x1

x1

x2 y

z
t p2 = x1

x2 y
x2

t

Conversely, suppose X ⊆ Σm∗. Setting Γ = Σm,1, X can be considered as a set of
strings over Γ . Since X is prefix maximal, it is prefix maximal viewed as set of strings
over Γ . Therefore, from classical theory of codes (see e.g. [7]), X is right-complete (as
a subset of Γ ∗), and this easily implies X br-complete (as a subset of Σ∗∗).
�

Two Dimensional Prefix Codes of Pictures 57

6 Conclusions

The aim of this paper was to investigate 2D codes in relation with the theory of recog-
nizable picture languages (REC family), starting from the finite case. We determined a
meaningful class of 2D codes, the prefix codes, that are decidable and that have very
interesting properties to handle with.

Our further researches will follow two main directions. First we will extend the in-
vestigation to 2D generalizations of other types of string codes, as for example bifix
codes. Secondly, we will try to remove the finiteness hypothesis and consider prefix
sets belonging to particular sub-families in REC, such as deterministic ones.

References

1. Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity. Theoretical
Computer Science 147, 165–180 (1995)

2. Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous families
within recognizable two-dimensional languages. Fund. Inform. 98(2-3), 143–166 (2010)

3. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous Recognizable Two-
dimensional Languages. RAIRO: Theoretical Informatics and Applications 40(2), 227–294
(2006)

4. Anselmo, M., Jonoska, N., Madonia, M.: Framed Versus Unframed Two-dimensional Lan-
guages. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F.
(eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 79–92. Springer, Heidelberg (2009)

5. Anselmo, M., Madonia, M.: Deterministic and unambiguous two-dimensional languages
over one-letter alphabet. Theoretical Computer Science 410-16, 1477–1485 (2009)

6. Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theoret. Comp.
Sci. 303, 417–430 (2003)

7. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press
(2009)

8. Blum, M., Hewitt, C.: Automata on a two-dimensional tape. In: IEEE Symposium on Switch-
ing and Automata Theory, pp. 155–160 (1967)

9. Book, R.V., Otto, F.: String-rewriting Systems. Springer (1993)
10. Bozapalidis, S., Grammatikopoulou, A.: Picture codes. ITA 40(4), 537–550 (2006)
11. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. Journal Pattern Recogni-

tion and Artificial Intelligence 6(2 & 3), 241–256 (1992)
12. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., et al. (eds.)

Handbook of Formal Languages, vol. III, pp. 215–268. Springer (1997)
13. Grammatikopoulou, A.: Prefix Picture Sets and Picture Codes. In: Procs. CAI 2005,

pp. 255–268 (2005)
14. Kolarz, M., Moczurad, W.: Multiset, Set and Numerically Decipherable Codes over Di-

rected Figures. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp. 224–235. Springer,
Heidelberg (2012)

15. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge
University Press, Cambridge (1995)

16. Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns. Journal of
Statistical Physics 91(5-6), 909–951 (1998)

17. Moczurad, M., Moczurad, W.: Some Open Problems in Decidability of Brick (Labelled
Polyomino) Codes. In: Chwa, K.-Y., Munro, J.I. (eds.) COCOON 2004. LNCS, vol. 3106,
pp. 72–81. Springer, Heidelberg (2004)

18. Simplot, D.: A Characterization of Recognizable Picture Languages by Tilings by Finite
Sets. Theoretical Computer Science 218-2, 297–323 (1991)

Adjacent Ordered Multi-Pushdown Systems�

Mohamed Faouzi Atig1, K. Narayan Kumar2, and Prakash Saivasan2

1 Uppsala University, Sweden
mohamed faouzi.atig@it.uu.se

2 Chennai Mathematical Institute, India
{kumar,saivasan}@cmi.ac.in

Abstract. Multi-pushdown systems are formal models of multi-
threaded programs. As they are Turing powerful in their full generality,
several decidable subclasses, constituting under-approximations of the
original system, have been studied in the recent years. Ordered Multi-
Pushdown Systems (OMPDSs) impose an order on the stacks and limit
pop actions to the lowest non-empty stack. The control state reacha-
bility for OMPDSs is 2-Etime-Complete. We propose a restriction on
OMPDSs, called Adjacent OMPDSs (AOMPDS), where values may be
pushed only on the lowest non-empty stack or one of its two neigh-
bours. We describe Exptime decision procedures for reachability and
LTL model-checking, establish matching lower bounds and describe two
applications of this model.

1 Introduction

Verification of concurrent recursive programs is an important but difficult prob-
lem well studied over the last decade. The theory of pushdown systems has been
used very effectively in analysing sequential recursive programs and forms the
backbone of a number of verification tools. However, there is no such well es-
tablished classical theory that underlies concurrent recursive programs. In the
case where the number of threads is bounded, it is natural to consider the gen-
eralization of pushdown systems to multi-pushdown systems (MPDS), with one
pushdown per thread (to model its call stack) and control states to model the
contents of the shared (finite) memory.

In their full generality MPDSs are not analyzable as two stacks can simulate
the tape of a turing machine. The main focus in this area has hence been to iden-
tify decidable subclasses. These subclasses are obtained by placing restrictions
on the behaviours of the MPDSs. Qadeer and Rehof [15] show that if the number
of times a run switches from accessing one stack to another is bounded a priori
then the control state reachability problem is decidable. Such behaviours are
called bounded context behaviours. Subsequently, this idea of context-bounded
analysis has been used and extended to a number of related models very effec-
tively [11,12,6,7,20,18,10].

� Partially supported by the Swedish Research Council within UPMARC, CNRS LIA
InForMel. The last author was partially funded by Tata Consultancy Services.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 58–69, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adjacent Ordered Multi-Pushdown Systems 59

We may look at such a restriction as identifying a collection of runs of an
unrestricted system, constituting an underapproximation of the real system. In
the context of linear time model checking, where the aim is to look for a faulty
run, verifying such an underapproximation guarantees that there are no faulty
runs of the restricted form or identifies the possibility of a faulty run conforming
to these restrictions.

Several generalizations of the idea of context bounding have been proposed,
notably

– Bounded Phase MPDSs [17,19,16]: A phase denotes a segment of an execution
where all the pop operations are performed on a single stack. An a priori
bound is placed on the number of phases.

– Ordered Multi-pushdowns (OMPDSs)[2,8]: The stacks are numbered
1, 2, . . . , n and pop moves are permitted only on the lowest non-empty stack.

– Scope Bounded MPDSs [21]: A bound is placed on the number of context
switches between any push and the corresponding pop (the pop that removes
this value from the stack).

The control state reachability problem is decidable for all these models, NP-

Complete for bounded context systems [15] and Pspace-Complete [21] for
scope bounded systems. However, for bounded-phase MPDSs and OMPDSs the
problem is 2-Etime-Complete [2,19]. It is interesting to note that these two
models allow copying of a stack onto another while the first two do not. OMPDSs
can simulate bounded-phase MPDSs.

The run of an OMPDS can be thought as consisting of a sequence of phases,
where each phase identifies an active stack, the stack from which values may be
popped. Further, during a phase associated with stack i, all stacks j with j < i
have to be empty. We impose an additional requirement that values be pushed
only on stacks i − 1, i or i + 1 during such a phase to obtain the subclass of
Adjacent OMPDSs (AOMPDSs). For this class we show that the state reacha-
bility problem can be solved in Exptime and prove a matching lower bound.
Observe, that this class has the ability to copy a stack onto another, and to our
knowledge is the first such class in Exptime.

The repeated reachability problem has to do with infinite runs and the aim is
to determine if there is any run that visits a particular set of states F infinitely
often. In formal verification, this problem is of great importance as a solution
immediately leads to a model checking algorithm for linear time temporal logic
(LTL). We obtain an Exptime decision procedure for the repeated reachability
problem (and LTL model-checking problem) for AOMPDSs.

We illustrate the power of AOMPDSs via two applications — first, we show
that the class of unary OMPDSs, i.e., OMPDSs where the stack alphabet is
singleton, (which can be thought of as counter systems with restrictions on
decrement operations) can be reduced to AOMPDAs and hence obtain Exp-

time procedures for reachability, repeated reachability and LTL model-checking
for this class. This is likely to be optimal since we also show NP-Hardness.
Secondly, we show that the control state reachability problem for networks of

60 M.F. Atig, K. Narayan Kumar, and P. Saivasan

recursive programs communicating via queues, whose connection topology is a
directed forest, can be reduced to reachability in AOMPDS with polynomial
blowup, obtaining an Exptime solution to this problem. This problem was pro-
posed and solved in [19] where it is also shown that direct forest topology is the
only one for which this problem is decidable.

Other Related Work. In [13] Madhusudan and Parlato, show the benefits of
studying the structure of runs of MPDSs as graphs. They argue that decidability
is closely related to the boundedness of the tree-width of such graphs. The runs
arising from all the restrictions of MPDSs described above have bounded tree-
width. In [9] a new measure of complexity for multiply nested words called
split-width is proposed, which is bounded whenever tree-width is, but seems to
yield easier proofs of boundedness.

[18] applies the decidability of bounded-phase MPDSs to the analysis of re-
cursive concurrent programs communicating via queues and obtains a charac-
terization of the decidable topologies. These results have been extended in [10]
by placing further restrictions on how messages are consumed from the queue.

In the setting of infinite runs, [1] describes a 2-Exptime decision procedure
for the repeated reachability and LTL model-checking problems for OMPDSs
and bounded-phase MPDSs (also see [5]). Recently, [22] and [4] show that LTL
model checking for bounded scope systems can be solved in Exptime. In this
context, it must be noted that with the bounded context and bounded-phase
restrictions every run has to eventually use only a single stack and hence do
not form natural restrictions on infinite runs. [3] investigates the existence of
ultimately periodic infinite runs, i.e. runs of the form uvω, in MPDSs.

Both classes of MPDSs studied in this paper, AOMPDSs and UOMPDSs, are
the only known classes of MPDSs in Exptime that allow the copying of stack
contents and permit infinite runs involving the use multiple stacks infinitely
often.

2 Preliminaries

Notation. Let N denote the set of non-negative integers. For every i, j ∈ N such
that i ≤ j, we use [i..j] to denote the set {k ∈ N | i ≤ k ≤ j}. Let Σ be a finite
alphabet. We denote by Σ∗ (Σω) the set of all finite (resp. infinite) words over Σ,
and by ε the empty word. Let u be a word over Σ. The length of u is denoted by
|u| and |ε| = 0. For every j ∈ [1..|u|], we use u(j) to denote the jth letter of u.

Context-Free Grammars. A context-free grammar (CFG) G is a tuple (X , Σ, P)
where X is a finite non-empty set of variables (or nonterminals), Σ is an alphabet
of terminals, and P ⊆

(
X ×(X 2∪Σ∪{ε})

)
a finite set of productions and denote

the production (X,w) by X ⇒G w. We also write ⇒ instead of ⇒G when the
identity of G is clear from the context. Given strings u, v ∈ (Σ ∪ X)∗ we say
u ⇒G v if there exists a production (X,w) ∈ R and some words y, z ∈ (Σ ∪X)∗

such that u = yXz and v = ywz. We use⇒∗
G for the reflexive transitive closure of

⇒G. For every nonterminal symbol X ∈ X , we define the context-free language
generated from X by LG(X) = {w ∈ Σ∗ | X ⇒∗

G w}.

Adjacent Ordered Multi-Pushdown Systems 61

3 Multi-Pushdown Systems

In this section, we will formally introduce multi-pushdown systems and then
define two subclasses, namely ordered multi-pushdown systems and adjacent or-
dered multi-pushdown systems. A multi-pushdown system has n ≥ 1 read-write
memory tapes (stacks) with a last-in-first-out rewriting policy and optionally a
read only input tape. We do not require an input tape as the purpose of this
paper is to prove the decidability of the reachability problem.

Definition 1 (Multi-Pushdown Systems). A Multi-PushDown System
(MPDS) is a tuple M = (n,Q, Γ,Δ, q0, γ0) where:

− n ≥ 1 is the number of stacks.
− Q is the non-empty set of states.
− Γ is the finite set of stack symbols containing the special stack symbol ⊥. We

use Γε to denote the set Γ ∪ {ε}.
− q0 ∈ Q is the initial state.
− γ0 ∈ Γ \ {⊥} is the initial stack symbol.
− Δ ⊆ ((Q × (Γε)

n) × (Q × (Γ ∗)n)) is the transition relation such that if
((q, γ1, γ2, . . . , γn), (q

′, α1, α2, . . . , αn)) is in Δ, then for all i ∈ [1..n], we
have: |αi| ≤ 2, if γi �= ⊥ then αi ∈ (Γ \ {⊥})∗ and αi ∈ ((Γ \ {⊥})∗ · {⊥})
otherwise.

A stack content of M is an element of Stack(M) = (Γ \ {⊥})∗{⊥}. A config-
uration of the MPDS M is a (n+1) tuple (q, w1, w2, · · · , wn) with q ∈ Q, and
w1, w2, . . . , wn ∈ Stack(M). The set of configurations of the MPDS M is denoted
by C(M). The initial configuration cinitM of the MPDS M is (q0,⊥, . . . ,⊥, γ0⊥).

If t = ((q, γ1, . . . , γn), (q
′, α1, . . . , αn)) is an element of Δ, then

(q, γ1w1, . . . , γnwn)
t−→M (q′, α1w1, . . . , αnwn) for all w1, . . . , wn ∈ Γ ∗ such

that γ1w1, . . . , γnwn ∈ Stack(M). We define the transition relation −→M as⋃
t∈Δ

t−→M . Observe that the stack symbol ⊥ marks the bottom of the stack
and our transition relation does not allow this ⊥ to be popped.

We write−→∗
M to denote the reflexive and transitive closure of the relation−→M ,

representing runs of the system. For every sequence of transitions ρ =

t1t2 . . . tm ∈ Δ∗ and two configurations c, c′ ∈ C(M), we write c
ρ−→∗

M c′ to
denote that one of the following two cases holds:

1. ρ = ε and c = c′.
2. There are configurations c0, · · · , cm ∈ C(M) such that c0 = c, c′ = cm, and

ci
ti+1−−−→M ci+1 for all i ∈ [0..m− 1].

An ordered multi-pushdown system is a multi-pushdown system in which one
can pop only from the first non-empty stack.

Definition 2 (Ordered Multi-Pushdown Systems). An Ordered
Multi-Pushdown System (OMPDS) is a multi-pushdown system M =
(n,Q, Γ,Δ, q0, γ0) where for each transition ((q, γ1, . . . , γn), (q

′, α1, . . . , αn)) ∈ Δ
there is an index i ∈ [1..n] such that γ1 = · · · = γi−1 = ⊥, γi ∈ (Γ \ {⊥}), and
γi+1 = · · · = γn = ε and further one of the following properties holds

62 M.F. Atig, K. Narayan Kumar, and P. Saivasan

1. Operate on the stack i: αj = ⊥ for all j < i and αj = ε for all j > i.
2. Push on the stack j < i: αi = ε, αk = ⊥ if j �= k < i, αj ∈ Γ⊥, and αk = ε

if k > i.
3. Push on the stack j > i: αi = ε, αk = ⊥ if k < i, αk = ε if j �= k > i and

|αj | = 1.

If we further restrict the choice of j in item 2 above to be only i − 1 and in
item 3 to be i + 1 we get the subclass of Adjacent OMPDSs (AOMPDSs). In
any AOMPDS, a transition that pops a symbol from stack i is only allowed to
push values on one of the stacks i − 1, i and i+ 1.

We can extend this definition to allow pushing onto the first stack while popping
from the n-th stack without altering the results in the paper.

Definition 3 (Reachability Problem). Given a MPDS M and a state q
of M , the reachability problem is to decide whether (q0,⊥, · · · ,⊥, γ0⊥) −→∗

M

(q,⊥, · · · ,⊥).

4 The Reachability Problem for AOMPDS

The purpose of this section is to prove the following theorem:

Theorem 4. The reachability problem for Adjacent Ordered Multi-Pushdown
System is Exptime-complete.

Upper Bound: Let M = (n,Q, Γ,Δ, q0, γ0) be an AOMPDS with n > 1 (the
case where n = 1 boils down to the reachability of pushdown systems which
is well-known to be in Ptime). The proof of Exptime-containment is through
an inductive construction that reduces the reachability problem for M to the
reachability problem for a pushdown system with only an exponential blow up
in size. The key step is to show that we can reduce the reachability problem for
M to the reachability problem for an (n− 1)-AOMPDS. The key feature of our
reduction is that there is no blowup in the state space and the size of the stack
alphabet increases quadratically in the number of states. A non-linear blow up
in the number of states will result in a complexity higher than Exptime.

We plan to use a single stack to simulate both the first and second stacks of
M . It is useful to consider the runs of M to understand how this works. Any run
ρ of M starting at the initial configuration naturally breaks up into segments
σ0ρ1σ1 . . . ρkσk where the segments ρi contain configurations where stack 1 is
non-empty while in any configuration in the σi’s stack 1 is empty. Clearly the
contents of stack 1 at the beginning of ρi contains exactly two symbols, and we
assume it to be ai⊥. We further assume that segment ρi begins at control state
qi and the segment σi in state q′i. What is the contribution of the segment ρi,
which is essentially the run of a pushdown automaton starting and ending at
the empty stack configuration, to this run?

Firstly, it transforms the local state from qi to q′i. Secondly, a word wi is
pushed on to stack 2 during this segment. It also, consumes the value ai from

Adjacent Ordered Multi-Pushdown Systems 63

stack 1 in this process, but that is not relevant to the rest of the computation.
To simulate the effect of ρi it would thus suffice to jump from state qi to q′i and
push the word wi on stack 2. There are potentially infinitely many possible runs
of the form ρi that go from qi to q′i while removing ai from stack 1 and thus
infinite possibilities for the word that is pushed on stack 2. However, it is easy
to see that this set of words L(qi, ai, q

′
i) is a CFL.

If the language L(qi, ai, q
′
i) is a regular language, we could simply summarize

this run by depositing a word from this language on stack 2 and then proceed
with the simulation of stack 2. However, since it is only a CFL this is not possible.
Instead, we have to interleave the simulation of stack 2 with the simulation of
stack 1, both using stack 2 and there is no a priori bound on the number of
switches between the stacks in such a simulation. For general OMPDSs such a
simulation would not work as the values pushed by the segments of executions
of stack 1 and stack 2 on a third stack would get permuted and this explains
why OMPDSs need a different global and more expensive decision procedure.

To simulate the effect of ρi, we jump directly to q′i and push a non-terminal
symbol (from the appropriate CFG) that generates the language L(qi, ai, q

′
i)

R

(reverse, because stacks are last in first out). Now, when we try to execute σ′
i,

instead of encountering a terminal symbol on top of stack 2 we might encounter
a nonterminal. In this case, we simply rewrite the nonterminal using one of the
rules of the CFG applicable to this nonterminal. In effect, we produce a left-most
derivation of a word from L(qi, ai, q

′
i) in a lazy manner, interspersed within the

execution involving stack 2, generating terminals only when they need to be
consumed. This is the main idea in the construction that is formalized below.

For every i ∈ [1..n], we define the sets of transitions Δ(i,i−1), Δ(i,i), and
Δ(i,i+1) of M as follows:

– If i > 1 then Δ(i,i−1) = Δ∩((Q×({⊥})i−1×Γε×({ε})n−i)×(Q×({⊥})i−2×
Γ ∗× ({ε})n−i+1)). This corresponds to the set of transitions in Δ that pop a
symbol from the i-th stack ofM while pushing some symbols on the (i−1)-th
stack of M .

– Δ(i,i) = Δ∩((Q×({⊥})i−1×Γε×({ε})n−i)×(Q×({⊥})i−1×Γ ∗×({ε})n−i)).
This corresponds to the set of transitions in Δ that pop and push exclusively
on the i-th stack of M .

– If i < n then Δ(i,i+1) = Δ∩((Q×({⊥})i−1×Γε×({ε})n−i)×(Q×({⊥})i−1×
{ε}×Γ ∗× ({ε})n−i−1)). This corresponds to the set of transitions in Δ that
pop a symbol from the i-th stack of M while pushing a symbol on the (i+1)-
th stack of M .

Furthermore, we define

◦ Δ1 = Δ(1,1) ∪Δ(1,2)

◦ Δi = Δ(i,i) ∪Δ(i,i+1) ∪Δ(i,i−1) for all 2 ≤ i < n
◦ Δn = Δ(n,n) ∪Δ(n,n−1)

We construct a context-free grammar GM = (N, (Γ \ {⊥}), P) from the AOM-
PDAM . The set of non-terminalsN = (Q×(Γ\{⊥})×Q). The set of productions
P is defined as the smallest set of rules satisfying:

64 M.F. Atig, K. Narayan Kumar, and P. Saivasan

– For every two states p, p′ ∈ Q, and every transition
((q, γ, ε, . . . , ε), (q′, γ1γ2, ε, . . . , ε)) in Δ such that γ, γ1, γ2 ∈ (Γ \ {⊥}),
we have (q, γ, p) ⇒GM (q′, γ1, p

′)(p′, γ2, p).

– For every state p ∈ Q, and every transition ((q, γ, ε, . . . , ε), (q′, γ′, ε, . . . , ε))
in Δ such that γ, γ′ ∈ (Γ \ {⊥}), we have (q, γ, p) ⇒GM (q′, γ′, p).

– For every transition ((q, γ, ε, . . . , ε), (q′, ε, ε, . . . , ε)) in Δ such that γ ∈ (Γ \
{⊥}), we have (q, γ, q′) ⇒GM ε.

– For every transition ((q, γ, ε, . . . , ε), (q′, ε, γ′, ε, . . . , ε)) in Δ such that γ, γ′ ∈
(Γ \ {⊥}), we have (q, γ, q′) ⇒GM γ′.

Then, it is easy to see that the context-free grammar summarizes the effect of
the first stack on the second one. Formally, we have:

Lemma 5. The context free language LGM ((q, γ, q′)) is equal to the set of words
{wR ∈ (Γ \ {⊥})∗ | ∃ρ ∈ Δ∗

1. (q, γ⊥, w2, . . . , wn)
ρ−→M (q′,⊥, w · w2, . . . , wn)}

where wR denotes the reverse of the word w.

We are now ready to show that reachability problems on M can be reduced to
reachability problems on an (n−1)-AOMPAN . Further, the number of states of
N is linear in |Q|, size of the stack alphabet of N is O(|Q|2|Γ |) and the number of
transitions is O(|Q|3.|Δ|). The upper-bound claimed in Theorem 4 then follows
by simple induction.

Let F ⊆ Q be the set of states whose reachability we are interested in, we
show how to construct (n−1)-AOMPA N such that the reachability question on
M can be reduced to reachability question on N . Formally, N is defined by the
tuple (n−1, Q, Γ ∪N,Δ′, q0, γ0) where Δ

′ is defined as the smallest set satisfying
the following conditions:

– For any transition ((q,⊥, γ2, . . . , γn), (q
′,⊥, α2, . . . , αn)) ∈ Δ, we have

((q, γ2, . . . , γn), (q
′, α2, . . . , αn)) ∈ Δ′.

– For any transition ((q,⊥, γ2, ε, . . . , ε), (q
′, γ⊥, ε, . . . , ε)) ∈ Δ(2,1), we have

((q, γ2, ε, . . . , ε), (q
′′, (q′, γ, q′′), ε, . . . , ε)) ∈ Δ′ for all q′′ ∈ Q.

– For any production rule X ⇒GM w and state q ∈ Q, we have
((q,X, ε, . . . , ε), (q, wR, ε, . . . , ε)) ∈ Δ′.

The relation between N and M is given by the following lemma:

Lemma 6. The set of states F is reachable in M iff F is reachable in N .

The fact that even a single contiguous segment of moves using stack 1 in M may
now be interleaved arbitrarily with executions involving other stacks in N , makes
proof some what involved. Towards the proof, we define a relation between the
configurations of N and M systems. We will denote the set of all configurations
of M by CM and configurations of N by CN . For any configuration c ∈ CM and
d ∈ CN , we say cRd iff one of the following is true.

Adjacent Ordered Multi-Pushdown Systems 65

– d is of the form (q,⊥, w3, · · · , wn) and c is of the form (q,⊥,⊥, w3, · · · , wn).
– d is of the form (q, η1v1η2v2 · · · ηmvm⊥, w3, · · · , wn) and c is of the form

(q,⊥, u1v1u2v2 · · ·umvm⊥, w3, · · · , wn) where v1, u1, v2, u2, . . . , vm, um ∈
(Γ \ {⊥})∗, η1, η2, . . . , ηm ∈ N∗ and ηk ⇒∗

GM
uR
k for all k ∈ [1..m].

Thus, cRd verifies that it is possible to replace the nonterminals appearing in
stack 2 in d by words they derive (and by tagging an additional empty stack
for the missing stack 1) to obtain c. We now show that this abstraction relation
faithfully transports runs (to configurations from the initial configuration) in
both directions. This is the import of lemmas 7 and 8, which together guarantee
that the state reachability in M reduces to state reachability in N .

Lemma 7. Let c1, c2 ∈ (Q× {⊥}× (Stack(M))n−1) be two configurations such
that cinitM −→∗

M c1 and cinitM −→∗
M c2. If c1

ρ−→M c2, with ρ ∈ ∪n
i=3Δi ∪ (Δ(2,1)Δ

∗
1) ∪

Δ(2,2) ∪Δ(2,3), then for every configuration d1 ∈ CN such that c1Rd1, there is a
configuration d2 ∈ CN such that c2Rd2 and d1 −→∗

N d2.

Lemma 8. Let d1, d2 ∈ CN be two configurations of N such that

cinitN −→∗
N d1

t−→N d2 for some t ∈ Δ′. Then for every configuration c2 ∈ CM
1 such

that c2Rd2, there is a configuration c1 ∈ CM
1 such that c1Rd1 and c1 −→∗

M c2.

Lower Bound: It is known that the following problem is Exptime-complete
[10]: Given a pushdown automaton P recognizing a context-free language L,
and n − 1 finite state automata A2, . . . ,An recognizing the regular languages
L2, . . . , Ln respectively, is L∩

⋂n
i=2 Li non-empty?We can show that this problem

can be reduced, in polynomial time, to the reachability problem for an AOMPDS
M with n-stacks. The idea is the following: The first stack is used to simulate P
and write down a word that is accepted to the second stack. Each other stack is
then used to check acceptance by one of the finite automata.

5 Repeated Reachability for AOMPDS

In this section, we show that the linear-time model checking problem is
Exptime-complete for AOMPDS. In the following, we assume that the reader
is familiar with ω-regular properties expressed in the linear-time temporal logics
[14] or the linear time μ-calculus [23]. For more details, the reader is referred
to [14,24,23]. Checking whether a MPDS satisfies a property expressed in such
a logic reduces to solving the repeated state reachability problem, i.e., checking
if there is an infinite run that visits control states from a given set F infinitely
often.

We use the following theorem to reduce the repeated state reachability prob-
lem for OMPDSs to the reachability problem for OMPDSs.

Theorem 9 ([1]). Let M = (n,Q, Γ,Δ, q0, γ0) be an OMPDS and qf be a state
of M . There is an infinite run starting from cinitM that visits infinitely often the
state qf if and only if there are i ∈ [1..n], q ∈ Q, and γ ∈ Γ \ {⊥} such that:

66 M.F. Atig, K. Narayan Kumar, and P. Saivasan

– cinitM −→∗
M (q,⊥i−1, γw,wi+1, . . . , wn) for some w,wi+1, . . . , wn ∈ Γ ∗.

– (q,⊥i−1, γ⊥,⊥n−i)
ρ1−−→M (qf , w1, . . . , wn)

ρ2−−→M (q,⊥i−1, γw′
i, w

′
i+1, . . . , w

′
n)

for some w1, . . . , wn, w
′
i, . . . , w

′
n ∈ Γ ∗, ρ1 ∈ Δ′∗ and ρ2 ∈ Δ′+ where Δ′ con-

tains all the transitions of the form ((q,⊥j−1, γj , ε, . . . , ε), (q, α1, . . . , αn)) ∈
Δ such that 1 ≤ j ≤ i and γj ∈ (Γ \ {⊥}).

It is possible to formulate each of the two items listed in the above theorem as
simple reachability queries on two AOMPDSs whose sizes are polynomial in the
size of M . This gives us the following theorem.

Theorem 10. Let M = (n,Q, Γ,Δ, q0, γ0) be an AOMPDS and qf be a state of
M . Then checking whether there is an infinite run starting from cinitM that visits
the state qf infinitely often can be solved in time O(|M |)poly(n).

As an immediate consequence of Theorem 10 we have the following corollary.

Theorem 11. Let M = (n,Q, Γ,Δ, q0, γ0) be an AOMPDS with a labeling func-
tion Λ, and let ϕ be a linear time μ-calculus formula or linear time temporal
formula. Then, it is possible to check, in time O(|M |)poly(n,|ϕ|), whether there is
an infinite run of M starting from cinitM that does not satisfy ϕ.

6 Applications of AOMPDSs

6.1 Unary Ordered Multi-PushDown Systems

The class of Unary Ordered Multi-Pushdown Systems is the subclass of ordered
multi-pushdown systems where the stack alphabet contains just one letter other
than ⊥ (i.e., |Γ | = 2).

Definition 12 (Unary Ordered Multi-Pushdown Systems). An Unary
Ordered Multi-Pushdown Systems (UOMPDS) is an ordered multi-pushdown
system (n,Q, Γ,Δ, q0, γ0) such that | Γ |= 2.

In this section, we prove that the reachability problem for UOMPDS is in Exp-

time. This is done by reducing the problem to the reachability in an AOMPDS.
The key observation is that in a unary OMPDA the order in which elements are
pushed on a stack is not important. So, given an UOMPDS M with n-stacks
and an alphabet Γ = {a,⊥} we construct an AOMPDS N with n-stacks and
alphabet Γ ′ = {(a, 1), (a, 2), . . . , (a, n)} ∪ {⊥}.

For each i, let πi denote the function satisfying πi(a) = (a, i), πi(⊥) = ⊥
and extended homomorphically to all of a∗⊥ + a∗. The control states of N are
precisely the control states of M . The occurrence of the letter (a, i) in any stack
in N denotes the occurrence of an a on stack i, so that, counting the number
of occurrences of (a, i)’s across all the stacks in a configuration of N gives the
contents of stack i in the corresponding configuration in M . If the top element of
the left-most non-empty stack i is (a, i) then N simulates a corresponding move
of M . If this move involves a pushing α on stack i, it is simulated by pushing

Adjacent Ordered Multi-Pushdown Systems 67

πi(α) on stack i. If it involves a pushing α on stack j, j > i (respectively j < i)
then πj(α) is pushed on stack i+1 (respectively i−1). If the top of the left-most
nonempty stack i is (a, j) with j < i (respectively j > i) then the value is simply
copied to stack i− 1 (respectively i+ 1).

Theorem 13. The reachability, repeated reachability and LTL model-checking
for Unary Ordered Multi-PushDown Systems are all solvable in Exptime. All
these problems are also NP-Hard (hence no improvement in the upper bound is
likely) even for Adjacent UOMPDS.

6.2 An Application to Concurrent Recursive Queue Systems

La Torre et al. [18], study the decidability of control state reachability in networks
of concurrent processes communicating via queues. Each component process may
be recursive, i.e., equipped with a pushdown store, and such systems are called
recursive queuing concurrent programs (RQCP) in [18]. Further, the state space
of the entire system may be global or we may restrict each process to have its
own local state space (so that the global state space is the product of the local
states). In the terminology of [18] the latter are called RQCPs without shared
memory.

An architecture describes the underlying topology of the network, i.e., a graph
whose vertices denote the processes and edges correspond to communication
channels (queues). One of the main results in [18] is a precise characterization
of the architectures for which the reachability problem for RQCP’s is decidable.
Understandably, given the expressive power of queues and stacks, this class is
very restrictive. To obtain any decidability at all, one needs the well-queuing
assumption, which prohibits any process from dequeuing a message from any
of its incoming channels as long as its stack is non-empty. They show that,
even under the well-queuing assumption, the only architectures for which the
reachability problem is decidable for RQCPs without shared memory are the
so called directed forest architectures. A directed tree is a tree with a identified
root and where all edges are oriented away from the root towards the leaves. A
directed forest is a disjoint union of directed trees. They use a reduction to the
reachability problem for bounded-phase MPDSs and obtain a double exponential
decision procedure.

We now show that this problem can be reduced to the reachability problem
for AOMPDS and obtain an Exptime upper-bound.1 The reduction is sketched
below. An Exptime upper-bound is also obtained via tree-width bounds [13]
(Theorem 4.6).

Theorem 14. The control state reachability problem for RQCPs with a directed
forest architecture, without shared memory and under the well-queuing assump-
tion can be solved in Exptime.

Proof. (Sketch) We only consider the directed tree architecture and the result for
the directed forest follows quite easily from this. An observation, from [18], is that

1 The argument in Theorem 4 can also be adapted to show Exptime-hardness.

68 M.F. Atig, K. Narayan Kumar, and P. Saivasan

it suffices to only consider executions with the following property: if q is a child of
p then p executes all its steps (and hences deposits all its messages for q) before
q executes. We fix some topologically sorted order of the tree, say p1, p2, . . . , pm
where p1 is the root. The AOMPDS we construct only simulates those executions
of the RQCP in which all moves of pi are completed before pi+1 begins its
execution. We call such a run of the RQCP as a canonical run. The number of
stacks used is 2m − 1. The message alphabet is Γ × {1, . . . ,m} ∪

⋃
1≤i≤m Σi,

where Γ is the communication message alphabet and Σi is the stack alphabet
of process pi. We write Γi to denote Γ ×{i} and w↓Σ to denote the restriction
of a word to the letters in Σ.

We simulate the process in order p1, . . . , pm. The invariant we maintain as
we simulate a canonical run ρ is that, when we begin simulating process pi, the
contents of stack 2i − 1 is some α so that α ↓ Γi is the contents of the unique
input channel to pi as pi begins its execution in ρ. Thus we can simulate pi’s
contribution to ρ, by popping from stack 2i− 1 when a value is to be consumed
from the input queue. If top of stack 2i−1 does not belong ot Γi, then we transfer
it to stack 2i, as it is not meant for pi. When pi sends a message to any other
process pj in ρ (which must be one of its children in the tree) we simulate it by
tagging the message with the process identity and pushing it on stack 2i. Finally,
as observed in [18], the stack for pi can also be simulated on top of stack 2i− 1
since a value is dequeued only when its local stack is empty (according to the
well-queuing assumption). At the end of the simulation of process pi, we empty
any contents left on stack 2i− 1 (transferring elements of Γ × {i+ 1, . . . ,m} to
stack 2i). Finally, we copy stack 2i onto stack 2i + 1 and simulate process pi+1

using stack 2i + 1 (so that the rear of all queues are on top of the stack.) The
state space is linear in the size of the RQCP and hence we conclude that the
reachability problem for RQCPs can be solved in Exptime using Theorem 4.

References

1. Atig, M.F.: Global model checking of ordered multi-pushdown systems. In:
FSTTCS. LIPIcs, vol. 8, pp. 216–227. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2010)

2. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is
2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257,
pp. 121–133. Springer, Heidelberg (2008)

3. Atig, M.F., Bouajjani, A., Emmi, M., Lal, A.: Detecting fair non-termination in
multithreaded programs. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 210–226. Springer, Heidelberg (2012)

4. Atig, M.F., Bouajjani, A., Narayan Kumar, K., Saivasan, P.: Linear-time model-
checking for multithreaded programs under scope-bounding. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 152–166. Springer, Heidelberg
(2012)

5. Bollig, B., Cyriac, A., Gastin, P., Zeitoun, M.: Temporal logics for concurrent
recursive programs: Satisfiability and model checking. In: Murlak, F., Sankowski,
P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 132–144. Springer, Heidelberg (2011)

Adjacent Ordered Multi-Pushdown Systems 69

6. Bouajjani, A., Esparza, J., Schwoon, S., Strejček, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Ramanujam, R., Sen,
S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

7. Bouajjani, A., Fratani, S., Qadeer, S.: Context-bounded analysis of multithreaded
programs with dynamic linked structures. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 207–220. Springer, Heidelberg (2007)

8. Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-push-down
languages and grammars. Int. J. Found. Comput. Sci. 7(3), 253–292 (1996)

9. Cyriac, A., Gastin, P., Kumar, K.N.: MSO decidability of multi-pushdown sys-
tems via split-width. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 547–561. Springer, Heidelberg (2012)

10. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of commu-
nicating pushdown systems. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014,
pp. 267–281. Springer, Heidelberg (2010)

11. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to se-
quential analysis. FMSD 35(1), 73–97 (2009)

12. Lal, A., Touili, T., Kidd, N., Reps, T.W.: Interprocedural analysis of concurrent pro-
grams under a context bound. In:Ramakrishnan,C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

13. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL,
pp. 283–294. ACM (2011)

14. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
15. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.

In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

16. Seth, A.: Global reachability in bounded phase multi-stack pushdown systems. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 615–628.
Springer, Heidelberg (2010)

17. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161–170. IEEE Computer Society (2007)

18. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

19. La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization
of double exponential time. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS,
vol. 5213, pp. 33–48. Springer, Heidelberg (2008)

20. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009)

21. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011)

22. La Torre, S., Napoli, M.: A temporal logic for multi-threaded programs. In: Baeten,
J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 225–239.
Springer, Heidelberg (2012)

23. Vardi, M.Y.: A temporal fixpoint calculus. In: POPL, pp. 250–259 (1988)
24. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program

verification (preliminary report). In: LICS, pp. 332–344. IEEE Computer Society
(1986)

Cuts in Regular Expressions

Martin Berglund1, Henrik Björklund1, Frank Drewes1,
Brink van der Merwe2, and Bruce Watson2

1 Ume̊a University, Sweden
{mbe,henrikb,drewes}@cs.umu.se

2 Stellenbosch University, South Africa
abvdm@cs.sun.ac.za, bruce@fastar.org

Abstract. Most software packages with regular expression matching en-
gines offer operators that extend the classical regular expressions, such as
counting, intersection, complementation, and interleaving. Some of the
most popular engines, for example those of Java and Perl, also provide
operators that are intended to control the nondeterminism inherent in
regular expressions. We formalize this notion in the form of the cut and
iterated cut operators. They do not extend the class of languages that
can be defined beyond the regular, but they allow for exponentially more
succinct representation of some languages. Membership testing remains
polynomial, but emptiness testing becomes PSPACE-hard.

1 Introduction

Regular languages are not only a theoretically well-understood class of formal
languages. They also appear very frequently in real world programming. In par-
ticular, regular expressions are a popular tool for solving text processing prob-
lems. For this, the ordinary semantics of regular expressions, according to which
an expression simply denotes a language, is extended by an informally defined
operational understanding of how a regular expression is “applied” to a string.
The usual default in regular expression matching libraries is to search for the
leftmost matching substring, and pick the longest such substring [2]. This be-
havior is often used to repeatedly match different regular expressions against a
string (or file contents) using program control flow to decide the next expression
to match. Consider the repeatedly matching pseudo-code below, and assume
that match_regex matches the longest prefix possible:

match = match_regex("(a*b)*", s);

if(match != null) then

if(match_regex("ab*c", match.string_remainder) != null) then

return match.string_remainder == "";

return false;

For the string s = abac, this program first matches R1 = (a∗ ·b)∗ to the substring
ab, leaving ac as a remainder, which is matched by R2 = a·(b∗)·c, returning true.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 70–81, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Cuts in Regular Expressions 71

The set of strings s for which the program returns “true” is in fact a regular
language, but it is not the regular language defined by R1 · R2. Consider for
example the string s = aababcc, which is matched by R1 · R2. However, in an
execution of the program above, R1 will match aabab, leaving the remainder cc,
which is not matched by R2. The expression R1 · R2 exhibits non-deterministic
behavior which is lost in the case of the earliest-longest-match strategy combined
with the explicit if -statement. This raises the question, are programs of this type
(with arbitrarily many if -statements freely nested) always regular, and how can
we describe the languages they recognize?

Related Work. Several extensions of regular expressions that are frequently avail-
able in software packages, such as counting (or numerical occurrence indicators,
not to be confused with counter automata), interleaving, intersection, and com-
plementation, have been investigated from a theoretical point of view. The suc-
cinctness of regular expressions that use one or more of these extra operators
compared to standard regular expressions and finite automata were investigated,
e.g., in [4, 6, 8]. For regular expressions with intersection, the membership prob-
lem was studied in, e.g., [10, 14], while the equivalence and emptiness problems
were analyzed in [3, 15]. Interleaving was treated in [5, 11] and counting in [9, 12].
To our knowledge, there is no previous theoretical treatment of the cut operator
introduced in this paper, or of other versions of possessive quantification.

Paper Outline. In the next section we formalize the control of nondeterminism
outlined above by defining the cut and iterated cut operators, which can be
included directly into regular expressions, yielding so-called cut expressions. In
Section 3, we show that adding the new operators does not change the expres-
sive power of regular expressions, but that it does offer improved succinctness.
Section 4 provides a polynomial time algorithm for the uniform membership
problem of cut expressions, while Section 5 shows that emptiness is PSPACE-
hard. In Section 6, we compare the cut operator to the similar operators found
more or less commonly in software packages in the wild (Perl, Java, PCRE, etc.).
Finally, Section 7 summarizes some open problems.

2 Cut Expressions

We denote the natural numbers (including zero) by N. The set of all strings
over an alphabet Σ is denoted by Σ∗. In particular, Σ∗ contains the empty
string ε. The set Σ∗ \ {ε} is denoted by Σ+. We write pref (u) to denote the
set of nonempty prefixes of a string u and prefε(u) to denote pref (u)∪ {ε}. The
canonical extensions of a function f : A → B to a function from A∗ to B∗ and
to a function from 2A to 2B are denoted by f as well.

As usual, a regular expression over an alphabet Σ (where ε, ∅ /∈ Σ) is either
an element of Σ ∪ {ε, ∅} or an expression of one of the forms (E |E′), (E · E′),
or (E∗). Parentheses can be dropped using the rule that ∗ (Kleene closure1)

1 Recall that the Kleene closure of a language L is the smallest language L∗ such that
{ε} ∪ LL∗ ⊆ L∗.

72 M. Berglund et al.

takes precedence over · (concatenation), which takes precedence over | (union).
Moreover, outermost parentheses can be dropped, and E · E′ can be written
as EE′. The language L(E) denoted by a regular expression is obtained by
evaluating E as usual, where ∅ stands for the empty language and a ∈ Σ ∪ {ε}
for {a}. We denote by E ≡ E′ the fact that two regular expressions (or, later on,
cut expressions) E and E′ are equivalent, i.e., that L(E) = L(E′). Where the
meaning is clear from context we may omit the L and write E to mean L(E).

Let us briefly recall finite automata. A nondeterministic finite automaton
(NFA) is a tuple A = (Q,Σ, δ, q0, F) consisting of a finite set Q of states, a
initial state q0 ∈ Q, a set F ⊆ Q of final states, an alphabet Σ, and a transition
function δ : Q×Σ → 2Q. In the usual way, δ extends to a function δ : Σ∗ → 2Q,
i.e., δ(ε) = {q0} and δ(wa) =

⋃
q∈δ(w) δ(q, a). A accepts w ∈ Σ∗ if and only if

δ(w) ∩ F �= ∅, and it recognizes the language L(A) = {w ∈ Σ∗ | δ(w) ∩ F �= ∅}.
A deterministic finite automaton (DFA) is the special case where |δ(q, a)| ≤ 1
for all (q, a) ∈ Q×Σ. In this case we consider δ to be a function δ : Q×Σ → Q,
so that its canonical extension to strings becomes a function δ : Q×Σ∗ → Q.

We now introduce cuts, iterated cuts, and cut expressions. Intuitively, E !E′

is the variant of EE′ in which E greedily matches as much of a string as it can
accommodate, leaving the rest to be matched by E′. The so-called iterated cut
E!∗ first lets E match as much of a string as possible, and seeks to iterate this
until the whole string is matched (if possible).

Definition 1 (cut and cut expression). The cut is the binary operation ! on
languages such that, for languages L,L′,

L !L′ = {uv | u ∈ L, v ∈ L′, uv′ /∈ L for all v′ ∈ pref (v)}.

The iterated cut of L, denoted by L!∗, is the smallest language that satisfies

{ε} ∪ (L ! (L!∗)) ⊆ L!∗

(i.e., L ! (L ! · · · (L ! (L ! {ε})) · · ·) ⊆ L!∗ for any number of repetitions of the cut).
Cut expressions are expressions built using the operators allowed in regular

expressions, the cut, and the iterated cut. A cut expression denotes the language
obtained by evaluating that expression in the usual manner.

The precedence rules give !∗ precedence over ·, which in turn gets precedence
over ! which in turn gets precedence over | .

The motivation for the inclusion of the iterated cut is two-fold; (i) it is a
natural extension for completeness in that it relates to the cut like the Kleene
closure relates to concatenation; and, (ii) in the context of a program like that
shown on page 1, the iterated cut permits the modelling of matching regular
expressions in loops.

Let us discuss a few examples.

1. The cut expression ab∗ ! b yields the empty language. This is because every
string in L(ab∗b) is in L(ab∗) as well, meaning that the greedy matching of

Cuts in Regular Expressions 73

the first subexpression will never leave a b over for the second. Looking at
the definition of the cut, a string in L(ab∗ ! b) would have to be of the form
ub, such that u ∈ L(ab∗) but ub /∈ L(ab∗). Clearly, such a string does not
exist. More generally, if ε /∈ L(E′) then L(E !E′) ⊆ L(EE′)\L(E). However,
as the next example shows, the converse inclusion does not hold.

2. We have (a∗ | b∗) ! (ac | bc) ≡ a+bc | b+ac.2 This illustrates that the semantics
of the cut cannot be expressed by concatenating subsets of the involved
languages. In the example, there are no subsets L1 and L2 of L(a∗ | b∗) and
L(ac | bc), respectively, such that L1 · L2 = L(a∗ | b∗) !L(ac | bc).

3. Clearly, ((ab)∗ ! a) ! b ≡ (ab)∗ab whereas (ab)∗ ! (a ! b) ≡ (ab)∗ ! ab ≡ ∅ (as in
the first example). Thus, the cut is not associative.

4. As an example of an iterated cut, consider ((aa)∗ ! a)∗. We have (aa)∗ ! a ≡
(aa)∗a and therefore ((aa)∗ ! a)∗ ≡ a∗. This illustrates that matching a string
against (E !E′)∗ cannot be done by greedily matching E, then matching E′,
and iterating this procedure. Instead, one has to “chop” the string to be
matched into substrings and match each of those against E !E′. In partic-
ular, (E ! ε)∗ ≡ E∗ (since E ! ε ≡ E). This shows that E!∗ cannot easily be
expressed by means of cut and Kleene closure.

5. Let us finally consider the interaction between the Kleene closure and the
iterated cut. We have L!∗ ⊆ L∗ and thus (L!∗)∗ ⊆ (L∗)∗ = L∗. Conversely,
L ⊆ L!∗ yields L∗ ⊆ (L!∗)∗. Thus (L!∗)∗ = L∗ for all languages L.
Similarly, we also have (L∗)!∗ = L∗. Indeed, if w ∈ L∗, then it belongs to
(L∗)!∗, since the first iteration of the iterated cut can consume all of w.
Conversely, (L∗)!∗ ⊆ (L∗)∗ = L∗. Thus, altogether (L∗)!∗ = L∗ = (L!∗)∗

3 Cut Expressions versus Finite Automata

In this section, we compare cut expressions and finite automata. First, we show
that the languages described by cut expressions are indeed regular. We do this by
showing how to convert cut expressions into equivalent finite automata. Second,
we show that cut expressions are succinct: There are cut expressions containing
only a single cut (and no iterated cut), such that a minimal equivalent NFA or
regular expression is of exponential size.

3.1 Cut Expressions Denote Regular Languages

Let A,A′ be DFAs. To prove that the languages denoted by cut expressions are
regular, it suffices to show how to construct DFAs recognizing L(A) !L(A′) and
L(A)!∗. We note here that an alternative proof would be obtained by showing how
to construct alternating automata (AFAs) recognizing L(A) !L(A′) and L(A)!∗.
Such a construction would be slightly simpler, especially for the iterated cut,
but since the conversion of AFAs to DFAs causes a doubly exponential size
increase [1], we prefer the construction given below, which (almost) saves one

2 As usual, we abbreviate EE∗ by E+.

74 M. Berglund et al.

level of exponentiality. Moreover, we hope that this construction, though more
complex, is more instructive.

We first handle the comparatively simple case L(A) !L(A′). The idea of the
construction is to combine A with a kind of product automaton of A and A′.
The automaton starts working like A. At the point where A reaches one of its
final states, A′ starts running in parallel with A. However, in contrast to the
ordinary product automaton, the computation of A′ is reset to its initial state
whenever A reaches one of its final states again. Finally, the string is accepted
if and only if A′ is in one of its final states.

To make the construction precise, let A = (Q,Σ, δ, q0, F) and A′ = (Q′, Σ, δ′,
q′0, F

′). In order to disregard a special case, let us assume that q0 /∈ F . (The case
where q0 ∈ F is easier, because it allows us to use only product states in the
automaton constructed.) We define a DFA A = (Q,Σ, δ, q0, F) as follows:

– Q = Q ∪ (Q ×Q′) and F = Q× F ′,
– for all q, r ∈ Q, q = (q, q′) ∈ Q, and a ∈ Σ with δ(q, a) = r

δ(q, a) =

{
r if r /∈ F
(r, q′0) otherwise,

and δ(q, a) =

{
(r, δ′(q′, a)) if r /∈ F
(r, q′0) otherwise.

Let w ∈ Σ∗. By construction, δ has the following properties:

1. If u /∈ L(A) for all u ∈ prefε(w), then δ(w) = δ(w).
2. Otherwise, let w = uv, where u is the longest prefix of w such that u ∈ L(A).

Then δ(w) = (δ(w), δ′(v)).

We omit the easy inductive proof of these statements. By the definition of
L(A) !L(A′) and the choice of F , they imply that L(A) = L(A) !L(A′). In other
words, we have the following lemma.

Lemma 2. For all regular languages L and L′, the language L !L′ is regular.

Let us now consider the iterated cut. Intuitively, the construction of a DFA
recognizing L(A)!∗ is based on the same idea as above, except that the product
construction is iterated. The difficulty is that the straightforward execution of
this construction yields an infinite automaton. For the purpose of exposing the
idea, let us disregard this difficulty for the moment. Without loss of generality,
we assume that q0 /∈ F (which we can do because L(A)!∗ = (L(A) \ {ε})!∗) and
that δ(q, a) �= q0 for all q ∈ Q and a ∈ Σ.

We construct an automaton whose states are strings q1 · · · qk ∈ Q+. The
automaton starts in state q0, initially behaving like A. If it reaches one of the
final states of A, say q1, it continues in state q1q0, working essentially like the
automaton for L(A) !L(A). In particular, it “resets” the second copy each time
the first copy encounters a final state of A. However, should the second copy
reach a final state q2 of A (while q1 /∈ F), a third copy is spawned, thus resulting
in a state of the form q1q2q0, and so on.

Formally, let δa : Q → Q be given by δa(q) = δ(q, a) for all a ∈ Σ and q ∈ Q.
Recall that functions to extend to sequences, so δa : Q∗ → Q∗ operates element-
wise. We construct the (infinite) automaton Â = (Q̂, Σ, δ̂, q0, F̂) as follows:

Cuts in Regular Expressions 75

– Q̂ = (Q \ {q0})∗Q.

– For all s = q1 · · · qk ∈ Q̂ and a ∈ Σ with δa(s) = q′1 · · · q′k

δ̂(s, a) =

{
q′1 · · · q′k if q′1, . . . , q

′
k /∈ F

q′1 · · · q′lq0 if l = min{i ∈ {1, . . . , k} | q′i ∈ F}. (1)

– F̂ = {q1 · · · qk ∈ Q̂ | qk = q0}.

Note that δ̂(s, a) ∈ Q̂ since we assume that δ(q, a) �= q0 for all q ∈ Q and a ∈ Σ.
Similar to the properties of A above, we have the following:

Claim 1. Let w = v1 · · · vk ∈ Σ∗, where v1 · · · vk is the unique decomposition of w
such that (a) for all i ∈ {1, . . . , k−1}, vi is the longest prefix of vi · · · vk which is in

L(A) and (b) prefε(vk)∩L(A) = ∅.3 Then δ̂(w) = δ(v1 · · · vk)δ(v2 · · · vk) · · · δ(vk).
In particular, Â accepts w if and only if w ∈ L(A)!∗.

Again, we omit the straightforward inductive proof.
It remains to be shown how to turn the set of states of Â into a finite set. We

do this by verifying that repetitions of states of A can be deleted. To be precise,
let π(s) be defined as follows for all s = q1 · · · qk ∈ Q̂. If k = 1 then π(s) = s. If
k > 1 then

π(s) =

{
π(q1 · · · qk−1) if qk ∈ {q1, . . . , qk−1}
π(q1 · · · qk−1)qk otherwise.

Let π(Â) be the NFA obtained from Â by taking the quotient with respect to

π, i.e., by identifying all states s, s′ ∈ Q̂ such that π(s) = π(s′). The set of final

states of π(Â) is the set π(F̂).
This completes the construction. The following lemmas prove its correctness.

Lemma 3. For all s ∈ Q̂ and a ∈ Σ it holds that π(δ̂(s, a)) = π(δ̂(π(s), a)).

Proof. By the very definition of π, for every function f : Q → Q and all s ∈ Q̂
we have π(f(s)) = π(f(π(s))). In particular, this holds for f = δa. Now, let

s = q1 · · · qk be as in the definition of δ̂. Since the same set of symbols occurs
in δa(s) and δa(π(s)), the same case of Equation 1 applies for the construction

of δ̂(s, a) and δ̂(π(s), a). In the first case π(δ̂(s, a)) = π(δa(s)) = π(δa(π(s))) =

π(δ̂(π(s), a)). In the second case

π(δ̂(s, a)) = π(δa(q1 · · · ql)q0)
= π(δa(q1 · · · ql))q0
= π(δa(π(q1 · · · ql)))q0
= π(δa(π(q1 · · · ql))q0)
= π(δ̂(π(s), a)).

Note that the second and the fourth equality make use of the fact that q0 /∈
{q1, . . . , qk−1}, which prevents π from deleting the trailing q0.
�

3 The strings v1, . . . , vk are well defined because ε /∈ L(A).

76 M. Berglund et al.

Lemma 4. The automaton π(Â) is a DFA such that L(π(Â)) = L(A)!∗. In
particular, L!∗ is regular for all regular languages L.

Proof. To see that π(Â) is a DFA, let a ∈ Σ. By the definition of π(Â), its

transition function δ̂π is given by

δ̂π(t, a) = {π(δ̂(s, a)) | s ∈ Q̂, t = π(s)}

for all t ∈ π(Q̂). However, by Lemma 3, π(δ̂(s, a)) = π(δ̂(t, a)) is independent

of the choice of s. In other words, Â is a DFA. Furthermore, by induction on
the length of w ∈ Σ∗, Lemma 3 yields δ̂π(w) = π(δ̂(w)). Thus, by Claim 1,

L(π(Â)) = L(A)!∗. In particular, for a regular language L, this shows that L!∗

is regular, by picking A such that L(A) = L.
�

We note here that, despite the detour via an infinite automaton, the construction
given above can effectively be implemented. Unfortunately, it results in a DFA
of size O(n!), where n is the number of states of the original DFA.

Theorem 5. For every cut expression E, L(E) is regular.

Proof. Follows from combining Lemmas 2 and 4.
�

3.2 Succinctness of Cut Expressions

In this section we show that for some languages, cut expressions provide an
exponentially more compact representation than regular expressions and NFAs.

Theorem 6. For every k ∈ N+, there exists a cut expression Ek of size O(k)
such that every NFA and every regular expression for L(Ek) is of size 2Ω(k).
Furthermore, Ek does not contain the iterated cut and it contains only one oc-
currence of the cut.

Proof. We use the alphabets Σ = {0, 1} and Γ = Σ ∪ {], [}. For k ∈ N+, let

Ek = (ε | [Σ∗0Σk−11Σ∗] | [Σ∗1Σk−10Σ∗]) ! [Σ2k].

Each string in the language L(Ek) consists of one or two bitstrings enclosed
in square brackets. If there are two, the first has at least two different bits at
a distance of exactly k positions and the second is an arbitrary string in Σ2k.
However, when there is only a single pair of brackets the bitstring enclosed is of
length 2k and its second half will be an exact copy of the first.

We argue that any NFA that recognizes L(Ek) must have at least 2k states.
Assume, towards a contradiction, that there is an NFA A with fewer than 2k

states that recognizes L(Ek).
Since |Σk| = 2k there must exist two distinct bitstrings w1 and w2 of length

k such that the following holds. There exist a state q of A and accepting runs ρ1
and ρ2 of A on [w1w1] and [w2w2], resp., such that ρ1 reaches q after reading [w1

Cuts in Regular Expressions 77

and ρ2 reaches q after reading [w2. This, in turn, means that there are accepting
runs ρ′1 and ρ′2 of Aq on w1] and w2], respectively, where Aq is the automaton
obtained from A by making q the sole initial state. Combining the first half of
ρ1 with ρ′2 gives an accepting run of A on [w1w2]. This is a contradiction and
we conclude that there is no NFA for Ek with fewer than 2k states.

The above conclusion also implies that every regular expression for L(Ek) has
size 2Ω(k). If there was a smaller regular expression, the Glushkov construction [7]
would also yield a smaller NFA.
�

Remark 7. The only current upper bound is the one implied by Section 3.1, from
which automata of non-elementary size cannot be ruled out as it yields automata
whose sizes are bounded by powers of twos.

A natural restriction on cut expressions is to only allow cuts to occur at the
topmost level of the expression. This gives a tight bound on automata size.

Lemma 8. Let E be a cut expression, without iterated cuts, such that no subex-
pression of the form C∗ or C · C′ contains cuts. Then the minimal equivalent
DFA has 2O(|E|) states, and this bound is tight.

Proof (sketch). Given any DFAs A,A′, using product constructions we get DFAs
for L(A) |L(A′) and L(A) !L(A′) whose number of states is proportional to
the product of the number of states in A and A′. (See Lemma 2 for the case
L(A) !L(A′).) Thus, one can construct an exponential-sized DFA in a bottom-up
manner. Theorem 6 shows that this bound is tight.
�

4 Uniform Membership Testing

We now present an easy membership test for cut expressions that uses a dynamic
programming approach (or, equivalently, memoization). Similarly to the Cocke-
Younger-Kasami algorithm, the idea is to check which substrings of the input
string belong to the languages denoted by the subexpressions of the given cut
expression. The pseudocode of the algorithm is shown in Algorithm 1. Here, the
string u = a1 · · · an to be matched against a cut expression E is a global variable.
For 1 ≤ i ≤ j ≤ n+ 1, Match(E, i, j) will check whether ai · · · aj−1 ∈ L(E). We
assume that an implicit table is used in order to memoize computed values
for a given input triple. Thus, recursive calls with argument triples that have
been encountered before will immediately return the memoized value rather than
executing the body of the algorithm.

Theorem 9. The uniform membership problem for cut expressions can be de-
cided in time O(m · n3), where m is the size of the cut expression and n is the
length of the input string.

Proof. Consider a cut expression E0 of size m and a string u = a1 · · · an. It is
straightforward to show by induction on m+n that Match(E, i, j) = true if and
only if ai · · · aj−1 ∈ L(E), where 1 ≤ i ≤ j ≤ n+ 1 and E is a subexpression of

78 M. Berglund et al.

Algorithm 1. Match(E, i, j)

if E = ∅ then return false
else if E = ε then return i = j
else if E ∈ Σ then return j = i+ 1 ∧E = ai

else if E = E1 |E2 then return Match(E1, i, j) ∨Match(E2, i, j)
else if E = E1 ·E2 then

for k = 0, . . . , j − i do
if Match(E1, i, i+ k) ∧Match(E2, i+ k, j) then return true

return false
else if E = E∗

1 then
for k = 1, . . . , j − i do

if Match(E1, i, i+ k) ∧Match(E, i+ k, j) then return true
return i = j

else if E = E1 !E2 then
for k = j − i, . . . , 0 do

if Match(E1, i, i+ k) then return Match(E2, i+ k, j)
return false

else if E = E!∗
1 then

for k = j − i, . . . , 1 do
if Match(E1, i, i+ k) then return Match(E, i+ k, j)

return i = j

E0. For E = E1 !E2, this is because of the fact that v ∈ L(E) if and only if v
has a longest prefix v1 ∈ L(E1), and the corresponding suffix v2 of v (i.e., such
that v = v1v2) is in L(E2). Furthermore, it follows from this and the definition
of the iterated cut that, for E = E!∗

1 , v ∈ L(E) if either v = ε or v has a longest
prefix v1 ∈ L(E1) such that the corresponding suffix v2 is in L(E).

Regarding the running time of Match(E, 1, n+ 1), by memoization the body
of Match is executed at most once for every subexpression of E and all i, j,
1 ≤ i ≤ j ≤ n+ 1. This yields O(m · n2) executions of the loop body. Moreover,
a single execution of the loop body involves at most O(n) steps (counting each
recursive call as one step), namely if E = E∗

1 , E = E1 !E2 or E = E!∗.
�

5 Emptiness Testing of Cut Expressions

Theorem 10. Given a cut expression E, it is PSPACE-hard to decide whether
L(E) = ∅. This remains true if E = E1 !E2, where E1 and E2 are regular
expressions.

Proof. We prove the theorem by reduction from regular expression universality,
i.e. deciding for a regular expression R and an alphabet Σ whether L(R) = Σ∗.
This problem is well known to be PSPACE-complete [12].Given R, we construct
a cut expression E such that L(E) = ∅ if and only if L(R) = Σ∗.

We begin by testing if ε ∈ L(R). This can be done in polynomial time. If
ε /∈ L(R), then we set E = ε, satisfying L(E) �= ∅. Otherwise, we set E = R !Σ.
If R is universal, there is no string ua such that u ∈ L(R) but ua /∈ L(R). Thus
L(E) is empty. If R is not universal, since ε ∈ L(R) there are u ∈ Σ∗ and a ∈ Σ
such that u ∈ L(R) and ua �∈ L(R), which means that ua ∈ L(E) �= ∅.
�

Cuts in Regular Expressions 79

Lemma 11. For cut expressions E the problems whether L(E) = ∅ and L(E) =
Σ∗ are LOGSPACE-equivalent.

Proof. Assume that # /∈ Σ, and let Σ′ = Σ ∪ {#}. The lemma then follows
from these two equivalences: (i) E ≡ ∅ if and only if ((ε |EΣ∗) !Σ+) | ε ≡ Σ∗;
and; (ii) E ≡ Σ∗ if and only if (ε |E#(Σ′)∗) !Σ∗# ≡ ∅.
�

6 Related Concepts in Programming Languages

Modern regular expression matching engines have numerous highly useful fea-
tures, some of which improve succinctness (short-hand operators) and some of
which enable expressions that specify non-regular languages. Of interest here
is that most regular expression engines in practical use feature at least some
operation intended to control nondeterminism in a way that resembles the cut.
They are however only loosely specified in terms of backtracking, the specific
evaluation technique used by many regular expression engines. This, combined
with the highly complex code involved, makes formal analysis difficult.

All these operations appear to trace their ancestry to the first edition of
“Mastering Regular Expressions” [2], which contains the following statement:

“A feature I think would be useful, but that no regex flavor that I know of has, is
what I would call possessive quantifiers. They would act like normal quantifiers
except that once they made a decision that met with local success, they would
never backtrack to try the other option. The text they match could be unmatched
if their enclosing subexpression was unmatched, but they would never give up
matched text of their own volition, even in deference to the overall match.”[2]

The cut operator certainly fits this somewhat imprecise description, but as we
shall see implementations have favored different interpretations. Next we give a
brief overview of three different operations implemented in several major regular
expression engines, that exhibit some control over nondeterminism. All of these
operators are of great practical value and are in use. Still, they feature some
idiosyncrasies that should be investigated, in the interest of bringing proper
regular behavior to as large a set of regular expression functionality as possible.

Possessive Quantifiers. Not long after the proposal for the possessive quantifier,
implementations started showing up. It is available in software such as Java,
PCRE, Perl, etc. For a regular expression R the operation is denoted R∗+, and
behaves like R∗ except it never backtracks. This is already troublesome, since
“backtracking” is poorly defined at best, and, in fact, by itself L(R∗+) = L(R∗),
but L(R∗+ · R′) = L(R∗ !R′) for all R′. That is, extending regular expressions
with possessive quantifiers makes it possible to write expressions such that L(E ·
E′) �= L(E) · L(E′), an example being given by E = a∗+ and E′ = a. This
violates the compositional spirit of regular expressions.

Next, consider Table 1. The expression on the first row, call it R, is tested in
each of the given implementations, and the language recognized is shown. The
results on the first row are easy to accept from every perspective. The second

80 M. Berglund et al.

Table 1. Some examples of possessive quantifier use

Expression Perl 5.16.2 Java 1.6.0u18 PCRE 8.32

(aa)∗+a {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .}
((aa)∗+a)∗ {ε, a, aaa, aaaaa, . . .} {ε, a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .}
((aa)∗+a)∗a {a} {a} {a}

Table 2. Comparison between Perl and PCRE when using the (*PRUNE) operator

Expression Perl 5.10.1 Perl 5.16.2 PCRE 8.32

(aa)∗(*PRUNE)a {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .}
((aa)∗(*PRUNE)a)∗ {ε, a, aa, aaa, . . .} ∅ ∅

a∗(*PRUNE)a {a, aa, aaa, . . .} ∅ ∅

row however has the expression R∗, and despite a ∈ L(R) no implementation
gives aa ∈ L(R∗), which violates the classical compositional meaning of the
Kleene closure (in addition, in PCRE we have ε /∈ L(R∗)). The third row further
illustrates how the compositional view of regular expressions breaks down when
using possessive quantifiers.

Independent Groups or Atomic Subgroups. A practical shortcoming of the pos-
sessive quantifiers is that the “cut”-like operation cannot be separated from the
quantifier. For this reason most modern regular expression engines have also in-
troduced atomic subgroups (“independent groups” in Java). An atomic subgroup
containing the expression R is denoted (?R), and described as “preventing back-
tracking”. Any subexpression (?R∗) is equivalent to R∗+, but subexpressions of
the form (?R) where the topmost operation in R is not a Kleene closure may be
hard to translate into an equivalent expression using possessive quantifiers.

Due to the direct translation, atomic subgroups suffer from all the same id-
iosyncrasies as possessive quantifiers, such as L(((? (aa)∗)a)∗a) = {a}.

Commit Operators and (*PRUNE). In Perl 6 several interesting “commit oper-
ators” relating to nondeterminism control were introduced. As Perl 5 remains
popular they were back-ported to Perl 5 in version 5.10.0 with different syntax.
The one closest to the pure cut is (*PRUNE), called a “zero-width pattern”, an
expression that matches ε (and therefore always succeeds) but has some engine
side-effect. As with the previous operators the documentation depends on the
internals of the implementation. “[(*PRUNE)] prunes the backtracking tree at
the current point when backtracked into on failure”[13].

These operations are available both in Perl and PCRE, but interestingly their
semantics in Perl 5.10 and Perl 5.16 differ in subtle ways; see Table 2. Looking at
the first two rows we see that Perl 5.10 matches our compositional understanding
of the Kleene closure (i.e., row two has the same behavior as ((aa)∗!a)∗). On the
other hand Perl 5.10 appears to give the wrong answer in the third row example.

Cuts in Regular Expressions 81

7 Discussion

We have introduced cut operators and demonstrated several of their properties.
Many open questions and details remain to be worked out however:

– There is a great distance between the upper and lower bounds on minimal
automata size presented in Section 3.2, with an exponential lower bound for
both DFA and NFA, and a non-elementary upper bound in general.

– The complexity of uniform membership testing can probably be improved
as the approach followed by Algorithm 1 is very general. (It can do comple-
mentation, for example.)

– The precise semantics of the operators discussed in Section 6 should be
studied further, to ensure that all interesting properties can be captured.

Acknowledgments. We thank Yves Orton who provided valuable information
about the implementation and semantics of (*PRUNE) in Perl.

References

[1] Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM28(1), 114–133
(1981)

[2] Friedl, J.E.F.: Mastering Regular Expressions. Reilly & Associates, Inc., Se-
bastopol (1997)

[3] Fürer, M.: The complexity of the inequivalence problem for regular expressions
with intersection. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS,
vol. 85, pp. 234–245. Springer, Heidelberg (1980)

[4] Gelade, W.: Succinctness of regular expressions with interleaving, intersection and
counting. Theor. Comput. Sci. 411(31-33), 2987–2998 (2011)

[5] Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML:
Numerical constraints and interleaving. SIAM J. Comput. 38(5), 2021–2043 (2009)

[6] Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. ACM Trans. Comput. Logic 13(1), Article 4 (2012)

[7] Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Sur-
veys 16, 1–53 (1961)

[8] Gruber, H., Holzer, M.: Tight bounds on the descriptional complexity of regu-
lar expressions. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583,
pp. 276–287. Springer, Heidelberg (2009)

[9] Kilpeläinen, P., Tuhkanen, R.: Regular expressions with numerical occurrence in-
dicators - preliminary results. In: SPLST, pp. 163–173 (2003)

[10] Kupferman, O., Zuhovitzky, S.: An improved algorithm for the membership prob-
lem for extended regular expressions. In: Diks, K., Rytter, W. (eds.) MFCS 2002.
LNCS, vol. 2420, pp. 446–458. Springer, Heidelberg (2002)

[11] Mayer, A.J., Stockmeyer, L.J.: Word problems - this time with interleaving. In-
form. and Comput. 115(2), 293–311 (1994)

[12] Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential time. In: SWAT (FOCS), pp. 125–129 (1972)

[13] Perl 5 Porters. perlre (2012), http://perldoc.perl.org/perlre.html (accessed
January 16, 2013)

[14] Petersen, H.: The membership problem for regular expressions with intersection
is complete in LOGCFL. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS,
vol. 2285, pp. 513–522. Springer, Heidelberg (2002)

[15] Robson, J.M.: The emptiness of complement problem for semi extended regular
expressions requires cn space. Inform. Processing Letters 9(5), 220–222 (1979)

http://perldoc.perl.org/perlre.html

Quantum Finite Automata and Linear

Context-Free Languages: A Decidable Problem

Alberto Bertoni1, Christian Choffrut2, and Flavio D’Alessandro3

1 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano
Via Comelico 39, 20135 Milano, Italy

2 Laboratoire LIAFA, Université de Paris 7
2, pl. Jussieu, 75251 Paris Cedex 05

3 Dipartimento di Matematica, Sapienza Università di Roma
Piazzale Aldo Moro 2, 00185 Roma, Italy

Abstract. We consider the so-called measure once finite quantum au-
tomata model introduced by Moore and Crutchfield in 2000. We show
that given a language recognized by such a device and a linear context-
free language, it is recursively decidable whether or not they have a
nonempty intersection. This extends a result of Blondel et al. which can
be interpreted as solving the problem with the free monoid in place of
the family of linear context-free languages.

Keywords: Quantum automata, Context-free languages, Algebraic groups,
Decidability.

1 Introduction

Quantum finite automata or simply quantum automata were introduced at the
beginning of the previous decade in [9] as a new model of language recognizer.
Numerous publications have ever since compared their decision properties to
those of the older model of probabilistic finite automata. Some undecidable prob-
lems for probabilistic finite automata turn out to be decidable for quantum finite
automata. The result in [4] which triggered our investigation can be viewed as
asserting that the intersection emptiness problem of a language recognized by
a finite quantum automaton with the free monoid is recursively decidable. The
present result concerns the same problem where instead of the free monoid, more
generally a language belonging to some classical families of languages such as
the context-free languages and the bounded semilinear languages is considered.

An ingredient of the proof in [4] consists of expressing the emptiness problem
in the first order theory of the reals and then to apply Tarski-Seidenberg quanti-
fier elimination. This is possible because an algebraic subset, i.e., a closed subset
in the Zariski topology A ⊆ Rn, is naturally associated to this intersection and
even more miraculously because this subset can be effectively computed (cf. also
[5]).

Here we show that the (actually semi-)algebraicity of A still holds when con-
sidering not only the free monoid but more generally arbitrary context-free

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 82–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Quantum Finite Automata and Linear Context-Free Languages 83

languages and bounded semilinear languages. Unfortunately, its effective con-
struction is only guaranteed under stricter conditions such as the fact that the
language is context-free and linear or is bounded semilinear. In particular, in the
case of context-free languages, we are not able to settle the nonlinear case yet.

We now give a more formal presentation of our work. The free monoid gener-
ated by the finite alphabet Σ is denoted by Σ∗. The elements of Σ∗ are words.
We consider all finite dimensional vector spaces as provided with the Euclidian
norm || · ||. A quantum automaton is a quadruple Q = (s, ϕ, P, λ) where s ∈ Rn

is a row-vector of unit norm, P is a projection of Rn, ϕ is a representation of
the free monoid Σ∗ into the group of orthogonal n × n-matrices in Rn×n and
the threshold λ has value in R. We recall that a real matrix M is orthogonal
if its inverse equals its transpose: M−1 = MT . We denote by On the group of
n×n-orthogonal matrices. We are mainly interested in effective properties which
require the quantum automaton to be effectively given. We say that the quantum
automaton is rational if all the coefficients of the components of the automaton
are rational numbers, i.e., ϕ maps Σ∗ into Qn×n and λ ∈ Q. This hypothesis is
not a restriction since all we use for the proofs is the fact that the arithmetic
operations and the comparison are effective in the field of rational numbers. This
is the “measure once” model introduced by Moore and Crutchfield in 2000 [9].
For a real threshold λ, the languages recognized by Q with strict and nonstrict
threshold λ are

|Q>| = {w ∈ Σ∗ | ||sϕ(w)P || > λ}, |Q≥| = {w ∈ Σ∗ | ||sϕ(w)P || ≥ λ}
Blondel et al. in [4] proved that the emptiness problem of |Q>| is decidable
and the emptiness problem of |Q≥| is undecidable. It is worth to remark that
these results are in contrast with the corresponding ones for probabilistic finite
automata. Indeed for this class of automata the above mentioned problems are
both undecidable (see [11], Thm 6.17). It is also proven in [7] that the problems
remain both undecidable for the “measure many” model of quantum automata,
a model not computationally equivalent to the “measure once”, introduced by
Kondacs and Watrous in [8].

The result of decidability proved in [4] for quantum automata can be inter-
preted as saying that the emptiness problem of the intersection of a language
accepted by a quantum automaton and the specific language Σ∗ is decidable. In
other word, it falls into the category of issues asking for the decision status of
the intersection of two languages. It is known that such a problem is already un-
decidable at a very low level of the complexity hierarchy of recursive languages,
namely for linear context-free languages to which Post Correspondence Problem
can be easily reduced.

A few words on the technique used in the above paper. Observe that, with
the natural meaning of the notation |Q≤|, the emptiness problem for languages
|Q>| is equivalent to the inclusion

Σ∗ ⊆ |Q≤| (1)

Since the function M → ||sMP || is continuous, it is sufficient to prove that for
all matrices M in the topological closure of ϕ(Σ∗) the condition ||sMP || ≤ λ

84 A. Bertoni, C. Choffrut, and F. D’Alessandro

holds. The nonemptiness is clearly semidecidable. In order to prove that the
emptiness is semidecidable the authors resort to two ingredients. They observe
that the topological closure of the monoid of matrices ϕ(Σ∗) is algebraic, i.e.,
when considering the n × n-entries of a matrix M in the topological closure of
ϕ(Σ∗) as as many unknowns in the field of reals, they are precisely the zeros of a
polynomial in R[x1,1, . . . , xn,n]. This allows them to express the property (1) in
first-order logic of the field of reals. The second ingredient consists of applying
Tarski-Seidenberg quantifier elimination and Hilbert basis results, which yields
decidability.

We generalize the problem by considering families of languages L instead of
the fixed language Σ∗. The question we tackle is thus the following

(L,Q) INTERSECTION

Input: a language L in a family of languages L and a finite quantum automaton
Q.

Question: does L ∩ |Q>| = ∅ hold?

Our main result shows that whenever L is the family of linear context-free
languages or is the family of bounded semilinear languages, and whenever the
automaton is rational, the problem is decidable. It can be achieved, not only
because the orthogonal matrices associated with L are semialgebraic (a more
general property than algebraic, which is defined by more general first-order
formulas), but also because these formulas can be computed “in the limit”.

We can prove the semialgebraicity of more general families of languages: ar-
bitrary subsemigroups which is a trivial case and context-free languages which
is less immediate.

A version of this paper completed with the proofs of all the results can be
found in [3].

2 Preliminaries

A quantum automaton Q is a quadruple (s, ϕ, P, λ) where, as mentioned in
the Introduction, s ∈ Rn is a vector of unit norm, P is a projection of Rn,
ϕ is a representation of the free monoid Σ∗ into the group On of orthogonal
n× n-matrices in Rn×n. The behaviour of Q heavily depends on the topological
properties of the semigroup of matrices ϕ(Σ∗). This is why, before returning to
quantum automata, we first focus our attention on these matrices for their own
sake.

2.1 Topology

The following result is needed in the proof of the main theorem. Though valid
under weaker conditions, it will be considered in the particular case of orthogo-
nal matrices. Given a subset E of a finite dimensional vector space, we denote
by Cl(E) the topological closure for the topology induced by the Euclidian
norm. Given a k-tuple of matrices (M1, . . . ,Mk), denote by f the k-ary product

Quantum Finite Automata and Linear Context-Free Languages 85

f(M1, . . . ,Mk) = M1 · · ·Mk and extend the notation to subsets ρ of k-tuples of
matrices by posing f(ρ) = {f(M1, . . . ,Mk) | (M1, . . . ,Mk) ∈ ρ}. The following
result will be applied in several instances of this paper. It says that because we
are dealing with compact subsets, the two operators of matrix multiplication
and the topological closure commute.

Theorem 1. Let C be a compact subset of matrices and let ρ ⊆ Ck be a k-ary
relation. Then we have

Cl(f(ρ)) = f(Cl(ρ))

Consequently, if ρ is a binary relation which is a direct product ρ1 × ρ2, we
have Cl(ρ1ρ2) = f(Cl(ρ1 × ρ2)). It is an elementary result of topology that
Cl(ρ1 × ρ2) = Cl(ρ1) ×Cl(ρ2) holds. Because of Cl(ρ1ρ2) = f(Cl(ρ1 × ρ2)) =
f(Cl(ρ1)×Cl(ρ2)) = Cl(ρ1) Cl(ρ2) we have

Corollary 1. The topological closure of the product of two sets of matrices in-
cluded in a compact subspace is equal to the product of the topological closures
of the two sets.

2.2 Algebraic and Semialgebraic Sets

Let us give first the definition of algebraic set over the field of real numbers (cf.
[2,10]).

Definition 1. A subset A ⊆ Rn is algebraic (over the field of real numbers), if
it satisfies one of the following equivalent conditions:

(i) A is the zero set of a polynomial p ∈ R[x1, . . . , xn], i.e.,

v ∈ A ⇐⇒ p(v) = 0. (2)

(ii) A is the zero set of an arbitrary set of polynomials P with coefficients in
R[x1, . . . , xn], i.e., for every vector v ∈ Rn,

v ∈ A ⇐⇒ ∀ p ∈ P : p(v) = 0. (3)

The equivalence of the two statements is a consequence of Hilbert finite basis
Theorem. Indeed, the theorem claims that given a family P there exists a finite
subfamily p1, . . . , pr generating the same ideal which implies in particular that
for all p ∈ P there exist q1, . . . , qr with

p = q1p1 + · · ·+ qrpr

Then pj(v) = 0 for j = 1, . . . , r implies p(v) = 0. Now this finite set of equations
can be reduced to the single equation

n∑
i=1

pj(x)
2 = 0

86 A. Bertoni, C. Choffrut, and F. D’Alessandro

As a trivial example, a singleton {v} is algebraic since it is the unique solution
of the equation

n∑
i=1

(xi − vi)
2 = 0

where vi, with 1 ≤ i ≤ n, is the i-th component of the vector v.

It is routine to check that the family of algebraic sets is closed under finite
unions and intersections. However, it is not closed under complement and projec-
tion. The following more general class of subsets enjoys extra closure properties
and is therefore more robust. The equivalence of the two definitions below is
guaranteed by Tarski-Seidenberg quantifier elimination result.

Definition 2. A subset A ⊆ Rn is semialgebraic (over the field of real numbers)
if it satisfies one of the two equivalent conditions

(i) A is the set of vectors satisfying a finite Boolean combination of predicates
of the form p(x1, . . . , xn) > 0 where p ∈ R[x1, . . . , xn].

(ii) A is first-order definable in the theory of the structure whose domain are the
reals and whose predicates are of the form p(x1, . . . , xn) > 0 and p(x1, . . . , xn) =
0 with p ∈ R[x1, . . . , xn].

We now specify these definitions to square matrices.

Definition 3. A set A ⊆ Rn×n of matrices is algebraic, resp. semialgebraic, if
considered as a set of vectors of dimension n2, it is algebraic, resp. semialgebraic.

We now combine the notions of zero sets and of topology. In the following two
results we rephrase Theorem 3.1 of [4] by emphasizing the main features that
serve our purpose (see also [4,10]). Given a subset E of a group, we denote by
〈E〉 and by E∗ the subgroup and the submonoid it generates, respectively.

Theorem 2. Let S ⊆ Rn×n be a set of orthogonal matrices and let E be any
subset of S satisfying 〈S〉 = 〈E〉. Then we have Cl(S∗) = Cl(〈E〉). In particular
Cl(S∗) is a group.

The main consequence of the next theorem is that the topological closure of a
monoid of orthogonal matrices is algebraic.

Theorem 3. Let E be a set of orthogonal matrices. Then Cl(〈E〉) is a subgroup
of orthogonal matrices and it is the zero set of all polynomials p[x1,1, . . . , xn,n]
satisfying the conditions

p(I) = 0 and p(eX) = p(X) for all e ∈ E

Furthermore, if the matrices in E have rational coefficients, the above condition
may be restricted to polynomials with coefficients in Q.

Combining the previous two theorems, we get the general result

Corollary 2. Let L ⊆ Σ∗. Then Cl(ϕ(L)∗) is algebraic.

Quantum Finite Automata and Linear Context-Free Languages 87

2.3 Effectiveness Issues

We now return to the (L,Q) INTERSECTION problem as defined in the Intro-
duction. We want to prove the implication

∀X : X ∈ ϕ(L) ⇒ ||sXP || ≤ λ

We observed that due to the fact that the function X → ||sXP || is continuous
the implication is equivalent to the implication

∀X : X ∈ Cl(ϕ(L)) ⇒ ||sXP || ≤ λ

It just happens that under certain hypotheses, Cl(ϕ(L)) is semialgebraic, i.e., it
is defined by a first-order formula which turns the above statement into a first
order formula. In the simplest examples, the closure is defined by an infinite
conjunction of equations which by Hilbert finite basis result reduces to a unique
equation. Thus Theorem 3 guarantees the existence of the formula but does not
give an upper bound on the finite number of equations which must be tested.
Therefore the following definition is instrumental for the rest of the paper. It
conveys the idea that given a subset A of matrices there exists a sequence of for-
mulas defining a non-increasing sequence of matrices which eventually coincide
with A. Each formula of the sequence can thus be considered as an approxima-
tion of the ultimate formula.

Definition 4. A subset A of matrices is effectively eventually definable if there
exists a constructible sequence of first-order formulas φi satisfying the conditions

1) for all i ≥ 0 φi+1 ⇒ φi

2) for all i ≥ 0 A |= φi

3) there exists n ≥ 0 B |= φn ⇒ B ⊆ A

The following is a first application of the notion and illustrates the discussion
before the definition.

Proposition 1. Let Q be a rational quantum automaton. Let L ⊆ Σ∗ be such
that the set Cl(ϕ(L)) is effectively eventually definable. It is recursively decidable
whether or not L ∩ |Q>| = ∅ holds.

We state a sufficient condition for a subset of matrices to be effectively eventually
definable.

Let S ⊆ Rn×n be a set of orthogonal matrices and let E be any subset
satisfying 〈S〉 = 〈E〉.

Proposition 2. Let L ⊆ Σ∗ and let E ⊆ Qn×n be a finite subset of orthogo-
nal matrices satisfying 〈ϕ(L)〉 = 〈E〉. Then Cl(ϕ(L)∗) is effectively eventually
definable.

88 A. Bertoni, C. Choffrut, and F. D’Alessandro

2.4 Closure Properties

In this paragraph we investigate some closure properties of the three different
classes of matrices: algebraic, semialgebraic and effectively eventually definable,
under the main usual operations as well as new operations.

We define the sandwich operation denoted by � whose first operand is a set
of pairs of matrices A ⊆ Rn×n ×Rn×n and the second operand a set of matrices
B ⊆ Rn×n by setting

A � B = {XY Z | (X,Z) ∈ A and Y ∈ B}

The next operation will be used. Given a bijection

π : {(i, j) | i, j ∈ {1, . . . , n}} → {(i, j) | i, j ∈ {1, . . . , n}} (4)

and a matrix M ∈ Rn×n denote by π(M) the matrix π(M)i,j = Mπ(i,j). Extend
this operation to subsets of matrices A. Write π(A) to denote the set of matrices
π(M) for all M ∈ A.

The last operation is the sum of square matrices M1, . . . ,Mk whose result is
the square block matrix

M1 ⊕ · · · ⊕Mk =

⎛⎜⎜⎜⎝
M1 0 · · · 0
0 M2 · · · 0
...

...
...

...
0 0 0 Mk

⎞⎟⎟⎟⎠ (5)

These notations extend to subsets of matrices in the natural way. Here we assume
that all k matrices have the same dimension n× n. Observe that if the matrices
are orthogonal, so is their sum. Such matrices form a subgroup of orthogonal
matrices of dimension kn× kn.

Logic provides an elegant way to formulate properties in the present context.
Some conventions are used throughout this work. E.g., we write ∃nX when we
mean that X is a vector of n bound variables. Furthermore, a vector of n × n
variables can be interpreted as an n×n matrix of variables. As a consequence of
Tarski-Seidenberg result, consider two semialgebraic subsets of matrices, say A1

and A2, defined by two first-order formulas φ1(X1) and φ2(X2) where X1 and
X2 are two families of n2 free variables viewed as two n×n matrices of variables.
Then the product

A1A2 = {M1M2 | M1 ∈ A1,M2 ∈ A2}

is defined by the following formula whereX is a family of n2 free variables viewed
as an n× n matrix

∃n×nX1∃n×nX2 : X = X1X2 ∧ φ1(X1) ∧ φ2(X2)

where X = X1X2 is an abbreviation for the predicate defining X as the matrix
product of X1 and X2. This proves that the product of two semialgebraic sets
of matrices is semialgebraic. Similarly we have the following closure properties
whose verification is routine.

Quantum Finite Automata and Linear Context-Free Languages 89

Proposition 3. Let A1,A2 ⊆ Rn×n be two sets of matrices and let π be a
one-to-one mapping as in (4).

1) If A1 and A2 are algebraic so are A1 ∪ A2 and π(A1).

2) If A1 and A2 are semialgebraic, resp. effectively eventually definable, so are
A1 ∪ A2, A1A2 and π(A1).

Proposition 4. Let A1 ⊆ Rn×n×Rn×n and A2 ⊆ Rn×n be semialgebraic, resp.
effectively eventually definable. Then A1 � A2 is semialgebraic, resp. effectively
eventually definable.

Proposition 5. Let A be a semialgebraic, resp. effectively eventually definable,
set of kn× kn matrices of the form (5). The set

{X1 · · ·Xk | X1 ⊕ · · · ⊕Xk ∈ A}

is semialgebraic, resp. effectively eventually definable.

Proposition 6. If A1, . . . ,Ak ⊆ Rn×n are semialgebraic, resp. effectively even-
tually definable sets of matrices then so is the set A1 ⊕ · · · ⊕ Ak.

3 Context-Free languages

For the sake of self-containment and in order to fix notation, we recall the basic
properties and notions concerning the family of context-free languages which can
be found in all introductory textbooks on theoretical computer science (see, for
instance, [6]).

A context-free grammar G is a quadruple 〈V,Σ, P, S〉 where Σ is the alphabet
of terminal symbols, V is the set of nonterminal symbols, P is the set of rules, and
S is the axiom of the grammar. A word over the alphabet Σ is called terminal.
As usual, the nonterminal symbols are denoted by uppercase letters A, B,
A typical rule of the grammar is written as A → α. The derivation relation of
G is denoted by

∗⇒.
A grammar is linear if every right hand side α contains at most one occurrence

of nonterminal symbols, i.e., if it belongs to Σ∗ ∪Σ∗V Σ∗.
The idea of the following notation is to consider the set of all pairs of left and

right contexts in the terminal alphabet of a self-embedding nonterminal symbol.
In the next definition, the initial “C” is meant to suggest the term “context” as
justified by the following.

Definition 5. With each nonterminal symbol A ∈ V associate its terminal con-
texts defined as

CA = {(α, β) ∈ Σ∗ ×Σ∗ : A
∗⇒αAβ}.

It is convenient to define the sandwich operation also for languages in the fol-
lowing way. With CA as above and L′ an arbitrary language, we define

CA � L′ = {uwv | (u, v) ∈ CA and w ∈ L′}

90 A. Bertoni, C. Choffrut, and F. D’Alessandro

As the proof of the main theorem proceeds by induction on the number of
nonterminal symbols, we need to show how to recombine a grammar from simpler
ones obtained by choosing an arbitrary non-axiom symbol as the new axiom and
by canceling all the rules involving S. This is the reason for introducing the next
notation

Definition 6. Let G = 〈V,Σ, P, S〉 be a context-free grammar. Set V ′ = V \{S}.
For every A ∈ V ′, define the context-free grammar GA = 〈V ′, Σ, PA, A〉 where

the set PA consists of all the rules B → γ of G of the form

B ∈ V ′, γ ∈ (V ′ ∪Σ)∗

and denote by LA the language of all terminal words generated by the grammar
GA.

The next definition introduces the language of terminal words obtained in a
derivation where S occurs at the start only.

Definition 7. Let L′(G) denote the set of all the words of Σ∗ which admit a
derivation

S ⇒ γ1 ⇒ · · · ⇒ γ� ⇒ w (6)

where, for every i = 1, . . . , �, γi ∈ (V ′ ∪Σ)∗.

The language L′(G) can be easily expressed in terms of the languages LA for all
A ∈ V ′. Indeed, consider the set of all rules of the grammar G of the form

S → β, β ∈ (V ′ ∪Σ)∗ (7)

Factorize every such β as

β = w1A1w2A2 · · ·w�A�wj�+1
(8)

where w1, . . . , w�+1 ∈ Σ∗ and A1, A2, . . . A� ∈ V ′. The following is a standard
exercise.

Lemma 1. With the notation of (8), the language L′(G) is the (finite) union
of the languages

w1LA1w2LA2 · · ·w�LA�
wj�+1

when β ranges over all rules (7).

Proposition 7. With the previous notation L is a finite union of languages of
the form CS � L′′ where

L′′ = w1LA1w2LA2 · · ·w�LA�
w�+1

Proof. In order to prove the inclusion of the right- into left- hand side, it suffices
to consider w = αuβ, with u ∈ L′(G) and (α, β) ∈ CS . One has S

∗⇒u and

S
∗⇒αSβ and thus S

∗⇒αSβ
∗⇒αuβ.

Quantum Finite Automata and Linear Context-Free Languages 91

Let us prove the opposite inclusion. A word w ∈ L admits a derivation S
∗⇒w.

If the symbol S does not occur in the derivation except at the start of the
derivation, then w ∈ L′(G). Otherwise factor this derivation into S

∗⇒αSβ
∗⇒w

such that S does not occur in the second part of the derivation except in the
sentential form αSβ. Reorder the derivation αSβ

∗⇒w into αSβ
∗⇒ γSδ

∗⇒w so
that γ, δ ∈ Σ∗. This implies w = γuδ for some word u ∈ L′(G), completing the
proof.

4 The Main Results

Here we prove that the problem is decidable for two families of languages, namely
the linear context-free languages and the linear bounded languages.

4.1 The Bounded Semilinear Languages

We solve the easier case. We recall that a bounded semilinear language is a finite
union of linear languages which are languages of the form

L = {wn1
1 · · ·wnk

k | (n1, . . . , nk) ∈ R} (9)

for some fixed words wi ∈ Σ∗ for i = 1, . . . , k and R ⊆ Nk is a linear set, i.e.,
there exists v0, v1, . . . , vp ∈ Nk such that

R = {v0 + λ1v1 + · · ·+ λpvp | λ1, . . . , λp ∈ N}

Proposition 8. If L is bounded semilinear then its closure Cl(ϕ(L)) is semial-
gebraic. Furthermore, if the quantum automaton Q is rational, the (L,Q) inter-
section is decidable.

4.2 The Case of Context-Free Languages

Here we show that Cl(ϕ(L)) is effectively eventually definable for languages
generated by linear grammars and rational quantum automata.

We adopt the notation from Section 3 for context-free grammars. We recall
the following notion that will be used in the proof of the next result (see [12]). A
subset of a monoid M is regular if it is recognized by some finite M -automaton
which differs from an ordinary finite nondeterministic automaton over the free
monoid by the fact the transitions are labeled by elements in M .

Proposition 9. If L is generated by a context-free grammar, then Cl(ϕ(L)) is
semialgebraic. Furthermore, if the grammar is linear and if the quantum automa-
ton is rational then Cl(ϕ(L)) is effectively eventually definable and the (L,Q)
intersection is decidable.

92 A. Bertoni, C. Choffrut, and F. D’Alessandro

Proof. With the notation of Section 3 the language L is a finite union of lan-
guages of the form CS � L′′ with

L′′ = w1LA1w2LA2 · · ·w�LA�
w�+1 (10)

where, for every 1 ≤ i ≤ � + 1, wi ∈ Σ∗ and Ai ∈ V ′. It suffices to show
by induction on the number of nonterminal symbols that, with the previous
notation, the subsets

Cl(ϕ(CS � L′′)) (11)

are semialgebraic in all cases and effectively eventually definable when the quan-
tum automaton is rational and the grammar of the language is linear. As a pre-
liminary remark let us show this property for Cl(ϕ(CS)). Define ϕT : Σ∗ →
Rn×n as ϕT (u) = ϕ(u)T and set

M = {ϕ(a)⊕ ϕT (b) | (a, b) ∈ CS}.

Observe that M is a monoid since if ϕ(a) ⊕ ϕT (b) and ϕ(c) ⊕ ϕT (d) are in M
then we have

ϕT (b)ϕT (d) = ϕ(b)Tϕ(d)T = (ϕ(d)ϕ(b))T = ϕ(db)T = ϕT (db)

which yields

(ϕ(a) ⊕ ϕT (b))(ϕ(c) ⊕ ϕT (d)) = ϕ(ac)⊕ ϕT (db).

As a first consequence, by Corollary 2, Cl(M) is algebraic. Furthermore we
can show that Cl(M) is effectively eventually definable. Indeed M is a regular
submonoid of the group of orthogonal matrices On ⊕ On if the grammar is
linear. Precisely, it is recognized by the finite O2n-automaton whose states are

the nonterminal symbols, the transitions are of the form A
ϕ(a)⊕ϕT (b)−−−−−−−→ B where

A → aBb is a rule of the grammar and where the initial and final states coincide
with S. Now, the subgroup generated by a regular subset of a monoid has an
effective finite generating set [1] (see also [12]) and thus by Proposition 2 Cl(M)
is effectively eventually definable if ϕ(Σ∗) ⊆ Qn×n.

We now proceed with the proof by induction on the number of nonterminal
symbols. If the set of nonterminal symbols is reduced to S then L is reduced to
CS � L′(G) and L′(G) is finite. We may further assume that there is a unique
terminal rule S → w. By Theorem 1 we have

Cl(ϕ(L)) = {Xϕ(w)Y T | X ⊕ Y ⊕ {ϕ(w)} ∈ Cl(M ⊕ ϕ(w))}

By Corollary 1 we have

Cl(M ⊕ ϕ(w)) = Cl(M)⊕Cl(ϕ(w)) = Cl(M)⊕ ϕ(w)

which, by Proposition 6, is semialgebraic, resp. effectively eventually definable.
In that latter case the (L,Q) intersection is decidable.

Quantum Finite Automata and Linear Context-Free Languages 93

Now assume V contains more than one nonterminal symbol. We first prove
that for each nonterminal symbol A, Cl(ϕ(CS � LA)) is semialgebraic in the
general case and effectively eventually definable when the grammar is linear and
the quantum automaton is rational. By Theorem 1 and Corollary 1, Cl(ϕ(CS �
L′′)) is the subset

Cl(ϕ(CS � L′′)) = {XZY T | X ⊕ Y ⊕ Z ∈ Cl(M)⊕Cl(ϕ(L′′)}

with L′′ as in (10), i.e.,

{XZY T | X ⊕ Y ⊕ Z ∈ Cl(M)⊕Cl(ϕ(w1)ϕ(LA1) · · ·ϕ(w�)ϕ(LA�
)ϕ(w�+1))}

By Cororally 1 we have

Cl(ϕ(w1)ϕ(LA1) · · ·ϕ(w�)ϕ(LA�
)ϕ(w�+1))

= ϕ(w1)Cl(ϕ(LA1)) · · ·ϕ(w�)Cl(ϕ(LA�
))ϕ(w�+1))

which shows, via Proposition 3 and by induction hypothesis that this subset is
semialgebraic, resp. effectively, eventually definable. Then its direct sum with
Cl(M) is semialgebraic and effectively, eventually definable if the grammar is
linear and the quantum automaton is rational. We conclude by applying Propo-
sition 5.

References

1. Anisimov, A.V., Seifert, F.D.: Zur algebraischen Charakteristik der durch Kontext-
freie Sprachen definierten Gruppen. Elektron. Inform. Verarb. u. Kybern. 11,
695–702 (1975)

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer,
Berlin (2003)

3. Bertoni, A., Choffrut, C., D’Alessandro, F.: Quantum finite automata and linear
context-free languages, Preprint arXiv:1303.2967 (2013)

4. Blondel, V.D., Jeandel, E., Koiran, P., Portier, N.: Decidable and Undecidable
Problems about Quantum Automata. SIAM J. Comput. 34, 1464–1473 (2005)

5. Derksen, H., Jeandel, E., Koiran, P.: Quantum automata and algebraic groups. J.
Symb. Comput. 39, 357–371 (2005)

6. Hopcroft, J., Ullman, J.D.: Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley (1979)

7. Jeandel, E.: Indécidabilité sur les automates quantiques. Master’s thesis. ENS Lyon
(2002)

8. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pp. 66–75 (1997)

9. Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoret.
Comput. Sci. 237, 275–306 (2000)

10. Onishchik, A., Vinberg, E.: Lie Groups and Algebraic Groups. Springer, Berlin
(1990)

11. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)
12. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,

Cambridge (2009)

On the Asymptotic Abelian Complexity

of Morphic Words�

Francine Blanchet-Sadri1 and Nathan Fox2

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematics, Rutgers University,

Hill Center for the Mathematical Sciences,
110 Frelinghuysen Rd., Piscataway, NJ 08854–8019, USA

fox@math.rutgers.edu

Abstract. The subword complexity of an infinite word counts the num-
ber of subwords of a given length, while the abelian complexity counts
this number up to letter permutation. Although a lot of research has
been done on the subword complexity of morphic words, i.e., words ob-
tained as fixed points of iterated morphisms, little is known on their
abelian complexity. In this paper, we undertake the classification of the
asymptotic growths of the abelian complexities of fixed points of binary
morphisms. Some general results we obtain stem from the concept of
factorization of morphisms. We give an algorithm that yields all canon-
ical factorizations of a given morphism, describe how to use it to check
quickly whether a binary morphism is Sturmian, discuss how to fully fac-
torize the Parry morphisms, and finally derive a complete classification
of the abelian complexities of fixed points of uniform binary morphisms.

1 Introduction

The subword complexity of an infinite word w, denoted ρw, is the function map-
ping each positive integer n to the number of distinct subwords of w of length n.
On the other hand, the abelian complexity of w, denoted ρabw , is the function map-
ping each positive integer n to the number of distinct Parikh vectors of subwords
of w of length n. Here, we assume the standard alphabet Ak = {0, . . . , k − 1},
and the Parikh vector of a finite word over Ak is the vector whose ith entry is
the number of occurrences of letter i− 1 in the word.

An infinite word is a morphic word if it is the fixed point of some morphism
at some letter. For compactness of notation, we frequently denote a morphism
ϕ over Ak, ϕ : A∗

k → A∗
k, as an ordered k-tuple ϕ = (w0, . . . , wk−1), where

� This material is based upon work supported by the National Science Foundation
under Grant No. DMS–1060775. A World Wide Web server interface has been es-
tablished at www.uncg.edu/cmp/research/abeliancomplexity2 for automated use
of the programs.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 94–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Asymptotic Abelian Complexity of Morphic Words 95

ϕ (a) = wa for each a ∈ Ak. The fixed point of ϕ at a, denoted ϕω (a), is the
limit as n → ∞ of ϕn (a). The fixed point exists precisely when the limit exists.

A lot of research has been done on the subword complexity of morphic words,
e.g., Ehrenfeucht and Rozenberg [9] showed that the fixed points of uniform
morphisms, i.e., morphisms ϕ over Ak satisfying |ϕ(a)| = |ϕ(b)| for all a, b ∈ Ak,
have at most linear subword complexity, Berstel and Séébold [3] gave a charac-
terization of Sturmian morphisms, i.e., morphisms ϕ over the binary alphabet
A2 = {0, 1} such that ϕω (0) exists and is Sturmian, in other words, ρϕω(0) (n) =
n+1 for all n, and Frid [11] obtained a formula for the subword complexity of the
fixed points of binary uniform morphisms. On the other hand, abelian complex-
ity is a relatively new research topic. Balková, Br̆inda, and Turek [2] studied the
abelian complexity of infinite words associated with quadratic Parry numbers,
Currie and Rampersad [6] studied recurrent words with constant abelian com-
plexity, and Richomme, Saari, and Zamboni [14] investigated abelian complexity
of minimal subshifts.

In this paper, we are interested in classifying the asymptotic growths of the
abelian complexities of words obtained as fixed points of iterated morphisms over
A2 at 0. This classification has already been done for the subword complexity of
morphisms over Ak [7–10, 12] (see also [4, Section 9.2]). Pansiot’s classification
of the asymptotic growths of the subword complexity of morphic words not
only depends on the type of morphisms but also on the distribution of so-called
bounded letters [12]. We assume without loss of generality that the first letter in
the image of 0 is 0 and we assume that all of our morphisms are nonerasing. Also
for conciseness, we frequently use the term “abelian complexity of a morphism”
(when referring to its fixed point at 0).

As mentioned above, we are mainly concerned with the asymptotic behaviors
of the abelian complexities rather than their specific values. Some general results
we obtain stem from the concept of factorization of morphisms. We mainly ex-
amine the monoid of binary morphisms under composition, but we also consider
factorization in a more general setting.

The binary morphism types whose asymptotic abelian complexities we clas-
sify are the following: morphisms with ultimately periodic fixed points (Propo-
sition 1(10)), Sturmian morphisms (Proposition 2(2)), morphisms with equal
ratios of zeroes to ones in both images (Theorem 3), Parry morphisms, i.e.,
morphisms of the type (0p1, 0q) with p ≥ q ≥ 1 or of the type (0p1, 0q1) with
p > q ≥ 1 studied in [2] and cyclic shifts of their factorizations (Proposition 2(4)
along with Corollaries 2 and 3), most morphisms where the image of 1 contains
only ones (Theorem 4), and most uniform morphisms and cyclic shifts of their
factorizations (Theorem 6).

All of the asymptotic abelian complexity classes we obtain, where f (n) = 1
if log2 n ∈ Z, and f (n) = logn otherwise, are the following (listed in increasing
order of growth): Θ (1), e.g., (01, 10), Θ̃ (f (n)), e.g., (01, 00), Θ (logn), e.g.,

(001, 110), Θ
(
nloga b

)
for a > b > 1, e.g., (0001, 0111), Θ

(
n

logn

)
, e.g., (001, 11),

and Θ (n), e.g., (0001, 11).

96 F. Blanchet-Sadri and N. Fox

The contents of our paper are as follows. In Section 2, we discuss some pre-
liminaries and simple results. In Section 3, we study morphism factorizations.
We give an algorithm that yields all canonical factorizations of a morphism ϕ
over Ak into two morphisms each over an alphabet of at most k letters and we
describe how to use it for checking quickly whether a binary morphism is Stur-
mian. In Section 4, we obtain our main results. Among other things, we show
how to fully factorize the Parry morphisms and we also derive a complete classi-
fication of the abelian complexities of fixed points of uniform binary morphisms.
Finally in Section 5, we conclude with suggestions for future work. Some proofs
have been omitted and others have only been outlined due to the 12-page space
constraint.

2 Preliminary Definitions and Results

Given C ≥ 0, a (finite or infinite) word w over Ak is called C-balanced if for all
letters a in w and for all integers 0 < n ≤ |w| (or just 0 < n if w is infinite), the
difference between the maximum and the minimum possible counts of letter a
in a length-n subword of w is less than or equal to C.

Given an infinite word w overA2, zM (n) (resp., zm (n)) denotes the maximum
(resp., minimum) number of zeroes in a length-n subword of w. For ease of
notation, z (v) denotes the number of zeroes in a binary word v (as opposed to
the standard |v|0). The number of ones in v is then |v| − z (v).

Here are some facts about abelian complexity and zero counts.

Proposition 1. If w is an infinite word over Ak, then the following hold:

1. ρabw (n) = Θ (1) if and only if w is C-balanced for some C [14, Lemma 2.2];
2. If w is Sturmian, then ρabw (n) = 2 for all n [5];
3. ρabw (n) = O

(
nk−1

)
[14, Theorem 2.4];

4. ρabw (n) ≤ ρw (n);
5. If k = 2, then ρabw (n) = zM (n)− zm (n) + 1;
6. If k = 2, then zM (m+ n) ≤ zM (m) + zM (n);
7. If k = 2, then zm (m+ n) ≥ zm (m) + zm (n);
8. If k = 2, then zM (n+ 1)− zM (n) ∈ {0, 1} and zm (n+ 1)− zm (n) ∈ {0, 1};
9. If k = 2, then

∣∣ρabw (n+ 1)− ρabw (n)
∣∣ ≤ 1 for all positive integers n;

10. If w is ultimately periodic, then ρabw (n) = Θ (1).

Here are some morphisms that are classified based on prior results. For 3, any
such word is ultimately periodic.

Proposition 2. The fixed points at 0 of the following morphisms over A2 have
Θ (1) abelian complexity:

1. The Thue-Morse morphism (01, 10) [14, Theorem 3.1];
2. Any Sturmian morphism (this includes (01, 0)) [14, Theorem 1.2];
3. Any morphism whose fixed point contains finitely many zeroes or ones (this

includes (01, 11));

On the Asymptotic Abelian Complexity of Morphic Words 97

4. Any morphism of the form (0p1, 0q) with p ≥ q ≥ 1 or of the form (0p1, 0q1)
with p > q ≥ 1 [2, Corollary 3.1].

Let f (x) be a real function, and define

fm (x) := inf
a≥x

f (a) , fM (x) := sup
a≤x

f (a) .

Now, let g (x) be also a real function. We write f (x) = Ω̃ (g (x)) if fm (x) =
Ω (gm (x)) and fM (x) = Ω (gM (x)), f (x) = Õ (g (x)) if fm (x) = O (gm (x))
and fM (x) = O (gM (x)), and f (x) = Θ̃ (g (x)) if fm (x) = Θ (gm (x)) and
fM (x) = Θ (gM (x)).

3 Morphism Factorizations

Some more general results we obtain stem from the concept of factorization of
morphisms. We mainly examine the monoid of binary morphisms under compo-
sition, but we also consider factorization in a more general setting.

Let ϕ be a morphism overAk. If ϕ cannot be written as φ◦ζ for two morphisms
φ : A∗

k′ → A∗
k, ζ : A∗

k → A∗
k′ where neither is a permutation of Ak′ , then ϕ is

irreducible over Ak′ . Otherwise, ϕ is reducible. (We use the convention that a
permutation of the alphabet is not irreducible.) If ϕ = φ◦ ζ for some morphisms
φ : A∗

k′ → A∗
k, ζ : A∗

k → A∗
k′ , we say that ϕ factors as φ ◦ ζ over Ak′ .

Here are two propositions that together lead to a factorization algorithm.

Proposition 3. Let ϕ = (w0, w1, . . . , wk−1) be a morphism over Ak. If there
exist v0, v1, . . . , vk′−1 ∈ A+

k such that w0, w1, . . . , wk ∈ {v0, v1, . . . , vk′−1}∗, then
there exists a morphism ζ : A∗

k → A∗
k′ such that ϕ = φ ◦ ζ, where φ =

(v0, v1, . . . , vk′−1). Conversely every factorization ϕ = φ◦ ζ, where φ : A∗
k′ → A∗

k

and ζ : A∗
k → A∗

k′ , corresponds to vi = φ (i) for i = 0, 1, . . . , k′ − 1, where
w0, w1, . . . , wk−1 ∈ {v0, v1, . . . , vk′−1}∗.

Proposition 4. Let σ be a function that permutes elements of a k-tuple and
let ψσ be the morphism corresponding to the k-tuple obtained by applying σ to
(0, 1, . . . , k − 1). Let ϕ be a morphism over Ak that factors as ϕ = φ◦ζ for some
morphisms φ and ζ. Then, ϕ = σ (φ) ◦ ψσ (ζ).

Proposition 4 allows us to define the notion of a canonical factorization. Let ϕ
be a morphism over Ak that factors as ϕ = φ ◦ ζ for some morphisms φ and
ζ. Let v = ζ (0) ζ (1) · · · ζ (k − 1). We say that the factorization ϕ = φ ◦ ζ is
canonical if v [0] = 0 and the first occurrence of each letter a, a �= 0, in v is
after the first occurrence of letter a− 1 in v. It is clear from Proposition 4 that
given a factorization φ◦ ζ of ϕ we can put it in canonical form by applying some
permutation σ to the letters in the images in ζ and to the order of the images
in φ. Hence, every factorization of ϕ corresponds to one in canonical form.

Before we give our factorization algorithm, here is an important note: the
monoid of binary morphisms does not permit unique factorization into irre-
ducible morphisms, even if the factorizations are canonical. Indeed, letting

98 F. Blanchet-Sadri and N. Fox

ϕ = (00, 11), we have ϕ = (0, 11) ◦ (00, 1) = (00, 1) ◦ (0, 11). These are dis-
tinct canonical factorizations of ϕ into irreducibles.

We now give an algorithm, Algorithm 1, that yields all canonical factoriza-
tions over Ak′ of a given morphism ϕ into two morphisms. The basis of this
algorithm is the subroutine it calls, Algorithm 2, which creates a factorization
by recursively finding v0, v1, . . . , vk′−1, as specified in Proposition 3, and then
backtracking to find more factorizations. It always attempts to match or create
a vi at the beginning of the shortest image in the morphism, as that has the
fewest possibilities to consider. Algorithm 1 works as follows:

– Call Algorithm 2 with ϕ, k′, and an empty list. Given morphism ϕ′, integer
k′′, and a list of words v0, . . . , vm, Algorithm 2 does the following:

1. If ϕ′ has no letters, return {(v0, . . . , vm) ◦ ϕ′};
2. If k′′ > 0, try each prefix of a minimal-length image in ϕ′ as vm+1. Call

this same subroutine each time with k′′ − 1, pruning that prefix off that
image. Consolidate the results of the recursive call and add to the set of
factorization pairs with appropriate right factor;

3. Try matching each vi to a prefix of a minimal-length image in ϕ′. If
there is a match, call this same subroutine with k′′, pruning that prefix
off that image. Consolidate the results of the recursive call and add to
the set of factorization pairs with appropriate right factor;

4. Return the set of factorization pairs.

– Put the resulting factorizations into canonical form.

Theorem 1. Algorithm 1 can be applied recursively (and optionally along with
a lookup table to avoid recomputing things) to obtain complete (canonical) fac-
torizations of a given morphism into irreducible morphisms.

Proof. Algorithm 1’s correctness follows from Propositions 3 and 4. To obtain
all factorizations (not just canonical ones), run Algorithm 1 and then apply all
possible permutations to the resulting factorizations.
�

Given as input ϕ = (01, 00) and k′ = 2, Algorithm 1 outputs the canonical
factorizations (0, 1) ◦ (01, 00), (01, 0) ◦ (0, 11), and (01, 00) ◦ (0, 1):

ϕ′ k′′ v0 v1 ϕ′ k′′ v0 v1 ϕ′ k′′ v0 v1
(01, 00) 2 (01, 00) 2 (01, 00) 2
(1, 00) 1 0 (ε, 00) 1 01 (ε, 00) 1 01
(ε, 00) 0 0 1 (ε, 0) 1 01 0 (ε, ε) 1 01 00
(ε, 0) 0 0 1 (ε, ε) 0 01 0
(ε, ε) 0 0 1

We conclude this section with a discussion on checking whether a binary
morphism ϕ is Sturmian. Berstel and Séébold in [3] prove that ϕ is Sturmian
if and only if ϕ (10010010100101) is 1-balanced and primitive (not a power of a
shorter word). This leads to an algorithm for deciding whether a given morphism
is Sturmian. While the resulting algorithm is typically fast to give a negative

On the Asymptotic Abelian Complexity of Morphic Words 99

answer, a positive answer requires computing (essentially) |ϕ (10010010100101)|
balance values and checking for primitivity. (Also, a check that our morphism’s
fixed point does not contain finitely many zeroes is needed.)

Richomme in [13] gives a note that leads to an alternative approach. The
note says that a binary morphism is Sturmian if and only if it can be written
as compositions of the morphisms (1, 0), (0, 01), (10, 1), (0, 10), and (01, 1). No
canonical factorization of a Sturmian morphism ever contain (1, 0) or (10, 1), but
these two can be combined to form (01, 0), which we must add to our list. Hence,
we have the criterion that a binary morphism is Sturmian if and only if it has a
canonical factorization that is a composite of (0, 01), (01, 0), (0, 10), and (01, 1).
(We also disallow composites that are powers of the morphisms with ultimately
periodic or finite fixed points so we can keep our fixed points aperiodic.) The
task of factoring a Sturmian morphism is well suited to repeated application of
Algorithm 1. In fact, we can speed up the algorithm specifically in this case by
pre-seeding v0 and v1 with each of the possible factors for a Sturmian morphism
(as in, directly calling Algorithm 2 with ϕ, 2, and [v0, v1], where (v0, v1) is equal
to each of the four possible morphisms). This algorithm is fast in both cases
where the given morphism is or is not Sturmian.

4 Main Results

We have the following theorem which we can prove using the following lemma,
commonly known as Fekete’s Lemma.

Lemma 1. Let {an}n≥1 be a sequence such that am+n ≥ am+an (resp., am+n ≤
am + an). Then, limn→∞

an

n exists and equals sup an

n (resp., inf an

n).

Theorem 2. Let w be an infinite binary word and ψ be a binary morphism.
Then, ρabψ(w) (n) = Õ

(
ρabw (n)

)
.

This leads to the following corollary.

Corollary 1. Let φ and ψ be binary morphisms. Then,

ρab(ψ◦φ)ω(0) (n) = Θ̃
(
ρab(φ◦ψ)ω(0) (n)

)
.

The following result is a generalization of one direction of [14, Theorem 3.3].
Note that it holds for alphabets of any size.

Theorem 3. Let ψ be a morphism over Ak such that there exist positive in-
tegers n0, n1, . . . , nk−1 such that for all a, b ∈ Ak, ψ (a)

na and ψ (b)
nb are

abelian equivalent (have the same Parikh vector). Then, for any infinite word
w over Ak, ρ

ab
ψ(w) (n) = Θ (1). In particular, if the fixed point of ψ at 0 exists,

ρabψω(0) (n) = Θ (1).

The following criterion allows the classification of more morphisms.

100 F. Blanchet-Sadri and N. Fox

Theorem 4. Let ϕ be a binary morphism such that ϕ (1) = 1m for some m ≥ 1.
Let c be the number of zeroes in ϕ (0). Assume that c+m > 2 (so that the fixed
point at 0 can exist), and, if m = 1, then assume ϕ (0) ends in 1. Then, one of

the following cases holds: ρabϕω(0) (n) = Θ (n) if c > m, ρabϕω(0) (n) = Θ
(

n
logn

)
if

c = m, ρabϕω(0) (n) = Θ
(
nlogm c

)
if 1 < c < m, and ρabϕω(0) (n) = Θ (1) if c = 1.

Proof. First, the case whereΘ (1) if c = 1 follows from the fact that ϕω (0) = 01ω.
Next, all other cases use the fact that ρabϕω(0) is monotone increasing (ϕω (0)

contains arbitrarily long blocks of ones). Finally, in each case, we consider limits
of ratios of the maximal number of zeroes in a subword and the target complexity
and can show that they exist and are between 0 and ∞.
�

4.1 Factorization of Parry Morphisms

When we say Parry morphisms, we mean those studied in [2] that we stated
have fixed points with bounded abelian complexity in Proposition 2(4). We de-
scribe all canonical factorizations of such morphisms, which allow us to construct
additional morphisms with bounded abelian complexity, due to Corollary 1.

The following theorem states how to fully factor the two types of Parry mor-
phisms.

Theorem 5. – If ϕ = (0p1, 0q1) with 1 ≤ q < p, then all factorizations of ϕ
are of the form (

∏m
i=1 φi) ◦ (01, 1), where φi = (0pi , 1) for some prime pi or

φi = (0, 01).
– If ϕ = (0p1, 0q) with 1 ≤ q ≤ p, then for all choices of a nonnegative odd

integer N , of a sequence of nonnegative integers a0, a1, . . . , aN with all but
possibly the last positive, and of integers q0, q

′ with q0 ≥ 0 and q′ > 0 where

N−1
2∏

i=0

a2i + q0 +

N−1
2∑

i=0

⎛⎝a2i+1

i∏
j=0

a2j

⎞⎠ = p, q′

N−1
2∏

i=0

a2i = q,

there exists a complete canonical factorization:

ϕ = (0, 01)
q0 ◦

⎛⎝N−1
2∏

j=0

((m2j∏
i=1

(0pi,2j , 1)

)
◦ (0, 01)a2j+1

)⎞⎠
◦ (01, 0) ◦

⎛⎝m′∏
i=1

(
0, 1q

′
i

)⎞⎠ ,

where each of the m2j’s is a positive integer, all of the pi,2j’s are prime,∏m2j

i=1 pi,2j = a2j, all of the q′i’s are prime, and
∏m′

i=1 q
′
i = q′.

In both cases, any composites of the necessary forms yield a Parry morphism
of the proper type (where for the complicated case, all we require is that the
complicated p value exceed the complicated q value).

On the Asymptotic Abelian Complexity of Morphic Words 101

Proof. To prove this result, we need to show how to completely canonically factor
various types of morphisms:

1. Every complete canonical factorization of the morphism (0, 1q) has the form
(0, 1p1) ◦ (0, 1p2) ◦ · · · ◦ (0, 1pm) for p1, . . . , pm primes such that

∏m
i=1 pi = q.

Also, if
∏m

i=1 pi = q, then (0, 1p1) ◦ (0, 1p2) ◦ · · · ◦ (0, 1pm) = (0, 1q).

2. Every complete canonical factorization of (0p, 1) has the form (0p1 , 1) ◦
(0p2 , 1) ◦ · · · ◦ (0pm , 1) for p1, . . . , pm primes such that

∏m
i=1 pi = p, and

if
∏m

i=1 pi = p, then (0p1 , 1) ◦ (0p2 , 1) ◦ · · · ◦ (0pm , 1) = (0p, 1).

3. Every complete canonical factorization of (0p, 0q1) has the form
∏m

i=1 φi,
where φi = (0pi , 1) for some prime pi, or φi = (0, 01). Also, any composite
of the form

∏m
i=1 φi, where φi = (0pi , 1) for some prime pi or φi = (0, 01),

yields a morphism of the form (0p, 0q1).

4. Every complete canonical factorization of (0p1, 1) has the form (0p1 , 1) ◦
(0p2 , 1) ◦ · · · ◦ (0pm , 1) ◦ (01, 1) for p1, . . . , pm primes such that

∏m
i=1 pi = p,

and if
∏m

i=1 pi = p, then (0p1 , 1) ◦ (0p2 , 1) ◦ · · · ◦ (0pm , 1) ◦ (01, 1) = (0p1, 1).

5. Every complete canonical factorization of (0p1, 0q) has the form

(
m∏
i=1

φi

)
◦ (01, 0) ◦

⎛⎝m′∏
j=1

(0, 1qj)

⎞⎠ ,

where φi = (0pi , 1) for some prime pi or φi = (0, 01), and each of the qj ’s
is prime (we allow the second product to be empty, in which case m′ = 0).
Also, any composite of the form

(
m∏
i=1

φi

)
◦ (01, 0) ◦

⎛⎝m′∏
j=1

(0, 1qj)

⎞⎠ ,

where φi = (0pi , 1) for some prime pi or φi = (0, 01), and each of the qj ’s is
prime (and m′ = 0 is allowed), yields a morphism of the form (0p1, 0q).

6. Every complete canonical factorization of (0p1, 0q1) with p > q has the form
(
∏m

i=1 φi) ◦ (01, 1), where φi = (0pi , 1) for some prime pi or φi = (0, 01).
Also, any composite of the form (

∏m
i=1 φi) ◦ (01, 1), where φi = (0pi , 1) for

some prime pi or φi = (0, 01) yields a morphism of the form (0p1, 0q1) with
p > q.

The result for the first type of Parry morphism follows directly from item 6.
We now prove the result for the second type of Parry morphism. By item 5, all
complete canonical factorizations of ϕ = (0p1, 0q) are of the form

ϕ =

(
m∏
i=1

φi

)
◦ (01, 0) ◦

⎛⎝m′∏
j=1

(0, 1qj)

⎞⎠ ,

102 F. Blanchet-Sadri and N. Fox

where φi = (0pi , 1) for some prime pi or φi = (0, 01), and each of the qj ’s is
prime. We can use item 2, item 1, and the fact that (0, 01)

m
= (0, 0m1) to assert

ϕ = (0, 0q01) ◦

⎛⎝N−1
2∏

j=0

((0a2j , 1) ◦ (0, 0a2j+11))

⎞⎠ ◦ (01, 0) ◦
(
0, 1q

′)
, (1)

for some odd N ≥ 0, some q0 ≥ 0, some q′ > 0, and some sequence a1, a2, . . . , aN
all positive except for possibly the last, which is nonegative (all of these are
integers). This factorization is (probably) not complete. Item 2, item 1, and
the fact that (0, 01)

m
= (0, 0m1) combine to give the complete form, which is

precisely what the theorem requires (and is not restated here).
We begin by defining two sequences: pi = 1 if i = 0, ai−1pi−1 if i is odd,

and pi−1 otherwise, and qi = q0 if i = 0, ai−1pi−1 + qi−1 if i is even, and qi−1

otherwise. We can prove by induction on m that

(0, 0q01) ◦

⎛⎝ m∏
j=0

((0a2j , 1) ◦ (0, 0a2j+11))

⎞⎠ = (0p2m+2 , 0q2m+21) .

As this is the beginning of the factorization in Eq. (1), this implies that ϕ =

(0pN+1, 0qN+11)◦ (01, 0)◦
(
0, 1q

′
)
= (0pN+1, 0qN+11)◦

(
01, 0q

′
)
, which is equal to(

0pN+1+qN+11, 0q
′pN+1

)
. So, we have p = pN+1 + qN+1 and q = q′pN+1. We can

then prove by induction on m that

p2m =

m−1∏
i=0

a2i, q2m = q0 +

m−1∑
i=0

⎛⎝a2i+1

i∏
j=0

a2j

⎞⎠ .

Substituting N+1
2 for m proves the desired formulas:

N−1
2∏

i=0

a2i + q0 +

N−1
2∑

i=0

⎛⎝a2i+1

i∏
j=0

a2j

⎞⎠ = pN+1 + qN+1 = p,

q′

N−1
2∏

i=0

a2i = q′pN+1 = q,

thereby completing this direction of the proof.
The converses follow from the various preceding items.
�

Theorem 5, when combined with Corollary 1, yields the following corollaries.

Corollary 2. Let ϕ be a morphism with a complete canonical factorization of
the form (

m0∏
i=1

φ0,i

)
◦ (01, 1) ◦

⎛⎝m1∏
j=1

φ1,j

⎞⎠ ,

On the Asymptotic Abelian Complexity of Morphic Words 103

for some integers m0,m1 ≥ 0, where φm,n = (0pn , 1) for some prime pn or
φm,n = (0, 01). Then ρabϕω(0) (n) = Θ (1).

Corollary 3. Let ϕ be a morphism with a (probably not complete) canonical
factorization that is a cyclic shift of the following composite:

(0, 0q01) ◦

⎛⎝N−1
2∏

j=0

((0a2j , 1) ◦ (0, 0a2j+11))

⎞⎠ ◦ (01, 0) ◦
(
0, 1q

′)
for some odd N ≥ 0 (in case N = −1, the product term is absent), some q0 ≥ 0,
some q′ > 0, and some sequence a0, a1, . . . , aN all nonnegative. If

N−1
2∏

i=0

a2i + q0 +

N−3
2∑

i=0

⎛⎝a2i+1

i∏
j=0

a2j

⎞⎠ ≥ q′

N−1
2∏

i=0

a2i,

then ρabϕω(0) (n) = Θ (1).

An example of a morphism classifiable by Corollary 2 is (001001, 00101), which
has a complete canonical factorization (0, 01) ◦ (01, 1) ◦ (0, 01) ◦ (00, 1), which
satisfies the conditions of Corollary 2. An example of a morphism classifiable by
Corollary 3 is (0011, 0), which has a complete canonical factorization (0, 11) ◦
(0, 01)◦ (01, 0). This is a cyclic shift of (0, 01)◦ (01, 0)◦ (0, 11), so we have q0 = 1,
q′ = 2, and N = −1.

4.2 Classification of Uniform Morphisms

We now derive a complete classification of the abelian complexities of fixed points
of uniform binary morphisms.

Let ϕ be a uniform binary morphism with fixed point at 0. The length of ϕ
(denoted � (ϕ) or just � if ϕ is unambiguous) is equal to |ϕ (0)| (which equals
|ϕ (1)|). The difference of ϕ (denoted d (ϕ) or just d if ϕ is unambiguous) equals
|z (ϕ (0))− z (ϕ (1))|. The delta of ϕ (denoted Δ (ϕ) or just Δ if ϕ is unambigu-
ous) equals zM (� (ϕ)) −max {z (ϕ (0)) , z (ϕ (1))}, where zM (� (ϕ)) denotes the
maximum number of zeroes in a subword of length � (ϕ) of ϕω(0). Also, if ϕ is
unambiguous, we denote z (ϕ (0)) by z0, z (ϕ (1)) by z1, and ρabϕω(0) (n) by ρab (n).

Theorem 6. Let ϕ be a uniform binary morphism, and define f (n) = 1 if
log2 n ∈ Z, and f (n) = logn otherwise. Then the following hold:

ρab (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ (1) , d = 0;

Θ (1) , ϕ = ((01)
�
2! 0, (10)

�
2! 1)if � is odd;

Θ (1) , ϕ =
(
01�−1, 1�

)
;

Θ̃ (f (n)) , d = 1, Δ = 0, and not earlier cases;

O (logn) , d = 1, Δ > 0;

Θ
(
nlog� d

)
, d > 1.

104 F. Blanchet-Sadri and N. Fox

Proof. We prove the fourth case. Assume that d = 1, Δ = 0, and we are not in
the second or third case. We can show that there exist integers i and j such that
ϕ2 (0) [i] = ϕ2 (1) [i] = 0 and ϕ2 (0) [j] = ϕ2 (1) [j] = 1. We can also show that
d
(
ϕ2
)
= 1 and Δ

(
ϕ2
)
= 0, so ρab

(
�2n− 1

)
= ρab

(
�2n+ 1

)
= ρab

(
�2n
)
+ 1.

Consider the sequence defined by a0 = 1 and ai = �2ai−1 + 1. It can be easily
shown by induction that ai =

∑i
j=0 �

2j . Also, we know that ρab (ai) = i. Hence,

we have ρab
(∑i

j=0 �
2j
)

= i, so the ai’s give a subsequence of ρab (n) with

logarithmic growth. We now show that ρab (n) is O (logn) completing our proof
that it is Θ̃ (f (n)). Let c be the maximum value of ρab (n) for n < �. For
r ∈ {0, . . . , �− 1}, we can show that that

ρab (�n+ r) ≤ dρab (n)− d+ 2 + 2Δ+ ρab (r) ≤ ρab (n) + 1 + c.

As we increase by (approximately) a factor of � in the argument, we can increase
by at most a constant in value. This is logn behavior, as required.

In the fifth case, d = 1 and Δ > 0, and the inequality ρab (�n+ r) ≤ dρab (n)−
d + 2 + 2Δ + ρab (r) leads similarly to ρab (n) = O(log n). The same inequality
leads to the O(nlog� d) bound in the sixth case, and a similar inequality yields
the Ω(nlog� d) bound.
�
Note that some uniform morphisms have nontrivial factorizations. Hence, The-
orem 6 gives a classification of the abelian complexities of some nonuniform
morphisms as well via Corollary 1. For example, (01, 00) = (01, 0) ◦ (0, 11) and
(0, 11) ◦ (01, 0) = (011, 0). Let ϕ = (01, 00) and ψ = (011, 0). Since ρabϕω(0) (n) =

Θ̃ (f (n)), ρabψω(0) (n) = Θ̃ (f (n)) as well, though ψ is not uniform.

Referring to the fifth case of Theorem 6, we conjecture an Ω (logn) bound
abelian complexity for all uniform binary morphisms with d = 1 and Δ > 0.

Conjecture 1. Let ϕ be a uniform binary morphism with d = 1 and Δ > 0. For
all h ≥ 1 and n ≥ �h, ρab (n) ≥ h+ 2.

5 Future Work

Problems to be considered in the future include: prove (or disprove) the con-
jectured Ω (logn) bound for uniform binary morphisms with d = 1 and Δ > 0,
carry out worst and average case running time analyses on the factorization al-
gorithm, examine additional classes of morphisms, and attempt to extend some
results to k > 2. Most of our results about abelian complexity are about binary
words. A notable exception is Theorem 3.

In general, if the alphabet size k is greater than 2, we lose the property
that for an infinite word w,

∣∣ρabw (n+ 1)− ρabw (n)
∣∣ ≤ 1. We also can no longer

reduce questions about abelian complexity to simply counting zeroes. In general,
if w is an infinite word over a k-letter alphabet, Proposition 1(3) says that
ρabw (n) = O

(
nk−1

)
. If w is required to be the fixed point of a morphism, we can

give a better bound. Corollary 10.4.9 in [1] says that if w is the fixed point of a
morphism, then ρw (n) = O

(
n2
)
. Hence, by Proposition 1(4), if w is the fixed

point of a morphism, then ρabw (n) = O
(
n2
)
, no matter how large k is.

On the Asymptotic Abelian Complexity of Morphic Words 105

In many cases, we can give an even better upper bound. Allouche and Shallit
[1] define a primitive morphism as a morphism ϕ for which there exists an integer
n ≥ 1 such that given any letters a and b in the alphabet, a occurs in ϕn (b). Then
[1, Theorem 10.4.12] states that if w is the fixed point of a primitive morphism,
then ρw (n) = O (n). Hence if w is the fixed point of a primitive morphism, then
ρabw (n) = O (n), no matter how large k is.

Finally, we note that the truth value of Corollary 1 has not been examined
in depth for alphabets of size greater than 2. Our proof of Theorem 2 certainly
depends on the alphabet size, but we have not yet seen a counterexample to
it for a larger alphabet. Since binary morphisms can be factorized over larger
alphabets, the truth of Corollary 1 would allow us to classify the abelian com-
plexities of the fixed points of many morphisms with k > 2 simply based on the
results we have here for binary morphisms.

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press (2003)

2. Balková, L., Břinda, K., Turek, O.: Abelian complexity of infinite words associated
with quadratic Parry numbers. Theoret. Comput. Sci. 412, 6252–6260 (2011)

3. Berstel, J., Séébold, P.: A characterization of Sturmian morphisms. In:
Borzyszkowski, A.M., Sokolowski, S. (eds.)MFCS 1993. LNCS, vol. 711, pp. 281–290.
Springer, Heidelberg (1993)

4. Choffrut, C., Karhumäki, J.: Combinatorics of Words. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, vol. 1, ch. 6, pp. 329–438. Springer,
Berlin (1997)

5. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Systems
Theory 7, 138–153 (1973)

6. Currie, J., Rampersad, N.: Recurrent words with constant abelian complexity. Adv.
Appl. Math. 47, 116–124 (2011)

7. Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword complexities of various classes
of deterministic developmental languages without interactions. Theoret. Comput.
Sci. 1, 59–75 (1975)

8. Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of D0L languages with
a constant distribution. Inform. Process. Lett. 13, 108–113 (1981)

9. Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of square-free D0L
languages. Theoret. Comput. Sci. 16, 25–32 (1981)

10. Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of locally catenative
D0L languages. Inform. Process. Lett. 16, 121–124 (1983)

11. Frid, A.E.: The subword complexity of fixed points of binary uniform morphisms.
In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 179–187.
Springer, Heidelberg (1997)

12. Pansiot, J.J.: Complexité des facteurs des mots infinis engendrés par morphismes
itérés. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 380–389. Springer,
Heidelberg (1984)

13. Richomme, G.: Conjugacy of morphisms and Lyndon decomposition of standard
Sturmian words. Theoret. Comput. Sci. 380, 393–400 (2007)

14. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity in minimal subshifts.
J. London Math. Soc. 83, 79–95 (2011)

Strict Bounds for Pattern Avoidance�

Francine Blanchet-Sadri1 and Brent Woodhouse2

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematics, Purdue University,

150 N. University Street, West Lafayette, IN 47907–2067
bwoodhou@purdue.edu

Abstract. Cassaigne conjectured in 1994 that any pattern with m dis-
tinct variables of length at least 3(2m−1) is avoidable over a binary al-
phabet, and any pattern with m distinct variables of length at least 2m

is avoidable over a ternary alphabet. Building upon the work of Ram-
persad and the power series techniques of Bell and Goh, we obtain both
of these suggested strict bounds. Similar bounds are also obtained for
pattern avoidance in partial words, sequences where some characters are
unknown.

1 Introduction

Let Σ be an alphabet of letters, denoted by a, b, c, . . ., and Δ be an alphabet of
variables, denoted by A,B,C, A pattern p is a word over Δ. A word w over
Σ is an instance of p if there exists a non-erasing morphism ϕ : Δ∗ → Σ∗ such
that ϕ(p) = w. A word w is said to avoid p if no factor of w is an instance of p.
For example, aa b aa c contains an instance of ABA while abaca avoids AA.

A pattern p is avoidable if there exist infinitely many words w over a finite
alphabet such that w avoids p, or equivalently, if there exists an infinite word
that avoids p. Otherwise p is unavoidable. If p is avoided by infinitely many
words over a k-letter alphabet, p is said to be k-avoidable. Otherwise, p is k-
unavoidable. If p is avoidable, the minimum k such that p is k-avoidable is called
the avoidability index of p. If p is unavoidable, the avoidability index is defined
as ∞. For example, ABA is unavoidable while AA has avoidability index 3.

If a pattern p occurs in a pattern q, we say p divides q. For example, p = ABA
divides q = ABC BB ABC A, since we can map A to ABC and B to BB and
this maps p to a factor of q. If p divides q and p is k-avoidable, there exists
an infinite word w over a k-letter alphabet that avoids p; w must also avoid q,
thus q is necessarily k-avoidable. It follows that the avoidability index of q is less
than or equal to the avoidability index of p. Chapter 3 of Lothaire [5] is a nice
summary of background results in pattern avoidance.

� This material is based upon work supported by the National Science Foundation
under Grant No. DMS–1060775. We thank the referees of preliminary versions of
this paper for their very valuable comments and suggestions.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 106–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Strict Bounds for Pattern Avoidance 107

It is not known if it is generally decidable, given a pattern p and integer
k, whether p is k-avoidable. Thus various authors compute avoidability indices
and try to find bounds on them. Cassaigne [4] listed avoidability indices for
unary, binary, and most ternary patterns (Ochem [7] determined the remaining
few avoidability indices for ternary patterns). Based on this data, Cassaigne
conjectured in his 1994 Ph.D. thesis [4, Conjecture 4.1] that any pattern with m
distinct variables of length at least 3(2m−1) is avoidable over a binary alphabet,
and any pattern with m distinct variables of length at least 2m is avoidable over
a ternary alphabet. This is also [5, Problem 3.3.2].

The contents of our paper are as follows. In Section 2, we establish that both
bounds suggested by Cassaigne are strict by exhibiting well-known sequences of
patterns that meet the bounds. Note that the results of Section 2 were proved by
Cassaigne in his Ph.D. thesis with the same patterns (see [4, Proposition 4.3]).
We recall them here for sake of completeness. In Section 3, we provide foun-
dational results for the power series approach to this problem taken by Bell
and Goh [1] and Rampersad [8], then proceed to prove the strict bounds in Sec-
tion 4. In Section 5, we apply the power series approach to obtain similar bounds
for avoidability in partial words, sequences that may contain some do-not-know
characters, or holes, which are compatible or match any letter in the alphabet.
The modifications include that now we must avoid all partial words compatible
with instances of the pattern. Lots of additional work with inequalities is nec-
essary. Finally in Section 6, we conclude with various remarks and conjectures.
Due to the 12-page space constraint, we have decided to put all the proofs of
our main result, which is the affirmative answer to the long-standing conjecture
of Cassaigne, within the allowed 12 pages, and to omit the proofs of the lemmas
in Section 5.

2 Two Sequences of Unavoidable Patterns

The following proposition allows the construction of sequences of unavoidable
patterns.

Proposition 1. ([5, Proposition 3.1.3]) Let p be a k-unavoidable pattern over
Δ and A ∈ Δ be a variable that does not occur in p. Then the pattern pAp is
k-unavoidable.

Let A1, A2, . . . be distinct variables in Δ. Define Z0 = ε, the empty word, and
for all integers m ≥ 0, Zm+1 = ZmAm+1Zm. The patterns Zm are called Zimin
words. Since ε is k-unavoidable for every positive integer k, Proposition 1 implies
Zm is k-unavoidable for all m ∈ N by induction on m. Thus all the Zimin words
are unavoidable. Note that Zm is over m variables and |Zm| = 2m − 1. Thus
there exists a 3-unavoidable pattern over m variables with length 2m − 1 for all
m ∈ N.

Likewise, define R1 = A1A1 and for all integers m ≥ 1, Rm+1 = RmAm+1Rm.
Since A1A1 is 2-unavoidable, Proposition 1 implies Rm is 2-unavoidable for all
m ∈ N by induction on m. Note that Rm is over m variables; induction also

108 F. Blanchet-Sadri and B. Woodhouse

yields |Rm| = 3(2m−1) − 1. Thus there exists a 2-unavoidable pattern over m
variables with length 3(2m−1)− 1 for all m ∈ N.

3 The Power Series Approach

The following theorem was originally presented by Golod (see [10, Lemma 6.2.7])
and rewritten and proven with combinatorial terminology by Rampersad.

Theorem 1. ([8, Theorem 2]) Let S be a set of words over a k-letter alphabet
with each word of length at least two. Suppose that for each i ≥ 2, the set S
contains at most ci words of length i. If the power series expansion of

B(x) :=

⎛⎝1− kx+
∑
i≥2

cix
i

⎞⎠−1

has non-negative coefficients, then there are at least [xn]B(x) words of length n
over a k-letter alphabet that have no factors in S.

To count the number of words of length n avoiding a pattern p, we let S consist
of all instances of p. To use Theorem 1, we require an upper bound ci on the
number of words of length i in S. The following lemma due to Bell and Goh
provides a useful upper bound.

Lemma 1. ([1, Lemma 7]) Let m ≥ 1 be an integer and p be a pattern over an
alphabet Δ = {A1, . . . , Am}. Suppose that for 1 ≤ i ≤ m, the variable Ai occurs
di ≥ 1 times in p. Let k ≥ 2 be an integer and let Σ be a k-letter alphabet.
Then for n ≥ 1, the number of words of length n over Σ that are instances of
the pattern p is no more than [xn]C(x), where

C(x) :=
∑
i1≥1

· · ·
∑
im≥1

ki1+···+imxd1i1+···+dmim .

Note that this approach for counting instances of a pattern is based on the
frequencies of each variable in the pattern, so it will not distinguish AABB and
ABAB, for example.

4 Derivation of the Strict Bounds

First we prove a technical inequality.

Lemma 2. Suppose k ≥ 2 and m ≥ 1 are integers and λ >
√
k. For any integer

P and integers dj for 1 ≤ j ≤ m such that dj ≥ 2 and P = d1 + · · ·+ dm,

m∏
i=1

1

λdi − k
≤
(

1

λ2 − k

)m−1(
1

λP−2(m−1) − k

)
. (1)

Strict Bounds for Pattern Avoidance 109

Proof. The proof is by induction on m. For m = 1, d1 = P and the inequality
is trivially satisfied. Suppose Eq. (1) holds for m and d1 + d2 + · · ·+ dm+1 = P
with dj ≥ 2 for 1 ≤ j ≤ m+ 1. Note that P ≥ 4.

Letting P ′ = P − dm+1 = d1 + · · ·+ dm, the inductive hypothesis implies

m∏
i=1

1

λdi − k
≤
(

1

λ2 − k

)m−1(
1

λP ′−2(m−1) − k

)
. (2)

If dm+1 = 2, multiplying both sides by

1

λdm+1 − k
=

1

λ2 − k

yields the desired inequality.
Otherwise, dm+1 > 2. If P ′ − 2(m− 1) = 2, multiplying both sides of Eq. (2)

by
1

λdm+1 − k
=

1

λP−2m − k

yields the desired inequality. In the remaining case, P ′ − 2(m − 1) > 2. Let
c1 = P ′ − 2(m− 1) and c2 = dm+1. Since λ >

√
k and c1, c2 > 2,

(λc1−1 − λ)(λc2−1 − λ) ≥ 0,

λc1+c2−2 − λc1 − λc2 + λ2 ≥ 0,

λc1+c2−2 + λ2 ≥ λc1 + λc2 ,

−k(λc1+c2−2 + λ2) ≤ −k(λc1 + λc2),

(λc1 − k)(λc2 − k) ≥ (λc1+c2−2 − k)(λ2 − k),

1

(λc1 − k)(λc2 − k)
≤ 1

(λc1+c2−2 − k)(λ2 − k)
.

Substituting the ci,

1

(λP ′−2(m−1) − k)(λdm+1 − k)
≤ 1

(λP ′−2m+dm+1 − k)(λ2 − k)
. (3)

Multiplying Eq. (2) by 1
λdm+1−k

,

m+1∏
i=1

1

λdi − k
≤
(

1

λ2 − k

)m−1(
1

λP ′−2(m−1) − k

)
1

λdm+1 − k
.

Substituting Eq. (3),

m+1∏
i=1

1

λdi − k
≤
(

1

λ2 − k

)m(
1

λP ′+dm+1−2m − k

)

=

(
1

λ2 − k

)(m+1)−1(
1

λP−2((m+1)−1) − k

)
,

as desired.
�

110 F. Blanchet-Sadri and B. Woodhouse

Remark 1. We have written Lemma 2 in terms of partitions of P with parts
of size at least 2. However, as it will be used with P = |p| for some pattern p
containing dj occurrences of variable Aj , its statement and its proof could also
be written in terms of patterns defining p′ to be p without its dm+1 instances
of the (m + 1)th variable. Then using the inductive hypothesis on p′, the proof
would follow as it is.

The remaining arguments in this section are based on those of [8], but add
additional analysis to obtain the optimal bound.

Lemma 3. Let m be an integer and p be a pattern over an alphabet Δ =
{A1, . . . , Am}. Suppose that for 1 ≤ i ≤ m, Ai occurs di ≥ 2 times in p.

1. If m ≥ 3 and |p| ≥ 4m, then for n ≥ 0, there are at least (1.92)n words of
length n over a binary alphabet that avoid p.

2. If m ≥ 2 and |p| ≥ 12, then for n ≥ 0, there are at least (2.92)n words of
length n over a ternary alphabet that avoid p (for m ≥ 6, this implies that
every pattern with each variable occurring at least twice is 3-avoidable).

Proof. Let Σ be an alphabet of size k ∈ {2, 3}. Define S to be the set of all
words in Σ∗ that are instances of the pattern p. By Lemma 1, the number of
words of length n in S is at most [xn]C(x), where

C(x) :=
∑
i1≥1

· · ·
∑
im≥1

ki1+···+imxd1i1+···+dmim .

By hypothesis, di ≥ 2 for 1 ≤ i ≤ m. In order to use Theorem 1 on Σ, define

B(x) :=
∑
i≥0

bix
i = (1− kx+ C(x))−1,

and set the constant λ = k − 0.08. Clearly b0 = 1 and b1 = k. We show that
bn ≥ λbn−1 for all n ≥ 1, hence bn ≥ λn for all n ≥ 0. Then all coefficients of
B are non-negative, thus Theorem 1 implies there are at least bn ≥ λn words of
length n avoiding S. By construction of S, these words all avoid p.

We show by induction on n that bn ≥ λbn−1 for all n ≥ 1. We can easily
verify b1 ≥ (k − 0.08)(1) = λb0. Now suppose that for all 1 ≤ j < n, we have
bj ≥ λbj−1. By definition of B, B(x)(1 − kx + C(x)) = 1, hence for n ≥ 1,
[xn]B(1− kx+ C) = 0. Expanding the left hand side,

B(1− kx+C) =

⎛⎝∑
i≥0

bix
i

⎞⎠⎛⎝1− kx+
∑
i1≥1

· · ·
∑
im≥1

ki1+···+imxd1i1+···+dmim

⎞⎠ ,

thus

[xn]B(1 − kx+ C) = bn − kbn−1 +
∑
i1≥1

· · ·
∑
im≥1

ki1+···+imbn−(d1i1+···+dmim) = 0.

Strict Bounds for Pattern Avoidance 111

Rearranging and adding and subtracting λbn−1,

bn = λbn−1 + (k − λ)bn−1 −
∑
i1≥1

· · ·
∑
im≥1

ki1+···+imbn−(d1i1+···+dmim).

To complete the induction, it thus suffices to show

(k − λ)bn−1 −
∑
i1≥1

· · ·
∑
im≥1

ki1+···+imbn−(d1i1+···+dmim) ≥ 0. (4)

Because bj ≥ λbj−1 for 1 ≤ j < n, bn−i ≤ bn−1/λ
i−1 for 1 ≤ i ≤ n. Note that

the bound on bn−i is stated for 1 ≤ i ≤ n, but actually it is used also for i > n,
with the implicit convention that bn−i = 0 in this case. Therefore,∑

i1≥1

· · ·
∑
im≥1

ki1+···+imbn−(d1i1+···+dmim)

≤
∑
i1≥1

· · ·
∑
im≥1

ki1+···+im

λd1i1+···+dmim
λbn−1 = λbn−1

∑
i1≥1

ki1

λd1i1
· · ·
∑
im≥1

kim

λdmim
.

Since dj ≥ 2 for 1 ≤ j ≤ m, k ≤ 3, and λ >
√
3,

k

λdj
≤ 3

λ2
< 1,

thus all the geometric series converge. Computing the result, for 1 ≤ j ≤ m,∑
ij≥1

kij

λdjij
=

k/λdj

1− k/λdj
=

k

λdj − k
.

Thus

∑
i1≥1

· · ·
∑
im≥1

ki1+···+imbn−(d1i1+···+dmim) ≤ kmλbn−1

m∏
i=1

1

λdi − k
.

Applying Lemma 2 to P = |p|,∑
i1≥1

· · ·
∑
im≥1

ki1+···+imbn−(d1i1+···+dmim)

≤ kmλbn−1

(
1

λ2 − k

)m−1(
1

λ|p|−2(m−1) − k

)
. (5)

It thus suffices to show

(k − λ) ≥ λkm
(

1

λ2 − k

)m−1(
1

λ|p|−2(m−1) − k

)
, (6)

since multiplying this by bn−1 and using Eq. (5) derives Eq. (4).

112 F. Blanchet-Sadri and B. Woodhouse

To show Statement 1, let k = 2 and recall we restricted m ≥ 3 and |p| ≥ 4m.
Note that the right hand side of Eq. (6) decreases as |p| increases, thus it suffices
to verify the case |p| = 4m. Taking m = 3, |p| = 12 and

k − λ = 0.08 ≥ 0.02956 · · · = 1.92
23

((1.92)2 − 2)2(1.9212−2(3−1) − 2)

= λkm
(

1

λ2 − k

)m−1(
1

λ|p|−2(m−1) − k

)
.

Now consider an arbitrary m′ ≥ 3 and p′ with |p′| = 4m′. Substituting λ = 1.92
and k = 2, it follows that

c :=

(
k

λ2 − k

)m′−m(
λ|p|−2(m−1) − k

λ|p′|−2(m′−1) − k

)

≤ (1.19)m
′−m

(
1

λ|p′|−2(m′−1)−(|p|−2(m−1))

)
= (1.19)m

′−m

(
1

λ2(m′−m)

)
< 1.

Thus we conclude

k − λ ≥ cλkm
(

1

λ2 − k

)m−1(
1

λ|p|−2(m−1) − k

)
= λkm

′
(

1

λ2 − k

)m′−1(
1

λ|p′|−2(m′−1) − k

)
.

Likewise for Statement 2, for any m ≥ 2, it suffices to verify Eq. (6) for |p| =
max{12, 2m} (clearly every pattern in which each variable occurs at least twice
satisfies |p| ≥ 2m). For m = 2 through m = 5 and |p| = 12, the equation is easily
verified. For m ≥ 6, |p| = 2m and

λkm
(

1

λ2 − k

)m−1(
1

λ|p|−2(m−1) − k

)
= 2.92

(
3

(2.92)2 − 3

)m

≤ 2.92(0.5429)m ≤ 2.92(0.5429)6 = 0.07476 · · · < 0.08 = k − λ.

This completes the induction and the proof of the lemma.
�

Remark 2. Referring to Statement 2 of Lemma 3 “for m ≥ 6, every pattern
with each variable occurring at least twice is 3-avoidable” is mentioned by Bell
and Goh (not as a theorem, but as a remark at the end of [1, Section 4]).
They provide a slightly better constant 2.9293298 for the exponential growth in
this case. As a consequence, Statement 2 is new only for m ∈ {2, 3, 4, 5}. For
m ∈ {2, 3}, patterns of length 12 where known to be avoidable [9,4] but without
an exponential lower bound.

Strict Bounds for Pattern Avoidance 113

Here are the main results. As discussed in Section 2, both bounds below are
strict in the sense that for every positive integer m, there exists a 2-unavoidable
pattern with m variables and length 3(2m−1) − 1 as well as a 3-unavoidable
pattern with m variables and length 2m − 1.

Theorem 2. Let p be a pattern with m distinct variables.

1. If |p| ≥ 3(2m−1), then p is 2-avoidable.
2. If |p| ≥ 2m, then p is 3-avoidable.

Proof. We prove Statement 1 (the proof for Statement 2 is similar). We show
by induction on m that if p is 2-unavoidable, |p| < 3(2m−1). For m = 1, note
that A3 is 2-avoidable [5], hence A� is 2-avoidable for all � ≥ 3. Thus if a unary
pattern p is 2-unavoidable, |p| < 3 = 3(21−1). For m = 2, it is known that
all binary patterns of length 6 are 2-avoidable [9], hence all binary patterns of
length at least 6 are also 2-avoidable. Thus if a binary pattern p is 2-unavoidable,
|p| < 6 = 3(22−1). Now assume the statement holds for m ≥ 2 and suppose p
is a 2-unavoidable pattern with m + 1 variables. For the sake of contradiction,
assume that |p| ≥ 3(2m). There are two cases to consider.

First, if p has a variable A that occurs exactly once, let p = p1Ap2, where
p1 and p2 are patterns with at most m variables. Without loss of generality,
suppose |p1| ≥ |p2|. Since |p| ≥ 3(2m),

|p1| ≥
⌈
|p| − 1

2

⌉
≥
⌈
3(2m)− 1

2

⌉
= 3(2m−1).

By the contrapositive of the inductive hypothesis, p1 is 2-avoidable. But p1
divides p, hence p is 2-avoidable, a contradiction.

Alternatively, suppose every variable in p occurs at least twice. Since |p| ≥
3(2m) ≥ 4(m+1) for m ≥ 2, Lemma 3 indicates there are infinitely many words
over a binary alphabet that avoid p, thus p is 2-avoidable, a contradiction. These
contradictions imply |p| < 3(2(m+1)−1), which completes the induction.
�

5 Extension to Partial Words

A partial word over an alphabet Σ is a concatenation of characters from the
extended alphabet Σ = Σ ∪ {�}, where � is called the hole character and
represents any unknown letter. If u and v are two partial words of equal length,
we say u is compatible with v, denoted u ↑ v, if u[i] = v[i] whenever u[i], v[i] ∈ Σ.
A partial word w over Σ is an instance of a pattern p over Δ if there exists a
non-erasing morphism ϕ : Δ∗ → Σ∗ such that ϕ(p) ↑ w; the partial word w
avoids p if none of its factors is an instance of p. For example, aa b a� c contains
an instance of ABA while it avoids AAA.

A pattern p is called k-avoidable in partial words if for every h ∈ N there is a
partial word with h holes over a k-letter alphabet avoiding p, or, equivalently, if
there is a partial word over a k-letter alphabet with infinitely many holes which
avoids p. The avoidability index for partial words is defined analogously to that

114 F. Blanchet-Sadri and B. Woodhouse

of full words. For example, AA is unavoidable in partial words since a factor
of the form a� or �a must occur, where a ∈ Σ, while the pattern AABB has
avoidability index 3 in partial words. Classification of avoidability indices for
unary and binary patterns is complete and the ternary classification is nearly
complete [2,3].

The power series method previously used for full words can also count partial
words avoiding patterns, and similar results are obtained. Before we can use the
power series approach to develop bounds for partial words, we must obtain an
upper bound for the number of partial words over Σ that are compatible with
instances of the pattern. This result is comparable with Lemma 1 for full words.

Lemma 4. Let m ≥ 1 be an integer and p be a pattern over an alphabet Δ =
{A1, . . . , Am}. Suppose that for 1 ≤ i ≤ m, the variable Ai occurs di ≥ 1 times
in p. Let k ≥ 2 be an integer and let Σ be a k-letter alphabet. Then for n ≥ 1, the
number of partial words of length n over Σ that are compatible with instances of
the pattern p is no more than [xn]C(x), where

C(x) :=
∑
i1≥1

· · ·
∑
im≥1

⎛⎝ m∏
j=1

(
k(2dj − 1) + 1

)ij⎞⎠xd1i1+···+dmim .

Once again we require a technical inequality.

Lemma 5. Suppose (k, λ) ∈ {(2, 2.97), (3, 3.88)} and m ≥ 1 is an integer. For
any integer P and integers dj for 1 ≤ j ≤ m such that dj ≥ 2 and P =
d1 + · · ·+ dm,

m∏
i=1

k(2di − 1) + 1

λdi − (k(2di − 1) + 1)
≤
(

3k + 1

λ2 − (3k + 1)

)m−1
(

k

(λ2)
P−2(m−1) − k

)
. (7)

When all variables in the pattern occur at least twice, we obtain the following
exponential lower bounds.

Lemma 6. Let m ≥ 4 be an integer and p be a pattern over an alphabet Δ =
{A1, . . . , Am}. Suppose that for 1 ≤ i ≤ m, Ai occurs di ≥ 2 times in p.

1. If |p| ≥ 15(2m−3), then for n ≥ 0, there are at least (2.97)n partial words of
length n over a binary alphabet that avoid p.

2. If |p| ≥ 2m, then for n ≥ 0, there are at least (3.88)n partial words of length
n over a ternary alphabet that avoid p.

Thus for certain patterns, there exist λn partial words of length n that avoid
the pattern, for some λ. It is not immediately clear that this is enough to prove
the patterns are avoidable in partial words. The next lemma asserts this count
is so large that it must include partial words with arbitrarily many holes, thus
the patterns are 2-avoidable or 3-avoidable in partial words.

Strict Bounds for Pattern Avoidance 115

Lemma 7. Suppose k ≥ 2 is an integer, k < λ < k + 1, Σ is an alphabet of
size k, and S is a set of partial words over Σ with at least λn words of length n
for each n > 0. For all integers h ≥ 0, S contains a partial word with at least h
holes.

Unfortunately, the pattern A2BA2CA2 of length 8 = 23 is unavoidable in partial
words (since some a� must occur infinitely often), thus to obtain the 2m bound
for avoidability as in the full word case, we require information about quaternary
patterns of length 16 = 24. Fortunately, for certain patterns, constructions can be
made from full words avoiding a pattern to partial words avoiding a pattern that
provide upper bounds on avoidability indices. We obtain the following bounds.

Theorem 3. Let p be a pattern with m distinct variables.

1. If m ≥ 3 and |p| ≥ 15(2m−3), then p is 2-avoidable in partial words.
2. If m ≥ 3 and |p| ≥ 5(2m−2), then p is 3-avoidable in partial words.
3. If m ≥ 4 and |p| ≥ 2m, then p is 4-avoidable in partial words.

Proof. For Statement 1, we prove by induction on m that if p is 2-unavoidable,
|p| < 15(2m−3). The base case of ternary patterns (m = 3) is handled by a list
of over 800 patterns in the appendix of [2]. The maximum length 2-unavoidable
ternary pattern in partial words is A2BA2CA2BA2, length 11 < 15 = 15(23−3).

Now suppose the result holds for m and let p be a pattern with m + 1 ≥ 4
distinct variables. If every variable in p is repeated at least twice, Statement 1
of Lemma 6 implies there exists a set S of partial words with at least (2.97)n

binary words of length n that avoid p for each n ≥ 0. Applying Lemma 7 to S,
we find that for each h ≥ 0, there exists a partial word with at least h holes that
avoids p. Thus p is 2-avoidable. If p has a variable that occurs exactly once, we
reason as in the proof of Theorem 2 to complete the induction.

For Statement 2, we prove by induction on m that if p is 3-unavoidable,
|p| < 5(2m−2). For m = 3, all patterns of length 10 = 5(23−2) are shown to be
3-avoidable in [2]. For m ≥ 4, Statement 2 of Lemma 6 and Lemma 7 imply that
every pattern of length at least 2m in which each variable appears at least twice
is 3-avoidable. If p has a variable that occurs exactly once, we reason as in the
proof of Theorem 2 to complete the induction.

For Statement 3, we show by induction on m that if p is 4-unavoidable,
|p| < 2m. We first establish the base case m = 4 by showing that every pat-
tern p of length 16 = 24 is 4-avoidable. Using the data in [2], the ternary pat-
terns which have avoidability index greater than 4 areAABCABA, ABACAAB,
ABACBAA, and ABBCBAB of length 7 (up to reversal and renaming of vari-
ables).

Consider any p with |p| = 16. If every variable in p occurs at least twice,
Statement 2 of Lemma 6 implies there exists a set S with at least (3.88)n ternary
partial words of length n that avoid p for each n ≥ 0. Applying Lemma 7 to S,
we find that for each h ≥ 0, there exists a ternary partial word with at least h
holes that avoids p. Thus p is 3-avoidable. Otherwise, p contains a variable α
that occurs exactly once and p = p1αp2 for patterns p1 and p2 with at most 3

116 F. Blanchet-Sadri and B. Woodhouse

distinct variables. Note that |p1|+ |p2| = 15. If p1 has length at least 9, then p1
is 4-avoidable, hence p is 4-avoidable by divisibility (likewise for p2).

Thus the only remaining cases are when |p1| = 8 and |p2| = 7 or vice versa.
Suppose |p1| = 8 and |p2| = 7 (the other case is similar). If p1 or p2 is not
in the list of ternary patterns above, it is 4-avoidable, hence p is 4-avoidable.
Otherwise p1 = A2BA2CA2 up to a renaming of the variables. Note that p1
contains a factor of the form A2BA, which fits the form of [2, Theorem 6(2)]
for q1 = B. All of the possible values of p2 are on three variables, so they must
contain B. Thus setting q2 = B, [2, Theorem 6(2)] implies p is 4-avoidable.

For m ≥ 5, Lemma 6 and Lemma 7 imply that every pattern with length at
least 2m in which each variable appears at least twice is 3-avoidable. If p has
a variable that occurs exactly once, we reason as in the proof of Theorem 2 to
complete the induction.
�

6 Concluding Remarks and Conjectures

Overall, the power series method is a useful way to show existence of infinitely
many words avoiding patterns in full words and partial words. It is mainly helpful
to obtain upper bounds as derived here, since it utilizes the frequencies of each
variable in the pattern and not their placement relative to one another. Only
patterns where each variable occurs at least twice can be investigated in this way,
but induction arguments as in Theorem 2 then imply bounds for all patterns. For
patterns with a variable that appears exactly once, the counts used in Lemma 1
and Lemma 4 grow too quickly, thus the power series method is not applicable.

It would be nice to attain strict bounds for 2-avoidability and 3-avoidability
in partial words. Statement 1 of the following conjecture appears in [2], and we
add Statement 2.

Conjecture 1. Let p be a pattern with m distinct variables.

1. If |p| ≥ 3(2m−1), then p is 2-avoidable in partial words.
2. If m ≥ 4 and |p| ≥ 2m, then p is 3-avoidable in partial words.

Both bounds would then be strict, using the same sequences of patterns given
for full words in Section 2.

To show Statement 1 using the power series method, we require either an
improvement of the bound 15(2m−3) to 3(2m−1) in Statement 1 of Lemma 6 or
some additional data about avoidability indices of patterns over 4 variables. It
may be possible to improve the count used in Lemma 4 to improve this bound.
To show Statement 2 using the power series method, we require additional data
about avoidability indices of patterns over 4 variables. Unfortunately, finding
avoidability indices using HD0L systems as in [2] is likely infeasible for patterns
over 4 variables. Perhaps some constructions can be made from words avoiding
long enough 2-avoidable or 3-avoidable patterns in full words to prove there exist
infinitely many partial words that avoid the pattern over 2 or 3 letters.

Finally, it may be possible to make better approximations than Theorem 1
and Lemma 1 based on the Goulden-Jackson method for avoiding a finite number

Strict Bounds for Pattern Avoidance 117

of words [6]. The method works better when the growth rate of words avoiding
a k-avoidable pattern is close to k, whereas it is known that for the pattern
AABBCABBA, where k = 2, the growth rate is close to 1. There is no hope
for the pattern ABWACXBCY BAZCA, where k = 4, since only polynomially
many words over 4 letters avoid it (here the growth rate is 1). Perhaps the
method could handle the cases where each variable of the pattern occurs at least
twice, but even the case of the pattern AA, where k = 3, seems to be challenging
with a 1.31 growth rate.

Note that our paper was submitted to DLT 2013 on January 2, 2013. Some
referees made us aware that Theorem 2 has also been found, completely inde-
pendently and almost simultaneouly, by Pascal Ochem and Alexandre Pinlou (P.
Ochem and A. Pinlou, Application of entropy compression in pattern avoidance,
arXiv:1301.1873, January 9, 2013). Their proof of Statement 1 uses Bell and
Goh’s method, while their proof of Statement 2 uses the entropy compression
method.

References

1. Bell, J., Goh, T.L.: Exponential lower bounds for the number of words of uniform
length avoiding a pattern. Information and Computation 205, 1295–1306 (2007)

2. Blanchet-Sadri, F., Lohr, A., Scott, S.: Computing the partial word avoidability
indices of ternary patterns. In: Arumugam, S., Smyth, B. (eds.) IWOCA 2012.
LNCS, vol. 7643, pp. 206–218. Springer, Heidelberg (2012)

3. Blanchet-Sadri, F., Mercaş, R., Simmons, S., Weissenstein, E.: Avoidable binary
patterns in partial words. Acta Informatica 48, 25–41 (2011)

4. Cassaigne, J.: Motifs évitables et régularités dans les mots. Ph.D. thesis, Paris VI
(1994)

5. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

6. Noonan, J., Zeilberger, D.: The Goulden-Jackson cluster method: Extensions, ap-
plications, and implementations. Journal of Differential Equations and Applica-
tions 5, 355–377 (1999)

7. Ochem, P.: A generator of morphisms for infinite words. RAIRO-Theoretical In-
formatics and Applications 40, 427–441 (2006)

8. Rampersad, N.: Further applications of a power series method for pattern avoid-
ance. The Electronic Journal of Combinatorics 18, P134 (2011)

9. Roth, P.: Every binary pattern of length six is avoidable on the two-letter alphabet.
Acta Informatica 29, 95–106 (1992)

10. Rowen, L.: Ring Theory. Pure and Applied Mathematics 128, vol. II. Academic
Press, Boston (1988)

A Fresh Approach to Learning Register

Automata�

Benedikt Bollig1, Peter Habermehl2,
Martin Leucker3, and Benjamin Monmege1

1 LSV, ENS Cachan, CNRS & Inria, France
2 Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, CNRS, France

3 ISP, University of Lübeck, Germany

Abstract. This paper provides an Angluin-style learning algorithm for
a class of register automata supporting the notion of fresh data values.
More specifically, we introduce session automata which are well suited for
modeling protocols in which sessions using fresh values are of major inter-
est, like in security protocols or ad-hoc networks. We show that session
automata (i) have an expressiveness partly extending, partly reducing
that of register automata, (ii) admit a symbolic regular representation,
and (iii) have a decidable equivalence and model-checking problem (un-
like register automata). Using these results, we establish a learning al-
gorithm to infer session automata through membership and equivalence
queries. Finally, we strengthen the robustness of our automaton by its
characterization in monadic second-order logic.

1 Introduction

Learning automata deals with the inference of automata based on some partial
information, for example samples, which are words that either belong to their
accepted language or not. A popular framework is that of active learning defined
by Angluin [2] in which a learner may consult a teacher for so-called membership
and equivalence queries to eventually infer the automaton in question. Learning
automata has a lot of applications in computer science. Notable examples are
the use in model checking [12] and testing [3]. See [18] for an overview.

While active learning of regular languages is meanwhile well understood and
is supported by freely available libraries such as learnlib [19] and libalf [8], exten-
sions beyond plain regular languages are still an area of active research. Recently,
automata dealing with potentially infinite data as first class citizens have been
studied. Seminal works in this area are that of [1,15] and [14]. While the first
two use abstraction and refinement techniques to cope with infinite data, the
second approach learns a sub-class of register automata.

In this paper, we follow the work on learning register automata. However,
we study a different model than [14], having the ability to require that input
data is fresh in the sense that it has not been seen so far. This feature has been

� This work is partially supported by EGIDE/DAAD-Procope (LeMon).

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 118–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Fresh Approach to Learning Register Automata 119

proposed in [24] in the context of semantics of programming languages, as, for
example, fresh names are needed to model object creation in object-oriented
languages. Moreover, fresh data values are important ingredients in modeling
security protocols which often make use of so-called fresh nonces to achieve their
security assertions [17]. Finally, fresh names are also important in the field of
network protocols and are one of the key ingredients of the π-calculus [20].

In general, the equivalence problem of register automata is undecidable (even
without freshness). This limits their applicability in active learning, as equiva-
lence queries cannot be implemented (correctly and completely). Therefore, we
restrict the studied automaton model to either store fresh data values or read
data values from registers. In the terminology of [24], we retain global freshness,
while local freshness is discarded. We call our model session automata. They
are well-suited whenever fresh values are important for a finite period, for which
they will be stored in one of the registers. Session automata correspond to the
model from [7] without stacks. They are incomparable with the model from [14].

Session automata accept data words, i.e., words over an alphabet Σ × D,
where Σ is a finite set of labels and D an infinite set of data values. A data word
can be mapped to a so-called symbolic word where we record for each different
data value the register in which it was stored (when appearing for the first time)
or from which it was read later. To each symbolic word we define a symbolic
word in unique normal form representing the same data words by fixing a canon-
ical way of storing data values in registers. Then, we show how to transform a
session automaton into a unique canonical automaton that accepts the same
data language. This canonical automaton can be seen as a classical finite-state
automaton and, therefore, we can define an active learning algorithm for session
automata in a natural way. In terms of the size of the canonical automaton, the
number of membership and equivalence queries needed is polynomial (both in
the number of states and in the number of registers). When the reference model
are arbitrary (data) deterministic automata, the complexity is polynomial in the
number of states and exponential in the number of registers.

Applicability of our framework in verification (e.g., compositional verification
[10] and infinite state regular model checking [13]) is underpinned by the fact that
session automata form a robust language class: While inclusion is undecidable
for register automata [21], we show that it is decidable for session automata.
In [7], model checking session automata was shown decidable wrt. a powerful
monadic second-order logic with data-equality predicate (dMSO). Here, we also
provide a natural fragment of dMSO that precisely captures session automata.

To summarize, we show that session automata (i) have a unique canonical
form, (ii) have a decidable inclusion problem, (iii) enjoy a logical characteriza-
tion, and (iv) can be learned via an active learning algorithm. Altogether, this
provides a versatile learning framework for languages over infinite alphabets.

Outline. In Section 2 we introduce session automata. Section 3 presents an ac-
tive learning algorithm for them and in Section 4 we give some language-theoretic
properties of our model and a logical characterization. Missing proofs can be
found in the long version: http://hal.archives-ouvertes.fr/hal-00743240

http://hal.archives-ouvertes.fr/hal-00743240

120 B. Bollig et al.

2 Data Words and Session Automata

We let N (respectively, N>0) be the set of natural numbers (respectively, non-
zero natural numbers). For n ∈ N, we let [n] denote the set {1, . . . , n}. In the
following, we fix a non-empty finite alphabet Σ of labels and an infinite set D
of data values. In examples, we usually use D = N. A data word is a sequence of
elements of Σ ×D, i.e., an element from (Σ ×D)∗. An example data word over
Σ = {a, b} and D = N is (a, 4)(b, 2)(b, 4).

Our automata will not be able to distinguish between data words that are
equivalent up to permutation of data values. Intuitively, this corresponds to say-
ing that data values can only be compared wrt. equality. When two data words
w1 and w2 are equivalent in that sense, we write w1 ≈ w2, e.g. (a, 4)(b, 2)(b, 4) ≈
(a, 2)(b, 5)(b, 2). The equivalence class of a data word w wrt. ≈ is written [w]≈.

We can view a data word as being composed of (not necessarily disjoint)
sessions, each session determining the scope in which a given data value is used.
Let w = (a1, d1) · · · (an, dn) ∈ (Σ×D)∗ be a data word. We let Fresh(w)

def
= {i ∈

[n] | di �= dj for all j ∈ {1, . . . , i− 1}} be the set of positions of w where a data
value occurs for the first time. Accordingly, we let Last(w)

def
= {i ∈ [n] | di �= dj

for all j ∈ {i+1, . . . , n}}. A set S ⊆ [n] is a session of w if there are i ∈ Fresh(w)
and j ∈ Last(w) such that S = {i, . . . , j} and di = dj . For i ∈ [n], let Session(i)
denote the unique session S with dmin(S) = di. Thus Session(i) is the scope
in which di is used. Note that Fresh(w) = {min(Session(i)) | i ∈ [n]}. For
k ≥ 1, we say that w is k-bounded if every position of w belongs to at most k
sessions. A language L is k-bounded if every word in L is so. The set of all data
words is not k-bounded, for any k. Fig. 1 illustrates a data word w with four
sessions. It is 2-bounded, as no position shares more than 2 sessions. We have
Session(7) = {4, . . . , 9} and Fresh(w) = {1, 2, 4, 6}.

Intuitively, k is the number of resources that will be needed to execute a k-
bounded word. Speaking in terms of automata, a resource is a register that can
store a data value. Our automata will be able to write a fresh data value into
some register r, denoted f(r), or reuse a data value that has already been stored
in r, denoted r(r). In other words, automata will work over (a finite subset of)
the alphabet Σ × Γ where Γ

def
= { f(r), r(r) | r ∈ N>0}. A word over Σ × Γ

is called a symbolic word. Given a symbolic word u = (a1, t1) · · · (an, tn) and a
position i ∈ [n], we let reg(i) denote the register r that is used at i, i.e., such
that ti ∈ {f(r), r(r)}. Similarly, we define the type type(i) ∈ {f, r} of i.

Naturally, a register has to be initialized before it can be used. So, we call
u well formed if, for all j ∈ [n] with type(j) = r, there is i ≤ j such that

1 2 3 4 5 6 7 8 9

a b a a c c b c c
4 2 4 3 2 1 3 1 3

Fig. 1. A data word and its sessions

1 2 3 4 5 6 7 8 9

a b a a c c b c c
f(1) f(2) r(1) f(1) r(2) f(2) r(1) r(2) r(1)

Fig. 2. A symbolic word

A Fresh Approach to Learning Register Automata 121

a, f(1)
a, r(1)
a, f(2)
a, r(2)

(a) A

ε1 2

12

21

a, f(1)

b, r(1)

a, f(2)

a, f(1)b, r(2)

b, r(1)

a, f(2)

b, r(2)

(b) B and B′

0 1 2

3 4

join, f(1)
forw , r(1), f(2)

forw , r(2), f(1)
ack , r(1) ack , r(2)

com, r(1) com, r(2)

(c)

Fig. 3. (a) Session automaton, (b) Client-server system, (c) P2P protocol

ti = f(reg(j)). Let WF denote the set of well formed words. A well formed
symbolic word is illustrated in Fig. 2. We have type(5) = r and reg(5) = 2.

A symbolic word u = (a1, t1) · · · (an, tn) ∈ WF generates a set of data words.
Intuitively, a position i with ti = f(r) opens a new session, writing a fresh data
value in register r. The same data value is reused at positions j > i with tj = r(r),
unless r is reinitialized at some position i′ with i < i′ < j. Formally, w ∈ (Σ×D)∗

is a concretization of u if it is of the form (a1, d1) · · · (an, dn) such that, for all
i, j ∈ [n] with i ≤ j, (i) i ∈ Fresh(w) iff type(i) = f, and (ii) di = dj iff both
reg(i) = reg(j) and there is no position i′ with i < i′ ≤ j such that ti′ = f(reg(i)).
For example, the data word from Fig. 1 is a concretization of the symbolic word
from Fig. 2. By γ(u), we denote the set of concretizations of a well formed word
u. We extend γ to sets L ⊆ (Σ × Γ)∗ and let γ(L)

def
= {γ(u) | u ∈ L ∩WF}.

Remark 1. Let us state some simple properties of γ. It is easily seen that w ∈
γ(u) implies γ(u) = [w]≈. Let k ≥ 1. If u ∈ WF ∩ (Σ × Γk)

∗ where Γk
def
=

{ f(r), r(r) | r ∈ [k]}, then all data words in γ(u) are k-bounded. Moreover,
γ((Σ × Γk)

∗) is the set of all k-bounded data words.

Session Automata. As suggested, we consider automata over the alphabet
Σ × Γ to process data words. Actually, they are equipped with a finite number
k ≥ 1 of registers so that we rather deal with finite automata over Σ × Γk.

Definition 1. Let k ≥ 1. A k-register session automaton (or just session au-
tomaton) over Σ and D is a finite automaton over Σ × Γk, i.e., a tuple A =
(Q, q0, F, δ) where Q is the finite set of states, q0 ∈ Q the initial state, F ⊆ Q
the set of accepting states, and δ : Q × (Σ × Γk) → 2Q the transition function.

The symbolic language Lsymb(A) ⊆ (Σ × Γk)
∗ of A is defined in the usual

way, considering A as a finite automaton. Its (data) language is Ldata(A)
def
=

γ(Lsymb(A)). By Remark 1, Ldata(A) is closed under ≈. Moreover, it is k-
bounded, which motivates the naming of our automata.

Example 1. Consider the 2-register session automaton A from Fig. 3(a). It rec-
ognizes the set of all 2-bounded data words over Σ = {a}.

Example 2. The 2-register session automaton B over Σ = {a, b} from Fig. 3(b)
represents a client-server system. A server can receive requests on two channels
of capacity 1, represented by the two registers. Requests are acknowledged in the

122 B. Bollig et al.

order in which they are received. When the automaton performs (a, f(r)), a client
gets a unique transaction key, which is stored in r. Later, the request is acknowl-
edged performing (b, r(r)). E.g., (a, 8)(a, 4)(b, 8)(a, 3)(b, 4)(b, 3) ∈ Ldata(B).

Example 3. Next, we present a 2-register session automaton that models a P2P
protocol. A user can join a host with address x, denoted by action (join , x). The
request is either forwarded by x to another host y, executing (forw1, x)(forw 2, y),
or acknowledged by (ack , x). In the latter case, a connection between the user
and x is established so that they can communicate, indicated by action (com , x).
Note that the sequence of actions (forw 1, x)(forw 2, y) should be considered as an
encoding of a single action (forw , x, y) and is a way of dealing with actions that
actually take two or more data values. An example execution of our protocol is
(join , 145)(forw , 145, 978)(forw, 978, 14)(ack , 14)(com, 14)(com, 14)(com, 14). In
Fig. 3(c), we show the 2-register session automaton for the P2P protocol.

Session automata come with two natural notions of determinism. We call A =
(Q, q0, F, δ) symbolically deterministic if |δ(q, (a, t))| ≤ 1 for all q ∈ Q and (a, t) ∈
Σ × Γk. Then, δ can be seen as a partial function Q × (Σ × Γk) → Q. We
call A data deterministic if it is symbolically deterministic and, for all q ∈ Q,
a ∈ Σ, and r1, r2 ∈ [k] with r1 �= r2, we have that δ(q, (a, f(r1))) �= ∅ implies
δ(q, (a, f(r2))) = ∅. Intuitively, given a data word as input, the automaton is
data deterministic if, in each state, given a letter and a data value, there is at
most one fireable transition. While “data deterministic” implies “symbolically
deterministic”, the converse is not true. E.g., the session automata from Fig. 3(a)
and 3(b) are symbolically deterministic but not data deterministic. However, the
automaton of Fig. 3(b) with the dashed transition removed is data deterministic.

Theorem 1. Session automata are strictly more expressive than data determin-
istic session automata.

The proof can be found in the long version of the paper. Intuitively, data deter-
ministic automata cannot guess if a data value in a register will be reused later.

Session automata are expressively incomparable with the various register au-
tomata models considered in [16,21,23,9,14]. In particular, due to freshness, the
languages from Ex. 1, 2, and 3 are not recognizable by the models for which a
learning algorithm exists [9,14]. On the other hand, our model cannot recognize
“the set of all data words” or “every two consecutive data values are distinct”.
Our automata are subsumed by fresh-register automata [24], class memory au-
tomata [5], and data automata [6]. However, no algorithm for the inference of the
latter is known. Note that, for ease of presentation, we consider one-dimensional
data words, unlike [14] where labels have an arity and can carry several data
values. Following [7], our automata can be easily extended to multi-dimensional
data words (cf. Ex. 3). This also holds for the learning algorithm.

Canonical Session Automata. Our goal will be to infer the data language
of a session automaton A in terms of a canonical session automaton AC .

A Fresh Approach to Learning Register Automata 123

As a first step, we associate with a data word w = (a1, d1) · · · (an, dn) ∈
(Σ×D)∗ a symbolic normal form snf (w) ∈ WF such that w ∈ γ(snf (w)), based
on the idea that data values are always stored in the first register whose data
value is not needed anymore. To do so, we will determine t1, . . . , tn ∈ Γ and
set snf (w) = (a1, t1) · · · (an, tn). We define τ : Fresh(w) → N>0 inductively by
τ(i) = min(FreeReg(i)) where FreeReg(i)

def
= N>0 \ {τ(i′) | i′ ∈ Fresh(w) such

that i′ < i and i ∈ Session(i′)}. With this, we set, for all i ∈ [n], ti = f(τ(i)) if
i ∈ Fresh(w) and ti = r(τ(min(Session(i)))) otherwise. One readily verifies that
snf (w) = (a1, t1) · · · (an, tn) is well formed and that properties (i) and (ii) in
the definition of a concretization hold. This proves w ∈ γ(snf (w)). E.g., Fig. 2
shows the symbolic normal form of the data word from Fig. 1. The mapping snf
carries over to languages in the expected manner.

We consider again B of Fig. 3(b). Let B′ be the automaton that we obtain
from B when we remove the dashed transition. We have Ldata(B) = Ldata(B′),
but snf (Ldata(B)) = Lsymb(B′) � Lsymb(B).

Lemma 1. Let L be a regular language over Σ × Γk. Then, snf (γ(L)) is a
regular language over Σ × Γk.

In other words, for every k-register session automaton A, there is a k-register
session automaton A′ such that Lsymb(A′) = snf (Ldata(A)) and, therefore,
Ldata(A′) = Ldata(A). We denote by AC the minimal symbolically deterministic
automaton A′ satisfying Lsymb(A′) = snf (Ldata (A)). Note that the number k′ of
registers effectively used in AC may be smaller than k, and we actually consider
AC to be a k′-register session automaton.

Theorem 2. Let A = (Q, q0, F, δ) be a k-register session automaton. Then, AC

has at most 2O(|Q| × (k+1)!× 2k) states. If A is data deterministic, then AC has
at most O(|Q| × (k + 1)!× 2k) states. Finally, AC uses at most k registers.

3 Learning Session Automata

In this section, we introduce an active learning algorithm for session automata.
In the usual active learning setting (as introduced by Angluin [2]), a learner
interacts with a so-called minimally adequate teacher (MAT), an oracle which
can answer membership and equivalence queries. In our case, the learner is given
the task to infer the data language Ldata(A) defined by a given session automaton
A. We suppose here that the teacher knows the session automaton or any other
device accepting Ldata(A). In practice, this might not be the case — A could
be a black box — and equivalence queries could be (approximately) answered,
for example, by extensive testing. The learner can ask if a data word is accepted
by A or not. Furthermore it can ask equivalence queries which consist in giving
an hypothesis session automaton to the teacher who either answers yes, if the
hypothesis is equivalent to A (i.e., both data languages are the same), or gives
a data word which is a counterexample, i.e., a data word that is either accepted
by the hypothesis automaton but should not, or vice versa.

124 B. Bollig et al.

Given the data language Ldata(A) accepted by a session automaton A over
Σ and D, our algorithm will learn the canonical k-register session automaton
AC , i.e., the minimal symbolically deterministic automaton recognizing the data
language Ldata(A) and the regular language Lsymb(AC) over Σ × Γk. There-
fore one can consider that the learning target is Lsymb(AC) and use any active
learning algorithm for regular languages. However, as the teacher answers only
questions over data words, queries have to be adapted. Since AC only accepts
symbolic words which are in normal form, a membership query for a given sym-
bolic word u not in normal form will be answered negatively (without consulting
the teacher); otherwise, the teacher will be given one data word included in γ(u)
(all the answers on words of γ(u) are the same). Likewise, before submitting an
equivalence query to the teacher, the learning algorithm checks if the current
hypothesis automaton accepts symbolic words not in normal form1. If yes, one
of those is taken as a counterexample, else an equivalence query is submitted to
the teacher. Since the number of registers needed to accept a data language is
a priori not known, the learning algorithm starts by trying to learn a 1-register
session automaton and increases the number of registers as necessary.

Any active learning algorithm for regular languages may be adapted to our
setting. Here we describe a variant of Rivest and Schapire’s [22] algorithm which
is itself a variant of Angluin’s L∗ algorithm [2]. An overview of learning algo-
rithms for deterministic finite state automata can be found, for example, in [4].

The algorithm is based on the notion of observation table which contains
the information accumulated by the learner during the learning process. An
observation table over a given alphabet Σ × Γk is a triple O = (T, U, V) with
U, V two sets of words over Σ × Γk such that ε ∈ U ∩ V and T is a mapping
(U ∪ U ·(Σ×Γk))×V → {+,−}. A table is partitioned into an upper part U and
a lower part U · (Σ × Γk). We define for each u ∈ U ∪ U · (Σ × Γk) a mapping
row(u) : V → {+,−} where row(u)(v) = T (u, v). An observation table must
satisfy the following property: for all u, u′ ∈ U such that u �= u′ we have row(u) �=
row(u′), i.e., there exists v ∈ V such that T (u, v) �= T (u′, v). This means that
the rows of the upper part of the table are pairwise distinct. A table is closed if,
for all u′ in U · (Σ × Γk), there exists u ∈ U such that row(u) = row(u′). From
a closed table we can construct a symbolically deterministic session automaton
whose states correspond to the rows of the upper part of the table:

Definition 2. For a closed table O = (T, U, V) over a finite alphabet Σ ×
Γk, we define a symbolically deterministic k-register session automaton AO =
(Q, q0, F, δ) over Σ × Γk by Q = U , q0 = ε, F = {u ∈ Q | T (u, ε) = +}, and for
all u ∈ Q and (a, t) ∈ Σ × Γk, δ(u, (a, t)) = u′ if row(u(a, t)) = row(u′). This is
well defined as the table is closed.

We now describe in detail our active learning algorithm for a given session au-
tomaton A given in Table 1. It is based on a loop which repeatedly constructs a

1 This can be checked in polynomial time over the trimmed hypothesis automaton
with a fixed point computation labelling the states with the registers that should be
used again before overwriting them.

A Fresh Approach to Learning Register Automata 125

Table 1. The learning algorithm for a session automaton A

initialize k := 1 and
O := (T, U, V) by U = V = {ε} and T (u, ε) for all u ∈ U ∪ U · (Σ × Γk) with membership queries
repeat

while O is not closed
do

find u ∈ U and (a, t) ∈ Σ × Γk such that for all u ∈ U : row(u(a, t)) �= row(u)
extend table to O := (T ′, U ∪ {u(a, t)}, V) by membership queries

from O construct the hypothesized automaton AO (cf. Definition 2)
if AO accepts symbolic words not in normal form

then let z be one of those
else if Ldata(A) = Ldata(AO)

then equivalence test succeeds
else get counterexample w ∈ (Ldata(A) \ Ldata(AO)) ∪ (Ldata(AO) \ Ldata(A))

set z := snf (w); find minimal k′ such that z ∈ Σ × Γk′
if k′ > k

then set k := k′

extend table to O := (T ′, U, V) over Σ × Γk by membership queries
if O is closed /∗ is true if k′ ≤ k ∗/

then find a breakpoint for z where v is the distinguishing word
extend table to O := (T ′, U, V ∪ {v}) by membership queries

until equivalence test succeeds
return AO

closed table using membership queries, builds the corresponding automaton and
then asks an equivalence query. This is repeated until A is learned. An impor-
tant part of any active learning algorithm is the treatment of counterexamples
provided by the teacher as an answer to an equivalence query. Suppose that for
a given AO constructed from a closed table O = (T, U, V) the teacher answers
by a counterexample data word w. Let z = snf (w). If z uses more registers
than available in the current alphabet, we extend the alphabet and then the
table. If the obtained table is not closed, we restart from the beginning of the
loop. Otherwise – and also if z does not use more registers – we use Rivest and
Schapire’s [22] technique to extend the table by adding a suitable v to V mak-
ing it non-closed. The technique is based on the notion of breakpoint. As z is
a counterexample, (1) z ∈ Lsymb(AO) ⇐⇒ z �∈ Lsymb(AC). Let z = z1 · · · zm.
Then, for any i with 1 ≤ i ≤ m + 1, let z be decomposed as z = uivi, where
u1 = vm+1 = ε, v1 = um+1 = z and the length of ui is equal to i − 1 (we have
also z = uizivi+1 for all i such that 1 ≤ i ≤ m). Let si be the state visited by
z just before reading the ith letter, along the computation of z on AO: i is a
breakpoint if sizivi+1 ∈ Lsymb(AO) ⇐⇒ si+1vi+1 /∈ Lsymb(AC). Because of
(1) such a break-point must exist and can be obtained with O(log(m)) member-
ship queries by a dichotomous search. The word vi+1 is called the distinguishing
word. If V is extended by vi+1 the table is not closed anymore (row(si) and
row(sizi) are different). Now, the algorithm closes the table again, then asks an-
other equivalence query and so forth until termination. At each iteration of the
loop the number of rows (each of those correspond to a state in the automaton
AC) is increased by at least one. Notice that the same counterexample might be
given several times. The treatment of the counterexample only guarantees that
the table will contain one more row in its upper part. We obtain the following:

126 B. Bollig et al.

Theorem 3. Let A be a k′-register session automaton over Σ and D. Let AC be
the corresponding canonical k-register session automaton. Let N be its number
of states, K be the size of Σ×Γk and M the length of the longest counterexample
returned by an equivalence query. Then, the learning algorithm for A terminates
with at most O(KN2 +N log(M)) membership and O(N) equivalence queries.

Proof: This follows directly from the proof of correctness and complexity of
Rivest and Schapire’s algorithm [4,22]. Notice that the equivalence query cannot
return a counterexample whose normal form uses more than k registers, as such
a word is rejected by both AC (by definition) and by AO, (by construction). �
Let us discuss the complexity of our algorithm. In terms of the canonical session
automaton, the number of required membership and equivalence queries is poly-
nomial. When we consider data deterministic session automata, the complexity
is still polynomial in the number of states, but exponential in k (with constant
base). As usual, we have to add one exponent wrt. (data) non-deterministic au-
tomata. In [14], the number of equivalence queries is polynomial in the size of
the underlying automaton. In contrast, the number of membership queries con-
tains a factor nk where n is the number of states and k the number of registers.
This may be seen as a drawback, as n is typically large. Note that [14] restrict to
deterministic automata, since classical register automata are not determinizable.

Table 2. The successive observation tables

O1 ε

ε +
(b, r(1)) −
(a, f(1)) +
(b, r(1)) −

⇒
O2 ε (b, r(1))

ε + −
(b, r(1)) − −
(a, f(1)) + +

(b, r(1)) − −
(a, f(1))(a, f(1)) + +
(a, f(1))(b, r(1)) + +

⇒
O3 ε (b, r(1))

ε + −
(b, r(1)) − −
(a, f(1)) + +

(a, f(2)) − −
(b, r(2)) − −
(b, r(1)) − −

(a, f(1))(a, f(1)) + +
(a, f(1))(b, r(1)) + +
(a, f(1))(a, f(2)) − +
(a, f(1))(b, r(2)) − −

⇒

O4 ε (b, r(1))

ε + −
(b, r(1)) − −
(a, f(1)) + +

(a, f(1))(a, f(2)) − +

(a, f(2)) − −
(b, r(2)) − −
(b, r(1)) − −

(a, f(1))(a, f(1)) + +
(a, f(1))(b, r(1)) + +
(a, f(1))(b, r(2)) − −

(a, f(1))(a, f(2))(a, f(1)) − −
(a, f(1))(a, f(2))(b, r(1)) + +
(a, f(1))(a, f(2))(a, f(2)) − +
(a, f(1))(a, f(2))(b, r(2)) − +

⇒
O5 ε (b, r(1)) (b, r(2))

ε + − −
(b, r(1)) − − −
(a, f(1)) + + −

(a, f(1))(a, f(2)) − + −
(a, f(1))(a, f(2))(b, r(1)) + + +

(a, f(2)) − − −
(b, r(2)) − − −
(b, r(1)) − − −

(a, f(1))(a, f(1)) + + −
(a, f(1))(b, r(1)) + + −
(a, f(1))(b, r(2)) − − −

(a, f(1))(a, f(2))(a, f(1)) − − −
(a, f(1))(a, f(2))(a, f(2)) − + −
(a, f(1))(a, f(2))(b, r(2)) − + −

(a, f(1))(a, f(2))(b, r(1))(a, f(1)) + + +
(a, f(1))(a, f(2))(b, r(1))(b, r(1)) + + +
(a, f(1))(a, f(2))(b, r(1))(a, f(2)) − + −
(a, f(1))(a, f(2))(b, r(1))(b, r(2)) + + +

A Fresh Approach to Learning Register Automata 127

A1:

a, f(1)

A2:
a, f(1)

a, f(1)
b, r(1)

A4:
a, f(1)

a, f(1)
b, r(1)

a, f(2)

a, f(2)
b, r(2)

b, r(1)

AC : a, f(1)

a, f(1)
b, r(1)

a, f(2)

a, f(2)
b, r(2)

b, r(1)

a, f(2)

a, f(1)
b, r(1)
b, r(2)

Fig. 4. The successive hypothesis automata

Example 4. We apply our learning algorithm on the data language generated
by a single state automaton with loops labelled by (a, f(1)), (b, r(1)), (a, f(2))
and (b, r(2)). Table 2 shows the successive observation tables constructed by the
algorithm2, and Fig. 4 the successive automata constructed from the closed ob-
servation tables. For sake of clarity we omit the sink states. We start with the
alphabet Σ×Γ1 = {(a, f(1)), (a, r(1)), (b, f(1)), (b, r(1))}. Table O1 is obtained af-
ter initialization and closing by adding (b, r(1)) to the top: hypothesis automaton
A1 is constructed. Suppose that the equivalence query gives back as counterex-
ample the data word (a, 3)(b, 3) whose normal form is (a, f(1))(b, r(1)). Here the
breakpoint yields the distinguishing word (b, r(1)). Adding it to V and closing
the table by adding (a, f(1)) to the top, we get table O2 yielding hypothesis au-
tomaton A2. Notice that Lsymb(A2) = Lsymb(AC) ∩ (Σ × Γ1)

∗: the equivalence
query must now give back a data word whose normal form is using at least 2
registers (here (a, 7)(a, 4)(b, 7) with normal form (a, f(1))(a, f(2))(b, r(1))). Then
we must extend the alphabet to Σ×Γ2 and obtain table O3. We close the table
and get O4. After the equivalence query with the hypothesis automaton A4 we
get (a, f(1))(a, f(2))(b, r(1))(b, r(2)) as normal form of the data word counterex-
ample (a, 9)(a, 3)(b, 9)(b, 3). After adding (b, r(2)) to V and closing the table by
moving (a, f(1))(a, f(2))(b, r(1)) to the top, we get the table O5 from which the
canonical automaton AC is obtained and the equivalence query succeeds.

4 Language Theoretical Results

In this section, we establish some language theoretical properties of session au-
tomata, which they inherit from classical regular languages. These results demon-
strate a certain robustness as required in verification tasks such as compositional
verification [10] and infinite-state regular model checking [13].

Theorem 4. Data languages recognized by session automata are closed under
intersection and union. They are also closed under complementation in the fol-
lowing sense: given a k-register session automaton A, the language γ((Σ×Γk)

∗)\
Ldata(A) is recognized by a k-register session automaton.

2 To save space some letters whose rows contain only −’s are omitted. Moreover, we
use to indicate that all letters will lead to the same row.

128 B. Bollig et al.

Theorem 5. The inclusion problem for session automata is decidable.

We now provide a logical characterization of session automata. We consider data
MSO logic (dMSO), which is an extension of classical MSO logic by the binary
predicate x ∼ y to compare data values: a data word w = (a1, d1) · · · (an, dn) ∈
(Σ×D)∗ with variable interpretation x $→ i and y $→ j satisfies x ∼ y if di = dj .
More background on dMSO may be found in the long version and [21,23,6]. Note
that dMSO is a very expressive logic and goes beyond virtually all automata
models defined for data words [21,6,11]. We identify a fragment of dMSO, called
session MSO logic, that is expressively equivalent to session automata. While
register automata also enjoy a logical characterization [11], we are not aware of
logics capturing the automata model considered in [14].

Definition 3. A session MSO (sMSO) formula is a dMSO sentence of the form
ϕ = ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β)) such that α and β are classical MSO
formulas (not containing the predicate ∼).

Example 5. For instance, ϕ1 = ∀x∀y (x ∼ y ↔ x = y) is an sMSO formula. Its
semantics Ldata(ϕ1) is the set of data words in which every data value occurs
at most once. Moreover, ϕ2 = ∀x∀y (x ∼ y ↔ true) is an sMSO formula, and
Ldata(ϕ2) is the set of data words where all data values coincide. As a last
example, let ϕ3 = ∃X ∀x∀y (x ∼ y ↔ (¬∃z ∈ X (x < z ≤ y ∨ y < z ≤ x))).
Then, Ldata(ϕ3) is the set of 1-bounded data words. Intuitively, the second-order
variable X represents the set of positions where a fresh data value is introduced.

Theorem 6. A data language is recognized by a session automaton iff it is
definable by an sMSO formula.

In [7], it was already shown (for a more powerful model with pushdown stacks)
that model checking for the full dMSO logic is decidable:

Theorem 7 ([7]). Given a session automaton A and a dMSO sentence ϕ, one
can decide whether Ldata(A) ⊆ Ldata(ϕ).

5 Conclusion

In this paper, we provided a complete framework for algorithmic learning of
session automata, a special class of register automata to process data words.
As a key ingredient, we associated with every session automaton a canonical
one, which revealed close connections with classical regular languages. This also
allowed us to show that session automata form a robust language class with good
closure and decidability properties as well as a characterization in MSO logic.
As a next step, we plan to employ our setting for various verification tasks.

Acknowledgment. We are grateful to Thomas Schwentick for suggesting the
symbolic normal form of data words.

A Fresh Approach to Learning Register Automata 129

References

1. Aarts, F., Heidarian, F., Kuppens,H., Olsen, P., Vaandrager, F.W.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

3. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the
correspondence between conformance testing and regular inference. In: Cerioli, M.
(ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

4. Berg, T., Raffelt, H.: Model Checking. In: Broy, M., Jonsson, B., Katoen, J.-
P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 557–603. Springer, Heidelberg (2005)

5. Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theo-
retical Computer Science 411(4-5), 702–715 (2010)

6. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)

7. Bollig, B., Cyriac, A., Gastin, P., Narayan Kumar, K.: Model checking languages
of data words. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 391–405.
Springer, Heidelberg (2012)

8. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
The automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)

9. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical
register automaton model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 366–380. Springer, Heidelberg (2011)

10. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

11. Colcombet, T., Ley, C., Puppis, G.: On the use of guards for logics with data.
In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 243–255.
Springer, Heidelberg (2011)

12. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: ESEC / SIGSOFT FSE, pp. 257–266. ACM (2003)

13. Habermehl, P., Vojnar, T.: Regular Model Checking Using Inference of Regular
Languages. In: INFINITY 2004. ENTCS, vol. 138, pp. 21–36. Elsevier (2005)

14. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

15. Jonsson, B.: Learning of automata models extended with data. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 327–349. Springer, Heidelberg
(2011)

16. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329–363 (1994)

17. Kürtz, K.O., Küsters, R., Wilke, T.: Selecting theories and nonce generation for
recursive protocols. In: FMSE, pp. 61–70. ACM (2007)

18. Leucker, M.: Learning meets verification. In: de Boer, F.S., Bonsangue, M.M.,
Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151.
Springer, Heidelberg (2007)

130 B. Bollig et al.

19. Margaria, T., Raffelt, H., Steffen, B., Leucker, M.: The LearnLib in FMICS-jETI.
In: ICECCS, pp. 340–352. IEEE Computer Society Press (2007)

20. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I and II.
Information and Computation 100, 1–77 (1992)

21. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Transactions on Computational Logic 5(3), 403–435 (2004)

22. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. In-
formation and Computation 103, 299–347 (1993)

23. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

24. Tzevelekos, N.: Fresh-register automata. In: POPL, pp. 295–306. ACM (2011)

Suffixes, Conjugates and Lyndon Words

Silvia Bonomo, Sabrina Mantaci, Antonio Restivo,
Giovanna Rosone, and Marinella Sciortino

University of Palermo, Dipartimento di Matematica e Informatica, Italy
{sabrina,restivo,giovanna,mari}@math.unipa.it,

bonomosilvia@gmail.com

Abstract. In this paper we are interested in the study of the combinato-
rial aspects connecting three important constructions in the field of string
algorithms: the suffix array, the Burrows-Wheeler transform (BWT) and
the extended Burrows-Wheeler transform (EBWT). Such constructions
involve the notions of suffixes and conjugates of words and are based
on two different order relations, denoted by <lex and ≺ω, that, even if
strictly connected, are quite different from the computational point of
view. In this study an important role is played by Lyndon words. In
particular, we improve the upper bound on the number of symbol com-
parisons needed to establish the ≺ω order between two primitive words
by using a preliminary knowledge of the <lex order of the corresponding
Lyndon conjugates. Moreover, we propose an algorithm that efficiently
sorts, according to the ≺ω order, the list of conjugates of a multiset of
Lyndon words. Finally, we show that the Lyndon factorization of a word
helps the construction of its suffix array, allowing a reduction of the num-
ber of symbol comparisons needed to lexicographically sort the suffixes
of the word.

Keywords: Lyndon words, Lyndon factorization, BWT, Suffix array,
EBWT, Circular words, Conjugacy.

1 Introduction

In the field of String Algorithms, there are three constructions that have received
an increasing attention during the last decades: the suffix array (SA) [25], the
Burrows-Wheeler Transform (BWT) [5] and a more recent extension of BWT to
a multiset of words [22].

The SA of a word w is defined as the permutation of integers giving the start-
ing positions of the suffixes of w in lexicographical order (denoted by <lex). It is
a space-saving data structure alternative to suffix tree and it is used efficiently
in string processing problems where suffix tree methodology is applicable.

The BWT of a word w is a word bwt(w) obtained by a letters permutation of w
induced by the sorted list of the conjugates of w. It is an important preprocessing
for several text compressors for its property of compression booster (cf. [26,10]).

In [7], Crochemore, Désarménien and Perrin pointed out the very interesting
fact that the BWT coincides with a particular case of a bijection defined in [13]

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 131–142, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

132 S. Bonomo et al.

by Gessel and Reutenauer. This important remark suggested to define in [22] an
extension of the BWT (called EBWT) to a multiset S of primitive words, that
is somehow an algorithmic presentation of the bijection introduced in [13]. The
EBWT of a multiset S is a word obtained by letter permutation of the words
in S induced by the sorted list of the conjugates of words in S according with
an order relation (denoted by ≺ω) defined by using lexicographic order between
infinite words.

The EBWT has been used for circular words comparison [23], for circular
pattern matching [17], for the preprocessing of a compressor (cf. [19,15,21]). In
all the applications related to the EBWT, the bottleneck is the sorting process,
i.e. the ≺ω order computation.

The three constructions are connected to each other, with the difference that
in the suffix array we sort the suffixes of a word according with the <lex order,
whereas in the BWT we sort the conjugates of a word according to the <lex

order and in the EBWT we sort the conjugates of the words in the multiset S
according with ≺ω order.

If we consider the number of symbol comparisons needed to establish the
order between two words, there exists a hierarchy among the complexity of the
three constructions: the computation of the SA is the fastest in practice because
we only compare the suffixes of a word, whereas the computation of the EBWT
appears to be the most expensive because the number of symbol comparisons
to establish the ≺ω order between two words exceeds, in general, the lengths of
the words.

Actually, in several implementations of the BWT (or the EBWT) in order
to improve the efficiency of the algorithm, end-marker symbols are appended to
the end of the words. In this way, the BWT computation can be reduced to a
SA construction. However, it is important to observe that as consequence of this
alteration, BWT produces a different output. Note that the strict connection
between BWT and SA has an important applicative impact (cf. [1]). Moreover,
many combinatorial properties of SA by using the connection with BWT are
proved in [18]. In the case of EBWT, the idea of appending the same end-
marker to each word of the multiset fails, because we lose the reversibility of
the transformation. Such property is essential in several applications in the field
of data compression. It would be useful to append a different special symbol to
each word in S (cf. [2]), but besides producing different outputs, it destroys the
circular nature of the transformation. So we don’t consider here this variant.

In this paper we study the combinatorics underlying the above three construc-
tions. In this study an important role is played by the notion of Lyndon word,
which is the least word, with respect the lexicographic order, in a conjugacy
class. The general idea at the base of our results is that, in order to establish
the <lex order of two suffixes (or the ≺ω order of two conjugates) of two Lyndon
words, one can take advantage of a preliminary knowledge of the <lex order of
the Lyndon words.

Suffixes, Conjugates and Lyndon Words 133

In particular, in Section 3 we show that the sorting of the conjugates of two
Lyndon words and the lexicographic order between their suffixes are related.
From this fact, we deduce an improvement of the upper bound on the number
of symbol comparisons needed to establish the ≺ω order between two primitive
words when the lexicographic order between the corresponding Lyndon conju-
gates is known.

Section 4 is devoted to the construction of an algorithm that by using the
results of Section 3 produces the ≺ω order among all the conjugates of the
Lyndon words in a lexicographically sorted multiset by a suitable comparison
among the suffixes of such words. Such an algorithm can be used for an efficient
computation of the EBWT.

Lyndon words also play a leading role in the computation of the suffix array of
a word w. Indeed, in Section 5, by using the Lyndon factorization of a word w, we
prove that the lexicographical order between two suffixes of w can be established
by a number of symbol comparisons that in general is smaller than the usual
one that involves the longest common prefix between the suffixes. The results of
this section could suggest new strategies for the suffix array computation.

2 Preliminaries

Let Σ = {c1, c2, . . . , cσ} be a finite alphabet with c1 < c2 < . . . < cσ. Given
a finite word w = a1a2 · · ·an, ai ∈ Σ for i = 1, . . . , n, a factor of w is written
as w[i, j] = ai · · ·aj . A factor w[1, j] is called a prefix, while a factor w[i, n] is
called a suffix. In this paper, we also denote by sufk(w) (resp. prefk(w)) the
suffix (resp. prefix) of w that has length k.

We say that x, y ∈ Σ∗ are conjugate or y is a conjugate of x if x = uv and
y = vu for some u, v ∈ Σ∗. Recall that conjugacy is an equivalent relation. We
denote by conjk(w) the conjugate of w starting from the position |w|−k+1, i.e.
if w = xy and |y| = k then yx = conjk(w). A word v ∈ Σ∗ is primitive if v = un

implies v = u and n = 1. In what follows we only deal with primitive words.
If u ∈ Σ∗, we denote by uω the infinite word obtained by infinitely iterating

u, i.e. uω = uuuuu The usual lexicographic order <lex between finite words
can be naturally extended on infinite words, that is, taken two infinite words
x = x1x2 · · · and y = y1y2 · · · , with xi, yi ∈ Σ, we say that x <lex y if there
exists an index j ∈ N such that xi = yi for i = 1, 2, . . . , j − 1 and xj < yj . Note
that x ≤lex y means that either x = y or x <lex y.

Lexicographic order on infinite words allows to define the following order
relation on finite words: given two primitive words u and v, we say that u (ω

v ⇔ uω <lex vω. Note that this order can also be defined for non-primitive words
(cf. [22]), but this case is not considered in this paper.

Although the ≺ω order of u and v is defined by using infinite words, the
following theorem (cf. [22]), that is a consequence of Fine and Wilf theorem in
[12], shows that this order can be established with a bounded number of symbol
comparison.

134 S. Bonomo et al.

Theorem 1. Let u, v be two primitive words over a finite alphabet Σ. If k =
|u|+ |v| − gcd(|u|, |v|) we have that:

u ≺ω v ⇔ prefk(u
ω) <lex prefk(v

ω).

The following example shows that the <lex order can be different from the ≺ω

order when one word is a prefix of the other. Moreover it shows that the bound
given in Theorem 1 is tight.

Example 1. Consider u = abaab and v = abaababa. Although u <lex v, we have
v ≺ω u. Moreover uω and vω differ for the character in position k = 12 = 5+8−1.
Remark that, for any h < k, prefh(u

ω) = prefk(v
ω), i.e. k is tight.

u︷ ︸︸ ︷
abaab

u︷ ︸︸ ︷
abaab

u︷ ︸︸ ︷
ab · · ·

abaababa︸ ︷︷ ︸
v

abaa · · ·︸ ︷︷ ︸
v

A Lyndon word is a primitive word which is also the minimum in its conjugacy
class, with respect to the lexicographic order relation. In [20,8], one can find a
linear algorithm that for any word w ∈ Σ∗ computes the Lyndon word of its
conjugacy class. We call it the Lyndon word of w and we denote it by Tw. Lyndon
words are involved in a nice and important factorization property of words.

Theorem 2. [6] Every word w ∈ Σ+ has a unique factorization w = w1 · · ·ws

such that w1 ≥lex · · · ≥lex ws is a non-increasing sequence of Lyndon words.

The Lyndon factorization of a given word can be computed in linear time (see
for instance [8,20]).

The Burrows-Wheeler Transform (BWT) [5] is intuitively described as follows:
given a word w ∈ Σ∗, bwt(w) is a word obtained by sorting the list of the
conjugates of w and by concatenating the last symbol of each element in the
sorted list. If w and v are conjugate words, it is easy to see that bwt(w) = bwt(v).
With the additional information of the position of w in the sorted list, the BWT
becomes an invertible transform, i.e., we can recover w from bwt(w).

The Extended Burrows-Wheeler transform (EBWT) [22] is defined as follows:
given a multiset of words S = {S1, S2, . . . , Sk}, ebwt(S), is obtained by sorting
the list of conjugates of S according to the ≺ω order relation and by concate-
nating the last symbol of each element in the sorted list. Due to results in [13],
EBWT is a reversible transformation. As one can easily see, the hardest com-
putational step of EBWT consists in sorting the conjugates of a set of words
according to the ≺ω order relation.

3 Comparing Conjugates and Suffixes of Lyndon Words

In this section we consider two Lyndon words T1 and T2 and we show that there
exists a relation between the <lex order of their suffixes and the ≺ω order of
their conjugates.

Suffixes, Conjugates and Lyndon Words 135

Let us first consider the special case of the suffixes and the conjugates of a
single Lyndon word T . The following theorem can be deduced as trivial conse-
quence of the fact that, for words of the same length, the <lex order coincides
with the ≺ω order and as consequence of the properties of Lyndon words (cf.
[14, Lemma 12]).

Theorem 3. Let T be a Lyndon word. For any integers h, k with 1 ≤ h, k ≤ |T |,
the following statements are equivalent:

i) conjh(T) <lex conjk(T);

ii) conjh(T) ≺ω conjk(T);

iii) sufh(T) <lex sufk(T).

Consider now two distinct Lyndon words T1 and T2. We first show that the <lex

order and the ≺ω order coincide for Lyndon words.

Theorem 4. Let T1 and T2 be two Lyndon words, then T1 ≤lex T2 if and only
if T1 ≺ω T2.

The following lemmas take into consideration the generic conjugates conjh(T1)
and conjk(T2) of two distinct Lyndon words.

Lemma 1. Let T1 and T2 be two distinct Lyndon words. If T1 <lex T2 and h ≤ k
then

conjh(T1) ≺ω conjk(T2) ⇔ sufh(T1) ≤lex sufk(T2).

The following example shows that if k < h and sufk(T2) is a prefix of sufh(T1),
the relative order of the suffixes is not sufficient to establish the ≺ω order between
the conjugates.

Example 2. Let Σ = {a, b, c}, T1 = aacab and T2 = acbcc, where T1 ≺ω T2. We
consider the following conjugates: conj3(T1) = cabaa, conj1(T2) = cacbc. In this
case we have T1 <lex T2 and conj3(T1) ≺ω conj1(T2).
Consider now the Lyndon words T1 = aacab and T2 = aacbc, where T1 ≺ω T2.
We consider the following conjugates: conj3(T1) = cabaa, conj1(T2) = caacb. In
this case we have T1 <lex T2 and conj1(T2) ≺ω conj3(T1).

Lemma 2. Let T1 and T2 be two distinct Lyndon words. If T1 <lex T2 and
h > k, then

conjh(T1) ≺ω conjk(T2) ⇔ sufh(T1) ≤lex sufk(T2)prefh−k(T
ω
2).

Remark that, both in Lemma 1 and in Lemma 2 we need at most h symbol
comparisons in order to establish the ≺ω order between conjh(T1) and conjk(T2).
Hence, from previous lemmas one can derive the following theorem that relates
the ≺ω order between the conjugates of two arbitrary primitive words and the
<lex order between some prefixes of their infinite iterations.

136 S. Bonomo et al.

Theorem 5. Let u and v be primitive words, let Tu and Tv be their correspond-
ing Lyndon words. Let suppose Tu <lex Tv and let r be the integer such that
u = conjr(Tu). Then

u ≺ω v ⇔ prefr(u
ω) ≤lex prefr(v

ω).

The theorem states that we can determine the ≺ω order of two primitive words u
and v only by looking at the first r characters of the infinite words uω and vω: if
there is a mismatch within the first r characters, then the ≺ω order is determined
by the order of the letters corresponding to such a mismatch; otherwise, the ≺ω

order is decided by the order of the corresponding Lyndon words Tu and Tv.
Remark that even if r can be much smaller than |u|+|v|−gcd(|u|, |v|), Theorem

5 does not contradict the tightness of the bound given in Theorem 1, since here we
have the supplementary information on the order of the corresponding Lyndon
words.

Consider, for instance, the words in Example 1, u = abaab and v = abaababa.
The corresponding Lyndon words are Tu = aabab and Tv = aabaabab. We have
that Tv <lex Tu, u = conj2(Tu) and v = conj7(Tv). Consider the infinite words

uω = abaababaabab · · ·
vω = abaababaabaa · · ·

The first mismatch between uω and vω is in the position 12. Nevertheless since
pref7(v

ω) = pref7(u
ω), by Theorem 5 we can conclude that v ≺ω u.

Theorem 5 suggests that, in order to establish the ≺ω order of two primitive
words u and v, one could use the following procedure: first determine the <lex

order of Tu and Tv, and then decide the ≺ω order by looking only the first r
characters of uω and vω .

However the above example shows that the total number of comparisons with
this procedure is the same as the one given by the bound in Theorem 1. In the
above example we need 5 comparisons in order to state that Tv <lex Tu and 7
comparisons to state that v ≺ω u, i.e. 12 comparisons, which is the same number
of comparisons that we need in order to find a mismatch between uω and vω .

However, such a strategy takes advantage with respect the usual comparison
between conjugates when more than two pairs of conjugates have to be compared.
In fact in this case the cost of comparing the Lyndon words is amortized on the
total number of comparisons among conjugates. Such a consideration is enforced
when multisets of words are considered. This is a starting point for the algorithm
proposed in the next section.

4 Sorting the Conjugates of a Multiset of Lyndon Words

In this section we assume that T = {T1, T2, . . . , Tm} is a lexicographically sorted
multiset of Lyndon words. Such an hypothesis, although strong, is not restrictive
because if S is a generic multiset of primitive words we can obtain T in linear
time by computing for each word the corresponding Lyndon conjugate (cf. [20]),
and then by sorting this multiset.

Suffixes, Conjugates and Lyndon Words 137

Nevertheless we can notice that when the Lyndon factorization of any word
w is performed (cf. [8]), this sorted list of Lyndon words is naturally obtained
“for free”. As shown in previous section, the hypothesis that the elements of
T are Lyndon words suggests to connect the problem to the ≺ω sorting of the
conjugates to the lexicographic sorting of the suffixes of the elements of T . In
this connection, the results of the previous section also show an asymmetry in
the roles played by the Lyndon words involved into the sorting. An immediate
application of the considerations of the previous section could lead to an algo-
rithm that is more efficient in terms of comparisons with the bound imposed by
Theorem 1 among all conjugates. A more careful use of the results has allowed
us to develop the algorithm described in this section that produces the ≺ω sort-
ing of the conjugates of a multiset T of Lyndon words by a suitable comparison
among the suffixes of such words.

Our strategy analyzes all the conjugates of the words in T from all the con-
jugates of the greatest Lyndon word to all the conjugates of the smallest one.

Due the circular nature of the conjugacy relation, we assume that both
conj0(Ti) and conj|Ti|(Ti) denote the word Ti. We denote by CA(T) the conju-
gate array of T , i.e. the list of the positions of all the conjugates of the words
of T sorted according to the ≺ω relation. In particular, CA(T)[γ] = (i, h) if
the conjugate conjh(Ti) is the γ-th smallest conjugate in the ≺ω sorted list of
conjugates. We denote by CAi(T) the partial conjugate array containing the po-
sitions of the ≺ω sorted list of all the conjugates of Tj, j = i, . . . ,m. Moreover,
CAh

i (T) denotes the array containing the positions of the ≺ω sorted list of all
the conjugates of Tj, j = i + 1, . . . ,m together with conjugates conjk(Ti) with

0 ≤ k ≤ h. Note that CAi(T) = CA
|Ti|−1
i (T).

Finally, we denote by Bi(T) (resp. Bk
i (T)) the array of characters such that,

if CAi(T)[γ] = (j, h) (resp. CAk
i (T)[γ] = (j, h)), then Bi(T)[γ] (resp. Bk

i (T)[γ])
contains the last character of conjh(Tj), or in other words, it is the symbol in
position |Tj| − h in the word Tj . Note that CA(T) = CA1(T). Remark that the
concatenations of the symbols in B1(T) coincides with the ebwt(S) = ebwt(T)
defined in [22] (see also [17]) and the conjugate array is related to the generalized
suffix array defined in [4].

Example 3. Let T = {aaacab, acbcc} an ordered multiset of Lyndon words. T
can be represented by a right justified table in which the rows are the Lyndon
words and the columns represent the starting points of the conjugates of the
words. Such a table is depicted in Figure 1. One can see that
CA(T) = [(1, 6), (1, 5), (1, 2), (1, 4), (2, 5), (1, 1), (2, 3), (1, 3), (2, 1), (2, 4), (2, 2)]
and B1(T) = bacacacacab.

Our algorithm consists of m steps and at each step i (from m down to 1) the
partial conjugate array CAi(T) and the array Bi are computed, i.e. the ≺ω

sorted list of all conjugates of Ti, Ti+1, . . . , Tm is created. During each step i
the sorted list is incrementally built by considering all the conjugates of the
word Ti from the rightmost to the leftmost one, and by adding such a conjugate
according with the ≺ω order to the partial sorted list computed in the previous

138 S. Bonomo et al.

6 5 4 3 2 1

1 a a a c a b

2 a c b c c

Fig. 1. Table representing the multiset T = {aaacab, acbcc}

steps. Such insertion does not affect the relative order of the conjugates already
inserted in the partial sorted list. In this way the arrays CAh

i (T) are built.
More formally, at each step i from m down to 1 we consider the word Ti

and we distinguish two different phases: 1. determining the position of the word
Ti = conj0(Ti) = conj|Ti|(Ti) into the sorted partial list; 2. determining the
position of the conjugate conjr(Ti), with r = 1, . . . , |Ti| − 1 into the sorted
partial list.

In the algorithm we also use the following notations. Let w be a string. For
any character x ∈ Σ, let C(w, x) denote the number of characters in w that are
smaller than x, and let rank(w, x, t) denote the number of occurrences of x in
preft(w). Such functions have been introduced in [11] for the FM-index.

Figure 2 gives a sketch of the algorithm Build CA(T).

Algorithm Build CA(T)

CAm+1 = NULL;1

Bm+1 = NULL;2

i = m;3

for each Lyndon word Ti ∈ T , for i = m, . . . , 1 do4

CAi = CAi+1;5

Bi = Bi+1;6

Insert (i, |Ti|) in position 1 of CAi;7

Insert Ti[|Ti|] in position 1 of Bi;8

prevPos = 1;9

prevSymb = Bi[1];10

for each conjugate conjh(Ti) for h = 1, . . . , |Ti| − 1 do11

γ = C[prevSymb] + rank(Bi, prevPos, prevSymb) + 1;12

Insert (i, h) in position γ of CAi;13

Insert conjh[|Ti|] in position γ of Bi;14

prevPos = γ;15

prevSymb = Bi[γ];16

Fig. 2. Construction of the conjugate array of a multiset of Lyndon words

Theorem 6. Given the multiset T of lexicographically sorted Lyndon words, the
algorithm Build CA(T) correctly constructs CA(T).

The proof of the theorem can be deduced by the following lemmas. Such lemmas
show, for each step, the correctness of the two phases above described.

Suffixes, Conjugates and Lyndon Words 139

Lemma 3. For each step i from m to 1, the position of the pair (i, |Ti|) in the
partial conjugate array CAi(T) is 1.

In the phase 2 of each step i we have to establish the position in the list where we
have to insert the conjugate conjh(Ti), with h ≥ 1. Clearly, it must be inserted
after all conjugates that starting with a symbol y smaller than the initial of
conjh(Ti). The order between two conjugates conjh(Ti) and conjk(Tj) starting
with the same symbol a ∈ Σ is established by using the (already known) order
between the conjugates conjh−1(Ti) and conjk−1(Tj).

Lemma 4. For each step i from m to 1 and for h = 1, . . . , |Ti| − 1 the position
of conjh(Ti) in the array CAh

i (T) is

γ = C(Bh−1
i (T), x) + rank(Bh−1

i (T), x, t) + 1. (1)

where x is the first character of conjh(Ti) and t is the position in CAh−1
i (T) of

the pair corresponding to the conjugate conjh−1(Ti).

With reference to the computational complexity of the algorithm we can formu-
late the following theorem.

Theorem 7. Let T = {T1, . . . , Tm} a lexicographically sorted multiset of Lyn-
don words and let n be the size of T (i.e. n =

∑m
i=1 |Ti|)). The algorithm

Build CA(T) runs in O(n(t1 + t2 + t3)) where t1, t2, t3 are the cost of the op-
erations insertion in the array CAi(T), insertion and rank in the array Bi(T),
respectively.

One can deduce from the previous theorem that the complexity of the algorithm
depends on the suitable data structures used for the rank operations and for
the insertion operations. Navarro and Nekrich’s recent result [24] on optimal
representations of dynamic sequences shows that one can insert symbols at ar-
bitrary positions and compute the rank function in the optimal time O(logn

log logn)

within essentially nH0(s) + O(n) bits of space, for a sequence s of length n.
Moreover, it is possible to give also an external memory implementation of the
algorithm Build CA(T) by adapting the strategy used in [2,3]. In this case the
used memory is negligible and the time complexity depends on the time of I/O
operations.

5 Suffix Array of a Word through Its Lyndon
Factorization

Recall that the suffix array of a word w, that is here denoted by SAw, is defined
as the permutation of integers giving the indexes of the starting positions of the
suffixes of w, lexicographically ordered. We refer interested readers to [25] for
further reading on suffix arrays.

In this section we show that arguments similar to those described in Section
3 can be also used for designing a new strategy for computing the order of the

140 S. Bonomo et al.

suffixes of a given word (i.e. its suffix array). Note that one can verify that
the lexicographic order among the suffixes of a text is different from the order
induced by the ≺ω sorting of the conjugates of such factors as used in [15,19].
For sake of simplicity, here we use < rather than <lex.

The basic idea described in the following theorem states that, if the Lyndon
factorization of a word w is given, in order to establish the mutual order of two
suffixes of w starting at positions p and q, we just need to perform a number
of symbol comparisons depending on the Lyndon factors that contain p and q,
respectively.

Let w = a1 · · ·an ∈ Σ∗ and let w1w2 · · ·ws be its Lyndon factorization. Let
j1, j2, . . . , js be the positions of the last characters in factors w1, w2, . . . , ws,
respectively. Obviously js = n. Let p be a position in w, we define

L(p) = min{jk | 1 ≤ jk ≤ s and p ≤ jk},

and
l(p) = L(p)− p+ 1.

Theorem 8. Let w ∈ Σ∗ and let p and q be two positions in w, p < q. Then

w[q, n] < w[p, n] ⇔ prefl(q)(w[q, n]) ≤ prefl(q)(w[p, n]).

Remark 1. If p and q are in the same Lyndon factor, i.e. L(p) = L(q), then
the order of the two suffixes is the same as the order of the suffixes inside their
common Lyndon factor.

Remark 2. Let p and q be two positions in the word w. If p < q, let us denote
by lcp(p, q) the length of the longest common prefix between the suffixes w[p, n]
and w[q, n]. The previous theorem states that in order to get the mutual order
between w[p, n] and w[q, n] one needs min(lcp(p, q)+1, l(q)) symbol comparisons.
The following example shows that l(q) can be much smaller than lcp(p, q) + 1.

Example 4. Let w = abaaaabaaaaabaaaabaaaaaab. The Lyndon factorization of
w is ab|aaaab|aaaaabaaaab|aaaaaab.
Consider the suffixes w[2, 25] = b|aaaab|aaaaabaaaab|aaaaaab and w[13, 25] =
baaaab|aaaaaab. We have lcp(2, 13) = 11.

l(13) lcp(2, 13) + 1
↓ ↓

w[2, 25] = baaaa b aaaaa b aaaabaaaaaab
w[13, 25] = baaaa b aaaaa a b

By Theorem 8 we just need to perform l(13) = 6 < 12 = lcp(2, 13) + 1 symbol
comparisons. So, even if w[2, 7] = w[13, 18], the mutual order is established by
the Lyndon properties.

Remark 3. Since the underlying arguments are similar to the ones described in
the previous section, a possible implementation for the construction of suffix
array can be obtained by adapting the strategies in the previous section.

Suffixes, Conjugates and Lyndon Words 141

The suffix permutation (cf. [9]) of a word w = a1 · · · an is the permutation πw

over {1, . . . , n}, where πw(i) is the rank of the suffix w[i, n] in the set of the
lexicographically sorted suffixes of w. In other words the suffix permutation πw

is the inverse permutation defined by the suffix array SAw. Given a permutation
π over {1, . . . , n}, an integer i (1 ≤ i ≤ n) is a left-to-right minimum of π if
π(j) > π(i), for all j < i.

Similar considerations used to prove Theorem 8 can be used to deduce the
following result given for the first time in [16, Corollary 3.1]. Such a result further
strengthens and highlights the close connection between the Lyndon factorization
of a text and the lexicographic order of its suffixes.

Theorem 9. Let w be a word, let i1 = 1, i2, . . . , ik be the start positions of the
factors in its Lyndon factorization and let πw be its suffix permutation. Then
the values i1, i2, . . . ik correspond to the positions of the left to right minima of
πw.

Example 5. Given the word w = abaaaabaaaaabaaaabaaaaaab, its suffix array
is

SAw = [19, 20, 8, 21, 14, 3, 9, 22, 15, 4, 10, 23, 16, 5, 11, 24, 17, 6, 12, 1, 25, 18, 7, 13, 2].

and its suffix permutation is

πw =

⎛
⎝ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

20 25 6 10 14 18 23 3 7 11 15 19 24 5 9 13 17 22 1 2 4 8 12 16 21
↑ ↑ ↑ ↑

⎞
⎠

where the left-to-right minima are marked by the arrows. The Lyndon factor-
ization of w is ab|aaaab|aaaaabaaaab|aaaaaab.

References

1. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays, and Pattern Matching, 1st edn. Springer Publishing Com-
pany, Incorporated (2008)

2. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight BWT construction for very large
string collections. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661,
pp. 219–231. Springer, Heidelberg (2011)

3. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight algorithms for constructing and
inverting the BWT of string collections. Theoret. Comput. Sci. 483, 134–148 (2013)

4. Bauer, M.J., Cox, A.J., Rosone, G., Sciortino, M.: Lightweight LCP construction for
next-generation sequencing datasets. In: Raphael, B., Tang, J. (eds.) WABI 2012.
LNCS, vol. 7534, pp. 326–337. Springer, Heidelberg (2012)

5. Burrows, M., Wheeler, D.J.: A block sorting data compression algorithm. Technical
report, DIGITAL System Research Center (1994)

6. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. IV. The quotient
groups of the lower central series. Ann. of Math. 68(2), 81–95 (1958)

142 S. Bonomo et al.

7. Crochemore, M., Désarménien, J., Perrin, D.: A note on the Burrows-Wheeler
transformation. Theoret. Comput. Sci. 332, 567–572 (2005)

8. Duval, J.-P.: Factorizing words over an ordered alphabet. Journal of Algo-
rithms 4(4), 363–381 (1983)

9. Duval, J.-P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
RAIRO Theor. Inform. Appl. 36(3), 249–259 (2002)

10. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual compres-
sion in optimal linear time. J. ACM 52(4), 688–713 (2005)

11. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
pp. 390–398. IEEE Computer Society (2000)

12. Fine, N.J., Wilf, H.S.: Uniqueness theorem for periodic functions. Proc. Am. Math-
ematical Society (16), 109–114 (1965)

13. Gessel, I.M., Reutenauer, C.: Counting permutations with given cycle structure
and descent set. J. Combin. Theory Ser. A 64(2), 189–215 (1993)

14. Giancarlo, R., Restivo, A., Sciortino, M.: From first principles to the Burrows and
Wheeler transform and beyond, via combinatorial optimization. Theoret. Comput.
Sci. 387(3), 236–248 (2007)

15. Gil, J.Y., Scott, D.A.: A bijective string sorting transform. CoRR, abs/1201.3077
(2012)

16. Hohlweg, C., Reutenauer, C.: Lyndon words, permutations and trees. Theoret.
Comput. Sci. 307(1), 173–178 (2003)

17. Hon, W.-K., Ku, T.-H., Lu, C.-H., Shah, R., Thankachan, S.V.: Efficient algo-
rithm for circular Burrows-Wheeler transform. In: Kärkkäinen, J., Stoye, J. (eds.)
CPM 2012. LNCS, vol. 7354, pp. 257–268. Springer, Heidelberg (2012)

18. Kucherov, G., Tóthmérész, L., Vialette, S.: On the combinatorics of suffix arrays.
CoRR, abs/1206.3877 (2012)

19. Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Pro-
ceedings of the Prague Stringology Conference 2009, pp. 65–79 (2009)

20. Lothaire, M.: Applied Combinatorics on Words (Encyclopedia of Mathematics and
its Applications). Cambridge University Press, New York (2005)

21. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An Extension of the Burrows
Wheeler Transform and Applications to Sequence Comparison and Data Com-
pression. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS,
vol. 3537, pp. 178–189. Springer, Heidelberg (2005)

22. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-
Wheeler Transform. Theoret. Comput. Sci. 387(3), 298–312 (2007)

23. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: A new combinatorial approach
to sequence comparison. Theory Comput. Syst. 42(3), 411–429 (2008)

24. Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. In: Proc.
24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 865–876
(2013)

25. Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction
algorithms. ACM Comput. Surv. 39 (2007)

26. Seward, J.: The bzip2 home page, http://www.bzip.org

http://www.bzip.org

Extremal Words in the Shift Orbit Closure

of a Morphic Sequence

James D. Currie, Narad Rampersad, and Kalle Saari

Department of Mathematics and Statistics
University of Winnipeg
515 Portage Avenue

Winnipeg, MB R3B 2E9
Canada

j.currie@uwinnipeg.ca, {narad.rampersad,kasaar2}@gmail.com

Abstract. Given an infinite word x over an alphabet A, a letter b oc-
curring in x, and a total order σ on A, we call the smallest word with
respect to σ starting with b in the shift orbit closure Sx of x an extremal
word of x. In this paper we consider the extremal words of morphic
words. If x = g(fω(a)) for some morphisms f and g, we give a simple
condition on f and g that guarantees that all extremal words are mor-
phic. An application of this condition shows that all extremal words of
binary pure morphic words are morphic. Our technique also yields easy
characterizations of extremal words of the Period-doubling and Chacon
words and a new proof of the form of the lexicographically least word in
the shift orbit closure of the Rudin-Shapiro word.

Keywords: Lexicographic order, morphic sequence, extremal word, Period-
doubling word, Chacon word, Rudin-Shapiro word.

1 Introduction

Given an infinite word x ∈ AN, it is natural to inquire about the nature of
the lexicographically extremal words in its shift orbit closure. We get different
extremal words depending on the choice of the total order on the alphabet A
and the initial letter of the extremal word. For example, if A = {0, 1} and x a
Sturmian word, it is well-known that the extremal words with respect to 0 < 1

are 0c and 10c, where c is the characteristic word whose slope equals that of
x, and if we order 1 < 0, then the extremal words are 1c and 01c, see for
example [15]. As another example, if x is k-automatic, then its extremal words
are k-automatic as well [4]. For related results, see also [1–3, 10]

The motivation for this paper comes from the following question: given a
morphic sequence x, when are the corresponding extremal words also morphic?
While we are not able to solve the question in full generality, we give a fairly
general condition (1) on the morphisms that generate x guaranteeing that the
extremal words are morphic as well (Theorem 2). Using this condition we show
that the extremal words of all binary pure morphic words are morphic (Theo-
rem 4). Then we move on to find characterizations of the extremal words of the

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 143–154, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

144 J.D. Currie, N. Rampersad, and K. Saari

Period-doubling (Theorem 5) and Chacon (Theorem 6) words. On our way to
proving the main results, we show that if x is a pure morphic word generated
by a morphism f and t is in the shift orbit closure of x such that f(t) = t, then
t is morphic (Theorem 1).

2 Preliminaries

We will follow the standard terminology and notation of combinatorics on words
as established, for example, in [5, 13].

If A is an alphabet, then AN denotes the set of all infinite words over A. If
X ⊂ A∗, then Xω denotes the set of all infinite words obtained by concatenating
elements of X .

If f : A∗ → A∗ is a morphism such that f(a) = ax for some letter a ∈ A and
a word x ∈ A+ such that fn(x) �= ε, the empty word, for all n ≥ 0, then there
exists an infinite word fω(a) := limn→∞ fn(a) such that fn(a) is a prefix of
fω(a) for all n ≥ 0, and it is called a pure morphic word generated by f . Notice
that fω(a) is a fixed point of f , that is f

(
fω(a)

)
= fω(a), but in general a fixed

point of a morphism is not necessarily generated by the morphism (however, see
Theorem 1).

If c : A∗ → B∗ is a coding, that is a letter-to-letter morphism, then c(fω(a))
is called a morphic sequence. It is clear that all ultimately periodic sequences
are morphic. The following result on morphic sequences is well-known, see The-
orems 7.6.1 and 7.6.3 and Corollary 7.7.5 in [5].

Lemma 1. Let x ∈ AN be a morphic sequence, w ∈ A∗, and g : A∗ → B∗ a
non-erasing morphism. Then the words wx, w−1x, and g(x) are morphic.

Let x ∈ AN be an infinite word. The set of factors of x is denoted by F (x). We
denote by Sx the set of all infinite words y ∈ AN such that F (y) ⊆ F (x). Thus
Sx is the shift orbit closure of x.

Now we are ready for the key definition of this paper. Let f : A∗ → B∗ be a
morphism and x ∈ AN. We will write

f ∈ Mx (1)

if the following condition holds: for each letter b ∈ A, there exists a finite word
pb ∈ B+ such that if y ∈ Sx begins with b, then f(y) begins with pb, and if
a ∈ A with a �= b, then neither of pa and pb is a prefix of the other. Notice that
then f is necessarily non-erasing.

Example 1. Let us illustrate the above definition with a morphism appearing
in [12]. Let f be given by 0 $→ 02, 1 $→ 02, and 2 $→ 1, and let x be the unique
fixed point of f . It is easy to see that if 0y ∈ Sx, then y must begin with 2; hence
f(0y) begins with 021. Similarly, if 1y ∈ Sx, then y must begin with 0; hence
f(1y) begins with 020. Finally, f(2y) begins with 1 regardless of y. Therefore
we may let p0 = 021, p1 = 020, and p2 = 1, and consequently f ∈ Mx.

Extremal Words in the Shift Orbit Closure of a Morphic Sequence 145

Example 2. Let f be the morphism 0 $→ 010, 1 $→ 21, 2 $→ 211, and let x =
fω(0). Now we have f �∈ Mx because f(10 · · ·) = 210 · · · and f(12 · · ·) =
212 · · · , so that if p1 existed, it would have to be a prefix of 21, which is a prefix
of f(2). Therefore no matter how p2 is chosen, one of p1 and p2 is necessarily a
prefix of the other.

Let σ = σA be a total order on an alphabet A, that is, a transitive and anti-
symmetric relation for which either (a, b) or (b, a) is in σ for all distinct letters
a, b ∈ A. If (a, b) ∈ σ, we denote a <σ b. The order σ extends to a lexicographic
order on finite and infinite words over A in the usual way. Let a ∈ A be a letter
and x ∈ AN an infinite word in which a occurs. Then there exists a unique lexi-
cographically smallest word in Sx with respect to σ that begins with the letter a,
and we will denote it by

la,σ,x.

Words of this form are collectively called the extremal words of x or Sx. We also
denote by sa,σ,x the infinite word obtained from la,σ,x by erasing the first letter,
that is,

la,σ,x = a sa,σ,x.

For the remainder of this section, let us fix a morphism f : A∗ → A∗. A word
u ∈ A∗ is called bounded under f if there exists a constant k > 0 such that
|fn(u)| < k for all n ≥ 0. It is clear that every letter occurring in a bounded
word is bounded. Let Bf ⊂ A denote the set of bounded letters; the letters in
Cf := A \Bf are said to be growing under f .

The following result is proved in [6, Prop. 4.7.62].

Lemma 2. Suppose that x ∈ AN is a pure morphic sequence generated by f .
There exists a finite subset Q of Cf × B∗

f × B∗
f × B∗

f × B∗
f × B∗

f × Cf such

that F (x) ∩ CfB
∗
fCf equals the set of all words of the form c1y1z

k
1xz

k
2y2c2 with

(c1, y1, z1, x, z2, y2, c2) ∈ Q and k ∈ N.

Lemma 3. Suppose that x ∈ AN is a pure morphic sequence generated by f . If
z ∈ Sx ∩BN

f , then z is ultimately periodic.

Proof. Suppose that z ∈ Sx ∩BN

f . If x has a suffix that is in BN

f , then it is ulti-
mately periodic, which is proved in [6, Lemma 4.7.65], and then so is z. Therefore
we may assume that there are infinitely many occurrences of growing letters in x.
Let un be a sequence of factors of x such that un is a prefix of un+1 for all n ≥ 1
and z = limn→∞ un. Since the first letter of x is necessarily growing and x has
infinitely many occurrences of growing letters, it follows that each un is a factor
of a word wn such that wn ∈ CfB

+
f Cf ∩ F (x). Since the set Q in Lemma 2 is

finite, there exist letters c1, c2 ∈ Cf and words y1, y2, z1, z2, x ∈ B∗
f such that

wnk
= c1y1z

ik
1 xzik2 y2c2 for some subsequence nk. By chopping off a prefix of

length |y1| and a suffix of length |y2| from unk
if necessary, we may assume that

each sufficiently long unk
is a factor of the biinfinite word q := ωz1.xz

ω
2 , where

146 J.D. Currie, N. Rampersad, and K. Saari

the the word x occurs in position 0. Now we have two possibilities: If there exists
an integer j ∈ Z such that infinitely many unk

occurs in q in a position ≥ j,
then limk→∞ unk

has suffix zω2 . If no such j exists, then limk→∞ unk
has suffix

zω1 . In the first case z has suffix zω2 and in the second case it has suffix zω1 .

Let Mf ⊂ A denote the set of letters b such that f i(b) = ε for some integer
i ≥ 1, and let t ≥ 1 be the smallest integer such that f t(b) = ε for all b ∈ Mf .
Let

Gf = { f t(a) | a ∈ A such that f(a) = xay for some x, y ∈ M∗
f }

Notice that each word f t(a) in Gf is a finite fixed point of f because

f t(a) = f t−1(x) · · · f(x)xayf(y) · · · f t−1(y).

In particular, all words in Gf are bounded. The following result is by Head and
Lando [11], see also [5, Theorem 7.3.1].

Lemma 4. Let t ∈ AN be an infinite word. We have f(t) = t if and only if at
least one of the following two conditions holds:

(a) t ∈ Gω
f ; or

(b) t = wf t−1(x) · · · f(x)xayf(y)f2(y) · · · for some w ∈ G∗
f and a ∈ A such

that f(a) = xay with x ∈ M∗
f and y /∈ M∗

f .

Lemma 5. Let f : A∗ → A∗ be a morphism. If t ∈ AN can be written in the
form t = wxf(x)f2(x)f3(x) · · · , where w ∈ A∗ and x /∈ M∗

f , then t is morphic.

Proof. Let b be a new letter that does not occur in A. Then the infinite word
bxf(x)f2(x) · · · is morphic as it is generated by a morphism g : (A ∪ {b})∗ →
(A ∪ {b})∗ for which g(b) = bx and g(a) = f(a) for all a ∈ A. Thus it follows
from Lemma 1 that t is morphic.

Theorem 1. Let f : A∗ → A∗ be a morphism, and suppose that x ∈ AN is a
pure morphic word generated by f . If t ∈ Sx satisfies f(t) = t, then t is morphic.

Proof. According to Lemma 4, either t is in Gω
f or it is of the form

t = wf t−1(x) · · · f(x)xayf(y)f2(y) · · · .

In the former case t ∈ BN

f , so t is ultimately periodic by Lemma 3, and thus
morphic. In the latter case t is morphic by Lemma 5.

3 Main Theorem

Lemma 6. Let x ∈ AN be an infinite word and f : A∗ → B∗ a morphism. If
y ∈ BN is in Sf(x), then there exist a letter a ∈ A and an infinite word z such
that az ∈ Sx and y = uf(z), where u is a nonempty suffix of f(a).

Extremal Words in the Shift Orbit Closure of a Morphic Sequence 147

Proof. Let Ln denote the length-n prefix of y; then Ln is a factor of f(x) by
the definition of Sf(x). Consequently, if n ≥ maxa∈A|f(a)|, there exist letters
an, bn ∈ A and a word vn ∈ A∗ such that anvnbn occurs in x and we have
Ln = snf(vn)pn, where sn is a nonempty suffix of f(an) and pn is a possibly
empty prefix of f(bn). Since there are only finitely many different possibilities
for an and sn, there exists a letter a ∈ A and a word u such that ani = a and
sni = u for infinitely many ni. The set of words {vni} being infinite, König’s
Lemma implies that there exists an infinite word z such that every prefix of z
is a prefix of some vni . Since each of avni is a factor of x, we have az ∈ Sx.
Furthermore, since each prefix z of z is a prefix of some vni , the word uf(z) is
a prefix of y, and consequently y = uf(z).

Lemma 7. Let f : A∗ → B∗ be a morphism and x ∈ AN such that f ∈ Mx. Let
b ∈ B be a letter that occurs in f(x) and let ρ be a total order on B. Then there
exist a total order σ on A, a letter a ∈ A, and a possibly empty proper suffix v
of f(a) such that

sb,ρ,f(x) = vf(sa,σ,x). (2)

Proof. By Lemma 6, we can write lb,ρ,f(x) = bsb,ρ,f(x) = uf(z), where u is a
nonempty suffix of f(a) for some a ∈ A and az ∈ Sx. Since f ∈ Mx, there exist
words px ∈ B+ for every x ∈ A such that px �= py whenever x �= y. Thus we can
define a total order σ on A such that, for all letters x, y ∈ A, we have x <σ y if
and only if px <ρ py.

We claim that z = sa,σ,x. If this is not the case, then z >σ sa,σ,x because both
az and asa,σ,x = la,σ,x are in Sx and la,σ,x is the smallest word in Sx starting
with the letter a. Therefore z = wyt and sa,σ,x = wxt′ with x, y ∈ A satisfying
y >σ x. Since f(xt) begins with px and f(yt′) begins with py and neither of px
and py is a prefix of the other, we have f(yt) >ρ f(xt′) by the definition of σ,
and this gives

lb,ρ,f(x) = uf(z) = uf(w)f(yt) >ρ uf(w)f(xt′) = uf(sa,σ,x).

But this contradicts the definition of lb,ρ,f(x) because uf(sa,σ,x) starts with the
letter b and is in Sf(x). Therefore we have shown that z = sa,σ,x, and so (2)
holds with v = b−1u.

Lemma 8. Let f : A∗ → A∗ be a morphism and x ∈ AN such that f ∈ Mx and
f(x) = x. Then for any total order ρ on A and any letter b ∈ A occurring in x,
there exist a total order σ on A, a letter a ∈ A, words u, v ∈ A∗, and integers
k,m ≥ 1 such that

sb,ρ,x = ufk(sa,σ,x) and sa,σ,x = vfm(sa,σ,x). (3)

Proof. Since f(x) = x, Lemma 7 implies that sb,ρ,x = v0f(sa1,σ1,x) for some
total order σ1 on A, a letter a1 ∈ A, and a possibly empty suffix v0 of f(a1). By
applying Lemma 7 next on sa1,σ1,x and further, we get a sequence of identities

sak,σk,x = vkf(sak+1,σk+1,x) (k ≥ 0),

148 J.D. Currie, N. Rampersad, and K. Saari

where we denote a0 = b and σ0 = ρ. Therefore,

sak,σk,x = vkf(vk+1) · · · fm−1(vk+m−1)f
m(sak+m,σk+m,x),

for all integers k ≥ 0 and m ≥ 1. Since there are only finitely many different
letters and total orders on A, there is a choice of k and m such that ak = ak+m

and σk = σk+m. Thus by denoting a = ak, σ = σk,

u = v0f(v1) · · · fk−1(vk−1), and v = vkf(vk+1) · · · fm−1(vk+m−1),

we have the identities in (3).

Lemma 9. Let f : A∗ → A∗ be a morphism and x ∈ AN such that f ∈ Mx and
f(x) = x. Then for any total order ρ on A and any letter b ∈ A occurring in x,
there exist a finite word w ∈ A+, an infinite word t ∈ Sx, and an integer m ≥ 1
such that

lb,ρ,x = wt (4)

and either

t = fm(t) (5)

or

t = lim
n→∞

xfm(x)f2m(x) · · · fnm(x) (6)

for some finite word x ∈ A+.

Proof. According to Lemma 8, there exist a total order σ on A, a letter a ∈ A,
words u, v ∈ A∗, and integers k,m ≥ 1 such that

sb,ρ,x = ufk(sa,σ,x) and sa,σ,x = vfm(sa,σ,x).

Denote w = bu and t = fk(sa,σ,x). Then t ∈ Sx and Eq. (4) holds. By denoting
x = fk(v), we get t = xfm(t). If x = ε, then we have t = fm(t), and Eq. (5)
holds. If x �= ε, then

t = xfm(t) = xfm(x)f2m(t) = · · · = xfm(x)f2m(x) · · · fnm(x)f (n+1)m(t),

for all integers n ≥ 0. The morphism f is non-erasing because f ∈ Mx, and
therefore the words xfm(x)f2m(x) · · · fnm(x) get longer and longer as n grows.
Thus Eq. (6) holds.

Theorem 2. Let f : A∗ → A∗ be a morphism. If x ∈ AN is a pure morphic word
generated by f and f ∈ Mx, then all extremal words in Sx are morphic.

Extremal Words in the Shift Orbit Closure of a Morphic Sequence 149

Proof. Let ρ be a total order on A and b ∈ A a letter occurring in x. We will
show that lb,ρ,x is morphic. Lemma 9 says that there exist a finite word w ∈ A+,
an infinite word t ∈ Sx, and an integer m ≥ 1 such that lb,ρ,x = wt and either
t = fm(t) or t = limn→∞ xfm(x)f2m(x) · · · fnm(x) for some finite word x ∈ A+.
Since fm generates x, the claim that t is morphic follows in the former case from
Theorem 1 and in the latter case from Lemma 5.

Theorem 3. Let f : A∗ → A∗ and g : A∗ → B∗ be morphisms and x ∈ AN such
that f, g ∈ Mx. If x is a pure morphic word generated by f , then all extremal
words in Sg(x) are morphic.

Proof. Let ρ be a total order ρ on B and b ∈ B. According to Lemma 7, there
exists a total order σ on A, a letter a ∈ A, and a word v ∈ B∗ such that

sb,ρ,g(x) = vg(sa,σ,x)

Thus it follows from Theorem 2 and Lemma 1 that lb,ρ,g(x) is morphic.

4 Extremal Words of Binary Pure Morphic Words

In this section we show that the extremal words of binary pure morphic words
are morphic.

Lemma 10. Let f : {0, 1}∗ → {0, 1}∗ be a morphism such that f(01) �= f(10).
Then f ∈ Mx for every x ∈ {0, 1}N.

Proof. Let us denote u = f(0) and v = f(1). We have two possibilities:
Case 1. The word u is not a prefix of vω . Then there exists an integer n ≥ 0

such that u = vnpas and v = pbt, where p, s, t ∈ {0, 1}∗ and a, b ∈ {0, 1} with
a �= b. Now it is easy to see that, for every y ∈ {0, 1}N, the word f(1y) begins
with vnpb and f(0y) begins with vnpa. Therefore f ∈ Mx because we may
choose p1 = vnpb and p0 = vnpa.

Case 2. The word u is a prefix of vω. Then v = xy and u = vnx for some
integer n ≥ 0 and words x, y. Now it is easy to see that, for every y ∈ {0, 1}N,
the word f(0y) begins with (xy)nxxy and f(1y) begins with (xy)nxyx. Since
f(01) �= f(10), it follows that xy �= yx. Denote xy = pas and yx = pbt with
a, b distinct letters. Then f ∈ Mx because we may let p0 = (xy)nxpa and
p1 = (xy)nxpb.

Theorem 4. If x ∈ {0, 1}N is a binary pure morphic sequence, then all extremal
words of x are morphic.

Proof. Let f be a binary morphism that generates x. If f(01) = f(10), then
x is purely periodic, and the claim holds. If f(01) �= f(10), then f ∈ Mx by
Lemma 10, so that x is morphic by Theorem 2.

There are exactly two total orders on the binary alphabet {0, 1}; let ρ denote
the natural order 0 <ρ 1 and ρ the other order 1 <ρ 0. The following lemma
simplifies the search for the extremal words of a binary pure morphic word, and
we will use it later.

150 J.D. Currie, N. Rampersad, and K. Saari

Lemma 11. If x ∈ {0, 1}N is a recurrent word in which both 0 and 1 occur,
then

l1,ρ,x = 1l0,ρ,x l0,ρ,x = 0l1,ρ,x. (7)

Therefore also

s1,ρ,x = 0s0,ρ,x s0,ρ,x = 1s1,ρ,x. (8)

Proof. Consider the first equation in (7). On the one hand, 1l0,ρ,x is in Sx because
the recurrence of x implies that al0,ρ,x is in Sx for some a ∈ {0, 1} and if a equaled
0, then the inequality 0l0,ρ,x < l0,ρ,x would contradict the definition of l0,ρ,x. On
the other hand, 1l0,ρ,x must equal l1,ρ,x because otherwise l1,ρ,x < 1l0,ρ,x, which
implies 1−1l1,ρ,x < l0,ρ,x, and this contradicts the definition of l0,ρ,x. The second
equation in (7) is proved similarly. The identities (8) follow immediately from (7).

5 Extremal Words of the Period-Doubling Word

Let f denote the morphism 0 $→ 01, 1 $→ 00 and let d = fω(0) denote the
period-doubling word [5, 8, 14]. According to Lemma 10, we have f ∈ Md.

Let ρ denote the natural order 0 <ρ 1 and ρ the reversed order 1 <ρ 0. Using
the observation that neither 0000 nor 11 occur in d and Lemma 11, the reader
has no trouble verifying that the following words start as shown.

s0,ρ,d = 00100 · · · s1,ρ,d = 010100 · · · (9)

s1,ρ,d = 0001 · · · s0,ρ,d = 1010100 · · ·. (10)

Lemma 7 implies that s0,ρ,d = vf(sa,σ,d) for some a ∈ {0, 1}, proper suffix v of
f(a), and σ ∈ {ρ, ρ}. The only possible such factorization has to be of the form
s0,ρ,d = 0f(01 · · ·), so from (9) and (10) we see that sa,σ,d = s1,ρ,d. Thus

s0,ρ,d = 0f(s1,ρ,d).

We can deduce similarly that

s1,ρ,d = f(001 · · ·) = f(s0,ρ,d). (11)

Therefore s0,ρ,d = 0f2(s0,ρ,d), which implies

f2(l0,ρ,d) = 01l0,ρ,d. (12)

We claim that l0,ρ,d is the fixed point of the morphism g : 0 $→ 0001 and 1 $→
0101. Let us denote the unique fixed point of g by z, that is z = gω(0). An easy
induction proof shows that 01g(w) = f2(w)01 for all w ∈ {0, 1}∗. Therefore

01z = 01g(z) = f2(z).

Thus by (12), both z and l0,ρ,d satisfy the same relation 01x = f2(x), which is
easily seen to admit a unique solution; thus z = l0,ρ,d. Hence, using (11) and
Lemma 11, the following result is obtained.

Extremal Words in the Shift Orbit Closure of a Morphic Sequence 151

Theorem 5. Let d denote the period-doubling word and let z denote the unique
fixed point of the morphism 0 $→ 0001, 1 $→ 0101. Then we have

l0,ρ,d = z l1,ρ,d = 1z

l1,ρ,d = 0−1f(z) l0,ρ,d = f(z).

6 Extremal Words of the Chacon Word

The Chacon word [9, 16] is the fixed point c = fω(0), where f is the morphism
0 $→ 0010, 1 $→ 1. Lemma 10 guarantees that f ∈ Mx. Let ρ denote the natural
order 0 <ρ 1 and ρ the reversed order 1 <ρ 0 as before.

As in Section 5, we use the observation that neither 0000 nor 11 occur in c
and Lemma 11, to deduce that the following words start as shown.

s0,ρ,c = 001000101 · · · s1,ρ,c = 010010 · · ·
s1,ρ,c = 0001000101 · · · s0,ρ,c = 1010010 · · · .

Applying Lemma 7 as in the previous section, we find

s0,ρ,c = f(001 · · ·) = f(s0,ρ,c).

Since s0,ρ,c begins with 0, we thus have s0,ρ,c = c and l0,ρ,c = 0c.
Similarly, recalling that s0,ρ,c = 1s1,ρ,c by Lemma 11, we deduce using

Lemma 7 that

s1,ρ,c = 0f(10 · · ·) = 0f(s0,ρ,c) = 01f(s1,ρ,c).

Therefore l1,ρ,c can be expressed as l1,ρ,c = τgω(b), where b is a new symbol, g
is a morphism for which g(b) = b01 and g(a) = f(a) for a ∈ {0, 1}, and τ(b) = 1

and τ(a) = a for a ∈ {0, 1}. Thus a final application of Lemma 11 allows us to
wrap up the results of this section as follows.

Theorem 6. Let c denote the Chacon word. Then we have

l0,ρ,c = 0c l1,ρ,c = τgω(b)

l1,ρ,c = 10c l0,ρ,c = 0τgω(b),

where g and τ are the morphisms given above.

7 The Least Word in the Shift Orbit Closure of the
Rudin-Shapiro Word

In this section, we give a new proof for the form of the lexicographically smallest
word in the shift orbit closure of the Rudin-Shapiro word. This result was first
derived in [7]. Considerations in this section are more involved than the ones in

152 J.D. Currie, N. Rampersad, and K. Saari

the previous sections because a coding is needed in the definition of the Rudin-
Shapiro word. In what follows, we denote the natural order on letters 0, 1, 2, 3
by ρ. Thus we have 0 <ρ 1 <ρ 2 <ρ 3.

Let f and g be the morphisms

f :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 $→ 01

1 $→ 02

2 $→ 31

3 $→ 32

and g :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 $→ 0

1 $→ 0

2 $→ 1

3 $→ 1

Denote

u = fω(0) = 0102013101023202010201313231013101020131 · · ·

and

w = g(u) = 0001001000011101000100101110001000010010 · · ·.

Then w is the Rudin-Shapiro word, and our goal is to prove the identity l0,ρ,w =
0w. To that end, we need the next two lemmas. Let us denote Σ4 = {0, 1, 2, 3}.

Lemma 12. Let σ and σ′ be two total orders on Σ4. If σ and σ′ order the pairs
(0, 3) and (1, 2) in the same way, i.e., 0 <σ 3 iff 0 <σ′ 3 and 1 <σ 2 iff 1 <σ′ 2,
then ld,σ,u = ld,σ′,u for all d ∈ Σ4.

Proof. Suppose that ld,σ,u = uat and ld,σ′,u = ubt′ with distinct letters a, b ∈ Σ4.
Since σ and σ′ agree on (0, 3) and (1, 2), it follows that either a ∈ {0, 3} and
b ∈ {1, 2}, or vice versa. Furthermore, if c denotes the last letter of u, then both
ca and cb occur in u. This contradicts the fact that none of the words 00, 03,
11, 12, 21, 22, 30, 33 occur in u.

The next lemma is interesting in its own right. It was also proved in [7].

Lemma 13. We have l0,ρ,u = u.

Proof. Since clearly f ∈ Mu, Lemma 7 implies that there exist a letter a ∈ Σ4,
a proper suffix v of f(a), and a total order σ on Σ4 such that s0,ρ,u = vf(sa,σ,u).
An easy case analysis based on the observation that 00 does not occur in u yields
s0,ρ,u = 10201 · · · = 1f(10 · · ·), and hence

v = 1 and sa,σ,u = 10 · · · .

Since v = 1 is a suffix of f(a), we have a = 0 or a = 2. Furthermore since
la,σ,u starts with a1, we must have a = 0 because 21 does not occur in u. Thus
s0,ρ,u = 1f(s0,σ,u).

Next we claim s0,σ,u = s0,ρ,u. We prove this by showing that 0 <σ 3 and
1 <σ 2; then the claim follows from Lemma 12. If, contrary to what we want to
show, we have 2 <σ 1, then l0,σ,u would begin with 02, contradicting the fact

Extremal Words in the Shift Orbit Closure of a Morphic Sequence 153

that s0,σ,u begins with 1. Consequently we have 1 <σ 2. Furthermore if 3 <σ 0,
then l0,σ,u would begin with 013, contradicting the fact that s0,σ,u begins with
10. Therefore s0,σ,u = s0,ρ,u.

Now the identity s0,ρ,u = 1f(s0,ρ,u) implies l0,ρ,u = f(l0,ρ,u), so that l0,ρ,u is
the unique iterative fixed point of f that starts with 0, that is l0,ρ,u = u.

Finally, we are ready to prove the main result of this subsection.

Theorem 7. Let w denote the Rudin–Shapiro word. Then l0,ρ,w = 0w.

Proof. Let h = g ◦ f be the composition of g and f . Then

h : 0 $→ 00 1 $→ 01 2 $→ 10 3 $→ 11.

According to Lemma 6, there exist a letter a ∈ Σ4 and an infinite word z ∈ ΣN
4

such that az ∈ Su and l0,ρ,w = uh(z), where u is a nonempty suffix of h(a).
Since l0,ρ,w clearly starts with 0000 and 00 does not occur in u, it follows that
u = 0, z = 01 · · · , and a = 2.

On the other hand, it is easy to see that 2u ∈ Su. Since u = l0,ρ,u by
Lemma 13, we have u ≤ρ z, and so 2u ≤ρ 2z. Furthermore, since h preserves ρ,
that is to say if x, y ∈ {0, 1, 2, 3}∗ with x <ρ y, then h(x) <ρ h(y), we have
h(2u) ≤ρ h(2z), which gives 0h(u) ≤ρ 0h(z) = l0,ρ,w. Hence we must have
0h(u) = l0,ρ,w, and so

l0,ρ,w = 0h(u) = 0g(u) = 0w.

8 Conclusion

The condition f, g ∈ Mx guaranteeing that the extremal words of a morphic
word of the form g

(
fω(a)

)
are morphic (Theorem 3) is quite powerful, as we

have seen. Clearly, however, not all morphic sequences and the corresponding
morphisms satisfy this condition. So does there exist a morphic sequence with
an extremal sequence that is not morphic? All our failed attempts to produce
such an example encourage us to conjecture that, in fact, all extremal words of
all morphic sequences are morphic. Let us mention finally that Luca Q. Zamboni
discovered an argument proving that the extremal words of all primitive morphic
sequences are also primitive morphic. This proof will appear in a future joint
work with him.

References

1. Allouche, J.–P.: Théorie des nombres et automates, Thèse d’État, Université Bor-
deaux I (1983)

2. Allouche, J.–P., Currie, J., Shallit, J.: Extremal infinite overlap-free binary words.
The Electronic Journal of Combinatorics 5, #R27 (1998)

3. Allouche, J.–P., Cosnard, M.: Itérations de fonctions unimodales et suites en-
gendrées par automates. C. R. Acad. Sci. Paris, Sér. A 296, 159–162 (1983)

154 J.D. Currie, N. Rampersad, and K. Saari

4. Allouche, J.–P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of
an automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

5. Allouche, J.–P., Shallit, J.: Automatic Sequences: Theory, Applications, General-
izations. Cambridge University Press (2003)

6. Cassaigne, J., Nicolas, F.: Factor Complexity. In: Berthé, V., Rigo, M. (eds.) Com-
binatorics, Automata and Number Theory. Cambridge University Press, Cam-
bridge (2010)

7. Currie, J.: Lexicographically least words in the orbit closure of the Rudin–Shapiro
word. Theoret. Comput. Sci. 412, 4742–4746 (2011)

8. Damanik, D.: Local symmetries in the period-doubling sequence. Discrete Appl.
Math. 100, 115–121 (2000)

9. Ferenczi, S.: Les transformations de Chacon: combinatoire, structure géométrique,
lien avec les systèmes de complexité 2n+1. Bulletin de la S. M. F 123(2), 271–292
(1995)

10. Gan, S.: Sturmian sequences and the lexicographic world. Proc. Amer. Math.
Soc. 129(5), 1445–1451 (2000) (electronic)

11. Head, T., Lando, B.: Fixed and stationary ω-words and ω-languages. In: Rozenberg,
G., Salomaa, A. (eds.) The Book of L, pp. 147–156. Springer (1986)

12. Krieger, D.: On stabilizers of infinite words. Theoret. Comput. Sci. 400, 169–181
(2008)

13. Lothaire, M.: Algebraic Combinatorics on Words. In: Encyclopedia of Mathematics
and its Applications, vol. 90, Cambride University Press, Cambridge (2002)

14. Makarov, M.: On the infinite permutation generated by the period doubling word.
European J. Combin. 31, 368–378 (2010)

15. Pirillo, G.: Inequalities characterizing standard Sturmian and episturmian words.
Theoret. Comput. Sci. 341, 276–292 (2005)

16. Pytheas Fogg, N., Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.): Substitu-
tions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics,
vol. 1794. Springer (2002)

Inner Palindromic Closure�

Jürgen Dassow1, Florin Manea2, Robert Mercaş1, and Mike Müller2

1 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,
PSF 4120, D-39016 Magdeburg, Germany

dassow@iws.cs.uni-magdeburg.de, robertmercas@gmail.com
2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik,

D-24098 Kiel, Germany
{flm,mimu}@informatik.uni-kiel.de

Abstract. We introduce the inner palindromic closure as a new oper-
ation ♠, which consists in expanding a factor u to the left or right by
v such that vu or uv, respectively, is a palindrome of minimal length.
We investigate several language theoretic properties of the iterated inner
palindromic closure ♠∗(w) =

⋃
i≥0 ♠

i(w) of a word w.

1 Introduction

The investigation of repetitions of factors in a word is a very old topic in formal
language theory. For instance, already in 1906, Thue proved that there exists an
infinite word over an alphabet with three letters which has no factor of the form
ww. Since the eighties a lot of papers on combinatorial properties concerning
repetitions of factors were published (see [17] and the references therein).

The duplication got further interest in connection with its importance in nat-
ural languages [16] and in DNA sequences and chromosomes [18]. Motivated
by these applications, grammars with derivations consisting in “duplications”
(more precisely, a word xuwvy is derived to xwuwvy or xuwvwy under certain
conditions for w, u, and v) were introduced. We refer to [5,13].

Combining the combinatorial, linguistic and biological aspect, it is natural
to introduce the duplication language D(w) associated to a word w ∈ Σ+,
which is the language containing all words that double some factor of w, i. e.,
D(w) = {xuuy | w = xuy, x, y ∈ Σ∗, u ∈ Σ+} and its iterated version D∗(w) =⋃

i≥0 D
i(w). In the papers [1,4,6,19], the regularity of D∗(w) was discussed; for

instance, it was shown that, for any word w over a binary alphabet, D∗(w) is
regular and that D∗(abc) is not regular. Further results on iterated duplication
languages can be found in [10]. Also the case of bounded duplication, i. e., the
length of the duplicated word is bounded by a constant, was studied, [11].

It was noted that words w containing hairpins, i. e., w = xuyh(uR)z, and
words w with w = xuy and u = h(uR), where uR is the mirror image of u and
h is a letter-to-letter isomorphism, are of interest in DNA structures (see [8,9],
where the Watson-Crick complementarity gives the isomorphism). Therefore,
operations leading to words with hairpins as factors were studied (see [2,3]).

� The work of Florin Manea and Mike Müller is supported by the DFG grant 582014.
The work of Robert Mercaş is supported by Alexander von Humboldt Foundation.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 155–166, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

156 J. Dassow et al.

In this paper, we consider the case where the operation leads to words which
have palindromes (words with w = wR) as factors (which is a restriction to the
identity as the isomorphism). An easy step would be to obtain xuuRy from a
word xuy in analogy to the duplication. But then all newly obtained palindromes
are of even length. Thus it seems to be more interesting to consider the palin-
drome closure defined by de Luca [12]. Here a word is extended to a palindrome
of minimal length. We allow this operation to be applied to factors and call it
inner palindromic closure. We also study the case of iterated applications and a
restriction bounding the increase of length.

The paper is organised as follows: After some preliminaries given in the fol-
lowing, we define the new operation, inner palindromic closure, and its versions
in Section 2, where we also give some simple properties. In Sections 3 and 4,
we discuss the regularity of the sets obtained by the inner palindromic closures.
Finally, we present some language classes associated with the new operation.

Basic Definitions. For more details on the concepts we define here see [17].
A set M ⊆ INm of vectors is called linear, if it can be represented as

M = {B +
∑n

i=1 αiAi | αi ∈ IN, 1 ≤ i ≤ n}

for some vectors B and Ai, 1 ≤ i ≤ n. It is called semi-linear if it can be
represented as a finite union of linear sets.

An alphabet Σ is a non-empty finite set with the cardinality denoted by ‖Σ‖,
and the elements called letters. A sequence of letters constitute a word w ∈ Σ∗,
and we denote the empty word by ε. The set of all finite words over Σ is denoted
by Σ∗, and any subset of it is called a language. Moreover, for a language L, by
alph(L) we denote the set of all symbols occurring in words of L.

If w = u1v1u2v2 . . . unvn and u = uiui+1 . . . uj for 1 ≤ i ≤ j ≤ n, we say
that u is a scattered factor of w, denoted as u � w. Consider now vk = ε for all
1 ≤ k ≤ n. We say that u is a factor of w, and, if i = 1 we call u a prefix. If
j = n we call u a suffix. Whenever i > 1 or j < |w|, the factor u is called proper.

The length of a finite word w is the number of not necessarily distinct symbols
it consists of, and is denoted by |w|. The number of occurrences of a certain
letter a in w is designated by |w|a. The Parikh vector of a word w ∈ Σ∗,
denoted by Ψ(w), is defined as Ψ(w) = 〈|w|a1 , |w|a2 , . . . , |w|a‖Σ‖〉, where Σ =
{a1, a2, . . . , a‖Σ‖}. A language L is called linear or semi-linear, if its set of Parikh
vectors is linear or semi-linear, respectively.

For i ≥ 0, the i-fold catenation of a word w with itself is denoted by wi and
is called the ith power of w. When i = 2, we call the word w2 = ww a square.

For a word w ∈ Σ∗, we denote its mirror image (or reversal) by wR and say
that w is a palindrome if w = wR. For a language L, let LR = {wR | w ∈ L}.

We say that a language L is dense, if, for any word w ∈ Σ∗, Σ∗wΣ∗ ∩ L is
non-empty, i. e., each word occurs as a factor in L.

We recall Higman’s Theorem.

Theorem 1 (Higman [7]). If L is a language with the property that no word
is a scattered factor of another one, then L is finite.

Inner Palindromic Closure 157

2 Definitions and Preliminary Results

We now look at a word operation due to de Luca [12], which considers ex-
tensions to the left and right of words such that the newly obtained words are
palindromes.

Definition 1. For a word u, the left (right) palindromic closure of u is a word
vu (uv) which is a palindrome for some non-empty word v such that any other
palindromic word having u as proper suffix (prefix) has length greater than |uv|.

Here the newly obtained words have length greater than the original one, but
minimal among all palindromes that have the original word as prefix or suffix.

As for duplication and reversal, we can now define a further operation.

Definition 2. For a word w, the left (right) inner palindromic closure of w is
the set of all words xvuy (xuvy) for any factorisation w = xuy with possibly
empty x, y and non-empty u, v, such that vu (uv) is the left (right) palindromic
closure of u. We denote these operations by ♠�(w) and ♠r(w), respectively, and
define the inner palindromic closure ♠(w) as the union of ♠�(w) and ♠r(w).

The operation is extended to languages and an iterated version is introduced.

Definition 3. For a language L, let ♠(L) =
⋃

w∈L ♠(w). We set ♠0(L) = L,
♠n(L) = ♠(♠n−1(L)) for n ≥ 1, ♠∗(L) =

⋃
n≥0 ♠n(L). Any set ♠n(L) is called

a finite inner palindromic closure of L, and we say that ♠∗(L) is the iterated
inner palindromic closure of L.

We start with a simple observation.

Lemma 1. For every word w, if u ∈ ♠∗(w), then w � u.

Remark 1. Obviously, for any language L, ♠∗
r(L) ⊆ ♠∗(L) and ♠∗

� (L) ⊆ ♠∗(L).
In general, allowing both left and right operations is stronger than allowing
them only in one direction. To see this we consider L = {ax | x /∈ a∗}. The lan-
guage ♠∗

r(L) contains only words of the form ay with x � y, while the language
♠∗

� (L
R) contains only words of the form y′a with xR � y′. This is not the case

of the languages obtained by the application of ♠, since we can insert either
before or after the letter a a letter b �= a. Thus, ♠∗(L) and ♠∗(LR) also contain
words starting and ending with b �= a, respectively. Hence ♠∗

r(L) � ♠∗(L) and
♠∗

� (L
R) � ♠∗(LR). �

The next results are in tone with the ones from [10, Proposition 3.1.1]:

Proposition 1. For any semi-linear (linear) language, its iterated inner palin-
dromic closure is semi-linear (respectively, linear).

Since each word is described by a linear set, as consequence of the above we get
the following assertion.

158 J. Dassow et al.

Corollary 1. For any word, its iterated inner palindromic closure is linear.

Furthermore, we have the following result. We omit its proof as it follows simi-
larly to Proposition 3.

Proposition 2. For any word w, the language ♠∗(w) is dense with respect to
the alphabet alph(w).

We mention that Proposition 2 does not hold for languages. This can be seen
from L = {ab, ac}. Obviously, any word in ♠∗(L) contains only a and b or only
a and c. Therefore abc ∈ Σ∗ is not a factor of any word in ♠∗(L).

Lemma 2. Let Σ = {a1, a2, . . . , ak} and define the recursive sequences

w′
0 = ε and w0 = ε,

w′
i = wi−1w

′
i−1 and wi = w′

iai for 1 ≤ i ≤ k.

Then for 1 ≤ i ≤ k, alph(wi)
∗wi ⊆ ♠∗(wi).

Proof. Note that, for 0 ≤ j < i ≤ k, w′
i is a palindrome and wj is a proper

prefix of wi. We want to generate b1b2 . . . bnwi with b� ∈ alph(wi) for 1 ≤ � ≤ n.
Let b1 = aj . Since wj is a prefix of wi, wi = w′

jajv for some v. Since w′
j is a

palindrome, we obtain ajw
′
jajv = b1wi by an inner palindromic closure step. The

conclusion follows after performing the procedure in succession for b2, . . . , bn.
�

We now define a variant of the inner palindromic closure, where we restrict
the length of the words which are involved in the palindromic closure. First we
introduce a parametrised version of the palindromic closure operation from [12].

Definition 4. For a word u and integers m ≥ 0 and n > 0, we define the sets

Lm,n(w) = {u | u = uR, u = xw for x �= ε, |x| ≥ n, m ≥ |w| − |x| ≥ 0},
Rm,n(w) = {u | u = uR, u = wx for x �= ε, |x| ≥ n, m ≥ |w| − |x| ≥ 0}.

The left (right) (m,n)-palindromic closure of w is the shortest word of Lm,n(w)
(resp., Rm,n(w)), or undefined if Lm,n(w) (resp., Rm,n(w)) is empty.

The idea behind this new definition is that an element of Lm,n(w) is a palin-
drome u obtained by extending the word w by adding a prefix x of length at
least n such that the centre of the newly obtained palindrome u is inside the
prefix of length ,m

2 - of w. That is, u = xvvRxR where n ≤ |x|, 2|v| ≤ m, and
w = vvRxR, or u = xvavRxR, where n ≤ |x|, 2|v| + 1 ≤ m, and w = vavRxR.
The left (m,n)-palindromic closure is the shortest such word u, obtained when
the shortest v is chosen. The right (m,n)-palindromic closure is defined similarly.

We briefly describe the restrictions imposed by (m,n) on the left palindromic
closure (similar explanations hold for the right variant). By (classical) left palin-
dromic closure we added some letters to the left of a word that had a palindromic
prefix to transform the entire initial word into a palindrome of minimal length.
For the left (m,n)-palindromic closure we require that at least n letters should
be added and that the palindromic prefix should not be longer than m.

We define now the parametrised version of the inner palindromic closure.

Inner Palindromic Closure 159

Definition 5. For non-negative integers n,m with n > 0, we define the ♠(m,n)

one step inner palindromic closure of some word w as

♠(m,n)(w) ={u | u = xy′z, w = xyz, and

y′ is obtained by left or right (m,n)−palindromic closure from y}.

This notion can be easily extended to languages, while its iterated version♠∗
(m,n)

is defined just as in the case of the inner palindromic closure.

Remark 2. Note that Lm,n(w) and Rm,n(w) are empty if and only if |w| < n;
otherwise, Lm,n(w) contains at least the word wRw and Rm,n(w) contains the
word wwR. Therefore, Lm,n(w) and Rm,n(w) are either both empty or both
non-empty; clearly, both sets are always finite.

Also, the length of the left (right) (m,n+j)-palindromic closure of w is greater
or equal than both the length of the left (right) (m+i, n+j)-palindromic closure
of w and the length of the left (right) (m,n)-palindromic closure of w for i, j > 0.

If |w| < n, then ♠(m,n)(w) = ∅. Further, if |w| = n then ♠(m,n)(w) =
{wRw,wwR}. Generally, for |w| ≥ n, we have that ♠(m,n)(w) �= ∅. Finally,
it is not hard to see that ♠(w) = ♠(|w|,1)(w). �

A statement similar to Proposition 2 also holds for the bounded operation.

Proposition 3. For any word w with |w| ≥ n and positive integer m, the lan-
guage ♠∗

(m,n)(w) is dense with respect to the alphabet alph(w).

Proof. We note that if u is a prefix of length at least n of w and u ends with
a then there is a word w′ starting with a in ♠(m,n)(w). If the letter a appears
only in the prefix of length n− 1 of w, then we do as follows. Let w0 = w and let
wi+1 the word obtained by left (m,n)-palindromic closure from wi for i ≥ 0. As
wi is a proper suffix of wi+1, there exists ia such that wia has a prefix of length
at least n that ends with a. Continuing this process, we derive a word w′ that
for each letter s ∈ alph(w) has a prefix of length at least n ending with s.

Suppose we want to generate a word starting with a1 · · · an by inner (m,n)-
palindromic closure from w. First, we generate w′ and let v0 = w′. By the above,
v0 = x1a1y1 for some |x1| ≥ n − 1. Then, applying a left (m,n)-palindromic
closure to x1a1 (which produces a word from the inner (m,n)-palindromic closure
of v0) we obtain from v0 a palindrome a1v1, where v1 has v0 as a proper suffix.
Thus, v1 also has prefixes of length greater than n that end with every letter in
alph(w). Next, to generate the word a1a2v2 from a1v1 = a1x2a2y2 we apply a
left (m,n)-palindromic closure operation to x2a2. The process is repeated until
we generate the word a1 · · · anvn.
�

The next result is related to Proposition 3 and will be useful in the sequel.

Lemma 3. Let Σ be an alphabet with ||Σ|| ≥ 2, a /∈ Σ, and m and n positive
integers. Let w = amy1a · · · yp−1ayp be a word such that alph(w) = Σ ∪ {a},
m, p > 0, yi ∈ Σ∗ for 1 ≤ i ≤ p, |y1| > 0, and such that there exists 1 ≤ j ≤ p
with |yj | ≥ n. Then, for each v ∈ Σ∗ with |v| ≥ n, there exists w′ ∈ ♠∗

(m,n)(w)

such that v is a prefix of w′ and |w′|a = |w|a.

160 J. Dassow et al.

Proof. As a first step, for a word z = z1az2a · · ·azk, where a /∈
⋃

1≤i≤k alph(zi)

and |z1| ≥ n, we define z′1 = z1 and z′i = (z′i−1)
Rzi for 1 < i ≤ k. Let z′ =

z′1a · · ·az′k. It is immediate that z′ ∈ ♠∗
(m,n)(z), as it is obtained by applying

iteratively right (m,n)-palindromic closure to the factors z′ia to get z′ia(z
′
i)

R, for
i > 0. Moreover, alph(z′k) =

⋃
1≤i≤k alph(zi) and |z′i| ≥ n for all 1 ≤ i ≤ k.

As a second step, for a word v = v�av�−1a · · ·av1, where a /∈
⋃

1≤i≤� alph(vi)

and |v1| ≥ n, we define v′1 = v1 and v′i = vi(v
′
i−1)

R for 1 < i ≤ �. Let v′ =
v′�a · · ·av′1. It is immediate that v′ ∈ ♠∗

(m,n)(v), as it can be obtained by applying

iteratively left (m,n)-palindromic closure to the factors av′i to obtain (v′i)
Rav′i

R
,

for i > 0. Moreover, alph(y′�) =
⋃

1≤i≤k alph(yi) and |y′i| ≥ n for all 1 ≤ i ≤ �.
Now we consider the word w from our hypothesis. We apply the first step de-

scribed above to the factor yjayj+1 · · ·ayp to obtain y′ja · · · ay′p, where alph(y′p) =⋃
j≤i≤p alph(y

′
i) and |y′p| ≥ n. Afterwards, we apply the second step procedure

to the factor y1ay2a · · ·ayj−1ay
′
ja · · · ay′p to obtain y′′1ay

′′
2a · · · ay′′j−1ay

′′
j a · · · ay′′p ,

where alph(y′′1) =
⋃

1≤i≤p alph(yi) = Σ and |y′′1 | ≥ n. Accordingly, w′′ =
amy′′1ay

′′
2a · · ·ay′′p ∈ ♠∗

(m,n)(w).

Now, for a word v ∈ Σ∗ we obtain the word w′′
v = amvRyva · · · y′′pa from w′′,

for some yv ∈ Σ∗, just like in the proof of Proposition 3. If |v| ≥ n, we can obtain
from w′′

v the word vw′′
v by applying to amvR a left (m,n)-palindromic closure to

get vamvR. This concludes our proof.
�

3 On the Regularity of the Inner Palindromic Closure

We start with some facts on words over a binary alphabet.

Lemma 4. [Propagation rule] For a word w = ambn with positive integers m
and n, the set ♠(w) contains all words of length m+n+1 with a letter x ∈ {a, b}
inserted before or after any letter of w.

Proof. To see this, assume we want to insert a letter a somewhere in w (the case
of the insertion of a letter b is symmetric). To insert a between positions j and
j + 1 with j < m we just take the palindromic prefix am−j and perform a ♠�

step on it. This results in the word am−j+1 which fulfils the conditions. When
m ≤ j ≤ m+ n, we perform a ♠r step on the word abj−m, which produces the
palindrome abj−ma.
�

As a consequence of the Propagation Rule, we can show that the necessary
condition given in Lemma 1 is also sufficient in the case of binary alphabets.

Corollary 2. For any binary words w and u, w � u if and only if u ∈ ♠∗(w).

Proof. By Lemma 1, we have that w � u for all u ∈ ♠∗(w). Using Lemma 4, all
words u with w � u are in fact in ♠∗(w) since in each of them we can insert a’s
and b’s at arbitrary positions.
�

Inner Palindromic Closure 161

For the duplication operation, Bovet and Varricchio [1] showed that for any
binary language, its iterated duplication completion always gives a regular lan-
guage. For the inner palindromic closure operation on such alphabets, the result
is similar.

Theorem 2. The iterated inner palindromic closure of a language over a binary
alphabet is regular.

Proof. According to Theorem 1, for a language L there exists a finite set L0 with
L0 ⊆ L such that for every word w ∈ L there is a word w0 ∈ L0 with w0 � w.
By Corollary 2, it follows that ♠∗(L) is the union of the sets SW (w0) = {w′ ∈
alph(w0)

∗ | w0 � w′}, for all w0 ∈ L0. As all the sets SW (w0) are regular, it
follows that ♠∗(L) is regular.
�

It is obvious that the finite inner palindromic closure of some finite language is
always regular, since at each step we only obtain words which have at most twice
the length of the longest word in the given language. However, when considering
the entire class of regular languages the result is not necessarily regular.

Theorem 3. The finite inner palindromic closure of a regular language is not
necessarily regular.

Proof. We take a positive integer k and a language L = c1a
+
1 c2a

+
2 . . .cka

+
k b. We

intersect ♠k(L) with the language given by the regular expression:

c1a
+
1 c2a

+
2 . . .cka

+
k b(a

+
k ck. . .a

+
2 c2a

+
1 c1)(a

+
k ck. . .a

+
3 c3a

+
2 c2). . .(a

+
k cka

+
k−1ck−1)a

+
k ck

It is not hard to see that in any word of the intersection the number of ai’s in
every maximal unary group adjacent to ci is the same. Since this is a non-regular
language and regular languages are closed under intersection, we conclude.
�

It remains an open problem whether or not the iterated inner palindromic closure
of a regular language L, where ‖alph(L)‖ ≥ 3, is also regular.

We mention that the non-regularity of ♠∗(L) with ‖alph(L)‖ ≥ 3 cannot
be obtained by a strategy similar to that by Wang [19], who showed the non-
regularity of D(L) with ‖alph(L)‖ ≥ 3. There, the non-regularity of D(L) comes
as a consequence of a padding that needs to be added every time we want to
construct a longer word as result of consecutive applications of our chosen rule.
Consider now the word abc and the language (abc)∗ that contains no palindromes
of length greater than one. However, babc ∈ ♠(abc), thus by Lemma 2 we can
generate at the beginning as many abc’s as we want, (abc)∗babc. Hence, we
cannot use any more the argument that each palindromic step creates some extra
padding at the end of the word whenever we investigate words that contain no
palindromes.

4 Parametrised Inner Palindromic Closure

We now discuss the regularity of ♠∗
(m,n)(w). Before we state our results, we

establish two facts on the avoidance of patterns.

162 J. Dassow et al.

Theorem 4. There exist infinitely long binary words avoiding both palindromes
of length 6 and longer, and squares of words with length 3 and longer.

Proof. Rampersad et al. [15] constructed an infinite word w, that is square-free
and has no factors from the set {ac, ad, ae, bd, be, ca, ce, da, db, eb, ec, aba, ede}.

We can show that the morphism γ, defined by

γ(a) = abaabbab, γ(b) = aaabbbab, γ(c) = aabbabab,

γ(d) = aabbbaba, γ(e) = baaabbab,

maps this word w to a word with the desired properties.
As any palindrome of length n > 2 contains a shorter palindrome of length n−

2, a word avoiding palindromes of lengths 6 and 7 also avoids longer ones. Also,
each palindrome of length 6 or 7 would occur in the image of some word of length
2. We see that no such palindromes occur in γ({ab, ba, bc, cb, cd, dc, de, ea, ed}),
therefore neither in γ(w). We show that γ(w) contains no squares other than
aa, bb, abab and baba by applying methods used in [15].
�
Theorem 5. There exist infinitely long ternary words avoiding both palindromes
of length 3 and longer, and squares of words with length 2 and longer.

Proof. We claim that the morphism ψ, that is defined by

ψ(a) = abbccaabccab, ψ(b) = bccaabbcaabc, ψ(c) = caabbccabbca,

maps all infinite square-free ternary words h to words with the desired properties.
We see that ψ(h) does not contain palindromes of length 3 or 4, since those

would occur inside ψ(u) for some square-free word u of length 2. We check that
there are no squares other than aa, bb and cc in ψ(h) using standard tools.
�
In the sequel, we exhibit a method to construct words whose iterated inner
(m,n)-palindromic closure is not regular, for positive integers m,n. We first
establish several notations. We associate to an integer k ≥ 2 a pair of numbers
(pk, qk) if there exists an infinite word over a k-letter alphabet avoiding both
palindromes of length greater or equal to qk and squares of words of length
greater or equal to pk. If more such pairs exist, we take (pk, qk) to be any of them.

Theorem 6. Let m > 0 and k ≥ 2 be two integers and define n = max{ qk
2 , pk}.

Let Σ be a k-letter alphabet with a /∈ Σ and w = amy1ay2 · · · ayr−1ayr be a word
such that alph(w) = Σ ∪ {a}, r > 0, yi ∈ Σ∗ for all 1 ≤ i ≤ r, and there exists
j with 1 ≤ j ≤ r and |yj | ≥ n. Then ♠∗

(m,n)(w) is not regular.

Proof. Let α be an infinite word over Σ that avoids palindromes of length qk and
squares of words of length pk. Note that due to Lemma 3, for each prefix u of α
longer than n, there exists wu with |wu|a = r−1 such that uamwu ∈ ♠∗

(m,n)(w).

We analyse how the words uamv with u being a prefix of α and |v|a = r − 1
are obtained by iterated (m,n)-palindromic closure steps from w. As u contains
no a’s, no squares of words of length pk, as well as no palindromes with length
greater than qk, and the application of an (m,n)-palindromic closure step intro-
duces a palindrome in the derived word, we get that the only possible cases of
application of the operation in the derivation of uamv are the following:

Inner Palindromic Closure 163

(1) v = xyz and y is the (m,n)-palindromic closure of y′ (implicitly, |y′| < |y|
and |y|a = |y′|a); in this case we have that uamv is in ♠(m,n)(ua

mxy′z).

(2) u = u′x, v = yz, and xamy is the (m,n)-palindromic closure of amy (implic-
itly, x = yR and neither x nor y contain any a’s); in this case we have that
uamv is in ♠(m,n)(u

′amyz).

(3) u = xyz and y is the (m,n)-palindromic closure of y′ (implicitly, |y′| < |y|
and y′ contains no a’s); in this case we have that uamv is in ♠(m,n)(xy

′zamv).

Since we only apply (m,n)-palindromic closure operations, and the word we want
to derive has the form uamv with |amv|a = |w|a, it is impossible to apply any
palindromic closure step that adds to the derived word more a symbols or splits
the group am that occurs at the beginning of w. Intuitively, the palindromic
closure operations that we apply are localised, due to the restricted form of the
operation: they either occur inside u, or inside v, or are centred around am.

Moreover, by choosing n ≥ qk
2 if at any step we apply a palindromic closure

operation of the type (3) above, then the final word u contains a palindrome of
length greater than qk. To see this, we assume, for the sake of a contradiction,
that such an operation was applied. Then, we look at the last operation of this
kind that was applied. Obviously, none of the operations of type (1) or (2) that
were applied after that operation of type (3) could have modified the palindrome
of length at least qk introduced by it in the derived word before am. Therefore,
that palindrome would also appear in u, a contradiction.

This means that all the intermediate words obtained during the derivation
of uamv from w have the form u′amv′ where u′ is a prefix (maybe empty) of α
and v′ has exactly |w|a −m symbols a. We now look at the kind of operations
that can be applied to such a word. In particular, we note that we cannot have
more than |v′| − n consecutive derivation steps in which the length of the word
occurring after the first sequence of a’s is preserved. In other words, we can apply
at most |v′| − n consecutive operations that fall in the situation (2).

Indeed, after � such derivation steps one would obtain from u′amv′ a word
u′v1 · · · v�amv′ where vRi is a prefix of v′ and |vi| ≥ n for every 1 ≤ i ≤ �. Assume,
for the sake of a contradiction, that � > |v′| − n. Then, there exists j such that
1 ≤ j < � and |vj | ≥ |vj+1|. Therefore, u′v1 · · · v� contains a square of length at
least 2n ≥ 2pk. But such a square will remain in the derived word for the rest
of the derivation, as neither an operation of type (1) nor one of type (2) could
introduce letters inside it. Another contradiction with the form of u is reached.

We use this last remark to show by induction on the number of steps in the
derivation, that if u is a finite prefix of α and uamv ∈ ♠∗

(m,n)(w), then |u| ≤ |v|3.
If the derivation has one step, then the statement we want to show holds

trivially, as the fact that the prefix u can be added to w implies that |u| ≤ |y1|.
Let us now assume that it holds for words obtained in at most k derivation

steps, and show it for words obtained in k+1 derivation steps. If the last applied
step to obtain uamv is of type (1), then we obtained uamv from uamv′ for
some v′ shorter than v. From the induction step we have that |u| ≤ |v′|3, and,
consequently, |u| ≤ |v|3. According to the last made remark, we have that at
most the last |v| − n consecutive steps applied were of type (2). In these steps,

164 J. Dassow et al.

the length of u increased by at most
∑

n≤i≤|v| i ≤ |v|(|v|+1)
2 . Therefore, we get

|u| − |v|(|v|+1)
2 ≤ (|v| − 1)3; hence |u| ≤ |v|3. This concludes our induction proof.

We now show that the language

L = {uamv ∈ ♠∗
(m,n)(w) | |u| ≥ n, |v|a = r − 1}

is not regular. Since this language is obtained from ♠∗
(m,n)(w) by intersection

with a regular language, if L is not regular, then ♠∗
(m,n)(w) is not regular either.

We consider a word u0a
mv0 ∈ L such that u0 is a prefix of α with |u0| ≥ n;

clearly, L contains such a word. As we have shown above, |u0| ≤ |v0|3. We now
take a prefix u1 of α with |u1| > |v0|4; it follows that u1a

mv0 /∈ L, thus u0 and
u1 are in different equivalence classes with respect to the syntactic congruence
defined by the language L. However, by the considerations made at the beginning
of this proof, there exists v1 such that u1a

mv1 ∈ L. In the exact same manner
we construct a word u2, that is in a different equivalence class with respect to
the syntactic congruence defined by the language L than both u0 and u1, and so
on. This means we have an infinite sequence (ui)i≥0 where any two elements are
in different equivalence classes with respect to the syntactic congruence defined
by the language L. Thus, the syntactic congruence defined by L has an infinite
number of equivalence classes, so L cannot be regular, and we conclude the
proof.
�

The following theorem follows immediately from the previous results.

Theorem 7. Let w = apy1a · · · yr−1ayr, where a /∈ alph(yi) for 1 ≤ i ≤ r.
(1) If ‖alph(w)‖ ≥ 3 and |yj| ≥ 3 for some 1 ≤ j ≤ r, then for every positive
integer m ≤ p we have that ♠∗

(m,3)(w) is not regular.

(2) If ‖alph(w)‖ ≥ 4 and |yj| ≥ 2 for some 1 ≤ j ≤ r, then for every positive
integer m ≤ p we have that ♠∗

(m,2)(w) is not regular.

(3) If ‖alph(w)‖ ≥ 5, then for every positive integer m ≤ p we have that
♠∗

(m,1)(w) is not regular.

(4) For every positive integers m and n there exists u with ♠∗
(m,n)(u) not regular.

Proof. By Theorems 4 and 5 we can take q2 = 6 and p2 = 3, respectively, q3 = 3
and p3 = 2. Therefore, if we take n = 3, or n = 2, respectively, in the hypothesis
of the theorem, then the results (1) and (2) follow for any positive m ≤ p.

The third statement follows from [14, Theorem 4.15], where an infinite word
avoiding both squares and palindromes is constructed. Thus, we can take pk =
qk = 1, so n can be also taken to be 1. Finally, (4) is a consequence of (3).
�

In general, the regularity of the languages ♠∗
(m,n)(w) for positive integers m and

n, and binary words w, |w| ≥ n, is left open. We only show the following.

Theorem 8. For any word w ∈ {a, b}+ and integer m ≥ 0, ♠∗
(m,1)(w) is regular.

Proof. Due to the lack of space the technical details are skipped.
The general idea of the proof is to give a recursive definition of ♠∗

(m,1)(w).

That is, ♠∗
(m,1)(w) is expressed as a finite union and concatenation of several

Inner Palindromic Closure 165

languages ♠∗
(m,1)(w

′), with |w′| < |w|, and some other simple regular languages.

To this end, we let x �= y ∈ {a, b} and identify a series of basic cases for which
such a definition can be given easily: words that have no unary factor longer than
m, words of the form xyqx, and, finally, words of the form xyq or yqx. Building
on these basic ingredients, we define ♠∗

(m,1)(w) for every word w by, basically,
identifying a prefix of w that has one of these forms, separating it from the rest,
and then computing, recursively, the iterated closure of the rest of the word.

In order to make this strategy work, one has to implement several steps. The
first is to note that if a word w has no maximal unary factor longer than m,
then ♠∗

(m,1)(w) contains all words that have w as scattered factor.

Further, if uvxypxvR ∈ ♠(m,1)(uvxy
q) for q ≤ p, then we can find a sort of

normal-form derivation of uvxypxvR by first deriving uvxypx in one step, and
then appending any suffix (in particular vR) by a process similar to propaga-
tion. Similar arguments hold when the factor is prefixed by palindromic closure.
Intuitively, we can split the derivation of a word in separate parts and apply
our operations only to maximal unary factors and the symbols that bound them
(factors of the type xyqx, yqx, and xyq, with the last two as suffixes or prefixes).

Next, the derivation of these basic factors on which the operation is applied
can be further normalised. The basic idea is, intuitively, that whenever we start
a derivation of a factor xyqx, the first step that we should make is to split
the group of y’s in two smaller groups, and continue to derive each of them
separately. More precisely, if x�1yh1x�2yh2x�3 ∈ ♠∗

(m,1)(xy
qx) for some positive

integers �1, �2, �3, h1, and h2, then there exist positive integers p, r < q such
that x�1yh1x�2yh2x�3 ∈ ♠∗

(m,1)(xy
pxyrx) and one of the following holds: p ≤ m

or r ≤ m and p = q − r; or, m < p, r, and p = m + 2k and r = q − m − k, or,
vice-versa, r = m+ 2k and p = q −m− k, for some k > 0.

Similarly, when we start a derivation from a group xyq, we first split the group
of y’s into xypx and xyr, with r < q, and then apply the above definition to
these and repeat the process. Clearly, at every step we can lengthen the words
by pumping x’s in a group of x’s, and by generating {a, b}∗xy{a, b}∗ from xy.

Using all the above, we can now find recursively the formula for ♠∗
(m,1)(w) by

first separating a prefix having one of the basic forms, derive a word from it as
we described, and then work, recursively, on the remaining suffix.
�

5 Final Remarks

Apart from solving the open problems stated in this article, the study of classes
of languages obtained through these operations seems interesting to us. The
following initial results show several possible directions for such investigations.

For a class L of languages, we set LR = {LR | L ∈ L}, and for a natural
number k ≥ 1, we define Lk = {L ∈ L | ‖alph(L)‖ = k}. Consider the classes

P♠�
= {L′ | L′ = ♠∗

� (L) for some L}
P♠r = {L′ | L′ = ♠∗

r(L) for some L}
P♠ = {L′ | L′ = ♠∗(L) for some L}

166 J. Dassow et al.

Straightforward, for every language L, ♠r(L) = (♠�(L
R))R and ♠∗

r(L) =
(♠∗

� (L
R))R hold (for both operations the propagation rule works in only one

direction). Thus, we immediately get P♠r = (P♠�
)R and P♠�

= (P♠r)
R.

The following result is a consequence of Remark 1.

Lemma 5. The classes P♠r \ P♠ and P♠�
\ P♠ are both not empty.

When we consider only binary alphabets, we have the following statement.

Proposition 4. (P♠)2 � (P♠r)2 = (P♠�
)R2 and (P♠)2 � (P♠�

)2 = (P♠r)
R
2 .

References

1. Bovet, D.P., Varricchio, S.: On the regularity of languages on a binary alphabet
generated by copying systems. Inf. Process. Lett. 44, 119–123 (1992)

2. Cheptea, D., Mart́ın-Vide, C., Mitrana, V.: A new operation on words suggested
by DNA biochemistry: Hairpin completion. Trans. Comput., 216–228 (2006)

3. Dassow, J., Holzer, M.: Language families defined by a ciliate bio-operation: hier-
archies and decision problems. Int. J. Found. Comput. Sci. 16(4), 645–662 (2005)

4. Dassow, J., Mitrana, V., Păun, G.: On the regularity of duplication closure. Bulletin
of the EATCS 69, 133–136 (1999)

5. Dassow, J., Mitrana, V., Salomaa, A.: Context-free evolutionary grammars and the
structural language of nucleic acids. BioSystems 43, 169–177 (1997)

6. Ehrenfeucht, A., Rozenberg, G.: On regularity of languages generated by copying
systems. Discrete Appl. Math. 8, 313–317 (1984)

7. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. 3(2), 326–336 (1952)

8. Kari, L., Konstantinidis, S., Losseva, E., Sośık, P., Thierrin, G.: Hairpin structures
in DNA words. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892,
pp. 158–170. Springer, Heidelberg (2006)

9. Kari, L., Mahalingam, K.: Watson–Crick palindromes in DNA computing. Natural
Computing 9(2), 297–316 (2010)

10. Leupold, P.: Languages Generated by Iterated Idempotencies. Ph.D. thesis, Uni-
veritat Rovira y Virgili, Tarragona, Spain (2006)

11. Leupold, P., Mitrana, V.: Uniformly bounded duplication codes. RAIRO Theor.
Inf. Appl. 41, 411–427 (2007)

12. de Luca, A.: Sturmian words: Structure, combinatorics, and their arithmetics.
Theor. Comput. Sci. 183, 45–82 (1997)

13. Mart́ın-Vide,C.,Păun,G.:Duplication grammars.ActaCybernet 14, 151–164 (1999)
14. Pansiot, J.J.: A propos d’une conjecture de F. Dejean sur les répétitions dans les

mots. Discrete Appl. Math. 7, 297–311 (1984)
15. Rampersad, N., Shallit, J., Wang, M.-W.: Avoiding large squares in infinite binary

words. Theor. Comput. Sci. 339(1), 19–34 (2005)
16. Rounds, W.C., Ramer, A.M., Friedman, J.: Finding natural languages a home in

formal language theory. In: Mathematics of Languages, pp. 349–360. John Ben-
jamins, Amsterdam (1987)

17. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer-Verlag New
York, Inc. (1997)

18. Searls, D.B.: The computational linguistics of biological sequences. In: Artificial
Intelligence and Molecular Biology, pp. 47–120. AAAI Press, Cambridge (1993)

19. Wang, M.W.: On the irregularity of the duplication closure. Bulletin of the
EATCS 70, 162–163 (2000)

On the Dual Post Correspondence Problem�

Joel D. Day1, Daniel Reidenbach1,��, and Johannes C. Schneider2

1 Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, UK

J.Day-10@student.lboro.ac.uk,

D.Reidenbach@lboro.ac.uk
2 Fachbereich Informatik, Technische Universität Kaiserslautern,

Postfach 3049, 67653 Kaiserslautern, Germany
jschneider@informatik.uni-kl.de

Abstract. The Dual Post Correspondence Problem asks whether, for
a given word α, there exists a pair of distinct morphisms σ, τ , one of
which needs to be non-periodic, such that σ(α) = τ (α) is satisfied. This
problem is important for the research on equality sets, which are a vital
concept in the theory of computation, as it helps to identify words that
are in trivial equality sets only.

Little is known about the Dual PCP for words α over larger than
binary alphabets. In the present paper, we address this question in a
way that simplifies the usual method, which means that we can reduce
the intricacy of the word equations involved in dealing with the Dual
PCP. Our approach yields large sets of words for which there exists a
solution to the Dual PCP as well as examples of words over arbitrary
alphabets for which such a solution does not exist.

Keywords: Morphisms, Equality sets, Dual Post Correspondence Prob-
lem, Periodicity forcing sets, Word equations, Ambiguity of morphisms.

1 Introduction

The equality set E(σ, τ) of two morphisms σ, τ is the set of all words α that satisfy
σ(α) = τ(α). Equality sets were introduced by A. Salomaa [13] and Engelfriet
and Rozenberg [4], and they can be used to characterise crucial concepts in the
theory of computation, such as the recursively enumerable set (see Culik II [1])
and the complexity classes P and NP (see Mateescu et al. [10]). Furthermore,
since the famous undecidable Post Correspondence Problem (PCP) by Post [11]
asks whether, for given morphisms σ, τ , there exists a word α satisfying σ(α) =
τ(α), it is simply the emptiness problem for equality sets.

Culik II and Karhumäki [2] study an alternative problem for equality sets,
called the Dual Post Correspondence Problem (Dual PCP or DPCP for short):
they ask whether, for any given word α, there exist a pair of distinct morphisms

� This work was supported by the London Mathematical Society, grant SC7-1112-02.
�� Corresponding author.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 167–178, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

168 J.D. Day, D. Reidenbach, and J.C. Schneider

σ, τ (called a solution to the DPCP) such that σ(α) = τ(α). Note that, in order
for this problem to lead to a rich theory, at least one of the morphisms needs
to be non-periodic. If a word does not have such a pair of morphisms, then it is
called periodicity forcing, since the only solutions to the corresponding instance
of the DPCP are periodic.

The Dual Post Correspondence Problem is of particular interest for the re-
search on equality sets as it helps to identify words that can only occur in trivial
equality sets (i. e., equality sets E(σ, τ) where σ or τ are periodic). The exis-
tence of these words (namely the periodicity forcing ones) is a rather peculiar
property of equality sets when compared to other types of formal languages, and
it illustrates their combinatorial intricacy. In addition, the DPCP shows close
connections to a special type of word equations, since a word α has a solution to
the DPCP if and only there exists a non-periodic solution to the word equation
α = α′, where α′ is renaming of α. A further related concept is the ambiguity of
morphisms (see, e. g., Freydenberger et al. [6,5], Schneider [14]). Research on this
topic mainly asks whether, for a given word α, there exists a morphism σ that
is unambiguous for it, i. e., there is no other morphism τ satisfying σ(α) = τ(α).
Using this terminology, a word does not have a solution to the DPCP if every
non-periodic morphism is unambiguous for it.

Previous research on the DPCP has established its decidability and numerous
insights into words over binary alphabets that do or do not have a solution. In
contrast to this, for larger alphabets, it is not even known whether the problem is
nontrivial, i. e., whether there are periodicity forcing words, and if so, what they
look like. It is the purpose of the present paper to study the DPCP for words over
arbitrary alphabets. Our main results shall, firstly, establish an approach to the
problem that reduces the complexity of the word equations involved, secondly,
demonstrate that most words are not periodicity forcing and why that is the
case and, thirdly, prove that the DPCP is nontrivial for all alphabet sizes.

Due to space constraints, all proofs have been omitted from this paper.

2 Definitions and Basic Observations

Let N := {1, 2, . . .} be the set of natural numbers, and let N0 := N ∪ {0}. We
often use N as an infinite alphabet of symbols. In order to distinguish between a
word over N and a word over a (possibly finite) alphabet Σ, we call the former
a pattern. Given a pattern α ∈ N∗, we call symbols occurring in α variables
and denote the set of variables in α by var(α). Hence, var(α) ⊆ N. We use
the symbol · to separate the variables in a pattern, so that, for instance, 1 ·
1 · 2 is not confused with 11 · 2. For a set X , the notation |X | refers to the
cardinality of X , and for a word X , |X | stands for the length of X . By |α|x,
we denote the number of occurrences of the variable x in the pattern α. Let
α ∈ {x1, x2, . . . , xn}∗ be a pattern. The Parikh vector of α, denoted by P(α), is
the vector (|α|x1 , |α|x2 , . . . , |α|xn).

Given arbitrary alphabets A,B, a morphism is a mapping h : A∗ → B∗ that
is compatible with the concatenation, i. e., for all v, w ∈ A∗, h(vw) = h(v)h(w).

On the Dual Post Correspondence Problem 169

Hence, h is fully defined for all v ∈ A∗ as soon as it is defined for all symbols
in A. Such a morphism h is called periodic if and only if there exists a v ∈ B∗

such that h(a) ∈ v∗ for every a ∈ A. For the composition of two morphisms
g, h : A∗ → A∗, we write g ◦ h, i. e., for every w ∈ A∗, g ◦ h(w) = g(h(w)).
In this paper, we usually consider morphisms σ : N∗ → {a, b}∗ and morphisms
ϕ : N∗ → N∗. For a set N ⊆ N, the morphism πN : N∗ → N∗ is defined by
πN (x) := x if x ∈ N and πN (x) := ε if x �∈ N . Thus, for a pattern α ∈ N+,
πN (α) is the projection of α to its subpattern πN (α) consisting of variables in
N only. Let Δ ⊂ N be a set of variables and Σ be an alphabet. Then two
morphisms σ, τ : Δ∗ → Σ∗ are distinct if and only if there exists an x ∈ Δ such
that σ(x) �= τ(x).

Let α ∈ N+. We call α morphically imprimitive if and only if there exist a
pattern β with |β| < |α| and morphisms ϕ, ψ : N∗ → N∗ satisfying ϕ(α) = β and
ψ(β) = α. If α is not morphically imprimitive, we call α morphically primitive.
As demonstrated by Reidenbach and Schneider [12], the partition of the set of
all patterns into morphically primitive and morphically imprimitive ones is vital
in several branches of combinatorics on words and formal language theory, and
some of our results in the main part of the present paper shall again be based
on this notion.

We now formally define the Dual PCP as a set:

Definition 1. Let Σ be an alphabet. DPCP is the set of all α ∈ N+ such that
there exist a non-periodic morphism σ : N∗ → Σ∗ and an (arbitrary) morphism
τ : N∗ → Σ∗ satisfying σ(α) = τ(α) and σ(x) �= τ(x) for an x ∈ var(α).

We wish to investigate what patterns α ∈ N+ are contained in DPCP, and what
patterns are not. Since all morphisms with unary target alphabets are periodic
and since we can encode any Σ, |Σ| ≥ 2, over {a, b}, we choose Σ := {a, b} from
now on.

The following proposition explains why in the definition of DPCP at least one
morphism must be non-periodic.

Proposition 2. For every α ∈ N+ with | var(α)| ≥ 2, there exist (periodic)
morphisms σ, τ : N∗ → {a, b}∗ satisfying σ(α) = τ(α).

Hence, allowing periodic morphisms would turn the Dual PCP into a trivial
problem. Note that for patterns α with | var(α)| = 1, every morphism is unam-
biguous.

In the literature, patterns not in DPCP are called periodicity forcing since
they force every pair of morphisms that agree on the pattern to be periodic.
This notion can be extended to sets of patterns in a natural way: Let Δ ⊂ N be
a set of variables, and let β1, β2, ..., βn ∈ Δ+ be patterns. The set {β1, β2, ..., βn}
is periodicity forcing if, for every pair of distinct morphisms σ, τ : Δ∗ → {a, b}∗
which agree on every βi for 1 ≤ i ≤ n, σ and τ are periodic.

From Culik II and Karhumäki [2] it is known that DPCP is decidable. Fur-
thermore, the following specific results on two-variable patterns that are or are
not in DPCP can be derived from the literature on word equations and binary
equality sets:

170 J.D. Day, D. Reidenbach, and J.C. Schneider

Proposition 3 ([2]). Every two-variable pattern of length 4 or less is in DPCP.
Every renaming or mirrored version of the patterns 1 · 2 · 1 · 1 · 2, 1 · 2 · 1 · 2 · 2
is not in DPCP. These are the only patterns of length 5 that are not in DPCP.
In particular, the (morphically primitive) patterns 1 · 1 · 2 · 2 · 2, 1 · 2 · 1 · 2 · 1,
1 · 2 · 2 · 1 · 1 and 1 · 2 · 2 · 2 · 1 are in DPCP.

Furthermore, we have the following examples of longer patterns.

Proposition 4 ([7]). For any i ∈ N, (1 · 2)i · 1 ∈ DPCP.

Proposition 5 ([2]). For any i, j ∈ N, 1i · 2j ∈ DPCP.

Proposition 6 ([8]). For any i ∈ N, 1 · 2i · 1 ∈ DPCP.

Note that, for i, j > 1, the three propositions above give morphically primi-
tive example patterns. Thus, the results are not trivially achievable by applying
Corollary 18 in Section 4.

Proposition 7 ([3]). 12 · 23 · 12 /∈ DPCP.

It is worth noting that the proof of the latter proposition takes about 9 pages.
This illustrates how difficult it can be to show that certain example patterns do
not belong to DPCP.

In [2], Culik II and Karhumäki state without proof that any ratio-primitive
pattern α ∈ (13 ·1∗ ·23 ·2∗)2 is not in DPCP. A pattern α ∈ {1, 2}+ is called ratio-
primitive if and only if, for every proper prefix β of α, it is |β|1/|β|2 �= |α|1/|α|2.
Otherwise, α is called ratio-imprimitive.

While the above examples are partly hard to find, some general statements
on DPCP and its complement can be obtained effortlessly:

Proposition 8. If α ∈ DPCP, then, for every k, αk ∈ DPCP. If α /∈ DPCP,
then, for every k, αk /∈ DPCP.

Proposition 9. If α, β ∈ DPCP with var(α) ∩ var(β) = ∅, then αβ ∈ DPCP.

If we apply Proposition 8 to existing examples, then we can state the following
insight:

Corollary 10. There are patterns of arbitrary length in DPCP. There are pat-
terns of arbitrary length not in DPCP.

The existing literature on the Dual PCP mainly studies two-variable patterns. In
contrast to this, as mentioned in Section 1, we wish to investigate the structure
of DPCP for patterns over any numbers of variables. In this regard, we can state
a number of immediate observations:

Proposition 11. Let α ∈ N+, | var(α)| = 1. Then α /∈ DPCP.

It is easy to give example patterns with three or more variables that belong to
DPCP. Proposition 19 in Section 4 gives a construction principle. Furthermore,
as soon as a pattern α is projectable to a subpattern β ∈ DPCP, also α ∈ DPCP.

On the Dual Post Correspondence Problem 171

Proposition 12. Let α ∈ N+ and V ⊆ var(α) with πV (α) ∈ DPCP. Then
α ∈ DPCP.

On the other hand, this implies that every α �∈ DPCP must not be projectable
to a subpattern from DPCP.

Corollary 13. Let α �∈ DPCP. Then for every V ⊆ var(α), πV (α) �∈ DPCP.

Consequently, on the one hand, the discovery of one pattern not in DPCP directly
leads to a multitude of patterns not in DPCP (namely, all of its subpatterns).
On the other hand, this situation makes it very difficult to find such example
patterns since arbitrary patterns easily contain subpatterns from DPCP.

3 A Characteristic Condition

The most direct way to decide on whether a pattern α is in DPCP is to solve the
word equation α = α′, where α′ is a renaming of α such that var(α)∩var(α′) = ∅.
Indeed, the set of solutions corresponds exactly to the set of all pairs of mor-
phisms which agree on α. The pattern α is in DPCP if and only if there
exists such a solution which is non-periodic. This explains why Culik II and
Karhumäki [2] use Makanin’s Algorithm for demonstrating the decidability of
DPCP. Furthermore, it demonstrates why, in many respects, the more challeng-
ing questions often concern patterns not in DPCP. For such patterns, it is not
enough to simply find a single non-periodic solution, but instead every single
solution to the equation α = α′ must be accounted for. It is generally extremely
difficult to determine the complete solution set to such an equation, and as a
result, only a limited class of examples is known.

This section presents an alternative approach which attempts to reduce the
difficulties associated with such equations. To this end, we apply a morphism
ϕ : N∗ → N∗ to a pattern α /∈ DPCP, and we identify conditions that, if satisfied,
yield ϕ(α) /∈ DPCP.

The main result of this section characterises such morphisms ϕ:

Theorem 14. Let α ∈ N+ be a pattern that is not in DPCP, and let ϕ :
var(α)∗ → N∗ be a morphism. The pattern ϕ(α) is not in DPCP if and only
if

(i) for every periodic morphism ρ : var(α)∗ → {a, b}∗ and for all distinct mor-
phisms σ, τ : var(ϕ(α))∗ → {a, b}∗ with σ ◦ ϕ(α) = ρ(α) = τ ◦ ϕ(α), σ and
τ are periodic and

(ii) for every non-periodic morphism ρ : var(α)∗ → {a, b}∗ and for all mor-
phisms σ, τ : var(ϕ(α))∗ → {a, b}∗ with σ ◦ ϕ = ρ = τ ◦ ϕ, σ = τ .

As briefly mentioned above, Theorem 14 shows that insights into the structure
of DPCP can be gained in a manner that partly circumvents the solution of
word equations. Instead, we can make use of prior knowledge on patterns that
are not in DPCP, which mainly exists for patterns over two variables, and ex-
pand this knowledge by studying the existence of morphisms ϕ that preserve

172 J.D. Day, D. Reidenbach, and J.C. Schneider

non-periodicity (i. e., if certain morphisms σ are non-periodic, then σ ◦ ϕ needs
to be non-periodic; see Condition (i)) and preserve distinctness (i. e., if certain
morphisms σ, τ are distinct, then σ ◦ ϕ and τ ◦ ϕ need to be distinct; see Con-
dition (ii)).

Theorem 14 can be used to characterise the patterns in DPCP, but it is mainly
suitable as a tool to find patterns that are not in DPCP. We shall study this
option in Section 5, where we, due to our focus on the if direction of Theorem 14,
can drop the additional conditions on non-periodicity and distinctness preserving
morphisms ϕ that are postulated by the Theorem. In addition to reducing the
need for studying word equations, the use of morphisms to generate examples
not in DPCP shall prove to have another key benefit; since morphisms can
be applied to infinitely many pre-image patterns, the construction of a single
morphism automatically produces an infinite set of examples. This process can
be applied iteratively – with morphisms providing new examples of patterns
which can then potentially be used as the pre-images for the same, or other
morphisms. Before we study this in more details, we wish to consider patterns
that are in DPCP in the next section.

4 On Patterns in DPCP

In the present section, we wish to establish major sets of patterns over arbitrarily
many variables that are in DPCP. Our first criterion is based on so-called am-
biguity factorisations, which are a generalisation of imprimitivity factorisations
used by Reidenbach and Schneider [12] to characterise the morphically primitive
patterns.

Definition 15. Let α ∈ N+. An ambiguity factorisation (of α) is a mapping f :
N+ → Nn × (N+)n, n ∈ N, such that, for f(α) = (x1, x2, . . . , xn; γ1, γ2, . . . , γn),
there exist β0, β1, . . . , βn ∈ N∗ satisfying α = β0 γ1 β1 γ2 β2 . . . γn βn and

(i) for every i ∈ {1, 2, . . . , n}, |γi| ≥ 2,
(ii) for every i ∈ {0, 1, . . . , n} and for every j ∈ {1, 2, . . . , n}, var(βi)∩var(γj) =

∅,
(iii) for every i ∈ {1, 2, . . . , n}, |γi|xi = 1 and if xi ∈ var(γi′) for an i′ ∈

{1, 2, . . . , n}, γi = δ1 xi δ2 and γ′
i = δ′1 xi δ

′
2, then |δ1| = |δ′1| and |δ2| = |δ′2|.

Using this concept, we now can give a strong sufficient condition for patterns in
DPCP:

Theorem 16. Let α ∈ N+. If there exists an ambiguity factorisation of α, then
α ∈ DPCP.

The following example illustrates Definition 15 and Theorem 16:

Example 17. Let the pattern α be given by

α := 1 · 2 · 2︸ ︷︷ ︸
γ1

· 3 · 2 · 4 · 5 · 2︸ ︷︷ ︸
γ2

· 5 · 4 · 2 · 5︸ ︷︷ ︸
γ3

· 3 · 1 · 2 · 2︸ ︷︷ ︸
γ4

On the Dual Post Correspondence Problem 173

This pattern has an ambiguity partition, as is implied by the marked γ parts
and the variables in bold face, which stand for the xi.

We now consider two distinct non-periodic morphisms σ and τ , given by
σ(1) = σ(4) = a, σ(2) = σ(5) = bb, σ(3) = ε and τ(1) = abb, τ(4) = babb,
τ(2) = τ(5) = b, τ(3) = ε. It can be verified with limited effort that σ and τ
agree on α. ♦

Since ambiguity partitions are more general than imprimitivity partitions, we
can immediately conclude that a natural set of patterns is included in DPCP:

Corollary 18. Let α ∈ N+. If α is morphically imprimitive, then α ∈ DPCP.

Since most patterns are morphically imprimitive (see Reidenbach and Schnei-
der [12]), this implies that most patterns are in DPCP, which confirms our
intuitive considerations at the beginning of Section 3.

While ambiguity partitions are a powerful tool, they are technically rather
involved. In this respect, our next sufficient condition on patterns in DPCP is
much simpler, since it merely asks whether a pattern can be split in two factors
that do not have any variables in common:

Proposition 19. Let α ∈ N+, | var(α)| ≥ 3. If, for some α1, α2 ∈ N+ with
var(α1) ∩ var(α2) = ∅, α = α1 α2, then α ∈ DPCP.

Note that it is possible to extend Proposition 19 quite substantially since the
same technique can be applied to, e g., the pattern α := α1α2α1α2 and much
more sophisticated types of patterns where certain factors have disjoint variable
sets and can therefore be allocated to different periodic morphisms each. The
following proposition is such an extension of Proposition 19.

Proposition 20. Let x, y, z ∈ N, and let α ∈ {x, y, z}+ be a pattern such that
α = α0zα1z . . . αn−1zαn, n ∈ N. If,

– for every i ∈ {0, 1, . . . , n}, αi = ε or var(αi) = {x, y}, and
– for every i, j ∈ {0, 1, . . . , n} with αi �= ε �= αj,

|αi|x
|αi|y =

|αj |x
|αj|y ,

then α ∈ DPCP.

The following example pattern is covered by Proposition 20: 1 · 1 · 2 · 2 · 2 · 3 · 1 ·
2 · 2 · 1 · 2 · 3 · 1 · 1 · 1 · 1 · 2 · 2 · 2 · 2 · 2 · 2. Although Proposition 20 is restricted to
three-variable patterns, it is worth mentioning that we can apply it to arbitrary
patterns that have a three-variable subpattern of this structure. This is a direct
consequence of Proposition 12.

5 On Patterns Not in DPCP

As a result of the intensive research on binary equality sets, several examples of
patterns over two variables are known not to be in DPCP (see Section 2). Hence,
the most obvious question to ask is whether or not there exist such examples
with more than two variables (and more generally, whether there exist examples

174 J.D. Day, D. Reidenbach, and J.C. Schneider

for any given set of variables). The following results develop a structure for mor-
phisms which map patterns not in DPCP to patterns with more variables which
are also not in DPCP, ultimately allowing for the inductive proof of Theorem 33,
which provides a strong positive answer.

As discussed in Section 3, this is accomplished by simplifying the conditions of
Theorem 14, so that they ask the morphism ϕ to be (i) non-periodicity preserving
and (ii) distinctness-preserving:

Lemma 21. Let Δ1, Δ2 be sets of variables. Let ϕ : Δ1
∗ → Δ2

∗ be a morphism
such that for every x ∈ Δ2, there exists a y ∈ Δ1 such that x ∈ var(ϕ(y)), and

(i) for every non-periodic morphism σ : Δ2
∗ → {a, b}∗, σ ◦ ϕ is non-periodic,

and
(ii) for all distinct morphisms σ, τ : Δ2

∗ → {a, b}∗, where at least one is non-
periodic, σ ◦ ϕ and τ ◦ ϕ are distinct.

Then for any α /∈ DPCP with var(α) = Δ1, ϕ(α) /∈ DPCP.

Remark 22. Condition (i) of Lemma 21 is identical to asking that σ◦ϕ is periodic
if and only if σ is periodic, since if σ is periodic, then σ◦ϕ will always be periodic
as well.

While Lemma 21 provides a clear proof technique for demonstrating that a given
pattern is not in DPCP, the conditions are abstract, and it does not directly lead
to any new examples. The next step, therefore, is to investigate the existence
and nature of morphisms ϕ which satisfy both conditions.

Since the main focus of the following results is concerned with properties of
compositions of morphisms, the following two facts are included formally.

Fact 23. Let Δ1, Δ2 be sets of variables. let ϕ : Δ1
∗ → Δ2

∗ and σ : Δ2
∗ →

{a, b}∗ be morphisms. The morphism σ ◦ϕ is periodic if and only if there exists
a (primitive) word w ∈ Σ∗ such that for each i ∈ Δ1, there exists an n ∈ N0

with σ(ϕ(i)) = wn.

Fact 24. Let Δ1, Δ2 be sets of variables. let ϕ : Δ1
∗ → Δ2

∗ and σ : Δ2
∗ →

{a, b}∗ be morphisms. The morphisms σ ◦ϕ and τ ◦ ϕ are distinct if and only if
there exists a variable i ∈ Δ1 such that σ(ϕ(i)) �= τ(ϕ(i)).

Facts 23 and 24 highlight how properties such as periodicity and distinctness
of a composition of two morphisms can be determined by observing certain
properties of specific sets of patterns. Since the conditions in Lemma 21 rely only
on these properties, it is apparent that, further than requiring that α /∈ DPCP,
the structure of α is not relevant. It is instead dependent on var(α).

Each condition from Lemma 21 is relatively independent from the other, so
it is appropriate to first establish classes of morphisms satisfying each one sepa-
rately. Condition (i) is considered first. The satisfaction of Fact 23, and therefore
Condition (i) of Lemma 21 relies on specific systems of word equations having
only periodic solutions. The following proposition provides a tool for demon-
strating exactly that.

On the Dual Post Correspondence Problem 175

Proposition 25. (Lothaire [9]) All non-trivial, terminal-free word equations in
two unknowns have only periodic solutions.

In order to determine the satisfaction of Condition (i) of Lemma 21 for a par-
ticular morphism ϕ : Δ1

∗ → Δ2
∗, it is necessary to identify which morphisms

σ : Δ2
∗ → {a, b}∗ result in the composition σ◦ϕ being periodic. The next propo-

sition gives the required characteristic condition on σ for σ ◦ ϕ to be periodic.
Each term σ(γi) in equality (1) below corresponds directly to a word σ ◦ ϕ(j),
for some j ∈ Δ1. The satisfaction of the system of equalities is identical to each
word σ ◦ ϕ(i) sharing a primitive root, allowing the relationship between σ and
the periodicity of σ ◦ ϕ to be expressed formally.

Proposition 26. Let Δ1 and Δ2 be sets of variables and let ϕ : Δ1
∗ → Δ2

∗,
σ : Δ2

∗ → {a, b}∗ be morphisms. For every i ∈ Δ1, let ϕ(i) := βi, and let
{γ1, γ2, ... γn} be the set of all patterns βj such that σ(βj) �= ε. If n < 2, the
composition σ ◦ ϕ is trivially periodic. For n ≥ 2, σ ◦ ϕ is periodic if and only if
there exist k1, k2, ... kn ∈ N such that

σ(γ1)
k1 = σ(γ2)

k2 = · · · = σ(γn)
kn . (1)

Corollary 27. Let Δ1 and Δ2 be sets of variables, let ϕ : Δ1
∗ → Δ2

∗ be a
morphism, and let ϕ(i) := βi for every i ∈ Δ1. The morphism ϕ satisfies
Condition (i) of Lemma 21 if and only if, for every non-periodic morphism
σ : Δ2

∗ → {a, b}∗,

(i) There are at least two patterns βi such that σ(βi) �= ε, and
(ii) there do not exist k1, k2, ..., kn ∈ N such that

σ(γ1)
k1 = σ(γ2)

k2 = · · · = σ(γn)
kn (2)

where {γ1, γ2, ..., γn} is the set of all patterns βi such that σ(βi) �= ε.

Corollary 27 also provides a proof technique. Since there are finitely many com-
binations of β1, β2, ..., βm, it is clear that the satisfaction of Condition (ii) of
Corollary 27 will always rely on finitely many cases. By considering all possible
sets {γ1, γ2,γn}, infinitely many morphisms can be accounted for in a finite
and often very concise manner. Thus, it becomes much simpler to demonstrate
that there cannot exist a non-periodic morphism σ such that σ◦ϕ is periodic, and
therefore that Condition (i) of Lemma 21 is satisfied. We now give an example
of such an approach.

Example 28. Let Δ1 := {1, 2, 3, 4} and let Δ2 := {5, 6, 7, 8}∗. Let ϕ : Δ1
∗ → Δ2

∗

be the morphism given by ϕ(1) := 5 · 6, ϕ(2) := 6 · 5, ϕ(3) := 5 · 6 · 7 · 7 and
ϕ(4) := 6 ·8 ·8 ·5. Consider all non-periodic morphisms σ : {5, 6, 7, 8}∗ → {a, b}∗.
Note that if σ(5 · 6) �= ε then σ(6 · 5) �= ε and vice-versa. Also note that since
σ is non-periodic, there must be at least two variables x such that σ(x) �= ε.
So if either σ(5 · 6 · 7 · 7) �= ε, or σ(6 · 8 · 8 · 5) �= ε, there must be at least one
other pattern βj with σ(βj) �= ε. Therefore, for any non-periodic morphism σ,

176 J.D. Day, D. Reidenbach, and J.C. Schneider

there exists a minimum of two patterns βi such that σ(βi) �= ε. Now consider all
possible cases.

Assume first that σ(5 · 6) = ε. Clearly σ(5) = σ(6) = ε, so σ(6 · 5) = ε.
Since σ is non-periodic, σ(7) �= ε and σ(8) �= ε. By Proposition 26, σ ◦ ϕ is
periodic if and only if there exist k1, k2 ∈ N such that σ(7 · 7)k1 = σ(8 · 8)k2 . By
Proposition 25, this is the case only if σ is periodic and this is a contradiction,
so σ ◦ ϕ is non-periodic.

Assume σ(5 · 6) �= ε (so σ(6 · 5) �= ε, σ(6 · 8 · 8 · 5) �= ε, and σ(5 · 6 · 7 · 7) �= ε),
then by Proposition 26, the composition σ ◦ ϕ is periodic if and only if there
exist k1, k2, k3, k4 ∈ N such that

σ(5 · 6)k1 = σ(6 · 5)k2 = σ(6 · 8 · 8 · 5)k3 = σ(5 · 6 · 7 · 7)k4 (3)

By Proposition 25, the first equality only holds if there exist a word w ∈ {a, b}∗
and numbers p, q ∈ N0 such that σ(5) = wp and σ(6) = wq. Thus, equality (3)
is satisfied if and only if wk1(p+q) = (wq · σ(8 · 8) · wp)k3 and wk1(p+q) = (wp+q ·
σ(7 · 7))k4 . By Proposition 25, this is only the case if there exist r, s ∈ N such
that σ(7) = ws and σ(8) = wr. Thus, σ is periodic, which is a contradiction, so
the composition σ ◦ ϕ is non-periodic.

All possibilities for non-periodic morphisms σ have been exhausted, so for any
non-periodic morphism σ : {5, 6, 7, 8}∗ → {a, b}∗, the composition σ ◦ ϕ is also
non-periodic and ϕ satisfies Condition (i) of Lemma 21. ♦

Condition (ii) of Lemma 21 is now considered. Fact 24 shows that it relies on
the (non-)existence of distinct, non-periodic morphisms which agree on a set
of patterns (more precisely, the set of morphic images of single variables). The
following proposition provides a characterisation for morphisms which satisfy
the condition.

Proposition 29. Let Δ1, Δ2 be sets of variables, and let ϕ : Δ1
∗ → Δ2

∗ be
a morphism. For every i ∈ Δ1, let ϕ(i) := βi. The morphism ϕ satisfies Con-
dition (ii) of Lemma 21 if and only if {β1, β2, . . . , βn} is a periodicity forcing
set.

Proposition 29 facilitates a formal comparison of the word equations involved
in directly finding patterns not in DPCP and the word equations that need to
be considered when using Lemma 21. Furthermore, it shows the impact of the
choice of α on the complexity of applying the Lemma. However, it does not
immediately provide a nontrivial morphism ϕ that satisfies Condition (ii) of
Lemma 21. Therefore, we consider the following technical tool:

Proposition 30. Let Δ1, Δ2 be sets of variables, and let ϕ : Δ1
∗ → Δ2

∗ be
a morphism. For every k ∈ Δ1, let ϕ(k) := βk and let βi /∈ DPCP for some
i ∈ Δ1. For every x ∈ Δ2\ var(βi), let there exist βj and patterns γ1, γ2, such
that βj = γ1 · γ2 and

On the Dual Post Correspondence Problem 177

(i) x ∈ var(γ1), and for every y ∈ var(γ1) with y �= x, y ∈ var(βi),
(ii) γ1 /∈ DPCP with | var(γ1)| ≥ | var(βi)|,
(iii) P(γ2) and P(βi) are linearly dependent.

Then ϕ satisfies Condition (ii) of Lemma 21.

The following example demonstrates the structure given in Proposition 30. It
is chosen such that it also satisfies Corollary 27, allowing for the construction
given in Proposition 32.

Example 31. Let Δ1 := {4, 5}, and let Δ2 := {1, 2, 3}. Let ϕ : Δ1
∗ → Δ2

∗ be
the morphism given by ϕ(4) = β4 := 1 · 2 · 1 · 1 · 2 and ϕ(5) := γ1 · γ2 where
γ1 := 1 ·3 ·1 ·1 ·3 and γ2 := 2 ·1 ·1 ·2 ·1. Notice that β4 and γ1 are not in DPCP.
Let σ, τ : {1, 2, 3}∗ → {a, b}∗ be distinct morphisms, at least one of which is
non-periodic, that agree on β4. By definition of DPCP, this is only possible if σ
and τ agree on, or are periodic over {1, 2}.

If σ and τ agree on {1, 2}, then they agree on γ2. This means that σ(γ1 ·γ2) =
τ(γ1 · γ2) if and only if σ(1 · 3 · 1 · 1 · 3) = τ(1 · 3 · 1 · 1 · 3). Furthermore σ and τ
are distinct, so cannot agree on 3. However, since σ(1) = τ(1) but σ(3) �= τ(3),
this cannot be the case, therefore σ ◦ ϕ and τ ◦ ϕ are distinct.

Note that if σ and τ agree on exactly one variable in {1, 2}, then they cannot
agree on β4. Consider the case that σ and τ do not agree on 1 or 2. Then they
must be periodic over {1, 2}, so σ(2 ·1 ·1 ·2 ·1) = σ(1 ·2 ·1 ·1 ·2) (and likewise for
τ). It follows that σ(2 · 1 · 1 · 2 · 1) = τ(2 · 1 · 1 · 2 · 1) and, as a consequence, σ and
τ agree on γ1 · γ2 if and only if they agree on γ1 = 1 · 3 · 1 · 1 · 3. However, due to
the non-periodicity of σ or τ , σ(3) or τ(3) must have a different primitive root
to σ(1) or τ(1), respectively. This means that σ and τ are distinct over {1, 3},
and at least one of them must be non-periodic over {1, 3}. This implies that σ
and τ cannot agree on γ1, and therefore σ ◦ ϕ and τ ◦ ϕ are distinct.

Hence, there do not exist two distinct morphisms, at least one of which is
non-periodic, that agree on 1 · 2 · 1 · 1 · 2 and 1 · 3 · 1 · 1 · 3 · 2 · 1 · 1 · 2 · 1.
These patterns, thus, form a periodicity forcing set, and, by Proposition 29, the
morphism ϕ satisfies Condition (ii) of Lemma 21. ♦

The next proposition introduces a pattern over three variables which is not
in DPCP. This not only demonstrates that this is possible for patterns over
more than two variables, but provides the basis for the construction given in
Theorem 33, which shows that there are patterns of arbitrarily many variables
not in DPCP.

Proposition 32. The pattern 1 · 2 · 1 · 1 · 2 · 1 · 3 · 1 · 1 · 3 · 2 · 1 · 1 · 2 · 1 · 1 · 2 · 1 ·
1 · 2 · 1 · 2 · 1 · 1 · 2 · 1 · 3 · 1 · 1 · 3 · 2 · 1 · 1 · 2 · 1 is not in DPCP.

It is now possible to state the following theorem, the proof of which provides a
construction for a pattern not in DPCP over an arbitrary number of variables.
This is achieved by considering, for any n ≥ 2, the morphism ϕn : {1, 2, ... ,
n}∗ → {1, 2, ... , n + 1}∗, given by ϕn(1) := 1 · 2 · 1 · 1 · 2, and for 2 ≤ x ≤ n,
ϕn(x) := 1 · (x + 1) · 1 · 1 · (x + 1) · 2 · 1 · 1 · 2 · 1. This morphisms satisfies

178 J.D. Day, D. Reidenbach, and J.C. Schneider

the conditions for Lemma 21, i. e., it maps any n-variable pattern that is not in
DPCP to an n+ 1-variable pattern that is also not in DPCP. It follows that if
there exists a pattern with n variables not in DPCP, then there exists a pattern
with n variables not in DPCP. Thus, by induction, there exist such patterns for
any number of variables.

Theorem 33. There are patterns of arbitrarily many variables not in DPCP.

Hence, we may conclude that the Dual PCP is nontrivial for all alphabets with
at least two variables, and we can show this in a constructive manner.

Acknowledgements. The authors wish to thank the anonymous referees for
their helpful remarks and suggestions. Furthermore, numerous enlightening dis-
cussions with Paul C. Bell on an earlier version of this paper are gratefully
acknowledged.

References

1. Culik II., K.: A purely homomorphic characterization of recursively enumerable
sets. Journal of the ACM 26, 345–350 (1979)

2. Culik II, K., Karhumäki, J.: On the equality sets for homomorphisms on
free monoids with two generators. Theoretical Informatics and Applications
(RAIRO) 14, 349–369 (1980)

3. Czeizler, E., Holub, Š., Karhumäki, J., Laine, M.: Intricacies of simple word equa-
tions: An example. International Journal of Foundations of Computer Science 18,
1167–1175 (2007)

4. Engelfriet, J., Rozenberg, G.: Equality languages and fixed point languages. Infor-
mation and Control 43, 20–49 (1979)

5. Freydenberger, D.D., Nevisi, H., Reidenbach, D.: Weakly unambiguous morphisms.
Theoretical Computer Science 448, 21–40 (2012)

6. Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic im-
ages of strings. International Journal of Foundations of Computer Science 17,
601–628 (2006)

7. Hadravová, J., Holub, Š.: Large simple binary equality words. International Journal
of Foundations of Computer Science 23, 1385–1403 (2012)

8. Karhumäki, J., Petre, E.: On some special equations on words. Technical Report
583, Turku Centre for Computer Science, TUCS (2003),
http://tucs.fi:8080/publications/insight.php?id=tKaPe03a

9. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
10. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: P, NP, and the Post Correspon-

dence Problem. Information and Computation 121, 135–142 (1995)
11. Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American

Mathematical Society 52, 264–268 (1946)
12. Reidenbach, D., Schneider, J.C.: Morphically primitive words. Theoretical Com-

puter Science 410, 2148–2161 (2009)
13. Salomaa, A.: Equality sets for homomorphisms of free monoids. Acta Cybernet-

ica 4, 127–139 (1978)
14. Schneider, J.C.: Unambiguous erasing morphisms in free monoids. Theoretical

Informatics and Applications (RAIRO) 44, 193–208 (2010)

http://tucs.fi:8080/publications/insight.php?id=tKaPe03a

Brzozowski Algorithm

Is Generically Super-Polynomial
for Deterministic Automata�

Sven De Felice and Cyril Nicaud

LIGM, Université Paris-Est & CNRS, 77454 Marne-la-Vallée Cedex 2, France
{sdefelic,nicaud}@univ-mlv.fr

Abstract. We study the number of states of the minimal automaton of
the mirror of a rational language recognized by a random deterministic
automaton with n states. We prove that, for any d > 0, the probability
that this number of states is greater than nd tends to 1 as n tends
to infinity. As a consequence, the generic and average complexities of
Brzozowski minimization algorithm are super-polynomial for the uniform
distribution on deterministic automata.

1 Introduction

Brzozowski proved [5] that determinizing a trim co-deterministic automaton
which recognizes a language L yields the minimal automaton of L. This can
be turned into a simple minimization algorithm: start with an automaton, com-
pute its reversal, determinize it and reverse the result in order to obtain a co-
deterministic automaton recognizing the same language. A last determinization
gives the minimal automaton, by Brzozowski’s property.

The determinization steps use the classical subset construction, which is well-
known to be of exponential complexity in the worst-case. The co-deterministic
automaton An of Fig. 1 is a classical example of such a combinatorial explosion:
it has n states and its minimal automaton has 2n−1 states.

1 2 3 4 n−1 n

a, b

a a, b a, b a, b a, b a, b

Fig. 1. Determinizing this co-deterministic automaton An with n states, which recog-
nizes A∗aAn−2, yields a minimal automaton with 2n−1 states

How good is Brzozowski minimization algorithm? If the input is a non-
deterministic automaton, the combinatorial explosion can be unavoidable, as

� This work is supported by the French National Agency (ANR) through ANR-10-
LABX-58 and through ANR-2010-BLAN-0204.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 179–190, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

180 S. De Felice and C. Nicaud

for An, and this algorithm can be a good solution (see [17] for an experimen-
tal comparison of Brzozowski algorithm versus determinization combined with
Hopcroft algorithm). However, if the input is a deterministic automaton, Brzo-
zowski algorithm still has exponential worst-case complexity, which is easily seen
by taking the reverse of An as input. Since there exists polynomial solutions to
minimize deterministic automata, such as Hopcroft algorithm [13] which runs in
time O(n log n), there is no use for Brzozowski algorithm in the deterministic
case, unless the combinatorial explosion happens very rarely.

Let L be the language recognized by a n-state deterministic automaton taken
uniformly at random. In this article we estimate the typical number of states of
the minimal automaton of the mirror L̃ of L. More precisely, we prove that this
quantity is generically super-polynomial, that is, for any d > 0, the probability
that there are more than nd states in the minimal automaton of L̃ tends to 1 as
n tends to infinity.

As a consequence, Brzozowski algorithm has super-polynomial generic and
average complexity when used on deterministic automata, for the uniform dis-
tribution: the combinatorial explosion is almost always met during the process.

Some Related Works. The interest in statistical properties of random deter-
ministic automata started with the work of Korshunov [14], who studied their
combinatorics and exhibited some of their typical behavior. In recent years, an
increased activity on the topic aimed at giving mathematical proofs for phenom-
ena observed experimentally. For instance, it was proved in [1,8] that the average
complexity of Moore algorithm, another minimization algorithm, is significantly
better than its worst-case complexity, making this algorithm a reasonable solu-
tion in practice. The reader can find some results on the average state complexity
of operations under different settings in [16,3]. Let us also mention the recent
article [2], in the same area, which focus on quantifying the probability that a
random deterministic automaton is minimal.

2 Preliminaries

For any n ≥ 1, let [n] denote the set {1, . . . , n}. If E is a finite set, we denote
its cardinality by |E| and its power set by 2E. A sequence of non-negative real
numbers (xn)n≥1 grows super-polynomially (or is super-polynomial) when, for
every d > 0, there exists some nd such that for every n ≥ nd, xn ≥ nd.

2.1 Automata

Basic Definitions. Let A be a finite alphabet, an automaton A is a tuple
(Q, δ, I, F), where Q is its finite set of states, I ⊆ Q is its set of initial states and
F ⊆ Q is its set of final states. Its transition function is a (partial) map from
Q×A to 2Q. A transition of A is a tuple (p, a, q) ∈ Q×A×Q, which we write

p
a−→ q, such that q ∈ δ(p, a). The map δ is classically extended by morphism to

Q×A∗. We denote by L(A) the set of words recognized by A.

Brzozowski Algorithm Is Generically Super-Polynomial 181

A deterministic and complete automaton is an automaton such that |I| = 1
and for every p ∈ Q and a ∈ A, |δ(p, a)| = 1; for such an automaton we consider
that δ is a (total) map from Q×A∗ to Q to simplify the notations.

A state p in an automaton is accessible (resp. co-accessible) when there is
a path from an initial state to p (resp. from p to a final state). The accessible
part (resp. co-accessible part) of an automaton is the set of its accessible states
(resp. co-accessible states). A trim automaton is an automaton whose states are
all accessible and co-accessible. If A is an automaton, we denote by Trim(A)
the automaton obtained after removing states that are not accessible or not
co-accessible.

For any automaton A = (Q, δ, I, F), we denote by Ã the reverse of A, which

is the automaton Ã = (Q, δ̃, F, I), where p
a−→ q is a transition of Ã if and only

if q
a−→ p is a transition of A. The automaton Ã recognizes the mirror1 of L(A).

An automaton is co-deterministic when its reverse is deterministic.
Recall that the minimal automaton of a rational language L is the smallest

deterministic and complete automaton2 that recognizes L. To each rational lan-
guage L corresponds a minimal automaton, which is unique up to isomorphism.

Subset Construction and Brzozowski Algorithm. If A = (Q, δ, I, F) is
a non-deterministic automaton, it is classical that the subset automaton of A
defined by

B =
(
2Q, γ, {I}, {X ∈ 2Q | F ∩X �= ∅}

)
is a deterministic automaton that recognizes the same language, where for every
X ∈ 2Q and every a ∈ A, γ(X, a) = ∪p∈Xδ(p, a). This is of course still true if we
only take the accessible part of B, and this is not a difficulty when implementing
it, since the accessible part of B can be built on the fly, using the rule for γ in a
depth-first traversal of B starting from I. We denote by Subset(A) the accessible
part of the subset automaton of A.

In [5], Brzozowski established the following result:

Theorem 1 (Brzozowski). If A is a trim co-deterministic automaton then
Subset(A) is the minimal automaton of L(A).

This theorem readily yields an algorithm to compute the minimal automaton of
the language recognized by an automaton A, based on the subset construction:
since B = Subset(Trim(Ã)) is a deterministic automaton recognizing the mirror
of L(A), then Subset(Trim(B̃)) is the minimal automaton of L(A).

2.2 Combinatorial Structures

Permutations. A permutation of size n is a bijection from [n] to [n]. A size-n
permutation σ can be represented by a directed graph of set of vertices [n], with
an edge i → j whenever σ(i) = j. As σ is a bijection, such a graph is always a

1 If u = u0 . . . un−1 is a word of length n, the mirror of u is the word ũ = un−1 . . . u0.
2 Minimal automata are not always required to be complete in the literature.

182 S. De Felice and C. Nicaud

union of cycles. The order of a permutation is the smallest positive integer m
such that σm the identity. It is equal to the least common multiple (lcm) of the
lengths of its cycles.

Mappings. A mapping of size n is a total function from [n] to [n]. As done for
permutations, a mapping f can be seen as a directed graph with an edge i → j
whenever f(i) = j. Such a graph is no longer a union of cycles, but a union of
cycles of trees (trees whose roots are linked into directed cycles), as depicted in
Fig. 2. Let f be a size-n mapping. An element x ∈ [n] is a cyclic point of f when
there exists an integer i > 0 such that f i(x) = x. The cyclic part of a mapping
f is the permutation obtained when restricting f on its set of cyclic points. The
normalized cyclic part of f is obtained by relabelling the c cyclic points of f by
elements of [c] while keeping their relative order (see Fig 2).

1

2

75 4 8

3
6

9

10
7 43

3 21

Fig. 2. A mapping of {1, . . . , 10} seen as a directed graph on the left. Its cyclic part
is depicted on the upper right, and its normalized cyclic part on the lower right. The
normalization is obtained by relabelling the 3 vertices with elements of {1, 2, 3}, while
keeping the relative order; hence 3 → 1, 4 → 2 and 7 → 3.

Automata as Combinatorial Structures. In the sequel, A is always a fixed
alphabet with k ≥ 2 letters. Let An denote the set of all deterministic and
complete automata on A whose set of states is [n] and whose initial state is
1. Such an automaton A is characterized by the tuple (n, δ, F). A transition
structure is an automaton without final states, and we denote by Tn the set
of n-state transition structures with the same label restrictions as for An. If
A ∈ An, an a-cycle of A is a cycle of the mapping induced by a, i.e. p $→ δ(p, a).
If C is an a-cycle of length �, the word associated to C is the word u of length
� on the alphabet {0, 1} obtained as follows: if x is the smallest element of C,
ui = 1 if and only if δ(x, ai) ∈ F , for i ∈ {0, . . . , �−1}. In other words, one starts
at x and follows the cycle, writing a 1 when the current state is final and a 0
otherwise. An a-cycle is primitive when its associated word u is primitive, that
is, when u cannot be written u = vm for some word v and some integer m ≥ 2.

Brzozowski Algorithm Is Generically Super-Polynomial 183

2.3 Probabilities on Automata and Genericity

A probabilistic model is a sequence (Pn)n≥1 of probability measures on the same
space. A property P is said to be generic for the probabilistic model (Pn)n≥1

when the probability that P is satisfied tends to 1 as n tends to infinity.
In our settings, we work on a set E of combinatorial objects with a notion of

size, and we will only consider probabilistic models where the support of Pn is
the finite set En of size-n objects. The uniform model (or uniform distribution
which is a slight abuse of notation since there is one distribution for each n) on
a set E = ∪n≥1En is defined for any e ∈ En by Pn({e}) = 1

|En| . The reader is

referred to [12] for more information on combinatorial probabilistic models.
For any 0 < b < 1, the Bernoulli model of parameter b (or just a Bernoulli

model for short) on deterministic automata is the model where an automaton
of size-n is obtained by first drawing an element of Tn under the uniform dis-
tribution, then choosing whether each state is final or not with probability b,
independently: the probability of an element A ∈ An with f final states is by

definition bf (1−b)n−f

|Tn| . The uniform distribution on deterministic automata is ob-

tained by choosing b = 1
2 .

3 Main Results

Our main result is Theorem 2 below, which gives a super-polynomial lower bound
for the generic number of states of the minimal automaton of the mirror.

Theorem 2. Consider a Bernoulli model for automata on an alphabet with at
least two letters. For any d > 0, the minimal automaton of the mirror of L,
where L is the language recognized by a random deterministic n-state automaton,
generically has a super-polynomial number of states.

This directly yields the generic complexity of Brzozowski algorithm, and there-
fore its average case complexity. It also emphasizes that, in our case, the generic
complexity analysis is more precise than the average case analysis: a negligible
proportion of bad cases could also have lead to a bad average complexity.

Corollary 1 (Average complexity). For any fixed alphabet with at least two
letters, the generic and average complexity of Brzozowski algorithm is super-
polynomial for Bernoulli models on deterministic automata.

Proof. It is generically super-polynomial by Theorem 2. Hence for any d > 0,
the complexity is greater than nd+1 with probability more than 1

2 , for n large
enough. Thus, the average complexity is bounded from below by 1

2n
d+1 > nd for

n large enough.
�

Lemma 1 below is the main ingredient of the proof of Theorem 2, as it allows
to focus on a-cycles only, which contains enough information to exhibit a lower
bound. The other letters are necessary to prove that such a-cycles are accessible
in a random automaton, as we shall see in Section 4.

184 S. De Felice and C. Nicaud

Lemma 1. Let A ∈ An be a deterministic automaton that contains m primitive
a-cycles C1, . . .Cm of length at least two that are all accessible. The minimal
automaton of L(Ã) has at least lcm(|C1|, . . . , |Cm|) states.

Proof. By Theorem 1, the minimal automaton of the mirror of L(A) is obtained
by determinizing the reverse of the accessible part of A. Since the a-cycles are
accessible, they are still there after removing the non-accessible part. Moreover,
as they are primitive and of length at least two, they necessarily contain at least
one final state. Hence, they are also co-accessible.

Let C = ∪j∈[m]Cj and let σ be the permutation of C defined by σ(x) = y if
and only if δ(y, a) = x. This permutation is well defined, since every element of
C has a unique preimage by a that lies in C. We are interested in the natural
action of σ on the subsets of C: let F be the set of final states of A, which is also
the set of initial states of Ã, and consider the set X = C ∩ F . Let � be the size
of the orbit of X under the action of < σ >. We have σ�(X) = X . Let Cj be one
of the cycles and let Xj = Cj ∩ X . The set Cj is stable under the action of σ,
and Xj ⊆ X , thus σ�(Xj) = Xj. Hence, the size of its orbit under the action of
< σ > divides �. Moreover, since Cj is primitive, there are exactly |Cj | elements
in the orbit of Xj , and thus |Cj | divides � for every j ∈ [m]. Hence, � is the lcm of

the cycles’ lengths. Therefore, by looking at the intersection of δ̃(F, ai) with C,
for i ≥ 0, there are at least lcm(|C1|, . . . , |Cm|) accessible states in Subset(Ã).
�

4 Accessibility in Random Transition Structures

The very first part of the algorithm is to remove useless states, and in particular
states that are not accessible. The precise study of the number of accessible
states in a random transition structure has been done in [6]: if Xn is the random
variable associated with the number of accessible states, the expectation of Xn

is equivalent to vk · n, for some explicit constant vk, and the distribution is
asymptotically Gaussian. In the sequel, we only need the following weaker result
established in [6]:

Lemma 2. There exists two real numbers α and β, with 0 < α < β < 1 such
that the number of accessible states in a random transition structure of size n is
generically in the interval [αn, βn].

In order to use Lemma 1, we need to exhibit large enough primitive a-cycles in a
random deterministic automaton in the proof of Theorem 2. This can only work
if those cycles are in the accessible part of the automaton, which is established
in Proposition 1 below. The proof directly follows a more general idea given by
Andrea Sportiello in a private communication.

Proposition 1. For the uniform distribution on transition structures of size n,
all the a-cycles of lengths greater than logn are generically accessible.

Proof. Let i ∈ [n] and let A be an accessible transition structure with i states,
whose states labels are in [n] and such that 1 labels the initial state. By a

Brzozowski Algorithm Is Generically Super-Polynomial 185

direct counting argument [6], there are exactly nk(n−i) transition structures in
Tn whose accessible part is A. Let us bound from above the number of such
automata having a non-accessible a-cycle of size �: to create such a cycle, one
need to choose the � state labels not in the accessible part and how these states
are circularly linked using transitions labelled by a. Other transitions can end
at any of the n states. There are therefore no more than

(
n−i
�

)
(�− 1)! ·nk(n−i)−�

possibilities. Hence, the probability that it happens, conditioned by having A as
accessible part, is bounded from above by(

n− i

�

)
(�− 1)! n−� =

n−�

�
(n− i)(n− i− 1) · · · (n− i− �+ 1) ≤ (n− i)�n−�.

This bound only depends on the size of the accessible part. LetXn be the random
variable associated with the number of states in the accessible part of a random
transition structure. Using the formula above, the probability of having an a-
cycle of length equal to � that is not accessible and at least αn accessible states
is bounded from above by3

n∑
i=αn

(n− i)�n−� · P(Xn = i) ≤ (1− α)�.

Hence the probability of having a non-accessible a-cycle of length at least � and

at least αn accessible states is bounded from above by
∑(1−α)n

j=� (1 − α)j which
tends to 0 as � tends to infinity, as the remainder of a converging series. This
concludes the proof, using � = logn, since by Lemma 2, the accessible part of a
transition structure generically has more than αn states.
�

5 Proof of Theorem 2

Our proof of Theorem 2 relies on Lemma 1 and on a famous theorem of Erdős
and Turán: let On be the random variable associated with the order of a random
permutation of size n. Erdős and Turán theorem states that the mean value
of logOn is equivalent to 1

2 log
2 n, and that when normalized4, it converges in

distribution to the normal law. In the sequel, we shall only need an intermediate
result they use to establish their proof, which is the following [10, Eq. (14.3)]:

Proposition 2 (Erdős and Turán). For the uniform distribution, the order
of a random permutation of size n is generically greater than exp(13 log

2 n).

The idea is to use Proposition 2 to quantify the lcm of the primitive accessible
a-cycles in a random automaton, under the Bernoulli model. This requires some
care, since not all a-cycles are necessarily accessible or primitive.

3 For readability we have not use integer parts in the bounds, here and in the sequel;
this does not change the results.

4 Centered around its means and divided by its standard deviation.

186 S. De Felice and C. Nicaud

5.1 Accessible a-Cycles

We first focus on the shape of random automata and therefore work on transi-
tion structures. By Proposition 1, all a-cycles of length greater than logn are
generically accessible, and we need to exhibit enough such cycles.

The action of letter a in a uniform element of Tn is a uniform size-n random
mapping. These objects have been studied intensively, and their typical proper-
ties are well-known [11]. We shall need the two following results in the sequel.

Lemma 3. For any ε > 0, the number of cyclic points of a size-n random
mapping is generically greater than n

1
2−ε.

Proof. Let α be a real number such that 1
2 − ε < α < 1

2 . Let f be a mapping
of size n, and consider the sequence 1, f(1), f2(1) = f(f(1)), . . . At some point,
f i(1) is for the first time equal to a f j(1) for j < i, and we have a cycle of length
i− j+1. This reduces the problem to the Birthday Paradox: we repeatedly draw
a random number from [n] (the image of the new iteration of f) until a number
is seen twice. Let Xn be the random variable associated with the number of
distinct numbers in the sequence, we classically have:

P(Xn ≥ m) =

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− m− 1

n

)
.

Moreover, for x ∈ (0, 12), 1− x ≥ exp(−2x), and therefore, for m ≤ 1
2n we have

P(Xn ≥ m) ≥ exp

(
− 2

n

m−1∑
i=1

i

)
= exp

(
−m(m− 1)

n

)
.

Hence P(Xn < nα) = O(n2α−1), and since α < 1
2 , there are generically more

than nα distinct iterations. Moreover, by symmetry, if f i(1) = f j(1) is the

first collision, j is a uniform element of {0, . . . , i− 1}. Since n
1
2−ε is significantly

smaller than nα, the collision is generically not on one of the n
1
2−ε last iterations,

and the cycle is of length greater than n
1
2−ε. This concludes the proof, since the

number of cyclic points is at least the length of this cycle.
�

Lemma 4. Let i ∈ [n] and let σ and τ be two permutations of [i]. The probability
that the normalized cyclic permutation of a uniform size-n random mapping is
σ is equal to the probability it is τ .

Proof. (sketch) This is a folklore result. From its graph representation, one can
see that a mapping is uniquely determined by its set T = {T1, . . . , Tm} of trees
and the permutation of their roots. Conditioned to have T as set of trees, the
normalized cyclic permutation of a random mapping is therefore a uniform per-
mutation. The result follows directly, by the law of total probabilities.
�

Hence generically, the number of a-cyclic states is greater than, say, n
1
3 , and

conditioned by its size, the normalized cyclic permutation of a random mapping

Brzozowski Algorithm Is Generically Super-Polynomial 187

follows the uniform distribution. We can therefore use the statistical properties of
random uniform permutations, which are very well-known as well. In particular,
we shall need the following generic upper bound for the number of cycles.

Lemma 5. For the uniform distribution, a size-n random permutation generi-
cally has less than 2 logn cycles.

Proof. The expectation and standard deviation of the number of cycles in a
random permutation are well-known (see for instance [12, Example IX.9 p. 644])
and are respectively equivalent to logn and

√
logn. It implies by Chebyshev’s

inequality that a random permutation has generically less than 2 logn cycles.
�

The following proposition summarizes the results collected so far.

Proposition 3. Generically in a random size-n transition structure, there are
more than n

1
3 a-cyclic states, organized in less than 2 logn a-cycles, and all

a-cycles of length greater than log n are accessible.

Proof. Let � be an integer such that n
1
3 < � ≤ n. Let Cn be the random variable

associated with the number of a-cyclic points in a random size-n transition
structure. Let also N� be the random variable associated with the number of
cycles in a random permutation of size �. By Lemma 5, there exists a non-
increasing sequence (εn)n≥1 that tends to 0 such that

P(N� < 2 log �) ≥ 1− ε�.

Let Gn ⊆ Tn denote the set of transition structures with more than n
1
3 a-cyclic

states that are organized in less than 2 logn a-cycles. If Tn represents an element
of Tn taken uniformly at random, we have

P(Tn ∈ Gn) =

n∑
�=n1/3

P(Tn ∈ Gn | Cn = �) · P(Cn = �).

By Lemma 4, P(Tn ∈ Gn | Cn = �) = P(N� < 2 logn) ≥ P(N� < 2 log �),
since under the condition Cn = �, the a-cyclic part of Tn is a uniform random
permutation of length �. Hence

P(Tn ∈ Gn) ≥ (1− εn1/3)

n∑
�=n1/3

P(Cn = �) = (1− εn1/3) · P(Cn ≥ n1/3).

Hence, by Lemma 3, a random transition structure is generically in Gn. This
concludes the proof, since by Proposition 1, all a-cycles of length greater than
logn are generically accessible.
�

5.2 Lcm of Truncated Random Permutations

Since we cannot guarantee that small cycles are accessible in a typical transition
structure, we need to adapt Proposition 2 to obtain the needed lower bound for
the lcm of the lengths of accessible a-cycle. In a size-n permutation, a large cycle
(resp. small cycle) denote a cycle of length greater than (resp. at most) 3 logn.

188 S. De Felice and C. Nicaud

Lemma 6. The lcm of the lengths of the large cycles in a uniform random
permutation of size n is generically greater than exp(14 log

2 n).

Proof. By Lemma 5 there are generically less than 2 logn cycles in a random per-
mutation. The number of points in small cycles is therefore generically bounded
from above by 6(logn)2. For a given permutation, we split the lengths of its
cycles into two sets L and S, whether they are greater than 3 logn or not. The
order of the permutation is the lcm of the lengths of its cycles, and is therefore
bounded from above by lcm(L) · lcm(S). Hence

lcm(L) ≥ lcm(L ∪ S)

lcm(S)
.

By Landau’s theorem [15], the maximal order of a permutation of length � is
equivalent to exp(

√
� log �) and therefore bounded from above by 2 exp(

√
� log �)

for large enough �. Hence, the less than 6(logn)2 points in small cycles form
a permutation whose order, which is equal to lcm(S), is bounded from above

by 2 exp(
√
6 log2 n log(6 log2 n)). Using this bound and Proposition 2 yields the

result: for n large enough, we have a generic lower bound of

exp(13 log
2 n)

2 exp(
√
6 log2 n log(6 log2 n))

=
1

2
exp

(
1

3
log2 n−

√
6 logn log(6 log2 n)

)
≥ exp

(
1

4
log2 n

)
.

5.3 Primitivity

One last effort is required, as we need to take final states into account and
prove the generic primitivity of large cycles in a uniform random permutation
under the Bernoulli model. Recall that an a-cycle of final and non-final states
is encoded by a word with 1’s and 0’s (see Section 2.2). The following lemma
establishes the needed result.

Lemma 7. Generically, the a-cycles of length greater than logn in a random
automaton with n states are all primitive.

Proof. We first follow [7] for words on {0, 1} under the Bernoulli model of pa-
rameter b ∈ (0, 1): if a word u of length n is not primitive, there exist an integer
d ≥ 2 and a word v of length n/d such that u = vd. For such a fixed v with z

zeros, the probability that u = vd is (1− b)dzbn−dz. Since there are exactly
(
n/d
z

)
such v, the probability that u is the d-power of a word, for any fixed d ≥ 2 that
divides n, is

n/d∑
z=0

(
n/d

z

)
(1− b)dzbn−dz = (bd + (1− b)d)

n
d .

Hence the probability that u is not primitive is bounded from above by the sum of
(bd+(1−b)d)

n
d for 2 ≤ d ≤ n, which is smaller than αλn, for λ =

√
b2 + (1 − b)2

Brzozowski Algorithm Is Generically Super-Polynomial 189

and for some constant α > 0. Then, each a-cycle of length greater than logn
is non-primitive with probability bounded from above by α logn · λlog n. By
Proposition 3, the probability εn that there are more than 2 logn a-cycles tends
to 0. Hence, the probability of having a non-primitive a-cycle of length greater
than logn is bounded from above by 2α(logn)2λlogn + εn, which tends to 0.
�

5.4 Conclusion of the Proof

We now have all the ingredients to establish the proof of Theorem 2. By Propo-
sition 3, the a-cycles of a random automaton A generically form a random per-
mutation of size greater that n

1
3 . Therefore, the large a-cycles are generically of

length greater than 3 logn
1
3 = logn. Since a-cycles of size greater than logn are

generically accessible and primitive by Proposition 1 and Lemma 7, the lcm of
the large cycles’ lengths is a lower bound for the number of states of the minimal
automaton of L(Ã), by Lemma 1.

By lemma 4, conditioned by its size, the a-cyclic permutation is a uniform
permutation. Using the law of total probability and Lemma 6 we therefore ob-
tain that there are generically more than exp(14 log

2 n
1
3) states in the minimal

automaton of L(Ã), concluding the proof.

6 Conclusion and Perspectives

In this article we have found generic super-polynomial lower bounds for the
mirror operator and for the complexity of Brzozowski algorithm. These results
hold for deterministic automata under Bernoulli models, where the shape of the
automaton is chosen uniformly at random, and where each state is final with a
fixed probability b ∈ (0, 1).

These probabilistic models are interesting since they contain the uniform dis-
tribution on deterministic automata. It is however natural to consider other
distribution on automata, and we propose two directions.

The first idea is to change the distribution on final states, in order to have
less final states in a typical automaton. The proof proposed in this article can be
adapted to handle distributions where b := bn depends on n, provided there exists
0 < α < 1

2 such that both bn and 1 − bn are in Ω(1
nα). We cannot use exactly

the same approach, since the large a-cycles are not all primitive generically, but
we can still exhibit sufficiently many valid a-cycles to obtain the generic super-
polynomial lower bound. However, it does not work anymore for smaller bn (such
as bn = 1

n2/3) since generically all the a-cycles have no final states. Trying to
handle such distributions is ongoing work. Note that the other works on random
automata in the literature [1,8,2] also face the same limitations.

The other natural idea is to consider the uniform distribution on accessible
deterministic automata and not on deterministic automata. The combinatorics
of accessible deterministic automata is more involved [14,4], but it is sometimes
possible to deduce generic properties for the distribution on accessible determin-
istic automata from the distribution on accessible automata [6]. In our case, this
would require to prove that the error terms are all in o(1√

n
).

190 S. De Felice and C. Nicaud

Acknowledgment. We would like to thanks Andrea Sportiello for the fruitful
technical discussion we had in Cluny, which, amongst many other things, lead
to the proof of Proposition 1.

References

1. Bassino, F., David, J., Nicaud, C.: Average case analysis of Moore’s state mini-
mization algorithm. Algorithmica 63(1-2), 509–531 (2012)

2. Bassino, F., David, J., Sportiello, A.: Asymptotic enumeration of minimal au-
tomata. In: Dürr, Wilke (eds.) [9], pp. 88–99

3. Bassino, F., Giambruno, L., Nicaud, C.: The average state complexity of rational
operations on finite languages. International Journal of Foundations of Computer
Science 21(4), 495–516 (2010)

4. Bassino, F., Nicaud, C.: Enumeration and random generation of accessible au-
tomata. Theor. Comput. Sci. 381(1-3), 86–104 (2007)

5. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for defi-
nite events. In: Mathematical Theory of Automata. MRI Symposia Series, vol. 12,
pp. 529–561. Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y (1962)

6. Carayol, A., Nicaud, C.: Distribution of the number of accessible states in a random
deterministic automaton. In: Dürr, Wilke (eds.) [9], pp. 194–205

7. Chassaing, P., Azad, E.Z.: Asymptotic behavior of some factorizations of random
words (2010), arXiv:1004.4062v1

8. David, J.: Average complexity of Moore’s and Hopcroft’s algorithms. Theor. Com-
put. Sci. 417, 50–65 (2012)

9. Dürr, C., Wilke, T. (eds.): 29th International Symposium on Theoretical Aspects
of Computer Science, STACS 2012, Paris, France, February 29 - March 3. LIPIcs,
vol. 14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

10. Erdős, P., Turán, P.: On some problems of a statistical group-theory I. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 4, 175–186 (1965)

11. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer,
Heidelberg (1990)

12. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

13. Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automaton.
In: Kohavi, Z. (ed.) The Theory of Machines and Computations, pp. 189–196.
Academic Press (1971)

14. Korshunov, A.: Enumeration of finite automata. Problemy Kibernetiki 34, 5–82
(1978) (in Russian)

15. Landau, E.: Handbuch der lehre von der verteilung der primzahlen, vol. 2. B. G.
Teubner (1909)

16. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kutylowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999)

17. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005)

A Coloring Problem

for Sturmian and Episturmian Words

Aldo de Luca1, Elena V. Pribavkina2, and Luca Q. Zamboni3

1 Dipartimento di Matematica
Università di Napoli Federico II, Italy

aldo.deluca@unina.it
2 Ural Federal University, Ekaterinburg, Russia

elena.pribavkina@usu.ru
3 Université Claude Bernard Lyon 1, France

and University of Turku, Finland
lupastis@gmail.com

Abstract. We consider the following open question in the spirit of Ram-
sey theory: Given an aperiodic infinite word w, does there exist a finite
coloring of its factors such that no factorization of w is monochromatic?
We show that such a coloring always exists whenever w is a Sturmian
word or a standard episturmian word.

1 Introduction

Ramsey theory (including Van der Waerden’s theorem) (see [6]) is a topic of great
interest in combinatorics with connections to various fields of mathematics. A re-
markable consequence of the Infinite Ramsey Theorem applied to combinatorics
on words yields the following unavoidable regularity of infinite words1:

Theorem 1. Let A be a non-empty alphabet, w be an infinite word over A, C
a finite non-empty set (the set of colors), and c : Fact+ w → C any coloring of
the set Fact+ w of all non-empty factors of w. Then there exists a factorization
of w of the form w = V U1U2 · · ·Un · · · such that for all positive integers i and
j, c(Ui) = c(Uj).

One can ask whether given an infinite word there exists a suitable coloring map
able to avoid the monochromaticity of all factors in all factorizations of the word.
More precisely, the following variant of Theorem 1 was posed as a question by
T.C. Brown [3] and, independently, by the third author [12]:

Question 1. Let w be an aperiodic infinite word over a finite alphabet A. Does
there exist a finite coloring c : Fact+ w → C with the property that for any
factorization w = U1U2 · · ·Un · · · , there exist positive integers i, j for which
c(Ui) �= c(Uj) ?

1 Actually, the proof of Theorem 1 given by Schützenberger in [11] does not use Ram-
sey’s theorem.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 191–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

192 A. de Luca, E.V. Pribavkina, and L.Q. Zamboni

Let us observe that for periodic words the answer to the preceding question
is trivially negative. Indeed, let w = Uω, and c : Fact+ w → C be any finite
coloring. By factoring w as w = U1U2 · · ·Un · · · , where for all i ≥ 1, Ui = U
one has c(Ui) = c(Uj) for all positive integers i and j. It is easy to see that
there exist non-recurrent infinite words w and finite colorings such that for any
factorization w = U1U2 · · ·Un · · · there exist i �= j for which c(Ui) �= c(Uj). For
instance, consider the infinite word w = abω and define the coloring map as
follows: for any non-empty factor U of w, c(U) = 1 if it contains a and c(U) = 0,
otherwise. Then for any factoring w = U1U2 · · ·Un · · · , c(U1) = 1 and c(Ui) = 0
for all i > 1.

It is not very difficult to prove that there exist infinite recurrent words for
which Question 1 has a positive answer, for instance square-free, overlap-free
words, and standard Sturmian words [12].

In this paper we show that Question 1 has a positive answer for every Sturmian
word where the number of colors is equal to 3. This solves a problem raised
in both [3] and [12]. The proof requires some new combinatorial properties of
Sturmian words. Moreover, we prove that the same result holds true for aperiodic
standard episturmian words by using a number of colors equal to the number of
distinct letters occurring in the word plus one.

For all definitions and notation not explicitly given in the paper, the reader
is referred to the books [8,9]; for Sturmian words see [9, Chap. 2] and for epis-
turmian words see [4,7] and the surveys of J. Berstel [1] and of A. Glen and J.
Justin [5].

2 Sturmian Words

There exist several equivalent definitions of Sturmian words. In particular, we
recall (see, for instance, Theorem 2.1.5 of [9]) that an infinite word s ∈ {a, b}ω
is Sturmian if and only if it is aperiodic and balanced, i.e., for all factors u and
v of s such that |u| = |v| one has:

||u|x − |v|x| ≤ 1, x ∈ {a, b},

where |u|x denotes the number of occurrences of the letter x in u. Since a Stur-
mian word s is aperiodic, it must have at least one of the two factors aa and
bb. However, from the balance property, it follows that a Sturmian word cannot
have both the factors aa and bb.

Definition 1. We say that a Sturmian word is of type a (resp. b) if it does not
contain the factor bb (resp. aa).

We recall that a factor u of a finite or infinite word w over the alphabet A is
called right special (resp. left special) if there exist two different letters x, y ∈ A
such that ux, uy (resp. xu, yu) are factors of w.

A different equivalent definition of a Sturmian word is the following: A binary
infinite word s is Sturmian if for every integer n ≥ 0, s has a unique left (or

A Coloring Problem for Sturmian and Episturmian Words 193

equivalently right) special factor of length n. It follows from this that s is closed
under reversal, i.e., if u is a factor of s so is its reversal u∼.

A Sturmian word s is called standard (or characteristic) if all its prefixes are
left special factors of s. As is well known, for any Sturmian word s there exists
a standard Sturmian word t such that Fact s = Fact t, where for any finite or
infinite word w, Factw denotes the set of all its factors including the empty
word.

Definition 2. Let s ∈ {a, b}ω be a Sturmian word. A non-empty factor w of s
is rich in the letter z ∈ {a, b} if there exists a factor v of s such that |v| = |w|
and |w|z > |v|z.

From the aperiodicity and the balance property of a Sturmian word one easily
derives that any non-empty factor w of a Sturmian word s is rich either in the
letter a or in the letter b but not in both letters. Thus one can introduce for any
given Sturmian word s a map

rs : Fact
+ s → {a, b}

defined as follows: for any non-empty factor w of s, rs(w) = z ∈ {a, b} if w is
rich in the letter z. Clearly, rs(w) = rs(w

∼) for any w ∈ Fact+ s.
For any letter z ∈ {a, b} we shall denote by z̄ the complementary letter of z,

i.e., ā = b and b̄ = a.

Lemma 1. Let w be a non-empty right special (resp. left special) factor of a
Sturmian word s. Then rs(w) is equal to the first letter of w (resp. rs(w) is
equal to the last letter of w).

Proof. Write w = zw′ with z ∈ {a, b} and w′ ∈ {a, b}∗. Since w is a right special
factor of s one has that v = w′z̄ is a factor of s. Thus |w| = |v| and |w|z > |v|z ,
whence rs(w) = z. Similarly, if w is left special one deduces that rs(w) is equal
to the last letter of w.
�

3 Preliminary Lemmas

Lemma 2. Let s be a Sturmian word such that

s =
∏
i≥1

Ui,

where the Ui’s are non-empty factors of s. If for every i and j, rs(Ui) = rs(Uj),
then for any M > 0 there exists an integer i such that |Ui| > M .

Proof. Suppose to the contrary that for some positive integer M we have that
|Ui| ≤ M for each i ≥ 1. This implies that the number of distinct Ui’s in the
sequence (Ui)i≥1 is finite, say t. Let rs(Ui) = x ∈ {a, b} for all i ≥ 1 and set for
each i ≥ 1:

fi =
|Ui|x
|Ui|

.

194 A. de Luca, E.V. Pribavkina, and L.Q. Zamboni

Thus {fi | i ≥ 1} is a finite set of at most t rational numbers. We set r =
min{fi | i ≥ 1}.

Let fx(s) be the frequency of the letter x in s defined as

fx(s) = lim
n→∞

|s[n]|x
n

,

where for every n ≥ 1, s[n] denotes the prefix of s of length n. As is well known
(see Prop. 2.1.11 of [9]), fx(s) exists and is an irrational number.

Let us now prove that r > fx(s). From Proposition 2.1.10 in [9] one derives
that for all V ∈ Fact s

|V |fx(s)− 1 < |V |x < |V |fx(s) + 1.

Now for any i ≥ 1, Ui is rich in the letter x, so that there exists Vi ∈ Fact s such
that |Ui| = |Vi| and |Ui|x > |Vi|x. From the preceding inequality one has:

|Ui|x = |Vi|x + 1 > |Vi|fx(s) = |Ui|fx(s),

so that for all i ≥ 1, fi > fx(s), hence r > fx(s).
For any n > 0, we can write the prefix s[n] of length n as:

s[n] = U1 · · ·UkU
′
k+1,

for a suitable k ≥ 0 and U ′
k+1 a prefix of Uk+1. Thus

|s[n]|x =

k∑
i=i

|Ui|x + |U ′
k+1|x.

Since |Ui|x = fi|Ui| ≥ r|Ui| and |U ′
k+1| ≤ M , one has

|s[n]|x ≥ r

k∑
i=1

|Ui| = r(n− |U ′
k+1|) ≥ rn− rM.

Thus
|s[n]|x
n

≥ r − r
M

n
,

and

fx(s) = lim
n→∞

|s[n]|x
n

≥ r,

a contradiction.
�

In the following we shall consider the Sturmian morphism Ra, that we simply
denote R, defined as:

R(a) = a and R(b) = ba. (1)

For any finite or infinite word w, Pref w will denote the set of all its prefixes.
The following holds:

A Coloring Problem for Sturmian and Episturmian Words 195

Lemma 3. Let s be a Sturmian word and t ∈ {a, b}ω such that R(t) = s. If
either

1) the first letter of t (or, equivalently, of s) is b

or

2) the Sturmian word s admits a factorization:

s = U1 · · ·Un · · · ,
where each Ui, i ≥ 1, is a non-empty prefix of s terminating in the letter a
and rs(Ui) = rs(Uj) for all i, j ≥ 1,

then t is also Sturmian.

Proof. Let us prove that in both cases t is balanced. Suppose to the contrary
that t is unbalanced. Then (see Prop. 2.1.3 of [9]) there would exists v such that

ava, bvb ∈ Fact t.

Thus
aR(v)a, baR(v)ba ∈ Fact s.

If ava �∈ Pref t, then t = λavaμ, with λ ∈ {a, b}+ and μ ∈ {a, b}ω. There-
fore R(t) = R(λ)R(ava)R(μ). Since the last letter of R(λ) is a, it follows that
aaR(v)a ∈ Fact s. As baR(v)b ∈ Fact s we reach a contradiction with the bal-
ance property of s. In case 1), t begins in the letter b, so that ava �∈ Pref t
and then t is balanced. In case 2) suppose that ava ∈ Pref t. This implies that
aR(v)a ∈ Pref s. From the preceding lemma in the factorization of s in prefixes
there exists an integer i > 1 such that |Ui| > |aR(v)a|. Since Ui−1 terminates
in a and Ui−1Ui ∈ Fact s, it follows that aaR(v)a ∈ Fact s and one contradicts
again the balance property of s. Hence, t is balanced.

Trivially, in both cases t is aperiodic, so that t is Sturmian.
�
Let us remark that, in general, without any additional hypothesis, if s = R(t),
then t need not be Sturmian. For instance, if f is the Fibonacci word f =
abaababaaba · · · , then af is also a Sturmian word. However, it is readily verified
that in this case the word t such that R(t) = s is not balanced, so that t is not
Sturmian.

For any finite or infinite word w over the alphabet A, alphw denotes the set of
all distinct letters of A occurring in w. We will make use of the following lemma.

Lemma 4. Let s be an aperiodic word having a factorization

s = U1 · · ·Un · · · ,
where for i ≥ 1, Ui are non-empty prefixes of s. Then for any p ≥ 1, U1 �= cp

where c is the first letter of s.

Proof. Suppose that U1 = cp. Since s is aperiodic there exists a minimal in-
teger j such that card(alphUj) = 2. Since Uj is a prefix of s, one has then
U1 · · ·Uj−1Uj = Ujξ, with ξ ∈ {a, b}∗. As U1 · · ·Uj−1 = cq for a suitable q ≥ p,
it follows that ξ = cq and Uj ∈ cc∗, a contradiction.
�

196 A. de Luca, E.V. Pribavkina, and L.Q. Zamboni

4 Main Results

Proposition 1. Let s be a Sturmian word of type a having a factorization

s = U1 · · ·Un · · · ,

where for i ≥ 1, Ui are non-empty prefixes of s such that rs(Ui) = rs(Uj) for all
i, j ≥ 1. Then one of the following two properties holds:

i) All Ui, i ≥ 1, terminate in the letter a.
ii) For all i ≥ 1, Uia ∈ Pref s.

Proof. Let us first suppose that s begins in the letter b. All prefixes Ui, i ≥ 1,
of s begin in the letter b and, as s is of type a, have to terminate in the letter a.
Thus in this case Property i) is satisfied.

Let us then suppose that s begins in the letter a. Now either all prefixes Ui,
i ≥ 1, terminate in the letter a or all prefixes Ui, i ≥ 1, terminate in the letter
b or some of the prefixes terminate in the letter a and some in the letter b. We
have then to consider the following cases:

Case 1. All prefixes Ui, i ≥ 1, terminate in the letter b.
Since s is of type a, and all prefixes Ui, i ≥ 1 terminate in the letter b, one

has Uia ∈ Pref s and Property ii) is satisfied.

Case 2. Some of the prefixes Ui, i ≥ 1, terminate in the letter a and some in the
letter b.

We have to consider two subcases:

a) rs(Ui) = b, for all i ≥ 1.
As all Ui, i ≥ 1, begin in a, if any Ui were right special, then by Lemma 1,

rs(Ui) = a, a contradiction. It follows that for all i ≥ 1, Uia ∈ Pref s.

b) rs(Ui) = a, for all i ≥ 1.
Some of the prefixes Uj , j ≥ 1, terminate in a (since otherwise we are in

Case 1). Let Uk be a prefix terminating in a for a suitable k ≥ 1. If a prefix
Ui terminates in b, then aUi is not a factor of s. Indeed, otherwise, the word
aUib

−1 is such that |aUib
−1| = |Ui| and |aUib

−1|b < |Ui|b, so that rs(Ui) = b a
contradiction. Thus one derives that all Ul with l ≥ k terminate in a. Moreover,
if some Ui terminate in b, by Lemma 2 there exists j > k such that Uj has the
prefix Ui, so that Uj−1Ui ∈ Fact s. Since Uj−1 terminates in a, one has that aUi

is a factor of s, a contradiction. Thus all Ui, i ≥ 1, terminate in a.
�
Proposition 2. Let s be a Sturmian word having a factorization

s = U1 · · ·Un · · · ,

where for i ≥ 1, Ui are non-empty prefixes of s such that rs(Ui) = rs(Uj) for all
i, j ≥ 1. Then there exists a Sturmian word t such that

t = V1 · · ·Vn · · · ,

where for all i ≥ 1, Vi are non-empty prefixes of t, rt(Vi) = rt(Vj) for all i, j ≥ 1,
and |V1| < |U1|.

A Coloring Problem for Sturmian and Episturmian Words 197

Proof. We can suppose without loss of generality that s is a Sturmian word of
type a. From Proposition 1 either all Ui, i ≥ 1, terminate in the letter a or for
all i ≥ 1, Uia ∈ Pref s. We consider two cases:

Case 1. For all i ≥ 1, Uia ∈ Pref s.
We can suppose that s begins in the letter a. Indeed, otherwise, if the first

letter of s is b, then all Ui, i ≥ 1, begin in the letter b and, as s is of type a, they
have to terminate in the letter a. Thus the case that the first letter of s is b will
be considered when we will analyze Case 2.

We consider the injective endomorphism of {a, b}∗, La, or simply L, defined
by

L(a) = a and L(b) = ab.

Since s is of type a, the first letter of s is a, and X = {a, ab} is a code having
a finite deciphering delay (cf. [2]), the word s can be uniquely factorized by the
elements of X . Thus there exists a unique word t ∈ {a, b}ω such that s = L(t).
The following holds:

1. The word t is a Sturmian word.
2. For any i ≥ 1 there exists a non-empty prefix Vi of t such that L(Vi) = Ui.
3. The word t can be factorized as t = V1 · · ·Vn · · · .
4. |V1| < |U1|.
5. For all i, j ≥ 1, rt(Vi) = rt(Vj).

Point 1. This is a consequence of the fact that L is a standard Sturmian morphism
(see Corollary 2.3.3 in Chap. 2 of [9]).

Point 2. For any i ≥ 1, since Uia ∈ Pref s and any pair (c, a) with c ∈ {a, b} is
synchronizing for X∞ = X∗ ∪Xω (cf. [2]), one has that Ui ∈ X∗, so that there
exists Vi ∈ Pref t such that L(Vi) = Ui.

Point 3. One has L(V1 · · ·Vn · · ·) = U1 · · ·Un · · · = s = L(t). Thus t = V1 · · ·
Vn · · · .
Point 4. By Lemma 4, U1 is not a power of a so that in U1 there must be at
least one occurrence of the letter b. This implies that |V1| < |U1|.
Point 5. We shall prove that for all i ≥ 1, rt(Vi) = rs(Ui). From this one has
that for all i, j ≥ 1, rt(Vi) = rt(Vj).

Since t is a Sturmian word, there exists V ′
i ∈ Fact t such that

|Vi| = |V ′
i | and either |Vi|a > |V ′

i |a or |Vi|a < |V ′
i |a.

In the first case rt(Vi) = a and in the second case rt(Vi) = b. Let us set

Fi = L(V ′
i).

Since Ui = L(Vi), from the definition of the morphism L one has:

|Fi|a = |V ′
i |a + |V ′

i |b = |V ′
i |, |Fi|b = |V ′

i |b. (2)

198 A. de Luca, E.V. Pribavkina, and L.Q. Zamboni

|Ui|a = |Vi|a + |Vi|b = |Vi|, |Ui|b = |Vi|b. (3)

Let us first consider the case rt(Vi) = a, i.e., |Vi|a = |V ′
i |a+1 and |Vi|b = |V ′

i |b−1.
From the preceding equations one has:

|Fi| = |Ui|+ 1.

Moreover, from the definition of L one has that Fi begins in the letter a. Hence,
|a−1Fi| = |Ui| and |a−1Fi|a = |Fi|a − 1 = |Ui|a − 1. Thus |Ui|a > |a−1Fi|a. Since
a−1Fi ∈ Fact s, one has

rs(Ui) = rt(Vi) = a.

Let us now consider the case rt(Vi) = b, i.e., |Vi|a = |V ′
i |a−1 and |Vi|b = |V ′

i |b+1.
From (2) and (3) one derives:

|Ui| = |Fi|+ 1,

and |Ui|b > |Fi|b. Now Fia is a factor of s. Indeed, Fi = L(V ′
i) and for any

c ∈ {a, b} such that V ′
i c ∈ Fact t one has L(V ′

i c) = FiL(c). Since for any letter
c, L(c) begins in the letter a it follows that Fia ∈ Fact s. Since |Fia| = |Ui| and
|Ui|b > |Fi|b = |Fia|b, one has that Ui is rich in b. Hence, rs(Ui) = rt(Vi) = b.

Case 2. All Ui, i ≥ 1, terminate in the letter a.
We consider the injective endomorphism of {a, b}∗, Ra, or simply R, defined

in (1). Since s is of type a and X = {a, ba} is a prefix code, the word s can
be uniquely factorized by the elements of X . Thus there exists a unique word
t ∈ {a, b}ω such that s = R(t). The following holds:

1. The word t is a Sturmian word.
2. For any i ≥ 1 there exists a non-empty prefix Vi of t such that R(Vi) = Ui.
3. The word t can be factorized as t = V1 · · ·Vn · · · .
4. |V1| < |U1|.
5. For all i, j ≥ 1, rt(Vi) = rt(Vj).

Point 1. From Lemma 3, since R(t) = s it follows that t is Sturmian.

Point 2. For any i ≥ 1, since Ui terminates in the letter a and any pair (a, c)
with c ∈ {a, b} is synchronizing for X∞, one has that Ui ∈ X∗, so that there
exists Vi ∈ Pref t such that R(Vi) = Ui.

Point 3. One has R(V1 · · ·Vn · · ·) = U1 · · ·Un · · · = s = R(t). Thus t = V1 · · ·
Vn · · · .
Point 4. By Lemma 4, U1 is not a power of the first letter c of s, so that in U1

there must be at least one occurrence of the letter c̄. This implies that |V1| < |U1|.
Point 5. We shall prove that for all i ≥ 1, rt(Vi) = rs(Ui). From this one has
that for all i, j ≥ 1, rt(Vi) = rt(Vj).

Since t is a Sturmian word, there exists V ′
i ∈ Fact t such that

|Vi| = |V ′
i | and either |Vi|a > |V ′

i |a or |Vi|a < |V ′
i |a.

A Coloring Problem for Sturmian and Episturmian Words 199

In the first case rt(Vi) = a and in the second case rt(Vi) = b. Let us set

Fi = R(V ′
i).

Since Ui = R(Vi), from the definition of the morphism R one has that equations
(2) and (3) are satisfied.

Let us first consider the case rt(Vi) = a, i.e., |Vi|a = |V ′
i |a + 1 and |Vi|b =

|V ′
i |b − 1. From the preceding equations one has:

|Fi| = |Ui|+ 1.

From the definition of the morphism R one has that Fi = R(V ′
i) terminates in

the letter a. Hence, |Fia
−1| = |Ui| and |Fia

−1|a = |Fi|a − 1 = |Ui|a − 1. Thus
|Ui|a = |Fia

−1|a + 1, so that Ui is rich in a and rs(Ui) = rt(Vi) = a.
Let us now suppose that rt(Vi) = b, i.e., |Vi|a = |V ′

i |a−1 and |Vi|b = |V ′
i |b+1.

From (2) and (3) one derives:

|Ui| = |Fi|+ 1,

and |Ui|b > |Fi|b. We prove that aFi ∈ Fact s. Indeed, Fi = R(V ′
i) and for any

c ∈ {a, b} such that cV ′
i ∈ Fact t one has R(c)R(V ′

i) = R(c)Fi. Note that such a
letter c exists always as t is recurrent. Since for any letter c,R(c) terminates in the
letter a it follows that aFi ∈ Fact s. Since |aFi| = |Ui| and |Ui|b > |aFi|b = |Fi|b,
one has that Ui is rich in b. Hence, rs(Ui) = rt(Vi) = b.
�

Theorem 2. Let s be a Sturmian word having a factorization

s = U1 · · ·Un · · · ,

where each Ui, i ≥ 1, is a non-empty prefix of s. Then there exist integers i, j ≥ 1
such that rs(Ui) �= rs(Uj).

Proof. Let s be a Sturmian word and suppose that s admits a factorization

s = U1 · · ·Un · · · ,

where for i ≥ 1, Ui are non-empty prefixes such that for all i, j ≥ 1, rs(Ui) =
rs(Uj). Among all Sturmian words having this property we can always consider
a Sturmian word s such that |U1| is minimal. Without loss of generality we can
suppose that s is of type a. By Proposition 2 there exists a Sturmian word t
such that

t = V1 · · ·Vn · · · ,
where for all i ≥ 1, Vi are non-empty prefixes, rt(Vi) = rt(Vj) for all i, j ≥ 1,
and |V1| < |U1|, that contradicts the minimality of the length of U1.
�

Theorem 3. Let s be a Sturmian word. There exists a coloring c of the non-
empty factors of s, c : Fact+ s → {0, 1, 2} such that for any factorization

s = V1 · · ·Vn · · ·

in non-empty factors Vi, i ≥ 1, there exist integers i, j such that c(Vi) �= c(Vj).

200 A. de Luca, E.V. Pribavkina, and L.Q. Zamboni

Proof. Let us define the coloring c as follows: for any V ∈ Fact+ s

c(V) =

⎧⎨⎩
0 if V is not a prefix of s
1 if V is a prefix of s and rs(V) = a
2 if V is a prefix of s and rs(V) = b

Let us suppose to contrary that for all i, j, c(Vi) = c(Vj) = x ∈ {0, 1, 2}. If x = 0
we reach a contradiction as V1 is a prefix of s so that c(V1) ∈ {1, 2}. If x = 1
or x = 2, then all Vi have to be prefixes of s having the same richness, but this
contradicts Theorem 2.
�

5 The Case of Standard Episturmian Words

An infinite word s over the alphabet A is called standard episturmian if it is
closed under reversal and every left special factor of s is a prefix of s. A word
s ∈ Aω is called episturmian if there exists a standard episturmian t ∈ Aω such
that Fact s = Fact t. We recall the following facts about episturmian words [4,7]:

Fact 1. Every prefix of an aperiodic standard episturmian word s is a left special
factor of s. In particular an aperiodic standard episturmian word on a two-letter
alphabet is a standard Sturmian word.

Fact 2. If s is a standard episturmian word with first letter a, then a is separating,
i.e., for any x, y ∈ A if xy ∈ Fact s, then a ∈ {x, y}.
For each x ∈ A, let Lx denote the standard episturmian morphism [7] defined
for any y ∈ A by Lx(y) = x if y = x and Lx(y) = xy for x �= y.

Fact 3. The infinite word s ∈ Aω is standard episturmian if and only if there
exist a standard episturmian word t and a ∈ A such that s = La(t). Moreover,
t is unique and the first letter of s is a.

The following was proved in [10]:

Fact 4. A recurrent word w over the alphabet A is episturmian if and only if for
each factor u of w, a letter b exists (depending on u) such that AuA∩ Factw ⊆
buA ∪ Aub.

Definition 3. We say that a standard episturmian word s is of type a, a ∈ A,
if the first letter of s is a.

Theorem 4. Let s be an aperiodic standard episturmian word over the alphabet
A and let s = U1U2 · · · be any factorization of s with each Ui, i ≥ 1, a non-empty
prefix of s. Then there exist indices i �= j for which Ui and Uj terminate in a
different letter.

Proof. Suppose to the contrary that there exists an aperiodic standard epistur-
mian word s over the alphabet A admitting a factorization s = U1U2 · · · in
which all Ui are non-empty prefixes of s ending in the same letter. Amongst all
aperiodic standard episturmian words over the alphabet A having the preceding

A Coloring Problem for Sturmian and Episturmian Words 201

factorization, we may choose one such s for which |U1| is minimal. Let a ∈ A be
the first letter of s, so that s is of type a.

Let us now prove that for every i ≥ 0, one has that Uia is a prefix of s. Let us
first suppose that for all i ≥ 1, Ui ends in a letter x �= a. Since a is separating (s
is of type a), x can be followed only by a, so that the prefix Ui can be followed
only by a. This implies that Uia is a prefix of s.

Let us then suppose that for all i ≥ 1, Ui ends in a. Since U1 is a prefix of
s, and all Ui, i ≥ 1, begin in a one has that U1a is a prefix of s. Now let i > 1.
Since Ui−1 ends in a it follows that aUia is a factor of s.

Let Uix be a prefix of s; we want to show that x = a. Since Uix is left special
(as it is a prefix of s), there exists a letter y �= a such that yUix is a factor of
s. Now from this and by Fact 4, there exists a letter b (depending only on Ui)
such that either x = b or y = b.

So now, by Fact 4, since aUia and yUix are both factors of s, we deduce b = a
and either x = a or y = a. Since y �= a, it follows that x = a. Therefore, we have
proved that for every i ≥ 1, Uia is a prefix of s.

Let us now observe that U1 must contain the occurrence of a letter x �= a.
Indeed, otherwise, suppose that U1 = ak and consider the least i > 1 such that
x occurs in Ui. This implies, by using an argument similar to that of the proof
of Lemma 4, that Ui cannot be a prefix of s.

By Fact 3, one has that there exists a unique standard episturmian word s′ such
that s = La(s

′) and alph s′ ⊆ alph s ⊆ A. Moreover, since s is aperiodic, trivially
one has that also s′ is aperiodic.

Let us observe that the setX = {a}∪{ax | x ∈ A} is a code having deciphering
delay equal to 1 and that any pair (x, a) with x ∈ A is synchronizing for X∞.
This implies that s can be uniquely factored by the words of X . Moreover, since
Uia is a prefix of s, from the synchronization property of X∞, it follows that for
each i ≥ 1,

Ui = La(U
′
i),

where U ′
i is a prefix of s′. From the definition of La and the preceding formula,

one has that the last letter of Ui is equal to the last letter of U ′
i .

Moreover,

La(U
′
1 · · ·U ′

n · · ·) = U1 · · ·Un · · · = s = La(s
′).

Thus s′ = U ′
1 · · ·U ′

n · · · , where each U ′
i , i ≥ 1, is a non-empty prefix of s′ and for

all i, j ≥ 1, U ′
i and U ′

j terminate in the same letter. Since in U1 = La(U
′
1) there

is the occurrence of a letter different from a one obtains that |U ′
1| < |U1| which

is a contradiction.
�
Let us observe that in the case of a standard Sturmian word, Theorem 4 is an
immediate consequence of Theorem 2 and Lemma 1.

Theorem 5. Let s be an aperiodic standard episturmian word and let k =
card(alph s). There exists a coloring c of the non-empty factors of s, c : Fact+ s →
{0, 1, . . . , k} such that for any factorization s = V1 · · ·Vn · · · in non-empty fac-
tors Vi, i ≥ 1, there exist integers i, j such that c(Vi) �= c(Vj).

202 A. de Luca, E.V. Pribavkina, and L.Q. Zamboni

Proof. Let alph s = {a1, . . . , ak}. We define the coloring c as follows: for any
V ∈ Fact+ s

c(V) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if V is not a prefix of s
1 if V is a prefix of s terminating in a1
...
...

k if V is a prefix of s terminating in ak

Let us suppose by contradiction that for all i, j, c(Vi) = c(Vj) = x ∈ {0, 1, . . . , k}.
If x = 0 we reach a contradiction as V1 is a prefix of s so that c(V1) ∈ {1, . . . , k}.
If x ∈ {1, . . . , k}, then all Vi have to be prefixes of s terminating in the same
letter, but this contradicts Theorem 4.
�

Acknowledgments. The authors are indebted to Tom Brown for his sugges-
tions and comments. The second author acknowledges support from the Presi-
dential Program for young researchers, grant MK-266.2012.1. The third author
is partially supported by a FiDiPro grant from the Academy of Finland.

References

1. Berstel, J.: Sturmian and Episturmian words (A survey of some recent results). In:
Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 23–47. Springer,
Heidelberg (2007)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press (2010)

3. Brown, T.C.: Colorings of the factors of a word, preprint Department of Mathe-
matics, Simon Fraser University, Canada (2006)

4. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoret. Comput. Sci. 255, 539–553 (2001)

5. Glen, A., Justin, J.: Episturmian words: a survey. RAIRO-Theoret. Inform.
Appl. 43, 403–442 (2009)

6. Graham, R., Rothshild, B.L., Spencer, J.H.: Ramsey Theory, 2nd edn. J. Wiley,
New York (1990)

7. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret.
Comput. Sci. 276, 281–313 (2002)

8. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983);
(reprinted by Cambridge University Press, Cambridge, 1997)

9. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

10. Richomme, G.: A Local Balance Property of Episturmian Words. In: Harju, T.,
Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 371–381.
Springer, Heidelberg (2007)

11. Schützenberger, M.P.: Quelques problèmes combinatoires de la théorie des auto-
mates, Cours professé à l’Institut de Programmation en 1966/67, notes by J.-F.
Perrot

12. Zamboni, L.Q.: A Note on Coloring Factors of Words, in Oberwolfach Report
37/2010, Mini-workshop: Combinatorics on Words, pp. 42–44, August 22-27 (2010)

The Chomsky-Schützenberger Theorem

for Quantitative Context-Free Languages

Manfred Droste1 and Heiko Vogler2

1 Institute of Computer Science, Leipzig University, D-04109 Leipzig, Germany
droste@informatik.uni-leipzig.de

2 Department of Computer Science, Technische Universität Dresden,
D-01062 Dresden, Germany

Heiko.Vogler@tu-dresden.de

Abstract. Weighted automata model quantitative aspects of systems
like the consumption of resources during executions. Traditionally, the
weights are assumed to form the algebraic structure of a semiring, but
recently also other weight computations like average have been consid-
ered. Here, we investigate quantitative context-free languages over very
general weight structures incorporating all semirings, average computa-
tions, lattices. In our main result, we derive the Chomsky-Schützenberger
Theorem for such quantitative context-free languages, showing that each
arises as the image of the intersection of a Dyck language and a recogniz-
able language under a suitable morphism. Moreover, we show that quan-
titative context-free languages are expressively equivalent to a model of
weighted pushdown automata. This generalizes results previously known
only for semirings.

1 Introduction

The Chomsky-Schützenberger Theorem forms a famous cornerstone in the theory
of context-free languages [9] relating arbitrary context-free languages to Dyck
languages and recognizable languages. A weighted version of this result was
presented in [25] where the weights are taken from a commutative semiring. For
surveys on this we refer the reader to [1, 23].

Recently, in [5–7] new models of quantitative automata for technical systems
have been investigated describing, e.g., the average consumption of resources. In
[8] pushdown automata with mean-payoff cost functions were considered which
comprize a quantitative modelling of sequential programs with recursion. These
cost functions cannot be computed in semirings. Automata over the general al-
gebraic structure of valuation monoids were investigated in [11, 12]. In valuation
monoids, each sequence of weights gets assigned a single weight; examples in-
clude products in semirings as well as average computations on the reals. Hence
automata over valuation monoids include both semiring-weighted automata and
quantitative automata.

It is the goal of this paper to investigate weighted context-free grammars over
valuation monoids. Hence we may associate to each derivation, for instance, the

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 203–214, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

204 M. Droste and H. Vogler

average of the costs of the involved productions. We could also associate with
each production its degree of sharpness or truth, as in multi-valued logics, using
bounded lattices as valuation monoids. Thereby, we can associate to each word
over the underlying alphabet Σ such a value (real number, element of a lattice,
etc.) indicating its total cost or degree of truth, and any function from Σ∗ into
the value set is called a quantitative language or series. Note that by the usual
identification of sets with {0, 1} -valued functions, classical languages arise as
particular quantitative languages.

Now we give a summary of our results. We prove the equivalence of weighted
context-free grammars and weighted pushdown automata over arbitrary valua-
tion monoids (cf. Theorem 1). In our main result we derive a weighted version
of the Chomsky-Schützenberger Theorem over arbitrary valuation monoids (cf.
Theorem 2). In particular, we show that any quantitative context-free language
arises as the image of the intersection of a Dyck language and a recognizable
language under a suitable weighted morphism, and also as the image of a Dyck
language and a recognizable series under a free monoid morphism. Conversely,
each quantitative language arising as such an image is a quantitative context-
free language. This shows that the weighted Chomsky-Schützenberger Theorem
holds for much more general weighted structures than commutative semirings,
in particular, neither associativity, nor commutativity, nor distributivity of the
multiplication are needed. In our proofs, due to the lack of the above properties,
we cannot use the theory of semiring-weighted automata (cf. [20, 25]); instead
we employ explicit constructions of weighted automata taking care of precise
calculations of the weights to deduce our results from the classical, unweighted
Chomsky-Schützenberger Theorem. The classical Chomsky-Schützenberger The-
orem is contained in the weighted result by considering the Boolean semiring
{0, 1}.

In the rest of this paper we will abbreviate “context-free” by “CF”.

2 Valuation Monoids and Series

We define a unital valuation monoid to be a tuple (K,+, val, 0, 1) such that
(i) (K,+, 0) is a commutative monoid, (ii) val : K∗ → K is a mapping such that
val(a) = a for each a ∈ K, (iii) val(a1, . . . , an) = 0 whenever ai = 0 for some 1 ≤
i ≤ n, and (iv) val(a1, . . . , ai−1, 1, ai+1, . . . , an) = val(a1, . . . , ai−1, ai+1, . . . , an)
for any 1 ≤ i ≤ n, and (v) val(ε) = 1.

Note that, similarly to products where the element 1 is neutral and can be left
out, val can be considered as a very general product operation in which the unit
1 is neutral as reflected by requirements (iv) and (v). The concept of valuation
monoid was introduced in [11, 12] as a structure (K,+, val, 0) with a mapping
val : K+ → K satisfying requirements (i)-(iii) correspondingly. In [11, 12, 21],
also many examples of valuation monoids were given. For this paper, it will be
important that the valuation monoids contain a unit 1. We will see below in
Example 1 that this means no restriction of generality.

The Chomsky-Schützenberger Theorem 205

Example 1. 1. Let (K,+, val, 0) be a valuation monoid and let 1 be an element
not inK. We putK ′ = K∪{1} and define (K ′,+′, val′, 0, 1) such that +′ extends
+ by x +′ 1 = 1 +′ x = 1 for each x ∈ K ′, val′(ε) = 1, and val′(a1, . . . , an) =
val(b1, . . . , bm) where b1 . . . bm is the subsequence of a1, . . . , an excluding 1’s.
Then (K ′,+′, val′, 0, 1) is a unital valuation monoid.

2. The structure (R ∪ {−∞}, sup, avg,−∞) with avg(a1, . . . , an) = 1
n ·∑n

i=1 ai is a valuation monoid (with the usual laws for −∞). Applying the
procedure of Example 1 to it, we could add ∞ as the unit 1, disregard-
ing ∞ when calculating averages. This leads to a unital valuation monoid
(R ∪ {−∞,∞}, sup, avg,−∞,∞).

3. A strong bimonoid is a tuple (K,+, ·, 0, 1) such that (K,+, 0) is a com-
mutative monoid, (K, ·, 1) is a monoid, and a · 0 = 0 · a = 0. Then we can
consider K as the particular unital valuation monoid (K,+, val, 0, 1) where
val(a1, . . . , an) = a1 · a2 · a3 · . . . · an.

Now we list three examples of (classes of) strong bimonoids.
(a) A strong bimonoid is a semiring, if the multiplication is distributive (from

both sides) over addition. For a range of examples of strong bimonoids which
are not semirings we refer the reader to [13].

(b) The Boolean semiring B = ({0, 1},∨,∧, 0, 1) allows us to give exact trans-
lations between unweighted and B-weighted settings. The semiring (N,+, ·, 0, 1)
of natural numbers permits counting.

(c) Each bounded lattice (L,∨,∧, 0, 1) (i.e. 0 ≤ x ≤ 1 for each x ∈ L) is a
strong bimonoid. There is a wealth of lattices [4, 17] which are not distributive,
hence strong bimonoids but not semirings.

The importance of infinitary sum operations was observed early on in weighted
automata theory, cf. [15]. In our context, they will arise for ambiguous CF gram-
mars if a given word has infinitely many derivations.

A monoid (K,+, 0) is complete [15] if it has an infinitary sum operation∑
I : KI → K for any index set I such that

∑
i∈∅ ai = 0,

∑
i∈{k} ai = ak,∑

i∈{j,k} ai = aj + ak for j �= k, and
∑

j∈J

(∑
i∈Ij

ai

)
=
∑

i∈I ai if
⋃

j∈J Ij = I

and Ij ∩ Ik = ∅ for j �= k. A monoid (K,+, 0) is idempotent if a+ a = a for each
a ∈ K, and a complete monoid is completely idempotent if

∑
I a = a for each

a ∈ K and any index set I. We call a unital valuation monoid (K,+, val, 0, 1)
complete, idempotent, or completely idempotent if (K,+, 0) has the respective
property.

Example 2. 1. The Boolean semiring B and the tropical semiring (N ∪
{∞},min,+,∞, 0) are complete and completely idempotent. For a wealth of
further examples of complete semirings see [16, Ch.22].

2. The unital valuation monoid (R∪{−∞,∞}, sup, avg,−∞,∞) (cf. Example
1(2)) is complete and completely idempotent.

3. Consider the commutative monoid ({0, 1,∞},+, 0) with 1 + 1 = 1,
1 + ∞ = ∞ + ∞ = ∞, and

∑
I 1 = ∞ for any infinite index set I and cor-

responding natural laws for infinite sums involving the other elements. This
monoid is complete and idempotent, but not completely idempotent.

206 M. Droste and H. Vogler

Let Σ be an alphabet and K a unital valuation monoid. A series or quanti-
tative language over Σ and K is a mapping s : Σ∗ → K. As usual, we denote
s(w) by (s, w). The support of s is the set supp(s) = {w ∈ Σ∗ | (s, w) �= 0}. The
image of s is the set im(s) = {(s, w) | w ∈ Σ∗}. The class of all series over Σ
and K is denoted by K〈〈Σ∗〉〉.

Let s, s′ ∈ K〈〈Σ∗〉〉 be series. We define the sum s+ s′ by letting (s+ s′, w) =
(s, w) + (s′, w) for each w ∈ Σ∗. A family of series (si | i ∈ I) is locally finite if
for each w ∈ Σ∗ the set Iw = {i ∈ I | (si, w) �= 0} is finite. In this case or if K
is complete, we define

∑
i∈I si ∈ K〈〈Σ∗〉〉 by letting (

∑
i∈I si, w) =

∑
i∈Iw

(si, w)
for every w ∈ Σ∗. For L ⊆ Σ∗, we define the characteristic series 1L ∈ K〈〈Σ∗〉〉
by (1L, w) = 1 if w ∈ L, and (1L, w) = 0 otherwise for w ∈ Σ∗.

In the rest of this paper, let (K,+, val, 0, 1) denote an arbitrary unital valua-
tion monoid, unless specified otherwise.

3 Weighted Context-Free Grammars

In this section, we introduce our notion of weighted CF grammars and we present
basic properties. A CF grammar (CFG) is a tuple G = (N,Σ,Z, P) where N
is a finite set (nonterminals), Σ is an alphabet (terminals), Z ∈ N (initial
nonterminal), and P ⊆ N × (N ∪Σ)∗ is a finite set (productions).

The leftmost derivation relation of G is the binary relation on the set (N∪Σ)∗

of sentential forms defined as follows. For every production ρ = (A → ξ) ∈ P we

define the binary relation
ρ⇒ (N∪Σ)∗×(N∪Σ)∗ such that for every w ∈ Σ∗ and

ζ ∈ (N ∪Σ)∗, we have wAζ
ρ⇒ w ξ ζ. The (leftmost) derivation relation of G is

the binary relation ⇒=
⋃

ρ∈P

ρ⇒. A derivation of G is a sequence d = ρ1 . . . ρn of

productions ρi ∈ P such that there are sentential forms ξ0, . . . , ξn with ξi−1
ρi⇒ ξi

for every 1 ≤ i ≤ n. We abbreviate this derivation by ξ0
d⇒ ξn. Let A ∈ N

and w ∈ Σ∗. An A-derivation of w is a derivation d such that A
d⇒ w. We

let D(A,w) denote the set of all A-derivations of w. And we let D(w) denote
the set D(Z,w) of all derivations of w. The language generated by G is the set
L(G) = {w ∈ Σ∗ | D(w) �= ∅}.

We say that G is ambiguous if there is a w ∈ L(G) such that |D(w)| ≥ 2;
otherwise G is unambiguous. A CF language L is inherently ambiguous if every
CFG G with L = L(G) is ambiguous.

Next let K be a unital valuation monoid. A CF grammar with weights in K
is a tuple G = (N,Σ,Z, P,wt) where (N,Σ,Z, P) is a CFG and wt: P → K is a
mapping (weight assignment). We say that G is unambiguous if the underlying
CFG is unambiguous.

The weight of a derivation d = ρ1 . . . ρn is the element in K defined by

wt(d) = val(wt(ρ1), . . . ,wt(ρn)) .

We say that G is a weighted CF grammar (WCFG) if D(w) is finite for every
w ∈ Σ∗ or if K is complete. In this case we define the quantitative language of
G to be the series ||G|| ∈ K〈〈Σ∗〉〉 given for every w ∈ Σ∗ by

The Chomsky-Schützenberger Theorem 207

(||G||, w) =
∑

d∈D(w)

wt(d) .

Note that this sum exists by our assumptions on a WCFG. A series s ∈ K〈〈Σ∗〉〉 is
a quantitative CF language if there is a WCFG G such that s = ||G||. The class of
all quantitative CF languages over Σ and K is denoted by CF(Σ,K). Moreover,
we let uCF(Σ,K) comprise all series ||G|| where G is an unambiguous WCFG. We
say that two WCFG are equivalent, if they have the same quantitative language.

Clearly, any CFG G can be transformed into a WCFG over the Boolean semi-
ring B by adding the weight assignment wt: P → B such that wt(ρ) = 1 for each
ρ ∈ P . Then for each w ∈ Σ∗ we have w ∈ L(G) if and only if (||G||, w) = 1, i.e.,
||G|| = 1L(G). Consequently, a language L is CF if and only if 1L ∈ CF(Σ,B).
This shows that WCFG form a generalization of CFG.

A WCFG G is in head normal form if every production has the form
A → xB1 . . . Bk where x ∈ Σ ∪ {ε}, k ≥ 0, and A,B1, . . . , Bk ∈ N . By stan-
dard construction we obtain that, for every (unambiguous) WCFG there is an
equivalent (unambiguous) WCFG in head normal form.

Example 3. We consider the set of all arithmetic expressions over addition, mul-
tiplication, and the variable x. Assuming that the calculation of the addition
(and multiplication) of two values needs n ∈ N (resp., m ∈ N) machine clock
cycles, we might wish to know the average number of clock cycles the machine
needs to calculate any of the operations occurring in an expression.

For this we consider the unital valuation monoid (R ∪ {−∞,∞}, sup, avg,
−∞,∞) as in Example 1(2) and the WCFG G = (N,Σ,E, P,wt) with the
following set of productions

ρ1 : E → (E + E), ρ2 : E → (E ∗ E), ρ3 : E → x

and wt(ρ1) = n, wt(ρ2) = m, wt(ρ3) = 1. For the expressionw = ((x∗x)+(x∗x)),
we have that D(w) = {d} with d = ρ1d

′d′ and d′ = ρ2ρ3ρ3. In fact, G is
unambiguous. Then

(||G||, w) = wt(d) = val(n,m, 1, 1,︸ ︷︷ ︸
d′

m, 1, 1︸ ︷︷ ︸
d′

) = avg(n,m,m) =
n+ 2 ·m

3
.

4 Weighted Pushdown Automata

In this section, we introduce our notion of weighted pushdown automata, and we
derive a few basic properties. First let us fix our notation for pushdown automata.
A pushdown automaton (PDA) over Σ is a tuple M = (Q,Σ, Γ, q0, γ0, F, T)
whereQ is a finite set (states), Σ is an alphabet (input symbols), Γ is an alphabet
(pushdown symbols), q0 ∈ Q (initial state), γ0 ∈ Γ (initial pushdown symbol),
F ⊆ Q (final states), and T ⊆ Q ×

(
Σ ∪ {ε}

)
× Γ × Q × Γ ∗ is a finite set

(transitions). For a transition (q, x, γ, p, π), we call q, x, and p its source state,
label, and target state, respectively.

208 M. Droste and H. Vogler

The computation relation of M is the binary relation on the set Q×Σ∗ ×Γ ∗

of configurations defined as follows. For every transition τ = (q, x, γ, p, π) ∈ T

we define the binary relation
τ

. ⊆ (Q × Σ∗ × Γ ∗) × (Q × Σ∗ × Γ ∗) such that

for every w ∈ Σ∗ and μ ∈ Γ ∗, we have (q, xw, γμ)
τ

. (p, w, πμ). The computation

relation of M is the binary relation . =
⋃

τ∈T

τ

.. A computation is a sequence
θ = τ1 . . . τn of transitions τi such that there are configurations c0, . . . , cn with

ci−1

τi
. ci for every 1 ≤ i ≤ n. We abbreviate this computation by c0

θ

. cn.
The label of a computation τ1 . . . τn is the sequence of labels of the involved
transitions. Let w ∈ Σ∗ and q ∈ Q. A q-computation on w is a computation

θ such that (q, w, γ0)
θ

. (p, ε, ε) for some p ∈ F . We let Θ(q, w) denote the
set of all q-computations on w, and we let Θ(w) = Θ(q0, w). Moreover, we let
Θ =

⋃
w∈Σ∗ Θ(w). The language recognized by M is the set L(M) = {w ∈ Σ∗ |

Θ(w) �= ∅}. That means, we consider acceptance of words by final state and
empty pushdown.

Let M be any PDA. We say that M is ambiguous if there is a w ∈ L(M)
such that |Θ(w)| ≥ 2; otherwise M is unambiguous.

Next let K be a unital valuation monoid. A pushdown automaton with weights
in K is a tuple M = (Q,Σ, Γ, q0, γ0, F, T,wt) where (Q,Σ, Γ, q0, γ0, F, T) is a
PDA and wt: T → K is a mapping (weight assignment). We say that M is
unambiguous if the underlying PDA is unambiguous.

The weight of a computation θ = τ1 . . . τn is the element in K defined by

wt(θ) = val(wt(τ1), . . . ,wt(τn)) .

We say that M is a weighted pushdown automaton (WPDA) if Θ(w) is finite
for every w ∈ Σ∗ or if K is complete. In this case we define the quantitative
behavior of M to be the series ||M|| ∈ K〈〈Σ∗〉〉 given for every w ∈ Σ∗ by

(||M||, w) =
∑

θ∈Θ(w)

wt(θ) .

The class of quantitative behaviors of all WPDA over Σ and K is denoted by
PDA(Σ,K). Moreover, we let uPDA(Σ,K) comprise all series ||M|| where M
is an unambiguous WPDA. We say that two WPDA are equivalent if they have
the same quantitative behavior.

Clearly, any PDA M can be transformed into a WPDA over the Boolean
semiring B by adding the weight assignment wt: T → B such that wt(τ) = 1 for
each τ ∈ T . Then for each w ∈ Σ∗ we havew ∈ L(M) if and only if (||M||, w) = 1,
i.e., ||M|| = 1L(M). Consequently, a language L is recognized by a PDA if and
only if 1L ∈ PDA(Σ,B). This shows that WPDA form a generalization of PDA.

A WPDA M = (Q,Σ, Γ, q0, γ0, F, T,wt) is state normalized if there is no
transition in T with q0 as target state, F is a singleton, say, F = {qf}, and
there is no transition in T with qf as source state. By a standard construction
we obtain that, for every (unambiguous) WPDA there is an equivalent state
normalized (unambiguous) WPDA.

The Chomsky-Schützenberger Theorem 209

Again by a standard construction [19, Lecture 25] we obtain that for every
(unambiguous) WPDA there is an equivalent (unambiguous) WPDA with just
one state.

Lemma 1. Let s1, s2 ∈ PDA(Σ,K). Then s1 + s2 ∈ PDA(Σ,K).

We mention that in [8] pushdown games with quantitative objectives were inves-
tigated. Such games are formalized on the basis of paths through pushdown sys-
tems where the latter are particular pushdown automata with weights: the input
alphabet Σ is a singleton and no ε-transition occurs. Moreover, as weight struc-
ture, pushdown systems employ the set of integers with mean-payoff. Roughly,
the mean-payoff of a computation is the average of its transition weights (taking
the limit superior of the averages of finite prefixes on infinite computations).
Then in [8] game-theoretic problems on the set of all paths for which the mean-
payoff is above a given threshold are investigated.

Finally, we note that weighted pushdown systems over bounded idempotent
semirings were used in interprocedural dataflow analysis [24].

5 Equivalence of WCFG and WPDA

A classical result says that a language L is CF iff L is accepted by a pushdown
automaton. This was extended to algebraic series and weighted pushdown au-
tomata with weights taken in semirings in [20, Cor. 14.16]. The goal of this small
section is to prove the generalization to arbitrary unital valuation monoids.

For this we use the following concept. Let M = ({∗}, Σ, Γ, ∗, γ0, {∗}, T,wtM)
be a WPDA over K with one state and G = (N,Σ,Z, P,wtG) be a WCFG
over K in head normal form. We say that M and G are related if Γ = N ,
γ0 = Z, τ = (∗, x, A, ∗, B1B2 . . . Bn) ∈ T iff ρ = (A → xB1B2 . . . Bn) is in
P ; wtM(τ) = wtG(ρ) if τ and ρ correspond to each other as above. Then the
following lemma is easy to see (cf. e.g. [19, Lecture 25]).

Lemma 2. Let M be a WPDA with one state and G be a WCFG in head normal
form. If M and G are related, then ||M|| = ||G||. Moreover, M is unambiguous
iff G is unambiguous.

The previous lemma and the normal forms of WPDA and WCFG imply the
following theorem.

Theorem 1. For every alphabet Σ and unital valuation monoid K we have
PDA(Σ,K) = CF(Σ,K) and uPDA(Σ,K) = uCF(Σ,K).

6 Theorem of Chomsky-Schützenberger

In this section let K again be a unital valuation monoid. The goal of this section
will be to prove a quantitative version of the Chomsky-Schützenberger Theo-
rem. Recently, in [18] the Chomsky-Schützenberger Theorem has been used as
a pattern for a parsing algorithm of probabilistic context-free languages.

210 M. Droste and H. Vogler

Let Y be an alphabet. Then we let Y = {y | y ∈ Y }. The Dyck language
over Y , denoted by DY , is the language which is generated by the CFG GY =
(N, Y ∪Y , Z, P) with N = {Z} and the rules Z → yZy for any y ∈ Y , Z → ZZ,
and Z → ε.

Next we introduce monomes and alphabetic morphisms. A series s ∈ K〈〈Σ∗〉〉
is called a monome if supp(s) is empty or a singleton. If supp(s) = {w}, then
we also write s = (s, w).w . We let K[Σ ∪ {ε}] denote the set of all monomes
with support in Σ ∪ {ε}.

Let Δ be an alphabet and h : Δ → K[Σ ∪ {ε}] be a mapping. The alphabetic
morphism induced by h is the mapping h′ : Δ∗ → K〈〈Σ∗〉〉 such that for every
n ≥ 0, δ1, . . . , δn ∈ Δ with h(δi) = ai.yi we have

h′(δ1 . . . δn) = val(a1, . . . , an).y1 . . . yn .

Note that h′(v) is a monome for every v ∈ Δ∗, and h′(ε) = 1.ε. If L ⊆ Δ∗

such that the family (h′(v) | v ∈ L) is locally finite or if K is complete, we let
h′(L) =

∑
v∈L h

′(v). In the sequel we identify h′ and h.
We also call a mapping h : Δ → Σ ∪ {ε} and its unique extension to a

morphism from Δ∗ to Σ∗ an alphabetic morphism. In this case, if r ∈ K〈〈Δ∗〉〉 is
such that {v ∈ h−1(w) | (r, v) �= 0} is finite for each w ∈ Σ∗, or if K is complete,
we define h(r) ∈ K〈〈Σ∗〉〉 by letting (h(r), w) =

∑
v∈Δ∗,h(v)=w(r, v).

Next we introduce the intersection of a series with a language as follows. Let
s ∈ K〈〈Σ∗〉〉 and L ⊆ Σ∗. We define the series s ∩ L ∈ K〈〈Σ∗〉〉 by letting
(s ∩ L,w) = (s, w) if w ∈ L, and (s ∩ L,w) = 0 otherwise.

Finally, a weighted finite automaton over K and Σ (for short: WFA) is a tuple
A = (Q, q0, F, T,wt) where Q is a finite set (states), q0 ∈ Q (initial state), F ⊆ Q
(final states), T ⊆ Q × Σ ×Q (transitions), and wt : T → K (transition weight
function). We call A deterministic if for every q ∈ Q and σ ∈ Σ, there is at most
one p ∈ Q with (q, σ, p) ∈ T .

If w = σ1 . . . σn ∈ Σ∗ where n ≥ 0 and σi ∈ Σ, a path P over w is a sequence
P = (q0, σ1, q1) . . . (qn−1, σn, qn) ∈ T ∗. The path P is successful if qn ∈ F . The
weight of P is the value

wt(P) = val(wt((q0, σ1, q1)), . . . ,wt((qn−1, σn, qn))) .

The behavior of A is the series ||A|| ∈ K〈〈Σ∗〉〉 such that for every w ∈ Σ∗,
(||A||, w) =

∑
P succ. path

over w
wt(P). A series s ∈ K〈〈Σ∗〉〉 is called deterministically

recognizable if s = ||A|| for some deterministic WFA A.

Our main result will be:

Theorem 2. Let K be a unital valuation monoid and s ∈ K〈〈Σ∗〉〉 be a series.
Then the following four statements are equivalent.

1. s ∈ CF(Σ,K).
2. There are an alphabet Y , a recognizable language R over Y ∪ Y , and an

alphabetic morphism h : Y ∪ Y → K[Σ ∪ {ε}] such that s = h(DY ∩R).

The Chomsky-Schützenberger Theorem 211

3. There are an alphabet Δ, an unambiguous CFG G over Δ, and an alphabetic
morphism h : Δ → K[Σ ∪ {ε}] such that s = h(L(G)).

4. There are an alphabet Y , a deterministically recognizable series r ∈ K〈〈(Y ∪
Ȳ)∗〉〉, and an alphabetic morphism h : Y ∪ Y → Σ ∪ {ε} such that s =
h(r ∩DY).

Moreover, if K is complete and completely idempotent, then 1-4 are also equiv-
alent to:

5. There are an alphabet Δ, a context-free language L over Δ, and an alphabetic
morphism h : Δ → K[Σ ∪ {ε}] such that s = h(L).

We split the proof of Theorem 2 into several parts. The following lemma proves
the implication 1 ⇒ 3 of Theorem 2.

Lemma 3. Let s ∈ CF(Σ,K). Then there are an alphabet Δ, an unambiguous
CFG G over Δ, and an alphabetic morphism h : Δ → K[Σ ∪ {ε}] such that
s = h(L(G)).

Proof. We can assume that s = ||H|| for some WCFG H = (N,Σ,Z, P,wt) in
head normal form. We let Δ = P , and we construct the CFG G = (N,P, Z, P ′)
and the mapping h : P → K[Σ ∪ {ε}] such that, if ρ = (A → xB1 . . . Bk) is in
P , then A → ρB1 . . . Bk is in P ′ and we define h(ρ) = wt(ρ).x. Obviously, G is
unambiguous. By definition of h, we have that h(d) = val(wt(ρ1), . . . ,wt(ρn)).w
for every w ∈ Σ∗ and d = ρ1 . . . ρn ∈ DH(w). Hence wt(d) = (h(d), w). Also
(h(d) | d ∈ L(G)) is locally finite if K is not complete. Then for every w ∈ Σ∗ we
have (||H||, w) =

∑
d∈DH(w)wt(d) =

∑
d∈DH(w)(h(d), w) =

∑
d∈L(G)(h(d), w) =(∑

d∈L(G) h(d), w
)
= (h(L(G)), w). Thus s = h(L(G)).

Lemma 4. Let L be a CF language over Δ and h : Δ → K[Σ∪{ε}] an alphabetic
morphism such that (h(v) | v ∈ L) is locally finite in case K is not complete. If L
can be generated by some unambiguous CFG or if K is complete and completely
idempotent, then h(L) ∈ CF(Σ,K).

Proof. Let M = (Q,Δ, Γ, q0, γ0, F, T) be a PDA with L(M) = L. Moreover, by
Theorem 1, if L = L(G) for some unambiguous CFG G, then we can assume that
M is unambiguous. Let δ ∈ Δ be an arbitrary, but fixed element.

The following construction employs the same technique as in [14, Lemma
5.7] of coding the preimage of h into the state set; thereby non-injectivity
of h is handled appropriately. We construct the PDA with weights M′ =
(Q′, Σ, Γ, q′0, γ0, F

′, T ′,wt) where Q′ = {q′0}∪Q× (Δ∪{ε}) for some element q′0
with q′0 �∈ Q× (Δ ∪ {ε}), F ′ = F × {δ}, and T ′ and wt are defined as follows.
– For every x ∈ Δ∪{ε}, the rule τ = (q′0, ε, γ0, (q0, x), γ0) is in T

′ and wt(τ) = 1.
– Let τ = (q, x, γ, p, π) ∈ T and x′ ∈ Δ ∪ {ε}.

• If x ∈ Δ and h(x) = a.y, then τ ′ = ((q, x), y, γ, (p, x′), π) ∈ T ′

and wt(τ ′) = a.
• If x = ε, then τ ′ = ((q, ε), ε, γ, (p, x′), π) ∈ T ′ and wt(τ ′) = 1.

212 M. Droste and H. Vogler

Let w ∈ Σ∗. First, let v ∈ Δ∗ with h(v) = z.w for some z ∈ K. We write
v = δ1 . . . δn ∈ Δ∗ with n ≥ 0 and δi ∈ Δ. Let h(δi) = ai.yi for every 1 ≤ i ≤ n.
Thus h(v) = val(a1, . . . , an).y1 . . . yn and w = y1 . . . yn.

Let θ = τ1 . . . τm be a q0-computation in ΘM(v); note that m ≥ max{n, 1}
because at least γ0 has to be popped. Let xi be the second component of τi,
so, xi ∈ Δ ∪ {ε}, and v = x1 . . . xm. Then we construct the q′0-computation
θ′ = τ ′0τ

′
1 . . . τ

′
m in ΘM′(y1 . . . yn) as follows:

– τ ′0 = (q′0, ε, γ0, (q0, x1), γ0).
– If 1 ≤ i ≤ m and τi = (q, xi, γ, p, π), then τ ′i = ((q, xi), y

′, γ, (p, xi+1), π)
where y′ = y if xi ∈ Δ and h(xi) = a.y, and y′ = ε if xi = ε, and xm+1 = δ.

Note that if xi ∈ Δ and h(xi) = a.y, then wt(τ ′i) = a, and if xi = ε, then
wt(τ ′i) = 1 for each 1 ≤ i ≤ m, by definition of wt. Consequently

(h(v), w) = val(a1, . . . , an) = val(wt(τ ′0),wt(τ
′
1), . . . ,wt(τ

′
m)) = wt(θ′).

In particular, wt(θ′1) = (h(v), w) = wt(θ′2) for every θ1, θ2 ∈ ΘM(v).
Conversely, for every q′0-computation θ′ = τ ′0τ

′
1 . . . τ

′
m in ΘM′(w) by definition

of T ′ there are a uniquely determined v ∈ Δ∗ and a uniquely determined q0-
computation θ = τ1 . . . τm in ΘM(v) such that θ′ is the computation constructed
above. Since M is unambiguous orK is complete, it follows that M′ is a WPDA.

So, for every w ∈ Σ∗ we obtain

(h(L(M)), w) =
(∑

v∈L(M) h(v), w
)

=
∑

v∈L(M):
(h(v),w) �=0

(h(v), w)

=∗ ∑
v∈L(M),θ∈ΘM(v):

(h(v),w) �=0

wt(θ′) =
∑

θ′∈ΘM′ (w) wt(θ
′) = (||M′||, w)

where the ∗-marked equality holds because (1) K is complete and completely
idempotent or (2) M is unambiguous. Thus ||M′|| = h(L(M)) and the result
follows from Theorem 1.

Proof of Theorem 2: 1 ⇔ 3: By Lemmas 3 and 4. 2 ⇒ 3: There is an unambiguous
CFG G with L(G) = DY ∩R, cf. [9, Prop.1, p.145] and [2, Lm.4.1].

3 ⇒ 2: By the classical result of Chomsky-Schützenberger (cf. e.g. [19,
Thm.G1]) there are an alphabet Y , a recognizable language R over Y ∪ Y ,
and an alphabetic morphism g : Y ∪ Y → Δ∪ {ε} such that L(G) = g(DY ∩R).
By analysis of the construction, we have that the set g−1(v)∩DY ∩R is in a one-
to-one correspondence with DG(v), for every v ∈ L(G). Since G is unambiguous,
we have that |g−1(v) ∩ DY ∩ R| = 1. It follows that (h ◦ g(v′) | v′ ∈ DY ∩ R)
is locally finite. Thus h ◦ g : Y ∪ Y → K[Σ ∪ {ε}] is an alphabetic morphism,
(h ◦ g)(DY ∩R) is well defined, and s = (h ◦ g)(DY ∩R).

2 ⇒ 4: Let Ỹ = Y ∪ Y . Recall that h(v) ∈ K〈〈Σ∗〉〉 is a monome for every

v ∈ Ỹ ∗. We define h′ : Ỹ ∗ → Σ∗ by letting h′(v) = w if h(v) = a.w. Clearly, h′

is a morphism. Choose a deterministic finite automaton A′ = (Q, q0, F, T) over

Ỹ recognizing R. We define a deterministic WFA A = (Q, q0, F, T,wt) over Ỹ

The Chomsky-Schützenberger Theorem 213

by putting wt(t) = a if t = (q, z, p) and h(z) = a.x. Let r = ||A|| ∈ K〈〈Ỹ ∗〉〉. Note
that (r, v) = (h(v), w) if v ∈ R and h′(v) = w, and (r, v) = 0 otherwise.

By assumption s = h(DY ∩R) =
∑

v∈DY ∩R h(v). Hence, for w ∈ Σ∗: (s, w) =∑
v∈DY ∩R(h(v), w) =

∑
v∈DY ,h′(v)=w(r, v) = (h′(r ∩ DY), w) where the sums

exist because they have only finitely many nonzero entries if K is not complete.
Thus s = h′(r ∩DY).

4 ⇒ 3: We put Ỹ = Y ∪ Y . Also, let Ỹ0 = Ỹ ∪ {γ0} with an element γ0 �∈ Ỹ .

By assumption, there is a deterministic WFA A = (Q, q0, F, T,wt) over Ỹ with

||A|| = r. We let A′ = (Q, q0, F, T), a deterministic finite automaton over Ỹ .

Next, we wish to define a PDA M over Ỹ recognizing L(A′) ∩DY . Let M =

(Q, Ỹ , Ỹ0, q0, γ0, F, T
′) such that (q, ε, γ0, q, ε) ∈ T ′ for each q ∈ F , and for every

x ∈ Ỹ and γ ∈ Ỹ0, (q, x, γ, p, π) ∈ T ′ iff (q, x, p) ∈ T and (π = xγ if x ∈ Y ,
and π = ε if γ ∈ Y and x = γ). Since A′ is deterministic, M is an unambiguous
PDA and L(M) = L(A′) ∩DY .

Next, we extend M to a PDA MT = (Q, T, Ỹ0, q0, γ0, F, T) by letting
(q, t, γ, p, π) ∈ T iff (q, x, γ, p, π) ∈ T ′ and either t = (q, x, p) ∈ T or t = x = ε.

Clearly, MT is unambiguous. Moreover, since A′ is deterministic, for each
v ∈ L(M) ⊆ L(A′) there is a unique successful path pv ∈ T ∗ on v in A′. Then
pv ∈ L(MT). Conversely, each v′ ∈ L(MT) arises as v′ = pv for a uniquely
determined word v ∈ L(M) in this way.

We let lab : T ∗ → Ỹ ∗ be the alphabetic morphism mapping each transition
to its label, i.e., lab(q, x, p) = x. Finally we define an alphabetic morphism
hK : T → K[Σ ∪ {ε}] by letting hK(t) = wt(t).h(lab(t)).

We claim that hK(L(MT)) = h(r∩DY). Let w ∈ Σ∗. Note that if v ∈ L(M)
and v′ = pv as above, then lab(v′) = v and hK(v′) = wt(v′).h(v). Since v′ = pv
is the unique successful path in A on v, we obtain wt(v′) = (||A||, v). Moreover,
(hK(v′), w) �= 0 implies w = h(v). Also, (||A||, v) = 0 if v �∈ L(A′). Hence:

(hK(L(MT)), w) =
∑

v′∈L(MT)(hK(v′), w) =
∑

v∈L(M)
h(v)=w

wt(v′)

=
∑

v∈L(A′)∩DY

h(v)=w

(||A||, v) =
∑

v∈DY

h(v)=w
(||A||, v) =

∑
v∈˜Y ∗
h(v)=w

(r ∩DY , v)

= (h(r ∩DY), w).

3 ⇒ 5: trivial. 5 ⇒ 1: by Lemma 4. �

References

1. Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown au-
tomata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages.
Word, Language, Grammar, vol. 1, pp. 111–174. Springer (1997)

2. Bar–Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Z. Phonetik. Sprach. Komm. 14, 143–172 (1961)

3. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Mono-
graphs on Theoretical Computer Science, vol. 12. Springer (1988)

4. Birkhoff, G.: Lattice Theory. AMS (1967)

214 M. Droste and H. Vogler

5. Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. ACM Transac-
tions on Computational Logic 11(4), Article 23 (2010)

6. Chatterjee, K., Doyen, L., Henzinger, T.: Expressiveness and closure properties for
quantitative languages. In: LICS 2009, pp. 199–208. IEEE Comp. Soc. (2009)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In:
Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258.
Springer, Heidelberg (2009)

8. Chatterjee, K., Velner, Y.: Mean-payoff pushdown games. In: 27th Annual
ACM/IEEE Symposium on Logic in Computer Science, pp. 195–204 (2012)

9. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages.
In: Computer Programming and Formal Systems, pp. 118–161. North-Holland
(1963)

10. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1-2), 69–86 (2007)

11. Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted
MSO logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 537–548. Springer, Heidelberg (2010)

12. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation
monoid. Intern. J. of Foundations of Comp. Science 22, 1829–1844 (2011)

13. Droste, M., Stüber, T., Vogler, H.: Weighted finite automata over strong bimonoids.
Information Sciences 180, 156–166 (2010)

14. Droste, M., Vogler, H.: Weighted automata and multi-valued logics over arbitrary
bounded lattices. Theoretical Computer Science 418, 14–36 (2012)

15. Eilenberg, S.: Automata, Languages, and Machines – Volume A. Pure and Applied
Mathematics, vol. 59. Academic Press (1974)

16. Golan, J.S.: Semirings and their Applications. Kluwer Acad. Publ. (1999)
17. Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (2003)
18. Hulden, M.: Parsing CFGs and PCFGs with a Chomsky-Schützenberger represen-

tation. In: Vetulani, Z. (ed.) LTC 2009. LNCS, vol. 6562, pp. 151–160. Springer,
Heidelberg (2011)

19. Kozen, D.: Automata and Computability. Springer (1997)
20. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monogr. Theoret. Com-

put. Sci. EATCS Ser., vol. 5. Springer (1986)
21. Meinecke, I.: Valuations of weighted automata: Doing it in a rational way. In:

Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS,
vol. 7020, pp. 309–346. Springer, Heidelberg (2011)

22. Okhotin, A.: Non-erasing variants of the Chomsky-Schützenberger theorem. In:
Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer,
Heidelberg (2012)

23. Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste, M.,
Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, ch. 7, pp. 257–311.
Springer (2009)

24. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and
their application to interprocedural dataflow analysis. Science of Programming 58,
206–263 (2005)

25. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer (1978)

26. Schützenberger, M.P.: On the definition of a family of automata. Inf. and Control 4,
245–270 (1961)

Operational Characterization

of Scattered MCFLs�

Zoltán Ésik and Szabolcs Iván

University of Szeged, Hungary

Abstract. We give a Kleene-type operational characterization of Muller
context-free languages (MCFLs) of well-ordered and scattered words.

1 Introduction

A word, called ‘arrangement’ in [12], is an isomorphism type of a countable
labeled linear order. They form a generalization of the classic notions of finite
and ω-words.

Finite automata on ω-words have by now a vast literature, see [21] for a
comprehensive treatment. Finite automata acting on well-ordered words longer
than ω have been investigated in [2,9,10,23,24], to mention a few references. In
the last decade, the theory of automata on well-ordered words has been extended
to automata on all countable words, including scattered and dense words. In
[3,5,8], both operational and logical characterizations of the class of languages
of countable words recognized by finite automata were obtained.

Context-free grammars generating ω-words were introduced in [11] and sub-
sequently studied in [7,20]. Context-free grammars generating arbitrary count-
able words were defined in [14,15]. Actually, two types of grammars were defined,
context-free grammars with Büchi acceptance condition (BCFG), and context-
free grammars with Muller acceptance condition (MCFG). These grammars gen-
erate the Büchi and the Muller context-free languages of countable words, abbre-
viated as BCFLs and MCFLs. Every BCFL is clearly an MCFL, but there exists
an MCFL of well-ordered words that is not a BCFL, for example the set of all
countable well-ordered words over some alphabet. In fact, it was shown in [14]
that for every BCFL L of well-ordered words there is an integer n such that the
order type of the underlying linear order of every word in L is bounded by ωn.

A Kleene-type characterization of BCFLs of well-ordered and scattered words
was given in [17]. Here we provide a Kleene-type characterization of MCFLs of
well-ordered and scattered words. Before presenting the necessary preliminaries
in detail, we give a formulation of our main result, at least in the well-ordered case.

� The publication is supported by the European Union and co-funded by the European
Social Fund. Project title: “Telemedicine-focused research activities on the field of
Matematics, Informatics and Medical sciences”, Project number: TAMOP-4.2.2.A-
11/1/KONV-2012-0073.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 215–226, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

216 Z. Ésik and S. Iván

Suppose that Σ is an alphabet, and let Σ	 denote the set of all (countable)
words over Σ. Let P (Σ) be the set of all subsets of Σ	. The set of μωTw-
expressions over Σ is defined by the following grammar:

T ::= a | ε | x | T + T | T · T | μx.T | Tω

Here, each letter a ∈ Σ denotes the language containing a as its unique word,
while ε denotes the language containing only the empty word. The symbols
+ and · are interpreted as set union and concatenation over P (Σ), and the
variables x range over languages in Σ	. The μ-operator corresponds to taking
least fixed points. Finally, ω is interpreted as the ω-power operation over P (Σ):
L $→ L · L · · · . An expression is closed if each variable occurs in the scope of a
least fixed-point operator. Each closed expression denotes a language in P (Σ).
Our main result in the well-ordered case, which is a corollary of Theorem 2 is:

Theorem 1. A language L ⊆ Σ	 is an MCFL of well-ordered words iff it is
denoted by some closed μωTw-expression.

Example 1. The expression μx.(xω+a+b+ε) denotes the set of all well-ordered
words over the alphabet {a, b}.
It was shown in [17] that the syntactic fragment of the above expressions, with
the ω-power operation restricted to closed expressions, characterizes the BCFLs of
well-ordered words. A similar, but more involved result holds for MCFLs of scat-
tered words, cf. Theorem 2. Both theoremswere conjectured by the authors of [17].

2 Notation

2.1 Linear Orderings

A linear ordering is a pair (I,<), where I is a set and < is an irreflexive transitive
trichotomous relation (i.e. a strict total ordering) on I. If I is finite or countable,
we say that the ordering is finite or countable as well. In this paper, all orderings
are assumed to be countable. A good reference for linear orderings is [22].

An embedding of the linear ordering (I,<) into (J,≺) is an order preserving
function f : I → J , i.e. x < y implies f(x) ≺ f(y) for each x, y ∈ I. If f
is surjective, we call it an isomorphism. Two linear orderings are said to be
isomorphic if there exists an isomorphism between them. Isomorphism between
linear orderings is an equivalence relation; classes of this equivalence relation are
called order types. If I ⊆ J and < is the restriction of ≺ onto I, then we say
that (I,<) is a sub-ordering of (J,≺).

Examples of linear orderings are the ordering (N, <) of the positive integers,
the ordering (N−, <) of the negative integers, the ordering (Z, <) of the integers
and the ordering (Q, <) of the rationals. The respective order types are denoted
ω, −ω, ζ and η. In order to ease notation, we write simply I for (I,<) if the
ordering < is standard or known from the context.

An ordering is scattered if it does not have a sub-ordering of order type η,
otherwise it is quasi-dense. An ordering is a well-ordering if it does not have a
sub-ordering of order type −ω. Order types of well-orderings are called ordinals.

Operational Characterization of Scattered MCFLs 217

When (I,<) is an ordering and for each i ∈ I, (Ji, <i) is an ordering, then the
generalized sum

∑
i∈I

(Ji, <i) is the disjoint union {(i, j) : i ∈ I, j ∈ Ji} equipped

with the lexicographic ordering (i, j) < (i′, j′) iff i < i′, or i = i′ and j <i j
′. It

is known that if (I,<) and the (Ji, <i) are scattered or well-ordered, then so is
the generalized sum. The operation of generalized sum can be extended to order
types since it preserves isomorphisms. For example, ζ = −ω + ω. Ordinals are
also equipped with an exponentiation operator.

Hausdorff classified linear orderings into an infinite hierarchy. Following [18],
we present a variant of this hierarchy. Let V D0 be the collection of all finite
linear orderings, and when α is some ordinal, let V Dα be the collection of all
finite sums of linear orderings of the form

∑
i∈Z

(Ii, <i), where for each integer

i ∈ Z, (Ii, <i) is a member of V Dαi for some ordinal αi < α. According to a
theorem of Hausdorff (see e.g. [22], Thm. 5.24), a (countable) linear ordering
(I,<) is scattered if and only if it belongs to V Dα for some (countable) ordinal
α; the least such α is called the rank of (I,<), denoted rank(I,<).

2.2 Words, Tree Domains, Trees

An alphabet is a finite nonempty set Σ of symbols, usually called letters. A word
over Σ is a linear ordering (I,<) equipped with a labeling function λ : I → Σ.
An embedding of words is a mapping preserving the order and the labeling;
a surjective embedding is an isomorphism. Order theoretic properties of the
underlying linear ordering of a word are transferred to the word. A word is finite
if its underlying linear order is finite, and an ω-word, if its underlying linear order
is a well-order of order type ω. We usually identify isomorphic words and denote
by Σ	 the set of all words over Σ. As usual, we denote the collection of finite
and ω-words over Σ by Σ∗ and Σω, respectively. The length of a word u ∈ Σ∗

is denoted |u|. A language over Σ is a subset of Σ	. As in the introduction, we
let P (Σ) denote the collection of all languages over Σ.

When (I,<) is a linear ordering and wi = (Ji, <i, λi) for i ∈ I are words, then
we define their concatenation

∏
i∈I wi as the word with underlying linear order∑

i∈I

(Ji, <i) and labeling λ(i, j) = λi(j). When I has two elements, we obtain

the usual notion of concatenation, denoted u · v, or just uv. The operation of
concatenation is extended to languages in P (Σ):

∏
i∈I Li = {

∏
i∈I wi : wi ∈

Li}. When L,L1, L2 ⊆ Σ	, then we define L1 + L2 to be the set union and
L1L2 = {uv : u ∈ L1, v ∈ L2}. Moreover, we define Lω =

∏
i∈N

L.

The set P (Σ) of languages over Σ, equipped with the inclusion order, is a
complete lattice. When A is a set, a function f : P (A)n → P (A) is monotone if
Ai ⊆ A′

i for each i ∈ [n] implies f(A1, . . . , An) ⊆ f(A′
1, . . . , A

′
n). The following

fact is clear.

Lemma 1. The functions +, · : P (Σ)2 → P (Σ) and ω : P (Σ) → P (Σ) are
monotone.

218 Z. Ésik and S. Iván

We will also consider pairs of words over an alphabet Σ, equipped with a finite
concatenation and an ω-product operation. For pairs (u, v), (u′, v′) in Σ	 ×Σ	,
we define the product (u, v) · (u′, v′) to be the pair (uu′, v′v), and when for each
i ∈ N, (ui, vi) is in Σ	×Σ	, then we let

∏
i∈N

(ui, vi) be the word
(∏
i∈N

ui
)(∏

i∈N−
vi
)
.

Let P (Σ	 × Σ) denote the set of all subsets of Σ	 × Σ	. Then P (Σ	 × Σ)
is naturally equipped with the operations of set union L + L′, concatenation
L · L′ = {(u, v) · (u′, v′) : (u, v) ∈ L, (u′, v′) ∈ L′} and Kleene star L∗ =
{ε} ∪ L ∪ L2 ∪ · · · . We also define an ω-power operation P (Σ	 × Σ) → P (Σ)
by Lω = {

∏
i∈N

(ui, vi) : (ui, vi) ∈ L}. When L1, L2 ⊆ Σ	, let L1 × L2 = {(u, v) :

u ∈ L1, v ∈ L2} ⊆ Σ	 ×Σ	.

Lemma 2. The functions

× : P (Σ)2 → P (Σ	 ×Σ)

+, · : P (Σ	 ×Σ)2 → P (Σ	 ×Σ)
∗ : P (Σ	 × Σ) → P (Σ	 ×Σ)
ω : P (Σ	 ×Σ) → P (Σ)

are monotone.

We will use Lemma 1 and Lemma 2 in the following context. Suppose that for
each i ∈ [n] = {1, . . . , n}, fi : P (Σ)n+p → P (Σ) is a function that can be
constructed by function composition from the above functions, the projection
functions and constant functions. Let f = 〈f1, . . . , fn〉 : P (Σ)n+p → P (Σ)n

be the target tupling of the fi. Then f is a monotone function, and by Tarski’s
fixed point theorem, for each y ∈ P (Σ)p there is a least solution of the fixed
point equation x = f(x, y) in the variable x ranging over P (Σ)n. This least
fixed point, denoted μx.f(x, y), gives rise to a function P (Σ)p → P (Σ)n in the
parameter y. It is known that this function is also monotone, see e.g. [6].

A tree domain is a prefix closed nonempty (but possibly infinite) subset of
N∗. Elements of a tree domain T are also called nodes of T . When x and x·i are
nodes of T for x ∈ N∗ and i ∈ N, then x·i is a child of x. A descendant of a node
x is a node of the form x·y, where y ∈ N∗. Nodes of T having no child are the
leaves of T . The leaves, equipped with order inherited from the lexicographic
ordering of N∗ form the frontier of T , denoted fr(T). An inner node of T is a
non-leaf node. Subsets of a tree domain T which themselves are tree domains
are called prefixes of T . A path of a tree domain T is a prefix of T such that each
node has at most one child. A path can be identified with the unique sequence
w in N≤ω of all sequences over N of length at most ω such that the set of nodes
of the path consists of the finite prefixes of w. A path π of T is maximal if no
path of T contains π properly. When T is a tree domain and x ∈ T is a node of
T , then the sub-tree domain T |x of T is the set {y : xy ∈ T }. A tree domain T
is locally finite if each node has a descendant which is a leaf.

A tree over an alphabet Δ is a mapping t : dom(t) → Δ ∪ {ε}, where dom(t)
is a tree domain, such that inner vertices are mapped to letters in Δ. Notions

Operational Characterization of Scattered MCFLs 219

such as nodes, paths etc. of tree domains are lifted to trees. When π is a path
of the tree t, then labels(π) = {t(u) : u ∈ π} is the set of labels of the nodes
of π, and infLabels(π) is the set of labels occurring infinitely often. For a path
π, head(π) denotes the minimal node x of π (with respect to the prefix order)
with infLabels(π) = labels(π|x), if π is infinite; otherwise head(π) is the last
node of π. The labeled frontier word lfr(t) of a tree t is determined by the
leaves not labeled by ε, which is equipped with the ordering inherited from the
lexicographic ordering of N∗ and labeling function inherited from the labeling
function of t. It is worth observing that when π = x0, x1, . . . is an infinite path
of a tree t and for each i, αi (βi, resp.) is the word determined by the leaf labels
of the descendants of xi to the left (right, resp.) of xi+1 (i.e. if xi+1 is the jth
child of xi, then αi = lfr(t|x·1) · lfr(t|x·2) · . . . · lfr(t|x·(j−1)) and similarly for βi),
then lfr(t) =

∏
i∈N

(αi, βi).

2.3 Muller Context-Free Languages of Scattered Words

AMuller context-free grammar, or MCFG, is a systemG = (V,Σ,R, S,F), where
V is the alphabet of nonterminals, Σ is the alphabet of terminals, Σ ∩V = ∅, R
is the finite set of productions of the form A → α with A ∈ V and α ∈ (Σ∪V)∗,
S ∈ V is the start symbol and F ⊆ P (V) is the set of nonempty accepting sets.

A derivation tree of the above grammar G is a tree t : dom(t) → V ∪Σ ∪ {ε}
satisfying the following conditions:

1. For each inner node x of t there exists a rule X → X1 . . . Xn in R with
Xi ∈ Σ ∪ V such that t(x) = X , the children of x are exactly x · 1, . . . , x · n,
and for each i ∈ [n], t(x · i) = Xi, so that when when n = 0, x has a single
child x · 1 labeled ε;

2. For each infinite path π of t, infLabels(π) is an accepting set of G.

A derivation tree is complete if its leaves are all labeled in Σ ∪ {ε}. If t is a
derivation tree having root symbol t(ε) = A, then we say that t is an A-tree.
The language L(G,A) ⊆ Σ	 generated from A ∈ V is the set of frontier words
of complete A-trees. The language L(G) generated by G is L(G,S). An MCFL
is a language generated by some MCFG.

Example 2. If G = ({S, I}, {a, b}, R, S, {{I}}), with

R = {S → a, S → b, S → ε, S → I, I → SI},

then L(G) consists of all the well-ordered words over {a, b}.

Example 3. If G = ({S, I}, {a, b}, R, S, {{I}}), with

R = {S → a, S → b, S → ε, S → I, I → SIS},

then L(G) consists of all the scattered words over {a, b}.

220 Z. Ésik and S. Iván

Let L ⊆ Σ	 be an MCFL consisting of scattered words and G = (V,Σ,R, S,F)
an MCFG with L(G) = L. We may assume that G is in normal form [15] –
among the properties of this normal form we will use the following ones (see
[15], Prop. 14) frequently:

– For every derivation tree there is a locally finite derivation tree with the
same root symbol and same labeled frontier.

– The frontier of each derivation tree is scattered.

In the rest of the paper, we fix an MCFG G = (V,Σ,R, S,F) in normal
form generating only scattered words.

When t is a derivation tree, then we define rank(t) = rank(fr(t)). For a deriva-
tion tree t, let maxNodes(t) be the prefix of dom(t) consisting of the nodes having
maximal rank, i.e. maxNodes(t) = {x ∈ dom(t) : rank(t|x) = rank(t)}. Suppose
that t is locally finite. It is known, (see e.g. [16], proof of Proposition 1, para-
graph 4) that in this case maxNodes(t) is the union of finitely many maximal
paths. Clearly, the set {π1, . . . , πn} of these paths is unique. Let level(t) stand
for the above n, the number of maximal paths covering maxNodes(t). Also, let
branch(t) stand for the longest common prefix of the paths π1, . . . , πn (which is
a finite word if level(t) > 1 and is π1 if level(t) = 1).

We call a (not necessarily locally finite) derivation tree t simple if maxNodes(t)
contains a single infinite path π and if infLabels(π) = labels(π), i.e. head(π) = ε.
(When t is additionally locally finite, then this path π contains all nodes of
maxNodes(t).) Such a path is called the central path of t. If t is a simple A-tree
and F is the set of labels of its central path, then we call t an F -simple A-tree.

3 The Main Result

For locally finite complete derivation trees t′ and t, let t′ ≺ t if one of the
following conditions holds:

1. rank(t′) < rank(t);
2. rank(t′) = rank(t) and level(t′) < level(t);
3. rank(t′) = rank(t), level(t′) = level(t) > 1 and |branch(t′)| < |branch(t)|;
4. rank(t′) = rank(t), level(t′) = level(t) = 1, that is, the set of nodes of

maximal rank is a path π in t and a path π′ in t′. Then let t′ ≺ t iff
|head(π′)| < |head(π)|.

Lemma 3. The relation ≺ is a well-partial order (wpo) of locally finite com-
plete derivation trees. The minimal elements of this wpo are the one-node trees
corresponding to the elements of Σ ∪ {ε}. Suppose that t is a locally finite com-
plete derivation tree and t′ = t|x is a proper subtree of t, so that x �= ε. If t is
not simple, or if t is simple but x does not belong to the central path of t, then
t′ ≺ t.

Operational Characterization of Scattered MCFLs 221

Proof. It is clear that ≺ is irreflexive. To prove that it is transitive, suppose
that t′′ ≺ t′ and t′ ≺ t. If rank(t′′) < rank(t), then clearly t′′ ≺ t. Suppose
that rank(t′′) = rank(t). Then also rank(t′′) = rank(t′) = rank(t). If level(t′′) <
level(t) then t′′ ≺ t again. Thus, we may suppose that level(t′′) = level(t), so that
level(t′′) = level(t′) = level(t) = n. Now there are two cases. If n > 1, then, since
t′′ ≺ t′ and t′ ≺ t, we know that |branch(t′′)| < |branch(t′)| < |branch(t)| and
thus t′′ ≺ t. If n = 1, then the maximal nodes form a single maximal path in each
of the trees t′′, t′ and t. Let us denote these paths by π′′, π′ and π, respectively.
As t′′ ≺ t′ and t′ ≺ t, we have that |head(π′′)| < |head(π′)| < |head(π)|, so that
t′′ ≺ t again.

The fact that there is no infinite decreasing sequence of locally finite complete
derivation trees with respect to the relation ≺ is clear, since every set of ordinals
is well-ordered.

Suppose now that t is a locally finite complete derivation tree which has at
least two nodes. By assumption, t has a leaf node x. Let t′ = t|x. If rank(t′) <
rank(t) then t′ ≺ t. Otherwise, rank(t′) = rank(t) = 0 and t is necessarily finite
(since the frontier of an infinite locally finite derivation tree is infinite). Clearly,
maxNodes(t) is the set of all nodes of t, and either level(t′) = 1 < level(t),
or level(t′) = level(t) = 1. In the latter case, t has a single maximal path π,
and |head(π′)| = 0 < |head(π)| for the single maximal path π′ of t′. In either
case, t′ ≺ t. Thus, no locally finite complete derivation tree having more than
one node is minimal. On the other hand, all one-node complete derivation trees
corresponding to the elements of Σ∪{ε} are clearly minimal (and locally finite).

To prove the last claim, suppose that t is a locally finite complete derivation
tree and t′ = t|x. If rank(t′) < rank(t), we are done. Otherwise, rank(t′) =
rank(t) and x is a member of maxNodes(t). Thus, if π is a maximal path of
maxNodes(t′), then xπ is a maximal path of maxNodes(t). Hence level(t′) ≤
level(t). If level(t′) < level(t), we are done. Otherwise, level(t′) = level(t) and
maxNodes(t) = xmaxNodes(t′).

Now there are two cases.

1. If level(t) > 1, then branch(t) = xbranch(t′), thus |branch(t′)| < |branch(t)|
and t′ ≺ t.

2. Suppose that level(t) = 1, and let π denote the unique maximal path of t
whose nodes form the set maxNodes(t). Since rank(t′) = rank(t), we have
that x belongs to π and, by assumption, t is not simple. Since t is not simple
and has at least two nodes, head(π) �= ε and |head(π′)| < |head(π)|, where
π′ is the unique maximal path of t′ whose nodes form the set maxNodes(t′).
(Actually π′ is determined by the proper suffix π|x of π.) �

Now we define certain ordinary ω-regular languages [19,21] corresponding to
central paths of simple derivation trees. Let Γ stand for the (finite) set consisting
of those triplets

(α,B, β) ∈ (V ∪Σ)∗ × V × (V ∪Σ)∗

for which αBβ occurs as the right-hand side of a production of G. For any
nonterminal A ∈ V and accepting set F ∈ F , let RA,F ⊆ Γω stand for the set of

222 Z. Ésik and S. Iván

ω-words over Γ accepted by the deterministic (partial) Muller (word) automaton
(F, Γ, δ, A, {F}), with B = δ(C, (α,D, β)) if and only if D = B and C → αBβ
is a production of G. By definition, each RA,F is an ω-regular set which can
be built from singleton sets corresponding to the elements of Γ by the usual
regular operations and the ω-power operation (actually, since every state has to
be visited infinitely many times, RA,F can be written as the ω-power of a regular
language of finite words over Γ).

Members of RA,F correspond to central paths of F -simple A-trees in the
following sense. Given w = (α1, A1, β1)(α2, A2, β2) . . . ∈ RA,F , we define an F -
simple A-tree tw of G as follows. The nodes x0, x1, . . . of the central path of tw
are x0 = ε, and xi = xi−1 · (|αi| + 1), for i > 0. Each xi has |αi+1Ai+1βi+1|
children, respectively labeled by the letters of the word αi+1Ai+1βi+1. Nodes
not on the central path of tw are leaf nodes.

It is straightforward to see the following claims:

1. For each w ∈ RA,F , tw is an F -simple A-tree.
2. Every F -simple A-tree has a prefix of the form tw, for some w ∈ RA,F . Thus,

every such tree can be constructed by choosing an appropriate w ∈ RA,F ,
and substituting a derivation tree tx with root symbol tw(x) for each leaf x
of tw.

Moreover, it is clear that when w = (α1, A1, β1)(α2, A2, β2) . . ., then lfr(tw) is
(
∏

i∈N
αi) · (

∏
i∈N− βi).

Let us assign a variableXA to each A ∈ V , and let X be the set of all variables.
For each ordinary regular expression r over Γ , we define an expression (term) r
over Σ∪X involving the function symbols ×,+, ·. To this end, when α is a word
in (Σ∪V)∗, let α be the word in (X ∪Σ)∗ obtained by replacing each occurrence
of a nonterminal A by the variable XA. Then, for a letter γ = (α,A, β) ∈ Γ ,
define γ = α×β. To obtain r, we replace each occurrence of a letter γ in r by γ.

When A is a nonterminal and A ∈ F for some F ∈ F , consider an ordinary
regular expression rA,F over Γ such that rωA,F denotes the set RA,F (defined
above) of all ω-words corresponding to central paths of F -simple A-trees. Then
consider the following system of equations EG associated with G in the variables
X :

XA =
∑

A→u∈R

u +
∑

A∈F∈F
(rA,F)

ω .

Example 4. The system of equations EG associated with the grammar in Exam-
ple 3 is:

XS = a+ b+ ε+XI

XI = (XS ×XS)
ω

As usual, we can associate a function fG : P (Σ)X → P (Σ)X with EG. By
Lemmas 1 and 2 and using the facts that the projections are monotone and that
monotone functions are closed under function composition, we have that fG is
monotone. Thus, fG has a least fixed point.

Operational Characterization of Scattered MCFLs 223

Proposition 1. For each A ∈ V , the corresponding component of the least fixed
point solution of the system EG is the language L(G,A) of all words derivable
from A.

Proof. The fact that the languages L(G,A), A ∈ V , form a solution is clear
from the definition of EG. Let us also define L(G, a) = {a}, for each a ∈ Σ∪{ε}.
Suppose that the family of languages LA, A ∈ V is another solution, and let
La = {a} for a ∈ Σ ∪ {ε}. We want to show that if t is a locally finite complete
A-tree with lfr(t) = u, then u ∈ LA, for each A ∈ Σ ∪ {ε} ∪ V . We apply
well-founded induction with respect to the wpo ≺.

For the base case, if t consists of a single node, then A = a ∈ Σ ∪ {ε}, u = a,
and our claim is clear. Otherwise, there are two cases: either t is a simple tree,
or not.

If t = A(t1, . . . , tn) is not simple, then we have ti ≺ t for each i ∈ [n] by
Lemma 3. Let Ai be the root symbol of ti and ui the labeled frontier word of ti
for each i. By the induction hypothesis, each ui is a member of LAi . Since t is a
derivation tree, A → A1 . . . An is a production of G. Thus, by the construction
of EG, u = u1 . . . un ∈ LA.

Otherwise, if t is an F -simple A-tree for some F ∈ F and A ∈ V , then t can
be constructed from a tree tw with w ∈ RA,F by replacing each leaf node x of tw
by some locally finite complete derivation tree tx with root symbol tw(x). Since
such leaves are not on the central path of t, we have tx ≺ t for each x, again by
Lemma 3. Applying the induction hypothesis, we get that the labeled frontier
word ux of each tx is a member of Ltw(x). Thus, by the construction of EG, u is
a member of LA. �

It is well-known, cf. [4,1] or [6], Chapter 8, Theorem 2.15 and Chapter 6, Section
8.1, Equation (3.2), that when L,L′,L′′ are complete lattices and f : L × L′ ×
L′′ → L and g : L×L′×L′′ → L′ are monotone functions, then the least solution
(in the parameter z) of the system of equations

x = f(x, y, z)

y = g(x, y, z)

can be obtained by Gaussian elimination as

x = μx.f(x, μy.g(x, y, z), z)

y = μy.g(μx.f(x, μy.g(x, y, z), z), y, z)

Using this fact and Proposition 1, we obtain our final result.
Let the set of μωTs-expressions over the alphabetΣ be defined by the following

grammar (with T being the initial nonterminal):

T ::= a | ε | x | T + T | T · T | μx.T | Pω

P ::= T × T | P + P | P · P | P ∗

Here, a ∈ Σ and x ∈ X for an infinite countable set X of variables. An occur-
rence of a variable is free if it is not in the scope of a μ-operation, and bound,

224 Z. Ésik and S. Iván

if it is not free. A closed expression does not have free variable occurrences.
The semantics of these expressions are defined as expected using the monotone
functions over P (Σ) and P (Σ	 × Σ) introduced earlier. When the free vari-
ables of an expression form the set Y, then an expression denotes a language in
P ((Σ ∪ Y)).

Remark 1. Actually, ε is redundant, as it is expressible by ((μx.x×μx.x)∗)ω . We
do not need a constant 0 denoting the empty set of pairs since it is expressible
by (μx.x) × (μx.x).

Theorem 2. A language L ⊆ Σ	 is an MCFL of scattered words if and only if
it can be denoted by a closed μωTs-expression.

Proof. It is easy to show that each expression denotes an MCFL of scattered
words. One uses the following facts, where Δ denotes an alphabet and x,# �∈ Δ.

– The set of MCFLs (of scattered words) over Δ is closed under + and ·.
– If L,L′ ⊆ Δ	 are MCFLs (of scattered words), then L#L′ ⊆ (Δ ∪ {#})	 is

an MCFL (of scattered words).
– Suppose that L,L′ ⊆ Δ	#Δ	 are MCFLs (of scattered words). Then

{uv#v′u′ : u#u′ ∈ L, v#v′ ∈ L′} ⊆ Δ	#Δ	

is an MCFL (of scattered words).
– Suppose that L ⊆ Δ	#Δ	 is an MCFL (of scattered words). Then

{u1 . . . un#vn . . . v1 : n ≥ 0, ui#vi ∈ L} ⊆ Δ	#Δ	

is an MCFL (of scattered words).
– Suppose that L ⊆ Δ	#Δ	 is an MCFL (of scattered words). Then

{(u1u2 . . .)(. . . v2v1) : ui#vi ∈ L} ⊆ Δ	

is an MCFL (of scattered words).
– Suppose that L ⊆ (Δ ∪ {x})	 is an MCFL (of scattered words). Then, with

respect to set inclusion, there is a least language L′ ⊆ Δ	 such that L[x $→
L′] = L′, and this language L′ is an MCFL (of scattered words). (Here,
L[x $→ L′] is the language obtained from L by ‘substituting’ L′ for x.)

For detailed proofs of the above facts see [13]. The other direction follows from
Proposition 1 using Gaussian elimination. �

It is easy to show that Theorem 1 follows from Theorem 2.

Example 5. The expression μx.((x×x)ω+a+b+ε) denotes the set of all scattered
words over the alphabet {a, b}.

Example 6. Let L ⊆ {a, b}	 be the language of all words w such that the word
obtained from w by removing all occurrences of letter b is well-ordered, as is
the ‘mirror image’ of the word obtained by removing all occurrences of letter

Operational Characterization of Scattered MCFLs 225

a. It is not difficult to show that each word in L contains only a finite number
of ‘alternations’ between a and b. Using this fact, an MCFG generating L is:
G = ({S,A,B, I, J}, Σ,R, S, {{I}, {J}}) with R consisting of the productions

S → AS | BS | ε
A → a | ε | I
I → AI

B → b | ε | J
J → JB

Using the algorithm described above (with some simplification), an expression
for L is:

tS = μxS .
(
(tA + tB)xS + ε

)
with

tA = μxA.
(
a+ ε+ (xA × ε)ω

)
tB = μxB .

(
b+ ε+ (ε× xB)

ω
)
.

References

1. de Bakker, J.W., Scott, D.: A theory of programs. IBM Seminar Vienna
(August 1969)

2. Bedon, N.: Finite automata and ordinals. Theoretical Computer Science 156,
119–144 (1996)

3. Bedon, N., Bès, A., Carton, O., Rispal, C.: Logic and rational languages of
words indexed by linear orderings. In: Hirsch, E.A., Razborov, A.A., Semenov, A.,
Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010,
pp. 76–85. Springer, Heidelberg (2008)

4. Bekić, H.: Definable operations in general algebras, and the theory of automata
and flowcharts. IBM Seminar Vienna (December 1969)

5. Bès, A., Carton, O.: A Kleene theorem for languages of words indexed by lin-
ear orderings. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572,
pp. 158–167. Springer, Heidelberg (2005)

6. Bloom, S.L., Ésik, Z.: Iteration Theories. EATCS Monograph Series in Theoretical
Computer Science. Springer (1993)

7. Boasson, L.: Context-free sets of infinite words. In: Weihrauch, K. (ed.) GI-TCS
1979. LNCS, vol. 67, pp. 1–9. Springer, Heidelberg (1979)

8. Bruyère, V., Carton, O.: Automata on linear orderings. J. Computer and System
Sciences 73, 1–24 (2007)

9. Büchi, J.R.: The monadic second order theory of ω1. In: Decidable theories, II.
Lecture Notes in Math, vol. 328, pp. 1–127. Springer, Heidelberg (1973)

10. Choueka, Y.: Finite automata, definable sets, and regular expressions over ωn-
tapes. J. Computer and System Sciences 17(1), 81–97 (1978)

11. Cohen, R.S., Gold, A.Y.: Theory of ω-languages, parts one and two. J. Computer
and System Sciences 15, 169–208 (1977)

226 Z. Ésik and S. Iván

12. Courcelle, B.: Frontiers of infinite trees. Theoretical Informatics and Applica-
tions 12, 319–337 (1978)

13. Ésik, Z., Iván, S.: Operational characterization of scattered MCFLs.
arXiv:1304.6388 [cs.FL]

14. Ésik, Z., Iván, S.: Büchi context-free languages. Theoretical Computer Science 412,
805–821 (2011)

15. Ésik, Z., Iván, S.: On Muller context-free grammars. Theoretical Computer Sci-
ence 416, 17–32 (2012)

16. Ésik, Z., Iván, S.: Hausdorff rank of scattered context-free linear orders. In:
Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 291–302. Springer,
Heidelberg (2012)

17. Ésik, Z., Okawa, S.: On context-free languages of scattered words. In: Yen, H.-C.,
Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 142–153. Springer, Heidelberg
(2012)

18. Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM
Transactions on Computational Logic (TOCL) 6, 675–700 (2005)

19. Muller, R.: Infinite sequences and finite machines. In: 4th Annual Symposium on
Switching Circuit Theory and Logical Design, pp. 3–16. IEEE Computer Society
(1963)

20. Nivat, M.: Sur les ensembles de mots infinis engendrés par une grammaire
algébrique (French). Theoretical Informatics and Applications 12, 259–278 (1978)

21. Perrin, D., Pin, J.-E.: Infinite Words. Elsevier (2004)
22. Rosenstein, J.G.: Linear Orderings. Academic Press (1982)
23. Wojciechowski, J.: Classes of transfinite sequences accepted by finite automata.

Fundamenta Informaticae 7, 191–223 (1984)
24. Wojciechowski, J.: Finite automata on transfinite sequences and regular expres-

sions. Fundamenta Informaticae 8, 379–396 (1985)

Abelian Repetitions in Sturmian Words

Gabriele Fici1, Alessio Langiu2, Thierry Lecroq3, Arnaud Lefebvre3,
Filippo Mignosi4, and Élise Prieur-Gaston3

1 Dipartimento di Matematica e Informatica, Università di Palermo, Italy
Gabriele.Fici@unipa.it

2 Department of Informatics, King’s College London, London, UK
Alessio.Langiu@kcl.ac.uk

3 Normandie Université, LITIS EA4108, Université de Rouen, 76821
Mont-Saint-Aignan Cedex, France

{Thierry.Lecroq,Arnaud.Lefebvre,Elise.Prieur}@univ-rouen.fr
4 Dipartimento di Informatica, Università dell’Aquila, L’Aquila, Italy

Filippo.Mignosi@di.univaq.it

Abstract. We investigate abelian repetitions in Sturmian words. We
exploit a bijection between factors of Sturmian words and subintervals
of the unitary segment that allows us to study the periods of abelian
repetitions by using classical results of elementary Number Theory. If
km denotes the maximal exponent of an abelian repetition of period
m, we prove that lim sup km/m ≥

√
5 for any Sturmian word, and the

equality holds for the Fibonacci infinite word. We further prove that the
longest prefix of the Fibonacci infinite word that is an abelian repetition
of period Fj , j > 1, has length Fj(Fj+1 + Fj−1 + 1) − 2 if j is even or
Fj(Fj+1+Fj−1)−2 if j is odd. This allows us to give an exact formula for
the smallest abelian periods of the Fibonacci finite words. More precisely,
we prove that for j ≥ 3, the Fibonacci word fj has abelian period equal
to Fn, where n = �j/2� if j = 0, 1, 2 mod 4, or n = 1 + �j/2� if j = 3
mod 4.

1 Introduction

The study of repetitions in words is a classical subject in Theoretical Computer
Science both from the combinatorial and the algorithmic point of view. Repe-
titions are strictly related to the notion of periodicity. Recall that a word w of
length |w| has a period p > 0 if w[i] = w[i+p] for any 1 � i � |w|−p, where w[i]
is the symbol in position i of w. Every word w has a minimal period p ≤ |w|. If
|w|/p ≥ 1, then w is called a repetition of period p and exponent |w|/p. When
|w|/p = k is an integer, the word w is called an integer power, since it can be
written as w = uk, i.e., w is the concatenation of k copies of a word u of length
p. If instead |w|/p is not an integer, the word w is called a fractional power. So
one can write w = ukv, where v is the prefix of u such that |w|/p = k + |v|/|u|.
For example, the word w = aabaaba is a 7/3-power since it has minimal period
3 and length 7. A classical reference on periodicity is [22, Chap. 7].

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 227–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

228 G. Fici et al.

Abelian properties concerning words have been studied since the very begin-
ning of Formal Languages and Combinatorics on Words. The notion of Parikh
vector has become a standard and is often used without an explicit reference
to the original 1966 Parikh’s paper [27]. Abelian powers were first considered in
1961 by Erdös [13] as a natural generalization of usual powers. Research concern-
ing abelian properties of words and languages developed afterwards in different
directions. In particular, there is a recent increasing of interest on abelian prop-
erties of words linked to periodicity (see, for example, [2,6,12,29,31,32]), and on
the algorithmic search of abelian periodicities in strings [7,10,14,15,20].

Recall that the Parikh vector Pw of a finite word w enumerates the cardinality
of each letter of the alphabet in w. Therefore, two words have the same Parikh
vector if one can be obtained from the other by permuting letters. We say that
the word w is an abelian repetition of (abelian) period m and exponent |w|/m
if w can be written as w = u0u1 · · ·uj−1uj for words ui and an integer j > 2,
where for 0 < i < j all the ui’s have the same Parikh vector P whose sum of
components ism and the Parikh vectors of u0 and uj are contained in P (see [8]).
When u0 and uj are empty, w is called an abelian power or weak repetition [11].
For example, the word w = abaab is an abelian repetition of period 2, since
one can set u0 = a, u1 = ba, u2 = ab and u3 = ε, where ε denotes the empty
word.

It is well known that Sturmian words and Fibonacci words, in particular,
are extremal cases for several problems related to repetitions (see for example
[9,18,26]) and are worst-case examples for classical pattern matching algorithms,
e.g. Knuth-Morris-Pratt [1,21]. There exists a huge bibliography concerning Stur-
mian words (see for instance the survey papers [3,4], [22, Chap. 2], [30, Chap.
6] and references therein). In particular, there is an analogous result to the one
presented in this paper concerning classical repetitions in the Fibonacci infinite
word [25]. In [23], a bijection between factors of Sturmian words and subintervals
of the unitary segment is described. We show in this paper that this bijection
preserves abelian properties of factors (see Proposition 4). Therefore, we are able
to apply techniques of Number Theory coupled with Combinatorics on Words
to obtain our main results. More precisely, if km denotes the maximal exponent
of an abelian repetition of period m, we prove that lim sup km/m ≥

√
5 for any

Sturmian word, and the equality holds for the Fibonacci infinite word.
We further prove that for any Fibonacci number Fj , j > 1, the longest prefix

of the Fibonacci infinite word that is an abelian repetition of period Fj has
length Fj(Fj+1 + Fj−1 + 1) − 2 if j is even or Fj(Fj+1 + Fj−1) − 2 if j is odd
(Theorem 7). This allows us to give an exact formula for the smallest abelian
periods of the Fibonacci finite words. More precisely, we prove, in Theorem 8,
that for j ≥ 3, the Fibonacci word fj has abelian period equal to Fn, where
n = j/2! if j = 0, 1, 2 mod 4, or n = 1+ j/2! if j = 3 mod 4.

Due to space constraints the proofs are omitted, but they will be included in
an upcoming full version of the paper.

Abelian Repetitions in Sturmian Words 229

2 Preliminaries

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet of cardinality σ and Σ∗

the set of words over Σ. We denote by |w| the length of the word w. We write
w[i] the i-th symbol of w and w[i. . j] the factor of w from the i-th symbol to the
j-th symbol, with 1 � i � j � |w|. We denote by |w|a the number of occurrences
of the symbol a ∈ Σ in the word w.

The Parikh vector of a word w, denoted by Pw, counts the occurrences of
each letter of Σ in w, i.e., Pw = (|w|a1 , . . . , |w|aσ). Given the Parikh vector
Pw of a word w, we denote by Pw[i] its i-th component and by |Pw| the sum
of its components. Thus, for a word w and 1 � i � σ, we have Pw[i] = |w|ai

and |Pw| =
∑σ

i=1 Pw[i] = |w|. Finally, given two Parikh vectors P ,Q, we write
P ⊂ Q if P [i] � Q[i] for every 1 � i � σ and |P| < |Q|.

Following [8], we give the definition below.

Definition 1. A word w is an abelian repetition of period m > 0 and exponent
|w|/m = k if one can write w = u0u1 · · ·uj−1uj for some j > 2 such that
Pu0 ⊂ Pu1 = . . . = Puj−1 ⊃ Puj , and |Pu1 | = . . . = |Puj−1 | = m.

An abelian power is an abelian repetition in which u0 = uj = ε.

We call u0 and uj the head and the tail of the abelian repetition, respectively.
Notice that the length t = |uj| of the tail is uniquely determined by h = |u0|, m
and |w|, namely t = (|w| − h) mod m.

Example 1. The word w = abaababa is an abelian repetition of period 2 and
exponent 4, since one can write w = a · ba · ab · ab · a. Notice that w is also an
abelian repetition of period 3 and exponent 8/3, since w = ε · aba · aba · ba.
In the rest of the paper, when we refer to an abelian repetition of period m, we
always suppose that m is the minimal abelian period of w.

Remark 1. We adopt the convention that an abelian repetition of exponent k ≥ 2
has also exponent k′ for any real number k′ such that 2 ≤ k′ ≤ k. This is a
standard convention widely adopted in the classical case.

2.1 Sturmian Words

From now on, we fix the alphabet Σ = {a,b}. We start by recalling a bijec-
tion between factors of Sturmian words and subintervals of the unitary segment
introduced in [23].

Let α and ρ be two real numbers with α ∈ (0, 1). Following the notations of
[17], the fractional part of a number r is defined by {r} = r − r!, where r! is
the greatest integer smaller than or equal to r. Therefore, for α ∈ (0, 1), one has
that {−α} = 1− α.

The sequence {nα+ ρ}, n > 0, defines an infinite word sα,ρ = a1(α, ρ)a2(α, ρ)
· · · by the rule

an(α, ρ) =

{
b if {nα+ ρ} ∈ [0, {−α}),
a if {nα+ ρ} ∈ [{−α}, 1).

See Fig. 1 for a graphical illustration.

230 G. Fici et al.

We will write an instead of an(α, ρ) whenever there is no possibility of mistake.
If α is rational, i.e. α = n/m, with n and m coprime integers, then it is easy to
prove that the word sα,ρ is periodic and m is its minimal period. In this case,
sα,ρ is also periodic in the abelian sense, since it trivially has abelian period m.

If instead α is irrational, then sα,ρ is not periodic and is called a Sturmian
word. Therefore, in the rest of the paper, we always suppose α irrational.

(an)

0 {−α} 1

b a

Fig. 1. An application of Proposition 1 when α = φ − 1 ≈ 0.618 (thus {−α} ≈ 0.382)
for i = 0. If {nα+ ρ} ∈ [{−α}, 1), then an = a; otherwise an = b.

0 1

(an+1)

{−2α}{−α}

a b a

Fig. 2. An application of Proposition 1 when α = φ − 1 ≈ 0.618 (thus {−α} ≈ 0.382)
for i = 1. If {nα+ ρ} ∈ [0, {−α}) ∪ [{−2α}, 1), then an+1 = a; otherwise an+1 = b.

0 1

(an)
(an+1)

{−2α}{−α}

b a a
a b a

Fig. 3. A single graphic representation of the information given in Fig. 1 and 2. If
{nα+ρ} ∈ [0, {−α}) = L0(α, 2), then an = b, an+1 = a. If {nα+ρ} ∈ [{−α}, {−2α}) =
L1(α, 2), then an = a, an+1 = b. If {nα + ρ} ∈ [{−2α}, 1) = L2(α, 2), then an = a,
an+1 = a.

Abelian Repetitions in Sturmian Words 231

Example 2. For α = φ− 1 and ρ = 0, where φ = (1 +
√
5)/2 is the golden ratio,

one obtains the Fibonacci infinite word

f = abaababaabaababaababa · · ·

Remark 2. Since α ∈ (0, 1), we have {−iα} �= {−(i + 1)α} for any natural
number i. We shall use this fact freely and with no explicit mention.

It is possible to prove (see [23, Corollary 2.3]) that the following result holds.

Proposition 1. Let α and ρ be real numbers, with α ∈ (0, 1) irrational. For any
natural numbers n, i, with n > 0, if {−(i+ 1)α} < {−iα} then

an+i = a ⇐⇒ {nα+ ρ} ∈ [{−(i+ 1)α}, {−iα}),

whereas if {−iα} < {−(i+ 1)α}) then

an+i = a ⇐⇒ {nα+ ρ} ∈ [0, {−iα}) ∪ [{−(i+ 1)α}, 1).

In Fig. 1 and 2 we display a graphical representation of the formula given in
Proposition 1 for α = φ − 1 when i = 0 and i = 1, respectively. In Fig. 3 we
present within a single graphic the situations illustrated in Fig. 1 and 2.

Let m be a positive integer. Consider the m + 2 points 0, 1, {−iα}, for 1 ≤
i ≤ m. Rearranging these points in increasing order one has:

0 = c0(α,m) < c1(α,m) < . . . < ck(α,m) < . . . < cm(α,m) < cm+1(α,m) = 1.

One can therefore define the m+ 1 non-empty subintervals

Lk(α,m) = [ck(α,m), ck+1(α,m)), 0 ≤ k ≤ m.

By using Proposition 1, it is possible to associate with each interval Lk(α,m) a
factor of lengthm of the word sα,ρ, and this correspondence is bijective (see [24]).
We call this correspondence the Sturmian bijection.

Proposition 2. Each factor of sα,ρ of length m, anan+1 · · ·an+m−1, depends
only on the interval Lk(α,m) containing the point {nα + ρ}; more precisely, it
depends only on the set Ik(α,m) of integers i ∈ {0, 1, . . . ,m−1} such that either
{−(i + 1)α} < {−iα} and ck(α,m) ∈ [{−(i + 1)α}, {−iα}) or {−(i + 1)α} >
{−iα} and ck(α,m) /∈ [{−iα}, {−(i+ 1)α}). The set Ik(α,m) is the set of the
integers i, with 0 ≤ i ≤ m− 1, such that an+i = a.

Corollary 1. Since the set of factors of sα,ρ depends only on the sequence
{−iα}, i > 0, it does not depend on ρ. In particular, then, for any ρ the word
sα,ρ has the same set of factors of the word sα,0.

Example 3. Let α = φ − 1. In Fig. 3 we show an example of the Sturmian
bijection when m = 2. The ordered sequence of points defining the subintervals
Lk(α, 2) is

c0(α, 2) = 0, c1(α, 2) = {−α} ≈ 0.382, c2(α, 2) = {−2α} ≈ 0.764, c3(α, 2) = 1.

232 G. Fici et al.

α
0

{−3α} {−6α}{−α} {−4α} {−2α} {−5α}

1
c0(α, 6) c1(α, 6) c2(α, 6)c3(α, 6) c4(α, 6) c5(α, 6) c6(α, 6)c7(α, 6)

0.145... 0.291...0.381... 0.527... 0.763... 0.909...

(an)
(an+1)
(an+2)
(an+3)
(an+4)
(an+5)

b
a
b
a
a
b

b
a
a
b
a
b

b
a
a
b
a
a

a
b
a
b
a
a

a
b
a
a
b
a

a
a
b
a
b
a

a
a
b
a
a
b

Fig. 4. The subintervals Lk(α,m) of the Sturmian bijection obtained for α = φ−1 and
m = 6. Below each interval there is the factor of sα of length 6 associated with that
interval. For ρ = 0 and n = 1, the prefix of length 6 of the Fibonacci word is associated
with L4(α, 6) = [c4(α, 6), c5(α, 6)), which is the interval containing α.

In Fig. 4 we show an example of the Sturmian bijection when α = φ − 1 and
m = 6. Below each interval there is the factor of sα of length m = 6 associated
with that interval. The prefix of length 6 of the Fibonacci word corresponds to
the factor below the interval containing α (so, for n = 1 and ρ = 0). Notice
that all the factors of length 6 of the Fibonacci word appear, and moreover
they are lexicographically ordered from right to left. This property concerning
lexicographic order holds for any Sturmian word and any length m of factors,
and is stated in next proposition, which is of independent interest and is related
to some recent research on Sturmian words and the lexicographic order (see
[5,16,19,28]).

Proposition 3. Let m ≥ 1 and k, k′ such that 0 ≤ k, k′ ≤ m. Then k < k′ if
and only if the factor tα,ρ,m associated to Lk(α,m) in the Sturmian bijection is
lexicographically greater than the factor t′α,ρ,m associated to Lk′(α,m).

In the next section we present a new property of the Sturmian bijection, that will
allow us to use some standard Number Theory techniques to deal with abelian
repetitions in Sturmian words and, in particular, in the Fibonacci infinite word.
Similar techniques are used in [31] to derive some other interesting results on
abelian powers in Sturmian words.

3 Sturmian Bijection and Parikh Vectors

Let sα,ρ be a Sturmian word. Since we are mainly interested in the set of factors
of sα,ρ, we do not lose generality, by Corollary 1, supposing ρ = 0. The Sturmian
words with ρ = 0 are called characteristic, and have been the object of deep
studies within the field of Sturmian words. For simplicity of notation, we will
write sα instead of sα,0.

Abelian Repetitions in Sturmian Words 233

We now describe some properties of the Sturmian bijection between the factors
of length m of sα and the subintervals Lk(α,m), that we will use to prove the
main results of the paper.

Proposition 4. Under the Sturmian bijection, all the factors corresponding to
an interval ck(α,m) = [x, y) with x ≥ {−mα} have the same Parikh vec-
tor v1(α,m) and all the factors corresponding to an interval [x, y) with y ≤
{−mα} have the same Parikh vector v2(α,m). Moreover, one has v1(α,m)[1] =
v2(α,m)[1] + 1.

The reader can see in Fig. 4 that the factors of length 6 corresponding to an
interval to the left of {−6(φ− 1)} have Parikh vector (3, 3), while the other ones
have Parikh vector (4, 2).

We now address the following questions:

1. Given m, how large can be the exponent of an abelian repetition of period
m in sα?

2. What can we say in the particular case of the Fibonacci word, i.e., when
α = φ− 1?

The next result follows straightforwardly from Proposition 4.

Corollary 2. Let w be an abelian power of period m and exponent k + 1 ap-
pearing in sα in position n. Then all the points in the sequence {nα}, {(n +
m)α}, {(n+2m)α}, . . . , {(n+ km)α} are in the same subinterval in which [0, 1)
is subdivided by the point {−mα}, i.e., either [0, {−mα}) or [{−mα}, 1).
The next proposition is a technical step to prove the following theorem.

Proposition 5. If k ≥ 1, the k + 1 points of Corollary 2 are naturally ordered.
That is to say, if {mα} < 0.5, then they are all in the subinterval [0, {−mα})
and one has {nα} < {(n +m)α} < . . . < {(n + km)α}; if instead {mα} > 0.5
then they are all in the interval [{−mα}, 1) and one has {(n+ km)α} < {(n+
(k − 1)m)α} < . . . < {nα}.
Theorem 1. Let m be a positive integer such that {mα} < 0.5 (resp. {mα} >
0.5). Then:

1. In sα there is an abelian power of period m and exponent k ≥ 2 if and only
if {mα} < 1

k (resp. {−mα} < 1
k).

2. If in sα there is an abelian power of period m and exponent k ≥ 2 starting
in position i with {iα} ≥ {mα} (resp. {iα} ≤ {mα}), then {mα} < 1

k+1

(resp. {−mα} < 1
k+1). Conversely, if {mα} < 1

k+1 (resp. {−mα} < 1
k+1),

then there is an abelian power of period m and exponent k ≥ 2 starting in
position m.

The previous theorem allows us to deal with abelian repetitions in a Sturmian
word sα by using classical results on the approximation of the irrational α by
rationals. This is a classical topic in Number Theory. Since the number φ − 1
has special properties within this topic, we have in turn specific results for the
Fibonacci infinite word.

234 G. Fici et al.

4 Approximating Irrationals by Rationals and Abelian
Repetitions

We recall some classical results of Number Theory. For any notation not explic-
itly defined in this section we refer to [17, Chap. X, XI].

The sequence F0 = 1, F1 = 1, Fj+1 = Fj + Fj−1 for j ≥ 1 is the well known

sequence of Fibonacci numbers. The sequence of fractions
Fj+1

Fj
converges to

φ =
√
5+1
2 , while the sequence

Fj

Fj+1
converges to φ − 1 =

√
5−1
2 . Moreover, the

sequences
Fj+1

Fj
and 0 = 0

1 ,
Fj

Fj+1
, j = 0, 1, . . ., are the sequences of convergents,

in the development in continued fractions, of φ and φ− 1 respectively.
Concerning the approximation given by the above convergents, the following

result holds (see [17, Chap. X, Theorem 171] and [17, Chap. XI, Section 11.8]).

Theorem 2. For any j > 0,

φ− Fj+1

Fj
= (φ− 1)− Fj−1

Fj
=

(−1)j

Fj(φFj + Fj−1)
.

We also report the following theorems (see [17, Chap. XI, Theorem 193 and the
proof of Theorem 194]).

Theorem 3. Any irrational α has an infinity of approximations which satisfy∣∣∣ n
m

− α
∣∣∣ < 1√

5m2
.

Theorem 4. Let α = φ− 1. If A >
√
5, then the inequality∣∣∣ n

m
− α
∣∣∣ < 1

Am2

has only a finite number of solutions.

The last two theorems, coupled with the first part of Theorem 1, allow us to
derive the next result.

Theorem 5. Let sα be a Sturmian word. For any integer m > 1, let km be the
maximal exponent of an abelian repetition of period m in sα. Then

lim sup
m→∞

km
m

≥
√
5,

and the equality holds if α = φ− 1.

Abelian Repetitions in Sturmian Words 235

5 Prefixes of the Fibonacci Infinite Word

We now study the abelian repetitions that are prefixes of the Fibonacci infinite
word. For this, we will make use of the second part of Theorem 1. Notice that
an abelian repetition of period m appearing as a prefix of the Fibonacci word
can have a head of length equal to m− 1 at most. Therefore, we have to check
all the abelian powers that start in position i for every i = 1, . . . ,m. In order to
do this, we report here another result (see [17, Chap. X, Theorem 182]).

Theorem 6. Let ni/mi be the i-th convergent to α. If i > 1, 0 < m ≤ mi and
n/m �= ni/mi, then |ni −miα| < |n−mα|.

The previous theorem implies the following result.

Corollary 3. Suppose that m > 1 is the denominator of a convergent to α and
that {mα} < 0.5 (resp. {mα} > 0.5). Then for any i such that 1 ≤ i < m, one
has {iα} ≥ {mα} (resp. {iα} ≤ {mα}).

From the previous corollary, we have that if m > 1 is a Fibonacci number and
α = φ−1, then the hypotheses of the second part of Theorem 1 are satisfied. The
next proposition is a direct consequence of Corollary 3, Theorem 1 and Theorem
2.

Proposition 6. Let j > 1. In the Fibonacci infinite word, the longest abelian
power having period Fj and starting in a position i ≤ Fj has an occurrence
starting in position Fj , and has exponent equal to

 φFj + Fj−1! − 1 =

{
Fj+1 + Fj−1 − 1 if j is even;

Fj+1 + Fj−1 − 2 if j is odd.

The following theorem provides a formula for computing the length of the longest
abelian repetition occurring as a prefix in the Fibonacci infinite word.

Theorem 7. Let j > 1. The longest prefix of the Fibonacci infinite word that is
an abelian repetition of period Fj has length Fj(Fj+1 +Fj−1 +1)− 2 if j is even
or Fj(Fj+1 + Fj−1)− 2 if j is odd.

Corollary 4. Let j > 1 and kj be the maximal exponent of a prefix of the
Fibonacci word that is an abelian repetition of period Fj. Then

lim
j→∞

kj
Fj

=
√
5.

In Fig. 5 we give a graphical representation of the longest prefix of the Fibonacci
infinite word that is an abelian repetition of period m for m = 2, 3 and 5. In
Table 1 we give the length lp(Fj) of the longest prefix of the Fibonacci infinite
word that is an abelian repetition of period Fj , for j = 2, . . . , 11, computed using
the formula of Theorem 7. We also show the values of the distance between

√
5

236 G. Fici et al.

0 5 10 15

abaababaabaab · · ·(a)

0 5 10 15 20 25

abaababaabaababaababa · · ·(b)

0 5 10 15 20 25 30 35 40 45 50 55 60 65

abaababaabaababaababaabaababaabaababaababaabaababaababaabaababa · · ·(c)

Fig. 5. Longest abelian repetition of period m that is a prefix of the Fibonacci word
for m = 2, 3, 5. (a) For m = 2, the longest abelian repetition has length 8 = 1+3p+1.
(b) For m = 3, the longest abelian repetition has length 19 = 2+5p+2. (c) For m = 5,
the longest abelian repetition has length 58 = 4 + 10p+ 4.

Table 1. The length of the longest prefix (lp(Fj)) of the Fibonacci word having abelian
period Fj for j = 2, . . . , 11. The table also reports rounded distances (multiplied by
102) between

√
5 and the ratio between the exponent kj = lp(Fj)/Fj of the longest

prefix of the Fibonacci word having abelian period Fj and Fj (see Corollary 4).

j 2 3 4 5 6 7 8 9 10 11

Fj 2 3 5 8 13 21 34 55 89 144

lp(Fj) 8 19 58 142 388 985 2616 6763 17798 46366

|
√
5 − kj/Fj | × 102 23.6 12.5 8.393 1.732 5.98 0.25 2.69 0.037 1.087 0.005

and the ratio between the maximal exponent kj = lp(Fj)/Fj of a prefix of the
Fibonacci infinite word having abelian period Fj and Fj .

Recall that the Fibonacci (finite) words are defined by f0 = b, f1 = a, and for
every j > 1, fj+1 = fjfj−1. So, for every j, one has |fj | = Fj . As a consequence
of the formula given in Theorem 7, we have the following result on the smallest
abelian periods of the Fibonacci words.

Theorem 8. For j ≥ 3, the (smallest) abelian period of the word fj is the n-th
Fibonacci number Fn, where n = j/2! if j = 0, 1, 2 mod 4, or n = 1+ j/2! if
j = 3 mod 4.

For example, the abelian period of the word f4 = abaab is 2 = F2 = 4/2!,
since one can write f4 = a · ba · ab; the abelian period of f5 = abaababa is
2 = F2; the abelian period of f6 = abaababaabaab is 3 = F3; the abelian period
of f7 = abaababaabaababaababa is 5 = F4. In Table 2 we report the abelian
periods of the first Fibonacci words.

Abelian Repetitions in Sturmian Words 237

Table 2. The (smallest) abelian periods of the Fibonacci words fj for j = 3, . . . , 16

j 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a. p. of fj F2 F2 F2 F3 F4 F4 F4 F5 F6 F6 F6 F7 F8 F8

We conclude the paper with the following open problems:

1. Is it possible to find the exact value of lim sup km

m for other Sturmian words
sα with slope α different from φ− 1?

2. Is it possible to give the exact value of this superior limit when α is an
algebraic number of degree 2?

References

1. Aho, A.: Algorithms for Finding Patterns in Strings. In: van Leeuwen, J. (ed.)
Handbook of Theoret. Comput. Sci, pp. 257–300. Elsevier Science Publishers B.
V, Amsterdam (1990)

2. Avgustinovich, S., Karhumäki, J., Puzynina, S.: On abelian versions of Critical
Factorization Theorem. RAIRO Theor. Inform. Appl. 46, 3–15 (2012)

3. Berstel, J.: Sturmian and episturmian words (a survey of some recent results). In:
Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 23–47. Springer,
Heidelberg (2007)

4. Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on Words:
Christoffel Words and Repetition in Words. CRM monograph series, vol. 27. Amer-
ican Mathematical Society (2008)

5. Bucci, M., De Luca, A., Zamboni, L.: Some characterizations of Sturmian words in
terms of the lexicographic order. Fundamenta Informaticae 116(1-4), 25–33 (2012)

6. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.: Avoiding Abelian powers in
binary words with bounded Abelian complexity. Int. J. Found. Comput. Sci. 22(4),
905–920 (2011)

7. Christou, M., Crochemore, M., Iliopoulos, C.S.: Identifying all abelian periods of a
string in quadratic time and relevant problems. Int. J. Found. Comput. Sci. 23(6),
1371–1384 (2012)

8. Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for abelian periods. Bull. Eur.
Assoc. Theoret. Comput. Sci. EATCS 89, 167–170 (2006)

9. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and com-
binatorics. Theoret. Comput. Sci. 410(50), 5227–5235 (2009)

10. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Pachocki, J., Ra-
doszewski, J., Rytter, W., Tyczynski, W., Walen, T.: A note on efficient computa-
tion of all abelian periods in a string. Inf. Process. Lett. 113(3), 74–77 (2013)

11. Cummings, L.J., Smyth, W.F.: Weak repetitions in strings. J. Combin. Math.
Combin. Comput. 24, 33–48 (1997)

12. Domaratzki, M., Rampersad, N.: Abelian primitive words. Int. J. Found. Comput.
Sci. 23(5), 1021–1034 (2012)

13. Erdös, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutato. Int. Kozl. 6,
221–254 (1961)

238 G. Fici et al.

14. Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, E.: Computing Abelian Periods
in Words. In: Proceedings of the Prague Stringology Conference, PSC 2011, pp.
184–196. Czech Technical University in Prague (2011)

15. Fici, G., Lecroq, T., Lefebvre, A., Prieur-Gaston, E., Smyth, W.F.: Quasi-Linear
Time Computation of the Abelian Periods of a Word. In: Proceedings of the Prague
Stringology Conference, PSC 2012, pp. 103–110. Czech Technical University in
Prague (2012)

16. Glen, A., Justin, J., Pirillo, G.: Characterizations of finite and infinite episturmian
words via lexicographic orderings. European Journal of Combinatorics 29(1), 45–58
(2008)

17. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn.
Clarendon Press, Oxford (1979)

18. Iliopoulos, C.S., Moore, D., Smyth, W.F.: A Characterization of the Squares in a
Fibonacci String. Theoret. Comput. Sci. 172(1-2), 281–291 (1997)

19. Jenkinson, O., Zamboni, L.Q.: Characterisations of balanced words via orderings.
Theoret. Comput. Sci. 310(1-3), 247–271 (2004)

20. Kociumaka, T., Radoszewski, J., Rytter, W.: Fast algorithms for abelian periods
in words and greatest common divisor queries. In: STACS 2013. LIPIcs, vol. 20,
pp. 245–256. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

21. Kolpakov, R., Kucherov, G.: Finding Maximal Repetitions in a Word in Linear
Time. In: Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS 1999, pp. 596–604. IEEE Computer Society (1999)

22. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

23. Mignosi, F.: Infinite Words with Linear Subword Complexity. Theoret. Comput.
Sci. 65(2), 221–242 (1989)

24. Mignosi, F.: On the number of factors of Sturmian words. Theoret. Comput. Sci. 82,
71–84 (1991)

25. Mignosi, F., Pirillo, G.: Repetitions in the Fibonacci infinite word. RAIRO Theor.
Inform. Appl. 26, 199–204 (1992)

26. Mignosi, F., Restivo, A.: Characteristic Sturmian words are extremal for the critical
factorization theorem. Theoret. Comput. Sci. 454(0), 199–205 (2012)

27. Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13(4), 570–581
(1966)

28. Perrin, D., Restivo, A.: A note on Sturmian words. Theoret. Comput. Sci. 429,
265–272 (2012)

29. Puzynina, S., Zamboni, L.Q.: Abelian returns in Sturmian words. J. Comb. Theory,
Ser. A 120(2), 390–408 (2013)

30. Pytheas Fogg, N.: Substitutions in Dynamics, Arithmetics and Combinatorics. Lec-
ture Notes in Math, vol. 1794. Springer, Heidelberg (2002)

31. Richomme, G., Saari, K., Zamboni, L.: Abelian complexity of minimal subshifts.
Journal of the London Mathematical Society 83(1), 79–95 (2011)

32. Samsonov, A., Shur, A.: On Abelian repetition threshold. RAIRO Theor. Inform.
Appl. 46, 147–163 (2012)

Composition Closure

of ε-Free Linear Extended
Top-Down Tree Transducers

Zoltán Fülöp1,� and Andreas Maletti2,��

1 Department of Foundations of Computer Science, University of Szeged
Árpád tér 2, H-6720 Szeged, Hungary

fulop@inf.u-szeged.hu
2 Institute for Natural Language Processing, University of Stuttgart

Pfaffenwaldring 5b, 70569 Stuttgart, Germany
maletti@ims.uni-stuttgart.de

Abstract. The expressive power of compositions of linear extended
top-down tree transducers with and without regular look-ahead is in-
vestigated. In particular, the restrictions of ε-freeness, strictness, and
nondeletion are considered. The composition hierarchy is finite for all
ε-free variants of these transducers except for ε-free nondeleting linear
extended top-down tree transducers. The least number of transducers
needed for the full expressive power of arbitrary compositions is pre-
sented.

1 Introduction

The top-down tree transducer is a simple formal model that encodes a tree
transformation. It was introduced in [21,22] and intensively studied thereafter
(see [13,14,12] for an overview). Roughly speaking, a top-down tree transducer
processes the input tree symbol-by-symbol and specifies in its rules, how to
translate an input symbol into an output tree fragment together with instructions
on how to process the subtrees of the input symbol. This asymmetry between
input (single symbol) and output (tree fragment) was removed in extended top-
down tree transducers (xt), which were introduced and studied in [1,2]. In an xt
the left-hand side of a rule now contains an input tree fragment, in which each
variable can occur at most once as a placeholder for a subtree. In particular, the
input tree fragment can even be just a variable, which matches every tree, and
such rules are called ε-rules. We consider linear xt (l-xt), in which the right-hand
side of each rule contains each variable at most once as well. Restricted variants
of l-xt are used in most approaches to syntax-based machine translation [16,17].

We also add regular look-ahead [6] (i.e., the ability to check a regular property
for the subtrees in an input tree fragment) to l-xt, so our most expressive model

� Supported by the program TÁMOP-4.2.1/B-09/1/KONV-2010-0005 of the Hungar-
ian National Development Agency.

�� Supported by the German Research Foundation (DFG) grant MA/4959/1-1.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 239–251, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

240 Z. Fülöp and A. Maletti

is the linear extended top-down tree transducer with regular look-ahead (l-xtR).
Instead of variables in the left-hand side and a state-variable combination in the
right-hand side of a rule, we only use states with the restriction that each state
can occur at most once in the left-hand side and at most once in the right-hand
side. Moreover, all states that occur in the right-hand side must also occur in the
left-hand side. In this way, for each rule the states establish implicit links (a state
links its occurrence in the right-hand side with its occurrence in the left-hand
side), which form a bijection between a subset of the state occurrences in the left-
hand side and all state occurrences in the right-hand side. The state occurrences
(in the left-hand side) that do not participate in the bijection (i.e., those states
that exclusively occur in the left-hand side) can restrict the acceptable subtrees
at their position with the help of regular look-ahead. The implicit links in a rule
are made explicit in a derivation, and a rule application expands (explicitly)
linked state occurrences at the same time. Example 2 shows an l-xtR, for which
we illustrate a few derivation steps in Fig. 1. We use l-XTR and l-XT to denote
the class of all tree transformations computed by l-xtR and l-xt, respectively.

The expressive power of the various subclasses of l-XTR is already well un-
derstood [15,11]. However, in practice complex systems are often specified with
the help of compositions of tree transformations [20] because it is much easier
to develop (or train) small components that manage a part of the overall trans-
formation. Consequently, [17] and others declare that closure under composition
is a very desirable property for classes of tree transformations (especially in the
area of natural language processing). If C represents the class of all tree transfor-
mations computable by a device, then the fact that C is closed under composition
means that we can replace any composition chain specified by several devices by
just a single device, which enables an efficient modular development. Unfortu-
nately, neither l-XTR nor l-XT is closed under composition [2,3,15].

For a class C of tree transformations we obtain a composition hierarchy
C ⊆ C2 ⊆ C3 ⊆ · · · , where Cn denotes the n-fold composition of C. The class C
might be closed under composition at a power n (i.e., Cn = Cn+1) or its hierarchy
might be infinite (i.e., Cn � Cn+1 for all n). The classes that are closed at a low
power are also important in practice. We investigate the composition hierarchy
of the classes l-XTR and l-XT together with various subclasses determined by
the properties: ε-freeness, strictness, and nondeletion, abbreviated by ‘� ε’, ‘s’,
and ‘n’, respectively. We use these symbols in front of l-XTR and l-XT to obtain
the class of all tree transformations computable by the corresponding restricted
l-xtR and l-xt, respectively. In this paper we consider in detail the closure of the
classes �εl-XTR, �εl-XT, �εsl-XTR, and �εsl-XT under composition.

It is known that none of our considered classes is closed under composition [3].
In addition, it is known [3] that �εsnl-XT = �εsnl-XTR is closed at power 2. We
complete the picture by providing the least power at which the above classes are
closed under composition in the following table.

Composition Closure of ε-Free Linear Extended Top-Down Tree Transducers 241

Class Least power of closedness Proved in
�εsl-XT, �εsl-XTR 2 Theorem 14
�εl-XT 3 or 4 (4) Theorem 17 (Conjecture)
�εl-XTR 3 Theorem 17
otherwise ∞ [9, Theorem 34]

2 Notation

We denote the set of all nonnegative integers by IN. Every subset of S × T
is a relation from S to T . Given relations R1 ⊆ S × T and R2 ⊆ T × U , the
inverse of R1 and the composition of R1 and R2 are denoted by R−1

1 and R1 ;R2,
respectively. These notions and notations are lifted to classes of relations in the
usual manner. Moreover, the powers of a class C are defined by C1 = C and
Cn+1 = Cn ; C for n ≥ 1. The composition hierarchy [resp. composition closure]
of C is the family (Cn | n ≥ 1) [resp. the class

⋃
n≥1 Cn]. If Cn+1 = Cn, then

C is closed under composition at power n. A ranked alphabet is a finite set Σ,
which is partitioned by Σ =

⋃
k∈IN Σk into subsets Σk containing the elements

of rank k. We also write σ(k) to indicate that σ ∈ Σk. For the rest of this
paper, Σ, Δ, and Γ will denote arbitrary ranked alphabets. For every set T , let
Σ(T) = {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T }. Let S be a set with S ∩ Σ = ∅.
The set TΣ(S) of Σ-trees with leaf labels S is the smallest set U such that S ⊆ U
and Σ(U) ⊆ U . We write TΣ for TΣ(∅), and we use pos(t) ⊆ IN∗ to denote the
positions of t ∈ TΣ(S). For words v, w ∈ IN∗, we denote the longest common
prefix of v and w by lcp(v, w). The positions pos(t) are partially ordered by the
prefix order 	 on IN∗ [i.e., v 	 w if and only if v = lcp(v, w)]. The size |t| of the
tree t ∈ TΣ(S) is |pos(t)|. Let t ∈ TΣ(S) and w ∈ pos(t). We denote the label
of t at w by t(w), and the w-rooted subtree of t by t|w. For every U ⊆ S, we let
posU (t) = {w ∈ pos(t) | t(w) ∈ U} and poss(t) = pos{s}(t) for every s ∈ S. The
tree t is linear (resp. nondeleting) in U if |posu(t)| ≤ 1 (resp. |posu(t)| ≥ 1) for
every u ∈ U . Moreover, var(t) = {s ∈ S | poss(t) �= ∅}. We write t[u]w for the
tree obtained from t ∈ TΣ(S) by replacing the subtree t|w at w by u ∈ TΣ(S).

For every n ∈ IN we fix the set Xn = {x1, . . . , xn} of variables. Given
t ∈ TΣ(Xn) and t1, . . . , tn ∈ TΣ(S), we write t[t1, . . . , tn] for the tree obtained
from t by replacing each occurrence of xi by ti for all 1 ≤ i ≤ n. A tree ho-
momorphism from Σ to Δ is a family of mappings (hk | k ∈ IN) such that
hk : Σk → TΔ(Xk) for every k ∈ IN. Such a tree homomorphism is linear (resp.
nondeleting) if for every σ ∈ Σk the tree hk(σ) is linear (resp. nondeleting)
in Xk. Moreover, it is strict [resp. delabeling] if hk : Σk → Δ(TΔ(Xk)) [resp.
hk : Σk → Xk ∪ Δ(Xk)] for every k ∈ IN. We abbreviate the above restric-
tions by ‘l’, ‘n’, ‘s’, and ‘d’. The tree homomorphism (hk | k ∈ IN) induces a
mapping h : TΣ(S)→ TΔ(S) defined in the usual way. We denote by H the class

242 Z. Fülöp and A. Maletti

of all tree homomorphisms, and for any combination w of ‘l’, ‘n’, ‘s’, and ‘d’ we
denote by w-H the class of all w-tree homomorphisms. The set Reg(Γ) contains
all regular tree languages L ⊆ TΓ [13,14] over the ranked alphabet Γ . Finally,
let FTA(Γ) = {idL | L ∈ Reg(Γ)}, where idL = {(t, t) | t ∈ L}, and let
FTA =

⋃
Γ FTA(Γ) be the class of all partial identities induced by

⋃
Γ Reg(Γ).

3 Linear Extended Top-Down Tree Transducers

Our main model is the linear extended top-down tree transducer [1,2,17,16] with
regular look-ahead (l-xtR), which is based on the non-extended variant [21,22,6].
We will present it in a form that is closer to synchronous grammars [4].

Definition 1 (see [15, Section 2.2]). A linear extended top-down tree trans-
ducer with regular look-ahead (l-xtR) is a tuple M = (Q, Σ, Δ, I, R, c), where

– Q is a finite set of states, of which those in I ⊆ Q are initial,
– Σ and Δ are ranked alphabets of input and output symbols,
– R ⊆ TΣ(Q)×Q× TΔ(Q) is a finite set of rules such that � and r are linear

in Q and var(r) ⊆ var(�) for every (�, q, r) ∈ R, and
– c : Qla → Reg(Σ) assigns regular look-ahead to each (potentially) deleted

state, where Qla = {q′ ∈ Q | ∃(�, q, r) ∈ R : q′ ∈ var(�), q′ /∈ var(r)}.
Next, we recall some important syntactic properties of our model. To this end,
let M = (Q, Σ, Δ, I, R, c) be an l-xtR for the rest of the paper. It is

– a linear extended tree transducer [l-xt], if c(q) = TΣ for every q ∈ Qla,
– a linear top-down tree transducer with regular look ahead [l-tR] if � ∈ Σ(Q)

for every (�, q, r) ∈ R,
– a linear top-down tree transducer [l-t] if it is both an l-xt and an l-tR,
– ε-free [�ε] (resp. strict [s]) if � /∈ Q (resp. r /∈ Q) for every (�, q, r) ∈ R,
– a delabeling [d] if � ∈ Σ(Q) and r ∈ Q ∪Δ(Q) for every (�, q, r) ∈ R,
– nondeleting [n] if var(r) = var(�) for every (�, q, r) ∈ R (i.e., Qla = ∅), and
– a finite-state relabeling [qr] if it is a nondeleting, strict delabeling l-t such

that posp(�) = posp(r) for every (�, q, r) ∈ R and p ∈ var(r).

For example, dl-t stands for “delabeling linear top-down tree transducer”. We
write �

q1,...,qk−→ r for the rules (�, q1, r), . . . , (�, qk, r). For every p ∈ Q and
(�, q, r) ∈ R we identify posp(�) and posp(r) with their unique element if the
sets are non-empty. Finally, for every q ∈ Q, we let Rq = {ρ ∈ R | ρ = (�, q, r)}.
Example 2. Let us consider the dl-tR M1 = (Q, Σ, Σ, {	}, R, c) with the states
Q = {	, p, q, qla, id, id′}, the symbols Σ = {σ(2), σ

(2)
1 , σ

(2)
2 , γ(1), α(0)}, and the

following rules in R:

σ1(p, q)
�,p−→ σ1(p, q) σ(q, id)

q−→ q γ(id)
id,id′
−→ γ(id)

σ2(id, id′)
p,q−→ σ2(id, id′) σ(qla, q)

q−→ q α
id,id′
−→ α .

Since Qla = {qla, id}, we set c(qla) = {t ∈ TΣ | posσ2
(t) = ∅} and c(id) = TΣ.

Composition Closure of ε-Free Linear Extended Top-Down Tree Transducers 243

	 	 ⇒M1

σ1

p q

σ1

p q
⇒M1

σ1

σ2

id id′

q

σ1

σ2

id id′

q ⇒∗M1

σ1

σ2

α α

σ

γ

α

σ2

α α

σ1

σ2

α α

σ2

α α

Fig. 1. Derivation using the dl-tR M1 of Example 2

Next, we recall the semantics of the l-xtR M , which is given by synchronous
substitution. Let L = {D | D ⊆ IN∗ × IN∗} be the set of all link structures.

Definition 3 (see [10, Section 3]). A triple 〈ξ, D, ζ〉 ∈ TΣ(Q)× L× TΔ(Q)
is a sentential form (for M) if v ∈ pos(ξ) and w ∈ pos(ζ) for every (v, w) ∈ D.
For a set S of sentential forms we define links(S) = {D | 〈ξ, D, ζ〉 ∈ S}. Let
ρ ∈ R be the rule (�, q, r), and let v, w ∈ IN∗. The explicit link structure of ρ for
the positions v and w is linksv,w(ρ) = {(v. posp(�), w. posp(r)) | p ∈ var(r)}.
Definition 4 (see [10, Section 3]). Given two sentential forms 〈ξ, D, ζ〉 and
〈ξ′, D′, ζ′〉, we write 〈ξ, D, ζ〉 ⇒M 〈ξ′, D′, ζ′〉 if

– there are ρ = (�, q, r) ∈ R and (v, w) ∈ D with v ∈ posq(ξ) and w ∈ posq(ζ)
such that ξ′ = ξ[�]v, ζ′ = ζ[r]w , and D′ = D ∪ linksv,w(ρ), or

– there are v ∈ posQ(ξ) and t ∈ c(ξ(v)) with w /∈ posQ(ζ) for all (v, w) ∈ D
such that ξ′ = ξ[t]v, ζ′ = ζ, and D′ = D.

The l-xtR M computes the dependencies

dep(M) = {(t, D, u) ∈ TΣ × L× TΔ | ∃q ∈ I : 〈q, {(ε, ε)}, q〉 ⇒∗M (t, D, u)} ,

where ε ∈ IN∗ is the empty word and ⇒∗M is the reflexive, transitive closure
of ⇒M . It also computes the link structures links(M) = links(dep(M)) and the
tree transformation M = {(t, u) | (t, D, u) ∈ dep(M)}.
A few derivation steps using M1 of Example 2 are illustrated in Fig. 1. Since
every translation (t, u) ∈ M is ultimately created by (at least) one successful
derivation, we can inspect the links in the derivation process to obtain depen-
dencies, which were called contributions in [7]. We use stem-capitalized versions
of the abbreviations for the corresponding classes of computed tree transforma-
tions. For instance, dnl-XT is the class of all tree transformations computable by
dnl-xt. The regular look-ahead is useless for nondeleting l-xtR (because Qla = ∅),
and thus nl-XTR = nl-XT and similarly for the non-extended case and for all
defined subclasses. Finally, we use the brackets ‘[’ and ‘]’ for optional use of the
restrictions �ε, ‘s’, ‘d’, and ‘n’ that have to be consistently applied.

Next, we relate the class l-XTR to l-TR, which tells us how to emulate
linear extended top-down tree transducers with regular look-ahead by linear
top-down tree transducers with regular look-ahead. To illustrate the consistent
application of optional restrictions, we observe that �εl-XTR = snl-H−1 ; l-TR

244 Z. Fülöp and A. Maletti

and �εsdl-XTR = snl-H−1 ; �εsdl-TR are instances of the first result of the next
theorem.

Theorem 5 ([11, Lemma 4.1 and Corollary 4.1]).

�ε[s][d][n]l-XTR = snl-H−1 ; [s][d][n]l-TR [s][d][n]l-XTR = nl-H−1 ; [s][d][n]l-TR

4 Our Classes Are Closed at a Finite Power

In this section, we show that the classes �εl-XTR, �εl-XT, �εsl-XTR, and �εsl-XT
are closed under composition at a finite power. We first recall a central result
of [3]. Note that [3] expresses this result in terms of a class B of bimorphisms,
but �εsnl-XT = B by [2] and [18, Theorem 4].

Theorem 6 ([3, Theorem 6.2]). �εsnl-XT � �εsnl-XT2 = �εsnl-XTn for n ≥ 3.

Now we establish our first composition result, which is analogous to the clas-
sical composition result for linear top-down tree transducers with regular look-
ahead [6, Theorem 2.11]. The only difference is that our first transducer has
extended left-hand sides (i.e., it is an l-xtR instead of just an l-tR).

Lemma 7. [�ε][s][d][n]l-XTR ; [s][d][n]l-TR = [�ε][s][d][n]l-XTR

Proof. Immediate, from Theorem 5 and the classical composition result for l-TR

in [6, Theorem 2.11]1, which states [s][d][n]l-TR ; [s][d][n]l-TR = [s][d][n]l-TR. ��
Next, we present a decomposition that corresponds to property P of [5, Sec-
tion II-2-2-3-2]. It demonstrates how to simulate an �εl-xtR by a delabeling l-tR

and an �εsnl-xt, for which we have the composition closure result in Theorem 6.
We immediately combine the result with Lemma 7 to demonstrate, how we can
shift an [s]dl-tR from the back to the front.

Lemma 8. �ε[s]l-XTR ; [s]dl-TR ⊆ �ε[s]l-XTR ⊆ [s]dl-TR ; �εsnl-XT

Proof. The first inclusion is due to Lemma 7. For the second inclusion, assume
that M is ε-free. Moreover, let m ∈ IN be such that m ≥ |var(r)| for every
(�, q, r) ∈ R. For every rule ρ = (�, q, r) ∈ R and non-state position w ∈ posΣ(�),
let usedρ(w) = {i ∈ IN | wi ∈ pos(�), var(�|wi) ∩ var(r) �= ∅}. We construct a
dl-xtR M ′ = (Q′, Σ, Γ, I ′, R′, c′) such that

– Q′ = {〈ρ, w〉 | ρ = (�, q, r) ∈ R, w ∈ pos(�)} and I ′ = {〈ρ, ε〉 | q ∈ I, ρ ∈ Rq},
– Γ = {ρ(|usedρ(ε)|) | ρ ∈ R} ∪ {@(i)

i | 0 ≤ i ≤ m},
– for every rule ρ = (�, q, r) ∈ R and non-state position w ∈ posΣ(�), the rule

�(w)(〈ρ, w1〉, . . . , 〈ρ, wk〉) 〈ρ,w〉−→

⎧⎪⎨⎪⎩
〈ρ, wi1〉 if r ∈ Q

ρ(〈ρ, wi1〉, . . . , 〈ρ, win〉) if r /∈ Q, w = ε

@n(〈ρ, wi1〉, . . . , 〈ρ, win〉) otherwise,

is in R′, where �(w) ∈ Σk and {i1, . . . , in} = usedρ(w) with i1 < · · · < in,
1 The abbreviation ‘d’ has a completely different meaning in [6].

Composition Closure of ε-Free Linear Extended Top-Down Tree Transducers 245

– for every rule ρ = (�, q, r) ∈ R, (non-deleted) state position w ∈ posvar(r)(�),

and rule ρ′ ∈ R	(w), the rule 〈ρ′, ε〉 〈ρ,w〉−→ 〈ρ′, ε〉 is in R′, and
– c′(〈ρ, w〉) = �|w[q ← c(q) | q ∈ var(�|w)] for every potentially deleted state
〈ρ, w〉 ∈ {〈ρ, w〉 ∈ Q | usedρ(w) = ∅}, where ← denotes the standard OI-
substitution [8].

To obtain the desired dl-tR we simply eliminate the ε-rules using standard meth-
ods.2 Intuitively speaking, the transducer M ′ processes the input and deletes
subtrees that are not necessary for further processing. Moreover, it executes
nonstrict rules of M and marks the positions in the input where a strict rule
application would be possible. It remains to construct the l-xt M ′′. Let m′′ ≥ |�|
for all (�, q, r) ∈ R, and let M ′′ = ({	}, Γ, Δ, {	}, R′′) such that R′′ contains all
valid rules ρ(t1, . . . , tk) �−→ r[q ← 	 | q ∈ Q] of a strict nondeleting l-xt with
ρ = (�, q, r) ∈ R, posR(ti) = ∅, and |ti| ≤ m′′ for every 1 ≤ i ≤ k, where k is the
rank of ρ. ��

Example 9. Let ρ = σ(p, σ(α, q))
q−→ σ(α, σ(q, α)) be a rule with non-trivial

look-ahead c(p) = L. We illustrate the construction of M ′ (in Lemma 8):

σ(〈ρ, 1〉, 〈ρ, 2〉) 〈ρ,ε〉−→ ρ(〈ρ, 2〉) α
〈ρ,21〉−→ @0

σ(〈ρ, 21〉, 〈ρ, 22〉) 〈ρ,2〉−→ @1(〈ρ, 22〉) 〈ρ′, ε〉 〈ρ,22〉−→ 〈ρ′, ε〉

for all rules ρ′ ∈ Rq. Moreover, the look-ahead c′ of M ′ is such that c′(〈ρ, 1〉) = L
and c′(〈ρ, 21〉) = {α}.

Theorem 10. (�ε[s]l-XTR)n ⊆ [s]dl-TR ; �εsnl-XT2 ⊆ (�ε[s]l-XTR)3 for n ≥ 1.

Proof. The second inclusion is trivial. We prove the first inclusion by induction
over n. For n = 1, it follows from Lemma 8, and in the induction step, we obtain

(�ε[s]l-XTR)n+1 ⊆ �ε[s]l-XTR ; [s]dl-TR ; �εsnl-XT2

⊆ [s]dl-TR ; �εsnl-XT3 = [s]dl-TR ; �εsnl-XT2

by the induction hypothesis, then Lemma 8, and lastly Theorem 6. ��
It is known [6, Theorem 2.6] that we can simulate every l-tR (with look-ahead)
by a composition of two l-t (without look-ahead). This allows us to conclude
that the class �εl-XT is closed under composition at the fourth power.

Corollary 11. �ε[s]l-XTn ⊆ QR ; [s]dl-T ; �εsnl-XT2 ⊆ �ε[s]l-XT4 for every n ≥ 1.

Proof. The second inclusion is trivial, and for the first inclusion we use Theo-
rem 10 and [s]dl-TR ⊆ QR ; [s]dl-T. ��
2 Note that due to the ε-freeness of M , we have w �= ε in the ε-rules of the fourth

item. Since these rules are the only constructed ε-rules, we cannot chain two ε-rules.

246 Z. Fülöp and A. Maletti

In the rest of the section, we will show that the (strict) classes �εsl-XTR and
�εsl-XT are closed under composition already at the second power. This time, the
main lemma demonstrates how to shift a strict delabeling linear homomorphism
from the front to the back again creating a nondeleting transducer (cf. Lemma 8).

Lemma 12. sdl-H ; �εsl-XT ⊆ �εsl-XT ⊆ �εsnl-XT ; sdl-H

Proof. For the first inclusion, let d : TΓ → TΣ be a strict delabeling linear
tree homomorphism. Moreover, assume that M is a strict and ε-free l-xt, and
let m ∈ IN be such that m ≥ |�| for every (�, q, r) ∈ R. We construct the
l-xt M ′ = (Q′, Γ, Δ, I, R′, c′) with Q′ = Q ∪ {1, . . . , m} such that for every
rule (�, q, r) ∈ R we have each valid rule (�′, q, r) in R′ where �′ ∈ d−1(�)
and |posΓ (�′)| = |posΣ(�)|. Recall that d also defines a tree transformation
d : TΓ (Q′) → TΣ(Q′), which acts as an identity on states; i.e., d(q′) = q′ for
every q′ ∈ Q′. Moreover, c′(q′) = TΓ for all q′ ∈ (Q′)la. Finally, we observe
that M ′ is strict because it has the same right-hand sides as M , and it is ε-free
because h is strict. For the second inclusion,

�εsl-XT ⊆ snl-H−1 ; FTA ; sl-H ⊆ snl-H−1 ; FTA ; snl-H ; sdl-H ⊆ �εsnl-XT ; sdl-H ,

where the first and the last inclusion are by [18, Theorem 4] and the second
inclusion is due to [5, Section I-2-1-3-5]. ��

In contrast to Theorem 10 and Corollary 11, look-ahead does not increase the
power of closedness in the strict case. In fact, the next theorem shows that
(�εsl-XTR)n = �εsl-XTn for all n ≥ 2.

Theorem 13. (�εsl-XTR)n ⊆ �εsnl-XT ; �εsl-XT ⊆ �εsl-XT2 for every n ≥ 1.

Proof. Again, the second inclusion is trivial. For the first inclusion, we first prove
that �εs[n]l-XTR ; �εsl-XTR = �εs[n]l-XTR ; �εsl-XT, which we call (†), as follows:

�εs[n]l-XTR ; �εsl-XTR ⊆ �εs[n]l-XTR ; QR ; �εsl-XT ⊆ �εs[n]l-XTR ; �εsl-XT ,

where we used [6, Theorem 2.6] in the first step and Lemma 7 in the second step.3

Now we prove the first inclusion of our main statement by induction on n. The
induction basis (n = 1) follows from �εsl-XTR ⊆ QR ; �εsl-XT [6, Theorem 2.6],
and the induction step is proved as follows

(�εsl-XTR)n+1 ⊆ (�εsl-XTR)n ; �εsl-XT ⊆ �εsnl-XT ; �εsl-XT2 ⊆ �εsnl-XT3 ; sdl-H

⊆ �εsnl-XT2 ; sdl-H ⊆ �εsnl-XT ; �εsl-XTR ⊆ �εsnl-XT ; �εsl-XT

using, in sequence, statement (†), the induction hypothesis, Lemma 12 twice,
Theorem 6, Lemma 7, and statement (†) again. ��
3 The converse inclusion is trivial.

Composition Closure of ε-Free Linear Extended Top-Down Tree Transducers 247

5 Least Power of Closedness

In this section, we will determine the least power at which the class is closed
under composition for the classes �εl-XTR, �εsl-XTR, and �εsl-XT. In addition, we
conjecture the least power for the class �εl-XT.

Theorem 14. For every n ≥ 3

�εsl-XT � �εsl-XTR � �εsl-XT2 = (�εsl-XTR)2 = �εsl-XTn = (�εsl-XTR)n .

Proof. Theorem 13 proves the final three equalities. The first inclusion is trivial
and strictness follows from the proof of [15, Lemma 4.3]. The second inclusion
is also trivial (given the previous equalities) and the strictness follows from [18,
Theorem 4] and [3, Section 3.4], which show that class �εsl-XTR is not closed
under composition at power 1.4 ��
Definition 15 ([19, Definitions 8 and 10]). A set D ⊆ L of link structures

– is input hierarchical5 if for every D ∈ D and (v1, w1), (v2, w2) ∈ D we have
(i) if v1 ≺ v2, then w1 	 w2, and (ii) if v1 = v2, then w1 	 w2 or w2 	 w1.

– has bounded distance in the input if there exists an integer k ∈ IN such that
for every D ∈ D and all (v, w), (vv′′, w′′) ∈ D there exists (vv′, w′) ∈ D with
v′ ≺ v′′ and |v′| ≤ k.

Moreover, D is output hierarchical (resp. has bounded distance in the output) if
D−1 is input hierarchical (resp. has bounded distance in the input). If D fulfills
both versions of the property, then we just call it hierarchical or bounded distance.

Corollary 16 (of Def. 4). links(M) is hierarchical with bounded distance.

We will consider the problem whether a tree transformation can be computed
by two l-xtR. For this we specify certain links that are intuitively clear and
necessary between nodes of input-output tree pairs. Then we consider whether
this specification can be implemented by two l-xtR. Often we cannot identify the
nodes of a link exactly. In such cases, we use splines with inverted arrow heads,
which indicate that there is a link to some position of the subtree pointed to.

Theorem 17. For every n ≥ 4,

�εl-XT � �εl-XTR � �εl-XT2 ⊆ (�εl-XTR)2 � �εl-XT3 ⊆ (�εl-XTR)3

= �εl-XT4 = (�εl-XTR)n = �εl-XTn+1 .

Proof. We have (�εl-XTR)n ⊆ �εl-XTn+1 for all n ≥ 1 by repeated application
of Lemma 8. The equalities follow from Theorem 10, so we only have to prove
strictness. The first inclusion is strict by [15, Lemma 4.3] and the strictness
of the second inclusion follows from that of the fourth. Finally, we prove the
4 In fact, Theorem 17 reproves this statement.
5 This notion is called strictly input hierarchical in [19].

248 Z. Fülöp and A. Maletti

t =

σ1

σ1

σ1

σ2

tn tn−1 σ2

ti+2 ti+1

c

σ2

ti ti−1

σ2

t2 t1

σ1

σ1

σ1

σ1

σ1

tn σ2

tn−1 tn−2

σ2

ti+1 ti

σ2

ti−1 ti−2

σ2

t3 t2

t1

= u

s =

si+1 si si−1

v′v

vi−1
vi

vi+1

Fig. 2. The relevant part of the specification used in the proof of Theorem 17

strictness of the fourth inclusion. For this, recall the l-tR M1 of Example 2.
In addition, we use the two bimorphisms B2 and B3 of [5, Section II-2-2-3-1],
which are in the class B mentioned before Theorem 6, and hence can also be
defined by some �εsnl-xt M2 and M3, respectively. For convenience, we present
M2 and M3 explicitly before we show that τ = M1 ;M2 ;M3 cannot be computed
by a composition of two �εl-xtR.

Let M2 = ({	, id, id′}, Σ, Σ, {	}, R2) be the �εsnl-xt with the rules

σ1(, σ2(id, id′)) �−→ σ(σ(, id), id′) σ2(id, id′) �−→ σ(id, id′)

γ(id)
id,id′
−→ γ(id) α

id,id′
−→ α .

Moreover, let M3 = ({	, p, id, id′}, Σ, Σ, {	}, R3) be the �εsnl-xt with the rules

σ(p, id) �−→ σ1(p, id) σ(σ(p, id), id′)
p−→ σ1(p, σ2(id, id′))

γ(id)
p−→ γ(id) γ(id)

id,id′
−→ γ(id) α

p,id,id′
−→ α .

We present a proof by contradiction, hence we assume that τ = N1 ;N2 for some
�εl-xtR N1 = (P1, Σ, Δ, I1, R

′
1) and N2 = (P2, Δ, Σ, I2, R

′
2). Using a standard

construction, we can construct an ε-cycle free l-xtR N ′
2 = (P ′2, Δ, Σ, I ′2, R

′′
2) such

that N ′
2 = N2 and each rule �

p−→ r ∈ R′′2 that contains γ in its right-hand
side r obeys r = γ(p) with p ∈ P ′2. With the help of Corollary 16, we can further
conclude that links(N1) and links(N ′

2) are hierarchical with bounded distance
k1 and k2, respectively. Moreover, let

m ≥ max {k1, k2, |�|, |r| | � p−→ r ∈ R′1 ∪R′′2} .

Composition Closure of ε-Free Linear Extended Top-Down Tree Transducers 249

Clearly, all (t, u) ∈ τ have the shape shown in Fig. 2. Next, we will make an
assumption, derive the contradiction, and then prove the assumption. Suppose
that there exists (t, u) ∈ τ such that (see Fig. 2 for the named subtrees)

– the left σ1-spine of t is longer than m,
– for all trees c′ ∈ TΣ({x1}) indicated by small triangles in t (like c in Fig. 2)

the only element of posx1
(c′) is longer than m, and

– for all (t, D1, s) ∈ dep(N1), (s, D2, u) ∈ dep(N ′
2), and 1 ≤ j ≤ n we have

• there exists (vj , wj) ∈ D2 such that wj is the root of tj in u, and
• there exists (yj , v

′
j) ∈ D1 such that yj is a position inside tj and vj 	 v′j .

Since the left σ1-spine in u is longer than k2 and there are links at the root (i.e.,
(ε, ε) ∈ D2) and at wn, there must be a linking point at position w ∈ posσ1

(u)
along the left σ1-spine with w �= ε, which links to position v in the intermediate
tree s (i.e., (v, w) ∈ D2). Let u|w = σ1(u′, σ2(ti+1, ti)) for some 2 ≤ i ≤ n−2. By
our assumption, there exist links (vi+1, wi+1), (vi, wi), (vi−1, wi−1) ∈ D2. Since
D2 is hierarchical and wi+1 and wi are below w in u, we know that vi+1 and vi

are below v in s (i.e., v 	 vi+1, vi), whereas v �	 vi−1. Next, we locate ti in
the input tree t. By the general shape of t, the subtree ti occurs in a subtree
σ1(t′, c[σ2(ti, ti−1)]) for some tree c ∈ TΣ({x1}) with exactly one occurrence
of x1. We know that c is suitably large, which forces a linking point y inside c in
addition to those in ti+1, ti, and ti−1, which exist by the assumption. Note that
y is a proper prefix of the root position of the subtree σ2(ti, ti−1). Let (y, v′) ∈ D1

be the link linking c to s, which dominates the links (yi, v
′
i), (yi−1, v

′
i−1) ∈ D1

linking ti and ti−1 to s, respectively. Thus, v′ 	 v′i, v
′
i−1 and v′ �	 v′i+1 because

y �	 yi+1. Obviously, v′ �	 vi+1, and moreover, v′ 	 vi, vi−1 because other-
wise the positions vi+1, vi, vi−1 would not be incomparable, which is required
because links(N ′

2) is hierarchical. We have either lcp(vi+1, vi) 	 lcp(vi, vi−1) or
lcp(vi, vi−1) 	 lcp(vi+1, vi). We either get v 	 lcp(vi+1, vi) 	 lcp(vi, vi−1) 	 vi−1

or v′ 	 lcp(vi, vi−1) 	 lcp(vi+1, vi) 	 vi+1, which are both contradictions.
It remains to show the assumption. Obviously, the first two items can be

satisfied simply by a proper selection of (t, u) ∈ τ . For every 1 ≤ j ≤ n, we
know that there exists a link (vj , wj) ∈ D2 to the root of tj in u due to the
special shape of the right-hand sides of N ′

2. We note that all v1, . . . , vn are
pairwise incomparable. Moreover, we observe that there is a linear height (and
size) relation between input and output trees related by a link, which is true
for all ε-cycle free l-xt. Consequently, there is a linear height relation between
sj = s|vj and tj = u|wj . Thus by selecting each tj suitably tall, we can enforce
that each sj is taller than m, which yields that there is a link (yj , v

′
j) ∈ D1 such

that vj 	 v′j . Exploiting the linear height (and size) relation between linked
subtrees again, we can additionally show that (i) yj is a position inside tj in t,
in which case we are done, or (ii) yj is a prefix of the root position of tj in t. In
the latter case, the size of tj can be chosen such that there is also a link (y′j , v

′′
j)

with yj ≺ y′j and v′j 	 v′′j . Moreover, this can be iterated until y′j points to a
position inside tj . A detailed proof of these statements can be found in [9]. ��

250 Z. Fülöp and A. Maletti

We conjecture that �εl-XT3 � �εl-XT4 = �εl-XTn for every n ≥ 4. The inclusion
is trivial and the equality follows from Corollary 11. For the strictness, the
proof of Theorem 17 essentially shows that in the first step we must delete the
contexts indicated by triangles (such as c) in Fig. 2 because otherwise we can
apply the method used in the proof to derive a contradiction (it relies on the
existence of a linking point inside such a context c). Thus, in essence we must
first implement a variant of the �εl-xtR M1 of Example 2. It is a simple exercise
to show that the deletion of the excess material cannot be done by a single l-xt
as it cannot reliably determine the left-most occurrence of σ2 without the look-
ahead. Thus, if we only have l-xt to achieve the transformation, then we already
need a composition of two l-xt to perform the required deletion.

For the sake of completeness we mention the following. In the full version [9]
of this paper we prove that the composition hierarchy is infinite for all other
combinations of ‘�ε’, ‘s’, and ‘n’.

Theorem 18 ([9, Theorem 34]). The composition hierarchy of the classes
�εnl-XT, [s][n]l-XTR, and [s][n]l-XT is infinite.

Acknowledgment. The authors are indebted to an anonymous referee for his
valuable report.

References

1. Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle
M. Dauchet, Université de Lille (1975)

2. Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP, pp. 74–86. Edin-
burgh University Press (1976)

3. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput.
Sci. 20(1), 33–93 (1982)

4. Chiang, D.: An introduction to synchronous grammars. In: ACL, Association for
Computational Linguistics (2006); part of a tutorial given with K. Knight

5. Dauchet, M.: Transductions de forêts — Bimorphismes de magmöıdes. Première
thèse, Université de Lille (1977)

6. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems
Theory 10(1), 289–303 (1977)

7. Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO
definable. SIAM J. Comput. 32(4), 950–1006 (2003)

8. Engelfriet, J., Schmidt, E.M.: IO and OI I. J. Comput. System Sci. 15(3), 328–353
(1977)

9. Fülöp, Z., Maletti, A.: Composition closure of linear extended top-down tree trans-
ducers (2013), manuscript available at http://arxiv.org/abs/1301.1514

10. Fülöp, Z., Maletti, A., Vogler, H.: Preservation of recognizability for synchronous
tree substitution grammars. In: ATANLP, pp. 1–9. Association for Computational
Linguistics (2010)

11. Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fundam.
Inform. 111(2), 163–202 (2011)

http://arxiv.org/abs/1301.1514

Composition Closure of ε-Free Linear Extended Top-Down Tree Transducers 251

12. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics — Formal Models Based on Tree
Transducers. Springer (1998)

13. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
14. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 3, ch. 1, pp. 1–68. Springer (1997)
15. Graehl, J., Hopkins, M., Knight, K., Maletti, A.: The power of extended top-down

tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)
16. Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3),

391–427 (2008)
17. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natu-

ral language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406,
pp. 1–24. Springer, Heidelberg (2005)

18. Maletti, A.: Compositions of extended top-down tree transducers. Inform. and
Comput. 206(9–10), 1187–1196 (2008)

19. Maletti, A.: Tree transformations and dependencies. In: Kanazawa, M., Kornai,
A., Kracht, M., Seki, H. (eds.) MOL 12. LNCS, vol. 6878, pp. 1–20. Springer,
Heidelberg (2011)

20. May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted tree
transducers. In: ACL, pp. 1058–1066. Association for Computational Linguistics
(2010)

21. Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3),
257–287 (1970)

22. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System
Sci. 4(4), 339–367 (1970)

Subword Complexity and k-Synchronization

Daniel Goč, Luke Schaeffer, and Jeffrey Shallit

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1 Canada
{dgoc,l3schaef,shallit}@uwaterloo.ca

Abstract. We show that the subword complexity function ρx(n), which
counts the number of distinct factors of length n of a sequence x, is k-
synchronized in the sense of Carpi if x is k-automatic. As an application,
we generalize recent results of Goldstein. We give analogous results for
the number of distinct factors of length n that are primitive words or
powers. In contrast, we show that the function that counts the number
of unbordered factors of length n is not necessarily k-synchronized for
k-automatic sequences.

1 Introduction

Let k ≥ 2 be an integer, let Σk = {0, 1, 2, . . . , k − 1}, and let (n)k denote the
canonical representation of n in base k, starting with the most significant digit,
without leading zeroes. If x ∈ Σ∗

k, we let [x]k denote the integer represented by x
(where x is allowed to have leading zeroes). To represent a pair of integers (m,n),
we use words over the alphabet Σk ×Σk. For such a word x, we let πi(x) to be
the projection onto the i’th coordinate. The canonical representation (m,n)k is
defined to be the word x such that [π1(x)]k = m and [π2(x)]k = n, and having
no leading [0, 0]’s. For example (43, 17)2 = [1, 0][0, 1][1, 0][0, 0][1, 0][1, 1].

Recently, Arturo Carpi and his co-authors [6,4,5] introduced a very interesting
class of sequences that are computable by automata in a novel fashion: the
class of k-synchronized sequences. Let (f(n))n≥0 be a sequence taking values
in N. They call such a sequence k-synchronized if there is a deterministic finite
automaton M accepting the base-k representation of the graph of f , namely
{(n, f(n))k : n ≥ 0}.

Sequences that are k-synchronized are “halfway between” the class of k-
automatic sequences, introduced by Cobham [9] and studied in many papers;
and the class of k-regular sequences, introduced by Allouche and Shallit [1,2].
They are particularly interesting for two reasons. If a sequence (f(n)) is k-
synchronized, then

(a) we immediately get a bound on its growth rate: f(n) = O(n);
(b) we immediately get a linear-time algorithm for efficiently calculating f(n).

Result (a) can be found in [6, Prop. 2.5]. We now state and prove result (b).

Theorem 1. Suppose (f(n))n≥0 is k-synchronized. Then there is an algorithm
that, given the base-k representation of n, will compute the base-k representation
of f(n) in O(log n) time.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 252–263, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Subword Complexity and k-Synchronization 253

Proof. We know there is a DFA M = (Q,Σk × Σk, δ, q0, F) accepting L =
{(n, f(n))k : n ≥ 0}. Let w = (n)k. It is easy to construct a (|w| + 2)-state
DFA that accepts words with 0∗w in the first coordinate and no leading [0, 0]’s.
Such a DFA accepts the language K = {(n,m)k : m ≥ 0}. We now construct
a DFA H for the language K ∩ L, where H has |Q|(|w| + 2) = Θ(|w|) states,
using the familiar direct product construction from automata theory.

The only word in K ∩ L is (n, f(n))k, so we apply a linear-time directed
graph reachability algorithm (such as breadth-first or depth-first search) to the
underlying transition graph of H . This finds the unique path x ∈ (Σk × Σk)

∗

from the initial state in W to an accepting state. Then x is labeled (n, f(n))k,
so reading the second coordinate yields the base-k representation of f(n).
�

In this paper, we are concerned with infinite words over a finite alphabet. Let
x = a0a1a2 · · · be an infinite word. By x[n] we mean an and by x[m..n] we mean
the factor amam+1 · · · an of x of length n − m + 1. The subword complexity
function ρx(n) counts the number of distinct factors of length n.

An infinite word or sequence x is said to be k-automatic if there is an automa-
ton with outputs associated with the states that, on input (n)k, reaches a state
with output x[n]. In this paper we show that if x is a k-automatic sequence, then
the subword complexity ρx(n) is k-synchronized. As an application, we gener-
alize and simplify recent results of Goldstein [14,15]. Furthermore, we obtain
analogous results for the number of length-n primitive words and the number of
length-n powers.

We remark that there are a number of quantities about k-automatic sequences
already known to be k-synchronized. These include the separator sequence [6],
the repetitivity index [4], the recurrence function [8], and the “appearance” func-
tion [8]. The latter two examples were not explicitly stated to be k-synchronized
in [8], but the result follows immediately from the proofs in that paper.

2 Subword Complexity

Cobham [9] proved that if x is a k-automatic sequence, then ρx(n) = O(n).
Cassaigne [7] proved that any infinite word x satisfying ρx(n) = O(n) also
satisfies ρx(n + 1) − ρx(n) = O(1). Carpi and D’Alonzo [5] showed that the
subword complexity function ρx(n) is a k-regular sequence.

Charlier, Rampersad, and Shallit [8] found this result independently, using a
somewhat different approach. They used the following idea. Call an occurrence of
the factor t = x[i..i+n−1] “novel” if t does not appear as a factor of x[0..i+n−2].
In other words, the leftmost occurrence of t in x begins at position i. Then the
number of factors of length n in x is equal to the number of novel occurrences
of factors of length n. The property that x[i..i+n− 1] is novel can be expressed
as a predicate, as follows:

254 D. Goč, L. Schaeffer, and J. Shallit

{(n, i)k : ∀j, 0 ≤ j < i x[i..i+ n− 1] �= x[j..j + n− 1]} =

{(n, i)k : ∀j, 0 ≤ j < i ∃m, 0 ≤ m < n x[i +m] �= x[j +m]}. (1)

As shown in [8], the base-k representation of the integers satisfying any predicate
of this form (expressible using quantifiers, integer addition and subtraction, in-
dexing into a k-automatic sequence x, logical operations, and comparisons) can
be accepted by an explicitly-constructable deterministic finite automaton. From
this, it follows that the sequence ρx(n) is k-regular, and hence can be computed
explicitly, in polynomial time, in terms of the product of certain matrices and
vectors depending on the base-k expansion of n [8].

We show that, in fact, the subword complexity function ρx(n) is k-
synchronized. The main observation needed is the following (Theorem 3): in
any sequence of linear complexity, the starting positions of novel occurrences of
factors are “clumped together” in a bounded number of contiguous blocks. This
makes it easy to count them.

More precisely, let x be an infinite word and for any n consider the set of
novel occurrences Ex(n) := {i : the occurrence x[i..i + n − 1] is novel }. We
consider how Ex(n) evolves with increasing n.

As an example, consider the Thue-Morse sequence

t = t0t1t2 · · · = 0110100110010110 · · · ,

defined by letting tn be the number of 1’s in the binary expansion of n, taken
modulo 2. The gray squares in the rows of Figure 1 depict the members of Et(n)
for the Thue-Morse sequence for 1 ≤ n ≤ 9.

i 0 1 2 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

n = 1

16 17 18 19 20 21 22 23 24

1 0 0 1 0 1 1 0 0

4

5

6

7

8

9

3

t[i]

3

2

Fig. 1. Evolution of novel occurrences of factors in the Thue-Morse sequence

Lemma 2. Let x be an infinite word. If the factor of length n beginning at
position i is a novel occurrence, so is

(a) the factor of length n+ 1 beginning at position i;
(b) the factor of length n+ 1 beginning at position i− 1 (for i ≥ 1).

Subword Complexity and k-Synchronization 255

Proof. (a) Suppose the factor of length n+1 also occurs at some position j < i.
Then the factor of length n also occurs at position j, contradicting the fact that
it was a novel occurrence at i.

(b) Suppose the factor of length n + 1 beginning at position i − 1 occurs at
some earlier position j < i−1. We can write the factor as ax, where a is a single
letter and x is a word, so the factor of length n beginning at position i must also
occur at position j + 1 < i. But then it is not a novel occurrence.
�

Theorem 3. Let x be an infinite word. For n ≥ 1, the number of contiguous
blocks in Ex(n) is at most ρx(n)− ρx(n− 1) + 1.

Proof. We prove the claim by induction on n. For n = 1 the claim says there
are at most ρx(1) contiguous blocks, which is evidently true, since there are at
most ρx(1) novel factors of length 1.

Now assume the claim is true for all n′ < n; we prove it for n. Consider the
evolution of the novel occurrences of factors in going from length n−1 to n. Every
occurrence that was previously novel is still novel, and furthermore in every
contiguous block except the first, we get novel occurrences at one position to the
left of the beginning of the block. So if row n−1 has t contiguous blocks, then we
get t− 1 novel occurrences at the beginning of each block, except the first. (Of
course, the first block begins at position 0, since any factor beginning at position
0 is novel, no matter what the length is.) The remaining ρx(n)−ρx(n−1)−(t−1)
novel occurrences could be, in the worst case, in their own individual contiguous
blocks. Thus row n has at most t+ρx(n)−ρx(n−1)−(t−1) = ρx(n)−ρx(n−1)+1
contiguous blocks.
�

In our Thue-Morse example, it is well-known that ρt(n) − ρt(n − 1) ≤ 4, so
the number of contiguous blocks in any row is at most 5. This is achieved, for
example, for n = 6.

Example 4. We give an example of a recurrent infinite word over a finite alphabet
where the number of contiguous blocks in Ex(n) is unbounded. Consider the
word

w =
∏
n≥1

(n)2 = 110111001011101111000 · · · .

Then for each n ≥ 5 the first occurrence of each of the words 0n−11, 0n−211, . . . ,
021n−2 have a non-novel occurrence immediately following them, which shows
there at at least n− 2 blocks in Ew(n).

Corollary 5. If ρx(n) = O(n), then there is a constant C such that every row
Ex(n) in the evolution of novel occurrences consists of at most C contiguous
blocks.

Proof. By the result of Cassaigne [7], we know that there exists a constant C
such that ρx(n)− ρx(n− 1) ≤ C − 1. By Theorem 3, we know there are at most
C contiguous blocks in any Ex(n).
�

256 D. Goč, L. Schaeffer, and J. Shallit

Theorem 6. Let x be a k-automatic sequence. Then its subword complexity
function ρx(n) is k-synchronized.

Proof. Following [8], it suffices to show how to accept the language

{(n,m)k : n ≥ 0 and m = ρx(n)}

with a finite automaton. Here is a sketch of the argument. From our results
above, we know that there is a finite constant C ≥ 1 such that the number of
contiguous blocks in any row of the factor evolution diagram is bounded by C.
So we simply “guess” the endpoints of every block and then verify that each
factor of length n starting at the positions inside blocks is a novel occurrence,
while all other factors are not. Finally, we verify that m is the sum of the sizes
of the blocks.

To fill in the details, we observe above in (1) that the predicate “the factor of
length n beginning at position i of x is a novel occurrence” is solvable by a finite
automaton. Similarly, given endpoints a, b and n, the predicates “every factor of
length n beginning at positions a through b is a novel occurrence”, “no factor of
length n beginning at positions a through b is a novel occurrence” and “no factor
of length n after position a is novel” are also solvable by a finite automaton. The
length of each block is just b− a+1, and it is easy to create an automaton that
will check if the sums of the lengths of the blocks equals m, which is supposed
to be ρx(n).
�
Applying Theorem 1 we get

Corollary 7. Given a k-automatic sequence x, there is an algorithm that, on
input n in base k, will produce ρx(n) in base k in time O(log n).

As another application, we can recover and improve some recent results of Gold-
stein [14,15]. He showed how to compute the quantities lim supn≥1 ρx(n)/n and
lim infn≥1 ρx(n)/n for the special case of k-automatic sequences that are the
fixed points of k-uniform morphisms related to certain groups. Corollary 8 be-
low generalizes these results to all k-automatic sequences.

Corollary 8. There is an algorithm, that, given a k-automatic sequence
x, will compute supn≥1 ρx(n)/n, lim supn≥1 ρx(n)/n, and infn≥1 ρx(n)/n,
lim infn≥1 ρx(n)/n.

Proof. We already showed how to construct an automaton accepting
{(n, ρx(n))k : n ≥ 1}. Now we just use the results from [18,17]. Notice that the
lim sup corresponds to what is called the largest “special point” in [17].
�
Example 9. Continuing our example of the Thue-Morse sequence, Figure 2 dis-
plays a DFA accepting {(n, ρt(n))k : n ≥ 0}. Inputs are given with the most
significant digit first; the “dead” state and transitions leading to it are omitted.

Given an infinite word x, we can also count the number of contiguous blocks
in each Ex(n) for n ≥ 0. (For the Thue-Morse sequence this gives the sequence
1, 1, 2, 1, 3, 1, 5, 3, 3, 1,) If x is k-automatic, then this sequence is also, as the
following theorem shows:

Subword Complexity and k-Synchronization 257

Theorem 10. If x is k-automatic then the sequence (e(n))n≥0 counting the
number of contiguous blocks in the n’th step Ex(n) of the evolution of novel
occurrences of factors in x is also k-automatic.

Proof. Since we have already shown that the number of contiguous blocks is
bounded by some constant C if x is k-automatic, it suffices to show for each
i ≤ C we can create an automaton to accept the language

{(n)k : Ex(n) has exactly i contiguous blocks }.
To do so, on input n in base k we guess the endpoints of the i contiguous
nonempty blocks, verify that the length-n occurrences at those positions are
novel, and that all other occurrences are not novel.
�

Fig. 2. Automaton computing the subword complexity of the Thue-Morse sequence

Example 11. Figure 3 below gives the automaton computing the number e(n)
of contiguous blocks of novel occurrences of length-n factors for the Thue-Morse
sequence. Here is a brief table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

e(n) 1 1 2 1 3 1 5 3 3 1 5 5 5 3 3 3 3 1 5 5 5 5 5 5 5 3 3

258 D. Goč, L. Schaeffer, and J. Shallit

3 Implementation

We wrote a program that, given an automaton generating a k-automatic se-
quence x, will produce a deterministic finite automaton accepting the language
{(n, ρx(n))k : n ≥ 0}. We used the following variant which does not require
advance knowledge of the bound on the first difference of ρx(n):

1. Construct an automaton R that accepts (n, s, e, �) if, for factors of length
n, the next contiguous block of novel occurrences after position s ends at
position e and has length �. If there are no blocks past s, accept (n, s, s, 0).

2. Construct an automaton M0 that accepts (n, 0, 0).
3. Construct an automaton Mj+1 that accepts (n, S, e) if there exist s and S′

such that
(i) Mj accepts (n, S′, s)
(ii) R accepts (n, s, e, S − S′).

4. IfMj+1 = Mj then we are done. We create an automaton that accepts (n, S)
if there exists e such that Mj accepts (n, S, e).

1 1

2

1

3

1

5

3

5
0 0

1

0

1

0

1

0

1

0,1 0,1

0

1

0,1

1

Fig. 3. Automaton computing number of contiguous blocks of novel occurrences of
length-n factors in the Thue-Morse sequence

Besides the automaton depicted in Figure 1, we ran our program on the pa-
perfolding sequence [11] and the so-called “period-doubling sequence” [10]. The
former gives a DFA of 20 states and the latter of 7 states. We omit them for
space considerations.

4 Powers and Primitive Words

We say a nonempty word w is a power if there exists a word x and an integer
k ≥ 2 such that w = xk; otherwise we say w is primitive. Given a nonempty
word z, there is a unique way to write it as yi, where y is primitive and i is
an integer ≥ 1; this y is called the primitive root of z. Thus, for example, the
primitive root of murmur is mur.

Subword Complexity and k-Synchronization 259

We say w = a1 · · ·an has a period p if ai = ai+p for 1 ≤ i ≤ n− p. Thus, for
example, alfalfa has period 3. It is easy to see that a word w is a power if and
only if it has a period p such that p < |w| and p | |w|.

Two finite words x, y are conjugates if one is a cyclic shift of the other; in
other words, if there exist words u, v such that x = uv and y = vu. For example,
enlist is a conjugate of listen. As is well-known, every conjugate of a power
of a word x is a power of a conjugate of x. The lexicographically least conjugate
of a primitive word is called a Lyndon word. We call the lexicographically least
conjugate of the primitive root of x the Lyndon root of x.

The following lemma says that if we consider the starting positions of length-n
powers in a word x, then there must be large gaps between contiguous blocks of
such starting positions.

Lemma 12. Let z be a finite or infinite word, and let n ≥ 2 be an integer.
Suppose there exist integers i, j such that

(a) w1 := z[i..i+ n− 1] is a power;
(b) w2 := z[j..j + n− 1] is a power;
(c) i < j ≤ i+ n/3.

Then z[t..t− n − 1] is a power for i ≤ t ≤ j. Furthermore, if u1 is the Lyndon
root of w1, then u1 is also the Lyndon root of each word z[t..t− n− 1].

Proof. Let x1 be the primitive root of w1 and x2 be the primitive root of w2.
Since w1 and w2 are powers, there exist integers e1, e2 ≥ 2 such that w1 = xe11
and w2 = xe22 .

Since w1 and w2 are both of length n, and since their starting positions are
related by i < j ≤ i+n/3, it follows that the word v := z[j..i+n−1] is common
to both w1 and w2, and |v| = i+ n− j ≥ i+ 2n/3 + n/3− j ≥ 2n/3.

Now there are three cases to consider:
(a) |x1| > |x2|; (b) |x1| < |x2|; (c) |x1| = |x2|.

Case (a): We must have e2 > e1 ≥ 2, so e2 ≥ 3. Since v is a suffix of w1, it
has period |x1| ≤ n/2. Since v is a prefix of w2, it has period |x2| ≤ n/3. We
note that gcd(|x1|, |x2|) = n/lcm(e1, e2) ≤ n/6, so

|x1|+ |x2| − gcd(|x1|, |x2|) ≤
2n

3
≤ |v|.

By a theorem of Fine and Wilf [12], it now follows that v, and hence x1, has
period p := gcd(|x1|, |x2|) ≤ |x2| < |x1|. Now p is less than |x1| and also divides
it, so this means x1 is a power, a contradiction, since we assumed x1 is primitive.
So this case cannot occur.

Case (b) gives a similar contradiction.
Case (c): We have e1 = e2 ≥ 2. Then the last occurrence of x1 in w1 lies inside

x22, and so x1 is a conjugate of x2. Hence w1 is a conjugate of w2. It now follows
that z[t..t+ n− 1] is a conjugate of w1 for every t, i ≤ t ≤ j. But the conjugate
of a power is itself a power, and we are done.
�

260 D. Goč, L. Schaeffer, and J. Shallit

Remark 13. The bound of n/3 in the statement of Lemma 12 is best possible,
as shown by the following class of examples. Let h be the morphism that maps
1 → 21 and 2 → 22, and consider the word hi(122122121212). This word is of
length 12 · 2i, and contains squares of length 3 · 2i+1 starting in the first 3 · 2i
positions, and cubes of length 3 · 2i+1 ending in the last 2i + 1 positions. This
achieves a gap of n/3 + 1 infinitely often.

Now, given an infinite word x, we define a function αx(n), the appearance func-
tion, to be the least index i such that every length-n factor of x appears in the
prefix x[0..i+ n− 1]; see [3, §10.10].

Theorem 14. If x is a k-automatic sequence, then αx(n) = O(n).

Proof. First, we show that the appearance function is k-synchronized. It suffices
to show that there is an automaton accepting {(n,m)k : m = αx(n)}. To see
this, note that on input (n,m)k we can check that

– for all i ≥ 0 there exists j, 0 ≤ j ≤ m such that x[i..i+n−1] = x[j..j+n−1];
and

– for all l < m we have x[m..m+ n− 1] �= x[l..l + n− 1].

From [6, Prop. 2.5] we know k-synchronized functions are O(n).
�

As before, we now consider the occurrences of length-n powers in x:

Lemma 15. If x is k-automatic, then there are only a constant number of max-
imal blocks of novel occurrences of length-n powers in x.

Proof. To begin with, we consider maximal blocks of length-n powers in x (not
considering whether they are novel occurrences). From Theorem 14 we know
that every length-n factor must occur at a position < Cn, for some constant C
(depending on x). We first argue that the number of maximal blocks of length-n
powers, up to the position of the last length-n power to occur for the first time,
is at most 3C.

Suppose there are ≥ 3C + 1 such blocks. Then Lemma 12 says that any two
such blocks must be separated by at least n/3 positions. So the first occurrence of
the last factor to occur occurs at a position ≥ (3C)(n/3) = Cn, a contradiction.

So using a constant number of blocks, in which each position of each block
starts a length-n factor that is a power, we cover the starting positions of all
such factors. It now remains to process these blocks to remove occurrences of
length-n powers that are not novel.

The first thing we do is remove from each block the positions starting length-n
factors that have already occurred in that block. This has the effect of truncating
long blocks. The new blocks have the property that each factor occurring at the
starting positions in the blocks never appeared before in that block.

Above we already proved that inside each block, the powers that begin at
each position are all powers of some conjugate of a fixed Lyndon word. Now
we process the blocks associated with the same Lyndon root together, from the

Subword Complexity and k-Synchronization 261

first (leftmost) to the last. At each step, we remove from the current block all
the positions where length-n factors begin that have appeared in any previous
block. When all blocks have been processed, we need to see that there are still
at most a constant number of contiguous blocks remaining.

Suppose the associated Lyndon root is y, with |y| = d. Each position in a block
is the starting position of a power of a conjugate of y, and hence corresponds to
a right rotation of y by some integer i, 0 ≤ i < d. Thus each block Bj actually
corresponds to some Ij that is a contiguous subblock of 0, 1, . . . , d− 1 (thought
of as arranged in a circle).

As we process the blocks associated with y from left to right we replace Ij
with I ′j := Ij − (I1 ∪ · · · ∪ Ij−1). Now if I ⊆ {0, 1, . . . , d − 1} is a union of
contiguous subblocks, let #I be the number of contiguous subblocks making up
I. We claim that

#I ′1 +#I ′2 + · · ·+#I ′n +#(
⋃

1≤i≤n

I ′i) ≤ 2n. (2)

To see this, suppose that when we set I ′n := In−(I1 ∪ · · · ∪In−1), the subblock In
has an intersection with t of the lower-numbered subblocks. Forming the union
(
⋃

1≤i≤n I
′
i) then obliterates t subblocks and replaces them with 1. But I ′n has

t − 1 new subblocks, plus at most 2 at either edge (see Figure 4). This means
that the left side of (2) increases by at most (1− t) + (t− 1)+ 2 = 2. Doing this
n times gives the result.

Ij

I ′j

⋃
1≤i≤j−1 I

′
i

Fig. 4. How the number of blocks changes

Now at the end of the procedure there will be at least one interval in the
union of all the Ii, so #I ′1 +#I ′2 + · · ·+#I ′n ≤ 2n− 1.

Earlier we showed that there are at most 3C maximal blocks of length-n
powers, up to the position of the last length-n power to occur for the first time.
Then, after processing these blocks to remove positions corresponding to factors
that occurred earlier, we will have at most 2(3C) = 6C blocks remaining.
�

Corollary 16. If x is k-automatic, then the following are k-synchronized:

– the function counting the number of distinct length-n factors that are powers;
– the function counting the number of distinct length-n factors that are prim-

itive words.

Proof. Suppose x is k-automatic, and generated by the automatonM . From the
Lyndon-Schützenberger theorem [16], we know that a word x is a power if and

262 D. Goč, L. Schaeffer, and J. Shallit

only if there exist nonempty words y, z such that x = yz = zy. Thus, we can
express the predicate P (i, j) := “x[i..j] is a power” as follows: “there exists d,
0 < d < j−i+1, such that x[i..j−d] = x[i+d..j] and x[j−d+1..j] = x[i..i+d−1]”.
Furthermore, we can express the predicate P ′(i, n) := “x[i..i+n−1] is a length-n
power and the first occurrence of that power in x”, as

P (i, i+ n− 1) ∧ (∀i′, 0 ≤ i′ < i, x[i′..i′ + n− 1] �= x[i..i + n− 1]).

From Lemma 15 we know that the novel occurrences of length-n powers are
clustered into a finite number of blocks. Then, as in the proof of Theorem 6,
we can guess the endpoints of these blocks, and verify that the length-n factors
beginning at the positions inside the blocks are novel occurrences of powers,
while those outside are not, and sum the lengths of the blocks, using a finite
automaton built from M . Thus, the function counting the number of length-n
powers in x is k-synchronized.

The number of length-n primitive words in x is then also k-synchronized, since
it is expressible as the total number of words of length n, minus the number of
length-n powers.
�

Remark 17. Using the technique above, we can prove analogous results for the
functions counting the number of length-n words that are α-powers, for any fixed
rational number α > 1.

5 Unsynchronized Sequences

It is natural to wonder whether other aspects of k-automatic sequences are always
k-synchronized. We give an example that is not.

We say a word w is bordered if it has a nonempty prefix, other than w itself,
that is also a suffix. Alternatively, w is bordered if it can be written in the form
w = tvt, where t is nonempty. Otherwise a word is unbordered.

Charlier et al. [8] showed that ux(n), the number of unbordered factors of
length n of a sequence x, is k-regular if x is k-automatic. They also gave a con-
jecture for recursion relations defining ut(n) where t is the Thue-Morse sequence;
this conjecture has recently been verified [13].

We give here an example of a k-automatic sequence where the number of
unbordered factors of length n is not k-synchronized.

Consider the characteristic sequence of the powers of 2: c := 0110100010 · · · .

Theorem 18. The sequence c is 2-automatic, but the function uc(n) counting
the number of unbordered factors is not 2-synchronized.

Proof. It is not hard to verify that c is 2-automatic and that c has exactly r+2
unbordered factors of length 2r + 1, for r ≥ 2 — namely, the factors beginning
at positions 2i for 0 ≤ i ≤ r − 1, and the factors beginning at positions 2r+1

and 3 · 2r. However, if uc(n) were 2-synchronized, then reading an input where
the first component looks like 0i10r−11 (and hence a representation of 2r + 1)

Subword Complexity and k-Synchronization 263

for large r would force the transitions to enter a cycle. If the transitions in or
before the cycle contained a nonzero entry in the second component, this would
force uc(n) to grow linearly with n when n is of the form 2r +1. Otherwise, the
corresponding transitions for the second component are just 0’s, in which case
uc(n) is bounded above by a constant, for n of the form 2r + 1. Both cases lead
to a contradiction.
�

Acknowledgments. We thank the referees for a careful reading of the paper.

References

1. Allouche, J.-P., Shallit, J.: The ring of k-regular sequences. Theoret. Comput.
Sci. 98, 163–197 (1992)

2. Allouche, J.-P., Shallit, J.: The ring of k-regular sequences, II. Theoret. Comput.
Sci. 307, 3–29 (2003)

3. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, General-
ization. Cambridge University Press (2003)

4. Carpi, A., D’Alonzo, V.: On the repetitivity index of infinite words. Internat. J.
Algebra Comput. 19, 145–158 (2009)

5. Carpi, A., D’Alonzo, V.: On factors of synchronized sequences. Theoret. Comput.
Sci. 411, 3932–3937 (2010)

6. Carpi, A., Maggi, C.: On synchronized sequences and their separators. RAIRO
Inform. Théor. App. 35, 513–524 (2001)

7. Cassaigne, J.: Special factors of sequences with linear subword complexity. In:
Dassow, J., Rozenberg, G., Salomaa, A. (eds.) Developments in Language Theory
II, pp. 25–34. World Scientific (1996)

8. Charlier, É., Rampersad, N., Shallit, J.: Enumeration and decidable properties of
automatic sequences. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795,
pp. 165–179. Springer, Heidelberg (2011)

9. Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)
10. Damanik, D.: Local symmetries in the period-doubling sequence. Disc. Appl.

Math. 100, 115–121 (2000)
11. Dekking, F.M., Mendès France, M., van der Poorten, A.J.: Folds! Math. Intelli-

gencer 4, 130–138, 173–181, 190–195 (1982); Erratum 5, 5 (1983)
12. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Amer.

Math. Soc. 16, 109–114 (1965)
13. Goč, D., Mousavi, H., Shallit, J.: On the number of unbordered factors. In: Dediu,

A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 299–310.
Springer, Heidelberg (2013)

14. Goldstein, I.: Asymptotic subword complexity of fixed points of group substitu-
tions. Theoret. Comput. Sci. 410, 2084–2098 (2009)

15. Goldstein, I.: Subword complexity of uniform D0L words over finite groups. The-
oret. Comput. Sci. 412, 5728–5743 (2011)

16. Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group.
Michigan Math. J. 9, 289–298 (1962)

17. Schaeffer, L., Shallit, J.: The critical exponent is computable for automatic se-
quences. Int. J. Found. Comput. Sci. 23, 1611–1626 (2012)

18. Shallit, J.: The critical exponent is computable for automatic sequences. In: Am-
broz, P., Holub, S., Másaková, Z. (eds.) Proceedings 8th International Conference
Words 2011. Elect. Proc. Theor. Comput. Sci., vol. 63, pp. 231–239 (2011)

Some Decision Questions Concerning

the Time Complexity of Language Acceptors

Oscar H. Ibarra1,� and Bala Ravikumar2

1 Department of Computer Science
University of California, Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Computer & Engineering Science

Sonoma State University, Rohnert Park, CA 94928 USA
ravi@cs.sonoma.edu

Abstract. Almost all the decision questions concerning the resource re-
quirements of a computational device are undecidable. Here we want
to understand the exact boundary that separates the undecidable from
the decidable cases of such problems by considering the time complexity
of very simple devices that include NFAs (1-way and 2-way), NPDAs
and NPDAs augmented with counters - and their unambiguous restric-
tions. We consider several variations - based on whether the bound holds
exactly or as an upper-bound and show decidability as well as undecid-
ability results. We also introduce a stronger version of machine equiva-
lence (known as run-time equivalence) and identify classes of machines
for which run-time equivalence is decidable (undecidable). In the case
of decidable problems, we also attempt to determine more precisely the
complexity class to which the problem belongs.

Keywords: NFA, NPDA, counter machine, GSM, reversal-bounded coun-
ters, time complexity, decidable, undecidable, run-time equivalence, un-
ambiguous, k-ambiguous.

1 Introduction

Decision questions concerning the time complexity of a computational device are
very basic to understanding its performance (correctness, efficiency, optimality)
and hence such questions have been addressed from the beginning of computation
theory. The earliest such questions can be traced back to Turing’s original paper
in which halting problem on blank tape was addressed [20]. Most such questions
are undecidable, however. It is therefore natural to explore the simplest of such
questions for which decision algorithms exist. For example, consider an NFA M
with ε-moves. Such an NFA may require, on an input w, an accepting path that
is much longer than |w| because of ε-moves. One basic question is: Is it true that
every string w in L(M) can be accepted within 2|w| steps? We address such
questions in this paper. Most of the problems we consider involve determining if

� Supported in part by NSF Grants CCF-1143892 and CCF-1117708.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 264–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Time Complexity of Language Acceptors 265

the time complexity of all the accepted input strings can be upper-bounded in
a certain way. Note that many of the devices we consider are nondeterministic
and thus the time complexity we consider is the shortest among all possible
accepting computations. The precise nature of the problem considered leads to
questions such as: (a) Is the time bound at most |w|+ k for some k independent
of the length of |w|)? This means the number of ε-moves is bounded above by a
constant. (b) Is the time complexity at most k|w|, where k could be fixed, or be
part of the input. (c) Is the time complexity exactly k|w| for a given k?

The primary motivation for this work is to understand the boundary between
decidable and undecidable cases of such analysis questions since we feel that
these are fundamental questions. The problems we consider have the same flavor
as those studied in [4,3]. The research in [4] investigated the mean-payoff in
NFA models in which the edges are weighted by real numbers and the goal is to
compute for a given string w, the minimum average weight of computation which
is defined as the total weight divided by the length of string, minimized over all
paths leading to acceptance of the string. The paper [3] studied the “amplitude”
of an automaton, which intuitively characterizes how much a typical execution
of the automaton fluctuates. We note that similar constructions in some of our
results in this paper have also been used in [3]. Our work is also related to studies
on measures of nondeterminism in which the number of nondeterministic moves
on an accepting computation is used as a complexity measure [6].

We use a wide range of undecidable (e.g. [14], [8]) and decidable problems
(e.g. [11], [19], [15]) to establish the new results. Because of page limitation,
many proofs are omitted. They will appear in a full version of the
paper.

2 Preliminaries

We use the standard machine models such as DFA, NFA, DPDA, NPDA etc.
(with ε-moves) as for example, in [12]. We will also look at machines with a
two-way read-only input. These devices have left and right end markers, and
acceptance is when the input head falls off the right end marker in an accepting
state. At each move, the input head can move left or right or remain stationary.
A two-way device M is k-crossing (where k ≥ 1) if every accepted input can
be accepted in an accepting computation in which the input head crosses the
boundary between any pair of adjacent cells at most k times. Note that the head
can stay on a cell an unbounded (but a finite) number of steps, and these “stays”
are not counted in the crossing bound. Staying is like ε-move.M is finite-crossing
if it is k-crossing for some given k.

A fundamental model that we will use is a one-way or two-way NFA or NPDA
augmented with a finite number of reversal-bounded counters. At each step, each
counter (which is initially set to zero and can never become negative) can be
incremented by 1, decremented by 1, or left unchanged and can be tested for
zero. The counters are reversal-bounded in the sense that there is a specified r
such that during any computation, no counter can change mode from increasing

266 O.H. Ibarra and B. Ravikumar

to decreasing and vice-versa more than r times. A counter is 1-reversal if once
it decrements, it can no longer increment. Clearly, an r-reversal counter can be
simulated by ,(r+1)/2- 1-reversal counters. Machines augmented with reversal-
bounded counters have been extensively studied (see, e.g, [1,13,8]).

We will need the following results throughout the paper.

Theorem 1

1. The emptiness (Is L(M) empty?) and infiniteness (Is L(M) infinite?) prob-
lems for NPDAs augmented with reversal-bounded counters are decidable
[13].

2. The emptiness and infiniteness problems for finite-crossing two-way NFAs
augmented with reversal-bounded counters are decidable [13,8].

3 Unambiguous Machines

Let M be a class of nondeterministic (one-way or two-way) machines, possibly
augmented with infinite storage units, and Mc be the class of machines obtained
by augmenting the machines in M with reversal-bounded counters.

Theorem 2. If Mc has a decidable emptiness problem, then for any k, it is
decidable, given an arbitrary unambiguous machine M in M, whether every
string w in L(M) can be accepted by a computation of length (i.e., number of
moves) exactly k|w| (resp., at most k|w|).

Proof. First consider the case when the machines are one-way. Given k ≥ 1 and
an unambiguous machine M in M, we construct a machine M ′ in Mc which,
given input w, simulates the computation ofM on w.M ′ uses two new 1-reversal
counters, X1 and X2. M

′ uses counter X1 to store the number of moves of M
and counter X2 to store |w|. When M accepts w, M ′ checks and accepts if
value(X1) �= k·value(X2) (resp., if value(X1) > k·value(X2)). This can be done
by decrementing counter X1 by k for every decrement of 1 in counter X2. It
follows that M does not make exactly k|w| (resp., makes more than k|w|) moves
if and only if L(M ′) is not empty, which is decidable.

If M is a two-way machine, M ′ first makes a left-to-right sweep of the input
w and stores |w| in counter X2. Then M

′ returns the input head to the left end
marker and simulatesM while storing the number of moves ofM in counter X1.
When M accepts, M ′ carries out the same procedure as above.
�

Corollary 1. If Mc has a decidable emptiness problem, then for any k, it is
decidable, given an arbitrary unambiguous machine M in M and an integer
d ≥ 0, whether every string w in L(M) can be accepted by a computation of
length exactly k|w|+ d (resp., at most k|w|+ d).

A variation of Theorem 2 is the following:

Time Complexity of Language Acceptors 267

Theorem 3. If Mc is effectively closed under homomorphism and has a decid-
able emptiness and infiniteness problems, then for any k, it is decidable, given
an arbitrary unambiguous machine M in M, whether there is an integer d ≥ 0,
such that every string w in L(M) can be accepted by a computation of length ex-
actly k|w|+d (resp., at most k|w|+d). Moreover, if such a d exists, the smallest
such d can be effectively computed.

Proof. Again, consider first the case whenM is one-way. LetM be an unambigu-
ous machine in M. Let # be a new symbol, and let L = {w#d | w ∈ L(M), d ≥
0, w is accepted in no less than k|w| + d moves }.

We construct a machine M ′ in Mc which, when given input w#d, simulates
the computation of M on w. M ′ uses two 1-reversal counters, X1 and X2. M

′

uses counter X1 to store the number of moves of M and counter X2 to store
|w| during the simulation. When M accepts w, M ′ reads #d and decrements
counterX1 by d.M

′ then checks and accepts if value(X1) �= k·value(X2) (resp., if
value(X1) > k·value(X2)). Next, we construct a machineM ′′ in Mc that accepts
L′′ = {#d | w#d ∈ L(M ′)}. (We can do this, since Mc is effectively closed under
homomorphism.) It follows that there is no d such that every string w in L(M)
can be accepted by a computation of length exactly k|w| + d (resp., at most
k|w|+ d) if and only if L(M ′′) is not empty (resp., infinite), which is decidable.
If d exists, the smallest such d can be found exhaustively (starting with d = 0) by
Corollary 1.

The case when M is two-way is similar, except that M ′ first stores |w| in
counter X2. The simulation of M and and comparison of the counters X1 and
X2 proceed as above.
�

Theorem 2, Corollary 1, and Theorem 3 apply to each class ofM below, sinceMc

has decidable emptiness and infiniteness problems by Theorem 1. Clearly, the
first two classes are effectively closed under homomorphism. That the third class
is also effectively closed under homomorphism, follows from the following result
in [8]: Given a finite-crossing two-way NFA augmented with reversal-bounded
counters, we can effectively construct an equivalent (one-way) NFA augmented
with reversal-bounded counters.

1. Unambiguous NFAs
2. Unambiguous NPDAs augmented with reversal-bounded counters
3. Unambiguous finite-crossing two-way NFAs augmented with reversal-

bounded counters.

When k = 1, the requirement in Theorem 2 can be weakened:

Proposition 1. If M has a decidable emptiness problem, then it is decidable,
given an arbitrary unambiguous machine M in M and d ≥ 0, whether every
string w in L(M) can be accepted by a computation of length exactly |w| + d
(resp., at most |w|+ d).

The following classes of machines have decidable emptiness problem, so the de-
cidability in Proposition 1 applies. Note that these classes were not listed in the

268 O.H. Ibarra and B. Ravikumar

examples following Theorem 2, since the emptiness problem for these machines
when augmented with reversal-bounded counters is undecidable.

1. Two-way DFA augmented with one reversal-bounded counter. The emptiness
problem for these machines is decidable [15]. (However, when augmented
with one more reversal-bounded counter, emptiness becomes undecidable,
since two-way DFAs with two reversal-bounded counters have undecidable
emptiness problem [13].)

2. Unambiguous one-way stack machines [5]. Informally, a one-way stack ma-
chine is a one-way pushdown automaton with the additional power that the
stack head can enter the stack in a “read-only” mode; however, the stack
head can return to the top of the stack to push and pop. This class of ma-
chines has decidable emptiness problem. (However, when augmented with
two reversal-bounded counters, their emptiness becomes undecidable. This
is because such a machine can copy the one-way input on the stack and then
use the stack in a read-only mode and the two reversal-bounded counters
to simulate a two-way DFA augmented with two reversal-bounded counters,
and emptiness of the latter is undecidable [13].)

4 2-Ambiguous Machines

The results of the previous section are not valid for ambiguous machines, even
when the degree of ambiguity is 2 and the machines are quite simple.

Theorem 4. For any k ≥ 1, it is undecidable to determine, given a 2-ambiguous
nondeterministic one-counter machine M , whether every w in L(M) is accepted
by some computation of length exactly k|w| (resp., at most k|w|).

Proof. The proof uses the undecidability of the halting problem for 2-counter
machines [18]. A close look at the proof of the undecidability of the halting
problem for 2-counter machines, where initially one counter has value d1 and the
other counter is zero in [18] reveals that the counters behave in a regular pattern.
The 2-counter machine operates in phases in the following way. Let c1 and c2
be its counters. The machine’s operation can be divided into phases, where each
phase starts with one of the counters equal to some positive integer di and the
other counter equal to 0. During the phase, the positive counter decreases, while
the other counter increases. The phase ends with the first counter having value
0 and the other counter having value di+1. Then in the next phase the modes of
the counters are interchanged. Thus, a sequence of configurations corresponding
to the phases will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . . , (q2m, 0, d2m)

where the qi’s are states and d1, d2, d3, . . . , d2m are positive integers (we assume
that the number of steps is odd). Note that the second component of the config-
uration refers to the value of c1, while the third component refers to the value
of c2. Without loss of generality, we assume d1 = 1.

Time Complexity of Language Acceptors 269

Let T be a 2-counter machine that operates as described above. Let k ≥ 1. Let
L = L1 ∪ L2, where

L1 = {w | w ∈ (0 + 1)∗, w �= 0d11d10d21d20d31d3 · · · 0d2m1d2m ,
m ≥ 1, d1, d2, ..., d2m ≥ 1}

L2 = {w | w ∈ (0 + 1)∗, w = 0d11d10d21d20d31d3 · · · 0d2m1d2m , where m ≥ 1, d1 =
1, d2, ..., d2m ≥ 1, (q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6),
..., (q2m, 0, d2m) is the halting computation of the 2-counter machine T for some
q1, ..., q2m, if it halts }.

We construct a 2-ambiguous nondeterministic one-counter machine M which,
when given an input w ∈ (0 + 1)∗, nondeterministically selects to process (1) or
(2) below:

(1) M operates in such a way that it makes k− 1 ε-moves after every symbol it
reads and accepts w if it is in L1. Note that this can be done deterministically.

(2) M simulates the computation of the 2-counter machine T (note that the finite
control can check that w is of the form 0d11e10d21e20d31e3 · · · 0d2m1e2m ,m ≥
1, d1 = 1; otherwise, M rejects). In the simulation, M assumes that di = ei
for 1 ≤ i ≤ 2m. It also makes k ε-moves after every symbol it reads. If the
simulation succeeds with T halting, M accepts w. Note that it is possible
that the simulation succeeds with T halting even when some di �= ei for some
i, and M accepts. In this case, such a w would also be accepted in process
(1), so w has two accepting computations. Again, process (2) can be done
deterministically.

Clearly, M is 2-ambiguous. If T halts, M will accept a string w of the form
0d11d10d21d20d31d3 · · · 0d2m1d2m , which is not in L1, in exactly (k+1)|w| moves.
(Note that there is only one such string, since T is deterministic). If T does not
halt, M will accept only strings w in L1 in exactly k|w| moves.

It follows that M accepts every string w in L in exactly (hence, at most) k|w|
moves if and only if T does not halt, which is undecidable.
�

The next result shows that determining whether an NPDA accepts in real-time
is undecidable, even when it makes only one stack reversal (i.e., when it pops, it
can no longer push).

Theorem 5. For any k ≥ 1, it is undecidable to determine, given a 2-ambiguous
1-reversal NPDA M , whether every string w in L(M) is accepted by some com-
putation of length exactly k|w| (resp., at most k|w|).

The constructions in the proofs of Theorems 4 and 5 also show:

Corollary 2. For any k ≥ 1, it is undecidable to determine, given a 2-ambiguous
nondeterministic one-counter machine or a 2-ambiguous 1-reversal NPDA M ,
whether there is a d ≥ 0 such that every string w in L(M) is accepted by some
computation in exactly k|w|+ d moves (resp., in at mos k|w|+ d moves).

270 O.H. Ibarra and B. Ravikumar

Note that Theorems 4 and 5 and Corollary 2 are in contrast to the fact that the
problems are decidable when the machines are unambiguous (i.e., 1-ambiguous).

The following shows that Theorem 5 and Corollary 2 also apply to 1-reversal
nondeterministic counter machines (i,e., once the counter decrements, it can no
longer increment); however, the machine needs unbounded ambiguity:

Proposition 2. For any k ≥ 1, it is undecidable to determine, given a 1-
reversal nondeterministic one-counter machine M , whether every string w in
L(M) is accepted by some computation of length exactly k|w| (resp., at most
k|w|).

Open Questions: Can the Proposition 2 be shown when M is both m-
ambiguous (for m ≥ 2) and r-reversal (for r ≥ 1)? In particular, what about the
case when k = 1, m = 2, and r = 1?

5 Time Complexity of NFAs

Throughout this section, we will assume that an NFA has ε moves. We begin by
studying the NFA complexity problem with k = 1.

Theorem 6. It is PSPACE-complete to determine, given an NFA M , whether
every string w in L(M) can be accepted by a computation of at most |w| moves.
The problem is in P (= polynomial time) if the NFA is unambiguous.

Proof. We will first show that the problem is in PSPACE. Let M be an instance
of the problem. It is clear that M is a yes-instance of the problem if and only
if every string accepted by M can be accepted without using any ε moves. Let
M ′ be the NFA defined by removing all the epsilon moves of M . The problem
is to determine if L(M) = L(M ′). It is well-known [12] that this problem can be
solved in PSPACE.

To show PSPACE-hardness, we reduce the following problem [16] (universe
problem for union of DFA’s, UDFA for short) to our problem. The problem
involves a collection {Mi}, i = 1, 2, ..., m of DFAs. The question is to determine
if
⋃m

i=1 L(Mi) = Σ∗. We will reduce this problem to our problem as follows:
Create an NFA M of size Σn

i=1ni + 1 states where ni = the number of states in
Mi as follows. M consists of a copy of each Mi. Let q1 the start state of M1 be
the start state of M . We add a transition (q1, a, q) for all q ∈ Mj for j = 2, ..., n
where q = δj(qj , a) (δj is the transition function ofMj) and qj is the start state of
Mj. We also add an accepting state f toM and add an ε transition from q1 to f .
Finally, add a transition from f to itself on all input symbols in Σ, the alphabet
over which Mj ’s are defined. It is clear that M has only one ε transition. It can
be shown that reduction is correct, and the problem is PSPACE-hard.

That the problem is in P when the NFA is unambiguous follows from the
result in [19] that the equivalence problem for unambiguous NFAs is in P.
�

By suitably modifying the proof of Theorem 6, we can show that the PSPACE-
hardness of the claim holds if we replace |w| by k|w| (for a fixed integer k ≥ 2).

Time Complexity of Language Acceptors 271

We are currently looking at the problem of whether or not its membership is
decidable (or even in PSPACE).

For the proof of the next result, we need the notion of distance automaton
introduced in [11], where a problem called limitedness was studied. Let N denote
the set of nonnegative integer numbers. A distance automaton is a 5-tuple <
Q,Σ, q0, d, F > whereQ is the set of states,Σ is the alphabet set, d : Q×Σ×Q→
{0, 1} is the distance function, q0 is the starting state and F is the set of accepting
states.

Given a path (q1, a1, q2, a2, ..., ak, qk+1), the distance of the path is defined as
d(q1, a1, q2) + d(q2, a2, q3) + ... + d(qk, ak, qk+1). Consider the processing of a
string x from state p to state q. Since a distance automaton is nondeterministic,
there could be many different paths. We define the distance to be the minimum
distance over the different paths.

We extend the distance function d to a function Q×Σ∗ ×Q → N such that
d(p, x, q) denotes the distance used by the automaton for going from state p to
state q consuming the input string x. The distance of an accepted string x is
defined as d(x) = minq∈Fd(p, x, q). The distance of a distance automaton M is
defined to be supx∈L(M)d(x). A distance automaton M is said to be limited if
there is a constant K such that its distance is bounded above by K.

We will need the following result concerning the limitedness problem for NFAs
[11] and subsequently improved by [17].

Theorem 7. Determining, given a distance automaton M , whether it is limited
is PSPACE-complete.

Theorem 8. It is PSPACE-complete to determine, given an NFA M , whether
there exists an integer d such that every string w in L(M) can be accepted by a
computation of at most |w|+ d moves.

Proof. Let M an instance of the problem. We will construct a distance automa-
ton M ′ as follows: For any two states p, q in M , and for a ∈ Σ, we determine if
q can be reached from p via a path that involves a sequence of ε moves followed
by a followed by another sequence of ε moves so that the total path length is
at least 2. (i.e., we determine if q ∈ δ̂(p, a) and q is not in δ(p, a) - here δ̂ is
the extended δ function [12]). If this is true for the triple (p, a, q), then we as-
sign a transition from p to q on input a with distance d = 1. For all the non-ε
transitions from p to q on label a, the transition is added with a d value of 0.
The resulting distance automaton M ′ has no ε transitions, and it has a distance
function defined. It is easy to see that the above reduction from M to M ′ can
be implemented in polynomial time: compute the ε-closure of each state q by
performing a breadth-first search from each state using only the ε transitions
as edges. (This step is commonly used, e.g., when removing ε moves from an
NFA). Now it is easy to determine which edges of distance 1 should be added
to M ′: An edge (p, q) with distance = 1 is added in M ′ if and only if there are
two states r and s such that r is in the ε-closure of p, q is in the ε-closure of s,
and there is a transition in M from r to s on a. Finally, add a state q to the
accepting state of M ′ if some accepting state is in the ε-closure of q. It is easy

272 O.H. Ibarra and B. Ravikumar

to see that L(M) = L(M ′) since our construction is essentially the same as the
one used for removing ε transitions in an NFA [12].

We will now show that there is a constant d such that any string w ∈ L(M)
can be accepted in |w| + d steps if and only if M ′ is limited. Suppose M ′ is
limited. Then there is a constant K such that every accepted string w has an
accepting path with distance at most K. Consider the corresponding path for
w from a starting state to accepting state in M . Every edge of weight 1 in M ′

(from p to q) involves a sequence of ε transitions from p to r and from s to q.
By choosing the shortest path in each case, each path is of length at most m− 1
(where m is the number of states in M). Thus each edge of weight 1 uses at
most 2(m− 1) ε transitions. Since the total number of such edges is bounded by
K, the total number of ε transitions is at most 2(m− 1)K and by choosing d =
2(m− 1)K, we see that every string of length w ∈ L(M) has an accepting path
of length at most |w|+ d.

Conversely, suppose M is a ‘yes’ instance of our problem, i.e., there is a
constant d such that every string w, there is an accepting path of length at most
|w|+ d. This means it uses at most d ε transitions. Consider the corresponding
accepting computation for w in M ′. Each ε-transition can be avoided in M ′ by
using an edge of weight one so that the total number of edges of distance one
used in an accepting path for w is at most d. Thus, M ′ has distance value of
at most d and hence it is limited. This completes a polynomial time reduction
(actually this reduction can be implemented in log-space) from our problem to
the limitedness problem.

Since limitedness can be tested in PSPACE according to Theorem 7, it follows
that our problem can be solved in PSPACE.

To show that our problem is PSPACE-hard, we will exhibit a reduction in the
opposite direction, namely a reduction from limitedness problem to our problem.

Let M be an instance of limitedness problem. We will create an NFA M ′

using the same set of states (with some additional states as described below):
for each edge of distance 0, we will include that edge in M ′. For an edge (p, a, q)
of distance 1, we add a new node r and edges (p, ε, r) and (r, a, q) in M ′. The
start state and accepting states of M ′ are the same as that of M . It is easy
to see that L(M) = L(M ′). Further it is easy to see that this is a polynomial
time reduction from limitedness problem to our problem. This shows that our
problem is PSPACE-complete.
�
Theorem 9. Determining, given an unambiguous NFA M , whether there exists
an integer d such that every string w in L(M) can be accepted by a computation
of at most |w|+ d moves is in P.

The next result is rather unexpected.

Theorem 10. For any k ≥ 2, it is undecidable to determine, given an NFA
M , whether there is a string w in L(M) which has no accepting computation of
length exactly k|w|.
Proof. We prove the case k = 2; the generalization for k ≥ 3 reduces to the
case k = 2 by padding each input symbol with k − 2 dummy symbols. We

Time Complexity of Language Acceptors 273

will use the proof technique introduced in [14] to show the undecidability of
the equivalence problem for EFNGSMAs (epsilon-free NGSMs with accepting
states) over Σ × {1} (i.e., the input alphabet is Σ and the output alphabet is
{1}).

First we note that an EFNGSMA G over Σ × {1} can be thought of as an
NFA MG in the following way: If G in state p on input a outputs 1d and enters
state q, thenMG in state p reads a, makes d−1 ε-moves (using d−1 new states),
and enters state q. Thus, G outputting 1d corresponds to MG making d moves
(the last d− 1 of which are ε-moves). We call MG the NFA associated with G.

Let Z be a Turing machine (TM) on an initially blank (one-way) infinite
tape with unique initial and halting configurations. Assume that Z makes at
least one move. Let Σ be the alphabet used to represent a sequence of IDs. Let
LZ = {x | x = #ID1# · · ·#IDk#, k ≥ 2, ID1, . . . , IDk are configurations of
Z, ID1 is the initial configuration on blank tape , IDk is the unique halting
configuration }.

Let R = {(x, 1r) | x ∈ Σ+, x = x1x2x3 for some x1, x2, x3 ∈ Σ∗, r =
|x1|+ 2|x2|+ 3|x3|}.

Clearly, R can be realized by a one-state EFNGSMA. The relation R(G) defined
by the EFGSMAG constructed in the proof of Theorem 1 in [14] has the property
that R(G) = R if and only if the TM Z does not halt on blank tape.

In that proof, G was constructed as the combination of four EFNGSMAs
G1, G2, G3, G4. Hence, G accepts the union of the transductions accepted by
these machines. The machines are constructed so that they realize the following
transductions:

1. R(G1) = {(x, 1r) | (x, 1r) ∈ R, x ∈ Σ+ − LZ}
2. R(G2) = {(x, 1r) | (x, 1r) ∈ R, r > 2|x|}
3. R(G3) = {(x, 1r) | (x, 1r) ∈ R, r < 2|x|}
4. R(G4) = {(x, 1r) | (x, 1r) ∈ R, x = #ID1# · · ·#IDk# ∈ LZ and either

r �= 2|x| or r = 2|x| and for some IDi, 1 ≤ i < k, IDi+1 is not a proper
successor of IDi}

The constructions of G1, G2, G3 are not difficult, but the construction of G4 is
rather intricate (see [14]). Now R(G) = R(G1)∪R(G2)∪R(G3)∪R(G4). Clearly,
there is exactly one string x ∈ Σ+ such that (x, 12|x|) is not in R(G) if and only if
the TM Z halts on blank tape (this x corresponds to the unique halting sequence
of IDs if the TM halts). If Z halts on blank tape, then R(G) = R− {(x, 12|x|)},
where x is the unique halting sequence of IDs of Z. Otherwise, R(G) = R.

Hence for the NFAMG associated with G, there is exactly one string x in L(MG)
that is not accepted by MG in a computation of length exactly 2|x| if and only
if TM Z halts on blank tape, which is undecidable.
�

Note that Theorem 10 does not hold for unambiguous NFAs, since the problem
is decidable, even for NPDAs with reversal-bounded counters (see Corollary 1
and the examples for which the corollary applies in Section 3).

274 O.H. Ibarra and B. Ravikumar

Interestingly, if we are interested in determining if there is a string w which has
an accepting computation of length exactly k|w|, the problem becomes decidable,
even for an NPDA with reversal-bounded counters:

Theorem 11. For any k ≥ 1, it is decidable to determine, given an NPDA
M augmented with reversal-bounded counters, whether there is a string (resp.,
unique string) w in L(M) which has an accepting computation of length exactly
k|w|.
Next, we consider the problem concerning the number of accepting computations
with distinct running times every string can have:

Theorem 12. It is decidable to determine, given t ≥ 1 and a finite-crossing two-
way NFA M augmented with reversal-bounded counters, whether every string w
in L(M) has at most t accepting computations with distinct running times.

A related question is the following: GivenM , is there a t such that every string w
in L(M) has at most t accepting computations with distinct running times? We
do not know the decidability of this question whenM is a finite-crossing two-way
NFA augmented with reversal-bounded counters. However, for the special case
of NFAs:

Theorem 13. It is decidable, given an NFA M , whether there exists a t ≥ 1,
such that every string w in L(M) has at most t accepting computations with
distinct running times. If such a t exists, the minimal such t can be effectively
computed.

Theorems 12 and 13 do not hold for nondeterministic 1-reversal one-counter
machines.

Theorem 14

1. For any t ≥ 1, it is undecidable to determine, given a nondeterministic 1-
reversal one-counter machineM , whether every string w in L(M) has exactly
(resp., at most) t accepting computations with distinct running times.

2. It is undecidable to determine, given a nondeterministic 1-reversal one-
counter machine, whether there exists a t ≥ 1 such that every string w
in L(M) has exactly (resp., at most) t accepting computations with distinct
running times.

6 Run-Time Equivalence of Machines

In this section, we look at run-time equivalence of machines, which is defined as
follows:

Definition. Two machinesM1 andM2 are run-time equivalent if for every string
w,M1 has an accepting computation of length t if and only ifM2 has an accepting
computation of length t.

Note that ifM1 andM2 are run-time equivalent, then L(M1) = L(M2). However,
the converse is not true, in general.

Time Complexity of Language Acceptors 275

Theorem 15. It is undecidable to determine, given two NFAs M1 and M2,
whether they are run-time equivalent.

However, for unambiguous NFAs, run-time equivalence is decidable:

Theorem 16. It is decidable to determine, given two unambiguous NFAs M1

and M2, whether they are run-time equivalent.

We do not know if run-time equivalence is decidable for unambiguous NFAs aug-
mented with any form of infinite storage, e.g., with reversal-bounded counters.
But, for machines that are known to be equivalent, we have:

Theorem 17. It is decidable to determine, given two unambiguous finite-crossing
two-way NFAs augmented with reversal-bounded counters M1 and M2 that are
known to be equivalent (i.e., L(M1) = L(M2)), whether they are run-time equiv-
alent.

Unfortunately, at present, we do not know if equivalence of unambiguous finite-
crossing two-way NFAs with reversal-bounded counters is decidable. In fact,
we do not know if equivalence of unambiguous nondeterministic 1-reversal one-
counter machines (hence, 1-crossing) is decidable. However, it is known that
equivalence of finite-crossing two-way DFAs augmented with reversal-bounded
counters is decidable. Hence, from Theorem 17:

Corollary 3. It is decidable to determine, given two finite-crossing two-way
DFAs augmented with reversal-bounded counters M1 and M2, whether they are
run-time equivalent.

On the other hand:

Theorem 18. Run-time equivalence is undecidable for 2-ambiguous nondeter-
ministic one-counter machines (resp., 2-ambiguous 1-reversal NPDAs).

References

1. Baker, B., Book, R.: Reversal-bounded multipushdown machines. J. Comput. Syst.
Sci. 8, 315–332 (1974)

2. Chan, T., Ibarra, O.H.: On the finite-valuedness problem for sequential machines.
Theor. Comput. Sci. 23, 95–101 (1983)

3. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Similarity in languages and programs
(submitted)

4. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative Languages. ACM Trans-
actions on Computational Logic (2010)

5. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14,
389–418 (1967)

6. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. Journal of Universal
Computer Science 8(2), 193–234 (2002)

276 O.H. Ibarra and B. Ravikumar

7. Greibach, S.A.: A new normal-Form theorem for context-free phrase structure
grammars. J. ACM 12, 42–52 (1965)

8. Gurari, E., Ibarra, O.H.: The complexity of decision problems for finite-turn mul-
ticounter machines. J. Comput. Syst. Sci. 22, 220–229 (1981)

9. Gurari, E., Ibarra, O.H.: A note on finite-valued and finitely ambiguous transduc-
ers. Math. Systems Theory 16, 61–66 (1983)

10. Harju, T., Karhumaki, J.: The equivalence problem of multitape finite automata.
Theor. Comput. Sci. 78, 347–355 (1991)

11. Hashiguchi, K.: Limitedness theorem on finite automata with distance functions.
J. Comput. Syst. Sci. 24, 233–244 (1982)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley Publishing Company (1979)

13. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25, 116–133 (1978)

14. Ibarra, O.H.: The unsolvability of the equivalence problem for ε-free NGSM’s with
unary input (output) alphabet and applications. SIAM J. Computing 7, 524–532
(1978)

15. Ibarra, O.H., Jiang, T., Tran, N.Q., Wang, H.: New decidability results concerning
two-way counter machines and applications. SIAM J. Comput. 24, 123–137 (1995)

16. Kozen, D.: Lower bounds for natural proof systems. In: IEEE Conf. on Foundations
of Computer Science, pp. 254–266 (1977)

17. Leung, H., Podolskiy, V.: The limitedness problem on distance automata:
Hashiguchi’s method revisited. Theor. Comput. Sci. 310, 147–158 (2004)

18. Minsky, M.: Recursive unsolvability of Post’s problem of Tag and other topics in
the theory of Turing machines. Ann. of Math. 74, 437–455 (1961)

19. Stearns, R., Hunt, H.: On the equivalence and containment problems for unambigu-
ous regular expressions, grammars and automata. SIAM Journal on Computing 14,
598–611 (1985)

20. Turing, A.M.: On Computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., s2 42, 230–265 (1937)

Unambiguous Conjunctive Grammars

over a One-Letter Alphabet

Artur Jeż1,2,� and Alexander Okhotin3,��

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Institute of Computer Science, University of Wroc�law, Poland

aje@cs.uni.wroc.pl
3 Department of Mathematics and Statistics, University of Turku, Finland

alexander.okhotin@utu.fi

Abstract. It is demonstrated that unambiguous conjunctive grammars
over a unary alphabet Σ = {a} have non-trivial expressive power, and
that their basic properties are undecidable. The key result is that for
every base k � 11 and for every one-way real-time cellular automaton
operating over the alphabet of base-k digits

{
� k+9

4
�, . . . , � k+1

2
�
}
, the lan-

guage of all strings an with the base-k notation of the form 1w1, where w
is accepted by the automaton, is generated by an unambiguous conjunc-
tive grammar. Another encoding is used to simulate a cellular automaton
in a unary language containing almost all strings. These constructions
are used to show that for every fixed unambiguous conjunctive language
L0, testing whether a given unambiguous conjunctive grammar generates
L0 is undecidable.

1 Introduction

Conjunctive grammars, introduced by Okhotin [15], are an extension of the
context-free grammars, which allows the use of a conjunction operation in any
rules, in addition to the implicit disjunction already present in context-free
grammars. These grammars maintain the main principle behind the context-
free grammars—that of inductive definition of the membership of strings in the
language—inherit their parsing techniques and subcubic time complexity [19],
and augment their expressive power in a meaningful way. Conjunctive grammars,
along the more general Boolean grammars [17], have been a subject of various
research [1,7,8,9,12,16,20,21].

Conjunctive grammars over a one-letter alphabet Σ = {a} were proved non-
trivial by Jeż [7], who constructed a grammar for the language {a4n | n � 0},
and extended this construction to represent every automatic set [2], that is, a
unary language with a regular base-k representation. Subsequent work on such
grammars revealed their high expressive power and a number of undecidable
properties [8]. Testing whether a given string an is generated by a grammar

� Supported by NCN grant number 2011/01/D/ST6/07164, 2011–2014.
�� Supported by the Academy of Finland under grants 134860 and 257857.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 277–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 A. Jeż and A. Okhotin

G can be done in time |G| · n(logn)3 · 2O(log∗ n) [20], and if n is given in bi-
nary notation, this problem is EXPTIME-complete already for a fixed grammar
G [9]. These results had impact on the study of language equations [13,18], being
crucial to understanding their computational completeness over a unary alpha-
bet [10]. They are also related to the complexity results for circuits over sets of
numbers [14], as conjunctive grammars over a unary alphabet may be regarded
as a generalization of these circuits.

Unambiguous conjunctive grammars [17] are an important subclass of con-
junctive grammars defined by analogy with unambiguous context-free grammars,
and representing grammars that assign a unique syntactic structure to every well-
formed sentence. Little is known about their properties, besides a parsing algo-
rithm with |G| ·O(n2) running time, where n is the length of the input [17]; for a
unary alphabet, the running time can be improved to |G|·n(logn)2·2O(log∗ n) [20].
However, all the known results on the expressive power of conjunctive grammars
over a unary alphabet [7,8,9,21] rely upon ambiguous grammars, and it is not
even known whether unambiguous grammars can generate anything non-regular.

This paper sets off by presenting the first example of an unambiguous con-
junctive grammar that generates a non-regular unary language. This is the same
language {a4n | n � 0}, yet the grammar generating it, given in Section 3, is
more involved than the known ambiguous grammar. Then the paper proceeds
with reimplementing, using unambiguous grammars, the main general method
for constructing conjunctive grammars over a unary alphabet. This method in-
volves simulating a one-way real-time cellular automaton [6,16,23] over an input
alphabet Σk = {0, 1, . . . , k − 1} of base-k digits, by a grammar generating all
strings an with the base-k representation of n accepted by the cellular automa-
ton. The known construction of such conjunctive grammars [8] essentially uses
concatenations of densely populated sets, and hence the resulting grammars are
ambiguous. This paper defines a different simulation, under the assumption that
the input alphabet of the cellular automaton is not the entire set of base-k digits,
but its subset of size around k

4 . This restriction allows simulating the automaton,
so that all concatenations in the grammar remain unambiguous.

The simulation of a cellular automaton presented in Section 4 produces lan-
guages that grow exponentially fast, that is, the length of the n-th shortest string
in the language is exponential in n. These languages have density 0, in the sense
that the fraction of strings of length up to � belonging to these languages tends
to 0. As the concatenation of any two unary languages of non-zero density is
always ambiguous, this limitation of the given construction might appear to be
inherent to unambiguous conjunctive grammars. However, the next Section 5
nevertheless succeeds in representing non-regular unary languages of density 1
(that is, containing almost all strings) by an unambiguous conjunctive grammar,
and extends the simulation of cellular automata to this kind of unary languages.

These constructions yield undecidability results for unambiguous conjunctive
grammars, presented in the last Section 6. For every fixed language L0 (over
an arbitrary alphabet) generated by some unambiguous conjunctive grammar,
it is proved that testing whether a given unambiguous conjunctive grammar

Unambiguous Conjunctive Grammars over a One-Letter Alphabet 279

generates L0 is undecidable. This is compared to the known decidable properties
of the unambiguous case of standard context-free grammars [22].

2 Conjunctive Grammars and Ambiguity

Conjunctive grammars generalize context-free grammars by allowing an explicit
conjunction operation in the rules. This is more of a variant of the definition
of the context-free grammars than something entirely new, as it leaves the gen-
eral idea of context-free descriptions intact, and only extends the set of logical
connectives used to combine syntactical conditions.

Definition 1 (Okhotin [15]). A conjunctive grammar is a quadruple G =
(Σ,N, P, S), in which Σ and N are disjoint finite non-empty sets of terminal
and nonterminal symbols respectively; P is a finite set of rules of the form

A → α1& . . .&αn (with A ∈ N , n � 1 and α1, . . . , αn ∈ (Σ ∪N)∗), (*)

while S ∈ N is a nonterminal designated as the start symbol. A grammar is
linear, if each αi in each rule (*) contains at most one nonterminal symbol.

A rule (*) informally means that every string generated by each conjunct αi

is therefore generated by A. One way of formalizing this understanding is by
language equations, with the conjunction interpreted as intersection of languages.

Definition 2. Let G = (Σ,N, P, S) be a conjunctive grammar. The associated
system of language equations is the following system in variables N :

A =
⋃

A→α1&...&αn∈P

n⋂
i=1

αi (for all A ∈ N),

where each αi in the equation is a concatenation of variables and constant lan-
guages {a} representing terminal symbols (or constant {ε} if αi is the empty
string). Let (. . . , LA, . . .) be its least solution (that is, such a solution that ev-
ery other solution (. . . , L′

A, . . .) has LA ⊆ L′
A for all A ∈ N) and denote

LG(A) := LA for each A ∈ N . Define L(G) := LG(S).

As in the case of standard context-free grammars [3], every such system of equa-
tions has a least solution expressible through fixpoint iteration, because the
right-hand sides of the system are monotone and continuous.

An equivalent definition of conjunctive grammars is given by term rewriting,
generalizing the more common definition of standard context-free grammars by
string rewriting.

Definition 3 ([15]). Given a conjunctive grammar G, consider terms over con-
catenation and conjunction with symbols from Σ ∪N as atomic terms. The re-
lation =⇒ of immediate derivability on the set of terms is defined as follows:

– Using a rule A → α1& . . .&αn, a subterm A ∈ N of any term ϕ(A) can be
rewritten as ϕ(A) =⇒ ϕ(α1& . . .&αn).

– A conjunction of several identical strings can be rewritten by one such string:
ϕ(w& . . .&w) =⇒ ϕ(w), for every w ∈ Σ∗.

280 A. Jeż and A. Okhotin

The language generated by a term ϕ is LG(ϕ) = {w | w ∈ Σ∗, ϕ =⇒∗ w}. The
language generated by the grammar is L(G) = LG(S) = {w |w ∈ Σ∗, S =⇒∗ w}.

One can straightforwardly represent any finite intersection of standard context-
free languages, such as {anbncn |n � 0}, by a conjunctive grammar. The expres-
sive power of conjunctive grammars actually goes beyond such intersections: for
instance, they can represent the language {wcw | w ∈ {a, b}∗} [15].

This paper concentrates on a subclass of conjunctive grammars defined by
analogy with unambiguous context-free grammars. Let a concatenation L1·. . .·Lk

be called unambiguous if every string w ∈ L1 · . . . ·Lk has a unique factorization
w = u1 . . . uk with ui ∈ Li.

Definition 4 ([17]). Let G = (Σ,N, P, S) be a conjunctive grammar. Then

I. the choice of a rule in G is unambiguous, if different rules for every single
nonterminal A generate disjoint languages, that is, for every string w there
exists at most one rule A → α1& . . .&αm with w ∈ LG(α1) ∩ . . . ∩ LG(αm).

II. concatenation in G is said to be unambiguous, if for every conjunct α =
s1 . . . s, the concatenation LG(s1) · . . . · LG(s) is unambiguous.

If both conditions are satisfied, the grammar is called unambiguous.

Definition 4 implies that every string has a unique parse tree. The converse is
untrue: some grammars define unique parse trees, but condition II does not hold.

3 Representing Powers of Four

Consider the following grammar generating the language {a4n |n � 0}, which was
the first example of a conjunctive grammar over a unary alphabet representing
a non-regular language. Even though much was learned about those grammars
since this example, it still remains the smallest and the easiest to understand.

Example 1 (Jeż [7]). The conjunctive grammar

A1 → A1A3&A2A2 | a
A2 → A1A1&A2A6 | aa

A3 → A1A2&A6A6 | aaa
A6 → A1A2&A3A3

with the start symbol A1 generates the language L(G) = {a4n | n � 0}. In
particular, LG(Ai) = {ai·4n | n � 0} for i = 1, 2, 3, 6.

The grammar is best explained in terms of base-4 notation of the lengths of the
strings. Let Σ4 = {0, 1, 2, 3} be the alphabet of base-4 digits, and for every w ∈
Σ∗

4 , let (w)4 denote the integer with base-4 notation w. For any L ⊆ Σ∗
4 , denote

a(L)4 = {a(w)4 | w ∈ L}. Then the languages generated by the nonterminals of
the above grammar are a(10

∗)4 , a(20
∗)4 , a(30

∗)4 and a(120
∗)4 .

Consider the system of language equations corresponding to the grammar:
the equation for A1 is

A1 = (A1A3 ∩ A2A2) ∪ {a},

Unambiguous Conjunctive Grammars over a One-Letter Alphabet 281

etc. Substituting the given four languages into the intersection A1A3 ∩A2A2 in
the first equation, one obtains the following language:

a(10
∗)4a(30

∗)4 ∩ a(20∗)4a(20∗)4 =

=
(
a(10

+)4 ∪ a(10∗30∗)4 ∪ a(30∗10∗)4
)
∩
(
a(10

+)4 ∪ a(20∗20∗)4
)
= a(10

+)4 .

That is, both concatenations contain some garbage, yet the garbage in the con-
catenations is disjoint, and is accordingly filtered out by the intersection. Finally,
the union with {a} yields the language {a4n |n � 0}, and thus the first equation
turns into an equality. The rest of the equations are verified similarly, and hence
the given four languages form a solution. By a standard argument, one can prove
that the system has a unique ε-free solution [3, Thm. 2.3].

The grammar in Example 1 is ambiguous, because of the concatenationsA2A2,
A1A1, A6A6 and A3A3: since concatenation of unary strings is commutative, a
concatenation of a language with itself is unambiguous only if this language
is empty or a singleton. However, it is possible to remake the above grammar
without ever using such concatenations, though that requires defining a larger
collection of languages. The following grammar becomes the first evidence of
non-triviality of unambiguous conjunctive grammars over a unary alphabet.

Example 2. The conjunctive grammar

A1 → A1A3&A7A9 | a | a4
A2 → A1A7&A2A6 | a2
A3 → A1A2&A3A9 | a3
A6 → A1A2&A9A15 | a6

A7 → A1A3&A1A6

A9 → A1A2&A2A7

A15 → A6A9&A2A7

is unambiguous and generates the language {a4n | n � 0}. Each nonterminal Ai

generates the language LG(Ai) = {ai·4n | n � 0}.

The correctness is established in the same way as in Example 1. For instance,
the first equation is checked as

a(10
∗)4a(30

∗)4 ∩ a(130∗)4a(210∗)4 =
(
a(10

+)4 ∪ a(10∗30∗)4 ∪ a(30∗10∗)4
)
∩

∩
(
a(10

�2)4 ∪ a(2110∗)4 ∪ a(2230∗)4 ∪ a(130∗210∗)4 ∪ a(210∗130∗)4
)
= a(10

�2)4 .

All concatenations in the grammar are unambiguous. More generally, for every
alphabet Σk = {0, 1, . . . , k−1} of base-k digits, let (w)k denote the number with
the base-k notation w, and a(L)k = {a(w)k |w ∈ L} for every L ⊆ Σ∗

k . Then the

concatenation of a language a(ij0
∗)k with a language a(i

′j′0∗)k is in most cases
unambiguous, and none of the concatenations actually used in the grammar are
among the few exceptions to this rule.

Lemma 1. Let k � 2, and consider any two different languages of the form
K = a(ij0

∗)k and L = a(i
′j′0∗)k , with i, i′ ∈ Σk \ {0} and j, j′ ∈ Σk, except

those with i = j = i′ and j′ = 0, or vice versa. Then the concatenation KL is
unambiguous.

282 A. Jeż and A. Okhotin

Using concatenations of this form, Example 2 can be generalized to construct
unambiguous grammars for the languages Lk = {akn | n � 1}, with k � 9.

Lemma 2. For every k � 9, the following conjunctive grammar with the set of
nonterminals N = {Ai,j | i, j ∈ {0, . . . , k − 1}, i �= 0} and with the start symbol

A1,0 is unambiguous and generates the language a(10
+)k :

A1,j → Ak−1,0Aj+1,0 &Ak−2,0Aj+2,0 | a(1j)k , for j < k
3 + 2

Ai,j → Ai−1,k−1Aj+1,0 &Ai−1,k−2Aj+2,0 | a(ij)k , for i � 2, j < k
3 + 2

Ai,j → Ai,j−1A1,0 &Ai,j−2A2,0 | a(ij)k , for i � 1, j � k
3 + 2

In particular, each nonterminal Ai,j generates the language a(ij0
∗)k .

4 Simulating Trellis Automata

This section extends the known general method for constructing conjunctive
grammars over a unary alphabet [8] to the case of unambiguous conjunctive
grammars. The overall idea is to simulate a one-way real-time cellular automa-
ton, also known as a trellis automaton, operating on base-k representations of
numbers, by a grammar generating unary representations of the same numbers.

A trellis automaton [4,16], defined as a quintuple (Σ,Q, I, δ, F), processes an

input string of length n � 1 using a uniform array of n(n+1)
2 nodes, as presented

in the figure below. Each node computes a value from a fixed finite set Q. The
nodes in the bottom row obtain their values directly from the input symbols using
a function I : Σ → Q. The rest of the nodes compute the function δ : Q×Q→ Q
of the values in their predecessors. The string is accepted if and only if the value
computed by the topmost node belongs to the set of accepting states F ⊆ Q.

Definition 5. A trellis automaton is a quintuple M = (Σ,Q, I, δ, F), in which:

– Σ is the input alphabet,
– Q is a finite non-empty set of states,
– I : Σ → Q is a function that sets the initial states,
– δ : Q×Q → Q is the transition function, and
– F ⊆ Q is the set of final states.

The state computed on a string w ∈ Σ+ is denoted
by Δ(w) and defined inductively as Δ(a) = I(a) and
Δ(awb) = δ(Δ(aw), Δ(wb)), for all a, b ∈ Σ, w ∈ Σ∗.

Define LM (q) = {w |Δ(w) = q} and L(M) = {w |Δ(w) ∈ F}.

Trellis automata are known to be equivalent to linear conjunctive grammars [16],
and the family of languages they recognize shall be called linear conjunctive
languages.

Consider a trellis automaton with the input alphabet Σk = {0, 1, . . . , k − 1}
of base-k digits, and assume that it does not accept any strings beginning with

Unambiguous Conjunctive Grammars over a One-Letter Alphabet 283

0. Then, every string of digits accepted by the automaton defines a certain non-
negative integer, and thus the automaton defines a set of numbers. The goal is
to represent the same set of numbers in unary notation by a conjunctive gram-
mar. For conjunctive grammars of the general form, without the unambiguity
condition, this is always possible.

Theorem A (Jeż, Okhotin [8]). For every k � 2 and for every trellis automa-
ton M over the alphabet Σk, with L(M) ∩ 0Σ∗

k = ∅, there exists a conjunctive
grammar generating the language {a(w)k | w ∈ L(M)}.

The grammar simulates the computation of a trellis automaton M =
(Σk, Q, I, δ, F) using the nonterminal symbols Cq with q ∈ Q, which gener-

ate the languages L(Cq) = {a(1w10�)k |Δ(w) = q, � � 0}, so that each string of
digits w ∈ Σ∗

k is represented in unary notation by the strings a(1w1)k , a(1w10)k ,
a(1w100)k , etc. The definition is inductive on the length of w. As the basis of

induction, each Cq should generate all strings of the form a(1j10
�)k with I(j) = q

and � � 0; this is a language similar to the one in Lemma 2.

The grammar implements a step of induction as follows. A string a(1w10�)k

with |w| � 2 should be generated by Cq if and only if Δ(w) = q, which, according
to the definition of a trellis automaton, holds if and only if w = iuj for some
i, j ∈ Ω and u ∈ Ω∗ with q1 = Δ(iu), q2 = Δ(uj) and q = δ(q1, q2). Then, by

the induction hypothesis, the nonterminal Cq1 generates the string a(1iu10
�+1)k ,

which is one of the unary encodings of iu, while Cq2 generates a(1uj10
�)k , an

encoding of uj. The rules of the grammar perform a series of concatenations and

intersections on these strings, and ultimately generate a(1w10�)k by Cq.
However, the grammar produced by Theorem A is always ambiguous, and

there is no general way of expressing the same languages L(Cq) ⊆ a∗ unambigu-
ously, for the following reason. The construction of unambiguous grammars, as
in Lemma 2, relies on concatenating exponentially growing languages, and the
sparsity of such languages in some cases allows their concatenation to be unam-
biguous. But the languages L(Cq), as defined above, may be denser than that,
and their concatenation with any infinite language is always ambiguous.

Thus, the first step towards simulating a trellis automaton by an unambiguous
conjunctive grammar is to define a unary encoding of the languages LM (q) that
always grows exponentially, regardless of the form of LM (q). This is done by
choosing the base k to be larger than the cardinality of the input alphabet Ω of
M , and assuming that Ω is a subset of the set of all digits.

Theorem 1. For every trellis automaton M over a d-letter input alphabet Ω,
let c � max(5, d+2) and assume that Ω = {c, . . . , c+d−1}. Then, for every base
k � 2c + 2d − 3, there exists an unambiguous conjunctive grammar generating
the language {a(1w1)k | w ∈ L(M)}.

If a base k � 11 is fixed, then, for instance, one can use the values c = k+9
4 !

and d = k−1
4 !, which induce the alphabet Ω = { k+9

4 !, . . . , k+1
2 !}. If the goal

284 A. Jeż and A. Okhotin

is to have an alphabet Ω with d = 2 letters, then the smallest values of c and k
are c = 5 and k = 11, so that Ω = {5, 6}.

The construction developed in this paper to prove Theorem 1 is generally
analogous to the one used in Theorem A; in particular, it adopts a very simi-
lar unary representation of strings over Ω. Let M = (Ω,Q, I, δ, F) be a trellis
automaton. For every state q ∈ Q and for all s, t ∈ {1, 2}, the grammar has
a nonterminal Cs,t

q , which defines the language

L(Cs,t
q) = {a(swt0�)k | � � 0, Δ(w) = q}.

In this construction, the digits s and t surrounding the string w may be 1 or 2,
whereas Theorem A uses only 1 for that purpose; this is an insignificant technical
detail. The crucial difference with Theorem A is that each string w processed by
M uses only digits from a small subset of Σk, and hence each Cs,t

q generates an
exponentially growing unary language.

Besides the nonterminals Cs,t
q , the constructed grammar includes all nonter-

minals Ai,j with i, j ∈ Σk and i �= 0, as defined in Lemma 1, which generate the
languages L(Ai,j) = a(ij0

∗)k .

The strings a(swt0�)k with Δ(w) = q are generated by the corresponding
nonterminals Cs,t

q inductively on the length of w. The basis of induction is that

a(sjt0
�)k with j ∈ Ω and � � 0 must be in L(Cs,t

q), where I(j) = q. This means

generating the language a(sjt0
∗)k , which is achieved by the rules

Cs,t
q → A1,tAs,j−1 &A2,tAs,j−2,

defined for all s, t ∈ {1, 2}, j ∈ Ω, and q = I(j), similar to those in Example 2.

A string a(swt0�)k with |w| � 2 is generated by Cs,t
q with q = Δ(w) as follows.

Let w = iuj, where i, j ∈ Ω and u ∈ Ω∗. In the trellis automaton, Δ(iu) = q1,

Δ(uj) = q2 and δ(q1, q2) = q. In the grammar, the four strings a(s
′ujt0�)k ∈

L(Cs′,t
q1) and a(siut

′0�+1)k ∈ L(Cs,t′
q2), with s′, t′ ∈ {1, 2}, are already generated,

and the goal is to produce the string a(siujt0
�)k by Cs,t

q . This is done by the rule

Cs,t
q → C1,t

q2 As,i−1 &C2,t
q2 As,i−2 &Cs,1

q1 Aj−1,t &Cs,2
q1 Aj−2,t

(with such rules defined for all s, t ∈ {1, 2}, i, j ∈ Ω, q1, q2 ∈ Q and q = δ(q1, q2)),
which represents the desired string as the following four concatenations:

a(siujt0
�)k = a(1ujt0

�)ka(s(i−1)0|ujt|+�)k = a(2ujt0
�)ka(s(i−2)0|ujt|+�)k =

= a(siu10
�+1)ka((j−1)t0�)k = a(siu20

�+1)ka((j−2)t0�)k .

The first two conjuncts of this rule are concerned with transforming unary en-
codings of the string uj to unary encodings of iuj. More precisely, one has to

transform the two strings a(1ujt0
�)k and a(2ujt0

�)k with Δ(uj) = q2, which are

generated by C1,t
q2 and by C2,t

q2 , respectively, into the string a(siujt0
�)k . This is

done by concatenating the string a(1ujt0
�)k to a(s(i−1)0|ujt|+�)k ∈ L(As,i−1), and

Unambiguous Conjunctive Grammars over a One-Letter Alphabet 285

similarly, a(2ujs
′0�)k is concatenated to a(s(i−2)0|ujt|+�)k ∈ L(As,i−2). It can be

proved that the intersection of the first two conjuncts defines the set of all strings

a(siujt0
�)k with Δ(uj) = q2 and with arbitrary i ∈ Ω.

The last two conjuncts of the rule similarly transform any two strings

a(siu10
�+1)k and a(siu20

�+1)k into the string a(siujt0
�)k . One can prove that, for

each j ∈ Ω, the conjunction Cs,1
q1 Aj−1,t &Cs,2

q1 Aj−2,t defines the language of all

a(siujt0
�)k with Δ(iu) = q1. Once these four conjuncts are intersected in a single

rule, it accordingly generates all a(siujt0
�)k with Δ(iuj) = q, as desired.

Finally, it remains to introduce a new start symbol S, which generates the
union of all C1,1

q with q ∈ F , and intersects it with the set a(ak)∗. This is exactly

the language {a(1w1)k | w ∈ L(M)}.

5 A Density-Preserving Encoding of Trellis Automata

For a language L ⊆ a∗, consider the number

d(L) = lim
n→∞

|L ∩ {ε, a, a2, . . . , an−1}|
n

,

called the density of L [21]. This limit, if it exists, always lies within the bounds
0 � d(L) � 1. Let a language be called sparse, if d(L) = 0, and dense, if d(L) = 1.

All unambiguous conjunctive grammars constructed so far generate sparse
unary languages (actually, exponentially-growing languages). Using only sparse
languages in the constructions is, to some extent, a necessity, because languages
are expressed in the grammar by concatenating them to each other, and a con-
catenation of a non-sparse unary language with any infinite language is bound to
be ambiguous [11]. Of course, this does not mean that non-sparse sets cannot be
represented at all—for instance, it is easy to modify the grammar in Example 2
to represent the language {a4n |n � 0}∪a(aa)∗ of density 1

2—but only that, once
represented, non-sparse sets cannot be non-trivially concatenated to anything.

This section develops a method of simulating the computation of a trellis
automaton in an unambiguous conjunctive grammar generating a unary language
of density 1. This result parallels that of Theorem 1, which simulates a trellis
automaton in a grammar generating a unary language of density 0. The proof
of the new result is actually done on top of the constructions from Theorem 1.

The general idea of the new construction is based on the following represen-
tation of a∗ as an unambiguous concatenation, due to Enflo et al. [5]:

Example 3. Let k � 2 be any power of two, and consider the languages L1, L2,
. . . , L k

2
, defined by Li = a(i{i,0}

∗)k ∪ {ε}. Then L1L2L4L8 . . . L k
2

= a∗, and

this concatenation is unambiguous; to see this, note that every integer n � 0 is
uniquely representable as n = n1+n2+n4+ . . .+n k

2
with ni ∈ (i{0, i}∗)k ∪{0}.

Let one of the languages Li in this concatenation be replaced with a language
L′
i ⊆ Li, which encodes the computation of a trellis automaton operating on the

two-letter input alphabet {0, i}, similarly to the encoding in Theorem 1. Then

286 A. Jeż and A. Okhotin

the concatenation L = L1 . . . Li−1L
′
iLi+1 . . . Lk/2 is still unambiguous, and the

density of the language L is controlled by the given linear conjunctive language,
and thus can be set to any desired value. This construction, with i = 2, leads to
representing the following languages by unambiguous conjunctive grammars.

Theorem 2. Let L be a linear conjunctive language over a two-letter alphabet
Γ = {e, f}, which does not contain any strings beginning with e. Let k � 16 be
any power of two and define a homomorphism h : Σ∗

k → Γ ∗ by h(4i) = h(4i+1) =
e and h(4i + 2) = h(4i + 3) = f for all i ∈ {0, . . . , k4 − 1}. Then the language

{a(w)k |h(w) ∈ e∗L} is generated by an unambiguous conjunctive grammar. Given
a trellis automaton recognizing L, this grammar can be effectively constructed.

In order to prove the theorem according to the above general idea, there are two
claims to be established. First, the necessary constants are representable.

Lemma 3. For all k � 16 and t ∈ {1, . . . , k2}, where k is a power of two, there

is an unambiguous conjunctive grammar generating the language a(t{0,t}
∗)k .

Then, a linear conjunctive language is encoded within a subset of L2 as follows.

Lemma 4. For every linear conjunctive language L ⊆ {0, 2}∗ \0{0, 2}∗ and for
every base k � 16 that is a power of two, there is an unambiguous conjunctive
grammar generating the language {a(w)k | w ∈ L}.

Consider the language L̂, obtained by renaming the digits in L: 0 to 5 and 2 to
7. If M is a trellis automaton recognizing L, then L̂ is recognized by a similar
automatonM ′. Applying Theorem 1 with c = 5 and d = 3 to this language yields
a grammar for the unary encoding a(1L(M ′)1)k . Next, this encoding is modified by
concatenating it with the constant language a((k−6)∗(k−1))k (for which a grammar
can be constructed), so that the digits 5 and 7 are shifted back to 0 and 2. Then
the result is intersected with the language a(2{0,2}

∗)k from Lemma 3, thus filtering
out all malformed sums and producing the language a(1L(M)0)k .

The full construction is obtained by applying the above transformations to
the languages L(0) = ({2}−1L{0}−1) \ {ε} and L(2) = ({2}−1L{2}−1) \ {ε}.

6 Decision Problems

Already for standard context-free grammars, many basic decision problems are
undecidable, such as testing whether two given grammars generate the same
language (the equivalence problem), or even testing whether a given grammar
generates the fixed language {a, b}∗. A few problems are known to be decid-
able: for instance, one can test in polynomial time whether a given context-free
grammar generates the empty set. In contrast, for conjunctive grammars, there
is a uniform undecidability result: for every language L0 generated by some con-
junctive grammar, testing whether a given conjunctive grammar generates L0 is
undecidable [8].

Unambiguous Conjunctive Grammars over a One-Letter Alphabet 287

Turning to unambiguous subclasses, the decidability status of the equiva-
lence problem for unambiguous context-free grammars is among the major un-
solved questions in formal language theory. On the other hand, as proved by
Semenov [22], testing whether a given unambiguous context-free grammar gen-
erates a given regular language is decidable: this remarkable proof proceeds by
reducing the decision problem to a statement of elementary analysis, and then
using Tarski’s algorithm to solve it.

This section establishes the undecidability of checking whether an unambigu-
ous conjunctive grammar generates a fixed language, for every fixed language.
The underlying idea is the same as in the previous results for ambiguous con-
junctive grammars [8]: the language of computation histories of a Turing ma-
chine (VALC) is represented by a trellis automaton, its alphabet is reinterpreted
as an alphabet of digits, so that each computation history is associated to a
number, and then the unary notations of these numbers are represented by a
conjunctive grammar [8]. However, Theorems 1–2 proved in this paper for the
unambiguous case are more restricted than the known constructions of ambigu-
ous conjunctive grammars [8], and the same undecidability methods require a
careful re-implementation.

Theorem 3. For every alphabet Σ and for every language L0 ⊆ Σ∗ generated
by an unambiguous conjunctive grammar, it is undecidable whether a given un-
ambiguous conjunctive grammar generates L0.

The proof proceeds by first establishing the theorem in two special cases, and
then inferring the general case out of them. For L0 = ∅ (the emptiness problem),
the undecidability is proved by encoding the trellis automaton for VALC using
Theorem 1. For L0 = a∗, the same automaton can be encoded using Theorem 2.
Finally, the problem of equality to ∅ is reduced to the equality problem for any
finite L0, while equality to a∗ reduces to equality to any infinite L0.

7 Conclusion

The expressive power of unambiguous conjunctive grammars over a unary alpha-
bet has been developed up to the point of simulating a cellular automaton in a
“sparse” unary language (Theorem 1), and in a “dense” unary language (Theo-
rem 2). Though these are rather restricted representations, as compared to those
constructed earlier for ambiguous conjunctive grammars over the unary alpha-
bet [8], they were sufficient to establish uniform undecidability results for the
problem of testing equivalence to a fixed language (Theorem 3). The results of
this paper have already been used to investigate the properties of unambiguous
conjunctive grammars with two nonterminal symbols [11].

The main research problem for conjunctive grammars, that of finding any non-
representable languages, remains open. Though, at the first glance, it seemed
that there cannot be any unambiguous conjunctive grammars for unary lan-
guages of high density, Theorems 1–2 show that languages of arbitrary density
can be represented. Then, what kind of properties of unary languages could rule
out their representation by unambiguous conjunctive grammars?

288 A. Jeż and A. Okhotin

References

1. Aizikowitz, T., Kaminski, M.: LR(0) conjunctive grammars and deterministic syn-
chronized alternating pushdown automata. In: Kulikov, A., Vereshchagin, N. (eds.)
CSR 2011. LNCS, vol. 6651, pp. 345–358. Springer, Heidelberg (2011)

2. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, General-
izations. Cambridge University Press (2003)

3. Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown au-
tomata. In: Rozenberg, Salomaa (eds.) Handbook of Formal Languages, vol. 1,
pp. 111–174. Springer (1997)

4. Culik II, K., Gruska, J., Salomaa, A.: Systolic trellis automata, I and II. Interna-
tional Journal of Computer Mathematics 15, 16, 195–212, 3–22 (1984)

5. Enflo, P., Granville, A., Shallit, J., Yu, S.: On sparse languages L such that LL =
Σ∗. Discrete Applied Mathematics 52, 275–285 (1994)

6. Ibarra, O.H., Kim, S.M.: Characterizations and computational complexity of sys-
tolic trellis automata. Theoretical Computer Science 29, 123–153 (1984)

7. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Inter-
national Journal of Foundations of Computer Science 19(3), 597–615 (2008)

8. Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability
and unbounded growth. Theory of Computing Systems 46(1), 27–58 (2010)

9. Jeż, A., Okhotin, A.: Complexity of equations over sets of natural numbers. Theory
of Computing Systems 48(2), 319–342 (2011)

10. Jeż, A., Okhotin, A.: On the computational completeness of equations over sets of
natural numbers. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 63–74. Springer, Heidelberg (2008)

11. Jeż, A., Okhotin, A.: On the number of nonterminal symbols in unambiguous
conjunctive grammars. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012.
LNCS, vol. 7386, pp. 183–195. Springer, Heidelberg (2012)

12. Kountouriotis, V., Nomikos, C., Rondogiannis, P.: Well-founded semantics for
Boolean grammars. Information and Computation 207(9), 945–967 (2009)

13. Kunc,M.:What dowe knowabout language equations? In:Harju, T., Karhumäki, J.,
Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 23–27. Springer, Heidelberg (2007)

14. McKenzie, P., Wagner, K.W.: The complexity of membership problems for circuits
over sets of natural numbers. Computational Complexity 16, 211–244 (2007)

15. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 4, 519–535 (2001)

16. Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata.
Informatique Théorique et Applications 38(1), 69–88 (2004)

17. Okhotin, A.: Unambiguous Boolean grammars. Information and Computation 206,
1234–1247 (2008)

18. Okhotin, A.: Decision problems for language equations. Journal of Computer and
System Sciences 76(3-4), 251–266 (2010)

19. Okhotin, A.: Fast parsing for Boolean grammars: a generalization of Valiant’s al-
gorithm. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224,
pp. 340–351. Springer, Heidelberg (2010)

20. Okhotin, A., Reitwießner, C.: Parsing Boolean grammars over a one-letter alphabet
using online convolution. Theoretical Computer Science 457, 149–157 (2012)

21. Okhotin, A., Rondogiannis, P.: On the expressive power of univariate equations
over sets of natural numbers. Information and Computation 212, 1–14 (2012)

22. Semenov, A.L.: Algorithmic problems for power series and for context-free gram-
mars. Doklady Akademii Nauk SSSR 212, 50–52 (1973)

23. Terrier, V.: On real-time one-way cellular array. Theoretical Computer Science 141,
331–335 (1995)

Alternative Automata Characterization

of Piecewise Testable Languages

Ondřej Kĺıma and Libor Polák�

Department of Mathematics and Statistics, Masaryk University
Kotlářská 2, 611 37 Brno, Czech Republic

{klima,polak}@math.muni.cz
http://www.math.muni.cz

Abstract. We present a transparent condition on a minimal automaton
which is equivalent to piecewise testability of the corresponding regu-
lar language. The condition simplifies the original Simon’s condition on
the minimal automaton in a different way than conditions of Stern and
Trahtman. Secondly, we prove that every piecewise testable language L
is k-piecewise testable for k equal to the depth of the minimal DFA of
L. This result improves all previously known estimates of such k.

Keywords: piecewise testable languages, acyclic automata, locally con-
fluent automata.

1 Introduction

A language L over a non-empty finite alphabet A is called piecewise testable if
it is a Boolean combination of languages of the form

A∗a1A
∗a2A

∗ . . . A∗aA
∗, where a1, . . . , a ∈ A, � ≥ 0 . (∗)

Simon’s celebrated theorem [9] states that a regular language L is piecewise
testable if and only if the syntactic monoid of L is J -trivial. There exist several
proofs of Simon’s result based on various methods from algebraic and combi-
natorial theory of regular languages, e.g. proofs due to Almeida [1], Straubing
and Thérien [11], Higgins [2], Kĺıma [4], Kĺıma and Polák [5]. For information
concerning the role of piecewise testable languages in the theory of star-free
languages we refer to Pin’s survey paper [6].

In the original paper [9] Simon gave also an alternative characterization of
piecewise testable languages by means of a condition for their minimal automata.
The proof is included in his PhD thesis [8]. Given a regular language L, with

� The authors were supported by the Institute for Theoretical Computer Science
(GAP202/12/G061), Czech Science Foundation. The second author also acknowl-
edges the support by ESF Project CZ.1.07/2.3.00/20.0051 Algebraic Methods in
Quantum Logic.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 289–300, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.math.muni.cz

290 O. Kĺıma and L. Polák

minimal automaton A, he considered, for an arbitrary subset B of the alphabet
A, the subautomaton AB of A, where only actions by letters from B are taken
into account. Then language L is piecewise testable if and only if A is acyclic and
for every B ⊆ A, distinct absorbing states in AB belong to distinct connected
components of the undirected version of AB. This characterization was used by
Stern [10] to develop a polynomial algorithm testing whether a regular language,
given by a minimal deterministic finite automaton, is piecewise testable. Stern’s
algorithm was improved by Trahtman [12], who lowered the time complexity
from O(n5) to O(n2), where n is the product of the number of letters of the
alphabet and the number of states in the minimal DFA for the language. The
idea of these algorithms is that Simon’s condition on the automaton does not
have to be tested for all subalphabets B, but just for those, which occur as a
set of all letters fixing a particular state. We could mention that the proofs of
correctness of these algorithms were based on the original Simon’s result [9].

In this paper we introduce a new condition on an acyclic automaton which is
equivalent to Simon’s condition. Using our approach we do not improve Traht-
man’s algorithm for piecewise testability, because we obtain again a quadratic
one. The main advantage is that we will be able to give a new proof which
does not use Simon’s original proof. Another advantage of this new condition is
that it can be formulated in a very transparent way, which could be useful for
handmade computations with piecewise testable languages. We call an acyclic
automaton A locally confluent, if for each state q and every pair of letters a, b
there is a word w over the alphabet {a, b} such that (q · a) ·w = (q · b) ·w. Then
an alternative statement to Simon’s result is the following theorem.

Theorem 1. A regular language is piecewise testable if and only if its minimal
automaton is acyclic and locally confluent.

In paper [5] the authors pointed out another aspect concerning piecewise testable
languages. Several proofs of Simon’s result implicitly contain a solution of the
following problem: for a given piecewise testable language L, find a number k,
such that L is a Boolean combination of languages of the form (∗), where � ≤ k,
the so-called k-piecewise testable language. Simon [9] proved that k could be
taken to be equal to 2n− 1 where n is the maximal length of a J -chain, i.e. the
maximal length of a chain of ideals, in the syntactic monoid of L (see the proof of
Corollary 1.7 in [7]). A similar estimate was also established in the first author’s
combinatorial proof of Simon’s result [4]: k could be taken as � + r − 2 where
� and r are the maximal lengths of chains of left and right ideals, respectively.
In [5] the authors gave an estimate using a new notion of biautomaton: a regular
language L is k-piecewise testable whenever its canonical biautomaton is acyclic
and has depth k. It was also proved that this estimate is never larger than the
mentioned characteristics 2n − 1 and � + r − 2 of the syntactic monoid of the
language.

Unfortunately, it is not known how the depth of the canonical biautomaton
is related to, or bounded by, the size of the minimal automaton, which is the
most common description of a regular language. In general, it is known that
the size of the canonical biautomaton can be exponential with respect to the

Alternative Automata Characterization of Piecewise Testable Languages 291

size of the minimal automaton [3]. Instead of clarifying the relationship between
minimal automata and canonical biautomata for piecewise testable languages, we
improve the estimate from [5]. We show an analogous statement, where the depth
of the minimal automaton is considered instead of the depth of the canonical
biautomaton. Of course, the first characteristic is smaller or equal to the second
one.

Theorem 2. Let L be a regular language whose minimal automaton is acyclic,
locally confluent and of the depth k. Then L is k-piecewise testable.

We should stress that our proof of this theorem does not use Simon’s results and
it is inspired by the ideas used in the proof of the corresponding result from [5].
It is also a key ingredient of the proof of Theorem 1.

The structure of the paper is as follows. Section 2 overviews notions used in this
contribution. The proof of Theorem 2 is contained in Section 3. In Section 4 we
show that both Simon’s characterizations of piecewise testable languages as well
as Theorem 1 follow from Theorem 2. Here we also give an algorithm for testing
the piecewise testability which is an alternative to that of Trahtman [12]. Finally,
in the last section, we exhibit that the depth of the canonical biautomaton
of a piecewise testable language can be arbitrarily larger than the depth of
the minimal automaton of the same language. Second example shows that the
opposite implication in Theorem 2 is quite far from being true.

2 Preliminaries

2.1 Piecewise Testable Languages

Let A∗ be the set of all words over a non-empty finite alphabet A. The empty
word is denoted by λ. For u, v ∈ A∗, we write u � v if u is a subword of v,
which means that u = a1 . . . an, where a1, . . . , an ∈ A, and there are words
v0, v1, . . . , vn ∈ A∗ such that v = v0a1v1 . . . anvn. For a word u = a1 . . . an,
a1, . . . , an ∈ A, we denote by Lu the language of all words which contain u as a
subword, i.e.

Lu = { v ∈ A∗ | u � v } = A∗a1A
∗ . . . A∗anA

∗ .

For such u, we denote by c(u) = {a1, . . . , an} the content of u, and by |u| = n
its length, and by ur = an . . . a1 the reverse of the word u. The language L over
an alphabet A is a subset of A∗ and we denote by Lc = A∗ \L the complement,
and by Lr = {ur | u ∈ L} the reverse of the language L.

Definition 1. Let k ≥ 0 be an integer. A language is k-piecewise testable if it is
a Boolean combination of languages of the form Lu where all u’s satisfy |u| ≤ k.
A regular language is piecewise testable if it is k-piecewise testable for some k.

292 O. Kĺıma and L. Polák

Let k ≥ 0 be an integer. For v ∈ A∗, we denote by

Subk(v) = { u ∈ A+ | u � v, |u| ≤ k }

the set of all subwords of v of length at most k. We define the equivalence
relation ∼k on A∗ by the rule: v ∼k w if and only if Subk(v) = Subk(w). Since
Subk(ua) = Subk(u) ∪ Subk−1(u) · a, the fact u ∼k v implies ua ∼k va and by a
dual argument also au ∼k av. Therefore ∼k is a congruence on the monoid A∗.

For a regular language L ⊆ A∗, we define the relation ∼L on A∗ as follows:
for u, v ∈ A∗, we have

u ∼L v if and only if (∀ p, q ∈ A∗) (puq ∈ L ⇐⇒ pvq ∈ L) .

The relation ∼L is a congruence on A∗ and it is called the syntactic congruence
of L. The corresponding quotient monoid A∗/∼L is called the syntactic monoid
of L, it is finite and it is isomorphic to the transformation monoid of the minimal
automaton of L.

An easy consequence of the definition of piecewise testable languages is the
following lemma. A proof can be found e.g. in [8], [4].

Lemma 1. A language L is k-piecewise testable if and only if ∼k ⊆ ∼L. More-
over, the last inclusion is equivalent to the fact that L is a union of ∼k-classes.

A finite monoid is J -trivial if its Green relation J is the diagonal relation on the
monoid. In this paper we use an alternative characterization of this property: a
finite monoid M is J -trivial if and only if there is an integer m ≥ 1 such that
for every a, b ∈ M , we have

(ba)m = (ab)m = b(ab)m .

Note that the previous equalities imply also equalities a(ab)m = (ab)m, (ab)ma =
(ab)m, (ab)mb = (ab)m and am+1 = am.

We recall the original formulation of Simon’s result.

Result 1 (Simon [9]). A regular language is piecewise testable if and only if
its syntactic monoid is J -trivial.

2.2 Automata for Piecewise Testable Languages

In this paper all considered automata are finite, deterministic and complete.
Thus an automaton over the alphabet A is a five-tuple A = (Q,A, ·, i, T) where

(i) Q is a nonempty set of states,
(ii) · : Q×A → Q, extended to · : Q×A∗ → Q by q ·λ = q, q ·(ua) = (q ·u) ·a,

where q ∈ Q, u ∈ A∗, a ∈ A,
(iii) i ∈ Q is the initial state, and T ⊆ Q is the set of terminal states.

The automaton A accepts u ∈ A∗ if i · u ∈ T and A recognizes the language
LA = { u ∈ A∗ | i · u ∈ T }. We say that a state q ∈ Q of the automaton A

Alternative Automata Characterization of Piecewise Testable Languages 293

is reachable if there is a word u ∈ A∗ such that q = i · u and q is absorbing if,
for every a ∈ A, we have q · a = q. For an arbitrary state p ∈ Q, we denote
Qp = { p · u | u ∈ A∗} and we put Ap = (Qp, A, · |Qp×A, p, T ∩Qp). Hence Ap is
an automaton with all states reachable.

A sequence (q0, q1, . . . , qn) of states is called a path in A if for each j ∈
{1, . . . , n} there is a ∈ A such that qj = qj−1 · a. A path (q0, q1, . . . , qn) is
simple if the states q0, . . . , qn are pairwise distinct and it is a cycle if n ≥ 2 and
qn = q0 �= q1. The automaton A is called acyclic if there is no cycle in A. Note
that “loops” are not cycles and for the acyclic automaton A and its state p, the
automaton Ap is also acyclic. Each simple path in an acyclic automaton with
all states reachable can be prolonged to a simple path starting at i. We define
the depth of an (acyclic) automaton A with all states reachable as the maximal
number n such that there is a simple path (i, q1, . . . , qn) in A.

The languages recognized by acyclic automata were characterized by Eilen-
berg, who proved that they are exactly languages which have R-trivial syntactic
monoids (see [7, Section 4.3]).

Let A = (Q,A, ·, i, T) be an automaton. For a subset B ⊆ A, we define the
automaton AB = (Q,B, · |Q×B , i, T). We say that a state q ∈ Q is B-absorbing if
q is an absorbing state in AB. We define the undirected graph G(AB) = (Q,EB)
where EB ⊆ Q×Q is given by:

EB = { (q, q · b) | q ∈ Q, b ∈ B } ∪ { (q · b, q) | q ∈ Q, b ∈ B } .

If we consider the reflexive-transitive closure of the relation EB on the set Q, we
obtain an equivalence relation which is denoted by ≈B. The partition Q/≈B is
the usual decomposition of an undirected graph on connected components.

Now we are ready to formulate Simon’s characterization of piecewise testable
languages by a condition on their minimal automata.

Result 2 (Simon [9]). Let L be a regular language and let A be its minimal
automaton. Then L is piecewise testable if and only if

(i) A is acyclic, and
(ii) for each B ⊆ A, if p ≈B q are B-absorbing states, then p = q.

3 Locally Confluent Automata and Proof of Theorem 2

We formulate new conditions on acyclic automata.

Definition 2. Let A = (Q,A, ·, i, T) be an automaton and B ⊆ A be a subal-
phabet. We say that A is B-confluent, if for each state q ∈ Q and every pair of
words u, v ∈ B∗, there is a word w ∈ B∗ such that (q · u) · w = (q · v) · w. We
say that A is confluent if it is B-confluent for every subalphabet B. We call an
acyclic automaton A locally confluent, if for each state q ∈ Q and every pair of
letters a, b ∈ A, there is a word w ∈ {a, b}∗ such that (q · a) · w = (q · b) · w.1

1 An alternative definition could ask for the existence of a pair of words w,w′ such
that (q · a) ·w = (q · b) ·w′. In this way one obtains an equivalent definition. It is not
shown here nor needed here.

294 O. Kĺıma and L. Polák

Now we present a complete proof of Theorem 2. We show a simple lemma first.

Lemma 2. Let � ≥ 1 and let u, v ∈ A∗ be such that Sub(u) = Sub(v). Let a
be a letter from c(u). Then there are uniquely determined words u′, u′′ and v′, v′′

such that u = u′au′′ and v = v′av′′ and a �∈ c(u′), a �∈ c(v′). Moreover, for u′′

and v′′, we have Sub−1(u
′′) = Sub−1(v

′′).

Proof. Note that the equality c(u) = c(v) follows from the assumption Sub(u) =
Sub(v). We consider the first occurrence of the letter a in u and in v. Thus we
have u = u′au′′ and v = v′av′′ satisfying a �∈ c(u′) and a �∈ c(v′). Now if
w ∈ Sub−1(u

′′), then aw ∈ Sub(u) = Sub(v) from which w ∈ Sub−1(v
′′)

follows. This means that Sub−1(u
′′) ⊆ Sub−1(v

′′) and the opposite inclusion
can be proved in the same way.
�

The next statement is crucial; namely when using Lemma 1, it yields immediately
Theorem 2.

Proposition 1. Let A = (Q,A, ·, i, T) be an acyclic and locally confluent au-
tomaton with all states reachable and with depth(A) = �. Then, for every u, v ∈
A∗ such that Sub(u) = Sub(v), we have u ∈ LA if and only if v ∈ LA.

Proof. We prove the statement by induction with respect to the depth of the
automaton.

For � = 0, there is nothing to prove, because the assumption depth(A) = 0
means that A is a trivial automaton, i.e. Q = {i}, and hence LA = A∗ or LA = ∅,
depending on the fact whether i ∈ T or not.

Assume for the remainder of the proof that � ≥ 1 and that the statement
holds for all �′ < �. And furthermore, assume that the statement is not true for
�. We will reach a contradiction by strengthening our assumptions. Let there be
a pair of words u, v ∈ A∗ such that

Sub(u) = Sub(v) and i · u ∈ T and i · v �∈ T .

In the state i, we read both words u and v, and we are interested in the positions
in the words, where we leave the initial state i. First assume that i · u = i ∈ T ,
i.e. we do not leave the state i. Recall that the assumption Sub(u) = Sub(v)
implies c(u) = c(v). Thus we have i · v = i ∈ T – a contradiction. From this
moment we may assume that i · u �= i and also i · v �= i.

So we really leave the state i and there are u′, u′′ ∈ A∗, a ∈ A such that

u = u′au′′ and for each x ∈ c(u′), we have i · x = i, and i · a �= i .

Similarly, let v′, v′′ ∈ A∗, b ∈ A be such that

v = v′bv′′ and for each x ∈ c(v′), we have i · x = i and i · b �= i .

Assume for a moment that a = b. We denote p = i · a = i · u′a = i · v′a and we
consider the automaton Ap. It is clear that the depth of Ap is at most � − 1.

Alternative Automata Characterization of Piecewise Testable Languages 295

By our assumptions i · u = p · u′′ ∈ T and i · v = p · v′′ �∈ T . By Lemma 2, we
have Sub−1(u

′′) = Sub−1(v
′′). Now we obtain a contradiction to the induction

assumption applied on the automaton Ap and the pair of words u′′ and v′′.
Therefore, we may assume that a �= b.

We will consider the first occurrence of b in u. When we read u in the au-
tomaton A, we move from the initial state only when we reach the letter a for
the first time. Therefore the first occurrence of b in u is after the first occurrence
of a in u. More formally,

u = u′au′′0bu
′′
1 where a �∈ c(u′) and b �∈ c(u′au′′0) .

and similarly, v = v′bv′′0av
′′
1 where b �∈ c(v′) and a �∈ c(v′bv′′0) . Now, by Lemma 2,

we have

Sub−1(u
′′
0bu

′′
1) = Sub−1(v

′′
1) ⊆ Sub−1(v

′′
0av

′′
1) = Sub−1(u

′′
1) ⊆ Sub−1(u

′′
0bu

′′
1) ,

and thus the previous inclusions hold, in fact, as the equalities. In particular,
Sub−1(u

′′
0bu

′′
1) = Sub−1(v

′′
0av

′′
1).

Now assume, for a moment, that i ·a = i · b = p. We have i ·u = p ·u′′0bu′′1 ∈ T
and i·v = p·v′′0av′′1 �∈ T . Again this is a contradiction to the induction assumption
applying to the automatonAp and the pair of words u′′0bu

′
1 and v

′′
0av

′′
1 . Altogether

we have that i · a �= i · b.
Now we show some consequences of the fact Sub−1(u

′′
1) = Sub−1(u

′′
0bu

′′
1) =

Sub−1(v
′′
1) = Sub−1(v

′′
0av

′′
1). First, since

Sub−1(v
′′
1) ⊆ Sub−1(av

′′
1) ⊆ Sub−1(v

′′
0av

′′
1) = Sub−1(v

′′
1) ,

we have Sub−1(av
′′
1) = Sub−1(v

′′
1). Similarly, we get Sub−1(bu

′′
1) = Sub−1(u

′′
1).

Let C ⊆ A∗ be a set of all words which are ∼−1-related to u′′1 . Then from the
previous observations, we have

u′′ = u′′0bu
′′
1 , bu

′′
1 , u

′′
1 , v

′′ = v′′0av
′′
1 , av

′′
1 , v

′′
1 ∈ C .

We claim that for an arbitrary word z ∈ C we have az, bz ∈ C. Indeed, since
∼−1 is a congruence, z ∼−1 v

′′
1 implies az ∼−1 av

′′
1 ∼−1 v

′′
1 , i.e. az ∈ C. And

in the same way we can deduce bz ∼−1 bu
′′
1 ∼−1 u

′′
1 ∈ C from z ∼−1 u

′′
1 . As a

consequence of this claim we obtain that

for each z ∈ C and w ∈ {a, b}∗, we have wz ∈ C . (†)

We can return to the proof. Our considerations are illustrated in Figure 1. Let
p = i · a and q = i · b. By the local confluency, there is a word w ∈ {a, b}∗
such that p · w = q · w. By (†), we have Sub−1(wu

′′) = Sub−1(u
′′). Using the

induction assumption for the automaton Ap which has depth at most � − 1,
we get p · wu′′ ∈ T . In the same way, if we use the induction assumption on
automaton Aq, we get q · wv′′ �∈ T . Now we consider the state r = p · w = q · w
and we have r · u′′ ∈ T , r · v′′ �∈ T and Sub−1(u

′′) = Sub−1(v
′′). This is a

contradiction with the induction assumption for the automaton Ar of the depth
at most �− 1 and the pair of words u′′ and v′′.

We have finished the proof of Proposition 1.
�

296 O. Kĺıma and L. Polák

i

p q

∈ T r �∈ T

∈ T �∈ T

a

u′ v′

b

u′′
w

w
v′′

u′′
v′′

Fig. 1. One possible computation of words u and v in the minimal automaton

4 Consequences of Theorem 2

The following statement implies both Theorem 1 and Result 1.The presence of
(iii) is justified by its usage in Proposition 2.

Corollary 1. For a regular language L, the following conditions are equivalent.
(i) The language L is piecewise testable.
(ii) The syntactic monoid of L is J -trivial.
(iii) The minimal automaton of L is acyclic and confluent.
(iv) The minimal automaton of L is acyclic and locally confluent.

Proof. “(i) ⇒ (ii)” The following argument comes from the original Simon’s
paper [9, Lemma 7]. If L is k-piecewise testable then ∼k ⊆ ∼L by Lemma 1.
For arbitrary words u, v ∈ A∗, one can see that (vu)k ∼k (uv)k ∼k v(uv)

k and
therefore (vu)k ∼L (uv)k ∼L v(uv)k. This implies (ba)k = (ab)k = b(ab)k, for
a, b being arbitrary elements from the syntactic monoid of L.

“(ii) ⇒ (iii)” Let (q0, q1, . . . , qn) be a cycle in the minimal automaton of L,
i.e. n ≥ 2, qn = q0 �= q1 and for each j ∈ {1, . . . , n} we have aj ∈ A such
that qj = qj−1 · aj . Denote u = a2 . . . an. Since the syntactic monoid of L is J -
trivial, we have (a1u)

ma1 ∼L (a1u)
m for some integer m. The syntactic monoid

is the transformation monoid of the minimal automaton and hence we obtain
q0 ·(a1u)ma1 = q0 ·(a1u)m. From q0 ·a1u = q0 we get q1 = q0 ·a1 = q0 ·(a1u)ma1 =
q0 · (a1u)m = q0, which is a contradiction. Hence the minimal automaton of L is
acyclic.

In a similar manner, we show that this minimal automaton is confluent, let q
be a state and u, v ∈ B∗ be words. We need to find a word w ∈ B∗ such that
(q · u) · w = (q · v) · w. Again from the J -triviality we have u(uv)m ∼L v(uv)m

for some integer m. Thus we can take w = (uv)m and we obtain the required
equality (q · u) · w = (q · v) · w.

“(iii) ⇒ (iv)” It is trivial.

“(iv) ⇒ (i)” It follows from Theorem 2.
�

Alternative Automata Characterization of Piecewise Testable Languages 297

Result 2 is also a consequence of Theorem 2 when one applies the following.

Proposition 2. Let A = (Q,A, ·, i, T) be an acyclic minimal automaton of a
language L ⊆ A∗ with m states. Then the following conditions are equivalent.

(i) For each B ⊆ A, if p ≈B q are B-absorbing states, then p = q.
(ii) For every q ∈ Q and every a, b ∈ A, we have q · a(ab)m = q · b(ab)m.
(iii) The automaton A is locally confluent.
(iv) The automaton A is confluent.

Proof. “(i) ⇒ (ii)” Let q be an arbitrary state and denote B = {a, b}. For each
i = 0, . . . ,m, we consider qi = q · a(ab)i. Since A has m states, the sequence
q0, q1, . . . , qm contains some state at least twice. Since A is acyclic we know that
there is i ∈ {0, . . . ,m} such that qi · ab = qi. Again, from acyclicity of A we get,
that this qi is B-absorbing. Hence q · a(ab)m = qm = qi is B-absorbing. We can
use the same argument and get that the state q ·b(ab)m is also B-absorbing. Now
q · a(ab)m ≈B q ≈B q · b(ab)m and applying condition (i), we get the statement
q · a(ab)m = q · b(ab)m.

“(ii) ⇒ (iii)” Put w = (ab)m.

“(iii) ⇒ (iv)” By Corollary 1.

“(iv) ⇒ (i)” Let p, q be B-absorbing states. From p ≈B q we can deduce that
there is a sequence of states p = r0, r1, . . . , rn = q such that, for each i = 1, . . . , n
we have (ri−1, ri) ∈ EB. We claim that, for each i = 0, . . . , n, there is a word wi

such that ri ·wi = p. We prove this by an induction with respect to i. For i = 0,
we can take an arbitrary word w0 from B∗. Let us assume that ri−1 · wi−1 = p.
Since (ri−1, ri) ∈ EB, there are two possibilities: If there is b ∈ B such that
ri ·b = ri−1 then we can put wi = bwi−1 and we have ri ·bwi−1 = ri−1 ·wi−1 = p.
If there is b ∈ B such that ri−1 · b = ri then, from B-confluency, we get the
existence of a word wi ∈ B∗ such that p ·wi = ri ·wi. Since p is B-absorbing we
obtain ri · wi = p · wi = p and we have proved the claim. For i = n, we get that
there is a word wn ∈ B∗ such that q · wn = p. Since q is B-absorbing, we have
p = q.
�
The condition (ii) of Proposition 2 can be used when deciding the piecewise
testability of a given language.

Proposition 3. Let L be an arbitrary regular language with the minimal au-
tomaton A = (Q,A, ·, i, T). Let |Q| = m and |A| = n. Then one can decide the
piecewise testability in time O(m2n2).

Proof. Suppose that A is presented by a m/n-type matrix with rows indexed by
elements of Q and columns indexed by elements of A having q ·a at the position
(q, a). We can transform the matrix into the adjacency-list representation (with
no repetitions in lists) of the corresponding graph in time O(mn). The graph
is acyclic if and only if there in no nontrivial back edge (loops are “trivial”) by
running Depth First Search on this graph – it takes also O(mn).

Then we calculate, for each q ∈ Q and each a, b ∈ A, the elements q, q · a, q ·
a2, . . . , q · a(ab)m and q, q · b, q · ba, . . . , q · b(ab)m and we compare q · a(ab)m and
q · b(ab)m. This takes time O(m2n2).
�

298 O. Kĺıma and L. Polák

5 Examples

Theorem 2 determines, for a given piecewise testable language L, relatively small
number k, such that L is k-piecewise testable. Since the minimal automaton of
L is a part of the canonical biautomaton of L, this k, the depth of the minimal
automaton, is less or equal to the depth of the canonical biautomaton. Therefore
Theorem 2 improves the estimate from paper [5] and consequently, overcome all
estimates recalled in Section 1. Now, to demonstrate that the new estimate
is indeed better than other known ones, we show that there are examples of
languages where the difference between the two considered depths could be an
arbitrarily large. For that propose we modify the idea used in [5, Example 6].

Example 1. For m ≥ 1, we denote A = {a1, . . . , am}, B = {b1, . . . , bm}. Let K
be the language of all words which contain exactly one occurrence of a letter
from the subalphabet A and contain some ajbj as a subword. More formally, K
is a 2-piecewise testable language given by the following expression

K =

m⋂
j,j′=1

Lc
ajaj′ ∩

m⋃
j=1

Lajbj .

The minimal automaton of K is described on Figure 2. Here, for each j =
1, . . . ,m, we denote Bj = B \ {bj}. It is easy to see that this automaton has
m+ 3 states and has depth 3.

Note that the minimal automaton of the reverse language K r is again a part
of the canonical biautomaton of K. Of course, K r is again 2-piecewise testable.
To construct the minimal automaton of the reverse K r of the language K, we
must remember all possible letters from the subalphabet B which are contained
in the word before a unique occurrence of some letter a ∈ A is read. Therefore
the minimal automaton of K r is an automaton A = (Q,A ∪ B, ·, i, {τ}), where
Q = P(B) ∪ {τ,⊥}, P(B) is a system of all subsets of the set B, i = ∅ ∈ P(B)
and the transition action · is given by the following rules. For X ∈ P(B) and
j ∈ {1, . . . ,m} we have: if bj ∈ X then X · aj = τ and X · bj = X ; and if bj �∈ X
then X · aj =⊥ and X · bj = X ∪ {bj}. Moreover, for each j ∈ {1, . . . ,m} we
have τ · aj =⊥, τ · bj = τ and ⊥ · aj =⊥ · bj =⊥. It is not hard to check
that A is the minimal automaton of K r, which has 2m +2 states and has depth
m + 2. Indeed, (∅, {b1}, {b1, b2}, . . . , B, τ,⊥) realizes the longest simple path in
A. Thus the depth of the canonical biautomaton of the language K is at least
m+ 2. (One can show that it is m+ 3.)

One can ask whether a depth of a minimal automaton can be used for a charac-
terization of k-piecewise testable languages. In particular, whether the opposite
implication of Theorem 2 can be true. The next example demonstrates that such
a statement is not valid because the depth of the minimal automaton could be
quite far from the minimal k such that a given piecewise testable language is
k-piecewise testable. The example is a modification of Example 7 from paper [5].

Alternative Automata Characterization of Piecewise Testable Languages 299

a1

a2

am

b1

b2

bm

A

A

A

A

B1

B

Bm

B2

A,BB

...
...

...

...

Fig. 2. The minimal automaton of the language K

Example 2. Let A = {a, b} and � > 1 be an integer. We consider the language
L = {u} consisting of a single word u = (a2b2). The minimal automaton of L
has the depth equal to the length of the word u, i.e. 4�2. On the other hand, we
claim that the language L is (4�− 1)-piecewise testable.

First, we see that r = (ab) is a subword of u, and s = (ab)a and t =
b(ab) are not subwords of u. Furthermore, for each i = 1, . . . , �, we denote
ui = (ab)i−1a2(ba)−i which is a subword of u and ui = (ab)i−1a2+1(ba)−i

which is not a subword of u. Similarly, we denote vi = (ba)i−1b2(ab)−i � u, and
vi = (ba)i−1b2+1(ab)−i �� u. Now one can check that

L = Lr ∩ Lc
s ∩ Lc

t ∩
⋂

i=1

(
Lui ∩ Lc

ui
∩ Lvi ∩ Lc

vi

)
.

All used words r, s, t, u1, u1, . . . , v, v have length at most 4�− 1 and the claim
follows. Note that L is not (4�− 2)-piecewise testable, because au ∼4−2 u. The
proof of this fact is a bit technical, but one can use Lemma 3 from [9] and the
following factorization of the word u:

u = (a) · (a) · · · · (a) · (b2a) · (ab) · (ba) · · · · · (ba) · (ab2) .

Acknowledgment. The authors would like to express their gratitude the anony-
mous referees whose suggestions considerable improved the transparency of this
presentation.

300 O. Kĺıma and L. Polák

References

1. Almeida, J.: Implicit operations on finite J -trivial semigroups and a conjecture of
I. Simon. J. Pure Appl. Algebra 69, 205–218 (1990)

2. Higgins, P.: A proof of Simon’s theorem on piecewise testable languages. Theoret.
Comput. Sci. 178, 257–264 (1997)

3. Jirásková, G., Kĺıma, O.: Descriptional complexity of biautomata. In: Kutrib, M.,
Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 196–208. Springer,
Heidelberg (2012)

4. Kĺıma, O.: Piecewise testable languages via combinatorics on words. Discrete Math-
ematics 311, 2124–2127 (2011)

5. Kĺıma, O., Polák, L.: Biautomata for k-piecewise testable languages. In: Yen, H.-C.,
Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 344–355. Springer, Heidelberg
(2012)

6. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, ch. 10. Springer (1997)

7. Pin, J.-E.: Varieties of Formal Languages. North Oxford Academic, Plenum (1986)
8. Simon, I.: Hierarchies of events of dot-depth one. Ph.D. thesis. U. Waterloo (1972),

http://maveric.uwaterloo.ca/~brzozo/phd.html

9. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) ICALP 1975. LNCS,
vol. 33, pp. 214–222. Springer, Heidelberg (1975)

10. Stern, J.: Complexity of some problems from the theory of automata. Information
and Control 66, 163–176 (1985)

11. Straubing, H., Thérien, D.: Partially ordered finite monoids and a theorem of
I. Simon. J. Algebra 119, 393–399 (1988)

12. Trahtman, A.N.: Piecewise and local threshold testability of DFA. In: Freivalds,
R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 347–358. Springer, Heidelberg (2001)

http://maveric.uwaterloo.ca/~brzozo/phd.html

Finite Automata with Advice Tapes

Uğur Küçük1, A.C. Cem Say1, and Abuzer Yakaryılmaz2,�

1 Boğaziçi University, Istanbul, Turkey
{ugur.kucuk,say}@boun.edu.tr

2 University of Latvia, R̄ıga, Latvia
abuzer@lu.lv

Abstract. We define a model of advised computation by finite automata
where the advice is provided on a separate tape. We consider several
variants of the model where the advice is deterministic or randomized,
the input tape head is allowed real-time, one-way, or two-way access,
and the automaton is classical or quantum. We prove several separation
results among these variants, and establish the relationships between
this model and the previously studied ways of providing advice to finite
automata.

Keywords: advised computation, finite automata, random advice.

1 Introduction

Advised computation is based on the idea of providing external trusted assis-
tance, depending only on the length of the input, to a computational device in
order to extend its capability for solving certain problems [1]. Work on advised
finite automaton models started with [2], where the advice string is prefixed to
the input tape, and continued with a sequence of papers starting with [3], where
the automaton reads the advice in parallel with the input from a separate track.

In this paper, we propose a new architecture for advised finite-state computa-
tion which enables the automata to use the advice more flexibly than the setups
mentioned above. The idea is simply to let the machine use a separate one-way
tape for the advice, thereby enabling it to pause on the input tape while pro-
cessing the advice, or vice versa. (Examples of finite-state machines with such a
separate tape for untrusted advice can be seen in [4].) Our model differs from an
alternative proposal of Freivalds for advised finite-state automata [5] in the num-
ber of allowed advice tapes, and the way in which the advice can be accessed.
We consider many variants of our machines, where the advised automaton is
classical or quantum, the tapes can be accessed in various alternative modes,
and the advice is deterministic or randomized. The power of these variants are
compared among themselves, and also with the corresponding instances of the
alternative models in the literature.

� Yakaryılmaz was partially supported by FP7 FET-Open project QCS.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 301–312, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

302 U. Küçük, A.C.C. Say, and A. Yakaryılmaz

2 Previous Work

Finite automata that take advice were first examined by Damm and Holzer [2].
In their model, the advice string, which depends only on the length of the input,
is placed on the input tape so that it precedes the original input. We call such
a machine a finite automaton with advice prefix. The automaton simply reads
the advice first, and then goes on to scan the input. Damm and Holzer stud-
ied REG/const, which is the class of languages that can be recognized by real-
time deterministic finite automata that use constant-length advice, and showed
that letting the advice string’s length to be an increasing function of the in-
put string’s length, say, a polynomial, does not enlarge the class of languages
recognized by such automata within this setup. They also used Kolmogorov com-
plexity arguments to prove that every additional bit of advice extends the class
of languages that can be recognized by finite automata in this model, that is,
REG/(k − 1) � REG/k, for all k ≥ 1.

Another model of advised finite automata was examined by Tadaki et al. in
[3], and later by T. Yamakami in [6,7,8,9]. This setup enables the automata to
process the advice in parallel with the input, by simply placing the advice in
a separate track of the input tape. In this manner, an advice string of length
n can be provided, and meaningfully utilized, for inputs of length n. This en-
hances the language recognition power, as can be seen by considering the rela-
tive ease of designing such a finite automaton with advice track for the language
{anbn| n ∈ N}, which can not be recognized by any finite automaton with advice
prefix. Yamakami studied variants of this model with probabilistic and quantum
automata, and randomized advice [7,9], and provided characterizations of the
related classes of languages. Note that the track structure in this model both
limits the length of the advice by the length of the input, and forces the advice
to be scanned synchronously with the input.

R. Freivalds formulates and studies yet another model of advised finite au-
tomata in [5,10]. Freivalds’ model incorporates one or more separate tapes for the
advice to be read from. Both the input and the advice tapes have two-way heads.
Unlike the previously mentioned models, the advice string for inputs of length n
are supposed to be useful for all shorter inputs as well, and some negative results
depend on this additional requirement.

3 Our Model

We model advice as a string provided on a separate read-only tape. As usual,
the content of the advice depends only on the length of the input. Formally,
the advice to the automaton is determined by an advice function h, which is a
mapping from N to strings in Γ ∗, where Γ is the advice alphabet. This function
may or may not be computable.

Our advised machine model is then simply a finite automaton with two tapes.
The transition function of a (two-way) deterministic finite automaton with ad-
vice tape (dfat) determines the next move of the machine based on the current

Finite Automata with Advice Tapes 303

internal state, and the symbols scanned by the input and advice tape heads.
Each move specifies the next state, and a head movement direction (right, left,
or stay-put) for each tape. A tape head that is allowed to move in all these
directions is called two-way. A head that is not allowed to move left is called
one-way. We may also require a head to be real-time, forcing it to move to the
right at every step. As will be shown, playing with these settings changes the
computational power of the resulting model. We assume that both the input and
the advice strings are delimited by special end-marker symbols, beyond which
the automaton does not attempt to move its heads. The machine halts and an-
nounces the corresponding decision when it enters one of the two special states
qaccept and qreject.

Unlike Freivalds [5], we do not allow two-way motion of the advice tape head,
as permitting this head to make leftward moves would cause “unfair” accounting
of the space complexity of the advised machine.1

A language L is said to be recognized by such a dfat M using O(f(n))-length
advice if there exists an advice function h with the following properties:

– |h(n)| ∈ O(f(n)) for all n ∈ N, and,
– M eventually halts and accepts when started with the input tape containing

a string x of length n, and the advice tape containing h(n), if and only if
x ∈ L.

We need a notation for talking about language families corresponding to different
settings of the tape access modes, and advice lengths. We will use the template
“CLASS/f(n)(specification list)” for this purpose. In that template, the
name of the complexity class corresponding to the unadvised, two-way version
of the automaton in question will appear as the CLASS item. The function de-
scription f(n) will denote that the machine uses advice strings of length O(f(n))
for inputs of length n. (General descriptors like poly and exp, for polynomial and
exponential bounds, respectively, will also be used.) Any further specifications
about, for instance, additionally restricted head movements, will be given in the
list within the final parentheses. For example, the class of languages recognized
by dfat’s with real-time input and one-way advice tapes that use linear amounts
of advice will be denoted SPACE(1)/n(rt-input).2

We will also be examining randomized advice, as defined by Yamakami [7].
In this case, the advice is randomly selected from a set of alternatives according
to a pre-specified probability distribution. Deterministic finite automata which
use randomized advice can perform tasks which are impossible with determin-
istic advice [7]. The use of randomized advice will be indicated by the letter R
appearing before the advice length in our class names. We will use an item in
the parenthesized specification list to indicate whether bounded or unbounded

1 See Section 5.3.1 of [11] for a discussion of this issue in the context of certificate tape
heads.

2 Although SPACE(1) is well known to equal the regular languages, we avoid the
shorter notation REG/n, which was used for the advice track model, and which will
turn out to represent a strictly smaller class.

304 U. Küçük, A.C.C. Say, and A. Yakaryılmaz

error language recognition is intended, when this is not clear from the core class
name.

We define the probabilistic and quantum versions of our advised automata
by generalizing the definition for deterministic automata in the standard way,
see, for instance, [12]. The transition function of a probabilistic finite automaton
with advice tape (pfat) specifies not necessarily one, but possibly many choices,
associated with selection probabilities, for the next move at every step, with
the well-formedness condition that the probabilities of these choices always add
up to 1. In the case of quantum finite automata with advice tapes (qfat’s), each
such choice is associated not with a probability, but with an amplitude (a real
number in the interval [-1,1]). The presentation of our results on qfat’s will not
require knowledge of technical details of their definitions such as well-formedness
conditions, and we therefore omit these for space constraints, referring the reader
to [12]. We should stress that there are many mutually inequivalent quantum
finite automaton definitions in the literature, and we use the most powerful one
[13,12]. The quantum machines with advice tracks defined in [9] are based on
an older model [14], and this difference will be significant in our discussion in
Section 6.

The notational convention introduced above is flexible enough to represent
the language classes corresponding to the probabilistic and quantum advised
machines as well, for instance, BQSPACE(1)/n(rt-input, rt-advice) is the class
of languages recognized with bounded error by a qfat using linear-length advice,
and real-time input and advice heads.

The model of real-time finite automata with advice tracks [3] is equiva-
lent to our model with a separate advice tape when we set both the input
and advice tape heads to be real-time. Therefore, all the results shown for
the advice track model are inherited for this setting of our machines. For in-
stance, SPACE(1)/n(rt-input, rt-advice) = REG/n, where REG/n is defined
in [3]. On the other hand, the quantum class 1QFA/n of [9] does not equal
BQSPACE(1)/n(rt-input, rt-advice), as we will show in Section 6.

Note that we allow only one advice tape in our model. This is justified by
the following observation about the great power of one-way finite automata with
multiple advice tapes.

Theorem 1. Every language can be recognized by a finite automaton with a
one-way input tape and two one-way advice tapes.

Proof. Let L be any language on the alphabet Σ. We construct a finite automa-
ton M that recognizes L using a one-way input tape and two one-way advice
tapes as follows.

Let Γ = Σ ∪ {ca, cr} be the advice alphabet, where Σ ∩ {ca, cr} = ∅. For an
input of length n, the advice on the first advice tape lists every string in Σn

in alphabetical order, where every member of L is followed by a ca, and every
nonmember is followed by a cr. So the content of the first advice tape looks like
w1c1w2c2 · · ·w|Σ|nc|Σ|n, where wi ∈ Σn, and ci ∈ {ca, cr} for i ∈ {1, . . . , |Σ|n}.

Finite Automata with Advice Tapes 305

The second advice tape content looks like “cac
n
r cac

n
r ..cac

n
r ca”, with |Σ|n rep-

etitions, and will be used by the machine for counting up to n + 1 by moving
between two consecutive ca symbols on this tape.
M starts its computation while scanning the first symbols of the input string

and w1 on the first advice tape. It attempts to match the symbols it reads from
the input tape and the first advice tape, moving synchronously on both tapes.
If the ith input symbol does not match the ith symbol of wj , M pauses on the
input tape, while moving the two advice heads simultaneously until the second
advice head reaches the next ca, thereby placing the first advice tape head on
the ith position of wj+1, where 1 ≤ i ≤ n, and 1 ≤ j < |Σ|n. M halts when it
sees the endmarker on the input tape. When this happens, it accepts the input
if the symbol read from the first advice tape is ca, otherwise, it rejects.
�

4 Deterministic Finite Automata with Advice Tapes

It is clear that a machine with advice tape is at least as powerful as a machine
of the same type with advice track, which in turn is superior to a corresponding
machine with advice prefix, as mentioned in Section 2. We will now show that
allowing either one of the input and advice head to pause on their tapes does
enlarge the class of recognized languages.

Theorem 2. REG/n � SPACE(1)/n(rt-input).

Proof. It follows trivially from the definitions of the classes that

REG/n = SPACE(1)/n(rt-input, rt-advice) ⊆ SPACE(1)/n(rt-input).

Let |w|σ denote the number of occurrences of symbol σ in string w. To show
that the above subset relation is proper, we will consider the language EQUAL2 =
{w| w ∈ {a, b}∗ and |w|a = |w|b}, which is known [3] to lie outside REG/n.

One can construct a finite automaton that recognizes EQUAL2 with real-time
input and one-way access to linear advice as follows. For inputs of odd length,
the automaton rejects the input. For inputs of even length, n, the advice function
is h(n) = an/2. The automaton moves its advice head one position to the right
for each a that it reads on the input. The input is accepted if the number of a’s
on the two tapes match, and rejected otherwise.
�

Tadaki et al. [3] studied one-tape linear-time Turing machines with an advice
track, and showed that the class of languages that they can recognize coincides
with REG/n. Theorem 2 lets us conclude that simply having a separate head
for advice increases the computational power of a real-time dfa, whereas the
incorporation of a single two-way head for accessing both advice and a linear
amount of read/write memory simultaneously does not.

Theorem 3. REG/n � SPACE(1)/n(1w-input, rt-advice).

306 U. Küçük, A.C.C. Say, and A. Yakaryılmaz

Proof. Consider the language EQUAL = {w|w ∈ Σ∗, where {a, b} ⊆ Σ, and
|w|a = |w|b}, which is similar to EQUAL2, but with a possibly bigger alphabet.
EQUAL /∈ REG/n, as can be shown easily by Theorem 2 of [7]. We will describe a
dfat M with one-way input, and real-time access to an advice string that is just
a2n, where n is the input length.
M moves the advice head one step to the right for each a that it scans in

the input. When it scans a b, it advances the advice head by three steps. For
any other input symbol, the advice head is moved two steps. If the advice head
attempts to move beyond the advice string, M rejects. When the input tape
head reaches the end of the tape,M waits to see if the advice tape head will also
have arrived at the end of the advice string after completing the moves indicated
by the last input symbol. If this occurs, M accepts, otherwise, it rejects.

Note that the advice head is required to move exactly |w|a + 3|w|b + 2(n −
|w|a−|w|b) steps, which equals 2n if and only if the input is a member of EQUAL.

�

As noted earlier, advice lengths that are increasing functions of the input length
are not useful in the advice prefix model. Only linear-sized advice has been
studied in the context of the advice track model [3,7]. Theorem 4 demonstrates
a family of languages for which very small increasing advice length functions are
useful in the advice tape model, but not in the advice track model.

Theorem 4. For every function f : N → N such that f(n) ∈ ω(1) and f(n) ∈
O(

√
n), SPACE(1)/f2(n)(1w-input) � REG/n.

Proof. Consider the language Lf = {akbmck|k ≤ f(n), n = k +m + k}, for any
function f satisfying the properties in the theorem statement.

Theorem 2 of [7] can be used to show Lf /∈ REG/n.
One can construct a dfat with one way access to input and advice that rec-

ognizes Lf as follows. For inputs of length n, the advice string is of the form
##a#aa#aaa#..#af(n)#, with length O(f2(n)). During any step, if the au-
tomaton detects that the input is not of the form a∗b∗c∗, it rejects the input.
For each a that it reads from the input tape, the automaton moves the advice
tape head to the next # on the advice tape. (If the advice ends when looking for
a #, the input is rejected.) When the input tape head scans the b’s, the advice
tape head remains idle. Finally, when the input head starts to scan the c’s, the
automaton compares the number of c’s on the input tape with the number of a’s
that it can scan until the next # on the advice tape. If these match, the input
is accepted; otherwise it is rejected.
�

When restricted to constant size advice, the parallelism and the two-way input
access inherent in our model does not make it superior to the advice prefix
model. As we show now, one can always read the entire advice before starting to
read the input tape without loss of computational power in the constant-length
advice case:

Theorem 5. For every k ∈ N, SPACE(1)/k = REG/k.

Finite Automata with Advice Tapes 307

Proof. The relation REG/k ⊆ SPACE(1)/k is trivial, since an automaton taking
constant-length advice in the prefix or track formats can be converted easily to
one that reads it from a separate tape. For the other direction, note that a dfat
M with two-way input that uses k bits of advice corresponds to a set S of 2k

real-time dfa’s without advice, each of which can be obtained by hard-wiring a
different advice string to the program of M , and converting the resulting two-
way dfa to the equivalent real-time machine, which exists by [15]. The advice
string’s job is just to specify which of these machines will run on the input string.
It is then easy to build a dfa with advice prefix which uses the advice to select
the appropriate program to run on the input.
�

Since our model is equivalent to the advice prefix model for constant-length
advice, we inherit the results like Theorem 5 of [2], which states that the longer
advice strings one allows, the larger the class of languages we can recognize will
be, as long as one makes sure that the advice and input alphabets are identical.

A natural question that arises during the study of advised computation is
whether the model under consideration is strong enough to recognize every de-
sired language. The combination of two-way input tape head and exponentially
long advice can be shown to give this power to finite automata. Let ALL denote
the class of all languages on the input alphabet Σ.

Theorem 6. SPACE(1)/exp(rt-advice) = ALL.

Proof. The advice string for input length n contains all members of the con-
sidered language of length n, separated by substrings consisting of n + 2 blank
symbols. The automaton compares the input with each of the strings listed on
the advice tape. If it is able to match the input to a word on the advice tape,
it accepts. If the advice ends without such a match, it rejects. Otherwise, the
machine rewinds to the start of the input while consuming blanks from the next
string on the advice tape. The advice length is 2O(n).
�

Whether SPACE(1)/exp(1w-input) = ALL is an open question. In the following,
we show a limitation of dfat’s with one-way access to input and subexponential-
length advice. Let PAL denote the language of even-length palindromes defined
on the alphabet {a, b}.

Theorem 7. PAL /∈ SPACE(1)/poly(1w-input, 1w-advice).

Proof. We assume that a one-way finite automatonM with state setQ recognizes
PAL with one-way access to advice h(n) of subexponential length, and show how
this assumption leads to a contradiction.

We define a sequence of functions Fk : {a, b}(k/2) → Q × {1, . . . , |h(k)|} for
k = 2i and i ∈ {1, 2, . . .}, which map strings of length k/2 to ordered pairs of
states of M and positions on advice tape such that Fk(w) = (q, p) if and only
if M , started on an input of length k, the first k/2 symbols of which match w,
reaches the first symbol of the second half of its input when the control state is
q ∈ Q, and the advice head position is p ∈ {1, . . . , |h(k)|}.

308 U. Küçük, A.C.C. Say, and A. Yakaryılmaz

For sufficiently large values of k, the functions Fk defined in this way can not
be one-to-one, since the size of their domain |{a, b}(k/2)| = 2(k/2) dominates the
size of their range |Q×{1, . . . , |h(k)|}| = |Q||h(k)| as k grows, since Q is constant
in size, and |h(k)| is subexponential.

Let k be large enough so that Fk is not one to one, and let x and y be distinct
strings of length k/2 which are mapped to the same state, advice position pair
by Fk. Let z be any string of length k/2. Regardless of whether M starts on xz
or yz, the control state and the advice position will be the same when it reaches
the first symbol of z. This indicates that the remaining computations will be
identical. We therefore conclude that M accepts xz if and only if it accepts yz.

Letting wR denote the reverse of string w, consider z = xR. Clearly, xz ∈ PAL,
and hence M accepts xz with advice h(n). As we assumed Fk(x) = Fk(y), we
know that M also accepts yz, which is a contradiction since x �= y implies
xR �= yR, and hence z �= yR.
�

Since a machine with real-time input does not have time to consume more than
a linear amount of advice, we easily have

Corollary 1. For every function f : N → N, PAL /∈ SPACE(1)/f(n)(rt-input).

We now show that PAL can be recognized by a two-way dfa with polynomially
long advice, which will lead to a separation for machines with one- and two-way
input.

Theorem 8. PAL ∈ SPACE(1)/n2(2w-input, rt-advice).

Proof. We shall describe how a two-way dfa with real-time access to a quadratic-
length advice string can recognize PAL. On an input of length n, the advice tells
the automaton to reject if n is odd. For even n, the advice assists the automa-
ton by simply marking the n/2 pairs (i, n − i + 1) of positions that should be
holding matching symbols on the input string. Consider, for example h(8) =
#10000001#01000010#00100100#00011000#. The automaton should just tra-
verse the input from the first symbol to the last while also traversing the part
of the advice that lies between two separator symbols (#), and then do the same
while going from the last symbol to the first, and so on. At each pass, the au-
tomaton should check whether the input symbols whose positions match those
of the two 1’s on the advice are identical. If this check fails at any pass, the
automaton rejects the input, otherwise, it accepts.

The method described above requires a two way automaton with real-time
access to an advice of length n2/2. (The separator symbols are for ease of pre-
sentation, and are not actually needed for the construction.)
�

We have proven the following separation result.

Theorem 9. SPACE(1)/poly(1w-input, 1w-advice)
� SPACE(1)/poly(2w-input, 1w-advice).

Finite Automata with Advice Tapes 309

5 Efficient Error Reduction with Randomized Advice

We now turn to randomly selected probabilistic advice given to deterministic
machines. Yamakami [7] proved that this setup yields an improvement in lan-
guage recognition power over REG/n, by demonstrating a deterministic automa-
ton with advice track recognizing the center-marked palindrome language with
randomized advice. Considering the amount of randomness involved in the se-
lection of the advice string as a resource, Yamakami’s example requires O(n)
random bits, since it requires picking a string from a set with 2O(n) elements
with uniform probability. Furthermore, reducing the error bound of Yamakami’s
automaton to smaller and smaller values requires extending the advice alphabet
to bigger and bigger sizes. In the construction we will present in Theorem 10,
the number of random bits does not depend on the input length, and any desired
error bound can be achieved without modifying the advice alphabet.

Theorem 10. SPACE(1)/n(1w-input, 1w-advice)
� SPACE(1)/Rn(1w-input, 1w-advice, bounded-error).

Proof. We will use the language EQUAL3 = {w| w ∈ {a, b, c}∗, |w|a = |w|b = |w|c}
to separate the language classes in the theorem statement. Let us begin by show-
ing that EQUAL3 /∈ SPACE(1)/n(1w-input, 1w-advice). The idea is reminiscent
of Theorem 7.

Assume that a dfat M with one-way input does recognize EQUAL3 with linear-
length advice h(n). We will be considering M at a point in its execution where
it has read the first k symbols of a string of length 3k. Define a sequence of
functions Fn : {a, b}(n/3) → Q × {1, . . . , |h(n)|} for n = 3k and k ∈ {1, 2, . . .},
which map strings of length k to ordered pairs of states of M and positions
on advice tape such that Fn(w) = (q, p) if and only if M , when started on an
input of length n, the first k symbols of which match w, reaches the k + 1’st
symbol of its input when the control state is q ∈ Q, and the advice tape position
is p ∈ {1, .., |h(n)|}. The number of different control state and advice position
pairs that M can be in at any step is O(n). On the other hand, note that there
are exactly

(
k+2
2

)
different ways of setting the numbers of occurrences of the

symbols a, b, and c in the prefix of length k that M has read until this point.
This value is ω(n). Therefore, there should be two distinct strings x and y of
length k such that x and y disagree on the number of occurrences of some symbol
types, yet still they are mapped to the same control state and advice position
pair by Fn. This implies that for any string z ∈ {a, b, c}∗, M accepts xz if and
only if it accepts yz. This leads to a contradiction, as xz and yz can not have
the same number of a’s, b’s and c’s.

To show that EQUAL3 ∈ SPACE(1)/Rn(1w-input, 1w-advice, bounded-error),
we will describe a set of advice strings, and show how a randomly selected
member of this set can assist a one-way dfat N to recognize EQUAL3 with bounded
error. We shall be adapting a technique used by Freivalds in [16].

If the input length n is not divisible by 3, N rejects. If n = 3k for some integer
k, the advice is selected with equal probability from a collection of linear-size
advice strings Ai = 1i#1ki

2+ki+k for i ∈ {1, . . . , s}, where s is a constant.

310 U. Küçük, A.C.C. Say, and A. Yakaryılmaz

N starts by reading the 1’s in the advice string that precede the separator
character #, thereby learning the number i. N then starts to scan the input
symbols, and moves the advice head 1, i , or i2 steps to the right for each a, b
or c that it reads on the input tape, respectively. The input is accepted if the
automaton reaches the ends of the input and advice strings simultaneously, as
in the proof of Theorem 3. Otherwise, the input is rejected.

Note that the automaton accepts the input string w if and only if the number
of symbols in the advice string that comes after the separator symbol is equal to
the total number of moves made by the advice tape head while the input head
scans w. N accepts w if and only if |w|a + |w|bi + |w|ci2 = k + ki + ki2, which
trivially holds for w ∈ EQUAL3 no matter which advice string is selected, since
|w|a = |w|b = |w|c = k in that case.

If w /∈ EQUAL3, the probability of acceptance is equal to the probability of
selecting one of the roots of the quadratic equation (|w|c − k)i2 + (|w|b − k)i +
(|w|a − k) = 0 as the value of i. This probability is bounded by 2

s , and can be
pulled down to any desired level by picking a bigger value for s, and reorganizing
the automaton accordingly.
�

6 Quantum Finite Automata with Advice Tapes

Yamakami [9] defined the class 1QFA/n as the collection of languages which can
be recognized by real-time Kondacs-Watrous quantum finite automata (KWqfa’s)
with advice tracks. The KWqfa is one of many inequivalent models of quantum
finite-state computation that were proposed in the 1990’s, and is known to be
strictly weaker than classical finite automata in the context of bounded-error
language recognition [14]. This weakness carries over to the advised model of [9],
with the result that there exist some regular languages that are not members
of 1QFA/n. We use a state-of-the-art model of quantum automaton that can
simulate its classical counterparts trivially, [13,12] so we have:

Theorem 11. 1QFA/n � BQSPACE(1)/n(rt-input, rt-advice).

Whether this properly strong version of qfa can outperform its classical counter-
parts with advice tapes is an open question. We are able to show a superiority
of quantum over classical in the following restricted setup, which may seem silly
at first sight: Call an advice tape empty if it contains the standard blank tape
symbol in all its squares. We say that a machine M receives empty advice of
length f(n), if it is just allowed to move its advice head on the first f(n) squares
of an empty advice tape, where n is the input length. This restriction will be
represented by the presence of the designation empty in the specification lists of
the relevant complexity classes.

Theorem 12. BPSPACE(1)/n(rt-input, 1w-empty-advice)
� BQSPACE(1)/n(rt-input, 1w-empty-advice).

Proof. An empty advice tape can be seen as an increment-only counter, where
each move of the advice tape head corresponds to an incrementation on the

Finite Automata with Advice Tapes 311

counter, with no mechanism for decrementation or zero-testing provided in the
programming language. In [17], Yakaryılmaz et al. studied precisely this model. It
is obvious that classical automata augmented with such a counter do not gain any
additional computational power, so BPSPACE(1)/n(rt-input, 1w-empty-advice)
equals the class of regular languages, just like the corresponding class without
advice. On the other hand, real-time qfa’s augmented with such an increment-
only counter were shown to recognize some nonregular languages like EQUAL2
with bounded error in [17].
�

Since increment-only counters are known to increase the computational power
of real-time qfa’s in the unbounded-error setting as well, [17], we can also state

Theorem 13. PrSPACE(1)/n(rt-input, 1w-empty-advice)
� PrQSPACE(1)/n(rt-input, 1w-empty-advice).

7 Open Questions

– Real-time probabilistic automata can be simulated by deterministic automata
which receive coin tosses within a randomly selected advice string. It would
be interesting to explore the relationship between deterministic automata
working with randomized advice, and probabilistic automata working with
deterministic advice. For instance, is there a pfat with one-way input and
deterministic advice that can recognize EQUAL3 for any desired error bound,
as in Theorem 10?

– Are there languages which cannot be recognized with any amount of advice
by a dfat with one-way input? Does the answer change for pfat’s or qfat’s?

– Can qfat’s recognize any language which is impossible for pfat’s with non-
empty advice?

Acknowledgment. We thank Gökalp Demirci for his helpful comments.

References

1. Karp, R., Lipton, R.: Turing machines that take advice. L’Enseignement Mathe-
matique 28, 191–209 (1982)

2. Damm, C., Holzer, M.: Automata that take advice. In: Hájek, P., Wiedermann, J.
(eds.) MFCS 1995. LNCS, vol. 969, pp. 149–158. Springer, Heidelberg (1995)

3. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing
machines. Theoretical Computer Science 411(1), 22–43 (2010)

4. Dwork, C., Stockmeyer, L.: Finite state verifiers I: The power of interaction. Journal
of the ACM 39(4), 800–828 (1992)

5. Freivalds, R.: Amount of nonconstructivity in deterministic finite automata. The-
oretical Computer Science 411(38-39), 3436–3443 (2010)

6. Yamakami, T.: Swapping lemmas for regular and context-free languages with ad-
vice. Computing Research Repository abs/0808.4 (2008)

312 U. Küçük, A.C.C. Say, and A. Yakaryılmaz

7. Yamakami, T.: The roles of advice to one-tape linear-time Turing machines and
finite automata. Int. J. Found. Comput. Sci. 21(6), 941–962 (2010)

8. Yamakami, T.: Immunity and pseudorandomness of context-free languages. Theo-
retical Computer Science 412(45), 6432–6450 (2011)

9. Yamakami, T.: One-way reversible and quantum finite automata with advice. In:
Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 526–537.
Springer, Heidelberg (2012)

10. Agadzanyan, R., Freivalds, R.: Finite state transducers with intuition. In: Calude,
C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) Unconventional
Computation. LNCS, vol. 6079, pp. 11–20. Springer, Heidelberg (2010)

11. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge
University Press (2008)

12. Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small
space bounds. Information and Computation 279(6), 873–892 (2011)

13. Hirvensalo, M.: Quantum automata with open time evolution. International Jour-
nal of Natural Computing Research 1(1), 70–85 (2010)

14. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
FOCS 1997, pp. 66–75 (1997)

15. Shepherdson, J.C.: The reduction of two–way automata to one-way automata. IBM
Journal of Research and Development 3, 198–200 (1959)

16. Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) MFCS 1979. LNCS,
vol. 74, pp. 57–69. Springer, Heidelberg (1979)

17. Yakaryilmaz, A., Freivalds, R., Say, A.C.C., Agadzanyan, R.: Quantum computa-
tion with write-only memory. Natural Computing 11(1), 81–94 (2012)

One-Way Multi-Head Finite Automata

with Pebbles But No States

Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. Stateless variants of deterministic one-way multi-head finite
automata with pebbles, that is, automata where the heads can drop,
sense, and pick up pebbles, are studied. The relation between heads and
pebbles is investigated, and a proper double hierarchy concerning these
two resources is obtained. Moreover, it is shown that a conversion of an
arbitrary automaton to a stateless automaton can always be achieved at
the cost of additional heads and/or pebbles. On the other hand, there are
languages where one head cannot be traded for any number of additional
pebbles and vice versa. Finally, the emptiness problem and related prob-
lems are shown to be undecidable even for the ‘simplest’ model, namely,
for stateless one-way finite automata with two heads and one pebble.

1 Introduction

Deterministic finite automata (DFA) and deterministic linear bounded automata
(DLBA) describe in a way both extremal cases of a deterministic automaton
model with one head working on a bounded input tape: while a DFA may move
only from left to right (one-way) and its head can only read from the input
tape, a DLBA can move in both directions (two-way) and its head is capable of
performing read as well as write operations. It is thus not surprising that the
language classes described by DFA and DLBA, that is, the regular languages
and the deterministic context-sensitive languages, are far away from each other.
So it is naturally of interest to consider automata classes lying in between both
ends. One example in this context are deterministic multi-head finite automata
which are, basically, DFA provided with a fixed finite number h of heads that
can move on the input one-way or two-way. However, the heads can only read
the input. Computational complexity aspects of such automata with one-way
head motion have been first considered in [19,21]. The latter paper also inves-
tigates decidability questions and closure properties, and discusses the question
whether h + 1 heads are more powerful than h heads. This hierarchy question
was affirmatively answered for all h ≥ 1 in [24] using witness languages over a
ternary alphabet. A reduction to a binary alphabet and to witness languages of
the form a∗b∗ has been obtained in [2,15]. More information on multi-head finite
automata may be found in the recent survey [6].

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 313–324, 2013.
© Springer-Verlag Berlin Heidelberg 2013

314 M. Kutrib, A. Malcher, and M. Wendlandt

One-way multi-head finite automata where each head can also write on the
input tape are called multi-head writing finite automata and have been investi-
gated in [1,22]. It is known that three heads are more powerful than two heads
and, in the nondeterministic case, every multi-head writing finite automaton
with h heads can be simulated with three heads where only one head has to
perform write operations. Since writing in connection with multiple heads seems
to be very powerful, the following weaker way of writing has been considered
in [5]: the automaton has a stock of pebbles (or markers) and every head can
write by dropping some pebble to the input tape. Pebbles on the tape are sensed
by the heads and can be picked up again and dropped at other positions. In this
way, only information with respect to the position and to the type of the pebble
can be written. A result discussed in [5] on such deterministic one-way multi-
head pebble automata is that such automata with h heads and p individual,
that means distinguishable, pebbles can be simulated by automata with h heads
and p + 1 pebbles that are all of the same type and cannot be distinguished.

Another construction gives that unary languages of the form { ank | n ≥ 0 } can
be accepted with k heads and k − 1 pebbles.

It should be noted that pebble automata have also been considered with a
different meaning, namely, as deterministic two-way devices with p individual
pebbles and one head which can drop, sense, and pick up pebbles [20]. It is known
that such automata with h pebbles can simulate any h-head finite automaton
and can themselves be simulated by (h + 1)-head finite automata [20,18]. Fur-
thermore, a proper hierarchy on the number of pebbles is shown in [18] where
also relations to sensing multi-head finite automata, that is, automata where
heads can sense the presence of other heads, are discussed.

A recent issue studied for multi-head finite automata is to consider devices
which have one state only, so-called stateless automata. This concept has been
introduced with a biological motivation in [23]. Despite the strong restriction
to one state only, these devices are still very powerful which is demonstrated
in [23] by showing that the emptiness problem is undecidable for stateless de-
terministic one-way three-head finite automata. The best result known so far
for one-way devices with two heads is that automata with four states have an
undecidable emptiness problem [12]. The two-way case is considered in [9], where
the undecidability of the emptiness problem is obtained for stateless automata
with two heads. Stateless variants of related models such as, for example, multi-
head pushdown automata, multi-counter automata, restarting automata, and
two-pushdown automata have been investigated in [3,4,8,13,14].

Here, we investigate stateless deterministic one-way multi-head finite au-
tomata with individual pebbles. After some preliminaries in Section 2, we investi-
gate in Section 3 the costs in terms of additional heads and pebbles arising when
an arbitrary automaton is reduced to an equivalent stateless automaton. In Sec-
tion 4, we obtain a double hierarchy concerning heads and pebbles for stateless
automata. In detail, it is shown for any number of heads h ≥ 1 and any number
of pebbles p ≥ 0 that there are, on the one hand, languages acceptable with
h+1 heads and p pebbles which are not acceptable with h heads and p pebbles.

One-Way Multi-Head Finite Automata with Pebbles But No States 315

On the other hand, it is shown that there are languages acceptable with h heads
and p+1 pebbles which are not acceptable with h heads and p pebbles. The rela-
tion between heads and pebbles is again discussed in Section 5. The main result
obtained there is that we exhibit languages which can be accepted by stateless
automata with a certain number of heads and pebbles, but which cannot be
accepted with one head less although an arbitrary number of pebbles and states
may be provided. Finally, we investigate in Section 6 the decidability status of
the emptiness problem for stateless one-way two-head DFA with one pebble. Us-
ing an encoding of valid computations of the parallel model of one-way cellular
automata, it is possible to show the undecidability of the problem. It should
be noted that it is currently an open question whether or not the problem is
decidable for stateless one-way two-head DFA without pebbles.

2 Preliminaries and Definitions

We write A∗ for the set of all words over the finite alphabet A. The empty word
is denoted by λ, and A+ = A∗ \ {λ}. The reversal of a word w is denoted by wR

and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for strict
inclusions. We write 2S for the powerset of a set S.

Let h ≥ 1 and p ≥ 0 be natural numbers. A one-way h-head finite automaton
with p pebbles is a finite automaton having a single read-only input tape whose
inscription is the input word in between two endmarkers (we provide two end-
markers in order to have a definition consistent with two-way devices). The h
heads of the automaton mutually independently can stay on the current tape
square or move to the right but not beyond the endmarkers. In addition, the
automaton has a stock of p individual pebbles (or markers) that can be dropped
freely by the heads to mark specific positions. More than one pebble may be
placed on a single tape square. The pebbles on the tape are noticed by the heads
and can be picked up again. A formal definition is:

Definition 1. A deterministic one-way h-head finite automaton with p pebbles
(1DHPA(h, p)) is a system M = 〈S,A, h, p, δ,�,	, s0〉, where
1. S is the finite set of internal states,
2. A is the finite set of input symbols,
3. h ≥ 1 is the number of heads,
4. p ≥ 0 is the number of pebbles in the (possibly empty) set of pebbles

P = {1, 2, . . . , p},
5. � /∈ A is the left and 	 /∈ A is the right endmarker,
6. s0 ∈ S is the initial state,
7. δ : S×2P ×((A∪{�,	})×2P)h → S×({0, 1}×2P)h is the partial transition

function, where 1 means to move a head one square to the right, and 0 means
to keep it on the current square. Whenever

δ(s, P0, a1, P1, a2, P2, . . . , ah, Ph) = (s′, d1, Q1, d2, Q2, . . . , dh, Qh)

is defined, then (i) di = 0 if ai = 	, for 1 ≤ i ≤ h, (ii) P0, P1, . . . , Ph as

well as Q1, Q2, . . . , Qh are pairwise disjoint, and (iii)
⋃h

i=1Qi ⊆
⋃h

i=0 Pi.

316 M. Kutrib, A. Malcher, and M. Wendlandt

A configuration of a 1DHPA(h, p) M = 〈S,A, h, p, δ,�,	, s0〉 is a quadru-
ple (w, s, τ, μ), where w ∈ A∗ is the input, s ∈ S denotes the current state,
τ = (τ1, τ2, . . . , τh) ∈ {0, 1, . . . , |w| + 1}h gives the current head positions, and
μ : {0, 1, . . . , |w|+ 1} → 2P gives the current distribution of the pebbles. If a
position τi is 0, then head i scans the symbol �, if it satisfies 1 ≤ τi ≤ |w|,
then the head scans the τith letter of w, and if it is |w|+ 1, then the head scans
the symbol 	. It is understood that μ(i) is the set of pebbles on the ith tape
square, μ(0), μ(1), . . . , μ(|w| + 1) are pairwise disjoint, and the automaton cur-

rently carries the pebbles P \ (
⋃|w|+1

i=0 μ(i)). The initial configuration for input w
is set to (w, s0, (0, . . . , 0), μ0), where μ0 denotes the constant mapping μ0(i) = ∅,
0 ≤ i ≤ |w|+1. That is, M starts with carrying all pebbles and having all of its
heads on the left endmarker.

During the course of its computation, M runs through a sequence of configu-
rations. One step from a configuration to its successor configuration is denoted
by .. Let w = a1a2 · · · an be the input, a0 = �, and an+1 = 	, then we set

(w, s, (τ1, τ2, . . . , τh), μ) . (w, s′, (τ1 + d1, τ2 + d2, . . . , τh + dh), μ
′)

with μ′(τi) = Qi, 1 ≤ i ≤ h, and μ′(j) = μ(j) for j /∈ {τ1, τ2, . . . , τh}, if and only
if

δ(s, P0, aτ1 , μ(τ1), aτ2 , μ(τ2), . . . , aτh , μ(τh)) = (s′, d1, Q1, d2, Q2, . . . , dh, Qh).

So, in a computation step, first M picks up all pebbles from the current head
positions, thus carrying the pebbles P0∪

⋃h
i=1 μ(τi), second drops the pebbles Qi

to the head position τi, 1 ≤ i ≤ h, thus keeping the pebbles (P0 ∪
⋃h

i=1 μ(τi)) \⋃h
i=1Qi, and third moves its heads and changes the state. Note that by the

restrictions of the transition function δ, M cannot drop pebbles which are on
tape squares currently not scanned. Moreover, the heads cannot move beyond
the right endmarker. As usual we define the reflexive, transitive closure of .
by .∗, and its transitive closure by .+.

Since in the sequel we also consider stateless 1DHPA(h, p), that is, automata
having exactly one state, non-trivial acceptance cannot be defined by accepting
states. Instead, we follow the definition in [9] and say that an input is accepted
if and only if the computation ends in a loop in which the heads are not moved.
A 1DHPA(h, p) blocks and rejects when the transition function is not defined
for the current situation. Whenever we consider an accepting computation it is
understood that we mean the finite initial part of the computation up to but not
including the first loop at the end. The language accepted by a 1DHPA(h, p) M
is

L(M) = {w ∈ A∗ | there are τ ∈ {0, 1, . . . , |w|+ 1}h,
μ : {0, 1, . . . , |w|+ 1} → 2P , and s ∈ S such that

(w, s0, (0, . . . , 0), μ0) .∗ (w, s, τ, μ) .+ (w, s, τ, μ) }.

In order to clarify our notion we continue with an example. Moreover, the exam-
ple shows the power gained by pebbles. In particular, a stateless one-way finite

One-Way Multi-Head Finite Automata with Pebbles But No States 317

automaton having only two heads and one pebble is given that accepts a unary
non-semilinear language. So, even automata with a minimum of resources break
the border of context-free languages.

Example 2. The non-semilinear language { an2+n
2 −1 | n ≥ 2} is accepted by

the stateless 1DHPA(2, 1) M = 〈{s0}, {a}, 2, 1, δ,�,	, s0〉, where the transition
function δ is specified as follows:

1. δ(s0, {1},�, ∅,�, ∅) = (s0, 0, ∅, 1, {1})
2. δ(s0, ∅,�, {1}, a, ∅) = (s0, 0, ∅, 1, {1})
3. δ(s0, ∅,�, ∅, a, ∅) = (s0, 1, ∅, 1, ∅)
4. δ(s0, ∅, a, {1}, a, ∅) = (s0, 0, ∅, 1, {1})
5. δ(s0, ∅, a, ∅, a, ∅) = (s0, 1, ∅, 1, ∅)
6. δ(s0, ∅, a, {1},	, ∅) = (s0, 0, {1}, 0, ∅)

The basic computation cycles of M are as follows. Both heads have a certain
distance to each other and move synchronously to the right. When the left head
enters a tape square with the pebble on it, the pebble is picked up and dropped
again by the right head. In addition, the left head is stopped for one time step
whereby the distance between the heads in increased by one. The computation
is accepting if the right head reads the right endmarker exactly when the left
head sees the pebble (transition 6).

It is immediately verified that M rejects the input a1 and accepts the in-
put a2. So, let the length of the input be at least be three. Initially, by applying
transitions 1–3 the second head is placed on the third a, the first head is placed
on the first a, and the pebble in dropped on the first a as well. So a situation is
reached, where the distance between the heads is two, the right head (head 2)

is at position 3 = n2+n
2 for n = 2, and the pebble is on the tape square of the

left head (head 1).
Arguing inductively, we now assume that after some computation cycles, a

situation is reached, where the distance between the heads is i, the right head

is at position i2+i
2 , and the pebble is on the tape square of the left head. Then

transition 4 is applied which drops the pebble at position i2+i
2 , moves the right

head to position i2+i
2 + 1, and keeps the left head stationary. So, the distance

between the heads is i+1 and the distance between head 1 and the pebble is still i.
Subsequently, both heads are moved synchronously to the right by transition 5
until the left head sees the pebble, that is, after i steps. Now the distance between

the heads is still i+1, the right head is at position i2+i
2 +1+i = (i+1)2+(i+1)

2 , and
the pebble is on the tape square of the left head. Since an input is accepted if
and only if in such a situation the right head reads the right endmarker, exactly

the inputs of length i2+i
2 − 1 are accepted.
�

318 M. Kutrib, A. Malcher, and M. Wendlandt

3 Trading States for Heads and Pebbles

Since, basically, we are interested in stateless automata, this section is devoted
to investigate to what extent the number of states can be decreased at the cost of
additional heads and/or pebbles, if possible at all. In fact, it turns out that any
1DHPA(h, p) can be made stateless by increasing either the number of pebbles or
by increasing the number of heads and adding one pebble. The latter additional
pebble cannot be avoided in general.

Given a 1DHPA(h, p) with m ≥ 1 states, it is shown next how to construct
an equivalent stateless version with the same number of heads and O(log(m))
additional pebbles.

Theorem 3. Let h ≥ 2, p ≥ 0, and m ≥ 1. For any m-state 1DHPA(h, p) an
equivalent stateless 1DHPA(h, p+ ,log(m)-+ 2) can effectively be constructed.

Proof. Let M = 〈S,A, h, p, δ,�,	, s0〉 be an m-state 1DHPA(h, p) with at
least two heads. As usual, we denote the set {1, 2, . . . , p} of its pebbles by P
and set P̃ = {p+ 1, p+ 2, . . . , p+ ,log(m)-}. The equivalent stateless automa-
ton M ′ = 〈{s0}, A, h, p+ ,log(m)-+ 2, δ,�,	, s0〉 uses the ,log(m)- additional
pebbles from P̃ to represent the encoding of the states of M . To this end, let

f : S → 2P̃ be an injective function that maps a state to its encoding.
Basically, the simulation of M by M ′ works in phases, where one phase sim-

ulates one transition of M . At the beginning of a phase, the pebbles from P
as well as the heads of M ′ are at the same positions as the pebbles and heads
of M . In addition, the pebbles f(s), where s is the current state of M , are at
the position of the first head, and M ′ carries the two extra pebbles {p1, p2} and
the remaining pebbles from P̃ .

If M does not move head 1, automaton M ′ can simulate the transition in
a single step. It simply drops the pebbles and moves the heads as M does. In
addition, the pebbles f(s) are picked up and pebbles f(ŝ) are dropped at the
position of the first head, where ŝ is the successor state of M . Now M ′ is ready
for the next phase.

If M moves head 1, automaton M ′ simulates the transition in three steps. In
a first step, essentially, the transition ofM is simulated except for the movement
of the first head. That is, M ′ drops the pebbles and moves all but the first head
as M does. In addition, the pebbles f(s) are picked up and pebbles f(ŝ) are
dropped at the position of the first head. In order to memorize the incomplete
simulation, M ′ drops the extra pebble p1 at the position of the first head. The
second step is triggered by the presence of pebble p1. Now, M

′ picks up the
pebbles f(ŝ) and p1 from the position of the first head, moves the first head,
and drops the pebbles f(ŝ) and p2 to the position of the second head. The third
step is triggered by the presence of pebble p2. It completes the phase by picking
up the pebbles f(ŝ) and p2 from the position of the second head and drops the
pebbles f(ŝ) at the position of the first head. Now M ′ is ready for the next
phase.

It remains to add a transition to M ′ which initially, when all heads are on the
left endmarker and no pebbles are on the tape, drops the pebbles f(s0) without

One-Way Multi-Head Finite Automata with Pebbles But No States 319

moving the heads. Clearly, M ′ runs into an infinite accepting loop if M does,
since the heads are not moved in the loop. Moreover, M ′ necessarily halts and
rejects, when M halts and rejects.
�

The previous theorem cannot be improved to one-head automata.

Proposition 4. Let m ≥ 2. Then there is a language accepted by an m-state
1DHPA(1, 0) which is not accepted by any stateless 1DHPA(1, p) with an arbi-
trary number of pebbles p ≥ 0.

One-head automata actually cannot utilize their pebbles. Whenever a pebble
is dropped and the head moves from the tape square, the pebble is never seen
again. So, every 1DHPA(1, p) can be simulated by some 1DHPA(1, 0) and accepts
a regular language.

Corollary 5. Let p ≥ 0 be a number of pebbles. The family of languages accepted
by stateless 1DHPA(1, p) is properly included in the family of regular languages.

Now we turn to trade states for heads. Any m-state 1DHPA(h, p) can be made
stateless with additional O(h · log(m)) heads and one additional pebble. In gen-
eral, this additional pebble cannot be avoided.

Theorem 6. Let h ≥ 1, p ≥ 0, and m ≥ 1. For any m-state 1DHPA(h, p) an
equivalent stateless 1DHPA(h + h · ,log(m + 2)- + 1, p + 1) can effectively be
constructed.

The previous theorem cannot be improved in the sense that no additional pebble
is necessary. In [12] it is shown that, for any prime number m, there is a unary
language accepted by some one-head (m + 1)-state automaton that cannot be
accepted by any m-state automaton having an arbitrary number of heads.

Corollary 7. Let m be a prime number. Then there is a language accepted by
an m-state 1DHPA(1, 0) which is not accepted by any stateless 1DHPA(h, 0) with
an arbitrary number of heads h ≥ 1.

4 Head and Pebble Double Hierarchy

In this section we show an infinite strict and tight double hierarchy for stateless
automata. First we turn to the head hierarchy for any number of pebbles. Let
� ≥ 1 be an arbitrary integer. Then we define factors s(�) over the alphabet {a, b}
by s(�) = (ba)/2 if � is even, and s(�) = (ba)(−1)/2b if � is odd. These factors
are concatenated to unary words so that the products are bases for witness
languages. In particular, for all k, � ≥ 1, we consider languages

L ⊆ { ais(�)v | 1 ≤ i ≤ k, v ∈ {a, b}∗ },

where L includes at least one word of the form aks(�)v, and call them languages
of type (k, �). That is, a language of type (k, �) is neither of type (k− 1, �) nor of
type (k + 1, �). Moreover, L is not empty, and next we give evidence that there
are languages of this form accepted by stateless 1DHPA(h, 0) without pebbles.

320 M. Kutrib, A. Malcher, and M. Wendlandt

Example 8. For any h ≥ 1, language { ah−1s(h)v | v ∈ {a, b}∗ } of type (h− 1, h)
is accepted by the stateless 1DHPA(h, 0) M = 〈{s0}, {a, b}, h, 0, δ,�,	, s0〉,
where the transition function δ is specified as follows. First the heads are moved
from the left endmarker one after the other in a row:

δ(s0, ∅, x1, ∅, x2, ∅, . . . , xh, ∅) = (s0, d1, ∅, d2, ∅, . . . , dh, ∅),

where x1x2 · · ·xh = �h−jaj and d1d2 · · · dh = 0h−(j+1)1(j+1), for 0 ≤ j ≤ h− 1.
When the last head has left the endmarker, the first one in the row has to
read the symbol b. Subsequently the row moves to the right if and only if the
prefix ah−1 is followed by s(h− 1):

δ(s0, ∅, x1, ∅, x2, ∅, . . . , xh, ∅) = (s0, 1, ∅, 1, ∅, . . . , 1, ∅),

where x1x2 · · ·xh = ah−js(j), for 1 ≤ j ≤ h−1. Finally, when the row reads s(h)
completely the input is accepted:

δ(s0, ∅, x1, ∅, x2, ∅, . . . , xh, ∅) = (s0, 0, ∅, 0, ∅, . . . , 0, ∅),

where x1x2 · · ·xh = s(h).
�

Theorem 9. Let h ≥ 1 and p ≥ 0. Then there is a language accepted by stateless
1DHPA(h+ 1, p) but not by any 1DHPA(h, p).

Proof. For any h ≥ 1, p ≥ 0 there are only finitely many stateless 1DHPA(h, p)
and, thus, only finitely many stateless 1DHPA(h, p) accepting languages of some
type (k, h) (note that here the second component of the type is fixed to h). From
these we choose one automaton M = 〈{s0}, {a, b}, h, p, δ,�,	, s0〉 accepting a
language whose first component of the type is maximal, say kmax. So, L(M) is
of type (kmax, h). AutomatonM needs not to be unique, but it exists. Moreover,
no language of type (kmax + i, h), for i ≥ 1, is accepted by any 1DHPA(h, p).

Next, a stateless 1DHPA(h + 1, p) M ′ = 〈{s0}, {a, b}, h+ 1, p, δ′,�,	, s0〉 is
constructed from M that accepts a language of type (kmax + 1, h). In order to
construct δ′ we modify δ as follows. Let w ∈ L(M) be a word with prefix akmax .
First, all transitions not occurring in the accepting computation on w are un-
defined. In this way the order in which heads leave the left endmarker is made
unique. Moreover, the remaining transitions in which a head is moved from the
left endmarker are unique with respect to the heads.

The idea is that, basically, M ′ simulates M on input w. The difference is
that all transitions of M moving one or more heads from the left endmarker
to the right are simulated by M ′ in two steps. First, M ′ simulates the original
transition ofM . Second,M ′ moves all heads just moved from the left endmarker
to the right once more, whereby all the other heads are kept stationary. In order
to distinguish between these two steps the additional head is used. The effect of
the construction is that whenever a head leaves the left endmarker it is moved
twice, and there are never pebbles on the leftmost a. So, M ′ accepts a subset of
{ au | u ∈ L(M) } including aw. Therefore, L(M ′) is of type (kmax + 1, h).

One-Way Multi-Head Finite Automata with Pebbles But No States 321

More precisely, δ′ is constructed as follows. Let head h+ 1 be the additional
head and the remaining h heads be numbered in the order they leave the left
endmarker. If more than one head leave at the same time, their order is arbitrary
but fixed.

Initially, head h+ 1 is moved to the right until it reaches the first symbol b:

δ′(s0, P,�, ∅, . . . ,�, ∅,�, ∅) = (s0, 0, ∅, . . . , 0, ∅, 1, ∅)
δ′(s0, P,�, ∅, . . . ,�, ∅, a, ∅) = (s0, 0, ∅, . . . , 0, ∅, 1, ∅).

Now, δ is simulated by δ′ until head 1 is moved from the left endmarker:

δ′(s0, P0,�, P1, . . . ,�, Ph, b, ∅) = (s0, d1, Q1, d2, Q2, . . . , dh, Qh, 0, ∅) if
δ(s0, P0,�, P1, . . . ,�, Ph) = (s0, d1, Q1, d2, Q2, . . . , dh, Qh).

When this happens the situation is unique. That is, head h+ 1 reads b, head 1
reads an a, and the other heads read �. So, head 1 can be moved once more
while at the same time head h+1 is moved from the b to the adjacent a. In this
way the two steps of head 1 are distinguished:

δ′(s0, P0, a, ∅,�, P2, . . . ,�, Ph, b, ∅) = (s0, 1, ∅, 0, P2, . . . , 0, Ph, 1, ∅).

Subsequently, the situation is again unique, head h+1 reads an a, head 1 reads
some symbol x ∈ {a, b,	}, and the other heads read �. Next, δ is simulated
by δ′ until head 2 is moved from the left endmarker:

δ′(s0, P0, x, P1,�, P2, . . . ,�, Ph, a, ∅) = (s0, d1, Q1, d2, Q2, . . . , dh, Qh, 0, ∅) if
δ(s0, P0, x, P1,�, P2, . . . ,�, Ph) = (s0, d1, Q1, d2, Q2, . . . , dh, Qh).

When this happens the situation is again unique. That is, head h+1 reads an a,
head 1 reads x, head 2 reads a, and the other heads read �. So, head 2 can be
moved once more while at the same time head h+ 1 is moved from the a to the
adjacent b:

δ′(s0, P0, x, P1, a, ∅,�, P3, . . . ,�, Ph, a, ∅) = (s0, 0, P1, 1, ∅, 0, P3, . . . , 0, Ph, 1, ∅).

Subsequently, the situation is again unique. and the simulation continues analo-
gously for the remaining heads. Together with the right endmarker, s(h) provides
sufficient symbols to handle all heads by head h+1. Moreover, the construction
is straightforwardly generalized to transitions which move more than one head
from the left endmarker.
�

Now we turn to the pebble hierarchy for any number of heads.

Theorem 10. Let h ≥ 1 and p ≥ 0. Then there is a finite unary language
accepted by stateless 1DHPA(h, p+ 1) but not by any 1DHPA(h, p).

322 M. Kutrib, A. Malcher, and M. Wendlandt

5 Heads versus Pebbles

This section is devoted to the comparison of the power of the two resources
heads and pebbles for stateless 1DHPA(h, p). The basic questions are whether
additional pebbles can compensate for heads or vice versa.

A first answer is already known by Example 2 and a result in [12]. Example 2
gives a stateless one-way two-head finite automaton with one pebble that accepts
a non-semilinear unary language. In [12] it is shown that, for any number h ≥ 1,
every unary language accepted by a stateless one-way h-head finite automaton
without pebbles is either finite or cofinite and, thus, semilinear. So, in this sense
even an arbitrary number of heads cannot compensate for a pebble in general.

Next we turn to answer the converse question, that is, we show that, in general,
a head cannot be traded for an arbitrary number of pebbles and states.

Theorem 11. Let h ≥ 2. Then there is a p ≥ 0 and a stateless 1DHPA(h, p) M ,
so that L(M) is not accepted by any m-state 1DHPA(h − 1, p′), for any m ≥ 1
and any p′ ≥ 0.

Proof (Sketch). As witness language L(h) we will essentially use the language Lb

introduced in [24] to establish a proper head hierarchy for classical one-way
multi-head DFA. The languages Lb have the form

Lb = {w1#w2# · · · #wb$wb# · · · #w2#w1 | wi ∈ {0, 1}∗ },

and it is shown that, for any h ≥ 1, language L(h2)+1 is accepted by some

1DHPA(h + 1, 0), but not by any 1DHPA(h, 0). An alternative proof of this
result based on Kolmogorov complexity and an incompressibility argument is
given in [16], where also general information on Kolmogorov complexity and the
incompressibility method can be found.

Here we consider stateless automata with pebbles and set L(h) = Lb, where
b =

(
h−1
2

)
+ 1, for h ≥ 2. Since L(h) is accepted by a 1DHPA(h, 0), by applying

Theorem 3 we obtain that L(h) is accepted by a stateless 1DHPA(h, p) with a
certain number of pebbles p ≥ 3 as well. Next, we turn to show that L(h) cannot
be accepted by any 1DHPA(h− 1, p′) with an arbitrary number of states and an
arbitrary number of pebbles p′ ≥ 0.

Let w ∈ {0, 1}+ be an arbitrary binary string. The Kolmogorov complex-
ity C(w) of w is defined to be the minimal size of a program describing w.
It is well known that there are binary strings w of arbitrary lengths so that
|w| ≤ C(w).

Let us assume by way of contradiction that language L(h) is accepted by a
1DHPA(h − 1, p′) M with p′ ≥ 0. We choose some string w = w1w2 · · ·wb,
where all subwords w1, w2, . . . , wb have the same length and whose Kolmogorov
complexity meets C(w) ≥ |w|. So, the input v = w1# · · ·#wb$wb# · · ·#w1 is ac-
cepted by M . Automaton M is said to check wi, if on input v there is a time
step at whichM has a head on the left copy of wi and a head on the right copy of

One-Way Multi-Head Finite Automata with Pebbles But No States 323

wi simultaneously. The main ingredient for the proof is the following so-called
Matching Lemma, which is shown in [16] for classical one-way multi-head DFA.
The lemma says that M must check wi, for every 1 ≤ i ≤ b. Clearly, since M
is a one-way device, every pair of heads can check one wi only. Therefore, there
exists some wi that is not checked if b >

(
h−1
2

)
. This contradicts the Matching

Lemma and proves that L(h) is not accepted by M .
�

Lemma 12 (Matching Lemma). Let b ≥ 1, h ≥ 1, and p ≥ 0. Then any
1DHPA(h, p) M = 〈S, {0, 1, #, $}, h, p, δ,�,	, s0〉 accepting language Lb must
check wi, for every 1 ≤ i ≤ b.

6 Undecidability Results

In this section, we investigate decidability problems for stateless 1DHPA(h, p),
where the emptiness problem plays a crucial role. It is known that the emptiness
problem is undecidable for stateless two-way DFA with at least two heads [9],
and for stateless one-way DFA with at least three heads [23]. Recently, it has
been shown that the emptiness problem is also undecidable for one-way DFA
having two heads and at least four states [12]. Here we will show that emptiness
is undecidable for stateless 1DHPA(2, 1).

To prove this result we use the technique of valid computations which is ba-
sically described, for example, in [7]. This technique has also been used in [12],
where it is shown that valid computations of deterministic linearly space bounded
one-tape, one-head Turing machines can be accepted by one-way DFA with
two heads and four states. Currently it is not clear in which way a stateless
1DHPA(2, 1) could accept such sets. So, here we consider the valid computations
(VALC) of one-way cellular automata which is a parallel computational model
(see, for example, [10,11]). The decidability questions for stateless 1DHPA(2, 1)
are reduced to those of one-way cellular automata, which have been shown to
be undecidable in [17].

Lemma 13. Let M be an OCA. Then a stateless 1DHPA(2, 1) accepting the
language VALC(M) can effectively be constructed.

Theorem 14. For h ≥ 2 and p ≥ 1, emptiness is undecidable for 1DHPA(h, p).

Proof. Let M be an OCA. According to Lemma 13 we can effectively construct
a 1DHPA(2, 1) M ′ accepting VALC(M). Clearly, L(M ′) = VALC(M) is empty
if and only if L(M) is empty. Since it shown in [17] that emptiness is undecidable
for OCA, the theorem follows.
�

Theorem 15. For h ≥ 2 and p ≥ 1, finiteness, infiniteness, inclusion, equiva-
lence, regularity, and context-freeness are undecidable for 1DHPA(h, p).

324 M. Kutrib, A. Malcher, and M. Wendlandt

References

1. Brandenburg, F.J.: Three write heads are as good as k. Math. Systems Theory 14,
1–12 (1981)

2. Chrobak, M.: Hierarchies of one-way multihead automata languages. Theoret.
Comput. Sci. 48, 153–181 (1986)

3. Eğecioğlu, Ö., Ibarra, O.H.: On stateless multicounter machines. In: Ambos-Spies,
K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 178–187. Springer,
Heidelberg (2009)

4. Frisco, P., Ibarra, O.H.: On stateless multihead finite automata and multihead
pushdown automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS,
vol. 5583, pp. 240–251. Springer, Heidelberg (2009)

5. Gorlick, M.M.: Computation by one-way multihead marker automata. Master’s
thesis, Department of Computer Science, University of British Columbia (1978)

6. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata:
Origins and directions. Theoret. Comput. Sci. 412, 83–96 (2011)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

8. Ibarra, O.H., Eğecioğlu, Ö.: Hierarchies and characterizations of stateless mul-
ticounter machines. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609,
pp. 408–417. Springer, Heidelberg (2009)

9. Ibarra, O.H., Karhumäki, J., Okhotin, A.: On stateless multihead automata: Hier-
archies and the emptiness problem. Theoret. Comput. Sci. 411, 581–593 (2010)

10. Kutrib, M.: Cellular automata – a computational point of view. In: Bel-Enguix, G.,
Jiménez-López, M.D., Mart́ın-Vide, C. (eds.) New Developments in Formal Lan-
guages and Applications. SCI, vol. 113, pp. 183–227. Springer, Heidelberg (2008)

11. Kutrib, M.: Cellular automata and language theory. In: Encyclopedia of Complex-
ity and System Science, pp. 800–823. Springer (2009)

12. Kutrib, M., Malcher, A., Wendlandt, M.: States and heads do count for unary
multi-head finite automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS,
vol. 7410, pp. 214–225. Springer, Heidelberg (2012)

13. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless deterministic restarting au-
tomata. Acta Inform. 47, 391–412 (2010)

14. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and
restarting automata. Int. J. Found. Comput. Sci. 21, 781–798 (2010)

15. Kuty�lowski, M.: One-way multihead finite automata and 2-bounded languages.
Math. Systems Theory 23, 107–139 (1990)

16. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Ap-
plications. Springer (1993)

17. Malcher, A.: Descriptional complexity of cellular automata and decidability ques-
tions. J. Autom., Lang. Comb. 7, 549–560 (2002)

18. Petersen, H.: Automata with sensing heads. In: Proceedings of the Third Israel
Symposium on the Theory of Computing and Systems, pp. 150–157. IEEE Com-
puter Society Press (1995)

19. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

20. Ritchie, R.W., Springsteel, F.N.: Language recognition by marking automata. In-
form. Control 20, 313–330 (1972)

21. Rosenberg,A.L.:Onmulti-head finite automata. IBMJ.Res.Dev. 10, 388–394 (1966)
22. Sudborough, I.H.: One-way multihead writing finite automata. Inform. Control 30,

1–20 (1976)
23. Yang, L., Dang, Z., Ibarra, O.H.: On stateless automata and P systems. Int. J.

Found. Comput. Sci. 19, 1259–1276 (2008)
24. Yao, A.C., Rivest, R.L.: k+1 heads are better than k. J. ACM 25, 337–340 (1978)

Regular Expressions with Binding

over Data Words for Querying Graph Databases

Leonid Libkin1, Tony Tan2, and Domagoj Vrgoč1

1 University of Edinburgh
libkin@inf.ed.ac.uk, domagoj.vrgoc@ed.ac.uk

2 Hasselt University and Transnational University of Limburg
tony.tan@uhasselt.be

Abstract. Data words assign to each position a letter from a finite
alphabet and a data value from an infinite set. Introduced as an ab-
straction of paths in XML documents, they recently found applications
in querying graph databases as well. Those are actively studied due to
applications in such diverse areas as social networks, semantic web, and
biological databases. Querying formalisms for graph databases are based
on specifying paths conforming to some regular conditions, which led to
a study of regular expressions for data words.

Previously studied regular expressions for data words were either
rather limited, or had the full expressiveness of register automata, at
the expense of a quite unnatural and unintuitive binding mechanism
for data values. Our goal is to introduce a natural extension of regular
expressions with proper bindings for data values, similar to the notion
of freeze quantifiers used in connection with temporal logics over data
words, and to study both language-theoretic properties of the resulting
class of languages of data words, and their applications in querying graph
databases.

1 Introduction

Data words, unlike the usual words over finite alphabet, assign to each position
both a letter from a finite alphabet and an element of an infinite set, referred
to as a data value. An example of a data word is

(
a
1

)(
b
2

)(
a
3

)(
b
1

)
. This is a data

word over the finite alphabet {a, b}, with data elements coming from an infinite
domain, in this case, N. Investigations of data words picked up recently due to
their importance in the study of XML documents. Those are naturally modeled
as ordered unranked trees in which every node has both a label and a datum
(these are referred to as data trees). Data words then model paths in data trees,
and as such are essential for investigations of many path-based formalisms for
XML, for instance, its navigational query language XPath. We refer the reader
to [7, 14, 30, 31] for recent surveys.

While the XML data format dominated the data management landscape for
a while, primarily in the 2000s, over the past few years the focus started shifting
towards the graph data model. Graph-structured data appears naturally in a

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 325–337, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

326 L. Libkin, T. Tan, and D. Vrgoč

variety of applications, most notably social networks and the Semantic Web (as
it underlies the RDF format). Its other applications include biology, network
traffic, crime detection, and modeling object-oriented data [13, 21, 24, 26–29].
Such databases are represented as graphs in which nodes are objects and the
edge labels specify relationships between them; see [1, 4] for surveys.

Just as in the case of XML, a crucial building block in queries against graph
data deals with properties of paths in them. The most basic formalism is that
of regular path queries, or RPQs, which select nodes connected by a path de-
scribed by a regular language over the labeling alphabet [11]. There are multiple
extensions with more complex patterns, backward navigation, regular relations
over paths, and non-regular features [3, 5, 6, 8–10]. In real applications we deal
with both navigational information and data, so it is essential that we look at
properties of paths that also describe how data values change along them. Since
such paths (as we shall explain later) are just data words, it becomes necessary
to provide expressive and well-behaved mechanisms for describing languages of
data words.

One of the most commonly used formalisms for describing the notion of regu-
larity for data words is that of register automata [19]. These extend the standard
NFAs with registers that can store data values; transitions can compare the cur-
rently read data value with values stored in registers.

However, register automata are not convenient for specifying properties –
ideally, we want to use regular expressions to define languages. These have been
looked at in the context of data words (or words over infinite alphabets), and are
based on the idea of using variables for binding data values. An initial attempt
to define such expressions was made in [20], but it was very limited. Another
formalism, called regular expressions with memory, was shown to be equivalent
to register automata [22, 23]. At the first glance, they appear to be a good
formalism: these are expressions like a ↓x (a[x=])∗ saying: read letter a, bind
data value to x, and read the rest of the data word checking that all letters are a
and the data values are the same as x. This will define data words

(
a
d

)
· · ·
(
a
d

)
for

some data value d. This is reminiscent of freeze quantifiers used in connection
with the study of data word languages [12].

The serious problem with these expressions, however, is the binding of vari-
ables. The expression above is fine, but now consider the following expression:
a ↓x (a[x=]a ↓x)∗a[x=]. This expression re-binds variable x inside the scope of
another binding, and then crucially, when this happens, the original binding of
x is lost! Such expressions really mimic the behavior of register automata, which
makes them more procedural than declarative. (The above expression defines
data words of the form

(
a
d1

)(
a
d1

)
· · ·
(
a
dn

)(
a
dn

)
.)

Losing the original binding of a variable when reusing it inside its scope goes
completely against the usual practice of writing logical expressions, programs,
etc., that have bound variables. Nevertheless, this feature was essential for cap-
turing register automata [22]. So natural questions arise:

Regular Expressions with Binding over Data Words 327

– Can we define regular expressions for data words that use the acceptable
scope/binding policies for variables? Such expressions will be more declara-
tive than procedural, and more appropriate for being used in queries.

– Do these fall short of the full power of register automata?
– What are their basic properties, and what is the complexity of querying

graph data with such expressions?

Contributions. Our main contribution is to define a new formalism of regular
expressions with binding, or REWBs, to study its properties, and to show how
it can be used in the context of graph querying. The binding mechanism of
REWBs follows the standard scoping rules, and is essentially the same as in
LTL extensions with freeze quantifiers [12]. We also look at some subclasses of
REWBs based on the types of conditions one can use: in simple REWBs, each
condition involves at most one variable (all those shown above were such), and
in positive REWBs, negation and inequality cannot be used in conditions.

We show that the class of languages defined by REWBs is strictly contained
in the class of languages defined by register automata. The separating example
is rather intricate, and indeed it appears that for most reasonable languages one
can think of, if they are definable by register automata, they would be definable
by REWBs as well. At the same time, REWBs lower the complexity of some
key computational tasks related to languages of data words. For instance, non-
emptiness is Pspace-complete for register automata [12], but we show that it is
NP-complete for REWBs (and trivializes for simple and positive REWBs).

We consider the containment and universality problems for REWBs. In gen-
eral they are undecidable, even for simple REWBs. However, the problem be-
comes decidable for positive REWBs.

We look at applications of REWBs in querying graph databases. The problem
of query evaluation is essentially checking whether the intersection of two lan-
guages of data words is nonempty. We use this to show that the complexity of
query evaluation is Pspace-complete (note that it is higher than the complexity
of nonemptiness alone); for a fixed REWB, the complexity is tractable.

At the end we also sketch some results concerning a model of data word
automaton that uses variables introduced in [16]. We also comment on how
these can be combined with register automata to obtain a language subsuming
all the previously used ones while still retaining good query evaluation bounds.

Organization. We define data words and data graphs in Section 2. In Section 3 we
introduce our notion of regular expression with binding (REWB) and study their
nonemptiness and universality problems in Section 4 and Section 5, respectively.
In Section 6 we study REWBs as a graph database query language and in Section
7 we consider some possible extensions that could be useful in graph querying.
Due to space limitations, complete proofs of all the results are in the appendix.

2 Data Words and Data Graphs

Let Σ be a finite alphabet and D a countable infinite set of data values. A data
word is simply a finite string over the alphabet Σ×D. That is, in each position

328 L. Libkin, T. Tan, and D. Vrgoč

a data word carries a letter from Σ and a data value from D. We will denote
data words by

(
a1

d1

)
. . .
(
an

dn

)
, where ai ∈ Σ and di ∈ D.

A data graph (over Σ) is pair G = (V,E), where

– V is a finite set of nodes;
– E ⊆ V ×Σ ×D × V is a set of edges where each edge contains a label from
Σ and a data value from D.

We write V (G) and E(G) to denote the set of nodes and edges of G, respectively.
An edge e from a node u to a node u′ is written in the form (u,

(
a
d

)
, u′), where

a ∈ Σ and d ∈ D. We call a the label of the edge e and d the data value of the
edge e. We write D(G) to denote the set of data values in G.

The following is an example of a data graph, with nodes u1, . . . , u6 and edges
(u1,

(
a
3

)
, u2), (u3,

(
b
1

)
, u2), (u2,

(
a
3

)
, u5), (u6,

(
a
5

)
, u4), (u2,

(
a
1

)
, u4), (u4,

(
a
4

)
, u3) and

(u5,
(
c
7

)
, u6).

u1

u2

u3

u4

u5 u6

(
a
3

)
(
b
1

)(
a
3

)
(
c
7

)

(
a
4

) (
a
5

)
(
a
1

)

A path from a node v to a node v′ in G is a sequence

π = v1

(
a1
d1

)
v2

(
a2
d2

)
v3

(
a3
d3

)
· · · vn

(
an
dn

)
vn+1

such that each (vi,
(
ai

di

)
, vi+1) is an edge for each i ≤ n, and v1 = v and vn+1 = v′.

A path π defines a data word w(π) =
(
a1

d1

)(
a2

d2

)(
a3

d3

)
· · ·
(
an

dn

)
.

Remark. Note that we have chosen a model in which labels and data values
appear in edges. Of course other variations are possible, for instance labels ap-
pearing in edges and data values in nodes. All of these easily simulate each other,
very much in the same way as one can use either labeled transitions systems or
Kripke structures as models of temporal or modal logic formulae. In fact both
models – with labels in edges and labels in nodes – have been considered in
the context of semistructured data and, at least from the point of view of their
expressiveness, they are viewed as equivalent. Our choice is dictated by the ease
of notation primarily, as it identifies paths with data words.

3 Regular Expressions with Binding

We now define regular expressions with binding for data words. As explained
already, expressions with variables for data words were previously defined in [23]

Regular Expressions with Binding over Data Words 329

but those were really designed to mimic the transitions of register automata, and
had very procedural, rather than declarative flavor. Here we define them using
proper scoping rules.

Variables will store data values; those will be compared with other variables
using conditions. To define them, assume that, for each k > 0, we have variables
x1, . . . , xk. Then the set of conditions Ck is given by the grammar:

c := 0 | ⊥ | x=i | x�=i | c ∧ c | c ∨ c | ¬c, 1 ≤ i ≤ k.

The satisfaction of a condition is defined with respect to a data value d ∈ D and
a (partial) valuation ν : {x1, . . . , xk} → D of variables as follows:

– d, ν |= 0 and d, ν �|= ⊥;
– d, ν |= x=i iff d = ν(xi);

– d, ν |= x�=i iff d �= ν(xi);
– the semantics for Boolean connectives ∨,∧, and ¬ is standard.

Next we define regular expressions with binding.

Definition 1. Let Σ be a finite alphabet and {x1, . . . , xk} a finite set of vari-
ables. Regular expressions with binding (REWB) over Σ[x1, . . . , xk] are defined
inductively as follows:

r := ε | a | a[c] | r + r | r · r | r∗ | a ↓xi (r) (1)

where a ∈ Σ and c is a condition in Ck.

A variable xi is bound if it occurs in the scope of some ↓xi operator and free
otherwise. More precisely, free variables of an expression are defined inductively:
ε and a have no free variables, in a[c] all variables occurring in c are free, in
r1 + r2 and r1 · r2 the free variables are those of r1 and r2, the free variables of
r∗ are those of r, and the free variables of a ↓xi (r) are those of r except xi. We
will write r(x1, . . . , xl) if x1, . . . , xl are the free variables in r.

A valuation on the variables x1, . . . , xk is a partial function ν : {x1, . . . , xk} $→
D. We denote by F(x1, . . . , xk) the set of all valuations on x1, . . . , xk. For a
valuation ν, we write ν[xi ← d] to denote the valuation ν′ obtained by fixing
ν′(xi) = d and ν′(x) = ν(x) for all other x �= xi. Likewise, we write ν[x̄ ← d̄]
for a simultaneous substitution of values from d̄ = (d1, . . . , dl) for variables
x̄ = (x1, . . . , xl). Also notation ν(x̄) = d̄ means that ν(xi) = di for all i ≤ l.

Semantics. Let r(x̄) be an REWB over Σ[x1, . . . , xk]. A valuation ν ∈
F(x1, . . . , xk) is compatible with r, if ν(x̄) is defined.

A regular expression r(x̄) overΣ[x1, . . . , xk] and a valuation ν ∈ F(x1, . . . , xk)
compatible with r define a language L(r, ν) of data words as follows.

– If r = a and a ∈ Σ, then L(r, ν) = {
(
a
d

)
| d ∈ N}.

– If r = a[c], then L(r, ν) = {
(
a
d

)
| d, ν |= c}.

– If r = r1 + r2, then L(r, ν) = L(r1, ν) ∪ L(r2, ν).

330 L. Libkin, T. Tan, and D. Vrgoč

– If r = r1 · r2, then L(r, ν) = L(r1, ν) · L(r2, ν).
– If r = r∗1 , then L(r, ν) = L(r1, ν)

∗.

– If r = a ↓xi (r1), then L(r, ν) =
⋃
d∈D

{(a
d

)}
· L(r1, ν[xi ← d]).

A REWB r defines a language of data words as follows.

L(r) =
⋃

ν compatible with r

L(r, ν).

In particular, if r is without free variables, then L(r) = L(r, ∅). We will call such
REWBs closed.

Register Automata and Expressions with Memory. As mentioned earlier, regis-
ter automata extend NFAs with the ability to store and compare data values.
Formally, an automaton with k registers is A = (Q, q0, F, T), where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q is the set of final states;
– T is a finite set of transitions of the form (q, a, c) → (I, q′), where q, q′ are

states, a is a label, I ⊆ {1, . . . , k}, and c is a condition in Ck.

Intuitively the automaton traverses a data word from left to right, starting in
q0, with all registers empty. If it reads

(
a
d

)
in state q with register configuration

τ : {1, . . . , k} → D, it may apply a transition (q, a, c) → (I, q′) if d, τ |= c; it
then enters state q′ and changes contents of registers i, with i ∈ I, to d. For
more details on register automata we refer reader to [19, 23].

Expressions introduced in [22] had a similar syntax but rather different se-
mantics. They were built using a ↓x, concatenation, union and Kleene star. That
is, no binding was introduced with a ↓x; rather it directly matched the operation
of putting a value in a register. In contrast, we use proper bindings of variables;
expression a ↓x appears only in the context a ↓x (r) where it binds x inside the
expression r only. This corresponds to the standard binding policies in logic, or
in programs.

Example 1. We list several examples of languages expressible with our expres-
sions. In all cases below we have a singleton alphabet Σ = {a}.

– The language that consists of data words where the data value in the first
position is different from the others is given by: a ↓x ((a[x�=])∗).

– The language that consists of data words where the data values in the first
and the last position are the same is given by: a ↓x (a∗ · a[x=]).

– The language that consists of data words where there are two positions with
the same data value: a∗ · a ↓x (a∗ · a[x=]) · a∗.

Note that in REWBs in the above example the conditions are very simple: they
are either x= or x�=. We will call such expressions simple REWBs.

Regular Expressions with Binding over Data Words 331

We shall also consider positive REWBs where negation and inequality are
disallowed in conditions. That is, all the conditions c are constructed using the
following syntax: c := 0 | x=i | c ∧ c | c ∨ c,, where 1 ≤ i ≤ k.

We finish this section by showing that REWBs are strictly weaker than register
automata (i.e., proper binding of variables has a cost – albeit small – in terms
of expressiveness).

Theorem 1. The class of languages defined by REWBs is strictly contained in
the class of languages accepted by register automata.

That the class of languages defined by REWBs is contained in the class of
languages defined by register automata can be proved by using a similar inductive
construction as in [22, Proposition 5.3]. The idea behind the construction of the
separating example follows the intuition that defining scope of variables restricts
the power of the language, compared to register automata where once stored,
the value remains in the register until rewritten. As the proof is rather technical
and lengthy, we present it in the appendix.

We note that the separating example is rather intricate, and certainly not a
natural language one would think of. In fact, all natural languages definable with
register automata that we used here as examples – and many more, especially
those suitable for graph querying – are definable by REWBs.

4 The Nonemptiness Problem

We now look at the standard language-theoretic problem of nonemptiness:

Nonemptiness for REWBs

Input: A REWB r over Σ[x1, . . . , xk].

Task: Decide whether L(r) �= ∅.

More generally, one can ask if L(r, ν) �= ∅ for a REWB r and a compatible
valuation ν.

Recall that for register automata, the nonemptiness problem is Pspace-
complete [12] (and the same bound applied to regular expressions with memory
[23]). Introducing proper binding, we lose little expressiveness and yet can lower
the complexity.

Theorem 2. The nonemptiness problem for REWBs is NP-complete.

The proof is in the appendix. Note that for simple and positive REWBs the
problem trivializes.

Proposition 1. – For every simple REWB r over Σ[x1, . . . , xk], and for ev-
ery valuation ν compatible with r, we have L(r, ν) �= ∅.

– For every positive REWB r over Σ[x1, . . . , xk], there is a valuation ν such
that L(r, ν) �= ∅.

332 L. Libkin, T. Tan, and D. Vrgoč

5 Containment and Universality

We now turn our attention to language containment. That is we are dealing with
the following problem:

Containment for REWBs

Input: Two REWBs r1, r2 over Σ[x1, . . . , xk].

Task: Decide whether L(r1) ⊆ L(r2).

When r2 is a fixed expression denoting all data words, this is the universality
problem. We show that both are undecidable.

In fact, we show a stronger statement, that universality of simple REWBs
that use just a single variable is already undecidable.

Universality for one-variable REWBs

Input: An REWB r over Σ[x].

Task: Decide whether L(r) = (Σ × D)∗.

Theorem 3. Universality for one-variable REWBs is undecidable. In
particular, containment for REWBs is undecidable too.

While restriction to simple REWBs does not make the problem decidable, the
restriction to positive REWBs does: as is often the case, static analysis tasks
become easier without negation.

Theorem 4. The containment problem for positive REWBs is decidable.

Proof. It is rather straightforward to show that any positive REWB can be
converted into a register automaton without inequality [20]. The decidability of
the language containment follows from the fact that the containment problem
for register automata without inequality is decidable [32].

6 REWBs as a Query Language for Data Graphs

Standard mechanisms for querying graph databases are based on regular path
queries, or RPQs: those select nodes connected by a path belonging to a given
regular language [4, 9–11]. For data graphs, we follow the same idea, but now
paths are specified by REWBs, since they contain data. In this section we study
the complexity of this querying formalism.

We first explain how the problem of query evaluation can be cast as a problem
of checking nonemptiness of language intersection.

Note that a data graph G can be viewed as an automaton, generating data
words. That is, given a data graph G = (V,E), and a pair of nodes s, t, we let
L(G, s, t) be {w(π) | π is a path from s to t in G}; this is a set of data words.

Let r(x̄) be a REWB over Σ[x1, . . . , xk]. For ν compatible with r, we let
L(G, s, t, r, ν) be L(G, s, t)∩L(r, ν). Then for a graph G = (V,E), we define the

Regular Expressions with Binding over Data Words 333

answer to r over G as the set Q(r,G) of triples (s, t, d̄) ∈ V ×V ×Dk, such that
L(G, s, t, r, ν[x̄ ← d̄])) �= ∅. In other words, there is a path π in G from s to t
such that w(π) ∈ L(r, ν), where ν(x̄) = d̄.

If r is a closed REWB, we do not need a valuation in the above definition.
That is, Q(r,G) is the set of pairs of nodes (s, t) such that L(G, s, t)∩L(r) �= ∅,
i.e., there is a path π in G from s to t such that w(π) ∈ L(r).

In what follows we are interested in the query evaluation and query contain-
ment problems. For simplicity we will work with closed REWBs only. We start
with query evaluation.

Query Evaluation for REWB

Input: A data graph G, two nodes s, t ∈ V (G) and a REWB r.

Task: Decide whether (s, t) ∈ Q(r,G).

Note that in this problem, both the data graph and the query, given by r, are
inputs; this is referred to as the combined complexity of query evaluation. If the
expression r is fixed, we are talking about data complexity.

Recall that for the usual graphs (without data), the combined complexity of
evaluating RPQs is polynomial, but if conjunctions of RPQs are taken, it goes
up to NP (and could be NP-complete, in fact [10, 11]). When we look at data
graphs and specify paths with register automata, combined complexity jumps
to Pspace-complete [22].

However, we have seen that REWBs are less expressive than register au-
tomata, so perhaps a lower NP bound would apply to them? One way to try to
do it is to find a polynomial bound on the length of a minimal path witnessing
a REWB in a data graph. The next proposition shows that this is impossible,
since in some cases the shortest witnessing path will be exponentially long, even
if the REWB uses only one variable.

Proposition 2. Let Σ = {$, ¢, a, b} be a finite alphabet. There exists a family
of data graphs {Gn(s, t)}n>1 with two distinguished nodes s and t, and a family
of closed REWBs {rn}n>1 such that

– each Gn(s, t) is of size O(n);
– each rn is a closed REWB over Σ[x] of length O(n); and
– every data word in L(Gn, s, t, rn) is of length Ω(2�n/2�).

The proof of this is rather involved and can be found in the appendix.
Next we describe the complexity of the query evaluation problem. It turns

out that it matches that for register automata.

Theorem 5. – The complexity of query evaluation for REWB is Pspace-
complete.

– For each fixed r, the complexity of query evaluation for REWB is in
NLogspace.

In other words, the combined complexity of queries based on REWBs is Pspace-
complete, and their data complexity is in NLogspace (and of course it can

334 L. Libkin, T. Tan, and D. Vrgoč

be NLogspace-complete even for very simple expressions, e.g., Σ∗, which just
expresses reachability). Note that the combined complexity is acceptable (it
matches, for example, the combined complexity of standard relational query
languages such as relational calculus and algebra), and that data complexity is
the best possible for a language that can express the reachability problem.

We prove Pspace membership by showing how to transform REWBs into
regular expressions when only finitely many data values are considered. Since the
expression in question is of length exponential in the size of the input, standard
on-the-fly construction of product with the input graph (viewed as an NFA)
gives us the desired bound. Details of this construction, as well as the proof of
hardness, can be found in the appendix. The same proof, for a fixed r, gives us
the bound for data complexity.

Note that the upper bound follows from the connection with register au-
tomata. In order to make our presentation self contained we opted to present a
different proof in the appendix.

By examining the proofs of Theorem 5 and Theorem 3 we observe that lower
bounds already hold for both simple and positive REWBs. That is we get the
following.

Corollary 1. The following holds for simple REWBs.

– Combined complexity of simple (or positive) REWB queries is Pspace-
complete.

– Data complexity of simple (or positive) REWB queries is NLogspace-
complete.

Another important problem in querying graphs is query containment. In general,
the query containment problem asks, for two REWBs r1, r2 over Σ[x1, . . . , xk],
whether Q(r1, G) ⊆ Q(r2, G) for every data graph G. For REWB-based queries
we look at, this problem is easily seen to be equivalent to language containment.
Using this fact and the results of Section 5 we obtain the following.

Corollary 2. Query containment is undecidable for REWBs and simple
REWBs. It becomes decidable if we restrict our queries to positive REWBs.

7 Conclusions and Other Models

After conducting an extensive study of their language-theoretic properties and
their ability to query graph data we conclude that REWBs can serve as a highly
expressive language that still retains good query evaluation properties. Although
weaker than register automata and their expression counterpart – regular ex-
pressions with memory, REWBs come with a more natural and declarative syn-
tax and have a lower complexity of some language-theoretic properties such as
nonemptiness. They also complete a picture of expressions that relate to register
automata – a question that often came up in the discussions about the connec-
tion of regular expressions with memory (REMs) and register automata [22, 23],
as they can be seen as a natural restriction of REMs with proper scoping rules.

Regular Expressions with Binding over Data Words 335

As we have seen, both in this paper and in previous work on graph querying,
all of the considered formalisms have a combined complexity of query evaluation
that is either a low degree polynomial, or Pspace-complete. A natural question
to ask is if there is a formalism whose combined complexity lies between these
two classes.

An answer to this can be given using a model of automata that extends
NFAs in a similar way that REWBs extend regular expressions – by allowing
usage of variables. These automata, called variable automata, were introduced
in [16] and although originally defined for words over an infinite alphabet, they
can easily be modified to handle data words. Intuitively, they can be viewed
as NFAs with a guess of data values to be assigned to variables, with the run
of the automaton verifying correctness of the guess. An example of a variable
automaton recognizing the language of all words where the last data value is
different from all others is given in the following image.

qastart qb

(
a
x

)
(
a
�

)

Here we observe that variable automata use two sorts of variables – an ordi-
nary bound variable x that is assigned a unique value, and a special free variable
�, whose every occurrence is assigned a value different from the ones assigned to
the bound variables.

It can be show that variable automata, used as a graph querying formalism,
have NP-complete combined complexity of query evaluation and that their de-
terministic subclass [16] has coNP query containment. Due to space limitations
we defer the technical details of these results to the appendix.

The somewhat synthetic nature of variable automata and their usage of the
free variable makes them incomparable with REWBs and register automata, as
the example above demonstrates. A natural question then is whether there is a
model that encompasses both and still retains the same good query evaluation
bounds. It can be shown that by allowing variable automata to use the full power
of registers we get a model that subsumes all of the previously studied models
and whose combined complexity is no worse that the one of register automata.
This approach, albeit in a limited form, was already proposed in e.g. [15]. The
details of the construction can be found in the appendix.

Acknowledgement. The second author acknowledges the generous financial
support of FWO, under the scheme FWO Pegasus Marie Curie fellowship. The
first and the third author were partially supported by the EPSRC grants J015377
and G049165.

336 L. Libkin, T. Tan, and D. Vrgoč

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kauffman (1999)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

3. Abiteboul, S., Vianu, V.: Regular path queries with constraints. JCSS 58, 428–452
(1999)

4. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput.
Surv. 40(1) (2008)

5. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations and the
generalized intersection problem. In: LICS (2012)

6. Barceló, P., Libkin, L., Lin, A.W., Wood, P.: Expressive languages for path queries
over graph-structured data. ACM TODS 37(4) (2012)

7. Bojanczyk, M.: Automata for Data Words and Data Trees. In: RTA, pp. 1–4 (2010)

8. Calvanese, D., de Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of con-
junctive regular path queries with inverse. In: KR 2000, pp. 176–185 (2000)

9. Calvanese, D., de Giacomo, G., Lenzerini, M., Vardi, M.Y.: Rewriting of regular
expressions and regular path queries. JCSS 64(3), 443–465 (2002)

10. Consens, M.P., Mendelzon, A.O.: GraphLog: a visual formalism for real life recur-
sion. In: PODS 1990, pp. 404–416 (1990)

11. Cruz, I., Mendelzon, A., Wood, P.: A graphical query language supporting recur-
sion. In: SIGMOD 1987, pp. 323–330 (1987)

12. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
TOCL 10(3) (2009)

13. Fan,W.: Graph patternmatching revised for social network analysis. In: ICDT 2012,
pp. 8–21 (2012)

14. Figueira, D.: Reasoning on words and trees with data. PhD thesis (2010)

15. Figueira, D.: Alternating register automata on finite words and trees. Logical Meth-
ods in Computer Science 8(1) (2012)

16. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite al-
phabets. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 561–572. Springer, Heidelberg (2010)

17. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite al-
phabets (2011) (manuscript)

18. Gutierrez, C., Hurtado, C., Mendelzon, A.: Foundations of semantic Web
databases. J. Comput. Syst. Sci. 77(3), 520–541 (2011)

19. Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)

20. Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets.
Fundamenta Informaticae 69(3), 301–318 (2006)

21. Leser, U.: A query language for biological networks. Bioinformatics 21(suppl. 2),
33–39 (2005)

22. Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: ICDT 2012,
pp. 74–85 (2012)

23. Libkin, L., Vrgoč, D.: Regular expressions for data words. In: Bjørner, N.,
Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 274–288. Springer,
Heidelberg (2012)

24. Milo, R., Shen-Orr, S., et al.: Network motifs: simple building blocks of complex
networks. Science 298(5594), 824–827 (2002)

Regular Expressions with Binding over Data Words 337

25. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM TOCL 5(3), 403–435 (2004)

26. Olken, F.: Graph data management for molecular biology. OMICS 7, 75–78 (2003)
27. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM

TODS 34(3), 1–45 (2009)
28. Ronen, R., Shmueli, O.: SoQL: a language for querying and creating data in social

networks. In: ICDE 2009, pp. 1595–1602 (2009)
29. San Mart́ın, M., Gutierrez, C.: Representing, querying and transforming social

networks with RDF/SPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 293–307. Springer, Heidelberg (2009)

30. Schwentick, T.: A Little Bit Infinite? On Adding Data to Finitely Labelled Struc-
tures. In: STACS 2008, pp. 17–18 (2008)

31. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

32. A. Tal. Decidability of Inclusion for Unification Based Automata. M.Sc. thesis
(in Hebrew), Technion (1999)

Factorizations and Universal Automaton

of Omega Languages

Vincent Carnino1 and Sylvain Lombardy2

1 LIGM, Université Paris-Est Marne-la-Vallée
2 LABRI, Université de Bordeaux - IPB

Abstract. In this paper, we extend the concept of factorization on finite
words to ω-rational languages and show how to compute them. We define
a normal form for Büchi automata and introduce a universal automaton
for Büchi automata in normal form. We prove that, for every ω-rational
language, this Büchi automaton, based on factorization, is canonical and
that it is the smallest automaton that contains the morphic image of
every equivalent Büchi automaton in normal form.

1 Introduction

When considering rational languages on finite words, different kinds of formal-
ism may be studied: automata, semigroups, rational expressions, etc. There exist
similar notions for rational languages on infinite words, also called ω-rational lan-
guages, which are a rational extension of languages on finite words. Indeed, clas-
sical semigroups and rational expressions have been extended to ω-semigroups
and ω-rational expressions respectively. For the automata counterpart, there is
not a unique approach but several ones depending on the acceptance mode:
Büchi automata, Muller automata, Rabin automata, Streett automata, etc. In
this paper, we focus on Büchi automata, which are the most intuitive kind of
automata accepting infinite words.

Infinite words are widely used in computer science, especially in order to
describe the behaviour of infinite processes. Some well-known results on finite
words are also transposable to infinite words, like Kleene’s theorem which states
that ω-rational languages are exactly languages that are recognized by finite
Büchi automata and, as an extention, by finite ω-semigroups. Yet there are
other properties that are not transposable to infinite words like the existence of
a canonical deterministic minimal automaton: deterministic Büchi automata are
strictly less expressive than nondeterministic ones and, as a consequence, there is
no notion of minimal Büchi automaton. Carton and Michel [1] have proved that
prophetic automata (which are the pertinent notion for “right-left” determinism)
are as expressive as Büchi automata, but there is no unique minimal prophetic
automata for some ω-rational languages.

Yet, the minimal automaton is not the only canonical automaton associated
to a language. In 1971, Conway [2] introduced the notions of factorization and
factor matrix of a rational language. This concept has led to the definition of

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 338–349, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Factorizations and Universal Automaton of Omega Languages 339

a new object called the universal automaton of a language [5,9]. It has many
significant properties since any automaton that recognizes a language L has a
morphic image which is a subautomaton of the universal automaton of L. For
example, it may be used to compute a NFA of minimum size [8], or in theoretical
proofs for the existence of automata with specific properties (star height [4],
reversibility [3], etc.).

We extend the concept of factorization on finite words to ω-rational languages.
Using these ω-factorizations, we build the universal automaton of an ω-rational
language. We prove that, up to a conversion to a normal form, every Büchi
automaton has a morphic image in this automaton (universal property), and
that this automaton is minimal for this property.

In the first part, we give some basic definitions about languages (on finite
and infinite words) and about automata that will be used in the course of this
article. We recall some basic notions such as the past and the future of states
in both NFA and Büchi automata and some new ones like the normal form of a
Büchi automaton. Finally, we recall the definition of ω-semigroups given by [6]
and the principle of ω-rational language recognition by ω-semigroup.

In the second part, we define ω-factorizations and pure ω-factorizations which
will both be used to define the universal automaton. Then we explain how to
compute them using the transition ω-semigroup of a Büchi automaton. For ω-
factorizations, we describe another computation based on prophetic automata.

The last part is devoted to the definition of the universal automaton of an ω-
rational language L. It involves both pure and standard ω-factorizations as well
as positive factorizations on finite words. Finally, we state the main properties of
this automaton: it accepts exactly L, has the universal property and is minimal
among universal automata for L.

2 Definitions

2.1 Languages and ω-Languages

Classically A∗ denotes the free monoid generated by the alphabet A. The length
of a word w in A∗ is |w|, and for i ∈ [1; |w|], wi is the i-th letter of w. We denote
the empty word by ε and A+ denotes the free semigroup of non empty words.

The product over A∗ naturally extends to languages. The Kleene star L∗ of
a language L is defined as the union of powers of L, while L+ is the union of
positive powers of L.

The set of infinite words (or ω-words) over A is Aω ; the mixed product of
a word u and an ω-word v is the unique ω-word w which can be factorized
into a prefix u and a suffix v. A subset of Aω is called an ω-language. Like
the concatenation product, the mixed product naturally extends to a product
between languages and ω- languages.

For every word u in A+, the ω-word uω is the infinite repetition of u. If L is
a subset of A+, the ω-language Lω is the set of infinite concatenations of words
of L.

340 V. Carnino and S. Lombardy

These operations lead to the classical definitions of rational and ω-rational
languages.

Definition 1. The set of rational languages over A is the smallest set of lan-
guages which contains every finite language over A and which is closed under
union, concatenation and iteration.

Definition 2. A set L of ω-words is an ω-power language if there exists a ra-
tional language K ⊆ A+ such that L = Kω.

The set of ω-rational languages over A is the smallest set which contains the
empty set, every ω-power language over A, and which is closed under mixed
product with rational languages and union.

It is straightforward, that for every ω-rational language L, there exists a finite
set of pairs of rational languages (Xi, Yi)i∈I such that

L =
⋃
i∈I

XiY
ω
i . (1)

2.2 Automata

An automaton is a 5-tuple A = (Q,A,E, I, F), where Q is a finite set of states,
A is an alphabet, E ⊆ Q × A × Q is the set of transitions, I ⊆ Q is the set of
initial states and F ⊆ Q is the set of final states. If (p, a, q) is an element of

the set of transitions, we denote it p
a−−→ q. As usual, such an automaton can

be considered as a labeled graph and we use the graph terminology. A path is
a finite sequence of consecutive transitions. An ω-path is an infinite sequence of
consecutive transitions. The label of a path is the sequence of the labels of its
transitions.

A morphism of automata from A = (Q,A,E, I, F) into B = (R,A,G, J, T) is

a mapping ϕ from Q to R such that ϕ(I) ⊆ J , ϕ(F) ⊆ T , and ϕ(p)
a−−→ ϕ(q) is

in G for every p
a−−→ q in E.

Definition 3. Let A be an automaton. Let p be a state of A. The past of p,
PastA(p), is the language of words that label a path from some initial state to
p. The set of words that label a path between two states p and q is denoted by
TransA(p, q).

The semantic of an automaton depends on the acceptance mode. In this paper we
only consider two kinds of automata: NFA and Büchi automata; their acceptance
mode is described in the two following definitions.

Definition 4. Let A be a NFA. A path of A is accepting if it ends at a final
state. The future of a state p, FutA(p), is the set of words that label accepting
paths starting at state p. The (rational) language recognized by A is the union
of futures of the initial states of A.

Factorizations and Universal Automaton of Omega Languages 341

Definition 5. Let A be a Büchi automaton. An ω-path is accepting if it meets an
infinite number of occurrences of final states. The future of a state p, FutA(p), is
the set of ω-words that label accepting ω-paths starting at state p. The ω-rational
language recognized by A is the union of futures of the initial states of A.

We introduce here a normal form for Büchi automata. Indeed, in ω-rational
languages, the acceptation of a word is the conjunction of conditions on the
finite prefixes of the word and conditions dealing with the infinite behaviour.
The normal form we consider here consists in splitting the automaton in two
parts: one transient part in which finite prefixes are read, and final components
which process the infinite part.

Definition 6. A state of Büchi automaton A is transient if it is not accessible
from a final state. A strongly connected component (SCC) is final if it contains
a unique final state, at least one transition, and if every state accessible from
this final state is in the same SCC. A Büchi automaton is in normal form if
i) every initial state is transient;
ii) every final state is in a final SCC;
iii) for every non final state q of a final SCC S, every predecessor of q is in S.

Definition 7. Let A = (Q,A,E, I, F) be a Büchi automaton. Let G be the set
of final states of A that belong to a non trivial SCC, and let S be the function
which maps every state f of G onto the SCC of f . The normalization of A is
the automaton Anf = (Q′, A,E′, I ′, F ′) defined by :

• Q′ = Q ∪ {(p, f) | f ∈ G, p ∈ S(f)};
• I ′ = I, F ′ = {(f, f) | f ∈ G};
• E′ = E ∪ {p a−−→ (f, f) | p a−−→ f ∈ E, f ∈ G}

∪ {(p, f) a−−→ (q, f) | p a−−→ q ∈ E, f ∈ G, p, q ∈ S(f)}.

Proposition 1. Let A be a Büchi automaton. The normalization Anf of A is
an equivalent Büchi automaton in normal form.

Example 1. Figure 1 shows a Büchi automaton and its normal form.

2.3 Semigroup Recognition

Rational languages can be defined by finite automata and rational expressions,
but they can also be characterized by morphisms into finite monoids. A semi-
group is a set endowed with an associative product, a monoid is a semigroup with
a unit element. If S is a semigroup, S1 is the monoid obtained by adding a unit
element. A morphism of semigroups is a mapping between two semigroups which
commutes with the product. A morphism of monoids also preserves the unit ele-
ment. A languageK of A∗ is said to be recognizable if there exists a finite monoid
M and a surjective morphism ϕ from A∗ onto M such that K = ϕ−1(ϕ(K)); we
then say that K is recognized by (M,ϕ). The recognizable languages of A∗ are
exactly the rational languages.

342 V. Carnino and S. Lombardy

p q r
b

a a b
a

b

p q r

p, p q, q r, q

b

a a b
a

b

a a

b

b a b

a

b

a

Fig. 1. A Büchi automaton and its normal form

For languages in A+, there exists a similar notion of recognizability by finite
semigroup. Clearly, a language L of A∗ is recognized by a finite monoid if and
only if L ∩ A+ is recognized by a finite semigroup.

This approach has turned out to be very fruitful and there have been many
attempts to extend it to ω-rational languages. It appears that the appropriate
notion of recognizability of ω-rational languages by a finite algebraic structure
requires to embed them in a larger structure, called ω-semigroup. The recogniz-
ability theorem [6,7] (Theorem 1) requires a few definitions.

Definition 8. An ω-semigroup is a pair S = (S+, Sω), where S+ is a semigroup,
endowed with:

• A mixed product S+×Sω → Sω such that for every (u, v, w) in S+×S+×Sω,
(uv)w = u(vw).

• A surjective infinite product Sω
+ → Sω which is compatible with finite asso-

ciativity and mixed product.

Definition 9. Let S = (S+, Sω) and T = (T+, Tω) be two ω-semigroups. A
morphism of ω-semigroups is a pair ϕ = (ϕ+, ϕω) consisting of a semigroup
morphism ϕ+ : S+ → T+ and a mapping ϕω : Sω → Tω that commutes with the
infinite product.

These notions allow to define the recognizability by ω-semigroup.

Definition 10. Let T be an ω-semigroups and let ϕ : A∞ = (A+, Aω) → T be a
surjective morphism of ω-semigroups. A set L of ω-words over A is recognized
by (T, ϕ) if L = ϕ−1

ω (ϕω(L)).
A set of ω-words over A is recognizable if there exists a finite ω-semigroup T
and a surjective morphism ϕ such that L is recognized by (T, ϕ).

Theorem 1. [6] A set L of ω-words over A is an ω-rational language if and
only if it is recognizable.

Factorizations and Universal Automaton of Omega Languages 343

3 Factorizations of Languages

3.1 Definitions and Properties

The factorizations of languages were introduced by Conway in [2]. He has shown
that every rational language has a finite number of maximal factorizations and
that this property characterizes rational languages.

Definition 11. Let L be a language over A. A factorization of L is a pair of
languages X = (X1, X2) such that X1X2 is a subset of L. A positive factorization
X = (X1, X2) is a factorization such that X1 and X2 are non empty subsets
of A+. A factorization (resp. positive factorization) X is maximal if for every
factorization (resp. positive factorization) X ′ of L, X1 ⊆ X ′

1 and X2 ⊆ X ′
2

implies X = X ′. We denote by F(L) the set of maximal factorizations of L and
by F+(L) the set of maximal positive factorizations of L.

We extend this definition to ω-semigroups; in this case, we define two kinds
of factorizations: the ω-factorizations which are the straightforward extension
of factorizations on finite words and the pure ω-factorizations that involve the
infinite iteration.

Definition 12. Let S = (S+, Sω) be an ω-semigroup and let K be a subset
of Sω. An ω-factorization of K is a pair X = (X1, X2), with X1 ⊆ S1

+ and
X2 ⊆ Sω such that X1X2 is a subset of K. A pure ω-factorization of K is a pair
Y = (Y1, Y2), with Y1, Y2 ⊆ S+ and Y2 �= ∅, such that Y1Y

ω
2 is a subset of K.

An ω-factorization (resp. pure ω-factorization) X of K is maximal if for every
ω-factorization (resp. pure ω-factorization) Y of K, then X1 ⊆ Y1 and X2 ⊆ Y2
implies X = Y . We define F(K) as the set of maximal ω-factorizations of K
and Fp(K) as the set of maximal pure ω-factorizations of K.

If X is a maximal ω-factorization of K then X1 = {x ∈ S1
+ | xX2 ⊆ K}, and

X2 = {y ∈ Sω | X1y ⊆ K}. If Y is a maximal pure ω-factorization of K then
Y1 = {x ∈ S+ | xY ω

2 ⊆ K} and Y +
2 = Y2, but Y2 is not characterized by Y1.

Example 2. We consider the language L1 = A∗(aa + bb)A∗ and the ω-regular
language L1 = L1

ω. The pairs (A∗,L1) and (∅, Aω) are the two maximal ω-
factorizations of L1. The pairs (A+, L1 + aA∗a+ a) and (A+, L1 + bA∗b+ b) are
maximal pure ω-factorizations of L1.

1

Proposition 2. Let L be an ω-rational language. If Y is in Fp(L), then there
exists X in F(L) such that Y1 = X1 ∩ A+ and Y ω

2 ⊆ X2.

Proposition 3. Let L be an ω-rational language over A. Let T be a finite ω-
semigroup and ϕ : A∞ → T such that L is recognized by (T, ϕ). Then, for every
X in F(L), the set X1 ∩ A+ is recognized by (T+, ϕ+), and X2 is recognized by
(T, ϕ), and for every Y in Fp(L), both Y1 and Y2 are recognized by (T+, ϕ+).

1 Notice that the image of a maximal pure ω-factorizations in the syntactic ω-
semigroup is not necessarily a union of linked pairs (cf. [6]); in (A+, L1 + aA∗a+ a),
the image of a is not an idempotent.

344 V. Carnino and S. Lombardy

Proof. Let L be an ω-rational language and let ϕ : A∞ → T be a morphism of
ω-semigroups that recognizes L, where T is a finite ω-semigroup. Let ϕ∗ be the
morphism of monoids from A∗ onto T 1

+ which is the natural extention of ϕ+.
Let X ∈ F(L), then ϕ∗(X1)ϕω(X2) ⊆ ϕω(L). Therefore, there exists α in

F(ϕ(L)) such that ϕ∗(X1) ⊆ α1 and ϕω(X2) ⊆ α2. Since L = ϕ−1
ω (ϕω(L)), then

ϕ−1
∗ (α1)ϕ

−1
ω (α2) ⊆ L, thus by maximality of X , it holds X1 = ϕ−1

∗ (α1) and
X2 = ϕ−1

ω (α2): the maximal factorizations of L are recognized by ϕ.
Let Y be in Fp(L). The pair γ = (ϕ+(Y1), ϕ+(Y2)) is a pure ω-factorization

of ϕω(L), thus there exists β in Fp(ϕω(L)) such that γ1 ⊆ β1 and γ2 ⊆ β2.

Therefore Y1 ⊆ ϕ−1
+ (β1) and Y2 ⊆ ϕ−1

+ (β2), and, since ϕ
−1
+ (β1)(ϕ

−1
+ (β2))

ω ⊆
ϕ−1
ω (ϕω(L)) = L, by maximality of Y , it holds Y1 = ϕ−1

+ (β1) and Y2 = ϕ−1
+ (β2).

The maximal pure ω-factorizations of L are therefore recognized by ϕ.
�

Corollary 1. Let L be an ω-rational language over A. The sets F(L) and Fp(L)
are finite and each of their elements is a pair of (ω-)rational languages.
Moreover,

L =
⋃

X∈F(L)

X1X2 =
⋃

Y ∈Fp(L)

Y1Y
ω
2 (2)

Corollary 2. Let A be a Büchi automaton and let L be the ω-rational language
accepted by A. The sets F(L) and Fp(L) are effectively computable.

Proof. The transition ω-semigroup S = (S+, Sω) of A is computable (cf. [6]), as
well as the morphism ϕ such that L is recognized by (S, ϕ). By Proposition 3,
every computation of maximal factorizations can be done in S, which is finite.

�

This proof induces a bound on the number of maximal ω-factorizations. Since
each maximal ω-factorization is characterized by one of its factors, the number of
ω-factorizations is at most min(2|S+|+1, 2|Sω|). Likewise, the number of maximal
pure ω-factorizations is at most 2|S+|.

In contrast with the case of finite words, the finiteness of F(L) and Fp(L) does
not imply that L is ω-rational.

Example 3. Let L2 = {
∏

i�0 a
f(i)b | f : N → N and ∀i, f−1(i) is finite}; it is not

ω-rational and, yet, F(L2) = {(A∗,L2), (∅, Aω)} and Fp(L2) = {(∅, A+)}.

3.2 Computation of Maximal ω-Factorizations from Prophetic
Automata

In this part, we present an alternative computation of the factorizations of an
ω-rational language based on a prophetic automaton recognizing this language.

Definition 13. [1] A Büchi automaton A over A is prophetic if the future of
every state is non empty and the futures of states are pairwise disjoint.

Theorem 2. [1] Every ω-rational language can be recognized by a prophetic
automaton.

Factorizations and Universal Automaton of Omega Languages 345

The conversion of a Büchi automaton into a prophetic automaton is effective,
but a bit complicated. Nevertheless, some natural ω-rational languages have very
simple prophetic automata.

To compute the maximal factorizations from a prophetic automaton, we use
the well-known subset construction. The aim is not to obtain a deterministic
equivalent Büchi automata (which may not exist), but to compute a set of states,
that will be used in Proposition 4 to characterize maximal ω-factorizations.

If A = (Q,A,E, I, F) is a (Büchi) automaton, for each word u in A∗, the set
of accessible states by u from a subset K of Q is δA(K,u) = {q | ∃p ∈ K and u ∈
TransA(p, q)}.

The subset construction of A is the set P = {K ⊆ Q | ∃u ∈ A∗, K =
δA(I, u)}. Notice that I = δA(I, ε) is always in P and that P can be incrementaly
computed, since δA(I, ua) = δA(δA(I, u), a).

Proposition 4. Let A be a prophetic automaton with set of states Q recognizing
L ⊆ Aω. Let P be the subset construction of A and let P∩ be the smallest set
containing the element Q, every element of P , and closed under intersection.
We set, for every K in P∩, and every X in F(L),

ϕ(K) =

⎛⎝⋂
p∈K

PastA(p),
⋃
p∈K

FutA(p)

⎞⎠ , ψ(X) =
⋂

u∈X1

δA(I, u). (3)

Then, ϕ is a one-to-one mapping between P∩ and F(L) and ψ = ϕ−1.

Proof. Let X ∈ F(L) and let H = ψ(X), which is clearly in P∩, since for each
word u, the set δA(I, u) is in P (if X1 = ∅, then H = Q).

We prove now that the factorization Y = ϕ(H) is equal to X . It holds H =⋂
u∈X1

δA(I, u) = {p ∈ Q | X1 ⊆ PastA(p)}, thus X1 ⊆
⋂

p∈H PastA(p) = Y1.
For each v in X2, there exists a unique p in Q such that v is in FutA(p); it holds
X1v ⊆ L, hence X1 ⊆ PastA(p) and p is in H . Thus, X2 ⊆

⋃
p∈H FutA(p), and

X = Y by maximality of X .
Conversely, let K be in P∩, and Y = ϕ(K). It holds

K =
⋂

{δA(I, u) | u ∈ A∗,K ⊆ δA(I, u)}

=
⋂

{δA(I, u) | u ∈
⋂
p∈K

PastA(p)} =
⋂

u∈Y1

δ(I, u).
(4)

Let X be in F(L) such that Y1 ⊆ X1 and Y2 ⊆ X2. Since Y1 ⊆ X1, it holds
ψ(X) ⊆ K. For each p in K, there exists v in FutA(p) ⊆ Y2 ⊆ X2. Thus
X1v ⊆ L and p is in

⋂
u∈X1

δA(I, u) = ψ(X). Therefore, ψ(X) = K and Y =
ϕ(ψ(X)) = X .
�

4 Universal Automaton

In this part, we extend the definition of the universal automaton [5] of a language
to infinite words. In the case of finite words, the universal automaton of L is the

346 V. Carnino and S. Lombardy

smallest automaton which recognizes L and in which every equivalent automaton
has a morphic image.

We shall first describe the definition of the universal automaton of L and then
prove that it is actually the smallest Büchi automaton which recognizes L and
in which every equivalent automaton in normal form has a morphic image.

4.1 Definition of the Universal Automaton

The definition of the universal automaton of an ω-rational language involves
ω-factorizations, pure ω-factorizations and positive factorizations.

Definition 14. Let L be an ω-rational language on A. For each Y in Fp(L), we
set ZY = {Z ∈ F+(Y2) | Z �= (Y2, Y2)}. The universal automaton UL of L is a
Büchi automaton defined as follows.

The set of states of UL is the union of F(L), Fp(L) and ZY for each Y ∈ Fp(L).
The set of final states of UL is Fp(L).
The set of initial states of UL is {X ∈ F(L) | ε ∈ X1}.
The set of transitions of UL is

{X a−−→ X ′ | a ∈ A, X,X ′ ∈ F(L) and X1a ⊆ X ′
1}

∪{X a−−→ Y | a ∈ A,X ∈ F(L), Y ∈ Fp(L), and X1aY2
ω ⊆ L}

∪{K a−−→ Y | a ∈ A, Y ∈ Fp(L),K ∈ ZY ∪ {Y }, a ∈ K2}
∪{K a−−→ Z | a ∈ A, ∃Y ∈ Fp(L),K ∈ ZY ∪ {Y }, Z ∈ ZY and aZ2 ⊆ K2}.

Example 4. Let Lb be the language of words with an infinite number of ’b’, which
is recognized by the automaton of Figure 2 (left). The maximal ω-factorizations
and maximal pure ω-factorizations are F(Lb) = {(A∗,Lb), (∅, Aω)} and Fp(Lb) =
{(∅, A+), (A+,Kb)}, whereKb = A∗bA∗. From the right factors of these maximal
pure ω-factorizations, we obtain the following sets of maximal positive factoriza-
tions: F+(A

+) = {(A+, A+)} and F+(Kb) = {(A+,Kb), (Kb, A
+)}. Notice that

Z(∅,A+) = F+(A
+) \ {(A+, A+)} = ∅.

The construction of the universal automaton of Lb follows; it is shown in
Figure 2 (right).

4.2 Basic Properties of the Universal Automaton

The choices concerning the definition of UL could seem arbitrary at first glance.
Nevertheless, the following propositions, which seem to naturally follow from the
definition of the universal automaton, and that are required for the soundness of
this notion, may not be true as soon as the definition of the universal automaton
is slightly modified.

The conditions that define the transitions of the universal automaton can be
generalized to charaterize the paths in this automaton.

Factorizations and Universal Automaton of Omega Languages 347

a b
a

b A∗,Kb

A∗,Lb

Kb, A
+

A+,Kb

∅, Aω ∅, A+

a, b
a, b

a, b

b

a, b

a, b

a, b a, b

b

a, b

a, b

b

a, b

a, b

a, b
b

Fig. 2. A prophetic Büchi automaton and the universal automaton recognizing words
with an infinite number of ’b’

Lemma 1. Let L be an ω-rational language. Let UL be the universal automaton
of L and let ZY be defined as in Definition 14. Let w be a non empty (finite)
word. Let X and X ′ in F(L), Y in Fp(L), Z in ZY , and K in ZY ∪Y . It holds:

a) w ∈ TransUL(X,X
′) ⇔ X1w ⊆ X ′

1; b) w ∈ TransUL(X,Y) ⇔ X1wY2
ω ⊆ L;

c) w ∈ TransUL(K,Y) ⇔ w ∈ K2; d) w ∈ TransUL(K,Z) ⇔ wZ2 ⊆ K2.

The future and the past of states of the universal automaton are closely related
to the factorizations which define them.

Proposition 5. Let L be an ω-rational language and let UL be the universal
automaton of L.
1. For every X in F(L),

a) PastUL(X) = X1 b) FutUL(X) = X2.

2. For every Y in Fp(L) and for every Z ∈ ZY ,

a) PastUL(Y) = Y1 b) TransUL(Y, Y) = Y2 c) FutUL(Y) = Y2
ω

d) TransUL(Y, Z) = Z1 e) TransUL(Z, Y) = Z2.

Proof. 2 b) and 2 e) are straightforward from Lemma 1 c). 2 c) comes from 2 b)
and from the fact that no other final state is accessible from Y .
– 2 d) From Lemma 1 d), TransUL(Y, Z) = {w | wZ2 ⊆ Y2} = Z1.
– 1 b) If w is in FutUL(X), there exists Y in Fp(L) and a factorization of w into xy
such that x is in TransUL(X,Y) and y is in FutUL(Y). Hence X1xy ⊆ X1xY

ω
2 ⊆ L

(Lemma 1 b), and w = xy is in X2. Conversely, if w is in X2, there exists T
in Fp(X2) and a factorization of w into xy, with x in T1 and y in Tω

2 . Since
X1T1T

ω
2 ⊆ L, there exists Y in Fp(L) such that X1T1 ⊆ Y1 and T2 ⊆ Y2. There-

fore X1xY
ω
2 ⊆ L and y is in Y ω

2 , thus w = xy is in TransUL(X,Y)FutUL(Y) ⊆
FutUL(X).

348 V. Carnino and S. Lombardy

Let I be the maximal factorization of L such that I2 = L. The empty word ε
is in I1 and thus I is an initial state.
– 1 a) Let X be in F(L). It holds X1X2 ⊆ L = I2, hence, by Lemma 1 a), every
word of X1 is in PastUL(X). Conversely, if w is in PastUL(X), there exists an
initial state X ′ such that w is in TransUL(X

′, X), thus X ′
1w ⊆ X1, and since ε

is in X ′
1, the word w is in X1.

– 2 a) Let Y be in Fp(L). It holds I1Y1Y ω
2 ⊆ I1L = L, hence, by Lemma 1 b),

every word of Y1 is in PastUL(Y). Conversely, if w is in PastUL(Y), there exists
an initial state X such that w is in TransUL(X,Y), thus X1wY

ω
2 ⊆ L, and since

ε is in X1, the word w is in X1w ⊆ Y1.
�
Proposition 6. The universal automaton of an ω-language is a finite Büchi
automaton in normal form.

In the universal automaton, the states corresponding to ω-factorizations are
transient states, while every pure ω-factorization Y is a final state and elements
of ZY are the other states of the final SCC of Y .

From Proposition 5, it is straightforward that:

Proposition 7. The universal automaton of L recognizes L.
The universal automaton of L is canonical w.r.t. L. We state now that it is indeed
universal for L, i.e. it contains the morphic image of any Büchi automaton in
normal form that recognizes L.
Proposition 8. (Universality) Let A be a Büchi automaton in normal form
that recognizes L. Then, there exists a morphism ϕ from A into UL. Moreover,
this morphism can be chosen such that transient states of A map onto transient
states of UL.

Depending on the nature of the state, the mapping ϕ is defined as follows :

1. If p is a transient state, let X2 = {v | PastA(p)v ⊆ L} and X1 = {u | uX2 ⊆
L}. We set ϕ(p) = (X1, X2).

2. If p is a final state. Let Y1 = {u | uTransA(p, p)ω ⊆ L} and Y2 ∈ max{T |
Y1T

ω ⊆ L and TransA(p, p) ⊆ T }. We set ϕ(p) = (Y1, Y2).
3. If p belongs to a SCC containing a final state q distinct from p. Let Y = ϕ(q),

Z1 = {u | uTransA(p, q) ⊆ Y2} and Z2 = {v | Z1v ⊆ Y2}. If (Z1, Z2) =
(Y2, Y2), then let K = Y , otherwise K = Z. We set ϕ(p) = K.

Every automaton in normal form that recognizes the ω-language L and that
fulfils the universal property contains the universal automaton. The maximality
of factorizations implies that the merging of distinct states leads to accept more
ω-words.

Proposition 9. Let V be an automaton in normal form recognizing L such that
there exists a morphism ϕ from UL into V. Then ϕ is injective.

Propositions 7,8 and 9 put together give the main result of this paper.

Theorem 3. For every ω-rational language L, the universal automaton of L is
the smallest Büchi automaton in normal form that recognizes L in which every
equivalent Büchi automaton in normal form has a morphic image.

Factorizations and Universal Automaton of Omega Languages 349

5 Conclusion

This paper introduces factorizations of ω-rational languages. They lead to the
definition of the universal automaton of such a language. This automaton is ef-
fectively computable, since the maximal ω-factorizations are computable either
from a finite ω-semigroup that recognizes the language or from a prophetic au-
tomaton. The maximal pure ω-factorizations are also computable from the same
ω-semigroup, but it remains open whether they can be efficiently computed from
some automaton accepting the language.

Like for rational languages on finite words, the universal automaton may
be useful, in spite of its size, which is at most exponential in the size of the
syntactic ω-semigroup, in the proofs of existence of Büchi automata with specific
properties. On finite words, the universal automaton allows for instance to prove
that a reversible rational language can be recognized by a NFA which is both
reversible and star-height minimal [4].

Moreover, since every automaton has a morphic image in the universal au-
tomaton, it can be a tool for the construction of automata with a small number
of states. In the case of Büchi automata, since the universal automaton is in
normal form, the computation of a Büchi automaton with a minimal number of
states is not as straightforward as in the case of NFA. It is probably a question
which deserves more studies.

References

1. Carton, O., Michel, M.: Unambiguous Büchi automata. Theoret. Comput. Sci. 297,
37–81 (2003)

2. Conway, J.H.: Regular algebra and finite machines. Mathematics series. Chapman
and Hall, London (1971)

3. Lombardy, S.: On the construction of reversible automata for reversible languages.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 170–182. Springer, Heidelberg (2002)

4. Lombardy, S., Sakarovitch, J.: Star height of reversible languages and universal
automata. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 76–90. Springer,
Heidelberg (2002)

5. Lombardy, S., Sakarovitch, J.: The universal automaton. In Logic and Automata.
Texts in Logic and Games, vol. 2, pp. 457–504. Amsterdam University Press (2008)

6. Perrin, D., Pin, J.-É.: Semigroups and automata on infinite words. In: Semigroups,
Formal Languages and Groups, pp. 49–72. Kluwer Academic Publishers (1995)

7. Perrin, D., Pin, J.-É.: Infinite Words. Pure and Applied Mathematics, vol. 141.
Elsevier (2004)

8. Polák, L.: Minimalizations of nfa using the universal automaton. Int. J. Found.
Comput. Sci. 16(5), 999–1010 (2005)

9. Sakarovitch, J. Elements of Automata Theory. Cambridge University Press (2009)

Deciding Determinism

of Unary Languages Is coNP-Complete�

Ping Lu1,2,3, Feifei Peng4, and Haiming Chen1

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

{luping,chm}@ios.ac.cn
2 Graduate University of Chinese Academy of Sciences

3 University of Chinese Academy of Sciences
4 China Agricultural University, Beijing 100083, China

Abstract. In this paper, we give the complexity of deciding determinism
of unary languages. First, we derive a set of arithmetic progressions from
an expression E over a unary alphabet, and give the relations between
numbers in these arithmetic progressions and words in L(E). Next, we
define a problem related to arithmetic progressions and investigate the
complexity of this problem. Finally, by reduction from this problem we
show that deciding determinism of unary languages is coNP-complete.

1 Introduction

The XML schema languages, e.g., DTD and XML Schema, require that the con-
tent model should be deterministic, which ensures fast parsing documents [20,1].
Intuitively, determinism means that a symbol in the input word should be
matched to a unique position in the regular expression without looking ahead in
the word [21,4].

However, this determinism is defined in a semantic way, without a known
simple syntax definition [1]. It is not easy for users to understand such kind of
expressions. Lots of work [1,4,3,11,14,5,15] studied properties of deterministic
expressions. But most of these work merely handled determinism of expressions
and only little progress has been made about determinism of languages.

For standard regular expressions, Brüggemann-Klein and Wood [4] showed
that the problem, whether an expression denotes a deterministic language, is
decidable. Recently Bex et al. [1] proved that the problem is PSPACE-hard,
but it is unclear whether the problem is in PSPACE. The problem becomes
much harder when we consider expressions with counting. It is not known to be
decidable whether a language can be defined by a deterministic expression with
counting. In [9], Gelade et al. showed that for unary languages, deterministic
expressions with counting are expressively equivalent to standard deterministic

� Work supported by the National Natural Science Foundation of China under Grant
No. 61070038.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 350–361, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Deciding Determinism of Unary Languages Is coNP-Complete 351

expressions. Hence considering determinism of standard expressions over a unary
alphabet can give a lower bound for the problem. This is our starting point.

Covering systems were introduced by Paul Erdős [7,2]. This is an interesting
topic in mathematics and there are many unsolved problems about covering
systems [12]. Here, we are only concerned with the problem whether a set of
arithmetic progressions forms a covering system. This problem has been shown
to be coNP-complete [19,8].

Unary languages are actually sets of numbers. Then for an expression E,
we derive a set of arithmetic progressions and show the relations between these
arithmetic progressions and L(E). After that, we give the complexity of deciding
determinism of unary languages by reduction from covering systems.

The rest of the paper is organized as follows. Section 2 gives some basic
definitions and some facts from the number theory, which we will use later.
We associate a set of arithmetic progressions with a given regular expression
in Section 3. Section 4 shows the complexity of deciding determinism of unary
languages. Section 5 gives the conclusion and the future work.

2 Preliminaries

Let Σ be an alphabet of symbols. A regular expression over Σ is recursively
defined as follows: ∅, ε and a ∈ Σ are regular expressions; For any two regular
expressions E1 and E2, the union E1+E2, the concatenation E1E2 and the star
E∗

1 are regular expressions. For a regular expression E, we denote L(E) as the
language specified by E and |E| as the size of E, which is the number of symbols
occurrence in E.

We mark each symbol a in E with a different integer i such that each marked
symbol ai occurs only once in the marked expression. For example a∗1a2 is a
marking of a∗a. The marking of E is denoted by E. We use E� to denote the
result of dropping subscripts from the marked symbols. These notations are
extended for words and sets of symbols in the obvious way.

Deterministic regular expressions are defined as follows.

Definition 1 ([4]). An expression E is deterministic if and only if, for all words
uxv, uyw ∈ L(E) where |x| = |y| = 1, if x �= y then x� �= y�. A regular language
is deterministic if it is denoted by some deterministic expression.

For example, a∗a is not deterministic, since a2, a1a2 ∈ L(a∗1a2). A natural char-
acterization of deterministic regular expressions is that: E is deterministic if and
only if the Glushkov automaton of E is deterministic [3]. Deterministic regular
expressions denote a proper subclass of regular languages [4].

The following notations are basic mathematical operators [10]: x! = max{ n |
n ≤ x, n ∈ Z}; x mod y = x − y x

y !, for y �= 0; x ≡ y (mod p) ⇔
x mod p = y mod p; m|n ⇔ m > 0 and n = mx for some integer x;
gcd(x1, x2, . . . , xn) = max{k|(k|x1) ∧ (k|x2) ∧ . . . (k|xn)}; lcm(x1, x2, . . . , xn) =
min{k|k > 0∧(x1|k)∧(x2|k)∧. . . (xn|k)}. Notice that gcd(0, 0, . . . , 0) is undefined
and lcm(x1, x2, . . . , xn) is also undefined when one of the parameters is not larger

352 P. Lu, F. Peng, and H. Chen

than 0. In this paper, we denote gcd(0, 0, . . . , 0) = 0 and lcm(x1, x2, . . . , xn) = 0
when one of the parameters is 0.

Here, we give some facts, which we will use later.

Lemma 1 ([22]). Given two integers a, b > 0, each number of the form ax+by,
with x, y ≥ 0, is a multiple of gcd(a, b). Furthermore, the largest multiple of
gcd(a, b) that cannot be represented as ax+by, with x, y ≥ 0, is lcm(a, b)−(a+b).

From Lemma 1, we can obtain more generalized results as follows.

Corollary 1. Given two integers a, b > 0, each number of the form ax + by,
with x ≥ X ≥ 0 and y ≥ Y ≥ 0, is a multiple of gcd(a, b). Furthermore, the
largest multiple of gcd(a, b) that cannot be represented as ax + by, with x ≥ X
and y ≥ Y , is aX + bY + lcm(a, b)− (a+ b).

Corollary 2. Given n (n ≥ 2) integers a1 > 0, a2 > 0, . . . , an > 0, each number
of the form a1x1 + a2x2 . . . + anxn, with x1 ≥ X1 ≥ 0, x2 ≥ X2 ≥ 0, . . . , and
xn ≥ Xn ≥ 0, is a multiple of gcd(a1, a2, . . . , an). Furthermore, all multiples of

gcd(a1, a2, . . . , an) no less than
n∑

i=1

aiXi + n
n∏

i=1

ai can be represented as a1x1 +

a2x2 . . .+ anxn, with x1 ≥ X1 ≥ 0, x2 ≥ X2 ≥ 0, . . . , and xn ≥ Xn ≥ 0.

In this paper, we primarily discuss unary languages. For a regular language L
over the alphabet {a}, there is a correspondence between words in L and their
lengths. For convenience when we say the word n, we mean the word an.

3 The Arithmetic Progressions of Unary Languages

In this section, we handle the following problem: Given an expression E, how
to construct a set P = {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉} of arithmetic progressions
such that any word w ∈ L(E) satisfies |w| ≡ si (mod li) for some i (1 ≤ i ≤ n),
and P reflects some structural properties of E.

To this end, we define the following function for an expression E.

Definition 2. The function S(E) is defined as

S(ε) = {〈0, 0〉}
S(a) = {〈0, 1〉} a ∈ Σ
S(E1 + E2) = S(E1) ∪ S(E2)
S(E1E2) = {〈gcd(li, lj), si + sj〉|〈li, si〉 ∈ S(E1) ∧ 〈lj , sj〉 ∈ S(E2)}

S(E∗
1) =

{
{〈0, 0〉} if S(E1) = {〈0, 0〉},
{〈l, 0〉|l = max{x|∀li∀si(〈li, si〉 ∈ S(E1) ∧ (x|li) ∧ (x|si))}}otherwise;

The intuition behind the construction of S(E) is Lemma 1. The cases ε, a, and
E1+E2 are obvious. For the case E1E2, let 〈l1, s1〉 ∈ S(E1) and 〈l2, s2〉 ∈ S(E2).
Then numbers in S(E) should be in the form k1l1+s1+k2l2+s2, where k1, k2 ∈ N.
From Lemma 1, these numbers can be written as k · gcd(l1, l2) + s1 + s2, where
k ∈ N. Moreover, we have added some extra numbers in S(E), but the number
of new natural numbers is finite. The case E∗

1 is similar.

Deciding Determinism of Unary Languages Is coNP-Complete 353

Example 1. Let E = (aaa + aa)∗ + (aaa)∗((aa)∗aaa + (aaa)∗aa). The process
of computing S is shown in Table 1. E1 in the table stands for subexpressions
of E. At last, S(E) = {〈1, 0〉, 〈1, 3〉, 〈3, 2〉}. It is easy to see that S(E) contains
all natural numbers. However, a /∈ L(E) and a is the only word, which is not in
L(E).

Table 1. The process of computing S

E1 S(E1) E1 S(E1) E1 S(E1) E1 S(E1)

a 〈0, 1〉 aa+ aaa
〈0, 2〉
〈0, 3〉 (aa+ aaa)∗ 〈1, 0〉 (aa)∗aaa+ (aaa)∗aa

〈2, 3〉
〈3, 2〉

aa 〈0, 2〉 (aa)∗ 〈2, 0〉 (aa)∗aaa 〈2, 3〉 (aaa)∗((aa)∗aaa+(aaa)∗aa)
〈1, 3〉
〈3, 2〉

aaa 〈0, 3〉 (aaa)∗ 〈3, 0〉 (aaa)∗aa 〈3, 2〉 (aaa+ aa)∗ +
(aaa)∗((aa)∗aaa+(aaa)∗aa)

〈1, 0〉
〈1, 3〉
〈3, 2〉

At first, we have the following property about the tuples in S(E).

Proposition 1. Let E be an expression. For any 〈l, s〉 ∈ S(E) there exists an
L (L ≥ 0) such that (1) : L + t · l + s ∈ L(E) for any integer t (t ≥ L); (2) : if
l �= 0, then l|L. (3) : if l = 0, then L = 0.

Proof. We prove it by induction on the structure of E. For simplicity, we denote
Q(l, s, L,E) as the conditions in the proposition. That is Q(l, s, L,E) = true if
and only if (1), (2), and (3) hold for the parameters l, s, L and E.

The cases E = ε or a, a ∈ Σ are obvious, since L = 0 satisfy the conditions.
E = E1+E2: Suppose 〈l, s〉 ∈ S(E). From the definition of S, we have 〈l, s〉 ∈

S(E1) or 〈l, s〉 ∈ S(E2). If 〈l, s〉 ∈ S(E1), then by the inductive hypothesis
there is an L1 (L1 ≥ 0) such that Q(l, s, L1, E1) = true. Then L = L1 satisfies
Q(l, s, L,E) = true. The case 〈l, s〉 ∈ S(E2) can be proved in a similar way.
E = E1E2: Suppose 〈l, s〉 ∈ S(E). From the definition of S, there are 〈l1, s1〉 ∈

S(E1) and 〈l2, s2〉 ∈ S(E2) such that l = gcd(l1, l2) and s = s1 + s2. By
the inductive hypothesis there are L1 (L1 ≥ 0) and L2 (L2 ≥ 0) such that
Q(l1, s1, L1, E1) = true and Q(l2, s2, L2, E2) = true. Let L = L1 + L2 + l1L1 +
l2L2 + lcm(l1, l2)− l1 − l2 + gcd(l1, l2). Then from Corollary 1, for any integer t
(t ≥ L) there are k1 ≥ L1 and k2 ≥ L2 such that:

L+ t · l + s
= L1+L2+ l1L1+ l2L2+ lcm(l1, l2)− l1− l2+ gcd(l1, l2)+ t · gcd(l1, l2)+ s1+ s2
= L1 + L2 + k1l1 + k2l2 + s1 + s2
= L1 + k1l1 + s1 + L2 + k2l2 + s2

From the inductive hypothesis and E = E1E2, we have L + t · l + s ∈ L(E).
If l �= 0, then l1 �= 0 or l2 �= 0. Suppose l1 �= 0 and l2 = 0. By the inductive
hypothesis, l1|L1 and L2 = 0. Hence L = L1 + l1L1. Since l = gcd(l1, l2), l|L.

354 P. Lu, F. Peng, and H. Chen

The other cases can be proved in a similar way. If l = 0, then l1 = 0 and l2 = 0.
Therefore L1 = 0 and L2 = 0 from the inductive hypothesis. Hence L = 0.
E = E∗

1 : Suppose 〈l, 0〉 ∈ S(E) and S(E1) = {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}.
Then l = gcd(l1, l2, . . . , ln, s1, s2, . . . , sn). Because S(E1) = {〈l1, s1〉, 〈l2, s2〉, . . . ,
〈ln, sn〉}, by the inductive hypothesis there are L1 ≥ 0, L2 ≥ 0, . . . , Ln ≥ 0 such
that Q(l1, s1, L1, E1) = true, Q(l2, s2, L2, E1) = true, . . . , Q(ln, sn, Ln, E1) =
true. Therefore for any integer t1 ≥ L1, t2 ≥ L2, . . . , tn ≥ Ln we have L1 +
t1l1 + s1 ∈ L(E1), L2 + t2l2 + s2 ∈ L(E1), . . . , and Ln + tnln + sn ∈ L(E1). Let

L =
n∑

i=1

2(Li + liLi+ si)+ 2n
n∏

i=1

(Li + liLi+ si)li and g = gcd(l1, l2, . . . , ln, L1 +

l1L1 + s1, L2 + l2L2 + s2, . . . , Ln + lnLn + sn). If g = 0, then l1 = 0, l2 =
0, . . . , ln = 0, L1 + l1L1 + s1 = 0, L2 + l2L2 + s2 = 0, . . . , Ln + lnLn + sn = 0,
l = 0 and L = 0. It is easy to see that the statements (1), (2) and (3) hold.
Otherwise, suppose g �= 0. Then g|L. From Corollary 2, we know that for any

integer t (t ≥ L),
n∑

i=1

2(Li + liLi + si) + 2n
n∏

i=1

(Li + liLi + si)li + t · g can be

represented as
n∑

i=1

(Li+ liLi+si)xi+
n∑

i=1

liyi, with xi ≥ 2, yi ≥ 0 (1 ≤ i ≤ n). By

the inductive hypothesis, for any 1 ≤ i ≤ n, gcd(li, Li + liLi + si) = gcd(li, si).
Then gcd(l1, l2, . . . , ln, L1 + l1L1 + s1, L2 + l2L2 + s2, . . . , Ln + lnLn + sn) =
gcd(l1, l2, . . . , ln, s1, s2, . . . , sn). Therefore for any integer t (t ≥ L),

L+ t · gcd(l1, l2, . . . , ln, s1, s2, . . . , sn)
=

n∑
i=1

2(Li + liLi + si) + 2n
n∏

i=1

(Li + liLi + si)li + t · g

=
n∑

i=1

(Li + liLi + si)xi +
n∑

i=1

liyi

=
n∑

i=1

[(Li + liLi + si)xi + liyi]

For all i (1 ≤ i ≤ n), since xi ≥ 2, (Li+liLi+si)xi+liyi = (Li+liLi+si)(xi−
1)+Li+li(Li+yi)+si. By the inductive hypothesis, we have Li+liLi+si ∈ L(E1)
and Li+ li(Li+yi)+si ∈ L(E1). Hence (Li+ liLi+si)xi+ liyi ∈ L(E). Therefore
n∑

i=1

[(Li+liLi+si)xi+liyi] ∈ L(E). That is L+t·gcd(l1, l2, . . . , ln, s1, s2, . . . , sn) ∈

L(E). If l �= 0, then l|li and l|si for any 0 ≤ i ≤ n. Hence l|L by the inductive
hypothesis. If l = 0, then li = 0 and si = 0. Therefore Li = 0. Hence L = 0.
�

This proposition means that for any 〈l, s〉 ∈ S(E) there exists an L such that
any word w, satisfying |w| = L+ t · l + s for some integer t (t ≥ L), is in L(E).

On the other hand, for any word w in L(E) there is a tuple 〈l, s〉 in S(E) such
that w satisfies |w| = t · l + s for some integer t (t ∈ Z). This statement can be
ensured by the following proposition.

Proposition 2. Let E be an expression. For all w ∈ L(E), there exists 〈l, s〉 ∈
S(E) such that if l �= 0, then |w| ≡ s (mod l), or if l = 0, then |w| = s.

Proof. We prove it by induction on the structure of E. For simplicity, we denote
R(l, s, w) as the conditions in the proposition. That is R(l, s, w) = true if and

Deciding Determinism of Unary Languages Is coNP-Complete 355

only if the following statement holds: if l �= 0, then |w| ≡ s (mod l), or if l = 0,
then |w| = s. The cases E = ε or a, a ∈ Σ are obvious.
E = E1 + E2: For all w ∈ L(E), we know that w ∈ L(E1) or w ∈ L(E2).

If w ∈ L(E1), then by the inductive hypothesis there exists 〈l1, s1〉 ∈ S(E1)
such that R(l1, s1, w) = true. Because S(E) = S(E1) ∪ S(E2), there exists
〈l1, s1〉 ∈ S(E) such that R(l1, s1, w) = true. The case w ∈ L(E2) can be proved
in a similar way.
E = E1E2: For all w ∈ L(E), there are w1 ∈ L(E1) and w2 ∈ L(E2) such

that w = w1w2. By the inductive hypothesis there exists 〈l1, s1〉 ∈ S(E1) and
〈l2, s2〉 ∈ S(E2) such that R(l1, s1, w1) = true and R(l2, s2, w2) = true. There-
fore there are k1, k2 ∈ Z such that |w1| = k1l1 + s1 and |w2| = k2l2 + s2. From
the definition of S, we know that 〈gcd(l1, l2), s1 + s2〉 ∈ S(E). Hence

|w| = |w1w2| = k1l1 + s1 + k2l2 + s2
= k1k

′
1gcd(l1, l2) + s1 + k2k

′
2gcd(l1, l2) + s2

= (k1k
′
1 + k2k

′
2)gcd(l1, l2) + s1 + s2

That is R(gcd(l1, l2), s1 + s2, w) = true.
E = E∗

1 : Suppose 〈l, 0〉 ∈ S(E). If w = ε, then clearly R(l, 0, ε) = true.
For all w ∈ L(E) and w �= ε, there are w1, w2, . . . , wn ∈ L(E1) such that w =
w1w2 . . . wn. By the inductive hypothesis there exists 〈l1, s1〉 ∈ S(E1), 〈l2, s2〉 ∈
S(E2),. . . , and 〈ln, sn〉 ∈ S(E1) satisfying R(l1, s1, w1) = true, R(l2, s2, w2) =
true,. . . , and R(ln, sn, wn) = true. From the definition of S, w ∈ L(E) and
w �= ε, it is easy to prove that l �= 0. Then for any 〈l′, s′〉 ∈ S(E1), l|l′ and l|s′.
Therefore there are k11, k12, k21, k22, . . . , kn1, kn2 ∈ Z such that |w1| = k11l+k12l,
|w2| = k21l + k22l, . . . , and |wn| = kn1l + kn2l. Hence

|w| = |w1w2 . . . wn| = k11l + k12l + k21l+ k22l + . . .+ kn1l + kn2l
= (k11 + k12 + k21 + k22 + . . .+ kn1 + kn2)l

That is R(l, 0, w) = true.
�

The following lemma is straightforward.

Lemma 2. Let E be an expression. The following statements hold: (1) For all
〈0, s〉 ∈ S(E) we have s ∈ L(E); (2) l = 0 for all 〈l, s〉 ∈ S(E) iff L(E) is finite;
(3) If there is a tuple 〈1, s〉 ∈ S(E), then there exists an L (L ≥ 0) such that
w ∈ L(E) for any w (|w| > L).

From the above properties, we build the relations between words in L(E) and
tuples in S(E). Then we can study properties of L(E) by investigating attributes
of S(E).

Now we analyze the time used to compute S(E). Given an expression E, we
compute S(E) in the following way: We first construct the syntax tree of E, after
that we use a bottom-up traversal to compute S for each node. It is known that
for two m-bit numbers, the greatest common divisor can be computed in O(m2)
time [6]. In our computation, each number has O(log |E|) bits. Then computing
S for each node takes O(|E|2 log2 |E|) time. Therefore the total time to compute
S(E) is O(|E|3 log2 |E|).

356 P. Lu, F. Peng, and H. Chen

Given an NFA N , Sawa [16] also gave an algorithm to construct a set of
arithmetic progressions such that the union of these arithmetic progressions is
the language accepted by N . The algorithm runs in O(n2(n +m)) time, where
n is the number of states in N and m is the number of transitions in N . The
advantage of our method is that it works merely on original expressions and
reaches some kind of the lower bound of the algorithm in [16], since there is
an expression En such that |En| = n and any NFA describing L(En) has Ω(n ·
(log n)2) transitions [17,13]. But the price is that we add words in the language.
However, we will see later that adding such words does not affect determinism
of the language.

4 Determinism of Unary Languages

In the previous section, we derived a set of arithmetic progressions from a given
expression E. We will show how to use these arithmetic progressions to check
determinism of L(E) in this section.

4.1 Decision Problems for Covering Systems

A covering system CS is a set of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with
0 ≤ si < li (1 ≤ i ≤ n) and

n∑
i=1

(li + si) ≤ p(n) for some polynomial function p,

such that any integer x satisfies x ≡ si (mod li) for some i (1 ≤ i ≤ n) [2]. For
example, the set of pairs {〈2, 0〉, 〈4, 1〉, 〈4, 3〉} forms a covering system. Since any
integer i satisfies one of the following conditions: i ≡ 0 (mod 2); i ≡ 1 (mod 4);
i ≡ 3 (mod 4).

The covering problem (CP) is the following problem: Whether a given set of
ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with 0 ≤ si < li (1 ≤ i ≤ n) and
n∑

i=1

(li + si) ≤ p(n) for some polynomial function p, forms a covering system?

The complexity of CP is shown in the following theorem.

Theorem 1 ([19],[8]). CP is coNP-complete1.

Similarly, an equal difference covering system (EDCS) is a set P of pairs,

{〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with 0 ≤ si < li (1 ≤ i ≤ n) and
n∑

i=1

(li + si) ≤

p(n) for some polynomial function p, such that there exist two integers (y, x)
(0 ≤ x < y) satisfying the following condition: For any integer k, x ≡ k (mod y)
if and only if k ≡ si (mod li) for some i (1 ≤ i ≤ n). We define (y, x) as the
answer to P . Let P = {〈4, 1〉, 〈4, 3〉}. It is straightforward to see that P is an
EDCS, but is not a CS. The answer to P is (2, 1). Intuitively, the union of the

1 The polynomial bound is not necessary for this theorem [8]. However, we concentrate
on unary languages in this paper, and we need this condition for the definition of
CP. For this restricted case, the theorem also holds [19].

Deciding Determinism of Unary Languages Is coNP-Complete 357

numbers represented by an EDCS forms an arithmetic progression, while the
union of the numbers represented by a CS contains all integers.

The equal difference covering problem (EDCP) is defined as follows: Whether
a given set of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with 0 ≤ si < li (1 ≤
i ≤ n) and

n∑
i=1

(li+ si) ≤ p(n) for some polynomial function p, forms an EDCS?

The union of arithmetic progressions is used in the study of the evenly spaced
integer topology [18]. However, the complexity of EDCP, as far as we know,
has not been given.

We have the following properties of an EDCS.

Lemma 3. Suppose P is an EDCS. The answer to P is unique.

For a set P of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, we denote
L = gcd(l1, l2, . . . , ln) and suppose 0 < p1 < p2 < p3 . . . < pm are the distinct
divisors of L.

Lemma 4. Suppose P is an EDCS and the answer to P is (y, x). Then there
is an integer k such that y = pk, k = max{l|∀i∀j(〈li, si〉 ∈ P ∧〈lj , sj〉 ∈ P ∧ si ≡
sj (mod pl))} and x = (s1 mod pk).

Hence given a set P of ordered pairs, if we know P is an EDCS, we can find the

answer to P from the tuples in P . Since
n∑

i=1

(li + si) ≤ p(n), this computation

is polynomial-time computable. It is easy to see that the converse of the lemma
does not hold. Consider the following set of ordered pairs: {〈3, 0〉, 〈4, 0〉}. y = 1
and x = 0 satisfy all the conditions, but obviously this set is not an EDCS.

Bickel et al. [2] gave a method to construct a covering system from a set P of
ordered pairs, where the union of numbers represented by the pairs contains an
arithmetic progression. Inspired by this idea, we can prove that given an EDCS,
we can construct a covering system, and vice versa.

Theorem 2. EDCP is coNP-complete.

Proof. At first, we prove that the problem is coNP-hard. This can be proved by
reduction from CP. Given a set P of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉},
we construct the set P1 = {〈3l1, 3s1〉, 〈3l2, 3s2〉, . . . , 〈3ln, 3sn〉}. We claim that P
is a CS if and only if P1 is an EDCS and the answer to P1 is (3, 0).

Suppose P is a CS. For any integer k such that k ≡ 0 (mod 3), let k = 3k1.
Because P is a CS, there is a tuple 〈l, s〉 ∈ P satisfying k1 ≡ s (mod l). Hence
k1 = lt+ s for some integer t (t ∈ Z). Therefore 3k1 = 3lt+3s and k = 3lt+3s.
That is k ≡ 3s (mod 3l), and obviously 〈3l, 3s〉 ∈ P1. If k ≡ 3s (mod 3l) for
some tuple 〈3l, 3s〉 ∈ P1, then k = 3lt+3s for some integer t (t ∈ Z). Hence 3|k.
That is k ≡ 0 (mod 3). Therefore P1 is an EDCS and (3, 0) is the answer to P1.

Suppose P1 is an EDCS and (3, 0) is the answer to P1. For any integer k,
since 3k ≡ 0 (mod 3), there is a tuple 〈3l, 3s〉 ∈ P1 satisfying 3k ≡ 3s (mod 3l).
Hence 3k = 3lt + 3s for some integer t (t ∈ Z). Therefore k = lt + s. That is
k ≡ s (mod l). Since 〈l, s〉 ∈ P , we can conclude that P is a CS.

358 P. Lu, F. Peng, and H. Chen

From Theorem 1 we conclude that EDCP is coNP-hard.
Next, we show that EDCP is in coNP. This can be proved by reduction to

CP. Suppose P is the set of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}. Then let
p = gcd(l1, l2, . . . , ln). From the definition of EDCP, we know that p > 0. Sup-
pose 0 < p1 < p2 < . . . < pm are the distinct divisors of p. We look for an integer
k such that k = max{l|∀i∀j(〈li, si〉 ∈ P∧〈lj , sj〉 ∈ P∧si ≡ sj (mod pl))}. If there
is not such k, then from Lemma 4 we know that P is not an EDCS. Hence sup-
pose there is a k satisfying the condition. Denote s = (s1 mod pk). We construct
the following set Q of ordered pairs, {〈 l1

pk
, s1−s

pk
〉, 〈 l2

pk
, s2−s

pk
〉, . . . , 〈 ln

pk
, sn−s

pk
〉}. We

have the following relationship between P and Q.

Claim. Q is a CS iff P is an EDCS.

Proof. Suppose Q is a CS. Then let x = s and y = pk. For any integer j, such
that j ≡ si (mod li) for some i (1 ≤ i ≤ n), there is j1 such that j = j1li + si =
j1j

′y + j′′y + s = (j1j
′ + j′′)y + x. Hence x ≡ j (mod y). For any integer j

such that x ≡ j (mod y), there is j1 satisfying j = j1y + x. Since Q is a CS,
there is an integer j2 such that j1 = j2

li
pk

+ si−s
pk

for some i (1 ≤ i ≤ n). Then
j1pk = j2li + si − s, so j = j1y+ x = j2li + si − s+ x = j2li + si. Therefore P is
an EDCS.

On the other hand, suppose P is an EDCS. From Lemma 4, we know that
(pk, s) is the answer to P . For any integer j′, let J = j′pk + s. Since s ≡
J (mod pk), J ≡ si (mod li) for some i (1 ≤ i ≤ n). Hence there is an integer j1
such that J = j1li + si = j1pk

li
pk

+ pk
si−s
pk

+ s = (j1
li
pk

+ si−s
pk

)pk + s = j′pk + s.

Since pk �= 0, j′ = j1
li
pk

+ si−s
pk

. Hence Q is a CS.
�

Then to decide whether P is an EDCS, we only need to check whether Q is a
CS. Since CP is in coNP and the computations of p, pk and s take polynomial
time, EDCP is in coNP.

We conclude that EDCP is coNP-complete.
�

4.2 The Complexity of Determinism of Unary Languages

In this section, we will discuss the complexity of deciding determinism of unary
languages.

For an expression E, suppose S(E) = {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}. Define
L(S(E)) =

⋃
〈l,s〉∈S(E)

{kl + s|k ∈ Z ∧ kl+ s ≥ 0}.

To build the relations between L(E) and L(S(E)), we need the following
lemma.

Lemma 5 ([1]). For every deterministic language L, the following statements
hold: (1) If string w ∈ L, then the language L\{w} is deterministic; (2) If string
w /∈ L, then the language L ∪ {w} is deterministic.

Then we can simplify S(E) in the following ways: (1) Delete all tuples 〈0, s〉;
(2) For 〈l, s〉, where l ≤ s, we replace 〈l, s〉 with 〈l, s mod l〉. This process just
deletes or adds a finite number of words to L(S(E)). From Lemma 5, it does

Deciding Determinism of Unary Languages Is coNP-Complete 359

not change determinism of the language. From now on, when we say S(E),
we mean the simplified one. After the simplification, any tuple 〈l, s〉 ∈ S(E)
satisfies 0 ≤ s < l. Moreover, from the definition of S, it is easy to see that
|S(E)|∑
i=1

(li + si) ≤ 2|E|2, where 〈li, si〉 ∈ S(E).

From the construction of S(E), the relations between L(E) and L(S(E)) can
be characterized as follows.

Theorem 3. Let E be an expression. There exists a number M ∈ N such that
|L(S(E)) \ L(E)|+ |L(E) \ L(S(E))| ≤ M .

Corollary 3. Given an expression E, L(S(E)) is deterministic if and only if
L(E) is deterministic.

Then to decide determinism of L(E), we can check determinism of L(S(E)).
For a unary language, the corresponding minimal DFA consists of a chain of

states or a chain followed by a cycle [9]. Then to check determinism we need the
following characterization of determinism of unary languages.

Lemma 6 ([9]). Let Σ = {a}, and L be a regular language, then L is a deter-
ministic language if and only if L is finite or the cycle of the minimal DFA of
L has at most one final state.

From the definition of L(S(E)) and Lemma 6, we can easily see that to check
determinism of L(S(E)) we only need to check whether S(E) is an EDCS.

Theorem 4. Suppose L(S(E)) is infinite. L(S(E)) is deterministic if and only
S(E) is an EDCS.

Proof. (⇒) Since L(S(E)) is deterministic, the cycle of the minimal DFA of
L(S(E)) has at most one final state. Let the size of the cycle be p and n = |S(E)|.
Denote the start state as q0 and the only final state in the cycle as q1. Suppose
w is the shortest word such that δ(q0, w) = q1. Because li > 0 (1 ≤ i ≤ n), there

is an integer k′ (k′ > 0) such that M = k′
n∏

i=1

li and M > w. Since L(S(E))

is infinite, p �= 0. For any 〈li, si〉 (1 ≤ i ≤ n), since q1 is the only final state
in the cycle, there is an integer k such that kli + si > w, δ(q0, kli + si) = q1
and δ(q0, kli + li + si) = q1. Then p|li, p|M , and there is an integer k1 such that
w+k1p = kli+si. Hence w ≡ si (mod p). Let s = (w mod p). We prove that (p, s)
is the answer to S(E). For any integer k satisfying s ≡ k (mod p), there is an
integer k′1 such that k′1 > 0 and k+k′1M > w and (k+k′1M) ≡ s (mod p). So there
is an integer k′′ satisfying k+k′1M = w+k′′p. That is k+k′1M ∈ L(S(E)). Hence
(k + k′1M) ≡ si (mod li) for some i (1 ≤ i ≤ n). Because li|M , k ≡ si (mod li).
For any integer k satisfying k ≡ si (mod li) for some i (1 ≤ i ≤ n), there is an
integer k1 such that k = k1li + si. So

k ≡ k1li + si (mod p)
≡ si (mod p)

360 P. Lu, F. Peng, and H. Chen

≡ w (mod p)
≡ s (mod p)

Hence (p, s) is the answer to S(E). Therefore S(E) is an EDCS.
(⇐) Since S(E) is an EDCS, suppose (p, s) is the answer to S(E). If L(S(E))

is not deterministic, then there are two final states p1 and p2 in the cycle of the
minimal DFA of L(S(E)). Since p1, p2 are not equivalent, there is a word k
such that δ(q1, k) ∈ L(S(E)) ∧ δ(q2, k) /∈ L(S(E)) or δ(q1, k) /∈ L(S(E)) ∧
δ(q2, k) ∈ L(S(E)). Suppose the case δ(q1, k) ∈ L(S(E)) ∧ δ(q2, k) /∈ L(S(E))
holds. Denote the start state as q0. Then there are words k1 and k2 such that
δ(q0, k1) = q1 and δ(q0, k2) = q2. Since q1 and q2 are final states, k1 ∈ L(S(E))
and k2 ∈ L(S(E)). From S(E) is an EDCS, we have k1 ≡ s (mod p) and
k2 ≡ s (mod p). Because δ(q1, k) ∈ L(S(E)), k + k1 ≡ s (mod p). Hence p|k.
However, from δ(q2, k) /∈ L(S(E)), we have k+k2 �≡ s (mod p). So p � |k, which is
a contradiction. The case δ(q1, k) /∈ L(S(E))∧ δ(q2, k) ∈ L(S(E)) can be proved
in a similar way. Hence L(S(E)) is deterministic.
�

From Theorem 2 and Theorem 4, we can obtain the main result of the paper.

Theorem 5. Given a regular expression E over a unary alphabet, the problem
of deciding whether L(E) is deterministic is coNP-complete.

For any expression E = E∗
1 , we have |S(E∗

1)| = 1 from the definition of S. Then
S(E∗

1) is an EDCS. Hence we can easily obtain the following theorem.

Theorem 6 ([15]). Let L be any language over a unary alphabet. Then L∗ is
deterministic.

5 Conclusion and Future Work

In this paper, we give the complexity of deciding determinism of regular lan-
guages over a unary alphabet. By studying unary languages, we can conclude
that the problem, whether a language can be defined by a deterministic expres-
sion with counting, is coNP-hard.

There are a few problems for future research. It is easy to see that we have
only handled standard regular expressions. What is the complexity when the
input is an expression with counting? To solve this problem in the way we used
in this paper, we have to handle the following problems: (1) For a word w and an
expression E with counting over a unary alphabet, can the membership problem
be tested in time O(logk|w|) for some integer k > 0? (2) For an expression E
with counting over a unary alphabet, how to define S(E)? The hardness of these
problems mainly comes from the fact that we do not have a good tool to handle
expressions with counting.

Acknowledgments. We thank Wim Martens for sending us the full version of
the paper [15].

Deciding Determinism of Unary Languages Is coNP-Complete 361

References

1. Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML schema: effortless
handling of nondeterministic regular expressions. In: SIGMOD 2009, pp. 731–743
(2009)

2. Bickel, K., Firrisa, M., Ortiz, J., Pueschel, K.: Constructions of Coverings of the Inte-
gers: Exploring anErdős problem. SummerMath Institute,Cornell University (2008)

3. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120(2), 197–213 (1993)

4. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 142(2), 182–206 (1998)

5. Chen, H., Lu, P.: Assisting the Design of XML Schema: Diagnosing Nondetermin-
istic Content Models. In: Du, X., Fan, W., Wang, J., Peng, Z., Sharaf, M.A. (eds.)
APWeb 2011. LNCS, vol. 6612, pp. 301–312. Springer, Heidelberg (2011)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, Cambridge (2001)

7. Erdős, P.: On integers of the form 2k+p and some related problems. Summa Brasil.
Math. 2, 113–123 (1950)

8. Garrey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman (1979)

9. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: weak
versus strong determinism. SIAM J. Comput. 41(1), 160–190 (2012)

10. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: a foundation
for computer science, 2nd edn. Addison-Wesley (1994)

11. Groz, B., Maneth, S., Staworko, S.: Deterministic regular expressions in linear time.
In: PODS 2012, pp. 49–60 (2012)

12. Guy, R.K.: Unsolved problems in Number Theory, 3rd edn. Problem Books in
Math. Springer, New York (2004)

13. Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. In: Gao, Y.,
Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 16–30. Springer,
Heidelberg (2010)

14. Kilpeläinen, P.: Checking determinism of XML Schema content models in optimal
time. Informat. Systems 36(3), 596–617 (2011)

15. Losemann, K., Martens, W., Niewerth, M.: Descriptional complexity of determinis-
tic regular expressions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012.
LNCS, vol. 7464, pp. 643–654. Springer, Heidelberg (2012)

16. Sawa, Z.: Efficient construction of semilinear representations of languages accepted
by unary NFA. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227,
pp. 176–182. Springer, Heidelberg (2010)

17. Schnitger, G.: Regular expressions and NFAs without ε-transitions. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 432–443. Springer,
Heidelberg (2006)

18. Steen, L.A., Seebach, J.A.: Counterexamples in topology, 2nd edn. Springer,
New York (1978)

19. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: prelim-
inary report. In: STOC 1973, pp. 1–9 (1973)

20. van der Vlist, E.: XML Schema. O’Reilly (2002)
21. World Wide Web Consortium,

http://www.w3.org/wiki/UniqueParticleAttribution
22. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular langauges. Theoretical Computer Science 125(2), 315–328 (1994)

http://www.w3.org/wiki/UniqueParticleAttribution

Ultimate Periodicity of b-Recognisable Sets:

A Quasilinear Procedure

Victor Marsault� and Jacques Sakarovitch

Telecom-ParisTech and CNRS, 46 rue Barrault 75013 Paris, France
victor.marsault@telecom-paristech.fr

Abstract. It is decidable if a set of numbers, whose representation in a
base b is a regular language, is ultimately periodic. This was established
by Honkala in 1986.

We give here a structural description of minimal automata that accept
an ultimately periodic set of numbers.We then show that it can be verified
in linear time if a given minimal automaton meets this description.

This yields a O(n log(n)) procedure for deciding whether a general
deterministic automaton accepts an ultimately periodic set of numbers.

1 Introduction

Given a fixed positive integer b, called the base, every positive integer n is repre-
sented (in base b) by a word over the digit alphabet Ab = {0, 1, . . . , b−1} which
does not start with a 0. Hence, sets of numbers are represented by languages
of Ab

∗. Depending on the base, a given set of integers may be represented by a
simple or complex language: the set of powers of 2 is represented by the ratio-
nal language 10∗ in base 2; whereas in base 3, it can only be represented by a
context-sensitive language, much harder to describe.

A set of numbers is said to be b-recognisable if it is represented by a recog-
nisable, or rational, or regular, language over Ab

∗. On the other hand, a set of
numbers is recognisable if it is, via the identification of N with a∗ (n ↔ an), a
recognisable, or rational, or regular, language of the free monoid a∗. A set of
numbers is recognisable if, and only if it is ultimately periodic (UP) and we use
the latter terminology in the sequel as it is both meaningful and more distinguish-
able from b-recognisable. It is common knowledge that every UP-set of numbers
is b-recognisable for every b, and the above example shows that a b-recognisable
set for some b is not necessarily UP, nor c-recognisable for all c. It is an exercice
to show that if b and c are multiplicatively dependent integers (that is, there
exist integers k and l such that bk = cl), then every b-recognisable set is a c-
recognisable set as well (cf. [9] for instance). A converse of these two properties
is the theorem of Cobham: a set of numbers which is both b- and c-recognisable,
for multiplicatively independent b and c, is UP, established in 1969 [5], a strong
and deep result whose proof is difficult (cf. [4]).

After Cobham’s theorem, the next natural (and last) question left open on b-
recognisable sets of numbers was the decidability of ultimate periodicity. It was
positively solved in 1986:

� Corresponding author.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 362–373, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure 363

Theorem 1 (Honkala [11]). It is decidable whether an automaton over Ab
∗

accepts a UP-set of numbers.

The complexity of the decision procedure was not an issue in the original work.
Neither were the properties or the structure of automata accepting UP-set of
numbers. Given an automaton A over Ab

∗, bounds are computed on the pa-
rameters of a potential UP-set of numbers accepted by A. The property is then
decidable as it is possible to enumerate all automata that accept sets with smaller
parameters and check whether any of them is equivalent to A.

As explained below, subsequent works on automata and number representa-
tions brought some answers regarding the complexity of the decision procedure,
explicitly or implicitly. The present paper addresses specifically this problem and
yields the following statement.

Theorem 2. It is decidable in linear time whether a minimal DFA A over Ab
∗

accepts a UP-set of numbers.

As it is often the case, this complexity result is obtained as the consequence of a
structural characterisation. Indeed, we describe here a set of structural properties
for an automaton: the shape of its strongly connected components (SCC’s) and
that of its graph of SCC’s, that we gather under the name of UP-criterion.
Theorem 2 then splits into two results:

Theorem 3. A minimal DFA A over Ab
∗ accepts a UP-set of numbers if, and

only if, it satisfies the UP-criterion.

Theorem 4. It is decidable in linear time whether a minimal DFA A over Ab
∗

satisfies the UP-criterion.

As for Cobham’s theorem (cf. [4,7]), new insights on the problem tackled here are
obtained when stating it in a higher dimensional space. Let Nd be the additive
monoid of d-tuples of integers. Every d-tuple of integers may be represented in
base b by a d-tuple of words of Ab

∗ of the same length, as shorter words can be
padded by 0’s without changing the corresponding value. Such d-tuples can be
read by (finite) automata over (Ab

d)∗ — automata reading on d synchronised
tapes — and a subset of Nd is b-recognisable if the set of the b-representations
of its elements is accepted by such an automaton.

On the other hand, recognisable and rational sets of Nd are defined in the
classical way but they do not coincide as Nd is not a free monoid. A subset of Nd

is recognisable if is saturated by a congruence of finite index, and the family of
recognisable sets is denoted by RecNd. A subset of Nd is rational if is denoted
by a rational expression, and the family of rational sets is denoted by RatNd.
Rational sets of Nd have been characterised by Ginsburg and Spanier as sets
definable in the Presburger arithmetic 〈N,+ 〉 ([10]), hence the name Presburger
definable that is most often used in the literature.

It is also common knowledge that every rational set of Nd is b-recognisable for
every b, and the example in dimension 1 is enough to show that a b-recognisable
set is not necessarily rational. The generalisation of Cobham’s theorem: a subset

364 V. Marsault and J. Sakarovitch

of Nd which is both b- and c-recognisable, for multiplicatively independent b and c,
is rational, is due to Semenov (cf. [4,7]). The generalisation of Honkala’s theorem
went as smoothly.

Theorem 5 (Muchnik [15]). It is decidable whether a b-recognisable subset
of Nd is rational.

Theorem 6 (Leroux [13]). It is decidable in polynomial time whether a min-
imal DFA A over (Ab

d)∗ accepts a rational subset of Nd.

The algorithm underlying Theorem 5 is triply exponential whereas the one de-
scribed in [13], based on sophisticated geometric constructions, is quadratic —
an impressive improvement — but not easy to explain.

There exists another way to devise a proof for Honkala’s theorem which yields
another extension. In [10], Ginsburg and Spanier also proved that there exists a
formula in Presburger arithmetic deciding whether a given subset of Nd is recog-
nisable. In dimension 1, it means that being a UP-set of numbers is expressible
in Presburger arithmetic. In [2], it was then noted that since addition in base p
is realised by a finite automaton, every Presburger formula is realised by a finite
automaton as well. Hence a decision procedure that establishes Theorem 1.

Generalisation of base p by non-standard numeration systems then gives an
extension of Theorem 1, best expressed in terms of abstract numeration systems.
Given a totally ordered alphabet A, any rational language L of A∗ defines an
abstract numeration system (ANS) SL in which the integer n is represented by
the n+1-th word of L in the radix ordering of A∗ (cf. [12]). A set of integers
whose representations in the ANS SL form a rational language is called SL-
recognisable and it is known that every UP-set of numbers is SL-recognisable
for every ANS SL ([12]). The next statement then follows.

Theorem 7. If SL is an abstract numeration system in which addition is re-
alised by a finite automaton, then it is decidable whether a SL-recognisable set
of numbers is UP.

For instance, Theorem 7 implies that ultimate periodicity is decidable for sets
of numbers represented by rational sets in a Pisot base system [8]. The algo-
rithm underlying Theorem 7 is exponential (if the set of numbers is given by a
DFA) and thus (much) less efficient than Leroux’s constructions for integer base
systems. On the other hand, it applies to a much larger family of numeration
systems. All this was mentioned for the sake of completeness, and the present
paper does not follow this pattern.

Theorem 6, restricted to dimension 1, readily yields a quadratic procedure for
Honkala’s theorem. The improvement from quadratic to quasilinear complexity
achieved in this article is not a natural simplification of Leroux’s construction
for the case of dimension 1. Although the UP-criterion bears similarities with
some features of Leroux’s construction, it is not derived from [13], nor is the
proof of quasilinear complexity.

Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure 365

The paper is organised as follows. In Section 2, we treat the special case of
determining whether a given minimal group automaton accepts an ultimately
periodic set of numbers. We describe canonical automata, which we call Pascal
automata, that accept such sets. We then show how to decide in linear time
whether a given minimal group automaton is the quotient of some Pascal au-
tomaton.

Section 3 introduces the UP-criterion and sketches both its completeness and
correctness. An automaton satisfying the UP-criterion is a directed acyclic graph
(DAG) ’ending’ with at most two layers of non-trivial strongly connected com-
ponents (SCC’s). If the root is seen at the top, the upper (non-trivial) SCC’s are
circuits of 0’s and the lower ones are quotients of Pascal automata. It is easy,
and of linear complexity to verify that an automaton has this overall structure.

Proofs have been consistently removed in order to comply with space con-
straints. A full version of this work is available on arXiv [14].

2 The Pascal Automaton

2.1 Preliminaries

On Automata. We consider only finite deterministic finite automata, denoted
by A = 〈Q,A, δ, i, T 〉 , where Q is the set of states, i the initial state and T the
set of final states ; A is the alphabet, A∗ is the free monoid generated by A and
the empty word is denoted by ε; δ : Q×A → Q is the transition function.

As usual, δ is extended to a function Q × A∗ → Q by δ(q, ε) = q
and δ(q, ua) = δ(δ(q, u), a); and δ(q, u) will also be denoted by q ·u. When δ is a
total function, A is said to be complete. In the sequel, we only consider automata
that are accessible, that is, in which every state is reachable from i.

A word u of A∗ is accepted by A if i · u is in T . The set of words accepted
by A is called the language of A, and is denoted by L(A).

Let A = 〈Q,A, δ, i, T 〉 and B = 〈R,A, η, j, S 〉 be two deterministic au-
tomata. A map ϕ : Q → R is an automaton morphism, written ϕ : A → B
if ϕ(i) = j, ϕ(T) ⊆ S, and for all q in Q and a in A, such that δ(q, a) is defined,
then η(ϕ(q), a) is defined, and ϕ(δ(q, a)) = η(ϕ(q), a). We call ϕ a covering if
the following two conditions hold: i) ϕ(T) = S and ii) for all q in Q and a in A,
if η(ϕ(q), a) is defined, then so is δ(q, a). In this case, L(A) = L(B), and B is
called a quotient of A. Note that if A is complete, every morphism satisfies (ii).

Every complete deterministic automaton A has a minimal quotient which is
the minimal automaton accepting L(A). This automaton is unique up to isomor-
phism and can be computed from A in O(nlog(n)) time, where n is the number
of states of A (cf. [1]).

Given a deterministic automaton A, every word u induces an appli-
cation (q $→ q · u) over the state set. These applications form a finite monoid,
called the transition monoid of A. When this monoid happens to be a group
(meaning that the action of every letter is a permutation over the states), A is
called a group automaton.

366 V. Marsault and J. Sakarovitch

On Numbers. The base b is fixed throughout the paper (it will be a parameter
of the algorithms, not an input) and so is the digit alphabetAb. As a consequence,
the number of transitions of any deterministic automaton over Ab

∗ is linear in
its number of states. Verifying that an automaton is deterministic (resp. a group
automaton) can then be done in linear time.

For our purpose, it is far more convenient to write the integers least significant
digits first (LSDF), and to keep the automata reading from left to right (as in
Leroux’s work [13]). The value of a word u = a0a1 · · · an of Ab

∗, denoted by u,
is then u =

∑n
i=0(aib

i) and may be obtained by the recursive formula:

ua = u+ ab|u| (1)

Conversely, every integer n has a unique canonical representation in base b that
does not end with 0, and is denoted by 〈n〉. A word of Ab

∗ has value n if, and
only if, it is of the form 〈n〉0k.

By abuse of language, we may talk about the set of numbers accepted by
an automaton. An integer n is then accepted if there exists a word of value n
accepted by the automaton.

A set E ⊆ N is periodic, of period q, if there exists S ⊆ {0, 1, . . . , q−1} such
that E = {n ∈ N | ∃r ∈ S n ≡ r [q]}. Any periodic set E has a smallest period p
and a corresponding set of residues R: the set E is then denoted by ER

p . The set

of numbers in ER
p and larger than an integer m is denoted by ER

p,m.

2.2 Definition of a Pascal Automaton

We begin with the construction of an automaton PR
p that accepts the set ER

p ,
in the case where

p is coprime with b.

We call any such automaton a Pascal automaton.1 If p is coprime with b, there
exists a (smallest positive) integer ψ such that:

bψ ≡ 1 [p] and thus ∀x ∈ N bx ≡ bx mod ψ [p] .

Therefore, from Equation (1), knowing u mod p and |u| mod ψ is enough to
compute ua mod p.

Hence the definition of PR
p = 〈Z/pZ×Z/ψZ, Ab, η, (0, 0), R×Z/ψZ 〉 , where

∀(s, t) ∈ Z/pZ×Z/ψZ , ∀a ∈ Ab η((s, t), a) = (s, t) ·a = (s+abt, t+1) (2)

By induction on |u|, it follows that (0, 0) ·u = (u mod p, |u| mod ψ) for every u
in Ab

∗ and consequently that ER
p is the set of number accepted by PR

p .

Example 1. Fig.1 shows P2
3 , the Pascal automaton accepting integers written

in binary and congruent to 2 modulo 3. For clarity, the labels are omitted;
transitions labelled by 1 are drawn with thick lines and those labelled by 0 with
thin lines.

1 As early as 1654, Pascal describes a computing process that generalises the casting
out nines and that determines if an integer n, written in any base b, is divisible by
an integer p (see [16, Prologue]).

Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure 367

0, 0

0, 1

1, 0

1, 1

2, 0

2, 1

Fig. 1. The Pascal automaton P2
3

0, 0

0, 1

1, 0

1, 1

2, 0

2, 1

Fig. 2. The modified Pascal automaton P ′2
3

2.3 Recognition of Quotients of Pascal Automata

The tricky part of achieving a linear complexity for Theorem 4 is contained in
the following statement:

Theorem 8. It is decidable in linear time whether a minimal DFA A over Ab

is the quotient of a Pascal automaton.

Simplifications. Since PR
p is a group automaton, all its quotients are group

automata.
The permutation on Z/pZ×Z/ψZ realised by 0(ψ−1) is the inverse of the one

realised by 0 and we call it the action of the “digit” 0 1. Let g be a new letter
whose action on Z/pZ × Z/ψZ is the one of 10 1. It follows from (2) that for
every a in Ab — where a is understood both as a digit and as a number —
the action of a on Z/pZ× Z/ψZ (in PR

p) is equal to the one of ga0. The same
relation holds in any group automaton A over Ab

∗ that is a quotient of a Pascal
automaton, and this condition is tested in linear time.

Let B = {0, g} be a new alphabet. Any group automaton A = 〈Q,Ab, δ, i, T 〉
may be transformed into an automaton A′ = 〈Q,B, δ′, i, T 〉 where, for every q
in Q, δ′(q, 0) = δ(q, 0) and δ′(q, g) = δ(q, 10 1) . Fig.2 shows P ′2

3 where transi-
tions labelled by 0 are drawn with thin lines and those labelled by g with double
lines.2

Analysis: Computation of the Parameters. From now on, and for the
rest of the section, A = 〈Q,Ab, δ, i, T 〉 is a group automaton which has been
consistently transformed into an automaton A′ = 〈Q,B, δ′, i, T 〉. If A′ is a

quotient of a Pascal automaton P ′R
p , then the parameters p and R may be

computed (or ‘read’) in A′; this is the consequence of the following statement.

Proposition 1. Let ϕ : P ′R
p → A′ be a covering. Then, for every (x, y)

and (x′, y′) in Z/pZ×Z/ψZ, if x �= x′ and ϕ(x, y) = ϕ(x′, y′), then y �= y′.

Corollary 1. If A′ = 〈Q,B, δ′, i, T 〉 is a quotient of a modified Pascal automa-

ton P ′R
p , then p is the length of the g-circuit in A′ which contains i

and R = {r | i · gr ∈ T }.

2 The transformation highlights that the transition monoid of PR
p (and thus of P ′R

p)
is the semi-direct product Z/pZ�Z/ψZ.

368 V. Marsault and J. Sakarovitch

Next, if A′ is a quotient of a (modified) Pascal automaton P ′R
p , the equivalence

class of the initial state of P ′R
p may be ‘read’ as well in A′ as the intersection of

the 0-circuit and the g-circuit around the initial state of A′. More precisely, and

since (0, 0)
gs

−−→
P′R

p

(s, 0)
0t−−→
P′R

p

(s, t) , the following holds.

Proposition 2. Let ϕ : P ′R
p → A′ be a covering. For all s in Z/pZ and t

in Z/ψZ, ϕ(s, t) = ϕ(0, 0) if, and only if, i · gs = i · 0 t .

From this proposition follows that, given A′, it is easy to compute the class
of (0, 0) modulo ϕ if A′ is indeed a quotient of a (modified) Pascal automaton
by ϕ. Starting from i, one first marks the states on the g-circuit C. Then, starting
from i again, one follows the 0 1-transitions: the first time C is crossed yields t.
This parameter is characteristic of ϕ, as explained now.

Let (s, t) be an element of the semidirect product Gp = Z/pZ�Z/ψZ and τ(s,t)
the permutation on Gp induced by the multiplication on the left by (s, t):

τ(s,t)((x, y)) = (s, t) (x, y) = (xbt + s, y + t) . (3)

The same element (s, t) defines a permutation σ(s,t) on Z/pZ as well:

∀x ∈ Z/pZ σ(s,t)(x) = xbt + s . (4)

Given a permutation σ over a set S, the orbit of an element s of S under σ is
the set {σi(s) | i ∈ N}. An orbit of σ is one of these sets.

Proposition 3. Let ϕ : P ′R
p → A′ be a covering and let (s, t) be the state ϕ-

equivalent to (0, 0) with the smallest second component. Then, every ϕ-class is
an orbit of τ(s,t) (in Gp) and R is an union of orbits of σ(s,t) (in Z/pZ).

Synthesis: Verification That a Given Automaton Is a Quotient of a
Pascal Automaton. Given A′ = 〈Q,B, δ′, i, T 〉, let p, R and (s, t) computed
as explained above. It is easily checked that R is an union of orbits of σ(s,t) and
that ‖Q‖ = pt. The last step is the verification that A′ is indeed (isomorphic

to) the quotient of P ′R
p by the morphism ϕ defined by (s, t).

A corollary of Proposition 3 (and of the multiplication law in Gp) is that every
class modulo ϕ contains one, and exactly one, element whose second component
is smaller than t. From this observation follows that the multiplication by the
generators 0 = (0, 1) and g = (1, 0) in the quotient of P ′R

p by ϕ may be described
on the set of representatives Qϕ = {(x, z) | x ∈ Z/pZ, z ∈ Z/tZ} (beware that z
is in Z/tZ and not in Z/ψZ) by the following formulas:

∀(x, z) ∈ Qϕ

(x, z) · 0 = (x, z) (0, 1) =

{
(x, z + 1) if z < t− 1

τ 1
(s,t)(x, z + 1) = (x−s

bt , 0) if z = t− 1

(x, z) · g = (x, z) (1, 0) = (x+ bz, z) .

Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure 369

Hence A′ is the quotient of P ′R
p by ϕ if one can mark Q according to these rules,

starting from i with the mark (0, 0), without conflicts and in such a way that
two distinct states have distincts marks. Such a marking is realised by a simple
traversal of A′, thus in linear time, and this concludes the proof of Theorem 8.

Remark 1. Theorem 8 states that one can decide in linear time whether a given
automaton A is a quotient of a Pascal automaton, and in particular A has a
fixed initial state that plays a crucial role in the verification process.

The following proposition shows that the property (being a quotient of a
Pascal automaton) is actually independent of the state chosen to be initial. If
it holds for A, it also holds for any automaton derived from A by changing the
initial state. This is a general property that will be used in the general verification
process described in the next section.

Proposition 4. If an automaton A = 〈Q,Ab, δ, i, T 〉 is the quotient of PR
p ,

then for every state q in Q, Aq=〈Q,Ab, δ, q, T 〉 is the quotient of PS
p for some

set S.

3 The UP-Criterion

Let A = 〈Q,A,E, I, T 〉 be an automaton, σ the strong connectivity equivalence
relation on Q, and γ the surjective map from Q onto Q/σ. The condensation CA
of A is the directed acyclic graph with loops (V,E) such that V is the image

of Q by γ; and the edge (x, y) is in E if there exists a transition q
a−−→ s in A,

for some q in γ 1(x), s in γ 1(y) and a in A. The condensation of A can be
computed in linear time by Tarjan’s algorithm (cf. [6]).

We say that an SCC C of an automaton A is embeddable in another SCC D
of A if there exists an injective function f : C → D such that, for all q in C
and a in A: if q · a is in C then f(q · a) = (f(q) · a) , and if q · a is not in C,
then f(q) · a = q · a.

Definition 1 (The UP-criterion). Let A be a complete deterministic automa-
ton and CA its condensation. We say that A satisfies the UP-criterion (or equiv-
alently that A is a UP-automaton) if the following five conditions hold.

UP-0. The successor by 0 of a final (resp. non-final) state of A is final (resp.
non-final).

UP-1. Every non-trivial SCC of A that contains an internal transition labelled
by a digit different from 0 is mapped by γ to a leaf of CA.
Such and SCC is called a Type 1 SCC.

UP-2. Every non-trivial SCC of A which is not of Type 1:
i) is a simple circuit labelled by 0 (or 0-circuit);
ii) is mapped by γ to a vertex of CA which has a unique successor, and this
successor is a leaf.
Such an SCC is called a Type 2 SCC.

370 V. Marsault and J. Sakarovitch

UP-3. Every Type 1 SCC is the quotient of a Pascal automaton PR
p , for some R

and p.
UP-4. Every Type 2 SCC is embeddable in the unique Type 1 SCC associated

with it by (UP-2).

It should be noted that (UP-0) is not a specific condition, it is more of a pre-
condition (hence its numbering 0) to ensure that either all representations of an
integer are accepted, or none them are. Moreover, (UP-1) and (UP-2) (together
with the completeness of A) imply the converse of (UP-1), namely that every
SCC mapped by γ to a leaf of CA is a Type 1 SCC.

Example 2. Fig.3 shows a simple but complete example of a UP-automaton.

The framed subautomata are the minimisation of Pascal automata P{1,2}
3 on the

top and P{1,2,3,4}
5 on the bottom. The two others non-trivial SCC’s, {B2, C2}

and {D2}, are reduced to 0-circuits. Each of them has successors in only one
Pascal automaton.

The dotted lines highlight (UP-4). The circuit (B2, C2) is embeddable in the
Pascal automaton {A, B, C} with the map B2 $→ B and C2 $→ C. A similar
observation can be made for the circuit (D2).

ε

0

1

11

B2

C2

D2

A

B

C

D

E

F

G

H

Fig. 3. A complete example of the UP-criterion

Completeness and correctness of the UP-criterion are established as follows.

1. Every UP-set of numbers is accepted by a UP-automaton;
2. The UP-criterion is stable by quotient;
3. Every UP-automaton accepts a UP-set of numbers.

The first two steps ensure completeness for minimal automata (as every b-
recognisable set of numbers is accepted by a unique minimal automaton), the
third one plays for correctness.

Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure 371

3.1 Every UP-Set of Numbers Is Accepted by a UP-Automaton

Proposition 5. For every integers m and p and for every set R of residues
there exists a UP-automaton accepting ER

p,m.

When the Period Divides a Power of the Base. Let ER
p be a periodic set

of numbers such that p |bj for some j. An automaton accepting ER
p is obtained

by a generalisation of the method for recognising if an integer written in base 10
is a multiple of 5, namely checking if its unit digit is 0 or 5: from (1) follows:

Lemma 1. Let d be an integer such that d | bj (and d |/ bj−1) and u in Ab
∗ of

length j. Then, w in Ab
∗ is such that w ≡ u [d] if, and only if, w = uv for a

certain v.

The Case of Periodic Sets of Numbers. Let ER
p be a periodic set of num-

bers. In contrast with Sect.2.2, p and b are not supposed to be coprime anymore.
Given a integer p, there exist k and d such that p = kd, k and b are coprime,
and d | bj for a certain j. The Chinese remainder theorem, a simplified version
of which is given below, allows to break the condition: ‘being congruent to r
modulo p’ into two simpler conditions.

Theorem 9 (Chinese remainder theorem). Let k and d be two coprime
integers. Let rk, rd be two integers. There exists a unique integer r < kd such
that r ≡ rk [k] and r ≡ rd [d].

Moreover, for every n such that n ≡ rk [k] and n ≡ rd [d], we have n ≡ r [kd].

Let us assume for now that R is a singleton {r}, with r in {0, 1, . . . , p−1} and
define rd = (r mod d) and rk = (r mod k). Theorem 9 implies:

∀n ∈ N n ≡ r [p] ⇐⇒ n ≡ rk [k] and n ≡ rd [d] . (5)

The Pascal automaton Prk
k accepts the integers satisfying n ≡ rk [k] and an

automaton accepting the integers satisfying n ≡ rd [d] can be defined from
Lemma 1. The product of the two automata accepts the integers satisfying both
equations of the right-hand side of (5) and this is a UP-automaton. Figure 4
shows the automaton accepting integers congruent to 5 modulo 12 in base 2.

A|0

B|1 C|0

D|0 D|1 D|2 E|0 E|1 E|2 F |0 F |1 F |2 G|0 G|1 G|2

Fig. 4. Automaton accepting integers congruent to 5 modulo 12 in base 2

The case where R is not a singleton is laboured but essentially the same. We
denote by BR

p the automaton accepting ER
p .

372 V. Marsault and J. Sakarovitch

The Case of Arbitrary UP-Sets of Numbers. Let us denote by Dm the
automaton accepting words whose value is greater than m. It consists in a com-
plete b-tree Tm of depth ,logb(m)- plus a final sink state. Every state may be
labelled by the value of the word reaching it and it is final if its label is greater
thanm. Additionally, every leaf of Tm loops onto itself by reading a 0 and reaches
the sink state by reading any other digit. EveryDm is obviously a UP-automaton.

An arbitrary UP-set of numbers ER
p,m is accepted by the product BR

p × Dm,

denoted by BR
p,m. The very special form of Dm makes it immediate that this

product is a UP-automaton, and this complete the proof of Proposition 5.

3.2 The UP-Criterion Is Stable by Quotient

Proposition 6. If A is a UP-automaton, then every quotient of A is also a
UP-automaton.

The UP-criterion relies on properties of SCC’s that are stable by quotient. The
proof of Proposition 6 then consists essentially of proving that SCC’s are mapped
into SSC’s by the quotient.

3.3 Every UP-Automaton Accepts a UP-Set of Numbers

Let A be a UP-automaton and CA its condensation. We call branch of CA any
path going from the root to a leaf using no loops. There is finitely many of
them. The inverse image by γ of a branch of CA define a subautomaton of A.
Since a finite union of UP-sets of numbers is still UP, it is sufficient to prove the
following statement.

Proposition 7. Let A be a UP-automaton and CA its condensation. The inverse
image by γ of a branch of CA accepts a UP-set of numbers.

4 Conclusion and Future Work

This work almost closes the complexity question raised by the Honkala’s original
paper [11]. The simplicity of the arguments in the proof should not hide that
the difficulty was to make the proofs simple. Two questions remain: getting rid,
in Theorem 2 of the minimality condition; or of the condition of determinism.

We are rather optimistic for a positive answer to the first one. Since the
minimisation of a DFA whose SCC’s are simple cycles can be done in linear
time (cf. [3]), it should be possible to verify in linear time that the higher part
of the UP-criterion (DAG and Type 2 SCC’s) is satisfied by the minimised of
a given automaton without performing the whole minimisation. It remains to
find an algorithm deciding in linear time whether a given DFA has the same
behaviour as a Pascal automaton. This is the subject of still ongoing work of the
authors.

On the other hand, defining a similar UP-criterion for nondeterministic au-
tomata seems to be much more difficult. The criterion relies on the form and
relations between SCC’s, and the determinisation process is prone to destroy
them.

Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure 373

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Allouche, J.-P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of
an automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

3. Almeida, J., Zeitoun, M.: Description and analysis of a bottom-up DFA minimiza-
tion algorithm. Inf. Process. Lett. 107(2), 52–59 (2008)

4. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belg. Soc. Math. 1, 191–238 (1994); Corrigendum. Bull. Belg. Soc.
Math. 1, 577 (1994)

5. Cobham, A.: On the base-dependance of the sets of numbers recognizable by finite
automata. Math. Systems Theory 3, 186–192 (1969)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

7. Durand, F., Rigo, M.: On Cobham’s theorem, HAL-00605375. Pin, J.-E. (ed.) To
Appear in AutoMathA Handbook. E.M.S. (2011)

8. Frougny, C.: Representation of numbers and finite automata. Math. Systems The-
ory 25, 37–60 (1992)

9. Frougny, C., Sakarovitch, J.: Number representation and finite automata. In:
Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. En-
cyclopedia of Mathematics and its Applications, vol. 135, pp. 34–107. Cambridge
Univ. Press (2010)

10. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pacif.
J. Math. 16, 285–296 (1966)

11. Honkala, J.: A decision method for the recognizability of sets defined by number
systems. RAIRO Theor. Informatics and Appl. 20, 395–403 (1986)

12. Lecomte, P., Rigo, M.: Abstract numeration systems. In: Berthé, V., Rigo, M. (eds.)
Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and
its Applications, vol. 135, pp. 108–162. Cambridge Univ. Press (2010)

13. Leroux, J.: A polynomial time Presburger criterion and synthesis for number de-
cision diagrams. In: Logic in Computer Science 2005 (LICS 2005), pp. 147–156.
IEEE Comp. Soc. Press (2005); New version at arXiv:cs/0612037v1

14. Marsault, V., Sakarovitch, J.: Ultimate periodicity of b-recognisable sets: a quasi-
linear procedure, http://arxiv.org/abs/1301.2691

15. Muchnik, A.: The definable criterion for definability in Presburger arithmetic and
its applications. Theoret. Computer Sci. 290, 1433–1444 (1991)

16. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009);
Corrected English translation of Éléments de théorie des automates. Vuibert (2003)

http://arxiv.org/abs/1301.2691

3-Abelian Cubes

Are Avoidable on Binary Alphabets

Robert Mercaş1,� and Aleksi Saarela2,��

1 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,
PSF 4120, D-39016 Magdeburg, Germany

robertmercas@gmail.com
2 Department of Mathematics and Statistics, University of Turku,

FI-20014 Turku, Finland
amsaar@utu.fi

Abstract. A k-abelian cube is a word uvw, where u, v, w have the same
factors of length at most k with the same multiplicities. Previously it has
been known that k-abelian cubes are avoidable over a binary alphabet
for k ≥ 5. Here it is proved that this holds for k ≥ 3.

Keywords: combinatorics on words, k-abelian equivalence, repetition-
freeness.

1 Introduction

The study of repetition-free infinite words (or even the whole area of combina-
torics on words) was begun by Axel Thue [15,16]. He proved that using three
letters one can construct an infinite word that does not contain a square, that is
a factor of the form uu where u is a non-empty word. Further, using two letters
one can construct an infinite word that does not contain a cube, that is a factor
of the form uuu where u is a non-empty word, or even an overlap, that is a
factor of the form auaua where u is a word and a is a letter. Due to their initial
obscure publication, these results have been rediscovered several times.

The problem of repetition-freeness has been studied from many points of
view. One is to consider fractional powers. This leads to the concept of repeti-
tion threshold and the famous Dejean’s conjecture, which was proved in many
parts. For example, an infinite number of cases were settled in [3], while the last
remaining cases were settled independently in [4] and [14]. Another example is
the repetition-freeness of partial words. It was shown that there exist infinite
ternary words with an infinite number of holes whose factors are not matching
any squares (overlaps) of words of length greater than one [12,2]. For the abelian
case an alphabet with as low as 5 letters is enough in order to construct an in-
finite word with an infinite number of holes with factors that do not match an
abelian square of any word of length greater than two [1].

� Supported by the Alexander von Humboldt Foundation.
�� Supported by the Academy of Finland under grant 257857.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 374–383, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

3-Abelian Cubes Are Avoidable on Binary Alphabets 375

In this paper abelian repetition-freeness is an important concept. An abelian
square is a non-empty word uv, where u and v have the same number of occur-
rences of each symbol. Abelian cubes and nth powers are defined in a similar
way. Erdős [6] raised the question whether abelian squares can be avoided, i.e.,
whether there exist infinite words over a given alphabet that do not contain
two consecutive permutations of the same factor. It is easily seen that abelian
squares cannot be avoided over a three-letter alphabet: Each word of length eight
over three letters contains an abelian square. Dekking [5] proved that over a bi-
nary alphabet there exists a word that avoids abelian fourth powers, and over a
ternary alphabet there exists a word that avoids abelian cubes. The problem of
whether abelian squares can be avoided over a four-letter alphabet was open for
a long time. In [11], using an interesting combination of computer checking and
mathematical reasoning, Keränen proved that abelian squares are avoidable on
four letters.

Recently, several questions have been studied from the point of view of k-
abelian equivalence. For a positive integer k, two words are said to be k-abelian
equivalent if they have the same number of occurrences of every factor of length
at most k. These equivalence relations provide a bridge between abelian equiva-
lence and equality, because 1-abelian equivalence is the same as abelian equiva-
lence, and as k grows, k-abelian equivalence becomes more and more like equality.
The topic of this paper is k-abelian repetition-freeness, but there has also been
research on other topics related to k-abelian equivalence [9,10].

In [9], the authors show that 2-abelian squares are avoidable only on a four
letter alphabet. For k ≥ 3, the question of avoiding k-abelian squares is open, the
minimal alphabet size being either three or four. Computer experiments would
suggest that there are 3-abelian square-free ternary words, but it is known that
there are no pure morphic k-abelian square-free ternary words for any k [7].

It was conjectured in [9] that for avoiding k-abelian cubes a binary alphabet
suffices whenever k ≥ 2 since computer generated words of length 100000 having
the property have been found. This was proved for k ≥ 8 in [8] and for k ≥ 5 in
[13].

In this work it is proved that 3-abelian cubes can be avoided on a binary alpha-
bet. The methods used are somewhat similar to those used in [8] and [13]: A word
is constructed by mapping an abelian cube-free ternary word by a morphism.
However, there are some crucial differences. Most importantly, the morphisms
used in this paper are not uniform, and this makes many parts of the proofs
different and more difficult. The method used in this article is fairly general, but
using it requires an extensive case analysis, which can only be carried out with
the help of a computer. The 2-abelian case remains open.

2 Preliminaries

We denote by Σ a finite set of symbols called alphabet. For n ≥ 0, the n-
letter alphabet {0, . . . , n − 1} will be denoted by Σn. A word w represents a
concatenation of letters from Σ. By ε we denote the empty word. We denote

376 R. Mercaş and A. Saarela

by |w| the length of w and by |w|u the number of occurrences of u in w. For a
factorization w = uxv, we say that x is a factor of w, and whenever u is empty
x is a prefix and, respectively, when v is empty x is a suffix of w. The prefix of
w of length k will be denoted by prefk(w) and the suffix of length k by suffk(w).

The powers of a word w are defined recursively, w0 = ε and wn = wwn−1 for
n > 0. We say that w is an nth power if there exists a word u such that w = un.
Second powers are called squares and third powers cubes.

Words u and v are abelian equivalent if |u|a = |v|a for all letters a ∈ Σ. For
a word u ∈ Σ∗n, let Pu = (|u|0, . . . , |u|n−1) be the Parikh vector of u. Words
u, v ∈ Σ∗n are abelian equivalent if and only if Pu = Pv.

Two words u and v are k-abelian equivalent if |u|t = |v|t for every word t
of length at most k. Obviously, 1-abelian equivalence is the same as abelian
equivalence, and words of length less than k − 1 (or, in fact, words of length
less than 2k) are k-abelian equivalent only if they are equal. For words u and
v of length at least k − 1, another equivalent definition can be given: u and v
are k-abelian equivalent if |u|t = |v|t for every word t of length k, prefk−1(u) =
prefk−1(v) and suffk−1(u) = suffk−1(v). This latter definition is actually the one
used in the proofs of this article.

A k-abelian nth power is a word u1u2 . . . un, where u1, u2 . . . , un are k-abelian
equivalent. For k = 1 this gives the definition of an abelian nth power.

A mapping f : A∗ → B∗ is a morphism if f(xy) = f(x)f(y) for any words
x, y ∈ A∗, and is completely determined by the images f(a) for all a ∈ A.

If no non-empty square is a factor of a word w, then it is said that w is square-
free, or that w avoids squares. If there exists an infinite square-free word over
an alphabet Σ, then it is said that squares are avoidable on Σ. Of course the
only thing that matters here is the size of Σ. Similar definitions can be given for
cubes and higher powers, as well as for k-abelian powers.

Unlike ordinary cubes, abelian cubes are not avoidable on a binary alpha-
bet, and unlike ordinary squares, abelian squares are not avoidable on a ternary
alphabet. However, Dekking showed in [5] that two letters are sufficient for avoid-
ing abelian fourth powers, and three letters suffice for avoiding abelian cubes.
An extension of the latter result is stated in the following theorem. It is proved
that the word of Dekking avoids also many other factors in addition to abelian
cubes.

Theorem 1. Let w = σω(0) be a fixed point of the morphism σ : Σ∗3 → Σ∗3
defined by

σ(0) = 0012, σ(1) = 112, σ(2) = 022.

Then w is abelian cube-free and contains no factor apbqcrd where a, b, c, d are
letters and one of the following conditions is satisfied:

1. abcd = 0112 and Pp = Pq = Pr,
2. abcd = 0210 and Pp = Pq − (1,−1, 1) = Pr − (0,−1, 1),
3. abcd = 0211 and Pp = Pq − (1,−1, 1) = Pr − (1,−2, 1),
4. abcd = 0220 and Pp = Pq − (1,−1, 1) = Pr − (0, 0, 0),
5. abcd = 0221 and Pp = Pq − (1,−1, 1) = Pr − (1,−1, 0),

3-Abelian Cubes Are Avoidable on Binary Alphabets 377

6. abcd = 1001 and Pp = Pq = Pr,
7. abcd = 1002 and Pp = Pq = Pr,

Proof. The word w was shown to be abelian cube-free in [5]. Similar ideas can
be used to show that w avoids the factors apbqcrd. Case 1 was proved in [13].
Case 2 is proved here. Cases 3–6 are similar to the first two, so their proofs are
omitted. Case 7 is more difficult, so it is proved here.

Let f : Σ∗ → Z7 be the morphism defined by

f(0) = 1, f(1) = 2, f(2) = 3

(here Z7 is the additive group of integers modulo 7). Then f(σ(x)) = 0 for all
x ∈ Σ. If apbqcrd is a factor of w, then there are u, s, t such that σ(u) = sapbqcrdt
and u is a factor of w. Consider the values

f(s), f(sa), f(sap), f(sapb), f(sapbq), f(sapbqc), f(sapbqcr), f(sapbqcrd). (1)

These elements are of the form f(σ(u′)v′) = f(v′), where v′ is a prefix of one of
0012, 112, 022. The possible values for f(v′) are 0, 1, 2 and 4.

Consider Case 2. Let abcd = 0210. If Pp = Pq − (1,−1, 1) = Pr − (0,−1, 1),
then f(p) = f(q)−2 = f(r)−1. If we denote i = f(s), j = f(p), then the values
for (1) are

i, i + 1, i + j + 1, i + j + 4, i + 2j + 6, i + 2j + 1, i + 3j + 2, i + 3j + 3.

For all values of i and j, one is not 0, 1, 2 or 4. This is a contradiction.
Consider Case 7. Let abcd = 1002. Let apbqcrd be the shortest factor of w

satisfying the conditions of Case 7. Then Pp = Pq = Pr and f(p) = f(q) = f(r).
If we denote i = f(s), j = f(p), then the values for (1) are

i, i + 2, i + j + 2, i + j + 3, i + 2j + 3, i + 2j + 4, i + 3j + 4, i + 3j.

It must be i = 0 and j = 6, because otherwise one of the values is not 0, 1, 2 or
4. There are letters a′, b′, c′, d′ and words s′, p′, q′, r′, t′, s2, p1, p2, q1, q2, r1, r2, t1
such that

u = s′a′p′b′q′c′r′d′t′ s = σ(s′)s2

s21p1 = σ(a′) p = p1σ(p′)p2

p20q1 = σ(b′) q = q1σ(q′)q2

q20r1 = σ(c′) r = r1σ(r′)r2

r22t1 = σ(d′) t = t1σ(t′),

i.e. the situation is like in the following diagram:

s 1 p 0 q 0 r 2 t
s2 p1 p2 q1 q2 r1 r2 t1

σ(s′) σ(a′) σ(p′) σ(b′) σ(q′) σ(c′) σ(r′) σ(d′) σ(t′)

378 R. Mercaş and A. Saarela

Because i = 0, s2 = ε. Then σ(a′) begins with 1, so a′ = 1 and p1 = 12. Thus
p = 12σ(p′)p2. It must be f(p2) = f(p) − f(σ(p′)) − f(12) = j − 0 − 5 = 1,
so p2 = 0. Then σ(b′) begins with 00, so b′ = 0 and q1 = 12. Like above, it
can be concluded that q = 12σ(q′)0, and similarly also r = 12σ(r′)0. But then
1p′0q′0r′2 is a factor of w. If

M =

⎛⎝|σ(0)|0 |σ(1)|0 |σ(2)|0
|σ(0)|1 |σ(1)|1 |σ(2)|1
|σ(0)|2 |σ(1)|2 |σ(2)|2

⎞⎠ =

⎛⎝2 1 1
0 2 1
1 0 2

⎞⎠
and Parikh vectors are interpreted as column vectors, then

MPp′ = Pσ(p′), MPq′ = Pσ(q′), MPr′ = Pσ(r′).

Because M is invertible and σ(p′), σ(q′), σ(r′) are abelian equivalent, also p′, q′, r′

are abelian equivalent. Because 1p′0q′0r′2 is shorter than 1p0q0r2, this contra-
dicts the minimality of 1p0q0r2. ��
If abelian cubes are avoidable on some alphabet, then so are k-abelian cubes.
This means that k-abelian cubes are avoidable on a ternary alphabet for all k.
But for which k are they avoidable on a binary alphabet? In [8] it was proved
that this holds for k ≥ 8, and conjectured that it holds for k ≥ 2. In [13] it was
proved that this holds for k ≥ 5. In this article it is proved that this holds for
k ≥ 3. The case when k = 2 remains open.

3 3-Abelian Cube-Freeness

Let w ∈ Σω
m. The following remarks will be used in the case where m = 3, n = 2,

w is abelian cube-free and k = 4 or k = 3, but they hold also more generally.
For a word v ∈ Σ∗n, let Qv = (|v|t0 , . . . , |v|tN−1), where t0, . . . , tN−1 are the

words of Σk
n in lexicographic order. When doing matrix calculations, all vectors

Pu and Qv will be interpreted as column vectors.
Let h : Σ∗m → Σ∗n be a morphism. It needs to be assumed that h satisfies

three conditions:

– There is a word s ∈ Σk−1
m that is a prefix of h(a) for every a ∈ Σm.

– The matrix M whose columns are Qh(0)s, . . . , Qh(m−1)s has rank m.
– There are no k-abelian equivalent words v1, v2, v3 of length less than

2 max{h(a) | a ∈ Σm}

such that v1v2v3 is a factor of h(w).

Let M+ be the Moore-Penrose pseudoinverse of M . The only properties of M+

needed in this article are that it exists and can be efficiently computed, and that
since the columns of M are linearly independent, M+M is the m ×m identity
matrix. For any word u ∈ Σ∗, Qh(u)s = MPu.

3-Abelian Cubes Are Avoidable on Binary Alphabets 379

Lemma 2. If the word h(w) has a factor v1v2v3, where v1, v2, v3 are k-abelian
equivalent, then there are letters a0, a1, a2, a3, b2, b3 ∈ Σm, words u1, u2, u3 ∈ Σ∗m
and indices

i0 ∈ {0, . . . , |h(a0)| − 1},
i1 ∈ {k − 1, . . . , |h(a1)|+ k − 2},
i2 ∈ {k − 1, . . . , |h(a2)|+ k − 2},
i3 ∈ {k − 1, . . . , |h(a3)|+ k − 2}

(2)

such that a0u1a1b2u2a2b3u3a3 is a factor of w and vi = xih(ui)yi for i ∈ {1, 2, 3},
where

x1 = suff |h(a0)|−i0(h(a0)) y1 = prefi1(h(a1b2)),
x2 = suff |h(a1b2)|−i1(h(a1b2)) y2 = prefi2(h(a2b3)), (3)
x3 = suff |h(a2b3)|−i2(h(a2b3)) y3 = prefi3(h(a3)s).

Proof. It was assumed that h(w) does not contain short k-abelian cubes, and a
longer k-abelian cube v1v2v3 must be of the form specified in the claim. ��
Because s is a prefix of h(ui) and yi, it follows that Qvi = Qxis + Qh(ui)s + Qyi .

The idea is to iterate over all values of a0, a1, a2, a3, b2, b3 and i0, i1, i2, i3 and
in each case try to deduce that one of the following holds:

– There are no u1, u2, u3 such that the words vi = xih(ui)yi are k-abelian
equivalent.

– If vi = xih(ui)yi are k-abelian equivalent, then a0u1a1b2u2a2b3u3a3 contains
an abelian cube or a factor of the form mentioned in Theorem 1.

If we succeed, then there are words w such that h(w) is k-abelian cube-free. The
following lemmas will be useful.

Lemma 3. Let a0, a1, a2, a3, b2, b3 ∈ Σm, indices i0, i1, i2, i3 be as in (2) and
words x1, x2, x3, y1, y2, y3 be as in (3). Let the following condition be satisfied:

prefk−1(x1s), prefk−1(x2), prefk−1(x3) are not equal or
suffk−1(y1), suffk−1(y2), suffk−1(y3) are not equal.

(C1)

Then there are no u1, u2, u3 such that the three words vi = xih(ui)yi would be
k-abelian equivalent.

Proof. If the prefixes or suffixes of v1, v2, v3 of length k − 1 are not equal, then
v1, v2, v3 cannot be k-abelian equivalent. ��
Lemma 4. Let a0, a1, a2, a3, b2, b3 ∈ Σm, indices i0, i1, i2, i3 be as in (2) and
words x1, x2, x3, y1, y2, y3 be as in (3). Let Ri = Qxis + Qyi for i ∈ {1, 2, 3}. Let
the following condition be satisfied:

M+(R1 −Ri) is not an integer vector or

MM+(R1 −Ri) + Ri are not equal for i ∈ {1, 2, 3}. (C2)

Then there are no u1, u2, u3 such that the three words vi = xih(ui)yi would be
k-abelian equivalent.

380 R. Mercaş and A. Saarela

Proof. If vi = xih(ui)yi, then Qvi = Qh(ui)s + Ri = MPui + Ri. If Qv1 = Qv2 =
Qv3 , then Pui−Pu1 = M+(R1−Ri). This must be an integer vector. The vectors
Qvi −MPu1 = MM+(R1 −Ri) + Ri must be equal for i ∈ {1, 2, 3}. ��
Lemma 5. Let a0, a1, a2, a3, b2, b3 ∈ Σm, indices i0, i1, i2, i3 be as in (2) and
words x1, x2, x3, y1, y2, y3 be as in (3). Let Ri = Qxis + Qyi for i ∈ {1, 2, 3}. Let
the following condition be satisfied:

For i ∈ {0, 1, 2, 3} there are ci, di ∈ {ai, ε} such that cidi = ai and

M+(R1 −R1) + Pd0c1

= M+(R1 −R2) + Pd1b2c2

= M+(R1 −R3) + Pd2b3c3 .

(C3)

If a0u1a1b2u2a2b3u3a3 is abelian cube-free, then the three words vi = xih(ui)yi

cannot be k-abelian equivalent.

Proof. Like in the proof of Lemma 4, the k-abelian equivalence of v1, v2, v3 im-
plies Pui − Pu1 = M+(R1 −Ri). From this and (C3) it follows that

Pu1 + Pd0c1 = Pu2 + Pd1b2c2 = Pu3 + Pd2b3c3 ,

so d0u1c1, d1b2u2c2, d2b3u3c3 are abelian equivalent. This contradicts the abelian
cube-freeness of a0u1a1b2u2a2b3u3a3. ��
Lemma 6. Let a0, a1, a2, a3, b2, b3 ∈ Σm, indices i0, i1, i2, i3 be as in (2) and
words x1, x2, x3, y1, y2, y3 be as in (3). Let Ri = Qxis + Qyi for i ∈ {1, 2, 3} and
Si = M+(R1 −Ri) + Pbi for i ∈ {2, 3}. Let the following condition be satisfied:

(0 = S2 = S3 and a0a1a2a3 = 0112) or
(0 = S2 − (1,−1, 1) = S3 − (0,−1, 1) and a0a1a2a3 = 0210) or
(0 = S2 − (1,−1, 1) = S3 − (1,−2, 1) and a0a1a2a3 = 0211) or
(0 = S2 − (1,−1, 1) = S3 − (0, 0, 0) and a0a1a2a3 = 0220) or (C4)
(0 = S2 − (1,−1, 1) = S3 − (1,−1, 0) and a0a1a2a3 = 0221) or
(0 = S2 = S3 and a0a1a2a3 = 1001) or
(0 = S2 = S3 and a0a1a2a3 = 1002).

If a0u1a1b2u2a2b3u3a3 is not of the form apbqcrd specified in Theorem 1, then
the three words vi = xih(ui)yi cannot be k-abelian equivalent.

Proof. Like in the proof of Lemma 4, the k-abelian equivalence of v1, v2, v3 im-
plies Pui − Pu1 = M+(R1 − Ri). From this and the first row of (C4) it follows
that

Pu1 = Pu2 + Pb2 = Pu3 + Pb3 ,

so u1, b2u2, b3u3 are abelian equivalent, which is a contradiction. The other rows
lead to a contradiction in a similar way. ��

3-Abelian Cubes Are Avoidable on Binary Alphabets 381

We can iterate over all values of a0, a1, a2, a3, b2, b3 and i0, i1, i2, i3. If in all cases
one of Conditions C1, C2, C3 is true, then h maps all abelian cube-free words
to k-abelian cube-free words. If in all cases one of Conditions C1, C2, C3, C4 is
true, then h maps the word of Theorem 1 to a k-abelian cube-free word. In this
way we obtain Theorems 7 and 8.

Concerning the actual implementation of the above algorithm, there are some
optimizations that can be made. First, if i1 and i2 are such that b1 and b2 do
not affect the definition of x1, x2, x3, y1, y2, y3 in (3), then instead of iterating
over all values of b1 and b2, they can be combined with u2 and u3. Second, in
most of the cases Condition C1 is true, and these cases can be handled easily.
In the following theorems, there are a couple of thousand nontrivial cases, i.e.
cases where Condition C1 is false. A Python file used for proving Theorems 7
and 8 is available on the Internet1.

Theorem 7. The morphism defined by

0 �→ 10110100110, 1 �→ 101101001001, 2 �→ 1011001100100,

maps every abelian cube-free ternary word to a 4-abelian cube-free word.

Proof. The morphism satisfies all conditions stated at the beginning of this sec-
tion:

– The images of 0, 1 and 2 have the common prefix 101.
– The rows of M corresponding to the factors 0010, 0101 and 1100 are (0, 1, 2),

(1, 0, 1) and (0, 0, 2), respectively. These are linearly independent, so the rank
of M is 3.

– It can be checked that the image of any abelian cube-free word does not
contain 4-abelian cubes of words shorter than 26.

Thus it suffices to check all cases as in the algorithm described above. Observe
that here Condition C4 is not needed. ��
Theorem 8. The morphism defined by

0 �→ 01010, 1 �→ 0110010, 2 �→ 0110110,

maps the word w of Theorem 1 to a 3-abelian cube-free word.

Proof. The morphism satisfies all conditions stated at the beginning of this sec-
tion:

– The images of 0, 1 and 2 have the common prefix 01.
– The rows of M corresponding to the factors 010, 011 and 101 are (2, 1, 0),

(0, 1, 2) and (1, 0, 1), respectively. These are linearly independent, so the rank
of M is 3.

– It can be checked that the image of w does not contain 3-abelian cubes of
words shorter than 14.

Thus it suffices to check all cases as in the algorithm described above. ��
1 http://users.utu.fi/amsaar/en/code.htm

http://users.utu.fi/amsaar/en/code.htm

382 R. Mercaş and A. Saarela

We end this work with some remarks regarding how the search of these mor-
phisms was performed. A first observation is that in order to avoid short cubes
and given the fact that we want the obtained images to have the same prefix
of length k − 1, we can only look at morphisms obtained by concatenation of
elements from the set {ab, aab, abb, aabb}. Moreover, when investigating infinite
words obtained by application of some morphism to the Dekking word, we note
that not only all the images but also their concatenation with themselves must
be k-abelian cube-free. Hence, one can generate all words up to some length,
say 30, and check for which of these both them and their squares occur among
factors. Next, using some backtracking one can check if any triple made of these
words would in fact be fit for application on the Dekking word. One final ob-
servation is that in order to ensure that any of these triples constitute good
candidates, one must check the k-abelian cube-freeness property for factors up
to length 10,000, as it happened that the first occurrence of a 3-abelian cube of
length over 1,000 started after position 7,000 of the generated word.

References

1. Blanchet-Sadri, F., Kim, J.I., Mercaş, R., Severa, W., Simmons, S., Xu, D.: Avoid-
ing abelian squares in partial words. Journal of Combinatorial Theory. Series
A 119(1), 257–270 (2012)

2. Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for
partial words. Theoretical Computer Science 410(8-10), 793–800 (2009)

3. Carpi, A.: On Dejean’s conjecture over large alphabets. Theoretical Computer
Science 385(1-3), 137–151 (2007)

4. Currie, J., Rampersad, N.: A proof of Dejean’s conjecture. Mathematics of Com-
putation 80, 1063–1070 (2011)

5. Dekking, F.M.: Strongly nonrepetitive sequences and progression-free sets. Journal
of Combinatorial Theory. Series A 27(2), 181–185 (1979)

6. Erdős, P.: Some unsolved problems. Magyar Tudományos Akadémia Matematikai
Kutató Intézete 6, 221–254 (1961)

7. Huova, M., Karhumäki, J.: On the unavoidability of k-abelian squares in pure
morphic words. Journal of Integer Sequences 16(2) (2013)

8. Huova, M., Karhumäki, J., Saarela, A.: Problems in between words and abelian
words: k-abelian avoidability. Theoretical Computer Science 454, 172–177 (2012)

9. Huova, M., Karhumäki, J., Saarela, A., Saari, K.: Local squares, periodicity and
finite automata. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds.) Rainbow of
Computer Science. LNCS, vol. 6570, pp. 90–101. Springer, Heidelberg (2011)

10. Karhumäki, J., Puzynina, S., Saarela, A.: Fine and Wilf’s theorem for k-abelian pe-
riods. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 296–307.
Springer, Heidelberg (2012)

11. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Proceedings of the 19th
International Colloquium on Automata, Languages and Programming, pp. 41–52
(1992)

12. Manea, F., Mercaş, R.: Freeness of partial words. Theoretical Computer Sci-
ence 389(1-2), 265–277 (2007)

13. Mercas, R., Saarela, A.: 5-abelian cubes are avoidable on binary alphabets. In:
Proceedings of the 14th Mons Days of Theoretical Computer Science (2012)

3-Abelian Cubes Are Avoidable on Binary Alphabets 383

14. Rao, M.: Last cases of Dejean’s conjecture. Theoretical Computer Science 412(27),
3010–3018 (2011)

15. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl.
Christiania 7, 1–22 (1906); Reprinted in Selected Mathematical Papers of Axel
Thue. Nagell, T. (ed.) Universitetsforlaget, Oslo, Norway, pp. 139–158 (1977)

16. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiania 1, 1–67 (1912); Reprinted in Selected
Mathematical Papers of Axel Thue. Nagell, T. (ed.) Universitetsforlaget, Oslo,
Norway, pp. 413–478 (1977)

Repetition Avoidance in Circular Factors

Hamoon Mousavi and Jeffrey Shallit

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1 Canada
{sh2mousa,shallit}@uwaterloo.ca

Abstract. We consider the following novel variation on a classical avoid-
ance problem from combinatorics on words: instead of avoiding repeti-
tions in all factors of a word, we avoid repetitions in all factors where
each individual factor is considered as a “circular word”, i.e., the end of
the word wraps around to the beginning. We determine the best possible
avoidance exponent for alphabet size 2 and 3, and provide a lower bound
for larger alphabets.

1 Introduction

Repetition in words is an active research topic and has been studied for over a
hundred years. For example, Axel Thue [10,11] constructed an infinite word over
a three-letter alphabet that contains no squares (i.e., no nonempty word of the
form xx), and another infinite word over a two-letter alphabet that contains no
cubes (i.e., no nonempty word of the form xxx).

In 1972, Dejean refined these results by considering fractional powers. An α-
power for a rational number α ≥ 1 is a word of the form w = x	α
x′, where x′

is a (possibly empty) prefix of x and |w| = α|x|. The word w is a repetition,
with a period x and an exponent α. Among all possible exponents, we let exp(w)
denote the largest one, corresponding to the shortest period. For example, the
word alfalfa has shortest period alf and exponent 7

3 . The critical exponent
of a word w is the supremum, over all factors f of w, of exp(f). We write it as
exp(w).

For a real number α, an α+-power is a β-power where β > α. For example
ababa = (ab)

5
2 is a 2+-power. A word w is

– α+-power-free, if none of the factors of w is an α+-power;
– α-power-free if, in addition to being α+-power-free, the word w has no factor

that is an α-power.

We also say that w avoids α+-powers (resp., avoids α-powers). Dejean asked,
what is the smallest real number r for which there exist infinite r+-power-free
words over an alphabet of size k? This quantity is called the repetition threshold
[2], and is denoted by RT(k). From results of Thue we know that RT(2) = 2.
Dejean [5] proved RT(3) = 7

4 , and conjectured that

RT(k) =

{
7
5 , if k = 4;

k
k−1 , if k > 4.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 384–395, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Repetition Avoidance in Circular Factors 385

This conjecture received much attention in the last forty years, and its proof was
recently completed by Currie and Rampersad [4] and Rao [9], independently,
based on work of Carpi [3] and others.

We consider the following novel variation on Dejean, which we call “circular
α-power avoidance”. We consider each finite factor x of a word w, but interpret
such a factor as a “circular” word, where the end of the word wraps around to
the beginning. Then we consider each factor f of this interpretation of x; for w
to be circularly α-power-free, each such f must be α-power-free. For example,
consider the English word w = dividing with factor x = dividi. The circular
shifts of x are

dividi, ividid, vididi, ididiv, didivi, idivid,

and (for example) the word ididiv contains a factor ididi that is a 5
2 -power.

In fact, w is circularly cubefree and circularly (5
2)+-power-free.

To make this more precise, we recall the notion of conjugacy. Two words x, y
are conjugate if one is a cyclic shift of the other; that is, if there exist words u, v
such that x = uv and y = vu.

Definition 1. Let w be a finite or infinite word. The largest circular α-power in
a word w is defined to be the supremum of exp(f) over all factors f of conjugates
of factors of w. We write it as cexp(w).

Although Definition 1 characterizes the subject of this paper, we could have used
a different definition, based on the following.

Proposition 2. Let w be a finite word or infinite word. The following are equiv-
alent:

(a) s is a factor of a conjugate of a factor of w;
(b) s is a prefix of a conjugate of a factor of w;
(c) s is a suffix of a conjugate of a factor of w;
(d) s = vt for some factor tuv of w.

Proof. (a) =⇒ (b): Suppose s = y′′x′, where xy is a factor of w and x = x′x′′

and y = y′y′′. Another conjugate of xy is then y′′x′x′′y′ with prefix y′′x′.
(b) =⇒ (c): Such a prefix s is either of the form y′ or yx′, where xy be a

factor of w and x = x′x′′ and y = y′y′′. Considering the conjugate y′′xy′ of yx,
we get a suffix y′, and consider the conjugate x′′yx′ we get a suffix yx′.

(c) =⇒ (d): Such a suffix s is either of the form s = x′′ or s = y′′x, where
xy be a factor of w and x = x′x′′ and y = y′y′′. In the former case, let t = x′′,
u = v = ε. In the latter case, let t = x, u = y′, and v = y′′.

(d) =⇒ (a): Let tuv be a factor of w. Then vtu is a conjugate of tuv, and vt
is a factor of it. ��
Let Σk = {0, 1, . . . , k − 1}. Define RTC(k), the repetition threshold for circular
factors, to be the smallest real number r for which there exist infinite circularly
r+-power-free words in Σk. Clearly we have

RTC(k) ≥ RT(k).

386 H. Mousavi and J. Shallit

In this paper we prove that RTC(2) = 4 and RTC(3) = 13
4 . For larger alphabets,

we conjecture that

RTC(k) =

⎧⎪⎨⎪⎩
5
2 , if k = 4;
105
46 , if k = 5;
2k−1
k−1 , if k ≥ 6.

Finally, we point out that the quantities we study here are not closely related
to the notion of avoidance in circular words, studied previously in [1,6,7].

2 Notation

For a finite alphabet Σ, let Σ∗ denote the set of finite words over Σ. Let Σω

denote the set of right infinite words over Σ, and let Σ∞ = Σω ∪ Σ∗. Let
w = a0a1 · · · ∈ Σ∞ be a word. Let w[i] = ai, and let w[i..j] = ai · · · aj . By
convention we have w[i] = ε for i < 0 and w[i..j] = ε for i > j. Note that if x is
a period of w and |x| = p, then w[i + p] = w[i] for 0 ≤ i < |w| − p.

For a word x, let pref(x) and suff(x), respectively, denote the set of prefixes
and suffixes of x. For words x, y, let x 	 y denote that x is a factor of y. Let
x 	p y (resp., x 	s y) denote that x is a prefix (resp., suffix) of y.

A morphism h : Σ∗ → Φ∗ is said to be q-uniform if |h(a)| = q for all a ∈ Σ. A
morphism is uniform if it is q-uniform for some q. The fixed point of a morphism
h : Σ∗ → Φ∗ starting with a ∈ Σ, if it exists, is denoted by hω(a).

In the next section, we prove some preliminary results. We get some bounds for
RTC(k), and in particular, we prove that RTC(2) = 2 RT(2) = 4. In Section 4,
we study the three-letter alphabet, and we prove that RTC(3) = 13

4 . Finally,
in Section 5, we give another interpretation for repetition threshold for circular
factors.

3 Binary Alphabet

First of all, we prove a bound on RTC(k).

Theorem 3. 1 + RT(k) ≤ RTC(k) ≤ 2 RT(k).

Proof. Let r = RT(k). We first prove that RTC(k) ≤ 2r. Let w ∈ Σω
k be an r+-

power-free word. We prove that w is circularly (2r)+-power-free. Suppose that
xty 	 w, such that yx is (2r)+-power. Now either y or x is an r+-power. This
implies that w contains an r+-power, a contradiction.

Now we prove that 1+r ≤ RTC(k). Let l be the length of the longest r-power-
free word over Σk, and let w ∈ Σω

k . Considering the factors of length n = l + 1
of w, we know some factor f must occur infinitely often. This f contains an
r-power: zr. Therefore zrtz is a factor of w. Therefore w contains a circular
(1 + r)-power. This proves that 1 + r ≤ RTC(k). ��
Note that since RT(k) > 1, we have RTC(k) > 2.

Repetition Avoidance in Circular Factors 387

Lemma 4. RTC(2) ≥ 4.

Proof. Let w ∈ Σω
2 be an arbitrary word. It suffices to prove that w contains

circular 4-powers. There are two cases: either 00 or 11 appears infinitely often,
or w ends with a suffix of the form (01)ω. In the latter case, obviously there are
circular 4-powers; in the former there are words of the form aayaa for a ∈ Σ2

and y ∈ Σ∗2 and hence circular 4-powers. ��

Theorem 5. RTC(2) = 4.

Proof. A direct consequence of Theorem 3 and Lemma 4. ��

The Thue-Morse word is an example of a binary word that avoids circular 4+-
powers.

4 Ternary Alphabet

Our goal in this section is to show that RTC(3) = 13
4 . For this purpose, we

frequently use the notion of synchronizing morphism, which was introduced in
Ilie et al. [8].

Definition 6. A morphism h : Σ∗ → Γ ∗ is said to be synchronizing if for all
a, b, c ∈ Σ and s, r ∈ Γ ∗, if h(ab) = rh(c)s, then either r = ε and a = c or s = ε
and b = c.

Definition 7. A synchronizing morphism h : Σ∗ → Γ ∗ is said to be strongly
synchronizing if for all a, b, c ∈ Σ, if h(c) ∈ pref(h(a)) suff(h(b)), then either
c = a or c = b.

The following technical lemma is applied several times throughout the paper.

Lemma 8. Let h : Σ∗ → Γ ∗ be a synchronizing q-uniform morphism. Let n > 1
be an integer, and let w ∈ Σ∗. If zn 	p h(w) and |z| ≥ q, then un 	p w for
some u. Furthermore |z| ≡ 0 (mod q).

Proof. Let z = h(u)z′, where |z′| < q and u ∈ Σ∗. Note that u �= ε, since |z| ≥ q.
Clearly, we have z′h(u[0]) 	p h(w[|u|..|u|+1]). Since h is synchronizing, the only
possibility is that z′ = ε, so |z| ≡ 0 (mod q). Now we can write zn = h(un) 	p

h(w). Therefore un 	p w. ��

The next lemma states that if the fixed point of a strongly synchronizing mor-
phism (SSM) avoids small n’th powers, where n is an integer, it avoids n’th
powers of all lengths.

Lemma 9. Let h : Σ∗ → Σ∗ be a strongly synchronizing q-uniform morphism.
Let n > 1 be an integer. If hω(0) avoids factors of the form zn, where |zn| < 2nq,
then hω(0) avoids n’th powers.

388 H. Mousavi and J. Shallit

Proof. Let w = a0a1a2 · · · = hω(0). Suppose w has n’th powers of length greater
than or equal to 2nq. Let z be the shortest such word, i.e., |zn| ≥ 2nq and
zn 	 w. We can write

zn = xh(w[i..j])y,

x 	s h(ai−1),
y 	p h(aj+1),
|x|, |y| < q,

for some integers i, j ≥ 0. If x = y = ε, then using Lemma 8, since |z| ≥ q,
the word w[i..j] contains an n’th power. Therefore w contains an n’th power
of length smaller than |zn|, a contradiction. Now suppose that xy �= ε. Since
|z| ≥ 2nq

n = 2q, and |xh(w[i])|, |h(w[j])y| < 2q, we can write

xh(w[i]) 	p z,

h(w[j])y 	s z.

Therefore h(w[j])yxh(w[i]) 	 z2 	 zn. Since h is synchronizing

h(w[j])yxh(w[i]) 	 h(w[i..j]).

Hence yx = h(a) for some a ∈ Σ. Since h is an SSM, we have either a = ai−1 or
a = aj+1. Without loss of generality, suppose that a = ai−1. Then we can write
h(w[i− 1..j]) = yxh(w[i..j]). The word yxh(w[i..j]) is an n’th power, since it is
a conjugate of xh(w[i..j])y. So we can write

h(w[i− 1..j]) = zn
1

where z1 is a conjugate of z. Note that |z1| = |z| ≥ 2q. Now using Lemma 8, the
word w[i− 1..j] contains an n’th power, and hence w contains an n’th power of
length smaller than |zn|, a contradiction. ��
The following lemma states that, for an SSM h and a well-chosen word w, all
circular (13

4)+-powers in h(w) are small.

Lemma 10. Let h : Σ∗ → Γ ∗ be a strongly synchronizing q-uniform morphism.
Let w = a0a1a2 · · · ∈ Σω be a circularly cubefree word. In addition, suppose
that w is squarefree. If x1tx2 	 h(w) for some words t, x1, x2, and x2x1 is a
(13/4)+-power, then |x2x1| < 22q.

Proof. The proof is by contradiction. Suppose there are words t, x1, x2, and z in
Γ ∗ and a rational number α > 13

4 such that

x1tx2 	 h(w)

|x2x1| ≥ 22q

x2x1 = zα.

Repetition Avoidance in Circular Factors 389

Suppose |z| < q. Let k be the smallest integer for which |zk| ≥ q. Then |zk| < 2q,
because otherwise |zk−1| ≥ q, a contradiction. We can write x2x1 = (zk)β , where
β = |x2x1|

|zk| > 22q
2q > 13

4 . Therefore we can assume that |z| ≥ q, since otherwise
we can always replace z with zk, and α with β.

There are three cases to consider.

(a) Suppose that x1 and x2 are both long enough, so that each contains an image
of a word under h. More formally, suppose that

x1 = y1h(w[i1..j1])y2, (1)
x2 = y3h(w[i2..j2])y4, (2)
i1 ≤ j1, i2 ≤ j2,

y1 	s h(ai1−1),
y2 	p h(aj1+1),
y3 	s h(ai2−1),
y4 	p h(aj2+1),
|y1|, |y2|, |y3|, and |y4| < q, and
y2ty3 = h(w[j1 + 1..i2 − 1]).

Let v1 = w[i1..j1] and v2 = w[i2..j2]. See Fig 1.

w = v1 v2

i1 j1 i2 j2

h(w) = y1 h(w[i1..j1]) y2 t y3 h(w[i2..j2]) y4

x1 t x2

Fig. 1. x1tx2 is a factor of h(w)

There are two cases to consider.
(1) Suppose that y4y1 = ε. Let v = w[i2..j2]w[i1..j1].

The word h(v)y2 is a factor of y3h(v)y2 = zα of length ≥ 22q− q = 21q,
and so

h(v)y2 = zβ
1 ,

where z1 is a conjugate of z, and β ≥ 21
22α > 3. Therefore we can write

z3
1 	p h(v)y2 	p h(vw[j1 + 1]).

Note that |z1| = |z| ≥ q, so using Lemma 8, we can write |z1| ≡ 0 (mod
q). Therefore

z3
1 	p h(v).

Using Lemma 8 again, the word v contains a cube, which means that
the word w contains a circular cube, a contradiction.

390 H. Mousavi and J. Shallit

(2) Suppose that y4y1 �= ε. We show how to get two new factors x′1 = h(v′1)y′2
and x′2 = y′3h(v′2), with v′1, v

′
2 nonempty, such that x′2x

′
1 = x2x1. Then

we use case (1) above to get a contradiction.
Let s = h(w[j2])y4y1h(w[i1]), and let m be the smallest integer for which
|zm| ≥ |s|. Note that if |z| < |s|, then

|zm| < 2|s| < 8q. (3)

We show that at least one of the following inequalities holds:

|h(v1)| ≥ q + |zm|,
|h(v2)| ≥ q + |zm|.

Suppose that both inequalities fail. Then using (1) and (2) we can write

|x2x1| < 2q + 2|zm|+ |y1y2y3y4| < 6q + 2|zm|. (4)

If |z| < |s|, then by (3) and (4) one gets |x2x1| < 22q, contradicting our
assumption. Otherwise |z| ≥ |s|, and hence m = 1. Then

|x2x1| = α|z| < 2q + 2|z|+ |y1y2y3y4| < 6q + 2|z|,
and hence |z| < 6q. So |x2x1| < 6q + 2|z| < 18q, contradicting our
assumption. Without loss of generality, suppose that |h(v1)| ≥ q + |zm|.
Using the fact that z is a period of x2x1, we can write

h(v1)[q + |zm| − |s|..q + |zm| − 1] = s,

or, in other words,
s 	 h(v1).

See Fig 2.

x2x1 = y3 h(v2) y4 y1 h(v1) y2

s

|zm|

s

Fig. 2. h(v1) contains a copy of s

Using the fact that h is synchronizing, we get that y4y1 = h(a) for some
a ∈ Σ. Since h is an SSM, we have either a = ai1−1 or a = aj2+1.
Without loss of generality, suppose that a = aj2+1. Now look at the
following factors of h(w), which can be obtained from x1 and x2 by
extending x2 to the right and shrinking x1 from the left:

x′1 = h(w[i1..j1])y2

x′2 = y3h(w[i2..j2 + 1]).

See Fig 3.

Repetition Avoidance in Circular Factors 391

x1 x2

h(w) = h(ai1−1) h(ai1ai1+1 · · · aj1) y2 t y3 h(ai2ai2+1 · · · aj2) h(aj2+1)

x′
1 x′

2

Fig. 3. x′
1 and x′

2 are obtained from x1 and x2

We can see that

x′
2x

′
1 = y3h(w[i2..j2 + 1])h(w[i1..j1])y2 = y3h(w[i2..j2])y4y1h(w[i1..j1])y2 = x2x1.

Now using case (1) we get a contradiction.

(b) Suppose that x2 is too short to contain an image of a word under h. More
formally, we can write

x1 = y1h(v)y2 where |x2| < 2q and |y1|, |y2| < q

for some words y1, y2 ∈ Γ ∗ and a word v 	 w. Then h(v) is a factor of
x2x1 = zα of length ≥ 22q − 4q = 18q, and so

h(v) = zβ
1 ,

where z1 is a conjugate of z, and β ≥ 18
22α > 2. Note that |z1| = |z| ≥ q, so

using Lemma 8, the word v contains a square, a contradiction.
(c) Suppose that x1 is not long enough to contain an image of a word under h.

An argument similar to (b) applies here to get a contradiction.
��

The following 15-uniform morphism is an example of an SSM:

μ(0) = 012102120102012
μ(1) = 201020121012021
μ(2) = 012102010212010
μ(3) = 201210212021012
μ(4) = 102120121012021
μ(5) = 102010212021012.

Another example of an SSM is the 4-uniform morphism ψ : Σ∗6 → Σ∗6 as follows:

ψ(0) = 0435
ψ(1) = 2341
ψ(2) = 3542
ψ(3) = 3540
ψ(4) = 4134
ψ(5) = 4105.

392 H. Mousavi and J. Shallit

Our goal is to show that μ(ψω(0)) is circularly (13
4)+-power-free. For this pur-

pose, we first prove that ψω(0) is circularly cubefree. Then we apply Lemma 10,
for h = μ and w = ψω(0).

Lemma 11. The fixed point ψω(0) is squarefree.

Proof. Suppose that ψω(0) contains a square. Using Lemma 9, there is a square
zz 	 ψω(0) such that |zz| < 16. Using a computer program, we checked all
factors of length smaller than 16 in ψω(0), and none of them is a square. This is
a contradiction. ��
Lemma 12. The fixed point ψω(0) is circularly cubefree.

Proof. By contradiction. Let w = a0a1a2 · · · = ψω(0). Suppose x1tx2 	 w, and
x2x1 = z3 for some words t, x1, x2, z, where

x1 = y1ψ(w[i1..j1])y2,

x2 = y3ψ(w[i2..j2])y4,

y1 	s ψ(ai1−1),
y2 	p ψ(aj1+1),
y3 	s ψ(ai2−1),
y4 	p ψ(aj2+1),
|y1|, |y2|, |y3|, and |y4| < 4,

y2ty3 = ψ(w[j1 + 1..i2 − 1]),

for proper choices of the integers i1, i2, j1, j2. Let v1 = w[i1..j1] and v2 = w[i2..j2].
Using a computer program, we searched for circular cubes of length not greater

than 66, and it turns out that there is no such circular cube in w. Thus we can
assume that |x2x1| > 66 so |z| > 22. Moreover suppose that x2x1 has the smallest
possible length.

There are two cases to consider.

(a) Suppose that y4y1 = ε. If y2y3 = ε, then ψ(v2v1) = z3. Using Lemma 8, we
get that v2v1 contains a cube. Hence w contains a smaller circular cube, a
contradiction.

Suppose that y2y3 �= ε. Since |y3ψ(w[i2])|, |ψ(w[j1])y2| < 8 and |z| > 22,
we can write

y3ψ(w[i2]) 	p z,

ψ(w[j1])y2 	s z.

Therefore ψ(w[j1])y2y3ψ(w[i2]) 	 z3, and since ψ is synchronizing

ψ(w[j1])y2y3ψ(w[i2]) 	 ψ(v2v1).

Hence y2y3 = ψ(b) for some b ∈ Σ6. Since ψ is an SSM, we have either
b = ai2−1, or b = aj1+1. Without loss of generality, suppose that b = ai2−1.
So we can write

ψ(w[i2 − 1..j2]w[i1..j1]) = y2y3ψ(w[i2..j2]w[i1..j1]).

Repetition Avoidance in Circular Factors 393

The word y2y3ψ(v2v1) is a cube, since it is a conjugate of y3ψ(v2v1)y2. So
we can write

ψ(w[i2 − 1..j2]w[i1..j1]) = z3
1

where z1 is a conjugate of z. Then using Lemma 8, the word w[i2 − 1..j2]
w[i1..j1] contains a cube. Note that since y2y3 �= ε we have j1 < i2−1. Hence
w[i2 − 1..j2]w[i1..j1] is a circular cube of w, a contradiction.

(b) Suppose that y4y1 �= ε. We show how to get two new factors x′1 = h(v′1)y′2
and x′2 = y′3h(v′2) of w, for nonempty words v′1, v

′
2, such that x′2x

′
1 = x2x1.

Then we use case (a) above to get a contradiction.
The word w is squarefree due to Lemma 11. Therefore |x1|, |x2| > |z| > 66

3
and hence |v1|, |v2| > 0. One can observe that either |ψ(v1)| ≥ 4 + |z| or
|ψ(v2)| ≥ 4 + |z|. Without loss of generality, suppose that |ψ(v1)| ≥ 4 + |z|.
Let s = w[j2]y4y1w[i1]. Now, using the fact that z is a period of x2x1, we
can write

ψ(v1)[4 + |z| − |s|..4 + |z| − 1] = s,

or, in other words,
s 	 ψ(v1).

Using the fact that ψ is synchronizing, we get that y4y1 = ψ(a) for some
a ∈ Σ6. Since ψ is an SSM, we have either a = ai1−1, or a = aj2+1. Without
loss of generality, suppose that a = aj2+1. Now look at the following factors
of w, which can be obtained from x1 and x2 by extending x2 to the right
and shrinking x1 from the left

x′1 = ψ(w[i1..j1])y2

x′2 = y3ψ(w[i2..j2 + 1]).

We can write

x′2x
′
1 = y3ψ(w[i2..j2 + 1])ψ(w[i1..j1])y2 = y3ψ(v2)y4y1ψ(v1)y2 = x2x1 = z3.

So using case (a) we get a contradiction.
��

Theorem 13. RTC(3) = 13
4 .

Proof. First let us show that RTC(3) ≥ 13
4 .

Suppose there exists an infinite word w that avoids circular α-powers, for
α < 4. We now argue that for every integer C, there exists an infinite word w′

that avoids both squares of length ≤ C and circular α-powers. Note that none
of the factors of w looks like xxyxx, since w avoids circular 4-powers. Therefore,
every square in w occurs only finitely many times. Therefore w′ can be obtained
by removing a sufficiently long prefix of w.

Computer search verifies that the longest circularly 13
4 -power-free word over

a 3-letter alphabet that avoids squares xx where |xx| < 147 has length 147.
Therefore the above argument for C = 147 shows that circular 13

4 -powers are
unavoidable over a 3-letter alphabet.

394 H. Mousavi and J. Shallit

Now to prove RTC(3) = 13
4 , it is sufficient to give an example of an infinite

word that avoids circular (13
4)+-powers. We claim that μ(ψω(0)) is such an ex-

ample. We know that ψω(0) is circularly cubefree. Therefore we can use Lemma
10 for w = ψω(0) and h = μ. So if xty 	 μ(ψω(0)), and yx is a (13

4)+-power,
then |yx| < 22× 15. Now there are finitely many possibilities for x and y. Using
a computer program, we checked that none of them leads to a (13

4)+-power. This
completes the proof. ��

5 Another Interpretation

We could, instead, consider the supremum of exp(p) over all products of i factors
of w. Call this quantity pexpi(w).

Proposition 14. If w is a recurrent infinite word, then pexp2(w) = cexp(w).

Proof. Let s be a product of two factors of w, say s = xy. Let y occur for the first
time at position i of w. Since w is recurrent, x occurs somewhere after position
i + |y| in w. So there exists z such that yzx is a factor of w. Then xy is a factor
of a conjugate of a factor of w.

On the other hand, from Proposition 2, we know that if s is a conjugate of a
factor of w, then s = vt where tuv is a factor of w. Then s is the product of two
factors of w. ��

We can now study the repetition threshold for i-term products, RTi(k), which
is the infimum of pexpi(w) over all words w ∈ Σω

k . Note that

RT2(k) ≥ RTC(k).

The two recurrent words, the Thue-Morse word and μ(ψω(0)), introduced in
Section 4, are circularly RTC(2)+-power-free and circularly RTC(3)+-power-free,
respectively. Using Proposition 14, we get that RT2(k) = RTC(k) for k = 2, 3.

Theorem 15. For i ≥ 1 we have RTi(2) = 2i.

Proof. From Thue we know there exists an infinite 2+-power-free word. If some
product of factors x1x2 · · ·xi contains a (2i)+-power, then some factor contains
a 2+-power, a contradiction. So RTi(2) ≤ 2i.

For the lower bound, fix i ≥ 2, and let w ∈ Σω
2 be an arbitrary word. Either

00 or 11 appears infinitely often, or w ends in a suffix of the form (01)ω. In the
latter case we get arbitrarily high powers, and the former case there is a product
of i factors with exponent 2i. ��

Repetition Avoidance in Circular Factors 395

It would be interesting to obtain more values of RTi(k). We propose the following
conjectures which are supported by numerical evidence:

RT2(4) = RTC(4) =
5
2

,

RT2(5) = RTC(5) =
105
46

, and

RT2(k) = RTC(k) = 1 + RT(k) =
2k − 1
k − 1

for k ≥ 6.

We know that the values given above are lower bounds for RTC(k).

Acknowledgments. We thank the referees for their careful reading of this
paper.

References

1. Aberkane, A., Currie, J.D.: There exist binary circular 5/2+ power free words of
every length. Electronic J. Combin. 11(1) (2004) Paper #R10,
http://www1.combinatorics.org/Volume_11/Abstracts/v11i1r10.html

2. Brandenburg, F.-J.: Uniformly growing k-th power-free homomorphisms. Theoret.
Comput. Sci. 23, 69–82 (1983)

3. Carpi, A.: On Dejean’s conjecture over large alphabets. Theoret. Comput. Sci. 385,
137–151 (2007)

4. Currie, J., Rampersad, N.: A proof of Dejean’s conjecture. Math. Comp. 80,
1063–1070 (2011)

5. Dejean, F.: Sur un théorème de Thue. J. Combin. Theory. Ser. A 13, 90–99 (1972)
6. Gorbunova, I.A.: Repetition threshold for circular words. Electronic J. Com-

bin. 19(4) Paper #11,
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i4p11

7. Harju, T., Nowotka, D.: Cyclically repetition-free words on small alphabets. Inform.
Process Lett. 110, 591–595 (2010)

8. Ilie, L., Ochem, P., Shallit, J.: A generalization of repetition threshold. Theoret.
Comput. Sci. 345, 359–369 (2005)

9. Rao, M.: Last cases of Dejean’s conjecture. Theoret. Comput. Sci. 412, 3010–3018
(2011)

10. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906), Reprinted in Selected Mathematical Papers of Axel Thue. Nagell, T.
(ed.) Universitetsforlaget, Oslo, pp. 139–158 (1977)

11. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912); Reprinted in Selected Mathematical
Papers of Axel Thue. Nagell, T. (ed.) Universitetsforlaget, Oslo, pp. 413–478 (1977)

http://www1.combinatorics.org/Volume_11/Abstracts/v11i1r10.html
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i4p11

Operator Precedence ω-Languages

Federica Panella1, Matteo Pradella1, Violetta Lonati2, and Dino Mandrioli1

1 DEIB - Politecnico di Milano, via Ponzio 34/5, Milano, Italy
{federica.panella,matteo.pradella,dino.mandrioli}@polimi.it

2 DI - Università degli Studi di Milano, via Comelico 39/41, Milano, Italy
lonati@di.unimi.it

Abstract. Recent literature extended the analysis of ω-languages from the reg-
ular ones to various classes of languages with “visible syntax structure”, such
as visibly pushdown languages (VPLs). Operator precedence languages (OPLs),
instead, were originally defined to support deterministic parsing and exhibit in-
teresting relations with these classes of languages: OPLs strictly include VPLs,
enjoy all relevant closure properties and have been characterized by a suitable
automata family and a logic notation. We introduce here operator precedence
ω-languages (ωOPLs), investigating various acceptance criteria and their clo-
sure properties. Whereas some properties are natural extensions of those holding
for regular languages, others require novel investigation techniques. Application-
oriented examples show the gain in expressiveness and verifiability offered by
ωOPLs w.r.t. smaller classes.

Keywords: ω-languages, Operator precedence languages, Push-down automata,
Closure properties, Infinite-state model checking.

1 Introduction

Languages of infinite strings, i.e. ω-languages, have been introduced to model nonter-
minating processes; thus they are becoming more and more relevant nowadays when
most applications are “ever-running”, often in a distributed environment. The pioneer-
ing work by Büchi and others investigated their main algebraic properties in the con-
text of finite state machines, pointing out commonalities and differences w.r.t. the finite
length counterpart [4,17].

More recent literature, mainly under the motivation of widening the application of
model checking techniques to larger language families, extended this analysis to various
classes of languages with “visible structure”, i.e., languages whose syntax structure
is immediately visible in their strings: parenthesis languages, tree languages, visibly
pushdown languages (VPLs) [1] are examples of such classes.

Operator precedence languages, instead, were defined by Floyd in the 1960s, and
still are in use [9], with the original motivation of supporting deterministic parsing,
which is trivial for visible structure languages but is crucial for general context-free
languages such as programming languages [8], where structure is often left implicit (e.g.
in arithmetic expressions). Recently, these seemingly unrelated classes of languages
have been shown to share most major features; precisely OPLs strictly include VPLs
and enjoy all the same closure properties [7]. This observation motivated characterizing

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 396–408, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Operator Precedence ω-Languages 397

OPLs in terms of a suitable automata family [10] and in terms of a logic notation [11],
which was missing in previous literature.

In this paper we further the investigation of OPLs properties to the case of infi-
nite strings, i.e., we introduce and study operator precedence ω-languages (ωOPLs).
We prove closure and decidability properties that are a fundamental condition enabling
infinite-state model checking. Also, we present a few simple application-oriented ex-
amples that show the considerable gain in expressiveness and verifiability offered by
ω-OPLs w.r.t. previous classes.

We follow traditional lines of research in theory on ω-languages considering various
acceptance criteria, their mutual expressiveness relations, and their closure properties,
yet departing from the classical path for a number of critical and new issues. Not sur-
prisingly, some properties are natural extensions of those holding for, say, regular lan-
guages or VPLs, whereas others required different and novel investigation techniques
essentially due to the more general managing of the stack.

Due to space limitations, herein we focus on the newest and most interesting aspects.
Also, we limit the technicalities of formal arguments to a minimum, relying instead on
intuition and examples. The reader can find more results and all details in the technical
report [14]. The paper is organized as follows. The next section provides basic con-
cepts on operator precedence languages of finite-length words and on operator prece-
dence automata able to recognize them. Section 3 defines operator precedence automata
which can deal with infinite strings, analyzing various classical acceptance conditions
for ω-abstract machines. Section 4 proves the closure properties they enjoy w.r.t typical
operations on ω-languages and shows also that the emptiness problem is decidable for
these formalisms. Finally, Section 5 draws some conclusions.

2 Preliminaries

Operator precedence languages [7,8] have been characterized in terms of both a gener-
ative formalism (operator precedence grammars, OPGs) and an equivalent operational
one (operator precedence automata, OPAs, named Floyd automata or FAs in [10]), but
in this paper we consider the latter, as it is better suited to model and verify nontermi-
nating computations.

Let Σ be an alphabet. The empty string is denoted ε. Between the symbols of the al-
phabet three types of operator precedence (OP) binary relations can hold: yields prece-
dence, equal in precedence and takes precedence, denoted �, � and � respectively.
Notice that � is not necessarily an equivalence relation, and � and � are not necessarily
strict partial orders. We use a special symbol # not in Σ to mark the beginning and the
end of any string. This is consistent with the typical operator parsing technique that
requires the lookback and lookahead of one character to determine the next action to
perform [9]. The initial # can only yield precedence, and other symbols can only take
precedence on the ending #.

Definition 1. An operator precedence matrix (OPM) M over an alphabet Σ is a |Σ ∪
{#}| × |Σ ∪ {#}| array that with each ordered pair (a, b) associates the set Mab of OP

398 F. Panella et al.

relations holding between a and b. M is conflict-free iff ∀a, b ∈ Σ, |Mab| ≤ 1. We call
(Σ,M) an operator precedence alphabet if M is a conflict-free OPM on Σ.

Between two OPMs M1 and M2, we define set inclusion and union:

M1 ⊆ M2 if ∀a, b : (M1)ab ⊆ (M2)ab, M = M1∪M2 if ∀a, b : Mab = (M1)ab∪(M2)ab

If Mab = {◦}, with ◦ ∈ {�,�,�} ,we write a ◦ b. For u, v ∈ Σ∗ we write u ◦ v if u = xa
and v = by with a ◦ b. Two matrices are compatible if their union is conflict-free. A
matrix is complete if it contains no empty case.

In the following we assume that M is =̇-acyclic, which means that c1 � c2 � · · · �
ck � c1 does not hold for any c1, c2, . . . , ck ∈ Σ, k ≥ 1. See [14] for a discussion on this
hypothesis. Let also (Σ,M) be an OP alphabet.

Definition 2. A nondeterministic operator precedence automaton (OPA) is a tuple A =
〈Σ,M,Q, I, F, δ〉 where:

– (Σ,M) is an operator precedence alphabet,
– Q is a set of states (disjoint from Σ),
– I ⊆ Q is a set of initial states,
– F ⊆ Q is a set of final states,
– δ : Q × (Σ ∪ Q)→ 2Q is the transition function.

The transition function can be seen as the union of two disjoint functions:

δpush : Q × Σ → 2Q δflush : Q × Q→ 2Q

An OPA can be represented by a graph with Q as the set of vertices and Σ ∪ Q as the
set of edge labels: there is an edge from state q to state p labeled by a ∈ Σ if and only if
p ∈ δpush(q, a), and there is an edge from state q to state p labeled by r ∈ Q if and only
if p ∈ δ f lush(q, r). To distinguish flush transitions from push transitions we denote the
former ones by a double arrow.

To define the semantics of the automaton, we introduce some notation. We use letters
p, q, pi, qi, . . . for states in Q and we set Σ′ = {a′ | a ∈ Σ}; symbols in Σ′ are called
marked symbols.

Let Γ be (Σ ∪ Σ′ ∪ {#}) × Q; we denote symbols in Γ as [a q], [a′ q], or [# q],
respectively. We set symbol([a q]) = symbol([a′ q]) = a, symbol([# q]) = #, and
state([a q]) = state([a′ q]) = state([# q]) = q. Given a string β = B1B2 . . . Bn with
Bi ∈ Γ, we set state(β) = state(Bn).

A configuration is any pair C = 〈β , w〉, where β = B1B2 . . . Bn ∈ Γ∗, symbol(B1) =
#, and w = a1a2 . . . am ∈ Σ∗#. A configuration represents both the contents β of the
stack and the part of input w still to process.

A computation (run) of the automaton is a finite sequence of moves C � C1; there
are three kinds of moves, depending on the precedence relation between symbol(Bn)
and a1:

push move: if symbol(Bn) � a1 then C1 = 〈β[a1 q] , a2 . . . am〉, with q ∈ δpush

(state(β), a1);

mark move: if symbol(Bn) � a1 then C1 = 〈β[a1
′ q] , a2 . . . am〉, with q ∈ δpush

(state(β), a1);

Operator Precedence ω-Languages 399

flush move: if symbol(Bn) � a1 then let i the greatest index such that symbol(Bi) ∈ Σ′
(such index always exists). Then C1 = 〈B1B2 . . . Bi−2[symbol(Bi−1) q] , a1a2 . . . am〉,
with q ∈ δ f lush(state(Bn), state(Bi−1)).

Push and mark moves both push the input symbol on the top of the stack, together with
the new state computed by δpush; such moves differ only in the marking of the symbol
on top of the stack. The flush move is more complex: the symbols on the top of the stack
are removed until the first marked symbol (included), and the state of the next symbol
below them in the stack is updated by δ f lush according to the pair of states that delimit
the portion of the stack to be removed; notice that in this move the input symbol is not
consumed and it remains available for the following move.

Finally, we say that a configuration [# qI] is starting if qI ∈ I and a configuration
[# qF] is accepting if qF ∈ F. The language accepted by the automaton is defined as:

L(A) =
{
x | 〈[# qI] , x#〉 ∗� 〈[# qF] , #〉, qI ∈ I, qF ∈ F

}
.

An OPA is deterministic when I is a singleton and δpush(q, a) and δflush(q, p) have at
most one element, for every q, p ∈ Q and a ∈ Σ.

An operator precedence transducer is defined in the natural way.

Example 1. As an introductory example, consider a language of queries on a database
expressed in relational algebra. We consider a subset of classical operators (union, in-
tersection, selection σ, projection π and natural join �). Just like mathematical oper-
ators, the relational operators have precedences between them: unary operators σ and
π have highest priority, next highest is the “multiplicative” operator �, lowest are the
“additive” operators ∪ and ∩. Denote as T the set of tables of the database and, for the
sake of simplicity, let E be a set of conditions for the unary operators. The OPA depicted
in Figure 1 accepts the language of queries without parentheses on the alphabet Σ = T∪
{�,∪,∩} ∪ {σ, π} × E, where we use letters A, B,R . . . for elements in T and we write
σexpr for a pair (σ, expr) of selection with condition expr (similarly for projection πexpr).
The same figure also shows an accepting computation on input A ∪ B � C � πexprD.

Notice that the sentences of this language show the same structure as arithmetic
expressions with prioritized operators and without parentheses, which cannot be repre-
sented by VPAs due to the particular shape of their OPM [7].

Definition 3. A simple chain is a word a0a1a2 . . . anan+1, written as 〈a0 a1a2 . . . an
an+1〉,

such that: a0 ∈ Σ ∪ {#}, ai ∈ Σ for every i : 1 ≤ i ≤ n + 1, Ma0an+1 � ∅, and a0 � a1 �
a2 . . . an−1 � an � an+1.

A composed chain is a word a0x0a1x1a2 . . . anxnan+1, where 〈a0 a1a2 . . . an
an+1〉 is a

simple chain, and xi ∈ Σ∗ is the empty word or is such that 〈ai xi
ai+1〉 is a chain (simple

or composed), for every i : 0 ≤ i ≤ n. Such a composed chain will be written as
〈a0 x0a1x1a2 . . . anxn

an+1〉.
A word w over (Σ,M) is compatible with M iff for each pair of consecutive letters

c, d in w Mcd � ∅, and for each factor x of #w# such that x = a0x0a1x1a2 . . . anxnan+1

where a0 � a1 � a2 . . . an−1 � an � an+1 and xi ∈ Σ∗ is the empty word or is such that
〈ai xi

ai+1〉 is a chain (simple or composed) for every 0 ≤ i ≤ n, Ma0an+1 � ∅.

400 F. Panella et al.

q0 q1

σexpr, πexpr

R

�,∪,∩

q0, q1

R σexpr πexpr � ∪ ∩ #
R � � � �

σexpr � � � � � � �

πexpr � � � � � � �

� � � � � � � �

∪ � � � � � � �

∩ � � � � � � �

� � � =̇

〈[# q0] , A ∪ B � C � πexprD#〉
〈[# q0][A′ q1] , ∪ B � C � πexprD#〉
〈[# q1] , ∪ B � C � πexprD#〉
〈[# q1][∪′ q0] , B � C � πexprD#〉
〈[# q1][∪′ q0][B′ q1] , � C � πexprD#〉
〈[# q1][∪′ q1] , � C � πexprD#〉
〈[# q1][∪′ q1][�′ q0] , C � πexprD#〉
〈[# q1][∪′ q1][�′ q0][C′ q1] , � πexprD#〉
〈[# q1][∪′ q1][�′ q1] , � πexprD#〉
〈[# q1][∪′ q1][�′ q1][�′ q0] , πexprD#〉
〈[# q1][∪′ q1][�′ q1][�′ q0][πexpr

′ q0] , D#〉
〈[# q1][∪′ q1][�′ q1][�′ q0][πexpr

′ q0][D′ q1] , #〉
〈[# q1][∪′ q1][�′ q1][�′ q0][πexpr

′ q1] , #〉
〈[# q1][∪′ q1][�′ q1][�′ q1] , #〉
〈[# q1][∪′ q1][�′ q1] , #〉
〈[# q1][∪′ q1] , #〉
〈[# q1] , #〉

Fig. 1. Automaton, precedence matrix and example of computation for language of Example 1

Definition 4. Let A be an operator precedence automaton. A support for the simple
chain 〈a0 a1a2 . . . an

an+1〉 is any path in A of the form

a0−→ q0
a1−→ q1 −→ . . . −→ qn−1

an−→ qn
q0
=⇒ qn+1 (1)

The label of the last (and only) flush is exactly q0, i.e. the first state of the path; this
flush is executed because of relation an � an+1.
A support for the composed chain 〈a0 x0a1x1a2 . . . anxn

an+1〉 is any path in A of the form

a0−→ q0
x0� q′0

a1−→ q1
x1� q′1

a2−→ . . . an−→ qn
xn� q′n

q′0
=⇒ qn+1 (2)

where, for every i : 0 ≤ i ≤ n:

– if xi � ε, then
ai−→ qi

xi� q′i is a support for the chain 〈ai xi
ai+1〉, i.e., it can be

decomposed as
ai−→ qi

xi� q′′i
qi
=⇒ q′i .

– if xi = ε, then q′i = qi.

Notice that the label of the last flush is q′0.

The chains fully determine the structure of the parsing of any automaton on a word
compatible with M, and hence the structure of the syntax tree of the word. Indeed, if

the automaton performs the computation 〈[a q0] , xb〉 ∗� 〈[a q] , b〉 on a factor axb,
then 〈axb〉 is necessarily a chain over (Σ,M) and there exists a support like (2) with
x = x0a1 . . . anxn and qn+1 = q.

3 Operator Precedence ω-Languages and Automata

Traditionally, ω-automata have been classified on the basis of the acceptance condi-
tion they are equipped with. All acceptance conditions refer to the occurrence of states

Operator Precedence ω-Languages 401

which are visited in a computation of the automaton, and they generally impose con-
straints on those states that are encountered infinitely (or also finitely) often during a
run. Classical notions of acceptance (introduced by Büchi [4], Muller [12], Rabin [15],
Streett [16]) can be naturally adapted to ω-automata for operator precedence languages
and can be characterized according to a peculiar acceptance component of the automa-
ton on ω-words. Here we focus mainly on nondeterministic Büchi-operator precedence
ω-automata with acceptance by final state; other models are briefly presented and com-
pared in Section 3.1.

As usual, we denote by Σω the set of infinite-length words over Σ. Thus, the symbol
occurs only at the beginning of an ω-word. Given a precedence alphabet (Σ,M), the
definition of an ω-word compatible with the OPM M and the notion of syntax tree of
an infinite-length word are the natural extension of these concepts for finite strings. We
also use the notation “∃ωi” as a shorthand for “there exist infinitely many i”.

Definition 5. A nondeterministic Büchi-operator precedence ω-automaton (ωOPBA)
is given by a tuple A = 〈Σ,M,Q, I, F, δ〉, where Σ,Q, I, F, δ are defined as for OPAs;
the operator precedence matrix M is restricted to be a |Σ ∪ {#}| × |Σ| array, since ω-
words are not terminated by #. Configurations and (infinite) runs are defined as for OP
automata on finite-length words.

Let S be a run of the automaton on a given word x ∈ Σω. Define In(S) = {q ∈ Q |
∃ωi 〈βi , xi〉 ∈ S with state(βi) = q} as the set of states that occur infinitely often at the
top of the stack of configurations in S. A run S of an ωOPBA on an infinite word x ∈ Σω
is successful iff there exists a state q f ∈ F such that q f ∈ In(S). A accepts x ∈ Σω iff
there is a successful run of A on x.

As in the finite-length case, the class of languages accepted by ωBVPAs (nondeter-
ministic Büchi visibly pushdown ω-automata) is a proper subset of that accepted by
ωOPBAs. Indeed, classical families of automata, like Visibly Pushdown Automata [1],
imply several restrictions that hinder them from being able to deal with the concept
of precedence among symbols and make them unsuitable to model several interesting
aspects often exhibited by real-world systems in various contexts.

To mention a few examples, a natural field of application of ωOPLs is the represen-
tation of processes or tasks which are assigned a priority to fulfill their requirements,
which is a common paradigm in the area of operating systems, e.g. the processing of
interrupts from peripherals with different priorities, or in the context of Web services,
where servers provide services to users with different privileges.ωOPLs can also model
the run-time behavior of database systems, e.g. for modeling sequences of user’s trans-
actions with possible rollbacks, and revision control systems (such as subversion or git).
Examples of such systems are more extensively presented in [14].

3.1 Other Automata Models for Operator Precedence ω-Languages

There are several possibilities to define other classes of OP ω-languages. We may in-
troduce a variant of ωOPBA (called ωOPBEA) which recognizes a word if the au-
tomaton traverses final states with an empty stack infinitely often, and we may as well
consider automata with acceptance conditions other than Büchi’s, as e.g. Muller op-
erator precedence ω-automata (ωOPMAs). Furthermore, deterministic ωOPA and OP

402 F. Panella et al.

ω-transducers can be specified in the natural way as for operator precedence automata
on finite-length words.

In general, the relationships among languages recognized by the different classes of
operator precedenceω-automata and visibly pushdownω-languages are summarized in
Figure 2, where ωDOPBA and ωDOPMA denote the classes of deterministic ωOPBAs
and deterministic ωOPMAs respectively. The detailed proofs of the strict containment
relations holding among the classes in Figure 2 are presented in [13, Chapter 4]. The
proofs regarding the relationships between those classes which are not comparable are
described in [14]. In the sequel we will consider only the most expressive class of
ωOPAs, i.e. ωOPBA.

L(ωOPBA) ≡ L(ωOPMA)

L(ωOPBEA) L(ωDOPMA)

L(ωDOPBA)

L(ωBVPA)�

Fig. 2. Containment relations for ωOPLs. Solid lines denote strict inclusions; dashed lines link
classes which are not comparable.

4 Closure Properties and Emptiness Problem

In this section we focus on the most interesting closure properties of ωOPAs, which are
summarized in Table 1, where they are compared with the properties enjoyed by VPAs
on infinite-length words. All operations are assumed to be applied to, and, when closure
subsists, to produce, languages with compatible OPMs.

Table 1. Closure properties of families of ω-languages. (L1 · L2 denotes the concatenation of a
language of finite-length words L1 and an ω-language L2).

L(ωDOPBA) L(ωDOPMA) L(ωOPBA)≡L(ωOPMA) L(ωBVPA)
Intersection Yes Yes Yes Yes

Union Yes Yes Yes Yes
Complement No Yes Yes Yes

L1 · L2 No No Yes Yes

The main family ωOPBA is closed under Boolean operations and under concatena-
tion with a language of finite words accepted by an OPA. Furthermore, the emptiness
problem is decidable for ωOPAs in polynomial time because they can be interpreted as
pushdown automata on infinite-length words: e.g. [5] shows an algorithm that decides
the alternation-free modal μ-calculus for context-free processes, with linear complexity

Operator Precedence ω-Languages 403

in the size of the system’s representation; thus the emptiness problem for the intersec-
tion of the language recognized by a pushdown process and the language of a given
property in this logic is decidable.

Closure under intersection and union hold for ωOPBAs as for classical ω-regular
languages: these closure properties, together with those enjoyed by ωDOPBAs and
ωDOPMAs, can be proved in a similar way as for classical families of ω-automata,
and their proofs can be found in [13, Chapter 5] and [14, Section 4]. Closure under
complementation and concatenation for ωOPBAs, instead, required novel investigation
techniques.

Closure under Concatenation

Unlike other families of languages, closure under concatenation has been proved for
finite-length word OPLs by using their generating grammars with some difficulty [6],
essentially due to the peculiar structure of their syntax trees. In the case of OPAs, and of
infinite-length words, difficulties are further exacerbated by the fact that an OPA relies
on the end-marker # to empty the stack before accepting a string; on the contrary, when
parsing the concatenation of two OPL strings, the stack cannot always be emptied after
reading the former one; for instance, consider a language L1 ⊆ Σ∗ with an OPM where
a � a and b � a: a word in L1 ending with a b concatenated with aω compels the OPA
to let the stack indefinitely grow with no chance for any flush move after the reading of
the L1 word.

To overtake this difficulty we use a new approach which heavily exploits nondeter-
minism; remember in fact that, similarly to regular languages and VPLs, ωDOPBAs are
strictly less powerful than ωOPBAs (see Figure 2). The basic idea consists in guessing
the end of the first word and deciding whether it could be accepted by the original OPA
recognizing L1 without emptying the stack. This is a nontrivial job which requires stor-
ing suitable information in the stack at any mark move as it will be explained shortly.

To achieve our goal we first introduce a variant of the semantics of the transition re-
lation and of the acceptance condition for OPAs: a string x is accepted if the automaton
reaches a final state right at the end of the parsing of the whole word, and it does not
perform any flush move determined by the ending delimiter # to empty the stack; thus it
stops just after having put the last symbol of x on the stack. Precisely, the semantics of
the transition relation differs from the definition of classical OPAs in that, once a con-
figuration with the endmarker as lookahead is reached, the computation cannot evolve
in any subsequent configuration, i.e. a flush move C � C1 with C = 〈B1B2 . . . Bn , y#〉
and symbol(Bn) � y# is performed only if y � ε. The language accepted by this variant
of the automaton (denoted as L̃) is the set of words:

L̃(A) = {x | 〈[# qI] , x#〉 ∗� 〈γ[a qF] , #〉, qI ∈ I, qF ∈ F, γ ∈ Γ∗, a ∈ Σ ∪ {#}}
We emphasize that, unlike normal acceptance by final state of a pushdown automaton,
which can perform a number of ε-moves after reaching the end of a string and accept if
just one of the visited states is final, this type of automaton cannot perform any (flush)
move after reaching the endmarker through the last look-ahead.

Nevertheless, the variant and the classical definition of OPA are equivalent: the
following lemma shows the first direction of inclusion between the two formalisms.

404 F. Panella et al.

Statement 1 in [14], although not necessary to prove closure under concatenation of
L(ωOPBA), completes the proof of equivalence between traditional and variant OPAs.

Lemma 1. Let A1 be a nondeterministic OPA defined on an OP alphabet (Σ,M) with
s states. Then there exists a nondeterministic OPA A2 with the same precedence matrix
as A1 and O(|Σ|s2) states such that L(A1) = L̃(A2).

Sketch of the proof. Consider a word of finite length w which is preceded by a delimiter
but which is not ended with such a symbol. Define a chain in a word w as maximal if
it does not belong to a larger composed chain. In a word of finite length preceded and
ended by # only the outer chain 〈#w#〉 is maximal.

The body of a chain 〈awb〉, simple or composed, is the word w. A word w which is
preceded but not ended by a delimiter # can be factored in a unique way as a sequence
of bodies of maximal chains wi and letters ai as # w = # w1a1w2a2 . . .wnan where
〈ai−1 wi

ai〉 are maximal chains and each wi can be possibly missing, with a0 = # and
∀i : 1 ≤ i ≤ n−1 ai�ai+1 or ai � ai+1. During the parsing of word w, the symbols of the
string are put on the stack and, whenever a chain is recognized, the letters of its body
are flushed away. Hence, after the parsing of #w the stack contains only the symbols
a1 a2 . . . an, which we call pending letters, and is structured as a sequence

� ai1 = a1 � a2 � . . . � ai2 � ai2+1 � . . . � ai3 � ai3+1 � . . . � aik � aik+1 � . . . � an

of k open chains, i.e., sequences of symbols b0 � b1 � b2 � . . . � bm, for m ≥ 1. At
the end of the computation a classical OPA performs a series of flush moves due to the
presence of the final symbol #. These moves progressively empty the stack, removing
one by one the open chains.

A nondeterministic automaton that, unlike classical OPAs, does not resort to the
last # for the recognition, guesses nondeterministically the ending point of each open
chain on the stack and guesses how, in an accepting run, the states in these points of
the stack would be updated if the final flush moves were progressively performed. The
automaton must behave as if, at the same time, it simulates two steps of the accepting
run of a classical OPA: a move during the parsing of the string and a step during the
final flush transitions which will later on empty the stack, leading to a final state. To
this aim, the states of a classical OPA are augmented with an additional component
to store the necessary information. If the forward path consisting of moves during the
parsing of the string and the backward path of flush moves guessed by the automaton
can consistently meet and be rejoined when the parsing of the input string stops, then
combined they constitute an accepting run of the classical OPA.

A variant OPA A2 equivalent to a given OPA A1 thus may be defined so that, af-
ter reading each prefix of a word, it reaches a final state whenever, if the word were
completed in that point with #, A1 could reach an accepting state with a sequence of
flush moves. In this way, A2 can guess in advance which words may eventually lead
to an accepting state of A1, without having to wait until reading the delimiter # and to
perform final flush moves. To illustrate, we use the following example.

Example 2. Consider Figure 1. If we take the input word of this computation without
the ending marker #, then the sequence of pending letters on the stack, after the au-
tomaton puts on the stack the last symbol D, is # � ∪ � � � � � πexpr � D. There

Operator Precedence ω-Languages 405

are five open chains with starting symbols ∪, �, �, πexpr,D, hence the computation
ends with five consecutive flush moves determined by the delimiter #. The following
figure shows the configuration just before looking ahead at the symbol #. The states
(depicted within boxes) at the end of the open chains are those placeholders that an
equivalent variant OPA should guess in order to find in advance the last flush moves

q1 = q1
q0
=⇒ q1

q0
=⇒ q1

q1
=⇒ q1

q1
=⇒ q1

q1
=⇒ q1 ∈ F1 of the accepting run.

〈[# q1] [∪’ q1] [�’ q1] [�’ q0] [πexpr’ q0] [D’ q1] , #〉

q1 ∈ F1 q1 q1 q1 q1 q1

The corresponding configuration of the variant OPA, with the augmented states,
would be:

〈[# q1, q1] [∪’ q1, q1] [�’ q1, q1] [�’ q0, q1] [πexpr’ q0, q1] [D’ q1, q1] , #〉

The formal definition of the variant automaton and the proof of its equivalence with a
classical OPA are presented in [14].

We are now ready for the main result.

Theorem 1. Let L1 ⊆ Σ∗ be a language of finite words recognized by an OPA with
OPM M1 and s1 states. Let L2 ⊆ Σω be anω-language recognized by a nondeterministic
ωOPBA with OPM M2 compatible with M1 and s2 states. Then the concatenation L1 ·L2

is also recognized by a ωOPBA with OPM M3 ⊇ M1 ∪ M2 and O(|Σ|(s2
1 + s2

2)) states.

Sketch of the proof. Intuitively, a nondeterministic ωOPBA recognizing L1 · L2 first
simulates the variant automaton recognizing L1, guesses the end of the L1 word, and
leaves a suitable “marker” on top of the stack before beginning the simulation of the
second ωOPBA. In this process, the only nontrivial technical aspect is the fact that the
second phase cannot leave unaffected the part of the stack that is left as a “legacy” by
the first phase; thus, some flush moves must “invade” the lower part of the stack and the
two phases cannot be completely independent, somewhat mimicking the construction
of the OP grammar generating the concatenation of two OPLs [7]. ��

Closure under Complementation

Theorem 2. Let M be a conflict-free precedence matrix on an alphabet Σ. Denote by
LM ⊆ Σω the ω-language comprising all infinite words x ∈ Σω compatible with M.

Let L be an ω-language on Σ that can be recognized by a nondeterministic ωOPBA
with precedence matrix M and s states. Then the complement of L w.r.t LM is recognized
by an ωOPBA with the same precedence matrix M and 2O(s2) states.

Sketch of the proof. The proof follows to some extent the structure of the correspond-
ing proof for Büchi VPAs [1], but it exhibits some relevant technical aspects which
distinctly characterize it; in particular, we need to introduce an ad-hoc factorization of
ω-words due to the more complex management of the stack performed by ωOPAs.

406 F. Panella et al.

Let A = 〈Σ,M,Q, I, F, δ〉 be a nondeterministic ωOPBA with |Q| = s. Without loss
of generality A can be considered complete with respect to the transition function δ, i.e.
such that there is a run of A on every ω-word on Σ compatible with M.

In general, a sentence on Σω can be factored in a unique way so as to distinguish
the subfactors of the string that can be recognized without resorting to the stack of the
automaton and those subwords for which the use of the stack is necessary.

More precisely, an ω-word w ∈ Σω can be factored as a sequence of chains and
pending letters w = w1w2w3 . . . where either wi = ai ∈ Σ is a pending letter or
wi = ai1ai2 . . . ain is a finite sequence of letters such that 〈li wi

f irsti+1〉 is a chain, where
li denotes the last pending letter preceding wi in the word and f irsti+1 denotes the first
letter of word wi+1. Let also, by convention, a0 = # be the first pending letter.

Notice that such factorization is not unique, since a string wi can be nested into
a larger chain having the same preceding pending letter. The factorization is unique,
however, if we additionally require that wi has no prefix which is a chain.

As an example, for the word w = �a � c �︸����︷︷����︸b �a�︸︷︷︸ d�︸︷︷︸b . . ., with precedence rela-

tions in the OPM a � b and b � d, the unique factorization is w = w1bw3w4b . . ., where
b is a pending letter and 〈#acb〉, 〈bad〉, 〈bdb〉 are chains.

Define a semisupport for a chain 〈a0 xan+1〉 (simple or composed) as any path in A

which is a support for the chain (Equations 1 and 2), where however the initial state of
the path is not restricted to be the state reached after reading symbol a0.

Let x ∈ Σ∗ be such that 〈axb〉 is a chain for some a, b and let T (x) be the set of all
triples (q, p, f) ∈ Q × Q × {0, 1} such that there exists a semisupport q

x
� p in A, and

f = 1 iff the semisupport contains a state in F. Also let T be the set of all such T (x), i.e.,
T contains set of triples identifying all semisupports for some chain, and set PR = Σ∪T.
The pseudorun for w in A is the ω-word w′ = y1y2y3 . . . ∈ PRω where yi = ai if wi = ai,
otherwise yi = T (wi). For the example above, then, w′ = T (ac) b T (a) T (d) b

Deferring to [14] further details of our proof, which from this point on resembles [1]
with the necessary adaptions, we can define a nondeterministic Büchi finite-state au-
tomaton AR over alphabet PR which has O(s) states and accepts a pseudorun iff the
corresponding words on Σ belong to L(A). Consider then a deterministic Streett au-
tomaton BR that accepts the complement of L(AR) on the alphabet PR and, receiv-
ing pseudoruns as input words, accepts only words in LM\L(A). The automaton BR

has 2O(s log s) states and O(s) accepting constraints [17]. We can build a nondeterminis-
tic transducer ωOPBA B that on reading w generates online the pseudorun w′, which
will be given as input to BR. The final automaton, that recognizes the complement
of L = L(A) w.r.t LM , is the ωOPBA representing the product of BR (converted to a
Büchi automaton), which has 2O(s log s) states, and B, with 2O(s2) states; thus it has 2O(s2)

states. ��

5 Conclusions and Further Research

We presented a formalism for infinite-state model checking based on operator prece-
dence languages, continuing to explore the paths in the lode of operator precedence
languages started up by Robert Floyd a long time ago. We introduced various classes
of automata able to recognize operator precedence languages of infinite-length words

Operator Precedence ω-Languages 407

whose expressive power outperforms classical models for infinite-state systems as Vis-
ibly Pushdown ω-languages, allowing to represent more complex systems in several
practical contexts. We proved the closure properties of ωOPLs under Boolean opera-
tions that, along with the decidability of the emptiness problem, are fundamental for the
application of such formalism to model checking.

Our results open further directions of research. A first interesting topic deals with
the characterization of ωOPLs in terms of suitable monadic second order logical for-
mulas, that has already been studied for operator precedence languages of finite-length
strings [11]. This would further strengthen applicability of model checking techniques.
The next step of investigation will regard the actual design and study of complexity
issues of algorithms for model checking of expressive logics on these pushdown mod-
els. We expect that the peculiar features of Floyd languages, as their “locality princi-
ple” which makes them suitable for parallel and incremental parsing [2,3] and their
expressivity, might be interestingly exploited to devise efficient and attractive software
model-checking procedures and approaches.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journ. ACM 56(3) (2009)
2. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: Parallel parsing of operator

precedence grammars. Information Processing Letters (2013), doi:10.1016/j.ipl.2013.01.008
3. Barenghi, A., Viviani, E., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: PAPAGENO: a

parallel parser generator for operator precedence grammars. In: Czarnecki, K., Hedin, G.
(eds.) SLE 2012. LNCS, vol. 7745, pp. 264–274. Springer, Heidelberg (2013)

4. Büchi, J.R.: Weak Second-Order Arithmetic and Finite Automata. Mathematical Logic Quar-
terly 6(1-6), 66–92 (1960)

5. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland, W.R.
(ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg (1992)

6. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Prop-
erty. In: Dediu, A.-H., Fernau, H., Martı́n-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031,
pp. 214–226. Springer, Heidelberg (2010)

7. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Property.
Journal of Computer and System Science 78(6), 1837–1867 (2012)

8. Floyd, R.W.: Syntactic Analysis and Operator Precedence. Journ. ACM 10(3), 316–333
(1963)

9. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York (2008)
10. Lonati, V., Mandrioli, D., Pradella, M.: Precedence Automata and Languages. In: Kulikov,

A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 291–304. Springer, Heidelberg
(2011)

11. Lonati, V., Mandrioli, D., Pradella, M.: Logic Characterization of Invisibly Structured Lan-
guages: the Case of Floyd Languages. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F.,
Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 307–318. Springer, Hei-
delberg (2013)

12. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the Fourth Annual
Symposium on Switching Circuit Theory and Logical Design, SWCT 1963, pp. 3–16. IEEE
Computer Society, Washington, DC (1963)

13. Panella, F.: Floyd languages for infinite words. Master’s thesis, Politecnico di Milano (2011),
http://home.dei.polimi.it/panella

http://home.dei.polimi.it/panella

408 F. Panella et al.

14. Panella, F., Pradella, M., Lonati, V., Mandrioli, D.: Operator precedence ω-languages. CoRR
abs/1301.2476 (2013), http://arxiv.org/abs/1301.2476

15. Rabin, M.: Automata on infinite objects and Church’s problem. Regional conference series
in mathematics. Published for the Conference Board of the Mathematical Sciences by the
American Mathematical Society (1972)

16. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable.
Information and Control 54(1-2), 121–141 (1982)

17. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science,
vol. B, pp. 133–191. MIT Press, Cambridge (1990)

http://arxiv.org/abs/1301.2476

New Results on Deterministic Sgraffito

Automata�

Daniel Pr̊uša1, Frantǐsek Mráz2, and Friedrich Otto3

1 Czech Technical University, Faculty of Electrical Engineering
Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic

prusapa1@cmp.felk.cvut.cz
2 Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 25 Prague 1, Czech Republic

frantisek.mraz@mff.cuni.cz
3 Fachbereich Elektrotechnik/Informatik, Universität Kassel

D-34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. The deterministic sgraffito automaton is a two-dimensional
computing device that allows a clear and simple design of important com-
putations. The family of picture languages it accepts has many nice clo-
sure properties, but when restricted to one-row inputs (that is, strings),
this family collapses to the class of regular languages. Here we compare
the deterministic sgraffito automaton to some other two-dimensional
models: the two-dimensional deterministic forgetting automaton, the
four-way alternating automaton and the sudoku-deterministically rec-
ognizable picture languages. In addition, we prove that deterministic
sgraffito automata accept some unary picture languages that are outside
the class REC of recognizable picture languages.

Keywords: picture languages, sgraffito automaton, recognizable pic-
ture languages.

1 Introduction

The two-dimensional sgraffito automaton (2SA) was introduced recently as a
device for accepting picture languages [12]. It is a bounded two-dimensional
Turing machine that in each step replaces the currently scanned symbol by a
symbol of smaller weight. Hence, it can be seen as a two-dimensional variant of
the Hennie machine [6], which visits each of its tape positions just a bounded

� The first author was supported by the Grant Agency of the Czech Republic under
the project P103/10/0783, the second author under the projects P103/10/0783 and
P202/10/1333. The work presented here was done while the third author was visiting
at Charles University in Prague. He gratefully acknowledges the hospitality of the
Faculty of Mathematics and Physics.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 409–419, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

410 D. Pr̊uša, F. Mráz, and F. Otto

number of times independent of the size of the input. As Hennie machines rec-
ognize regular languages only, the 2SA is equivalent to the finite-state acceptor
when restricted to one-dimensional inputs. This is seen as a basic requirement
on models of automata that define a family of picture languages that is to cor-
respond to the ground level of a Chomsky-like hierarchy for picture languages.
A well established example of such a class is the family of recognizable picture
languages (REC) [5]. However, as REC also contains some rather complicated
languages (e.g., some NP-complete languages), various models that recognize
deterministic ground level classes have been proposed recently. These include
the family DREC [1], the sudoku-deterministically recognizable languages [3],
and the deterministic Wang automata [10,11].

Here we study the computational power of the deterministic sgraffito automa-
ton (2DSA) by comparing it to various other models. The 2DSA allows an easy
and clear design of computations, and it is quite powerful. As shown in [12], the
family of picture languages L(2DSA) that are accepted by 2DSA properly in-
cludes the class DREC, and it has the same closure properties. Here we compare
the 2DSA to the following two-dimensional models: the two-dimensional deter-
ministic forgetting automaton [8], the four-way alternating automaton [9], and
the sudoku-deterministically recognizable picture languages [3]. In addition, we
show that the 2DSA accepts some unary picture languages that are not in REC,
which implies that the 2DSA is more powerful than DREC and incomparable to
REC even when only inputs over a one-letter alphabet are considered.

2 The Sgraffito Automaton

Here we use the common notation and terms on pictures and picture languages
(see, e.g., [5]). Let Σ be a finite alphabet, and let P ∈ Σ∗,∗ be a picture over Σ,
that is, P is a two-dimensional array of symbols from Σ. If P is of sizem×n, then
we write P ∈ Σm,n. We introduce a set of five special markers (sentinels) S =
{.,2,0,⊥,#}, and we assume that Σ ∩ S = ∅ for any alphabet Σ considered.
In order to enable an automaton to detect the border of P easily, we define the
boundary picture P̂ over Σ ∪ S of size (m+ 2)× (n+ 2). It is illustrated by the
scheme in Figure 1.

P

#

#

#

#

�

�
...

�

�
...

⊥ ⊥ ⊥ ⊥. . .

� � � �. . .

Fig. 1. The boundary picture P̂

New Results on Deterministic Sgraffito Automata 411

Let H = {R,L,D,U,Z} be the set of possible head movements, where the
first four elements denote directions (right, left, down, up) and Z represents no
movement.

Definition 1. A two-dimensional sgraffito automaton (2SA) is given by a 7-
tuple A = (Q,Σ, Γ, δ, q0, QF , μ), where

– Q is a finite non-empty set of states,
– Σ is an input alphabet,
– Γ is a working alphabet containing Σ,
– q0 ∈ Q is the initial state,
– QF ⊆ Q is a set of final states,
– δ : (Q �QF)× (Γ ∪ S) → 2Q×(Γ∪S)×H is a transition relation, and
– μ : Γ → N is a weight function.

In addition, the following two properties are satisfied:

1. A is bounded, that is, whenever it scans a symbol from S, then it immediately
moves to the nearest field of P without changing this symbol,

2. A is weight-reducing, that is, for all q, q′ ∈ Q, d ∈ H, and a, a′ ∈ Γ , if
(q′, a′, d) ∈ δ(q, a), then μ(a′) < μ(a).

Finally, A is deterministic (a 2DSA), if |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Γ ∪S.

The notions of configuration and computation are defined as usual. In the initial
configuration on input P , the tape contains P̂ , A is in state q0, and its head scans
the top-left corner of P . If P is the empty picture, then the head initially scans
the bottom-right corner of P̂ which contains the sentinel #. The automaton A
accepts P iff there is a computation of A on input P that finishes in a state
from QF .

When designing a sgraffito automaton for a picture language, it suffices to
describe a bounded two-dimensional Turing machine that visits each tape cell
only a constant number of times (i.e., a two-dimensional Hennie machine). In [12]
it was shown that any such machine can be transformed into an equivalent
sgraffito automaton (preserving determinism). This fact will be utilized in our
constructive proofs below.

3 Comparing the 2DSA to the Forgetting Automaton

The two-dimensional deterministic forgetting automaton (2DFA) was introduced
by Jǐrička and Král in [8]. It is a bounded two-dimensional Turing machine that
is allowed to rewrite by only using a special symbol @. In comparison to the
2DSA, there is no bound on the number of visits of any tape field. Here we study
the question of whether the larger number of possible rewrites is an advantage
for the 2DSA over the 2DFA. We will see, however, that this is not the case. On
the contrary, we show that the 2DFA is more powerful than the 2DSA.

Jǐrička and Král described a technique of how a 2DFA can store information
on its tape while still remembering its original content. Let P ∈ Σ∗,∗ be an

412 D. Pr̊uša, F. Mráz, and F. Otto

input, let M be the set of tape fields storing P , and let B ⊆ M be a rectangular
subarea of M . Divide B into two parts, say H and G, where H consists of the
|Σ| first fields of B, and G = B �H . For a ∈ Σ, let G(a) denote the subset of
those fields of G that initially contain the symbol a. Choose a ∈ Σ such that
|G(a)| ≥ |G|/|Σ|. The idea is to use G(a) to record information by erasing some
of its fields, while memorizing which a has been chosen in order to be able to
reconstruct the original content. Suppose a is the i-th symbol of Σ. Erase the
i-th field of H to indicate this, and represent the erased symbol in unary using
the first |Σ| fields of G(a). All the other fields of G(a) can each store one bit of
information: it is either erased or not erased. Hence, the total number of available
bits is

|G(a)| − |Σ| ≥ |B| − |Σ|
|Σ| − |Σ|.

Theorem 1. L(2DSA) is a proper subset of L(2DFA).

Proof. We first show how a 2DSA A = (Q,Σ, Γ, δ, q0, QF , μ) can be simulated
by a 2DFA F . Let P be an input picture, let M be the set of fields storing P ,
and let n be an integer, dependent on A, whose value will be determined later.

We split M into blocks of size n×n, except for those blocks neighbouring the
right border or the bottom – their size could be up to 2n−1. If the height or the
width of P is smaller than n, then the blocks will be only as high or as wide as
the picture. In case that both, the height and the width of P are smaller than n,
F can decide whether to accept or to reject P simply by table look-up. Figure 2
summarizes the non-trivial variants.

n n n v1

n

u1

(a)

n

u2

v2

(b)

Fig. 2. Decomposition of M into blocks of fields, when (a) both dimensions of M are
at least n, or (b) the width v2 is smaller than n

Note that F can detect the borders between blocks by counting modulo n for
both, the number of movements in the vertical and the horizontal directions.

The construction is now done as follows. F simulates A in the top-left block.
All symbols in the block are scanned and memorized in states first, then F
determines whether A finishes its computation inside the block or whether it
enters one of its neighbouring blocks (B). In the latter case F writes to B, in
which state and in which position B was entered. Then it again simulates A
within this block and so on. The information on entry points to a block (ordered

New Results on Deterministic Sgraffito Automata 413

by time) is sufficient to reconstruct its content. There are at most 8n positions
on the border of a block, thus a position can be encoded in binary using ,log2 8n-
bits, while a state is encoded using ,log2 |Q|- bits. Any (border) field in M is
entered at most |Γ | times. This implies that O(n log n) bits are needed. We have
seen above that the capacity of each block is Θ(n2) bits. Thus, a suitable value
of n fulfilling the memory requirement can be found. When the height or the
width of P is only m < n, then all blocks are entered across the borders of
length m, which means that only O(m logm) bits are needed, while the capacity
of the block is O(mn). Thus, also in this case a corresponding value for n exists.

Finally, it is known that 2DFAs working over strings accept the deterministic
context-free languages [7]. This proves that the above inclusion is proper, as
2DSAs only accept the regular string languages.
�

4 Simulations of Other Models by 2DSA

The simulations we will present in this section are based on representing a com-
putation as a directed graph and traversing this graph by a 2DSA in the depth
first manner (DFS) [4]. Therefore, we start with a description of the general
principles shared by our constructions.

Let G = (V,E) be a directed graph that satisfies the following conditions:

1. V ⊆ {1, . . . ,m} × {1, . . . , n} × U for some integers m, n and a finite set U .
2. For every edge ((i1, j1, u1), (i2, j2, u2)) in E, |i1 − i2|+ |j1 − j2| ≤ 1.

The graph G can be represented in a picture P of size m × n, where the field
at a position (i, j) records the vertices of the form (i, j, u) (u ∈ U) in V and
the outgoing edges of these vertices. Since the edges only go to the vertices
represented in the field itself and in its neighbouring fields, it is only necessary
to represent O(|U |) many vertices and edges in each tape field.

Assume that a 2DSA has created a representation of G and moved its head
back to the initial position. To traverseG, it assigns a status to vertices as well as
to edges. Initially, each vertex has status fresh. When visiting a vertex v during
DFS for the first time, its status is changed to open, and when DFS backtracks
to v, since the whole subtree rooted at v has been searched, then its status is
set to closed. Analogously, each edge e has initially the status unexplored. This
changes when e is being traversed. If it leads to a fresh vertex, its status is set
to discovery, otherwise its status is set to back. The edges with status discovery
will form DFS-trees at the end of the search. The search is now implemented as
follows.

1. If there is no vertex with status fresh at the field scanned, go to step 3.
2. While there a vertex v with status fresh (possibly fulfilling some additional

requirement), mark it as open and start DFS, which will return to v at the
end.

3. If not all the fields have been scanned, move the head to the next field in
the row or to the first field of the next row when the right border is reached.
Continue with step 1.

414 D. Pr̊uša, F. Mráz, and F. Otto

In our constructions U will correspond, for example, to the set of states of an
automaton to be simulated. The requirement mentioned in step 2 may select,
for example, source nodes only (vertices without incoming edges). The whole
process visits and rewrites each tape field O(|U |) many times. Hence, it can be
realized by a 2DSA.

4.1 The Four-Way Alternating Automaton

In [12], it is shown that every nondeterministic four-way automaton (4FA) [2]
can be simulated by a 2DSA. Here we strengthen this result by showing that it
is even possible to simulate four-way alternating automata (4AFA) [9]. A four-
way alternating automaton is given by a 6-tuple A = (Q(∃), Q(∀), Σ, δ, q0, QF),
where the set of states is split into Q(∃) (existential states) and Q(∀) (universal
states). The set of final states QF is a subset of Q(∃)∪Q(∀), and the transition
relation δ assigns a finite subset of (Q(∃) ∪ Q(∀)) × H to each pair of the form
(q, a) ∈ (Q(∃) ∪Q(∀))× (Σ ∪ S).

Theorem 2. L(4AFA) is a proper subset of L(2DSA).

Proof. Let A = (Q(∃), Q(∀), Σ, δ, q0, QF) be a 4AFA, and let P ∈ Σm,n be an
input picture. We define a directed graph G = (V,E) representing all possible
transitions of A as follows:

– V = {1, . . . ,m} × {1, . . . , n} × (Q(∃) ∪Q(∀));
– ((i1, j1, q1), (i2, j2, q2)) is an edge in E iff (q2, d) ∈ δ(q1, P (i1, j1)), where

(i2, j2) is the coordinate reached from (i1, j1) by moving into the direction
given by d.

Special care is required for transitions that visit the borders of P̂ . In these cases
we represent the composition of two consecutive transitions by a single edge (the
head must not finish on the border).

Let ρ : V → {0, 1} be the function that expresses the result (0 – reject, 1 –
accept) of the computation of A over P if started at position (i, j) in state q.
The values of ρ can be computed recurrently by the following rules:

1. if q ∈ QF , then ρ(i, j, q) = 1 for all admissible values of i and j;
2. if q ∈ Q(∃)�QF , then ρ(i, j, q) = 1 iff there is an edge from (i, j, q) to some

(i′, j′, q′) such that ρ(i′, j′, q′) = 1;
3. if q ∈ Q(∀) � QF , then ρ(i, j, q) = 1 iff for each edge from (i, j, q) to some

(i′, j′, q′), ρ(i′, j′, q′) = 1.

A accepts P iff ρ(1, 1, q0) = 1. We design a computation that computes ρ for
each vertex in V , applying the above rules. The values of ρ are initially set to 1
only for the vertices in the set VI that is defined as follows: v = (i, j, q) ∈ VI
iff q ∈ QF or q ∈ Q(∀) and there is no outgoing edge from v. Then DFS is
performed on the reversion of G. It is started at the vertices in VI . Moreover, it
continues through outgoing edges of a vertex v only if ρ(v) has been set to 1.

Since L(4AFA) is not closed under complement [9], while L(2DSA) is [12], it
follows that the above inclusion is proper.
�

New Results on Deterministic Sgraffito Automata 415

4.2 Sudoku-Deterministically Recognizable Picture Languages

The sudoku-deterministically recognizable picture languages (SDREC) were in-
troduced by Borchert and Reinhardt in [3]. They are defined via domino
tiling systems [5] and the sudoku-deterministic process. A domino tiling sys-
tem T = (Σ,Γ,Δ, π) is specified by a set of dominoes Δ (that is, pictures over
Γ ∪S of sizes 1×2 and 2×1) and a projection π : Γ → Σ. These systems can be
used to define picture languages in REC that are projections of local languages
whose tiles all match dominoes in Δ.

The sudoku-deterministic process follows a different approach. Given a picture
P ∈ Σm,n, it is initialized by the picture SP of the same size in which each
position (i, j) stores the set SP (i, j) := π−1(P (i, j)) ∈ 2Γ . These preimages are
then reduced iteratively in the same manner as a Sudoku-puzzle is solved. In
one step, all those symbols that do not conform locally to the set of allowed
dominoes are discarded from a given position. Formally, for S, S′ ∈ (2Γ)m,n, S
is reduced to S′ if

S′(i, j) = { x ∈ S(i, j) | ∃y1, y2, y3, y4 ∈ Γ ∪S : y1 ∈ Ŝ(i+1, j), y2 ∈ Ŝ(i−1, j),

y3 ∈ Ŝ(i, j + 1), y4 ∈ Ŝ(i, j − 1), and x y1 , y2 x ,
x
y3

,
y4
x

∈ Δ }

for all positions (i, j). The accepted picture language is the set of all pictures P
for which there exists a way to transform the initialized picture SP in finitely
many steps into a picture in which every position consists of exactly one element
and which cannot be transformed further.

Theorem 3. SDREC is contained in L(2DSA).

Proof. Let L be a language in SDREC, and let T = (Σ,Γ,Δ, π) be a domino
tiling system for L. To design a 2DSA A accepting L, we benefit from the known
fact that the result of a sudoku-deterministic process does not depend on the
order in which particular symbols are discarded. Let P ∈ Σm,n be an input
picture. Then A simulates the sudoku-deterministic process as follows:

1. For each position (i, j), A initializes S(i, j) by the set S(i, j) := π−1(P (i, j)).
2. A moves its head row by row. Every position (i, j) visited is marked as

‘reached’. A checks whether some elements in S(i, j) can be discarded by
the sudoku-deterministic process – this is decided based on the content of
the neighbouring fields.

3. If at least one element is discarded, then A searches all those neighbouring
fields that have already been marked as ‘reached’. It checks whether further
symbols can be discarded at these fields, and then it repeats this process for
the corresponding neighbours. Actually, this process can be realized by an
extended version of the DFS algorithm. A visits neighbouring fields marked
as ‘reached’ using the depth-first principle, but when returning from some
field (i′, j′) to its predecessor (i, j) in the depth-first tree, A checks again

416 D. Pr̊uša, F. Mráz, and F. Otto

whether some element at this field must be discarded. If so, then the cor-
responding elements are discarded, and the DFS algorithm is restarted at
this field, again visiting the (already visited) neighbours of the field (i, j)
again. After the extended DFS finishes, A returns to the last field marked
as ‘reached’, and it continues with the row by row movement.

4. When the simulation has been completed, then A revisits all fields in a
sequential manner and accepts iff |S(i, j)| = 1 for all positions (i, j).

The simulation guarantees that all symbols that are discarded by the sudoku-
deterministic process are also discarded by A. Finally, let us determine how
many times a field f is visited during steps 2 and 3. When it is visited for the
first time, then it is being marked as ‘reached’. When the DFS is launched at f ,
then f is visited at most 8 · |Γ | many times, as f has at most 4 neighbours, and
each time a symbol is being discarded from one of these neighbours, two more
visits to f may become necessary. And finally, f is visited at most 4 · |Γ | times
when the DFS is launched at other fields – a DFS contributes a visit to f only
when a symbol is discarded from a neighbouring field, and this happens in any
field at most |Γ | many times. Hence, A visits every field only a bounded number
of times.
�

Remark 1. Borchert and Reinhardt proved that L(4AFA) ⊆ SDREC. This means
that Theorem 2 is a consequence of Theorem 3. However, the direct proof of
Theorem 2 we presented above is simpler, and it nicely demonstrates the power
of the 2DSA.

5 Recognition of Unary Picture Languages

Giammaresi and Restivo studied the problem of which functions can be rep-
resented by recognizable picture languages. Let Σ = {�} denote a one-letter
alphabet. A function f : N → N is called representable if the language
L(f) = {�n,f(n) | n ∈ N } belongs to REC. A representable function cannot
grow faster than an exponential function [5]. Here we show that using 2DSA,
functions can be represented that grow faster than any exponential function.

Proposition 1. The language L1 = {�n,n! | n ∈ N } is accepted by a 2DSA.

Proof. We first describe a 2DSA A that accepts pictures of size n × (n · n!)
over Σ. Let P(m) be the set of all permutations on M = {1, . . . ,m}. Each
element of P(m) can be represented as a sequence (a1, . . . , am), where the ai’s
are the different numbers from M . For two permutations a = (a1, . . . , am) and
b = (b1, . . . , bm), we write a < b iff there is an index j such that aj < bj and
ai = bi for all i = 1, . . . , j−1. We encode a permutation (a1, . . . , am) by a square
picture of size m×m over {�,�} as follows: for all i, row i is composed of white
pixels except at position ai, which contains a black pixel. An example is given
in Figure 3(a).

Given an input picture P ∈ Σm,n, A tries to write the sequence of all permu-
tations of M in ascending order into this picture (see Figure 3(b)). The critical

New Results on Deterministic Sgraffito Automata 417

1

2

3

4

(a) (b)

Fig. 3. (a) The permutation (4, 1, 3, 2) represented as a black and white picture.
(b) Representations of all permutations on {1, 2, 3} written side by side.

part of this design is a procedure that computes the next permutation from a
given permutation (a1, . . . , am). This is realized by the following algorithm:

1. find the greatest index j such that aj−1 < aj ;
2. among aj, . . . , am, find the smallest element ak that is larger than aj−1;
3. switch elements aj−1 and ak;
4. reverse the order of the elements aj , . . . , am.

This algorithm can be adopted to work over a picture R that represents
(a1, . . . , am). W.l.o.g. we can assume that A can also see the symbols in the
neighbouring fields. It traverses R row by row from the bottom to the top, finds
j and marks the j-th row. After that it traverses R from the left to the right
column by column, starting at column aj−1 +1, and finds k. The situation is il-
lustrated in Figure 4(a). A swap of elements aj−1 and ak follows, see the general
pattern in Figure 4(b). It suffices to mark the rows and the columns in which
the corresponding black pixels are located, to erase the pixels, and to write them
at the new positions (note that the markers are always discarded when they are
no longer needed). The whole process only visits the related marked fields. In
the next step the order of the elements aj , . . . , am is reversed. This is done by
swapping aj with am, aj+1 with am−1, and so forth.

j

k

j−1A

B

C

(a)

i

j

aj ai

(b) (c)

Fig. 4. (a) Finding the indices j and k. B is the lowest one which is positioned to
the right of the black pixel in the previous row (which is A). C has to lie in rows
below (and including) B. Its column is the first one to the right of A’s column that
contains a black pixel below row j − 1. (b) The swap of the i-th and j-th element of a
permutation. (c) Copy one element of a permutation to the next block. The sequence
consists of vertical, horizontal and diagonal movements. The related row is marked.

418 D. Pr̊uša, F. Mráz, and F. Otto

Since each row and each column of R only contains a single black pixel, the
total number of visits of each field during the swaps is constant. Finally, the new
permutation is copied to the next block in P , applying the movements shown
in Figure 4(c) to transfer each black pixel. Again, a constant number of visits is
paid to each field after copying all the black pixels, thanks to the uniqueness of
the rows and columns.

The whole computation is initialized by writing down the first permutation
(1, . . . ,m). If the area of P is exactly covered by all permutations, then its size is
m× (m ·m!), and A accepts. A minor modification is needed to accept pictures
of size m×m! – extend pictures representing permutations by one (dummy) row
and column (that is, permutations on M ′ = {1, . . . ,m− 1} are generated).
�

Since it is known that the number of different crossing sequences of a 2DSA
between two neighbouring columns of height n is 2O(n logn) [12], we have found
a representable function with the fastest possible growth, which shows that the
given bound is tight. Also we obtain the following consequence.

Corollary 1. DREC ∩ {�}∗,∗ is a proper subset of L(2DSA) ∩ {�}∗,∗.

6 Conclusions

We have shown that the two-dimensional deterministic sgraffito automaton has
a great potential to simulate other models, thanks to its ability to perform the
depth first search in a graph represented on the tape. Also we have seen that it
accepts some unary picture languages not in REC.

Jǐrička and Král proved that two-dimensional deterministic forgetting au-
tomata are more powerful than nondeterministic four-way automata [8]. We
have strengthened their result by using a weaker automaton to recognize a larger
family, as is demonstrated by the relationships shown in the diagram in Figure 5.

L(2DFA)

L(2DSA)

��

L(4AFA)

��������� ��
SDREC

��

L(4FA)

���������

���������

Fig. 5. Hierarchy of Classes of Picture Languages. Each arrow represents a proper
inclusion, while a dotted arrow represents an inclusion that is not known to be proper.

It remains open whether SDREC is a proper subclass of L(2DSA). It seems
that closure properties of SDREC have not yet been studied much. It would
be worth to know them. If SDREC is not closed under complement, then it

New Results on Deterministic Sgraffito Automata 419

would be a proper subclass of L(2DSA). On the other hand, if SDREC is closed
under complement, then L(4AFA) would be a proper subset of SDREC (an open
question in [3]).

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-
determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki,
J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg
(2007)

2. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Proceedings of the
8th Annual Symposium on Switching and Automata Theory, SWAT, FOCS 1967,
pp. 155–160. IEEE Computer Society, Washington, DC (1967)

3. Borchert, B., Reinhardt, K.: Deterministically and sudoku-deterministically recog-
nizable picture languages. In: Loos, R., Fazekas, S.Z., Mart́ın-Vide, C. (eds.) LATA.
Research Group on Mathematical Linguistics, vol. 35/07, pp. 175–186. Universitat
Rovira i Virgili, Tarragona (2007)

4. Even, S., Even, G.: Graph Algorithms. Computer Software Engineering Series.
Cambridge University Press (2011)

5. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer,
New York (1997)

6. Hennie, F.C.: One-tape, off-line Turing machine computations. Information and
Control 8(6), 553–578 (1965)

7. Jančar, P., Mráz, F., Plátek, M.: Characterization of context-free languages by
erasing automata. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629,
pp. 307–314. Springer, Heidelberg (1992)

8. Jǐrička, P., Král, J.: Deterministic forgetting planar automata aremore powerful than
non-deterministic finite-stateplanar automata. In:Rozenberg,G.,Thomas,W. (eds.)
Developments in Language Theory, pp. 71–80. World Scientific, Singapore (1999)

9. Kari, J., Moore, C.: New results on alternating and non-deterministic two-
dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001.
LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)

10. Lonati, V., Pradella, M.: Picture recognizability with automata based on Wang
tiles. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.)
SOFSEM 2010. LNCS, vol. 5901, pp. 576–587. Springer, Heidelberg (2010)

11. Lonati, V., Pradella, M.: Towards more expressive 2D deterministic automata.
In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.)
CIAA 2011. LNCS, vol. 6807, pp. 225–237. Springer, Heidelberg (2011)

12. Pr̊uša, D., Mráz, F.: Two-dimensional sgraffito automata. In: Yen, H.-C., Ibarra,
O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 251–262. Springer, Heidelberg (2012)

On the Number of Abelian Bordered Words

Narad Rampersad1, Michel Rigo2, and Pavel Salimov2,3,�

1 Dept. of Math. and Statistics,
University of Winnipeg, 515 Portage Ave. Winnipeg, MB, R3B 2E9, Canada

narad.rampersad@gmail.com
2 Dept. of Math., University of Liège,

Grande traverse 12 (B37), B-4000 Liège, Belgium
M.Rigo@ulg.ac.be

3 Sobolev Institute of Math.,
4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia

Abstract. In the literature, many bijections between (labeled) Motzkin
paths and various other combinatorial objects are studied. We consider
abelian (un)bordered words and show the connection with irreducible
symmetric Motzkin paths and paths in Z not returning to the origin. This
study can be extended to abelian unbordered words over an arbitrary
alphabet and we derive expressions to compute the number of these
words. In particular, over a 3-letter alphabet, the connection with paths
in the triangular lattice is made. Finally, we study the lengths of the
abelian unbordered factors occurring in the Thue–Morse word.

1 Introduction

A finite word is bordered if it has a proper prefix that is also a suffix of the whole
word. Otherwise, the word is said to be unbordered. Such properties have been
investigated for a long time in combinatorics on words. For instance, the famous
Duval’s conjecture about the relationship between the length of a word and the
maximum length of its unbordered factors has been solved in [8]. A classic result
by Ehrenfeucht and Silberger [5] states that if an infinite word has only finitely
many unbordered factors, then it is ultimately periodic.

Let us denote the Parikh vector of the word u over A by Ψ(u): i.e., Ψ(u) is the
element of NA representing the number of occurrences of each letter in u. Two
words u and v are abelian equivalent, if Ψ(u) = Ψ(v). The notions of (un)bordered
words are naturally extended to their abelian analogues by replacing equality
with abelian equivalence. Such an extension is considered, for example, in [9].

This paper is organized as follows. Below, we make precise the basic defini-
tions. In Section 2, we show that abelian unbordered words over a two letter
alphabet are in one-to-one correspondence with particular Motzkin paths, i.e.,
lattice paths of N2 that begin at the origin, never pass below the x-axis, and

� The author is supported by the Russian President’s grant no. MK-4075.2012.1, the
Russian Foundation for Basic Research grant no. 12-01-00089 and by a University
of Liège post-doctoral grant.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 420–432, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Number of Abelian Bordered Words 421

use only up diagonal, down diagonal and horizontal steps. In Section 3, abelian
unbordered words over a two letter alphabet are shown to be in one-to-one cor-
respondence with n-step walks in Z starting from the origin but not returning
to it. In particular, the number of these n-step walks is well-known and is given
by the sequence A063886 in Sloane’s Encyclopedia [12]. In Section 4, we extend
the size of the alphabet and are still able to relate abelian unbordered words
with specific paths and then derive a recursion formula to get the number of
such words of length n. Interestingly, for a three letter alphabet, the connection
is made with paths in the so-called triangular lattice. Finally, in Section 5, we
consider the abelian unbordered factors occurring in abelian periodic automatic
sequences (such as the Thue–Morse word). In this last section, we make use of
Büchi’s theorem and the formalism of first order logic as it was recently used in
combinatorics on words, see for instance [3,6].

Definition 1. A word u ∈ A∗ is abelian bordered if there exist v, v′, x, y ∈ A+

such that u = vx = yv′ and Ψ(v) = Ψ(v′). In that case v is an abelian border of
u. Otherwise, u is said to be abelian unbordered.

It is easy to see that if u is abelian bordered, it has an abelian border of length
at most |u|/2.

Note that a word u over {a, b} is abelian unbordered if and only if its com-
plement u, where all a’s are replaced with b’s and all b’s with a’s, is also abelian
unbordered. If a word is bordered, then it is trivially abelian bordered. But, in
general, the converse does not hold. For instance, aabbabab is abelian bordered
but not bordered.

Example 1. We consider the first few abelian unbordered words over {a, b} that
start with a: a, ab, aab, abb, aaab, aabb, abbb, aaaab, aaabb, aabbb, abbbb, aabab,
ababb. The first few values for the number of abelian unbordered words of length
n ≥ 0 over {a, b} are: 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432,
6864,. . . These values match Sloane’s sequence A063886.

Remark 1. The language of abelian bordered words is not context-free. Indeed, if
we intersect the language of abelian bordered words over {a, b} with the regular
language a+b+a+b+, then we get the language {aibjakb : k ≥ i and j ≥ �}. Using
the pumping lemma, it is easy to show that this language is not context-free.

2 Connection with Motzkin Words

The following is an immediate consequence of the definition “abelian unbordered”.

Lemma 1. Let n ≥ 1. A word u1 · · ·uncvn · · · v1, where for all i ∈ {1, . . . , n},
ui ∈ A, vi ∈ A, and c ∈ {ε} ∪ A, is abelian unbordered if and only if, for all
i ∈ {1, . . . , n}, Ψ(u1 · · ·ui) �= Ψ(vi · · · v1).

Let us fix the alphabet A = {a, b}. If x = x1 · · ·xn and y = y1 · · · yn are words

of length n over A, we define

(
x
y

)
∈ (A×A)∗ by

422 N. Rampersad, M. Rigo, and P. Salimov

(
x
y

)
:=

(
x1
y1

)
· · ·
(
xn
yn

)
.

We also define the projection map

π1 : (A× A)∗ → A,

(
x
y

)
$→ x.

We write xR to denote the reversal of x; that is, xR = xn · · ·x1. We now define
the map

m : A∗ → (A×A)∗, u $→
(
u
uR

)
.

Let P ⊆ (A×A)∗ be the context-free language P = m(A∗) =

{(
u
uR

)
| u ∈ A∗

}
.

Lemma 1 can be restated as follows.

Lemma 2. A word u ∈ A+ is abelian bordered if and only if there exists a non-

empty proper prefix p of m(u) such that the numbers of occurrences of

(
a
b

)
and(

b
a

)
in p are the same.

Definition 2. A Grand Motzkin path of length n is a lattice path of N2 running
from (0, 0) to (n, 0), whose permitted steps are the up diagonal step (1, 1), the
down diagonal step (1,−1) and the horizontal step (1, 0), called rise, fall and
level step, respectively.

A Motzkin path is a Grand Motzkin path that never passes below the x-axis.
An irreducible (or elevated) Motzkin path is a Motzkin path that does not

touch the x-axis except for the origin and the final destination [1].
If the level steps are labeled by k colors (here colors will be letters from the al-

phabet A) we obtain a k-colored Motzkin path [11]. A k-colored Motzkin path is
described by a word over the alphabet {R,F, L1, . . . , Lk} and the context-free lan-
guage of the k-colored Motzkin paths is denoted by Mk. In particular, a Motzkin
path described by a word over {R,F} is a Dyck path.

Let h : (A×A)∗ → {R,F, La, Lb}∗ be the coding

h :

(
a
b

)
$→ R,

(
b
a

)
$→ F,

(
a
a

)
$→ La,

(
b
b

)
$→ Lb.

Note that if p belongs to P , then h(p) is a symmetric Grand Motzkin path
having a symmetry axis x = n/2. Let ι : {R,F, La, Lb}∗ → {R,F, La, Lb}∗
defined by ι(R) = F , ι(F) = R, ι(La) = La and ι(Lb) = Lb. If w is a word over
{R,F, La, Lb}, then w̃ = ι(wR). A symmetric Grand Motzkin path is described
by a word of the kind w c w̃ where c ∈ {ε, La, Lb}.

On the Number of Abelian Bordered Words 423

b
a

a a

Fig. 1. Two Motzkin paths

Example 2. Two Motzkin paths colored with the letters a and b are repre-
sented in Figure 1. The left one is described by the word RLaRFRLbFFRF
and the right one is symmetric and irreducible. It corresponds to the word
h(m(aaaababababb)) = RRLaRFRFRFLaFF .

Lemma 3. A word u starting with a is abelian unbordered if and only if h(m(u))
is a symmetric and irreducible Motzkin path.

Proof. This is a reformulation of Lemma 2.
�

Proposition 1. The set of abelian unbordered words over {a, b} starting with a
and of length at least 2 is aπ1(P ∩ h−1(M2))b.

Proof. Note that h(P ∩ h−1(M2)) is the set of all symmetric 2-colored Motzkin
paths. Now observe that if u belongs to aπ1(P ∩ h−1(M2))b, then h(m(u))
starts with R and ends with F . So the corresponding 2-colored Motzkin path
is irreducible. Conversely, if u is abelian unbordered and starts with a, then by
Lemma 3, h(m(u)) = RMF , where M is a symmetric 2-colored Motzkin path.
Thus, u ∈ aπ1(P ∩ h−1(M2))b.
�

Remark 2. Any symmetric 2-colored Motzkin path can be built by reflecting a
prefix of a 2-colored Motzkin path. Let w ∈ {R,F, La, Lb}∗ be a prefix of length
k−1 of a word in M2. By the previous proposition, we get that aπ1[h

−1(w w̃)]b,
aπ1[h

−1(wLa w̃)]b and aπ1[h
−1(wLb w̃)]b are respectively an abelian unbordered

word of length 2k, of length 2k + 1 having a as central letter, of length 2k + 1
having b as central letter.

– The set of abelian unbordered words of length 2k starting with a is in one-
to-one correspondence with the set of prefixes of length k − 1 of words in
M2. Equivalently, the set of abelian unbordered words of length 2k starting
with a is in one-to-one correspondence with the set of prefixes of length k of
irreducible 2-colored Motzkin paths.

– The set of abelian unbordered words of length 2k + 1 starting with a and
having a central letter equal to a (resp. b) is in one-to-one correspondence
with the set of prefixes of length k− 1 of words in M2. Equivalently, the set
of abelian unbordered words of length 2k+1 starting with a is in one-to-one
correspondence with the set of prefixes of length k of irreducible 2-colored
Motzkin paths.

424 N. Rampersad, M. Rigo, and P. Salimov

3 Connection with the Sequence A063886

The sequence A063886 gives the number s(n) of n-step walks in Z starting from
the origin but not returning to it. Such walks can be described by words over
{r, �} for right and left steps. The aim of this section is to show that the set of
abelian unbordered words over a binary alphabet is in one-to-one correspondence
with the n-step walks in Z starting from the origin but not returning to it. Let us

first collect some well-known facts. The generating function for s(n) is
√

1+2x
1−2x .

Consider a word w = u1 · · ·unvn · · · v1 ∈ {a, b}∗ of length 2n. We consider the
map c by

c :

(
a
b

)
$→ rr,

(
b
a

)
$→ ��,

(
a
a

)
$→ �r,

(
b
b

)
$→ r�.

Applying c to the prefix of length n of m(w) provides a unique path of length
2n in Z. This path is denoted by p(w). It is clear that p is a one-to-one corre-
spondence between the words of length 2n over {a, b} and the paths of length
2n in Z starting from the origin. The following proposition follows immediately
from Lemma 2.

Proposition 2. A word w over {a, b} of even length is abelian unbordered if
and only if the path p(w) does not return to the origin.

We extend the definition of p to words of odd length by

p(u1 · · ·unαvn · · · v1) =
{
p(u1 · · ·unvn · · · v1) � , if α = a;
p(u1 · · ·unvn · · · v1) r , if α = b.

With this definition, p is a one-to-one correspondence between the abelian un-
bordered words of length 2n + 1 over {a, b} and the paths of length 2n + 1 in
Z starting from the origin and not returning to it. It is therefore easy to get a
result similar to the above proposition for words of odd length.

Proposition 3. A word w over {a, b} of odd length is abelian unbordered if and
only if the path p(w) does not return to the origin.

The number of prefixes of Motzkin paths is well-known [10, Theorem 1]. Here,
we have obtained the following.

Corollary 1. The number of prefixes of length k of 2-colored Motzkin paths is
equal to half the number of paths in Z of length 2k + 2 starting from the origin
but not returning to it. In particular, this number is equal to

1

2

(
2k + 2

k + 1

)
.

On the Number of Abelian Bordered Words 425

4 Larger Alphabets

Let k ≥ 2. Consider the alphabet A = {a1, . . . , ak}, or simply {1, . . . , k}, and Zk

equipped with the usual unit vectors e1, . . . , ek, whose coordinates are all equal
to zero except one which is equal to 1. To be able to define k-colored paths, we
assume that at each point in Zk, there are exactly k loops colored with the k
different letters.

We first consider a word u1 · · ·unvn · · · v1 of even length 2n. Take the prefix of
length n of m(u1 · · ·unvn · · · v1) and apply to it the morphism hk : (A× A)∗ →
{ei − ej | 1 ≤ i, j ≤ k}∗ ⊂ (Zk)∗ defined by

hk

(
ai
aj

)
= ei − ej , ∀i, j ∈ {1, . . . , k}.

Therefore, to the word w = u1 · · ·unvn · · · v1 there corresponds the sequence of
n+ 1 points in Zk

p0 = 0, p1 = hk

(
u1
v1

)
, p2 = hk

(
u1
v1

)
+ hk

(
u2
v2

)
, . . . , pn =

n∑
j=1

hk

(
uj
vj

)
,

where 0 denotes the origin (0, 0, . . . , 0). By the definition of hk, note that all
these points lie in the subspace Hk of Zk satisfying the equation

x1 + · · ·+ xk = 0.

Definition 3. A path of length n in Hk is a sequence p0, . . . , pn of points in
Hk such that, for all j ≥ 1, pj − pj−1 belongs to {ei − ej | 1 ≤ i, j ≤ k, i �= j}.

A k-colored path of length n in Hk is a sequence p0, c0, p1, c1, . . . , pn−1, cn−1,
pn alternating points in Hk and elements belonging to A ∪ {ε} in such a way
that, if pj �= pj+1, then pj+1 − pj belongs to {ei − ej | 1 ≤ i, j ≤ k, i �= j} and
cj = ε, otherwise cj belongs to A and can be interpreted as the color assigned to
a loop on pj. Note that paths are special cases of k-colored paths.

For the rest of this paper we will only consider paths that start at the origin.

Remark 3. For k = 3, H3 corresponds to the so-called triangular lattice (some-
times called hexagonal lattice) because a point x has exactly six neighbors. The
set of neighbors of x is denoted by

N(x) := x+ {e1 − e2, e1 − e3, e2 − e1, e2 − e3, e3 − e1, e3 − e2}.

Consider the word w = 23321211 over the alphabet {1, 2, 3}. The prefix of length
4 of m(w) is (

2 3 3 2
1 1 2 1

)
and corresponds to the sequence of moves p1 − 0 = e2 − e1, p2 − p1 = e3 − e1,
p3 − p2 = e3 − e2 and p4 − p3 = e2 − e1 and the path represented in Fig. 2.

426 N. Rampersad, M. Rigo, and P. Salimov

p

p

ppe − e

e − e

e − e

3

2

2
e − e

3 1

1

1 3

e − e
1 2

e − e
2 3 p

p
p
p

p
5

6

2

p

3

O

1

2

43

O

1

4

2
3

1

1

Fig. 2. In the triangular lattice, a path and a 3-colored path

The second path in Fig. 2 is colored and has four loops with labels 2, 1, 3 and
1 respectively. It corresponds to w′ = 2321323113121211. The prefix of length 8
of m(w′) is (

2 3 2 1 3 2 3 1
1 1 2 1 2 1 3 1

)
.

Observe that in this prefix we have an occurrence of a repeated symbol in posi-
tions 3, 4 and 7, 8 corresponding to the four loops in the path.

The word w = u1 · · ·unvn · · · v1 is said to be simple if, for all i ∈ {1, . . . , n},
ui �= vi. In this case, in the sequence of points p0 = 0, p1, . . . , pn corresponding
to w, for all j < n, we have pj �= pj+1. Therefore simple words w of length 2n
correspond to paths of length n in Hk. Such paths are denoted by p(w). For a
non-simple word w of length 2n there is a corresponding k-colored path p(w)
of length n in Hk (where at least one loop pj = pj+1 occurs along the path).
Conversely, for each k-colored path of length n in Hk, there is a corresponding
word of length 2n.

Proposition 4. A word w over {a1, . . . , ak} of even length 2n is abelian unbor-
dered if and only if the k-colored path p(w) in Hk of length n does not return
to the origin. Moreover, a simple word w over {a1, . . . , ak} of even length 2n is
abelian unbordered if and only if p(w) is a path in Hk of length n without loops
that does not return to the origin.

Proof. The proof is similar to the one of Proposition 2.
�

If w = u1 · · ·unαvn · · · v1 is a word of odd length, we can first consider the prefix
of length n of m(w) and then add an extra loop of color α to the end of the
corresponding path p(w). As for Proposition 3, we get the following.

Proposition 5. A word w over {a1, . . . , ak} of odd length 2n + 1 is abelian
unbordered if and only if the k-colored path p(w) of length n+ 1 in Hk does not
return to the origin. In particular, such a path ends with a loop whose color is
the one corresponding to the central letter of w.

Remark 4. The numbers of abelian unbordered words of length n over a 3-letter
alphabet, for 1 ≤ n ≤ 10, are: 3, 6, 18, 48, 144, 402, 1206, 3438, 10314, 29754
and for simple abelian unbordered words, we get 3, 6, 18, 30, 90, 168, 504, 954,

On the Number of Abelian Bordered Words 427

2862, 5508. As we can observe, over a 3-letter alphabet, the number of abelian
unbordered words (resp. simple abelian unbordered words) of length 2n + 1
is three times the number of abelian unbordered words (resp. simple abelian
unbordered words) of length 2n because there are three available choices for the
central letter. This observation extends trivially to an arbitrary alphabet.

From the discussion above and taking only entries of even index in the previous
table, we also get the number of paths (resp. paths without loops) of length n
in the triangular lattice H3 that do not return to the origin. We denote this
quantity by p3(n) (resp. s3(n)). The first few values of p3(n), n ≥ 1, are 6, 48,
402, 3438, 29754, 259464, 2274462 and the first few values of s3(n) are 6, 30,
168, 954, 5508, 32016, 187200. The next statement means that one only needs
to compute the sequence (sk(n))n≥1 to get (pk(n))n≥1 and thus the number of
abelian unbordered words of length n.

Lemma 4. We have

pk(n) =

n∑
i=1

sk(i) k
n−i

(
n− 1

n− i

)
.

Proof. By a (k-colored) path, we mean a path in Hk that does not return to
the origin. Each such k-colored path of length n has a unique underlying path
of length i, for some i ∈ {1, . . . , n}. To get a k-colored path of length n, n − i
loops are added to this underlying path. Each loop can be placed independently
at any point of the path, except the origin, and can be colored independently in
one of k colors. So, the total number of ways to extend such a path of length i
to a k-colored path of length n is kn−i

(
n−1
n−i

)
.
�

4.1 Computation of (s3(n))n≥0 and Then (sk(n))n≥0

We show how to get a recurrence relation to compute the number s3(n), i.e., the
number of paths in the triangular lattice H3 = (V,E) that do not return to the
origin; here V (resp. E) is the set of vertices (resp. edges) of H3. Consider the
map

e : V → N, x $→
{
1 if x = 0,
0 otherwise.

If f : V → N is a map, we denote by Sf : V → N the map defined by

(Sf)(x) =
∑

y∈N(x)

f(y)

where N(x) is the set of neighbors of x. In particular, if f, g : V → N are maps,
then S(f+g) = Sf+Sg. A simple induction argument gives the following result.

Lemma 5. With the above notation, (Sne)(x) is equal to the number of paths
of length n that end at x.

428 N. Rampersad, M. Rigo, and P. Salimov

0000

0 0

0 0 0 0

000

0

0

1 0 01

1 1

1

1100

0

0

0 0 0

0

0

0

0

0

6

2 2

2

22

2

2 2

2

2

2

1

1 1

1

0

0

Fig. 3. values of e, Se and S2e around 0

The values of the maps e, Se and S2e around 0 are given in Figure 3. Let
r3,n : V → N be defined as follows: r3,n(x) is the number of paths of length n
that end at x and never return to the origin. Then

s3(n) =
∑
x∈V

r3,n(x)

where the sum is finite, since r3,n(x) �= 0 implies that x is at distance at most
n from the origin. If a map f : V → N is constant on N(0) (as is the case for
Sne), then γ(f) is a shorthand for f(y) for any y ∈ N(0). By the symmetry of
H3, we see that r3,n is constant on N(0). Note that

s3(n+ 1) = 6s3(n)−
∑

x∈N(0)

r3,n(x) = 6s3(n)− 6γ(r3,n)

because all paths except the ones that end in vertices adjacent to 0 have 6
prolongations, and the excluded ones have 5 possible prolongations. The same
argument can be applied to maps: r3,n+1 = Sr3,n − 6γ(r3,n) e and, applied
inductively, this leads to the following relation for r3,n+1:

r3,n+1 = Sn+1e−
n∑

i=0

6γ(r3,i)Sn−ie . (1)

The sequence ((Sne)(0))n≥0 counting the paths of length n starting and ending
at 0 is well-known (A002898 gives the number of n-step closed paths on the
hexagonal lattice). For instance, we have

(Sne)(0) =
n∑

=0

(−2)n−

(
n

�

) ∑
j=0

(
�

j

)3

(2)

and its first values are 1, 0, 6, 12, 90, 360, 2040, 10080, 54810, 290640,. . . Due to
the 6-fold symmetry of the maps around the origin, note that

γ(Sne) =
(Sn+1e)(0)

6
. (3)

Taking into account both (1) and (3), for all n ≥ 0, we have

γ(r3,n+1) =
(Sn+2e)(0)

6
−

n∑
i=0

γ(r3,i)(Sn−i+1e)(0)

On the Number of Abelian Bordered Words 429

and γ(r3,0) = 0. As a conclusion, using the sequence ((Sne)(0))n≥0, we can com-
pute inductively (γ(r3,n))n≥0 and therefore (s3(n))n≥0. Using the above formula,
the first values of (γ(r3,n))n≥0 are 0, 1, 2, 9, 36, 172, 816, 4101, 20840, 108558,
572028,. . . Knowing that s3(0) = 1 is enough to compute

s3(1) = 6(s3(0)− γ(r3,0)) = 6, s3(2) = 6(s3(1)− γ(r3,1)) = 6(6− 1) = 30, . . .

Let k ≥ 3. We now turn to the general case to compute (sk(n))n≥0. Consider the
homomorphism of groups χ between (Hk,+) and (Z((z1, . . . , zk−1)), ·) defined
by the images of a basis of Hk

χ : e1 − ek $→ z1, e2 − ek $→ z2, . . . , ek−1 − ek $→ zk−1.

In particular, χ(−v) = 1/χ(v) and χ(v + v′) = χ(v).χ(v′). Any element of
Hk can be decomposed as a linear combination with integer coefficients of e1 −
ek, e2 − ek, . . . , ek−1 − ek and corresponds by χ to a unique Laurent polynomial
in z1, . . . , zk−1. Each vertex x in Hk has exactly k(k − 1) neighbors:

x+ {ei − ej | 1 ≤ i, j ≤ k, i �= j}

and these k(k − 1) translations of x are coded through χ by the terms{
zi +

1

zi
| 1 ≤ i ≤ k − 1

}
∪
{
zi
zj

| 1 ≤ i, j ≤ k − 1, i �= j

}
.

Now consider the Laurent polynomial corresponding to these elementary trans-
lations:

T =

k−1∑
i=1

(
zi +

1

zi

)
+
∑
i�=j

zi
zj

=

(
1 +

k−1∑
i=1

zi

)(
1 +

k−1∑
i=1

1

zi

)
− k.

Let x ∈ Hk and (j1, . . . , jk−1) ∈ Zk−1 be such that χ(x) = zj11 · · · zjk−1

k−1 . The
number of paths of length n from the origin to x in the lattice Hk is given by the
coefficient of zj11 · · · zjk−1

k−1 in T n. In particular, the constant term gives exactly
the number of paths of length n returning to the origin. Furthermore, for k = 3
one can derive (2).

Example 3. For k = 4, the number of paths of length n in H4 starting and
ending at the origin is Sloane’s sequence A002899 and is given by

n∑
=0

(−4)n−

(
n

�

) ∑
j=0

(
�

j

)2(
2�− 2j

�− j

)(
2j

j

)
.

The first values are 1, 0, 12, 48, 540, 4320, 42240, 403200, 4038300, For k =
5, we get 1, 0, 20, 120, 1860, 23280, 342200, 5115600, 79922500, . . . and for k = 6:
1, 0, 30, 240, 4770, 82080, 1650900, 34524000, 758894850,

430 N. Rampersad, M. Rigo, and P. Salimov

Being able to compute (Sne)(0) for the lattice Hk, we can proceed exactly as
for the computation of s3(n) and get, for all n ≥ 0,

γ(rk,n+1) =
(Sn+2e)(0)

k(k − 1)
−

n∑
i=0

γ(rk,i)(Sn−i+1e)(0)

with γ(rk,0) = 0 and finally, sk(n+ 1) = k(k − 1)(sk(n)− γ(rk,n)).

5 About the Thue–Morse Word

Currie and Saari [4] proved that if n �≡ 1 (mod 6), then the Thue–Morse word t
has an unbordered factor of length n, but they left it open to decide for which
lengths congruent to 1 modulo 6 does this property hold. Then Goč, Henshall
and Shallit [6] showed that t has an unbordered factor of length n if and only if
(n)2 �∈ 1(01∗0)∗10∗1, where (n)2 denotes the base 2 expansion of n.

If we are interested in abelian unbordered factors of length n occurring in
t, we obtain a strict subset of the set described by the above theorem. For
instance, for n = 9, (n)2 = 1001 does not belong to 1(01∗0)∗10∗1, so t contains
an unbordered factor of length 9 but a direct inspection shows that all factors of
length 9 occurring in t are abelian bordered. For instance, the factor 001100101
is unbordered but is abelian bordered. Obtained by a computer search, the first
few values of n ∈ {0, . . . , 2000} such that t has an abelian unbordered factor of
length n are 0, 1, 2, 3, 5, 8, 10, 12, 14, 16, 22, 50, 54, 66, 70, 194, 198, 258, 262,
770, 774, 1026, 1030. We conjecture that the set of integers n ≥ 50 such that
t has an abelian unbordered factor of length n consists of those integers whose
base 2 expansion belongs to 110(00)∗{01, 11}0∪ 10(00)+{01, 11}0.

Generally, abelian properties of k-automatic sequences are not suited to be
expressed in the extended Presburger arithmetic 〈N,+, Vk〉. Nevertheless, we
can take advantage of the fact that the Thue–Morse word is abelian periodic
of period 2 and apply Büchi’s theorem [2] with a technique similar to [3,6].
We take verbatim the statement of Büchi’s theorem as formulated by Charlier,
Rampersad and Shallit in [3], which states that the k-automatic sequences are
exactly the sequences definable in the first order structure 〈N,+, Vk〉.

Theorem 1. [3] If we can express a property of a k-automatic sequence x us-
ing quantifiers, logical operations, integer variables, the operations of addition,
subtraction, indexing into x, and comparison of integers or elements of x, then
this property is decidable.

The technique we are now describing can obviously be adapted to any k-automatic
abelian periodic word. We will give in (4) below a first order formula ϕ(n) in
〈N,+, V2〉 that is satisfied if and only if an abelian unbordered factor of length
n occurs in the Thue–Morse word t. General procedures to obtain a finite au-
tomaton recognizing the base 2 expansions of the integers belonging to the set
{n ∈ N | 〈N,+, V2〉 |= ϕ(n)} do exist (see for instance [2]). Hence a certified
regular expression for the base 2 expansion of the elements in the above set will

On the Number of Abelian Bordered Words 431

follow. Note that, since t is 2-automatic, we can define in 〈N,+, V2〉 a unary
function that maps i to t(i). Such a formula is again described in [2]. Predicates
e(n) and o(n) are simply shorthands to characterize even and odd integers,
e(n) ≡ (∃x)(n = x + x), o(n) = ¬e(n). We define a predicate B(i, n, k) which
is true if and only if the Thue–Morse word has an abelian bordered factor of
length n occurring at i with a border of length k. Since the Thue–Morse word t
is a concatenation of ab and ba, discussing only the parity of the position i, the
length n of the factor and the length k of the border, the predicate B(i, n, k) is
defined by the disjunction of the following terms (e(i)∧e(n)∧e(k)), (e(i)∧e(n)∧
o(k)∧ t(i+k− 1) = t(i+n−k)), (e(i)∧o(n)∧ e(k)∧ t(i+n−k) �= t(i+n− 1)),
(e(i)∧o(n)∧o(k)∧t(i+k−1) = t(i+n−1)), (o(i)∧e(n)∧o(k)∧t(i) = t(i+n−1)),
(o(i)∧ o(n)∧ e(k)∧ t(i) �= t(i+ k− 1)), (o(i)∧ o(n)∧ o(k)∧ t(i) = t(i+ n− k))
and (o(i) ∧ e(n) ∧ e(k) ∧ [(t(i) = t(i + n − k) ∧ t(i + k − 1) = t(i + n − 1))
∨(t(i) = t(i+ n− 1)∧ t(i+ k− 1) = t(i+ n− k))]). As an example, if i is even,
n and k are odd, we have the situation depicted in Figure 4. In that case, since
all blocks ab and ba are abelian equivalent, one has just to check equality of two
symbols in adequate positions corresponding to the parameters.

k k

ni i+n

Fig. 4. A factor occurring in the Thue–Morse word

Now the Thue–Morse word has an abelian unbordered factor of length n if
and only if the following formula holds true

ϕ(n) ≡ (∃i)(∀k)(k ≥ 1 ∧ 2k ≤ n) → ¬B(i, n, k). (4)

References

1. Barnabei, M., Bonetti, F., Silimbani, M.: Restricted involutions and Motzkin paths.
Adv. in Appl. Math. 47, 102–115 (2011)

2. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belg. Math. Soc. 1, 191–238 (1994)

3. Charlier, E., Rampersad, N., Shallit, J.: Enumeration and decidable properties of
automatic sequences. Int. J. Found. Comput. Sci. 23, 1035–1066 (2012)

4. Currie, J.D., Saari, K.: Least periods of factors of infinite words. RAIRO Inform.
Théor. App. 43, 165–178 (2009)

5. Ehrenfeucht, A., Silberger, D.M.: Periodicity and unbordered segments of words.
Disc. Math. 26, 101–109 (1979)

6. Goč, D., Henshall, D., Shallit, J.: Automatic theorem-proving in combinatorics on
words. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 180–191.
Springer, Heidelberg (2012)

7. Graham, D., Knuth, D.E., Patashnik, O.: Concrete mathematics. A foundation for
computer science, 2nd edn. Addison-Wesley Pub. Company (1994)

432 N. Rampersad, M. Rigo, and P. Salimov

8. Harju, T., Nowotka, D.: Periodicity and Unbordered Words: A Proof of Duval’s
Conjecture. J. ACM 54 (2007)

9. Holub, S., Saari, K.: On highly palindromic words. Disc. Appl. Math. 157, 953–959
(2009)

10. Guibert, O., Pergola, E.: Enumeration of vexillary involutions which are equal to
their mirror/complement. Disc. Math. 224, 281–287 (2000)

11. Sapounakis, A., Tsikouras, P.: On k-colored Motzkin words. J. Integer Seq. 7 (2004)
12. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. The OEIS Foun-

dation Inc., http://oeis.org/

http://oeis.org/

Proof of a Phase Transition in Probabilistic
Cellular Automata

Damien Regnault

IBISC, Université d’Évry Val-d’Essonne, 23 boulevard de France, 91037 Evry CEDEX
http://www.ibisc.fr/~dregnault/

Abstract. Cellular automata are a model of parallel computing. It is
well known that simple deterministic cellular automata may exhibit com-
plex behaviors such as Turing universality [3,13] but only few results are
known about complex behaviors of probabilistic cellular automata.

Several studies have focused on a specific probabilistic dynamics: α-
asynchronism where at each time step each cell has a probability α to
be updated. Experimental studies [5] followed by mathematical analysis
[2,4,7,8] have permitted to exhibit simple rules with interesting behav-
iors. Among these behaviors, most of these studies conjectured that some
cellular automata exhibit a polynomial/exponential phase transition on
their convergence time, i.e. the time to reach a stable configuration. The
study of these phase transitions is crucial to understand the behaviors
which appear at low synchronicity. A first analysis [14] proved the ex-
istence of the exponential phase in cellular automaton FLIP-IF-NOT-
ALL-EQUAL but failed to prove the existence of the polynomial phase.
In this paper, we prove the existence of a polynomial/exponential phase
transition in a cellular automaton called FLIP-IF-NOT-ALL-0.

1 Introduction

Cellular automata are made of several cells which are characterized by a state.
Time is discrete and at each iteration, the state of a cell evolves according to
the states of its neighbors. On the one hand, cellular automata are used as a
model of parallel computing. Programming synchronous cellular automata relies
on signals and collisions. Such mechanism are hard to explain but rather well
understood now (see the firing squad synchronization problem [11], the game of
life [1] or universality of rule 110 [3]). On the other hand, they are also a common
tool to model real life phenomena.

Theoretical studies of cellular automata as a computation model mainly fo-
cus on the synchronous dynamics, i. e. at each time step all cells are updated.
Only few studies focus on other dynamics. For modeling real life phenomena,
the assumption of synchronicity may be too restrictive. For example, boolean
networks are commonly used to model the proteins-genes interaction and lots of
works focus on different dynamics.

In this article, we will consider stochastic dynamics. At each time step, only
the cells of a randomly chosen set are updated. The introduction of randomness
has different motivations. It can be used:

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 433–444, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ibisc.fr/~dregnault/

434 D. Regnault

– to simulate faults in a system, i.e. as a difficulty to overcome;
– as an oracle, i.e. as a tool to develop more efficient algorithms;
– to accurately represent physical phenomena in models based on cellular

automata.

Fault tolerant cellular automata are cellular automata where at each time step,
each cell has a constant probability to be faultily updated and to switch to some
other state. Toom [15] and Gács [9] have developed rules which are able to make
reliable computation in the presence of random faults. Their results interlace
two rules: a rule which is Turing universal for the parallel dynamics and a rule
which detects and erases faults.

In algorithmic, it is well known that randomness can be useful in the devel-
opment of efficient algorithms. Recently, Fatès [6] has shown that the density
classification problem can be solved with arbitrary precision by two-state one-
dimensional cellular automata under probabilistic dynamics. In this problem, the
cells must all choose the overall majority state of the initial configuration. Land
and Belew [10] have shown that this problem cannot be solved under deterministic
dynamics.

Some theoretical studies [2,4,7,8] have focused on α-asynchronous cellular au-
tomata where at each time step, each cell has a probability α to be updated.
The first theoretical analyses [2,7,8] mainly rely on simple stochastic processes
such as random walks and coupon collectors. Later studies [4] have focused on
the minority rule. The authors manage to analyze the very first and last steps
of a classical evolution of Minority from a random configuration but they are
not able to analyze the whole dynamics. They argue that even if Minority on a
random configuration seems a "simple" process, some specific initial configura-
tions lead to different dynamics. They conjectured that Minority can simulate
some classical stochastic processes like percolation or TASEP on specific initial
configurations. From these works, it seems that one simple cellular automaton
may simulate several stochastic processes which were independently studied by
different communities. If these conjectures are true, then these works may shed
a new light on stochastic process simulation.

In this paper, we will prove the existence of a phase transition in the 1D
cellular automaton FLIP-IF-NOT-ALL-0 depending on α. This is the first
proof of a phase transition in a probabilistic cellular automaton even if the
existence of a phase transition in α-asynchronous dynamics was conjectured and
analyzed empirically [5]. Note that rules FLIP-IF-NOT-ALL-0 and FLIP-IF-
NOT-ALL-EQUAL only differ on one neighborhood and rule 1D Minority
is equivalent to rule FLIP-IF-NOT-ALL-EQUAL on even configuration by
switching the state of one cell over two. A first study [14] proved the existence
of one part of the phase transition on 1D Minority but failed to prove the other
part. Only one last argument is necessary to prove the existence of a phase
transition for Minority rule.

In Gács’ 1D fault tolerant cellular automaton [9], the main difficulty was to
develop a process which is able to detect faulty regions, i.e. to save one bit of
information in presence of random faults. Since cells have only a local vision of

Proof of a Phase Transition in Probabilistic Cellular Automata 435

the information, the positive rates conjecture states that it is not possible to
keep one bit of information safe from the random faults and thus that reliable
computation is impossible. Gács provided a counter-example but the community
was unsatisfied with the size and the complexity of its rule and of the following
proof. The quest for a simple fault-tolerant cellular automaton with a proof of
reasonable size is still open. One phase of the transition phase of FLIP-IF-
NOT-ALL-0 leads to the emergence of a white region and the other phase of
the transition phase leads to the emergence of a checkerboard pattern. Thus this
paper is another step to a better understanding of the emergence of homogeneous
regions in 1D stochastic processes.

2 Asynchronous Cellular Automata

2.1 Definition

We give here a formal definition of FLIP-IF-NOT-ALL-0, also called ECA 50
(Wolfram encoding). The next part presents informally its behavior.

Definition 1 (Configuration). Consider n ∈ N, we denote by Z/nZ the set
of cells and Q = {0, 1} the set of states (white stands for 0 and black for 1
in the figures), n is the size of the configuration. The neighborhood of a cell i
consists of the cells i − 1, i and i + 1 modn. A configuration c is a function
c : Z/nZ → Q; ci is the state of the cell i in configuration c.

We consider configurations of size n ∈ N with periodic boundary conditions,
thus all computation on the position of a cell are made modulo n.

Definition 2 (FLIP-IF-NOT-ALL-0). The rule of a cellular automaton is
a function which associates a new state to the states of a neighborhood. The rule
δ of FLIP-IF-NOT-ALL-0 is defined as follows:

δ(ci−1, ci, ci+1) =

{
ci if ci−1 = ci = ci+1 = 0

1− ci otherwise

Note that this rule is also known as ECA 50 (Wolfram coding). Time is discrete
and in the classical deterministic synchronous dynamics all the cells of a con-
figuration are updated at each time step according to the transition rule of the
cellular automaton (see figure 1). Here we consider a stochastic asynchronous
dynamics where only a random subset of cells is updated at each time step.

Definition 3 (Asynchronous dynamics). Given 0 < α � 1, we call α-
asynchronous dynamics the following process : time is discrete and ct denotes
the random variable for the configuration at time t. The configuration c0 is the
initial configuration. The configuration at time t+ 1 is the random variable de-
fined by the following process : each cell has independently a probability α to
be updated according to the rule δ (we say that the cell fires at time t) and a
probability 1 − α to remain in its current state. A cell is said to be active if its
state changes when fired.

436 D. Regnault

Figure 1 presents different space-time diagrams of ECA 50 for different values
of α. By abuse of notation δ(c) is the probability distribution obtained after
updating c one time with rule δ under asynchronous dynamics.

Definition 4 (Stable configuration). A configuration c is stable if for all
i ∈ Z/nZ, δ(ci−1, ci, ci+1) = ci.

FLIP-IF-NOT-ALL-0 admits only one stable configuration: 0̄ = 0n where all
cells are in state 0. Since any black cell is active, by firing all the black cells and
no white cell, we have the following fact:

Fact 1 (One step convergence). If 0 < α < 1, any configuration, evolv-
ing under FLIP-IF-NOT-ALL-0 and α-asynchronous dynamics, can reach the
stable configuration 0̄ in one step.

Definition 5 (Worst case convergence). We say that a random se-
quence of configurations (ct)t�0 evolving under FLIP-IF-NOT-ALL-0 and α-
asynchronous dynamics converges from an initial configuration c0 if the random
variable T = min{t : ct is stable } is finite with probability 1. We say that the
convergence occurs in expected polynomial (resp. exponential) time if and only if
E[T] � p(n, 1/α) (resp. E[T] � bn) for some polynomial p (resp. constant b > 1)
and for any initial configuration (resp. for at least one initial configuration).

From the definition of stable configuration, it follows that if there is t such that
ct is a stable configuration then for all t′ � t the configuration ct

′
is the same

stable configuration. Since (ct)t�0 is a finite Markow chain and since there is a
path from any configuration to the stable configuration all white (see fact 1),
any sequence of configuration converges with probability 1 when 0 < α < 1.

Theorem 1 (Main result). Consider a sequence of configurations (ct)t�0

evolving under rule FLIP-IF-NOT-ALL-0 and α-asynchronous dynamics then:

– if 0 < α � 0.5 then E[T] = O(n2α−1);
– if 1− ε � α < 1 (where ε = 0.187× 10−13 > 0) then E[T] = Ω(2n).

This is the first time that a phase transition is formally proved on a asynchronous
cellular automata. This result shows that simple rules exhibit complex behavior
and turn out to be hard to analyze. The following part exposes experimental
results on the behavior of FLIP-IF-NOT-ALL-0. Section 3 is dedicated to the
proof of the expected polynomial time convergence and section 4 is dedicated to
the proof of the expected exponential time convergence.

2.2 Observations

In this section, we present empirical result on FLIP-IF-NOT-ALL-0 and the
ideas behind Theorem 1 and Theorem 4. A detailed empirical study of this
automata was published by Fatès [5]. We only give here an intuitive description
of the behaviour of the automaton. Fatès gave experimental evidences of the

Proof of a Phase Transition in Probabilistic Cellular Automata 437

α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9 synchronous dynamics

Fig. 1. FLIP-IF-NOT-ALL-0 under different dynamics. The height of the diagrams
is scaled according to α.

existence of a critical value αc ≈ 0.6282. When α < αc then the stochastic
process converges in polynomial time and when α > αc the stochastic process
converges in exponential time.

Polynomial Time Convergence. If α < αc, only black regions crumble and
white regions expand on the whole configuration. The last isolated black cells
manage to survive only for a little while and the dynamics quickly reaches the sta-
ble configuration 0̄. Lots of cells are inactive during these periods. We will prove
in theorem 2 that the dynamics converges in expected polynomial time. This
proof uses a potential function, a technique already used to analyze asynchronous
cellular automata [4,7,8]. The proof is here more technical. Until now, this tech-
nique was ineffective to analyze FLIP-IF-NOT-ALL-EQUAL when α � α′

c.
The analysis of FLIP-IF-NOT-ALL-0 is easier and we able are to conclude.

The idea of the result presented here is the following: consider a bi-infinite
configuration with one semi-infinite white region on the left and one semi-infinite
black region on the right. The border of the configuration corresponds to the
position of the first black cell. Consider the limit case α = 0.5: with probability 1

2
the border move by one cell to the left, with probability 1

4 the border move to
the right by at least 1 cell, with probability 1

8 the border move to the right by
at least 2 cells, . . . , with probability 1

2i the border moves to the right by at least
i − 1 cells. Thus, the expected movement of the border is 0 and it behaves as
a non-biased random walk. For finite configurations, this means that the size of
a white configuration behaves as a non-biased random walk in the worst case
and thus reaches a size of n in quadratic time. The next section formalizes this
idea and proves the convergence of the dynamics in expected polynomial time
for α � 0.5.

Exponential Time Convergence. Empirically, if α > αc then from any non-
stable initial configuration, white and black regions crumble and a checkerboard
pattern invades the space-time diagram. Most cells are active and switch their
states at each time step. We will prove in theorem 4 that there exists an initial
configuration such that the dynamics converges in expected exponential time by

438 D. Regnault

using a coupling with oriented percolation. This method is similar to what has
been done in [14] to analyze FLIP-IF-NOT-ALL-EQUAL.

3 Polynomial Convergence Time When α � 0.5

In this section, we prove that the expected convergence time is polynomial when
α � 0.5. Thus from now on, we assume that α � 0.5. We will define a function
F which associates to each configuration c a potential F (c) ∈ {0, . . . , 2n + 2}
such that:

– the expected variation of potential is negative at each time step and
– the stable configuration 0̄ is the only configuration of zero potential.

We will conclude by using the following lemma which is folklore (a proof can
be found in [7]). Consider ε > 0, an integer m > 0 and a sequence (Xt)t�0 of
random variables with values in {0, . . . ,m} and a suitable filtration (F t)t∈N:

Lemma 1. Suppose that :

– if 0 < Xt < m then E[Xt+1 −Xt|F t] � 0 and Pr{|Xt+1 −Xt| � 1|F t} � ε;
– if Xt = m then E[Xt+1 −Xt|F t] � −ε.

Let T = min{t ∈ N : Xt = 0} and x0 = E[X0]. Then:

E[T] � x0(2m+ 1− x0)

2ε

Now, we formalize the observations made in section 2.2. Consider a configuration
c, a white region of c is a maximal set of consecutive cells which are all in the
state 0. The value W (c) is defined as the size of the largest white region of
c: W (c) = max{|W | : W is a white region of c}. We can now introduce the
following potential function:

Definition 6 (Potential function). We consider the function F : QZ/nZ → N
defined as follows:

F (c) =

{
0 if c = 0̄

2n+ 2−W (c) otherwise

Note that for all configurations c, F (c) ∈ {0, . . . , 2n + 2}. Moreover, 0̄ is the
only configuration of potential 0 and the configuration of potential 2n + 2 has
all its cells in state 1. We denote by E[Δ(F (c))] = E[F (δ(c)) − F (c)], i.e. the
expected variation of potential of c after one update of FLIP-IF-NOT-ALL-
0 under α-asynchronous dynamics. We introduce p0̄(c) = Pr{δ(c) = 0̄} the
probability that the dynamics converges in one step and for each cell i, we
introduce p0i (c) = Pr{δ(c)i = 0} the probability that the cell is in state 0 at the
next time step. The expected variation of potential can be expressed as follows:

E[Δ(F (c))] = −E[Δ(W (c))] − (2n+ 2−W (c))p0̄(c)

� −E[Δ(W (c))] − (n+ 2)p0̄(c)

Proof of a Phase Transition in Probabilistic Cellular Automata 439

Lemma 2. Consider a configuration c and a cell i ∈ Z/nZ, if α � 0.5 then:

p0i (c) =

{
1 if cell i is inactive in c

� α otherwise

Proof. An inactive cell is in state 0 and will stay in state 0 with probability 1.
An active cell in state 1 will switch to state 0 with probability α. An active cell
in state 0 will stay in state 0 with probability 1−α. Since 0 < α � 0.5, α � 1−α.
The probability that an active cell will be in state 0 at the next time step is at
least α.

Fact 2. Consider a configuration c, if α � 0.5, then p0̄(c) � αn−W (c)+2.

Our aim is to apply lemma 1 on the potential function F . We start by analyzing
some special configurations c where W (c) � 1.

Lemma 3. Consider a configuration c such that W (c) � 1, then E[Δ(F (c))] �
−α(1− α)2 and Pr{|Δ(F (c))| � 1} � α(1 − α)2.

Proof. If W (c) = 0 then all cells are in state 1 and F (c) is maximum. Firing any
cell leads to the creation of a white region of site at least 1 and thus E[Δ(F (c))] �
−α and Pr{|Δ(F (c))| � 1} � α.

If W (c) = 1 then consider a cell i of c such that ci = 0. We have ci−1 =
ci+1 = 1. If W (δ(c)) = 0 then cells i− 1 and i+ 1 are not fired while cell i fires,
this event occurs with probability α2(1−α). If at least one of cells i− 1 or i+1
fires while cell i is inactive then W (δ(c)) � 2, this event occurs with probability
(1− (1− α)2)(1 − α). Thus,

E[Δ(F (c))] � α2(1− α) − (1− (1− α)2)(1 − α)

E[Δ(F (c))] � −2α(1− α)2.

Moreover,

Pr{|Δ(F (c))| � 1} � (1− (1− α)2)(1 − α)

� α(1− α).

Now, the difficulty lies in showing that E[Δ(F (c))] � 0 for all non stable config-
urations c of potential F (c) � 2n.

Lemma 4. Consider a configuration c such that 2 � W (c) � n − 1 then
E[Δ(F (c))] � 0 and Pr{|Δ(F (c))| � 1} � α(1 − α)2.

Proof. Since a cellular automaton is shift invariant, we will now consider that
c0 = 0 and ∀i ∈ {n − W (c) + 1, . . . , n − 1}, ci = 0. Cells 0 and n − W (c) + 1
are white active cells and cells of {n −W (c) + 2, . . . , n − 1} are white inactive

440 D. Regnault

cells. We consider the random variable M for the white region of δ(c) maximum
for the inclusion and containing cell 0 if δ(c)0 = 0 and cell n− 1 if δ(c)n−1 = 0.
If δ(c)0 = 1 and δ(c)n−1 = 1 then M = ∅ (this case may only occurs when
W (c) = 2). For i ∈ {0, . . . , n− 1}, cell i belongs to M if and only if:

– case A: n−W (c) + 2 < i � n− 1 or
– case B1: ∀j ∈ {0, . . . , i}, δ(c)j = 0 or
– case B2: ∀j ∈ {i, . . . , n−W (c) + 1}, δ(c)j = 0.

For i ∈ {1, 2} we also call Bi(j) the event: case Bi is true for cell j (and thus j
belongs to M).

E[|M |] = E

⎡⎣ ∑
0�i�n−1

1i∈M

⎤⎦ =
∑

0�i�n−1

E[1i∈M] =
∑

0�i�n−1

Pr(i ∈ M).

= W (c)− 2 +
∑

0�i�n−W (c)+1

Pr(i ∈ M)

= W (c)− 2 +
∑

0�i�n−W (c)+1

[Pr(B1(i)) + Pr(B2(i))− Pr(B1(i) ∩B2(i))].

Since c0 = 0 and by lemma 2, we have Pr(B1(i)) � (1− α)αi. Then,

∑
0�i�n−W (c)+1

Pr(B1(i)) �
∑

0�i�n−W (c)+1

(1− α)αi

� 1− αn−W (c)+2

Similarly, we have Pr(B2) � 1 − αn−W (c)+2. Note that the event B1(i) ∩ B2(i)
implies that δ(c) = 0̄. Then, Pr(B1(i) ∩B2(i)) = p0̄(c). We have:

E[|M |] �W (c)− 2αn−W (c)+2 − (n−W (c) + 2)p0̄(c)

Then,

E[Δ(F (c))] � W (c)− E[|M |]− (n+ 2)p0̄(c)

� 2αn−W (c)+2 + (n−W (c) + 2)p0̄(c)− (n+ 2)p0̄(c)

� 2αn−W (c)+2 −W (c)p0̄(c)

� 2αn−W (c)+2 − 2p0̄(c)

� 0.

Proof of a Phase Transition in Probabilistic Cellular Automata 441

Note that if cells 0 and n − W (c) + 1 do not fire and cell 1 fires then |M | �
W (c)+1. This event occurs with probability α(1−α)2 and thus Pr{|Δ(F (c))| �
1} � α(1− α)2.

Theorem 2. If α � 0.5 then the expected convergence time of FLIP-IF-NOT-
ALL-0 on any initial configuration of size n is O(n2α−1).

Proof. Using lemma 1, lemma 3 and 4, we obtain that if α � 0.5, the stochas-
tic process reaches a configuration of potential 0 after O(n2α−1) iterations on
expectation. Note that the factor (1 − α)2 is negligible since α � 0.5. The only
configuration of potential 0 is 0̄.

4 Exponential Convergence Time for α Large Enough

In this section, we will demonstrate that FLIP-IF-NOT-ALL-0 converges on
expected exponential time when α is close enough to 1. To achieve this goal we
will use a coupling with oriented percolation. This coupling will be done such
that if the open cluster of the percolation is large enough then the dynamics
of the automaton converges in expected exponential time. Since we will use
percolation on a non-standard topology, we start by introducing this model. We
will then construct the coupling.

4.1 Percolation

Consider a probability p, an integer n and the infinite randomly labeled oriented
graph L(p, n) = (V,E) where V = {(i, j) ∈ N×{0, . . . , n} : i+ j is odd} is called
the set of sites and E the set of bonds. For all sites (i, j) ∈ V , i is the height
of the site. The height of a bond is the height of its origin. For all (i, j) ∈ V ,
there are oriented bonds between site (i, j) and sites (i + 1, j − 1) (if j �= 0)
and (i + 1, j + 1) (if j �= n). Bonds have a probability p to be labeled open
and a probability 1− p to be labeled closed. These probabilities are independent
and identically distributed. An open path of a randomly labeled graph is a path
where all edges are open. We denote by C the open cluster of L(p, n): C contains
all sites such that there exists an open path from a site of height 0 to this site.

Due to space constraints, we will admit the following theorem (a proof for a
similar percolation process can be found in [12]).

Theorem 3. If p � 162−1
162 then there exists ε > 0 such that ∀n ∈ N, C contains

a site of height 2n with probability at least ε.

4.2 Coupling

Consider a random sequence of configurations (ct)t�0 evolving under FLIP-IF-
NOT-ALL-0 and α-asynchronous dynamics. The size of the configuration is n.
Consider a percolation grid L(p, n). Consider the following mapping:

442 D. Regnault

Definition 7 (Mapping). We define g : V → {0, n}N as the injection which
associates the percolation site (i, j) to the cell j of configuration c2i.

Our aim is to design a coupling such that cells of g(C) are active. The coupling
will be defined recursively according to time and height. We denote by Ct the
sites of height t which are in the open cluster C.

Definition 8 (Correspondence criterion). We say that a space-time dia-
gram (ct)t>0 and a labeled directed graph L(p, n) satisfy the correspondence cri-
terion at step t if and only if the cells of g(Ct) have at least one of their neighbors
in a different state. We say that they satisfy the correspondence criterion if and
only if they satisfy the correspondence criterion for all t � 0.

Note that, satisfying the correspondence criterion implies that the cells of g(C)
are all active. The coupling will be defined such that if the correspondence crite-
rion is true at time t, it remains true at time t+1. To achieve this goal efficiently,
we will consider only local criteria.

Definition 9 (Candidate). A site is a candidate of height t+1 if and only if
at least one of its predecessors is in Ct. We denote by Ĉt+1 the set of candidates
of height t+ 1.

Definition 10 (Constrained cells). A cell cti is constrained at time t if and
only if ct+2

i ∈ g(V) and g−1(ct+2
i) is in Ĉt+1.

We have to find a way such that constrained cells possess a neighbor in a different
state than themselves after two iterations of FLIP-IF-NOT-ALL-0. We will
have to consider different patterns. For the rest of the paper, we will use the

following kind of notation to represent the patterns. Here, designs a
set of two consecutive cells i and i+1 such that ci = 0, ci+1 = 1 and the arrowed
cell i+ 1 is constrained.

Definition 11 (block). In a configuration c, a set of contiguous cells is a

block if it belongs to the following set: , , , , ,

, , , , , , or

.

Lemma 5. For any configuration, it is possible to compute a set of blocks such
that any constrained cell of the configuration is in exactly one block.

Proof. This proof is done by a long enumeration of cases. Due to space con-
straints, we will only explain how this enumeration is done. To prove that any
constrained cell i can belong to a block, we enumerate all the possible neighbor-
hoods of cells i− 2, i− 1, i, i+ 1 and i+ 2 and either i is in a block or i is not
constrained. Now, consider a set B of blocks. If a cell belongs to two blocks of

Proof of a Phase Transition in Probabilistic Cellular Automata 443

B, the redundancy can be eliminated by removing a block, cutting a block into
smaller ones or merging two blocks (and strictly decreasing the sum of the sizes

of all blocks). For example, if the white constrained cell of a block is

the same white constrained cell of a block , then these two blocks can

be merged into block .

Lemma 6. For any block, there is a probability at least α12 that all the con-
strained cells of the block possess a neighbor in a different state than themselves
after two iterations of FLIP-IF-NOT-ALL-0.

Proof. Figure 2 shows that for any block, all the constrained cells of the block
can satisfy the correspondence criterion by firing at most 12 cells of the block
during the next two steps.

Fig. 2. How to validate the correspondence criterion for any block. The cells drawn at
time t and t+ 1 are either inactive or fired.

With the previous lemma, we can achieve our coupling.

Theorem 4. If α � 12
√
1− (1− p)6 then we can define a coupling between

(ct)t�0 and L(p, n) such that the correspondence criterion is true for all t ∈ N.

Proof. Consider n ∈ N and the initial configuration c0 where c0i = 1 if and only
if i = 0 mod 2. The correspondence criterion is true at time 0. We suppose that
the correspondence criterion is true at time t. Now, we should explain how to
keep the criterion true at time t+ 1. Due to space constraints, we will only give
the main idea of the proof (which is a straightforward adaptation of what has
been done in [14]). If α � 12

√
1− (1− p)6, a coupling can be defined such that

for all sets of blocks B, if at least one bond ending at a constrained cell of B
at time t + 1 is open then all cells of B fire. Using lemma 6, if all cells of B
fire than the criterion is still true at time t+ 1 for cells of B. This coupling can
be done such that all cells fire independently from other cells and all bonds are
open independently from other bonds.

Theorem 5. If α � 12

√
1− (1− (16

2−1
162)2)6, there exists an initial configura-

tion c0 such that the stochastic process (ct)t�0 that evolves under rule FLIP-IF-
NOT-ALL-0 and α-asynchronous dynamics converges in expected exponential
time.

444 D. Regnault

Proof. Consider that α � 12

√
1− (1− 162−1

162)6 then it is possible to define the

coupling between FLIP-IF-NO-ALL-0 and L(p, n) with p > 162−1
162 . According

to theorem 4, there exists an initial configuration such that the correspondence
criterion is true for all t � 0. According to lemma 3, there exists a constant ε > 0
such that there is a site of height 2n in the open cluster with probability at
least ε. According to the coupling definition, the probability that at least one
cell is active in c2

n

is greater than ε.

Acknowledgements. Thanks to Nicolas Schabanel for the simulations of
FLIP-IF-NOT-ALL-0 and his useful comments.

References

1. Adamatzky, A.: Collision-Based Computing. Springer (2002)
2. Chassaing, P., Gerin, L.: Asynchronous cellular automata and brownian motion.

In: Proc. of AofA 2007. DMTCS Proceedings, vol. AH, pp. 385–402 (2007)
3. Cook, M.: Universality in elementary cellular automata. Complex System 15, 1–40

(2004)
4. Schabanel, N., Regnault, D., Thierry, É.: Progresses in the analysis of stochastic

2D cellular automata: A study of asynchronous 2D minority. Theoretical Computer
Science 410, 4844–4855 (2009)

5. Fatès, N.: Asynchronism induces second order phase transitions in elementary cel-
lular automata. Journal of Cellular Automata 4(1), 21–38 (2009)

6. Fatès, N.: Stochastic cellular automata solve the density classification problem with
an arbitrary precision. In: Proc. of STACS 2011, pp. 284–295 (2011)

7. Fatès, N., Morvan, M., Schabanel, N., Thierry, É.: Fully asynchronous behavior of
double-quiescent elementary cellular automata. Theoretical Computer Science 362,
1–16 (2006)

8. Fatès, N., Regnault, D., Schabanel, N., Thierry, É.: Asynchronous behavior of
double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi,
M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 455–466. Springer, Heidelberg (2006)

9. Gács, P.: Reliable cellular automata with self-organization. Journal of Statistical
Physics 103(1/2), 45–267 (2001)

10. Land, M., Belew, R.K.: No perfect two-state cellular automata for density classifi-
cation exists. Physical Review Letters 74, 5148–5150 (1995)

11. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theoretical Computer Science 50(2), 183–238 (1987)

12. Mossel, E., Roch, S.: Slow emergence of cooperation for win-stay lose-shift on trees.
Machine Learning 67(1-2), 7–22 (2006)

13. Ollinger, N., Richard, G.: 4 states are enough! Theoretical Computer Science 412,
22–32 (2011)

14. Regnault, D.: Directed percolation arising in stochastic cellular automata anal-
ysis. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162,
pp. 563–574. Springer, Heidelberg (2008)

15. Toom, A.: Stable and attractive trajectories in multicomponent systems. Advances
in Probability 6, 549–575 (1980)

Languages with a Finite Antidictionary:

Growth-Preserving Transformations
and Available Orders of Growth

Arseny M. Shur

Ural Federal University
arseny.shur@usu.ru

Abstract. We study FAD-languages, which are regular languages de-
fined by finite sets of forbidden factors, together with their “canonical”
recognizing automata. We are mainly interested in the possible asymp-
totic orders of growth for such languages. We analyze certain simplifica-
tions of sets of forbidden factors and show that they “almost” preserve
the canonical automata. Using this result and structural properties of
canonical automata, we describe an algorithm that effectively lists all
canonical automata having a strong component isomorphic to a given
digraph, or reports that no such automata exist. This algorithm can
be used, in particular, to prove the existence of a FAD-language over
a given alphabet with a given exponential growth rate. On the other
hand, we provide an example showing that the algorithm cannot prove
non-existence of a FAD-language having a given growth rate. Finally, we
provide some examples of canonical automata with a nontrivial conden-
sation graph and of FAD-languages with a “complex” order of growth.

Keywords: finite antidictionary, regular language, combinatorial com-
plexity, growth rate.

1 Introduction

By growth properties of a language L over a finite alphabet Σ we mean the
asymptotic behaviour of the function CL(n) = |L∩Σn| called the combinatorial
complexity of L. Growth properties of formal languages are intensively studied
during the last decades. Such studies were initially motivated by the needs of
symbolic dynamics (starting with [5]) and algebra (starting with [4]). In most
cases, all considered languages were factorial, i. e., closed under taking factors of
their words. In the context of dynamical systems, special attention was paid to
sofic subshifts, which correspond to factorial regular languages, and to subshifts
of finite type, which correspond to FAD-languages studied in this paper; see,
e.g., [1]. In the algebraic context, FAD-languages correspond to finitely presented
algebras of certain types; see, e.g., [3].

It is known [6] that the combinatorial complexity of a regular language is
asymptotically equivalent to the function of the form f(n) = pn mod r(n)α

n
n mod r,

where r is a positive integer, αi are nonnegative algebraic numbers and pi(n)

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 445–457, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

446 A.M. Shur

are polynomials with algebraic coefficients. Recall that the index Ind(G) of a
digraph G is the Frobenius root (or spectral radius) of the adjacency matrix of
G. A finite automaton is considered as a labeled digraph and is consistent (or
trim) if all its states are both accessible and coaccessible. If A is a consistent
(partial) dfa recognizing L, then maxi αi = Ind(A) (folklore). For factorial reg-
ular languages, there is a significant simplification: α0 = . . . = αr−1 and the
degrees of all polynomials pi coincide. So, one has CL(n) = Θ(nm−1αn); here
m is the maximum number of strong components of index α = Ind(A) that are
visited by a single directed walk in A [8]. We refer to the numbers α and m−1
as growth rate and polynomial degree of L, respectively, and use the notation
Gr(L), Pd(L).

Any word from the complement of a factorial language L is a forbidden word
for L. The set of all minimal (w.r.t. to the relation “to be a factor of”) forbidden
words for L is called the antidictionary of L. Antidictionaries are antifactorial
languages in the sense that they are antichains w.r.t. to the relation “to be a
factor of”. Over a fixed alphabet, the function that maps any factorial language
to its antidictionary obviously is a bijection between factorial and antifactorial
languages. This bijection preserves regularity of a language. The languages with a
finite antidictionary (FAD-languages) form a narrow and simple-looking subclass
of regular languages. Besides symbolic dynamics and algebra, this class plays
a special role in the study of combinatorial complexity for arbitrary factorial
languages (see, e.g., [11, Sect. 3]).

In this paper we touch the following problem: given a finite alphabet and a
particular class Θ(nmαn) of functions, find a FAD-language whose combinatorial
complexity belongs to this class or prove that no such languages exist.

For the related research in symbolic dynamics, see [1, Sect. 9] and the ref-
erences therein. Note that it is essential to fix an alphabet. Indeed, if A is a
consistent dfa, then it is enough to label all transitions in A with different let-
ters to get a consistent dfa recognizing a FAD-language. Thus, without fixing
an alphabet, the problem reduces to finding a strongly connected digraph with
a given index. The latter problem is worthwhile, but does not involve languages
at all.

We also mention that the above problem for the case α = 1 was solved in [9].
So, from now on we assume that α > 1. Approaching the above problem, we ask
a natural question: how to simplify an antidictionary preserving the Θ-class of
combinatorial complexity of the corresponding factorial language?

Studying FAD-languages, it is convenient to introduce “canonical” automata
for them. We use a version [2] of Aho-Corasick’s pattern matching automata.
These automata are relatively small and very handy.

In Sect. 2 we recall necessary notation and definitions and prove basic prop-
erties of canonical automata. In Sect. 3, we introduce two reduction procedures
for antidictionaries and prove that these procedures preserve the growth rate
and the polynomial degree of the corresponding factorial languages as well
as the essential elements of structure of their canonical automata. In Sect. 4
we provide Algorithm CC to reconstruct a canonical automaton from a given

Languages with a Finite Antidictionary 447

(unlabeled) strong component; this algorithm provides a way to prove the exis-
tence of a FAD-language with a given growth rate (Algorithm IT). In Sect. 5, the
limitations of proposed approach are shown: in order to prove that an algebraic
number of degree r is not the growth rate of a FAD-language, it is not enough
to iterate Algorithm IT over the strong components of r vertices. The final Sec-
tion 6 contains some results on the existence of FAD-languages with a given
polynomial degree and of canonical automata with a “complex” condensation.

2 Canonical Automata and Their Properties

We consider deterministic finite automata (dfa’s) with partial transition function
and treat them as labeled digraphs. Such an automaton is consistent if any vertex
can be reached by some accepting walk. A trie is a dfa which is a rooted tree
with the root as the initial vertex and the set of leaves as the set of terminal
vertices. Tries are used to represent prefix codes, e.g., antidictionaries.

Studying a class of languages, it is useful to have, for each language in the
class, a unique “canonical” recognizing automaton. Since the languages with
a finite antidictionary are usually described in terms of antidictionaries, it is
natural to require that a canonical automaton is efficiently constructible from
an antidictionary and keeps the information about it. As was shown in [2], a
rather small (but not necessarily minimal) consistent dfa satisfying these two
requirements can be built by a modification of Aho-Corasick’s pattern matching
algorithm. This modification is presented below. We assume that the input an-
tidictionary is given by a trie. We write Pre(M) for the set of all prefixes of M
and L(M) for the factorial language with the antidictionary M .

Algorithm CA (Canonical-automaton).
Input : a trie T recognizing an antidictionary M .
Output : a dfa A recognizing L(M).
Step 0. Associate each vertex in T with the word labeling the path from the root
to this vertex. (Thus, the set of vertices of T is the set Pre(M).)
Step 1. For any nonterminal vertex u and any letter a, if no edge with the label
a leaves u, add the edge u

a−→ v such that v is the longest suffix of the word ua
among the vertices of T . The resulting dfa is denoted by T̂ .
Step 2. Delete all terminal vertices from T̂ and mark all remaining vertices as
terminal to get A.

The automaton A is deterministic and consistent, its set of vertices equals
Pre(M) −M , and accepting walks in A are exactly the walks from the initial
vertex. The edges of A are naturally partitioned into two groups: forward edges
belonging to T and backward edges added at step 1. Note that for an edge (u, v)
one has |v| = |u| + 1 if the edge is forward, and |v| ≤ |u| if it is backward. We
also make use of the failure function f(u) which returns, for any given word, its
longest proper suffix among the vertices of the trie. Throughout the paper, the
notation T , T̂ , and A is reserved for the automata described in Algorithm CA.
Some properties of A are collected in the following lemma; the proof is omitted
due to space constraints.

448 A.M. Shur

Lemma 1. 1) For any vertex u of A and any letter a, the word ua is forbidden
if and only if A contains no outgoing edge from u labeled by a.
2) If a walk with a label w ends in a vertex v, then the shorter word among v,
w is the suffix of the longer one.
3) If an edge u

a−→ v was added to T at step 1, then the edge f(u)
a−→ v belongs to

T̂ . In particular, if A has no outgoing edge from u with the label a, and ua /∈ M ,
then A has no outgoing edge from f(u) with the label a.

Remark 1. All assertions of Lemma 1 remain valid if we apply Algorithm CA to
a broader class of tries. Namely, we can replace the condition “M is an antidic-
tionary” by its weaker analog “the set (Pre(M)−M) has no factors in M”.

We begin with several properties of canonical automata proved in [10]. Their
proofs refer to Lemma 1 and to Algorithm CA, but not to the fact that T
recognizes an antidictionary. Hence, all these properties can be extended to a
wider class of automata according to Remark 1.

Proposition 1. If a vertex v of a canonical automaton belongs to cycles of
length p and length q, then |v| < p+ q − gcd(p, q).

Corollary 1. Suppose that a canonical automaton contains a nontrivial strong
component consisting of vertices that are words of length ≥ n. Then this com-
ponent contains a cycle of length > n/2. In particular, canonical automata over
a fixed alphabet cannot have arbitrarily big number of isomorphic copies of any
non-singleton strong component.

Recall that a word is primitive if it is not an integral power of a shorter word.

Proposition 2. The label of any cycle in a canonical automaton, read starting
at any vertex, is a primitive word. If a cycle has the label u read starting at the
vertex v, then the word v is a suffix of some power of u.

Proposition 3. A canonical automaton A has a loop at a vertex v if and only
if there exist a letter c and an integer m such that v = cm and cm+1 is not a
vertex of the trie T .

Corollary 2. A canonical automaton A over the alphabet Σ has at most |Σ|
loops. There is no loop with a label c if and only if the antidictionary M contains
a power of c.

3 C-Graphs and Reduction Procedures for
Antidictionaries

As was mentioned in the introduction, growth rate Gr(L) and polynomial degree
Pd(L) describe the asymptotic behaviour of the combinatorial complexity of
a FAD-language L up to a Θ-class. These two parameters are determined by
the structure and mutual location of the strong components of the canonical

Languages with a Finite Antidictionary 449

automaton A(L). Since Gr(L) > 1, it is sufficient to consider nontrivial strong
components, i.e., the components that are neither singletons nor simple cycles.
We define the C-graph of an automaton to be its subgraph generated by all
vertices of nontrivial strong components. C-graph of a FAD-language L is the
C-graph of A(L). The aim of this section is to learn how to transform finite
antidictionaries in a way that (i) reduces the size of an antidictionary; (ii) either
preserves the C-graph of the corresponding language L, or changes it slightly,
preserving Gr(L) and Pd(L).

Recall that the vertices u and v of a finite automaton are equivalent if the set
of words labeling all walks from u to terminal vertices coincides with such a set
for v. Since all vertices in canonical automata are terminal, and the notion of
equivalence does not use the initial vertex, we can extend the notion of equiv-
alence to C-graphs. Vertices u and v of an arbitrary (not necessary labeled!)
digraph G are called duplicates if their outgoing edges lead to the same vertices.

Let Min(K) be the set of minimal words of the language K w.r.t. the relation
“to be a factor of”. Then Min(K) is an antidictionary, and

(�) a word has no factors in K if and only if it has no factors in Min(K).

Now suppose that a trie T recognizes an antidictionaryM , and the corresponding
canonical automaton A recognizes the language L(M) of exponential growth.
Arguing about subgraphs of T , we distinguish between subtries (containing the
root of T) and subtrees (consisting of a vertex and all its descendants).

Consider the subtrees in T having no vertices from which the C-graph of
A is reachable. Let T1, . . . , Ts be all maximal subtrees with this property. Let
M1 [M2] be the set of leaves [resp., roots] of the subtrees T1, . . . , Ts. We view
the elements of M1 and M2 as words. The reduction of the antidictionary M is
made in two steps. First, let Trim(M) = (M −M1) ∪M2. Note that Trim(M)
is a prefix code represented by the subtrie of T obtained by deleting all ver-
tices of the subtrees T1, . . . , Ts except for their roots. We denote this trie by
Trim(T). Second, we apply the Min operation to obtain the reduced antidic-
tionary red(M) = Min(Trim(M)).

The following theorem shows that the reduction of an antidictionary preserves
the parameters of growth of the language with this antidictionary and “almost”
preserves the C-graph of this language.

Theorem 1. Suppose that M is a finite antidictionary, Gr(L(M)) > 1, and C,
C′ are the C-graphs of L(M) and L(red(M)), respectively. Then
1) Gr(L(red(M))) = Gr(L(M)), Pd(L(red(M))) = Pd(L(M));
2) The C-graph C ′ can be obtained from C by performing zero or more transfor-
mations of the following two types1:

(a) merging two equivalent duplicates in the same strong component of C;
(b) merging a vertex from C with its equivalent duplicate from outside C.

1 Note that (b) preserves edges inside the strong components of C and the reachability
relation between these components.

450 A.M. Shur

Proof (sketched). Let T and A be the trie representingM and the corresponding
canonical automaton. The subtrees T1, . . . , Ts of T are defined above.

First we prove that the set (Pre(Trim(M)) − Trim(M)) has no factors in
Trim(M); in other words, if w = xvy for some v, w ∈ Trim(M), x, y ∈ Σ∗,
then y = λ. We show that in this case v is the root of some subtree Ti and then
xv belongs to some Tj . Since the only vertex of Tj in Trim(M) is its root, we
have xv = xvy = w.

Let us take the trie Trim(T) and apply all steps of Algorithm CA to it, ob-
taining some automaton A0. We refer to Remark 1 and apply Lemma 1 (1) to
the automaton A0, concluding that A0 accepts a word w if and only if w has no
factors in Trim(M). Then A0 recognizes L(red(M)) by (�).

Next we check that A0 coincides with the automaton obtained from A by
deleting all vertices from the sets T1, . . . , Ts. Since A0 can be obtained from
A by deleting some vertices from which the C-graph cannot be reached, the
C-graphs of A and A0 coincide. Statement 1 of the theorem follows from this.

Now let A′ be the canonical automaton recognizing the language L(red(M)).
The automata A0 and A′ accept the same language, and A0 inherits the C-graph
C from the automaton A. Let us describe an iterative transformation of A0 into
A′, and watch the transformation of the C-graph in each iteration.

Let K0 = Trim(M), i = 0, and proceed as follows until Ki = red(M):

– choose a pair v, xv ∈ Ki−1 (x �= λ);
– put i = i+ 1 and Ki = Ki−1 − {xv};
– obtain Ai applying Algorithm CA to the trie Ti representing Ki

– compare the C-graph of Ai to the C-graph of Ai−1.

Since each set (Pre(Ki) −Ki) has no factors in Ki, Remark 1 is applicable. In
order to prove statement 2, it suffices to show that this statement holds for one
iteration of the described procedure, i.e., for deleting one word from the setKi−1.
If the parent of the deleted word w = xv in Ti−1 has another child, then one can
easily check that Ai = Ai−1. Otherwise, the vertex w and its ancestors up to
the nearest branching point should be deleted from the trie Ti−1. We perform
this deletion in Ai−1, one vertex at a time, starting from the longest vertex and
redirecting the incoming backward edges of each deleted vertex z to f(z). It is
clear that deleting a vertex z with such a redirection is equivalent to merging z
and f(z).

Finally we show that, merging z and f(z), we perform transformation (a)
[resp., transformation (b); nothing] with the current C-graph if both [resp., only
one of; neither of] z and f(z) belong to this C-graph.
�

Corollary 3. A C-graph having no duplicates is preserved by the reduction of
the antidictionary. In particular, this is the case for C-graphs of minimal dfa’s.

We call an antidictionary M reduced if red(M) = M . The reduction procedure
can be “upgraded” to the double reduction, which results in the antidictionary

dred(M) =
←−−−−−−−−
red(

←−−−−
red(M)), where

←−
L is the set of reversals of all words from L. For

the double reduction, statement 1 of Theorem 1 holds true, because the languages

Languages with a Finite Antidictionary 451

L and
←−
L have exactly the same combinatorial complexity, and

←−−−
L(M) = L(

←−
M).

The statement 2 may fail: due to the asymmetric nature of automata, the C-

graphs of L(M) and L(
←−
M) can be quite different.

Remark 2. The order of applying reductions in the double reduction procedure
is irrelevant. Each word from a language L with a doubly reduced antidictionary
is a prefix of exponentially many words from L and a suffix of exponentially
many words from L; hence, no further reduction is possible.

Example 1. Let Σ = {a, b}, M = {a3b, abba, babb, baabb}. The C-graph of the
canonical automaton A is not reachable only from the vertex a3 (see Fig. 1, left).
So we have Trim(M) = Min(Trim(M)) = {a3, abba, babb, baabb}.

a

a
a b

b b a

b
a

a b b

b
b

a

b

b

a b

a

a

a

a

a
a

b b a

b
b a

a b

b
b

a

b

b
a

a

Fig. 1. Reducing canonical automata (for Example 1)

Now let us switch to the reversals:
←−−−−
red(M) = {a3, abba, bbab, bbaab}. In the ob-

tained canonical automaton (see Fig. 1, right), the C-graph is not reachable from

the vertices bb, bba, bbaa, and abb. Thus we obtain
←−−−−
red(M)1 = {abba, bbab, bbaab},←−−−−

red(M)2 = {abb, bb}, Trim(
←−−−−
red(M)) = {a3, abb, b2}, dred(M) = {a3, b2}.
�

Remark 3. Reduction has an interesting interpretation in terms of symbolic dy-
namics. Recall that a (one-side) subshift of finite type coincides with the set of
infinite words that label infinite walks in a dfa recognizing a FAD-language. A
periodicity marker of such a subshift S is a finite word that appears only in ulti-
mately periodic words from S (in Example 1, a3 and b2 are such markers in the
left and the right automaton, respectively). Reduction of the antidictionary turns
all periodicity markers into forbidden words and thus deletes the corresponding
ultimately periodic words from S.

If we need to preserve (or almost preserve) C-graphs during the reduction, we
cannot use the double reduction. But a single reduction can be enhanced by the
cleaning procedure justified by the following proposition.

Proposition 4. Suppose that a leaf w of a trie T is not reachable in the au-
tomaton T̂ from the vertices of the C-graph C of the canonical automaton A.
Then the canonical automaton for the language L(M−w) has the C-graph C.

452 A.M. Shur

Proof. Let us take the automaton A and restore the vertex w and its ingoing
edges, deleted at step 2 of Algorithm CA. We add outgoing edges from w for all
letters, following the rule of step 1. These edges cannot affect the C-graph C of
A, because their beginning w is not reachable from C. Thus, the obtained au-
tomaton A0 inherits the C-graph from A. Now note that A0 recognizes L(M−w),
because all missing edges initially lead to the vertices of the set M − w.

In order to obtain the canonical automaton A′ for the language L(M−w),
we cut the path representing w in A0 in the same fashion as in the proof of
Theorem 1. All vertices that have to be deleted do not belong to C by the
conditions of the proposition. As we have shown in the proof of Theorem 1, the
deletion of such a vertex preserves C.
�

According to Proposition 4, we call an antidictionaryM clean if all leaves of the
trie T are reachable from the C-graph of the automaton A. In Example 1, M is
not clean: the word abba has to be removed (see Fig. 1, left).

Given a digraph G, its condensation is the acyclic digraph obtained by col-
lapsing each strong component of G into a single vertex. A strong component of
G is said to be a sink component, if it is a sink of the condensation of G. The
following remark stems directly from the definition of the reduced antidictionary.

Remark 4. Suppose that the automaton A is built by Algorithm CA from a
trie T that represents a reduced antidictionary. If H is a sink component of the
C-graph of A, then all edges missing in H lead in T̂ to the leaves of T .

4 Checking Candidate Strong Components

The following algorithm tries to build a canonical automaton containing a given
digraph as a strong component.

Algorithm CC (check-component)

Input : a strongly connected digraph G = (V,E), an alphabet Σ.
Output : an antidictionary M ∈ Σ∗ such that the canonical automaton for L(M)
has a strong component isomorphic to G, or “NO”.

Step 1. Return “NO” if G does not satisfy any of the following restrictions:
1.1. |V | < |E| < |V |·|Σ|;
1.2. the outdegree of any vertex is at most |Σ|;
1.3. the number of loops is at most |Σ|;
1.4. multiple edges, if any, have the same endpoint and the multiplicity

at most |Σ|−1; the endpoint has the outdegree |Σ| and a loop.

Step 2. Calculate all labellings of the edges of G such that
2.1. all edges with a common beginning have different labels;
2.2. all edges with a common endpoint have the same label;
2.3. all loops have different labels;
2.4. the label of any cycle is a primitive word.

Step 3. For each labeling of edges built at step 2, calculate all labellings
{v1, . . . , v|V |} of the vertices of G such that

Languages with a Finite Antidictionary 453

3.1. if vi belongs to cycles with labels w1 and w2 (read starting at vi),
then vi is a common suffix of some words ws1

1 and ws2
2 (s1, s2 ∈ N);

3.2. if vi
c−→ vj is a labeled edge, then vj is a suffix of the word vic;

moreover, vj = vic iff this edge is forward;
3.3. all forward edges have different endpoints;
3.4. a vertex has at most |Σ|−1 outgoing backward edges;
3.5. the vertex λ has a loop;
3.6. if vj = vic1. . .ck+1, then the vertices vi1 = vic1; . . . ; vik= vic1. . .ck exist.

Step 4. For each labeling of vertices built at step 3,
4.1. calculate the set

K = {vic | no edge from vi with the label c} of forbidden words;
4.2. calculate the antidictionary M = Min(K) and the trie T for M ;
4.3. build the canonical automaton A from T ;
4.4. if the vertices of A with the labels {v1, . . . , v|V |} form a strong

component isomorphic to G, return M .

If no one of the obtained automata has the required component, return “NO”.

Proposition 5. Given an arbitrary strongly connected digraph G, Algorithm CC
returns a clean reduced antidictionary M such that G is a sink component of
the C-graph of the canonical automaton built from M , or “NO”, if no reduced
antidictionaries with this property exist.

Proof (sketched). Restrictions 1.1–1.4 and 2.1–2.4 stem from the definitions,
Corollary 2, Lemma 1 (3), and Proposition 2. Restriction 3.1 follows from Propo-
sition 2 and implies |vi| < |w1| + |w2| − gcd(|w1|, |w2|). Restriction 3.2 follows
from the definition of Algorithm CA. Together, 3.1 and 3.2 guarantee finite-
ness of the set of possible vertex labelings and hence, the termination of the
algorithm. Restrictions 3.3–3.6 stem from the definitions of Algorithm CA and
strong connectedness.

By Proposition 4, the condition “M is clean” does not affect the class of
possible C-graphs. Hence, if the graph G with the given labeling of edges and
vertices form a strong component of a canonical automaton built from a reduced
antidictionary, then by Remark 4 the set K built at step 4.1 consists of forbid-
den words, while all words from Pre(K) −K are not forbidden. Thus, the only
possible candidate antidictionary for this labeling is built at step 4.2. The last
two steps show whether this candidate is suitable. If no labelings produce valid
antidictionaries, then no such antidictionaries exist.
�

Proposition 6. Given a strongly connected graph G without duplicates, Al-
gorithm CC returns a clean reduced antidictionary M such that G is a sink
component of the C-graph of the canonical automaton built from M , or “NO”,
if there exist no antidictionary for which G is any component of the C-graph of
the canonical automaton.

Proof (sketched). Let G be a strong component of a C-graph of a canonical au-
tomaton A built from an antidictionary M . By Corollary 3, M can be replaced

454 A.M. Shur

by red(M) = Min(Trim(M)), retaining the C-graph. By Proposition 4 we can
consider red(M) as clean. Now we “cut” red(M) such that G becomes a sink
component of the C-graph. In order to do this, it is enough to describe the
transformation (of a clean reduced antidictionary) that deletes one sink compo-
nent from the C-graph. Such a transformation is similar to the reduction; we
omit the details here. Then we proceed with reduction–cleaning–deletion until
G becomes a sink component, and apply Proposition 5.
�

Proposition 6 allows one to test candidate growth rates of FAD-languages, if
these rates are given as indexes of strongly connected digraphs. Testing is per-
formed by the following

Algorithm IT (index-testing)

Input : strongly connected digraph G without duplicates, an alphabet Σ.
Output : an antidictionaryM ∈ Σ∗ such that its canonical automaton A contains
G as a strong component and Gr(L(M)) = Ind(G), or “NO”.

Step 1. Apply to G the modification of Algorithm CC, returning all suitable
antidictionaries.
Step 2. For each antidictionary M , calculate the index of the canonical automa-
ton; if this index coincides with Ind(G), return M .
Step 3. If no antidictionaries remain, return “NO”.

Proving the correctness of Algorithm IT, it is sufficient to note that if G is a
non-sink component of a canonical automaton A and Ind(A) = Ind(G), then
there exists a canonical automaton with the same property, for which G is a sink
component. Namely, this is the automaton obtained by the trimming procedure
described in the proof of Proposition 6.

5 A Negative Example

It seems that it is impossible to prove, running Algorithm IT finitely many times,
that the index of a given digraph is not the growth rate of any FAD-language over
a given alphabet. This pessimistic forecast stems from the following statement.
Note that this statement concerns about all consistent (not only canonical) dfa’s.

Proposition 7. There exists an algebraic number of degree 3 which is
- a growth rate of a binary FAD-language but
- not an index of a 3-vertex strong component of a consistent dfa recognizing a
binary FAD-language.

Proof (sketched). Consider the binary factorial language with the antidictionary
{abbab, b4, b3a2}. Its canonical automaton looks as follows.

5 6

1 2 3 4

b
b b a

a
b b a

a a
b

b

a

a

a

Languages with a Finite Antidictionary 455

The index of this automaton is an algebraic number of degree 3, because the
characteristic polynomial of the only nontrivial strong component (vertices 1–6)
equals x(x2 + 1)(x3 − x2 − 2x + 1). For the binary alphabet, there is a unique
strongly connected digraph G with three vertices and the same index:

v1 v2 v3
a

b b

a a
G:

Next we show that if G is a strong component of a consistent dfa, then G
is a component of the equivalent minimal dfa (we denote it by B). Since FAD-
languages are star-free languages, the label of any cycle in a minimal automaton
is a primitive word by the Schützenberger theorem [7]. Then the labeling of G is
unique. For this labeling, we find an infinite set of minimal forbidden words for
the language L(B). These words have the form ajbb(ab)ib, and their existence
proves that L(B) is not a FAD-language.
�

6 Condensations of Canonical Automata

In this section we consider C-graphs consisting of several strong components.
First, we are interested in FAD-languages having a nonzero polynomial degree.
A priori, it is not obvious that such languages exist (cf. Corollary 1).

Proposition 8. There exist k-ary FAD-languages having the combinatorial
complexity Θ(nk−2αn), where α > 1.

Proof. Let Σ={1, . . ., k}, k≥3. The canonical automaton for the antidictionary{
ab | a, b ∈ Σ, a �= 1, b /∈ {a−1, a, a+1}

}
∪
{
a(a−1)b | a, b ∈ Σ, a �= 1, b �= a

}
is

depicted below (for convenience, the labeling is given for the case k = 9). Each of
the two-element components has the index φ (golden ratio), while the horizontal
path meets all k−1 such components.
�

. . .

. . .

. . .

1

2 3 8 9

2
3 8

9

3 4 8 9

1 2 7 8
2 3 8 9

Proposition 9. There exist binary FAD-languages having the combinatorial
complexity Θ(nαn), where α > 1.

Proof. The canonical automaton for the antidictionary {a2bab, a2b3, a2b2ab} has
two nontrivial components, each of index φ.
�

A B 1 2

3

4

5
b

a

b

a

a

b
a

b

a

a
a

456 A.M. Shur

In the previous examples, C-graphs contain more than one strong component,
but the condensation of the C-graph was the simplest possible: a chain. We now
show that such a condensation can have a more complicated structure. Namely,
it does not need to be weakly connected, and it does not need to be a forest.
This shows once more that FAD-languages are quite representative in terms of
the combinatorial complexity.

Proposition 10. There exists a binary canonical automaton with a C-graph
that is not weakly connected.

Proof. Take the canonical automaton for M = {a5, a2b2, a2bab, a2ba2b}.

A B

3 4 5

1 2
b

a

b

a
b

a a

a
a

b
b a

Proposition 11. There exists a binary canonical automaton in which the con-
densation of the C-graph is not a forest.

Proof. Take the canonical automaton for M = {a4b2a, a4b3a, a4b5, a4b4ab4ab,
abab, aba2b, aba3b, b4a2b, b4a3b, b4a5, b4a4ba4ba, baba, bab2a, bab3a}. The conden-
sation of the C-graph is depicted inside the dotted area.

IV

VI

I

II

V A B 1 3 5 7 9 11 13 15

17

C D E

κ μ ν

III ζ η 2 4 6 8 10 12 14 16

18

a

b

a

a

b

a a b b b b a b b b b

a

b

b

a

b b a a
a a b a a a a

b

a a a

b b b

a

b

b

a

b

a

a

b

a

b

a a

b
b

I−VI

A−E

η−ν

1−18

References

1. Béal, M.P., Perrin, D.: Symbolic dynamics and finite automata. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 463–505. Springer
(1997)

2. Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Inform.
Process. Lett. 67, 111–117 (1998)

3. Govorov, V.E.: Graded algebras. Math. Notes 12, 552–556 (1972)
4. Milnor, J.: Growth of finitely generated solvable groups. J. Diff. Geom. 2, 447–450

(1968)
5. Morse, M., Hedlund, G.A.: Symbolic dynamics. Amer. J. Math. 60, 815–866 (1938)
6. Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series. Texts

and Monographs in Computer Science. Springer, New York (1978)

Languages with a Finite Antidictionary 457

7. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Information
and Computation 8, 190–194 (1965)

8. Shur, A.M.: Combinatorial complexity of regular languages. In: Hirsch, E.A.,
Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010,
pp. 289–301. Springer, Heidelberg (2008)

9. Shur, A.M.: Polynomial languages with finite antidictionaries. RAIRO Inform.
Théor. App. 43, 269–280 (2009)

10. Shur, A.M.: Languages with finite antidictionaries: growth index and properties of
automata. Proc. Ural State Univ. 74, 220–245 (2010) (in Russian)

11. Shur, A.M.: Growth properties of power-free languages. Computer Science Re-
view 6, 187–208 (2012)

Author Index

Anselmo, Marcella 46
Atig, Mohamed Faouzi 58

Berglund, Martin 70
Bertoni, Alberto 82
Björklund, Henrik 70
Blanchet-Sadri, Francine 94, 106
Bollig, Benedikt 118
Bonomo, Silvia 131

Carnino, Vincent 338
Chen, Haiming 350
Choffrut, Christian 82
Currie, James D. 143

D’Alessandro, Flavio 82
Dassow, Jürgen 155
Day, Joel D. 167
De Felice, Sven 179
de Luca, Aldo 191
Drewes, Frank 70
Droste, Manfred 203

Ésik, Zoltán 215

Fici, Gabriele 227
Fox, Nathan 94
Freivalds, Rūsiņš 1
Fülöp, Zoltán 239

Giammarresi, Dora 46
Goč, Daniel 252

Habermehl, Peter 118

Ibarra, Oscar H. 264
Iván, Szabolcs 215

Jeż, Artur 12, 277
Jungers, Raphaël M. 27

Kĺıma, Ondřej 289
Küçük, Uğur 301
Kutrib, Martin 313

Langiu, Alessio 227
Lecroq, Thierry 227

Lefebvre, Arnaud 227
Leucker, Martin 118
Libkin, Leonid 325
Löding, Christof 29
Lombardy, Sylvain 338
Lonati, Violetta 396
Lu, Ping 350

Madonia, Maria 46
Malcher, Andreas 313
Maletti, Andreas 239
Mandrioli, Dino 396
Manea, Florin 155
Mantaci, Sabrina 131
Marsault, Victor 362
Mercaş, Robert 155, 374
Mignosi, Filippo 227
Monmege, Benjamin 118
Mousavi, Hamoon 384
Mráz, Frantǐsek 409
Müller, Mike 155

Narayan Kumar, K. 58
Nicaud, Cyril 179

Okhotin, Alexander 277
Otto, Friedrich 409

Panella, Federica 396
Peng, Feifei 350
Pin, Jean-Éric 31
Polák, Libor 289
Pradella, Matteo 396
Pr̊uša, Daniel 409
Pribavkina, Elena V. 191
Prieur-Gaston, Élise 227

Rampersad, Narad 143, 420
Ravikumar, Bala 264
Regnault, Damien 433
Reidenbach, Daniel 167
Restivo, Antonio 131
Rigo, Michel 420
Rosone, Giovanna 131

460 Author Index

Saarela, Aleksi 374
Saari, Kalle 143
Saivasan, Prakash 58
Sakarovitch, Jacques 362
Salimov, Pavel 420
Say, A.C. Cem 301
Schaeffer, Luke 252
Schneider, Johannes C. 167
Sciortino, Marinella 131
Shallit, Jeffrey 252, 384
Shur, Arseny M. 445

Tan, Tony 325

van der Merwe, Brink 70

Vogler, Heiko 203

Vrgoč, Domagoj 325

Watson, Bruce 70

Wendlandt, Matthias 313

Woodhouse, Brent 106

Yakaryılmaz, Abuzer 301

Zamboni, Luca Q. 191

	Preface
	Organization
	Table of Contents
	Invited Talks
	Ultrametric Finite Automataand Turing Machines
	1 Introduction
	2 p-adic Numbers
	3 FirstExamples
	4 Non-regulated Finite Automata
	5 Regulated Finite Automata
	6 1-Way Pushdown Automata
	7 Turing Machines
	References

	Recompression: Word Equations and Beyond
	1 Introduction
	2 Toy Example: Equality of Strings
	3 WordEquations
	4 Speeding Up the Recompression
	4.1 Limiting the Number of Crossing Pairs
	4.2 Parallel Compression of Crossing Pairs
	4.3 Uncrossing Blocks in Parallel

	5 Other Results for Word Equations
	6 Applications to Straight Line Programmes
	References

	Joint Spectral Characteristics:A Tale of Three Disciplines
	References

	Unambiguous Finite Automata
	References

	An Explicit Formula for the Intersectionof Two Polynomials of Regular Languages
	1 Introduction
	2 Background and Notation
	2.1 Syntactic Order
	2.2 Quotients

	3 Infiltration Product and Infiltration Maps
	4 MainResult
	5 Some Variants of the Product
	5.1 Unambiguous Product
	5.2 Deterministic Product

	References

	Regular Papers
	Two Dimensional Prefix Codes of Pictures
	1 Introduction
	2 Preliminaries
	3 Two-Dimensional Codes
	4 Prefix Codes
	5 Maximal and Complete Codes
	6 Conclusions
	References

	Adjacent Ordered Multi-Pushdown Systems
	1 Introduction
	2 Preliminaries
	3 Multi-Pushdown Systems
	4 The Reachability Problem for AOMPDS
	5 Repeated Reachability for AOMPDS
	6 Applications of AOMPDSs
	6.1 Unary Ordered Multi-PushDown Systems
	6.2 An Application to Concurrent Recursive Queue Systems

	References

	Cuts in Regular Expressions
	1 Introduction
	2 Cut Expressions
	3 Cut Expressions versus Finite Automata
	3.1 Cut Expressions Denote Regular Languages
	3.2 Succinctness of Cut Expressions

	4 Uniform Membership Testing
	5 Emptiness Testing of Cut Expressions
	6 Related Concepts in Programming Languages
	7 Discussion
	References

	Quantum Finite Automata and LinearContext-Free Languages: A Decidable Problem
	1 Introduction
	2 Preliminaries
	2.1 Topology
	2.2 Algebraic and Semialgebraic Sets
	2.3 Effectiveness Issues
	2.4 Closure Properties

	3 Context-Free languages
	4 The Main Results
	4.1 The Bounded Semilinear Languages
	4.2 The Case of Context-Free Languages

	References

	On the Asymptotic Abelian Complexityof Morphic Words
	1 Introduction
	2 Preliminary Definitions and Results
	3 Morphism Factorizations
	4 MainResults
	4.1 Factorization of Parry Morphisms
	4.2 Classification of Uniform Morphisms

	5 Future Work
	References

	Strict Bounds for Pattern Avoidance
	1 Introduction
	2 Two Sequences of Unavoidable Patterns
	3 The Power Series Approach
	4 Derivation of the Strict Bounds
	5 Extension to Partial Words
	6 Concluding Remarks and Conjectures
	References

	A Fresh Approach to Learning RegisterAutomata
	1 Introduction
	2 Data Words and Session Automata
	3 Learning Session Automata
	4 Language Theoretical Results
	5 Conclusion
	References

	Suffixes, Conjugates and Lyndon Words
	1 Introduction
	2 Preliminaries
	3 Comparing Conjugates and Suffixes of Lyndon Words
	4 Sorting the Conjugates of a Multiset of Lyndon Words
	5 Suffix Array of a Word through Its Lyndon Factorization
	References

	Extremal Words in the Shift Orbit Closureof a Morphic Sequence
	1 Introduction
	2 Preliminaries
	3 MainTheorem
	4 Extremal Words of Binary Pure Morphic Words
	5 Extremal Words of the Period-Doubling Word
	6 Extremal Words of the Chacon Word
	7 The Least Word in the Shift Orbit Closure of the Rudin-Shapiro Word
	8 Conclusion
	References

	Inner Palindromic Closure
	1 Introduction
	2 Definitions and Preliminary Results
	3 On the Regularity of the Inner Palindromic Closure
	4 Parametrised Inner Palindromic Closure
	5 FinalRemarks
	References

	On the Dual Post Correspondence Problem
	1 Introduction
	2 Definitions and Basic Observations
	3 A Characteristic Condition
	4 On Patterns in DPCP
	5 On Patterns Not in DPCP
	References

	Brzozowski AlgorithmIs Generically Super-Polynomialfor Deterministic Automata
	1 Introduction
	2 Preliminaries
	2.1 Automata
	2.2 Combinatorial Structures
	2.3 Probabilities on Automata and Genericity

	3 MainResults
	4 Accessibility in Random Transition Structures
	5 Proof of Theorem 2
	5.1 Accessible
	5.2 Lcm of Truncated Random Permutations
	5.3 Primitivity
	5.4 Conclusion of the Proof

	6 Conclusion and Perspectives
	References

	A Coloring Problemfor Sturmian and Episturmian Words
	1 Introduction
	2 SturmianWords
	3 Preliminary Lemmas
	4 MainResults
	5 The Case of Standard Episturmian Words
	References

	The Chomsky-Sch¨utzenberger Theoremfor Quantitative Context-Free Languages
	1 Introduction
	2 Valuation Monoids and Series
	3 Weighted Context-Free Grammars
	4 Weighted Pushdown Automata
	5 Equivalence of WCFG and WPDA
	6 Theorem of Chomsky-Sch¨utzenberger
	References

	Operational Characterizationof Scattered MCFLs
	1 Introduction
	2 Notation
	2.1 Linear Orderings
	2.2 Words, Tree Domains, Trees
	2.3 Muller Context-Free Languages of Scattered Words

	3 The Main Result
	References

	Abelian Repetitions in Sturmian Words
	1 Introduction
	2 Preliminaries
	2.1 Sturmian Words

	3 Sturmian Bijection and Parikh Vectors
	4 Approximating Irrationals by Rationals and Abelian Repetitions
	5 Prefixes of the Fibonacci Infinite Word
	References

	Composition Closureof ε-Free Linear ExtendedTop-Down Tree Transducers
	1 Introduction
	2 Notation
	3 Linear Extended Top-Down Tree Transducers
	4 Our Classes Are Closed at a Finite Power
	5 Least Power of Closedness
	References

	Subword Complexity and k-Synchronization
	1 Introduction
	2 Subword Complexity
	3 Implementation
	4 Powers and Primitive Words
	5 Unsynchronized Sequences
	References

	Some Decision Questions Concerningthe Time Complexity of Language Acceptors
	1 Introduction
	2 Preliminaries
	3 Unambiguous Machines
	4 2-Ambiguous Machines
	5 Time Complexity of NFAs
	6 Run-Time Equivalence of Machines
	References

	Unambiguous Conjunctive Grammarsover a One-Letter Alphabet
	1 Introduction
	2 Conjunctive Grammars and Ambiguity
	3 Representing Powers of Four
	4 Simulating Trellis Automata
	5 A Density-Preserving Encoding of Trellis Automata
	6 Decision Problems
	7 Conclusion
	References

	Alternative Automata Characterizationof Piecewise Testable Languages
	1 Introduction
	2 Preliminaries
	2.1 Piecewise Testable Languages
	2.2 Automata for Piecewise Testable Languages

	3 Locally Confluent Automata and Proof of Theorem 2
	4 Consequences of Theorem 2
	5 Examples
	References

	Finite Automata with Advice Tapes
	1 Introduction
	2 Previous Work
	3 Our Model
	4 Deterministic Finite Automata with Advice Tapes
	5 Efficient Error Reduction with Randomized Advice
	6 Quantum Finite Automata with Advice Tapes
	7 Open Questions
	References

	One-Way Multi-Head Finite Automatawith Pebbles But No States
	1 Introduction
	2 Preliminaries and Definitions
	3 Trading States for Heads and Pebbles
	4 Head and Pebble Double Hierarchy
	5 Heads versus Pebbles
	6 Undecidability Results
	References

	Regular Expressions with Bindingover Data Words for Querying Graph Databases
	1 Introduction
	2 Data Words and Data Graphs
	3 Regular Expressions with Binding
	4 The Nonemptiness Problem
	5 Containment and Universality
	6 REWBs as a Query Language for Data Graphs
	7 Conclusions and Other Models
	References

	Factorizations and Universal Automatonof Omega Languages
	1 Introduction
	2 Definitions
	2.1 Languages and
	2.2 Automata
	2.3 Semigroup Recognition

	3 Factorizations of Languages
	3.1 Definitions and Properties
	3.2 Computation of Maximal

	4 Universal Automaton
	4.1 Definition of the Universal Automaton
	4.2 Basic Properties of the Universal Automaton

	5 Conclusion
	References

	Deciding Determinismof Unary Languages Is coNP-Complete
	1 Introduction
	2 Preliminaries
	3 The Arithmetic Progressions of Unary Languages
	4 Determinism of Unary Languages
	4.1 Decision Problems for
	4.2 The Complexity of Determinism of Unary Languages

	5 Conclusion and Future Work
	References

	Ultimate Periodicity of b-Recognisable Sets:A Quasilinear Procedure
	1 Introduction
	2 The Pascal Automaton
	2.1 Preliminaries
	2.2 Definition of a Pascal Automaton
	2.3 Recognition of Quotients of Pascal Automata

	3 The UP-Criterion
	3.1 Every UP-Set of Numbers Is Accepted by a UP-Automaton
	3.2 The UP-Criterion Is Stable by Quotient
	3.3 Every UP-Automaton Accepts a UP-Set of Numbers

	4 Conclusion and Future Work
	References

	3-Abelian CubesAre Avoidable on Binary Alphabets
	1 Introduction
	2 Preliminaries
	3 3-Abelian Cube-Freeness
	References

	Repetition Avoidance in Circular Factors
	1 Introduction
	2 Notation
	3 Binary Alphabet
	4 Ternary Alphabet
	5 Another Interpretation
	References

	Operator Precedence ω-Languages
	1 Introduction
	2 Preliminaries
	3 Operator Precedence
	Languages and Automata
	4 Closure Properties and Emptiness Problem
	5 Conclusions and Further Research
	References

	New Results on Deterministic SgraffitoAutomata
	1 Introduction
	2 The Sgraffito Automaton
	3 Comparing the 2DSA to the Forgetting Automaton
	4 Simulations of Other Models by 2DSA
	4.1 The Four-Way Alternating Automaton
	4.2 Sudoku-Deterministically Recognizable Picture Languages

	5 Recognition of Unary Picture Languages
	6 Conclusions
	References

	On the Number of Abelian Bordered Words
	1 Introduction
	2 Connection with Motzkin Words
	3 Connection with the Sequence
	4 Larger Alphabets
	4.1 Computation of (s3(n))n≥0 and Then (sk(n))n≥0

	5 About the Thue–Morse Word
	References

	Proof of a Phase Transition in ProbabilisticCellular Automata
	1 Introduction
	2 Asynchronous Cellular Automata
	2.1 Definition
	2.2 Observations

	3 Polynomial Convergence Time When α � 0.5
	4 Exponential Convergence Time for α Large Enough
	4.1 Percolation
	4.2 Coupling

	References

	Languages with a Finite Antidictionary:Growth-Preserving Transformationsand Available Orders of Growth
	1 Introduction
	2 Canonical Automata and Their Properties
	3 C-Graphs and Reduction Procedures for Antidictionaries
	4 Checking Candidate Strong Components
	5 ANegativeExample
	6 Condensations of Canonical Automata
	References

	Author Index

