A Fast Algorithm for Data Collection
along a Fixed Track

Otfried Cheong!, Radwa El Shawi??, and Joachim Gudmundsson?3

! Korea Advanced Institute of Science and Technology, Republic of Korea*
otfried@kaist.edu
2 University of Sydney, Australia**
joachim.gudmundsson@sydney.edu.au
3 NICTA*** Sydney, Australia
radwa.elshawi@nicta.com.au

Abstract. Recent research shows that significant energy saving can be
achieved in wireless sensor networks (WSNs) with a mobile base station
that collects data from sensor nodes via short-range communications.
However, a major performance bottleneck of such WSNs is the signif-
icantly increased latency in data collection due to the low movement
speed of mobile base stations. In this paper we study the problem of
finding a data collection path for a mobile base station moving along a
fixed track in a wireless sensor network to minimize the latency of data
collection. The main contribution is an O(mnlogn) expected time algo-
rithm, where n is the number of sensors in the networks and m is the
complexity of the fixed track.

1 Introduction

Wireless sensor networks (WSNs) are a well established technology for many
application areas. Their main aims are to monitor physical or environmental
conditions and to cooperatively pass their data through the network to a main
location. Realizing the full potential of wireless sensor networks poses research
challenges ranging from hardware and architectural issues, to programming lan-
guages and operating systems for sensor networks, to security concerns, to algo-
rithms for sensor network deployment [14].

WSNs usually consist of a large number of sensor nodes, which are battery-
powered tiny devices. These devices perform three basic tasks: (i) sample a phys-
ical quantity from the surrounding environment, (ii) process the acquired data,
and (iii) transfer them through wireless communications to a data collection
point called sink node or base station [II7]. The traditional WSN architectures

* O.C. was supported in part by NRF grant 2011-0016434 and in part by NRF grant
2011-0030044 (SRC-GAIA), both funded by the government of Korea.
** J.G. was funded by the Australian Research Council FT100100755.
*** NICTA is funded by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence program.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 77-B8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

78 O. Cheong, R. El Shawi, and J. Gudmundsson

are based on the assumption that the network is dense, so that any two nodes
can communicate with each other through multihop paths. As a consequence,
in most cases the sensors are assumed to be static. However, recently mobility
has been introduced to WSNs and it has been shown to have several advantages,
such as, increased connectivity, lower cost, higher reliability and higher energy
efficiency [2[10]. An overview of Wireless Sensor Networks with Mobile Elements
(WSN-MEs) can be found in the comprehensive survey by Di Francesco et al. [7].
WSN-MEs have in general three main components [14]:

Regular sensor nodes are the sources of information. They perform sensing
and may also forward or relay messages in the network.

Sinks (base stations) are the destinations of information. A network usually has
very few sinks.

Special support nodes perform a specific task, such as acting as intermediate
data collectors or mobile gateways.

In the setting considered in this paper we have one mobile sink that moves on
a fixed track. The model was introduced by Xing et al. [16]. Although this is
a very restricted model it simplifies the motion control of the mobile sink and
it improves the system reliability and has therefore been adopted by several
existing mobile sensor systems [3]. An example is when the sink only can move
along fixed cables between trees [I2]. The objective is to find a continuous path
of length at most L along the track and a set of trees rooted on the path that
connect all the sensor nodes, such that the total Euclidean length of the trees is
minimized [16]. An example is shown in Fig. [l

More formally, as input we are given a set S = {s1,..., s, } of points (sensor
nodes) together with a polygonal path P = (p1,...,pm) in R2. Given two points
a and § on P (not necessarily vertices of P) let Py be the connected subpath of
P with o and § as endpoints. Let MST(S, Pag) be a minimum spanning tree of
S that contains P,g, where an endpoint of an edge in MST(S,P,p) can either
be a point of S or an arbitrary point on Pqg.

Problem 1. Data Collection on a Fized Track (DCFT) problem

Given a real value L, a set S = {s1,..., s, } of points and a polygonal path P =
(p1,...,pm) in R? find a path Pag C P of length L such that wt(MST (S, Pag))
is minimized, where wt(-) denotes the total length of all the edges in the tree.

The path P,g is called the active path. Since the weight of the active path is
fixed the aim is to find a placement of the active path on P that minimizes
the total weight of the trees connecting S to it. Note that a point in S can be
connected to any point along P,g, not only to the vertices and endpoints of
Paos. We will sometimes write Py or Pyg to denote the subpath of P of length
L starting at a and ending at (3, respectively.

To the best of the authors’ knowledge very little work has been done on this
problem from an algorithmic perspective and the only result we are aware of is
the paper by Xing et al. [16]. They state without proof that the DCFT-problem
is NP-hard, and concentrate on approximation algorithms. They showed how to

A Fast Algorithm for Data Collection along a Fixed Track 79

Fig. 1. Illustrating an instance of the DCFT problem with an active path P,z and a
minimum spanning tree connecting the sensor nodes to P.g. The encircled numbers
illustrate the edge types defined in Observation [l

compute a 3¢ L-approximation for the DCFT-problem in O(th(Z)) -nlogn) time,

where € > 0 is a given constant. In this paper we will show that the DCFT-
problem can in fact be solved ezactly in O(mnlogn) expected time (Theorem [Hl).
Omitted proofs can be found in the full version of the paper.

2 A Polynomial-Time Algorithm for the DCFT Problem

Since the length of P,g is fixed, a natural approach to solve the problem is to
sweep an active path of length L along P while maintaining a minimum spanning
tree. We will identify a set of O(mn) event points along P. It will be shown that
all topological changes to the minimum spanning tree that we maintain during
the sweep will occur when the start or end point of the active path coincides
with one of the event points.

Two problems need to be handled: (1) find all event points along P of the
sweep-line algorithm and (2) maintain a MST(S, P,3) during the sweep.

2.1 Basic Properties and Notations

Given a point s and a segment ¢ in the plane let op(s,f) denote the closest
point on £ to s, see Fig. [X(a). Similarly, let op(s,P) = Ucp op(s,£) and let
op(S,P) = Uses op(s, P).

Next we study the edges in an optimal solution in more detail (see Fig.).

Observation 1. An edge (u,v) € MST(S, Pag) can be one of four types:
type-1: u,v € S,
type-2: w € S and v € op(u, Pag) and v lies on Pqg,
type-3: u € S and v is either o or B, and
type-4: u and v are consecutive vertices of P or points in op(S,P) along P
(these are the edges forming Pag).

80 O. Cheong, R. El Shawi, and J. Gudmundsson

Fig. 2. (a) Illustrating op(p,¢) and op(q,£). (b) Ilustrating the definitions of C;(z),
1<i<6.

We will frequently refer to these edge types throughout this paper, not only
referring to the edges of the spanning tree but to edges of any network.

Now we are ready to start constructing the set of event points, denoted I,
along P. The set will be the union of three subsets Iy (below), I's (Theorem [2))
and I's (Theorem H]). Lets start with I'7 which will contain the vertices of P and
the set of points op(S, P).

Observation 2. The number of points in Iy is O(nm) and can be constructed
in O(nm) time.

We say that an active path P’ is sweeped between two consecutive event points
z and y in I if P’ starts with one endpoint coinciding with x and is then moved
along P until one of the end points of P’ coincides with y. During the sweep no
other event point in I is encountered by any of the endpoints.

Observation 3. Consider the inter-point Euclidean distance between two points
u and v while sweeping the active path in-between two consecutive event points
in In. If (u,v) is of type-1, type-2 or type-4 then the Euclidean distance |uvl
is fized during the sweep. If (u,v) is of type-3 then the Euclidean distance will
monotonically increase or decrease.

As a direct consequence we have that all events that may induce a topological
change to a minimum spanning tree during a sweep between two consecutive
event points in I will involve a type-3 edge. There are two cases:

Case 1: a type-3 edge will be replaced by another type-3 edge (Section [22]), or
Case 2: a type-3 edge will replace, or be replaced by, a type-1 or type-2 edge

(Section 223).
2.2 Generating Event Points for Case 1

In the rest of this section we will only consider sweeping the active path in-
between two event points in Ij. Consider an arbitrary point z. Let C;(z),

A Fast Algorithm for Data Collection along a Fixed Track 81

1 < ¢ < 6 be the six cones, ordered counter clockwise, that partition the plane
into six cones with apex at = and interior angle /3, see Fig. 2Ib).

In the proof of Lemma 1 in [I6], Xing et al. show the following observation
(adapted to our notations).

Observation 4. Let P,g be an optimal solution. Assume a lies on a segment
(pj,pj+1) of P and assume (p;,pj+1) is horizontal with p; to the left of pj+1.
There exists a MST(S,Pag) such that:

— « 18 connected to at most one point in each Ci(a), 1 < i < 6, and B is
connected to at most one point in each C;(5), 1 <i <6, and

— no point of S to the right of «, is connected by an edge to . The symmetric
result holds for 5.

From the above observation it immediately follows that for each « and for each
B there are at most four potential type-3 edges in the minimum spanning tree.
Thus, for a type-3 edge to be connected to an endpoint of the active path, say
a, in the MST(S,Pqp) it has to be a nearest neighbor to « in one of the six
cones Cj(a), 1 <i <6.

Consider a case 1 event, and assume that a type-3 edge (s1,«) is replaced
by another type-3 edge, say the type-3 edge (s2,7y) where v € {«, 3}. Before
the event point we have |sja| < |sg7y| and after the event point the order has
changed to |s1a| > |s27|.

From the above discussion it follows that all case 1 events can be found if
we, during the entire sweep, can keep track of the twelve (only eight of which
are of interest) potential type-3 edges, i.e., the nearest neighbor in each C;(«)
and C;(B), 1 <i < 6. We will use the following theorem that will be shown in
Section Bl See Fig. Bla) for an illustration.

Theorem 1. Given a set S of n points in the plane, a direction d and an angle
0 < 7 the plane can be partitioned into O(n) regions of total complexity O(n)
in O(nlogn) expected time such that every point p in a region has the same
nearest neighbor, say s, in C(p,d,d), where C(p,d,) is the cone with apex at p,
interior angle 8 < m and with d as its bisector. The resulting partition is called
an angle-restricted Voronoi diagram (ar-VD) of S.

Let § = n/3 and consider the following six directions (counterclockwise angle
formed with the positive z-axis) d; = (i—1)-%, 1 <4 < 6, see Fig.[(b). For each
1, 1 <1i < 6, construct an angle-restricted VD, denoted V;, of S with parameters
0 and d; using Theorem [

Using the ar-VDs one can now construct the set I's. Every intersection point
between P and an edge in any of the six ar-VDs Vi, ..., Vg, is added to I. For
each segment there are O(n) intersections, thus O(mn) in total. Each intersec-
tion point can be found in O(logn) time using a standard point location data
structure [B]. Constructing the six ar-VDs requires O(mnlogn) expected time
according to Theorem [I] thus O(mnlogn) expected time in total.

Consider the sweep of the active path in-between two consecutive event points
in It U I. Note that during this sweep the potential type-3 edges will not

82 O. Cheong, R. El Shawi, and J. Gudmundsson

Fig. 3. (a) Every point p in a region of the angle-restricted Voronoi diagram have the
same nearest neighbor in the cone C(p,d,#). (b) Adding three vertices x,p and y to
E(A) along P for each point in A.

change. Thus, to complete the set of all case 1 event points compute all events
where the weight of two potential type-3 edges swap order. Since the weight
of a potential type-3 edge is monotonically increasing or decreasing, according
to Observation [3] there are at most 16 such events in-between two consecutive
event points in Iy U I's. Given all the potential type-3 edges (at most eight) the
events can be computed in constant time. Every point along P where such an
event takes place is added to I5.

We summarize this section with the following theorem, which follows imme-
diately from the above discussion.

Theorem 2. All event points I's where a type-3 edge is potentially replaced by
another type-3 edge can be found in O(mnlogn) expected time using O(nm)
space.

2.3 Generating Event Points for Case 2

The final set of events is when a type-3 edge is replacing, or is replaced by, a
type-1 or type-2 edge. We will show how the dynamic offline graph minimum
spanning tree (DMST) algorithm by Eppstein [6] can be used to find I.

Theorem 3. [Adapted from Theorem 1 in [G]] Given a sequence of k edge weight
modifications in a graph of size N, starting from a state in which all weights are

equal, we can compute the corresponding sequence of minimum spanning trees in
timdy O(klog N) and space O(N).

2.2.1 Build the Graph. To use the above result we will construct a graph
G = (V, E) and a sequence of edge weight modifications.

! In [6] the linear-time MST algorithm by Fredman and Willard [§] is used, resulting in
O(klog N) running time. If we are constrained to the real RAM model of computation
we have to pay an additional factor of O(log V) to build the MST, and thus an extra
O(log N) factor to the total running time.

A Fast Algorithm for Data Collection along a Fixed Track 83

Before we define the graph we need the following definition. Let A be a set
of points along P. From A one can generate the set £(A) by adding up to three
points on P for each point p in A; the point p, the two points at distance L along
P from p, if they exist. See Fig. Blb) for an illustration.

The node set V' corresponds to the points in S and the points in £(I7 U I3),
and its total size is O(mn). The edge set E is constructed as follows:

1. Consider a minimum spanning tree of S. Add the corresponding edges to E.
2. For every vertex v € V corresponding to a point s € S add the O(m) edges
connecting v to the set of vertices in V' corresponding to the points op(s, P).

3. For each segment e; = (p;, pi+1) in P, 1 <4 < m — 1, add an edge between
the vertex in V' corresponding to p; and the vertex in V corresponding to
the nearest neighbor in C;(p;), 1 < j <6.

4. For each point p € op(S,P) add an edge between the vertex in V' corre-
sponding to p and the vertex in V' corresponding to the nearest neighbor in
Ci(p), 1 <j <3

5. For every two consecutive event points e; and es in £(I7 U I3) add an edge
between the vertices in V' corresponding to e; and es to E.

Note that the number of edges added to E is O(mn). Consider the time required
for the five steps. Step 1 uses O(nlogn) time, steps 2 and 5 requires O(mn)
time while steps 3 and 4 can be computed in O(mnlogn) time, using a standard
point location query data structure on the ar-VDs.

Lemma 1. Let Pog be an active path with o and/or 8 in I't U Iy. There exists
a MST(S,Pap) whose edge set is a subset of E.

2.2.2 Sweep the Active Path. To be able to use Theorem [3] we initially set
all edges in F to have unit weight. Next we build the sequence of edge weight
modifications in two steps; one to initialize the sweep and one to simulate the
sweep of the active path along P.

Initialization. The active path starts at p;, that is, the initial configuration is
Pp,«. Next we modify the edge weights to simulate the original DCFT-problem.
The weight of every type-1 edge (u,v) is set to |uv| and the weight of every
type-4 edge is set to 0. The weight of a type-2 edge (u,v) is set to |uv| if v lies on
the active path Pp, ., otherwise it is set to oo. Similarly, the weight of a type-3
edge (u € S,v) is set to |uv| if v is one of the endpoints of P, ., otherwise it is
set to co. Note that p; € Iy and the opposite endpoint of P, . is in £(I) thus,
both are vertices in V. The total number of edge weight modifications needed
for the initialization is O(mn).

This correctly models the DCFT-problem for a fixed active path P,,. and
will include the edges in a MST(S, Py, «).

Model the Sweep. Next we compute the set of edge weight modifications to
simulate sweeping the active path along P. Assume that we have the active

84 O. Cheong, R. El Shawi, and J. Gudmundsson

path Py, g, and that the algorithm correctly computed MST(S, Pq, s,). Next we
move the active path along P until it encounters the next event point in 11 U5,
the new active path is denoted Pg,s,. The following edge weight modifications
are performed:

— the weight of any type-2 edge connecting a; with a point in S is set to oo,

— the weight of any type-2 edge connecting B2 with a point v in S is set to
| B2,

— the weight of the potential type-3 edges connecting oy or $; with points in
S is set to 0o, and

— the weight of the potential type-3 edges connecting ais or (2 with points in
S is set to be equal to the Euclidean distance between their endpoints,

This correctly models the DCFT-problem for the fixed active path Pg,,3, and
will include the edges in a MST(S, Pa,p,)- The total number of edge weight
modifications is O(nm), and each one can be computed in constant time provided
that the six ar-VDs have been computed in a preprocessing step.

Given the initial graph G = (V, E) and the sequence of O(nm) edge weight
modifications we can run Eppstein’s algorithm (TheoremB]) in O(mnlogn) time.
As output we obtain the corresponding sequence of minimum spanning trees (one
for each event point), denoted T4, ..., T}, where k = O(mn).

2.2.3 Compute the Event Points. Recall that the aim of this section is
to construct the set of points, I3, along P where a type-3 edge replaces, or is
replaced by, a type-1 or type-2 edge. Above we only computed the minimum
spanning trees for all the existing event points in I7 U Iy, that is, for all cases
when one of the endpoints of an active path coincides with a point in Iy U I's.

Lemma 2. While sweeping the active path between two consecutive event points
in I'1 U Iy the minimum spanning tree can change topology at most eight times.

Lemma 3. While sweeping the active path between two consecutive event points
in I U Ty, every point along the sweep where a topological change is made to
the minimum spanning tree can be computed in O(logn) time.

Between every two consecutive event points in Iy U I'; compute all the event
points where a topological change is made to the minimum spanning tree, ac-
cording to Lemma [3l These points form the set I.

The following theorem concludes this section:

Theorem 4. All event points, I's, when a type-3 edge is potentially replacing,
or is potentially replaced by, a type-1 or type-2 edge can be found in O(mnlogn)
expected time using O(nm) space.

2.4 Maintaining the Spanning Tree

We can now merge the results. Let I" = I'1 U I, U I's. Consider the sweep-line
algorithm introduced in the first paragraph of Section 2l That is, sweep an active

A Fast Algorithm for Data Collection along a Fixed Track 85

path P,p of length L along P starting with a@ = p; and ending with 8 = p,.
During the sweep maintain a minimum spanning tree of S and P,g3.

From Observation Bl Lemma [2] and Theorem [4] it follows that I" contains all
the event points where a minimum spanning tree might change its topology. Next
simulate a sweep while maintaining the tree. We can use the same approach as
we used in Section 2.2.2, but using & and £(I") as the set of vertices instead
of § and &(I1 U Iy). Again, it is easy to see that this correctly models the
DCFT-problem for the fixed active path P,g and will include the edges in a
MST(S,Pas). The total number of edge weight modifications is O(nm), and
each one can be computed in constant time provided that the six ar-VDs are
computed in a preprocessing step.

Eppstein’s algorithm generates the initial minimum spanning tree and the
sequence of O(nm) changes made during the sweep. Consequently the weight
of these trees can also be output without increasing the running time. Consider
the sweep in-between two consecutive events in I'. No topological changes are
made to the minimum spanning tree. The only change is the weight of the type-3
edge. So to find a minimum weight spanning tree in-between two event points
it is sufficient to compute the minimum of a function described by at most
six distance functions, each distance function describing the minimum distance
between a point and a straight-line segment. The minimum of this function can
be computed in constant time, thus for each pair of consecutive event points, e;
and e;41, in I' we can compute the minimum solution in-between e; and e;4; in
constant time, given T; and T;41. We can now summarize Section

Theorem 5. Given a real value L, a set S = {s1,...,sn} of points and a polyg-
onal path P = (p1,...,pm) in R%, an optimal solution for the DCFT-problem
can be computed in O(mnlogn) expected time.

3 Angle-Restricted Voronoi Diagrams

The abstract Voronoi diagram (AVD) [II] is used to construct the set of event
points involving type-3 edges. In the following we show how the AVD is con-
structed and investigate some of its topological properties.

Chew and Drysdale’s [4] divide-and-conquer algorithm for computing the
Voronoi diagram under convex distance functions can be extended to the con-
struction of angle-restricted Voronoi diagrams (ar-VD) with some modifica-
tions [15]. They proved that the ar-VD can be computed in O(nlogn) time but
did not bound the complexity of the diagram (to the best of our knowledge),
which we need to bound the size of I53.

3.1 Definition and Properties

A unifying approach to Voronoi diagrams was proposed by Klein [II], which
is based on the concept of bisecting curves instead of distance functions. For
any two sites, p and ¢, in S, let J(p,q) denote the curve that is homeomorphic

86 O. Cheong, R. El Shawi, and J. Gudmundsson

to a line and divides the plane into two open (unbounded) regions D(p, q) and
D(q,p), where D(p,q) contains p and D(q,p) contains g. The Voronoi region of
p with respect to S, denoted V R(p, S), is the intersection of all D(p, q) regions
as ¢ varies in S\ {p}. The abstract Voronoi diagram is defined as:

AVD(p,S) = | J O(VR(p,S)).
peES

Klein [I1] showed that if the AVD is a “dominance system” (Definition[I]) and the
dominance system is “admissible” (Definition [2) then the AVD has many of the
same properties as the concrete Voronoi diagrams. In particular, the complexity
of the AVD is then O(n), where n is the number of sites.

Our aim is to define a set of bisecting curves that fits the framework in [I1].
First it has to be a dominance system.

Definition 1. The family D = {D(p,q),p # q} is called a dominance system
over S if the following holds:

— D(p,q) is a non-empty open subset of the plane,
— J(p,q) = N(D(p,q)) is homeomorphic to the open interval (0,1), and
— 9(D(p,q)) = 9(D(q,p)), where @ denotes the perimeter of a region.

We need to define the set J of bisecting curves that divides the plane into two
open (unbounded) regions D(p, q) and D(q,p) for each pair p,q € S of points,
such that the resulting family D = {D(p,q),p # q} is a dominance system. In
Lemma M it will be shown that the abstract Voronoi diagram defined by these
bisectors is a dominance system.

3.2 Defining Bisecting Curves

Given two points p and ¢ in the plane let H,(p,q) be the set of points (the
halfplane) whose Euclidean distance is smaller to p than to ¢. Furthermore,
given a direction d and a point s in the plane let £4(s) denote the infinite ray
originating at s with direction d. Let C(s, d, 6) be the cone with apex at s, angle
0 < 7 and with £4(s) as its bisector.

For any two points p,q € S a bisecting curve J(p,q) is defined as follows.
Assume w.l.o.g. that p lies to the left of ¢ along the direction d. The bisecting
curve J(p, ¢) is defined as the boundary of {#,(p,q) N C(q,d,0)}.

Given a direction d, let o4 denote the point at —oo along the direction d and
—oo in the direction orthogonal to d.

Lemma 4. Given a set S of n points in the plane, a direction d and an angle
0 <7 the family D = {D(p,q),p # q} is a dominance system over S U{o4}.

Proof. Consider the three properties in Definition [l Adding o4 to our point set
guarantees that the first property of the dominance system holds. The second
and third properties follows immediately from the definition of bisectors. a

A Fast Algorithm for Data Collection along a Fixed Track 87

3.3 Computing the Diagram

The AVD defined by D is denoted an angle-restricted Voronoi diagram. We now
address the construction of the ar-VD(S). Klein [I1] showed that if a dominance
system is admissible then the abstract Voronoi diagram has total size O(n).

Definition 2. A dominance system J = {J(p,q) : p,q € S,p # q} is called
admissible if and only if for each subset S’ of S of size at least three the following
conditions are fulfilled:

(a) The intersection of two bisecting curves consists of finitely many compo-
nents.
(b) The Voronoi regions are path-connected.

(c) Each point of the plane lies in a Voronoi region or on the Voronoi diagram,
i.e. R=,c5 VR(p).

Lemma 5. The dominance system J = {J(p,q) : p,q € SUo4,p # q} defined
in Section[32 is admissible.

Mehlhorn et al. [9] and Klein et al. [I3] have shown that one can, without fur-
ther assumptions, apply the randomized incremental construction technique to
abstract Voronoi diagrams.

Theorem 6. The abstract Voronoi diagram of an admissible system J =
{J(p,q) : p,q € S,p # q}, where |S| = n, can be constructed within expected
O(nlogn) many steps and expected space O(n), by randomized incremental con-
struction.

Theorem 7. Given a S of points and a point q in the plane. The Voronoi region
of the directed AVD(S,d,0) containing q corresponds to the point in S closest to
q in C(q,—d,0).

Proof. The theorem follows immediately from the construction. O

Theorem [[] summarizes the results of this section and for convenience we restate
it here.

Theorem 1. Given a set S of n points in the plane, a direction d and an angle
0 < 7 the plane can be partitioned into O(n) regions of total complexity O(n)
in O(nlogn) expected time such that every point p in a region has the same
nearest neighbor, say s, in C(p, d, @), where C(p,d, 8) is the cone with apex at p,
interior angle < m and with d as its bisector. The resulting partition is called
an angle-restricted Voronoi diagram (ar-VD) of S.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393-422 (2002)

88

10.

11.

12.

13.

14.

15.

16.

O. Cheong, R. El Shawi, and J. Gudmundsson

. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in
wireless sensor networks: a survey. Ad Hoc Networks 7(3), 537-568 (2009)

. Batalin, M., Rahimi, M., Yu, Y., Liu, D., Kansal, A., Sukhatme, G., Kaiser, W.J.,
Hansen, M., Pottie, G.J., Srivastava, M.B., Estrin, D.: Call and response: experi-
ments in sampling the environment. In: Proceedings of the 2nd International ACM
Conference on Embedded Networked Sensor Systems (Sensys), pp. 25-38 (2004)

. Chew, L.P., Drysdale, R.L.: Voronoi diagrams based on convex distance func-
tions. In: Proceedings of the 1st Annual Symposium on Computational Geometry
(SoCG), pp. 235244 (1985)

. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational geometry
— algorithms and applications, 3rd edn. Springer, Heidelberg (2008)

. Eppstein, D.: Offline algorithms for dynamic minimum spanning tree problems.
Journal of Algorithms 17(2), 237-250 (1994)

. Di Francesco, M., Das, S.K., Anastasi, G.: Data collection in wireless sensor net-
works with mobile elements: a survey. ACM Transactions on Sensor Networks 8(1),
1-7 (2011)

. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. Journal of Computer and System Sciences 48(3),
533-551 (1994)

. Meiser, S., Mehlhorn, K., O’Dunlaing, C.: On the construction of abstract Voronoi

diagrams. Discrete and Computational Geometry 6, 211-224 (1991)

Kansal, A., Somasundara, A., Jea, D., Srivastava, M., Estrin, D.: Intelligent fluid

infrastructure for embedded networks. In: Proceedings of the 2nd ACM Interna-

tional Conference on Mobile Systems, Applications, and Services (MobiSys), pp.

111-124 (2004)

Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer,

Heidelberg (1989)

Pon, R., Batalin, M.A., Gordon, J., Kansal, A., Liu, D., Rahimi, M., Shirachi, L.,

Yu, Y., Hansen, M., Kaiser, W.J., Srivastava, M., Sukhatme, G., Estrin, D.: Net-

worked infomechanical systems: a mobile embedded networked sensor platform. In:

Proceedings of the 4th International Symposium on Information Processing in Sen-

sor Networks (IPSN), pp. 376-381 (2005)

Mehlhorn, K., Klein, R., Meiser, S.: Randomized incremental construction of ab-

stract Voronoi diagrams. Computational Geometry: Theory and Applications 3,

157-184 (1993)

Sahni, S., Xu, X.: Algorithms for wireless sensor networks. International Journal

of Distributed Sensor Networks 1(1), 35-56 (2005)

Wee, Y.C., Chaiken, S., Willard, D.E.: General metrics and angle restricted Voronoi

diagrams. In: Proceedings of the 1st Canadian Conference on Computational Ge-

ometry (1989)

Xing, G., Wang, T., Jia, W., Li, M.: Rendezvous design algorithms for wireless

sensor networks with a mobile base station. In: Proceedings of the 9th ACM Inter-

ational Symposium on Mobile Ad Hoc Networking and Computing, pp. 231-240

(2008)

	A Fast Algorithm for Data Collection
along a Fixed Track
	1
Introduction
	2 A Polynomial-Time Algorithm for the DCFT Problem

	2.1
Basic Properties and Notations
	2.2
Generating Event Points for Case 1
	2.3
Generating Event Points for Case 2
	2.4
Maintaining the Spanning Tree

	3
Angle-Restricted Voronoi Diagrams
	3.1
Definition and Properties
	3.2
Defining Bisecting Curves
	3.3
Computing the Diagram

	References

