
Sublinear Time Approximate Sum

via Uniform Random Sampling

Bin Fu1, Wenfeng Li2, and Zhiyong Peng2

1 Department of Computer Science
University of Texas-Pan American, Edinburg, TX 78539, USA

bfu@utpa.edu
2 Computer School

Wuhan University, Wuhan, P.R. China
eyestar 2008@126.com, peng@whu.edu.cn

Abstract. We investigate the approximation for computing the sum
a1 + · · ·+ an with an input of a list of nonnegative elements a1, · · · , an.
If all elements are in the range [0, 1], there is a randomized algorithm
that can compute an (1+ ε)-approximation for the sum problem in time

O(n(log logn)∑n
i=1

ai
), where ε is a constant in (0, 1). Our randomized algorithm

is based on the uniform random sampling, which selects one element
with equal probability from the input list each time. We also prove a
lower bound Ω(n∑n

i=1
ai
), which almost matches the upper bound, for

this problem.

Keywords: Randomization, Approximate Sum, Sublinear Time.

1 Introduction

Computing the sum of a list of elements has many applications. This problem
can be found in the high school textbooks. In the textbook of calculus, we often
see how to compute the sum of a list of elements, and decide if it converges when
the number of items is infinite. Let ε be a real number which is at least 0. A
real number s is an (1 + ε)-approximation for the sum problem a1, a2, · · · , an
if

∑n
i=1 ai

1+ε ≤ s ≤ (1 + ε)
∑n

i=1 ai. When we have a huge number of data items
and need to compute their sum, an efficient approximation algorithm becomes
essential. Due to the fundamental importance of this problem, looking for a
sublinear time solution for it is an interesting topic of research.

A similar problem is to compute the mean of a list of items a1, a2, · · · , an,
whose mean is defined by a1+a2+···+an

n . Using O(1
ε2 log

1
δ) random samples, one

can compute the (1 + ε)-approximation for the mean, or decides if it is at most
δ [6]. In [3], Canetti, Even, and Goldreich showed that the sample size is tight.
Dagum, Karp, Luby, and Ross [4] showed an algorithm to approximate the mean
of a random variable in a time O(ρ/μ2), where ρ = max{σ2, μ} with variance
σ and mean μ. In [7], Motwani, Panigrahy, and Xu showed an O(

√
n) time

approximation scheme for computing the sum of n nonnegative elements. A

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 713–720, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

714 B. Fu, W. Li, and Z. Peng

priority sampling approach for estimating subsets were studied in [1,5,2]. Using
different cost and application models, they tried to build a sketch so that the
sum of any subset can be computed approximately via the sketch.

We feel the uniform sampling is more justifiable than the weighted sampling.
In this paper, we study the approximation for the sum problem under both
deterministic model and randomized model. In the randomized model, we still

use the uniform random samplings, and show how the time is O(n(log logn)∑n
i=1 ai

). We

also prove a lower bound that matches this time bound. An algorithm of time

complexity O(n(log log n)∑n
i=1 ai

) for computing a list of nonnegative elements a1, · · · , an
in [0, 1] can be extended to a general list of nonnegative elements. It implies an
algorithm of time complexity O(Mn log logn∑

n
i=1 ai

) for computing a list of nonnegative

elements of size at most M by converting each ai into
ai

M , which is always in the
range [0, 1]. Our randomized method, which is based on an interval partition of
[0, 1], is different from that used in [4].

2 Randomized Algorithm for the Sum Problem

In this section, we present a randomized algorithm for computing the approxi-
mate sum of a list of numbers in [0, 1].

2.1 Chernoff Bounds

The analysis of our randomized algorithm often use the well known Chernoff
bounds, which are described below. All proofs of this paper are self-contained
except the following famous theorems in probability theory.

Theorem 1 ([8]). Let X1, . . . , Xn be n independent random 0-1 variables, where
Xi takes 1 with probability pi. Let X =

∑n
i=1 Xi, and μ = E[X]. Then for any

θ > 0,

1. Pr(X < (1 − θ)μ) < e−
1
2μθ

2

, and

2. Pr(X > (1 + θ)μ) <
[

eθ

(1+θ)(1+θ)

]μ
.

We follow the proof of Theorem 1 to make the following versions (Theorem 3,
and Theorem 2) of Chernoff bound for our algorithm analysis.

Theorem 2. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability at least p for i = 1, . . . , n. Let X =
∑n

i=1 Xi, and

μ = E[X]. Then for any θ > 0, Pr(X < (1 − θ)pn) < e−
1
2 θ

2pn.

Theorem 3. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability at most p for i = 1, . . . , n. Let X =
∑n

i=1 Xi. Then for

any θ > 0, Pr(X > (1 + θ)pn) <
[

eθ

(1+θ)(1+θ)

]pn
.

Sublinear Time Approximate Sum via Uniform Random Sampling 715

Define g1(θ) = e−
1
2 θ

2

and g2(θ) = eθ

(1+θ)(1+θ) . Define g(θ) = max(g1(θ), g2(θ)).

We note that g1(θ) and g2(θ) are always strictly less than 1 for all θ > 0. It
is trivial for g1(θ). For g2(θ), this can be verified by checking that the function
f(x) = x− (1 + x) ln(1 + x) is decreasing and f(0) = 0. This is because f ′(x) =
− ln(1+x) which is strictly less than 0 for all x > 0. Thus, g2(θ) is also decreasing,
and less than 1 for all θ > 0.

2.2 A Sublinear Time Algorithm

In this section, we show an algorithm to compute the approximate sum in sub-
linear time in the cases that

∑n
i=1 ai is at least (log logn)1+ε for any constant

ε > 0. This is a randomized algorithm with uniform random sampling.

Theorem 4. Let ε be a positive constant in (0, 1). There is a sublinear time
algorithm such that given a list of items a1, a2, · · · , an in [0, 1], it gives a (1+ ε)-

approximation in time O(n(log logn)∑
n
i=1 ai

).

Definition 1.

– For each interval I and a list of items L, define A(I, L) to be the number of
items of L in I.

– For δ, and γ in (0, 1), a (δ, γ)-partition for [0, 1] divides the interval [0, 1]
into intervals I1 = [π1, π0], I2 = [π2, π1), I3 = [π3, π2), . . . , Ik = [0, πk−1)
such that π0 = 1, πi = πi−1(1 − δ) for i = 1, 2, . . . , k − 1, and πk−1 is the
first element πk−1 ≤ γ

n2 .
– For a set A, |A| is the number of elements in A. For a list L of items, |L|

is the number of items in L.

A brief description of the idea is presented before the formal algorithm and its
proof. In order to get an (1+ ε)-approximation for the sum of n input numbers in
the list L, a parameter δ is selected with 1 − ε

2 ≤ (1 − δ)3. For a (δ, δ)-partition
I1 ∪ I2 . . . ∪ Ik for [0, 1], Algorithm Approximate-Sum(.) below gives the estima-
tion for the number of items in each Ij if interval Ij has a sufficient number of
items. Otherwise, those items in Ij can be ignored without affecting much of the
approximation ratio. We have an adaptive way to do random samplings in a se-
ries of phases. Let st denote the number of random samples in phase t. Phase t+1
doubles the number of random samples of phase t (st+1 = 2st). Let L be the input
list of items in the range [0, 1]. Let dj be the number items in Ij from the samples.
For each phase, if an interval Ij shows sufficient number of items from the random
samples, the number of items A(Ij , L) in Ij can be sufficiently approximated by

Â(Ij , L) = dj · n
st
. Thus, Â(Ij , L)πj also gives an approximation for the sum of

the sizes of items in Ij . The sum apx sum =
∑

Ij
Â(Ij , L)πj for those intervals Ij

with a large number of samples gives an approximation for the total sum
∑n

i=1 ai
of the input list. In the early stages, apx sum is much smaller than n

st
. Eventually,

apx sum will surpass n
st
. This happens when st is more than n∑

n
i=1 ai

and apx sum

is close to the sum
∑n

i=1 ai of all items from the input list. This indicates that

716 B. Fu, W. Li, and Z. Peng

the number of random samples is sufficient for our approximation algorithm. For
those intervals with small number of samples, their items only form a small frac-
tion of the total sum. This process is terminated when ignoring all those intervals
with none or small number of samples does not affect much of the accuracy of
approximation. The algorithm gives up the process of random sampling when st
surpasses n, and switches to a deterministic way to access the input list, which
happens when the total sum of the sizes of input items is O(1).

The computation time at each phase i is O(si). If phase t is the last phase,
the total time is O(st+

st
2 + st

22 + · · ·) = O(st), which is close to O(n∑n
i=1 ai

). Our

final complexity upper bound is O(n(log log n)∑
n
i=1 ai

), where log logn factor is caused

by the probability amplification of O(log n) stages and O(log n) intervals of the
(δ, δ) partition in the randomized algorithm.

Algorithm Approximate-Sum(ε, α, n, L)
Input: a parameter, a small parameter ε ∈ (0, 1), a failure probability upper

bound α, an integer n, a list L of n items a1, . . . , an in [0, 1].
Steps:

1. Phase 0:
2. Select δ = ε

6 that satisfies 1− ε
2 ≤ (1− δ)3.

3. Let P be a (δ, δ)-partition I1 ∪ I2 . . . ∪ Ik for [0, 1].
4. Let ξ0 be a parameter such that 8(k+1)(log n)g(δ)(ξ0 log logn)/2 < α for

all large n.
5. Let z := ξ0 log logn.

6. Let parameters c1 := δ2

2(1+δ) , and c2 := 12ξ0
(1−δ)c1

.

7. Let s0 := z.
8. End of Phase 0.
9. Phase t:
10. Let st := 2st−1.
11. Sample st random items ai1 , . . . , aist from the input list L.
12. Let dj := |{h : aih ∈ Ij and 1 ≤ h ≤ st}| for j = 1, 2, . . . , k.
13. For each Ij ,
14. if dj ≥ z,

15. then let Â(Ij , L) :=
n
st
dj to approximate A(Ij , L).

16. else let Â(Ij , L) := 0.

17. Let apx sum :=
∑

dj≥z Â(Ij , L)πj to approximate
∑n

i=1 an.

18. If apx sum ≤ 2c2n log logn
st

and st < n then enter Phase t+ 1.
19. else
20. If st < n
21. then let apx sum :=

∑
dj≥z Â(Ij , L)πj to approximate

∑
1≤i≤n ai.

22. else let apx sum :=
∑n

i=1 ai.
23. Output apx sum and terminate the algorithm.
24. End of Phase t.

End of Algorithm

Sublinear Time Approximate Sum via Uniform Random Sampling 717

Several lemmas will be proved in order to show the performance of the algo-
rithm. Let δ, ξ0, c1, and c2 be parameters defined as those in the Phase 0 of the
algorithm Approximate-Sum(.).

Lemma 1.

1. For parameter δ in (0, 1), a (δ, δ)-partition for [0, 1] has the number of in-

tervals k = O(
log n+log 1

δ

δ).

2. g(x) ≤ e−
x2

4 when 0 < x ≤ 1
2 .

3. The parameter ξ0 can be set to be O(
log 1

αδ

log 1
g(δ)

) = O(
log 1

αδ

δ2) for line 4 in the

algorithm Approximate-Sum(.).
4. Function g(x) is decreasing and g(x) < 1 for every x > 0.

Proof. Statement 1: The number of intervals k is the least integer with (1−δ)k ≤
δ
n2 . We have k = O(

log n+log 1
δ

δ).

Statement 2: By definition g(x) = max(g1(x), g2(x)), where g1(x) = e−
1
2x

2

and g2(x) =
ex

(1+x)(1+x) . We just need to prove that g2(x) ≤ e−
x2

4 when x ≤ 1
2 .

By Taylor theorem ln(1 + x) ≥ x− x2

2 . Assume 0 < x ≤ 1
2 . We have

ln g2(x) = x− (1 + x) ln(1 + x) ≤ x− (1 + x)(x − x2

2
) = −x2

2
(1− x) ≤ −x2

4
.

Statement 3: We need to set up ξ0 to satisfy the condition in line line 4 in the
algorithm. It follows from statement 1 and statement 2.

Statement 4: It follows from the fact that g2(x) is decreasing, and less than 1
for each x > 0. We already explained in section 2.1.

We use the uniform random sampling to approximate the number of items in
each interval Ij in the (δ, δ)-partition. Due to the technical reason, we estimate
the failure probability instead of the success probability.

Lemma 2. Let Q1 be the probability that the following statement is false at the
end of each phase:

(i) For each interval Ij with dj ≥ z, (1 − δ)A(Ij , L) ≤ Â(Ij , L) ≤ (1 +
δ)A(Ij , L).

Then for each phase in the algorithm, Q1 ≤ (k + 1) · g(δ) z
2 .

Proof. An element of L in Ij is sampled (by an uniform sampling) with prob-

ability pj =
A(Ij ,L)

n . Let p′ = z
2st

. For each interval Ij with dj ≥ z, we discuss
two cases.

– Case 1. p′ ≥ pj .
In this case, dj ≥ z ≥ 2p′st ≥ 2pjst. Note that dj is the number of ele-
ments in interval Ij among st random samples ai1 , . . . , aist from L. By The-

orem 3 (with θ = 1), with probability at most P1 = g2(1)
pjmt ≤ g2(1)

p′st ≤
g2(1)

z/2 ≤ g(1)z/2, there are at least 2pjst samples are from interval Ij .
Thus, the probability is at most P1 for the condition of Case 1 to be true.

718 B. Fu, W. Li, and Z. Peng

– Case 2. p′ < pj .

By Theorem 3, we have Pr[dj > (1 + δ)pjmt] ≤ g2(δ)
pjmt ≤ g2(δ)

p′st ≤
g2(δ)

z
2 ≤ g(δ)

z
2 .

By Theorem 2, we have Pr[dj ≤ (1 − δ)pjmt] ≤ g1(δ)
pjmt ≤ g1(δ)

p′st =
g1(δ)

z
2 ≤ g(δ)

z
2 .

For each interval Ij with dj ≥ z and (1 − δ)pjmt ≤ dj ≤ (1 + δ)pjmt, we

have (1− δ)A(Ij , L) ≤ Â(Ij , L) ≤ (1+ δ)A(Ij , L) by line 15 in Approximate-
Sum(.).
There are k intervals I1, . . . , Ik. Therefore, with probability at most P2 = k ·
g(δ)

z
2 , the following is false: For each interval Ij with dj ≥ z, (1−δ)A(Ij , L) ≤

Â(Ij , L) ≤ (1 + δ)A(Ij , L).

By the analysis of Case 1 and Case 2, we have Q1 ≤ P1 + P2 ≤ (k + 1) · g(δ) z
2

(see statement 4 of Lemma 1). Thus, the lemma has been proven.

Lemma 3. Assume that st ≥ c2n log logn∑n
i=1 ai

. Then right after executing Phase t in

Approximate-Sum(.), with probability at most Q2 = 2kg(δ)ξ0 log logn, the follow-
ing statement is false:

(ii) For each interval Ij with A(Ij , L) ≥ c1
∑n

i=1 ai, A). (1 − δ)A(Ij , L) ≤
Â(Ij , L) ≤ (1 + δ)A(Ij , L); and B). dj ≥ z.

Proof. Assume that st ≥ c2n log logn∑
n
i=1 ai

. Consider each interval Ij with A(Ij , L) ≥
c1

∑n
i=1 ai. We have that pj =

A(Ij ,L)
n ≥ c1

∑n
i=1 ai

n . An element of L in Ij
is sampled with probability pj . By Theorem 3, Theorem 2, and Phase 0 of
Approximate-Sum(.), we have

Pr[dj < (1 − δ)pjmt] ≤ g1(δ)
pjmt ≤ g1(δ)

c1c2 log logn ≤ g(δ)ξ0 log logn. (1)

Pr[dj > (1 + δ)pjmt] ≤ g2(δ)
pjmt ≤ g2(δ)

c1c2 log logn ≤ g(δ)ξ0 log logn. (2)

Therefore, with probability at most 2kg(δ)ξ0 log log n, the following statement is
false:

For each interval Ij with A(Ij , L) ≥ c1
∑n

i=1 ai, (1− δ)A(Ij , L) ≤ Â(Ij , L) ≤
(1 + δ)A(Ij , L).

If dj ≥ (1 − δ)pjst, then we have

dj ≥ (1− δ)
A(Ij , L)

n
st ≥ (1− δ)

(c1
∑n

i=1 ai)

n
· c2n log logn

∑n
i=1 ai

= (1 − δ)c1c2 log logn

≥ ξ0 log logn = z. (by Phase 0 of Approximate-Sum(.))

Lemma 4. The total sum of the sizes of items in those Ijs with A(Ij , L) <
c1

∑n
i=1 ai is at most δ

2 (
∑n

i=1 ai) +
δ
n .

Proof. By Definition 1, we have πj = (1− δ)j for j = 1, . . . , k− 1. We have that

– the sum of sizes of items in Ik is at most n · δ
n2 = δ

n ,
– for each interval Ij with A(Ij , L) < c1

∑n
i=1 ai, the sum of sizes of items in

Ij is at most (c1
∑n

i=1 ai)πj−1 ≤ (c1
∑n

i=1 ai)(1− δ)j−1 for j ∈ [1, k − 1].

Sublinear Time Approximate Sum via Uniform Random Sampling 719

The total sum of the sizes of items in those Ijs with A(Ij , L) < c1
∑n

i=1 ai is at
most

k−1∑

j=1

(c1

n∑

i=1

ai)πj−1) +
∑

ai∈Ik

ak ≤
k−1∑

j=1

(c1

n∑

i=1

ai)(1 − δ)j−1) + n · r

n2

≤ c1
δ
(

n∑

i=1

ai) +
δ

n
≤ δ

2
(

n∑

i=1

ai) +
δ

n
. (by Phase 0 of Approximate-Sum(.))

Lemma 5. Assume that at the end of phase t, for each Ij with Â(Ij , L) >

0, A(Ij , L)(1− δ) ≤ Â(Ij , L) ≤ A(Ij , L)(1 + δ); and dj ≥ z if A(Ij , L) ≥
c1

∑n
i=1 ai. Then (1 − ε

2)(
∑n

i=1 ai − 4δ
n) ≤ apx sum ≤ (1 + δ)(

∑n
i=1 ai) at the

end of phase t.

Lemma 6. With probability at most Q5 = (k+ 1) · (logn)g(δ) z
2 , at least one of

the following statements is false:

A. For each phase t with st <
c2n log logn∑n

i=1 ai
, the condition apx sum ≤ 2c2n log logn

st

in line 18 of the algorithm is true.

B. If
∑n

i=1 ai ≥ 4, then the algorithm stops some phase t with st ≤ 16c2n log logn∑n
i=1 ai

.

C. If
∑n

i=1 ai < 4, then it stops at a phase t in which the condition st ≥ n first
becomes true, and outputs apx sum =

∑n
i=1 ai.

Lemma 7. The complexity of the algorithm is O(
log 1

αδ

δ4 min(n∑
n
i=1 ai

, n) log logn).

In particular, the complexity is O(min(n∑n
i=1 ai

, n) log logn) if α is fixed in (0, 1).

Lemma 8. With probability at most α, at least one of the following statements
is false after executing the algorithm Approximate-Sum(ε, α, n, L):

1. If
∑n

i=1 ai ≥ 4, then (1− ε)(
∑n

i=1 ai) ≤ apx sum ≤ (1 + ε
2)(

∑n
i=1 ai);

2. If
∑n

i=1 ai < 4, then apx sum =
∑n

i=1 ai; and

3. It runs in O(
log 1

αδ

δ4 min(n∑
n
i=1 ai

, n) log log n) time. In particular, the complex-

ity of the algorithm is O(min(n∑
n
i=1 ai

, n) log logn) if α is fixed in (0, 1).

Now we give the proof for our main theorem.

Proof (for Theorem 4). Let α = 1
4 and ε ∈ (0, 1). It follows from Lemma 8 via a

proper setting for those parameters in the algorithm Approximate-Sum(.).

The (δ, δ)-partition P : I1∪I2 . . .∪Ik for [0, 1] can be generated inO(
log n+log 1

δ

δ)
time by Lemma 1. Let L be a list of n numbers in [0, 1]. Pass δ, α, P, n, and L
to Approximate-Sum(.), which returns an approximate sum apx sum.

By statement 1 and statement 2 of Lemma 8, we have an (1+ε)-approximation
for the sum problem with failure probability at most α. The computational time

is bounded by O(
log 1

αδ

δ4 min(n∑
n
i=1 ai

, n) log logn) by statement 3 of Lemma 8.

720 B. Fu, W. Li, and Z. Peng

Definition 2. Let f(n) be a function from N to (0,+∞) with f(n) ≤ n and a
parameter c > 1. Define

∑
(c, f(n)) be the class of sum problem with an input

of nonnegative numbers a1, · · · , an in [0, a] with
∑n

i=1 ai ∈ [f(n)c , cf(n)].

Corollary 1. Assume that f(n) is a function from N to (0,+∞) with f(n) ≤ n,

and c is a given constant c greater than 1. There is a O(n(log logn)
f(n)) time algorithm

such that given a list of nonnegative numbers a1, a2, · · · , an in
∑

(c, f(n)), it gives
a (1− ε)-approximation.

3 Lower Bound

We show a lower bound for those sum problems with bounded sum of sizes∑n
i=1 ai. The lower bound almost matches the upper bound.

Theorem 5. Assume f(n) is an nondecreasing unbounded function from N
to (0,+∞) with f(n) ≤ n and f(n) = o(n). Every randomized (

√
c − ε)-

approximation algorithm for the sum problem in
∑

(c, f(n)) (see Definition 2)
needs Ω(n

f(n)) time, where c is a constant greater than 1, and ε is an arbitrary

small constant in (0,
√
c− 1).

Acknowledgments. The authors are also grateful to anonymous referees for
providing comments to help us improve the presentation of this paper, and point-
ing the reference [4], which is related to our work.

References

1. Alon, N., Duffield, N., Lund, C., Thorup, M.: Estimating arbitrary subset sums with
few probes. In: Proc. PODS, pp. 317–325 (2005)

2. Broder, A., Fontura, M., Josifovski, V., Kumar, R., Motwani, R., Nabar, S., Pani-
grahy, R., Tomkins, A., Xu, Y.: Estimating corpus size via queries. In: Proceedings
of the 15th ACM International Conference on Information and Knowledge Manage-
ment (CIKM 2006), pp. 594–603 (2006)

3. Canetti, R., Even, G., Goldreich, O.: Lower bounds for sampling algorithms for
estimating the average. Information Processing Letters 53, 17–25 (1995)

4. Dagum, P., Karp, R., Luby, M., Ross, S.: An optimal algorithm for monte carlo
estimation. SIAM J. Comput. 29(5), 1484–1496 (2000)

5. Duffield, N., Lund, C., Thorup, M.: Learn more, sample less: control of volume
and variance in network measurements. IEEE Trans. on Information Theory 51,
1756–1775 (2005)

6. Hoefding, W.: Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association 58, 13–30 (1963)

7. Motwani, R., Panigrahy, R., Xu, Y.: Estimating sum by weighted sampling. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
53–64. Springer, Heidelberg (2007)

8. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(2000)

	Sublinear Time Approximate Sumvia Uniform Random Sampling
	1Introduction
	2Randomized Algorithm for the Sum Problem
	2.1Chernoff Bounds
	2.2A Sublinear Time Algorithm

	3Lower Bound
	References

