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Abstract. This paper studies a combinatorial optimization problem
which is obtained by combining the two-machine flow shop scheduling
problem and the shortest path problem. The objective of the obtained
problem is to select a subset of jobs constitutes a feasible solution to the
shortest path problem, and to execute the selected jobs on two-machine
flow shop to minimize the makespan. We argue that this problem is NP-
hard, and propose two approximation algorithms with constant factor
guarantee.
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1 Introduction

With the rapid development of science and technology, manufacturing, service
and management are often integrated, and decision-makers have to deal with
systems involve several characteristics from more than one well-known combina-
torial optimization problems. To the best of our knowledge, few research have
been done about the combination of optimization problems in literature.

Wang and Cui [10] first studied a combination of the parallel machine schedul-
ing problem and the vertex cover problem. The goal is to select a subset of jobs
that forms a vertex cover of a given graph and to execute these jobs on m iden-
tical parallel machines. They proposed an (3− 2

m+1 ) - approximation algorithm
for that problem. Wang et al. [11] have investigated a generalization of the above
problem that combines the uniformly related parallel machine scheduling prob-
lem and a generalized covering problem. They proposed several approximation
algorithms and mentioned as future research other combination of well-known
combinatorial optimization problems. This is the core motivation for this work.

Let us consider the following scenario. We aim at building a railway between
two specific cities. The railway needs to cross several adjacent cities, which is
determined by a map (a graph). The processing time of manufacturing the rail
track for each pair of cites is various. Manufacturing a rail track between two
cities in the graph is associated with a job. The decision-maker needs to make two
main decisions: (1) choosing a path to connect the two cities, and (2) deciding the
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schedule of manufacturing the rail tracks on this path in the factory. In addition,
the manufacturing of rail tracks follows several working stages, each stage must
start after the completion of the preceding stages, and we assume that there
is only one machine for each stage. We wish to accomplish the manufacturing
as early as possible, i.e. minimize the completion time of the schedule. It is a
standard flow shop scheduling problem. In this paper, we assume that there are
only two stages, leading to the two-machine flow shop scheduling problem. How
can a decision maker choose a feasible path such that the corresponding jobs can
be manufactured as early as possible? This problem combines the structure of
the two-machine flow shop scheduling problem and the shortest path problem.

Following the framework introduced by Wang et al. [11], we can see our
problem as a combination of two optimization problems, two-machine flow shop
scheduling and some shortest path problem. The former problem can be solved in
O(n log n) using Johnson’s rule [6,8], and the classical shortest problem with non-
negative edge weights can be solved in O(|V |2) using Dijkstra’s algorithm [1,5].

The contributions of this paper include: (1) the argument that the considered
problem is NP-hard, and (2) two constant factor approximation algorithms.

The rest of the paper is organized as follows. In section 2, we give a formal
definition of our problem, and then briefly review the two-machine flow shop
scheduling problem and some shortest path problems. In section 3, we study the
computational complexity of our problem. Section 4 provides two approximation
algorithms for this problem and we conclude in section 5.

2 Preliminaries

2.1 Problem Description

We first introduce the following generalized shortest path problem.

Definition 1. Given a directed graph G = (V,A,w1, w2) and two distinguished
vertices s, t ∈ V with |A| = n. Each arc aj ∈ A, j = 1, · · · , n is associated with
two weights w1

j , w
2
j , and we define the vector wk = (wk

1 , w
k
2 , · · · , wk

n) for k = 1, 2.
The goal of our shortest path problem is to find a directed path P from s to t
to minimize f(w1, w2;x), in which f is certain specific objective function and
x ∈ {0, 1}n is the decision variables such that xj = 1 if and only if aj ∈ P .

We denote SP instead of SP (G, s, t, f) to the problem described in definition
1. Notice that SP is a generalization of various shortest path problems. For
instance, if we consider w2 = 0 and f = w1 · x, where · is the dot product, this
problem is the classical shortest path problem. If f = min{w1 · x : w2 · x ≤ K},
where K is a given number, this problem is the shortest weight-constrained
path problem [7], and the decision version is known as ND30 in [7]. If f =
max{w1 · x,w2 · x}, the problem is the min-max shortest path problem [2,9,12]
in literature.

We now give a formal definition of our problem, which is a combination of the
two-machine flow shop problem and the shortest path problem.
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Definition 2. Given any instance I of the shortest path problem SP with G =
(V,A,w1, w2), and each arc aj ∈ A of I corresponds to a job Jj ∈ J with
processing times p1j, p2j on the two machines respectively. Define Px be a set
of jobs such that Jj ∈ Px if and only if xj = 1. The F2|shortest path|Cmax

problem is to find a feasible solution x of SP , that corresponds to a directed path
connecting the vertices s and t in G, and assign the jobs of Px on two-machine
flow shop to minimize the makespan.

2.2 Johnson’s Rule for Two-Machine Flow Shop Scheduling

In flow shop scheduling, a schedule is called a permutation schedule if all jobs
are processed in the same order on each machine [4]. Johnson [8] proposed a
sequencing rule for F2||Cmax, which is referred as Johnson’s rule in literature.

Algorithm 1. Johnson’s rule

1: Set S1 = {Jj ∈ J |p1j ≤ p2j} and S2 = {Jj ∈ J |p1j > p2j}.
2: Process the jobs in S1 first with a non-decreasing order of p1j , and then schedule

the jobs in S2 with a non-increasing order of p2j , and ties may be broken arbitrarily.

In Johnson’s rule, jobs are scheduled as early as possible. This rule produces a
permutation schedule, and Johnson showed that it is an optimal schedule. Notice
that this schedule is delivered in O(n log n) time.

We now introduce some well-known lower bounds for F2||Cmax, that are used
later to derive approximation algorithms to our problem. Let us denote by Cmax

the makespan in an arbitrary flow shop schedule with job set J , we have

Cmax ≥ max

⎧
⎨

⎩

∑

Jj∈J

p1j,
∑

Jj∈J

p2j

⎫
⎬

⎭
, (1)

and

Cmax ≤
∑

Jj∈J

(p1j + p2j). (2)

For each job, we have

Cmax ≥ p1j + p2j , ∀Jj ∈ J. (3)

Suppose Jv is the critical job of the flow shop, we have

Cmax = max
Ju∈J

⎧
⎨

⎩

u∑

j=1

p1j +

n∑

j=u

p2j

⎫
⎬

⎭
=

v∑

j=1

p1j +

n∑

j=v

p2j. (4)
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2.3 Algorithms for Shortest Path Problems

In this paper, we use two following results of the shortest path problem.
The first one is the well-known Dijkstra’s algorithm, which solves the classical

shortest path problem with nonnegative edge weights in O(|V |2) time [5].
The second one is an FPTAS result for min-max shortest path problem, which

is presented by Aissi, Bazgan and Vanderpooten [2]. Their algorithm, denoted
as the ABV algorithm, is based on dynamic programming and scaling technique,
and we have the following result.

Theorem 1 ( [2]). Given an arbitrary positive value ε > 0, in a given directed
graph with two nonnegative weights associated with each arc, a direct path P
between two specific vertices can be found by the ABV algorithm with the property

max

⎧
⎨

⎩

∑

aj∈P

w1
j ,

∑

aj∈P

w2
j

⎫
⎬

⎭
≤ (1 + ε)max

⎧
⎨

⎩

∑

aj∈P ′
w1

j ,
∑

aj∈P ′
w2

j

⎫
⎬

⎭

for any other path P ′, and the running time is O(|A||V |3/ε2).

3 Computational Complexity of F2|shortest path|Cmax

We argue that the decision version of our problem is NP-complete, by a reduction
from a NP-complete problem partition [7]. The proof is similar to the well-
known NP-hardness proof of ND30 in [7], one could refer to the literature, such
as the reduction presented in [3].

Theorem 2. The decision problem of F2|shortest path|Cmax is NP-complete.

Nevertheless, we emphasize that ND30 is neither a special case nor simple ap-
plication of our problem. Since idles may occur on machine 2 in the flow shop
scheduling, it is not straightforward that the path found in our problem is rel-
evant to a shortest weight-constrained path found in ND30, which has total
weight and total length bounded by two given numbers.

4 Approximation Algorithms

4.1 A Natural Approximation Algorithm

The main idea of the first algorithm is, we first set w1
j = p1j+p2j and w2

j = 0 for

each arc and find the shortest path with respect to w1 by Dijkstra’s algorithm.
Then we schedule the corresponding jobs in the flow shop by Johnson’s rule.

It is straightforward that the total running time of the JD algorithm is
O(|V |2). Then we study the performance. First, we introduce some notations.
Let J∗ be set of jobs in an optimal solution, and C∗

max be the corresponding
makespan. Jx and Cmax are those returned by the JD algorithm.
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Algorithm 2. The JD algorithm

1: Find the shortest path in G with weight (w1
j , w

2
j ) := (p1j + p2j , 0) by Dijkstra’s

algorithm. For the returned solution x, construct the job set Px.
2: Schedule the jobs of Px by Johnson’s rule. Let σ be the returned job schedule and

Cmax the returned makespan, and denote the job set Px by Jx.
3: return Jx, σ and Cmax

Theorem 3. The JD algorithm is 2-approximate.

Proof. By the lower bound (1) introduced in section 2.2, we have

2C∗
max ≥

∑

Jj∈J∗
p1j +

∑

Jj∈J∗
p2j =

∑

Jj∈J∗
(p1j + p2j). (5)

Since the returned path is shortest with respect to w1 , we have

Cmax ≤
∑

Jj∈Jx

(p1j + p2j) =
∑

Jj∈Jx

w1
j ≤

∑

Jj∈J∗
w1

j =
∑

Jj∈J∗
(p1j + p2j), (6)

Combining with (5) and (6), it follows that Cmax ≤ 2C∗
max.

Consider the following instance. A directed graph G includes three vertices,
which are referred to v1, v2, v3. There are three jobs (arcs): (v1, v2), (v2, v3),
(v1, v3), with processing times (1, 0), (0, 1), (2 − ε, 0) respectively in which ε is
small enough. We wish to find a path from vertex v1 to v3. The makespan
of job schedule returned by the JD algorithm is Cmax = 2 − ε with the arc
(v1, v3), whereas the makespan of optimal job schedule is C∗

max = 1 with the
arcs (v1, v2), (v2, v3). The bound is tight as Cmax

C∗
max

→ 2 when ε → 0. ��

4.2 An Improved Approximation Algorithm

Instead of finding a shortest path from s to t optimally with respect to certain
weight, we could adopt the FPTAS result mentioned in section 2.3, that will
return a (1 + ε)-approximated solution for the min-max shortest path problem.
Then we also implement Johnson’s rule. In other words, by setting the objective
function f = max{w1 · x,w2 · x} in SP .

We initially set (w1
j , w

2
j ) := (p1j , p2j). The algorithm iteratively runs the above

executions for the min-max shortest path problem and F2||Cmax by adopting
the following revision policy: in a current schedule, if there exists some job is big
enough with respect to the current makespan, we will revise the weights of arcs
corresponding to big jobs to (M,M), where M is a sufficient large number, and
then mark these jobs. The algorithm terminates if no such a job exists. Another
terminating condition is that when a marked job appears in a current schedule.
We return the schedule with minimum makespan among all current schedules as
the solution of the algorithm. We denote this algorithm as the JAR algorithm.
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Algorithm 3. The JAR algorithm

1: Initially, (w1
j , w

2
j ) := (p1j , p2j), for each arc aj ∈ A corresponding to Jj ∈ J .

2: Given ε > 0, implement the ABV algorithm to obtain a feasible solution x of SP ,
and construct the corresponding job set as Px.

3: Schedule the jobs of Px by Johnson’s rule, denote the returned makespan as C′
max,

and the job schedule as σ′.
4: Jx := Px, σ := σ′, Cmax := C′

max, D := ∅, M := (1 + ε)
∑

Jj∈J (|p1j |+ |p2j |) + 1.

5: while Px∩D = ∅ and there exists a job Jj in Px such that p1j +p2j > 2
3
C′

max do
6: for all jobs with p1j + p2j > 2

3
C′

max in J\D do
7: (w1

j , w
2
j ) := (M,M), D := D ∪ {Jj}.

8: end for
9: Implement the ABV algorithm to obtain a feasible solution x of SP , and con-

struct the corresponding job set as Px.
10: Schedule the jobs of Px by Johnson’s rule, denote the returned makespan as

C′
max, and the job schedule as σ′.

11: if C′
max < Cmax then

12: Jx := Px, σ := σ′, Cmax := C′
max.

13: end if
14: end while
15: return Jx, σ and Cmax.

Now, we discuss the computational complexity of the JAR algorithm. Let
the total number of jobs be |A| = n. First, we need to revise the weights of
at most n arcs, hence lines 6 - 8 execute at most O(n) times in the whole
execution of our algorithm. And at least one job is added to D in each iteration,
the iterations in lines 5 - 14 execute at most n times. In each iteration, the
running time of obtaining a path by the ABV algorithm and a job schedule
by Johnson’s rule is O(n|V |3/ε2) and O(n logn) respectively. And O(n) time is
enough to other operations. Hence, the total running time of the JAR algorithm
is O(n2(|V |3/ε2 + logn)).

The following theorem shows the performance of the JAR algorithm.

Theorem 4. Given ε > 0, the JAR algorithm is 3
2 (1 + ε)-approximate.

Proof. Case 1. J∗ ∩D 
= ∅
It implies that there is at least one job in the optimal solution, say Jj , such

that (p1j + p2j) > 2
3C

′
max holds for a current schedule with makespan C′

max

during the execution. Notice that the schedule returned by the JAR algorithm
is the schedule with minimum makespan among all current schedules, and we
have Cmax ≤ C′

max. It follows from (3) that

Cmax ≤ C′
max <

3

2
(p1j + p2j) ≤ 3

2
C∗

max. (7)

Case 2. J∗ ∩D = ∅
Consider the last current schedule during the execution of the algorithm. We

denote the corresponding job set and the makespan as J ′ and C′
max respectively.
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In this case, we first argue that J ′∩D = ∅. Suppose not, since J∗∩D = ∅, the
weights of arcs corresponding to the jobs in J∗ have not been revised. Hence we

have (1 + ε)max
{∑

Jj∈J∗ w1
j ,
∑

Jj∈J∗ w2
j

}
< M . Moreover, by the assumption

J ′ ∩ D 
= ∅, we have max
{∑

Jj∈J′ w1
j ,
∑

Jj∈J′ w2
j

}
≥ M . By Theorem 1, the

solution returned by the ABV algorithm satisfies

M ≤ max

⎧
⎨

⎩

∑

Jj∈J′
w1

j ,
∑

Jj∈J′
w2

j

⎫
⎬

⎭
≤ (1 + ε)max

⎧
⎨

⎩

∑

Jj∈J∗
w1

j ,
∑

Jj∈J∗
w2

j

⎫
⎬

⎭
< M,

that leads to a contradiction.
Let Jv be a critical job in the last current schedule, and suppose that p1v ≥

p2v. It follows from p1j ≥ p2j for j = v + 1, · · · , n in the schedule returned
by Johnson’s rule and (4) that C′

max ≤ ∑
Jj∈J′ p1j + p2v. Since J ′ ∩ D = ∅,

we have p1j + p2j ≤ 2
3C

′
max for all jobs Jj ∈ J ′, as otherwise the algorithm will

continue. Thus, it follows from (1), (3), Theorem 1 and the fact that the schedule
returned by the JAR algorithm is the schedule with minimum makespan among
all current schedules, we have

Cmax ≤ C′
max ≤

∑

Jj∈J′
p1j + p2v ≤

∑

Jj∈J′
w1

j +
1

2
(p1v + p2v)

≤ (1 + ε)max

⎧
⎨

⎩

∑

Jj∈J∗
w1

j ,
∑

Jj∈J∗
w2

j

⎫
⎬

⎭
+

1

3
C′

max

= (1 + ε)max

⎧
⎨

⎩

∑

Jj∈J∗
p1j,

∑

Jj∈J∗
p2j

⎫
⎬

⎭
+

1

3
C′

max

≤ (1 + ε)C∗
max +

1

3
C′

max.

It suffices to show that Cmax ≤ C′
max ≤ 3

2 (1 + ε)C∗
max.

For the case that the last current schedule with critical job p1v < p2v, an
analogous argument will yield the same result. Therefore, the JAR algorithm is
3
2 (1 + ε)-approximate for F2|shortest path|Cmax.

The following instance shows that the worst case ratio of the JAR algorithm
can not less than 3

2 . A directed graph G has four vertices, which are referred to
v1, v2, v3, v4. Given ε > 0, there are four jobs (arcs): (v1, v2), (v1, v3), (v3, v2),
and (v2, v4), with processing times (1, 1), ((1 + 4ε), 0), (0, (1 + 4ε)) and (1, 1)
respectively. We wish to find a path from v1 to v4. Notice that the ABV algo-
rithm returns the path with the arcs (v1, v2) and (v2, v4), and the correspond-
ing makespan C′

max by Johnson’s rule is 3. All the corresponding jobs satisfy
p1j + p2j = 2 ≤ 2

3C
′
max, and thus the algorithm terminates. Therefore, the

makespan of the returned job schedule by the JAR algorithm is Cmax = 3. On
the other hand, the optimal makespan is C∗

max = 2+4ε, with the corresponding
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arcs (v1, v3), (v3, v2), and (v2, v4). The worst case ratio of the JAR algorithm
can not less than 3

2 as Cmax

C∗
max

→ 3/2 when ε → 0 for this instance. ��

5 Conclusions

This paper studies a combination problem of two-machine flow shop scheduling
and shortest path problems. It is interesting to find an approximation algorithm
with a better performance ratio for this problem. On the other hand, one can
consider the combination problem of more generalized forms, such as combining
with m-machine flow shop scheduling problem, or covering problem presented
in [11]. All these questions motivate us to further investigate.
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