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Abstract. A monotone drawing of a graph G is a straight line drawing
of G where a monotone path exists between every pair of vertices of G
in some direction. Recently monotone drawings of graphs have been dis-
covered as a new standard for visualizing graphs. In this paper we study
monotone drawings of series-parallel graphs in a variable embedding set-
ting. We show that a series-parallel graph of n vertices has a straight-line
planar monotone drawing on a grid of size O(n) ×O(n2).

1 Introduction

A path P in a straight-line drawing of a graph is monotone if there exists a line
l such that the orthogonal projections of the vertices of P on l appear along l
in the order induced by P . A straight-line drawing of a graph is monotone if it
contains at least one monotone path for each pair of vertices.

Upward drawings [4,8] are related to monotone drawings where every directed
path is monotone with respect to vertical lines, while in a monotone drawing each
monotone path, in general, is monotone with respect to a different line. Arkin
et al. [3] showed that any strictly convex drawing of a planar graph is monotone
and they gave an O(n log n) time algorithm for finding such a path from s to t.
The authors in [1] showed that every biconnected planar graph has a straight-
line monotone drawing in real coordinate space. Angelini et al. [1] showed that
every tree admits a straight-line planar monotone drawing in O(n) × O(n2) or
O(n1.6) × O(n1.6) area. Every connected plane graph admits a monotone grid
drawing on an O(n) × O(n2) grid using at most two bends per edges and an
outerplane graph of n vertices admits a straight-line monotone drawing on a
grid of area O(n)×O(n2) [2]. It is also known that not every plane graph (with
fixed embedding) admits a straight-line monotone drawing [1].

So the natural question is whether every connected planar graph has a straight-
line monotone drawing and what is the minimum area requirement for such a
drawing on a grid. In this paper, we investigate this problem for a non-trivial
subclass of planar graphs called “series-parallel graphs”. We show that every
series-parallel graph admits a straight-line monotone drawing on an O(n)×O(n2)
grid which can be computed in O(n log n) time.
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We now give an outline of our algorithm for constructing a monotone drawing
of a series-parallel graph G. We construct an ordered “SPQ-tree” of G. We then
assign a slope to each node of the SPQ-tree. We finally draw G on a grid taking
into consideration the slope assigned to each node of the SPQ-tree.

The rest of the paper is organized as follows. Section 2 describes some of the
definitions that we have used in our paper. Section 3 deals with straight-line
monotone drawings of series-parallel graphs. Finally, Section 4 concludes our
paper with discussions.

2 Preliminaries

Let G = (V,E) be a connected graph with vertex set V and edge set E. A graph
is planar if it can be embedded in the plane without edge crossings except at the
vertices where the edges are incident. A plane graph is a planar graph with a fixed
planar embedding. A plane graph divides the plane into some connected regions
called faces. The unbounded region is called outer face and all the other faces
are called inner faces. The vertices on the outer face are called outer vertices and
all the other vertices are called inner vertices. A cut vertex is any vertex whose
removal disconnects G. A biconnected component G′ is a maximal biconnected
subgraph of G.

A graph G = (V,E) is called a series-parallel graph (with source s and sink
t) if either G consists of a pair of vertices connected by a single edge or there
exist two series-parallel graphs Gi = (Vi, Ei), i = 1, 2, with source si and sink
ti such that V = V1 ∪ V2, E = E1 ∪ E2, and either s = s1, t1 = s2 and t = t2
or s = s1 = s2 and t = t1 = t2 [7]. A biconnected component of a series-parallel
graph is also a series-parallel graph. By definition, a series-parallel graph G is a
connected planar graph and G has exactly one source s and exactly one sink t.

Fact 1. Let G = (V,E) be a series-parallel graph with the source vertex s and
the sink vertex t. Assume that (s, t) /∈ E(G). Then G′ = (V,E∪(s, t)) is a planar
graph.

A pair u, v of vertices of a connected graph G is a split pair if there exist two
subgraphs G1 = (V1, E1) and G2 = (V2, E2) satisfying the following two condi-
tions: 1. V = V1 ∪ V2, V1 ∩ V2 = {u, v}; and 2. E = E1 ∪E2, E1 ∩E2 = ∅, |E1| ≥
1, |E2| ≥ 1. Thus every pair of adjacent vertices is a split pair. A split component
of a split pair u, v is either an edge (u, v) or a maximal connected subgraph H
of G such that u, v is not a split pair of H .

Let G be a biconnected series-parallel graph. Let (u, v) be an outer edge of G.
The SPQ-tree [6,5] T of G with respect to a reference edge e = (u, v) describes
a recursive decomposition of G induced by its split pairs. Tree T is a rooted
ordered tree whose nodes are of three types: S, P and Q. Each node x of T
corresponds to a subgraph of G, called its pertinent graph G(x). Each node x of
T has an associated biconnected multigraph, called the skeleton of x and denoted
by skeleton(x). Tree T is recursively defined as follows.
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Fig. 1. (a) A series-parallel graph G, (b) an SPQ-tree T of G, and (c) an illustration
for slope assignment in T ′ where subtrees are sorted on the number of vertices in each
subtree, and number of vertices, node type and assigned slope of each node are written
inside the node

Trivial Case: In this case, G consists of exactly two parallel edges e and e′

joining s and t. T consists of a single Q-node x, and the skeleton of x is G itself.
The pertinent graph G(x) consists of only the edge e′.

Parallel Case: In this case, the split pair u, v has three or more split compo-
nents G0, G1, . . . , Gk, k ≥ 2, and G0 consists of only a reference edge e = (u, v).
The root of T is a P -node x. The skeleton(x) consists of k + 1 parallel edges
e0, e1, . . . , ek joining s and t, where e0 = e = (u, v) and ei, 1 ≤ i ≤ k, corre-
sponds to Gi. The pertinent graph G(x) = G1 ∪ G2 ∪ . . . ∪ Gk is the union of
G1, G2, . . . , Gk.

Series Case: In this case the split pair u, v has exactly two split components,
and one of them consists of the reference edge e. One may assume that the
other split component has cut-vertices c1, c2, . . . , ck−1, k ≥ 2, that partition
the component into its blocks G1, G2, . . . , Gk in this order from t to s. Then
the root of T is an S-node x. The skeleton of x is a cycle e0, e1, . . . , ek where
e0 = e, c0 = u, ck = v, and ei joins ci−1 and ci, 1 ≤ i ≤ k. The pertinent graph
G(x) of node x is the union of G1, G2, . . . , Gk. Figure 1 shows a series-parallel
graph and its SPQ-tree decomposition.

Let T be the SPQ-tree of a series-parallel graph G and let x be a node of T .
The pertinent graph of x is denoted by pert(x). For an S-node x, we denote by
n(x) the number of vertices in pert(x) excluding s and t. For a P -node x, we
denote by n(x) the number of vertices in pert(x) including s and t. According to
the SPQ-tree decomposition, a P -node can not be the parent of another P -node
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and an S-node can not be the parent of another S-node. Throughout the paper,
by drawing of a node x in T we mean the drawing of pert(x) of G.

Monotone Drawings
Let p be a point in the plane and l be a half-line starting at p. The slope

of l, denoted by slope(l), is the angle spanned by a counter-clockwise rotation
that brings a horizontal half-line starting at p and directed towards increasing
x- coordinates to coincide with l.

Let Γ be a drawing of a graph G and let (u, v) be an edge of G. The half-line
starting at u and passing through v, denoted by d(u, v), is the direction of (u, v).
The direction of an edge e is denoted by d(e) and slope of e is denoted by slope(e).

Let P (u1, uq) = (u1, u2, . . . , uq) be a path in a straight-line drawing of a graph.
Let ei be the edge from ui to ui+1 ( 1 ≤ i ≤ q − 1). Let ej and ek be two edges
of the path P (u1, uq) such that slope(ej) ≥ slope(ei) and slope(ek) ≤ slope(ei)
for i = 1, . . . , q− 1. We call ej and ek extremal edges of the path P (u1, uq). The
path P (u1, uq) is a monotone path with respect to a direction d if the orthogonal
projections of vertices u1, . . . , uq on a line along the direction d appear in the
same order as the vertices appear in the path.

Let P (u1, uq) = (u1, u2, . . . , uq) be a monotone path. Let e1 and e2 be the
extremal edges of P (u1, uq). If we draw ei at the origin of the axes, e1 and e2
create a closed wedge at the origin of the axes. The closed wedge delimited by
d(e1) and d(e2) and containing all the half-lines d(ui, ui+1), for i = 1, . . . , q − 1,
is the range of P (u1, uq) and is denoted by range(P (u1, uq)), while the closed
wedge delimited by d(e1)−π and d(e2)−π, and not containing d(e1) and d(e2),
is the opposite range of P (u1, uq) and is denoted by opp(P (u1, uq)).

We now recall some important properties of monotone paths from [1] as in
the following two lemmas.

Lemma 1. A path P (u1, uq) = (u1, u2, . . . , uq) is monotone if and only if it
contains two edges e1 and e2 such that the closed wedge centered at the origin
of the axes, delimited by the two half-lines d(e1) and d(e2), and has an angle
smaller than π, contains all the half-lines d(ui, ui+1), for i = 1, . . . , q − 1.

Lemma 2. Let P (u1, uq) = (u1, . . . , uq) and P(uq, uq+k) = (uq, ..., uq+k) be
monotone paths. Then, path P (u1, uq+k) = (u1, . . . , uq, uq+1, . . . , uq+k) is
monotone if and only if range(P (u1, uq)) ∩ opp(P (uq, uq+k)) = ∅. Further,
if P (u1, uq+k) is monotone, then range(P (u1, uq)) ∪ range( P (uq, uq+k)) ⊆
range(P (u1, uq+k)).

3 Monotone Grid Drawing

In this section we give an O(n logn) time algorithm to find a straight-line planar
monotone grid drawing of a series-parallel graph on an O(n) × O(n2) grid. To
get a such drawing we first construct an ordered SPQ-tree. We then assign a
slope to each node. We finally draw the graph on a grid taking into consideration
the slopes assigned to each node of the tree. The details of our algorithm are as
follows.
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We assume that an edge exists between the source s and the sink t of the
input series-parallel graph G otherwise we add a dummy edge between s and t
of G. (Note that the graph remains planar after adding the dummy edge (s, t)
by Fact 1.) Later we will show that the drawing of G obtained by our algorithm
remains monotone even after removing the dummy edge (s, t) form the drawing.
Clearly, G is a biconnected series-parallel graph (with the edge (s, t)). Let T be
the SPQ-tree of G with respect to edge (s, t). Then the root of T is a Q-node r
and the only child of r is a P -node x. We now re-root T at x.

Let T ′ be an ordered SPQ-tree obtained from T as follows. We traverse each
P -node of T ; if any Q-node exists as a child of a P -node we put the Q-node
as the leftmost child of the P -node. The rest of the children of the P -node are
S-nodes and we draw them from left to right according to increasing order of
the number of vertices in the subtree rooted at the respective S-node. We now
assign a slope to each node of T ′. Let 1/1, 2/1, . . . , (n − 1)/1 be n − 1 slopes
in increasing order. Initially we assign the slope 1/1 to the root of T ′. We then
traverse T ′ to assign a slope to each node x of T ′. We first consider the case
where x is a P -node. Let the slope assigned to x be μ/1, and let x1, x2, . . . , xk

(k < n) be the children of x in left to right order. We assign the slope μ/1 to the
leftmost child x1. We next assign the slope (μimax+1)/1 to xi+1 where μimax/1 is
the largest slope assigned in the subtree rooted at xi. We now consider the case
where x is an S-node. Let the slope assigned to x be μ/1, and let x1, x2, . . . , xk

(k < n) be the children of x in left to right order. We assign the same slope
μ/1 to xi (i ≤ k). Thus the largest slope assigned to a vertex can be at most
(n− 1)/1.

We are now ready to draw G on a grid using the slope assigned to each node
of T ′. Figure 1(c) illustrates the slope assignment to the nodes of the SPQ-tree
for the graph G shown in Figure 1(a). Our algorithm uses a post-order traversal
on the ordered SPQ-tree.
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Fig. 2. (a) An example of a P -node for Cases 1 and 2, (b) a P -node x, and (c) a
drawing of x on a grid

We first give a drawing algorithm for a P -node. Let x be a P -node with slope
μ/1 assigned to it and let s and t be the source and the sink of x, respectively. Let
x1, x2, . . . , xk be the children of x in left to right order. Let μ1/1, μ2/1, . . . , μk/1
be the slopes assigned to x1, x2, . . . , xk, respectively.
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If x is not the root of T ′, let x′ be the parent node of x, and let x′′ be the
parent node of x′. Clearly x′ is an S-node and x′′ is a P -node. Let μ/1 and μ′/1
be the slope assigned to x′ and x′′, respectively. Let s′′ and t′′ be the source and
the sink of x′′, respectively.

We denote the position of a vertex u by p(u); p(u) is expressed by its x- and
y-coordinates as (px(u), py(u)) on a grid. Let p(x) be a point on the grid. We
place the source vertex of the P -node x on p(x). Let Ax be a set of points where
the neighbors of t in pert(x) are to be drawn.

We now have the following two cases to consider.
Case 1: t 	= t′′. In this case (see the node labeled C in the Figure 2), we place

s on p(x). If x1 is a Q-node we leave it for now, and we draw the respective edge
after placing the sink t of x. We add p(x) to Ax. Otherwise all xi are S-nodes
and we follow the drawing algorithm of S-node to draw each xi.

After drawing all xi, we elongate the l1 (the equation of l1 is y = μ1×x+px(x))
line up to the point p(xend) = (px(x) + n(x), py(x) + μ1 × n(x)) and place the
sink t of x on p(xend). Since n(x1) ≤ n(x2) ≤ n(x3) . . . ≤ n(xk) and the slope
μ1/1 < μ2/1 < . . . < μk/1, p(xiend

) is visible from p(xend). We connect t to
all points in Ax using straight line segments and we call each of these edges
P -node closing edge. Note that the slope of edge (p(xiend

), p(xend)) satisfies
π/2 > slope(p(xiend

), p(xend)) > −π/2.
Case 2: t = t′′. Figure 2 illustrates an example of this case (see node B).
Let px(Y

′′) be the largest x-coordinate used in the drawing of x′′. If px(x) <
px(Y

′′), we set p(x) = (px(Y
′′), px(Y

′′)−px(x
′′)

µ ). We then place the s on p(x). We
now draw all the S-nodes according to the S-node drawing algorithm described
later. Since the sink vertex of x and x′′ are same, we do not draw t in this step.
All the end vertices of xi will be connected at the drawing of the sink of x′′. If
x1 is a Q-node, we add p(x) in Ax.

We now describe an algorithm for drawing an S-node. Let x be an S-node
of T ′ with assigned slope μ/1. Let x′ be the parent node of x and let s′ be the
source vertex of x′. Let p(x′) be the point where s′ has already been placed.
Clearly, x′ is a P -node. Let l be a straight-line such that the equation of l is
y = μ/1× x+ px(x

′).
Assume first that all the children of x are Q-nodes. Then the pert(x) is a path.

In this case we place the vertices of pert(x) on the line l sequentially on integer
points. The last vertex of pert(xi) lies on the point pend(x) = ((px(x) + n(x),
py(x) + μ/1× n(x)) (slope(l) = μ/1). Then we add the pend(x) in Ax′ . Assume
now that some of the children of x are P -nodes. We traverse left to right subtrees
of x. If xi is a Q-node, we place corresponding vertices on the line l. If xi is a
P -node, we set p(xi) = ((px(x) + i, py(x) + μ/1 × i) when the source vertex
of xi is not s′, otherwise p(xi) = p(x′). We then use the drawing algorithm for
P -nodes.

We now describe how we fix the coordinates for the drawing of a Q-node. Let
x be a Q-node. The pertinent graph of x is an edge (u, v). Note that u is already
placed on the grid, since our drawing algorithm follows post-order traversal on
the SPQ-tree. Let (α, β) be the coordinate of u. If v is a sink of any P -node,
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we handle this in the drawing of P -node closing edges. We thus assume that v
is not a sink of any P -node. In this case we place vertex v at (α + 1, β + μ) on
the line y = μx+ β − αμ, where μ/1 is the slope assigned to x.

We call the algorithm described above Algorithm Monotone-Draw. We now
have the following theorem.

Theorem 1. Algorithm Monotone-Draw finds a monotone drawing of a series-
parallel graph on a grid of size O(n) ×O(n2) in O(n log n) time.

Proof. Let Γ be the drawing of G constructed by Algorithm Monotone-Draw.
We now show that Γ is a monotone drawing of G. To prove the claim, we show
that, a monotone path exists between every pair of vertices of G in Γ .

Let s and t be the source and the sink of G. In fact we will prove that
a monotone path exists between every pair of vertices of G in the drawing of
G\(s, t) in Γ . Let v be a vertex in G such that v /∈ {s, t}. We first show that there
exist a monotone path between v and s, and between v and t. One can easily
observe that a path P (s, v) exists such that no P -node closing edge is contained
in P (s, v) and for each edge e ∈ P (v, s), π/2 > slope(e) ≥ π/4 holds. Then
the path P (s, v) is monotone since the range(P (s, v)) is smaller than π. On the
other hand a path P (v, t) exists such that s /∈ P (v, t), (s, t) /∈ P (v, t) and P (v, t)
may contain some P -node closing edges. The path P (v, t) is monotone since for
each edge e ∈ P (v, t) π/2 < slope(e) < −π/2 holds. Similarly, any path P (s, t)
in Γ \ (s, t) is monotone since for each edge e ∈ P (s, t) π/2 < slope(e) < −π/2
holds.

We now show that for every pair of vertices u, v ∈ G (v /∈ {s, t}, u /∈ {s, t})
there is a monotone path between u and v in Γ . Let P (u, s) and P (v, s) be two
paths such that none of them contains a P -node closing edge and assume that
e1 = (u, u′) lies on P (u, s) and e2 = (v, v′) lies on P (v, s).

Let M and N be the two Q-nodes in T ′ such that (u, u′) ∈ pert(M) and
(v, v′) ∈ pert(N), and let W be the lowest common ancestor of M and N in T ′.
Let U and V be the children of W and ancestors of M and N , respectively. Let
μW , μU , μV , μM , μN be the slopes assigned to the nodes W , U , V , M and N ,
respectively. Since e1 and e2 are not P -node closing edges, the slopes of d(e1)
and d(e2) are −μM and −μN , respectively.

We now have the following two cases to consider.
Case 1: W is a P -node. Without loss of generality we may consider μM >

μN . So according to the slope assignment μM ≥ μU > μV ≥ μN . Let w and w′

be the source and sink vertices of W in Γ . The path P (u, v) (w′ /∈ P (u, v)) is
composed of path P (u,w) and of path P (w, v). Clearly, for each edge e ∈ P (u,w),
and e′ ∈ P (w, v) it holds μM ≥ slope(e) ≥ μU and μN ≥ slope(e′) ≥ μV ,
respectively. So we have range(P (u,w)) ∩ opp(P (w, v)) = ∅. Then by Lemma 2,
P (u, v) is a monotone path.

Case 2: W is an S-node. If M and N are children of the same S-node then
the case is straight-forward, the path P (u, v) lies on a straight-line. Otherwise
the path P (u, v) could have some P -node closing edge. let W ′ be the parent of
W . Clearly W ′ is a P -node. Let w′ be the source vertex of W ′ in Γ . Then the
path P (u, v)(w′ /∈ P (u, v)) is monotone with respect to a horizontal half-line.
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Thus we have proved that Γ is a monotone drawing of G.
We are placing the sink of each P -node on the x = n(x) line. The drawings

of all child nodes are inside the drawing of its parent P -node. So the largest
x-coordinate of the drawing can be at most n. On the other hand we might get
B type nodes (see Figure 2) recursively, and hence the y-coordinate can be up
to O(n2). Thus the total grid size is O(n)×O(n2).

We now analyze the required time for our algorithm. We construct SPQ-
tree in linear-time, and O(n log n) time is required to sort. We assign slopes
to T ′ in linear time. Thus the overall time complexity of the algorithm is
O(n log n). 
�

4 Conclusion

In this paper we have studied monotone grid drawings of series-parallel graphs.
We have shown that a series-parallel graph of n vertices has a straight-line planar
monotone drawing on an O(n)×O(n2) grid and such a drawing can be found in
O(n log n) time. Finding straight-line monotone grid drawings of larger classes
of planar graphs is remained as our future work.
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