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Abstract. Given a connected outerplanar graph G with pathwidth p, we
give an algorithm to add edges to G to get a supergraph of G, which is 2-
vertex-connected, outerplanar and of pathwidth O(p). As a consequence,
we get a constant factor approximation algorithm to compute a straight
line planar drawing of any outerplanar graph, with its vertices placed on
a two dimensional grid of minimum height. This settles an open problem
raised by Biedl [3].
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1 Introduction

A graph G(V,E) is outerplanar, if it has a planar embedding with all its vertices
lying on the outer face. Computing planar straight line drawings of planar graphs
with vertices placed on a two dimensional grid, is a well known problem in graph
drawing. The height of a grid is defined as the smaller of the two dimensions
of the grid. If G has a planar straight line drawing, with its vertices placed on
a two dimensional grid of height h, then we call it a planar drawing of G of
height h. It is known that any planar graph on n vertices can be drawn on an
(n− 1)× (n− 1) sized grid [11].

We use pw(G) to denote the pathwidth of a graph G. Pathwidth is a structural
parameter of graphs, which is widely used in graph drawing and layout problems
[3,5,13]. The study of pathwidth, in the context of graph drawings, was initiated
by Dujmovic et al. [5]. It is known that any planar graph that has a planar
drawing of height h has pathwidth at most h [13]. However, there exist planar
graphs of constant pathwidth but requiring Ω(n) height in any planar drawing
[2]. In the special case of trees, Suderman [13] showed that any tree T has a planar
drawing of height at most 3 pw(T )−1. Biedl [3] considered the same problem for
the bigger class of outerplanar graphs. For any bi-connected outerplanar graph
G, Biedl [3] obtained an algorithm to compute a planar drawing of G of height at
most 4 pw(G)−3. Since it is known that pathwidth is a lower bound for the height
of the drawing [13], the algorithm given by Biedl [3] is a 4-factor approximation
algorithm for the problem, for any bi-connected outerplanar graph. The method
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in Biedl [3] is to add edges to the bi-connected outerplanar graph G to make it a
maximal outerplanar graph H and then draw H on a grid of height 4 pw(G)−3.
The same method would give a constant factor approximation algorithm for
arbitrary outerplanar graphs, if it is possible to add edges to any arbitrary
outerplanar graph G to obtain a bi-connected outerplanar graph G′ such that
pw(G′) = O(pw(G)). This was an open problem in Biedl [3].

In this paper, we give an algorithm to augment a connected outerplanar graph
G of pathwidth p by adding edges so that the resultant graph is a bi-connected
outerplanar graph of pathwidth O(p). Notice that, the non-triviality lies in the
fact that G′ has to be maintained outerplanar. If we relax this condition, the
problem becomes very easy. It is easy to verify that the supergraph G′ of G,
obtained by making any two vertices of G adjacent to each other and to every
other vertex in the graph, is bi-connected and has pathwidth at most pw(G)+2.
The problem of augmenting outerplanar graphs to make them bi-connected,
while maintaining the outerplanarity and optimizing some other properties, like
number of edges added [6,9], have been investigated previously.

2 Background

A tree decomposition of a graph G(V,E) [10] is a pair (T,X ), where T is a tree
and X = (Xt : t ∈ V (T )) is a family of subsets of V (G), such that:
1.

⋃
(Xt : t ∈ V (T )) = V (G).

2. For every edge e of G there exists t ∈ V (T ) such that e has both its end
points in Xt.

3. For t, t′, t′′ ∈ V (T ), if t′ is on the path of T between t and t′′ then,
Xt ∩Xt′′ ⊆ Xt′ .

The width of the tree decomposition is maxt∈V (T ) (|Xt| − 1). Each Xt ∈ X is
referred to as a bag in the tree decomposition. The graph G has treewidth w
if w is the minimum such that G has a tree decomposition of width w. A path
decomposition (P,X ) of a graph G is a tree decomposition of G with the addi-
tional property that the tree P is a path. The width of the path decomposition
is maxt∈V (P ) (|Xt| − 1). The graph G has pathwidth w if w is the minimum such
that G has a path decomposition of width w.

Without loss of generality we can assume that, in any path decomposition
(P ,X ) of G, the vertices of the path P are labeled as 1, 2, . . ., in the order
in which they appear in P . Accordingly, the bags in X also get indexed as
1, 2, . . .. For each vertex v ∈ V (G), define FirstIndexX (v) = min{i | Xi ∈ X
contains v}, LastIndexX (v) = max{i | Xi ∈ X contains v} and RangeX (v) =
[FirstIndexX (v), LastIndexX (v)]. By the definition of a path decomposition,
if t ∈ RangeX (v), then v ∈ Xt. If v1 and v2 are two distinct vertices, define
GapX (v1, v2) as follows:
– If RangeX (v1) ∩RangeX (v2) �= ∅, then GapX (v1, v2) = ∅.
– If LastIndexX (v1) < FirstIndexX (v2), then

GapX (v1, v2) = [LastIndexX (v1) + 1, F irstIndexX (v2)].
– If LastIndexX (v2) < FirstIndexX (v1), then

GapX (v1, v2) = [LastIndexX (v2) + 1, F irstIndexX (v1)].
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The motivation for this definition is the following. Suppose (P,X ) is a path
decomposition of a graph G and v1 and v2 are two non-adjacent vertices of G.
If we add a new edge between v1 and v2, a natural way to modify the path
decomposition to reflect this edge addition is the following. If GapX (v1, v2) = ∅,
there is an Xt ∈ X , which contains v1 and v2 together and hence, we need
not modify the path decomposition. If LastIndexX (v1) < FirstIndexX (v2),
we insert v1 into all Xt ∈ X , such that t ∈ GapX (v1, v2). On the other hand,
if LastIndexX (v2) < FirstIndexX (v1), we insert v2 to all Xt ∈ X , such that
t ∈ GapX (v1, v2). It is clear from the definition of GapX (v1, v2), that this
procedure gives a path decomposition of the new graph. Whenever we add an
edge (v1, v2), we stick to this procedure to update the path decomposition.

A block of a graph G is a maximal connected subgraph of G without a cut
vertex. Every block of a connected graph G is thus either a single edge which is
a bridge in G, or a maximal bi-connected subgraph of G. If a block of G is not a
single edge, we call it as a non-trivial block of G. Given a connected outerplanar
graph G, we define a rooted tree T (hereafter referred to as the rooted block tree
of G) as follows. The vertices of T are the blocks of G and the root of T is an
arbitrary block of G which contains at least one non-cut vertex (it is easy to see
that such a block always exists). Two vertices Bi and Bj of T are adjacent if
the blocks Bi and Bj share a cut vertex in G. It is easy to see that T , as defined
above, is a tree. In our discussions, we restrict ourselves to a fixed rooted block
tree of G. If block Bi is a child block of block Bj in the rooted block tree of G,
and they share a cut vertex x, we say that Bi is a child block of Bj at x.

It is known that every bi-connected outerplanar graph has a unique Hamilto-
nian cycle [14]. Though the Hamiltonian cycle of a bi-connected block of G can
be traversed either clockwise or anticlockwise, let us fix one of these orderings,
so that the successor and predecessor of each vertex in the Hamiltonian cycle of
the block is fixed. We call this order as the clockwise order. Consider a non-root
block Bi of G such that Bi is a child block of its parent, at the cut vertex x.
If Bi is a non-trivial block and yi and y′i respectively be the predecessor and
successor of x in the Hamiltonian cycle of Bi, we call yi as the last vertex of Bi

and y′i as the first vertex of Bi. If Bi is a trivial block, the neighbor of x in Bi

is regarded as both the first vertex and the last vertex of Bi. By the term path
we always mean a simple path, i.e., a path in which no vertex repeats.

3 An Overview of Our Method

Given a connected outerplanar graph G(V,E) of pathwidth p, our algorithm will
produce a bi-connected outerplanar graph G′′(V,E′′) of pathwidth O(p), where
E ⊆ E′′. Our algorithm proceeds in three stages.

(1) We use a modified version of the algorithm proposed by Govindan et al.
[7] to obtain a nice tree decomposition (defined in Section 4) of G. Using this
nice tree decomposition of G, we construct a special path decomposition of G of
width at most 4p+ 3.

(2) For each cut vertex x of G, we define an ordering among the child blocks
attached through x to their parent block. To define this ordering, we use the
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special path decomposition constructed in the first stage. This ordering helps us
in constructing an outerplanar supergraph G′(V,E′) whose pathwidth is at most
8p+7, and for every cut vertex x in G′, G′ \x has exactly two components. The
properties of the special path decomposition of G obtained in the first stage is
crucially used in our argument to bound the width of the path decomposition of
G′, produced in the second stage.

(3) We bi-connect G′ to construct G′′(V,E′′), using a straightforward algo-
rithm. As a by-product, this algorithm also gives us a surjective mapping from
the cut vertices of G′ to the edges in E′′\E′. We give a counting argument based
on this mapping and some basic properties of path decompositions to show that
the width of the path decomposition of G′′ produced in the third stage is at
most 16p+ 15.

4 Stage 1: Construct a Nice Path Decomposition of G

In this section, we construct a nice tree decomposition of the outerplanar graph
G and then use it to construct a nice path decomposition of G. We begin by
giving the definition of a nice tree decomposition.

Given an outerplanar graph G, Govindan et al. [7, Section 2] gave a linear
time algorithm to construct a width 2 tree decomposition (T,Y ) of G where
Y = (Yt : t ∈ V (T )), with the following special properties:

1. There is a bijective mapping b from V (G) to V (T ) such that v ∈ Yb(v).
(Hereafter, for any v ∈ V (G), while referring to the vertex b(v) of T , we just
call it as vertex v of T .)

2. If Bi is a child block of Bj at a cut vertex x, the induced subgraph T ′ of T
on the vertex set V (Bi \ x) is a spanning tree of Bi \ x and (T ′,Y ′) where
Y ′ = (Yt : t ∈ V (T ′)) gives a tree decomposition of Bi.

Definition 1 (Nice tree decomposition of an outerplanar graph G). A
tree decomposition (T,Y ) of G, where Y = (Yt : t ∈ V (T )) having properties 1
and 2 above, together with the following additional property, is called a nice tree
decomposition of G.

3. If yi and y′i are respectively the last and first vertices of a non-root, non-
trivial block Bi, then the bag Yyi ∈ Y contains both yi and y′i.

In the discussion that follows, we will show that any outerplanar graph G has
a nice tree decomposition (T,Y ) of width at most 3. Initialize (T,Y ) to be the
tree decomposition of G, constructed using the method proposed by Govindan
et al. [7], satisfying properties 1 and 2 of nice tree decompositions. We need to
modify (T,Y ) in such a way that, it satisfies property 3 as well.

For every non-root, non-trivial block Bi of G, do the following. If yi and y′i
are respectively the last and first vertices of Bi, then, for each t ∈ V (Bi \ x), we
insert y′i to Yt, if it is not already present in Yt and we call y′i as a propagated
vertex.
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Claim 1. After the modification, (T,Y ) remains as a tree decomposition of G.

Claim 2. After the modification, (T,Y ) becomes a nice tree decomposition of
G of width at most 3.

The proofs of the claims above are included in the full version [1]. From these
claims, we can conclude the following.

Lemma 1. Every outerplanar graph G has a nice tree decomposition (T,Y ) of
width 3, constructable in polynomial time.

Definition 2 (Nice path decomposition of an outerplanar graph). Let
(P ,X ) be a path decomposition of an outerplanar graph G. If, for every non-root
non-trivial block Bi, there is a bag Xt ∈ X containing both the first and last
vertices of Bi together, then (P ,X ) is called a nice path decomposition of G.

Lemma 2. Let G be outerplanar with pw(G) = p. A nice path decomposition
(P ,X ) of G, of width at most 4p+ 3, is constructable in polynomial time.

Proof. Let (T ,Y ) be a nice tree decomposition of G of width 3, obtained using
Lemma 1. Obtain an optimal path decomposition (PT ,XT ) of the tree T in
polynomial time, using a standard algorithm (See [12]). Since T is a spanning
tree of G, the pathwidth of T is at most that of G. Therefore, the width of the
path decomposition (PT ,XT ) is at most p; i.e. there are at most p+ 1 vertices
of T in each bag XTi ∈ XT .

Let P = PT and for each XTi ∈ XT , we define Xi =
⋃

vT∈XTi
YvT . Clearly,

(P ,X ), with X = (X1, . . . , X|V (PT )|), is a path decomposition of G (See [7]).
The width of this path decomposition is at most 4(p + 1) − 1 = 4p + 3, since
|YvT | ≤ 4, for each bag YvT ∈ Y and |XTi | ≤ p+ 1, for each bag XTi ∈ XT .

Let Bi be a non-root, non-trivial block in G and yi and y′i respectively be
the first and last vertices of Bi. Since yi is a vertex of the tree T , there is
some bag XTj ∈ XT , containing yi. The bag Yyi ∈ Y contains both yi and y′i,
since (T ,Y ) is a nice tree decomposition of G. It follows from the definition of
Xj , that Xj ∈ X contains both yi and y′i. Therefore, (P ,X ) is a nice path
decomposition of G. �	

5 Edge Addition without Spoiling the Outerplanarity

In this section, we give two technical lemmas, which will be later used to prove
that the intermediate graph G′ obtained in Stage 2 and the bi-connected graph
G′′ obtained in Stage 3 are outerplanar. These lemmas are easy to visualize (See
Fig 1). The proofs are included in the full version [1].

Lemma 3. Let G(V,E) be a connected outerplanar graph. Let u and v be two
distinct non-adjacent vertices in G and let P = (u = x0, x1, x2, . . . , xk, xk+1 = v)
where k ≥ 1 be a path in G such that:
P shares at most one edge with any block of G.
For 0 ≤ i ≤ k, if the block containing the edge (xi, xi+1) is non-trivial, then

xi+1 is the successor of xi in the Hamiltonian cycle of that block.
Then the graph G′(V,E′), where E′ = E ∪ {(u, v)}, is outerplanar.
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Fig. 1. The path between u and v and the path between u′ and v′ (shown in thick
edges) satisfy the conditions stated in Lemma 3. By adding any one of the dotted
edges (u, v) or (u′, v′), the graph remains outerplanar. When the edge (u, v) is added,
u, v, a, b, c, d, e, f, g, h, i, j, k, l, u is the Hamiltonian cycle of the new block formed.

The following lemma explains the effect of the addition of an edge (u, v) as
mentioned in Lemma 3, to the block structure and the Hamiltonian cycle of
each block. Assume that for 0 ≤ i ≤ k, the edge (xi, xi+1) belongs to the
block Bi.

Lemma 4. 1. Other than the blocks B0 to Bk of G merging together to form
a new block B′ of G′, blocks in G and G′ are the same.

2. Vertices in blocks B0 to Bk, except xi, 0 ≤ i ≤ k+1, retains their successor
and predecessor in the Hamiltonian cycle of B′ same as it was in its respective
block’s Hamiltonian cycle in G.

3. Each xi, 0 ≤ i ≤ k, retains its Hamiltonian cycle predecessor in B′ same as
it was in the block Bi of G and each xi, 1 ≤ i ≤ k+1, retains its Hamiltonian
cycle successor in B′ same as in the block Bi−1 of G.

6 Stage 2: Construction of G′ and Its Path Decomposition

For each cut vertex x of G, we define an ordering among the child blocks attached
through x to their parent block, using the nice path decomposition (P ,X ) of
G obtained using Lemma 2. This ordering is then used in defining a supergraph
G′(V,E′) of G such that for every cut vertex x in G′, G′ \ x has exactly two
components. Using repeated applications of Lemma 3, we then show that G′ is
outerplanar. We extend the path decomposition (P ,X ) of G to a path decom-
position (P ′,X ′) of G′, as described in Section 2. By a counting argument using
the properties of the nice path decomposition (P ,X ), we show that the width
of (P ′,X ′) is at most 2p′ + 1, where p′ is the width of (P ,X ).
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6.1 Defining an Ordering of Child Blocks

If (P ,X ) is a nice path decomposition of G, then, for each non-root block B of
G, at least one bag in X contains both the first and last vertices of B together.

Definition 3 (Sequence number of a non-root block). Let (P ,X ) be the
nice path decomposition of G obtained using Lemma 2. For each non-root block
B of G, we define the sequence number of B as min{i | Xi ∈ X simultaneously
contains both the first and last vertices of B}.

For each cut vertex x, there is a unique block Bx such that Bx and its child
blocks are intersecting at x. For each cut vertex x, we define an ordering among
the child blocks attached at x, as follows. If B1, . . . , Bk are the child blocks
attached at x, we order them in the increasing order of their sequence numbers
in (P ,X ). If Bi and Bj are two child blocks with the same sequence number,
their relative ordering is arbitrary.

From the ordering defined, we can make some observations about the ap-
pearance of the first and last vertices of a block Bi in the path decomposition.
These observations are crucially used for bounding the width of the path decom-
position (P ′,X ′) of G′. Let B1, . . . , Bk are the child blocks attached at a cut
vertex x, occurring in that order according to the ordering we defined above. For
1 ≤ i ≤ k, let yi and y′i respectively be the last and first vertices of Bi.

Property 1. For any 1 ≤ i ≤ k−1, if GapX (y′i, yi+1) �= ∅, then GapX (y′i, yi+1) =
[LastIndexX (y′i)+1, F irstIndexX (yi+1)] and x ∈ Xt for all t ∈ GapX (y′i, yi+1).

Property 2. For any 1 ≤ i < j ≤ k − 1, GapX (y′i, yi+1) ∩GapX (y′j , yj+1) = ∅.
The proofs of these properties directly follow from the definitions and are given
in the full version [1].

6.2 Algorithm for Constructing G′ and Its Path Decomposition

We use Algorithm 1 to construct G′(V,E′) and a path decomposition (P ′,X ′) of
G′. The processing of each cut vertex is done in lines 2 to 7 of Algorithm 1. While
processing a cut vertex x, the algorithm adds the edges (y′1, y2), (y

′
2, y3), . . . ,

(y′kx−1, ykx) (as defined in the algorithm) and modifies the path decomposition,
to reflect each edge addition.

Lemma 5. G′ is outerplanar and for each cut vertex x of G′, G′ \x has exactly
two components.

We can prove this by applying Lemma 3, following the addition of each edge in
E′ \ E by Algorithm 1. Refer to the full version [1] for the proof.

Lemma 6. (P ′,X ′) is a path decomposition of G′ of width at most 8p+ 7.

Proof. Algorithm 1 initialized (P ′,X ′) to (P ,X ) and modified it during each
edge addition. By Property 1, we have GapX (y′i, yi+1) = [LastIndexX (y′i) +
1, F irstIndexX (yi+1)]. Hence, by the modification done in lines 7 to 7 while
adding a new edge (y′i, yi+1), (P ′,X ′) becomes a path decomposition of the
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Algorithm 1. Computing G′ and its path decomposition

Input: An outerplanar graph G(V , E) and a nice path decomposition (P ,X ) of
G, the rooted block tree of G, the Hamiltonian cycle of each non-trivial
block of G and the first and last vertices of each non-root block of G

Output: An outerplanar supergraph G′(V , E′) of G such that, for every cut
vertex x of G′, G′ \ x has exactly two connected components, a path
decomposition (P ′,X ′) of G′

1 E′ = E, (P ′,X ′) = (P ,X )
2 for each cut vertex x ∈ V (G) do
3 Let B1, . . . , Bkx , in that order, be the child blocks attached at x, according

to the ordering defined in Section 6.1
4 for i = 1 to kx − 1 do
5 Let y′

i be the first vertex of Bi and yi+1 be the last vertex of Bi+1

6 E′ = E′ ∪ {(y′
i, yi+1)}

7 if GapX (y′
i, yi+1) �= ∅ then for t ∈ GapX (y′

i, yi+1) do X ′
t = X ′

t ∪{y′
i}

graph containing the edge (y′i, yi+1), by the method explained in Section 2. It
follows that (P ′,X ′) is a path decomposition of G′.

Consider any X ′
t ∈ X ′. While processing the cut vertex x, if Algorithm 1

inserts a new vertex y′i to X ′
t, to reflect the addition of a new edge (y′i, yi+1)

then, t ∈ GapX (y′i, yi+1). Suppose (y′i, yi+1) and (y′j , yj+1) are two new edges
added while processing the cut vertex x, where, 1 ≤ i < j ≤ kx− 1. By property
2, we know that if t ∈ GapX (y′i, yi+1), then, t /∈ GapX (y′j , yj+1). Therefore,
when the algorithm is processing a cut vertex x in lines 2 to 7, at most one
vertex is newly getting inserted to X ′

t. Moreover, if t ∈ GapX (y′i, yi+1) then,
the cut vertex x ∈ Xt, by Property 1. It follows that |X ′

t| ≤ |Xt|+number
of cut vertices in Xt ≤ 2|Xt| ≤ 2(4p + 4). Therefore, the width of the path
decomposition (P ′,X ′) is at most 8p+ 7. �	

7 Construction of G′′ and Its Path Decomposition

In this section, we give an algorithm to add some more edges to G′(V,E′) so
that the resultant graph G′′(V,E′′) is bi-connected. The algorithm also extend
the path decomposition (P ′,X ′) of G′ to a path decomposition (P ′′,X ′′) of G′′.
An analysis of the algorithm shows the existence of a surjective mapping from
the cut vertices of G′ to the edges in E′′ \E′. A counting argument based on the
surjective mapping shows that the width of the path decomposition (P ′′,X ′′) is
at most 16p+ 15. For making our presentation simpler, if a block Bi is just an
edge (u, v), we abuse the definition of a Hamiltonian cycle and say that u and v
are clockwise neighbors of each other in the Hamiltonian cycle of Bi.

Recall that the graph G′ has the property that for every cut vertex x of G′,
G′ \ x has exactly two components. Since any cut vertex belongs to exactly two
blocks of G, based on the rooted block tree structure of G, we call them as the
parent block containing x and the child block containing x. We use childx(B)
to denote the child block of the block B at the cut vertex x and parent(B) to
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denote the parent block of the block B. For a block B, nextB(v) denotes the
successor of the vertex v in the Hamiltonian cycle of B.

To get an intuition about our algorithm, the reader may consider it as a
traversal of vertices of G′, starting from a non-cut vertex in the root block
of G′ and proceeding to the successor of v on reaching a non-cut vertex v.
On reaching a cut vertex x, the algorithm recursively traverses the child block
containing x and its descendant blocks and comes back to x to continue the
traversal of the remaining graph. However, before starting the recursive traversal
of the child block containing x and its descendant blocks, the algorithm sets
bypass(x) = TRUE. (Note that, since there is only one child block attached
to any cut vertex, each cut vertex is bypassed only once.) In this way, when a
sequence of one or more cut vertices is bypassed, an edge is added from the vertex
preceding the first bypassed vertex in the sequence to the vertex succeeding the
last bypassed vertex in the sequence. The path decomposition is also modified,
to reflect this edge addition. The detailed algorithm to bi-connect G′ is given in
Algorithm 2. The following Lemma summarizes some observations about how
Algorithm 2 works. A proof this lemma can be found in the full version [1].

Algorithm 2. Computing a bi-connected outerplanar supergraph

Input: An outerplanar graph G′(V , E′) such that G′ \ x has exactly two
connected components for every cut vertex x of G′. A path
decomposition (P ′,X ′) of G′. The rooted block tree of G′, the
Hamiltonian cycle of each non-trivial block of G′ and the first and last
vertices of each non-root block of G′

Output: A bi-connected outerplanar supergraph G′′(V , E′′) of G′, a path
decomposition (P ′′,X ′′) of G′′

1 E′′ = E′, (P ′′,X ′′) = (P ′,X ′)
2 for each vertex v ∈ V (G′) do
3 completed(v) = FALSE, if v is a cut vertex then bypass(v) = FALSE
4 Choose v to be some non-cut vertex of the root block
5 B = root block, completed(v) =TRUE, completedCount = 1
6 while completedCount < |V (G′)| do
7 v′ = nextB(v)
8 while v′ is a cut vertex and bypass(v′) is FALSE do
9 bypass(v′) =TRUE, B = childv′(B), v′ = nextB(v

′)
10 if v′ is a cut vertex and bypass(v′) is TRUE then B = parent(B)
11 completed(v′)= TRUE, completedCount = completedCount+ 1
12 if (v, v′) is not an edge in G′ then
13 E′′ = E′′ ∪ {(v, v′)}
14 if GapX ′(v, v′) �= ∅ then
15 if LastIndexX ′(v) < FirstIndexX ′(v′) then for t ∈ GapX ′(v, v′)

do X ′′
t = X ′′

t ∪ {v}
16 else if LastIndexX ′(v′) < FirstIndexX ′(v) then for

t ∈ GapX ′(v, v′) do X ′′
t = X ′′

t ∪ {v′}
17 v = v′
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Lemma 7. 1. Inside a block, the algorithm traverses vertices in the clockwise
order of the unique Hamiltonian cycle of the block.

2. When the algorithm encounters a non-cut vertex x during the traversal, it
declares that x is completed.

3. The algorithm encounters a cut vertex x for the first time, while travers-
ing the parent block containing x. Then, the algorithm bypasses x (i.e. set
bypass(x) =TRUE) and descends to the child block containing x and start
traversing the child block from the successor of x in the child block’s Hamil-
tonian cycle.

4. When the algorithm encounters a cut vertex x for a second time, the current
block being traversed is the child block containing x. Then the algorithm
traverses x and declare that x is completed and ascends to the parent block
containing x. Then it continues the traversal of the parent block containing
x, by considering the successor of x in the parent block’s Hamiltonian cycle.

5. When the algorithm declares that a cut vertex x is completed, all vertices of
the child block containing x and all its descendant blocks have been completed.

6. Every vertex is encountered at least once. Every vertex is completed and a
vertex which is declared completed is never encountered again. When
completedCount = |V (G′)|, all the vertices of the graph have been completed.

7. When the algorithm is bypassing a sequence of one or more cut vertices,
an edge is added from the vertex preceding the first bypassed vertex in the
sequence to the vertex succeeding the last bypassed vertex in the sequence and
the path decomposition is modified, to reflect this edge addition.

8. Every new edge added has a sequence of bypassed cut vertices associated with
it. If x1, x2, . . . , xk is the sequence of bypassed cut vertices associated with
an edge (u, v) ∈ E′′ \ E′, then u, x1, x2, . . . , xk, v is a path in G′. Each cut
vertex of G′ is bypassed exactly once in our traversal and hence associated
with a unique edge in E′′ \ E′.

Lemma 8. G′′ is bi-connected.

Proof. We show that G′′ does not have any cut vertices. Since G′′ is a supergraph
of G′, if a vertex x is not a cut vertex in G′, it will not be a cut vertex in G′′.
We need to show that the cut vertices in G′ become non-cut vertices in G′′.
Consider a newly added edge (u, v) of G′′. Without loss of generality, assume that
u was completed before v in the traversal, and (x1, x2, . . . , xk) is the sequence
of bypassed cut vertices associated with the edge (u, v). When our algorithm
adds the edge (u, v), it creates the cycle u, x1, x2, . . . , xk, v, u in the resultant
graph. Recall that, for each 1 ≤ i ≤ k, G′ \ xi had exactly two components; one
containing xi−1 and the other containing xi+1. After the addition of the edge,
vertices xi−1, xi and xi+1 lie on a common cycle. Hence, when the edge (u, v)
is added, for 1 ≤ i ≤ k, xi is no longer a cut vertex. Since every cut vertex in
G′ was part of the bypass sequence associated with some edge in E′′ \E′, all of
them become non-cut vertices in G′′. �	

Lemma 9. G′′ is outerplanar.

For a proof of this lemma, refer to the full version [1].
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Lemma 10. (P ′′,X ′′) is a path decomposition of G′′ of width at most 16p+15.

Proof. It is clear that (P ′′,X ′′) is a path decomposition of G′′, since we con-
structed it using the method explained in Section 2.

For each 1 ≤ i ≤ m, let Si = {x1, . . . , xk} denote the set of cut vertices
that belong to the bypassed cut vertex sequence associated with the edge ei =
(ui, vi) ∈ E′′ \ E′. While adding the edge ei, a vertex was inserted into X ′′

t ∈
X ′′ only if t ∈ GapX ′(ui, vi). We will now show that, if t ∈ GapX ′(ui, vi),
then, X ′

t ∩ Si �= ∅. Without loss of generality, assume that LastIndexX ′(ui) <
FirstIndexX ′(vi). Let x1, . . . , xk be the sequence of cut vertices bypassed while
adding the edge (ui, vi). Since ui is adjacent to x1, both of them are together
present in some bag in X ′

t ∈ X ′, with t ≤ LastIndexX ′(ui). Similarly, since vi
is adjacent to xk, they both are together present in some bag X ′

t ∈ X ′, with
t ≥ FirstIndexX ′(vi). The sequence x1, . . . , xk is a path in G′ between x1 and
xk. Therefore, every bag in X ′

t ∈ X ′ with t ∈ GapX ′(ui, vi) should contain at
least one of the cut vertices from the set Si.

Thus, by the modification done to the path decomposition to reflect the ad-
dition of the edge ei, the size of each bag in X ′′

t ∈ X ′′ with t ∈ GapX ′(ui, vi)
increases by exactly one and in that case, X ′

t ∩ Si �= ∅. The other bags are
unaffected by this modification. Therefore, for any t in the index set, |X ′′

t | =
|X ′

t|+ |{i | 1 ≤ i ≤ m,Si ∩X ′
t �= ∅}|. But, |{i | 1 ≤ i ≤ m,Si ∩X ′

t �= ∅}| ≤ |X ′
t|,

because Si ∩ Sj = ∅, for 1 ≤ i < j ≤ m, by part 8 of Lemma 7. Therefore, for
any t, |X ′′

t | ≤ 2|X ′
t| ≤ 2(8p + 8). Therefore, width of the path decomposition

(P ′′,X ′′) is at most 16p+ 15. �	

8 Efficiency

The preprocessing step of computing a rooted block tree of the given outerplanar
graph G and finding the Hamiltonian cycles of each non-trivial block can be done
in linear time [4,8,14]. The special tree decomposition in Govindan et al.[7] is
also computable in linear time. Using the Hamiltonian cycle of each non-trivial
block, we did only a linear time modification in Section 4, to produce the nice
tree decomposition (T,Y ) of G. An optimal path decomposition of the tree T ,
of total size O(n pw(T )) can be computed in time O(n pw(T ))[12]. The time
taken is O(n log n), since outerplanar graphs have pathwidth at most logn, and
T was a spanning tree of the outerplanar graph G. For computing the nice path
decomposition (P ,X ) of G in Section 4, the time spent is linear in the size of the
path decomposition obtained for T , i.e, O(n log n) and the total size of (P ,X )
is O(n logn). Computing the FirstIndex, LastIndex and Range of vertices and
the sequence number of blocks can be done in time linear in the size of the
path decomposition. Since the resultant graph is outerplanar, Algorithm 1 and
Algorithm 2 adds only a linear number of new edges. Since the size of each
bag in the path decompositions (P ′,X ′) of G′ and (P ′′,X ′′) of G′′ are only a
constant times the size of the corresponding bag in (P ,X ), the time taken for
modifying (P ,X ) to obtain (P ′,X ′) and later modifying it to (P ′′,X ′′) takes
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only time linear in size of (P ,X ); i.e., O(n log n) time. Hence, the time spent in
constructing G′′ and its path decomposition of width O(pw(G)) is O(n log n).

9 Conclusion

In this paper, we have described a O(n log n) time algorithm to add edges to
a given outerplanar graph G of pathwidth p to get a bi-connected outerplanar
graph G′′ of pathwidth at most 16p + 15. We also get the corresponding path
decomposition of G′′ in O(n log n) time. Our technique is to produce a nice path
decomposition of G and make use of the properties of this decomposition, while
adding the new edges. Our algorithm can be used as a preprocessing step, in the
algorithm proposed by Biedl [3], to produce a planar drawing of G on a grid of
height O(p). As explained by Biedl [3], this is a constant factor approximation
algorithm, to get a planar drawing of G of minimum height.
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