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Abstract. The Maximun Agreement Forest problem (maf) asks for a
largest common subforest of a collection of phylogenetic trees. The maf
problem on two binary phylogenetic trees has been studied extensively in
the literature. In this paper, we present the first group of fixed-parameter
tractable algorithms for the maf problem on multiple (i.e., two or more)
binary phylogenetic trees. Our techniques work fine for the problem for
both rooted trees and unrooted trees. The computational complexity of
our algorithms is comparable with that of the known algorithms for two
trees, and is independent of the number of phylogenetic trees for which
a maximum agreement forest is constructed.

1 Introduction

Phylogenetic trees have been widely used in the study of evolutionary biology
to represent the tree-like evolution of a collection of species. However, different
methods often lead to different trees. In order to facilitate the comparison of
different phylogenetic trees, several distance metrics have been proposed, such
as Robinson-Foulds [11], NNI [10], TBR and SPR [9,13].

A graph theoretical model, the maximum agreement forest (MAF) of two
phylogenetic trees, has been formulated for the TBR distance and the SPR
distance [8] for phylogenetic trees. Define the order of a forest to be the number
of connected components in the forest.1 Allen and Steel [1] proved that the TBR
distance between two unrooted binary phylogenetic trees is equal to the order
of their MAF minus 1, and Bordewich and Semple [3] proved that the rSPR
distance between two rooted binary phylogenetic trees is equal to the order of
their rooted version of MAF minus 1. In terms of computational complexity, it is
known that computing the order of an MAF is NP-hard for two unrooted binary
phylogenetic trees [8], as well as for two rooted binary phylogenetic trees [3].

Thus, the order of an MAF measures the “difference” between the two phy-
logenetic trees constructed from the same collection of species, which can be
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1 The definitions for the study of maximum agreement forests have been kind of con-
fusing. If size denotes the number of edges in a forest, then for a forest, the size is
equal to the number of vertices minus the order. In particular, when the number of
vertices is fixed, a forest of a large size means a small order of the forest.
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small in practice. This observation has motivated the study of parameterized
algorithms for the MAF problem, where the problem is parameterized by the
order k of an MAF. A parameterized problem is fixed-parameter tractable [6] if
it is solvable in time f(k)nO(1). In particular, for small values of the parameter
k, such an algorithm may solve the problem more effectively. Allen and Steel [1]
showed that the MAF problem on unrooted binary phylogenetic trees is fixed-
parameter tractable. Hallett and McCartin [7] developed a faster parameterized
algorithm of running time O(4kk5 + nO(1)) for the MAF problem on two un-
rooted binary phylogenetic trees. Whidden and Zeh [15] further improved the
time complexity to O(4kk + n3) or O(4kn). A further faster algorithm has been
announced recently by Chen, Fan, and Sze [5], which runs in time O(3kn) and
is currently the fastest algorithm for the MAF problem on two unrooted binary
phylogenetic trees. For the MAF problem on two rooted binary phylogenetic
trees, Bordewich et al. [2] developed a parameterized algorithm of running time
O(4kk4 + n3). Whidden et al. [14] improved this bound and developed an algo-
rithm of running time O(2.42kk+n3). This is currently the fastest algorithm for
the MAF problem on two rooted binary phylogenetic trees.

On the other hand, the computational complexity for the MAF problem on
more than two phylogenetic trees has not been studied as extensively as that on
two trees. Note that it makes perfect sense to investigate the MAF problem on
more than two phylogenetic trees: we may construct the phylogenetic trees for
the same collection of species using more than two methods. However, it seems
much more difficult to construct an MAF for more than two trees than that for
two trees. For example, while there have been several polynomial-time approx-
imation algorithms of ratio 3 for the MAF problem on two rooted binary phy-
logenetic trees [12,14] (the same ratio even holds true for the MAF problem on
two unrooted multifurcating trees [5]), the best polynomial-time approximation
algorithm [4] for the MAF problem on more than two rooted binary phyloge-
netic trees has a ratio 8. Similarly, while there have been more than half-dozen
fixed-parameter tractable algorithms for the MAF problem on two (rooted or
unrooted) binary phylogenetic trees [1,2,5,7,14,15], to our best knowledge, it is
still unknown whether the MAF problem on more than two (rooted or unrooted)
binary phylogenetic trees is fixed-parameter tractable.

In the current paper, we will be focused on parameterized algorithms for the
MAF problem on multiple (i.e., two or more) binary phylogenetic trees, for both
the version of rooted trees and the version of unrooted trees. Our main contri-
butions include an O(3kn)-time parameterized algorithm for the MAF problem
on multiple rooted binary phylogenetic trees, and an O(4kn)-time parameterized
algorithm for the MAF problem on multiple unrooted binary phylogenetic trees.
Our algorithms show that these problems are fixed-parameter tractable.

Our algorithms are based on the following simple ideas that, however, require
a careful and efficient implementation. Let C = {T1, T2, . . . , Tm} be a collection
of rooted or unrooted binary phylogenetic trees. Note that an MAF of order k
for the trees in C must be an agreement forest for the first two trees T1 and T2,
which although may not be necessarily maximum. Therefore, if we can essentially
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examine all agreement forests of order bounded by k for the trees T1 and T2,
then we can easily check if any of them is an MAF for all the trees in C (note that
checking if a forest is a subgraph of a tree in C is easy). In order to implement
this idea, however, we must overcome the following difficulties. First, we must
ensure that no agreement forest in our concern is missing. This in fact requires
new and non-trivial techniques: all MAF algorithms for two trees proposed in
the literature are based on resolving conflicting structures in the two trees, and
do not guarantee examining all agreement forests of order bounded by k. The
conflicting structures help to identify edges in the trees whose removal leads
to the construction of the MAF. Therefore, if the two trees T1 and T2 do not
conflict much (in an extreme case, T1 and T2 are isomorphism), then an MAF
for T1 and T2 may not help much for constructing an MAF for all the trees in C.
Secondly, with the assurance that essentially all concerned agreement forests for
T1 and T2 are examined, we must make sure that our algorithms are sufficiently
efficient. This goal has also been nicely achieved: compared with the algorithms
published in the literature, our O(3kn)-time algorithm for the MAF problem on
multiple rooted binary phylogenetic trees is asymptotically faster than the best
published algorithm for the MAF problem on two rooted binary phylogenetic
trees, which runs in time O(4knO(1)) [3], and our O(4kn)-time algorithm for
the MAF problem on multiple unrooted binary phylogenetic trees matches the
computational complexity of the best published algorithm for the MAF problem
on two unrooted binary phylogenetic trees [7]. Only very recent work on two
rooted trees [14] and on two unrooted trees [5], still in the status of unpublished
manuscripts, has slightly improved these bounds, which, however, do not seem
to be extendable to the problems on more than two trees. On the other hand,
our algorithms work fine for the MAF problems for an arbitrary number of trees.

2 Definitions and Problem Formulations

A tree is a single-vertex tree if it consists of a single vertex, which is the leaf of
the tree. A tree is a single-edge tree if it consists of a single edge. A tree is binary
if either it is a single-vertex tree or each of its vertices has degree either 1 or 3.
The degree-1 vertices are leaves and the degree-3 vertices are non-leaves of the
tree. There are two versions in our discussion, one is on unrooted trees and the
other is on rooted trees. We first give the terminologies on the unrooted version,
then remark on the differences for the rooted version. Let X be a fixed label-set.

Unrooted X-Trees and X-Forests
A binary tree is unrooted if no root is specified in the tree – in this case no
ancestor-descendant relation is defined in the tree. For the label-set X , an un-
rooted binary phylogenetic X-tree, or simply an unrooted X-tree, is an unrooted
binary tree whose leaves are labeled bijectively by the label-set X (all non-
leaves are not labeled). An unrooted X-tree will also be called an (unrooted)
leaf-labeled tree if the label-set X is irrelevant. A subforest of an unrooted X-tree
T is a subgraph of T , and a subtree of T is a connected subgraph of T . An
unrooted X-forest F is a subforest of an unrooted X-tree T that contains all
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leaves of T such that each connected component of F contains at least one leaf
in T . Thus, an unrooted X-forest F is a collection of leaf-labeled trees whose
label-sets are disjoint such that the union of the label-sets is equal to X . Define
the order of the X-forest F , denoted Ord(F ), to be the number of connected
components in F . For a subset X ′ of the label-set X , the subtree induced by X ′

in an unrooted X-tree T , denoted by T [X ′], is the minimal subtree of T that
contains all leaves with labels in X ′.

A subtree T ′ of an unrooted X-tree may contain unlabeled vertices of degree
less than 3. In this case we apply the forced contraction operation on T ′, which
replaces each degree-2 vertex v and its incident edges with a single edge connect-
ing the two neighbors of v, and removes each unlabeled vertex that has degree
smaller than 2. Note that the forced contraction does not change the order of
an X-forest. An X-forest F is strongly reduced if the forced contraction does
not apply to F . It has been well-known that the forced contraction operation
does not affect the construction of an MAF for X-trees (see, for example, [2,7]).
Therefore, we will assume that the forced contraction is applied immediately
whenever it is applicable. Thus, the X-forests in our discussion are always as-
sumed to be strongly reduced. With this assumption, a unlabeled vertex in an
unrooted X-trees is always of degree 3. If a leaf-labeled forest F ′ is isomorphic to
a subforest of an X-forest F (up to the forced contraction), then we will simply
say that F ′ is a subforest of F .

Rooted X-Trees and X-Forests
A binary tree is rooted if a particular leaf is designated as the root (so it is both
a root and a leaf), which specifies a unique ancestor-descendant relation in the
tree. A rooted X-tree is a rooted binary tree whose leaves are labeled bijectively
by the label-set X . The root of an X-tree will always be labeled by a special
symbol ρ in X . A subtree T ′ of a rooted X-tree T is a connected subgraph
of T which contains at least one leaf in T . In order to preserve the ancestor-
descendant relation in T , we should define the root of the subtree of T . If T ′

contains the leaf ρ, certainly, it is the root of the subtree; if T ′ does not contain
the leaf ρ, the node in T ′ which is the least common ancestor of the leaves in
T ′ is defined to be the root of T ′. A subforest of a rooted X-tree T is defined
to be a subgraph of T . A (rooted) X-forest F is a subforest of a rooted X-tree
T that contains a collection of subtrees whose label-sets are disjoint such that
the union of the label-sets is equal to X . Thus, one of the subtrees in a rooted
X-forest F must have the vertex labeled ρ as its root.

We again assume that the forced contraction is applied immediately whenever
it is applicable. However, if the root r of a subtree T ′ is of degree 2, then the
operation will not be applied on r, in order to preserve the ancestor-descendant
relation in T . Therefore, after the forced contraction, the root of a subtree T ′ of a
rooted X-tree is either an unlabeled vertex of degree-2, or the vertex labeled ρ of
degree-1 , or a labeled vertex of degree-0. All unlabeled vertices in T ′ that is not
the root of T ′ have degree 3. We say that a leaf-labeled forest F ′ is a subforest
of a rooted X-forest F if F ′ is isomorphic to a subforest of the X=forest F (up
to the forced contraction).



Parameterized Algorithms for Maximum Agreement Forest on Multiple Trees 571

Agreement Forests
The following terminologies are used for both rooted and unrooted versions.

An X-forest F is an agreement forest for a collection {F1, F2, . . . , Fm} of
X-forests if F is a subforest of Fi, for all i. A maximum agreement forest
(abbr. MAF) F ∗ for {F1, F2, . . . , Fm} is an agreement forest for {F1, F2, . . . , Fm}
with a minimum Ord(F ∗) over all agreement forests for {F1, F2, . . . , Fm}.

The problems we are focused on are parameterized versions of the Maximum
Agreement Forest Problem for an arbitrary number of X-trees, with a rooted
version and an unrooted version, which are formally given as follows.

rooted maximum agreement forest (rooted-maf)
Input: A set {F1, . . . , Fm} of rooted X-forests, and a parameter k
Output: an agreement forest F ∗ for {F1, . . . , Fm} with Ord(F ∗) ≤ k,

or report that no such an agreement forest exists

unrooted maximum agreement forest (unrooted-maf)
Input: A set {F1, . . . , Fm} of unrooted X-forests, and a parameter k
Output: an agreement forest F ∗ for {F1, . . . , Fm} with Ord(F ∗) ≤ k,

or report that no such an agreement forest exists
When each of the X-forests F1, . . ., Fm is an X-tree, the above problems be-
come the standard Maximum Agreement Forest Problems on multiple binary
phylogenetic trees, for the rooted version and the unrooted version, respectively.

The following concept on two X-forests will be important in our discussion,
which applies to both rooted version and the unrooted version.

Definition 1. Let F1 and F2 be two X-forests (either both rooted or both
unrooted). An agreement forest F for F1 and F2 is a maximal agreement forest
(maximal-AF) for F1 and F2 if there is no agreement forest F ′ for F1 and F2

such that F is a subforest of F ′ and Ord(F ′) < Ord(F ).

By definition, an MAF for two X-forests F1 and F2 is also a maximal-AF for
F1 and F2. Note that every agreement forest for two X-forests F1 and F2 is a
subforest of a maximal-AF F ′ for F1 and F2, but F

′ may not be unique.

3 Maximal-AF for Two X-Forests

Fix a label-set X . Because of the bijection between the leaves in an X-forest F
and the elements in the label-set X , sometimes we will use, without confusion,
a label in X to refer to the corresponding leaf in F , or vice versa.

Let F1 and F2 be two X-forests, either both are rooted or both are unrooted.
In this section, we discuss how we enumerate all maximal-AF for F1 and F2.
The discussion is divided into the case for the rooted version and the case for
the unrooted version.

Rooted Maximal-AF
In this case, both F1 and F2 are rooted X-forests. We proceed by repeatedly
removing edges in F1 and F2 until certain condition is met. Let F ∗ be a fixed
maximal-AF for F1 and F2.

Two labels a and b (and their corresponding leaves) in a forest are siblings if
they have the common parent. We start with the following simple lemma.
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Lemma 1. Let F1 and F2 be two strongly reduced rooted X-forests. If F2 con-
tains no sibling pairs, then F1 and F2 has a unique maximal-AF that can be
constructed in linear time.

Proof. Let T be a connected component of F2, which is a rooted leaf-labeled
tree. If F2 contains no sibling pairs, then neither does T . Therefore, if T does
not contain the root ρ, then T must be a single-vertex tree whose leaf is a labeled
vertex. If T contains ρ, then T is either a single-vertex tree whose leaf is ρ or
a single-edge tree whose root is ρ with a unique child that is labeled by a label
τ . Thus, all connected components of the X-forest F2 are single-vertex trees,
except at most one that is a single-edge tree whose two leaves are labeled by the
elements ρ and τ in X . Therefore, if the leaves ρ and τ are in the same connected
component in the X-forest F1, then the (unique) maximal-AF for F1 and F2 is
the X-forest F2 itself. On the other hand, if ρ and τ are in different connected
components in F1, then the maximal-AF (again unique) for F1 and F2 consists
of only single-vertex trees, each is labeled by an element in X . ��

By Lemma 1, therefore, in the following discussion, we will assume that the
rooted X-forest F2 has a sibling pair (a, b). By definition, a and b cannot be ρ.
Let p2, which is an unlabeled vertex, be the parent of a and b in F2. If one of
a and b is a single-vertex tree in the X-forest F1, then we can remove the edge
in F2 that is incident to the label, and break up the sibling pair in F2. Thus, in
the following discussion, we assume that none of a and b is a single-vertex tree
in F1. Let p1 and p′1 be the parents of a and b in F1, respectively. We consider
all possible cases for the labels a and b in the X-forest F1.
Case 1. The labels a and b are in different connected components in F1.

In this case, a and b cannot be in the same connected component in the
maximal-AF F ∗. Therefore, one of the edges [a, p2] and [b, p2] in F2 must be
removed, which forces one of the labels a and b to be a single-vertex tree in the
maximal-AF F ∗. Therefore, in this case, we apply the following branching step:

Step 1. (branch-1) remove the edge [a, p1] in F1 and the edge [a, p2] in F2

to make a a single-vertex tree in both F1 and F2;
(branch-2) remove the edge [b, p′1] in F1 and the edge [b, p2] in F2

to make b a single-vertex tree in both F1 and F2.

One of these branches will keep F ∗ a maximal-AF for the new F1 and F2.
Case 2. The labels a and b are also siblings in F1, i.e., p1 = p′1.

Since F ∗ is a maximal-AF, in this case, a and b must be also siblings in
F ∗. Therefore, the structure that consists of a and b and their parent remains
unchanged when we construct F ∗ from F1 and F2 by removing edges in F1 and
F2. Thus, this structure can be regarded as a single leaf labeled by a “combined”
label ab in both F1 and F2. To implement this, we apply the following step:

Step 2. Remove a and b, and make their parent a new leaf labeled ab, in both
F1 and F2.

We call the operation in Step 2 “shrinking a and b into a new label ab”. This
step not only changes the structure of F1 and F2, but also replaces the label-set
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X with a new label-set (X \ {a, b})) ∪ {ab}. If we also apply this operation in
the maximal-AF F ∗, then the new F ∗ remains a maximal-AF for F1 and F2.
Case 3. The labels a and b are in the same connected component in F1 but are
not siblings.

Let P = {a, c1, c2, . . . , cr, b} be the unique path in F1 connecting a and b, in
which ch is the least common ancestor of a and b, 1 ≤ h ≤ r. Since a and b are
not siblings, r ≥ 2. See Figure 1(a) for an illustration. There are three subcases.

Subcase 3.1. a is a single-vertex tree in F ∗. Then removing the edge incident
to a in both F1 and F2 keeps F ∗ a maximal-AF for F1 and F2.

Subcase 3.2. b is a single-vertex tree in F ∗. Then removing the edge incident
to b in both F1 and F2 keeps F ∗ a maximal-AF for F1 and F2.

Subcase 3.3. Neither of a and b is a single-vertex tree in F ∗. Then the two
edges that are incident to a and b in F2 must be kept in F ∗. Therefore, a and b
are siblings in F ∗. On the other hand, in order to make a and b siblings in the
X-forest F1, all edges that are not on the path P but are incident to a vertex
cj in P , where j �= h, must be removed (note that this is because the subtrees
in an X-forest must preserve the ancestor-descendant relation). Note that since
r ≥ 2, there is at least one such an edge. Therefore, in this subcase, if we remove
all these edges, then F ∗ remains a maximal-AF for F1 and F2.

Summarizing the above analysis, in Case 3, we apply the following step:

Step 3. (branch-1) remove the edge incident to a in both F1 and F2;
(branch-2) remove the edge incident to b in both F1 and F2;
(branch-3) remove all edges in F1 that are not on the path P connecting

a and b but are incident to a vertex in P , except the one that
is incident to the least common ancestor of a and b.

One of these branches must keep F ∗ a maximal-AF for the new F1 and F2.
Therefore, for two given rooted X-forests F1 and F2, if we iteratively apply

the above process, branching accordingly based on the cases, then the process
will end up with a pair (F1, F2) in which F2 contains no sibling pairs. When this
occurs, the process applies the following step:

Final Step. if F2 has no sibling pairs, then construct the maximal-AF F ∗ for
F1 and F2, and convert F ∗ into an agreement forest for the original F1 and F2.

When F2 contains no sibling pairs, by Lemma 1, we can construct the (unique)
maximal-AF F ∗ for F1 and F2 in linear time. The forest F ∗ may not be a
subforest of the original F1 and F2 because Step 2 shrinks labels. For this, we
should “expand” the shrunk labels, in a straightforward way. Note that this
expanding process may be applied iteratively.

Summarizing the above discussion, we conclude with the following lemma.

Lemma 2. Let F1 and F2 be two rooted X-forests. If we apply Steps 1-3 it-
eratively until F2 contains no sibling pairs, then for every maximal-AF F ∗ for
the original F1 and F2, at least one of the branches in the process produces the
maximal-AF F ∗ in its Final Step.

Proof. Fix a maximal-AF F ∗ for F1 and F2. By the above analysis, for each
of the cases, at least one of the branches in the corresponding step keeps F ∗
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a maximal-AF for F1 and F2. Moreover, when F2 contains no sibling pairs,
the maximal-AF for F1 and F2 becomes unique. Combining these two facts, we
conclude that at least one of the branches in the process ends up with an pair F1

and F2 whose maximal-AF, after the final step, is F ∗. Since F ∗ is an arbitrary
maximal-AF for F1 and F2, the lemma is proved. ��
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Fig. 1. The path connecting the labels a and b in F1 when F1 is (a) rooted; (b) unrooted

Unrooted Maximal-AF
The analysis for the unrooted version proceeds in a similar manner. However,
since an unrooted tree enforces no ancestor-descendant relation in the tree, sub-
trees in the tree have no requirement of preserving such a relation. This fact
induces certain subtle differences.

Let F1 and F2 be two unrooted X-forests, and let F ∗ be a fixed maximal-AF
for F1 and F2. Recall that we assume F1 and F2 to be strongly reduced.

Two labels a and b in an unrooted X-forest F are siblings if either they are the
two leaves of a single-edge tree in F , or they are adjacent to the same non-leaf
vertex in F , which will be called the “parent” of a and b.

An unrooted X-forest with no sibling pairs has an even simpler structure: all
its connected components are single-vertex trees. Thus, we again have:

Lemma 3. Let F1 and F2 be two unrooted X-forests. If F2 contains no sibling
pairs, then the maximal-AF for F1 and F2 can be constructed in linear time.

Thus, again we will assume that the unrooted X-forest F2 has a sibling pair
(a, b). Also we can assume that none of a and b is a single-vertex tree in F1.
Case 1. The labels a and b are in different connected components in F1.

In this case, again one of the labels a and b must be a single-vertex tree in
the maximal-AF F ∗. Therefore, we apply the following step:

Step 1. (branch-1) remove the edge incident to a in both F1 and F2 to make
a a single-vertex tree in both F1 and F2;

(branch-2) remove the edge incident to b in both F1 and F2 to make
b a single-vertex tree in both F1 and F2.

Case 2. The labels a and b are also siblings in F1.
We have to be a bit more careful for this case since a sibling pair may come

from a single-edge tree. There are three different cases: (1) a and b come from a
single-edge tree in both F1 and F2; (2) a and b come from a single-edge tree in
exact one of F1 and F2; and (3) a and b have a common parent in both F1 and
F2. By a careful analysis and noticing that F ∗ is maximal, we can verify that in
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all these subcases it is always safe to shrink a and b into a new label, which is
implemented by the following step:

Step 2. Shrink the labels a and b in both F1 and F2: if a and b have a common
parent, then remove the edges incident to a and b and make their parent a new
leaf labeled ab; if a and b come from a single-edge tree, then combine them into
a single vertex labeled ab.

After this process, the maximal-AF F ∗ for F1 and F2, in which the labels a
and b are also shrunk, remains a maximal-AF forest for the new F1 and F2.
Case 3. a and b are in the same connected component in F1 but are not siblings.

Let P = {a, c1, c2, . . . , cr, b} be the unique path in F1 that connects a and b,
where r ≥ 2. See Figure 1(b) for an illustration. The cases in which either a or
b is a single-vertex tree in F ∗ again cause removing the edge incident to a or b
in F1. However, when a and b are siblings in F ∗, then in F1, at most one of the
edges that are not on the path P but are incident to a vertex in P can be kept.
However, since the subtree in an unrooted forest does not need to preserve any
ancestor-descendant relation, we cannot decide which of these edges should be
kept. On the other hand, since r ≥ 2, we know at least one of the two edges,
which are not on the path P but are incident to c1 and cr, respectively, must be
removed. Therefore, we can branch by removing either the one incident to c1 or
the one incident to cr. In summary, in Case 3, we apply the following step:

Step 3. (branch-1) remove the edge incident to a in both F1 and F2;
(branch-2) remove the edge incident to b in both F1 and F2;
(branch-3) remove the edge incident to c1 but not on the path P in F1;
(branch-4) remove the edge incident to cr but not on the path P in F1.

One of these branches must keep F ∗ a maximal-AF for the new F1 and F2.
Again if the unrooted X-forest F2 contains no sibling pairs, then we apply

Lemma 3 to construct the maximal-AF for F1 and F2 by the following step:

Final Step. If F2 contains no sibling pairs, then construct the maximal-AF F ∗

for F1 and F2, and convert F ∗ into an agreement forest for the original F1, F2.

The above analysis finally gives the following conclusion, whose proof is ex-
actly the same as that of Lemma 2 for the rooted version.

Lemma 4. Let F1 and F2 be two unrooted X-forests. If we apply Steps 1-3
iteratively until F2 contains no sibling pairs, then for every maximal-AF F ∗ for
the original F1 and F2, at least one of the branches in the process produces the
maximal-AF F ∗ in its Final Step.

4 The Parameterized Algorithms

Now we are ready for presenting the parameterized algorithms for the maf prob-
lem, for both the rooted version as well as the unrooted version. Let F1, F2, . . .,
Fm be m X-forests, either all are rooted or all are unrooted. We first give a few
lemmas, which hold true for both rooted and unrooted versions. Assume m ≥ 3.

The first lemma follows directly from the definition.
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Lemma 5. Let F ′ be an agreement forest for F1 and F2. Then every agreement
forest for {F ′, F3, . . . , Fm} is an agreement forest for {F1, F2, . . . , Fm}. If F ′

contains an MAF for {F1, F2, . . . , Fm}, then an MAF for {F ′, F3, . . . , Fm} is
also an MAF for {F1, F2, . . . , Fm}.

Lemma 6. For every MAF F for {F1, F2, . . . , Fm}, there is a maximal-AF F ∗

for F1 and F2 such that F is also an MAF for {F ∗, F3, . . . , Fm}.

Proof. Let F0 be an MAF for {F1, F2, . . . , Fm}. Then F0 is an agreement for-
est for F1 and F2. Let F ∗ be a maximal-AF for F1 and F2 that has F0 as
a subforest. Then F0 is an agreement forest for {F ∗, F3, . . . , Fm}. Therefore,
the order of an MAF for {F ∗, F3, . . . , Fm} is at most Ord(F0). On the other
hand, since F ∗ is a subforest of both F1 and F2, every agreement forest for
{F ∗, F3, . . . , Fm} is also an agreement forest for {F1, F2, . . . , Fm}. Therefore,
the order of an MAF for {F ∗, F3, . . . , Fm} is at least Ord(F0), thus must be
equal to Ord(F0). Since F0 is an agreement forest for {F ∗, F3, . . . , Fm}, F0 must
be an MAF for {F ∗, F3, . . . , Fm}. ��

Now consider an instance (F1, F2, . . . , Fm; k) of maf, either rooted or unrooted.
For a subforest F ′ of a forest F , we always have Ord(F ) ≤ Ord(F ′). Thus,
no maximal-AF F for F1 and F2 with Ord(F ) > k can contain an MAF F ′ for
(F1, F2, . . . , Fm) with Ord(F ′) ≤ k, so we only need to examine all maximal-AFs
whose order is bounded by k. An outline of our algorithm works as follows:

Main-Algorithm
1. construct a collection C of agreement forests for F1 and F2 that

contains all maximal-AF F ∗ for F1 and F2 with Ord(F ∗) ≤ k;
2. for each agreement forest F for F1 and F2 constructed in step 1 do

recursively work on the instance (F, F3, . . . , Fm; k).

Theorem 1. The Main-Algorithm correctly returns an agreement forest F for
{F1, F2, . . . , Fm} with Ord(F ) ≤ k if such an agreement forest exists.

Proof. For an F ′ in the collection C, by Lemma 5, a solution to (F ′, F3, . . . , Fm; k)
returned by step 2 is also a solution to (F1, F2, . . . , Fm; k). On the other hand,
if (F1, F2, . . . , Fm; k) has a solution, then an MAF F0 for {F1, F2, . . . , Fm} sat-
isfies Ord(F0) ≤ k. For the maximal-AF F ∗ for F1 and F2 that contains F0, by
Lemma 6, F0 is also a solution to (F ∗, F3, . . . , Fm; k), which is an instance exam-
ined in step 2. On this instance, Step 2 will return a solution that, by Lemma 5,
is also a solution to (F1, F2, . . . , Fm; k). ��

In the following, we present the details for the Main-Algorithm for the rooted
version. By Theorem 1,our must carefully check that all maximal-AF’s F for F1

and F2 with Ord(F ) ≤ k be constructed in the collection C. Also, we should
develop algorithms to achieve the desired complexity bounds.

A Parameterized Algorithm for Rooted-maf
The parameterized algorithm for rooted-maf is a combination of the analysis
given in Section 3 and the Main-Algorithm, which is given in Figure 2.
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Algorithm. Rt-MAF(F1, F2, . . . , Fm; k)
Input: a collection {F1, F2, . . . , Fm} of rooted X-forests, m ≥ 1, and a parameter k
Output: an agreement forest F ∗ for {F1, F2, . . . , Fm} with Ord(F ∗) ≤ k if F ∗ exists

1. if (m = 1) then if (Ord(F1) ≤ k) then return F1 else return(‘no’);
2. if (Ord(F1) > k) then return(‘no’);
3. if a label a is a single-vertex tree in exactly one of F1 and F2

then make a a single-vertex tree in both F1 and F2;
4. if F2 has no sibling pairs

then let F ′ be the maximal-AF for F1 and F2; return Rt-MAF(F ′, F3, . . . , Fm; k);
5. let (a, b) be a sibling pair in F2;
6. if a and b are in different connected components in F1

then branch:
1. make a a single-vertex tree in both F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);
2. make b a single-vertex tree in both F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);

7. if a and b are also siblings in F1

then shrink a, b into a new leaf ab in F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);
8. let P = {a, c1, . . . , cr, b} be the unique path in F1 connecting a and b, r ≥ 2;

then branch:
1. make a a single-vertex tree in both F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);
2. make b a single-vertex tree in both F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);
3. remove all edges in F1 not on P but incident to a vertex in P , except the one
incident to the least common ancestor of a, b; return Rt-MAF(F1, F2, . . . , Fm; k).

Fig. 2. Algorithm for the Rooted-maf problem

The algorithm is a branch-and-search process. Its execution can be depicted
by a search tree T whose leaves correspond to conclusions or solutions generated
by the algorithm based on different branches. Each internal node of the search
tree T corresponds to a branch in the search process at Steps 6 or 8 based on
an instance of the problem. We call a path from the root to a leaf in the search
tree T a computational path in the process. The algorithm returns an agreement
forest for the original input if and only if there is a computational path that
outputs the forest.

The correctness and complexity of the algorithm can be verified based on
the corresponding search tree T . Due to the space limit, here we just give the
concluding theorem, the entire discussion for this case will be given in a complete
version.

Theorem 2. The rooted-maf problem can be solved in time O(3kn).

A Parameterized Algorithm for Unrooted-maf
The parameterized algorithm for unrooted-maf proceeds in a similar way,

based on the corresponding analysis given in Section 3. Due to the space limit,
we only present its main result below, the specific algorithm for unrooted-maf
and the entire discussion for this case will be give in the complete version.

Theorem 3. The unrooted-maf problem can be solved in time O(4kn).
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5 Conclusion

In this paper, we presented two parameterized algorithms for the Maximum
Agreement Forest problem on multiple binary phylogenetic trees: one for rooted
trees that runs in time O(3kn), and the other for unrooted trees that runs in
time O(4kn). To our best knowledge, these are the first group of fixed-parameter
tractable algorithms for the Maximum Agreement Forest problem on multiple
phylogenetic trees. Further improvements on the algorithm complexity are cer-
tainly desired to make the algorithms more practical in their applications. On
the other hand, such an improvement seems to require new observations and
new algorithmic techniques: the complexity of our algorithms for multiple phy-
logenetic trees is not much worse than that of the known algorithms for two
phylogenetic trees – some of these algorithms were just developed very recently.
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