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Abstract. Scaffold filling is a new combinatorial optimization problem in
genome sequencing. The one-sided scaffold filling problem can be described as:
given an incomplete genome I and a complete (reference) genome G, fill the
missing genes into I such that the number of common (string) adjacencies be-
tween the resulting genome I ′ and G is maximized. This problem is NP-complete
for genome with duplicated genes and the best known approximation factor is
1.33, which uses a greedy strategy. In this paper, we prove a better lower bound
of the optimal solution, and devise a new algorithm by exploiting the maximum
matching method and a local improvement technique, which improves the ap-
proximation factor to 1.25.

1 Introduction

Motivation. The Next Generation Sequencing technology greatly improves the speed
of genome sequencing, and more organisms for genome analysis can be sequenced.
However, these sequences are often only a part of the complete genome. The whole
genome sequencing problem is, in general, still an intractable problem. Currently, most
sequencing results for genomes usually are in the form of scaffolds or contigs. Some-
times, applying these incomplete genomes for genomic analysis will introduce unnec-
essary errors. So it is natural to fill the missing gene fragments into the incomplete
genome in a combinatorial way, and to obtain an ‘augmented’ genome which is closer
to some reference genome.
Related Results. Muñoz et al. first investigated the one-sided permutation scaffold
filling problem, and proposed an exact algorithm to minimize the genome rearrange-
ment (DCJ) distance [12]. Subsequently, Jiang et al. considered the permutation scaf-
fold filling under the breakpoint distance and showed that even the two-sided problem
is polynomially solvable.

When genomes contain some duplicated genes, the scenario is completely differ-
ent. There are three general criteria (or distance) to measure the similarity of genomes:
the exemplar genomic distance [13], the minimum common string partition (MCSP)
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distance [3] and the maximum number of common string adjacencies [1,10,11]. Unfor-
tunately, unless P=NP, there does not exist any polynomial time approximation (regard-
less of the factor) for computing the exemplar genomic distance even when each gene
is allowed to repeat three times [6,4] or even two times [2,8]. The MCSP problem is
NP-complete even if each gene repeats at most two times [7] and the best known approx-
imation factor for the general problem is O(log n log∗ n) [3]. Based on the maximum
number of common string adjacencies, Jiang et al. proved that the one-sided scaffold
filling problem is also NP-complete, and designed a 1.33-approximation algorithm with
a greedy strategy [10,11].
Our Contribution. In this paper, we design an approximation algorithm with a factor
of 1.25 for the problem of one-sided scaffold filling to maximize the number of string
adjacencies, by using a combined maximum matching and local improvement method.

2 Preliminaries

At first, we review some necessary definitions, which are also defined in [11]. Through-
out this paper, all genes and genomes are unsigned, and it is straightforward to general-
ize the result to signed genomes. Given a gene set Σ, a string P is called permutation if
each element in Σ appears exactly once in P . We use c(P) to denote the set of elements
in permutation P . A string A is called sequence if some genes appear more than once
in A, and c(A) denotes genes of A, which is a multi-set of elements in Σ. For example,
Σ = {a, b, c, d}, A = abcdacd, c(A) = {a, a, b, c, c, d, d}. A scaffold is an incomplete
sequence, typically obtained by some sequencing and assembling process. A substring
with m genes (in a sequence) is called an m-substring, and a 2-substring is also called
a pair, as the genes are unsigned, the relative order of the two genes of a pair does not
matter, i.e., the pair xy is equal to the pair yx. Given a scaffold A=a1a2a3 · · · an, let
PA = {a1a2, a2a3, . . . , an−1an} be the set of pairs in A.

Definition 1. Given two scaffolds A=a1a2 · · ·an and B=b1b2 · · · bm, if aiai+1 =
bjbj+1 (or aiai+1=bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB , we say that aiai+1

and bjbj+1 are matched to each other. In a maximum matching of pairs in PA and PB ,
a matched pair is called an adjacency, and an unmatched pair is called a breakpoint
in A and B respectively.

It follows from the definition that scaffolds A and B contain the same set of adja-
cencies but distinct breakpoints. The maximum matched pairs in B (or equally, in A)
form the adjacency set between A and B, denoted as a(A,B). We use bA(A,B) and
bB(A,B) to denote the set of breakpoints in A and B respectively. A gene is called
a bp-gene, if it appears in a breakpoint. A maximal substring T of A (or B) is call
a bp-string, if each pair in it is a breakpoint. The leftmost and rightmost genes of a
bp-string T are call the end-genes of T , the other genes in T are called the mid-genes
of T . We illustrate the above definitions with the following example. Given scaffolds
A = 〈a b c e d a b a 〉, B = 〈c b a b d a〉, PA = {ab, bc, ce, ed, da, ab, ba} and
PB = {cb, ba, ab, bd, da}. The matched pairs are (ab ↔ ba), (bc ↔ cb), (da ↔ da),
(ab ↔ ab). a(A,B) = {ab, bc, da, ab}, bA(A,B) = {ce, ed, ba}, bB(A,B) = {bd}.
The bp-strings in A are ced and ba, and the bp-string in B is bd.
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Given two scaffolds A=a1a2 · · ·an and B=b1b2 · · · bm, as we can see, each gene ex-
cept the four ending ones is involved in two adjacencies or two breakpoints or one adja-
cency and one breakpoint. To get rid of this imbalance, we add “#” to both ends ofA and
B, which fixes a small bug in [10,11]. From now on, we assume thatA=a0a1 · · ·anan+1

and B=b0b1 · · · bmbm+1, where a0=an+1=b0=bm+1=#.
For a sequence A and a multi-set of elements X , let A + X be the set of all possi-

ble resulting sequences after filling all the elements in X into A. Now, we define the
problems we study in this paper formally.

Definition 2. Scaffold Filling to Maximize the Number of (String) Adjacencies (SF-
MNSA).
Input: two scaffolds A and B over a gene set Σ and two multi-sets of elements X and
Y , where X = c(B)− c(A) and Y = c(A)− c(B).
Question: Find A∗ ∈ A+X and B∗ ∈ B + Y such that |a(A∗, B∗)| is maximized.

The one-sided SF-MNSA problem is a special instance of the SF-MNSA problem
where one of X and Y is empty.

Definition 3. One-sided SF-MNSA.
Input: a complete sequence G and an incomplete scaffold I over a gene set Σ, a multi-
set X = c(G)− c(I) �= ∅ with c(I)− c(G) = ∅.
Question: Find I∗ ∈ I +X such that |a(I∗, G)| is maximized.

Note that while the two-sided SF-MNSA problem is more general and more difficult,
the One-Sided SF-MNSA problem is more practical as a lot of genome analysis are
based on some reference genome [12].

We now list a few basic properties of this problem.

Lemma 1. Let G and I be the input of an instance of the One-sided SF-MNSA problem,
and x be any gene which appears the same times in G and I . If x does not constitute
breakpoint in G (resp. I), then it also does not constitute any breakpoint in I (resp. G).

Lemma 2. Let G and I be the input of an instance of the One-sided SF-MNSA problem,
let bp(I) and bp(G) be the multi-set of bp-genes in I and G respectively. Then any gene
in bp(G) appears in bp(I) ∪X , and bp(I) ⊆ bp(G).

Proof. Assume to the contrary that there exists a gene x, x ∈ bp(G), but x /∈ bp(I) ∪
X . Since x /∈ X , x appears the same number of times in G and I; moreover, x /∈
bp(I), then all the pairs in I containing x are adjacencies. From Lemma 1, all the
pairs involving x in G are adjacencies, contradicting the assumption that x ∈ bp(G).
So any gene in bp(G) appears in bp(I) ∪ X . By a similar argument, we can prove
bp(I) ⊆ bp(G). 	

Each breakpoint contains two genes, from what we discussed in Lemma 2, every break-
point in the complete sequence G belongs to one of the three multi-sets according to
the affiliation of its two bp-genes.

– BP1(G): breakpoints with one bp-gene in X and the other bp-gene not in X .
– BP2(G): breakpoints with both of the bp-genes in X .
– BP3(G): breakpoints with both of the bp-genes not in X .
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3 Approximation Algorithm for One-Sided SF-MNSA

In this section, we present a 1.25-Approximation algorithm for the one-sided SF-MNSA
problem. The goal of solving this problem is, while inserting the genes of X into the
scaffold I , to obtain as many adjacencies as possible. No matter in what order the genes
are inserted, they appears in groups in the final I ′ ∈ I +X , so we can consider that I ′

is obtained by inserting strings (composed of genes of X) into I .
Obviously, inserting a string of length one (i.e., a single gene) will generate at most

two adjacencies, and inserting a string of length m will generate at most m+1 adjacen-
cies. Therefore, we will have two types of inserted strings.

1. Type-1: a string of k missing genes x1, x2, . . . , xk are inserted in between yiyi+1

in the scaffold I to obtain k+1 adjacencies (i.e., yix1, x1x2, . . . , xk−1xk, xkyi+1),
where yiyi+1 is a breakpoint.
In this case, x1x2 . . . xk is called a k-Type-1 string, yiyi+1 is called a dock, and we
also say that yiyi+1 docks the corresponding k-Type-1 string x1x2 . . . xk.

2. Type-2: a sequence of l missing genes z1, z2, . . . , zl are inserted in between yjyj+1

in the scaffold I to obtain l adjacencies (i.e., yjz1 or zlyj+1, z1z2, . . . , zl−1zl),
where yjyj+1 is a breakpoint; or a sequence of l missing genes z1, z2, . . . , zl are
inserted in between yjyj+1 in the scaffold I to obtain l+1 adjacencies (i.e., yjz1,
z1z2, . . . , zl−1zl, zlyj+1), where yjyj+1 is an adjacency.

This is the basic observation for devising our algorithm. Most of our work is devoted to
searching the Type-1 strings.

3.1 Searching the 1-Type-1 Strings

To identify the 1-Type-1 strings, we construct a bipartite graph G1 = (X, bI(I,G), E),
where for each gene xi of X and each breakpoint yjyj+1 of bI(I,G), if we can obtain
two adjacencies by inserting xi in between yjyj+1, then there is an edge connecting xi

to yjyj+1. Therefore, a matching of G1 gives us the 1-Type-1 strings and their corre-
sponding docks. In our algorithm, we compute a maximum matching of G1, then the
number of 1-Type-1 strings obtained by our algorithm will not be smaller than that of
the optimal solution.

Algorithm 1: Max-Matching(G, I)
1 Construct a bipartite graph G1 = (X, bI(I,G), E),

(xi, yjyj+1) ∈ E iff yjyj+1 docks xi, for all xi ∈ X and yjyj+1 ∈ bI(I,G).
2 Compute a maximum matching M of G1.
3 Return M .

3.2 Searching the 2-Type-1 Strings

To identify the 2-Type-1 strings, we first find a set Q of 2-Type-1 strings greedily. For
Q, let c(Q) be the multi-set of genes in Q, and let D(Q) be the set of corresponding
docks. Then, we improve Q to find more 2-Type-1 strings using a local search method.
There are two ways to improve Q:
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1. Delete a 2-Type-1 string xixj from Q, release its corresponding dock ypyp+1, con-
struct two new 2-Type-1 strings xixk and xjxl, where xk, xl /∈ c(Q).

2. Delete a 2-Type-1 string xixj from Q, release its corresponding dock ypyp+1, con-
struct two new 2-Type-1 strings xixk and xrxl, where xrxl docks ypyp+1, and
xk, xl, xr /∈ c(Q).

Algorithm 2: Local-Optimize(G, I)
1 Identify the breakpoints and adjacencies in G and I , Q← ∅, D(Q)← ∅.
2 WHILE (xixj is docked at ypyp+1, where xi, xj ∈ X and ypyp+1 ∈ bI(I,G))
3 { Q← Q ∪ {xixj}, D(xixj)← {ypyp+1},

X ← X − {xi, xj}, bI(I,G)← bI(I,G)− {ypyp+1} }.
4 For each 2-Type-1 string xixj ∈ Q docked at ypyp+1 ∈ bI(I,G)

4.1 if (xixk is docked at yuyu+1, xjxl is docked at yvyv+1, where xk, xl ∈ X ,
yuyu+1, yvyv+1 ∈ bI(I,G))

then { Q← Q ∪ {xixk, xjxl} − {xixj}, D(xixk)← {yuyu+1},
D(xjxl)← {yvyv+1}, X ← X − {xk, xl},
bI(I,G)← bI(I,G) ∪ {ypyp+1} − {yuyu+1, yvyv+1} }.

goto step 4.
4.2 if (xixk is docked at yuyu+1, xlxr is docked at ypyp+1, where xk, xl, xr ∈ X ,

yuyu+1 ∈ bI(I,G))
then { Q← Q ∪ {xixk, xlxr} − {xixj}, D(xixk)← {yuyu+1},

D(xlxr)← {ypyp+1}, X ← X − {xk, xl, xr} ∪ {xj},
bI(I,G)← bI(I,G)− {yuyu+1} }.

goto step 4.
5 Return Q and D(Q).

3.3 Searching the 3-Type-1 Strings

To search the 3-Type-1 strings, we use a greedy method.

Algorithm 3: Greedy-Search(G, I)
1 Identify the breakpoints and adjacencies in G and I , F ← ∅, D(F )← ∅.
2 WHILE (xixjxk is docked at ywyw+1, where xi, xj , xk ∈ X and ywyw+1 ∈ bI(I,G))
3 {F ← F ∪ {xixjxk}, D(xixjxk)← {ywyw+1},

X ← X − {xi, xj , xk}, bI(I,G)← bI(I,G)− {ypyp+1}}.
4 Return F and D(F ).

3.4 Inserting the Remaining Genes

In this subsection, we present a polynomial time algorithm guaranteeing that the number
of adjacencies increases by the same number of the genes inserted. A general idea of
this algorithm was mentioned in [11], with many details missing, and we will present
the details here.

Given the complete sequence G and the scaffold I , as we discussed in Section 2, the
breakpoints in G can be divided into three sets: BP1(G), BP2(G), and BP3(G). In
any case, the breakpoints in BP3(G) cannot be converted into adjacencies; so we try to
convert the breakpoints in BP1(G) and BP2(G) into adjacencies.
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Lemma 3. If BP1(G) �= ∅, then there exists a breakpoint in I where after some gene
of X is inserted, the number of adjacencies increases by one.

Proof. Let titi+1 be a breakpoint in G, satisfying that titi+1 ∈ BP1(G), ti ∈ X , and,
from Lemma 2, ti+1 ∈ bp(I). Then, there exists a breakpoint ti+1sj or skti+1 in I .
Hence, if we insert ti in between that breakpoint, we will obtain a new adjacency titi+1

without affecting any other adjacency. 	


Thus, it is trivial to obtain one more adjacency whenever BP1(G) �= ∅.

Lemma 4. For any x ∈ X ∩ c(I), if there is an “xx” breakpoint in G then after
inserting x in between some “xy” pair in I , the number of adjacencies increases by
one.

Proof. If “xy” is a breakpoint, then after inserting an ‘x’ in between it, we obtain a new
adjacencies “xx”. If “xy” is an adjacency, then after inserting an ‘x’ in between it, we
have “xxy”. The adjacency “xy” still exists, and we obtain a new adjacencies “xx”. 	


Lemma 5. If there is a breakpoint “xy” in BP2(G) and a breakpoint “xz” (resp.
“yz”) in I , then after inserting y (resp. x) in between “xz” (resp. “yz”) in I , the
number of adjacencies increases by one.

Proof. From the definition of BP2(G), we know that x, y ∈ X . Since “xy” is a break-
point in G and “xz” is a breakpoint in I , we obtain a new adjacency “xy” by inserting
y in between “xz”, without affecting any other adjacency. A similar argument for in-
serting x in between “yz” also holds. 	


Next, we show that the following case is polynomially solvable. This case satisfies the
following conditions.

1. BP1(G) = ∅;
2. It does not contain a breakpoint like “xx” in G unless x /∈ X ∩ c(I);
3. For any breakpoint of the form “xy” in BP2(G), all the pairs in I involving x or y

are adjacencies.

Let BS2(G) be the set of bp-strings in G with all breakpoints belonging to BP2(G).

Lemma 6. In the case satisfying (1), (2) and (3), the number of times a gene appears
as an end-gene of some bp-string of BS2(G) is even.

From Lemma 6, if we denote each bp-string of BS2(G) by a vertex, and there is an
edge between two vertices iff their corresponding bp-strings have a common end-gene,
the resulting graph contains a cycle of distinct vertices. Traveling this cycle, concatenat-
ing the bp-strings corresponding to the vertices, and deleting one copy of the common
end-gene, eventually we can obtain a string composed of genes of X . The following
lemma and corollary shows that this string can be inserted into I entirely, generating no
breakpoint at all.
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Lemma 7. In the case satisfying (1),(2) and (3), for a gene x, let q1 be the number that
it appears as an end-gene, let q2 be the number that it appears in some bp-string of
BS2(G) as a mid-gene, and let r be the number that it appears in X . Then, we have
r = q1/2 + q2.

We can summarize the above ideas as the algorithm Insert-Whole-Strings(•), which
ensures us to obtain as many adjacencies as the number of missing genes inserted. The
details will be given in the full version.

Theorem 1. The algorithm Insert-Whole-Strings(•) guarantees that the number of ad-
jacencies increased is not smaller than the number of genes inserted.

4 Analysis of the Approximation Algorithm

4.1 A Lower Bound

Given an instance of One-sided SF-MNSA, let I∗ ∈ I+X be the final scaffold in the op-
timal solution after inserting all genes of X into I . Compared to I , all genes belonging
to X appear as substrings in I∗. Let x1x2 . . . xl be a string inserted in between yiyi+1

in I∗, then either yix1 or xlyi+1 or both are adjacencies. Since otherwise, we could
delete this string from I∗ (number of adjacencies decreases by at most l-1), re-insert
it following the algorithm Insert-Whole-Strings(•) (number of adjacencies increases by
at least l), and obtain one more adjacency. Thus, we have the following corollary of
Theorem 1,

Corollary 1. Each substring in I∗ composed of genes of X is either Type-1 or Type-2.

Now, we present a new lower bound for the optimal number of adjacencies.

Lemma 8. Let OPT be the number of adjacencies between G and I∗, k0 be the num-
ber of adjacencies between G and I , and k1=|X |. Let bi be the number of i-Type-1
substrings and q be the maximum length of Type-1 substrings in the optimal solution
between G and I∗. Then

OPT − k0 = k1 + b1 + b2 + . . .+ bq ≤ 5

4
(k1 +

3

5
b1 +

2

5
b2 +

1

5
b3) (1)

Following Lemma 8, if the number of Type-1 substrings computed in the approximation
algorithm is not smaller than (3b1 + 2b2 + b3)/5, then the approximation factor is 5/4.

4.2 Description of the Main Algorithm

There are four steps in our algorithm. Firstly, we try to search the 1-Type-1 strings;
secondly, we try to search the 2-Type-1 strings; thirdly, we try to search the 3-Type-1
strings; finally, we insert the remaining genes in X , guaranteeing that on average we
will obtain at least one adjacency for each inserted missing gene.
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Main Algorithm
Input: Complete sequence G and incomplete scaffold I , X=c(G)− c(I).
Output: I ′ ∈ I +X
1 Call Max-Matching(G, I), which returns a maximum matching M .

{ Let M1 be the set of 1-Type-1 strings and D(M1) be their corresponding docks.
Insert the 1-Type-1 strings into their corresponding docks.
The resulting incomplete scaffold is denoted as I1. }

2 Call Local-Optimize(G, I1), which returns Q and D(Q).
{ Insert the 2-Type-1 strings of Q into their corresponding docks.
The resulting incomplete scaffold is denoted as I2. }

3 Call Greedy-Search(G, I2), which returns F and D(F ).
{ Insert the 3-Type-1 strings of F into their corresponding docks.
The resulting incomplete scaffold is denoted as I3. }

4 Call Insert-Whole-Strings(G, I3).
{ Let the resulting complete scaffold be I ′. }

5 Return I ′.

4.3 Proof of the Approximation Factor

In our algorithm, we make effort to insert Type-1 substrings as much as possible. But a
Type-1 substring (say Is) inserted by our algorithm may make other Type-1 substrings
in some optimal solution infeasible, we say Is destroys them. The following lemma
shows the number of Type-1 substrings that could be destroyed by a given Type-1
substring.

Lemma 9. A i-Type-1 substring can destroy at most i+1 Type-1 substrings in some
optimal solution.

Proof. Assume that an i-Type-1 substring Is is inserted in between some breakpoint
yjyj+1 in I . Then each of the genes in Is, if not use by Is, could form a distinct Type-1
substring in some optimal solution. Also, there may exist another Type-1 substring that
could be inserted in between the breakpoint yjyj+1 in the optimal solution. Totally, at
most i+1 Type-1 substrings in the optimal solution could be destroyed by Is. 	

Next, we will compare the number of i-Type-1 substrings between our algorithm and
some optimal solution. Above all, we focus on the 1-Type-1 substrings, which are com-
puted by the algorithm Max-Matching(•).

Lemma 10. The 1-Type-1 substrings computed in our algorithm is not smaller than
those in any optimal solution.

For the simplicity of comparison, given an edge e ∈ M and an edge ẽ ∈ W , we say
that e destroys ẽ if e and ẽ have exactly one common endpoint. Actually, e destroys ẽ
implies that the 1-Type-1 substring corresponding to e makes the 1-Type-1 substring
corresponding to ẽ infeasible.

Since M is a maximum matching, each connect component of M ∪ W is either a
path or an even cycle, and at least one end-edge of a path belongs to M . So, for each
edge in W −M , we can assign a distinct edge in M − W that destroys it. Under this
assignment, each edge in M −W destroys at most one edge in W −M , i.e., a 1-Type-1
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substring of our algorithm can destroy at most one 1-Type-1 substring of the optimal
solution.

Cases of such substrings which are destroyed by a 1-Type-1 substring of our algo-
rithm (except the 1-Type-1 substrings of M ∩W ), are described in the following Table
1, where b1j denotes the number of 1-Type-1 substrings of the jth case and “other”
means an i-Type-1 substring (i >3).

Table 1. Cases of substrings destroyed by a 1-Type-1 substring

number of 1-Type-1 one substring another substring
substrings destroyed destroyed

b′11 1-Type-1 2-Type-1
b′12 1-Type-1 3-Type-1
b′13 1-Type-1 other or none
b′14 2-Type-1 2-Type-1
b′15 2-Type-1 3-Type-1
b′16 2-Type-1 other or none
b′17 3-Type-1 3-Type-1
b′18 3-Type-1 other or none
b′19 other other or none

Let b′1 be the number of 1-Type-1 substrings computed by our algorithm, i.e., b′1 =
|M |. Then we have,

b′1 = b′11 + b′12 + b′13 + · · ·+ b′19 + |M ∩W | (2)

Now, we will analyze the number of 2-Type-1 substrings, which are computed by the
algorithm Local-Optimize(•).

Lemma 11. Let b2 be the number of 2-Type-1 substrings of some optimal solution, b′2
be the number of 2-Type-1 substrings obtained by our algorithm. Then

b′2 ≥ 1

2
× (b2 − b′11 − 2b′14 − b′15 − b′16). (3)

Proof. Let Q be the set of 2-Type-1 substrings obtained at step 2 (by the Local-
Optimize(•) algorithm), and P be the set of 2-Type-1 substrings in some optimal so-
lution which does not include those 2-Type-1 substrings destroyed at step 1 (by the
Max-Matching(•) algorithm), i.e., |Q| = b′2, |P | = b2 − b′11 − 2b′14 − b′15 − b′16. Let
R = Q∩P be the set of 2-Type-1 substrings which are contained in both Q and P . We
just proceed to compare the number of 2-Type-1 substrings in P −R and Q−R, even
though we cannot compute P −R explicitly.

Let Q−R = {x1x2, x3x4, . . . , x2q−1x2q} andP−R = {y1y2, y3y4, . . . , y2p−1y2p}.
For simplicity, we mark these gene appearing more than one times in P−R (and Q−R)
with distinct labels. Consider an imaginary bipartite graph G′ = (Q − R,P − R,E),
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where there exists an edge between two vertices iff their corresponding 2-Type-1 sub-
strings share a common gene (same gene and same label). Then, each vertex in G′ has
degree at most two.

For a vertex xixi+1 of Q−R and an isolated vertex yjyj+1 in P −R, if both xixi+1

and yjyj+1 dock sksk+1, then mark both xixi+1 and yjyj+1 with a same color. Each
such pair are marked with a distinct color. Since in the Local-Optimize(•) algorithm the
original 2-Type-1 substrings in Q are formed by a greedy search, any isolated vertex of
P −R in G′ must be colored. So G′ is composed of disjoint paths, even cycles, colored
isolated vertices of P −R and isolated vertices of Q−R.

In an even cycle or even path (i.e., with an even number of vertices), the number of
vertices in Q − R and P − R is equal, and in the worst case all the vertices on even
cycles/paths in Q−R are colored.

For an odd path (i.e., with an odd number of vertices), as G′ is bipartite, the two
endpoints are either both in P −R or both in Q−R. In an odd path with both endpoints
in Q−R, the number of vertices in Q−R is one more than that in P −R.

Let p1, q1, p2, q2, . . . , pr, qr, pr+1 be an odd path in G′, where pi ∈ (P − R) (1≤
i ≤ r + 1), and qj ∈ (Q − R) (1≤ j ≤ r). We claim that q1 cannot be colored. Since
otherwise, let pt be the isolated vertex that has the same color with q1, according to
step 4.2 of the Local-Optimize(•) algorithm, q1 should be deleted from Q, p1 and pt
should be added to Q. This contradicts the local optimality of Q. A similar claim holds
for qt. So each odd path in G′ ends with some vertices in P − R whose neighbors are
uncolored.

Let l be the number of odd paths in G′ which end with some vertices in P − R.
Putting all together, we can conclude that: (1) the number of isolated colored vertices in
P −R is at most |Q−R|− l; (2) the vertices in P −R appearing on the cycles or paths
in G′ is at most |Q−R|+ l. Then |P −R| ≤ 2|Q−R|. So |P | ≤ 2|Q|. Since |Q| = b′2
and |P | = b2 − b′11 − 2b′14 − b′15 − b′16, we have b′2 ≥ (b2 − b′11 − 2b′14 − b′15 − b′16)/2,
hence the lemma follows. 	

When computing the 2-Type-1 substrings at Step 2, except the 2-Type-1 substrings of
R = Q ∩ P , these 2-Type-1 substrings computed by our algorithm could destroy some
other Type-1 substrings of the optimal solution. It follows from Lemma 9 that a 2-Type-
1 substring can destroy at most three Type-1 substrings in some optimal solution. Cases
of such substrings, which are destroyed by a 2-Type-1 substring of our algorithm, are
described in the following Table 2, where b′2js denote the number of 2-Type-1 substring
in the jth case and “other” means an i-Type-1 substring (i > 3).

Let b′2 denote the number of 2-Type-1 substrings computed by our algorithm, then
we have b′2 = b′20 + b′21 + b′22 + b′23 + · · ·+ b′29 + |R|, where R = Q ∩ P .

At Step 3 (i.e., the Greedy-Search(•) algorithm), let Z be the set of 3-Type-1 sub-
strings both in our algorithm and in the optimal solution. Except those 3-Type-1 sub-
strings of Z , a 3-Type-1 substring computed by our algorithm can destroy at most four
Type-1 substrings in some optimal solution. Cases of such substrings which are de-
stroyed by a 3-Type-1 substring are described in the following Table 3, where b′3js de-
note the number of 3-Type-1 substrings of each case j and “other” means an i-Type-1
substring (i > 3).
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Table 2. Cases of substrings destroyed by a 2-Type-1 substring

number of 2-Type-1 the first substring the second substring the third substring
substrings destroyed destroyed destroyed

b′20 2-Type-1 2-Type-1 2-Type-1
b′21 2-Type-1 2-Type-1 3-Type-1
b′22 2-Type-1 2-Type-1 other or none
b′23 2-Type-1 3-Type-1 3-Type-1
b′24 2-Type-1 3-Type-1 other or none
b′25 2-Type-1 other or none other or none
b′26 3-Type-1 3-Type-1 3-Type-1
b′27 3-Type-1 3-Type-1 other or none
b′28 3-Type-1 other or none other or none
b′29 other other or none other or none

Let b′3 denote the number of 3-Type-1 substrings of our algorithm, then we have
b′3 = b′31 + b′32 + b′33 + b′34 + b′35 + |Z|, where and Z is the set of 3-Type-1 substrings
both in our algorithm and in the optimal solution.

Table 3. Cases of substrings destroyed by a 3-Type-1 substring

number of the 1st substring the 2nd substring the 3rd substring the 4th substring
3-Type-1 substrings destroyed destroyed destroyed destroyed

b′31 3-Type-1 3-Type-1 3-Type-1 3-Type-1
b′32 3-Type-1 3-Type-1 3-Type-1 other or none
b′33 3-Type-1 3-Type-1 other or none other or none
b′34 3-Type-1 other or none other or none other or none
b′35 other other or none other or none other or none

Lemma 12. Let b′1, b′2, b′3 be the number of new 1-Type-1, 2-Type-1 and 3-Type-1 sub-
strings inserted at step1, step 2 and step 3 in our main algorithm respectively. Then

b′1 + b′2 + b′3 ≥ 1

5
× (3b1 + 2b2 + b3).

Theorem 2. The One-sided SF-MNSA problem admits a polynomial time factor-1.25
approximation.

Proof. Following the approximation algorithm, Theorem1, Lemma 8, and Lemma 12,
we have the approximation solution value APP , which satisfies the following
inequalities.

APP − k0 = k1 + b′1 + b′2 + b′3 ≥ k1 +
3

5
b1 +

2

5
b2 +

1

5
b3 ≥ 4

5
(OPT − k0).

So, we have APP ≥ 4
5OPT + 1

5k0 ≥ 4
5OPT . Hence OPT

APP ≤ 1.25, and the theorem
is proven. 	




408 N. Liu et al.

5 Concluding Remarks

In this paper, we used a mixture of maximum matching and local improvement methods
to obtain a factor-1.25 approximation for One-sided MNSA. It would be interesting to
know whether the 1.25 factor can be further improved.
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