
Improved Approximation Algorithms
for Computing k Disjoint Paths Subject

to Two Constraints

Longkun Guo1,2,�,��, Hong Shen1,3, and Kewen Liao3

1 School of Information Science and Technology, Sun Yat-Sen University, China
2 College of Mathematics and Computer Science, Fuzhou University, China

3 School of Computer Science, University of Adelaide, Australia
lkguo@fzu.edu.cn

Abstract. For a given graph G with positive integral cost and delay on
edges, distinct vertices s and t, cost bound C ∈ Z+ and delay bound
D ∈ Z+, the k bi-constraint path (kBCP) problem is to compute k
disjoint st-paths subject to C and D. This problem is known NP-hard,
even when k = 1 [4]. This paper first gives a simple approximation al-
gorithm with factor-(2, 2), i.e. the algorithm computes a solution with
delay and cost bounded by 2 ∗D and 2 ∗ C respectively. Later, a novel
improved approximation algorithm with ratio (1 + β, max{2, 1 + ln 1

β
})

is developed by constructing interesting auxiliary graphs and employ-
ing the cycle cancellation method. As a consequence, we can obtain a
factor-(1.369, 2) approximation algorithm by setting 1 + ln 1

β
= 2 and a

factor-(1.567, 1.567) algorithm by setting 1 + β = 1 + ln 1
β
. Besides, by

setting β = 0, an approximation algorithm with ratio (1, O(lnn)), i.e. an
algorithm with only a single factor ratio O(lnn) on cost, can be immedi-
ately obtained. To the best of our knowledge, this is the first non-trivial
approximation algorithm for the kBCP problem that strictly obeys the
delay constraint.

Keywords: k-disjoint bi-constraint path, NP-hard, bifactor approxima-
tion algorithm, auxiliary graph, cycle cancellation.

1 Introduction

In real networks, there are many applications that require quality of service and
some degree of robustness simultaneously. Typically, the quality of service (QoS)
related problem requires routing between the source node and the destination
node to satisfy several constraints simultaneously, such as bandwidth, delay,
cost and energy consumption. Nevertheless, in networks, some time-critical ap-
plications also require routing to remain functioning while edge or vertex failure
� This project was supported by the Natural Science Foundation of Fujian Province

(2012J05115), Doctoral Fund of Ministry of Education of China for Young Scholars
(20123514120013) and Fuzhou University Development Fund (2012-XQ-26).

�� Corresponding author.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 325–336, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

326 L. Guo, H. Shen, and K. Liao

occurs. A common solution is to compute k disjoint paths that satisfy the QoS
constraints, and use one path as an active path whilst the other paths as backup
paths. The routing traffic is carried on the active path, and switched to the
disjoint backup paths while an edge or vertex failure occurs on the active path.
However, for some time-critical applications even the time to discover failures of
routing and restore data transmission in backup paths is too long for them. For
such applications, packages are routed via k paths simultaneously, and the traffic
is switched from failed paths to functioning paths if edge or vertex failures occur,
such that routing can tolerate k− 1 edge (vertex) failures. Therefore, given cost
and delay as the QoS constraints, the disjoint QoS Path problem arises as below:

Definition 1. For a graph G = (V, E) and a pair of distinct vertices s, t ∈ V ,
a cost function c : E → Z+, a delay function d : E → Z+, a cost bound C ∈ Z+

and a delay bound D ∈ Z+, the k-disjoint QoS Paths problem is to compute k
disjoint st-paths P1, . . . , Pk, such that

∑

i=1,...,k

c(Pi) ≤ C and d(Pi) ≤ D for every

i = 1, . . . , k.

This problem is NP-hard even when all edges of G are with cost 0 [8], which
results in the difficulty to approximate the k-disjoint QoS Paths problem. An
alternative method is to compute k disjoint with total cost bounded by C and
delay bounded by D (equal to kD in Definition 1), and then route the packages
via the paths according to their urgency priority, i.e., route urgent packages
via paths of low delay whilst deferrable ones via paths of high delay of the k
disjoint paths. Therefore, The disjoint bi-constraint path problem arises as in
the following:

Definition 2. (The k disjoint bi-constraint path problem, kBCP) For a graph
G = (V,E) with a pair of distinct vertices s, t ∈ V , a cost function c : E → R+,
a delay function d : E → R+, a cost bound C ∈ Z+ and a delay bound D ∈
R+, the k-disjoint bi-constraint path problem is to calculate k disjoint st-paths
P1, . . . , Pk, such that

∑

i=1,...,k

c(Pi) ≤ C and
∑

i=1,...,k

d(Pi) ≤ D.

This paper will focus on bifactor approximation algorithms for the kBCP prob-
lem, which are introduced as below:

Definition 3. An algorithm A is a bifactor (α, β)-approximation for the kBCP
problem, if and only if for every instance of kBCP, A computes k disjoint st-
paths of which the delay sum and the cost sum are bounded by α ∗D and β ∗ C
respectively.

Since a β-approximation with the single factor ratio on cost is identical to a
bifactor (1, β)-approximation, we use them interchangeably in the text.

1.1 Related Work

This kBCP problem is NP-hard even when k = 1 [4]. To the best of our knowl-
edge, this paper is the first one that presents non-trivial approximation algo-

Improved Approximation Algorithms for Computing k Disjoint Paths 327

rithms for the kBCP problem formally. However, a number of papers have ad-
dressed problems closely related to kBCP, in particular the k restricted shortest
path problem (kRSP), which is to calculate k disjoint st-paths of minimum
cost-sum under the delay constraint

∑

i=1,...,k

d(Pi) ≤ D. An algorithm with bifac-

tor approximation ratio (2, 2) has been developed in [6] for general k, while
no approximation solution that strictly obeys the delay (or cost) constraint
is known even when k = 2. For a positive real number r, bifactor ratio of
(1 + 1

r , r(1 +
2(log r+1)

r)(1 + ε)) and (1 + 1
r , r(1 +

2(log r+1)
r)) have been achieved

respectively in [10,3] for the case k = 2 and under the assumption that the delay
of each path in the optimal solution of kRSP is bounded by D

k .
Special cases of this problem have been studied. When the delay constraint is

removed, this problem is reduced to the min-sum problem, which is to calculate
k disjoint paths with the total cost minimized. This problem is known polyno-
mially solvable [11]. Moreover, when k = 1, the problem reduces to the single
bi-constraint path (BCP) problem, which is known as the basic QoS routing
problem [4] and admits full polynomial time approximation scheme (FPTAS)
[4,9]. Recently, the single BCP problem is still attracting considerable interests
of the researchers. The strongest result known is a (1+ ε)-approximation due to
Xue et al [14].

Additionally, when the cost constraint is removed, the disjoint QoS problem
reduces to the length bounded disjoint path problem of finding two disjoint
paths with the length of each path constrained by a given bound. This problem
is a variant of the min-Max problem of finding two disjoint paths with the
length of the longer path minimized . Both of the two problems are known
to be NP-complete [8], and with the best possible approximation ratio of 2 in
digraphs [8], which can be achieved by applying the algorithm for the min-sum
problem in [11,12]. Contrastingly, the min-min problem of finding two paths with
the length of the shorter path minimized is NP-complete and doesn’t admit K
approximation for any K ≥ 1 [5,13,2]. The problem remains NP-complete and
admits no polynomial time approximation scheme in planar digraphs [7].

1.2 Our Techniques and Results

The main result of this paper is a factor-(1+β, max{2, 1+ln 1
β}) approximation

algorithm for any 0 < β ≤ 1 for the kBCP problem. The main idea of the algo-
rithm is firstly to compute k-disjoint paths with delay-sum bounded by αD and
cost-sum bounded by (2−α)∗C, where 0 ≤ α ≤ 2 is a real number, and secondly
to improve the computed k paths by novelly combining cycle cancellation [10]
and cost-bounded auxiliary graph construction [14]. The key technique to prove
the algorithm’s approximation ratio is using definite integral to compute a close
form for the sum of the cost increment during the improving phase.

As a consequence of the main result, we can obtain a factor-(1.369, 2) approx-
imation algorithm by setting 1+ ln 1

β = 2, and a factor-(1.567, 1.567) algorithm
by setting 1 + β = 1 + ln 1

β and slightly modifying our algorithm (to improve
either cost or delay that is with worse ratio). Nevertheless, by slightly modifying

328 L. Guo, H. Shen, and K. Liao

Algorithm 1. A basic approximation algorithm for the k-BCP problem
Input: A graph G = (V,E), each edge e with cost c(e) and delay d(e), a given cost
constraint C ∈ Z+ and delay constraint D ∈ Z+;
Output: k disjoint paths P1, P2 . . . , Pk.

1. Set the new cost of edge e as b(e) = c(e)
C

+ d(e)
D

;
2. Compute the k disjoint paths P1, P2 . . . , Pk in G by using Suurballe and Tarjan’s

algorithm [11,12], such that
∑k

i=1

∑
e∈Pi

b(e) is minimized;
3. Return P1, P2 . . . , Pk.

our ratio proof, we show that an approximation algorithm with ratio (1, O(lnn)),
i.e. an algorithm with single factor ratio of O(lnn) on cost, can be immediately
obtained by setting β = 0. To the best of our knowledge, this is the first non-
trivial approximation algorithm for the kBCP problem that strictly obeys the
delay constraint.

We note that our algorithms are with pseudo-polynomial time complexity,
since the auxiliary graph we construct is of size O(C ∗n). However, by using the
classic polynomial time approximation scheme design technique [4], i.e. for any
small ε > 0 setting the cost of every edge to

⌊
c(e)
εC
n

⌋
in G before the construction

of auxiliary graph, we can immediately obtain a polynomial time algorithm with
ratio ((1 + β) ∗ (1+ ε), max{2, 1+ ln 1

β } ∗ (1+ ε)). We shall omit the details due
to the paper length limitation.

2 An Improved Approximation Algorithm for Computing
k Disjoint Bi-constraint Paths

This section will first present a simple approximation method for computing k-
disjoint paths with delay-sum bounded by αD and cost-sum bounded by (2 −
α) ∗ C, where 0 ≤ α ≤ 2 is a real number, and secondly improve the computed
k paths by balancing the value of α and 2 − α. Though the presented simple
algorithm is with worse ratio than that of the algorithm for k = 2 in [10], it suits
the improving phase better.

2.1 A Basic Approximation Algorithm

Observing that the difficulty of computing k-disjoint bi-constraint paths mainly
comes from the two given constraints, the key idea of our algorithm is to deal
with one new constraint B instead of the two given constraints C and D. Our
algorithm firstly assigns a new mixed cost b(e) = c(e)

C + d(e)
D to every edge in

graph, and secondly computes k disjoint paths with the new cost sum bounded
by B = C

C +D
D = 2. Note that the second step can be accomplished in polynomial

time by employing the SPP algorithm due to Suurballe and Tarjan [11,12]. The
detailed algorithm is as in Algorithm 1.

Improved Approximation Algorithms for Computing k Disjoint Paths 329

The time complexity and performance guarantee of Algorithm 1 is given by
the following theorem:

Theorem 4 Algorithm 1 runs in O(km log1+m
n
n) time, and computes k-disjoint

paths with delay-sum bounded by αD and cost-sum bounded by (2−α)∗C , where
0 ≤ α ≤ 2 is a real number.

Proof. The main part of Algorithm 1 takes O(km log1+m
n
n) to compute k-

disjoint paths by using Surrballe and Tarjan’s algorithm [11,12], and other parts
of the algorithm take trivial time. Hence the time complexity of the algorithm
is O(km log1+m

n
n).

It remains to show the approximation ratio. To make the proof concise, we
denote by OPT an optimal solution for the k-disjoint BCP paths problem, and
SOL the solution of Algorithm 1. Obviously

∑
e∈OPT b(e) ≤ 2 holds. Then since

the k disjoint paths is with minimum new cost, we have
∑

e∈SOL

b(e) ≤
∑

e∈OPT

b(e) ≤ 2. (1)

Assume the delay-sum of the algorithm is α times of d(OPT), then follow-
ing Algorithm 1 0 ≤ α ≤ 2 holds. Therefore, we have

∑
e∈SOL b(e) =

∑k
i=1

∑
e∈Pi

b(e) = α + c(SOL)
c(OPT) . From Inequality (1), α + c(SOL)

c(OPT) ≤ 2 holds.
That is, c(SOL) ≤ (2− α)c(OPT) ≤ (2− α)C. This completes the proof.

Note that α differs for different instances, i.e. Algorithm 1 may return a solution
with cost 2 ∗ c(OPT) and delay 0 for some instances, while a solution with cost
0 and delay 2 ∗ d(OPT) for other instances. Hence, the bifactor approximation
ratio for Algorithm 1 is actually (2, 2).

In real networks, the two given constraints may not be of equal importance,
say, delay is far more important comparing to cost. In this case, applications
require that the delay of the resulting solution is bounded by (1 + β)D, where
0 < β < 1 is a positive real number. Apparently, we could get an algorithm
similar to Algorithm 1 excepting setting the new cost as b(e) = β c(e)

C + d(e)
D . The

ratio of the new algorithm is given as below:

Corollary 5. By setting the new cost as b(e) = β c(e)
C + d(e)

D for a given real
number 0 < β < 1 , Algorithm 1 returns k paths with delay-sum bounded by αD
and cost-sum bounded by 1+β−α

β ∗ C , where 0 ≤ α ≤ 1 + β is a real number.
Therefore the ratio of the algorithm is (1 + β, 1 + 1

β).

The proof of Corollary 5 is omitted here, since it is very similar to the proof
of Theorem 1. According to Corollary 5, our algorithm can bound the delay-
sum of the k-disjoint path by (1 + β)D for any 0 < β < 1, by relaxing the
cost constraint to (1 + 1

β) ∗ C. For example, if β = 0.01, then the bifactor
approximation ratio of the algorithm is (1.01, 101). Thus, the algorithm decrease
the delay of the k-disjoint paths at a high price. In the next subsection, we shall
develop an improved method that pays less to make delay-sum of the k-disjoint
paths bounded by (1 + β)D.

330 L. Guo, H. Shen, and K. Liao

Algorithm 2. An improved algorithm based on cycle cancellation.
Input: A graph G = (V,E), each edge e with cost c(e) and delay d(e), a given cost
constraint C ∈ Z+ and delay constraint D ∈ Z+, disjoint QoS paths P1, P2 . . . , Pk

computed by Algorithm 1;
Output: Improved disjoint QoS paths Q1, Q2 . . . , Qk.

1. If
∑k

i=1 d(Pi) ≤ (1 + β)D ;
then return P1, P2 . . . , Pk as Q1, Q2 . . . , Qk , terminate;

2. Reverse direction of the edges of P1, P2 . . . , Pk in G , set their cost to a small
positive real number 0 < ε < 1

mnD
, and negative their delay;

3. Compute cycle Oj with c(Oj) ≤ C, d(Oj) < 0 and d(Oj)

c(Oj)
attaining minimum, by

the method given in next section;
/* Following clause 2 of Proposition 6, if

∑k
i=1 d(Pi) ≥ d(OPT) and

∑k
i=1 c(Pi) ≥

0, there always exist cycle Oj with c(Oj) ≤ C and d(Oj) < 0. */
4. Improve P1, P2 . . . , Pk by adding the edges of Oj and removing the pairs of parallel

edges in opposite direction;
5. Go to Step 1.

2.2 The Improving Phase

To make the delay of the solution resulting from Algorithm 1 bounded by (1 +
β)D, our improving phase is, basically a greedy method, using the so-called cycle
cancellation to improve the disjoint paths in iterations until a solution with the
best possible ratio (1 + β, max{2, 1 + ln 1

β}) is obtained. The cycle cancellation
method is an approach of using cycles to change the edges of the disjoint paths,
which first appears in [10] and is derived from the following proposition that can
be immediately obtained from flow theory [1]:

Proposition 6. Let P1, P2 . . . , Pk and Q1, Q2 . . . , Qk be two sets of k disjoint
st-paths in G, G be G excepting that all edges of P1, P2 . . . , Pk are reversed, and
O be a cycle in G. Then

1. The edges of P1, P2 . . . , Pk and O, excepting the pairs of parallel edges with
opposite direction, compose k-disjoint paths;

2. There exist a set of edge disjoint cycles O1, . . . , Oh in G, such that the edges
of P1, P2 . . . , Pk and O1, . . . , Oh, excepting the pairs of parallel edges with
opposite direction, compose Q1, Q2 . . . , Qk.

From the proposition above, it is obvious that there exists a set of cycles O1, . . . ,
Oh that can improve k disjoint QoS paths P1, P2 . . . , Pk to an optimal solution.
However, it is hard to identify all the cycles O1, . . . , Oh, so we employ a greedy
approach to compute a set of cycles to obtain an approximation approach. The
improving phase is composed by iterations, each of which computes a cycle and
then uses it to improve P1, P2 . . . , Pk. More precisely, to obtain a good ratio,
the algorithm computes in iteration j a cycle Oj with d(Oj)

c(Oj)
minimized among

the cycles in G. The layout of the algorithm is as given in Algorithm 2.

Improved Approximation Algorithms for Computing k Disjoint Paths 331

Following clause 1 of Proposition 6, Algorithm 2 will correctly return k disjoint
paths. It remains to show the cost and delay of the k disjoint paths is constrained
as below:

Theorem 7 The approximation ratio of Algorithm 2 is (1+β,max{2, 1+ln 1
β }).

Proof. For the case that
∑k

i=1 d(Pi) ≤ (1 + β)D holds before the improving
phase, the approximation ratio of Algorithm 2 is obviously (1 + β, 2).

It remains to show the ratio of the algorithm is (1 + β, 1 + ln 1
β) for the case

that
∑k

i=1 d(Pi) > (1 + β)D. Assume that Algorithm 2 runs in h iterations, the
key idea of the proof is to sum up the cost increment while using the cycle to
improve the k disjoint paths in iterations, and show that the cost sum is bounded
(by giving the cost sum a close form).

Note that in the case, we have αD ≥
∑k

i=1 d(Pi) > (1 + β)D, so α > 1 + β
holds. Let ΔD = d(OPT) − d(SOL) ≥ (1 − α)d(OPT) and ΔC = c(OPT) −
c(SOL) ≤ (α − 1)c(OPT). Clearly, ΔD < 0 and ΔC > 0 hold. Let the cycle
computed in the jth iteration be Oj , then since d(Oj)

c(Oj)
attains minimum in Step

3 of Algorithm 2, we have d(Oj)
c(Oj)

≤ ΔD−∑j−1
i=1 d(Oi)

C . That is,

c(Oj) ≤
d(Oj)

ΔD −
∑j−1

i=1 d(Oi)
C.

By summing up c(Oj) in h− 1 iterations (excluding the last iteration), we have:

h−1∑

j=1

c(Oj) ≤ C

h−1∑

j=1

d(Oj)

ΔD −
∑j−1

i=1 d(Oi)
.

Following the definition of Definite Integral, we have:

h−1∑

j=1

d(Oj)

ΔD −
∑j−1

i=1 d(Oi)
=

h−1∑

j=1

1

ΔD −
∑j−1

i=1 d(Oi)
d(Oj) ≤

∫ ΔD−∑h−1
i=1 d(Oi)

ΔD

1

x
dx,

(2)
where the maximum is attained when d(Oj) = −1 for every j.

Algorithm 2 terminates when d(SOL) +
∑h

i=1 d(Oi) ≤ (1 + β)D, so in the
h − 1 iterations d(SOL) +

∑h−1
i=1 d(Oi) > (1 + β)D holds. That is d(SOL) −

D +
∑h−1

i=1 d(Oi) > βD, and hence −ΔD +
∑h−1

i=1 d(Oi) > βD > 0 holds. So we
obtain a close form for the cost sum of the h− 1 iterations:

∫ ΔD−∑h−1
i=1 d(Oi)

ΔD

1

x
dx =

∫ −ΔD

−ΔD+
∑h−1

i=1
d(Oi))

1

x
dx ≤

∫ −ΔD

βD

1

x
dx = ln

|ΔD|
βD

= ln
α− 1

β
.

(3)

332 L. Guo, H. Shen, and K. Liao

At last, the cost increment in the hth iteration is bounded by c(OPT). So the
final cost is c(SOL2) ≤ (2 − α)C + C ln α−1

β + C = C(3 − α + ln α−1
β), where

SOL2 is the solution resulting from Algorithm 2.
Let f(α) = 3−α+ ln α−1

β . Remind that α ≤ 2, so f ′(α) = 1
α−1 − 1 > 0, f(α)

is monotonous increasing on α, and attains maximum while α = 2. So we have
c(SOL2) ≤ (1 + ln 1

β)c(OPT).
Therefore, the cost of the output of Algorithm 2 is bounded by (1 + ln 1

β)

c(OPT), and delay bounded by (1 + β)d(OPT). This completes the proof.

From Theorem 7, by setting 1+ln 1
β = 2, we can immediately obtain an improved

algorithm with best possible delay ratio under the same cost bound 2C. That
is:

Corollary 8. By setting 1 + ln 1
β = 2, we have β = 1

e , and hence Algorithm 2
is now with a bifactor approximation ratio of (1 + 1

e , 2) = (1.369, 2).

For those applications in which delay and cost are of equal importance, by setting
1 + ln 1

β = 1 + β and slightly modifying Algorithm 2 to improve either cost or
delay that is of worse ratio, we can obtain an improved algorithm with ratio as
in the following corollary:

Corollary 9. If 1 + ln 1
β = 1+ β, Algorithm 2 is with a bifactor approximation

ratio of (1.567, 1.567).

Now we consider the case that β = 0, i.e. the delay constraint is strictly satisfied.
In this case, Inequality (3) in the proof of Theorem 7 will become
∑h−1

j=1
d(Oj)

ΔD−∑j−1
i=1 d(Oi)

≤
∫ |ΔD|
|βD=0|

1
xdx = ln |ΔD| ≤ lnD. So we have:

Corollary 10. When β = 0, Algorithm 2 is with a ratio of (1, O(lnn)).

From Corollary 10, we can see that the price of obeying one constraint strictly
is very high, i.e. it requires extra O(lnn) times of cost. However, this is the first
algorithm with logarithmic factor approximation ratio for the k-BCP problem
with strict delay constraint.

3 Computing Cycle Oj with Minimum d(Oj)

c(Oj)

Let G = (V,E) be G, excepting that the edges of P1, P2 . . . , Pk are with direc-
tion reversed, cost sat to 0, and delay negatived. This section will show how to
compute a cycle O with cost bounded by C and d(O)

c(O) minimized in G. The key
idea is firstly to construct an auxiliary graphs H(v) for each v where every cycle
is with cost at most C, secondly to compute the cycle O′ with minimum d(O′)

c(O′)

among all cycles in all H(v)s for each v ∈ G, and thirdly to obtain cycle O with
minimum d(O(v))

c(O(v)) in G according to O′.

Improved Approximation Algorithms for Computing k Disjoint Paths 333

Algorithm 3. Construction of auxiliary graph H .
Input: Graph G = (V,E), two distinct vertices s, t ∈ V , a cost c : e → Z+

0 and a
delay d : e → Z+

0 on every edge e ∈ E, a cost constraint C and a delay constraint D;
Output: Auxiliary graph H(v).

1. For every vertex vl of V , add to H(v) vertices v1l , . . . , v
C
l ;

2. For every edge e = 〈vj , vl〉 ∈ E, add to H(v) the edges〈
v1j , v

c(e)+1
l

〉
, . . . ,

〈
v
C−c(e)
j , vCl

〉
, each of which is with cost c(e) and delay

d(e);
/*Note that d(e) can be negative in G = (V,E).*/

3. For all i = 2, . . . , C, add to H(v) backward edge
〈
vi, v1

〉
with delay 0 and cost 0,

where a backward edge is an edge
〈
vi, vj

〉
where i > j.

/*H(v) contains backward edges, and hence cycles, only after adding the edges of
Step 3.*/

3.1 Construction of Auxiliary Graph H(v)

The algorithm of constructing the auxiliary graph H(v) is inspired by the method
of computing a single path subject to multiple constraints [14]. The full layout
of the algorithm is as shown in Algorithm 3 (An example of such construction
is as depicted in Figure 1).

Following Algorithm 3, every backward edge in the constructed auxiliary
graph H(v) must contain vertex v1. Hence every cycle in H(v) contains at most
one backward edge. On the other hand, following Algorithm 3 a cycle in H(v)
contains at least one backward edge. Therefore, there exist exactly one backward
edge in any cycle of H(v). Because H(v) \ {

〈
v2, v1

〉
, . . . ,

〈
vC , v1

〉
} is an acyclic

graph where any path is with cost at most C, we have:

Lemma 11. Any cycle in H(v) is with cost at most C.

Let O(v) be a cycle in H(v), then following the construction of H(v), O(v)
apparently corresponds to a set of cycles in G. Conversely, every cycle containing
v in G corresponds to a cycle in H(v). Based on the observation, the following
lemma gives the key idea of computing a cycle O of G with d(O)

c(O) minimized and
cost bounded by C:

Lemma 12. Let O(vi) be a cycle with minimum d(O(vi))
c(O(vi))

in H(vi), and O(v) be

the cycle with minimum d(O(v))
c(O(v)) among the n cycles O(v1), . . . , O(vn). Assume O

is a cycle with minimum d(O)
c(O) in the set of cycles in G that correspond to O(v).

Then for any cycle O′ in G with c(O′) ≤ C, d(O)
c(O) ≤ d(O′)

c(O′) holds.

Proof. Suppose this lemma is not true, then there must exist in G a cycle, say O′,
such that d(O)

c(O) > d(O′)
c(O′) and c(O′) ≤ C hold. Then the cycle O′(v) in H(v) that

corresponds to O′ is also with d(O′(v))
c(O′(v)) = d(O′)

c(O′) < d(O)
c(O) ≤ d(O(v))

c(O(v)) , contradicting
with the minimality of O(v) in H(v). This completes the proof.

334 L. Guo, H. Shen, and K. Liao

s

x

y

z

t

s0

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

z0 z1 z2 z3 z4 z5 z6

t0 t1 t2 t3 t4 t5 t6

(1, 4)

(1,1)

(a)

(b)

edge with delay and cost equal to its corresponding edge in G

edge with delay 0 and cost ε

s1 s2 s3 s4 s5 s6

(2,1)(1,2) (2,1)

(−7, ε)

(2, 6)

Fig. 1. Construction of auxiliary graph H(v = s) with cost constraint C = 6: (a) graph
G; (b) auxiliary graph H(v = s). The cycle O = syts in G is exclude in the auxiliary
graph H(s) as shown in (b), keeping the cost of k disjoint paths constrained by C = 6.

Improved Approximation Algorithms for Computing k Disjoint Paths 335

3.2 Computing the Cycle O with Minimum d(O)
c(O)

The main idea of the algorithm to compute a cycle O with d(O)
c(O) minimized in G

is to compute the cycle O′ with minimum d(O′)
c(O′) among all cycles in all H(v)s for

each v ∈ G. Following Lemma 12, the cycle O in G is the cycle with minimum
d(O)
c(O) among the cycles in G corresponding to all the computed O′s. The detailed
steps are as below:

1. For i = 1 to n

(a) Construct H(vi) for vi ∈ G by Algorithm 3;
(b) Compute cycle O(vi) with minimum d(O(vi))

c(O(vi))
in H(vi) by employing the

minimum cost-to-time ratio cycle algorithm in [1];
(c) Select O(v) with minimum d(O(v))

c(O(v)) from the n computed cycles
O(v1), . . . , O(vn);

2. Select the cycle O with minimum d(O)
c(O) among the cycles in G that correspond

to O(v).

Clearly, the cycle O attains minimum d(O)
c(O) in G. Besides, following Lemma 11

we have c(O) ≤ C. Therefore the cycle O is correctly the promised cycle. This
completes the proof of the approximation ratio.

4 Conclusion

This paper gave a novel approximation algorithm with ratio (1 + β, max{2, 1+
ln 1

β}) for the kBCP problem based on improving a simple (α, 2 − α)-
approximation algorithm by constructing interesting auxiliary graphs and
employing the cycle cancellation method. By setting β = 0, an approximation al-
gorithm with bifactor ratio (1, O(lnn)), i.e. an O(lnn)-approximation algorithm
can be obtained immediately. To the best of our knowledge, it is the first non-
trivial approximation algorithm for this problem that obeys the delay constraint
strictly. We are now investigating whether any constant factor approximation al-
gorithm exists for computing a solution that strictly obey the delay constraint.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and
applications (1993)

2. Bhatia, R., Kodialam, M., Lakshman, T.V.: Finding disjoint paths with related
path costs. Journal of Combinatorial Optimization 12(1), 83–96 (2006)

3. Chao, P., Hong, S.: A new approximation algorithm for computing 2-restricted
disjoint paths. IEICE Transactions on Information and Systems 90(2), 465–472
(2007)

4. Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman, San Francisco
(1979)

336 L. Guo, H. Shen, and K. Liao

5. Guo, L., Shen, H.: On Finding Min-Min disjoint paths. accepted by Algorithmica
6. Guo, L., Shen, H.: Efficient approximation algorithms for computing k disjoint

minimum cost paths with delay constraint. In: IEEE PDCAT, pp. 627–631. IEEE
(2012)

7. Guo, L., Shen, H.: On the complexity of the edge-disjoint min-min problem in
planar digraphs. Theoretical Computer Science 432, 58–63 (2012)

8. Li, C.L., McCormick, T.S., Simich-Levi, D.: The complexity of finding two dis-
joint paths with min-max objective function. Discrete Applied Mathematics 26(1),
105–115 (1989)

9. Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted
shortest path problem. Operations Research Letters 28(5), 213–219 (2001)

10. Orda, A., Sprintson, A.: Efficient algorithms for computing disjoint QoS paths. In:
IEEE INFOCOM, vol. 1, pp. 727–738. Citeseer (2004)

11. Suurballe, J.W.: Disjoint paths in a network. Networks 4(2) (1974)
12. Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint

paths. Networks 14(2) (1984)
13. Xu, D., Chen, Y., Xiong, Y., Qiao, C., He, X.: On the complexity of and algorithms

for finding the shortest path with a disjoint counterpart. IEEE/ACM Transactions
on Networking 14(1), 147–158 (2006)

14. Xue, G., Zhang, W., Tang, J., Thulasiraman, K.: Polynomial time approximation
algorithms for multi-constrained qos routing. IEEE/ACM Transactions on Net-
working (TON) 16(3), 656–669 (2008)

	Improved Approximation Algorithmsfor Computing k Disjoint Paths Subject to Two Constraints
	1 Introduction
	1.1Related Work
	1.2Our Techniques and Results

	2An Improved Approximation Algorithm for Computing k Disjoint Bi-constraint Paths
	2.1A Basic Approximation Algorithm
	2.2 The Improving Phase

	3Computing Cycle Oj with Minimum d(Oj)c(Oj)
	3.1Construction of Auxiliary Graph H(v)
	3.2Computing the Cycle O with Minimum d(O)c(O)

	4Conclusion
	References

