Random Methods for Parameterized Problems*

Qilong Feng¹, Jianxin Wang¹, Shaohua Li¹, and Jianer Chen^{1,2}

 ¹ School of Information Science and Engineering, Central South University, Changsha 410083, P.R. China
² Department of Computer Science and Engineering Texas A&M University College Station, Texas 77843-3112, USA

Abstract. In this paper, we study the random methods for parameterized problems. For the Parameterized P_2 -Packing problem, by randomly partitioning the vertices, a randomized parameterized algorithm of running time $O^*(6.75^k)$ is obtained, improving the current best result $O^*(8^k)$. For the Parameterized Co-Path Packing problem, we study the kernel and randomized algorithm for the degree-bounded instance, and then by using the iterative compression technique, a randomized algorithm of running time $O^*(3^k)$ is given for the Parameterized Co-Path Packing problem, improving the current best result $O^*(3.24^k)$.

1 Introduction

Random techniques have been used widely in designing parameterized algorithms for many NP-hard problems [2], [3], [11], [12]. In this paper, we are mainly focused on the randomized algorithms for parameterized problems, which the Parameterized P_2 -Packing problem and the Parameterized Co-Path Packing problem are used to illustrate the random methods given in this paper. We firstly give definitions of the above two problems.

Parameterized P_2 -Packing: Given a graph G = (V, E) and an integer k, find a set S of P_2 s (a P_2 is a simple path of length two) with size k in G such that no two P_2 s from S have common vertices, or report that no such set exists.

Parameterized Co-Path Packing (PCPP): Given a graph G = (V, E)and an integer k, find a subset $F \subseteq V$ of size at most k such that each connected component in graph $G[V \setminus F]$ is a path, or report that no such subset exists.

^{*} This work is supported by the National Natural Science Foundation of China under Grant (61232001, 61103033, 61173051), Postdoc Foundation of Central South University.

[©] Springer-Verlag Berlin Heidelberg 2013

For the P_2 -Packing problem, Hassin and Rubinstein [10] gave an approximation algorithm with ratio 35/67 for the maximum P_2 -Packing problem. De Bontridder *et al.* [5] gave an approximation algorithm with ratio 2/3. For a general subgraph H, Fellows *et al.* [6] presented an algorithm of running time $O^*(2^{O(|H|k \log k+k|H| \log |H|)})$ for the H-Packing problem.¹ Prieto and Sloper [13] gave a parameterized algorithm of time $O^*(39.43^k)$ for the Parameterized P_2 -Packing problem. Henning *et al.* [7] gave an improved parameterized algorithm with running time $O^*(14.67^k)$. Feng et al. [8] presented a parameterized algorithm with running time $O^*(8^k)$ for the Parameterized P_2 -Packing problem, which is the current best result.

The Parameterized Co-Path Packing problem has important application in Bioinformatics [4]. From approximation algorithm point of view, an approximation algorithm with ratio 2 in [9] can be applied to solve the Minimum Co-Path Packing problem. Recently, Chen et al. [1] gave a kernel of size 32k for the Parameterized Co-Path Packing problem, and presented an algorithm of running time $O^*(3.24^k)$.

In this paper, for the Parameterized P_2 -Packing problem, by using a different way to partition the vertices in the instance, a simple randomized algorithm of running time $O^*(6.75^k)$ is given, which improves the current best result $O^*(8^k)$. For the Parameterized Co-Path Packing problem, the vertices with different degrees are studied. Especially, a randomized algorithm is given for the Parameterized Co-Path Packing problem in degree-bounded graph. By applying iterative compression technique, a randomized algorithm of running time $O^*(3^k)$ is given, which improves the current best result $O^*(3.24^k)$.

2 Randomized Algorithm for Parameterized P₂-Packing

For a P_2 l = (x, y, z), x, z are called the End-vertices of l, and y is called the Mid-vertex of l. For a set \mathcal{P} of P_2 s, if no two P_2 s in \mathcal{P} have common vertices, then \mathcal{P} is called a P_2 -Packing in G. In order to solve the Parameterized P_2 -Packing problem efficiently, we introduce the following problem.

Constrained P_2 -Packing on Bipartite Graphs: Given a bipartite graph $B = (L \cup R, E)$ and an integer k, either construct a P_2 -Packing \mathcal{P} of size k with End-vertices in L, or report that no such packing exists.

Since the weighted version of Constrained P_2 -Packing on Bipartite Graphs can be solved in polynomial time [8], by assigning each edge in B with weight 1, the Constrained P_2 -Packing on Bipartite Graphs problem can also be solved in polynomial time.

For a given instance (G, k) of the Parameterized P_2 -Packing problem, assume that \mathcal{P} is a P_2 -Packing of size k in G. Then, the P_2 s in \mathcal{P} have k Mid-vertices and 2k End-vertices, denoted by H_1 , H_2 respectively. We want to partition the

¹ Following a recent convention, for a function f, we will use the notion $O^*(f)$ for the bound $O(f \cdot n^{O(1)})$.

vertices in V into two parts V_1 , V_2 , such that H_1 is contained in V_1 , and H_2 is contained in V_2 . We give the following random strategy to divide the vertices in V. For any vertex v in V, put v into V_1 with probability 2/3, and put v into V_2 with probability 1/3. After deleting all the edges with two ends in V_1 or V_2 , an instance $B = (V_1 \cup V_2, E')$ of the Constrained P_2 -Packing on Bipartite Graphs problem can be obtained, where E' is the set of edges with one end in V_1 and the other end in V_2 , which can be solved in polynomial time. The specific random algorithm solving the Parameterized P_2 -Packing problem is given Figure 1.

Algorithm $\mathbf{RP2P}(G, k)$ Input: a graph G, and an integer kOutput: a P_2 -Packing of size k, or report no such packing exists. **loop** $c \cdot 6.75^k$ times 1. $V_1 = V_2 = \emptyset;$ 1.11.2for each vertex v in V do put v into V_1 with probability 2/3, and put v into V_2 with probability 1/3;delete all the edges with two ends either both in V_1 or both in V_2 ; 1.31.4a bipartite graph $B = (V_1 \cup V_2, E')$ can be constructed, where E' is the set of edges with one end in V_1 and the other end in V_2 ; 1.5construct a P_2 -Packing \mathcal{P} of size k in B with End-points in V_1 ; 1.6if step 1.5 is successful, then return \mathcal{P} ; 2. return("no such packing exists").

Fig. 1. A randomized algorithm for the Parameterized P_2 -Packing problem

Theorem 1. The Parameterized P_2 -Packing problem can be solved in time $O^*(6.75)^k$ with probability larger than $1 - (1/e)^c$.

Proof. If the given instance (G, k) is a No-instance for the Parameterized P_2 -Packing problem, then no matter how the vertices in V are partitioned, a P_2 -Packing of size k cannot be found in B. Thus, step 2 will correctly return that graph G contains no P_2 -Packing of size k.

Now assume that \mathcal{P} is a P_2 -Packing of size k in G. Then there are 2k Endvertices and k Mid-vertices contained in \mathcal{P} . Let H_1 , H_2 be the sets of Endvertices, Mid-vertices of \mathcal{P} respectively, $|H_1| = 2k$, and $|H_2| = k$. If the vertices in \mathcal{P} can be partitioned correctly, i.e., all the vertices in H_1 are put into V_1 and all the vertices in H_2 are put into V_2 , then a bipartite graph $B = (V_1 \cup V_2, E')$ containing a P_2 -Packing of size k can be constructed in step 1.4. Then, the P_2 -Packing found in step 1.5 can be correctly returned by step 1.6.

We now analyze the probability that the algorithms fails in finding a P_2 -Packing of size k in G. Since each vertex in V is put into V_1 , V_2 with probability 2/3, 1/3 respectively, for each iteration of step 1, the vertices in H_1 , H_2 can be correctly partitioned in step 1.2 with probability $(2/3)^{2k}(1/3)^k = (4/27)^k$.

Then, the probability that the vertices in H_1 , H_2 are not correctly partitioned in each iteration is $1 - (4/27)^k$. Therefore, the probability that H_1 and H_2 are not partitioned correctly in $c \cdot 6.75^k$ iterations is $(1 - (4/27)^k)^{c \cdot 6.75^k} = ((1 - 1/6.75^k)^{6.75^k})^c \leq (1/e)^c$. Therefore, the vertices in H_1 , H_2 can be partitioned into V_1 , V_2 respectively with probability larger than $1 - (1/e)^c$.

At last, we analyze the time complexity of algorithm **RP2P**. Step 1.2 can be done in O(n) time, where *n* is the number of vertices in *G*. It takes O(n + m)time to do steps 1.3, 1.4, where *m* is the number of edges in *G*. For step 1.5, a P_2 Packing of size *k* in *G* can be found in O(k(m' + nlogn) [8], where *m'* is the number of edges in *B*. Therefore, the running time of algorithm **RP2P** is $O(6.75^k k(m' + nlogn)) = O^*(6.75^k)$.

3 Randomized Algorithm for Parameterized Co-path Packing Problem

For a vertex v, let N(v) denote the neighbors of vertex v, i.e., $N(v) = \{u | (u, v) \in E\}$, and let $N[v] = N(v) \cup \{v\}$. For a graph G = (V, E), and a subset $V' \subseteq V$, let G[V'] denote the subgraph induced by the vertices in V'. In order to solve the problem efficiently, we first study the Parameterized Co-Path Packing problem in degree bounded graph.

Degree-Bounded Parameterized Co-Path Packing (DBPCP): Given a graph G = (V, E) and an integer k, where each vertex v in V has degree at most three, find a subset $F \subseteq V$ of size at most k such that each connected component in graph $G[V \setminus F]$ is a path, or report that no such subset exists.

3.1 Kernelizaiton Algorithm for DBPCP

For the Degree-Bounded Parameterized Co-Path Packing problem, some structure properties can be obtained, as follows.

Lemma 1. Given an instance (G, k) of Degree-Bounded Parameterized Co-Path Packing problem, the number of vertices with degree three in G is bounded by 4k.

Given an instance (G, k) of Degree-Bounded Parameterized Co-Path Packing problem, for a path $P = \{v_1, v_2, \dots, v_{h-1}, v_h\}$ in G, if the vertices in $\{v_2, \dots, v_{h-1}\}$ have degree two and the degrees of v_1, v_h are not two, then path P is called a *degree-two-path*.

Lemma 2. For a degree-two-path $P = \{v_1, v_2, \dots, v_{h-1}, v_h\}$ in G, if the two vertices v_1 , v_h both have degree three and h > 4, then edges in $\{(v_i, v_{i+1})|i = 2, 3, \dots, h-2\}$ can be contracted; if one vertex of $\{v_1, v_h\}$ has degree one and the other has degree three, then edges in $\{(v_i, v_{i+1})|i = 1, 2, \dots, h-2\}$ can be contracted.

Based on Lemma 2, we can get the following reduction rule.

Rule 1. For a degree-two-path $P = \{v_1, v_2, \dots, v_{h-1}, v_h\}$ in G, if the two vertices v_1, v_h both have degree three and h > 4, then contract the edges in $\{(v_i, v_{i+1}) | i = 2, 3, \dots, h-2\}$. If one vertex of $\{v_1, v_h\}$ has degree one and the other has degree three, then contract the edges in $\{(v_i, v_{i+1}) | i = 1, 2, \dots, h-2\}$. Let G' = (V', E') be the graph obtained after applying reduction Rule 1.

Lemma 3. In the graph G', the number of vertices with degree two is bounded by 12k.

Lemma 4. For any vertex v with degree three in G', if there are two vertices u, w with degree one in N(v), then the vertex in $N(v) \setminus \{u, w\}$ can be deleted.

Based on Lemma 4, we can get the following reduction rule.

Rule 2. For any vertex v with degree three in G', if there are two vertices u, w with degree one in N(v), then delete the vertex in $N(v) \setminus \{u, w\}, V' = V' \setminus \{u, v, w\}, k = k - 1$.

Let G'' = (V'', E'') be the graph obtained after applying reduction Rule 2.

Lemma 5. In the graph G'', the number of vertices with degree one is bounded by 4k.

By applying reduction Rule 1 and Rule 2 repeatedly, a kernel of size 20k for the Degree-Bounded Parameterized Co-Packing problem can be obtained.

Theorem 2. The Degree-Bounded Parameterized Co-Path Packing problem admits a kernel of size 20k.

3.2 Randomized Algorithm for DBPCP

Assume that (G = (V, E), k) is a reduced instance of the Degree-Bounded Parameterized Co-Path Packing problem by repeatedly applying reduction Rule 1 and Rule 2, and assume that $F(|F| \leq k)$ is a solution of the Degree-Bounded Parameterized Co-Path Packing problem. Let E' be the set of edges in E with at least one endpoint having degree three. The edges in E' can be divided into two parts A, B such that $A \cup B = E'$, and for each edge e in A, at least one endpoint of e is contained in F, and for each edge e' in B, no endpoint of e is contained in F.

Lemma 6. In the reduced graph G, for the sets $A, B, |A|/|B| \ge 1/2$.

Lemma 7. For an edge $e = (u, v) \in B$, and for any vertex x from $\{u, v\}$ with degree three, then at least one vertex in $N(x) \setminus (\{u, v\} \setminus \{x\})$ is contained in F.

The general idea to randomly solve the Degree-Bounded Parameterized Co-Path Packing problem is as follows. Arbitrarily choose an edge e from E'. Then, with probability |A|/|E'|, the edge e is from A, and with probability |B|/|E'|, edge eis from B. If the edge e is from A, then at least one endpoint of e is contained

Algorithm R-DBPCP (G, k)
Input: a graph G , and an integer k
Output: a subset $F \subseteq V$ of size at most k such that each component in $G[V \setminus F]$
is a path, or report no such subset exists.
1. for each k_1, k_2 with $k_1 + k_2 \leq k$ do
2. loop $c \cdot 2^{k_1}$ times
$2.1 F = C = D = \emptyset;$
2.2 let E' be the set of edges in E with at least one endpoint having degree
three;
2.3 while E' is not empty do
2.4 randomly choose an edge $e = (u, v)$ from E' ;
2.5 put e into C with probability $1/2$, and put e into D with probability
1/2;
2.6 if e is contained in C then
2.7 randomly choose a vertex from $\{u, v\}$ to put into F ;
2.8 if e is contained in D then
2.9 find a vertex w from $\{u, v\}$ with degree three;
2.10 randomly choose a vertex y from $N(w) \setminus \{u, v\} \setminus \{w\}$ to put into
F;
2.11 let E' be the set of edges in $G[V \setminus F]$ with at least one endpoint having
degree three;
2.12 if $ F \leq k_1$ then
2.13 denote the remaining graph by G' ;
2.14 if the number of cycles in G' is at most k_2 then
2.15 for each cycle C in G' do
2.16 delete a vertex v' from C , and add v' to F ;
2.17 $\operatorname{return}(F)$; break;
3. return("no such subset exists").

Fig. 2. A randomized algorithm for DBPCP problem

in F. Randomly choose an endpoint of e to put into F. If the edge e is from B, find an endpoint x of e with degree three, and randomly choose a vertex from $N(x)\setminus(\{u,v\}\setminus\{x\})$ to put into F. The specific randomized algorithm solving the Degree-Bounded Parameterized Co-Path Packing problem is given in Figure 2.

Theorem 3. The Degree-Bounded Parameterized Co-path Packing problem can be solved randomly in time $O^*(2^k)$.

Proof. First note that if the input instance is a no-instance, step 2 could not find a subset $F \subseteq V$ with size at most k such that in graph $G[V \setminus F]$, each component is a path, which is rightly handled by step 3.

Now suppose that a subset $F \subseteq V$ can be found in G such that each component is a path in $G[V \setminus F]$. Then, there must exist two subsets $F', F'' \subseteq F$ $(F' \cup F'' = F)$ such that in $G[V \setminus F']$, each vertex has degree at most two, and after deleting the edges in F'', all the cycles in $G[V \setminus F']$ are destroyed. Thus, there must exist k_1, k_2 with $k_1 + k_2 \leq k$ such that $|F'| = k_1, |F''| = k_2$.

By arbitrarily choose an edge e from E', with probability |A|/|E'|, the edge e is from A, and with probability |B|/|E'|, edge e is from B. By Lemma 7, for the sets A, B, |A|/|B| > 1/2. Therefore, the probability that edge e is from A is at least 1/2. In step 2.5, edge e is put into C with probability 1/2, and is put into D with probability 1/2. Since at least one endpoint of edge e has degree three. at least one vertex from $N[u] \cup N[v]$ is contained in F. Assume that $\{v_1, \dots, v_i\}$ $(1 \leq i)$ is the subset of vertices from $N[u] \cup N[v]$, which are contained in F. We now prove that by steps 2.5-2.10, one vertex from $\{v_1, \dots, v_i\}$ $(1 \le i)$ can be rightly added into F with probability 1/2. If the edge e picked in step 2.4 is from A, then with probability 1/2, e is put into C. Without loss of generality, assume that $F \cap \{u, v\}$ is $\{u\}$. Then, in step 2.7, for the vertices $\{u, v\}$, u can be rightly added into F with probability 1/2. Thus, if the edge e picked in step 2.4 is from A, then with probability 1/4, u can be rightly added into F in step 2.7. On the other hand, if the edge e picked in step 2.4 is from B, then with probability 1/2, e is put into D in step 2.5. In this case, no vertex from $\{u, v\}$ is contained in F. Without loss of generality, assume that vertex u has degree three. Consequently, at least one vertex from $N(u) \setminus \{v\}$ is added into F. Assume that vertex x from $N(u)\setminus\{v\}$ is contained in F. Then, in step 2.10, for the vertices in $N(u)\setminus\{v\}$, vertex x can be rightly added into F with probability 1/2. Therefore, if the edge e picked in step 2.4 is from B, then with probability 1/4, vertex x is rightly added into F. Thus, for the edge e picked in step 2.4, the probability that at least one vertex in $\{v_1, \dots, v_i\}$ is rightly put into F is 1/4 + 1/4 = 1/2. Then, the probability that all vertices in F'_1 are deleted is at least $(1/2)^{k_1}$. Therefore, the probability that the vertices in F'_1 are not rightly deleted is $1-(1/2)^{k_1}$. Therefore, after $c \cdot 2^{k_1}$ operations, none of the executions of steps 2.1-2.11 can rightly handle the vertices in F'_1 is $(1 - (1/2)^{k_1})^{c \cdot 2^{k_1}} = ((1 - (1/2)^{k_1})^{2^{k_1}})^c \le (1/e)^c$. Therefore, after $c \cdot 2^{k_1}$ operations, the algorithm can correctly handle the vertices in F'_1 with probability larger than $1 - (1/e)^c$.

For each loop in step 2, if $|F| \leq k_1$ in step 2.12 and there exist cycles in the remaining graph, the cycles can be destroyed by choosing any vertex in the cycle.

Step 2.2 can be done in time O(n+m), and step 2.3 can be done in O(m(m+n)), where m, n are the number of edges and vertices in graph G respectively. Step 2.12-2.16 can be done in time O(n+m). Therefore, algorithm R-DBPCP runs in time $O(2^{k_1}m(n+m)) = O^*(2^k)$.

4 Randomized Algorithm for the PCPP Problem

In this section, using iterative compression technique, we give a randomized algorithm of running time $O^*(3^k)$ for the Parameterized Co-Path Packing problem. We first give the following definitions.

Parameterized Co-Path Packing Compression (PCPPC): Given a graph G = (V, E), an integer k, and a subset $F \subseteq V$ of size k+1, where in graph $G[V \setminus F]$, each connected component is a path, find a subset $F' \subseteq V$ of

size at most k such that each connected component in graph $G[V \setminus F']$ is a path, or report that no such subset exists.

Special Parameterized Co-Path Packing Compression (SPCPPC): Given a graph G = (V, E), an integer k, and a subset $F \subseteq V$ of size k+1, where in graph $G[V \setminus F]$, each connected component is a path, find a subset $F' \subseteq V$ of size at most k such that $F' \cap F = \emptyset$, and each connected component in graph $G[V \setminus F']$ is a path, or report that no such subset exists.

We now give an algorithm solving the Special Parameterized Co-Path Packing Compression problem.

Lemma 8. Given an instance (G = (V, E), k, F) of the Special Parameterized Co-Path Packing Compression problem, if there exists a vertex v in $V \setminus F$ with degree at least five, then v can be deleted; if there exists a vertex v in $V \setminus F$ with degree four and $|N(v) \cap F| = 3$, then v can be deleted.

For the instance (G = (V, E), k, F) of the Special Parameterized Co-Path Packing Compression problem, if there exists a vertex v in F with degree at least three, then v is called a *special vertex* in F.

Lemma 9. For a special vertex v in F, if $|F \cap N(v)| = 2$, then the vertices in $N(v)\setminus F$ can be deleted; if $|F \cap N(v)| = 1$, then at least $|N(v)\setminus F| - 1$ vertices in $N(v)\setminus F$ can be deleted.

Given an instance (G = (V, E), k, F) of the Special Parameterized Co-Path Packing Compression problem, assume that F' is the solution of the problem. In the following, we first give the algorithm to deal with the vertices with degree four in $V \setminus F$ and having two neighbors in $V \setminus F$: for a vertex v with degree four in $V \setminus F$ and and having two neighbors in $V \setminus F$, either v is contained in F, or the two vertices in $N(v) \setminus F$ are contained in F. The specific algorithm is given in Figure 3.

Theorem 4. Algorithm Bran- $V(G, k_1, F, \emptyset)$ runs in time $O(1.62^{k_1}n)$ and returns a collection of at most 1.62^{k_1} sets of vertices, where n is the number of vertices in G.

Proof. For an instance (G = (V, E), k, F) of the Special Parameterized Co-Path Packing Compression problem, assume that F' is the solution of the problem. For a vertex v of $V \setminus F$ with degree four and having two neighbors in $V \setminus F$, assume that two neighbors u, w of v are contained in $V \setminus F$. Either vertex v is in F' or the vertices u, w are in F', which corresponds the two branchings in step 4 and step 5 respectively. Assume that V' is the set of all vertices with degree four in G, and let $V'' \subseteq V'$ be the set of vertices in $\bigcup_{v \in V'} N[v]$ that are contained in F'. Let $k_1 = |V''|$ and let $T(k_1)$ be the size of search tree obtained by calling algorithm Bran-V(G, k_1, F, Q). It is easy to get the following recurrence relation: $T(k_1) = T(k_1 - 1) + T(k_1 - 2)$. Then, $T(k_1) = 1.62^{k_1}$. Therefore, algorithm Bran-V(G, k_1, F, \emptyset) runs in time $O(1.62^{k_1}n)$ and returns a collection of at most 1.62^{k_1} sets of vertices. □ Algorithm Bran- $V(G, k_1, F, Q)$

Input: a graph G = (v, E), an integer k, a subset F of vertices, and a subset Q of vertices

Output: the collection of vertices in $V \setminus F$, each contains k_1 vertices

- 1. if $(|Q| > k_1)$ then abort; else return Q;
- 2. arbitrarily pick a vertex v in $V \setminus F$ with degree four and having two neighbors in $V \setminus F$;
- 3. let u, w be the two vertices in $N(v) \setminus F$;
- 4. Bran-V($G \setminus \{v\}, k_1, F, Q \cup \{v\}$);
- 5. Bran-V($G \setminus \{u, v\}, k_1, F, Q \cup \{u, v\}$);

Fig. 3. Branching of vertices with degree four

For an instance (G = (V, E), k, F) of the Special Parameterized Co-Path Packing Compression problem, if all the vertices in G have degree at most three, the algorithm R-DBPCP can be modified slightly to find the solution of the problem.

Theorem 5. For an instance (G = (V, E), k, F) of the Special Parameterized Co-Path Packing Compression problem, if all the vertices in G have degree at most three, then a subset F' of size k can be found in $O^*(2^k)$ time with probability larger than $1 - (1/e)^c$ such that $F \cap F' = \emptyset$ and each connected component in $G[V \setminus F']$ is a path.

The proof of Theorem 5 is similar to the proof of Theorem 3, which is neglected here.

The general idea solving the Special Parameterized Co-Path Packing Compression problem is that: the vertices with degree large than four, and the special vertices are handled firstly. Then, by calling algorithm Bran-V(G, k_1, F, \emptyset), the vertices with degree four and having two neighbors in $V \setminus F$ can be dealt with. Then, in the remaining graph, each vertex has degree at most three, which can be handled by algorithm R-DBPCP. The specific algorithm solving the Special Parameterized Co-Path Packing Compression problem is given in Figure 4.

Theorem 6. The Special Parameterized Co-Path Packing Compression problem can be solved randomly in $O^*(2^k)$ time.

Proof. If the input instance is a no-instance, step 5 could not find a subset $F' \subseteq V$ with size at most k such that $F' \cap F = \emptyset$, and in graph $G[V \setminus F']$, each component is a path, which is rightly handled by step 6.

Now suppose that a subset $F' \subseteq V$ can be found in G such that $F' \cap F = \emptyset$, and in graph $G[V \setminus F']$, each component is a path. Then, there must exist three subsets F'_1, F'_2, F'_3 ($|F'_1| = k_1, |F'_2| = k_2, |F'_3| = k_3$,) such that $F'_1 + F'_2 + F'_3 = F'$ and F'_1, F'_2, F'_3 have the following properties: (1) after deleting the vertices in F'_1 , there does not exist a special vertex in the remaining graph; (2) after deleting the vertices in $F'_1 \cup F'_2$, all the vertices in the remaining graph have degree bounded by three.

Algorithm \mathbf{R} -SPCPPC(G, k, F)Input: a graph G, and an integer kOutput: a subset $F' \subseteq V$ of size at most k such that $F \cap F' = \emptyset$ and each component in $G[V \setminus F']$ is a path, or report no such subset exists. 1. $F' = \emptyset$: 2.if there exists a vertex v in $V \setminus F$ with degree at least five then $F' = F' \cup \{v\}, V = V \setminus \{v\}, k = k - 1;$ 3. if there exists a vertex v in $V \setminus F$ with degree four and $|N(v) \cap F| = 3$ then $F' = F' \cup \{v\}, V = V \setminus \{v\}, k = k - 1;$ if there exists a special vertex v with $|F \cap N(v)| = 2$ then 4. $F' = F' \cup (N(v) \setminus F), V = V \setminus (N(v) \setminus F), k = k - |N(v) \setminus F|;$ 5. for each k_1, k_2, k_3 with $k_1 + k_2 + k_3 \le k$ do **loop** $c \cdot 2^{k_1}$ times 5.1. $H = H'' = \emptyset;$ 5.2.5.3.let V' be the set of special vertices such that for each v in V', $|F \cap N(v)| = 1;$ while V' is not empty do 5.4.randomly choose a vertex u from $N(v) \setminus F$, and put u into H; 5.5.let V' be the set of special vertices in $G[V \setminus (F \cup H)]$ such that for 5.6.each v in V', $|F \cap N(v)| = 1$; 5.7.if $|H| \leq k_1$ then call algorithm Bran-V($G[V \setminus H], k_2, F, \emptyset$); 5.8.for each set H' returned by algorithm Bran-V (G, k_2, F, \emptyset) do 5.9.let $G' = (V', E') = G[V \setminus (H \cup H')];$ 5.10.let H'' be the set obtained by calling algorithm R-DBPCP; 5.11.if $|H| + |H'| + |H''| \le k$ then 5.12. $F' = F' \cup (H \cup H' \cup H'');$ 5.13. $\operatorname{return}(F')$; stop the loop in step 5.1; return("no such subset exists"). 6.

Fig. 4. A randomized algorithm for SPCPPC problem

The correctness of steps 2-4 can be obtained directly by Lemma 8 and Lemma 9. For a special vertex v with $|F \cap N(v)| = 1$, by Lemma 9, at least $|N(v) \setminus F| - 1$ vertices in $N(v) \setminus F$ can be deleted. Assume that $T \subseteq N(v) \setminus F$ are the subset of vertices contained in F'. Since the degree of v is at least three, by randomly choosing a vertex u from $N(v) \setminus F$, the probability that u is from T is at least 1/2. Then, the probability that all vertices in F'_1 are deleted is at least $(1/2)^{k_1}$, i.e., when steps 5.4-5.6 are done, all the special vertices are destroyed with probability $(1/2)^{k_1}$. In step 5.8, algorithm Bran-V $(G[V \setminus H], k_2, F, \emptyset)$ is called to deal with the vertices with degree four and $|N(v) \cap (V \setminus F)| = 2$. By Theorem 4, a collection of at most 1.62^{k_1} sets of vertices can be returned. Then, in step 5.10, there does not exist a vertex with degree four. Therefore, algorithm R-DBPCP can be used to find a subset $F'_3 \subseteq V'$ such that $F'_3 \cap F = \emptyset$ and each connected component in $G'[V' \setminus F'_3]$ is a path. By Theorem 5, the subset F'_3 can be found with probability larger than $1 - (1/e)^c$. Therefore, in step 5.12, if $|H| + |H'| + |H''| \le k$, then a solution F' can be returned such that $F' \cap F = \emptyset$ and each connected component in $G[V \setminus F']$ is a path. For the step 5.1, the probability that the vertices in F'_1 are not rightly deleted is $1 - (1/2)^{k_1}$. Therefore, after $c \cdot 2^{k_1}$ operations, the probability that none of the executions of steps 5.5-5.6 can rightly handle the vertices in F'_1 is $(1 - (1/2)^{k_1})^{c \cdot 2^{k_1}} = ((1 - (1/2)^{k_1})^{2^{k_1}})^c \leq (1/e)^c$. Therefore, after $c \cdot 2^{k_1}$ operations, the algorithm can correctly handle the vertices in F'_1 with probability larger than $1 - (1/e)^c$.

Now we analyze the running time of algorithm R-SPCPPC(G, k, F). Steps 2-4 can be done in O(n+m) time. The while loop in step 5.4 can be done in O(n(n+m)) time. By Theorem 4, algorithm Bran-V(G, k_1, F, \emptyset) runs in time $O(1.62^{k_1}n)$, and by Theorem 5, algorithm R-DBPCP can be done in time $O^*(2^{k_3})$. Therefore, step 5 can be done in $O(2^{k_1}1.62^{k_2}2^{k_3}k^3(n+m)) = O(2^{k_1+k_2+k_3}k^3(n+m)) = O^*(2^k)$.

Based on the algorithm solving the Special Parameterized Co-Path Packing Compression problem, the Parameterized Co-Path Packing Compression problem can be solved.

Theorem 7. The Parameterized Co-Path Packing Compression problem can be solved randomly in $O^*(3^k)$ time.

Based on the iterative compression technique, the Parameterized Co-Path Packing problem can be solved.

Theorem 8. The Parameterized Co-Path Packing problem can be solved randomly in $O^*(3^k)$ time.

5 Conclusion

In this paper, we study the randomized techniques for the parameterized problems. For the P_2 -Packing problem, a randomized algorithm of running time $O^*(6.75^k)$ is given, improving the current best result $O^*(8^k)$. For the Parameterized Co-Path Packing problem, a randomized algorithm of running time $O^*(3^k)$ is given, improving the current best result $O^*(3.24^k)$. How to apply the randomized methods in this paper to solve other parameterized problems is an interesting topic, which is also our future research.

References

- Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A Linear Kernel for Co-Path/Cycle Packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 90–102. Springer, Heidelberg (2010)
- 2. Chen, J., Lu, S.: Improved parameterized set splitting algorithms: A probabilistic approach. Algorithmica 54(4), 472–489 (2008)
- Chen, J., Lu, S., Sze, S.H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 298–307 (2007)
- Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome. PLoS Comput. Biol. 4, e1000234 (2008)
- De Bontridder, K., Halldórsson, B., Lenstra, J., Ravi, R., Stougie, L.: Approximation algorithms for the test cover problem. Math. Program., Ser. B 98, 477–491 (2003)
- Fellows, M., Heggernes, P., Rosamond, F., Sloper, C., Telle, J.A.: Finding k disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)
- Fernau, H., Raible, D.: A parameterized perspective on packing paths of length two. Journal of Combinatorial Optimization 18(4), 319–341 (2009)
- Feng, Q., Wang, J., Chen, J.: Matching and P₂-Packing: Weighted Versions. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 343–353. Springer, Heidelberg (2011)
- Fujito, T.: Approximating node-deletion problems for matroidal properties. J. Algorithms 31, 211–227 (1999)
- Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle packing. Discrete Appl. Math. 154, 971–979 (2006)
- Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC 2011), pp. 469–478 (2011)
- Marx, D.: Randomized Techniques for Parameterized Algorithms. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, p. 2. Springer, Heidelberg (2012)
- Prieto, E., Sloper, C.: Looking at the stars. Theoretical Computer Science 351, 437–445 (2006)