
Ding-Zhu Du
Guochuan Zhang (Eds.)

 123

LN
CS

 7
93

6

19th International Conference, COCOON 2013
Hangzhou, China, June 2013
Proceedings

Computing
and Combinatorics



Lecture Notes in Computer Science 7936
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Ding-Zhu Du Guochuan Zhang (Eds.)

Computing
and Combinatorics
19th International Conference, COCOON 2013
Hangzhou, China, June 21-23, 2013
Proceedings

13



Volume Editors

Ding-Zhu Du
University of Texas at Dallas
Department of Computer Science
800W, Champbell Road, Richardson, TX 75080, USA
E-mail: dzdu@utdallas.edu

Guochuan Zhang
Zhejiang University
College of Computer Science and Technology
38, Zheda Road, Hangzhou 310027, China
E-mail: zgc@zju.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38767-8 e-ISBN 978-3-642-38768-5
DOI 10.1007/978-3-642-38768-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013939382

CR Subject Classification (1998): F.2, C.2, G.2, F.1, E.1, I.3.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The 19th International Computing and Combinatorics Conference (COCOON
2013) took place in Hangzhou, China, during June 21–23, 2013. COCOON 2013
provided a forum for researchers working in the area of theoretical computer
science and combinatorics.

Submissions to the conference this year were conducted electronically with
the Spring Online Conference Service (OCS). A totally of 120 papers were sub-
mitted from more than 15 countries and regions. Through an evaluation by the
international Program Committee, 56 papers were accepted for the main confer-
ence of COCOON and 8 short papers were accepted for a workshop on discrete
algorithms co-organized by Ding-Zhu Du, Xiaodong Hu, and Guochuan Zhang.
Some of these accepted papers will be selected for publication in a special issue
of Algorithmica, a special issue of Theoretical Computer Science, and a special
issue of Journal of Combinatorial Optimization. It is expected that the journal
version papers will appear in a more complete form.

Co-located with COCOON 2013, there was a workshop on computational
social networks (CSoNet 2013) held on June 22, 2013. An independent Program
Committee chaired by My Thai and Arun Sen reviewed 25 submissions which 12
papers were selected for presentation at the workshop. We appreciate the work
by the CSoNet Program Committee that helped enrich the conference topics.

We would like to thank the two eminent keynote speakers, Susanne Albers
of Humboldt University and Robert Kleinberg of Cornell University for their
contribution to the conference and the proceedings.

We wish to thank all authors who submitted their papers to the conference.
We are grateful to all members of the Program Committee and the external
referees for their excellent work within the time constraints. We wish to thank
all members of the Organizing Committee for their assistance and contribution
in the advertising, Web management, and local arrangements etc., which con-
tributed success of the conference.

Finally, we wish to thank the conference sponsors for their support.

June 2013 Ding-Zhu Du
Guochuan Zhang



Organization

Program Committee

Hee-Kap Ahn Pohang University of Science and Technology,
Korea

Yossi Azar Tel Aviv University, Israel
Leizhen Cai The Chinese University of Hong Kong,

SAR China
Zhipeng Cai Georgia State University, USA
Wei Chen Microsoft Research Asia
Zhixiang Chen University of Texas-Pan American, USA
Altannar Chinchuluun National University of Mongolia
Janos Csirik University of Szeged, Hungary
Ding-Zhu Du University of Texas at Dallas, Co-chair, USA
Xiaofeng Gao Shanghai Jiaotong University, China
Qianping Gu Simon Fraser University, Canada
Xiaodong Hu Chinese Academy of Sciences, China
Klaus Jansen University of Kiel, Germany
Iyad Kanj DePaul University, USA
Ming-Yang Kao Northwestern University, USA
Piotr Krysta University of Liverpool, UK
Jian Li Tsinghua University, China
Chi-Jen Lu Academia Sinica, Taiwan
Julian Mestre University of Sydney, Australia
Mitsunori Ogihara University of Miami, USA
Jiri Sgall Charles University, Czech Republic
He Sun Max Planck Institute, Germany
Maxim Sviridenko University of Warwick, UK
My Thai University of Florida, USA
Takeshi Tokuyama Tohoku University, Japan
Marc Uetz University of Twente, The Netherlands
Jianping Yin National University of Defense Technology,

China
Alex Zelikovsky Georgia State University, USA
Guochuan Zhang Zhejiang University, Co-chair, China

CSoNet Program Committee

Ginestra Bianconi Northeastern University, USA
Sujogya Banerjee Arizona State University, USA
Guanling Chen University of Massachusetts Lowell, USA



VIII Organization

Xiaohua Jia City University of Hong Kong, SAR China
Timothy Killingback University of Massachusetts Boston, USA
Yingshu Li Georgia State University, USA
Panos Pardalos University of Florida, USA
Andrea Richa Arizona State University, USA
Arun Sen Arizona State University, Co-chair, USA
My Thai University of Florida, Co-chair, USA
Steve Uhlig Queen Mary, University of London, UK
Jie Wang University of Massachusetts Lowell, USA
Feng Wang Arizona State University, USA
Yajun Wang Microsoft Research Asia
Guoliang Xue Arizona State University, USA
Zhi-Li Zhang University of Minnesota, USA

Organizing Committee

Lin Chen Zhejiang University
Lili Mei Zhejiang University
Zhiyi Tan Zhejiang University
Deshi Ye Zhejiang University, Co-chair
Guochuan Zhang Zhejiang University, Co-chair

Sponsors

National Natural Science Foundation of China(11271325)
College of Computer Science, Zhejiang University
The Mathematical Programming Branch of OR Society of China

External Reviewers

Antoniadis, Antonios
Asano, Tetsuo
Bansal, Nikhil
Bei, Xiaohui
Bein, Wolfgang
Berebrink, petra
Bernstein, Aaron
Bley, Andreas
Bodirsky, Manuel
Buchbinder, Niv
Byrka, Jarek
Cai, Xiaojuan
Chang, Huilan
Chen, Yijia

Chen, Po-An
Chen, Danny
Chen, Yu-Fang
Cheng, Siu-Wing
Chrobak, Marek
Cohen, Ilan
Ding, Ling
Dosa, Gyorgy
Duan, Ran
Epstein, Leah
Fiat, Amos
Fotakis, Dimitris
Frati, Fabrizio
Garing, Martin

Gaspers, Serge
Goel, Gagan
Golin, Mordecai
Golovach, Petr
Gregor, Petr
Grigoriev, Alexander
Groß, Martin
Guo, Zeyu
Guttmann, Tony
Górecki, Pawe�l
Huang, Zhiyi
Hwang, Yoonho
Im, Sungjin
Ito, Takehiro



Organization IX

Jun, Li
Jung, Hyunwoo
Kaufmann, Michael
Khandekar, Rohit
Kim, Donghyun
Kim, Hyo-Sil
Kim, Sang-Sub
Klein, Kim-Manuel
Klimm, Max
Knop, Dušan
Kononov, Alexander
Kraft, Stefan
Krysta, Piotr
Li, Guoqiang
Lam, Tak-Wah
Land, Kati
Land, Felix
Le, Van Bang
Li, Shi
Li, Xianyue
Liang, Hongyu
Liao, Kewen
Liu, Yang
Liu, Zhixin
Long, Huan
Lu, Pinyan
Lucarelli, Giorgio

Lübbecke, Marco
Ma, Bin
Mahdian, Mohammad
Manthey, Bodo
Megow, Nicole
Mnich, Matthias
Nasre, Meghana
Nguyen, Kim Thang
Nonner, Tim
Okamoto, Yoshio
Otachi, Yota
Papamichail, Dimitris
Park, Dongwoo
Paulusma, Daniel
Perkovic, Ljubomir
Post, Gerhard
Pountourakis,

Emmanouil
Pruhs, Kirk
Rahman, Md Saidur
Rogers, John
Sach, Benjamin
Samal, Robert
Sanita, Laura
Sauerwald, Thomas
Schaefer, Marcus
Shi, Yan

Shin, Chan-Su
Shioura, Akiyoshi
Simon, Sunil
Son, Wanbin
Starnberger, Martin
van Stee, Rob
Syrgkanis, Vasilis
Telelis, Orestis
Tian, Cong
Ting, Hingfung
Tong, Weitian
Toth, Csaba
Uehara, Ryuhei
Wang, Yajun
Wang, Wei
Ward, Justin
Wong, Prudence
Wu, Chenye
Xia, Mingji
Xia, Ge
Yang, Yongtian
Yoon, Sang Duk
Zhang, Jie
Zhang, Zhao
Zhang, Chihao
Zhong, Jiaofei
Zhu, Yuqing



Table of Contents

Keynote

Recent Results for Online Makespan Minimization . . . . . . . . . . . . . . . . . . . 1
Susanne Albers

Optimal Stopping Meets Combinatorial Optimization . . . . . . . . . . . . . . . . . 4
Robert Kleinberg

Game Theory

New Bounds for the Balloon Popping Problem . . . . . . . . . . . . . . . . . . . . . . . 5
Davide Bilò and Vittorio Bilò

On the Sequential Price of Anarchy of Isolation Games . . . . . . . . . . . . . . . 17
Anna Angelucci, Vittorio Bilò, Michele Flammini, and
Luca Moscardelli

Social Exchange Networks with Distant Bargaining . . . . . . . . . . . . . . . . . . . 29
Konstantinos Georgiou, George Karakostas, Jochen Könemann, and
Zuzanna Stamirowska

The 1/4-Core of the Uniform Bin Packing Game Is Nonempty . . . . . . . . . 41
Walter Kern and Xian Qiu

Randomized Algorithms

On the Advice Complexity of the Online L(2, 1)-Coloring Problem
on Paths and Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Maria Paola Bianchi, Hans-Joachim Böckenhauer, Juraj Hromkovič,
Sacha Krug, and Björn Steffen

On Randomized Fictitious Play for Approximating Saddle Points
over Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Khaled Elbassioni, Kazuhisa Makino, Kurt Mehlhorn, and
Fahimeh Ramezani

A Fast Algorithm for Data Collection along a Fixed Track . . . . . . . . . . . . 77
Otfried Cheong, Radwa El Shawi, and Joachim Gudmundsson

Random Methods for Parameterized Problems . . . . . . . . . . . . . . . . . . . . . . . 89
Qilong Feng, Jianxin Wang, Shaohua Li, and Jianer Chen



XII Table of Contents

Scheduling Algorithms

DVS Scheduling in a Line or a Star Network of Processors . . . . . . . . . . . . 101
Zongxu Mu and Minming Li

Online Algorithms for Batch Machines Scheduling with Delivery
Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Peihai Liu and Xiwen Lu

How to Schedule the Marketing of Products with Negative
Externalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Zhigang Cao, Xujin Chen, and Changjun Wang

From Preemptive to Non-preemptive Speed-Scaling Scheduling . . . . . . . . 134
Evripidis Bampis, Alexander Kononov, Dimitrios Letsios,
Giorgio Lucarelli, and Ioannis Nemparis

Computational Theory

Selection from Read-Only Memory with Limited Workspace . . . . . . . . . . . 147
Amr Elmasry, Daniel Dahl Juhl, Jyrki Katajainen, and
Srinivasa Rao Satti

Deternimization of Büchi Automata as Partitioned Automata . . . . . . . . . 158
Cong Tian, Zhenhua Duan, and Mengfei Yang

On Linear-Size Pseudorandom Generators and Hardcore Functions . . . . . 169
Joshua Baron, Yuval Ishai, and Rafail Ostrovsky

A Fast Algorithm Finding the Shortest Reset Words . . . . . . . . . . . . . . . . . . 182
Andrzej Kisielewicz, Jakub Kowalski, and Marek Szyku�la

Computational Geometry

The Discrete Voronoi Game in a Simple Polygon . . . . . . . . . . . . . . . . . . . . . 197
Aritra Banik, Sandip Das, Anil Maheshwari, and Michiel Smid

Facets for Art Gallery Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Sándor P. Fekete, Stephan Friedrichs, Alexander Kröller, and
Christiane Schmidt

Hitting and Piercing Rectangles Induced by a Point Set . . . . . . . . . . . . . . . 221
Ninad Rajgopal, Pradeesha Ashok, Sathish Govindarajan,
Abhijit Khopkar, and Neeldhara Misra



Table of Contents XIII

Realistic Roofs over a Rectilinear Polygon Revisited . . . . . . . . . . . . . . . . . . 233
Jessica Sherette and Sang Duk Yoon

Graph Algorithms I

Parametric Power Supply Networks (Extended Abstract) . . . . . . . . . . . . . . 245
Shiho Morishita and Takao Nishizeki

Approximating the Minimum Independent Dominating Set
in Perturbed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Weitian Tong, Randy Goebel, and Guohui Lin

A Linear-Time Algorithm for the Minimum Degree Hypergraph
Problem with the Consecutive Ones Property . . . . . . . . . . . . . . . . . . . . . . . . 268

Chih-Hsuan Li, Jhih-Hong Ye, and Biing-Feng Wang

On the Conjunctive Capacity of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Miroslav Chleb́ık and Janka Chleb́ıková

Approximation Algorithms

Improved Approximation Algorithms for the Facility Location Problems
with Linear/submodular Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Yu Li, Donglei Du, Naihua Xiu, and Dachuan Xu

An Improved Semidefinite Programming Hierarchies Rounding
Approximation Algorithm for Maximum Graph Bisection Problems . . . . 304

Chenchen Wu, Donglei Du, and Dachuan Xu

Improved Local Search for Universal Facility Location . . . . . . . . . . . . . . . . 316
Eric Angel, Nguyen Kim Thang, and Damien Regnault

Improved Approximation Algorithms for Computing k Disjoint Paths
Subject to Two Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Longkun Guo, Hong Shen, and Kewen Liao

Graph Algorithms II

The k -Separator Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Walid Ben-Ameur, Mohamed-Ahmed Mohamed-Sidi, and José Neto

On the Treewidth of Dynamic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Bernard Mans and Luke Mathieson

Square-Orthogonal Drawing with Few Bends per Edge . . . . . . . . . . . . . . . . 361
Yu-An Lin and Sheung-Hung Poon



XIV Table of Contents

Covering Tree with Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Jan Baumbach, Jiong Guo, and Rashid Ibragimov

Computational Biology

A Polynomial Time Approximation Scheme for the Closest Shared
Center Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Weidong Li, Lusheng Wang, and Wenjuan Cui

An Improved Approximation Algorithm for Scaffold Filling to Maximize
the Common Adjacencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Nan Liu, Haitao Jiang, Daming Zhu, and Binhai Zhu

An Efficient Algorithm for One-Sided Block Ordering Problem
with Block-Interchange Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Kun-Tze Chen, Chi-Long Li, Chung-Han Yang, and Chin Lung Lu

A Combinatorial Approach for Multiple RNA Interaction: Formulations,
Approximations, and Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Syed Ali Ahmed, Saad Mneimneh, and Nancy L. Greenbaum

Graph Algorithms III

Maximum Balanced Subgraph Problem Parameterized above Lower
Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Robert Crowston, Gregory Gutin, Mark Jones, and
Gabriele Muciaccia

A Toolbox for Provably Optimal Multistage Strict Group Testing
Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Peter Damaschke and Azam Sheikh Muhammad

A Linear Edge Kernel for Two-Layer Crossing Minimization . . . . . . . . . . . 458
Yasuaki Kobayashi, Hirokazu Maruta, Yusuke Nakae, and
Hisao Tamaki

A Linear-Time Algorithm for Computing the Prime Decomposition
of a Directed Graph with Regard to the Cartesian Product . . . . . . . . . . . . 469

Christophe Crespelle, Eric Thierry, and Thomas Lambert

Online Algorithms

Metrical Service Systems with Multiple Servers . . . . . . . . . . . . . . . . . . . . . . 481
Ashish Chiplunkar and Sundar Vishwanathan



Table of Contents XV

The String Guessing Problem as a Method to Prove Lower Bounds
on the Advice Complexity (Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . 493

Hans-Joachim Böckenhauer, Juraj Hromkovič, Dennis Komm,
Sacha Krug, Jasmin Smula, and Andreas Sprock

Online Algorithms for 1-Space Bounded 2-Dimensional Bin
Packing and Square Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Yong Zhang, Francis Y.L. Chin, Hing-Fung Ting, Xin Han,
Chung Keung Poon, Yung H. Tsin, and Deshi Ye

Improved Lower Bounds for the Online Bin Packing Problem
with Cardinality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Hiroshi Fujiwara and Koji Kobayashi

Parameterized Algorithms

Parameterized Complexity of Flood-Filling Games on Trees . . . . . . . . . . . 531
Uéverton dos Santos Souza, Fábio Protti, and Maise Dantas da Silva

Parameterized Approximability of Maximizing the Spread of Influence
in Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

Cristina Bazgan, Morgan Chopin, André Nichterlein, and
Florian Sikora

An Effective Branching Strategy for Some Parameterized Edge
Modification Problems with Multiple Forbidden Induced Subgraphs . . . . 555

Yunlong Liu, Jianxin Wang, Chao Xu, Jiong Guo, and Jianer Chen

Parameterized Algorithms for Maximum Agreement Forest on Multiple
Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

Feng Shi, Jianer Chen, Qilong Feng, and Jianxin Wang

Computational Complexity

Small H -Coloring Problems for Bounded Degree Digraphs . . . . . . . . . . . . . 579
Pavol Hell and Aurosish Mishra

Bounded Model Checking for Propositional Projection Temporal
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Zhenhua Duan, Cong Tian, Mengfei Yang, and Jia He

Packing Cubes into a Cube Is NP-Hard in the Strong Sense . . . . . . . . . . . 603
Yiping Lu, Danny Z. Chen, and Jianzhong Cha

On the Complexity of Solving or Approximating Convex Recoloring
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Manoel B. Campêlo, Cristiana G. Huiban, Rudini M. Sampaio, and
Yoshiko Wakabayashi



XVI Table of Contents

Algorithms

2-connecting Outerplanar Graphs without Blowing Up
the Pathwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

Jasine Babu, Manu Basavaraju, Sunil Chandran Leela, and
Deepak Rajendraprasad

How to Catch L2-Heavy-Hitters on Sliding Windows . . . . . . . . . . . . . . . . . 638
Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky

Time/Memory/Data Tradeoffs for Variants of the RSA Problem . . . . . . . 651
Pierre-Alain Fouque, Damien Vergnaud, and
Jean-Christophe Zapalowicz

An Improved Algorithm for Extraction of Exact Boundaries and
Boundaries Inclusion Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Tao Hu, Xianyi Ren, and Jihong Zhang

Workshop I

Straight-Line Monotone Grid Drawings of Series-Parallel Graphs . . . . . . . 672
Md. Iqbal Hossain and Md. Saidur Rahman

Combination of Two-Machine Flow Shop Scheduling and Shortest Path
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

Kameng Nip and Zhenbo Wang

The Program Download Problem: Complexity and Algorithms . . . . . . . . . 688
Chao Peng, Jie Zhou, Binhai Zhu, and Hong Zhu

Finding Theorems in NBG Set Theory by Automated Forward
Deduction Based on Strong Relevant Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 697

Hongbiao Gao, Kai Shi, Yuichi Goto, and Jingde Cheng

Workshop II

Perturbation Analysis of Maximum-Weighted Bipartite Matchings
with Low Rank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Xingwu Liu and Shang-Hua Teng

Sublinear Time Approximate Sum via Uniform Random Sampling . . . . . 713
Bin Fu, Wenfeng Li, and Zhiyong Peng

Tractable Connected Domination for Restricted Bipartite Graphs . . . . . . 721
Zhao Lu, Tian Liu, and Ke Xu



Table of Contents XVII

On the Minimum Caterpillar Problem in Digraphs . . . . . . . . . . . . . . . . . . . 729
Taku Okada, Akira Suzuki, Takehiro Ito, and Xiao Zhou

CSoNet I

A New Model for Product Adoption over Social Networks . . . . . . . . . . . . . 737
Lidan Fan, Zaixin Lu, Weili Wu, Yuanjun Bi, and Ailian Wang

Generating Uncertain Networks Based on Historical Network
Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

Meng Han, Mingyuan Yan, Jinbao Li, Shouling Ji, and Yingshu Li

A Short-Term Prediction Model of Topic Popularity on Microblogs . . . . . 759
Juanjuan Zhao, Weili Wu, Xiaolong Zhang, Yan Qiang,
Tao Liu, and Lidong Wu

Social Network Path Analysis Based on HBase . . . . . . . . . . . . . . . . . . . . . . . 770
Yan Qiang, Junzuo Lu, Weili Wu, Juanjuan Zhao, Xiaolong Zhang,
Yue Li, and Lidong Wu

CSoNet II

Community Expansion Model Based on Charged System Theory . . . . . . . 780
Yuanjun Bi, Weili Wu, Ailian Wang, and Lidan Fan

Centrality and Spectral Radius in Dynamic Communication
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

Danica Vukadinović Greetham, Zhivko Stoyanov, and
Peter Grindrod

Finding Network Communities Using Random Walkers with Improved
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

You Li, Jie Wang, Benyuan Liu, and Qilian Liang

Homophilies and Communities Detection among a Subset of Blogfa
Persian Weblogs: Computer and Internet Category . . . . . . . . . . . . . . . . . . . 811

Adib Rastegarnia, Meysam Mohajer, and Vahid Solouk

CSoNet III

Neighborhood-Based Dynamic Community Detection with Graph
Transform for 0-1 Observed Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

Li Wang, Yuanjun Bi, Weili Wu, Biao Lian, and Wen Xu

Effects of Inoculation Based on Structural Centrality on Rumor
Dynamics in Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

Anurag Singh, Rahul Kumar, and Yatindra Nath Singh



XVIII Table of Contents

A Dominating Set Based Approach to Identify Effective Leader Group
of Social Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841

Donghyun Kim, Deying Li, Omid Asgari, Yingshu Li, and
Alade O. Tokuta

Using Network Sciences to Evaluate the Brazilian Airline Network . . . . . 849
Douglas Oliveira, Marco Carvalho, and Ronaldo Menezes

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859



Recent Results for Online Makespan

Minimization
(Extended Abstract)

Susanne Albers

Department of Computer Science
Humboldt-Universität zu Berlin

albers@informatik.hu-berlin.de

Overview: We study a classical scheduling problem that has been investigated
for more than forty years. Consider a sequence of jobs σ = J1, . . . , Jn that has
to be scheduled on m identical parallel machines. Each job Jt has an individual
processing time pt, 1 ≤ t ≤ n. Preemption of jobs is not allowed. The goal is
to minimize the makespan, i.e. the maximum completion time of any job in the
constructed schedule. In the offline variant of the problem all jobs of σ are known
in advance. In the online variant the jobs arrive one by one. Each incoming job
Jt has to be assigned immediately to one of the machines without knowledge of
any future jobs Jt′ , t

′ > t.
Already in the 1960s Graham [7] presented the famous List scheduling algo-

rithm, which schedules each job of σ on a machine that currently has the smallest
load. List can be used in the offline as well as the online setting. Graham proved
that the strategy is (2− 1/m)-competitive, i.e. for any σ the makespan of List ’s
schedule is at most 2 − 1/m times the makespan of an optimal schedule. In
the 1980s Hochbaum and Shmoys [8] developed a famous polynomial time ap-
proximation scheme for the offline problem. Research over the past two decades
has focused on the online problem. The best deterministic online strategy cur-
rently known achieves a competitive ratio of about 1.92, see [6]. Moreover, no
deterministic online algorithm can attain a competitiveness smaller than 1.88,
cf. [10].

During the last years online makespan minimization has been explored as-
suming that an online algorithm is given additional power or extra information
while processing a job sequence σ. It turns out that usually significantly im-
proved competitive ratios can be achieved. We survey these recent advances.
The considered forms of resource augmentation are generally well motivated
from a practical point of view.

Job migration: Assume that at any time an online algorithm may per-
form reassignments, i.e. jobs already assigned to machines may be removed
and transferred to other machines. Job migration is a well-known and widely
used technique to balance load in parallel and distributed systems. Sanders et
al. [11] study the setting that after the arrival of each job Jt, jobs up to a pro-
cessing volume of βpt may be migrated, where β is a constant. For β = 4/3,
they present a 1.5-competitive algorithm. They also devise a (1+ ε)-competitive

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 S. Albers

algorithm, for any ε > 0, where β depends exponentially on 1/ε. Albers and
Hellwig [1] investigate the scenario where an online algorithm may migrate a
limited number of jobs; this number does not depend on the job sequence. They
give an algorithm that, for any m ≥ 2, is αm-competitive, where limm→∞ αm =
W−1(−1/e2)/(1 +W−1(−1/e2)) ≈ 1.4659. Here W−1 is the lower branch of the
Lambert W function. The total number of migrations is at most 7m, for m ≥ 11.
The competitiveness of αm is best possible: No deterministic online algorithm
that uses o(n) migrations can achieve a competitive ratio smaller than αm.

Availability of a reordering buffer: In this setting an online algorithm has
a buffer of limited size that may be used to partially reorder the job sequence.
Whenever a job arrives, it is inserted into the buffer; then one job of the buffer is
removed and assigned in the current schedule. For m = 2 machines, Zhang [12]
and Kellerer et al. [9] give 4/3-competitive algorithms. Englert et al. [5] explore
the setting for general m. They develop an algorithm that, using a buffer of
size O(m), is αm-competitive, where again limm→∞ αm = W−1(−1/e2)/(1 +
W−1(−1/e2)) ≈ 1.4659. Furthermore they prove that if an online algorithm
achieves a competitiveness smaller than αm, then the buffer size must depend
on σ. The paper by Englert et al. [5] also consideres makespan minimization
with a reordering buffer on uniformly related machines.

Information on total processing time or optimum makespan: First
assume that an online algorithm knows the sum

∑n
t=1 pt of the jobs’ process-

ing times. The access to such a piece of information can be justified as follows.
In a parallel server system there usually exist fairly accurate estimates on the
workload that arrives over a given time horizon. Furthermore, in a shop floor a
scheduler typically accepts orders (tasks) of a targeted volume for a given time
period, say a day or a week. For m = 2 machines, Kellerer et al. [9] present
a 4/3-competitive algorithm. For a general number m of machines, Cheng et
al. [4] propose a 1.6-competitive algorithm. Albers and Hellwig [2] prove that no
deterministic online algorithm can attain a competitiveness smaller than 1.585.
In a stronger scenario an online algorithm even knows the value of the opti-
mum makespan, for the given σ. This framework can also be viewed as a bin
stretching problem, see [3]. Obviously, the algorithm by Cheng et al. [4] is also
1.6-competitive in this setting. Azar and Regev [3] show that no online algorithm
can be better than 4/3-competitive.

References

1. Albers, S., Hellwig, M.: On the value of job migration in online makespan min-
imization. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp.
84–95. Springer, Heidelberg (2012)

2. Albers, S., Hellwig, M.: Semi-online scheduling revisited. Theoretical Computer
Science 443, 1–9 (2012)

3. Azar, Y., Regev, O.: On-line bin-stretching. Theoretical Computer Science 268,
17–41 (2001)

4. Cheng, T.C.E., Kellerer, H., Kotov, V.: Semi-on-line multiprocessor scheduling with
given total processing time. Theoretical Computer Science 337, 134–146 (2005)



Recent Results for Online Makespan Minimization 3

5. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online min-
imum makespan scheduling. In: Proc. 49th Annual IEEE Symposium on Founda-
tions of Computer Science, pp. 603–612 (2008)

6. Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3,
343–353 (2000)

7. Graham, R.L.: Bounds for certain multi-processing anomalies. Bell System Tech-
nical Journal 45, 1563–1581 (1966)

8. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. Journal of the ACM 34, 144–162
(1987)

9. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the
partition problem. Operations Research Letters 21, 235–242 (1997)

10. Rudin III, J.F.: Improved bounds for the on-line scheduling problem. Ph.D. Thesis.
The University of Texas at Dallas (May 2001)

11. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migra-
tion. Mathematics of Operations Research 34(2), 481–498 (2009)

12. Zhang, G.: A simple semi on-line algorithm for P2//Cmax with a buffer. Informa-
tion Processing Letters 61, 145–148 (1997)



Optimal Stopping Meets Combinatorial

Optimization

Robert Kleinberg

Cornell University
Ithaca, NY 14850, USA

robert.kleinberg@cornell.edu

http://www.cs.cornell.edu/~rdk

Abstract. Optimal stopping theory considers the design of online al-
gorithms for stopping a random sequence subject to an optimization
criterion. For example, the famous secretary problem asks to identify a
stopping rule that maximizes the probability of selecting the maximum
element in a sequence presented in uniformly random order. In a similar
vein, the prophet inequality of Krengel, Sucheston, and Garling estab-
lishes the existence of an online algorithm for selecting one element from
a sequence of independent random numbers, such that the expected value
of the chosen element is at least half the expectation of the maximum.

A rich set of problems emerges when one combines these models with
notions from combinatorial optimization by allowing the algorithm to
select multiple elements from the sequence, subject to a combinatorial
feasibility constraint on the set selected. A sequence of results during
the past ten years have contributed greatly to our understanding of these
problems. I will survey some of these developments and their applications
to topics in algorithmic game theory.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, p. 4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



New Bounds for the Balloon Popping Problem�

Davide Bilò1 and Vittorio Bilò2

1 Dipartimento di Teorie e Ricerche dei Sistemi Culturali, University of Sassari
Piazza Conte di Moriana, 8, 07100 Sassari, Italy

davide.bilo@uniss.it
2 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento

Provinciale Lecce-Arnesano, P.O. Box 193, 73100 Lecce, Italy
vittorio.bilo@unisalento.it

Abstract. We reconsider the balloon popping problem, an intriguing
combinatorial problem introduced in order to bound the competitiveness
of ascending auctions with anonymous bidders with respect to the best
fixed-price scheme. Previous works show that the optimal solution for this
problem is in the range [1.6595, 2]. We give a new lower bound of 1.68
and design an O(n5) algorithm for computing upper bounds as a function
of the number of bidders n. Our algorithm provides an experimental
evidence that the correct upper bound is smaller than 2, thus disproving
a currently believed conjecture, and can be used to test the validity of a
new conjecture we propose, according to which the upper bound would
decrease to π2/6 + 1/4 ≈ 1.8949.

1 Introduction

In digital goods auctions, also known as unlimited supply auctions [2,5], an
auctioneer sells a collection of identical items to unit-demand bidders. As usual
in this setting, when getting the item, a bidder experiences a certain utility
which is unknown to the auctioneer. Given this restriction, the auctioneer wants
to design a mechanism, i.e., a set of auction rules, so as to raise as much revenue
as possible from the bidders. The competitiveness of a certain mechanism is
usually measured with respect to the maximum revenue that can be raised by
an omniscient auctioneer who is restricted to offer the goods at the same price to
all bidders (fixed-price scheme) [1,2,3,4]. One can ask whether this is a reasonable
restriction, and whether without this restriction, the auctioneer can achieve a
considerably higher revenue.

Immorlica et al. [6] provided an answer to this question for the case of ascend-
ing auctions with anonymous bidders. More precisely, they consider the scenario
in which i) the auctioneer knows the set of the bidders’ utilities, but is unable
to determine which bidder has which utility, and ii) during the auction, the auc-
tioneer can only rise the price offered to a bidder. In particular, Immorlica et

� This work was partially supported by the PRIN 2010–2011 research project ARS
TechnoMedia: “Algorithmics for Social Technological Networks” funded by the Ital-
ian Ministry of University.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 5–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



6 D. Bilò and V. Bilò

al. [6] show that, under conditions i) and ii), no mechanism can raise a revenue
of more than a constant times the one raised by the best fixed-price scheme.

Such a result is achieved by introducing and studying the balloon popping
problem which is defined as follows.

We are given n undistinguishable balloons of capacities 1, 1/2, 1/3, . . . , 1/n
and we are asked to blow them so as to maximize the total volume of air inflated
in the balloons knowing that a balloon blown up beyond its capacity pops (and
reveals its capacity) thus giving no contribution to the total volume. What is the
best blowing strategy and what total volume is achievable?

A blowing strategy is said to be offline if it has the chance to get back to an
already-inflated balloon and inflate it further, while it is said to be online if it
has to process the balloons sequentially, but is granted the knowledge of the
balloon’s capacity as soon as it is processed, regardless of whether or not it
popped. Hence, an online blowing strategy must take irrevocable decisions in a
scenario in which it has full knowledge of the set of capacities of the remaining
balloons, while an offline blowing strategy has no particular restrictions on how
to process the balloons, but it has to operate in a scenario with incomplete
knowledge. Let OFFn and ONn be the expected total volume achievable by the
optimal offline and online blowing strategy, respectively. For any fixed integer
n ≥ 1, denote as Yk the family of all subsets of {1, 1/2, . . . , 1/n} of size k, where
each Y ∈ Yk is of the form {1/y1, . . . , 1/yk}, with y1 < . . . < yk; so Y ∈ Yk is a
set of k balloons listed in decreasing order.

Immorlica et al. [6] prove that under conditions i) and ii) stated above, for any
set of n bidders with arbitrary utilities, the expected revenue of any mechanism
is at most OFFn times the one raised by the best fixed-price scheme. In order to
upper bound OFFn, they first show that OFFn ≤ ONn for any positive integer
n, then they determine the optimal online blowing strategy, thus proving that

ONn =

n∑
k=1

∑
Y ∈Yk

max1≤j≤k{j/yj}(
n
k

)
· k

, (1)

and finally they show that ON∞ ≤ 4.331. Moreover, they prove that a greedy
mechanism, that is, the offline blowing strategy which tries to blow up each
balloon at the maximum possible capacity, achieves an expected volume equal
to

∑n
i=1 1/i

2 which implies OFF∞ ≥ π2/6 ≈ 1.6449.
Jung and Chwa [7] improved these bounds by designing an offline blowing

strategy, called Bunch, yielding OFF∞ ≥ 1.6595 and proving that the right
hand side of Equation (1) is at most 2−Hn/n, which yields ON∞ ≤ 2. They also
formulate a conjecture which, whenever true, would giveONn ≥ 2−(2Hn−1)/n,
thus implying ON∞ = 2.

Our Contribution. We further improve the lower bound on OFF∞ by de-
signing an offline blowing strategy, that we call Groupk. This strategy works by
partitioning the n− 1 smallest balloons into (n− 1)/k groups of size k and then



New Bounds for the Balloon Popping Problem 7

applying an ad-hoc (possibly optimal) strategy to the first of these groups and
a simple basic blowing strategy to each of the remaining ones. The performance
of Groupk improves when k increases and better lower bounds can be achieved
by delving into a more detailed analysis covering higher values of k. For k = 5,
we achieve OFF∞ ≥ 1.68.

We also focus on the exact computation of ONn for any integer n ≥ 1. To
this aim, note that the characterization of ONn given by Immorlica et al. [6]
through Equation (1) is neither easy to be analytically analyzed nor efficiently
computable, since it requires to generate all subsets of a set of cardinality n
whose number is exponential in n. We give an alternative exact formula for ONn

which, although remaining of challenging analytical analysis, can be computed
by an algorithm of running time O(n5). This allows us to disprove the conjecture
formulated by Jung and Chwa [7] (which was experimentally verified only for
n ≤ 21) as soon as n ≥ 44 and to provide an empirical evidence that ON∞ < 2.
We hence conjecture that

ONn ≤
n∑

i=1

1

i2
+

1

2n

n∑
i=2

(
n− i

n
− 1

i+ 1

)
.

The validity of this new conjecture, which thanks to our algorithm can be verified
for n in the order of the hundreds, would imply ON∞ ≤ π2/6 + 1/4 ≈ 1.8949.
Such a value matches an experiment conducted by Immorlica et al. [6] who
estimated ON1000 by applying the optimal online blowing strategy on a sample
of 105 random sequences of balloons.

Paper Organization. Next section contains the necessary definitions and no-
tation. In Sections 3 and 4 we present the description and the analysis of the
performance of the offline blowing strategy Groupk for k = 5 and the algorithm
for computing the exact value of ONn, respectively. Finally, in the last section
we discuss conclusive remarks and open problems.

2 Definitions, Notation

For an integer k ≥ 1, denote as [k] the set {1, . . . , k} and let Yk =
{1/y1, . . . , 1/yk}, with yi ∈ [n] and yi < yi+1 for any i ∈ [k − 1], be a set
of k balloons. We denote as Yk the family of all sets of k balloons and with
Xn = {1, 1/2, . . . , 1/n} ∈ Yn be the set of balloons defining the balloon popping
problem.

Let B(Yk) be the set of all k! permutations of the k balloons in Yk. For a
permutation of balloons B ∈ B(Yk) and for any i ∈ [k], we denote Bi as the ith
balloon in B and B<i as the set of the first i− 1 balloons in B, with B<1 := ∅.
For a balloon j ∈ Xn, let posB(j) be the index i ∈ [n] such that Bi = j.
Given a set of k balloons Yk, we denote with firstB(Yk) the balloon j′ ∈ Yk

such that posB(j
′) = minj∈Yk

posB(j), while, for any r ∈ [k], we denote with
suff r

B(Yk) the set of r balloons Y ′
r ⊆ Yk such that posB(firstB(Y

′
r )) > posB(j)



8 D. Bilò and V. Bilò

for any j ∈ Yk \ Y ′
r . For a balloon j ∈ Xn such that posB(j) = i > 1 and a

set of k balloons Yk, we denote as predB(j, Yk) the balloon j′ ∈ Yk such that
posB(j

′) = maxl∈Yk:posB(l)<i posB(l).
An online blowing strategy is a function son : Yk �→ 
. Intuitively, an online

blowing strategy specifies the capacity at which to blow up the current balloon,
given that it belongs to the set of balloons Yk. An execution of son on B is
defined by the vector (c1, . . . , cn) such that ci = son(Xn \ B<i). Let I ⊆ [n] be
the set of indexes i ∈ [n] for which ci ≤ Bi. The revenue of son on B is given
by rev(son, B) =

∑
i∈I ci, while the expected revenue of son on Xn is given by

E[rev(son, B)] = 1
n!

∑
B∈B(Xn)

rev(son, B). We denote as s∗on the optimal online
blowing strategy and as ONn her expected revenue on Xn.

Let Vn be the set of all n-dimensional vectors whose components belong to

 ∪ {Popped}. A vector V = (v1, . . . , vn) ∈ Vn represents the current state of
the n balloons, with vi = Popped if the ith balloon has popped or vi ∈ 
 if
the ith balloon has been currently blown up to capacity vi. An offline blowing
strategy is a function soff : B(Xn) �→ Vn. Intuitively, given a permutation of
Xn, an offline blowing strategy outputs a final state in which some balloons
are blown up to certain capacities and the remaining ones are popped. For a
B ∈ B(Xn) such that soff (B) = V = (v1, . . . , vn) ∈ Vn, let I ⊆ [n] be the set
of indexes i ∈ [n] for which vi �= Popped. The revenue of soff on B is given
by rev(soff , B) =

∑
i∈I vi, while the expected revenue of soff on Xn is given

by E[rev(soff , B)] = 1
n!

∑
B∈B(Xn)

rev(soff , B). We denote s∗off as the optimal
online blowing strategy and OFFn as her expected revenue on Xn.

For a set of k balloons Yk, denote as M(Yk) = maxi∈[k] {i/yi}, I(Yk) =
{i ∈ [k] : i/yi = M(Yk)}, and i∗(Yk) = mini∈I(Yk){i}. Immorlica et al. [6] showed

that s∗on(Yk) =
1

yi∗(Yk)
.

3 The Offline Blowing Strategy Group5

For a pair of integers k ≥ 2 and i ∈ [(n − 1)/k�], let gk(i) = {j ∈ Z : k(i −
1) + 2 ≤ j ≤ ik + 1} and groupk(i) = {1/j ∈ Xn : j ∈ gk(i)}; so, for k = 5,
group5(1) = {1/2, . . . , 1/6}, group5(2) = {1/7, . . . , 1/11} and so on. Our offline
blowing strategy Group5(B) is defined as follows.

X := {1, 1/2, . . . , 1/n};
for each i ∈ [n] do vi := 0;
for each i ∈ [n] do
| j := max(X);
| if j = 1 then
| | blow the ith balloon of B up to capacity c := 1;
| else
| | let group5(h) be the group including j;
| | r := |X ∩ group5(h)|;
| | let a1 > . . . > ar be the ordered sequence of balloons in X ∩ group5(h);
| | if h = 1 then c := strategy(r, a1, . . . , ar); else c := ar;



New Bounds for the Balloon Popping Problem 9

| | blow the ith balloon of B up to capacity c;
| if the balloon pops at capacity c′ < c then
| | vi := Popped;
| | X := X \ {c′};
| else
| | vi := c;
| | X := X \ {j};

where the function strategy(r, a1, . . . , ar) is defined as follows.

if r = 2 then
| if a1 ≥ 3a2/2 then return a1; else return a2;
if r = 3 then
| if (a1, a2, a3) = (1/4, 1/5, 1/6) then return 1/6;
| else if a1 + 3a3 ≥ 4a2 then return a1; else return a2;
if r = 4 then
| if a1 − a4 ≥ 1/3 then return a1; else return a3;
if r = 5 then return a3;
return a1;

Note that, by definition, Group5 always blows the current balloon at capacity
1 as long as balloon 1 has not been processed yet. From that point on, Group5
will blow the current balloon to a capacity yielded by the group with the lowest
index which has still at least one unprocessed balloon.

Let GRn denote the expected volume achieved by Group5 on a sequence of
n balloons. By the definition of Group5, it follows

GRn ≥ 1 +

	(n−1)/5
∑
h=1

5∑
r=1

∑
{a1,...,ar}⊆group5(h)

(f({a1, . . . , ar})Pr[{a1, . . . , ar}]) ,

where f({a1, . . . , ar}) denotes the expected volume achieved by Group5 when
processing the set of r balloons {a1, . . . , ar} and Pr[{a1, . . . , ar}] is the proba-
bility that such a set is processed by Group5.

For the case of h = 1, that is for any set of r balloons {a1, . . . , ar} ⊆
{1/2, . . . , 1/6}, with r ∈ [5], the value f({a1, . . . , ar}) is provided by the fol-
lowing Lemma.

Lemma 1. The values for f({a1, . . . , ar}) reported in Table 1 hold.

Proof. Function strategy(1, a1) returns the value a1, hence the claim holds for
f({a1}) when {a1} ∈ {{1/2}, . . . , {1/6}}.

Function strategy(2, a1, a2) returns the value a2 when {a1, a2} ∈
{{1/3, 1/4}, {1/4, 1/5}, {1/5, 1/6}} and the value a1 in the remaining cases.
Since it holds Pr[firstB({a1, a2}) ≥ a1] = 1/2 and Pr[firstB({a1, a2}) ≥
a2] = 1, it follows that f({a1, a2}) = a2 + f({a2}) = 2a2 when {a1, a2} ∈
{{1/3, 1/4}, {1/4, 1/5}, {1/5, 1/6}} and f({a1, a2}) = 1

2 (a1 + f({a2})) +
1
2f({a1}) = a1 +

a2

2 in the remaining cases.



10 D. Bilò and V. Bilò

Function strategy(3, a1, a2, a3) returns the value a1 when {a1, a2, a3} ∈
{{1/2, 1/4, 1/5}, {1/2, 1/4, 1/6}, {1/2, 1/5, 1/6}, {1/3, 1/5, 1/6}}, the value a3
when {a1, a2, a3} = {1/4, 1/5, 1/6} and the value a2 in the remaining cases.
Since it holds Pr[firstB({a1, a2, a3}) ≥ a1] = 1/3, Pr[firstB({a1, a2, a3}) ≥
a2] = 2/3 and Pr[firstB({a1, a2, a3}) ≥ a3] = 1, it follows
that f({a1, a2, a3}) = a1

3 + 1
3 (f({a1, a2}) + f({a1, a3}) + f({a2, a3})) when

{a1, a2, a3} ∈ {{1/2, 1/4, 1/5}, {1/2, 1/4, 1/6}, {1/2, 1/5, 1/6}, {1/3, 1/5, 1/6}},
f({1/4, 1/5, 1/6}) = 1

6 + f({1/5, 1/6}) = 1
2 and f({a1, a2, a3}) = 2a2

3 +
2
3f({a2, a3}) +

1
3f({a1, a2}) in the remaining cases.

Function strategy(4, a1, a2, a3, a4) returns the value a1 when {a1, a2, a3, a4} ∈
{{1/2, 1/3, 1/4, 1/6}, {1/2, 1/3, 1/5, 1/6}, {1/2, 1/4, 1/5, 1/6}} and the value a3
in the remaining cases. Since it holds Pr[firstB({a1, a2, a3, a4}) ≥ a1] = 1/4
and Pr[firstB({a1, a2, a3, a4}) ≥ a3] = 3/4, it follows that f({a1, a2, a3}) =
a1

4 + 1
4 (f({a1, a2, a3}) + f({a1, a2, a4}) + f({a1, a3, a4}) + f({a2, a3, a4})) when

{a1, a2, a3, a4} ∈ {{1/2, 1/3, 1/4, 1/6}, {1/2, 1/3, 1/5, 1/6}, {1/2, 1/4, 1/5, 1/6}}
and f({a1, a2, a3, a4}) = 3a3

4 + 3
4f({a2, a3, a4})+

1
4f({a1, a2, a3}) in the remaining

cases.
Function strategy(5, 1/2, 1/3, 1/4, 1/5, 1/6) returns the value 1/4. Hence,

since it holds Pr[firstB({1/2, 1/3, 1/4, 1/5, 1/6}) ≥ 1/4] = 3/5, it fol-
lows that f({1/2, 1/3, 1/4, 1/5, 1/6}) = 3

20 + 3
5f({1/3, 1/4, 1/5, 1/6}) +

1
5f({1/2, 1/3, 1/4, 1/5})+

1
5f({1/2, 1/3, 1/4, 1/6}) =

6359
7200 . ��

{a1, ..., ar} f({a1, ..., ar}) {a1, ..., ar} f({a1, ..., ar}) {a1, ..., ar} f({a1, ..., ar})
1
i

1
i

( 1
4
, 1
6
) 1

3
( 1
3
, 1
4
, 1
6
) 5

9

( 1
2
, 1
3
) 2

3
( 1
5
, 1
6
) 1

3
( 1
3
, 1
5
, 1
6
) 91

180

( 1
2
, 1
4
) 5

8
( 1
2
, 1
3
, 1
4
) 7

9
( 1
4
, 1
5
, 1
6
) 1

2

( 1
2
, 1
5
) 3

5
( 1
2
, 1
3
, 1
5
) 11

15
( 1
2
, 1
3
, 1
4
, 1
5
) 599

720

( 1
2
, 1
6
) 7

12
( 1
2
, 1
3
, 1
6
) 13

18
( 1
2
, 1
3
, 1
4
, 1
6
) 233

288

( 1
3
, 1
4
) 1

2
( 1
2
, 1
4
, 1
5
) 17

24
( 1
2
, 1
3
, 1
5
, 1
6
) 47

60

( 1
3
, 1
5
) 13

30
( 1
2
, 1
4
, 1
6
) 49

72
( 1
2
, 1
4
, 1
5
, 1
6
) 551

720

( 1
3
, 1
6
) 5

12
( 1
2
, 1
5
, 1
6
) 121

180
( 1
3
, 1
4
, 1
5
, 1
6
) 27

40

( 1
4
, 1
5
) 2

5
( 1
3
, 1
4
, 1
5
) 3

5
( 1
2
, 1
3
, 1
4
, 1
5
, 1
6
) 6359

7200

Fig. 1. The values f({a1, . . . , ar}) for any set of r balloons {a1, . . . , ar} ∈ group5(1),
with r ∈ [5]

Given a set U of n elements, let S(U) be a random permutation of the n elements
of U , where each permutation is equally likely. The following result will be of
crucial importance in the computation of the quantities Pr[{a1, . . . , ar}] for any
set of r balloons {a1, . . . , ar} ∈ group5(h), with r ∈ [5].



New Bounds for the Balloon Popping Problem 11

Lemma 2. For any triple of pairwise disjoint sets I, J,K ⊆ U , with I,K �= {∅},
the probability that in S(U) each element of K follows all the elements of I ∪ J

and that at least one element of I follows all the elements of J is |I|(|I|+|J|−1)!|K|!
(|I|+|J|+|K|)! .

We can now compute the contribution of group5(1) to GRn.

Lemma 3. For any n ≥ 6, the contribution of the balloons belonging to
group5(1) to GRn is 3679

7200 .

Proof. Set Y = {1, 1/2, . . . , 1/6}.
The case of r = 1 and {a} ⊂ group5(1), occurs when suff1

B(Y ) = {a}
and predB(a, Y ) = 1. Because of Lemma 2, the probability that this event
happens is 1/30. Hence, the expected contribution of the case r = 1 to
Group5 for the balloons belonging to group5(1) is 1

30

∑
{a}⊂group5(1)

f({a}) =
1
30

(
1
2 + 1

3 + 1
4 + 1

5 + 1
6

)
because of Lemma 1.

The case of r = 2 and {a1, a2} ⊂ group5(1) occurs when
suff2

B(Y ) = {a1, a2} and predB(firstB({a1, a2}), Y ) = 1. Because
of Lemma 2, the probability that this event happens is 1/60. Hence,
the expected contribution of the case r = 2 to Group5 for the
balloons belonging to group5(1) is 1

60

∑
{a1,a2}⊂group5(1)

f({a1, a2}) =
1
60

(
2
3 + 5

8 + 3
5 + 7

12 + 1
2 + 13

30 + 5
12 + 2

5 + 1
3 + 1

3

)
because of Lemma 1.

The case of r = 3 and {a1, a2, a3} ⊂ group5(1) occurs when
suff3

B(Y ) = {a1, a2, a3} and predB(firstB({a1, a2, a3}), Y ) = 1. Because
of Lemma 2, the probability that this event happens is 1/60. Hence,
the expected contribution of the case r = 3 to Group5 for the bal-
loons belonging to group5(1) is 1

60

∑
{a1,a2,a3}⊂group5(1)

f({a1, a2, a3}) =
1
60

(
7
9 + 11

15 + 13
18 + 17

24 + 49
72 + 121

180 + 3
5 + 5

9 + 91
180 + 1

2

)
because of Lemma 1.

The case of r = 4 and {a1, a2, a3, a4} ⊂ group5(1) occurs when suff4
B(Y ) =

{a1, a2, a3, a4} and predB(firstB({a1, a2, a3, a4}), Y ) = 1. Because of Lemma 2,
the probability that this event happens is 1/30. Hence, the expected contri-
bution of the case r = 4 to Group5 for the balloons belonging to group5(1)
is 1

30

∑
{a1,a2,a3,a4}⊂group5(1)

f({a1, a2, a3, a4}) = 1
30

(
599
720 + 233

288 + 47
60 + 551

720 + 27
40

)
because of Lemma 1.

The case of r = 5 occurs when firstB(Y ) = {1}. Because of Lemma 2,
the probability that this event happens is 1/6. Hence, the expected contribu-
tion of the case r = 5 to Group5 for the balloons belonging to group5(1) is
1
6f({1/2, . . . , 1/6}) =

1
6 ·

6359
7200 because of Lemma 1.

By summing up all the contributions for r ∈ [5], the claim follows. ��

We can now proceed with the evaluation of the performance of Group5 for n
going to infinity.

Theorem 1. GR∞ > 1.68.

Proof. By exploiting Lemma 3, we have that

GRn ≥ 10897

7200
+

�(n−1)/5�∑
h=2

5∑
r=1

∑
{a1,...,ar}∈group5(h)

(f({a1, . . . , ar})Pr[{a1, . . . , ar}]) .



12 D. Bilò and V. Bilò

Consider now group5(h) =
{

1
5h−3 ,

1
5h−2 ,

1
5h−1 ,

1
5h ,

1
5h+1

}
with h ≥ 2 and set

Y = {1, 1/2, . . . , 1/(5h+ 1)}.
The case of r = 1 and {a} ⊂ group5(h) occurs when suff1

B(Y ) = {a} and
predB(a, Y ) /∈ group5(h). Because of Lemma 2, the probability that this event
happens is 5h−4

5h(5h+1) . Clearly, in such a case, it holds f({a}) = a. Hence, the

expected contribution of the case r = 1 to Group5 for the balloons belonging to

group5(h) for h ≥ 2 is 5h−4
5h(5h+1)

(
1

5h−3 + 1
5h−2 + 1

5h−1 + 1
5h + 1

5h+1

)
.

The case of r = 2 and {a1, a2} ⊂ group5(h) occurs when suff2
B(Y ) = {a1, a2}

and predB(firstB({a1, a2}), Y ) /∈ group5(h). Because of Lemma 2, the proba-

bility that this event happens is 2(5h−4)
(5h−1)5h(5h+1) . By definition of Group5, in

such a case, it holds f({a1, a2}) = 2a2. By considering all possible 10 sets
{a1, a2} ⊂ group5(h), it follows that the expected contribution of the case
r = 2 to Group5 for the balloons belonging to group5(h) for h ≥ 2 is

2(5h−4)
(5h−1)5h(5h+1)

(
2

5h−2 + 4
5h−1 + 6

5h + 8
5h+1

)
.

The case of r = 3 and {a1, a2, a3} ⊂ group5(h) occurs when suff3
B(Y ) =

{a1, a2, a3} and predB(firstB({a1, a2, a3}), Y ) /∈ group5(h). Because of

Lemma 2, the probability that this event happens is 6(5h−4)
(5h−2)(5h−1)5h(5h+1) . By

definition of Group5, in such a case, it holds f({a1, a2, a3}) = 3a3. By consid-
ering all possible 10 sets {a1, a2, a3} ⊂ group5(h), it follows that the expected
contribution of the case r = 3 to Group5 for the balloons belonging to group5(h)

for h ≥ 2 is 6(5h−4)
(5h−2)(5h−1)5h(5h+1)

(
3

5h−1 + 9
5h + 18

5h+1

)
.

The case of r = 4 and {a1, a2, a3, a4} ⊂ group5(h) occurs when suff4
B(Y ) =

{a1, a2, a3, a4} and predB(firstB({a1, a2, a3, a4}), Y ) /∈ group5(h). Because of

Lemma 2, the probability that this event happens is 24(5h−4)
(5h−3)(5h−2)(5h−1)5h(5h+1) .

By definition of Group5, in such a case, it holds f({a1, a2, a3, a4}) = 4a4. By
considering all possible 5 sets {a1, a2, a3, a4} ⊂ group5(h), it follows that the
expected contribution of the case r = 4 to Group5 for the balloons belonging to

group5(h) for h ≥ 2 is 24(5h−4)
(5h−3)(5h−2)(5h−1)5h(5h+1)

(
4
5h + 16

5h+1

)
.

The case of r = 5 occurs when suff5
B(Y ) = group5(h). Because of Lemma 2,

the probability that this event happens is 120
(5h−3)(5h−2)(5h−1)5h(5h+1) . By defini-

tion of Group5, in such a case, it holds f(group5(h)) = 5a5. Hence, it follows
that the expected contribution of the case r = 5 to Group5 for the balloons
belonging to group5(h) for h ≥ 2 is 120

(5h−3)(5h−2)(5h−1)5h(5h+1) ·
5

5h+1 .

By summing up all the contribution for r = [5], we obtain

GRn ≥
10897

7200
+

	(n−1)/5
∑
h=2

625h4 − 250h3 − 175h2 + 60h+ 8

h(5h− 3)(5h− 2)(5h− 1)2(5h+ 1)
.

Note that the quantity 625h4−250h3−175h2+60h+8
h(5h−3)(5h−2)(5h−1)2(5h+1) is non-negative for any h ≥ 0.

Hence, it holds



New Bounds for the Balloon Popping Problem 13

GR∞ ≥GR5001 =
10897

7200
+

1000∑
h=2

625h4 − 250h3 − 175h2 + 60h+ 8

h(5h− 3)(5h− 2)(5h− 1)2(5h+ 1)
> 1.68.

��

4 An Algorithm for Computing ONn

For any k, j ∈ [n] and h ∈ [k], define Tk(j, h) = {Yk ∈ Yk : i∗(Yk) = h and yh =
1/j} and denote as tk(j, h) = |Tk(j, h)|. We give the following new characteriza-
tion of ONn.

Theorem 2. ONn =

n∑
j=1

n∑
k=1

⎛⎝ 1(
n
k

)
· k · j

min{j,k}∑
h=max{1,k+j−n}

(h · tk(j, h))

⎞⎠.

Proof. For a fixed Yk ∈ Yk, it holds Yk ∈ Tk(j, h) if and only if i) p
yp

< h
j for

any p ∈ [h − 1], and ii) p
yp
≤ h

j for any h + 1 ≤ p ≤ k. Note that, by the

definitions of h, there must be exactly h − 1 balloons before balloon 1/j and
exactly k− h balloons after balloon 1/j in Yk. By the definition of Yk, it follows
h ≤ j and h ≥ k + j − n. These two constraints, together with h ∈ [k], implies
max{1, k + j − n} ≤ h ≤ min{k, j}.

Let Tbig(k, j, h) be the family of all sets of h−1 balloons satisfying condition i)
and Tsmall(k, j, h) be the family of all sets of k− h balloons satisfying condition
ii). It follows that tk(j, h) = |Tbig(k, j, h)|·|Tsmall(k, j, h)| (note that, when h−1 =
0, it holds |Tbig(k, j, h)| = 1 since Tbig(k, j, h) = ∅ and similarly, when k− h = 0,
it holds |Tsmall(k, j, h)| = 1 since Tsmall(k, j, h) = ∅).

For any set of k balloons Yk ∈ Tk(j, h), the probability that the optimal online
blowing strategy s∗(Yk) = 1/j succeeds in a randomly permuted sequence of the
k balloons in Yk is h/k, that is, equal to the probability that the first balloon of
the sequence is one of the h balloons in Yk with capacity at least 1/j. Thus, the
expected contribution of the optimal online blowing strategy 1/j when restricted
to sequences of k balloons is equal to

min{j,k}∑
h=max{1,k+j−n}

h · tk(j, h)
k · j .

It follows that the expected contribution of the optimal online blowing strategy
1/j on all possible sequences of balloons is equal to

n∑
k=1

⎛⎝ 1(
n
k

) min{j,k}∑
h=max{1,k+j−n}

h · tk(j, h)
k · j

⎞⎠ .

By summing up the expected contributions for any j ∈ [n], the claim follows. ��



14 D. Bilò and V. Bilò

We now give a polynomial time algorithm for computing the quantity tk(j, h).
Note that a set of h− 1 balloons Yh−1 ∈ Tbig(k, j, h) if and only if yi ≥

⌊
i·j
h

⌋
+1.

Thus, |Tbig(k, j, h)| coincides with the number of (h − 1)-tuples (t1, . . . , th−1)
such that

⌊
i·j
h

⌋
+ 1 ≤ ti ≤ j − h + i for any i ∈ [h − 1] and ti < ti+1 for any

i ∈ [h− 2]. Similarly, a set of k − h balloons Yk−h ∈ Tsmall(k, j, h) if and only if

yi ≥
⌈
(h+i)·j

h

⌉
. Thus, |Tsmall(k, j, h)| coincides with the number of (k−h)-tuples

(t1, . . . , tk−h) such that
⌈
(h+i)·j

h

⌉
≤ ti ≤ n − k + h + i for any i ∈ [k − h] and

ti < ti+1 for any i ∈ [k− h− 1]. Hence, in order to compute tk(j, h), we need an
algorithm for solving the following problem:

Given r positive integers a1, . . . , ar such that ai < ai+1 for any i ∈ [r− 1] and
ai ≤ b− r+ i for some b ∈ Z>0, let T be the set of r-tuples (t1, . . . , tr) such that
ai ≤ ti ≤ b− r + i for any i ∈ [r] and ti < ti+1 for any i ∈ [r − 1]. Which is the
value of |T |?

The solution to this problem can be constructed as follows. For any p ∈
[r], let Tp be the set of p-tuples (t′r−p+1, . . . , t

′
r) such that there exists a tuple

(t1, . . . , tr−p, t
′
r−p+1, . . . , t

′
r) ∈ T . For any i ∈ {a1, a1 + 1, . . . , b}, let tp(i) be

the number of p-tuples (t′r−p+1, . . . , t
′
r) ∈ Tp such that t′r−p+1 = i. It holds

|T | =
∑

i∈{a1,...,b−r+1} tr(i), where

tp(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if p = 1 ∧ i ∈ {ar, . . . , b},∑
j>i

tp−1(j) if 1 < p ≤ r ∧ i ∈ {ar−p+1, . . . , b− p+ 1},

0 otherwise.

The computation of tp(i) by a näıve algorithm requires a running time of O(n3).
Anyway, it is possible to adopt a dynamic programming algorithm by using the
following alternative characterization for tp(i).

tp(i) =

⎧⎪⎪⎨⎪⎪⎩
1 if p = 1 ∧ i ∈ {ar, . . . , b},
tp(i+ 1) + tp−1(i+ 1) if 1 < p ≤ r ∧ i ∈ {ar−p+1, . . . , b− p+ 1},
0 otherwise.

With this approach, the computation of tp(i) and hence of the quantities tk(j, h)
can be done in time O(n2) for any triple of integers j, k, h. Recalling that j, k ∈ [n]
and max{1, k+ j−n} ≤ h ≤ min{j, k}, the overall computation of ONn can be
performed in time O(n5) in the worst-case.

The quantities ONn for some values of n are reported in Figure 2.
Jung and Chwa [7] conjectured thatONn ≥ OLD-CONn := 2− 2Hn−1

n based
on a property that they could experimentally verify up to n = 21. As it can be
appreciated from the values reported in Figure 2, their conjecture, which would
have implied, ON∞ = 2, is not valid and it is disproved as soon as n ≥ 44.



New Bounds for the Balloon Popping Problem 15

The growth rate of ONn witnessed by our algorithm strongly encourages
the belief that ON∞ < 2. To this aim, we formulate here the following new
conjecture that, as shown in Figure 2, is verified for n ≤ 600:

ONn ≤ NEW-CONn :=

n∑
i=1

1

i2
+

1

2n

n∑
i=2

(
n− i

n
− 1

i + 1

)
.

If our conjecture holds then, by taking the limit for n going to infinity of NEW-
CONn, it follows ON∞ ≤ π2/6+1/4 ≈ 1.8949. It is interesting to note that this
value matches an experiment conducted by Immorlica et al. [6] who estimated
ON1000 by applying the optimal online blowing strategy on a sample of 105

random sequences of balloons.

n ONn OLD-CONn NEW-CONn n ONn OLD-CONn NEW-CONn

1 1 1 1 20 1.763399 1.690226 1.76872

2 1.25 1 1.25 43 1.822355 1.82093 1.827179

3 1.388889 1.111111 1.388889 44 1.823642 1.823967 1.828455

4 1.472222 1.208333 1.475694 50 1.830404 1.840032 1.835141

5 1.532222 1.286667 1.535278 100 1.857147 1.906252 1.861547

6 1.573889 1.35 1.578889 200 1.872309 1.94622 1.876501

7 1.607766 1.402041 1.612307 300 1.877853 1.961449 1.881969

8 1.633639 1.445536 1.638806 400 1.880774 1.96965 1.88485

9 1.655153 1.482451 1.660381 500 1.882592 1.974829 1.886643

10 1.672889 1.514206 1.678319 600 1.883838 1.978417 1.887873

Fig. 2. The values of ONn, OLD-CONn and NEW-CONn for some meaningful
values of n

5 Conclusions and Open Problems

We revisited the balloon popping problem introduced by Immorlica et al. [6]
and later reconsidered by Jung and Chwa [7]. We improved the lower bound
on OFF∞ from 1.6595 to 1.68 by designing and analyzing the offline blowing
strategy Group5. The ingredients needed for the analysis of Group5 suffice to
bound the performance of the offline blowing strategy Groupk for any k ≥ 2.
Hence, improvements on our 1.68 lower bound can be achieved at the expenses
of the wider case analysis yielded by higher values of k.

While the determination of the optimal offline blowing strategy remains a
challenging open question, the online blowing strategy was exactly characterized
by Immorlica et al. [6] and from such a characterization, they derived an exact,
yet complex, formula for the value ONn. Using this formula, Jung and Chwa
[7] proved that ON∞ ≤ 2. They further proposed a conjecture which would
imply ON∞ ≥ 2 and left its proof as an open question. We disproved such a
conjecture by providing a new exact formula for ONn which, differently from the
one proposed by Immorlica et al. [6], can be evaluated by means of an algorithm



16 D. Bilò and V. Bilò

of running time O(n5). In fact, our algorithm shows that the conjecture of Jung
and Chwa [7] cannot hold for any n ≥ 44, but, more importantly, it reveals
a growth ratio for ONn which strongly encourages the hypothesis that ONn

might converge to some value strictly smaller than 2. We then propose a new
conjecture, which upper bounds ONn for any n ≥ 1 and whose validity could
be tested through our algorithm up to n = 600, according to which it would
follow ON∞ ≤ π2/6 + 1/4 ≈ 1.8949. The proof of our conjecture is a major
open problem and would provide a significant improvement on the upper bound
for the balloon popping problem.

References

1. Balcan, M.F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In:
Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 50–59.
ACM Press (2008)

2. Bar-Yossef, Z., Hildrum, K., Wu, F.: Incentive-compatible online auctions for dig-
ital goods. In: Proceedings of 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 964–970. ACM/SIAM Press (2002)

3. Blum, A., Hartline, J.: Near-optimal online auctions. In: Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1156–1163.
ACM/SIAM Press (2005)

4. Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions
with budget constrained bidders. In: Proceedings of 6th ACM Conference on Elec-
tronic Commerce (EC), pp. 44–51. ACM Press (2005)

5. Goldberg, A., Hartline, J., Wright, A.: Competitive auctions and digital goods. In:
Proceedings of 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
735–744. ACM/SIAM Press (2001)

6. Immorlica, N., Karlin, A.R., Mahdian, M., Talwar, K.: Balloon Popping With Ap-
plications to Ascending Auctions. In: Proceedings of the 48th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 104–112. IEEE Computer
Society (2007)

7. Jung, H., Chwa, K.-Y.: The Balloon Popping Problem Revisited: Lower and Upper
Bounds. Theory of Computing Systems 49(1), 182–195 (2011)



On the Sequential Price of Anarchy

of Isolation Games

Anna Angelucci1, Vittorio Bilò2, Michele Flammini1, and Luca Moscardelli3

1 Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila

Via Vetoio, Loc. Coppito, 67100 L’Aquila, Italy
{anna.angelucci,michele.flammini}@univaq.it

2 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento
Provinciale Lecce-Arnesano P.O. Box 193, 73100 Lecce, Italy

vittorio.bilo@unisalento.it
3 Department of Economic Studies, University of Chieti-Pescara

Viale Pindaro 42, 65127 Pescara, Italy
luca.moscardelli@unich.it

Abstract. We study the performance of Subgame Perfect Equilibria,
a solution concept which better captures the players’ rationality in se-
quential games with respect to the classical myopic dynamics based on
the notions of improving deviations and Nash Equilibria, in the context
of sequential isolation games. In particular, for two important classes
of sequential isolation games, we show upper and lower bounds on the
Sequential Price of Anarchy, that is the worst-case ratio between the so-
cial performance of an optimal solution and that of a Subgame Perfect
Equilibrium, under the two classical social functions mostly investigated
in the scientific literature, namely, the minimum utility per player and
the sum of the players’ utilities.

1 Introduction

In competitive location games [8] players aim at choosing suitable locations
or points in given metric spaces so as to maximize their utility or revenue.
Depending on different parameters such as the underlying metric space, the
number of players, the adopted solution concept, the customers’ behavior and
so on, several scenarios arise.

In this paper we consider isolation games [19], a class of competitive location
games in which the utility of a player is defined as a function of her distances
from the other ones in an underlying edge-weighted graph. For example, it is
natural to define the utility of a player as the distance from the nearest one
(nearest-neighbor isolation game), or as the sum of the distances from all the
other players (total-distance isolation game).

Isolation games find a natural application in data clustering [10] and geometric
sampling [18]. Moreover, as pointed out in [19], they can be used to obtain a good
approximation of the strategy a player should compute in another competitive

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 17–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



18 A. Angelucci et al.

location game, called Voronoi game [6,7,14], which is among the most studied
competitive location games. Here, the utility of a player is given by the total
number of all points that are closer to her than to any other player (Voronoi
area), where points which are equidistant to several players are evenly split
up among them. As another interesting field of application for isolation games,
consider the following problem in non-cooperative wireless network design: We
are given a set of users who have to select a spot where to locate an antenna
so as to transmit and receive a radio signal. When more than just one antenna
is transmitting contemporaneously, interference between two or more signals
may occur. If users are selfish players interested in minimizing the amount of
interference their antenna will be subject to, they will decide to locate it as far
as possible from the other ones thus giving rise to a particular isolation game.

The fundamental approach adopted in the literature in order to model the
non-cooperative behavior of selfish players has been that of resorting on differ-
ent concepts of equilibrium to characterize stable solutions, Nash Equilibrium
being among the most investigated ones [15]. In such a setting, the problem of
measuring the loss of optimality due to the selfishness of the players becomes
of crucial importance. To this aim, given a social function measuring the overall
efficiency of any solution of the game, the notions of Price of Anarchy (PoA)
[11], obtained by comparing the social value of the worst Nash Equilibrium
with that of the social optimum, and Price of Stability (PoS) [1], obtained by
comparing the social value of the best Nash Equilibrium with that of the social
optimum, have been widely used in the Algorithmic Game Theory literature, see
[16]. Nevertheless, these two metrics naturally extend to other solution concepts
alternative to Nash Equilibria.

These concepts can be defined according to suitable extensions of the agents’
rationality. In such a setting, a recent research direction has focused on sequen-
tial games [5,12], modeling the strategic behavior of agents who anticipate future
strategic opportunities. More precisely, in the majority of equilibrium concepts,
it is assumed that players simultaneously select their strategic choices. Even
when dealing with the speed of convergence and best-response moves, the cor-
responding dynamics is actually the result of a myopic interaction among the
players, in which each player merely selects the strategy being at the moment
a good choice, without caring about the future evolutions of the game. In other
words, the dynamics is not governed by farsighted strategic choices of the players.
As a consequence, in sequential games, the notion of Subgame Perfect Equilib-
rium (SPE) [17] is preferred to that of Nash Equilibrium since it better captures
the rationality of farsighted players. Hence, the loss of optimality due to the
presence of selfish players in sequential games is measured by means of the Se-
quential Price of Anarchy (SeqPoA), that is, the price of anarchy of Subgame
Perfect Equilibria.

Related Work. Isolation games were introduced in [19], where the authors give
several results regarding the existence of pure Nash Equilibria and the conver-
gence of better and best-response dynamics to any of such equilibria. In particu-
lar, they prove that, in any symmetric space, nearest-neighbor and total-distance



On the Sequential Price of Anarchy of Isolation Games 19

isolation games are potential games, which implies the existence of Nash Equilib-
ria and convergence of any better-response dynamics. In the case of asymmetric
spaces, however, deciding whether a given nearest-neighbor or total-distance iso-
lation game possesses a Nash Equilibrium is NP-complete. Furthermore, in [4],
the authors analyze the efficiency of pure Nash Equilibria in terms of the Price
of Anarchy and Price of Stability, for the classes of isolation games introduced
in [19], under the two social functions defined as the minimum utility per player
and the sum of the players’ utilities.

Very recently, Subgame Perfect Equilibria and their performance have been
investigated in the context of auctions [13], cut, consensus, unrelated schedul-
ing and fair cost sharing allocation games [5,12]. A desired and expected effect
of Subgame Perfect Equilibria remarked in [5,12] is that the corresponding far-
sighted choices may reduce the induced Price of Anarchy. Other non-myopic
extensions induced by more farsighted agents that take into account the long-
term effects of their adopted strategies were considered in [3].

Our Contribution. Motivated by the above reasons, in this paper we study the
performance of Subgame Perfect Equilibria in sequential isolation games. More
precisely, we focus on nearest-neighbor and total-distance sequential isolation
games, and we show upper and lower bounds on the Sequential Price of Anarchy
under the two social functions defined as the minimum utility per player (MIN)
and the sum of the players’ utilities (SUM).

For the basic case of k = 2 players, we prove that the Sequential Price of
Anarchy is 1, i.e., every Subgame Perfect Equilibrium is an optimal solution,
both for nearest-neighbor and total-distance sequential isolation games, under
the two considered social functions. For the other cases (k ≥ 3 players), the
obtained results are summarized in Table 1. For nearest-neighbor games with
SUM social function and k ≥ 4 players, that is the case with an unbounded
Sequential Price of Anarchy, we provide improved results for the special case of
unweighted graphs by showing that the Sequential Price of Anarchy is between
4k−3

k and 8.

Table 1. Sequential Price of Anarchy of isolation games for k ≥ 3 players

Social Function Nearest-Neighbor Total-Distance

MIN 2 between k−1
k−2

and 8

SUM
∞ for k ≥ 4 players

between k(k−1)
(k+1)(k−2)

and 3.765
between 3

2
and 6 for k = 3 players

Paper Organization. The next section contains the necessary definitions and
notation. Sections 3 and 4 cover the study of the Sequential Price of Anarchy
for nearest-neighbor and total-distance sequential isolation games, respectively.
Finally, in Section 5, we address open problems and further research.

Due to space limitations, some proofs have been omitted.



20 A. Angelucci et al.

2 Definitions and Notation

For an integer k > 0, we denote as [k] the set {1, 2, . . . , k}. We use boldface
characters, such as s and a, to represent tuples. Given a k-tuple s, for any i ∈ [k],
we denote as si the ith element of s, that is, we assume that s = (s1, . . . , sk).

A sequential game is a triple G = ([k], Ai∈[k], Ui∈[k]), where [k] is a set of
k ≥ 2 players and, for any i ∈ [k], Ai is the set of actions for player i and
Ui : ×j∈[k]Aj → R>0 is her utility function. The game is played in k steps. At
the ith step, player i observes the actions chosen by the first i − 1 players and
decides which action to take. Any function si : ×j∈[i−1]Aj → Ai is a strategy
for player i. A strategy profile s is a k-tuple of strategies, one for each player.
Each strategy profile s induces a unique outcome a(s), defined as a1(s) = s1(∅)
and ai(s) = si(a1(s), . . . , ai−1(s)) for any 2 ≤ i ≤ k; hence, the utility that each
player i ∈ [k] gets as an outcome of the strategy profile s is given by Ui(a(s)).

Each sequential game G can be represented by a tree TG = (H,E), where
H = H1 ∪ . . .∪Hk+1, with Hk+1 = ×i∈[k]Ai, and E is such that, for each i ∈ [k]
and h ∈ Hi, h has exactly |Ai| children corresponding to each of the possible
action choices for player i. Hence, it holds |H1| = 1 and |Hi+1| = |Hi| · |Ai| for
each i ∈ [k]. Note that each strategy profile s induces a unique path in TG going
from the root to the leave corresponding to a(s).

Each node h of TG corresponds to a history of the game, that is, to the
unique sequence of choices leading from the root to h. Given a node h ∈ H , the
descendants of h are all the nodes belonging to the subtree of TG rooted at h.
The subgame of G rooted at node h, denoted as Gh, is the restriction of G to the
descendants of h. The set of subgames of G consists of all of the subgames of G
rooted at some node of G.

Given a strategy profile s, a player i ∈ [k] and a strategy t for player i, we
denote as s−i � t the strategy profile obtained from s when player i unilaterally
changes her strategy from si to t.

A strategy profile s is a Nash Equilibrium (NE) of G if, for each player
i ∈ [k] and strategy t for player i, it holds Ui(a(s)) ≥ Ui(a(s−i � t)), while it
is a Subgame Perfect Equilibrium (SPE) of G if, for any node h ∈ H , the
restriction of s to Gh, denoted as s(Gh), is a Nash Equilibrium of Gh.

We denote by SPE(G) the set of Subgame Perfect Equilibria of game G. It is
well-known that, for any sequential game G, it holds SPE(G) �= ∅ and that such
a set can be computed by backward induction on TG. Moreover, the presence of
tie-breaking situations in which the players can choose among equivalent actions
possibly makes |SPE(G)| > 1.

Given a sequential game G and a social function SF : ×i∈[k]Ai �→ R>0, let
oSF(G) ∈ ×i∈[k]Ai be an outcome maximizing SF. The Sequential Price of

Anarchy (SeqPoA) of G is defined as SeqPoASF(G) = maxs∈SPE(G)
SF(oSF(G))
SF(a(s)) .

For an undirected connected graph G = (V,E,w) with w : E → R>0 and
two nodes u, v ∈ V , let d(u, v) denote the distance between u and v in G, that
is, the length of the shortest (u, v)-path in G. Given an undirected connected
graph G = (V,E,w) and an integer k ≥ 2, a sequential isolation game
I = (G, k) is a sequential game such that, for any i ∈ [k], Ai = V , i.e., the



On the Sequential Price of Anarchy of Isolation Games 21

action of each player is to choose one of the n = |V | nodes of G. Given an
action profile a, for any player i ∈ [k], define the distance vector of i in a
as bi(a) = (d(si, s1), . . . , d(si, si−1), d(si, si+1), . . . , d(si, sk)). The utility Ui(a)
that player i gets in the action profile a can be defined in several ways on the
basis of the distance vector bi(a). We consider the following two cases:

• nearest-neighbor sequential isolation games, where, for any i ∈ [k], Ui(a) =
minj∈[k−1]{bij(a)}, that is, the utility of a player is given by the distance
from her nearest neighbor in a;
• total-distance sequential isolation games, where, for any i ∈ [k], Ui(a) =∑

j∈[k−1] b
i
j(a), that is, the utility of a player is given by the sum of her

distances from all the other players in a.

We study the SeqPoA of nearest-neighbor and total-distance sequential isolation
games under the two standard social functions adopted in the literature, namely,
the minimum utility per player MIN(a) = mini∈[k]{Ui(a)} and the sum of the
utilities of all the players SUM(a) =

∑
i∈[k] Ui(a).

3 Nearest-Neighbor Sequential Isolation Games

Before presenting our technical results, we revise the definition and the properties
of an i-center in undirected weighted connected graphs.

An i-center for an undirected weighted connected graph G = (V,E,w) is
a subset of nodes C ⊆ V such that |C| ≤ i. The measure of an i-center C is
defined as m(C) = maxv∈V {minu∈C{d(u, v)}}. An optimal i-center is an i-center
of minimum measure. We denote by C∗i = {c∗1, . . . , c∗|C∗

i |
} an optimal i-center for

G. Note that, by definition, it holds m(C∗i+1) ≤ m(C∗i ). Given an i-center C and
a node v ∈ V , let fC(v) = argminu∈C{d(u, v)} be the node at minimum distance
from v among the ones belonging to C, breaking ties arbitrarily. Each i-center
C = (c1, . . . , c|C|) induces a partition of V into |C| clusters C1, . . . , C|C|, where
Ci = {v ∈ V : fC(v) = ci}. Let W = max{u,v}∈E{w({u, v})} be the weight of
the most heavy edge in G. For an integer i ≥ 2, any i-center C for G satisfies the
following two properties:

Property 1. For any i ∈ [|C|] and two nodes u, v ∈ Ci, it holds d(u, v) ≤ 2 ·m(C).

Property 2. If |C| > 1, for any node u ∈ C, there exists another node v ∈ C, with
u �= v, such that d(u, v) ≤ 2 ·m(C) +W .

Throughout this section, we shall denote by I an instance of nearest-neighbor
isolation games. The following lemma provides an upper bound to the utility
realized by each player i ∈ [k] in any SPE.

Lemma 1. For any s ∈ SPE(I) and i ∈ [k], it holds Ui(a(s)) ≥ m(C∗k−1).

Proof. For any instance I, consider the choice of player i > 1. We claim that there
exists an action v ∈ V for player i such that minj∈[i−1]{d(aj , v)} ≥ m(C∗i−1). In



22 A. Angelucci et al.

fact, if by contradiction minj∈[i−1]{d(aj , v)} < m(C∗i−1) for every v ∈ V , it
follows that the set X =

⋃
j∈[i−1]{aj} is an (i−1)-center with m(X) < m(C∗i−1),

thus contradicting the optimality of C∗i−1.
We now show by backward induction that, for each player i ∈ [k], it holds

Ui(a(s)) ≥ m(C∗k−1). For i = k, since there is an action v ∈ V such that
minj∈[k−1]{d(aj , v)} ≥ m(C∗k−1) and player k aims at maximizing her utility, it
follows that, in any SPE s, it holds Uk(a(s)) ≥ m(C∗k−1). For 1 ≤ i < k, we
can suppose, for the sake of induction, that, for any action v ∈ V eventually
chosen by player i, it holds d(aj(s), v) ≥ m(C∗k−1) for any j = i + 1, . . . , k.
Moreover, we know that there exists an action v ∈ V for player i such that
minj∈[i−1]{d(aj(s), v)} ≥ m(C∗i−1) ≥ m(C∗k−1). Hence, there exists an action v ∈
V for player i such that minj∈[k]{d(aj(s), v)} ≥ m(C∗k−1). Since player i aims at
maximizing her utility, it follows that, in any SPE s, it holds Ui(a(s)) ≥ m(C∗k−1)
for any i ∈ [k]. ��

By exploiting the above lemma, we can obtain a significant upper bound on the
SeqPoA for the social function MIN.

Theorem 1. For any instance I, it holds SeqPoAMIN(I) ≤ 2.

Proof. Consider the partition of V induced by C∗k−1. Since V is partitioned into
k−1 clusters, for any action profile a, there must exist two players whose choices
belong to the same cluster. That is, there must be a vertex u ∈ C∗k−1 and two
players i and j such that d(u, ai) ≤ m(C∗k−1) and d(u, aj) ≤ m(C∗k−1). By the
definition of distance, it follows that d(ai, aj) ≤ 2 ·m(C∗k−1) which implies that
MIN(oMIN(I)) ≤ 2 ·m(C∗k−1). The thesis then follows by Lemma 1. ��

We proceed by showing that the given upper bound is tight for any number of
players k ≥ 3.

Theorem 2. For any number of players k ≥ 3, there exists an instance Ik of
nearest-neighbor sequential isolation games such that SeqPoAMIN(Ik) = 2.

Proof. For k = 3, let I3 = (G, 3) be the instance of nearest-neighbor sequen-
tial isolation games yielded by the case in which G is the unweighted path
〈v1, v2, . . . , v5〉. We show that there exists an SPE s such that a(s) = (v2, v4, v5)
for which MIN(a(s)) = 1. Since the action profile oMIN(I3) = (v1, v3, v5) yields
MIN(oMIN(I3)) = 2, it then follows that SeqPoAMIN(I3) = 2. First of all, it is
not difficult to see that, for any SPE s′ of I3, it must be Ui(a(s

′)) ≤ 2 for any
i ∈ [3]. Hence, since U1(a(s)) = 2, it follows that player 1 is happy with her
choice in s. Player 2 is getting a utility of 1 in a(s). The only deviation that
does not immediately give her a utility of 1 is to choose node v5. In such a case,
player 3 cannot get more that 1 and so we can correctly assume that she chooses
node v4 which again gives a utility of 1 to player 2. So player 2 cannot improve
her utility by deviating from s. Finally, player 3 is getting a utility of 1 in a(s).
Since she cannot get more than 1 once that the first two players have chosen
nodes v2 and v4, it follows that player 3 cannot improve her utility by deviating
from s and this shows that s is an SPE.



On the Sequential Price of Anarchy of Isolation Games 23

For any integer k ≥ 4, let Ik = (Gk, k) be the instance of nearest-neighbor
sequential isolation games yielded by the graph Gk depicted in Figure 1. In an
optimal action profile oMIN(Ik), each player i ∈ [k − 1] chooses node vi and
player k chooses node r which results in MIN(oMIN(Ik)) = 2. We claim that the
strategy profile s for which a(s) is such that each player i ∈ [k−2] chooses node
ui, player k − 1 chooses node vk−2 and player k chooses vk−1 is an SPE. Since
it holds MIN(a(s)) = 1, the thesis follows.

Note that, for any SPE s′, it holds Ui(a(s
′)) ≤ 2 for any player i ∈ [k].

In fact, assume by way of contradiction that there exists an SPE s′ such that
Ui(a(s

′)) > 2 for a player i ∈ [k]. By the topology of Gk, this can only happen
if ai(s

′) = v�, for some � ∈ [k − 1] and aj(s
′) /∈ {r, u�} for any j ∈ [k]. This

implies that there exists a player j ∈ [k] such that Uj(a(s
′)) = 1. Since for any

choice the remaining players can make at equilibrium (i.e., never selecting nodes
already taken by other players) it holds that the utility that player j gets in the
subgame of Ik obtained when player j deviates to node r is at least 1, we can
correctly assume that player j breaks tie in favor of action r. In this case, the
utility of player i drops to 2 and the claim follows.

We now complete the proof by showing that s is an SPE. Note that, since
Ui(a(s)) = 2 for any i ∈ [k−3] and no player can achieve a utility better than 2 in
any SPE, it follows that the first k−3 players are happy with their choices. When
player k−2 chooses uk−2, the remaining two players, no matter what they choose,
cannot get a utility better than 1; hence, since Uk−1(a(s)) = Uk(a(s)) = 1, it
follows that players k − 1 and k are happy with their choices too. Hence, it
remains to show that player k − 2, for which Uk−2(a(s)) = 1, does not want to
deviate from her strategy in s. Once given the choices of the first k − 3 players,
the only choices (different from uk−2) which does not immediately gives a utility
of 1 to player k − 2 are either vk−2 or vk−1. Assume that player k − 2 chooses
vk−2 (the other case can be treated symmetrically). It is easy to see now that
the strategy profile generating the outcome in which the remaining two players
choose vk−1 and uk−2 is an SPE such that the utility of player k − 2 is again 1.
Hence, it follows that s is an SPE. ��

For the leftover case of k = 2, the following result can be easily proved.

Theorem 3. For any instance I = (G, 2), it holds SeqPoAMIN(I) =
SeqPoASUM(I) = 1.

For the social function SUM, we can show the following negative result for any
number of players k ≥ 4.

Theorem 4. For any number of players k ≥ 4, there exists an instance Ik such
that SeqPoASUM(Ik) is unbounded.

For the leftover case of k = 3, we can show the following bounds.

Theorem 5. For any instance I3 = (G, 3), it holds SeqPoASUM(I) ≤ 6. More-
over, there exists an instance I3 = (G, 3) for which SeqPoASUM(I) = 3/2.



24 A. Angelucci et al.

u1 u2

v1 v2

r

uk−3

vk−3

uk−2

vk−2 vk−1

Fig. 1. An unweighted graph yielding a nearest-neighbor sequential isolation game
whose SeqPoA for the social function MIN is 2

Because of the negative result shown in Theorem 4, we restrict our attention to
instances in which G is unweighted, that is, w({u, v}) = 1 for any {u, v} ∈ E.
In such a case, we can prove the following upper bound.

Theorem 6. For any instance I = (G, k) such that G is unweighted, it holds
SeqPoASUM(I) ≤ 8.

Proof. For any action profile a = (a1, . . . , ak), let A =
⋃

i∈[k]{ai} be the set of

actions chosen by at least one player in a. For any i ∈ [|C∗k−1|], denote Di =
C∗

i ∩A. We say that a cluster Di is crowded if |Di| ≥ 2. Let CR be the union of
all the crowded clusters. Let T denote a spanning tree connecting all the nodes
in C∗k−1 defined on the metric closure of G and consider the ordering of the nodes
in C∗k−1 induced by a depth-first search on T . For a non-crowded cluster Di, let
succ(i) denote j mod |C∗k−1|, where j is the minimum index j > i such that
Dj mod |C∗

k−1| is crowded. We can bound SUM(a) as follows.

SUM(a) ≤
∑

i∈[k]:ai∈CR
2m(C∗k−1) +

∑
i∈[k]:ai /∈CR

(
2m(C∗k−1) + d(fC∗

k−1
(ai), c

∗
succ(i))

)
≤

∑
i∈[k]

2m(C∗k−1) + 2(k − 2)(2m(C∗k−1) + 1)

≤ 8km(C∗k−1),

where the second inequality follows from the fact that, in the worst-case all the
edges in T are visited at most twice, T has exactly k − 2 edges, and the cost
of each edge is at most 2 ·m(C∗k−1) + 1 by Property 2; while the last inequality
follows from the fact that m(C∗k−1) ≥ 1. The thesis then follows by Lemma 1. ��

The following lower bound, approaching 4 as k tends to infinity, holds.

Theorem 7. For any number of players k ≥ 4, there exists an instance Ik =
(Gk, k) with Gk being an unweighted graph, such that SeqPoASUM(Ik) = 4k−3

k .



On the Sequential Price of Anarchy of Isolation Games 25

4 Total-Distance Sequential Isolation Games

Throughout this section, we shall denote by I an instance of total-distance se-
quential isolation game and with D the diameter of G, that is, the maximum
distance between any two nodes.

The following lemma provides an upper bound to the utility realized by each
player i ∈ [k] at any SPE when k > 2.

Lemma 2. For any s ∈ SPE(I) and i ∈ [k], with k > 2, it holds Ui(a(s)) ≥
max

{
(i−1)D

2 ; (k−1)D
8

}
.

Proof. We first prove that, for any i ∈ [k], it holds Ui(a(s)) ≥ (i−1)D
2 . To this

aim, let u, v ∈ V be two nodes such that d(u, v) = D. Consider the choice of
player i and note that, for any j ∈ [i− 1], it holds d(u, aj(s)) + d(aj(s), v) ≥ D
by the definition of distance. Hence, by summing up for all j ∈ [i− 1], it follows∑

j∈[i−1] (d(u, aj(s)) + d(aj(s), v)) ≥ (i−1)D. By a simple averaging argument,

it follows that one of the two choices u, v guarantees a utility of at least (i−1)D/2
to player i.

We now proceed by proving that, for any i ∈ [k], it holds Ui(a(s)) ≥ (k−1)D
8 .

When i ≥ k−1
4 + 1, since Ui(a(s)) ≥ (i−1)D

2 , it follows that Ui(a(s)) ≥
(i−1)D

2 ≥ (k−1)D
8 . Hence, for the sake of contradiction, we can assume that

i < k−1
4 + 1 and Ui(a(s)) < (k−1)D

8 . For any j such that i + 1 ≤ j ≤ k, it
holds Uj(a(s)) ≤ Ui(a(s)) + (k − 2)d(ai(s), aj(s)) which implies Ui(a(s)) ≥
Uj(a(s)) − (k − 2)d(ai(s), aj(s)) ≥ (j−1)D

2 − (k − 2)d(ai(s), aj(s)). Note that,

when d(ai(s), aj(s)) ≤
(j−1)D

2 − (k−1)D
8

k−2 , it follows that Ui(a(s)) ≥ (k−1)D
8 . Hence,

we can further assume that d(ai(s), aj(s)) >
(j−1)D

2 − (k−1)D
8

k−2 for any j such that
i+ 1 ≤ j ≤ k. As a consequence, we obtain that

Ui(a(s)) >
D

k − 2

k∑
j= k−1

4 +1

(
j − 1

2
− k − 1

8

)

=
D

4(k − 2)

(⌊
3k + 1

4

⌋2

+

⌊
3k + 1

4

⌋)
.

In order to conclude the proof, we need to show that
D

4(k−2)

(⌊
3k+1

4

⌋2
+
⌊
3k+1

4

⌋)
≥ (k−1)D

8 . For the cases of k = 3, 4, this can be eas-

ily checked by inspection. In order to show it for the remaining values of k, note

that D
4(k−2)

(⌊
3k+1

4

⌋2
+
⌊
3k+1

4

⌋)
> D

4(k−2)

((
3k+1

4 − 1
)2

+ 3k+1
4 − 1

)
≥ (k−1)D

8

for any k ≥ 5. ��

By exploiting the above lemma, we can obtain the following upper bounds on the
SeqPoA of total-distance sequential isolation games under both social functions
MIN and SUM.



26 A. Angelucci et al.

Theorem 8. For any instance I with k > 2, it holds SeqPoAMIN(I) ≤ 8.

Proof. For an instance I, it clearly holds that MIN(oMIN(I)) ≤ (k − 1)D. Thus,
the claim immediately follows from Lemma 2. ��

Theorem 9. For any instance I, it holds SeqPoASUM(I) ≤ 64
17 ≈ 3.765.

Proof. Let s be an SPE for game I. By Lemma 2, it follows that

SUM(a(s)) =
∑
i∈[k]

Ui(a(s))

=

� k−1
4 �∑

i=1

Ui(a(s)) +

k∑
i=� k−1

4 �+1

Ui(a(s))

≥
� k−1

4 �∑
i=1

(k − 1)D

8
+

k∑
i=� k−1

4 �+1

(i − 1)D

2

=

⌈
k − 1

4

⌉
(k − 1)D

8
+

k(k − 1)D

4
−
⌈
k − 1

4

⌉(⌈
k − 1

4

⌉
− 1

)
D

4

=
D

4

(
k(k − 1)−

⌈
k − 1

4

⌉2
+

⌈
k − 1

4

⌉
k + 1

2

)

=
D

4

(
k(k − 1) +

⌈
k − 1

4

⌉(
k + 1

2
−
⌈
k − 1

4

⌉))
>

D

4

(
k(k − 1) +

k − 1

4

(
k + 1

2
− k + 2

4

))
=

17k(k − 1)D

64
.

Since it clearly holds that SUM(oSUM(I)) ≤ k(k − 1)D, the claim follows. ��

The following lower bounds hold for any number of players k ≥ 3.

Theorem 10. For any number of players k ≥ 3, there exists an instance Ik =

(Gk, k) such that SeqPoAMIN(Ik) =
k−1
k−2 and SeqPoASUM(Ik) =

k(k−1)
(k+1)(k−2) .

Unfortunately, the quality of the derived lower bounds decreases when the num-
ber of players increases, as they tend to 1 when k goes to infinity. This behav-
ior, in some sense, meets the perception that, when there is an arbitrarily high
number of players in the game, it is unlikely that, when applying a farsighted
rationality, they will not end up in an action profile in which all but a negligible
part of them are distanced themselves for as much as possible. Hence, disprov-
ing this belief by designing constant lower bounds for any number of players or
determining better upper bounds tending to 1 as the number of players goes to
infinity remains a major open problem.

For the leftover case of k = 2, we can show the following result.



On the Sequential Price of Anarchy of Isolation Games 27

Theorem 11. For any instance I = (G,2), it holds SeqPoAMIN(I) =
SeqPoASUM(I) = 1.

5 Conclusions

We have studied the performance of Subgame Perfect Equilibria in the context of
sequential isolation games. More precisely, we have focused on two classes of se-
quential isolation games, namely nearest-neighbor and total-distance sequential
isolation games, and we have bounded their Sequential Price of Anarchy under
both the minimum utility social function and the sum of the players’ utilities
social function.

Several questions are still open. Besides tightening the upper and lower bounds
on the Sequential Price of Anarchy, it would be nice to investigate other more
general classes of sequential isolation games, in which for instance the utility
of players is defined as follows: For any player i, each strategy profile S yields
a vector f i(S) ∈ IRk−1

≥0 such that the j-th component of f i(S) is the distance
between the location chosen by player i and the one chosen by her j-th nearest
player; the utility of player i can thus be defined as any convex combination of
the elements of f i(S).

Our results are quite interesting and difficult to be interpreted, as they show
that a farsighted behavior, at least in the worst case, does not improve the
performance of the obtained equilibria with respect to a myopic classical Nash
dynamics (see Table 2 for a comparison with the upper bounds on the “classical”
Price of Anarchy obtained in [4]). This suggests the adoption and investigation of
reasonable variants of SPE exhibiting better performances and removing some
excessively strong assumptions that can limit their applicability, like the fact
that every player has full information of the actions selected by every other
players in each possible state of the game. To this respect, considering SPE in
the framework of [2], in which graphical games (i.e., games in which each player
is only aware of the existence of the players she is connected to in a given social
knowledge graph) are analyzed, constitutes an interesting research direction.

Table 2. Upper bounds on the Price of Anarchy of isolation games, with k being the
number of players [4]

Social Function Nearest-Neighbor Total-Distance

MIN 2 2 k+1
k−1

SUM ∞ 2

References

1. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-Optimal Network De-
sign with Selfish Agents. In: Proceedings of the 35th Annual ACM Symposium on
Theory of Computing (STOC), pp. 511–520. ACM Press (2003)



28 A. Angelucci et al.

2. Bilò, V., Fanelli, A., Flammini, M., Moscardelli, L.: When Ignorance Helps:
Graphical Multicast Cost Sharing Games. Theoretical Compututer Science 411(3),
660–671 (2010)

3. Bilò, V., Flammini, M.: Extending the Notion of Rationality of Selfish Agents:
Second Order Nash Equilibria. Theoretical Computer Science 412(22), 2296–2311
(2011)

4. Bilò, V., Flammini, M., Monaco, G., Moscardelli, L.: On the Performances of Nash
Equilibria in Isolation Games. Journal of Combinatorial Optimization 22, 378–397
(2011)

5. Bilò, V., Flammini, M., Monaco, G., Moscardelli, L.: Some Anomalies of Farsighted
Strategic Behavior. In: Proceedings of the 10th Workshop on Approximation and
Online Algorithms (WAOA), Ljubljana, Slovenia, September 13-14 (2012)

6. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The One-Round Voronoi Game.
Discrete and Computational Geometry 31, 125–138 (2004)

7. Dürr, C., Thang, N.K.: Nash Equilibria in Voronoi Games on Graphs. In: Arge, L.,
Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer,
Heidelberg (2007)

8. Eiselt, H.A., Laporte, G., Thisse, J.F.: Competitive Location Models: A Framework
and Bibliography. Transportation Science 27(1), 44–54 (1993)

9. Hotelling, H.: Stability in Competition. Computational Geometry: Theory and
Applications 39(153), 41–57 (1929)

10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing
Surveys 31(3) (1999)

11. Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

12. Paes Leme, R., Syrgkanis, V., Tardos, É.: The Curse of Simultaneity. In: Pro-
ceedings of Innovations in Theoretical Computer Science (ITCS), pp. 60–67. ACM
Press (2012)

13. Paes Leme, R., Syrgkanis, V., Tardos, É.: Sequential Auctions and Externalities.
In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 869–886. SIAM (2012)

14. Mavronicolas, M., Monien, B., Papadopoulou, V.G., Schoppmann, F.: Voronoi
Games on Cycle Graphs. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008.
LNCS, vol. 5162, pp. 503–514. Springer, Heidelberg (2008)

15. Nash, J.: Non-Cooperative Games. Annals of Mathematics 54(2), 286–295 (1951)
16. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.: Algorithmic Game Theory.

Cambridge University Press, Cambridge (2007)
17. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
18. Teng, S.H.: Low Energy and Mutually Distant Sampling. Journal of Algo-

rithms 30(1), 42–67 (1999)
19. Zhao, Y., Chen, W., Teng, S.-H.: The Isolation Game: A Game of Distances. In:

Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369,
pp. 148–158. Springer, Heidelberg (2008)



Social Exchange Networks with Distant Bargaining�

Konstantinos Georgiou1, George Karakostas2, Jochen Könemann1,
and Zuzanna Stamirowska3

1 Department of Combinatorics & Optimization, University of Waterloo
{k2georgiou,jochen}@math.uwaterloo.ca

2 Department of Computing & Software, McMaster University
karakos@mcmaster.ca

3 École Polytechnique, Paris, France
zuzanna.stamirowska@sciences-po.org

Abstract. Network bargaining is a natural extension of the classical, 2-player
Nash bargaining solution to the network setting. Here one is given an exchange
network G connecting a set of players V in which edges correspond to potential
contracts between their endpoints. In the standard model, a player may engage
in at most one contract, and feasible outcomes therefore correspond to match-
ings in the underlying graph. Kleinberg and Tardos [STOC’08] recently proposed
this model, and introduced the concepts of stability and balance for feasible out-
comes. The authors characterized the class of instances that admit such solutions,
and presented a polynomial-time algorithm to compute them.

In this paper, we generalize the work of Kleinberg and Tardos by allowing
agents to engage into more complex contracts that span more than two agents.
We provide suitable generalizations of the above stability and balance notions,
and show that many of the previously known results for the matching case extend
to our new setting. In particular, we can show that a given instance admits a sta-
ble outcome only if it also admits a balanced one. Like Bateni et al. [ICALP’10]
we exploit connections to cooperative games. We fully characterize the core of
these games, and show that checking its non-emptiness is NP-complete. On the
other hand, we provide efficient algorithms to compute core elements for sev-
eral special cases of the problem, making use of compact linear programming
formulations.

1 Introduction

The study of bargaining has been a central theme in economics and sociology, since
it constitutes a basic activity in any human society. The most basic bargaining model
is that of two agents A and B that negotiate how to divide a good of a certain value
(say, 1) amongst themselves, while at the same time each has an outside option of value
α and β respectively. The famous Nash bargaining solution [12] postulates that in an
equitable outcome, each player should receive her outside option, and that the surplus
s = 1− α− β is to be split evenly between A and B.

� This work was initiated in the International Problem Solving Workshop, held in July 16-20,
2012. and organized as part of the MITACS International Focus Period “Advances in Network
Analysis and its Applications”. We would like to thank MITACS for this great opportunity.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 29–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



30 K. Georgiou et al.

More recently, Kleinberg and Tardos [10] proposed the following natural network
extension of this game. Here, the set of players corresponds to the vertices of an undi-
rected graph G = (V,E); each edge ij ∈ E represents a potential contract between
players i and j of value wij ≥ 0. In Kleinberg and Tardos’ model, players are restricted
to form contracts with at most one of their neighbours. Outcomes of the network bar-
gaining game are therefore given by a matching M ⊆ E, and an allocation x ∈ �

V
+

such that xi +xj = wij for all ij ∈M , and xi = 0 if i is not incident to an edge of M .
Unlike in the non-network bargaining game, the outside option αi of player is

not a given parameter but rather implicitly determined by the network neighbour-
hood of i. Specifically, in an outcome (M,x), player i’s outside option is defined as
αi = max{wij − xj : ij ∈ δ(i) \M}, where δ(i) is the set of edges incident to i.
An outcome (M,x) is then called stable if xi + xj ≥ wij for all edges ij ∈ E, and it
is balanced if in addition, the value of the edges in M is split according to Nash’s bar-
gaining solution; i.e., for an edge ij, xi − αi = xj − αj . Kleinberg and Tardos provide
a characterization of the class of graphs that admit balanced outcomes, and present a
combinatorial algorithm that computes one if it exists.

Bateni et al. [1] recently exhibited a close link between the study of network bar-
gaining and that of matching games in cooperative game theory. The authors showed
that stable outcomes for an instance of network bargaining correspond to allocations in
the core of the underlying matching game. Moreover, balanced outcomes correspond to
prekernel allocations. As a corollary, this implies that an algorithm by Faigle et al. [7]
gives an alternate method to obtain balanced outcomes in a network bargaining game.
Bateni et al. also extended the work of [10] to bipartite graphs in which the agents of
one side are allowed to engage in more than one contract.

Matching games have indeed been studied extensively in the game theory commu-
nity since the early 70s, when Shapley and Shubik investigated the core of the class of
bipartite matching games, so called assignment games, in their seminal paper [14]. Gra-
not and Granot [8] also study the core of the assignment game; the authors show that it
contains many points, some of which may not be desirable ways to share revenue. The
authors propose to focus on the intersection of core and prekernel instead, and provide
sufficient and necessary conditions for the former to be contained in the latter. Deng et
al. [5] generalized the work of Shapley and Shubik to matchings in general graphs as
well as to cooperative games of many other combinatorial optimization problems. We
refer the reader also to the recent survey paper [4] and the excellent textbook [2].

In this paper we further generalize the work of [10] and [1] on network bargaining by
allowing contracts to span more than two agents. Our study is motivated by bargaining
settings where goods are complex composites of other goods that are under the control
of autonomous agents. For example, in a computer network setting, two hosts A and
B may wish to establish a connection between themselves. Any such connection may
involve physical links from a number of smaller autonomous networks that are provi-
sioned by individual players. In this setting, value generated by the connection between
A and B cannot merely be shared by the two hosts, but must also be used to compensate
those facilitators whose networks the connection uses.



Social Exchange Networks with Distant Bargaining 31

1.1 Generalized Network Bargaining

We formalize the above ideas by defining the class of generalized network bargaining
(GNB) games. In an instance of such a game, we are given a (directed or undirected)
graph G = (V,E) whose vertices correspond to players, and edges that correspond to
atomic goods; the value of the good corresponding to e is given by we ≥ 0. We assume
that V is partitioned into terminals T , and facilitators R. Intuitively, the terminals are
the active players that seek participation in contracts, while facilitators are passive, and
may get involved in contracts, but do not seek involvement. We further let C be a family
of contracts each of whom consists of a collection of atomic goods. We let w(c) be the
value of contract c which we simply define as the sum of values we of the edges e ∈ c.
We note here that in the work of [10] and [1], C consists just of the singleton edges.

A set C ⊆ C of contracts is called feasible if each two contracts in C are vertex
disjoint. An outcome of an instance of GNB is given by a feasible collection C ⊆ C
as well as an allocation x ∈ �V

+ of the contract values to the players such that x(c) :=∑
v∈c xv = w(c).
Which outcomes are desirable? We propose the following natural extensions of the

notions of stability and balance of [10]. Consider an outcome (C, x) of some instance
of GNB. Then define the outside option αi of player i as αi := maxc∈C:i∈c �∈C{w(c)−
x(c)} + xi. Intuitively, the outside option of i is given by the value she can earn by
breaking her current contract, and participating in a contract that is not part of the
current outcome. We will assume that each agent i is incident to a self-loop of value
0, and hence has the option of not collaborating with anyone else. In what follows
a(c) :=

∑
v∈c av for a contract c ∈ C.

Having defined αi, we can now introduce the notions of stability and balance. An
outcome (C, x) is stable if xi ≥ αi for all agents i: every agent earns at least her
outside option. Again extending the concept of Nash bargaining solution in the most
natural way, we say that an outcome is balanced if the surplus of each contract is shared
evenly among the participating agents. Formally, for all c ∈ C, and for all i ∈ c we
require xi = αi +

w(c)−α(c)
|c| . Equivalently, this means that xi − αi = xj − αj for all

i, j ∈ c, and for all c ∈ C.

1.2 Our Results

Following Kleinberg and Tardos, we are interested in (a) characterizing the class of
GNB instances that have stable and balanced outcomes, and (b) in computing such out-
comes efficiently whenever they exist. Similar to [1], we first identify a natural coop-
erative game Γ (I) associated with a given GNB instance I . Γ (I) has player set V and
the value function is defined by letting v(S) = maxC⊆C(S), C feasible

∑
c∈C w(c),

for all S ⊆ V , where C(S) is the set of contracts contained in the set S. We briefly
introduce a few pertinent solution concepts for cooperative games, and refer the reader
to [2] for a comprehensive introduction to the topic. The core C of Γ (I) consists of all
allocations x ∈ �V

+ that satisfy x(S) ≥ v(S) for all S ⊆ V , and this inequality is tight
for S = V . The power of agent i over agent j is given by

sij(x) = max
S⊆V : i∈S,j �∈S

v(S)− x(S), (1)



32 K. Georgiou et al.

and the prekernel P consists of all allocations x for which sij = sji for all agents i and
j. In the following first result, let stable be the projection of the collection of all stable
outcomes (C, x) onto the x-space. Similarly, balance is the projection of all balanced
outcomes onto the x-space.

Theorem 1. Let I be an instance of GNB, and Γ (I) the corresponding cooperative
game. Then C = stable, and C ∩ P ⊆ stable ∩ balance. There are instances of GNB
where this inclusion is strict.

It is well known (e.g., see [7]) that if the core of Γ (I) is non-empty then so is the
intersection of core and prekernel. We therefore obtain the following corollary.

Corollary 1. Every GNB instance with a stable solution also admits a balanced one.

But can one find stable and balanced solutions efficiently? As it turns out (see below) not
always. However, given a point in the core, and an efficient oracle for the computation
of powers (as specified in (1)), we can find a point in the prekernel of Γ (I) via a result
by Faigle, Kern and Kuipers [7] (see also [11]). We obtain the following corollary.

Corollary 2. There is a polynomial-time algorithm to compute stable and balanced
solutions for an instance of GNB if (a) we have a polynomial-time method to compute
a point in the core, and (b) (1) can be computed efficiently.

Unfortunately, computing sij in (1) may amount to solving an NP-hard problem; e.g.,
when C consists of all paths in the given graph, one easily sees that a poly-time oracle
for computing powers would enable us to solve the NP-hard longest path problem.
Nevertheless, there are many families of instances of interest where the conditions of
Corollary 1 are satisfied, e.g. instances where C is explicitly given as part of the input,
or whenever the family C induces an acyclic subgraph of the input graph.

In light of Corollary 1, in order to characterize instances of GNB that have stable
and balanced solutions, we may characterize the set of instances I for which Γ (I) has
a non-empty core. We can show the following.

Theorem 2. For a given GNB instance I , we can write a linear program (P1) that has
an integral optimal solution iff the core of Γ (I) is non-empty.

Hence (P1) fully characterizes the class of GNB instances that admit stable and balanced
solutions. We may, however, not be able to solve the LP.

Theorem 3. Given an instance I of GNB, it is NP-complete to (a) check whether the
core of Γ (I) is non-empty, and (b) check whether a specific allocation x ∈ �n

+ is in the
core.

In this theorem, we assume that C is part of the input. We can show (a) by using a
reduction from exact-cover by 3-sets following a previous result by Conitzer and Sand-
holm [3] closely. Part (b) employs a reduction from 3-dimensional matching, and is
similar to a result for minimum-cost spanning tree games by Faigle et al. [6].

We note here that the results in Theorems 1, 2 and 3 do not rely on the specific
type of underlying graph (i.e., directed or undirected). Departing from this, our next



Social Exchange Networks with Distant Bargaining 33

result focuses on GNB instances whose contract set is implicitly given as the set of
all terminal-terminal paths in a directed graph. For such instances I , we present effi-
ciently solvable linear programs (P2) and (P3) that are integral only if the core of Γ (I)
is non-empty.

Theorem 4. Given an instance I of GNB where C is the set of all terminal-terminal
paths in an underlying directed graph, we can find efficiently solvable LPs (P2) and
(P3) that are integral only if the core of Γ (I) is non-empty.

Unfortunately, the latter two LPs do not fully characterize core non-emptiness of Γ (I),
and there are instances with non-empty core for which the two LPs are fractional. The
two LPs are not equivalent, and there are instance of GNB where one of the two LPs is
fractional and the other is not.

2 Computing Balanced Outcomes

The goal of this section is to provide a proof of Theorem 1. Let us fix an instance I of
GNB with graph G = (V,E), and weights we for all e ∈ E. Recall that the cooperative
game Γ (I) for I has player set V , and that the value v(S) of a coalition S ⊆ V is given
by the maximum value of any feasible collection of contracts that are entirely contained
in S. We first make the following observation.

Observation 5. Computing v(V ) for Distant Bargaining Games G=(V,E), for which
the set of feasible contracts is part of the input, is NP-hard.

Proof. The reduction is from 3-dimensional matching (3DM) where all three vertex
sets have the same size. Given an instance H = (L ∪ M ∪ R,F ) of this problem
(where F contains hyperedges, each containing exactly one vertex from each L,M,R),
we consider the following Distant Bargaining instance. The set of terminals is L ∪ R,
and the set of facilitators is M . For every hyperedge, we introduce two new edges
connecting each of the two terminals to the facilitator, each of weight 1/2, as well as
we introduce the associated contract (of weight 1) containing exactly these two edges;
we still allow only the “hyperedge contracts” to be formed by the new edges, and no
other combinations. Finally, it is easy to see that H = (L ∪M ∪ R,F ) admits a 3d-
matching if and only if v(L ∪M ∪R) = |L|.

We will now relate the core of Γ (I) and the set of stable outcomes of I . In order to do
this, we need the following lemma, and leave its straight-forward proof to the reader.

Lemma 1. Let x be an allocation in the core. Then there is a feasible collection C ⊆ C
of maximum value such that

∑
i xi =

∑
c∈C w(c).

The following lemma, whose proof can be found in the full paper shows that core and
set of stable allocations coincide.

Lemma 2. C = stable

We now show that solutions in the prekernel P are balanced.



34 K. Georgiou et al.

Lemma 3. C ∩ P ⊆ stable ∩ balance

Proof. Let x ∈ C ∩ P. By Lemma 2 we know that x ∈ stable. Hence it remains to
argue that x is also balanced. We first argue that for all agents i, j, whenever x ∈ C,
there must be a contract c containing i and not j such that sij = v(c) − x(c). Indeed,
suppose that sij = v(S) − x(S), for some S ⊆ V for which i ∈ S �� j. Then let
c1, . . . , ct ∈ C(S) be a feasible collection of contracts whose joint value equals v(S).
Without loss of generality, suppose that i ∈ c1. Then for every contract cr, x ∈ C
implies that w(cr)− x(cr) ≤ 0, and hence, as claimed,

v(S)− x(S) =
t∑

r=1

(w(cr)− x(cr)) ≤ w(c1)− x(c1).

Since x ∈ P we know that sij(x) = sji(x), for all i, j ∈ V . From Lemma 1 we also
know that x corresponds to some maximum value set of feasible contracts, say, C. Fix a
contract c ∈ C and two agents i, j ∈ C. In what follows we argue that αi−xi = αj−xj ,
which directly implies that x ∈ balance.

For the sake of simplicity, we denote argmaxαi and argmax sij(x) by ci and qij
respectively. Then we note that if i �∈ cj then qji = cj and hence sji(x) = αj − xj .
Also, if i ∈ cj , then αj − xj ≥ sji(x), since the set cj is not considered when we
maximize over subsets in order to find sij(x).

With these observations at hand, we can now examine three cases. First, suppose that
i �∈ cj and j �∈ ci. Then sij(x) = sji(x) implies that αi − xi = αj − xj . In the second
case, if i ∈ cj and j ∈ ci, then ci = cj , so again αi − xi = αj − xj . Finally, in the
third case we assume that i �∈ cj (and therefore qji = cj , that is sji(x) = αj − xj)
and that j ∈ ci (and so, αi − xi ≥ sij(x)). It follows that if sij(x) = sji(x), then
αi − xi ≥ αj − xj . Also, since j ∈ ci we conclude that αj − xj ≥ αi − xi. Overall,
this implies again that αj − xj = αi − xi, as we wanted.

Figure 1 shows an instance of GNB with terminals {u, v, w, z} and contracts C =
{uv, vw,wz, uz, uxv}. Consider feasible contracts C = {uv, wz} of total value 3. The
allocation χu = χv = 1, χw = χz = 1/2, and χx = 0 is easily checked to be stable
and balanced. However, since suv = 0−(1/2+1) = −3/2, and svu = 1−(1/2+1) =
−1/2, χ is not in the prekernel. Together with Lemmata 2 and 3 we obtain a proof of
Theorem 1.

u

z w

v
x

1

1 1
1

2

Fig. 1. Counter-example for the reverse inclusion in Lemma 3



Social Exchange Networks with Distant Bargaining 35

3 Characterizing the Core

As we have seen in Lemma 2, the set of stable allocations for a GNB instance I equals
the core of the cooperative game Γ (I). In this section, our goal will be to characterize
instances I where Γ (I) has a non-empty core. Further, if the core of Γ (I) is non-empty
then we will investigate the computational complexity of finding such a point.

3.1 The Core via Linear Programming

We start this section by presenting a linear programming formulation that is integral iff
the core of Γ (I) is non-empty. The LP has a variable zc for each contract c ∈ C, and
maximizes the total value of chosen contracts subject to feasibility. The LP is shown on
the left below.

max
∑
c∈C

w(c) zc (P1)

s.t.
∑
c:i∈c

zc ≤ 1, ∀i ∈ V

z ≥ �

min
∑
i∈V

yi (D1)

s.t.
∑
i∈c

yi ≥ w(c), ∀c ∈ C

y ≥ �.

The LP on the right is the linear programming dual of (P1). It has a variable yi for each
agent i ∈ V , and a constraint for every c ∈ C. We will now present a proof of Theorem
2, and show that the core of Γ (I) is non-empty iff (P1) has an integral optimal solution.

Proof (Proof of Theorem 2). Recall that by Lemma 2, the core of Γ (I) equals the set
stable of stable allocations in I . Also recall that an outcome (C, x) is stable iff for all
c′ �∈ C, x(c′) ≥ w(c′) and w(c) = x(c) for all c ∈ C.

Now suppose that (P1) has an integral optimal solution z, and let y be the correspond-
ing optimal dual solution. Clearly, � ≤ z ≤ �, and hence we may define the set C ⊆ C
of contracts c with zc = 1. We now claim that (C, y) is a stable outcome. Indeed, all sta-
bility conditions are provided by the dual constraints, and by complementary slackness,
they are tight when zc > 0.

For the other direction, consider a stable outcome (C, x). It is easy to see that zP = 1
for P ∈ C and 0 otherwise, and y = x are primal and dual feasible solutions respec-
tively. Complementary slackness is implied exactly by the definition of outcomes that
require that the sum of agent earnings in each contract matches the contract surplus.

We do not know how to solve (P1) efficiently. Worse than that, even if we are able to
solve the LP, we may not be able to decide whether there is an integral optimal solution.
The proof of the following result is implicit in [3], and given here for completeness.

Lemma 4. Given an instance I of GNB it is NP-complete to decide whether the core
of Γ (I) is non-empty.

Proof. We first show that the problem is in NP. For this, we non-deterministically guess
a feasible collection C ⊆ C of contracts. We then solve the linear system

x(c) = w(c) ∀c ∈ C (2)



36 K. Georgiou et al.

x(c) ≥ w(c) ∀c ∈ C \ C. (3)

in order to find x ∈ �V
+ . This can be done in polynomial time (e.g., via linear program-

ming) as C is part of the input. It is easy to check that the system has a feasible solution
if x is in the core.

To show hardness, we reduce from an instance of exact cover by 3-sets (X3C), where
we are given a ground-set S of size 3m and subsets {S1, . . . , Sq} of S each of which
has size 3. The question is whether there are m pairs whose union is S.

Here is how we encode this problem as an instance of GNB. We create a graph
G with vertex set S ∪ {x, y}, where x and y are two new dummy vertices. For each
Si = {a, b, c} in the X3C instance, we add distinct edges ab and bc each of cost 3/2
(middle vertex is chosen, say, lexicographically), and we add abc to the list of allowed
contracts C. We also add trees Tx and Ty spanning S ∪ {x}, and S ∪ {y}, respectively.
Once again, the edge sets of Tx and Ty are disjoint, and distinct from the other edges
added previously. We distribute weight 6m over the edges of Tx, and similarly over the
edges of Ty in some arbitrary way, and add E(Tx) and E(Ty) to the set of allowed
contracts. Finally we add xy to the graph and contract set, and assign a weight of 6m to
this edge. We claim that the core of the game Γ (I) of the above instance is non-empty
iff the given X3C instance is a ’yes’ instance.

Assume first that S1, . . . , Sm is an exact 3-cover. In this case, note that the corre-
sponding contracts together with xy are feasible, and have joint value 9m. One can
now verify that χ with χi = 1, for all i ∈ S, and χx = χy = 3m is in the core.

Conversely, if no exact 3-cover exists, then the value v(S) is less than 3m, and the
value of the grand coalition is less than 9m. Consider any vector χ ∈ �

S∪{x,y}
+ such

that χ(V ) = v(V ) < 9m. It is not difficult to see that there are two distinct sets
U,W ∈ {S, {x}, {y}}, such that χ(U) + χ(W ) < 6m. But U ∪W is a coalition of
value 6m by our definition, and χ is therefore not in the core.

So, even if (P1) can be solved efficiently, we may not be able to check efficiently for an
integral optimal solution. We now show that it is also hard to check whether a certain
allocation is in the core, which in combination with Lemma 4 conclude Theorem 3.

Lemma 5. It is NP-complete to check whether an allocation x ∈ �
V
+ is in the core of

the cooperative game of a GNB instance I .

Proof. The problem is certainly contained in NP. To see this, we first non-
deterministically guess a feasible collection C ⊆ C and then check that (2) and (3)
hold.

To prove hardness, we once again reduce from the 3-dimensional matching problem.
Given an instance of 3DM, we create an instance of GNB by creating a graph with
terminal vertices L∪M ∪R. For each (l,m, r) ∈ F , we add edges lm and mr of value
1/2 each, and add contract {lm,mr} to the set C of allowed contracts.

Consider the vector χ with χv = 1 if v ∈ M , and χv = 0 otherwise. We claim that
χ is in the core iff the given 3DM instance is a ’yes’ instance.

If the given 3DM instance is a ’no’ instance, then v(V ) < |M | = χ(V ), and hence
χ is not in the core. Conversely suppose that the 3DM instance is a ’yes’ instance. In
this case, χ(V ) = |M | = v(V ), and clearly χ(c) = 1 = w(c) for every contract c ∈ C.



Social Exchange Networks with Distant Bargaining 37

3.2 Implicitly Given Contracts

In this section, we focus on GNB instances where C is implicitly given as the set of all
terminal-terminal paths in an underlying directed graph D with node-set V , and arcs
A. The internal nodes of each of these paths are assumed to be facilitators. Thus, C is
not part of the input, and LP (P1) may have an exponential number of variables. We do
not know how to efficiently solve this LP in this case. In the following, we present two
LPs for a given instance of GNB that (a) have integral optimal solutions only if the core
of Γ (I) is non-empty, and (b) are poly-time solvable.

In the following, let us fix an instance I of GNB with graph D = (V,A), and weights
wuv for all arcs (u, v) ∈ A. The two LPs to be presented are flow formulations.

Cycle-Free Flow Formulation. Observe that a set C of arcs in D corresponds to a
feasible set of contracts iff (a) every terminal agent has at most one incident arc, (b)
every facilitator agent has at most one outgoing arc, (c) every facilitator has equally
many incoming and outgoing arcs, and (d) for every set of facilitators S, there is at least
one outgoing arc in C if there is an arc in C that has both endpoints in S. Therefore, the
following LP is a relaxation for computing the value of the grand coalition (recall that
contracts are all terminal-terminal paths). For a set S of nodes, we let δ+(S) be the set
of arcs with tail in and head outside S. Furthermore, we let γ(S) be the set of arcs with
both ends in S.

max
∑
a∈A

waxa (P2)

s.t. x
(
δ−(v)

)
+ x

(
δ+(v)

)
≤ 1 ∀v ∈ T

x(δ+(v)) ≤ 1 ∀v ∈ R

x
(
δ−(v)

)
− x

(
δ+(v)

)
= 0 ∀v ∈ R

x
(
δ+(S)

)
≥ xa ∀S ⊆ R, ∀a ∈ γ(S) (4)

x ≥ 0

Note that (P2) can be solved in polynomial time via the Ellipsoid method [9]: given
a candidate solution x, it can be efficiently checked whether one of the polynomially
many constraints of one of the first three types is violated. Separating the constraints
of type (4) can be reduced to a polynomial number of minimum-cut computations in
suitable auxiliary graphs. We leave the details to the reader.

Lemma 6. If LP (P2) for GNB instance I has an integral optimal solution, then the
core of Γ (I) is non-empty.

The reader can find a constructive proof of Lemma 6 in the full version of the paper.
Note that Lemma 6 is a direct implication of Theorem 2. The reason is that any solution
feasible to (P1) can be converted to a feasible solution to (P2) (of equal objective value)
as follows; for every uv ∈ A set χuv = 1

2

∑
P∈P: uv∈P zP . It follows that the optimal

value of (P1) is sandwiched between the value of the cooperative game Γ (I), and that



38 K. Georgiou et al.

of (P2). Taking into consideration that (P2) restricted to integral values is an exact for-
mulation of our problem, if (P2) has integrality gap 1, so does (P1). Nevertheless, the
important observation is that unlike (P1), we know how to efficiently solve relaxation
(P2). Furthermore, the proof of Lemma 6 is constructive, and gives rise to an efficient
algorithm to compute a core allocation.

Unfortunately, we will later see that there are example instances of GNB with non-
empty core for which (P2) has no integral optimal solution (see Lemma 8). There are,
however, many natural instance classes of GNB for which we are able to find core
allocations if these exist via our LP. An example is a class of multi-layered graphs
where the nodes are partitioned in k layers L1, . . . , Lk, with (L1 ∪ L2) = T, (L2 ∪
L3 ∪ . . . ∪ Lk−1) = R, and arcs existing only between nodes in consecutive layers
(i.e., if (u, v) ∈ E then u ∈ Li, v ∈ Li+1 for some 1 ≤ i ≤ k − 1). Note that the
only contracts allowed are paths from terminals in L1 to terminals in Lk. Each feasible
solution we get if we relax (P2) by removing constraints (4) can be mapped to a single-
commodity flow on the network we get if we connect all nodes in L1 to a source s and
all nodes in Lk to a sink t (with arcs of weight 0), and we give capacity 1 to all nodes.
Each such flow can also be mapped to a feasible solution of the relaxed (P2). Since the
flow polytope is integral, the optimal solution of the relaxed (P2) is also integral; it also
satisfies constraints (4), and, therefore, it is also an integral optimal solution for (P2).

Subtour Formulation. We now present yet another polynomial-time solvable relax-
ation for GNB. Once again, we will see that the existence of an integral optimal solution
implies non-emptiness of core for Γ (I), and that the reverse of this statement is false.
However, we show in the full version of the paper that (P2) and this new LP are incom-
parable, and one may have integer optimal solution when the other does not.

max
∑
a∈A

waxa (P3)

s.t. x(δ+(v)) + x(δ−(v)) ≤ 1 ∀v ∈ T

x(δ+(v)) ≤ 1 ∀v ∈ R

x(δ−(v))− x(δ+(v)) = 0 ∀v ∈ R

x(γ(S)) ≤ |S| − 1 ∀S ⊆ R

x ≥ �

It can be easily seen that (P3) restricted on integral values models exactly the problem
of computing the value of the grand coalition in the associated coalition game (recall
that contracts are all terminal-terminal paths). Once again it is easily shown that (P3) is
polynomial-time solvable, and once again we utilize the Ellipsoid method. We observe
that the function (|S| − 1)− x(γ(S)) is submodular. Separating the constraints of type
(4) then reduces to submodular function minimization, for which there are polynomial-
time algorithms (e.g., see [13]).

Similarly to the previous section, we show that (P3) can be used as a certificate that
the core is non empty, for some, but not all instances.

Lemma 7. If LP (P3) for GNB instance I has an integral optimal solution, then the
core of Γ (I) is non-empty.



Social Exchange Networks with Distant Bargaining 39

Similarly to (P2), Lemma 7 is a direct consequence of Theorem 2. We provide a con-
structive proof in the full version of the paper which gives rise to an efficient algorithm
for computing core allocations. Finally note that Lemmata 6 and 7 prove Theorem 4.

Lemma 8. There are instances for which the C is non empty, still the integrality gap of
both (P2) and (P3) is bigger than 1.

Proof. Consider terminals t1, t2 and facilitators f1, f2, f3, f4, with edges connecting
them (along with weights) as seen in Figure 2. One of the optimal solutions is the

Fig. 2. The optimal contract Fig. 3. The fractional LP solution

path t1f2, f2f4, f4t2 of value 11. A core assignment would give xt1 = xt2 = 11
2 ,

and 0 to all facilitators. This can be seen to be in the core since contracts are always
paths connecting t1, t2, and none of them has cost more than what both terminals earn
together.

Finally, we argue how to fool both (P2) and (P3). For this we invent three flows;
the path t1f2, f2f4, f4t2, the path t1f1, f1f3, f3t2 and the cycle f1f2, f2f4, f4f3, f3f1
(depicted in Figure 3) all with value 1/2. A claim that can be easily checked is that the
proposed values satisfy both LPs, while the objective value in both cases is 12, which
is strictly bigger than the integral optimal.

4 Conclusion

In this paper, we introduce the class of generalized bargaining games as a natural ex-
tension of network bargaining. We show that many of the known results for network
bargaining extend to the new setting. For example, we show that an instance I of GNB
has a balanced outcome whenever it has a stable one. We define a cooperative game
Γ (I) for every GNB instance I and present an LP (P1) that has an integral optimal
solution iff the core of Γ (I) is non-empty.

Several interesting open questions remain: (1) In the case where the set of contracts
is implicitly given as all terminal-terminal paths in the underlying graph, is it hard to
solve (P1) efficiently? (2) In the same setting, can we give a good characterization of
the class of graphs (possibly via excluded minors) that have stable solutions?



40 K. Georgiou et al.

References

1. Bateni, M., Hajiaghayi, M., Immorlica, N., Mahini, H.: The cooperative game theory
foundations of network bargaining games. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 67–78.
Springer, Heidelberg (2010)

2. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game
Theory. Morgan & Claypool Publishers (2011)

3. Conitzer, V., Sandholm, T.: Complexity of constructing solutions in the core based on syner-
gies among coalitions. Artif. Intell. 170(6-7), 607–619 (2006)

4. Deng, X., Fang, Q.: Algorithmic cooperative game theory. In: Pareto Optimality, Game
Theory and Equilibria. Springer Optimization and Its Applications, vol. 17, pp. 159–185.
Springer (2008)

5. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial opti-
mization games. Math. Oper. Res. 24(3), 751–766 (1999)

6. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: On the complexity of testing membership
in the core of min-cost spanning tree games. Int. J. Game Theory 26(3), 361–366 (1997)

7. Faigle, U., Kern, W., Kuipers, J.: An efficient algorithm for nucleolus and prekernel compu-
tation in some classes of tu-games. Technical Report 1464, U. of Twente (1998)

8. Granot, D., Granot, F.: On some network flow games. Math. Oper. Res. 17(4), 792–841
(1992)

9. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in com-
binatorial optimization. Combinatorica 1, 169–197 (1981)

10. Kleinberg, J.M., Tardos, É.: Balanced outcomes in social exchange networks. In: Proceedings
of the ACM Symposium on Theory of Computing, pp. 295–304 (2008)

11. Meinhardt, H.: An lp approach to compute the pre-kernel for cooperative games. Computers
& OR 33, 535–557 (2006)

12. Nash, J.: The bargaining problem. Econometrica 18, 155–162 (1950)
13. Schrijver, A.: Combinatorial optimization. Springer, New York (2003)
14. Shapley, L.S., Shubik, M.: The assignment game: the core. International Journal of Game

Theory 1(1), 111–130 (1971)



The 1/4-Core of the Uniform Bin Packing Game

Is Nonempty

Walter Kern and Xian Qiu

Department of Applied Mathematics, University of Twente
kern@math.utwente.nl, x.qiu@utwente.nl

Abstract. A cooperative bin packing game is an N-person game, where
the player set N consists of k bins of capacity 1 each and n items of
sizes a1, · · · , an. The value of a coalition of players is defined to be the
maximum total size of items in the coalition that can be packed into
the bins of the coalition. We adopt the taxation model proposed by
Faigle and Kern (1993) [6] and show that the 1/4-core is nonempty for
all instances of the bin packing game. This strengthens the main result
in [3].

1 Intorduction

Since many years, logistics and supply chain management are playing an impor-
tant role in both industry and our daily life. In view of the big profit generated
in this area, the question therefore arises how to “fairly” allocate profits among
the “players” that are involved. Take online shopping as an example: Goods are
delivered by means of carriers. Generally, shipping costs are proportional to the
weight or volume of the goods, and the total cost is basically determined by the
competitors. But there might be more subtle ways to compute “fair” shipping
cost (and allocation between senders and receivers). It is natural to study such
allocation problems in the framework of cooperative games. As a first step in this
direction we analyze a simplified model with uniform packet sizes as described
in more detail in section 2.

A cooperative game is defined by a tuple 〈N, v〉, where N is a set of players
and v : 2N → R is a value function satisfying v(∅) = 0. A subset S ⊆ N is called
a coalition and N is called the grand coalition. The usual goal in cooperative
games is to “ fairly” allocate the total gain v(N) of the grand coalition N among
the individual players. A well known concept is the core of a cooperative game,
defined by all allocation vectors x ∈ RN satisfying

(i) x(N) = v(N),
(ii) x(S) ≥ v(S) for all S ⊆ N .

As usual, we abbreviate x(S) =
∑

i∈S xi.
We say a cooperative game is balanced if there exists a core allocation for any

instance. Unfortunately, many games are not balanced. Players in a non-balanced
game may not cooperate because no matter how the total gain is distributed,

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 41–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



42 W. Kern and X. Qiu

there will always be some coalition S with x(S) < v(S), i.e., it gets paid less
than it could earn on its own. For this case, one naturally seeks to relax the
condition (ii) above in such a way that the modified core becomes nonempty.
Faigle and Kern [6] introduced the multiplicative ε-core as follows. Given ε > 0,
the ε-core consists of all vectors x ∈ RN satisfying condition (i) above together
with

(ii’) x(S) ≥ (1 − ε)v(S) for all subsets S ⊆ N .

We can interpret ε as a tax rate in the sense that coalition S is allowed to
keep only (1 − ε)v(S) on its own. Thus, the ε-core provides an ε-approximation
to balancedness. If the value function v is nonnegative, the 1-core is obviously
nonempty. In order to approximate the core as close as possible, one would
like to have the taxation rate ε as small as possible while keeping the ε-core
nonempty. Discussions of the ε-core allocation for other cooperative games, say,
facility location games, TSP games etc. can be found in [10],[11],[8],[5].

As motivated at the beginning of this paper, we study a specific game of the
following kind: There are two disjoint sets of players, say, A and B. Each player
i ∈ A possesses an item of value/size ai, for i = 1, · · · , n, and each player j ∈ B
possesses a truck /bin of capacity 1. The items produce a profit proportional to
their size ai if they are brought to the market place. The value v(N) of the grand
coalition thus represents the maximum profit achievable. How should v(N) be
allocated to the owners of the items and the owners of the trucks?

Bin packing games were first investigated by Faigle and Kern [6]. In their pa-
per, they considered the non-uniform bin packing game (i.e., bin capacities are
distinct) and showed that the 1/2-core is nonempty if any item can be packed to
any bin. Later, researchers focused on the uniform case, where all bins have the
same capacity. Woeginger [17] showed that the 1/3-core is always nonempty. Re-
cently, Kern andQiu [13] improved this result to 1/3−1/108.Eventually, however,
it turned out that the standard (unmodified) version of the set packing heuristic,
combined with the matching arguments already used in [7] and yet another heuris-
tic based on replacing complete bins as described in detail in section 3 led to the
improvement εN ≥ 1/4. As v′(N) ≥ v(N), this amounts to a strengthening of the
main result in [3], hopefully also providing additional insight.

Other previous results on bin packing games can be summarized as follows. In
[7], Faigle and Kern show that the integrality gap, defined by the difference of the
optimum fractional packing value and the optimum integral packing value (cf.
section 2) is bounded by 1/4, if all item sizes are strictly larger than 1/3, thereby
implying that the 1/7-core is nonempty in that case (which was independently
shown by Kuipers [15]). Moreover, in the general case, given a fixed ε ∈ (0, 1),
they prove that the ε-core is always non-empty if the number of bins is sufficiently
large (k ≥ O(ε−5)). Liu [16] gives complexity results on testing emptiness of the
core and core membership for bin packing games, stating that both problems
are NP-complete. Also, Kern and Qiu [14] studied the non-uniform bin packing
game and showed that the 1/2-core is nonempty for any instance. Moreover, the
problem of approximating the maximum packing value v(N) is also studied in
literature (called “multiple subset sum problem”): PTAS and 3/4 approximation



The 1/4-Core of the Uniform Bin Packing Game Is Nonempty 43

algorithms are proposed in [2] and [3]. Other variants of the bin packing game
can also be found in [1], [18], [4], [9] etc..

The rest of the paper is organized as follows. In section 2, we give a formal
definition of bin packing games and introduce fractional packings. In section 3,
we prove that the 1/4-core is always nonempty. Finally, in section 4, we remark
on some open problems.

2 Preliminaries

A bin packing game N is defined by a set A of n items 1, 2, · · · , n of sizes
a1, a2, · · · , an, and a set B of k bins, of capacity 1 each, where we assume,
w.l.o.g., 0 ≤ ai ≤ 1.

A feasible packing of an item set A′ ⊆ A into a set of bins B′ ⊆ B is an
assignment of some (or all) elements in A′ to the bins in B′ such that the total
size of items assigned to any bin does not exceed its capacity. Items that are
assigned to a bin are called packed and items that are not assigned are called
not packed. The value or size of a feasible packing is the total size of packed
items.

The player set N consists of all items and all bins. The value v(S) of a coalition
S ⊆ N , where S = AS ∪ BS with AS ⊆ A and BS ⊆ B, is the maximum value
of all feasible packings of AS into BS . A corresponding feasible packing is called
an optimum packing.

Let F be an item set, and denote by aF =
∑

i∈F ai the value of F . F is called
a feasible set if aF ≤ 1. Denote by F the set of all feasible sets, w.r.t. all items
of N . Then the total earning v(N) of the grand coalition N equals

max
∑
F∈F

aF yF

s.t.
∑
F∈F

yF ≤ k,∑
F�i

yF ≤ 1 (i = 1, 2, · · · , n),

yF ∈ {0, 1} .

(2.1)

The value v′(N) of an optimum fractional packing is defined by the relaxation
of (2.1), i.e.,

max
∑
F∈F

aF yF

s.t.
∑
F∈F

yF ≤ k,∑
F�i

yF ≤ 1 (i = 1, 2, · · · , n),

yF ∈ [0, 1].

(2.2)



44 W. Kern and X. Qiu

A fractional packing is a vector y satisfying the constraints of the linear pro-
gram (2.2). We call a feasible set F selected/packed by a packing y′ if y′F > 0.
Accordingly, we refer to the original “feasible packing” as integral packing, which
meets the constraints of (2.1). To illustrate the definition of the fractional pack-
ing, we consider an example as follows.

Example. Given 2 bins and 4 items of sizes ai = 1/2 for i = 1, 2, 3 and
a4 = 1/2 + ε, with a small ε > 0.

Obviously, packing items 1, 2 into the first bin and packing item 4 to the
second bin results in an optimum integral packing of total value v(N) = 3/2+ ε.
Let F1 = {1, 2}, F2 = {2, 3}, F3 = {1, 3}, F4 = {4}. By solving the linear
program (2.2), the optimum fractional packing y′ = (y′F ) selects F1, · · · , F4 with
a fraction 1/2 each, resulting in a value

v′(N) =

4∑
j=1

y′Fj
aFj =

7

4
+

ε

2
> v(N).

An intriguing problem is to find the “minimal” taxation rate εmin such that
the εmin-core is nonempty for all instances of the bin packing game. Due to the
following observation of Faigle and Kern in [7], this amounts to bounding the
relative gap (v′(N)− v(N))/v′(N) for any bin packing game instance N .

Lemma 1 ([7]). Given ε ∈ (0, 1) and a bin packing game N , the ε-core �= ∅ if
and only if ε ≥ 1− v(N)/v′(N).

We let εN denote the relative gap of N . Trivially, if all items are packed in
a feasible integral packing, we get v(N) = v′(N), implying that εN = 0, so
the core is nonempty. Thus let us assume in what follows that no feasible inte-
gral packing packs all items. Clearly, any feasible integral packing y with corre-
sponding packed sets F1, ..., Fk yields a lower bound v(N) ≥ w(y) =

∑k
i=1 aFi .

In view of Lemma 1 we are particularly interested in integral packings y of
value w(y) ≥ (1 − ε)v′(N) for certain ε > 0. For ε = 1/2, such integral pack-
ings are easy to find by means of a simple greedy packing heuristic, that con-
structs a feasible set Fj to be packed into bin j in the following way: First order
the available (yet unpacked) items non-increasingly, say, a1 ≥ a2 ≥ .... Then,
starting with Fj = ∅, keep adding items from the list as long as possible (i.e.,
aFj + ai ≤ 1 ⇒ Fj ← Fj ∪ {i}, else proceed to i + 1). Clearly, this eventually
yields a feasible Fj of size > 1

2 . Indeed - unless all items get packed - the final
Fj has size > 1− a, where a is the minimum size of an unpacked item. Applying
greedy packing to all bins will exhibit an integral packing y with aFj > 1

2 for
all j, so w(y) > k/2 ≥ v′(N)/2, thus proving non-emptiness of the 1

2 -core by
Lemma 1.

A bit more work is required to exhibit integral packings with w(y) ≥ 2
3v

′(N)
(c.f. [17], [13]). We end this section by mentioning two trivial cases, namely
k = 1 and k = 2: Indeed, in case k = 1, we obviously have v(N) = v′(N), thus
εN = 0 and in case k = 2, the bound εN ≤ 1

4 can be seen as follows: Let y′ be
an optimal fractional solution and let F be a largest (most valuable) feasible set
in the support of y′. Then the integral packing y that packs F into the first bin



The 1/4-Core of the Uniform Bin Packing Game Is Nonempty 45

and fills the second bin greedily to at least 1/2 (as explained above) is easily
seen to yield a value w(y) ≥ 3

4w(y′), so that εN ≤ 1
4 .

3 Proof of Non-emptiness of the 1/4-Core

Throughout this section, we assume that N is a smallest counterexample, i.e.,
a game with 1/4-core(N)= ∅ and n + k, the number of players is as small
as possible. We start with a simplification, similar to that in [17] for the case
ε = 1/3. The following result is a special case of Lemma 2.3 in [13], but we
include a proof for convenience:

Lemma 2. All items have size ai > 1/4.

Proof. Assume to the contrary that some item, say, item n has size an ≤ 1/4.
Let N̄ denote the game obtained from N by removing this item. Thus 1/4-
core(N̄)�= ∅ or, equivalently, v(N̄ ) ≥ 3

4v
′(N̄). Adding item n to N̄ can clearly

not increase v′ by more than an, i.e.,

v′(N) ≤ v′(N̄) + an. (3.1)

Let ȳ be any optimal integer packing for N̄ , i.e., w(ȳ) = v(N̄). Then either item
n can be packed “on top of ȳ” (namely when some bin is filled up to ≤ 1−an) – or
not. In the latter case, the packing y fills each bin to more than 1−an ≥ 3/4, thus
w(ȳ) ≥ 3

4k ≥
3
4v

′(N), contradicting the assumption that 1
4 -core(N)= ∅. Hence,

item n can indeed be packed on top of ȳ, yielding v(N) ≥ w(ȳ)+an = v(N̄ )+an.
Together with (3.1) this yields v′(N)− v(N) ≤ v′(N̄)− v(N̄) and hence

εN =
v′(N)− v(N)

v′(N)
≤ v′(N̄)− v(N̄)

v′(N̄)
= εN̄ ≤

1

4
,

– a contradiction again. ��

Note that this property implies each feasible set contains at most 3 items. In the
following we reconsider (slight variants of) two packing heuristics that have been
introduced earlier in [2] resp. [13]. The first one, which we call Item Packing, seeks
to first pack large items, then small ones on top of these, without regarding the
optimum fractional solution. The second one, which we call Set Packing, starts
out from the optimum fractional solution y′ and seeks to extract an integer
packing based on the feasible sets that are (fractionally) packed by y′.

We first deal with Item Packing. Call an item i large if ai > 1/3 and small
otherwise. Let L and S denote the set of large resp. small items. If no misun-
derstanding is possible, we will also interpret L as the game N restricted to the
large items (and k bins). Note that at most two large items fit into a bin. Thus
packing L is basically a matching problem. This is why we can easily solve it to
optimality and why the gap is fairly small (just like in the example from section
2). More precisely, Theorem 3.2 from [7] can be stated as

Lemma 3 ([7]). gap(L) = v′(L)− v(L) ≤ 1
4 .



46 W. Kern and X. Qiu

This motivates the following Item Packing heuristic:

Item Packing

· Compute an optimum integral packing y for L.

· Try to add as many small items on top of y as possible.

There is no need to specify how exactly small items are added in step 2. A
straightforward way would be to sort the small items non-increasingly and apply
some first or best fit heuristic. Let F̂1, · · · , F̂k denote the feasible sets in the
integral packing ŷ produced by Item Packing, i.e.,

Output Item Packing: ŷ =̂ (F̂1, · · · , F̂k). (3.2)

Note that, due to Lemma 3, Item Packing performs quite well w.r.t. the large
items. Thus we expect Item Packing to perform rather well in case there are
only a few small items or, more generally, if Item Packing leaves only a few
small items unpacked. Let S1 ⊆ S denote the set of small items that get packed
in step 2 and let S2 := S\S1 be the set of unpacked items. We can then prove
the following bounds:

Lemma 4. aF̂j
> 2

3 for all j = 1, ..., k. Hence, v(N) > 2
3k and v′(N) > 8

9k.

Proof. By definition, the first step of Item Packing produces an optimum integral
packing of L of value v(L). Thus the final outcome ŷ has value w(ŷ) = v(L)+aS1 .
Hence v(N) ≥ v(L) + aS1 . The fractional value, on the other hand, is clearly
bounded by v′(N) ≤ v′(L) + aS . Thus in case S2 = ∅ (i.e., S1 = S) we find

v′(N)− v(N) ≤ v′(L)− v(L) ≤ 1/4,

implying that

εN =
v′(N)− v(N)

v′(N)
≤ 1/4

k/2
≤ 1

4
for k ≥ 2,

contradicting our assumption that 1/4-core(N)=∅. (Note that for k = 1 we
always have v = v′, i.e., εN = 0, as remarked earlier in section 2.)

Thus we conclude that S2 �= ∅. But this means that the packing ŷ produced by
Item Packing fills each bin to more than 2/3, i.e., aF̂j

> 2/3 for all j (otherwise,

if aF̂j
≤ 2/3, any item in S could be packed on top of F̂j). Hence v(N) ≥ w(ŷ) =∑

j aF̂j
> 2

3k. Furthermore, due to our assumption that εN > 1/4, we know that

v′(N) > 4
3v(N) > 8

9k. ��

As we have seen in the proof of Lemma 4, we may assume S2 �= ∅. The following
result strengthens this observation:

Lemma 5. |S2| ≥ 2
3k −

3
4 .



The 1/4-Core of the Uniform Bin Packing Game Is Nonempty 47

Proof. As in the proof of Lemma 4 we find

v′(N) ≤ v′(L) + aS1 + aS2 ,

v(N) ≥ v(L) + aS1 .

Thus, using Lemma 3, we get

v′(N)− v(N) ≤ aS2 +
1

4
≤ |S2|

3
+

1

4
. (3.3)

On the other hand, εN > 1/4 and v′(N) > 8
9k (Lemma 4) imply

v′(N)− v(N) = εNv′(N) >
2

9
k. (3.4)

Combining (3.3) and (3.4), the bound on |S2| follows. ��

Thus we are left to deal with instances where Item Packing leaves a considerable
amount |S2| of small items unpacked. As it turns out, a completely different kind
of packing heuristic, so-called Greedy Selection, first analyzed in [13] is helpful
in this case. The basic idea is simple: We start with an optimum fractional
packing y′ of value w(y′) = v′(N). Let F ′

1, · · · , F ′
m denote the feasible sets in the

support of y′ (i.e., those that are fractionally packed) and assume that aF ′
1
≥

· · · ≥ aF ′
m
. Greedy Selection starts with F1 := F ′

1 and then, after having selected
F1, · · · , Fj−1, defines Fj to be the first set in the sequence F ′

1, · · · , F ′
m that is

disjoint from F1 ∪ · · · ∪ Fj−1. It is not difficult to see (cf. below) that we can
select disjoint feasible sets F1, · · · , Fr with r = �k/3� in this way.

Greedy Selection
(Input: Opt. fractional y′ with supp y′=̂ {F ′

1, · · · , F ′
m}, aF ′

1
≥ · · · ≥ aF ′

m
)

Initiate: F ′
1 := {F ′

1, · · · , F ′
m}

FOR j = 1 to r = �k/3� DO
· Fj ← first set in the list F ′

j

· F ′
j+1 ← F ′

j\ {F ′
t | F ′

t ∩ Fj �= ∅}
End

Note that Greedy Selection starts with F ′ = supp y′, a system of feasible sets
of total length y′F ′ :=

∑
F ′∈F ′ y′F ′ = k. In each step, since |Fj | ≤ 3, we remove

feasible sets F ′
t of total length

∑
F ′

t∈F ′
j,F

′
t∩Fj �=∅ y

′
F ′

t
bounded by∑

F ′
t∈F′

j

F ′
t∩Fj �=∅

y′F ′
t
≤

∑
i∈Fj

∑
F ′
t∈F′

F ′
t�i

yF ′
t
≤

∑
i∈Fj

1 ≤ 3.

Actually, the upper bound ≤ 3 is strict since F ′
t = Fj is counted |Fj | times (once

for each i ∈ Fj).
Thus, in each step we remove feasible sets of total length at most 3, so we

certainly can continue the construction for k = �k/3� steps.



48 W. Kern and X. Qiu

Lemma 6. Greedy Selection constructs feasible sets F1, · · · , Fr ∈ F ′ with r =
�k/3� = 1

3 (k+ s), s ≡ −k mod 3, of total value aF1 + · · ·+ aFr ≥ 1
3 (v

′(N)+ 2
3s).

Proof. The first part has been argued already above. (Note that if we write
r = 1

3 (k + s), then s = 3r − k, so s ≡ −k mod 3.) To prove the lower bound,
we first prove

Claim 1: aFr > 2
3 .

Proof of Claim 1. Assume to the contrary that aFr ≤ 2/3. In the constructive
process of Greedy Selection, when we have selected F1, · · · , Fr−1, the remaining
feasible set system F ′

r has still length ≥ k − 3(r − 1) = 3 − s ≥ 1. As Fr has
maximum size (value) among all sets in F ′

r, we know that each set in F ′
r has size

≤ 2/3. Decrease y′ on F ′
r arbitrarily such that the resulting fractional packing

ỹ′ has total length
∑

F ỹ′F = k− 1. By construction, the corresponding game Ñ
with one bin removed has fractional value

v′(Ñ) ≥ w(ỹ′) ≥ w(y′)− 2

3
= v′(N)− 2

3
.

By minimality of our counterexample N , the game Ñ admits an integral packing
ỹ of value

v(Ñ) = w(ỹ) ≥ 3

4
v′(Ñ) ≥ 3

4
(v′(N)− 2

3
) =

3

4
v′(N)− 1

2
.

Extending this packing ỹ by filling the kth bin to at least 1/2 in a simple greedy
manner (order not yet packed items non-increasingly in size and try to pack
them into bin k in this order) yields an integral packing y for N of value

w(y) ≥ w(ỹ) +
1

2
≥ 3

4
v′(N),

contrary to our assumption on N. This finishes the proof of Claim 1.
To prove the bound on aF1 + · · ·+ aFr in Lemma 6, let R′

j ⊆ F ′
j denote those

feasible sets that are removed from F ′
j in step j, i.e., R′

j = F ′
j\F ′

j+1. As we have
seen, R′

j has total length y′R′
j
=
∑

F ′∈R′
j
y′F ′ ≤ 3. Assume that we, in addition,

also decrease the y′-value on the least valuable sets in F ′
r by a total of 3 − y′R′

j

in each step. Thus we actually decrease the length of y′ by exactly 3 in each
step without any further impact on the construction. The total amount of value
removed this way in step j is bounded by 3aFj . If k ≡ 0 mod 3, we remove in
all r = k/3 rounds exactly v′(N). Thus

v′(N) ≤
r∑

j=1

3aFj ,

as claimed.
When k �≡ 0 mod 3, the same procedure yields a reduced length of F ′

r after
r−1 steps, namely y′F ′

r
= k−3(r−1) = 3−s. So in the last step we remove a set



The 1/4-Core of the Uniform Bin Packing Game Is Nonempty 49

R′
r of value at most (3−s)aFr ≥ 2

3 (3−s) = 2− 2
3s in the last step. Summarizing,

the total value removed is

v′(N) ≤ 3aF1 + · · ·+ 3aFr−1 + (3 − s)aFr

= 3(aF1 + · · ·+ aFr)− saFr

≤ 3(aF1 + · · ·+ aFr)−
2

3
s,

proving the claim. ��
A natural idea is to extend the greedy selection F1, · · · , Fr in a straightforward
manner to an integral packing y =̂ (F1, · · · , Fk), where Fr+1, · · · , Fk are deter-
mined by applying Item Packing to the remaining items and remaining k − r
bins. However, this does not necessarily yield a sufficiently high packing value
w(y): Indeed, it may happen that the remaining k−r ≈ 2

3k bins get only filled to
roughly 1/2, so the total packing value is approximately w(y) ≈ 1

3v
′(N)+ 1

2 ·
2
3k,

which equals 2
3v

′(N) in case v′(N) ≈ k.
However, the estimate aFr+1 + · · · + aFk

≈ 1
2 (k − r) is rather pessimistic. In

particular, if we assume that the packing y (obtained by Greedy Selection plus
Item Packing the remaining k− r bins) leaves some small items unpacked, then
each of the k − r bins must necessarily be filled to at least 2/3 (otherwise any
small item could be added on top of y). This would yield

w(y) ≈ 1

3
v′(N) +

2

3
k · 2

3
≥ (

1

3
+

4

9
)k ≥ 7

9
k ≥ 7

9
v′(N),

which is certainly sufficient for our purposes. (We do not use this estimate later
on: It is only meant to guide our intuition.) Thus the crucial instances are those
where y packs all small items – and hence does not pack all large items. Thus,
when Item Packing is performed on the k − r remaining bins, the first phase
will pack large items into these k − r bins until each bin is at least filled to
1/2. Packing small items on top of any such bin would result in a bin filled
to at least 3/4. Thus, again, the worst case appears to happen when all small
items (and there are quite a few of these, cf. Lemma 5) are already contained in
F1 ∪ · · · ∪ Fr. Assume for a moment that each of F1, · · · , Fr (r ≈ k/3) contains
two of the small items in S2. (Recall that |S2| � 2

3k.) Then each of F1, · · · , Fr can

contain only one other item in addition. Thus about 2
3k of the sets F̂j computed

by Item Packing must be disjoint from F1 ∪ · · · ∪Fr (as no F̂j contains any item
from S2). Thus we could extend F1, · · · , Fr by roughly 2

3k ≈ k − r sets, say,

F̂r+1, · · · , F̂k from Item Packing to obtain a packing (F1, · · · , Fr, F̂r+1, · · · , F̂k)
of value ≥ 1

3v
′(N) + 2

3k ·
2
3 (as each F̂j has size ≥ 2

3 ), which is again enough.
In general, the Greedy Selection F1, · · · , Fr will contain some – but not all –

of S2 and we will have to work out a trade-off between the two extreme cases
considered above: Let

γ := |S2 ∩ (F1 ∪ · · · ∪ Fr)| .
Thus F1 ∪ · · · ∪Fr contains at most 3r− γ items that are not in S2 – and hence
possibly contained in some F̂j . So there are at most 3r−γ different F̂j that inter-

sect F1∪· · ·∪Fr – and hence at least k−(3r−γ) different F̂j that do not intersect



50 W. Kern and X. Qiu

F1∪· · ·∪Fr . We add these k−3r+γ = γ−s different F̂j , say, F̂r+1, · · · , F̂r+γ−s

to F1, · · · , Fr to obtain a “partial” packing F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s. Here
we may assume that r+γ−s < k. Otherwise, we finish with a complete packing
ȳ=F1, · · · , Fr, F̂r+1, · · · , F̂k of value (use Lemma 6 and aF̂j

≥ 2/3).

w(ȳ) ≥ 1

3
(v′(N) +

2

3
s) + (k − r) · 2

3

=
1

3
v′(N) +

2

9
s+ (

2

3
k − 1

3
s)
2

3

=
1

3
v′(N) +

4

9
k

≥ (
1

3
+

4

9
)v′(N)

>
3

4
v′(N),

contrary to our assumption that v(N) < 3
4v

′(N).
Thus r + γ − s < k holds indeed and therefore we may complete our partial

packing F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s by Item Packing the remaining items to
the remaining k − (r + γ − s) bins, resulting in an integral packing

ȳ =̂ F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s, Fr+γ−s+1, · · · , Fk.

This completes the description of our heuristic

Set Packing
· Get F1, · · · , Fr from Greedy Selection and let γ := |S2 ∩ (F1 ∪ · · · ∪ Fr)|
· Extend with sets F̂j from Item Packing to F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s

· Complete by Item Packing to F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s, Fr+γ−s+1, · · · , Fk.

Lemma 7. Set Packing packs all of S (and hence not all of L).

Proof. If Set Packing leaves some small item unpacked, then necessarily aFj >
2/3 for j = r + γ − s+ 1, · · · , k. Thus the same computation as above yields

w(ȳ) ≥ 1

3
(v′(N) +

2

3
s) + (k − r)

2

3
>

3

4
v′(N),

a contradiction. Thus all of S gets packed. If, in addition, all of L would get
packed, then the value of the resulting packing ȳ were w(ȳ) ≥ aS + aL ≥ v′(N),
a contradiction again. ��

Thus, in phase 3 of Set Packing, when we apply Item Packing to the last k −
(r+ γ− s) bins, each bin gets first filled to at least 1/2 by large items, and then
(possibly among other small items), the remaining |S2| − γ items from S2 get
packed on top of (some of ) the last k−(r+γ−s) bins. So these last k−(r+γ−s)
bins contribute at least

1

2
(k − (r + γ − s)) +

1

4
(|S2| − γ)

to the total value of ȳ.



The 1/4-Core of the Uniform Bin Packing Game Is Nonempty 51

Summarizing, w(ȳ) can be estimated as

w(ȳ) ≥ 1

3
(v′(N) +

2

3
s) + (γ − s) · 2

3

+
1

2
(k − (r + γ − s)) +

1

4
(|S2| − γ).

(3.5)

In case k ≡ 0 mod 3, we have s = 0, r = k/3 and |S2| ≥ 2
3k (by Lemma 5). So

(3.5) simplifies to

w(ȳ) ≥ 1

3
v′(N) +

1

2
· 2
3
k +

1

4
· 2
3
k − 1

12
γ ≥ 3

4
v′(N) +

1

12
k − 1

12
γ,

proving that w(ȳ) ≥ 3
4v

′(N) if γ ≤ k. But this is true: Indeed, as we have already
argued above, we may even assume that r + γ − s = r + γ < k. (Recall that we
consider the case s = 0 here.) In case k �≡ 0 mod 3, by similar computation, we
can show that w(ȳ) ≥ 3

4v
′(N) still holds.

Summarizing, both cases (k ≡ 0 and k �≡ 0 mod 3) yield that N cannot be a
counterexample, so we have proved

Theorem 8 εN ≤ 1/4 for all instances of the bin packing game.

4 Remarks and Open Problems

We like to note that – even though our proof in section 3 is indirect – it can easily
be turned into a constructive proof. Indeed, we implicitly show that either Item
Packing or Set Packing yields an integral packing y of value w(y) ≥ 3

4v
′(N).

Also note that an optimum fractional packing y′ (as input to Greedy Selection)
is efficiently computable: Indeed, as any feasible set may contain at most 3
items, the total number of feasible sets is O(n3), so the LP for computing y′ has
polynomial size. Thus, in particular, our approach also yields a strengthening of
the result in [3] (efficient 3/4 approximation).

In [13] it was conjectured that εN ≤ 1/7 is true for all instances. (This
bound would be tight as can be seen from the small example presented in sec-
tion 2.) We do not expect that our arguments provide any clue about how to
approach 1/7.

A probably even more challenging conjecture due to Woeginger states that
the integrality gap

gap(N) = v′(N)− v(N)

is bounded by a constant. Until now, this has only been verified for item sizes
> 1/3 (cf. Lemma 3). It would be interesting to investigate the case of item sizes
ai > 1/4. The largest gap found (cf. [12]) so far is gap(N) ≈ 1/3, for a game
with 6 bins and 18 items.



52 W. Kern and X. Qiu

References

1. Bilò, V.: On the packing of selfish items. In: Proceedings of the 20th Interna-
tional Conference on Parallel and Distributed Processing, IPDPS 2006, p. 45. IEEE
Computer Society, Washington, DC (2006)

2. Caprara, A., Kellerer, H., Pferschy, U.: The multiple subset sum problem. SIAM
Journal of Optimization 11, 308–319 (1998)

3. Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple
subset sum. Journal of Heuristics 9(2), 99–111 (2003)

4. Epstein, L., Kleiman, E.: Selfish bin packing. Algorithmica 60, 368–394 (2011)
5. Faigle, U., Fekete, S., Hochstättler, W., Kern, W.: On approximately fair cost

allocation in euclidean tsp games. Operations Research Spektrum 20, 29–37 (1998)
6. Faigle, U., Kern, W.: On some approximately balanced combinatorial cooperative

games. Methods and Models of Operation Research 38, 141–152 (1993)
7. Faigle, U., Kern, W.: Approximate core allocation for binpacking games. SIAM J.

Discrete Math. 11, 387–399 (1998)
8. Goemans, M.X., Skutella, M.: Cooperative facility location games. Journal of Al-

gorithms 50(2), 194–214 (2004)
9. Han, X., Chin, F.Y.L., Ting, H.-F., Zhang, G., Zhang, Y.: A new upper bound

2.5545 on 2d online bin packing. ACM Trans. Algorithms 7(4), 50:1–50:18 (2011)
10. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facil-

ity location algorithms analyzed using dual fitting with factor-revealing LP. J.
ACM 50(6), 795–824 (2003)

11. Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative
games. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory
of Computing, STOC 2001, pp. 364–372. ACM, New York (2001)

12. Joosten, B.: Relaxation of 3-partition instances. Master’s thesis, Radboud Univer-
sity (December 2011)

13. Kern, W., Qiu, X.: Integrality gap analysis for bin packing games. Operations
Research Letters 40(5), 360–363 (2012)

14. Kern, W., Qiu, X.: Note on non-uniform bin packing games. Discrete Applied
Mathematics (2012) (in press)

15. Kuipers, J.: Bin packing games. Mathematical Methods of Operations Research 47,
499–510 (1998)

16. Liu, Z.: Complexity of core allocation for the bin packing game. Operations Re-
search Letters 37(4), 225–229 (2009)

17. Woeginger, G.J.: On the rate of taxation in a cooperative bin packing game. Math-
ematical Methods of Operations Research 42, 313–324 (1995)

18. Yu, G., Zhang, G.: Bin packing of selfish items. In: Papadimitriou, C., Zhang, S.
(eds.) WINE 2008. LNCS, vol. 5385, pp. 446–453. Springer, Heidelberg (2008)



On the Advice Complexity of the Online
L(2, 1)-Coloring Problem on Paths and Cycles�

Maria Paola Bianchi1, Hans-Joachim Böckenhauer2, Juraj Hromkovič2,
Sacha Krug2, and Björn Steffen2

1 Dipartimento di Informatica, Università degli Studi di Milano, Italy
2 Department of Computer Science, ETH Zurich, Switzerland

maria.bianchi@unimi.it,
{hjb,juraj.hromkovic,sacha.krug,bjoern.steffen}@inf.ethz.ch

Abstract. In an L(2, 1)-coloring of a graph, the vertices are colored
with colors from an ordered set such that neighboring vertices get colors
that have distance at least 2 and vertices at distance 2 in the graph get
different colors. We consider the problem of finding an L(2, 1)-coloring
using a minimum range of colors in an online setting where the vertices
arrive in consecutive time steps together with information about their
neighbors and vertices at distance two among the previously revealed
vertices. For this, we restrict our attention to paths and cycles.

Offline, paths can easily be colored within the range {0, . . . , 4} of
colors. We prove that, considering deterministic algorithms in an online
setting, the range {0, . . . , 6} is necessary and sufficient while a simple
greedy strategy needs range {0, . . . , 7}.

Advice complexity is a recently developed framework to measure the
complexity of online problems. The idea is to measure how many bits
of advice about the yet unknown parts of the input an online algorithm
needs to compute a solution of a certain quality. We show a sharp thresh-
old on the advice complexity of the online L(2, 1)-coloring problem on
paths and cycles. While achieving color range {0, . . . , 6} does not need
any advice, improving over this requires a number of advice bits that
is linear in the size of the input. Thus, the L(2, 1)-coloring problem is
the first known example of an online problem for which sublinear advice
does not help.

We further use our advice complexity results to prove that no random-
ized online algorithm can achieve a better expected competitive ratio
than 5

4 (1 − δ), for any δ > 0.

1 Introduction

Graph coloring is a well-known problem with many applications and many vari-
ants of it have been considered in the literature. One of these variations is moti-
vated by a problem arising in the context of assigning frequencies to transmitters
in a multihop radio network. To avoid interference, the difference between the
� This work was partially supported by SNF grant 200021-141089.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 53–64, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



54 M.P. Bianchi et al.

frequencies used by transmitters should be anti-proportional to their proximity,
see the survey by Murphey et al. [17] for an overview of frequency assignment
problems. The simplest graph-theoretic model of the frequency assignment prob-
lem is the L(2, 1)-coloring problem, which was introduced by Griggs and Yeh [12].
It is also commonly known as the radio coloring problem [8]. Here, the trans-
mitters are the vertices of a graph and the frequencies are modeled by colors
from an ordered set, usually {0, 1, . . . , λ}, for some λ ∈ �. For the coloring, two
classes of proximity are distinguished. Neighboring vertices have to be assigned
colors that are at least 2 apart in their given order, and vertices at distance 2
(called square neighbors in the following) have to get different colors. The goal
is to find such a coloring of the graph with a minimum λ. This problem has
been intensively studied for various graph classes, for a survey, see the papers
by Yeh [21] or Bodlaender et al. [2]. In this paper, we introduce and investi-
gate an online version of the problem. Here, the vertices of the graph appear
in consecutive time steps together with information about those neighbors and
square neighbors that have already been revealed. In each time step, the online
algorithm has to irrevocably determine the color of the newly revealed vertex
respecting the above restrictions.

The quality of an online solution is traditionally measured using the com-
petitive analysis introduced by Sleator and Tarjan [20]. The competitive ratio,
defined as the quotient of the cost of the computed online solution and the cost of
an optimal (offline) solution, is the standard measure for the quality of an online
algorithm. A detailed introduction to the theory of online algorithms can, e. g.,
be found in the textbook by Borodin and El-Yaniv [7]. The recently introduced
framework of advice complexity aims at a more fine-grained measurement of the
complexity of online problems. The idea is to measure how much information
about the future parts of the input is needed to compute an optimal solution
or a solution with a specific competitive ratio [13]. This is modeled by an ora-
cle that knows the whole input in advance and prepares some infinite tape of
advice bits which the online algorithm can use as an additional resource. The
advice complexity of an online algorithm is then defined as the maximum length
of the prefix of the advice tape that the algorithm accesses over all inputs of a
fixed length. The advice complexity of an online problem is the minimal advice
complexity over all admissible algorithms. The first model of advice complexity
was introduced by Dobrev et al. [9] and later refined by Emek et al. [10]. The
first model was not exact enough, discrepancies up to a multiplicative factor were
possible. The latter model was suitable only if the advice complexity was at least
linear. We are using the general model as proposed by Hromkovič et al. [13]. The
concept was successfully applied to various online problems [5,10,4,18,3,15,1,11].

There are many connections between advice complexity and randomized on-
line computations [4,14,6]. Obviously, every online algorithm using b advice bits
is as least as powerful as a randomized algorithm using the same number of ran-
dom binary decisions. But under certain conditions, one can use lower bounds
on the advice complexity also to prove lower bounds on randomized online com-
putation with an unbounded number of random bits [4].



On the Advice Complexity of the Online L(2, 1)-Coloring Problem on Paths 55

Table 1. Upper and lower bounds on the advice complexity of the L(2, 1)-coloring prob-
lem on paths and cycles, where d1 and d2 are positive constants. (1.5-competitiveness
can be achieved without advice.)

Quality Lower Bound Upper Bound

optimal (λ = 4) 0.0518n 0.6955n + d1

1.25-competitive (λ = 5) 3.9402 · 10−10n 0.4n + d2

In this paper, we focus on the online L(2, 1)-coloring problem on paths and
cycles. We concentrate on presenting the results for paths in this paper. All
results can be generalized to cycles and graphs of maximum degree 2, i. e., graphs
whose components are paths or cycles.

While the L(2, 1)-coloring problem on paths is almost trivial in the offline case
(simply coloring the vertices along the path using the pattern 0-2-4 is optimal),
it turns out to be surprisingly hard in the online case. We first analyze a simple
greedy strategy and show that it uses λ = 7. Then we present an improved
deterministic online algorithm using λ = 6 and prove a matching lower bound
for deterministic online algorithms without advice. Considering online algorithms
with advice, we prove that, in order to achieve an optimal solution on a path
on n vertices, 0.6955n + d advice bits are sufficient, for some positive constant
d, and 0.0519n advice bits are necessary. Surprisingly, also to compute a 1.25-
competitive solution (i. e., for λ = 5), a linear number of advice bits is necessary.
Thus, the L(2, 1)-coloring is the first known problem for which sublinear advice
does not help at all, not even on the very simple graph classes of paths and
cycles. Finally, we employ this lower bound to show that no randomized online
algorithm for the online L(2, 1)-coloring problem has an expected competitive
ratio of 5

4 (1−δ), for any δ > 0. Table 1 summarizes our advice complexity results.
Due to space limitations, some proofs are omitted.

2 Preliminaries

Let us first formally define the framework we are using.

Definition 1. Consider an input sequence I = (x1, . . . , xn) for some minimiza-
tion problem U . An online algorithm A computes the output sequence A(I) =
(y1, . . . , yn), where yi = f(x1, . . . , xi) for some function f . The cost of the so-
lution is denoted by cost(A(I)). An algorithm A is strictly c-competitive, for
some c ≥ 1, if, for every input sequence I, cost(A(I)) ≤ c · cost(Opt(I)), where
Opt is an optimal offline algorithm for the problem. A is optimal if it is strictly
1-competitive.

Because we are dealing with a problem whose solution costs are bounded by a
constant, we only consider strict competitiveness in this paper and hence omit
the term “strictly”.



56 M.P. Bianchi et al.

Definition 2. Consider an input sequence I = (x1, . . . , xn). An online algo-
rithm A with advice computes the output sequence Aφ(I) = (y1, . . . , yn) such
that yi is computed from φ, x1, . . . , xi, where φ is the content of the advice tape,
i. e., an infinite bit string. The algorithm A is c-competitive with advice com-
plexity s(n) if, for every n and every input sequence I of length at most n, there
is some φ such that cost(Aφ(I)) ≤ c · cost(Opt(I)) and at most the first s(n) bits
of φ have been accessed during the computation of A on I.

Let G = (V, E) be a graph with vertex set V and edge set E. The number of
vertices in G is denoted by n. A path is a graph P = (V, E) such that V =
{v1, v2, . . . , vn} and E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}. For short, we write
P = (v1, v2, . . . , vn) and vi ∈ P . A cycle is a path with an edge between the first
and the last vertex, i. e., {v1, vn} ∈ P . The length of a path is the number of edges
in it. A subpath (vi, vi+1, . . . , vj), for 1 ≤ i ≤ j ≤ n, is the induced subgraph
P [{vi, vi+1, . . . , vj}]. If two vertices have distance 2 from each other, we call them
square neighbors, since they are neighbors in P 2, the graph resulting from adding
an edge between any two endpoints of a subpath of length 2. A vertex is isolated
in some induced subgraph of P if it has neither direct nor square neighbors.

Definition 3. An L(2, 1)-coloring of a graph G is a function assigning to every
vertex of G a color from the set {0, 1, . . . , λ} such that adjacent vertices receive
colors at least 2 apart and square neighbors receive different colors, i. e., at least
1 apart.

The aim of the L(2, 1)-coloring problem is to find an L(2, 1)-coloring mini-
mizing λ. An L(2, 1)-coloring of a graph with minimal λ is called optimal.

Clearly, λ = 4 is enough to color any path optimally offline. The algorithm
simply follows the pattern 0-2-4 periodically from left to right.

Lemma 1 (Griggs and Yeh [12]). To color a path on at least five vertices or
any cycle, λ = 4 is necessary and sufficient. ��
In the following, we always mean L(2, 1)-coloring when we speak of coloring.

Definition 4. The online L(2, 1)-coloring problem is the following minimiza-
tion problem. For some graph G = (V, E) and an order on V , the vertices in V
are revealed one by one with respect to this order. Let Vt denote the set of vertices
revealed up to time step t. Together with each revealed vertex v, all edges between
v and previously revealed vertices are revealed as well, i. e., up to time step t, the
graph Gt = G[Vt] is revealed. Additionally, in every time step t, information
about the square neighbors of v among the vertices in Vt is revealed.1

The goal is to find an L(2, 1)-coloring c : V → {0, . . . , λ} minimizing λ. For
each revealed vertex v, the online algorithm immediately has to decide what
color c(v) this vertex gets.
1 Intuitively speaking, the algorithm is told which of the already revealed vertices are

square neighbors of v, but it gets no information about intermediate vertices that
are not yet revealed. This additional constraint is usually not part of an online graph
coloring setting, but necessary for our problem.



On the Advice Complexity of the Online L(2, 1)-Coloring Problem on Paths 57

· · ·
︸ ︷︷ ︸

tail
︸ ︷︷ ︸

tail

(a) The tails of a path.

u w
︸ ︷︷ ︸

gap

(b) A gap in a path.

Fig. 1. The tails and gaps of a path

In this paper, we consider paths and cycles as inputs for the online L(2, 1)-
coloring problem. Note that the online algorithm neither gets information about
the number of vertices in G nor about the index of the currently revealed ver-
tex, i. e., its position in the graph. In other words, the vertices are anonymous.
Otherwise, the problem is trivial. In a path, the algorithm just assigns color
2 · (i mod 3) to vertex vi and is always optimal. In a cycle, this is also possible,
but the algorithm needs to color the last few vertices differently with respect to
the value n mod 3.

Given an algorithm A for the online L(2, 1)-coloring problem on paths, we
denote by cA(P ) the coloring of the path P computed by A and by cA(v) the
color assigned to the vertex v ∈ P . If A is clear from the context, we only
write c(P ) and c(v). We call the two directions in which a path/subpath can be
extended from a vertex v the two sides of v. We call the two outmost vertices
at the ends of a path/subpath the tails (see Figure 1a). If two or three vertices
have not yet been revealed between two vertices u and w, we call these missing
vertices a gap (see Figure 1b).

Furthermore, we construct algorithms that sometimes need to choose one
color out of three. Since they are reading from a binary advice tape, we need the
following lemma.

Lemma 2 (Seibert et al. [19]). Encoding a number x, for 1 ≤ x ≤ 3n, i. e.,
n one-out-of-three decisions, in a bit string needs at most 46

29 n + d bits, for some
positive constant d. ��
Throughout this paper, log x denotes the binary logarithm of x.

3 Online Algorithms without Advice

First, we consider the greedy algorithm, i. e., the algorithm that always picks the
lowest possible color for a newly revealed vertex. The range {0, 1, . . . , 8}, i. e.,
λ ≤ 8, is obviously sufficient: A revealed vertex v has at most two direct and
two square neighbors, which together forbid at most eight colors. Thus, at least
one of the colors in {0, 1, . . . , 8} is still available for v. We show, however, that
the greedy algorithm never uses the ninth color, i. e., that the range {0, 1, . . . , 7}
is sufficient.

Theorem 1. The greedy algorithm for the online L(2, 1)-coloring problem on
paths achieves λ = 7, and this bound is tight.



58 M.P. Bianchi et al.

Now we show that we cannot ensure optimality without advice. In fact, not even
λ = 5 is enough to color every path online.

Theorem 2. Without advice, λ ≥ 6 is necessary to solve the online L(2, 1)-
coloring problem on paths.

Proof. We show that λ = 5 is not sufficient.
Let A be an online algorithm for the online L(2, 1)-coloring problem on paths

using only the colors 0 to 5, and consider the following instance. Seven vertices
are revealed isolated, thus defining seven disjoint components C1, C2, . . . , C7.2
For 1 ≤ i ≤ 7, the next revealed vertex is then a direct neighbor of the last
revealed vertex in Ci, until one tail of Ci is colored either 0-α or 5-β, with
α ∈ {2, 3, 4}, β ∈ {1, 2, 3}. The fact that such a tail always appears after a
constant number of steps is guaranteed by the lower bound of λ = 4 stated
in Lemma 1, because at some point, without loss of generality, a vertex v is
colored 0. The next vertex is either colored 2, 3, or 4, and we are done, or it is
colored 5, and we add another vertex, which can only be colored 1, 2, or 3, since
its neighbor is colored 5 and its square neighbor is colored 0. (The case where v
is colored 5 is analogous.) Furthermore, the adversary knows when this happens,
because A is deterministic.

There are only six different tails with that property and we have seven com-
ponents, so one tail must occur twice. We consider an instance that fills the gap
between those two tails as follows.

Two tails that have both the form 0-2 or both the form 0-4 are connected
by adding two vertices in between. As the two vertices in the gap need to be
assigned colors with distance 2, at least one of them receives a color greater than
5. Two tails of the form 0-3 are connected by adding three vertices in between.
As the leftmost vertex in the gap receives, without loss of generality, color 1 and
the rightmost vertex color 5, the middle vertex can only receive a color greater
than 5. (Due to symmetry, the argument is analogous for tails of the form 5-β,
β ∈ {1, 2, 3}.)

Thus, none of the gaps can be filled using only the colors 0 to 5. ��

The following theorem shows that this lower bound is tight.

Theorem 3. There is an algorithm that solves the online L(2, 1)-coloring prob-
lem on paths using λ ≤ 6 without advice.

4 Online Algorithms with Advice

Now, we want to investigate how much advice is necessary and sufficient to
achieve optimality and 5/4-competitiveness, i. e., for λ = 4 and λ = 5.
2 Note that we did not fix the order of these components nor the distance between

them, and so the adversary is free to concatenate the components in any order or
direction afterwards.



On the Advice Complexity of the Online L(2, 1)-Coloring Problem on Paths 59

Algorithm 1.
1: for each revealed vertex v at time t do
2: if v is isolated in Gt then
3: Read a one-out-of-three decision from the advice tape and color v accord-

ingly with a color from {0, 2, 4}.
4: else if v is connected to one vertex w that was isolated in Gt−1 or v is

connected to two vertices w and x that were both isolated in Gt−1 and have
distance 3 from each other in Gt then

5: Let S := {0, 2, 4} − c(w).
6: Read one advice bit b.
7: Color v with the lower of the two colors in S if b = 0, and with the higher

one otherwise.
8: else
9: Inspect Gt to determine the color of v and color it accordingly.

Output: Color c(v) of each revealed vertex v.

4.1 Lower and Upper Bounds for Optimality

We first show that there is an optimal algorithm that reads advice bits from the
tape such that it always knows what color from {0, 2, 4} to assign to the currently
revealed vertex. Then, we complement this result by a linear lower bound.

Theorem 4. Algorithm 1 solves the online L(2, 1)-coloring problem on paths
optimally using at most 0.6955n + d advice bits, for some positive constant d.

Proof sketch. The oracle writes advice bits on the tape in such a way that the
final coloring is just a repetition of the pattern 0-2-4.

Let us first explain what happens in line 9. There are two cases. In the first
case, v is connected to at least one component C in Gt−1 that consists of more
than one vertex. Then, c(v) is determined by the colors of the vertices in C
by following the pattern 0-2-4 (see Figures 2a to 2d). In the second case, v is
connected to two vertices u and w that were isolated in Gt−1 and have distance 4
from each other in Gt as in Figure 2e.

Now we calculate how many advice bits are needed. There are three situations
where the algorithm reads advice bits (see Figure 3): (i) an isolated vertex is
revealed (one-out-of-three decision); (ii) a vertex connected to one previously
isolated vertex is revealed (one advice bit needed); (iii) a vertex is revealed that
is connected to two previously isolated vertices that are at distance 3 to each
other (one advice bit needed).

Since vertices corresponding to line 9 do not force the algorithm to read
advice, we can assume, without loss of generality, that they only occur to connect
subpaths P(i), P(ii) and P(iii) that enforce situations (i), (ii) or (iii) (see Figure 3).
Let P ′

(i), P ′
(ii) and P ′

(iii) denote the respective subpaths together with two such
connecting vertices.

A careful case analysis now shows that, even for the worst possible input for
the algorithm, the claimed amount of advice bits is sufficient. ��
In order to show a lower bound, we need the following technical lemma.



60 M.P. Bianchi et al.

. . . u w v

(a) c(v) ∈
{0, 2, 4} − {c(u), c(w)}.

. . . u w v

(b) c(v) := c(u).

. . . u w v

(c) c(v) := c(u).

. . . u w v

(d) c(v) ∈ {0, 2, 4} − {c(u), c(w)}.

u v w

(e) c(v) ∈ {0, 2, 4} − {c(u), c(w)}.

Fig. 2. How to color v in line 9 of Algorithm 1

. . .

P(i)

. . .

P(ii)

. . .

P(iii)

Fig. 3. The three types of subpaths forcing Algorithm 1 to read advice bits. The
black vertices are revealed isolated to force a one-out-of-three decision and the gray
ones require one advice bit to color them.

Lemma 3. Consider two paths P = (u, v) and P ′ = (w, x) of two vertices
each, and let c be any valid coloring for P and P ′. Let now (u, v, y, z, w, x),
(u, v, y, z, x, w), (v, u, y, z, w, x), and (v, u, y, z, x, w) be the four possible paths
that result from concatenating P and P ′ at arbitrary ends by adding two vertices.
For at least one of the four paths, any valid coloring that extends c needs to use
a color greater than 4.

When proving lower bounds on the advice complexity, we usually construct a
set of special instances having the property that the algorithm cannot distin-
guish between their prefixes of a certain length. Using at most b advice bits,
the algorithm can only use 2b different strategies and thus can only use one of
2b different colorings. We describe an adversary that constructs at least 2b + 1
different continuations that require pairwise different colorings of the prefix to
be colored optimally. Thus, at least one of the instances cannot be colored op-
timally by the algorithm, i. e., b advice bits are not sufficient. Since the prefix
of the instance in general consists of some set of isolated vertices and subpaths
and the adversary is free to choose the order and orientation of these subgraphs,
we cannot in general assume that the prefix consists of exactly the same vertices
in the same order for all instances. But for the proof method to work it suffices
if the prefixes are isomorphic subgraphs with respect to both direct and square
neighbors. We call two subgraphs satisfying this property indistinguishable.

Theorem 5. Any algorithm that solves the online L(2, 1)-coloring problem on
paths optimally needs to read at least 0.0518n advice bits.



On the Advice Complexity of the Online L(2, 1)-Coloring Problem on Paths 61

. . .

B1 B2

T1 T2 T3

Bm−1 Bm

T2m−2 T2m−1 T2m

Fig. 4. The block-tuple division of the path P in the proof of Theorem 5

Proof. We consider a path P with n = 8m vertices, for some m ∈ �, and we
partition P into m consecutive vertex-disjoint subpaths B1, B2, . . . , Bm of eight
vertices each. In every Bj = (vi, vi+1, . . . , vi+7), where i = 8(j −1)+1, we define
the two subpaths T2j−1 = (vi+1, vi+2) and T2j = (vi+5, vi+6). We call Bj the
j-th block and Th the h-th tuple of P . This block-tuple division of P is shown in
Figure 4.

We consider as instances all possible online presentations of P satisfying the
following conditions.

– The algorithm first receives the vertices from every tuple Th. In G2, i. e.,
after time step 2, only T1 is revealed, in G4, T1 and T2 are revealed, and so
on, until all subpaths T1, T2, . . . , T2m have been revealed at time 4m.

– After time step 4m, all remaining vertices are revealed sequentially from left
to right.

Under these conditions, there are two possible orders of revealing the vertices
in each tuple Th. Hence, there are 4m different instances of this type. Moreover,
the prefixes of all instances until time step 4m are indistinguishable, so if two
instances get the same advice, they have the same coloring at time step 4m.

Consider an instance I whose associated advice induces a coloring c on the
2m tuples in G4m. We want to determine how many other instances can receive
the same advice string, i. e., for how many of them the algorithm can use the
same coloring of the tuples in G4m and still be able to use only colors 0 to 4 in
the remaining part. Consider the block Bj containing the subpaths T2j−1 and
T2j. Lemma 3 shows that there is always an appearance order of the vertices
in T2j−1 and T2j such that the gap in between cannot be colored with values
from 0 to 4. This means that c is suitable for at most three choices of Bj out of
four, and since the same reasoning holds for all other blocks, c is suitable for at
most 3m different instances.

Hence, there must be at least 4m/3m different advice strings, implying that
at least log ((4/3)m) = (2 − log 3) · n/8 ≥ 0.0518n advice bits are necessary. ��

4.2 Lower and Upper Bounds for 5
4-Competitiveness

The main idea is to define an algorithm that works like the one in Theorem 3
most of the time and avoids situations that lead to using color 6. The algorithm
reads an advice bit for the first vertex revealed on each side, unless it merges
two components. Advice bit 0 means follow the pattern 0-3-5, while advice bit 1
means switch to pattern 0-2-4.



62 M.P. Bianchi et al.

Theorem 6. There is an algorithm that solves the online L(2, 1)-coloring prob-
lem on paths with λ ≤ 5 and uses at most 0.4n + d advice bits, for some positive
constant d.

Theorem 7. Every algorithm for the online L(2, 1)-coloring problem on paths
with λ ≤ 5 needs to read at least 3.9402 · 10−10n advice bits.

Proof sketch. Let us fix an arbitrary algorithm A. In order to force A to use a
certain amount of advice, the adversary constructs an instance as follows.

First, 25 isolated vertices are revealed. Then, there are two possibilities.

1. The adversary selects seven arbitrary vertices u1, u2, . . . , u7 out of the 25. It
reveals a neighbor vi of each ui such that the paths (ui, vi) are still separate
components. Then, there are again two possibilities.
(a) The adversary connects two arbitrary vertices vj and vk by adding two

or three vertices between them.
(b) It reveals another seven vertices wi that are neighbors of the vi such that

the paths (ui, vi, wi) are still separate components. Then it connects two
arbitrary vertices wj and wk by adding two or three vertices in between.

2. The adversary selects four arbitrary vertices u1, u2, u3, u4 out of the 25.
It reveals four vertices v1, v2, v3, v4, two of which form a path between u1
and u2 and between u3 and u4, respectively, i. e., there are now two paths
(u1, v1, v2, u2) and (u3, v3, v4, u4). Then it connects these two paths at arbi-
trary ends by adding two vertices in between.

At the end, the adversary connects all components according to some fixed order
such that the resulting graph is a path.

We are now able to show that, for every coloring of the 25 initial vertices,
there is an instance with at most 88 vertices that forces A to use color 6.

This leads to a number of at most N :=
(25

7
) · 2 · (7

2
) · 2 +

(25
2

) · (23
2

) · 4 problem
instances in our special class for a fixed coloring of 25 given initial vertices.

We have shown that, for every coloring of the 25 initial vertices, at least one
instance forces a color greater than 5 later on. In other words, one fixed coloring
of the initial 25 vertices can be used for at most N − 1 of the N instances.
Because the first 25 vertices are all isolated, reading advice is the only way in
which a deterministic algorithm can achieve different colorings of these vertices.

Consider the following scenario. The adversary presents m times one of the
instances described above. There are Nm possible ways to do this, and every
initial coloring of the isolated vertices can result in a valid coloring of the entire
graph for at most (N−1)m of them. Thus, any algorithm needs to choose between
at least (N/(N −1))m many colorings for the initial 25m vertices. To distinguish
them, it needs at least log ((N/(N − 1))m) = m log (N/(N − 1)) advice bits.

The overall construction consists of n ≤ 88m + 2(m − 1) ≤ 90m vertices,
because we need to connect the instances with each other by adding at least
two additional vertices in between. Thus, we need at least m log(N/(N − 1)) ≥
n
90 log(N/(N − 1)) ≥ 3.9402 · 10−10n advice bits in total. ��



On the Advice Complexity of the Online L(2, 1)-Coloring Problem on Paths 63

5 Randomized Online Algorithms

In this section, we give a lower bound on the competitive ratio achievable by any
randomized online algorithm. Our proof is based on the following result.

Lemma 4 (Böckenhauer et al. [4]). Consider an online minimization prob-
lem U , and let I(n) be the set of all possible inputs of length n and I(n) := |I(n)|.
Furthermore, suppose that there is a randomized online algorithm for U with
worst-case expected competitive ratio at most E. Then, for any fixed ε > 0, it is
possible to construct a deterministic online algorithm that uses at most

log n + 2 log log n + log (log I(n)/ log (1 + ε)) + c

advice bits, for a constant c,3 and achieves a competitive ratio of (1 + ε)E. ��
Together with this result, Theorem 7 implies that the worst-case expected color
range of any randomized online algorithm is bounded from below by a value of
almost 5.

Theorem 8. For arbitrarily small δ > 0, every randomized algorithm for the
online L(2, 1)-coloring problem on graphs with maximum degree 2 has a worst-
case expected competitive ratio of at least 5

4 (1 − δ) on sufficiently large instances.

6 Conclusion

We showed that the online L(2, 1)-coloring problem on graphs consisting only
of paths and cycles has the following interesting property. No advice at all is
necessary to color a graph with seven colors, but already linear advice is necessary
to improve by only one color. In other words, sublinear advice does not help at
all. This is something not previously observed—many other problems allow for
a smooth tradeoff between advice complexity and competitive ratio.

All our lower bounds directly carry over to more general graph classes that
contain paths or cycles as special cases, e. g. trees or Hamiltonian graphs. An
open problem is to improve the upper bounds or even match the lower bounds—
for paths and cycles as well as for other graph classes.

References

1. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring
of bipartite graphs with and without advice. In: Gudmundsson, J., Mestre, J.,
Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer,
Heidelberg (2012)

2. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for λ-
colorings of graphs. Comput. J. 47(2), 193–204 (2004)

3 The (small) constant c stems from rounding up the logarithms to natural numbers.



64 M.P. Bianchi et al.

3. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice com-
plexity of the knapsack problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

4. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

6. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Královič, R., Rossmanith, P.:
On the power of randomness versus advice in online computation. In: Bordihn,
H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 30–43.
Springer, Heidelberg (2012)

7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press (1998)

8. Broersma, H.: A General Framework for Coloring Problems: Old Results, New
Results, and Open Problems. In: Akiyama, J., Baskoro, E.T., Kano, M. (eds.)
IJCCGGT 2003. LNCS, vol. 3330, pp. 65–79. Springer, Heidelberg (2005)

9. Dobrev, S., Královic, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. RAIRO ITA 43(3), 585–613 (2009)

10. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009)

11. Forišek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths.
In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239.
Springer, Heidelberg (2012)

12. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J.
Discrete Math. 5(4), 586–595 (1992)

13. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

14. Komm, D., Královič, R.: Advice complexity and barely random algorithms. In:
Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 332–343. Springer, Heidelberg
(2011)

15. Komm, D., Královič, R., Mömke, T.: On the advice complexity of the set cover
problem. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR
2012. LNCS, vol. 7353, pp. 241–252. Springer, Heidelberg (2012)

16. Komm, D.: Advice and Randomization in Online Computation. PhD Thesis, ETH
Zurich (2012)

17. Murphey, R.A., Pardalos, P.M., Resende, M.G.C.: Frequency assignment problems.
In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization,
Supplement 1, pp. 295–377. Kluwer Academic Publishers (1999)

18. Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server prob-
lem. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp.
198–210. Springer, Heidelberg (2012)

19. Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online vertex coloring
problem. In: Proc. of CIAC 2013 (to appear, 2013)

20. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

21. Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discrete
Mathematics 306(12), 1217–1231 (2006)



On Randomized Fictitious Play

for Approximating Saddle
Points over Convex Sets

Khaled Elbassioni1, Kazuhisa Makino2, Kurt Mehlhorn3,
and Fahimeh Ramezani3

1 Masdar Institute of Science and Technology, Abu Dhabi, UAE
2 Graduate School of Information Science and Technology, University of Tokyo,

Tokyo, 113-8656, Japan
3 Max Planck Institute for Informatics; Campus E1 4, 66123, Saarbrucken, Germany

Abstract. Given two bounded convex sets X ⊆ Rm and Y ⊆ Rn, spec-
ified by membership oracles, and a continuous convex-concave function
F : X×Y → R, we consider the problem of computing an ε-approximate
saddle point, that is, a pair (x∗, y∗) ∈ X×Y such that supy∈Y F (x∗, y) ≤
infx∈X F (x, y∗) + ε. Grigoriadis and Khachiyan (1995), based on a ran-
domized variant of fictitious play, gave a simple algorithm for computing
an ε-approximate saddle point for matrix games, that is, when F is bi-
linear and the sets X and Y are simplices. In this paper, we extend their
method to the general case. In particular, we show that, for functions of
constant “width”, an ε-approximate saddle point can be computed us-
ing O∗(n+m) random samples from log-concave distributions over the
convex sets X and Y . As a consequence, we obtain a simple random-
ized polynomial-time algorithm that computes such an approximation
faster than known methods for problems with bounded width and when
ε ∈ (0, 1) is a fixed, but arbitrarily small constant. Our main tool for
achieving this result is the combination of the randomized fictitious play
with the recently developed results on sampling from convex sets. A full
version of this paper can be found at http://arxiv.org/abs/1301.5290.

1 Introduction

Let X ⊆ Rm and Y ⊆ Rn be two bounded convex sets. We assume that each
set is given by a membership oracle, that is an algorithm which given x ∈ Rm

(respectively, y ∈ Rn) determines, in polynomial time in m (respectively, n),
whether or not x ∈ X (respectively, y ∈ Y ). Let F : X×Y → R be a continuous
convex-concave function, that is, F (·, y) : X → R is convex for all y ∈ Y and
F (x, ·) : Y → R is concave for all x ∈ X . We assume that we can evaluate F at
rational arguments in constant time. The well-known saddle-point theorem (see
e.g. [Roc70]) states that

v∗ = inf
x∈X

sup
y∈Y

F (x, y) = sup
y∈Y

inf
x∈X

F (x, y). (1)

This can be interpreted as a 2-player zero-sum game, with one player, the mini-
mizer, choosing her/his strategy from a convex domain X , while the other player,

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 65–76, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://arxiv.org/abs/1301.5290


66 K. Elbassioni et al.

the maximizer, choosing her/his strategy from a convex domain Y . For a pair
of strategies x ∈ X and y ∈ Y , F (x, y) denotes the corresponding payoff, which
is the amount that the minimizer pays to the maximizer. An equilibrium, when
both X and Y are closed, corresponds to a saddle point, which is guaranteed to
exist by (1), and the value of the game is the common value v∗. When an approx-
imate solution suffices or at least one the sets X or Y is open, the appropriate
notion is that of ε-optimal strategies, that a pair of strategies (x∗, y∗) ∈ X × Y
such that for a given desired absolute accuracy ε > 0,

sup
y∈Y

F (x∗, y) ≤ inf
x∈X

F (x, y∗) + ε. (2)

There is an extensive literature, e.g. [Dan63, Sha58, Roc70], on the existence of
saddle points in this class of games and applications of these games. A particu-
larly important case is when the sets X and Y are polytopes with an exponential
number of facets arising as the convex hulls of combinatorial objects (see full pa-
per for some applications).

One can easily see that (1) can be reformulated as a convex minimization prob-
lem over a convex set given by a membership oracle1, and hence any algorithm
for solving this class of problems, e.g., the Ellipsoid method, can be used to com-
pute a solution to (2), in time polynomial in the input size and polylog(1ε ). How-
ever, there has recently been an increasing interest in finding simpler and faster
approximation algorithms for convex optimization problems, sacrificing the de-
pendence on ε from polylog(1ε ) to poly(1ε ), in exchange of efficiency in terms of
other input parameters; see e.g. [AHK05, AK07, BBR04, GK92, GK95], [GK98,
GK04, Kha04, Kal07, LN93, KY07], [You01, PST91, GK94, GK96, GKPV01],
and [Jan04, DJ07].

In this paper, we show that it is possible to get such an algorithm for com-
puting an ε-saddle point (2). Our algorithm is based on combining a technique
developed by Grigoriadis and Khachiyan [GK95], based on a randomized variant
of Brown’s fictitious play [Bro51], with the recent results on random sampling
from convex sets [LV06, Vem05]. Our algorithm is superior to known methods
when the width parameter ρ (to be defined later) is small and ε ∈ (0, 1) is a
fixed but arbitrarily small constant.

2 Our Result

We need to make the following technical assumptions:

(A1) We know ξ0 ∈ X , and η0 ∈ Y , and strictly positive numbers rX , RX ,
rY , and RY such that Bm(ξ0, rX) ⊆ X ⊆ Bm(0, RX) and Bn(η0, rY ) ⊆ Y ⊆
Bn(0, RY ), where Bk(x0, r) = {x ∈ Rk : ‖x − x0‖2 ≤ r} is the k-dimensional
ball for radius r centered at x0 ∈ Rk. In particular, both X and Y are full-
dimensional in their respective spaces (but maybe open). In what follows we will
denote by R the maximum of {RX , RY , 1

rX
, 1
rY
}.

1 Minimize F (x), where F (x) = maxy F (x, y).



On Randomized Fictitious Play for Approximating Saddle Points 67

(A2) |F (x, y)| ≤ 1 for all x ∈ X and y ∈ Y.

Assumption (A1) is standard for algorithms that deal with convex sets de-
fined by membership oracles (see, e.g., [GLS93]), and will be required by the
sampling algorithms. Assumption (A2) can be made without loss of general-
ity, since the original game can be converted to an equivalent one satisfying
(A2) by scaling the function F by 1

ρ , where the “width” parameter is defined

as ρ = maxx∈X,y∈Y |F (x, y)|. (For instance, in case of bilinear function, i.e,
F (x, y) = xAy, where A is given m×n matrix, we have ρ = maxx∈X,y∈Y |xAy| ≤√
mnRXRY max{|aij | : i ∈ [m], j ∈ [n]}.) Replacing ε by ε

ρ , we get an

algorithm that works without assumption (A2) but whose running time is pro-
portional to ρ2. We note that such dependence on the width is unavoidable in
algorithms that obtain ε-approximate solutions for negative functions and whose
running time is proportional to poly(1ε ) (see e.g. [AHK06, PST91]); otherwise,
scaling would yield an exact algorithm for rational inputs. For nonnegative func-
tions F, the dependence on the width can be avoided, if we consider relative
approximation errors (see [GK98, Kha04, KY07, You01]).

We assume throughout that ε is a positive constant less than 1.
The main contribution of this paper is to extend the randomized fictitious

play result in [GK95] to the more general setting given by (2).

Theorem 1. Assume X and Y satisfy assumption (A1). Then there is a ran-
domized algorithm that finds a pair of ε-optimal strategies in an expected number

of O(ρ
2(n+m)

ε2 ln R
ε ) iterations, each computing two approximate2 samples from

log-concave distributions. The algorithm3 ,4 requires O∗(ρ
2(n+m)6

ε2 ln R
ε ) calls to

the membership oracles for X and Y .

When the width is bounded and ε is a fixed constant, our algorithm needs
O∗((n + m)6 lnR) oracle calls. This is superior to known methods, e.g., the
Ellipsoid method, that compute the ε-saddle point in time polynomial in log 1

ε .
In the full paper, we give examples of problems with bounded width arising in
combinatorial optimization.

3 Relation to Previous Work

Matrix and Polyhedral Games. The special case when each of the sets X
and Y is a polytope (or more generally, a polyhedron) and payoff is a bilinear
function, is known as polyhedral games (see e.g. [Was03]). When each of these
polytopes is just a simplex we obtain the well-known class of matrix games.
Even though each polyhedral game can be reduced to a matrix game by using
the vertex representation of each polytope (see e.g. [Sch86]), this transformation

2 See Section 5.3 for details.
3 Here, we apply random sampling as a black box for each iteration independently;
it might be possible to improve the running time if we utilize the fact that the
distributions are only slightly modified from an iteration to the next.

4 O∗(·) suppresses polylogarithmic factors that depend on n, m and ε.



68 K. Elbassioni et al.

may be (and is typically) not algorithmically efficient since the number of vertices
may be exponential in the number of facets by which each polytope is given.

Fictitious Play. We assume for the purposes of this subsection that both sets
X and Y are closed, and hence the infimum and supremum in (1) are replaced
by the minimum and maximum, respectively.

In fictitious play which is a deterministic procedure and originally proposed
by Brown [Bro51] for matrix games, each player updates his/her strategy by
applying the best response, given the current opponent’s strategy. More precisely,
the minimizer and the maximizer initialize, respectively, x(0) = 0 and y(0) = 0,
and for t = 1, 2, . . . , update x(t) and y(t) by

x(t+ 1) =
t

t+ 1
x(t) +

1

t+ 1
ξ(t), where ξ(t) = argminξ∈X F (ξ, y(t)), (3)

y(t+ 1) =
t

t+ 1
y(t) +

1

t+ 1
η(t), where η(t) = argmaxη∈Y F (x(t), η). (4)

For matrix games, the convergence to optimal strategies was established by
Robinson [Rob51]. In this case, the best response of each player at each step
can be chosen from the vertices of the corresponding simplex. A bound of(

2m+n

ε

)m+n−2

on the time needed for convergence to an ε-saddle point was

obtained by Shapiro [Sha58]. More recently, Hofbauer and Sorin [HS06] showed
the convergence of fictitious play for continuous convex-concave functions over
compact convex sets; they also gave a dynamic proof for the minmax theorem.

Randomized Fictitious Play. In [GK95], Grigoriadis and Khachiyan intro-
duced a randomized variant of fictitious play for matrix games. Their algorithm
replaces the minimum and maximum selections (3)-(4) by a smoothed version,
in which, at each time step t, the minimizing player selects a strategy i ∈ [m]
with probability proportional to exp

{
− ε

2eiAy(t)
}
, where ei denotes the ith unit

vector of dimension m. Similarly, the maximizing player chooses strategy j ∈ [n]
with probability proportional to exp

{
ε
2x(t)Aej

}
. Grigoriadis and Khachiyan

proved that, if A ∈ [−1, 1]m×n, then this algorithm converges, with high proba-

bility, to an ε-saddle point inO( log(m+n)
ε2 ) iterations. Our result builds on [GK95].

The Multiplicative Weights Update Method. Freund and Schapire [FS99]
showed how to use the weighted majority algorithm, originally developed by Lit-
tlestone and Warmuth [LW94], for computing ε-saddle points for matrix games.
Their procedure can be thought of as a derandomization of the randomized fic-
titious play described above. Similar algorithms have also been developed for
approximately solving special optimization problems, such as general linear pro-
grams [PST91], multicommodity flow problems [GK98], packing and covering
linear programs [PST91, GK98, GK04, KY07, You01], a class of convex pro-
grams [Kha04], and semidefinite programs [AHK05, AK07]. Arora, Hazan and
Kale [AHK06] consider the following scenario: given a finite set X of decisions
and a finite set Y of outputs, and a payoff matrix M ∈ RX×Y such that M(x, y)
is the penalty that would be paid if decision x ∈ X was made and output y ∈ Y



On Randomized Fictitious Play for Approximating Saddle Points 69

was the result, the objective is to develop a decision making strategy that tends
to minimize the total payoff over many rounds of such decision making. Arora
et al. [AHK06, Kal07] show how to apply this framework to approximately com-
puting maxy∈Y mini∈[m] fi(y), given an oracle for finding maxy∈Y

∑
i∈[m] λifi(y)

for any non-negative λ ∈ Rm such that
∑m

i=1 λi = 1, where Y ⊆ Rn is a given
convex set and f1, . . . , fm : Y → R are given concave functions (see also [Kha04]
for similar results).

There are two reasons why this method cannot be (directly) used to solve our
problem (2). First, the number of decisions m is infinite in our case, and second,
we do not assume to have access to an oracle of the type described above;
we assume only a (weakest possible) membership oracle on Y . Our algorithm
extends the multiplicative update method to the computation of approximate
saddle points.

Hazan’s Work. In his Ph.D. Thesis [Haz06], Hazan gave an algorithm, based
on the multiplicative weights updates method, for approximating the minimum
of a convex function within an absolute error of ε. Theorem 4.14 in [Haz06]
suggests that a similar procedure5 can be used to approximate a saddle point
for convex-concave functions, however, without a running time analysis.

Sampling Algorithms. Our algorithm makes use of known algorithms for
sampling from a given log-concave distribution6 f(·) over a convex set X ⊆ Rm.
The currently best known result achieving this is due to Lovász and Vempala
(see, e.g., [LV07, Theorem 2.1]): a random walk on X converges in O∗(m5)
steps to a distribution within a total variation distance of ε from the desired
exponential distribution with high probability.

Several algorithms for convex optimization based on sampling have been re-
cently proposed. Bertsimas and Vempala [BV04] showed how to minimize a con-
vex function over a convex set X ⊆ Rm, given by a membership oracle, in time
O∗((m5C+m7) logR), where C is the time required by a single oracle call. When
the function is linear time O∗(m4.5C) suffices (Kalai and Vempala [KV06]).

Note that we can write (1) as the convex minimization problem infx∈X F (x),
where F (x) = supy∈Y F (x, y) is a convex function. Thus, it is worth comparing
the bounds we obtain in Theorem 1 with the bounds that one could obtain by
applying the random sampling techniques of [BV04, KV06] (see Table 1 in [BV04]
for a comparison between these techniques and the Ellipsoid method). Since the
above program is equivalent to inf{v : x ∈ X, and F (x, y) ≤ v for all y ∈
Y }, the solution can be obtained by applying the technique of [BV04, KV06],
where each membership call involves another application of these techniques
(to check if supy∈Y F (x, y) ≤ v). The total time required by this procedure is

5 This procedure can be written in the same form as our Algorithm 1 below, except
that it chooses the points ξ(t) ∈ X and η(t) ∈ Y , at each time step t = 1, . . . , T ,
as the (approximate) centroids of the corresponding sets with respect to densities

pξ(t) = e
∑t−1

τ=1 ln(e−F (ξ,η(τ))) and qη(t) = e
∑t−1

τ=1 ln(e+F (ξ(τ),η)) (both of which are
log-concave distributions), and outputs ( 1

T

∑T
t=1 x(t),

1
T

∑T
t=1 y(t)) at the end.

6 That is, log f(·) is concave.



70 K. Elbassioni et al.

Algorithm 1. Randomized fictitious play

Input: Two convex bounded sets X,Y and a function F (x, y) such that F (·, y) :
X → R is convex for all y ∈ Y and F (x, ·) : Y → R is concave for all x ∈ X ,
satisfying assumptions (A1) and (A2)

Output: A pair of ε-optimal strategies
1: t := 0; choose x(0) ∈ X ; y(0) ∈ Y , arbitrarily
2: while t ≤ T do
3: Pick ξ ∈ X and η ∈ Y , independently, from X and Y with densities

pξ(t)
‖p(t)‖1

and
qη(t)

‖q(t)‖1
, respectively

4: x(t+ 1) := t
t+1x(t) +

1
t+1ξ; y(t+ 1) := t

t+1y(t) +
1

t+1η; t := t+ 1;
5: end while
6: return (x(t), y(t))

O∗(n4.5(m5C +m7) logR), which is significantly greater than the bound stated
in Theorem 1.

4 The Algorithm

The algorithm (see box 1) is a direct generalization of the algorithm in [GK95].
It proceeds in steps t = 0, 1, . . ., updating the pair of accumulative strategies
x(t) and y(t). Given the current pair (x(t), y(t)), define

pξ(t) = e−
εtF (ξ,y(t))

2 for ξ ∈ X , (5)

qη(t) = e
εtF (x(t),η)

2 for η ∈ Y , (6)

and let

‖p(t)‖1 =
∫
ξ∈X

pξ(t)dξ and ‖q(t)‖1 =

∫
η∈Y

qη(t)dη.

The parameter T will be specified later (see Lemma 4).

5 Analysis

Following [GK95], we use a potential function Φ(t) = ‖p(t)‖1‖q(t)‖1 to bound
the number of iterations required by the algorithm to reach an ε-saddle point.
The analysis is composed of three parts. The first part of the analysis (Section
5.1), is a generalization of the arguments in [GK95] (and [KY07]): we show

that the potential function increases, on the average, only by a factor of eO(ε2),
implying that after t iterations the potential is at most a factor of eO(ε2)t of the
initial potential. While this was enough to bound the number of iterations by
ε−2 log(n+m) when both X and Y are simplices and the potential is a sum over
all vertices of the simplices [GK95], this cannot be directly applied in our case.



On Randomized Fictitious Play for Approximating Saddle Points 71

This is because the fact that a definite integral of a non-negative function over
a given region Q is bounded by some τ does not imply that the function at any
point in Q is also bounded by τ . In the second part of the analysis (Section 5.2),
we overcome this difficulty by showing that, due to concavity of the exponents in
(5) and (6), the change in the function around a given point cannot be too large,
and hence, the value at a given point cannot be large unless there is a sufficiently
large fraction of the volume of the sets X and Y over which the integral is also
too large. In the last part of the analysis (Section 5.3) , we show that the same
bound on the running time holds when the sampling distributions in line 3 of
the algorithm are replaced by sufficiently close approximate distributions.

5.1 Bounding the Potential Increase

Lemma 1. For t = 0, 1, 2, . . . ,

E[Φ(t + 1)] ≤ E[Φ(t)](1 +
ε

6

2
)2.

The proof is a direct generalization of the proof in [GK95] and is given in the
full paper. By Markov’s inequality we have the following statement.

Corollary 1. With probability at least 1
2 , after t iterations,

Φ(t) ≤ 2e
ε2

3 tΦ(0). (7)

At this point one might tend to conclude the proof, as in [GK95, KY07], by
implying from Corollary 1 and the non-negativity of the function under the
integral

Φ(t) =

∫
ξ∈X,η∈Y

e
ε
2 t(F (x(t),η)−F (ξ,y(t)))dξdη, (8)

that this function is bounded at every point also by 2e
ε2

3 tΦ(0) (with high proba-
bility). This would then imply that the current strategies are ε-optimal. However,
this is not necessarily true in general and we have to modify the argument to
show that, even though the value of the function at some points can be larger

than the bound 2e
ε2

3 tΦ(0), the increase in this value cannot be more than an
exponential (in the input description), which would be still enough for the bound
on the number of iterations to go through.

5.2 Bounding the Number of Iterations

For convenience, define Z = X × Y , and concave function gt : Z → R given at
any point z = (ξ, η) ∈ Z by gt(ξ, η) :=

ε
2 t (F (x(t), η) − F (ξ, y(t))). Note that, by

our assumptions, Z is a full-dimensional bounded convex set in RN of volume
Φ(0) = vol(X)·vol(Y ), where N = n+m. Furthermore, assumption (A2) implies
that |gt(z)| = | ε2 t (F (x(t), η) − F (ξ, y(t))) | ≤ εt for all z ∈ Z.

A sufficient condition for the convergence to an ε-approximate equilibrium is
provided by the following lemma.



72 K. Elbassioni et al.

Lemma 2. Suppose that (7) holds and there exists an α such that

0 < α < 4εt, (9)

e
1
2α

( α

4εt

)N

vol(Z) > 1. (10)

Then

egt(z) ≤ 2e
ε2

3 t+αΦ(0) for all z ∈ Z. (11)

Proof. Assume otherwise, i.e., there is z∗ ∈ Z with gt(z
∗) > ε2

3 t+α+ln(2Φ(0)).
Let λ∗ = α/(4εt),

Z+ = {z ∈ Z|gt(z) ≥ gt(z
∗)− α/2}, and Z++ = {z∗ + 1

λ∗ (z − z∗)|z ∈ Z+}.

Concavity of gt implies convexity of Z+. This implies in particular that z∗ +
λ′(z − z∗) ∈ Z++ of all 0 ≤ λ′ ≤ 1

λ∗ and z ∈ Z+, since z∗ + λ∗λ′(z − z∗) ∈ Z+.
We claim that Z ⊆ Z++. Assume otherwise, and let x ∈ Z \ Z++ (and hence
x ∈ Z \ Z+). Let

λ+ = sup{λ | z∗ + λ(x − z∗) ∈ Z+} and z+ = z∗ + λ+(x− z∗).

By continuity of gt, z+ ∈ Z+ and gt(z
∗) − α/2 = gt(z

+). We have x − z∗ =
1
λ+ (z

+ − z∗) and hence 1
λ+ > 1

λ∗ . But z+ = λ+x+ (1− λ+)z∗ and hence

gt(z
∗)− α/2 = gt(z

+) = gt(λ
+x+ (1 − λ+)z∗) ≥ λ+gt(x) + (1− λ+)gt(z

∗).

Thus
α

2
≤ λ+(gt(z

∗)− gt(x)) ≤ 2εtλ+,

a contradiction. We have now established Z ⊆ Z++. The containment implies

vol(Z) ≤ vol(Z++) =

(
1

λ∗

)N

vol(Z+)

and further

Φ(t) =

∫
z∈Z

egt(z)dz ≥
∫
z∈Z+

egt(z)dz

≥ 2Φ(0)e
ε2

3 t+ 1
2α vol(Z+) ≥ 2Φ(0)e

ε2

3 t+ 1
2α

( α

4εt

)N

vol(Z) > 2Φ(0)e
ε2

3 t,

a contradiction to (7). ��
We can now derive an upper-bound on the number of iterations needed to con-
verge to ε-optimal strategies.

Lemma 3. If (11) holds and

t ≥ 6

ε2
(α+max{0, ln(2 vol(Z))}), (12)

then (x(t), y(t)) is an ε-optimal pair.



On Randomized Fictitious Play for Approximating Saddle Points 73

Proof. By (11) we have gt(z) ≤ ε2

3 t+α+ ln(2Φ(0)) = ε2

3 t+α+ ln(2 vol(Z)) for
all z ∈ Z, or equivalently,

ε

2
t(F (x(t), η) − F (ξ, y(t))) ≤ ε2

3
t+ α+ ln(2 vol(Z)) for all ξ ∈ X and η ∈ Y.

Hence,

F (x(t), η) ≤ F (ξ, y(t)) +
2ε

3
+

2

εt
(α+ ln(2 vol(Z)) for all ξ ∈ X and η ∈ Y,

which implies by (12) that

F (x(t), η) ≤ F (ξ, y(t)) + ε for all ξ ∈ X and η ∈ Y.

��
Lemma 4. For any ε ∈ (0, 1), there exist α and

t = O

(
N

ε2
ln

R

ε

)
satisfying (9), (10) and (12).

Proof. Assume vol(Z) ≤ 1
2 . Let us choose t = 6α

ε2 . Then (10) becomes (after
taking logarithms)

α

2
+N ln(

α

4εt
) + ln(vol(Z)) > 0.

So choosing α
2 = N ln(25ε )− ln(vol(Z))) would satisfy this inequality. Then

t = O

(
N

ε2
ln

1

ε
+

1

ε2
ln

1

vol(Z)

)
.

Since 1/ vol Z ≤ RN , the claim follows. Let now vol(Z) > 1
2 . Then

e
α
2 (

α

4εt
)N vol(Z) >

1

2
e

α
2 (

α

4εt
)N ,

Thus, in order to satisfy (10), it is enough to find α and t satisfying

1

2
e

α
2 (

α

4εt
)N > 1.

To satisfy (12), let us simply choose t = 6α
ε2 + 6

ε2 ln(2 vol(Z)) and demand that

1

2
e

α
2 (

α

4εt
)N =

1

2
e

α
2 (

α
24α
ε + 24

ε ln(2 vol(Z))
)N > 1,

or equivalently,

2

(
24

ε

)N (
1 +

ln(2 vol(Z))

α

)N

< e
α
2 .



74 K. Elbassioni et al.

Thus, it is enough to select α = max
{
4(ln 2 +N ln(24ε )), 2

√
N ln(2 vol(Z))

}
which satisfies

2

(
24

ε

)N

≤ e
α
4 and

(
1 +

ln(2 vol(Z))

α

)N

< e
ln(2 vol(Z))

α N ≤ e
α
4 .

It follows that

t = max

{
24

ε2
(ln 2 +N ln(

24

ε
)),

12

ε2

√
N ln(2 vol(Z))

}
+

6

ε2
ln(2 vol(Z)).

Since vol(Z) ≤ RN , the claim follows. ��
Setting T in Algorithm 1 to the value of t given by Lemma 4 yields the following
result.

Corollary 2. Assume X and Y satisfy assumptions (A1) and (A2). Then Algo-
rithm 1 computes a pair of ε-optimal strategies in expectedO(n+m

ε2 ln R
ε ) iterations.

5.3 Using Approximate Distributions

We now consider the (realistic) situation when we can only sample approximately
from the convex sets. In this case we assume the existence of approximate sam-
pling routines that, upon the call in step 3 of the algorithm, return vectors ξ ∈ X ,
and (independently) η ∈ Y , with densities p̂ξ(t) and q̂η(t), such that

sup
X′⊆X

∣∣∣∣ p̂X′(t)

p̂X(t)
− pX′(t)

pX(t)

∣∣∣∣ ≤ δ and sup
Y ′⊆Y

∣∣∣∣ q̂Y ′(t)

q̂Y (t)
− qY ′(t)

qY (t)

∣∣∣∣ ≤ δ, (13)

where p̂X′(t) =
∫
ξ∈X′ p̂ξdξ (similarly, define pX′(t), q̂Y ′(t), qY ′(t)), and δ is a

given desired accuracy. We next prove an approximate version of Lemma 1.

Lemma 5. Suppose that we use approximate sampling routines with δ = ε/4 in
step 3 of Algorithm 1. Then, for t = 0, 1, 2, . . . , we have

E[Φ(t+ 1)] ≤ E[Φ(t)](1 +
43

36
ε2).

See the full paper for the proof. Combining the currently known bound on the
mixing time for sampling (see [LV04, LV06, LV07] and also Section 3) with the
bounds on the number of iterations from Corollary 2 gives Theorem 1.

6 Conclusion and Acknowledgment

We showed that randomized fictitious play can be applied for computing ε-saddle
points of convex-concave functions over the product of two convex bounded sets.
Even though our bounds were stated for general convex sets, one should note
that these bounds may be improved for classes of convex sets for which faster
sampling procedures could be developed. We believe that the method used in
this paper could be useful for developing algorithms for computing approximate
equilibria for other classes of games.

We are grateful to Endre Boros and Vladimir Gurvich for many valuable
discussions.



On Randomized Fictitious Play for Approximating Saddle Points 75

References

[AHK05] Arora, S., Hazan, E., Kale, S.: Fast algorithms for approximate semidefinite
programming using the multiplicative weights update method. In: FOCS,
pp. 339–348 (2005)

[AHK06] Arora, S., Hazan, E., Kale, S.: Multiplicative weights method: a meta-
algorithm and its applications. Technical report, Princeton University, USA
(2006)

[AK07] Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite
programs. In: STOC, pp. 227–236 (2007)

[BBR04] Bartal, Y., Byers, J.W., Raz, D.: Fast, distributed approximation algo-
rithms for positive linear programming with applications to flow control.
SIAM J. Comput. 33(6), 1261–1279 (2004)

[Bro51] Brown, G.W.: Iterative solution of games by fictitious play. In: Koopmans,
T.C. (ed.) Activity Analysis of Production and Allocation, pp. 374–376
(1951)

[BV04] Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J.
ACM 51(4), 540–556 (2004)

[Dan63] Dantzig, G.B.: Linear Programming and extensions. Princeton University
Press (1963)

[DJ07] Diedrich, F., Jansen, K.: Faster and simpler approximation algorithms for
mixed packing and covering problems. Theor. Comput. Sci. 377, 181–204
(2007)

[FS99] Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative
weights. Games and Economic Behavior 29(1-2), 79–103 (1999)

[GK92] Grigoriadis, M.D., Khachiyan, L.G.: Approximate solution of matrix games
in parallel. In: Advances in Optimization and Parallel Computing, pp.
129–136 (1992)

[GK94] Grigoriadis, M.D., Khachiyan, L.G.: Fast approximation schemes for convex
programs with many blocks and couplingconstraints. SIAM J. Optim. 4,
86–107 (1994)

[GK95] Grigoriadis, M.D., Khachiyan, L.G.: A sublinear-time randomized approx-
imation algorithm for matrix games. Operations Research Letters 18(2),
53–58 (1995)

[GK96] Grigoriadis, M.D., Khachiyan, L.G.: Coordination complexity of parallel
price-directive decomposition. Math. Oper. Res. 21(2), 321–340 (1996)

[GK98] Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In: FOCS, pp. 300–309 (1998)

[GK04] Garg, N., Khandekar, R.: Fractional covering with upper bounds on the
variables: Solving lPs with negative entries. In: Albers, S., Radzik, T. (eds.)
ESA 2004. LNCS, vol. 3221, pp. 371–382. Springer, Heidelberg (2004)

[GKPV01] Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Ap-
proximate max-min resource sharing for structured concave optimization.
SIAM Journal on Optimization 41, 1081–1091 (2001)

[GLS93] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Com-
binatorial Optimization, 2nd edn. Algorithms and Combinatorics, vol. 2.
Springer (1993)

[Haz06] Hazan, E.: Efficient Algorithms for Online Convex Optimization and Their
Application. PhD thesis, Princeton University, USA (2006)



76 K. Elbassioni et al.

[HS06] Hofbauer, J., Sorin, S.: Best response dynamics for continuous zero-
sum games. Discrete and Continous Dynamical Systems – Series B 6(1),
215–224 (2006)

[Jan04] Jansen, K.: Approximation algorithms for mixed fractional packing and
covering problems. In: IFIP TCS, pp. 223–236 (2004)

[Kal07] Kale, S.: Efficient Algorithms using the Multiplicative Weights Update
Method. PhD thesis, Princeton University, USA (2007)

[Kha04] Khandekar, R.: Lagrangian Relaxation based Algorithms for Convex Pro-
gramming Problems. PhD thesis, Indian Institute of Technology, Delhi
(2004)

[KV06] Kalai, A., Vempala, S.: Simulated annealing for convex optimization. Math.
Oper. Res. 31(2), 253–266 (2006)

[KY07] Koufogiannakis, C., Young, N.E.: Beating simplex for fractional packing
and covering linear programs. In: FOCS, pp. 494–504 (2007)

[LN93] Luby, M., Nisan, N.: A parallel approximation algorithm for positive linear
programming. In: STOC, pp. 448–457 (1993)

[LV04] Lovász, L., Vempala, S.: Hit-and-run from a corner. In: STOC, pp. 310–314
(2004)

[LV06] Lovász, L., Vempala, S.: Fast algorithms for logconcave functions: Sam-
pling, rounding, integration and optimization. In: FOCS, pp. 57–68 (2006)

[LV07] Lovász, L., Vempala, S.: The geometry of logconcave functions and sam-
pling algorithms. Random Struct. Algorithms 30(3), 307–358 (2007)

[LW94] Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf.
Comput. 108(2), 212–261 (1994)

[PST91] Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for
fractional packing and covering problems. In: FOCS, pp. 495–504 (1991)

[Rob51] Robinson, J.: An iterative method of solving a game. The Annals of Math-
ematics 54(2), 296–301 (1951)

[Roc70] Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series. Prince-
ton University Press (1970)

[Sch86] Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York
(1986)

[Sha58] Shapiro, H.N.: Note on a computation method in the theory of games.
Communications on Pure and Applied Mathematics 11(4), 587–593 (1958)

[Vem05] Vempala, S.S.: Geometric random walks: A survey. Combinatorial and
Computational Geometry 52, 573–612 (2005)

[Was03] Washburn, A.R.: Two-Person Zero-Sum Games. INFORMS (2003)
[You01] Young, N.E.: Sequential and parallel algorithms for mixed packing and

covering. In: FOCS, pp. 538–546 (2001)



A Fast Algorithm for Data Collection

along a Fixed Track

Otfried Cheong1, Radwa El Shawi2,3, and Joachim Gudmundsson2,3

1 Korea Advanced Institute of Science and Technology, Republic of Korea�

otfried@kaist.edu
2 University of Sydney, Australia��

joachim.gudmundsson@sydney.edu.au
3 NICTA� � �, Sydney, Australia
radwa.elshawi@nicta.com.au

Abstract. Recent research shows that significant energy saving can be
achieved in wireless sensor networks (WSNs) with a mobile base station
that collects data from sensor nodes via short-range communications.
However, a major performance bottleneck of such WSNs is the signif-
icantly increased latency in data collection due to the low movement
speed of mobile base stations. In this paper we study the problem of
finding a data collection path for a mobile base station moving along a
fixed track in a wireless sensor network to minimize the latency of data
collection. The main contribution is an O(mn log n) expected time algo-
rithm, where n is the number of sensors in the networks and m is the
complexity of the fixed track.

1 Introduction

Wireless sensor networks (WSNs) are a well established technology for many
application areas. Their main aims are to monitor physical or environmental
conditions and to cooperatively pass their data through the network to a main
location. Realizing the full potential of wireless sensor networks poses research
challenges ranging from hardware and architectural issues, to programming lan-
guages and operating systems for sensor networks, to security concerns, to algo-
rithms for sensor network deployment [14].

WSNs usually consist of a large number of sensor nodes, which are battery-
powered tiny devices. These devices perform three basic tasks: (i) sample a phys-
ical quantity from the surrounding environment, (ii) process the acquired data,
and (iii) transfer them through wireless communications to a data collection
point called sink node or base station [1,7]. The traditional WSN architectures

� O.C. was supported in part by NRF grant 2011-0016434 and in part by NRF grant
2011-0030044 (SRC-GAIA), both funded by the government of Korea.

�� J.G. was funded by the Australian Research Council FT100100755.
� � � NICTA is funded by the Australian Government as represented by the Department

of Broadband, Communications and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence program.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 77–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



78 O. Cheong, R. El Shawi, and J. Gudmundsson

are based on the assumption that the network is dense, so that any two nodes
can communicate with each other through multihop paths. As a consequence,
in most cases the sensors are assumed to be static. However, recently mobility
has been introduced to WSNs and it has been shown to have several advantages,
such as, increased connectivity, lower cost, higher reliability and higher energy
efficiency [2,10]. An overview of Wireless Sensor Networks with Mobile Elements
(WSN-MEs) can be found in the comprehensive survey by Di Francesco et al. [7].

WSN-MEs have in general three main components [14]:

Regular sensor nodes are the sources of information. They perform sensing
and may also forward or relay messages in the network.

Sinks (base stations) are the destinations of information. A network usually has
very few sinks.

Special support nodes perform a specific task, such as acting as intermediate
data collectors or mobile gateways.

In the setting considered in this paper we have one mobile sink that moves on
a fixed track. The model was introduced by Xing et al. [16]. Although this is
a very restricted model it simplifies the motion control of the mobile sink and
it improves the system reliability and has therefore been adopted by several
existing mobile sensor systems [3]. An example is when the sink only can move
along fixed cables between trees [12]. The objective is to find a continuous path
of length at most L along the track and a set of trees rooted on the path that
connect all the sensor nodes, such that the total Euclidean length of the trees is
minimized [16]. An example is shown in Fig. 1.

More formally, as input we are given a set S = {s1, . . . , sn} of points (sensor
nodes) together with a polygonal path P = 〈p1, . . . , pm〉 in R2. Given two points
α and β on P (not necessarily vertices of P) let Pαβ be the connected subpath of
P with α and β as endpoints. Let MST (S,Pαβ) be a minimum spanning tree of
S that contains Pαβ , where an endpoint of an edge in MST (S,Pαβ) can either
be a point of S or an arbitrary point on Pαβ .

Problem 1. Data Collection on a Fixed Track (DCFT) problem
Given a real value L, a set S = {s1, . . . , sn} of points and a polygonal path P =
〈p1, . . . , pm〉 in R2, find a path Pαβ ⊆ P of length L such that wt(MST (S,Pαβ))
is minimized, where wt(·) denotes the total length of all the edges in the tree.

The path Pαβ is called the active path. Since the weight of the active path is
fixed the aim is to find a placement of the active path on P that minimizes
the total weight of the trees connecting S to it. Note that a point in S can be
connected to any point along Pαβ , not only to the vertices and endpoints of
Pαβ . We will sometimes write Pα∗ or P∗β to denote the subpath of P of length
L starting at α and ending at β, respectively.

To the best of the authors’ knowledge very little work has been done on this
problem from an algorithmic perspective and the only result we are aware of is
the paper by Xing et al. [16]. They state without proof that the DCFT-problem
is NP-hard, and concentrate on approximation algorithms. They showed how to



A Fast Algorithm for Data Collection along a Fixed Track 79

P
Pαβ

α

β
1©

2©

3©

4©

Fig. 1. Illustrating an instance of the DCFT problem with an active path Pαβ and a
minimum spanning tree connecting the sensor nodes to Pαβ . The encircled numbers
illustrate the edge types defined in Observation 1.

compute a 3εL-approximation for the DCFT-problem in O(wt(P)
εL ·n logn) time,

where ε > 0 is a given constant. In this paper we will show that the DCFT-
problem can in fact be solved exactly in O(mn logn) expected time (Theorem 5).

Omitted proofs can be found in the full version of the paper.

2 A Polynomial-Time Algorithm for the DCFT Problem

Since the length of Pαβ is fixed, a natural approach to solve the problem is to
sweep an active path of length L along P while maintaining a minimum spanning
tree. We will identify a set of O(mn) event points along P . It will be shown that
all topological changes to the minimum spanning tree that we maintain during
the sweep will occur when the start or end point of the active path coincides
with one of the event points.

Two problems need to be handled: (1) find all event points along P of the
sweep-line algorithm and (2) maintain a MST (S, Pαβ) during the sweep.

2.1 Basic Properties and Notations

Given a point s and a segment � in the plane let op(s, �) denote the closest
point on � to s, see Fig. 2(a). Similarly, let op(s,P) = ∪�∈P op(s, �) and let
op(S,P) = ∪s∈S op(s,P).

Next we study the edges in an optimal solution in more detail (see Fig. 1).

Observation 1. An edge (u, v) ∈ MST (S,Pαβ) can be one of four types:
type-1: u, v ∈ S,
type-2: u ∈ S and v ∈ op(u,Pαβ) and v lies on Pαβ,
type-3: u ∈ S and v is either α or β, and
type-4: u and v are consecutive vertices of P or points in op(S,P) along P

(these are the edges forming Pαβ).



80 O. Cheong, R. El Shawi, and J. Gudmundsson

�

p

q
op(p, �)

op(q, �)
(a) (b)

x
C1(x)

C2(x)C3(x)

C4(x)

C5(x) C6(x)

Fig. 2. (a) Illustrating op(p, �) and op(q, �). (b) Illustrating the definitions of Ci(x),
1 ≤ i ≤ 6.

We will frequently refer to these edge types throughout this paper, not only
referring to the edges of the spanning tree but to edges of any network.

Now we are ready to start constructing the set of event points, denoted Γ ,
along P . The set will be the union of three subsets Γ1 (below), Γ2 (Theorem 2)
and Γ3 (Theorem 4). Lets start with Γ1 which will contain the vertices of P and
the set of points op(S,P).

Observation 2. The number of points in Γ1 is O(nm) and can be constructed
in O(nm) time.

We say that an active path P ′ is sweeped between two consecutive event points
x and y in Γ1 if P ′ starts with one endpoint coinciding with x and is then moved
along P until one of the end points of P ′ coincides with y. During the sweep no
other event point in Γ1 is encountered by any of the endpoints.

Observation 3. Consider the inter-point Euclidean distance between two points
u and v while sweeping the active path in-between two consecutive event points
in Γ1. If (u, v) is of type-1, type-2 or type-4 then the Euclidean distance |uv|
is fixed during the sweep. If (u, v) is of type-3 then the Euclidean distance will
monotonically increase or decrease.

As a direct consequence we have that all events that may induce a topological
change to a minimum spanning tree during a sweep between two consecutive
event points in Γ1 will involve a type-3 edge. There are two cases:

Case 1: a type-3 edge will be replaced by another type-3 edge (Section 2.2), or
Case 2: a type-3 edge will replace, or be replaced by, a type-1 or type-2 edge
(Section 2.3).

2.2 Generating Event Points for Case 1

In the rest of this section we will only consider sweeping the active path in-
between two event points in Γ1. Consider an arbitrary point x. Let Ci(x),



A Fast Algorithm for Data Collection along a Fixed Track 81

1 ≤ i ≤ 6 be the six cones, ordered counter clockwise, that partition the plane
into six cones with apex at x and interior angle π/3, see Fig. 2(b).

In the proof of Lemma 1 in [16], Xing et al. show the following observation
(adapted to our notations).

Observation 4. Let Pαβ be an optimal solution. Assume α lies on a segment
(pj , pj+1) of P and assume (pj , pj+1) is horizontal with pj to the left of pj+1.
There exists a MST (S,Pαβ) such that:

– α is connected to at most one point in each Ci(α), 1 ≤ i ≤ 6, and β is
connected to at most one point in each Ci(β), 1 ≤ i ≤ 6, and

– no point of S to the right of α, is connected by an edge to α. The symmetric
result holds for β.

From the above observation it immediately follows that for each α and for each
β there are at most four potential type-3 edges in the minimum spanning tree.
Thus, for a type-3 edge to be connected to an endpoint of the active path, say
α, in the MST (S,Pαβ) it has to be a nearest neighbor to α in one of the six
cones Ci(α), 1 ≤ i ≤ 6.

Consider a case 1 event, and assume that a type-3 edge (s1, α) is replaced
by another type-3 edge, say the type-3 edge (s2, γ) where γ ∈ {α, β}. Before
the event point we have |s1α| < |s2γ| and after the event point the order has
changed to |s1α| > |s2γ|.

From the above discussion it follows that all case 1 events can be found if
we, during the entire sweep, can keep track of the twelve (only eight of which
are of interest) potential type-3 edges, i.e., the nearest neighbor in each Ci(α)
and Ci(β), 1 ≤ i ≤ 6. We will use the following theorem that will be shown in
Section 3. See Fig. 3(a) for an illustration.

Theorem 1. Given a set S of n points in the plane, a direction d and an angle
θ < π the plane can be partitioned into O(n) regions of total complexity O(n)
in O(n logn) expected time such that every point p in a region has the same
nearest neighbor, say s, in C(p, d, θ), where C(p, d, θ) is the cone with apex at p,
interior angle θ ≤ π and with d as its bisector. The resulting partition is called
an angle-restricted Voronoi diagram (ar-VD) of S.

Let θ = π/3 and consider the following six directions (counterclockwise angle
formed with the positive x-axis) di = (i−1) · π3 , 1 ≤ i ≤ 6, see Fig. 2(b). For each
i, 1 ≤ i ≤ 6, construct an angle-restricted VD, denoted Vi, of S with parameters
θ and di using Theorem 1.

Using the ar-VDs one can now construct the set Γ2. Every intersection point
between P and an edge in any of the six ar-VDs V1, . . . , V6, is added to Γ2. For
each segment there are O(n) intersections, thus O(mn) in total. Each intersec-
tion point can be found in O(log n) time using a standard point location data
structure [5]. Constructing the six ar-VDs requires O(mn logn) expected time
according to Theorem 1, thus O(mn logn) expected time in total.

Consider the sweep of the active path in-between two consecutive event points
in Γ1 ∪ Γ2. Note that during this sweep the potential type-3 edges will not



82 O. Cheong, R. El Shawi, and J. Gudmundsson

(a) (b)

s

p1

p2
θ

d
θ

d

p ∈ Γ

L L

x

y

Fig. 3. (a) Every point p in a region of the angle-restricted Voronoi diagram have the
same nearest neighbor in the cone C(p, d, θ). (b) Adding three vertices x, p and y to
E(Λ) along P for each point in Λ.

change. Thus, to complete the set of all case 1 event points compute all events
where the weight of two potential type-3 edges swap order. Since the weight
of a potential type-3 edge is monotonically increasing or decreasing, according
to Observation 3, there are at most 16 such events in-between two consecutive
event points in Γ1 ∪ Γ2. Given all the potential type-3 edges (at most eight) the
events can be computed in constant time. Every point along P where such an
event takes place is added to Γ2.

We summarize this section with the following theorem, which follows imme-
diately from the above discussion.

Theorem 2. All event points Γ2 where a type-3 edge is potentially replaced by
another type-3 edge can be found in O(mn log n) expected time using O(nm)
space.

2.3 Generating Event Points for Case 2

The final set of events is when a type-3 edge is replacing, or is replaced by, a
type-1 or type-2 edge. We will show how the dynamic offline graph minimum
spanning tree (DMST) algorithm by Eppstein [6] can be used to find Γ3.

Theorem 3. [Adapted from Theorem 1 in [6]] Given a sequence of k edge weight
modifications in a graph of size N , starting from a state in which all weights are
equal, we can compute the corresponding sequence of minimum spanning trees in
time1 O(k logN) and space O(N).

2.2.1 Build the Graph. To use the above result we will construct a graph
G = (V,E) and a sequence of edge weight modifications.

1 In [6] the linear-time MST algorithm by Fredman and Willard [8] is used, resulting in
O(k logN) running time. If we are constrained to the real RAMmodel of computation
we have to pay an additional factor of O(logN) to build the MST, and thus an extra
O(logN) factor to the total running time.



A Fast Algorithm for Data Collection along a Fixed Track 83

Before we define the graph we need the following definition. Let Λ be a set
of points along P . From Λ one can generate the set E(Λ) by adding up to three
points on P for each point p in Λ; the point p, the two points at distance L along
P from p, if they exist. See Fig. 3(b) for an illustration.

The node set V corresponds to the points in S and the points in E(Γ1 ∪ Γ2),
and its total size is O(mn). The edge set E is constructed as follows:

1. Consider a minimum spanning tree of S. Add the corresponding edges to E.
2. For every vertex v ∈ V corresponding to a point s ∈ S add the O(m) edges

connecting v to the set of vertices in V corresponding to the points op(s,P).
3. For each segment ei = (pi, pi+1) in P , 1 ≤ i ≤ m− 1, add an edge between

the vertex in V corresponding to pi and the vertex in V corresponding to
the nearest neighbor in Cj(pi), 1 ≤ j ≤ 6.

4. For each point p ∈ op(S,P) add an edge between the vertex in V corre-
sponding to p and the vertex in V corresponding to the nearest neighbor in
Cj(p), 1 ≤ j ≤ j.

5. For every two consecutive event points e1 and e2 in E(Γ1 ∪ Γ2) add an edge
between the vertices in V corresponding to e1 and e2 to E.

Note that the number of edges added to E is O(mn). Consider the time required
for the five steps. Step 1 uses O(n log n) time, steps 2 and 5 requires O(mn)
time while steps 3 and 4 can be computed in O(mn log n) time, using a standard
point location query data structure on the ar-VDs.

Lemma 1. Let Pαβ be an active path with α and/or β in Γ1 ∪ Γ2. There exists
a MST (S,Pαβ) whose edge set is a subset of E.

2.2.2 Sweep the Active Path. To be able to use Theorem 3 we initially set
all edges in E to have unit weight. Next we build the sequence of edge weight
modifications in two steps; one to initialize the sweep and one to simulate the
sweep of the active path along P .

Initialization. The active path starts at p1, that is, the initial configuration is
Pp1∗. Next we modify the edge weights to simulate the original DCFT-problem.
The weight of every type-1 edge (u, v) is set to |uv| and the weight of every
type-4 edge is set to 0. The weight of a type-2 edge (u, v) is set to |uv| if v lies on
the active path Pp1∗, otherwise it is set to ∞. Similarly, the weight of a type-3
edge (u ∈ S, v) is set to |uv| if v is one of the endpoints of Pp1∗, otherwise it is
set to ∞. Note that p1 ∈ Γ1 and the opposite endpoint of Pp1∗ is in E(Γ1) thus,
both are vertices in V . The total number of edge weight modifications needed
for the initialization is O(mn).

This correctly models the DCFT-problem for a fixed active path Pp1∗ and
will include the edges in a MST (S,Pp1∗).

Model the Sweep. Next we compute the set of edge weight modifications to
simulate sweeping the active path along P . Assume that we have the active



84 O. Cheong, R. El Shawi, and J. Gudmundsson

path Pα1β1 and that the algorithm correctly computed MST (S,Pα1β1). Next we
move the active path along P until it encounters the next event point in Γ1∪Γ2,
the new active path is denoted Pα2β2 . The following edge weight modifications
are performed:

– the weight of any type-2 edge connecting α1 with a point in S is set to ∞,
– the weight of any type-2 edge connecting β2 with a point v in S is set to
|β2v|,

– the weight of the potential type-3 edges connecting α1 or β1 with points in
S is set to ∞, and

– the weight of the potential type-3 edges connecting α2 or β2 with points in
S is set to be equal to the Euclidean distance between their endpoints,

This correctly models the DCFT-problem for the fixed active path Pα2β2 and
will include the edges in a MST (S,Pα2β2). The total number of edge weight
modifications is O(nm), and each one can be computed in constant time provided
that the six ar-VDs have been computed in a preprocessing step.

Given the initial graph G = (V,E) and the sequence of O(nm) edge weight
modifications we can run Eppstein’s algorithm (Theorem 3) in O(mn logn) time.
As output we obtain the corresponding sequence of minimum spanning trees (one
for each event point), denoted T1, . . . , Tk, where k = O(mn).

2.2.3 Compute the Event Points. Recall that the aim of this section is
to construct the set of points, Γ3, along P where a type-3 edge replaces, or is
replaced by, a type-1 or type-2 edge. Above we only computed the minimum
spanning trees for all the existing event points in Γ1 ∪ Γ2, that is, for all cases
when one of the endpoints of an active path coincides with a point in Γ1 ∪ Γ2.

Lemma 2. While sweeping the active path between two consecutive event points
in Γ1 ∪ Γ2 the minimum spanning tree can change topology at most eight times.

Lemma 3. While sweeping the active path between two consecutive event points
in Γ1 ∪ Γ2, every point along the sweep where a topological change is made to
the minimum spanning tree can be computed in O(log n) time.

Between every two consecutive event points in Γ1 ∪ Γ2 compute all the event
points where a topological change is made to the minimum spanning tree, ac-
cording to Lemma 3. These points form the set Γ3.

The following theorem concludes this section:

Theorem 4. All event points, Γ3, when a type-3 edge is potentially replacing,
or is potentially replaced by, a type-1 or type-2 edge can be found in O(mn log n)
expected time using O(nm) space.

2.4 Maintaining the Spanning Tree

We can now merge the results. Let Γ = Γ1 ∪ Γ2 ∪ Γ3. Consider the sweep-line
algorithm introduced in the first paragraph of Section 2. That is, sweep an active



A Fast Algorithm for Data Collection along a Fixed Track 85

path Pαβ of length L along P starting with α = p1 and ending with β = pm.
During the sweep maintain a minimum spanning tree of S and Pαβ .

From Observation 3, Lemma 2 and Theorem 4 it follows that Γ contains all
the event points where a minimum spanning tree might change its topology. Next
simulate a sweep while maintaining the tree. We can use the same approach as
we used in Section 2.2.2, but using S and E(Γ ) as the set of vertices instead
of S and E(Γ1 ∪ Γ2). Again, it is easy to see that this correctly models the
DCFT-problem for the fixed active path Pαβ and will include the edges in a
MST (S,Pαβ). The total number of edge weight modifications is O(nm), and
each one can be computed in constant time provided that the six ar-VDs are
computed in a preprocessing step.

Eppstein’s algorithm generates the initial minimum spanning tree and the
sequence of O(nm) changes made during the sweep. Consequently the weight
of these trees can also be output without increasing the running time. Consider
the sweep in-between two consecutive events in Γ . No topological changes are
made to the minimum spanning tree. The only change is the weight of the type-3
edge. So to find a minimum weight spanning tree in-between two event points
it is sufficient to compute the minimum of a function described by at most
six distance functions, each distance function describing the minimum distance
between a point and a straight-line segment. The minimum of this function can
be computed in constant time, thus for each pair of consecutive event points, ei
and ei+1, in Γ we can compute the minimum solution in-between ei and ei+1 in
constant time, given Ti and Ti+1. We can now summarize Section 2.

Theorem 5. Given a real value L, a set S = {s1, . . . , sn} of points and a polyg-
onal path P = 〈p1, . . . , pm〉 in R2, an optimal solution for the DCFT-problem
can be computed in O(mn log n) expected time.

3 Angle-Restricted Voronoi Diagrams

The abstract Voronoi diagram (AVD) [11] is used to construct the set of event
points involving type-3 edges. In the following we show how the AVD is con-
structed and investigate some of its topological properties.

Chew and Drysdale’s [4] divide-and-conquer algorithm for computing the
Voronoi diagram under convex distance functions can be extended to the con-
struction of angle-restricted Voronoi diagrams (ar-VD) with some modifica-
tions [15]. They proved that the ar-VD can be computed in O(n log n) time but
did not bound the complexity of the diagram (to the best of our knowledge),
which we need to bound the size of Γ3.

3.1 Definition and Properties

A unifying approach to Voronoi diagrams was proposed by Klein [11], which
is based on the concept of bisecting curves instead of distance functions. For
any two sites, p and q, in S, let J(p, q) denote the curve that is homeomorphic



86 O. Cheong, R. El Shawi, and J. Gudmundsson

to a line and divides the plane into two open (unbounded) regions D(p, q) and
D(q, p), where D(p, q) contains p and D(q, p) contains q. The Voronoi region of
p with respect to S, denoted V R(p,S), is the intersection of all D(p, q) regions
as q varies in S \ {p}. The abstract Voronoi diagram is defined as:

AVD(p,S) =
⋃
p∈S

∂(V R(p,S)).

Klein [11] showed that if the AVD is a “dominance system” (Definition 1) and the
dominance system is “admissible” (Definition 2) then the AVD has many of the
same properties as the concrete Voronoi diagrams. In particular, the complexity
of the AVD is then O(n), where n is the number of sites.

Our aim is to define a set of bisecting curves that fits the framework in [11].
First it has to be a dominance system.

Definition 1. The family D = {D(p, q), p �= q} is called a dominance system
over S if the following holds:

– D(p, q) is a non-empty open subset of the plane,
– J(p, q) = ∩(D(p, q)) is homeomorphic to the open interval (0,1), and
– ∂(D(p, q)) = ∂(D(q, p)), where ∂ denotes the perimeter of a region.

We need to define the set J of bisecting curves that divides the plane into two
open (unbounded) regions D(p, q) and D(q, p) for each pair p, q ∈ S of points,
such that the resulting family D = {D(p, q), p �= q} is a dominance system. In
Lemma 4 it will be shown that the abstract Voronoi diagram defined by these
bisectors is a dominance system.

3.2 Defining Bisecting Curves

Given two points p and q in the plane let Hp(p, q) be the set of points (the
halfplane) whose Euclidean distance is smaller to p than to q. Furthermore,
given a direction d and a point s in the plane let �d(s) denote the infinite ray
originating at s with direction d. Let C(s, d, θ) be the cone with apex at s, angle
θ ≤ π and with �d(s) as its bisector.

For any two points p, q ∈ S a bisecting curve J(p, q) is defined as follows.
Assume w.l.o.g. that p lies to the left of q along the direction d. The bisecting
curve J(p, q) is defined as the boundary of {Hq(p, q) ∩ C(q, d, θ)}.

Given a direction d, let od denote the point at −∞ along the direction d and
−∞ in the direction orthogonal to d.

Lemma 4. Given a set S of n points in the plane, a direction d and an angle
θ ≤ π the family D = {D(p, q), p �= q} is a dominance system over S ∪ {od}.

Proof. Consider the three properties in Definition 1. Adding od to our point set
guarantees that the first property of the dominance system holds. The second
and third properties follows immediately from the definition of bisectors. ��



A Fast Algorithm for Data Collection along a Fixed Track 87

3.3 Computing the Diagram

The AVD defined by D is denoted an angle-restricted Voronoi diagram. We now
address the construction of the ar-VD(S). Klein [11] showed that if a dominance
system is admissible then the abstract Voronoi diagram has total size O(n).

Definition 2. A dominance system J = {J(p, q) : p, q ∈ S, p �= q} is called
admissible if and only if for each subset S ′ of S of size at least three the following
conditions are fulfilled:

(a) The intersection of two bisecting curves consists of finitely many compo-
nents.

(b) The Voronoi regions are path-connected.
(c) Each point of the plane lies in a Voronoi region or on the Voronoi diagram,

i.e. R =
⋃

p∈S V R(p).

Lemma 5. The dominance system J = {J(p, q) : p, q ∈ S ∪ od, p �= q} defined
in Section 3.2 is admissible.

Mehlhorn et al. [9] and Klein et al. [13] have shown that one can, without fur-
ther assumptions, apply the randomized incremental construction technique to
abstract Voronoi diagrams.

Theorem 6. The abstract Voronoi diagram of an admissible system J =
{J(p, q) : p, q ∈ S, p �= q}, where |S| = n, can be constructed within expected
O(n log n) many steps and expected space O(n), by randomized incremental con-
struction.

Theorem 7. Given a S of points and a point q in the plane. The Voronoi region
of the directed AVD(S, d, θ) containing q corresponds to the point in S closest to
q in C(q,−d, θ).

Proof. The theorem follows immediately from the construction. ��

Theorem 1 summarizes the results of this section and for convenience we restate
it here.

Theorem 1. Given a set S of n points in the plane, a direction d and an angle
θ < π the plane can be partitioned into O(n) regions of total complexity O(n)
in O(n logn) expected time such that every point p in a region has the same
nearest neighbor, say s, in C(p, d, θ), where C(p, d, θ) is the cone with apex at p,
interior angle θ ≤ π and with d as its bisector. The resulting partition is called
an angle-restricted Voronoi diagram (ar-VD) of S.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002)



88 O. Cheong, R. El Shawi, and J. Gudmundsson

2. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in
wireless sensor networks: a survey. Ad Hoc Networks 7(3), 537–568 (2009)

3. Batalin, M., Rahimi, M., Yu, Y., Liu, D., Kansal, A., Sukhatme, G., Kaiser, W.J.,
Hansen, M., Pottie, G.J., Srivastava, M.B., Estrin, D.: Call and response: experi-
ments in sampling the environment. In: Proceedings of the 2nd International ACM
Conference on Embedded Networked Sensor Systems (Sensys), pp. 25–38 (2004)

4. Chew, L.P., Drysdale, R.L.: Voronoi diagrams based on convex distance func-
tions. In: Proceedings of the 1st Annual Symposium on Computational Geometry
(SoCG), pp. 235–244 (1985)

5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational geometry
– algorithms and applications, 3rd edn. Springer, Heidelberg (2008)

6. Eppstein, D.: Offline algorithms for dynamic minimum spanning tree problems.
Journal of Algorithms 17(2), 237–250 (1994)

7. Di Francesco, M., Das, S.K., Anastasi, G.: Data collection in wireless sensor net-
works with mobile elements: a survey. ACM Transactions on Sensor Networks 8(1),
1–7 (2011)

8. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. Journal of Computer and System Sciences 48(3),
533–551 (1994)

9. Meiser, S., Mehlhorn, K., O’Dúnlaing, C.: On the construction of abstract Voronoi
diagrams. Discrete and Computational Geometry 6, 211–224 (1991)

10. Kansal, A., Somasundara, A., Jea, D., Srivastava, M., Estrin, D.: Intelligent fluid
infrastructure for embedded networks. In: Proceedings of the 2nd ACM Interna-
tional Conference on Mobile Systems, Applications, and Services (MobiSys), pp.
111–124 (2004)

11. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer,
Heidelberg (1989)

12. Pon, R., Batalin, M.A., Gordon, J., Kansal, A., Liu, D., Rahimi, M., Shirachi, L.,
Yu, Y., Hansen, M., Kaiser, W.J., Srivastava, M., Sukhatme, G., Estrin, D.: Net-
worked infomechanical systems: a mobile embedded networked sensor platform. In:
Proceedings of the 4th International Symposium on Information Processing in Sen-
sor Networks (IPSN), pp. 376–381 (2005)

13. Mehlhorn, K., Klein, R., Meiser, S.: Randomized incremental construction of ab-
stract Voronoi diagrams. Computational Geometry: Theory and Applications 3,
157–184 (1993)

14. Sahni, S., Xu, X.: Algorithms for wireless sensor networks. International Journal
of Distributed Sensor Networks 1(1), 35–56 (2005)

15. Wee, Y.C., Chaiken, S., Willard, D.E.: General metrics and angle restricted Voronoi
diagrams. In: Proceedings of the 1st Canadian Conference on Computational Ge-
ometry (1989)

16. Xing, G., Wang, T., Jia, W., Li, M.: Rendezvous design algorithms for wireless
sensor networks with a mobile base station. In: Proceedings of the 9th ACM Inter-
ational Symposium on Mobile Ad Hoc Networking and Computing, pp. 231–240
(2008)



Random Methods for Parameterized Problems�

Qilong Feng1, Jianxin Wang1, Shaohua Li1, and Jianer Chen1,2

1 School of Information Science and Engineering,
Central South University,

Changsha 410083, P.R. China
2 Department of Computer Science and Engineering

Texas A&M University
College Station, Texas 77843-3112, USA

Abstract. In this paper, we study the random methods for parame-
terized problems. For the Parameterized P2-Packing problem, by ran-
domly partitioning the vertices, a randomized parameterized algorithm
of running time O∗(6.75k) is obtained, improving the current best result
O∗(8k). For the Parameterized Co-Path Packing problem, we study the
kernel and randomized algorithm for the degree-bounded instance, and
then by using the iterative compression technique, a randomized algo-
rithm of running time O∗(3k) is given for the Parameterized Co-Path
Packing problem, improving the current best result O∗(3.24k).

1 Introduction

Random techniques have been used widely in designing parameterized algorithms
for many NP-hard problems [2], [3], [11], [12]. In this paper, we are mainly focused
on the randomized algorithms for parameterized problems, which the Parame-
terized P2-Packing problem and the Parameterized Co-Path Packing problem
are used to illustrate the random methods given in this paper. We firstly give
definitions of the above two problems.

Parameterized P2-Packing: Given a graph G = (V,E) and an integer k,
find a set S of P2s (a P2 is a simple path of length two) with size k in
G such that no two P2s from S have common vertices, or report that no
such set exists.

Parameterized Co-Path Packing (PCPP): Given a graph G = (V,E)
and an integer k, find a subset F ⊆ V of size at most k such that each
connected component in graph G[V \F ] is a path, or report that no such
subset exists.

� This work is supported by the National Natural Science Foundation of China un-
der Grant (61232001, 61103033, 61173051), Postdoc Foundation of Central South
University.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 89–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



90 Q. Feng et al.

For the P2-Packing problem, Hassin and Rubinstein [10] gave an approxi-
mation algorithm with ratio 35/67 for the maximum P2-Packing problem. De
Bontridder et al. [5] gave an approximation algorithm with ratio 2/3. For a
general subgraph H , Fellows et al. [6] presented an algorithm of running time
O∗(2O(|H|k log k+k|H| log |H|)) for the H-Packing problem.1 Prieto and Sloper [13]
gave a parameterized algorithm of time O∗(39.43k) for the Parameterized P2-
Packing problem. Henning et al. [7] gave an improved parameterized algorithm
with running time O∗(14.67k). Feng et al. [8] presented a parameterized algo-
rithm with running time O∗(8k) for the Parameterized P2-Packing problem,
which is the current best result.

The Parameterized Co-Path Packing problem has important application in
Bioinformatics [4]. From approximation algorithm point of view, an approxima-
tion algorithm with ratio 2 in [9] can be applied to solve the Minimum Co-Path
Packing problem. Recently, Chen et al. [1] gave a kernel of size 32k for the Pa-
rameterized Co-Path Packing problem, and presented an algorithm of running
time O∗(3.24k).

In this paper, for the Parameterized P2-Packing problem, by using a different
way to partition the vertices in the instance, a simple randomized algorithm of
running time O∗(6.75k) is given, which improves the current best result O∗(8k).
For the Parameterized Co-Path Packing problem, the vertices with different de-
grees are studied. Especially, a randomized algorithm is given for the Parameter-
ized Co-Path Packing problem in degree-bounded graph. By applying iterative
compression technique, a randomized algorithm of running time O∗(3k) is given,
which improves the current best result O∗(3.24k).

2 Randomized Algorithm for Parameterized P2-Packing

For a P2 l = (x, y, z), x, z are called the End-vertices of l, and y is called the
Mid-vertex of l. For a set P of P2s, if no two P2s in P have common vertices, then
P is called a P2-Packing in G. In order to solve the Parameterized P2-Packing
problem efficiently, we introduce the following problem.

Constrained P2-Packing on Bipartite Graphs: Given a bipartite graph
B = (L∪R,E) and an integer k, either construct a P2-Packing P of size
k with End-vertices in L, or report that no such packing exists.

Since the weighted version of Constrained P2-Packing on Bipartite Graphs
can be solved in polynomial time [8], by assigning each edge in B with weight
1, the Constrained P2-Packing on Bipartite Graphs problem can also be solved
in polynomial time.

For a given instance (G, k) of the Parameterized P2-Packing problem, assume
that P is a P2-Packing of size k in G. Then, the P2s in P have k Mid-vertices
and 2k End-vertices, denoted by H1, H2 respectively. We want to partition the

1 Following a recent convention, for a function f , we will use the notion O∗(f) for the
bound O(f ·nO(1)).



Random Methods for Parameterized Problems 91

vertices in V into two parts V1, V2, such that H1 is contained in V1, and H2 is
contained in V2. We give the following random strategy to divide the vertices in
V . For any vertex v in V , put v into V1 with probability 2/3, and put v into V2

with probability 1/3. After deleting all the edges with two ends in V1 or V2, an
instance B = (V1 ∪ V2, E

′) of the Constrained P2-Packing on Bipartite Graphs
problem can be obtained, where E′ is the set of edges with one end in V1 and the
other end in V2, which can be solved in polynomial time. The specific random
algorithm solving the Parameterized P2-Packing problem is given Figure 1.

Algorithm RP2P(G, k)
Input: a graph G, and an integer k
Output: a P2-Packing of size k, or report no such packing exists.
1. loop c·6.75k times
1.1 V1 = V2 = ∅;
1.2 for each vertex v in V do

put v into V1 with probability 2/3, and put v into V2 with probability
1/3;

1.3 delete all the edges with two ends either both in V1 or both in V2;
1.4 a bipartite graph B = (V1 ∪ V2, E

′) can be constructed, where E′ is the
set of edges with one end in V1 and the other end in V2;

1.5 construct a P2-Packing P of size k in B with End-points in V1;
1.6 if step 1.5 is successful, then return P ;
2. return(”no such packing exists”).

Fig. 1. A randomized algorithm for the Parameterized P2-Packing problem

Theorem 1. The Parameterized P2-Packing problem can be solved in time
O∗(6.75)k with probability larger than 1− (1/e)c.

Proof. If the given instance (G, k) is a No-instance for the Parameterized P2-
Packing problem, then no matter how the vertices in V are partitioned, a P2-
Packing of size k cannot be found in B. Thus, step 2 will correctly return that
graph G contains no P2-Packing of size k.

Now assume that P is a P2-Packing of size k in G. Then there are 2k End-
vertices and k Mid-vertices contained in P . Let H1, H2 be the sets of End-
vertices, Mid-vertices of P respectively, |H1| = 2k, and |H2| = k. If the vertices
in P can be partitioned correctly, i.e., all the vertices in H1 are put into V1 and
all the vertices in H2 are put into V2, then a bipartite graph B = (V1 ∪ V2, E

′)
containing a P2-Packing of size k can be constructed in step 1.4. Then, the
P2-Packing found in step 1.5 can be correctly returned by step 1.6.

We now analyze the probability that the algorithms fails in finding a P2-
Packing of size k in G. Since each vertex in V is put into V1, V2 with probability
2/3, 1/3 respectively, for each iteration of step 1, the vertices in H1, H2 can
be correctly partitioned in step 1.2 with probability (2/3)2k(1/3)k = (4/27)k.



92 Q. Feng et al.

Then, the probability that the vertices in H1, H2 are not correctly partitioned
in each iteration is 1 − (4/27)k. Therefore, the probability that H1 and H2 are

not partitioned correctly in c · 6.75k iterations is (1 − (4/27)k)c·6.75
k

= ((1 −
1/6.75k)6.75

k

)c ≤ (1/e)c. Therefore, the vertices in H1, H2 can be partitioned
into V1, V2 respectively with probability larger than 1− (1/e)c.

At last, we analyze the time complexity of algorithm RP2P. Step 1.2 can be
done in O(n) time, where n is the number of vertices in G. It takes O(n + m)
time to do steps 1.3, 1.4, where m is the number of edges in G. For step 1.5,
a P2 Packing of size k in G can be found in O(k(m′ + nlogn) [8], where m′ is
the number of edges in B. Therefore, the running time of algorithm RP2P is
O(6.75kk(m′ + nlogn)) = O∗(6.75k). ��

3 Randomized Algorithm for Parameterized Co-path
Packing Problem

For a vertex v, let N(v) denote the neighbors of vertex v, i.e., N(v) = {u|(u, v) ∈
E}, and let N [v] = N(v)∪{v}. For a graph G = (V,E), and a subset V ′ ⊆ V , let
G[V ′] denote the subgraph induced by the vertices in V ′. In order to solve the
problem efficiently, we first study the Parameterized Co-Path Packing problem
in degree bounded graph.

Degree-Bounded Parameterized Co-Path Packing (DBPCP): Given a
graph G = (V,E) and an integer k, where each vertex v in V has degree
at most three, find a subset F ⊆ V of size at most k such that each
connected component in graph G[V \F ] is a path, or report that no such
subset exists.

3.1 Kernelizaiton Algorithm for DBPCP

For the Degree-Bounded Parameterized Co-Path Packing problem, some struc-
ture properties can be obtained, as follows.

Lemma 1. Given an instance (G, k) of Degree-Bounded Parameterized Co-Path
Packing problem, the number of vertices with degree three in G is bounded by 4k.

Given an instance (G, k) of Degree-Bounded Parameterized Co-Path Pack-
ing problem, for a path P = {v1, v2, · · · , vh−1, vh} in G, if the vertices in
{v2, · · · , vh−1} have degree two and the degrees of v1, vh are not two, then path
P is called a degree-two-path.

Lemma 2. For a degree-two-path P = {v1, v2, · · · , vh−1, vh} in G, if the two
vertices v1, vh both have degree three and h > 4, then edges in {(vi, vi+1)|i =
2, 3, · · · , h − 2} can be contracted; if one vertex of {v1, vh} has degree one and
the other has degree three, then edges in {(vi, vi+1)|i = 1, 2, · · · , h − 2} can be
contracted.



Random Methods for Parameterized Problems 93

Based on Lemma 2, we can get the following reduction rule.
Rule 1. For a degree-two-path P = {v1, v2, · · · , vh−1, vh} in G, if the two

vertices v1, vh both have degree three and h > 4, then contract the edges in
{(vi, vi+1)|i = 2, 3, · · · , h − 2}. If one vertex of {v1, vh} has degree one and the
other has degree three, then contract the edges in {(vi, vi+1)|i = 1, 2, · · · , h−2}.

Let G′ = (V ′, E′) be the graph obtained after applying reduction Rule 1.

Lemma 3. In the graph G′, the number of vertices with degree two is bounded
by 12k.

Lemma 4. For any vertex v with degree three in G′, if there are two vertices
u,w with degree one in N(v), then the vertex in N(v)\{u,w} can be deleted.

Based on Lemma 4, we can get the following reduction rule.
Rule 2. For any vertex v with degree three in G′, if there are two vertices

u,w with degree one in N(v), then delete the vertex in N(v)\{u,w}, V ′ =
V ′\{u, v, w}, k = k − 1.

Let G′′ = (V ′′, E′′) be the graph obtained after applying reduction Rule 2.

Lemma 5. In the graph G′′, the number of vertices with degree one is bounded
by 4k.

By applying reduction Rule 1 and Rule 2 repeatedly, a kernel of size 20k for the
Degree-Bounded Parameterized Co-Packing problem can be obtained.

Theorem 2. The Degree-Bounded Parameterized Co-Path Packing problem ad-
mits a kernel of size 20k.

3.2 Randomized Algorithm for DBPCP

Assume that (G = (V,E), k) is a reduced instance of the Degree-Bounded Pa-
rameterized Co-Path Packing problem by repeatedly applying reduction Rule 1
and Rule 2, and assume that F (|F | ≤ k) is a solution of the Degree-Bounded
Parameterized Co-Path Packing problem. Let E′ be the set of edges in E with
at least one endpoint having degree three. The edges in E′ can be divided into
two parts A,B such that A ∪ B = E′, and for each edge e in A, at least one
endpoint of e is contained in F , and for each edge e′ in B, no endpoint of e is
contained in F .

Lemma 6. In the reduced graph G, for the sets A,B, |A|/|B| ≥ 1/2.

Lemma 7. For an edge e = (u, v) ∈ B, and for any vertex x from {u, v} with
degree three, then at least one vertex in N(x)\({u, v}\{x}) is contained in F .

The general idea to randomly solve the Degree-Bounded Parameterized Co-Path
Packing problem is as follows. Arbitrarily choose an edge e from E′. Then, with
probability |A|/|E′|, the edge e is from A, and with probability |B|/|E′|, edge e
is from B. If the edge e is from A, then at least one endpoint of e is contained



94 Q. Feng et al.

Algorithm R-DBPCP(G, k)
Input: a graph G, and an integer k
Output: a subset F ⊆ V of size at most k such that each component in G[V \F ]
is a path, or report no such subset exists.
1. for each k1, k2 with k1 + k2 ≤ k do
2. loop c·2k1 times
2.1 F = C = D = ∅;
2.2 let E′ be the set of edges in E with at least one endpoint having degree

three;
2.3 while E′ is not empty do
2.4 randomly choose an edge e = (u, v) from E′;
2.5 put e into C with probability 1/2, and put e into D with probability

1/2;
2.6 if e is contained in C then
2.7 randomly choose a vertex from {u, v} to put into F ;
2.8 if e is contained in D then
2.9 find a vertex w from {u, v} with degree three;
2.10 randomly choose a vertex y from N(w)\({u, v}\{w}) to put into

F ;
2.11 let E′ be the set of edges in G[V \F ] with at least one endpoint having

degree three;
2.12 if |F | ≤ k1 then
2.13 denote the remaining graph by G′;
2.14 if the number of cycles in G′ is at most k2 then
2.15 for each cycle C in G′ do
2.16 delete a vertex v′ from C, and add v′ to F ;
2.17 return(F ); break;
3. return(”no such subset exists”).

Fig. 2. A randomized algorithm for DBPCP problem

in F . Randomly choose an endpoint of e to put into F . If the edge e is from B,
find an endpoint x of e with degree three, and randomly choose a vertex from
N(x)\({u, v}\{x}) to put into F . The specific randomized algorithm solving the
Degree-Bounded Parameterized Co-Path Packing problem is given in Figure 2.

Theorem 3. The Degree-Bounded Parameterized Co-path Packing problem can
be solved randomly in time O∗(2k).

Proof. First note that if the input instance is a no-instance, step 2 could not find
a subset F ⊆ V with size at most k such that in graph G[V \F ], each component
is a path, which is rightly handled by step 3.

Now suppose that a subset F ⊆ V can be found inG such that each component
is a path in G[V \F ]. Then, there must exist two subsets F ′, F ′′ ⊆ F (F ′ ∪F ′′ =
F ) such that in G[V \F ′], each vertex has degree at most two, and after deleting
the edges in F ′′, all the cycles in G[V \F ′] are destroyed. Thus, there must exist
k1, k2 with k1 + k2 ≤ k such that |F ′| = k1, |F ′′| = k2.



Random Methods for Parameterized Problems 95

By arbitrarily choose an edge e from E′, with probability |A|/|E′|, the edge e
is from A, and with probability |B|/|E′|, edge e is from B. By Lemma 7, for the
sets A,B, |A|/|B| ≥ 1/2. Therefore, the probability that edge e is from A is at
least 1/2. In step 2.5, edge e is put into C with probability 1/2, and is put into
D with probability 1/2. Since at least one endpoint of edge e has degree three,
at least one vertex from N [u]∪N [v] is contained in F . Assume that {v1, · · · , vi}
(1 ≤ i) is the subset of vertices from N [u]∪N [v], which are contained in F . We
now prove that by steps 2.5-2.10, one vertex from {v1, · · · , vi} (1 ≤ i) can be
rightly added into F with probability 1/2. If the edge e picked in step 2.4 is from
A, then with probability 1/2, e is put into C. Without loss of generality, assume
that F ∩{u, v} is {u}. Then, in step 2.7, for the vertices {u, v}, u can be rightly
added into F with probability 1/2. Thus, if the edge e picked in step 2.4 is from
A, then with probability 1/4, u can be rightly added into F in step 2.7. On the
other hand, if the edge e picked in step 2.4 is from B, then with probability 1/2,
e is put into D in step 2.5. In this case, no vertex from {u, v} is contained in F .
Without loss of generality, assume that vertex u has degree three. Consequently,
at least one vertex from N(u)\{v} is added into F . Assume that vertex x from
N(u)\{v} is contained in F . Then, in step 2.10, for the vertices in N(u)\{v},
vertex x can be rightly added into F with probability 1/2. Therefore, if the edge
e picked in step 2.4 is from B, then with probability 1/4, vertex x is rightly
added into F . Thus, for the edge e picked in step 2.4, the probability that at
least one vertex in {v1, · · · , vi} is rightly put into F is 1/4+1/4 = 1/2. Then, the
probability that all vertices in F ′

1 are deleted is at least (1/2)k1 . Therefore, the
probability that the vertices in F ′

1 are not rightly deleted is 1−(1/2)k1. Therefore,
after c ·2k1 operations, none of the executions of steps 2.1-2.11 can rightly handle

the vertices in F ′
1 is (1− (1/2)k1)c·2

k1
= ((1− (1/2)k1)2

k1
)c ≤ (1/e)c. Therefore,

after c ·2k1 operations, the algorithm can correctly handle the vertices in F ′
1 with

probability larger than 1− (1/e)c.
For each loop in step 2, if |F | ≤ k1 in step 2.12 and there exist cycles in

the remaining graph, the cycles can be destroyed by choosing any vertex in the
cycle.

Step 2.2 can be done in time O(n+m), and step 2.3 can be done in O(m(m+
n)), where m,n are the number of edges and vertices in graph G respectively.
Step 2.12-2.16 can be done in time O(n + m). Therefore, algorithm R-DBPCP
runs in time O(2k1m(n+m)) = O∗(2k). ��

4 Randomized Algorithm for the PCPP Problem

In this section, using iterative compression technique, we give a randomized algo-
rithm of running time O∗(3k) for the Parameterized Co-Path Packing problem.
We first give the following definitions.

Parameterized Co-Path Packing Compression (PCPPC): Given a graph
G = (V,E), an integer k, and a subset F ⊆ V of size k+1, where in graph
G[V \F ], each connected component is a path, find a subset F ′ ⊆ V of



96 Q. Feng et al.

size at most k such that each connected component in graph G[V \F ′] is
a path, or report that no such subset exists.

Special Parameterized Co-Path Packing Compression (SPCPPC): Given
a graph G = (V,E), an integer k, and a subset F ⊆ V of size k+1, where
in graph G[V \F ], each connected component is a path, find a subset
F ′ ⊆ V of size at most k such that F ′ ∩ F = ∅, and each connected
component in graph G[V \F ′] is a path, or report that no such subset
exists.

We now give an algorithm solving the Special Parameterized Co-Path Packing
Compression problem.

Lemma 8. Given an instance (G = (V,E), k, F ) of the Special Parameterized
Co-Path Packing Compression problem, if there exists a vertex v in V \F with
degree at least five, then v can be deleted; if there exists a vertex v in V \F with
degree four and |N(v) ∩ F | = 3, then v can be deleted.

For the instance (G = (V,E), k, F ) of the Special Parameterized Co-Path Pack-
ing Compression problem, if there exists a vertex v in F with degree at least
three, then v is called a special vertex in F .

Lemma 9. For a special vertex v in F , if |F ∩N(v)| = 2, then the vertices in
N(v)\F can be deleted; if |F ∩N(v)| = 1, then at least |N(v)\F | − 1 vertices in
N(v)\F can be deleted.

Given an instance (G = (V,E), k, F ) of the Special Parameterized Co-Path
Packing Compression problem, assume that F ′ is the solution of the problem.
In the following, we first give the algorithm to deal with the vertices with degree
four in V \F and having two neighbors in V \F : for a vertex v with degree four
in V \F and and having two neighbors in V \F , either v is contained in F , or
the two vertices in N(v)\F are contained in F . The specific algorithm is given
in Figure 3.

Theorem 4. Algorithm Bran-V(G, k1, F, ∅) runs in time O(1.62k1n) and re-
turns a collection of at most 1.62k1 sets of vertices, where n is the number of
vertices in G.

Proof. For an instance (G = (V,E), k, F ) of the Special Parameterized Co-Path
Packing Compression problem, assume that F ′ is the solution of the problem.
For a vertex v of V \F with degree four and having two neighbors in V \F , assume
that two neighbors u,w of v are contained in V \F . Either vertex v is in F ′ or
the vertices u,w are in F ′, which corresponds the two branchings in step 4 and
step 5 respectively. Assume that V ′ is the set of all vertices with degree four in
G, and let V ′′ ⊆ V ′ be the set of vertices in

⋃
v∈V ′ N [v] that are contained in

F ′. Let k1 = |V ′′| and let T (k1) be the size of search tree obtained by calling
algorithm Bran-V(G, k1, F,Q). It is easy to get the following recurrence relation:
T (k1) = T (k1−1)+T (k1−2). Then, T (k1) = 1.62k1 . Therefore, algorithm Bran-
V(G, k1, F, ∅) runs in time O(1.62k1n) and returns a collection of at most 1.62k1

sets of vertices. ��



Random Methods for Parameterized Problems 97

Algorithm Bran-V(G, k1, F,Q)
Input: a graph G = (v,E), an integer k, a subset F of vertices, and a subset
Q of vertices
Output: the collection of vertices in V \F , each contains k1 vertices
1. if (|Q| > k1) then abort; else return Q;
2. arbitrarily pick a vertex v in V \F with degree four and having two

neighbors in V \F ;
3. let u,w be the two vertices in N(v)\F ;
4. Bran-V(G\{v}, k1, F, Q ∪ {v});
5. Bran-V(G\{u, v}, k1, F,Q ∪ {u, v});

Fig. 3. Branching of vertices with degree four

For an instance (G = (V,E), k, F ) of the Special Parameterized Co-Path Packing
Compression problem, if all the vertices in G have degree at most three, the
algorithm R-DBPCP can be modified slightly to find the solution of the problem.

Theorem 5. For an instance (G = (V,E), k, F ) of the Special Parameterized
Co-Path Packing Compression problem, if all the vertices in G have degree at
most three, then a subset F ′ of size k can be found in O∗(2k) time with probability
larger than 1 − (1/e)c such that F ∩ F ′ = ∅ and each connected component in
G[V \F ′] is a path.

The proof of Theorem 5 is similar to the proof of Theorem 3, which is neglected
here.

The general idea solving the Special Parameterized Co-Path Packing Com-
pression problem is that: the vertices with degree large than four, and the special
vertices are handled firstly. Then, by calling algorithm Bran-V(G, k1, F, ∅), the
vertices with degree four and having two neighbors in V \F can be dealt with.
Then, in the remaining graph, each vertex has degree at most three, which can
be handled by algorithm R-DBPCP. The specific algorithm solving the Special
Parameterized Co-Path Packing Compression problem is given in Figure 4.

Theorem 6. The Special Parameterized Co-Path Packing Compression problem
can be solved randomly in O∗(2k) time.

Proof. If the input instance is a no-instance, step 5 could not find a subset
F ′ ⊆ V with size at most k such that F ′ ∩ F = ∅, and in graph G[V \F ′], each
component is a path, which is rightly handled by step 6.

Now suppose that a subset F ′ ⊆ V can be found in G such that F ′ ∩ F = ∅,
and in graph G[V \F ′], each component is a path. Then, there must exist three
subsets F ′

1, F
′
2, F

′
3 (|F ′

1| = k1, |F ′
2| = k2, |F ′

3| = k3,) such that F ′
1 + F ′

2 +F ′
3 = F ′

and F ′
1, F

′
2, F

′
3 have the following properties: (1) after deleting the vertices in F ′

1,
there does not exist a special vertex in the remaining graph; (2) after deleting the
vertices in F ′

1 ∪F ′
2, all the vertices in the remaining graph have degree bounded

by three.



98 Q. Feng et al.

Algorithm R-SPCPPC(G, k, F )
Input: a graph G, and an integer k
Output: a subset F ′ ⊆ V of size at most k such that F ∩ F ′ = ∅ and each
component in G[V \F ′] is a path, or report no such subset exists.
1. F ′ = ∅;
2. if there exists a vertex v in V \F with degree at least five then

F ′ = F ′ ∪ {v}, V = V \{v}, k = k − 1;
3. if there exists a vertex v in V \F with degree four and |N(v)∩F | = 3 then

F ′ = F ′ ∪ {v}, V = V \{v}, k = k − 1;
4. if there exists a special vertex v with |F ∩N(v)| = 2 then

F ′ = F ′ ∪ (N(v)\F ), V = V \(N(v)\F ), k = k − |N(v)\F |;
5. for each k1, k2, k3 with k1 + k2 + k3 ≤ k do
5.1. loop c·2k1 times
5.2. H = H ′′ = ∅;
5.3. let V ′ be the set of special vertices such that for each v in V ′,

|F ∩N(v)| = 1;
5.4. while V ′ is not empty do
5.5. randomly choose a vertex u from N(v)\F , and put u into H ;
5.6. let V ′ be the set of special vertices in G[V \(F ∪H)] such that for

each v in V ′, |F ∩N(v)| = 1;
5.7. if |H | ≤ k1 then
5.8. call algorithm Bran-V(G[V \H ], k2, F, ∅);
5.9. for each set H ′ returned by algorithm Bran-V(G, k2, F, ∅) do
5.10. let G′ = (V ′, E′) = G[V \(H ∪H ′)];
5.11. let H ′′ be the set obtained by calling algorithm R-DBPCP;
5.12. if |H |+ |H ′|+ |H ′′| ≤ k then

F ′ = F ′ ∪ (H ∪H ′ ∪H ′′);
5.13. return(F ′); stop the loop in step 5.1;
6. return(”no such subset exists”).

Fig. 4. A randomized algorithm for SPCPPC problem



Random Methods for Parameterized Problems 99

The correctness of steps 2-4 can be obtained directly by Lemma 8 and Lemma
9. For a special vertex v with |F ∩N(v)| = 1, by Lemma 9, at least |N(v)\F |−1
vertices in N(v)\F can be deleted. Assume that T ⊆ N(v)\F are the subset
of vertices contained in F ′. Since the degree of v is at least three, by randomly
choosing a vertex u from N(v)\F , the probability that u is from T is at least 1/2.
Then, the probability that all vertices in F ′

1 are deleted is at least (1/2)k1 , i.e.,
when steps 5.4-5.6 are done, all the special vertices are destroyed with probability
(1/2)k1 . In step 5.8, algorithm Bran-V(G[V \H ], k2, F, ∅) is called to deal with
the vertices with degree four and |N(v)∩(V \F )| = 2. By Theorem 4, a collection
of at most 1.62k1 sets of vertices can be returned. Then, in step 5.10, there does
not exist a vertex with degree four. Therefore, algorithm R-DBPCP can be used
to find a subset F ′

3 ⊆ V ′ such that F ′
3 ∩F = ∅ and each connected component in

G′[V ′\F ′
3] is a path. By Theorem 5, the subset F ′

3 can be found with probability
larger than 1− (1/e)c. Therefore, in step 5.12, if |H |+ |H ′| + |H ′′| ≤ k, then a
solution F ′ can be returned such that F ′∩F = ∅ and each connected component
in G[V \F ′] is a path. For the step 5.1, the probability that the vertices in F ′

1

are not rightly deleted is 1 − (1/2)k1. Therefore, after c · 2k1 operations, the
probability that none of the executions of steps 5.5-5.6 can rightly handle the

vertices in F ′
1 is (1 − (1/2)k1)c·2

k1
= ((1 − (1/2)k1)2

k1
)c ≤ (1/e)c. Therefore,

after c · 2k1 operations, the algorithm can correctly handle the vertices in F ′
1

with probability larger than 1− (1/e)c.
Now we analyze the running time of algorithm R-SPCPPC(G, k, F ). Steps 2-4

can be done in O(n+m) time. The while loop in step 5.4 can be done in O(n(n+
m)) time. By Theorem 4, algorithm Bran-V(G, k1, F, ∅) runs in time O(1.62k1n),
and by Theorem 5, algorithm R-DBPCP can be done in time O∗(2k3). Therefore,
step 5 can be done in O(2k11.62k22k3k3(n + m)) = O(2k1+k2+k3k3(n + m)) =
O∗(2k). ��

Based on the algorithm solving the Special Parameterized Co-Path Packing
Compression problem, the Parameterized Co-Path Packing Compression prob-
lem can be solved.

Theorem 7. The Parameterized Co-Path Packing Compression problem can be
solved randomly in O∗(3k) time.

Based on the iterative compression technique, the Parameterized Co-Path Pack-
ing problem can be solved.

Theorem 8. The Parameterized Co-Path Packing problem can be solved ran-
domly in O∗(3k) time.

5 Conclusion

In this paper, we study the randomized techniques for the parameterized prob-
lems. For the P2-Packing problem, a randomized algorithm of running time
O∗(6.75k) is given, improving the current best result O∗(8k). For the Param-
eterized Co-Path Packing problem, a randomized algorithm of running time



100 Q. Feng et al.

O∗(3k) is given, improving the current best result O∗(3.24k). How to apply the
randomized methods in this paper to solve other parameterized problems is an
interesting topic, which is also our future research.

References

1. Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A Linear
Kernel for Co-Path/Cycle Packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124,
pp. 90–102. Springer, Heidelberg (2010)

2. Chen, J., Lu, S.: Improved parameterized set splitting algorithms: A probabilistic
approach. Algorithmica 54(4), 472–489 (2008)

3. Chen, J., Lu, S., Sze, S.H., Zhang, F.: Improved algorithms for path, matching,
and packing problems. In: Proc. of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2007), pp. 298–307 (2007)

4. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of
contiguous regions of ancestral genomes and its application to mammalian genome.
PLoS Comput. Biol. 4, e1000234 (2008)

5. De Bontridder, K., Halldórsson, B., Lenstra, J., Ravi, R., Stougie, L.: Approxima-
tion algorithms for the test cover problem. Math. Program., Ser. B 98, 477–491
(2003)

6. Fellows, M., Heggernes, P., Rosamond, F., Sloper, C., Telle, J.A.: Finding k disjoint
triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.)
WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)

7. Fernau, H., Raible, D.: A parameterized perspective on packing paths of length
two. Journal of Combinatorial Optimization 18(4), 319–341 (2009)

8. Feng, Q., Wang, J., Chen, J.: Matching and P2-Packing: Weighted Versions. In:
Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 343–353. Springer,
Heidelberg (2011)

9. Fujito, T.: Approximating node-deletion problems for matroidal properties. J. Al-
gorithms 31, 211–227 (1999)

10. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle
packing. Discrete Appl. Math. 154, 971–979 (2006)

11. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In: Proceedings of the 43rd Annual ACM Symposium on
Theory of Computing (STOC 2011), pp. 469–478 (2011)

12. Marx, D.: Randomized Techniques for Parameterized Algorithms. In: Thilikos,
D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, p. 2. Springer,
Heidelberg (2012)

13. Prieto, E., Sloper, C.: Looking at the stars. Theoretical Computer Science 351,
437–445 (2006)



DVS Scheduling in a Line or a Star Network

of Processors�

Zongxu Mu and Minming Li

Department of Computer Science, City University of Hong Kong
mike.mu@student.cityu.edu.hk, minmli@cs.cityu.edu.hk

Abstract. Dynamic Voltage Scaling (DVS) is a technique which allows
the processors to change speed when executing jobs. Most of the previous
works either study single processor or multiple parallel processors. In
this paper, we consider a network of DVS enabled processors. Every
job needs to go along a certain path in the network and has a certain
workload finished on any processor it goes through before it moves on
to the next processor. Our objective is to minimize the total energy
consumption while finishing every job before its deadline. Due to the
intrinsic complexity of this problem, we only focus on line networks with
two nodes and a simple one-level tree network (a star). We show that
in some of these simple cases, the optimal schedule can be computed
efficiently and interleaving is not needed to achieve optimality. However,
in both types of networks, how to find the optimal sequence of execution
remains a big challenge for jobs with general workloads.

1 Introduction

Energy efficiency is always a primary concern for chip designers not only for the
sake of prolonging the lifetime of batteries which are the major power supply
of portable electronic devices but also for the environmental protection purpose
when large facilities like data centers are involved. Currently, processors capable
of operating at a range of frequencies are already available, such as Intel’s Speed-
Step technology and AMD’s PowerNow technology. The capability of the pro-
cessor to change voltages is often referred to in the literature as DVS (Dynamic
Voltage Scaling) techniques. For DVS processors, since energy consumption is at
least a quadratic function of the supply voltage (which is proportional to CPU
speed), it saves energy to let the processor run at the lowest possible speed while
still satisfying all the timing constraints, rather than running at full speed and
then switching to idle.

One of the earliest theoretical models for DVS was introduced by Yao, Demers
and Shenker [20] in 1995. They assumed that the processor can run at any speed
and each job has an arrival time and a deadline. They gave a characterization
of the minimum-energy schedule (MES) and an O(n3) algorithm for computing

� This work was fully supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. CityU 124411].

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 101–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



102 Z. Mu and M. Li

it, which was improved to O(n2 logn) in [16]. No special assumption was made
on the power consumption function except convexity. Several online heuristics
were also considered including the Average Rate Heuristic (AVR) and Optimal
Available Heuristic (OPA). Under the common assumption of power function
P (s) = sα, they showed that AVR has a competitive ratio of 2α−1αα for all
job sets. Thus its energy consumption is at most a constant times the mini-
mum required. Later on, under various related models and assumptions, more
algorithms for energy-efficient scheduling have been proposed.

Bansal et al. [4] further investigated the online heuristics for the model pro-
posed by [20] and proved that the heuristic OPA has a tight competitive ratio
of αα for all job sets. For the temperature model where the temperature of the
processor is not allowed to exceed a certain thermal threshold, they showed how
to solve it within any error bound in polynomial time. Chan et al. [5] inves-
tigated a slightly more realistic model where the maximum speed is bounded.
They proposed an online algorithm which is O(1)-competitive in both energy
consumption and throughput. More works on the speed bounded model can be
found in [3][6][14]. Ishihara and Yasuura [11] initiated the research on discrete
DVS problem where a CPU can only run at a set of given speeds. They solved
the case when the processor is only allowed to run at two different speeds. Kwon
and Kim [13] extended it to the general discrete DVS model where the proces-
sor is allowed to run at speeds chosen from a finite speed set. They gave an
algorithm for this problem based on the MES algorithm in [20]. Later on, Li
et al. [15] improved the time complexity to O(dn log n) where d is the number
of available speeds. When the CPU can only change speed gradually instead of
instantly, [9] discussed about some special cases that can be solved optimally in
polynomial time. Recently, Wu el al. [19] showed that the optimal schedule for
jobs with agreeable deadlines can be computed in polynomial time. Pruhs et al.
[18] introduced profit into DVS scheduling. They assume that the profit obtained
from a job is a function on its finishing time and on the other hand money needs
to be paid to buy energy to execute jobs. They give a lower bound on how good
an online algorithm can be and also give a constant competitive ratio online al-
gorithm in the resource augmentation setting. A survey on algorithmic problems
in power management for DVS can be found in [1][10].

Most recently, the idea of combining DVS processors and networks was ex-
plored by Andrews et al. [2]. They studied the problem of energy efficient routing
in the network. They assumed that each link e in the network has an associated
energy cost function fe(s) where s is the demand routed through e. The goal
is to minimize the total energy consumption on links while delivering all the
demands from their respective sources to the destinations. They designed an
approximation algorithm with constant ratio when fe(s) = μsα where μ and α
are fixed constants.

Motivated by the above model, in this paper, we try to explore another com-
bination of DVS processors and networks where each node is a DVS processor
and the network is able to handle multiple jobs following different paths in the
network.



DVS Scheduling in a Line or a Star Network of Processors 103

The remaining paper is organized as follows. In Section 2, we introduce the
problem formulation. Section 3 studies line networks and Section 4 studies star
networks. Finally, we conclude our paper in Section 5. Due to space limit, some
proofs are omitted.

2 Problem Formulation

We use a directed graph G = (V,E) to represent the network of processors.
There is a special node s having directed edges to some or all the other nodes
and also a special node t having directed edges from some or all the other nodes.
Every node v ∈ V other than s and t represents one processor. Edge e = (u, v)
means that jobs can be passed from processor u to processor v. There is a set of
jobs J = {J1, J2, . . . , Jn} to be processed in this network of processors. Every job
Ji is characterized by an arrival time ri, a deadline (or delay bound) di, a path
Pi on G, s→ vi1 → vi2 → . . .→ viki

→ t and a set of workloads {wi,vi
1
, . . . , wi,vi

ki

}
which means that Ji needs to go through every processor on the path in sequence
and needs wi,vi

m
CPU cycles on processor vim; when Ji reaches t, the time should

be less than di. To make the formulation more concise, we normalize di so that
max di = 1.

Each processor has the ability to adjust its speed when executing jobs. If the
processor continuously executes a job with the requirement of C CPU cycles
at speed s, then the processor needs C/s time to finish its responsibility for
the job. The most important element in DVS scheduling is the speed-to-power
function P (s) which represents the amount of energy consumed per unit time if
the processor runs at speed s. In real systems, P (s) is convex and usually has
the form P (s) = sα where α is 2 or 3. We want to produce a schedule for all
the processors so that every job is following the correct sequence of processors
and is finished by its deadline. Among all the feasible schedules, we want to
find a schedule with minimum energy consumption. To formalize the problem
description, we give the following definition:

A schedule S for job set J consists of a schedule for every processor v consisting
of two functions (sv(t), jobv(t)) which define, respectively, the processor speed
and the job being executed at time t on processor v.

A schedule is feasible if for every job Jk, the following conditions are satisfied:

(1) sv(t) � 0;
(2) jobv(t) ∈ {1, 2, ..., n} where n is the number of jobs in the job set J ;

(3)
´ di

ri
sv(t)δ(k, jobv(t))dt = wk,v, where δ(i, j) = 1 if i = j and δ(i, j) = 0

otherwise;
(4) max{t|jobu(t) = k} ≤ min{t|jobv(t) = k} if u is before v in the path Pk.

The energy consumption of a schedule S = {sv(t), jobv(t)} is defined as E(S) =∑
v∈V

´ 1
0 P (sv(t))dt with the power function given as P (s) = sα. Hence, the

optimization problem we study is:



104 Z. Mu and M. Li

min
∑

v∈V

´ 1
0
P (sv(t))dt

s.t. sv(t) � 0;
jobv(t) ∈ {1, 2, ..., n}´ di

ri
sv(t)δ(k, jobv(t))dt = wkv;

max{t|jobu(t) = k} ≤ min{t|jobv(t) = k}if u is before v in the path Pk

Since now the arrival time of a job at a certain processor is affected by how
fast it is done on previous processors, the energy minimization problem is not
simply the combination of single processor scheduling problems. New insights
need to be identified in order to solve this problem. In the following discussion,
we assume α = 2.

3 Line Networks

We start by investigating a special case when the network of processors forms
a line (called line network). In other words, the graph is G = (V,E) where
V = {s, v1, v2, . . . , vm, t} and E = {(s, v1), (vm, t), (vi, vi+1)|1 ≤ i ≤ m− 1} and
m > 1. Every job needs to go through the only path in graph G.

In the problem, we require all jobs to be processed and pass through the
network within the period [0, d]. More precisely, we have rk = 0 and dk = d
for all Jk ∈ J . To simplify the notation, we use j to represent vij , which is the
jth node in the line network. Thus, wi,j represents the workload of job i on
processor j. Under the above setting, it is easy to see that the optimal schedule
will use only one speed when executing wi,j . Therefore, we use si,j to represent
the processing speed of wi,j , ti,j to represent the time spent on processing wi,j

and Ei,j to represent the energy consumption of executing wi,j . Thus, the total
energy consumption is

∑
i,j Ei,j (we will use E to represent it afterward), which

is our target to minimize.
The line network scheduling problem in our model resembles flowshop schedul-

ing model with an extra twist of speed change. A flow shop is an environment
where multiple operations required for a job have to be done in the same order
[17]. In other words, the jobs have to follow the same route of machines. In the
makespan flowshop scheduling model, each job needs to pass L stages in order,
with each stage consisting of M (l) processors, and the objective is to minimize
the makespan of all jobs. As presented by Johnson in [12] which is widely known
as Johnson’s Rule, the flowshop scheduling problem can be solved to optimality
when L = 2. However, with L > 2, such optimality is no longer achievable. In-
deed, Garey et al. have proved that optimal scheduling is already NP-hard with
L = 3 [7], i.e. , the F3||Cmax problem, using the standard notation proposed by
Graham et al. [8].

However, our model is indeed different from makespan flowshop scheduling be-
cause the processing time of a job on one processor is not fixed due to processor’s
ability to change speed and our objective is minimizing the energy consumption
instead of minimizing makespan. For the makespan flowshop model, a processor



DVS Scheduling in a Line or a Star Network of Processors 105

may be idle in the middle of an optimal schedule; however, it is not the case for
the model we study because the energy consumption can always be reduced by
extending the processing time of one or both of the jobs before and after the idle
period. Therefore, it may be necessary to operate at different speeds in order to
achieve energy minimization. This imposes further complexity to the problem.

In our model, a schedule is called an optimal schedule (or min-energy schedule)
if its energy consumption is the minimum among all the feasible schedules. We
are interested in efficient scheduling algorithms where given a job set J and a
network of processors represented by G, we aim to find a schedule S with the
minimum energy consumption while achieving the delay bound of every job.

We first define non-interleaving schedules and interleaving schedules.

Definition 1. A non-interleaving schedule is a schedule satisfying:

1. For all i′(1 � i′ � n), if wi′,1 is the jth finished workload among all wi,1,
then wi′,2 is also the jth finished workload among all wi,2. It guarantees that
all jobs will be processed in the same order on both processors.

2. Once wi,j starts being processed, the jth processor will not process any other
workload until wi,j is completed.

A schedule violating any of the two conditions is called an interleaving schedule.

The second property implies non-preemption in flowshop scheduling. Together
with the first property it leads to permutation in the flowshop.

3.1 Line Network of 2 Processors with 2 Jobs

In this subsection, we will find the optimal schedule for 2 jobs in a line network
with 2 processors. Firstly, we argue that we can always find an optimal schedule
among non-interleaving schedules. The proof is given in Section 3.2 where we
discuss the more general case of energy minimization in a line network of 2
processors with n jobs. Here, we still deal with 2-job case separately for the
purpose of elaborating the proving techniques we use for other cases.

If the schedule begins with job J1, the workload w1,1 will be the first to be
processed. With no interleaving, the workloads wi,j (i = 1, 2; j = 1, 2) will be
processed as illustrated by Table 1.

Table 1. Work flow in the case of 2 jobs and 2 processors

Node 1 Node 2

w1,1

w2,1 w1,2

w2,2

Note that w1,1 must finish before w1,2 and w2,1, while w2,2 can only be pro-
cessed after w2,1 and w1,2 are finished. In addition, w2,1 and w1,2 will start and



106 Z. Mu and M. Li

stop processing at the same time. Otherwise, it is always possible to reduce the
energy consumption by extending the one with the later start time or earlier
end time, because this will not affect the execution of w1,1 and w2,2, but will
increase the processing time, hence reduce the processing speed of w2,1 or w1,2.

Note that the speed setting problem is in essence equivalent to a time division
problem, where each job is executed with the minimum possible constant speed
within its assigned interval. With a workload w executed in a time interval with

length t at a fixed speed, the total energy consumption is s2t = w2

t2 t = w2

t .
Therefore, we assume w1,1 takes a period of t1, w1,2 and w2,1 takes a period

of t2, and w2,2 takes a period of t3, where t1+ t2+ t3 = d. Then, the total energy
consumption is

E =
w2

1,1

t1
+

w2
1,2 + w2

2,1

t2
+

w2
2,2

t3
.

We remark that w1,1 and w2,2 should be done at the same constant speed within
the period d − t2 in the optimal schedule. Otherwise, we can reduce the power
consumption by speeding up the originally slower one and slowing down the
other. Referring to the deduction above, the total energy consumption is

E =
(w1,1 + w2,2)

2

d− t2
+

w2
1,2 + w2

2,1

t2
.

Therefore, to minimize E subject to 0 < t2 < d, we need to have

dE

dt2
=

(w1,1 + w2,2)
2

(d− t2)
2 −

w2
1,2 + w2

2,1

t22
= 0.

Therefore, we get

t2 =
d
√

w2
1,2 + w2

2,1

w1,1 +
√

w2
1,2 + w2

2,1 + w2,2

.

Because
d2E

dt22
=

2 (w1,1 + w2,2)
2

(d− t2)
3 +

2
(
w2

1,2 + w2
2,1

)
t32

> 0,

for the schedule proposed in Table 1, we can obtain the minimized value of E:

Emin =

(
w1,1 +

√
w2

1,2 + w2
2,1 + w2,2

)2

d
.

Interestingly, the calculated Emin above is exactly the minimum energy con-
sumption in the situation where

– There are 3 processors in the line network, and
– There is 1 job with workloads w1,1, w0 and w2,2 respectively on three pro-

cessors where w0 =
√

w2
1,2 + w2

2,1.



DVS Scheduling in a Line or a Star Network of Processors 107

Similarly, if we begin with job 2, the minimum energy consumption will be(
w2,1 +

√
w2

2,2 + w2
1,1 + w1,2

)2

d
.

Hence, whether having J1 or J2 done first will lead to the energy minimization

is determined by the relative value of w2,1 +
√

w2
2,2 + w2

1,1 + w1,2 and w1,1 +√
w2

1,2 + w2
2,1 + w2,2.

3.2 Line Network of 2 Processors with n Jobs

Lemma 1. In a line network of 2 processors with n jobs, an optimal schedule
can always be found among non-interleaving schedules.

Proof. We prove the lemma by showing that it is always possible to turn an
interleaving schedule into a non-interleaving schedule without increasing the
energy consumption. Therefore, if an interleaving schedule can achieve energy
minimization, the minimized energy can be achieved by a corresponding non-
interleaving schedule as well.

We number the jobs in a way that wi,1 finishes earlier than wj,1 for all i < j.
Firstly, we consider the schedule on the second processor. For any pair of

w′
j,2 and w′

i,2 which denote adjacent segments where i < j and w′
j,2 is processed

before w′
i,2, it is always possible to change their order into w′

i,2 and then w′
j,2

without affecting the processing of other workloads. Since wi,1 finishes earlier
than wj,1 with i < j, the swapping of the segments will not be constrained
by their corresponding segments at the first processor. Moreover, the swapping
of segments will not affect the total energy consumed, since they can still be
processed at the same speed as before. Therefore, given a finishing order of wi,1

for all i at the first processor, the non-interleaving schedule of wi,2 will give a
no worse result than any interleaving schedule.

Secondly, given the finishing order of wi,1 for all i at the first processor, for

every wi,1, the first processor has to complete
∑i

j=0 wj,1 in order to finish wi,1

because the finishing order is pre-defined. The non-interleaving schedule will
make sure that every workload is finished as early as possible.

Therefore, changing an interleaving schedule to a non-interleaving one by the
way shown above will result in no more energy consumption without delaying
the finish time of any job. ��

The energy minimization problem of 3 or more jobs is quite similar to that
of 2 jobs as discussed in Section 3.1, except that we need to consider more
precedence constraints, that is, we can only start processing wi,2 if processor 1
finishes processing wi,1. In the following, we assume the execution order of the
jobs are from J1 to Jn.

In the optimal schedule, if the finishing time of wi,1 is equal to the starting
time of wi,2, we say this time is a critical time. The time has “critical” properties



108 Z. Mu and M. Li

because it divides the problem into sub-problems, where jobs J1 to Ji can be
analyzed separately from jobs Ji+1 to Jn. It is easy to argue that workloads in
the same segment must be processed using the same speed on the same processor
because otherwise we can always slightly shift the workload to make the speed
curve flatter without violating the precedence constraint between wi,2 and wi,1

(In the interior of a segment, the finishing time of wi,1 is strictly before the
starting time of wi,2).

We further define job i to be a critical job if the finishing time of wi,1 is a
critical time in the optimal schedule. Suppose that c1, c2, . . . , ck are critical jobs
(job Jn must be a critical job because we can always delay the finishing time of
workload wn,1 to be equal to the starting time of wn,2 without increasing the
energy consumption. Similarly job J1 is also a critical job). Then we can use the
similar observation as the 2-job-2-processor case to calculate the corresponding
minimum energy consumption to be

Emin =

⎡⎢⎢⎣w1,1 +

k−1∑
i=1

√√√√√
⎛⎝ ci+1∑

j=ci+1

wj,1

⎞⎠2

+

⎛⎝ci+1−1∑
j=ci

wj,2

⎞⎠2

+ wn,2

⎤⎥⎥⎦
2

d
(1)

Hence, finding the optimal schedule for a given order of execution becomes find-
ing critical jobs while guaranteeing workloads in the same segment can be ex-
ecuted continuously on two processors (with stable speed on each processor)
without violating the constraint between wi,1 and wi,2. This property is tested
in the inequality inside the for loop in Algorithm 1, a dynamic programming
algorithm we design to calculate the optimal schedule by guessing critical jobs.
The intuition behind this testing is that as long as the proportion of the work-
loads of the type wi,1 till any possible critical time in the middle is less than the
proportion of the workloads of type wi,2 in the same period, then using a stable
speed on the same machine will always finish wi,1 earlier than wi−1,2, which
removes the possibility of critical time in between.

Theorem 1. Procedure FindOptWork(1, n) can compute the optimal schedule
when the processing sequence is fixed in O(n3) time.

Proof. The correctness is already proved in the above discussion. About the time
complexity, there are n2 procedures to be called and each procedure takes O(n)
time to finish if we preprocess all the testing in the IF statement in O(n3) time.
Therefore, the overall complexity is O(n3). ��

However, how to find the optimal sequence remains an open question.

3.3 Optimal Sequencing for Jobs with the Same Workload on the
Second Processor

In this subsection, we derive the optimal sequence for a line network of 2 proces-
sors with n jobs, where jobs have the same workload on the second processor. We



DVS Scheduling in a Line or a Star Network of Processors 109

Procedure FindOptWork(start, end)
Input: start and end
Output: Optimal equivalent workload during this period

Min = ∞
if start == end then

return 0
end if
for i = start+ 1 to end do

/∗ testing whether start to i can be a segment in the optimal schedule

if
∑k

j=start+1 wj,1∑i
j=start+1 wj,1

≥
∑k−1

j=start wj,2∑i−1
j=start wj,2

for all start+ 1 ≤ k ≤ i then

Min = min{Min,
√

(
∑k−1

j=startwj,1)2 + (
∑i−1

j=start wj,2)2 +

FindOptWork(i, end)}
end if

end for
return Min

argue that the ascending order of workloads on the first processor can achieve
optimality. We assume that the optimal sequence is J1, J2, . . . , Jn.

Lemma 2. To achieve optimality, w1,1 should be the smallest among all wi,1.

Lemma 3. To achieve optimality, wi,1 ≤ wi+1,1 for i ∈ [2, n− 1].

Theorem 2. The ascending order according to wi,1 is the optimal sequence.

Proof. By Lemma 2 and Lemma 3, the ascending order of wi,1 is the optimal
sequence to process jobs in the two processors. ��

4 Star Network

In this section, we extend our analysis to a star network between s the sender
and t the receiver as defined below:

Definition 2. The star network consists of n+ 1 processors, out of which, the
sender is connected to one intermediate processor v1. v1 is then connected to n
nodes v2, v3, · · · vn+1, all of which are connected to t. There will be exactly 1 job
sent from the sender to the receiver via one of the nodes in {vi|2 � i � n+ 1}
during the time interval [0, d]. (We define n as the degree of the star)

In such a structure, finding the optimal schedule is boiled down to finding an
optimal sequence of scheduling on v1. Hence, our focus in this section is to
calculate the optimal sequence given different workload characteristics.

We assume that the jobs are executed in the order of J1, J2, · · · , Jn. For a
star network, the possible schedule can be seen in Table 2.

Note that wi,2 shares the same processing time with wi+1,1 and wi+1,2 as a
whole for 1 � i < n. For the case of n = 2, the only difference with line networks



110 Z. Mu and M. Li

Table 2. Processing schedule in a star network

v1 v2 v3 · · · vn+1

w1,1

w2,1

· · · w1,2

wn+1,1 w2,2

...
wn+1,2

is that in the line networks, w1,2 shares the processing time with w2,1 only and
w2,2 is processed after both. Therefore, the minimal energy consumption for the
star network with n = 2 is exactly the same as the following scenario:

– There are 2 processors in the line network,
– There are 2 jobs to be processed: the first one J line

1 has wline
1,1 = w1,1 and

wline
1,2 = w1,2, and the second one J line

2 has wline
2,1 = w2,1+w2,2 and wline

2,2 = 0.

Therefore, the minimal energy consumption

E =

[
w1,1 +

√
w2

1,2 + (w2,1 + w2,2)
2

]2
d

Note that this energy consumption is further equal to the energy consumption
in the situation where

– There are 2 processors in the line network, and

– There is 1 job with workloads w1,1 and
√

w2
1,2 + (w2,1 + w2,2)

2 respectively

on the 2 processors

Recursively, for n � 2, the minimal energy consumption can be derived as

E =

⎧⎨⎩w1,1 +

√√√√w2
1,2 +

[
w2,1 +

√
w2

2,2 +
(
w3,1 +

√
w2

3,2 + ...
)2
]2
⎫⎬⎭

2

d
(2)

where wi,1 +

√
w2

i,2 +
(
wi+1,1 +

√
w2

i+1,2 + · · ·
)2

is called the equivalent work-

load from Ji to Jn.

4.1 Optimal Sequencing for Jobs with the Same Workload on the
Second Processor

In this subsection, we consider jobs whose workloads on the second processor
are all the same. We show the following lemma.



DVS Scheduling in a Line or a Star Network of Processors 111

Lemma 4. In a star network, if all wi,2 are the same (we use wx,2 to represent
it) and wi,1 is sorted in increasing order, then in the optimal schedule, wi,1 should
be done before wj,1 if i < j and the minimized energy consumption is

E =

⎧⎨⎩w1,1 +

√√√√w2
x,2 +

[
w2,1 +

√
w2

x,2 +
(
w3,1 +

√
w2

x,2 + ...
)2
]2⎫⎬⎭

2

d
.

4.2 Optimal Sequencing for Equal-Workload Jobs

In this subsection, we consider jobs whose workloads on the first processor and
the second processor are the same, but different jobs can have different work-
loads. In other words, we have wi,1 = wi,2 for all 1 � i � n. In the following,
we use wk to represent either wk,1 or wk,2. Suppose that the optimal sequence
is J1, J2, . . . , Jn.

Lemma 5. In an optimal job sequencing for a star network, we have w1 ≥ w2.

Lemma 6. In an optimal job sequencing, for any two neighboring workloads wi

and wi+1, we have wi ≥ wi+1.

Theorem 3. The optimal job sequencing should be in monotonically decreasing
order with respect to the workloads.

Proof. This theorem directly follows by Lemma 5 and 6. ��

5 Conclusion

In this paper, we study the energy minimization problem in a network of proces-
sors, specifically line networks and star networks. We show that non-interleaving
can achieve optimality when the line network contains two processors and the
energy optimization problem in fact becomes an interesting sequencing problem
which can be solved optimally in some special cases. On the other hand, for star
networks, we characterized the optimal schedule when the workloads of jobs on
the second level are the same. We also derived the optimal sequence for jobs
whose workloads on both levels are the same. Although we assume P (s) = sα

with α = 2 for the proof of the above properties, most of the properties can be
easily extended for any α > 1. For example, Minkowski inequality needs to be
used instead of Cauchy inequality in the proof of Lemma 3. How to deal with
the other cases remains an open problem. In both types of networks, finding the
optimal sequence of execution given arbitrary workloads is a big challenge.



112 Z. Mu and M. Li

References

1. Albers, S.: Algorithms for Dynamic Speed Scaling. In: STACS 2011, pp. 1–11 (2011)
2. Andrews, M., Fernandez, A., Zhang, L., Zhao, W.: Routing for Energy Minimiza-

tion in the Speed Scaling Model. In: Proceedings of 29th IEEE International Con-
ference on Computer Communications, pp. 2435–2443 (2010)

3. Bansal, N., Chan, H.-L., Lam, T.-W., Lee, L.-K.: Scheduling for speed bounded
processors. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 409–420. Springer, Heidelberg (2008)

4. Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic Speed Scaling to Manage Energy and
Temperature. In: Proceedings of the 45th Annual Symposium on Foundations of
Computer Science, pp. 520–529 (2004)

5. Chan, H.L., Chan, W.T., Lam, T.W., Lee, L.K., Mak, K.S., Wong, P.W.H.: Energy
Efficient Online Deadline Scheduling. In: Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 795–804 (2007)

6. Chan, J.W.-T., Lam, T.-W., Mak, K.-S., Wong, P.W.H.: Online deadline scheduling
with bounded energy efficiency. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC
2007. LNCS, vol. 4484, pp. 416–427. Springer, Heidelberg (2007)

7. Garey, M., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. of Oper. Res. 1, 117–129 (1976)

8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling theory: a survey.
Ann. Discrete Math. 5, 287–326 (1979)

9. Hong, I., Qu, G., Potkonjak, M., Srivastavas, M.B.: Synthesis techniques for low-
power hard real-time systems on variable voltage processors. In: Proceedings of the
IEEE Real-Time Systems Symposium, pp. 178–187 (1998)

10. Irani, S., Pruhs, K.: Algorithmic Problems in Power Management. ACM SIGACT
News 36(2), 63–76 (2005)

11. Ishihara, T., Yasuura, H.: Voltage Scheduling Problem for Dynamically Variable
Voltage Processors. In: Proceedings of International Symposium on Low Power
Electronics and Design, pp. 197–202 (1998)

12. Johnson, S.M.: Optimal Two- and Three-stage Production Schedules with Setup
Times Included. Naval Res. Logist. Quart. 1, 61–68 (1954)

13. Kwon, W., Kim, T.: Optimal Voltage Allocation Techniques for Dynamically Vari-
able Voltage Processors. In: Proceedings of the 40th Conference on Design Au-
tomation, pp. 125–130 (2003)

14. Lam, T.W., Lee, L.K., To, I.K.K., Wong, P.W.H.: Energy Efficient Deadline
Scheduling in Two Processor Systems. In: Proceedings of the 18th International
Symposium on Algorithm and Computation, pp. 476–487 (2007)

15. Li, M., Yao, F.F.: An Efficient Algorithm for Computing Optimal Discrete Voltage
Schedules. SIAM Journal on Computing 35(3), 658–671 (2005)

16. Li, M., Yao, A.C., Yao, F.F.: Discrete and Continuous Min-Energy Schedules for
Variable Voltage Processors. Proceedings of the National Academy of Sciences
USA 103, 3983–3987 (2005)

17. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. In: Flow Shops and
Flexible Fow Shops (Deterministic), 2nd edn., ch. 6, p. 129. Prentice-Hall,
Englewood Cliffs (2002)

18. Pruhs, K., Stein, C.: How to Schedule When You Have to Buy Your Energy. In:
Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010.
LNCS, vol. 6302, pp. 352–365. Springer, Heidelberg (2010)



DVS Scheduling in a Line or a Star Network of Processors 113

19. Wu, W., Li, M., Chen, E.: Min-Energy Scheduling for Aligned Jobs in Accelerate
Model. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 462–472. Springer, Heidelberg (2009)

20. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer
Science, pp. 374–382 (1995)



Online Algorithms for Batch Machines

Scheduling with Delivery Times�

Peihai Liu and Xiwen Lu

Department of Mathematics, East China University of Science and Technology,
Shanghai, People’s Republic of China, 200237

{pliu,xwlu}@ecust.edu.cn

Abstract. We consider online scheduling on m batch machines with
delivery times. In this paper online means that jobs arrive over time and
the characteristics of jobs are unknown until their arrival times. Once the
processing of a job is completed it is delivered to the destination. The
objective is to minimize the time by which all jobs have been delivered.
For each job Jj , its processing time and delivery time are denoted by
pj and qj , respectively. We first consider a restricted model: the jobs
have agreeable processing and delivery times, i.e., for any two jobs Ji

and Jj , pi > pj implies qi ≥ qj . For the restrict case, we provide a best
possible online algorithm with competitive ratio 1 + αm, where αm > 0
is determined by α2

m +mαm = 1. Then we present an online algorithm
with a competitive ratio of 1 + 2/

√
m� for the general case.

Keywords: Scheduling, Online algorithm, Batch Machine, Delivery
times.

1 Introduction

We consider an online scheduling model: online scheduling with delivery time on
batch machines. Here, we have m batch machines and sufficiently many vehicles.
There are n jobs J1, J2, . . . , Jn. Each job has a release time rj , a processing time
pj , and a delivery time qj . These characteristics about a job are known until it
arrives. The objective is to minimize the time by which all jobs have been deliv-
ered. In this model, one batch machine can handle up to B jobs simultaneously
as a batch, where B is sufficiently large. The processing time for a batch is equal
to the longest processing time in the batch. All jobs in a common batch have the
same starting time and completion time. Each job needs to be processed on one of
the m batch machines, and once the job is completed we deliver it immediately to
the destination by a vehicle. We denote by Sj , Cj and Lj , respectively, the start-
ing time of Jj , the completion time of Jj and the time by which Jj is delivered
in a schedule. By using the general notation for a schedule problem, introduced

� This work was supported by the National Nature Science Foundation of
China(10771067,11101147) and the Fundamental Research Funds for the Central
Universities.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 114–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Online Algorithms for Batch Machines Scheduling with Delivery Times 115

by Graham et al.[3], this problem is denoted by Pm|online, rj, qj , B =∞|Lmax,
where Lmax = max{Lj : Lj = Cj + qj , 1 ≤ j ≤ n}.

Batch scheduling was first introduced by Lee et al.[6], which was motivated
by burn-in operations in semiconductor manufacturing. Deng et al.[1] and Zhang
et al.[16] studied the online scheduling problem on single batch machine. They
proved that there is no online algorithm with competitive ratio smaller than
(
√
5 + 1)/2, and for the case B = ∞, they independently gave the same online

algorithm with competitive ratio matching the lower bound. For the case B < n,
the first online algorithm is a greedy heuristics, GRLPT, of Lee and Uzsoy[7]
which was shown to be 2-competitive by Liu and Yu[9]. Zhang et al.[16] presented
two online algorithms with competitive ratio not greater than 2. The above three
online algorithms are all based on the ideas of the FBLPT rule. Later, Poon and
Yu[11] presented a class of algorithms called the FBLPT-based algorithms that
contains all the above three algorithms as special cases, and showed that any
FBLPT-based algorithm has competitive ratio at most 2. In particular, for the
case B = 2, they also gave an online algorithm with competitive ratio 7/4.

For the online model of scheduling on m unbounded parallel batch machines,
Zhang et al.[16] gave a lower bound m

√
2, and presented an online algorithm with

competitive ratio 1 + αm, where αm = (1− αm)m−1. For the special case where
m = 2, Nong et al.[10] gave a

√
2-competitive online algorithm. For the general

case, Liu et al.[8] and Tian et al.[13] showed the lower bound is 1+ (
√
m2 + 4−

m)/2, and gave different optimal algorithms independently.
There have also been some results about online scheduling problems with

delivery times. Hoogeveen and Vestjean[5] first studied the single-machine on-
line scheduling problem with delivery times. They showed the lower bound is
(
√
5 + 1)/2, and gave a best possible deterministic online algorithm. On iden-

tical parallel machines, the lower bound couldn’t be smaller than 1.5(See [14]).
Hall and Shmoys[4] showed the competitive ratio of the LS algorithm is 2. Tian
et al.[12] considered the single batch machine online scheduling problem with
delivery times. They gave a 2-competitive algorithm for the unbounded case
and a 3-competitive algorithm for the bounded case. In the same paper, they
also studied a special model with identical processing times. They provided the
best online algorithms with competitive ratio (

√
5 + 1)/2 for both bounded and

unbounded cases. Yuan et al.[15] also studied the single machine parallel-batch
scheduling. They provided a best possible online algorithm for two restricted
models. Fang et al.[2] addressed the online scheduling on m unbounded batch
machines with delivery times. They gave an online algorithm with competitive
ratio 1.5 + o(1).

In this paper, we investigate online scheduling on m unbounded batch ma-
chines with delivery times. We first consider a restricted model: the jobs have
agreeable processing and delivery times, i.e., for any two jobs Ji and Jj , pi > pj
implies qi ≥ qj . We provide a best possible online algorithm with competitive ra-
tio 1+αm for the problem, where α2

m+mαm = 1. We also study the general case.
We provide an online algorithm with a competitive ratio of r = 1 + 1/u+ 1/v,



116 P. Liu and X. Lu

where u, v are integers and uv ≤ m. Especially when u = v = √m� and
m→ +∞, r → 1.

Throughout this paper, we use r(S), p(S), q(S) to denote the smallest release
time, the largest processing time and the largest delivery time of jobs in S,
respectively.

2 A Lower Bound

We first consider the scheduling model Pm|online, rj, B =∞|Cmax, which is a
special case of the scheduling problems studied in this paper. Hence, its lower
bound is also a lower bound of the problems we study. For the former, Liu et
al.[8] and Tian et al.[13] presented the following lower bound of competitive ratio
for all online algorithms independently.

Lemma 1. ([8,13] ) There is no online algorithm with competitive ratio less
than 1 + αm for Pm|online, rj, B =∞|Cmax, where α2

m +mαm = 1.

3 An Restrict Case

In this section, we deal with a restrict model: jobs have agreeable processing and
delivery times, i.e., for any two jobs Ji and Jj , pi > pj implies qi ≥ qj . We
provide a best possible online algorithm with competitive ratio 1 + αm for the
problem, where αm = (

√
m2 + 4−m)/2, i.e. α2

m +mαm = 1.
Let J(t) be the set of the jobs which are available but not yet scheduled at

time t. Denote by p(t) the largest processing time of the jobs in J(t). Denote by
r(t) the smallest release time of the jobs in J(t).

Algorithm H∞
m (α): At time t, if a machine is idle and there are available jobs

but not yet scheduled and t ≥ (1+αm)r(t)+αmp(t), then start all the available
jobs as a single batch on the idle machine. Otherwise, do nothing but wait.

Now, we will prove that H∞
m (αm) has a competitive ratio of 1 + αm. Let

σ and π denote the schedule generated by the algorithm and an optimal off-
line schedule, respectively. Their objective values are denoted by Lmax(σ) and
Lmax(π), respectively. We assume that there are b batches totally in σ which
are written as B1, B2, . . . , Bb. For each i, the longest job in batch Bi is denoted
by Ji(if two or more jobs have the longest processing time, in batch Bi let Ji

be the job with the longest delivery time) with a release time ri, a processing
time pi and a delivery time qi. Since the jobs have agreeable processing and
delivery times, pi = p(Bi), qi = q(Bi). Thus we can use Si(σ) and Ci(σ) to
denote the starting time and the completion time of both job Ji and batch Bi

in σ, respectively. It can be observed that Si(σ) < Sj(σ) implies r(Bj) > Si(σ)
and Sj(σ) ≥ (1 +αm)r(Bj) +αmpj > (1 +αm)Si(σ) +αmpj. For any batch Bi,
if Si(σ) = (1 + αm)r(Bi) + αmp(Bi), we say that Bi is regular.

For convenience, we assume that S1(σ) < S2(σ) < · · · < Sb(σ).

Lemma 2. In σ, if Bk is not a regular batch, then Sk−1(σ) > (1− αm)Sk(σ).



Online Algorithms for Batch Machines Scheduling with Delivery Times 117

Proof. Bk is not a regular batch means that Sk(σ) > (1+αm)r(Bk)+αmpk. Then
by the algorithm, each machine is busy processing a batch during [rk, Sk(σ)).
Denote the m batches processed during [rk, Sk(σ)) by Bk1 , Bk2 , . . . , Bkm with
Sk1(σ) < Sk2(σ) < . . . < Skm(σ). It is clear that km = k− 1 and Skj (σ) + pkj ≥
Sk(σ)(j = 1, 2, . . . ,m), i.e.,

pkj ≥ Sk(σ)− Skj (σ), j = 1, 2, . . . ,m (1)

By the algorithm, Sk1(σ) ≥ αmpk1 ≥ αm(Sk(σ)− Sk1(σ)). Thus

Sk1(σ) ≥
αm

1 + αm
Sk(σ) (2)

In addition, for each j(2 ≤ j ≤ m), Skj (σ) ≥ (1 + αm)r(Bkj ) + αmp(Bkj ) >
(1 + αm)Skj−1 (σ) + αmpkj . So using the inequality (1), we have, Skj (σ) ≥ (1 +
αm)Skj−1 (σ) + αm(Sk(σ)− Skj (σ)), i.e.,

Skj (σ) > Skj−1 (σ) +
αm

1 + αm
Sk(σ), 2 ≤ j ≤ m (3)

Therefore,

Skm(σ) >
mαm

1 + αm
Sk(σ) = (1− αm)Sk(σ) (4)

i.e. Sk−1(σ) > (1− αm)Sk(σ). ��

Lemma 3. If Bk is not a regular batch, then pk < αmSk(σ).

Proof. If Bk is not a regular batch, then Sk−1(σ) > (1−αm)Sk(σ) according to
Lemma 2. By the algorithm, we know that Sk(σ) > (1 + αm)Sk−1(σ) + αmpk.
Thus, Sk(σ) > (1− α2

m)Sk(σ) + αmpk which implies that pk < αmSk(σ). ��

Lemma 4. If Bk is not a regular batch, then each machine is busy processing a
regular batch during [rk, Sk(σ)).

Proof. Bk is not a regular batch means that Sk(σ) > (1+αm)r(Bk)+αmpk. Then
by the algorithm, each machine is busy processing a batch during [rk, Sk(σ)).
Denote the m batches processed in [rk, Sk(σ)) by Bk1 , Bk2 , . . . , Bkm . Then

Skj (σ) + pkj ≥ Sk(σ), j = 1, 2, . . . ,m (5)

Suppose for the sake of contradiction that Bkj is not regular for some j. Then
by Lemma 3, pkj < αmSkj . Thus Sk(σ) > (1 + αm)Skj (σ) > Skj (σ) + pkj which
contradicts to the inequality (5). Therefore, Bkj is regular for each j(1 ≤ j ≤ m).

This competes the proof. ��

Theorem 1. Lmax(σ) ≤ (1 + αm)Lmax(π).



118 P. Liu and X. Lu

Proof. Let Bl denote the first batch in σ that assumes the objective value
Lmax(σ), i.e.,

Lmax(σ) = Sl(σ) + pl + ql (6)

If Bl is regular, then Sl(σ) = (1 + αm)r(Bl) + αmpl. Thus Lmax(σ) = (1 +
αm)(r(Bl) + pl) + ql. It is clear that Lmax(π) ≥ r(Bl) + pl + ql. Therefore,
Lmax(σ) ≤ (1 + αm)Lmax(π).

If Bl is not regular, then Sl(σ) > (1+αm)r(Bl)+αmpl. Thus by the algorithm,
each machine is busy processing a batch during [rl, Sl(σ)). Denote the m batches
processed in [rl, Sl(σ)) by Bl1 , Bl2 , . . . , Blm with Sl1(σ) < Sl2(σ) < . . . < Slm(σ).
It is clear that lm = l − 1 and

Sl(σ) ≤ Slj (σ) + plj , j = 1, 2, . . . ,m (7)

According to Lemma 4, Blj is regular, i.e.

Slj (σ) = (1 + αm)r(Blj ) + αmplj ≤ (1 + αm)rlj + αmplj (8)

Next, we will consider two cases according to the assignment of the m jobs
Jlj (1 ≤ j ≤ m) in the optimal schedule π.

Case 1: Slj (π) < Slj (σ) for each j(1 ≤ j ≤ m). Then rlj > Slj−1(σ) > Slj−1(π)
for each j(2 ≤ j ≤ m). Hence, the m jobs Jlj (1 ≤ j ≤ m) are processed in m
different batches in π.

Using the equality (7),(8) and Sl(σ) > (1 + αm)Slm(σ), we can obtain that
Clj (π) ≥ rlj + plj ≥ Slm(σ). Recall that Slj (π) < Slm(σ) for each j(1 ≤ j ≤ m).
Hence the m jobs Jlj (1 ≤ j ≤ m) are grouped into m batches which are processed
on m different machines in the optimal schedule π. Recall that rl > Slm(σ) ≥
Slj (π). Thus, in the optimal schedule π, Jl starts after some job Jlj . So

Lmax(π) ≥ min
1≤j≤m

{rlj + plj}+ pl + ql (9)

While Lmax(σ) ≤ minj{Slj (σ)+plj}+pl+ql ≤ (1+αm)minj{rlj +plj}+pl+ql.
Therefore, Lmax(σ) ≤ (1 + αm)Lmax(π).

Case 2: Slj (π) ≥ Slj (σ) for some j(1 ≤ j ≤ m). Then

Lmax(π) ≥ Slj (σ) + plj ≥ Sl(σ) (10)

By Lemma 3, we have Slm(σ) > (1 − αm)Sl(σ). Thus

Lmax(π) ≥ rl + pl + ql > Slm(σ) + pl + ql ≥ (1− αm)Sl(σ) + pl + ql (11)

Then it is from the equality αm·(10)+ (11) and (6) that Lmax(σ) ≤ (1 +
αm)Lmax(π).

This completes the proof. ��



Online Algorithms for Batch Machines Scheduling with Delivery Times 119

4 The General Case

In this section, we present an online algorithm for the general case which has a
competitive ratio of 1 + 1/u+ 1/v, where u, v are positive integers and uv ≤ m.

Select uv machines and partition the uv machines into u sets: M i(1 ≤ i ≤ u).
Each of M i contains v machines. For convenience, we denote by M i

j(1 ≤ j ≤ v)

the machines in M i(i = 1, 2, . . . , u). If all machines in M i are available, we call
M i available.

Let α = 1/u, β = 1/v. Denote by A(t) the set containing all jobs that have
arrived at or before time t and that have not been started by time t. We partition
A(t) into v sets: Ai(t) = {Jj |(i − 1)βp(A(t)) ≤ pj < iβp(A(t)), Jj ∈ A(t)},
i = 1, 2, . . . , v − 1 and Av(t) = {Jj|pj ≥ (v − 1)βp(A(t)), Jj ∈ A(t)}.

Algorithm H(u, v): Whenever M i(i = 1, 2, . . . , l) is available and A(t) �= ∅,
make decision as follows. If t ≥ (1+α)r(A(t))+αp(A(t)), start Aj(t) as a batch
on M i

j for each j(1 ≤ j ≤ v). Otherwise, wait.
For convenience, denote by Bx the set of the v batches with the same starting

time t. Each of the v batches is denoted by Bx
y and Bx

y consists of jobs in Ay(t).
We call Bx a batch group.

Denote by σ the schedule produced by H(u, v). For convenience, denote by
S(Bi), C(Bi) the starting time and the maximum completion time of the batches
in Bi. If S(Bi) = (1 + α)r(Bi) + αp(Bi), we say that Bi is regular.

Lemma 5. In σ, any batch group Bi is regular, i.e. S(Bi) = (1 + α)r(Bi) +
αp(Bi).

Proof. Suppose to the contrary that Bi is not regular, i.e. S(Bi) > (1+α)r(Bi)+
αp(Bi). Thus between (1+α)r(Bi) +αp(Bi) and S(Bi), there is a batch group
which is processed on each machine set M j(1 ≤ j ≤ u). Suppose the u batch
groups are Bij (1 ≤ j ≤ u) with S(Bi1) < S(Bi2) < · · · < S(Biu). Thus, for each
j(1 ≤ j ≤ u), S(Bij ) + p(Bij ) ≥ S(Bi). Hence,

S(Bi) ≤ 1

u

u∑
j=1

(S(Bij ) + p(Bij )) = α

u∑
j=1

C(Bij ) (12)

By the algorithm,

S(Bi1) ≥ αp(Bi1 ) (13)

S(Bij ) ≥ (1 + α)r(Bij ) + αp(Bij )

> (1 + α)S(Bij−1 ) + αp(Bij ) (14)

Thus

u∑
j=1

S(Bij ) ≥ (1 + α)
u−1∑
j=1

S(Bij ) + α
u∑

j=1

p(Bij )



120 P. Liu and X. Lu

i.e.

S(Biu) ≥ α

u−1∑
j=1

S(Bij ) + α

u∑
j=1

p(Bij )

Recall that S(Bi) > (1 + α)S(Biu ). We have that

S(Bi) > S(Biu) + αS(Biu)

≥ α

u−1∑
j=1

S(Bij ) + α

u∑
j=1

p(Bij ) + αS(Biu)

= α

u∑
j=1

(S(Bij ) + p(Bij )) (15)

which contradicts to the equality (12).
Therefore, in σ, any batch group Bi is regular, i.e. S(Bi) = (1 + α)r(Bi) +

αp(Bi). ��

Theorem 2. The competitive ratio of Algorithm H(u, v) is 1 + α+ β.

Proof. Let π be an optimal schedule.
In σ, let Jk be the first job that assumes the objective value Lmax(σ) = Lk(σ).

Suppose that Jk belongs to batch Bl
i. Since Bl is regular and p(Bl

i) ≤ iβp(Bl),

Lmax(σ) = S(Bl) + p(Bl
i) + qk ≤ (1 + α)r(Bl) + αp(Bl) + iβp(Bl) + qk (16)

While in the optimal schedule π,

Lmax(π) ≥ r(Bl) + pk + qk ≥ r(Bl) + (i − 1)βp(Bl) + qk (17)

Lmax(π) ≥ r(Bl) + p(Bl) (18)

Thus it is from the inequality (17)+(α + β)·(18) and (16) that Lmax(σ) ≤
(1 + α+ β)Lmax(π).

Hence, Algorithm H(u, v) is (1 + α+ β)-competitive.
Now, we can present an instance to show that the bound is tight. Let m =

uv ≥ 2, where u, v are integers. Suppose there are two jobs: J1(r1 = 0, p1 =
1, q1 = 0), J2(r2 = 0, p2 = 1 − 1/v, q2 = 1/v). The algorithm will schedule J1

and J2 as a single batch which starts at 1/u. Thus the object value will be
1 + 1/u + 1/v. While the optimal schedule will assign J1 and J2 in different
batches with starting time 0. Then the optimal value is 1. Hence the bound is
tight.

This completes the proof. ��



Online Algorithms for Batch Machines Scheduling with Delivery Times 121

References

1. Deng, X.T., Poon, C.K., Zhang, Y.Z.: Approximation algorithms in batch process-
ing. Journal of Combinatorial Optimization 7, 247–257 (2003)

2. Fang, Y., Lu, X., Liu, P.: Online batch scheduling on parallel machines with delivery
times. Theoretical Computer Science 412, 5333–5339 (2011)

3. Graham, R.L., Lawer, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: A survey. Annals
of Discrete Mathematics 5, 287–326 (1979)

4. Hall, L.A., Shmoys, D.B.: Approximation schemes for constrained scheduling prob-
lems. In: Proceedings of the 30th Annual Symposium on Foundations of Computer
Science, pp. 134–139 (1989)

5. Hoogeveen, J.A., Vestjean, A.P.A.: A best possible deterministic online algorithm
for minimizing maximum delivery times on a single machine. SIAM Journal on
Discrete Mathematics 13, 56–63 (2000)

6. Lee, C.Y., Uzsoy, R., Martin-Vega, L.A.: Efficient algorithms for scheduling semi-
conductor burn-in operations. Operations Research 40, 764–775 (1992)

7. Lee, C.Y., Uzsoy, R.: Minimizing makespan on a single batch processing ma-
chine with dynamic job arrivals. International Journal of Production Research 37,
219–236 (1999)

8. Liu, P., Lu, X., Fang, Y.: A best possible deterministic online algorithm for min-
imizing makespan on parallel batch machines. Journal of Scheduling 15(1), 77–81
(2012)

9. Liu, Z.H., Yu, W.C.: Scheduling one batch processor subject to job release dates.
Discrete Applied Mathematics 105, 129–136 (2000)

10. Nong, Q.Q., Cheng, T.C.E., Ng, C.T.: An improved on-line algorithm for schedul-
ing on two unresrtictive paralle batch processing machines. Operations Research
Letters 36, 584–588 (2008)

11. Poon, C.K., Yu, W.C.: On-line scheduling algorithms for a batch machine with
finite capacity. Journal of Combinatorial Optimization 9, 167–186 (2005)

12. Tian, J., Fu, R., Yuan, J.: Online scheduling with delivery time on a single batch
machine. Theory Computer Science 374, 49–57 (2007)

13. Tian, J., Cheng, T.C.E., Ng, C., Yuan, J.: Online scheduling on unbounded parallel-
batch machines to minimize the makespan. Information Processing Letters 109,
1211–1215 (2009)

14. Vestjens, A.P.A.: Online machine scheduling. Ph.D. thesis, Department of math-
ematics and Computing Science, Eindhoven University of Techology, Eindhoven,
The Netherlands (1997)

15. Yuan, J., Li, S., Tian, J., Fu, R.: A best on-line algorithm for the single machine
parallel-batch scheduling with restricted delivery times. Jounrnal of Combinatorial
Optimization 17, 206–213 (2009)

16. Zhang, G., Cai, X., Wong, C.: On-line algorithms for minimizing makespan on
batch processing machines. Naval Research Logistics 48, 241–258 (2001)



How to Schedule the Marketing of Products

with Negative Externalities�

Zhigang Cao, Xujin Chen, and Changjun Wang

Academy of Mathematics and Systems Science
Chinese Academy of Sciences, Beijing 100190, China

{zhigangcao,xchen,wcj}@amss.ac.cn

Abstract. In marketing products with negative externalities, a schedule
which specifies an order of consumer purchase decisions is crucial, since
in the social network of consumers, the decision of each consumer is neg-
atively affected by the choices of her neighbors. In this paper, we study
the problems of finding a marketing schedule for two asymmetric prod-
ucts with negative externalites. The goals are two-fold: maximizing the
sale of one product and ensuring regret-free purchase decisions. We show
that the maximization is NP-hard, and provide efficient algorithms with
satisfactory performance guarantees. Two of these algorithms give regret-
proof schedules, i.e. they reach Nash equilibria where no consumers regret
their previous decisions. Our work is the first attempt to address these
marketing problems from an algorithmic point of view.

Keywords: Negative externality, Social network, Nash equilibrium,
Efficient algorithm, Marketing schedule.

1 Introduction

The total value of any (consumer) product can be roughly classified into three
parts: physical value, emotional value, and social value [12]. With the fast devel-
opment of economy, the basic physical needs of more and more consumers are
easily met. Consequently, people increasingly shift their attention to emotional
and social values when they consider whether to buy a product. In particular,
the social value, whose amount is not determined by what a consumer consumes
alone or how she personally enjoys it, but by the comparisons with what other
people around her consume, is becoming a more and more crucial ingredient
for both consumer purchase and therefore seller marketing. For many products,
whether they will be welcome depends mainly on how much social value they
can provide to the consumers. This is especially true for fashionable and luxury
goods, where the products often exhibit negative (consumption) externalities –
they become less valuable as more people use them [1,10].

� Supported in part by NNSF of China under Grant No. 11222109, 11021161,
10928102 and 71101140, 973 Project of China under Grant No. 2011CB80800 and
2010CB731405, and CAS under Grant No. kjcx-yw-s7.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 122–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



How to Schedule the Marketing of Products with Negative Externalities 123

The comparison that a consumer makes, for calculating the social value of
a product, is naturally restricted to her neighbors in the social network. For
a consumer, the social value of a product with negative externality is often
proportional to the number of her neighbors who do not consume this product
[10]. In the market, the purchase decisions of a consumer often depend on the
values of the products at the time they are promoted – the product of larger
value will be selected. In contrast to the physical and emotional values, which
are relatively fixed, the social values of products vary with different marketing
schedules. The goal of this paper is to design good marketing schedules for
promoting products with negative externalities in social networks.

Motivation and Related Work. Our study is motivated by the practical
marketing problem concerning how to bring the products to consumers’ atten-
tion over time. Among a large literature on diffusion of competing products or
opinions in social networks (see e.g., [2,8,9] and references therein), Chierichetti,
Kleinberg and Pancones [8] recently studied the scheduling aspect of the diffusion
problem on two products – finding an order of consumer purchase decision mak-
ing to maximize the adoption of one product. In their model, the two competing
products both have positive (consumption) externalities and every consumer
follows the majority of her social network neighbors when the externalities out-
weigh her own internal preference. The authors [8] provided an algorithm that
ensures an expected linear number of favorable decisions.

The network-related consumption externalities have been classified into four
categories [7]. Comparing to the other three, the negative cross-consumer ex-
ternality, as considered in this paper, has been far less studied [1,10], and was
emphasized for its importance in management and marketing nowdays [7].

The model studied in this paper can also be taken as an extension of one
side of the fashion game, which was formulated by Jackson [11]. Very inter-
estingly, people often have quite different, in fact almost opposite, opinions on
what is fashionable, e.g., “Lady Gaga is Godness of fashion” vs “This year’s
fashion color is black”. Following Jackson, we call consumers holding the former
“personality reflection” idea of fashion rebels and the latter “prevailing style”
idea conformists. More generally, a consumer behaves like a rebel (conformist)
if the product, from her point of view, has negative (positive) externality. In
an era emphasizing personal identities, more and more consumers would like to
be rebels. For example, they would prefer Asian-style pants, when seeing many
friends and colleagues (their social network neighbors) wearing European-style.
However, the rebel social network is still under-researched in comparison with
vast literature on conformist social networks. For a market where all the con-
sumers are rebels, as considered in this paper, it has been previously studied by
several papers under the term of anti-coordination [4,5].

Model Formulation. The market is represented by a social network G =
(V,E), an undirected graph with node set V consisting of n consumers and link
set E of m connections between consumers. A seller has two (types of) products



124 Z. Cao, X. Chen, and C. Wang

Y and N with similar functions. We abuse notations by using Y and N to denote
both types and products.

The marketing is done sequentially: The seller is able to ask the consumers
one by one whether they are more interested in Y or in N . Each consumer buys
(chooses) exactly one of Y and N , whichever provides her a larger total value,
only at the time she is asked. This is a simplification of the so called precision
marketing [14]. For every consumer, a product of type T ∈ {Y,N} provides her
with total value pT + sT (xT ), where pT is the sum of physical and emotional
values, and sT (xT ) is the social value determined by decreasing function sT (·)
and the number xT of her neighbors who have bought product T . We assume
that Y is very similar to N with pY > pN and the externality outweighs the
physical and emotional difference, i.e., for any permutation T ,F of Y,N and
any nonnegative integers x, y (x < y) we have sT (x) − sF (x) < pY − pN <
sT (x)− sF (y).

Actually, the above model can be summarized as the following scheduling
problems on rebel social networks.

Rebels. Every consumer is a rebel who, at her turn to choose from {Y,N}, will
buy the product different from the one currently possessed by the majority of
her neighbors. If there are equal numbers of neighbors having bought Y and N
respectively, the consumer will always buy Y.
Scheduling. A (marketing) schedule π, for network G is an ordering of con-
sumers in V which specifies the order π(v) ∈ {1, 2, . . . , n} of consumer v ∈ V
being asked to buy (choose) Y or N , or “being scheduled” for short. We re-
fer to the problem of finding a schedule for a rebel social network as the rebel
scheduling problem. Given schedule π, the choice (purchase decision) of each
consumer v under π is uniquely determined, and we denote it by π[v], which
belongs to {Y,N}. The decisions of all consumers form the marketing outcome
(π[v] : v ∈ V ) of π. The basic goal of the rebel scheduling problem is to find
a schedule whose outcome contains Y (resp. N ) decisions as many as possible
because Y (resp. N ) is more profitable for the seller.

Equilibrium. As seen above, the value of a product changes as the marketing
proceeds. Every schedule corresponds to a dynamic game among consumers. We
assume that consumers behave naively without predictions. A natural question
is: Can these simple behaviors (or equivalently, a schedule) eventually lead to
a Nash equilibrium – a state where no consumer regrets her previous decision?
This question is of both theoretical and practical interests. Schedules that lead to
Nash equilibria are called regret-proof; they guarantee high consumer satisfaction,
which is beneficial to the seller’s future marketing.

Results and Contribution. We prove that it is NP-hard to find a mar-
keting schedule that maximizes the number of Y (resp. N ) decisions. Com-
plementary to the NP-hardness, we design O(n2)-time algorithms for finding
schedules that guarantee at least n/2 decisions of Y, and at least n/3 decisions
of N , respectively. The numbers n/2 and n/3 are best possible for any algo-
rithm. Let α denote the size of maximum independent set of G. We show that



How to Schedule the Marketing of Products with Negative Externalities 125

regret-proof schedules that guarantee at least n/2 decisions of Y and at least
max{

√
n+ 1 − 1, (n − α)/2} decisions of N , respectively, can be found in time

O(mn2). In contrast, decentralized consumer choices without a schedule might
result in an arbitrarily worse outcome. This can be seen from the star network,
where in the worst case only one consumer chooses the product consistent with
the seller’s objective. The reader is referred to the full paper [6] for proofs and
details omitted in the extended abstract.

To the best of our knowledge, this paper is the first attempt to address the
scheduling problems for marketing products with negative externalities (i.e mar-
keting in rebel social networks). Our algorithms for maximizing the number of Y
decisions can be extended to deal with the case of promoting one product where
Y and N are interpreted as buying and not buying, respectively.

2 Maximization

We study the rebel scheduling problem to maximize seller’s profits in Subsec-
tions 2.1 and 2.2, respectively, for the cases of Y and N having higher net profits.

Throughout we consider G = (V,E) a connected rebel social network for
which we have n = O(m). All results can be extended to any network without
isolated nodes. Let π be a schedule for G, and u, v ∈ V . We say that π schedules
v ∈ V with decision π[v] ∈ {Y,N}, and π schedules u before v if π(u) < π(v).

2.1 When Y Is More Profitable

It is desirable to find an optimal schedule that maximizes the number of con-
sumers purchasing Y. Although this turns out to be a very hard task,we can
guarantee that at least half of the consumers choose Y.

Theorem 1. The rebel scheduling problem for maximizing the number of Y de-
cisions is NP-hard.

Proof. We prove by reduction from themaximum independent set problem. Given
any instance of the maximum independent set problem on connected graph H =
(N,F ), by adding some pendant nodes to H we construct in polynomial time a
network G (an instance of the rebel scheduling problem): For each node u ∈ N
with degree d(u) in H , we add a set Pu of d(u) nodes, and connect each of them
to u. The resulting network G = (V,E) is specified by V := N ∪ (∪u∈NPu) and
E := F ∪ (∪u∈N{up : p ∈ Pu}), where each node in V \N = ∪u∈NPu is pendant,
and each node u ∈ N is non-pendant and has exactly 2d(u) neighbors: half of
them are non-pendant nodes in N and the other half are the d(u) pendant nodes
in Pu.

We associate every schedule π for G with an integer θ(π), equal to the number
of pendant nodes which are scheduled (by π) after their unique neighbors. Clearly

θ(π) ≤ |V \N | = 2|F | for any schedule π of G. (2.1)



126 Z. Cao, X. Chen, and C. Wang

Claim 1. For any u ∈ N and any schedule π of G, if π schedules all nodes
in Pu ∪ {u} with Y, then (all the d(u) pendant neighbors of u in Pu have to
be scheduled before u with decisions Y, therefore) all the d(u) non-pendant
neighbors of u have to be scheduled with N before u is scheduled.

Consider π being an optimal schedule for G. If θ(π) = 0, then π schedules all
pendant nodes before their neighbors, and hence all of these pendant nodes
choose Y. It follows from Claim 1 that {v ∈ N : π[v] = Y} is an independent set
of H . Since π is optimal, the independence set is maximum in H . Thus, in view
of (2.1), to prove the theorem, it suffices to show the following.

Claim 2. Given an optimal schedule π for G with θ(π) > 0, another optimal
schedule π′ for G with θ(π′) < θ(π) can be found in polynomial time.

Since θ(π) > 0, we can take w ∈ N to be the last non-pendant node scheduled by
π earlier than some of its pendant neighbors. Under π, let P ′

w (∅ �= P ′
w ⊆ Pw) be

the set of all pendant neighbors of w that are scheduled after w, let U be the set
of non-pendant nodes scheduled after w, and let PU be the set of the pendant
nodes whose (non-pendant) neighbors belong to U (possibly U = ∅ = PU ).
The choice of w implies that π schedules every node in PU before its neighbor.
Without loss of generality we may assume that under π,

– (Pendant) nodes in PU are scheduled before all other nodes (with Y).
– (Pendant) nodes in P ′

w are scheduled immediately after w one by one.
– (Non-pendant) nodes in U are scheduled at last.

If π schedules w with N , then at later time it schedules all pendant nodes in P ′
w

with Y. Another optimal schedule π′ (for G) with the same outcome as π can be
constructed as follows: π′ schedules nodes in P ′

w first, and then schedules other
nodes of V in a relative order the same as π. Clearly, π′ with θ(π′) ≤ θ(π)− 1 is
the desired schedule. It remains to consider the case where π schedules w with

π[w] = Y. (2.2)

It follows that π[p] = N for all p ∈ P ′
w. Let π

′ be the schedule that first schedules
nodes of V \ {w} in a relative order the same as π, and schedules w finally. It is
clear that θ(π′) ≤ θ(π) − 1 and π′[p] = Y for all p ∈ P ′

w. We only need to show
that π′ is optimal.

Observe that π′ first schedules every v ∈ V satisfying π(v) < π(w) with
the same decision as in π (particularly, all nodes in PU are scheduled with Y).
Subsequently, π′ schedules nodes in P ′

w and U in the same relative order as π
Finally π′ schedules w. Since all pendant nodes in P ′

w (�= ∅) are scheduled by π′

with Y, and by π with N the optimality of π′ would follow if π′ schedules every
node of U with the same decision as π.

Suppose it were not the case. Let u ∈ U ⊆ N be the earliest node in U
scheduled by π′ with a decision π′[u] different from π[u]. It must be the case
that w is a non-pendant neighbor of u and π[w] �= π[u]. At the time π′ schedules
u, all pendant neighbors of u in Pu ⊆ PU have been scheduled with Y and the



How to Schedule the Marketing of Products with Negative Externalities 127

non-pendant neighbor w has not been scheduled, it follows from Claim 1 that
π′[u] = N . As π[u] �= π′[u] and π[w] �= π[u], we have π[w] = π′[u] = N , a
contradiction to (2.2). The optimality of π′ is established, which proves Claim 2
and therefore Theorem 1. ��
We next design an algorithm for finding a schedule that ensures at least n/2
decisions of Y, providing a 2-approximation to the optimal. The algorithm it-
eratively constructs a node set A for which there exist two schedules π′ and
π′′ scheduling each node in A with different decisions. In the end, at least half
nodes of A can be scheduled by either π′ or π′′ with Y decisions. Subsequently,
the nodes outside A, which form an independent set, will all choose Y (in an
arbitrary order).

Algorithm 1. Input: Network G = (V,E). Output: Partial schedule π for G.
1. Initial setting: A← ∅, t← 1, π′ ← a null schedule
2. While ∃ w ∈ V \A which has different numbers of neighbors in A choosing
Y and N respectively under π′ do

3. schedule w: π′(w)← t, π′′(w)← t;
A← A ∪ {w}, t← t+ 1

4. End-while
5. If ∃ uv ∈ E with u, v /∈ A

then schedule uv: π′(u)← t, π′(v)← t+ 1, π′′(v)← t, π′′(u)← t+ 1;
A← A ∪ {u, v}, t← t+ 2;
Go back to Step 2.

6. Let π be π′ or π′′ whichever schedules more nodes with Y (break tie arbi-
trarily)

For convenience, we reserve symbol “schedule” for the scheduling (construct-
ing π and π′′) as conducted at Steps 3 and 5 in Algorithm 1. Similarly, we also
say “schedule a node” and “schedule an edge” with the implicit understand-
ing that the node and the edge satisfy the conditions in Step 2 and Step 5 of
Algorithm 1.

Claim 3. π′[v] = Y if and only if π′′[v] = N for all v ∈ A.

Proof. The algorithm enlarges A gradually at Steps 3 and 5, producing a se-
quence of node sets A0 = ∅, A1, . . . , A� = A. We prove by induction on k that
π′(v) = Y if and only if π′′(v) = N for all v ∈ Ak, k = 0, 1, . . . , �. The base case
of k = 0 is trivial.

Suppose that k ≥ 1 and the statement is true for Ak−1. In case of Ak being
produced at Step 2, suppose w has n1 (resp. n2) neighbors in Ak−1 choosing
Y (resp. N ) under π′. By hypothesis, w has n1 (resp. n2) neighbors in Ak−1

choosing N (resp. Y) under π′′. Since n1 �= n2, we see that π
′[w] = Y if and only

if π′′[w] = N . In case of Ak being produced at Step 5, both u and v have equal
number of neighbors in Ak−1 choosing Y and N , respectively, under π′, due to
the implementation of the while-loop at Steps 2–4. By hypothesis both u and v
have equal number of neighbors in Ak−1 choosing Y and N , respectively, under
π′′. It follows from uv ∈ E that π′[u] = π′′[v] = Y and π′[v] = π′′[u] = N . In
either case, the statement is true for Ak, proving the claim. ��



128 Z. Cao, X. Chen, and C. Wang

Claim 4. (i) At least half nodes of A are scheduled by π with Y (by Step 6).
(ii) The nodes in V \A (if any) form an independent set of G (by Step 5).
(iii) Each node in V \A has an equal number of neighbors in A choosing Y and

N , respectively, under π′ (by Steps 2–4), and under π′′ (by Claim 3), and
hence under π (by Step 6). ��

Theorem 2. A schedule that ensures at least n/2 decisions of Y can be found
in O(n2) time.

Proof. It follows from Claim 4(ii) and (iii) that π can be extended to a schedule
for G such that all node in V \A choose Y. By Claim 4(i), the outcome contains
at least n/2 decisions of Y.

Next we show the time complexity. Algorithm 1 keeps an n× 2 array [δv, δ
′
v],

v ∈ V , where δv represents the difference between the numbers of neighbors of
node v in A choosing Y and N , and δ′v represents the number of neighbors of
node v in V \ A. The initial setting of the array [δv, δ

′
v] = [0, the degree of v in

G], v ∈ V , takes O(n2) time. Step 1 is to find a node w /∈ A with δw �= 0 by
visiting δv, v ∈ V \ A. Step 5 is to find a node u ∈ V \A with δ′u ≥ 1 and then
find a neighbor u ∈ V \ A of v. The search in both Steps 2 and 5 takes O(n)
time. Each time Algorithm 1 adds a node v to A, the algorithm updates the
entries of v’s neighbors in the array, which takes O(n) time. Since we can add
at most n nodes to A, Algorithm 1 terminates in O(n2) time. ��

The tightness of n/2 in the above theorem can be seen from the case where the
network G is a complete graph.

2.2 When N Is More Profitable

By reduction from the bounded occurrence MAX-2SAT problem [13], we obtain
the following NP-hardness.

Theorem 3. The rebel scheduling problem for maximizing the number of N
decisions is NP-hard. ��

Next, we design a 3-approximation algorithm for finding in O(n2) time a schedule
which ensures at least n/3 decisions of N . This is accomplished by a refinement
of Algorithm 1 with some preprocessing.

The following terminologies will be used in our discussion. Given a graph H
with node set U , let R,S ⊆ U be two node subsets. We say that R dominates S
if every node in S has at least a neighbor in R. We use H \R to denote the graph
obtained from H by deleting all nodes in R (as well as their incident links). Thus
H \R is the subgraph of H induced by U \R, which we also denote as H [U \R].

Preprocessing. Given a connected social network G = (V,E), let X be any
maximal independent set of G. It is clear that

– X and Y := V \X are disjoint node sets dominating each other.



How to Schedule the Marketing of Products with Negative Externalities 129

We will partition X into X1, . . . , X� and Y into Y0, Y1, . . . , Y� for some positive
integer � such that Algorithm 1 schedules Xi ∪ Yi before Xi−1 ∪ Yi−1 for all
i = �, �− 1, . . . , 2.

– Set G0 = G and X0 = ∅. Find Y0 ⊆ Y such that Y \Y0 is a minimal set that
dominates X \X0 (= X) in graph G0.

– Set graph G1 := G \ (X0 ∪ Y0) = G[(X \X0) ∪ (Y \ Y0)].

The minimality of Y \Y0 implies that in graph G1 every node in Y \Y0 is adjacent
to at least one pendant node in X \X0.

– Let X1 ⊆ X \X0 consist of all pendant nodes of G1 contained in X \X0.

If X \ (X0 ∪X1) �= ∅, then Y \ Y0 still dominates X \ (X0 ∪X1), and we repeat
the above process with G1, X \ X0, Y \ Y0 in place of G0, X , Y , respectively,
and produce Y1, G2, X2 in place of Y0, G1, X1.

Inductively, for i = 1, 2, . . ., given graph Gi = G \ ∪i−1
j=0(Xj ∪ Yj) = G[(X \

∪i−1
j=0Xj) ∪ (Y \ ∪i−1

j=0Yj)], where Y \ ∪i−1
j=0Yj is a minimal set dominating X \

∪i−1
j=1Xj , and Xi the set of all pendant nodes of Gi contained in X \ ∪i−1

j=0Xj ,

when X \ ∪ij=0Xj �= ∅, we can

– Find Yi ⊆ (Y \∪i−1
j=0Yj) such that Y \∪ij=0Yj is a minimal set that dominates

X \ ∪ij=0Xj in graph Gi.

– Set graph Gi+1 := G \ ∪ij=1(Xj ∪ Yj) = G[(X \ ∪ij=0Xj) ∪ (Y \ ∪ij=0Yj)].

– Let Xi+1 ⊆ X \ ∪ij=0Xj consist of all pendant nodes of Gi+1 that are con-

tained in X \ ∪ij=0Xj.

The procedure terminates at i = � for which we have X \ ∪�j=0Xj = ∅, and

Gi = G[(∪�j=iYj)
�
(∪�j=iXj)] for i = 0, 1, . . . , �; in particular G0 = G.

Note that Gi ⊆ Gi−1 for i = �, � − 1, . . . , 1, Y \ Y0 is the disjoint union of
Y1, . . . , Y�, and X is the disjoint union of X1, . . . , X�. The minimality of ∪�j=iYj =

Y \∪i−1
j=0Yj implies that in graph Gi every node in ∪�j=iYj is adjacent to at least

one pendant node in Xi.

Claim 5. For any i = �, � − 1, . . . , 1, in the subgraph Gi, all nodes in Xi are
pendant, and every node in Yi is adjacent to at least one node in Xi.

Refinement. Next we show that Algorithm 1 can be implemented in a way that
all nodes of subgraph G1 are scheduled. If the implementation has led to at least
n/3 decisions of N , we are done; otherwise, we can easily find another schedule
that makes at least n/3 nodes choose N .

Algorithm 2. Input: NetworkG = (V,E) together withGj , Xj , Yj , j = 0, 1, . . . , �.
Output: Partial schedule π for G.

1. Initial setting: A← ∅
2. For i = � downto 0 do
3. While in the subgraph Gi, ∃ w ∈ (Xi∪Yi)\A which has different numbers

of neighbors in A choosing Y and N respectively do



130 Z. Cao, X. Chen, and C. Wang

4. schedule w; A← A ∪ {w}
5. End-while
6. If ∃ edge uv of Gi with u, v /∈ A
7. then schedule uv; A← A ∪ {u, v}; Go back to Step 3.
8. End-for
9. Let π be a schedule for G[A] that schedules at least 1

2 |A| nodes with N

The validity of Step 9 is guaranteed by Claim 3. SinceX∩Y0 = ∅, the following
claim implies X ⊆ A.

Claim 6. V \A ⊆ Y0.

Proof. We only need to show that each node w ∈ Xk ∪ Yk (k = 1, 2, · · · , �) is
selected to A when i = k in Algorithm 2.

In case of w ∈ Xk, it is pendant and has only one neighbor u in subgraph
Gk. If u ∈ A when w is checked at Step 3, then w is selected to A at Step 4;
Otherwise, w and u will be selected to A at the same time in Step 7.

In case of w ∈ Yk, by Claim 5, w is adjacent to a pendant node v ∈ Xk of Gk.
If, when checked at Step 3, w has different numbers of neighbors in A choosing Y
and N , then it is selected to A at Step 4; otherwise, node v must have not been
selected to A, and subsequently w and v are put into A together at Step 7. ��

If |A| > 2n/3, then, by extending partial schedule π output by Algorithm 2,
we obtain a schedule which makes at least n/3 nodes choose N . Otherwise,
|V \ A| ≥ n/3, and all nodes in V \ A can be scheduled with N as follows:
Schedule firstly the nodes in the maximal independent set X (all of them choose
Y); secondly the nodes in V \ A, and finally all the other nodes. Recall that X
dominates every node in Y ⊇ Y0. It follows from Claim 6 that X dominates
V \A. As V \A is an independent set in G (by Claim 4(ii)), the decisions of all
nodes in V \A are N .

Theorem 4. A schedule that ensures at least n/3 decisions of N can be found
in O(n2) time. ��

The tightness of n/3 can be seen from a number of disjoint triangles linked by
a path, where each triangle has exactly two nodes of degree two.

3 Regret-Proof Schedules

Using link cuts as a tool, we find regret-proof schedules that ensure at least n/2
decisions of Y and at least

√
n+ 1− 1 decisions of N , respectively.

Given G = (V,E), let R and S be two disjoint subsets of V . We use [R,S]
to denote the set of links (in E) with one end in R and the other in S. If
R ∪ S = V , we call [R,S] a (link) cut. For a node v ∈ V , we use dS(v) to
denote the number of neighbors of v contained in S. Each schedule π for G is
associated with a cut [S1, S2] of G defined by its outcome: S1 (resp. S2) is the



How to Schedule the Marketing of Products with Negative Externalities 131

set of consumers scheduled with Y (resp. N ). A schedule π is regret-proof if and
only if its associated cut [S1, S2] is stable, i.e., satisfies the following conditions:

dS2(v) ≥ dS1(v) for any v ∈ S1, and dS1(v) > dS2(v) for any v ∈ S2. (3.1)

Note that S1 and S2 are asymmetric. For clarity, we call S1 the leading set of
cut [S1, S2]. Any node that violates (3.1) is called violating (w.r.t. [S1, S2]).

Finding Stable Cuts. A basic operation in our algorithms is “enlarging” unstable
cuts by moving “violating” nodes from one side to the other. Let [S1, S2] be an
unstable cut of G for which some v ∈ Si (i = 1 or 2) is violating. We define type-i
move of v (from Si to S3−i) to be the setting: Si ← Si \ {v}, S3−i ← S3−i ∪{v},
which changes the cut. The violation of (3.1) implies

(a) type-1 move increases the cut size, and downsizes the leading set;
(b) type-2 move does not decrease the cut size, and enlarges the leading set.

Both types of moves are collectively called moves. Note that moves are only
defined for violating nodes, and the cut size |[S1, S2]| is nondecreasing under
moves. To find a stable cut, our algorithms work with a cut [S1, S2] of G and
change it by moves sequentially. By (a) and (b), the number m1 of type-1 moves
is O(m). Moreover, we have the following observation.

Lemma 1. (i) From any given cut of size s, O(m1+n) moves produce a stable
cut (i.e., a cut without violating nodes) of of size at least s+m1.

(ii) If the leading set of the stable cut produced is smaller than that of the given
cut, then the number of type-2 moves is smaller than that of type-1 moves.

As a byproduct of (a) and (b), one can easily deduces that the rebel game
on a network, where each rebel switches between two choices in favor of the
minority choice of her neighbors, is a potential game and thus possesses a Nash
equilibrium. The potential function is defined as the size of the cut between the
rebels holding different choices.

Lemma 2. In O(n) time, either the current cut is verified to be stable, or a
move is found and conducted. ��

Procedure 1. Input: Cut [S1, S2] ofG.Output: Stable cut [T1, T2] := Prc1(S1, S2)

1. Repeat
2. If |S1| < n/2 then [S1, S2]← [S2, S1] // swap S1 and S2

3. While ∃ violating node v w.r.t. [S1, S2] do move v // [S1, S2] is changing

4. Until |S1| ≥ n/2

5. Return [T1, T2]← [S1, S2]

Lemma 3. Procedure 1 produces in O(tn + n2) time a stable cut [T1, T2] of G
such that |T1| ≥ n/2, where t = |[T1, T2]| − |[S1, S2]| ≥ 0.



132 Z. Cao, X. Chen, and C. Wang

Proof. It follows from Lemma 1(i) that there are a number m′
1 (≤ m) of type-1

moves in total, and |[T1, T2]| ≥ |[S1, S2]|+ m′
1. By Lemma 2, it suffices to show

that there are a total of O(m′
1 + n) moves.

Observe from Step 2 that each (implementation) of the while-loop at Step 3
starts with a cut whose leading set has at least n/2 nodes. If this while-loop
ends with a smaller leading set, by Lemma 1(ii) it must be the case that the
while-loop conducts type-1 moves more times than conducting type-2 moves.
Therefore after O(m′

1) moves, the procedure either terminates, or implements a
while-loop that ends with a leading set S1 not smaller than one at the beginning
of the while-loop. In the latter case, the until-condition at Step 4 is satisfied, and
the procedure terminates. The number of moves conducted by the last while-
loop is O(m′

1 + n) as implied by Lemma 1(i). ��

Regret-Proof Scheduling. Our basic idea for finding regret-proof schedules goes
as follows: Given a stable cut [S1, S2], we try to schedule nodes in S1 (resp. S2)
with Y (resp. N ) whenever possible. If not all nodes can be scheduled this way,
we obtain another stable cut of larger size, from which we repeat the process.

Algorithm 3. Input: Cut [R1, R2] of network G. Output: A schedule for G

1. Initial setting: D1 ← Y, D2 ← N ; Ti ← ∅, S′
i ← Ri \ Ti (i = 1, 2)

2. Repeat
3. [S1, S2]← Prc1(S′

1 ∪T2, S
′
2 ∪T1) // |[S1, S2]| ≥ |[S′

1 ∪T2, S
′
2 ∪T1]|

4. Set all nodes of G to be unscheduled
5. While ∃ unscheduled v∈Si (i∈{1, 2}) whose decision is Di do schedule v
6. Ti ← {scheduled nodes with decision Di}, S′

i ← Si \Ti (i = 1, 2) //Ti ⊆ Si

7. Until S′
1 = ∅ // Until all nodes of G are scheduled

8. Output the final schedule for G

Note that cuts [S1, S2] returned by Procedure 1 at Step 3 are stable. At the end
of Step 6, if S′

1 = ∅, then S′
2 = ∅ (otherwise, every node v ∈ S′

2 ⊆ S2 satisfies
dS1(v) = dT1(v) ≤ dT2(v) ≤ dS2(v), saying that [S1, S2] is not stable.) Thus the
condition in Step 7 is equivalent to saying “until all nodes of G are scheduled”.

Theorem 5. Algorithm 3 finds in O(mn2) time a regret-proof schedule with at
least n/2 decisions of Y.

Proof. Consider Step 6 setting S′
1 �= ∅. Since nodes in S′

1 ∪ S′
2 cannot be sched-

uled, we have dT1(v) > dT2(v) for every v ∈ S′
1 = S1 \ T1 and dT2(v) ≥ dT1(v)

for any v ∈ S′
2 = S2 \ T2, which gives

0 <
�

v∈S′
1

(dT1(v)− dT2(v)) +
�

v∈S′
2

(dT2(v) − dT1(v))

= (|[S′
1, T1]| − |[S′

1, T2]|) + (|[S′
2, T2]| − |[S′

2, T1]|)
= |[S′

1 ∪ T2, S
′
2 ∪ T1]| − |[S′

1 ∪ T1, S
′
2 ∪ T2]|.

Thus cut [S′
1 ∪ T2, S

′
2 ∪ T1] has its size t > |[S′

1 ∪ T1, S
′
2 ∪ T2]| = |[S1, S2]|.

Subsequently, at Step 3, with input [S′
1∪T2, S

′
2∪T1], Procedure 1 returns a new



How to Schedule the Marketing of Products with Negative Externalities 133

cut [S1, S2], of size at least t, which is larger than the old one. It follows that
the repeat-loop can only repeat a number k (≤ m) of times.

By Lemma 3, for i = 1, 2, . . . , k, we assume that Procedure 1 in the i-th
repetition (of Steps 3–6) returns in O(tin + n2) time a cut whose size is ti
larger than the size of its input. Then

�k
i=1 ti ≤ m, and overall Step 3 takes

O(
�k

i=1(tin + n2)) = O(mn2) time. The overall running time follows from the
fact that O(n2) time is enough for finishing a whole while-loop at Step 5.

Note from Lemma 3 that the final cut [S1, S2] produced by Procedure 1 is
stable and satisfies |S1| ≥ n/2. Since [S1, S2] is the cut associated with the final
schedule output, the theorem is proved. ��
By a similar but more complex algorithm, we can find in O(mn2) time a regret-
proof schedule that ensures at least max{

√
n+ 1−1, n−α

2 } decisions of N , where
α is the size of the maximum independent set of G.

References

1. Adachi, T.: Third-degree price discrimination, consumption externalities and social
welfare. Economica 72, 171–178 (2005)

2. Apt, K.R., Markakis, E.: Diffusion in social networks with competing products. In:
Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 212–223. Springer, Heidelberg
(2011)

3. Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in
social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550.
Springer, Heidelberg (2010)

4. Bramoulle, Y.: Anti-coordination and social interactions. Games and Economic
Behavior 58, 30–49 (2007)

5. Cao, Z., Yang, X.: A note on anti-coordination and social interactions. Journal of
Combinatorial Optimization (2012) (online first), doi:10.1007/s10878-012-9486-7

6. Cao, Z., Chen, X., Wang, C.: How to schedule the marketing of products with
negative externalities, CoRR abs/1303.6200 (2013)

7. Chiang, D.M., Teng, C.: Consumption externalities: review and future research
opportunities. Electroinic Commerce Studies 3, 15–38 (2005)

8. Chierichetti, F., Kleinberg, J., Panconesi, A.: How to schedule a cascade in an
arbitrary graph. In: Proc. 13th ACM Conference on Electronic Commerce, pp.
355–368 (2012)

9. Goyal, S., Kearns, M.: Competitive contagion in networks. In: Proc. 44th Sympo-
sium on Theory of Computing, pp. 759–774 (2012)

10. Holcombe, R.G., Sobel, R.S.: Consumption externalities and economic welfare.
Eastern Economic Journal 26, 157–170 (2000)

11. Jackson, M.O.: Social and economic networks. Princeton University Press, Prince-
ton (2008)

12. van Nes, N.: Understanding replacement behaviour and exploring design solutions.
In: Cooper, T. (ed.) Longer Lasting Products: Alternatives to the Throwaway
Society (2010)

13. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. Journal of Computer and System Science 43, 425–440 (1991)

14. Zabin, J.,Brebach,G.:PrecisionMarketing:TheNewRules forAttracting,Retaining
and Leveraging Profitable Customers. John Wiley & Sons, Inc., Hoboken (2004)



From Preemptive to Non-preemptive

Speed-Scaling Scheduling

Evripidis Bampis1,�, Alexander Kononov2,��, Dimitrios Letsios1,3,�,
Giorgio Lucarelli1,3,�, and Ioannis Nemparis1,4

1 LIP6, Université Pierre et Marie Curie, France
{Evripidis.Bampis,Giorgio.Lucarelli}@lip6.fr

2 Sobolev Institute of Mathematics, Novosibirsk, Russia
alvenko@math.nsc.ru

3 IBISC, Université d’Évry, France
dimitris.letsios@ibisc.univ-evry.fr

4 Dept. of Informatics and Telecommunications, NKUA, Athens, Greece
sdi0700181@di.uoa.gr

Abstract. We are given a set of jobs, each one specified by its release
date, its deadline and its processing volume (work), and a single (or
a set of) speed-scalable processor(s). We adopt the standard model in
speed-scaling in which if a processor runs at speed s then the energy con-
sumption is sα units of energy per time unit, where α > 1. Our goal is to
find a schedule respecting the release dates and the deadlines of the jobs
so that the total energy consumption is minimized. While most previous
works have studied the preemptive case of the problem, where a job may
be interrupted and resumed later, we focus on the non-preemptive case
where once a job starts its execution, it has to continue until its com-
pletion without any interruption. As the preemptive case is known to
be polynomially solvable for both the single-processor and the multipro-
cessor case, we explore the idea of transforming an optimal preemptive
schedule to a non-preemptive one. We prove that the preemptive optimal
solution does not preserve enough of the structure of the non-preemptive
optimal solution, and more precisely that the ratio between the energy
consumption of an optimal non-preemptive schedule and the energy con-
sumption of an optimal preemptive schedule can be very large even for
the single-processor case. Then, we focus on some interesting families of
instances: (i) equal-work jobs on a single-processor, and (ii) agreeable
instances in the multiprocessor case. In both cases, we propose constant
factor approximation algorithms. In the latter case, our algorithm im-
proves the best known algorithm of the literature. Finally, we propose a
(non-constant factor) approximation algorithm for general instances in
the multiprocessor case.

� Partially supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010, by the project ALGONOW, co-financed by the Eu-
ropean Union (European Social Fund - ESF) and Greek national funds, through
the Operational Program “Education and Lifelong Learning”, under the program
THALES, and by a French-Chinese Cai Yuanpei project.

�� Supported by the RFBR grant No 12-01-00184.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 134–146, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



From Preemptive to Non-preemptive Speed-Scaling Scheduling 135

1 Introduction

One of the main mechanisms used for minimizing the energy consumption in
computing systems and portable devices is the so called speed-scaling mechanism
[1], where the speed of a processor may change dynamically. If the speed of the
processor is s(t) at a time t then its power is s(t)α, where α > 1, and the energy
consumption is the power integrated over time. In this setting, we consider the
non-preemptive speed scaling scheduling problem: we are given a set J of n jobs,
where each job Jj ∈ J is characterized by its processing volume (work) wj , its
release date rj and its deadline dj , and a single (or a set of identical) speed-
scalable processor(s). We seek for a feasible1 non-preemptive2 schedule of the
jobs minimizing the overall energy consumption.

Recently, it has been proved that the non-preemptive speed scaling scheduling
problem is NP-hard even for the single-processor case [5]. Using the standard
three-field notation we denote the single-processor (resp. multiprocessor) case as
1|rj , dj |E (resp. P |rj , dj |E). Our aim is to study the performance of one of the
most standard approaches in scheduling for designing approximation algorithms:
construct a non-preemptive schedule from an optimal preemptive one. We prove
that for general instances this approach cannot lead to a constant factor approx-
imation algorithm since the ratio between the energy consumption of an optimal
non-preemptive schedule and the energy consumption of an optimal preemptive
one can be very large even for the single-processor case. Despite this negative
result, we show that for some important families of instances, this approach leads
to interesting results. Moreover, we show how to use this approach in order to
obtain an (non-constant) approximation algorithm for the general case.

1.1 Related Work

Different variants of the problem have been considered in the literature: with or
without preemptions, with equal or arbitrary works, arbitrary release dates and
deadlines or particular instances. The main families of instances, with respect
to the release dates and the deadlines of the jobs, that have been studied are
the following. In a laminar instance, for any two jobs Jj and Jj′ with rj ≤ rj′ it
holds that either dj ≥ dj′ or dj ≤ rj′ . In fact, such instances arise when recursive
calls in a program create new jobs. In an agreeable instance, for any two jobs Jj

and Jj′ with rj ≤ rj′ it holds that dj ≤ dj′ , i.e. latter released jobs have latter
deadlines. Such instances may arise in situations where the goal is to maintain a
fair service guarantee for the waiting time of jobs. Note that agreeable instances
correspond to proper interval graphs. In a pure-laminar instance, for any two
jobs Jj and Jj′ with rj ≤ rj′ it holds that dj ≥ dj′ . Note that the family of
pure-laminar instances is a special case of laminar instances.

For the preemptive single-processor case (1|rj , dj , pmtn|E), Yao et al. [16]
proposed an optimal algorithm for finding a feasible schedule with minimum

1 A schedule is feasible if every job is executed between its release date and its deadline.
2 A schedule is non-preemptive, if every job is executed without interruption, i.e. once
a job starts its execution it has to continue until its completion.



136 E. Bampis et al.

energy consumption. The multiprocessor case, P |rj , dj , pmtn|E, where there are
m available processors has been solved optimally in polynomial time when both
the preemption and the migration3 of jobs are allowed [2,4,6,8].

Albers et al. [3] considered the multiprocessor problem where the preemption
of the jobs is allowed but not their migration (P |rj , dj , pmtn, no-mig|E). They
first studied the problem where each job has unit work. They proved that it
is polynomial time solvable for instances with agreeable deadlines. For general
instances with unit-work jobs, they proved that the problem becomes strongly
NP-hard and they proposed an (αα24α)-approximation algorithm. For the case
where the jobs have arbitrary works, the problem was proved to be NP-hard
even for instances with common release dates and common deadlines. Albers et
al. proposed a 2(2 − 1

m)α-approximation algorithm for instances with common
release dates, or common deadlines, and an (αα24α)-approximation algorithm for
instances with agreeable deadlines. Greiner et al. [12] gave a generic reduction
transforming an optimal schedule for the multiprocessor problem with migration,
P |rj , dj , pmtn|E, to a Bα-approximate solution for the multiprocessor problem
with preemptions but without migration, P |rj , dj , pmtn, no-mig|E, where Bα is
the α-th Bell number. Note that the result of [12] holds only when α ≤ m.

Note that for the family of agreeable instances the assumption of preemption
and no migration is equivalent to the non-preemptive assumption that we con-
sider throughout this paper. For agreeable instances, any preemptive schedule
can be transformed into a non-preemptive one of the same energy consumption,
where the execution of each job Jj ∈ J starts after the completion of any other
job which is released before Jj . The correctness of this transformation can be
proved by induction on the order where the jobs are released. Hence, the results
of [3] and [12] for agreeable deadlines hold for the non-preemptive case as well.

Finally, Antoniadis and Huang [5] proved that the problem is NP-hard even
for pure-laminar instances. They also presented a 24α−3-approximation algo-
rithm for laminar instances and a 25α−4-approximation algorithm for general
instances. Notice that the polynomial-time algorithm for finding an optimal pre-
emptive schedule presented in [16] returns a non-preemptive schedule when the
input instance is agreeable.

In Table 1, we summarize the most related results of the literature. Several
other results concerning scheduling problems in the speed-scaling setting have
been presented, involving the optimization of some Quality of Service (QoS)
criterion under a budget of energy, or the optimization of a linear combination
of the energy consumption and some QoS criterion (see for example [7,9,15]).
Moreover, two variants of the speed-scaling model considered in this paper have
been studied in the literature, namely the bounded speed model in which the
speeds of the processors are bounded above and below (see for example [10]),
and the discrete speed model in which the speeds of the processors can be selected
among a set of discrete speeds (see for example [14]). The interested reader can
find more details in the recent survey [1].

3 A schedule is migratory if a job may be interrupted and resumed on the same or on
another processor. The parallel execution of parts of the same job is not allowed.



From Preemptive to Non-preemptive Speed-Scaling Scheduling 137

Table 1. Complexity and approximability results. (∗)The problem is equivalent with
the corresponding non-preemptive problem.

Problem Complexity Approximation ratio

1|rj, dj, pmtn|E Polynomial [16] –
P |rj = 0, dj = d, pmtn|E Polynomial [11] –
P |rj , dj, pmtn|E Polynomial [2,4,6,8] –

P |agreeable, wj = 1, pmtn, no-mig|E (∗) Polynomial [3] –
P |rj , dj, wj = 1, pmtn, no-mig|E NP-hard (m ≥ 2) [3] Bα [12]

P |rj = 0, dj = d, pmtn, no-mig|E (∗) NP-hard [3] PTAS [13,3]

P |rj = 0, dj , pmtn, no-mig|E (∗) NP-hard min{2(2 − 1
m )α, Bα} [3,12]

P |agreeable, pmtn, no-mig|E (∗) NP-hard Bα [12]
P |rj , dj, pmtn, no-mig|E NP-hard Bα [12]
1|agreeable|E Polynomial [16,5] –

1|laminar|E NP-hard [5] 24α−3 [5]
1|rj, dj|E NP-hard 25α−4 [5]

1.2 Our Contribution

In this paper, we are interested in designing approximation algorithms for the
non-preemptive speed-scaling scheduling problem using a standard approach in
scheduling: given an optimal preemptive solution, design an algorithm to convert
it into a feasible non-preemptive solution with as small degradation as possible
in the approximation ratio. For the single-processor case, we use the optimal pre-
emptive solution obtained by the algorithm of Yao et al. [16], while for the mul-
tiprocessor case, we use the preemptive migratory solution obtained by [2,4,6,8].
Unfortunately, the following proposition shows that for general instances the ra-
tio between an optimal non-preemptive schedule to an optimal preemptive one
can be very large even for the single-processor case. Due to space constraints we
skip the proof and we will present it in the full version of this paper.

Proposition 1. The ratio of the energy consumption of an optimal non-preem-
ptive schedule to the energy consumption of an optimal preemptive schedule of
the single-processor speed-scaling problem can be Ω(nα−1).

In what follows we show that for some particular instances, this approach leads
to interesting results. In Section 3 we consider the single-processor case and we
present an algorithm whose approximation ratio depends on the ratio of the
maximum to the minimum work in the input instance. For equal-work jobs,
our algorithm achieves an approximation ratio of 2α. It has to be noticed here
that the complexity status of this particular problem remains open and this is a
challenging direction for future work. In Section 4 we consider the multiprocessor
case. First, in Section 4.1, we deal with agreeable instances for which we present
a (2 − 1

m )α−1-approximation algorithm. This ratio improves the best known
approximation ratio of Bα given in [12] for any α > 1. For α = 3 our algorithm
achieves a ratio of 4 while B3 = 5, for α = 4 our algorithm achieves a ratio of 8
while B4 = 15, etc. Note that in general Bα = O(αα). Finally, in Section 4.2 we
present an approximation algorithm of ratio mα( m

√
n)α−1 for general instances.

Before beginning, in the following section we present our notation and some
preliminary known results that we use in our proofs.



138 E. Bampis et al.

2 Notation and Preliminaries

For the problems that we study in this paper, it is easy to see that in any optimal
schedule, any job Jj ∈ J runs at a constant speed sj due to the convexity of
the speed-to-power function. Given a schedule S and a job Jj ∈ J , we denote
by E(S, Jj) = wjs

α−1
j the energy consumed by the execution of Jj in S and by

E(S) =
∑n

j=1 E(S, Jj) the total energy consumed by S. We denote by S∗ an
optimal non-preemptive schedule for the input instance I.

The following proposition has been proved in [5] for 1|rj , dj |E but holds also
for the corresponding problem on parallel processors.

Proposition 2. [5] Suppose that the schedules S and S ′ process job Jj with speed
s and s′ respectively. Assume that s ≤ γs′ for some γ ≥ 1. Then E(S, Jj) ≤
γα−1E(S ′, Jj).

The following proposition has been proved in [3] and gives the relation between
the energy consumption of an optimal single-processor preemptive schedule and
an optimal multiprocessor preemptive schedule without migrations.

Proposition 3. [3] For a given set of jobs J , let S be an optimal single-processor
preemptive schedule and S ′ be an optimal multiprocessor preemptive schedule
without migrations. Then E(S) ≤ mα−1 ·E(S ′).

3 Single-Processor

In this section we consider the single-processor non-preemptive speed-scaling
problem. We first prove some structural properties of the optimal preemptive
schedule created by the algorithm in [16]. Then, we present an approximation
algorithm for the non-preemptive case, using as lower bound the energy con-
sumed by the optimal preemptive schedule. Our algorithm achieves a constant
factor approximation ratio for equal-work jobs.

3.1 Properties of the Optimal Preemptive Schedule

We consider the time points t0, t1, . . . , tk, in increasing order, where each t�,
1 ≤ � ≤ k, corresponds to either a release date or a deadline, so that for each
release date and deadline of a job there is a corresponding time point t�. Then,
we define the intervals Ip,q = [tp, tq], for 0 ≤ p < q ≤ k, and we denote by
|Ip,q| = tq − tp the length of Ip,q. We say that a job Jj is alive in a given interval
Ip,q, if [rj , dj ] ⊆ Ip,q. The set of alive jobs in interval Ip,q is denoted by A(Ip,q).
The density d(Ip,q) of an interval Ip,q is the total work of its alive jobs over its

length, i.e., d(Ip,q) =

∑
Jj∈A(Ip,q) wj

|Ip,q| .

In [16], Yao et al. proposed a polynomial-time algorithm for finding an opti-
mal schedule for 1|rj , dj , pmtn|E. This algorithm schedules the jobs in distinct
phases. More specifically, in each phase, the algorithm searches for the interval



From Preemptive to Non-preemptive Speed-Scaling Scheduling 139

of the highest density, denoted as Ip,q. All jobs in A(Ip,q) are assigned the same
speed, which is equal to the density d(Ip,q), and they are scheduled in Ip,q using
the Earliest Deadline First (EDF) policy. We can assume, w.l.o.g., that in the
case where two jobs have the same deadline, the algorithm schedules first the
job of the smallest index. Then, the set of jobs A(Ip,q) and the interval Ip,q are
eliminated from the instance and the algorithm searches for the next interval of
the highest density, and so on.

Given a preemptive schedule S and a job Jj , let bj(S) and cj(S) be the starting
and the completion time, respectively, of Jj in S. For simplicity, we will use bj
and cj , if the corresponding schedule is clear from the context. Note that there
are no jobs with the same starting times, and hence all bj’s are distinct. For the
same reason, all cj ’s are distinct.

The following lemma describes some structural properties of the optimal
schedule created by the algorithm in [16].

Lemma 1. Consider the optimal preemptive schedule Spr created by the algo-
rithm in [16]. For any two jobs Jj and Jj′ in Spr, it holds that:

(i) if bj < bj′ then either cj > cj′ or cj ≤ bj′ , and
(ii) if bj < bj′ and cj > cj′ then sj ≤ sj′ .

Proof.
(i) Assume for contradiction that there are two jobs Jj and Jj′ in Spr with
bj < bj′ , cj < cj′ and cj > bj′ .

We prove, first, that Jj and Jj′ cannot be scheduled in a different phase of
the algorithm. W.l.o.g., assume for contradiction that Jj is scheduled in a phase
before Jj′ and that Ip,q is the interval of the highest density in this phase. As
bj < bj′ < cj , there is a subinterval I ⊆ [bj′ , cj ] ⊂ [bj , cj ] ⊆ Ip,q during which Jj′

is executed in Spr . By construction, each job is scheduled in a single phase and
since I ⊂ Ip,q , it holds that [bj′ , cj′ ] ⊂ Ip,q. Hence, Jj and Jj′ are scheduled in
the same phase.

The algorithm schedules Jj and Jj′ using the EDF policy. Since the EDF
policy schedules Jj′ at time bj′ and bj′ < cj , it holds that dj′ ≤ dj . In a similar
way, since the EDF policy schedules Jj at time cj and cj < cj′ , it holds that
dj ≤ dj′ . Hence, dj = dj′ . However, since there is a tie, in both times bj′ and
cj the algorithm should have selected the same job, i.e., the job of the smallest
index. Therefore, there is a contradiction on the way that algorithm works.

(ii) Assume for contradiction that there are two jobs Jj and Jj′ in Spr with
bj < bj′ , cj > cj′ and sj > sj′ . As sj > sj′ , Jj is scheduled in a phase before
Jj′ ; let Ip,q be the interval of the highest density in this phase. However, it holds
that [bj′ , cj′ ] ⊂ [bj , cj] ⊆ Ip,q , and hence Jj′ should have been scheduled in the
same phase as Jj , which is a contradiction. ��

The above lemma implies that given an optimal preemptive schedule Spr ob-
tained by the algorithm in [16], the interval graph, in which for each job Jj

there is an interval [bj, cj ], has a laminar structure. Therefore, we can create a



140 E. Bampis et al.

tree-representation of Spr as follows. For each job Jj we create a vertex. For each
pair of jobs Jj and Jj′ with [bj′ , cj′ ] ⊂ [bj, cj ], we create an arc (Jj , Jj′ ) if and
only if there is not a job Jj′′ with [bj′ , cj′ ] ⊂ [bj′′ , cj′′ ] ⊂ [bj , cj ]. Note that, the
created graph T = (V,E) is, in general, a forest. Moreover, using Lemma 1 we
have that for each arc (Jj , Jj′ ) it holds that sj ≤ sj′ in Spr. In other words, the
speed of a job is at most equal to the speed of its children in T .

In what follows, we denote by T (Jj) the subtree of T rooted at vertex Jj ∈ V .
Moreover, let nj be the number of children of Jj in T .

Lemma 2. Consider an optimal preemptive schedule Spr created by the algo-
rithm in [16] and its corresponding graph T = (V,E). Each job Jj is preempted
at most nj times in Spr.

Proof. We will prove the lemma by induction on the tree.
Assume for contradiction that the root job Jr is preempted more than nr times

in Spr, that is the execution of Jr is partitioned into more than nr + 1 different
maximal intervals. Thus, there is a child Jj of Jr and an interval I ⊂ [bj, cj ] such
that Jr is executed during I. Observe first that Jr and Jj should be scheduled
in the same phase by the algorithm in [16]. Hence, the EDF policy is used and
using similar arguments as in the proof of Lemma 1.(i) we have a contradiction.

For the induction step, assume for contradiction that the job Jj is preempted
more than nj times in Spr. Hence, either there is a child Jj′ of Jj and an interval
I ⊂ [bj′ , cj′ ] such that Jj is executed during I, or there are two consecutive
children Jj′ and Jj′′ of Jj and two disjoint maximal intervals I and I ′, with
I, I ′ ⊂ [cj′ , bj′′ ], such that Jj is executed during both I and I ′. In the first case,
we have a contradiction using similar arguments as for the base of the induction.
In the second case, we get a contradiction using the inductive hypothesis. ��

3.2 An Approximation Algorithm

In this section we present an approximation algorithm, whose ratio depends on
wmax and wmin. In the case where all jobs have equal work to execute, this
algorithm achieves a 2α-approximation ratio. The main idea in Algorithm 1 is
to transform the optimal preemptive schedule Spr created by the algorithm in
[16] into a non-preemptive schedule Snpr , based on the corresponding graph
T = (V,E) of Spr. More specifically, the jobs are scheduled in three phases
depending on the number (one, at least two or zero) of their children in T .

Theorem 1. Algorithm 1 achieves an approximation ratio of (1 + wmax

wmin
)α for

1|rj , dj |E.

Proof. Consider first the jobs with exactly one child in T . By Lemma 2, each
such job Jj is preempted at most once in Spr, and hence it is executed in at most
two intervals in Spr . In Snpr the whole work of Jj is scheduled in the largest of
these two intervals. Thus, the speed of Jj in Snpr is at most twice the speed of
Jj in Spr. Therefore, using Proposition 2, for any job Jj with nj = 1 it holds
that E(Snpr, Jj) ≤ 2α−1 ·E(Spr , Jj).



From Preemptive to Non-preemptive Speed-Scaling Scheduling 141

Algorithm 1.

1: Create an optimal preemptive schedule Spr using the algorithm in [16];
2: Create the corresponding graph T = (V,E) of Spr;
3: Create the non-preemptive schedule Snpr as follows:
4: for each job Jj with nj = 1 do
5: Schedule non-preemptively the whole work of Jj in the biggest interval where a

part of Jj is executed in Spr;
6: for each remaining non-leaf job Jj do
7: Find an unlabeled leaf job Jj′ ∈ T (Jj); Label Jj′ ;
8: Schedule non-preemptively Jj and Jj′ with the same speed in the interval where

Jj′ is executed in Spr;
9: Schedule the remaining leaf jobs as in Spr;
10: return Snpr;

Consider now the remaining non-leaf jobs. As for each such job Jj it holds that
nj ≥ 2, in the subtree T (Jj) the number of non-leaf jobs with nj ≥ 2 is smaller
than the number of leaf jobs. Hence, we can create an one-to-one assignment
of the non-leaf jobs with nj ≥ 2 to leaf jobs such that each non-leaf job Jj is
assigned to an unlabeled leaf job Jj′ ∈ T (Jj).

Consider a non-leaf job Jj with nj ≥ 2 and its assigned leaf job Jj′ ∈ T (Jj).
Recall that leaf jobs are executed non-preemptively in Spr . Let I be the interval
in which Jj′ is executed in Spr . The speed of Jj′ in Spr is sj′ =

wj′
|I| and its energy

consumption is E(Spr , Jj′) = wj′s
α−1
j′ . In Snpr both Jj and Jj′ are executed

during I with speed s =
wj+wj′

|I| . The energy consumed by Jj and Jj′ in Snpr is

E(Snpr, Jj) + E(Snpr , Jj′) = (wj + wj′)s
α−1 = (wj + wj′ )(

wj + wj′

|I| )α−1

= (wj + wj′)
α(

sj′

wj′
)α−1 = (

wj + wj′

wj′
)α · wj′s

α−1
j′

= (
wj + wj′

wj′
)α · E(Spr , Jj′)

< (
wmax + wmin

wmin
)α · (E(Spr , Jj) + E(Spr, Jj′ ))

Moreover, note that Jj is alive during I and hence Snpr is a feasible schedule.
Finally, for each remaining leaf job Jj , it holds that E(Snpr , Jj) = E(Spr, Jj),

concluding the proof of the theorem. ��

When all jobs have equal work to execute, the following corollary holds.

Corollary 1. Algorithm 1 achieves an approximation ratio of 2α for 1|wj =
w, rj , dj |E.

Note that the complexity of 1|wj = w, rj , dj |E is not known and it is an inter-
esting open question.



142 E. Bampis et al.

4 Parallel Processors

In this section, we show how to use the optimal preemptive schedule to achieve
approximation algorithms for the multiprocessor case. We first present a constant
factor approximation algorithm for instances with agreeable deadlines. Then,
we consider general instances. As by Proposition 1 we know that the energy
consumption of an optimal preemptive schedule can be Ω(nα−1) far from the
energy consumption of an optimal non-preemptive schedule, we give an algorithm
for the latter case that uses as a lower bound the optimal preemptive schedule
and achieves an approximation factor that depends on n and m.

4.1 Agreeable Instances

The problem P |agreeable|E is known to be NP-hard [3] and Bα-approximable
[12]. In this section we present an approximation algorithm of ratio (2− 1

m )α−1,
which is better than Bα for any α > 1.

Our algorithm creates first an optimal preemptive schedule, using one of the
algorithms in [2,4,6,8]. The total execution time ej of each job Jj ∈ J in this
preemptive schedule is used to define an appropriate processing time pj for Jj .
Then, the algorithm schedules non-preemptively the jobs using these processing
times according to the Earliest Deadline First policy, i.e., at every time that
a processor becomes idle, the non-scheduled job with the minimum deadline is
scheduled on it. The choice of the values of the pj’s has been made in such a
way that the algorithm completes all the jobs before their deadlines.

Algorithm 2.

1: Create an optimal multiprocessor preemptive schedule Spr;
2: Let ej be the total execution time of the job Jj ∈ J , in Spr;
3: Schedule non-preemptively the jobs with the Earliest Deadline First (EDF) policy,

using the appropriate speed such that the processing time of the job Jj ∈ J , is
equal to pj = ej/(2− 1

m
), obtaining the non-preemptive schedule Snpr;

4: return Snpr;

Theorem 2. Algorithm 2 achieves an approximation ratio of (2 − 1
m )α−1 for

P |agreeable|E.

Proof. We consider the jobs indexed in non-decreasing order of their release
dates/deadlines. In what follows, we denote by bj the starting time of the job
Jj ∈ J in Snpr. Hence, the completion time cj of Jj in Snpr is cj = bj + pj . We
first show that the Snpr is a feasible schedule. In other words, we will prove that
for the completion time of the job Jj ∈ J , it holds that cj ≤ dj . Before that we
introduce some additional notation.

Note that at each time either all processors execute some job or there is at least
one processor which is idle. Based on this observation, we partition Snpr into



From Preemptive to Non-preemptive Speed-Scaling Scheduling 143

maximal intervals: the “full” and the “non-full” intervals. At each time during a
“full” interval, every processor executes some job. At each time during a “non-
full” interval, there is at least one processor which is idle. Let � be the number
of the “non-full” intervals. Let [τi, ti], 1 ≤ i ≤ �, be the i-th “non-full” interval.
Hence, [ti−1, τi], 1 ≤ i ≤ � + 1, is a “full” interval. For convenience, t0 = 0 and
τ�+1 = maxJj∈J {cj}. Note that the schedule can start at a “non-full” interval,
i.e., t0 = τ1, or can end with a “non-full” interval, i.e., t� = τ�+1.

Consider first a job Jj ∈ J that is released during a “non-full” interval [τi, ti].
Since the jobs are scheduled according to EDF policy, Jj starts its execution at
its release date, i.e., bj = rj . Given that Jj has smaller processing time in Snpr
than in Spr and as Spr is a feasible schedule, it holds that cj ≤ dj .

Consider now a job Jj ∈ J that is released during a “full” interval [ti, τi+1].
We denote by Ji = {Jj ∈ J : rj < ti} the set of jobs which are released before
ti. Let Pnpr,i be the amount of time that the jobs in Ji are executed after ti in
Snpr and Epr,i be the amount of time that the jobs in Ji are executed after ti
in Spr. We need the following claim (due to space constraints we skip its proof).

Claim. For each i, 0 ≤ i ≤ �, it holds that Pnpr,i ≤ Epr,i

(2− 1
m )

.

Let Jq be the first job which is released after ti, i.e., rq = ti. For Jj we have

cj ≤ ti +
Pnpr,i +

∑j−1
k=q pk

m
+ pj ≤ ti +

Epr,i+
∑j−1

k=q ek

m + ej

(2 − 1
m)

As Spr is a feasible schedule, all jobs Jq, . . . , Jj are executed inside the interval
[ti, dj ] in Spr and at least Epr,i amount of time of the jobs in Ji are also executed

in the same time interval, it holds that Epr,i +
∑j

k=q ek ≤ m(dj − ti) and ej ≤
dj − ti. Therefore, we obtain that cj ≤ ti + (2 − 1

m )
dj−ti
(2− 1

m )
= dj .

Finally, we have to prove the approximation ratio of our algorithm. When
dividing the execution time of all jobs by (2 − 1

m ), at the same time the speed
of each job is multiplied by the same factor. Using Proposition 2 we have that

E(Snpr) ≤ (2− 1

m
)α−1E(Spr) ≤ (2 − 1

m
)α−1E(S∗)

since the energy consumed by the optimal preemptive schedule Spr is a lower
bound to the energy consumed by an optimal non-preemptive schedule S∗ for
the input instance I. ��

4.2 General Instances

In this section we present an approximation algorithm for the multiprocessor
non-preemptive speed scaling problem P |rj , dj |E. The main idea of our algo-
rithm is to create an optimal single-processor preemptive schedule for the set of
jobs J . The jobs which are preempted at most n

1
m times in this schedule, are



144 E. Bampis et al.

scheduled non-preemptively on processor 1. For the remaining jobs we create
again an optimal single-processor preemptive schedule, we use processor 2 for
the jobs which are preempted at most n

1
m times, and we continue this procedure

until all jobs are assigned to a processor.

Algorithm 3.

1: i = 1; Ji = J ;
2: repeat
3: Run the algorithm in [16] for the problem 1|rj , dj , pmtn|E with input the set of

jobs in Ji and get the preemptive schedule Spr,i;
4: Create the tree-representation graph Ti of Spr,i;

5: Let Ji+1 be the set of jobs (vertices) with at least n
1
m children in Ti;

6: For each job Jj ∈ Ji \ Ji+1, schedule Jj on the processor i in its largest interval
in Spr,i and get the non-preemptive schedule Snpr,i for the processor i; i = i+1;

7: until Ji �= ∅
8: return Snpr which is the union of Snpr,i’s;

Theorem 3. Algorithm 3 achieves an approximation ratio of mα( m
√
n)α−1 for

P |rj , dj |E.

Proof. Let ni = |Ji| be the number of jobs in the i-th iteration. We will first show

that in iteration i there are at most n
1− 1

m
i vertices with at least n

1
m children.

Assume that there were at least n
1− 1

m

i vertices with at least n
1
m children. Then

the number of children in the graph Ti is at least n
1− 1

m

i · n 1
m ≥ ni, which is a

contradiction. Let k be the number of the iterations of the algorithm. By the
previous observation, we have that k ≤ m.

Consider the i-th iteration. Each job Jj ∈ Ji \ Ji+1 has strictly less than

n
1
m children in Ti, and hence by Lemma 2 it is preempted strictly less than n

1
m

times in Spr,i. Our algorithm schedules Jj in Snpr,i during its largest interval

in Spr,i. Thus the speed of Jj in Snpr,i is at most n
1
m times the speed of Jj in

Spr,i. Therefore, using Proposition 2, for any job Jj ∈ Ji \ Ji+1 it holds that
E(Snpr,i, Jj) ≤ ( m

√
n)α−1 ·E(Spr,i, Jj). For the energy consumed by Snpr we have

E(Snpr) =
k∑

i=1

∑
Jj∈Ji\Ji+1

E(Snpr,i, Jj) ≤ ( m
√
n)α−1 ·

k∑
i=1

∑
Jj∈Ji\Ji+1

E(Spr,i, Jj)

Note that the schedule Spr,i is the optimal preemptive schedule for the jobs in
Ji, while the schedule Spr,1 is the optimal preemptive schedule for the jobs in
J1. As Ji ⊂ J1 = J it holds that∑

Jj∈Ji\Ji+1

E(Spr,i, Jj) ≤
∑

Jj∈Ji

E(Spr,i, Jj) ≤
∑
Jj∈J

E(Spr,1, Jj)



From Preemptive to Non-preemptive Speed-Scaling Scheduling 145

Therefore, we get that

E(Snpr) ≤ ( m
√
n)α−1 ·

k∑
i=1

∑
Jj∈J

E(Spr,1, Jj) ≤ m · ( m
√
n)α−1 ·

∑
Jj∈J

E(Spr,1, Jj)

Note that
∑

Jj∈J E(Spr,1, Jj) is the optimal energy consumption if all jobs are
executed preemptively on a single processor. By Proposition 3 and since the
energy consumption of an optimal multiprocessor preemptive schedule without
migrations is a lower bound to the energy consumption of an optimal multipro-
cessor non-preemptive schedule (without migrations) S∗, we have that

E(Snpr) ≤ mα · ( m
√
n)α−1 · E(S∗)

and the theorem follows. ��

References

1. Albers, S.: Energy-efficient algorithms. Communications of ACM 53, 86–96 (2010)
2. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with

migration: extended abstract. In: SPAA, pp. 279–288. ACM (2011)
3. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: SPAA,

pp. 289–298. ACM (2007)
4. Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed scaling on parallel proces-

sors with migration. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.)
Euro-Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)

5. Antoniadis, A., Huang, C.-C.: Non-preemptive speed scaling. In: Fomin, F.V.,
Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 249–260. Springer, Heidelberg
(2012)

6. Bampis, E., Letsios, D., Lucarelli, G.: Green scheduling, flows and matchings. In:
Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp.
106–115. Springer, Heidelberg (2012)

7. Bampis, E., Letsios, D., Milis, I., Zois, G.: Speed scaling for maximum lateness. In:
Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434,
pp. 25–36. Springer, Heidelberg (2012)

8. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors
with migration. In: ISPA, pp. 153–161. IEEE (2008)

9. Bunde, D.P.: Power-aware scheduling for makespan and flow. In: SPAA, pp.
190–196. ACM (2006)

10. Chan, H.-L., Chan, W.-T., Lam, T.W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.:
Energy efficient online deadline scheduling. In: SODA, pp. 795–804 (2007)

11. Chen, J.-J., Hsu, H.-R., Chuang, K.-H., Yang, C.-L., Pang, A.-C., Kuo, T.-W.:
Multiprocessor energy-efficient scheduling with task migration considerations. In:
ECTRS, pp. 101–108 (2004)

12. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multipro-
cessor scheduling. In: SPAA, pp. 11–18. ACM (2009)

13. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: Theoretical and practical results. Journal of the ACM 34, 144–162
(1987)



146 E. Bampis et al.

14. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage
schedules. SIAM Journal on Computing 35, 658–671 (2006)

15. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory of Computing Systems 43, 67–80 (2008)

16. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
FOCS, pp. 374–382 (1995)



Selection from Read-Only Memory

with Limited Workspace

Amr Elmasry1, Daniel Dahl Juhl2, Jyrki Katajainen2,
and Srinivasa Rao Satti3,�

1 Department of Computer Engineering and Systems, Alexandria University
Alexandria 21544, Egypt

2 Department of Computer Science, University of Copenhagen
Universitetsparken 5, 2100 Copenhagen East, Denmark

3 School of Computer Science and Engineering, Seoul National University
599 Gwanakro, Gwanak-Gu, Seoul 151-744, Korea

Abstract. In the classic selection problem the task is to find the kth
smallest of N elements. We study the complexity of this problem on
a space-bounded random-access machine: The input is given in a read-
only array and the capacity of workspace is limited. We prove that the
linear-time prune-and-search algorithm—presented in most textbooks on
algorithms—can be adjusted to use O(N) bits instead of Θ(N) words of
extra space. Prior to our work, the best known algorithm by Frederickson
could perform the task with O(N) bits of extra space in O(N log∗ N)
time. In particular, our result separates the space-restricted random-
access model and the multi-pass streaming model (since we can bypass
the Ω(N log∗ N) lower bound known for the latter model). We also gen-
eralize our algorithm for the case when the size of the workspace is
O(S) bits, lg3 N ≤ S ≤ N . The running time of our generalized algo-
rithm is O(N lg∗(N/S)+N lgN/ lg S), slightly improving over the bound
O(N lg∗(N lgN/S) +N lgN/ lg S) of Frederickson’s algorithm. Of inde-
pendent interest, the wavelet stack—a structure we used for repeated
pruning—may also be useful in other applications.

1 Introduction

Let x1, x2, . . . , xN be the set of input elements. In the selection problem we want
to find the kth smallest of these elements. Without of loss of generality, we can
assume that the elements are distinct (since in the case of equal elements the
indices can be used to distinguish the elements). That is, the output will be a
single index m with a guarantee that k − 1 elements are smaller than xm and
N − k elements are larger than xm.

In the unrestricted random-access machine the asymptotic complexity of the
selection problem was settled to be Θ(N) by Blum et al. [3] in their celebrated

� Research partly supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology (grant number 2012-0008241).

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 147–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



148 A. Elmasry et al.

article from 1973. Here we study the problem in the space-restricted random-
access model : The input is given in a read-only array and only a limited amount
of additional workspace is available. We focus on the case where the amount
of available space is O(N) bits. Surprisingly, although the selection problem
with space restriction has been studied in several papers [8,13,15,19], its exact
complexity is still not fully resolved—even after our study.

To get a feeling of the difficulties encountered when designing algorithms for
this model of computation, let us consider an algorithm that solves the selection
problem using O(lgN) extra bits (a constant number of machine words). As in
many other algorithms, we maintain two indices that specify the so-called filters ;
the elements whose values fall within the range of the two filters are still possible
candidates for the kth smallest element. We say that the elements within the
range of the filters are alive. Before proceeding, the input is scanned once to
make the minimum and the maximum elements the initial filters.

When the procedure is called, the elements are in a contiguous segment of
memory and only those elements that are alive will be considered. Assume that
the size of the segment is M . First, we divide the segment into two zones: the first
M/2� elements form the first zone and the remaining elements the second zone.
Second, we check which of the zones contains the majority of alive elements (this
idea is from [15]); we say that this zone is heavy. Third, we select the median of
the heavy zone recursively. Let x� and xr be the filters and xm the median found.
After the recursive call, we scan through the elements in the current segment to
determine whether the kth smallest element is in the interval (x� . . xm), is equal
to xm, or is in the interval (xm . . xr). If xm is the kth smallest element, we return
xm as output. In the two other cases, we update the filters and set k to k − j if
j smaller alive elements were eliminated. Because of the median finding in the
heavy zone, at least one fourth of the alive elements will be removed from further
consideration. Finally, we recursively find the kth smallest of the remaining alive
elements in the whole segment.

We keep information about which of the two subproblems is called and which
of the two zones is heavy in a recursion stack. The boundaries of the segment
of the caller can be computed from the boundaries of the callee using these
additional bits. The filters are passed from the caller to the callee, and vice
versa. That is, the workspace is O(lgN) bits.

In the analysis of the running time, we use A to denote the number of alive
elements and M the size of the contiguous segment where these elements reside.
Now the worst-case running time can be described using the recurrence:

T (A,M) ≤
{

c1 ·M if A < 10
T (A′, �M/2�) + T (A′′,M) + c2 ·M if A ≥ 10 ,

where c1 and c2 are positive constants, and A′ and A′′ denote the number of alive
elements of the subproblems in the first and second recursive calls, respectively.
We know that �A/2� ≤ A′ ≤ �M/2� and A′′ ≤ 3A/4�. We encourage the reader
to solve this recurrence. (An answer can be found on the last page of this paper.)

This algorithm highlights several aspects that are important for algorithms
designed for the space-bounded random-access machine. Since we cannot move



Selection from Read-Only Memory with Limited Workspace 149

Table 1. The best known algorithms for selecting the kth smallest of N elements in
the space-restricted random-access model; N is the size of the read-only input. The
first three algorithms work for a larger possible range of workspace, but we give their
running times only for these specific values.

Inventors Workspace in bits Running time

Munro and Raman [15] Θ(lgN) O(N1+ε)
Raman and Ramnath [19] Θ(lg2 N) O(N lg2 N)
Frederickson [8] Θ(lg3 N) O(N lgN/ lg lgN)
Frederickson [8] Θ(N) O(N log∗ N)
Blum et al. [3] Θ(N lgN) Θ(N)
This paper O(N) Θ(N)

and modify elements, we have to scan the read-only array several times. The
elements that are alive are scattered over a large area, so we have to scan over
already eliminated elements several times. Due to the limited memory resources,
we cannot store information and we have to recompute some information that
has been computed before. Also, because of the limited workspace we have to
resort to some bit tricks to save space.

Asymptotically, the algorithm described above is not the fastest known when
the amount of workspace is O(lgN) bits. The performance of the best known
selection algorithms is summarized in Table 1. In the current paper we improve
the known results when the amount of extra space is O(N) bits by giving a new
implementation for the algorithm of Blum et al. [3]. For the general case of O(S)
bits of workspace, the best known algorithm is that of Frederickson [8]. The
running time of Frederickson’s algorithm is O(N lg∗(N lgN/S) + N lgN/ lgS)
when S = Ω(lg3 N). We generalize our algorithm to use O(S) bits of workspace,
and improve the running time to O(N lg∗(N/S) +N lgN/ lgS).

In the literature two different models of computation have been considered:
the multi-pass streaming model [4,8,13] and the space-restricted random-access
model (that is used in this paper) [8,15,19]. The essential difference is that in the
streaming model the read-only input must be accessed sequentially, but multiple
scans of the entire input are allowed. In addition to the running time, the number
of scans performed would be another optimization target. Chan [4] proved that
Frederickson’s algorithm is asymptotically optimal for the selection problem in
the multi-pass streaming model. He questioned whether this lower bound would
also hold in the space-restricted random-access model. We answer this question
by bypassing this bound on the space-bounded random-access machine.

As should be obvious, we rely heavily on the random-access capabilities. The
kernel of our construction is the wavelet stack— a new data structure that allows
us to eliminate elements while being able to sequentially scan the alive elements
and jump over the eliminated ones. In the meantime, such structure only requires
a constant number of bits per element (instead of the usual �lgN� bits required
for storing indices). The wavelet stack is by no means restricted to this particular
application; our hope is that it would be generally useful for prune-and-search
algorithms in the space-bounded setting. A wavelet stack comprises several layers



150 A. Elmasry et al.

of bit vectors, each supporting rank and select queries in O(1) worst-case time
[6,11,14,18]. Using the rank and select facilities, we can navigate between the
layers of the stack and perform successor queries efficiently.

2 Basic Tools: Bit Vectors with rank and select Support

In this section we briefly describe the set of basic tools used by us. The reader
is advised to check the original references if our descriptions are too short and
more details are needed.

A bit vector is an array of bits (0’s and 1’s). In our case a bit vector V is a
data structure that has a fixed size and supports the operations:

V.access(i): Return the bit at index i, also denoted as V [i].
V.rank(i): Return the number of 1-bits among the bits V [0], V [1], . . . , V [i].
V.select(j): Return the index of the jth 1-bit, i.e. when the return value is i,

V [i] = 1 and rank(i) = j.

Let w denote the size of the machine word in bits. It is a routine matter [12,
Section 7.1.3] to store a bit vector of size N such that it occupies �N/w� words
and any consecutive substring of at most w bits—not only a single bit—can be
accessed in O(1) worst-case time.

There exist several space-efficient solutions to support the two other oper-
ations in O(1) worst-case time. Jacobson [11] showed how to support rank and
select in O(lgN) bit probes using only o(N) bits in addition to the bit vec-
tor itself. Clark and Munro [6,14] showed how to support the queries in O(1)
worst-case time on a random-access machine with word size Θ(lgN); Raman et
al. [18] improved the space bound to O(N lg lgN/ lgN) bits, which was shown
by Golynski [9] to be optimal provided that the bit vector is stored in plain form.
The basic idea in all the mentioned solutions is to divide the input into blocks,
store the rank and select values for some specific positions, and compute the
rank and select values for the remaining positions on the fly using the stored
values, values in some precomputed tables, and bits in the original bit vector.

Note that the only requirements on the bit vectors we use are that operations
must have O(1) worst-case cost, a space usage must be O(N) bits, and the
construction of the supporting structures must take linear worst-case time. For
these requirements, Chazelle [5] described a simple solution to support rank
operations. After breaking the bit vector into words, for the first bit of each word
a landmark is computed which is the number of 1-bits preceding this position.
Let the words be B0, B1, . . . , B�N/w�−1 and the landmarks L0, L1, . . . , L�N/w�−1.
To compute rank(i), we locate the corresponding word Bj , i.e. j = i/w�, and
the offset f inside this word, i.e. f = i − w × i/w�. Then we mask the bits up
to index f in Bj and calculate the number of 1-bits in the masked part; let this
number be r. As the end result, we output Lj + r as rank(i). The only difficult
part is to calculate the number of 1-bits in a word, but fortunately this can
be done by using the population-count function that is a hardware primitive in
most modern processors. As far as we know, no equally simple data structure is
known to support select operations.



Selection from Read-Only Memory with Limited Workspace 151

3 Expanding the Toolkit: Wavelet Stacks

The computation of a recursive algorithm can be described as a tree. A path
from the root of the tree (corresponding to the original problem) to the present
node (corresponding to the subproblem being currently solved) summarizes the
decisions made by the algorithm when exploring the tree. In a prune-and-search
algorithm, where we repeatedly eliminate some of the answer candidates, the set
of alive elements can be compactly represented using a bit vector. The compu-
tational history of the decisions made by such an algorithm can be conveniently
described using a stack of bit vectors. We call this kind of data structure a
wavelet stack because of its resemblance to wavelet trees [10] (for a survey, see
[16]). In this section we describe the data structure in details, and in the next
section we show how it can be used to solve the selection problem. We expect
this data structure to be useful in other applications as well.

Let x1, x2, . . . , xN be a sequence of N elements given in a read-only array.
Assume that we want to find some specific subset of these elements using prune-
and-search elimination. A prune-and-search algorithm is a recursive procedure
that may call itself several times. Hence, we need a recursion stack to keep track
of the subproblems being solved. In addition to a recursion stack (with constant-
size activation records), we maintain a stack of bit vectors to mark the elements
in the current configuration; a 1-bit indicates that the corresponding element is
still alive. Subsequently, we can avoid scanning the pruned elements.

In an abstract form, our stack H of bit vectors—called a wavelet stack—is a
data structure that can efficiently answer two types of queries:

H.alive?(i): Return whether the element xi is alive at the current configuration.

H.index (j): Return the index of the jth alive element, i.e. the index of the
element corresponding to the jth 1-bit at the top-most bit vector.

To fully understand these operations, we have to consider a concrete implemen-
tation of a wavelet stack (see Fig. 1). A wavelet stack is a hierarchy of bit vectors.
The bottom-most level stores one bit per element, so at the beginning all elem-
ents are potential answers. If we have z 1-bits at level h, the bit vector at level
h + 1 is of size z. Therefore, the bit vectors become smaller and smaller as we
eliminate more elements from further consideration.

The two operations have a nice symmetry: alive? traverses up from the bottom
to the top of the stack, and index traverses down from the top to the bottom of
the stack. To implement alive?(i), we start from the bottom-most level and com-
pute rank(i). This gives us the index to access the bit vector above. Continuing
upwards and relying on rank , we either reach a level where the bit corresponding
to the index value is 0 indicating that the element xi is not alive any more, or we
reach the top-most level where the bit value is 1 indicating that xi is still alive.
To implement index (j), we start from the top-most level and compute select(j).
Then we use the returned index at the level below. This way, we can proceed
down using select until we reach the bottom-most level. Using the last returned
index, we can access the desired element whenever needed.



152 A. Elmasry et al.

0 01 11 0

0 0 01 10 1 11 1

1 1 000

x1 x2 x5 x6 x16

0 1 01 110 1 0 0 01

x22 read-only data

00 01 1

Fig. 1. A wavelet stack for an array of 22 elements. Only elements x5, x6, and x16 are
alive at this point.

We can summarize the space requirements of the data structure and the time
performance of the operations as follows:

Theorem 1. Assume that we have built a wavelet stack of height h for a read-
only array of N elements. Furthermore, assume that at each level we have suc-
ceeded in eliminating a constant fraction of the elements.

1. The data structure requires O(N) bits in total.
2. The total time used in the construction of the data structure is Θ(N).
3. In the worst case, both alive? and index operations take O(h) time.

Proof. Since the number of bits needed at each level is only a constant fraction
of that needed at the level below, for a constant c < 1,

∑h−1
i=0 ciN = O(N) is an

upper bound on the number of bits used. Since the length of the bit vectors is
not known beforehand and since their sizes may vary, we can allocate a header
storing references to a big bit vector that contains the bits stored at all levels
together. This header will only require O(lg2 N) bits.

The construction of a bit vector, including the supporting structures, can
be done in linear time. The construction time of the wavelet stack can also be
expressed as a geometric series, and is thus Θ(N). Since the structure has h
levels, and the rank and select operations take O(1) worst-case time at each
level, the O(h) time bound for alive? and index follows. ��

4 Selection with O(N) Bits

In this section we show how to adapt the prune-and-search algorithm of Blum
et al. [3] (alternatively see [7, Section 9.3]) such that it only requires O(N) bits
of space—instead of Θ(N) words—but still runs in Θ(N) worst-case time.

The basic idea in the algorithm is to search for an element from the set of
possible answers and use it to make the set of candidates smaller. This is done
repeatedly until the final answer is found. In the variant considered here we use
a wavelet stack to keep track of the decisions made by the algorithm. The kth
smallest among M alive elements is found as follows.



Selection from Read-Only Memory with Limited Workspace 153

1. A new bit vector V is pushed onto the top of the wavelet stack; the size of
the bit vector equals the number of the currently alive elements M .

2. Divide the set of M elements into groups of five, so that only the last group
may have less than 5 elements. Find the median of each of the �M/5� groups.
After processing a group, mark its median as alive and the other elements
of the group as not alive in the top-most bit vector V .

3. Recursively compute the median x of these medians.

4. Set the bits of V to indicate that all the M elements are again alive.

5. Scan through the alive elements and determine how many of them are smaller
than x and how many are larger. Let these numbers be σ and τ , respectively.
If k = σ + 1, i.e. if x is the kth smallest element, stop and return x as an
answer. If k ≤ σ, mark the the elements smaller than x as the only alive
elements in V and recursively compute the kth smallest of these elements.
Otherwise, if k > σ + 1, mark the elements larger than x as the only alive
elements in V and set k to k − σ − 1 before the recursive call.

6. After the last recursive call, before returning the answer further to the caller,
pop the top-most bit vector V of the wavelet stack.

This algorithm is a perfect example of recursion in action. There are two
recursive calls, one at Step 3 and another at Step 5. The analysis of this algorithm
is almost identical to that of the original. The key point is that, even though the
input is in a read-only array, we do not waste time in browsing the elements that
have already been eliminated as we rely on the rank -select facilities provided for
the bit vectors. The only overhead is when we want to access an element, we
have to traverse down the wavelet stack.

Suppose that we resolve subproblems smaller than 100 without recursive calls,
e.g. by having a constant-size array of indices to the elements and applying
mergesort indirectly via this array. Let T (h,M) denote the worst-case running
time of the algorithm for a subproblem having size M when the height of the
wavelet stack is h. An upper bound on the worst-case running time can be
expressed using a recurrence relation:

T (h,M) ≤
{

c1 · h if M < 100
c2 · h ·M + T (h+ 1,M ′) + T (h+ 1,M ′′) if M ≥ 100 ,

where c1 and c2 are some constants, and M ′ and M ′′ denote the sizes of the
subproblems in the first and second recursive calls, respectively. We know that
M ′ = �M/5� and that M ′′ ≤ 7M/10 + 6 [7, Section 9.3]. For every M ≥ 100,
7M/10+ 6 ≤ 22M/30 and �M/5� ≤ 7M/30. Using these facts, we can solve the
recurrence by considering the corresponding recursion tree. The sum of the sizes
of the subproblems at the ith level of the recursion tree, i ≥ 1, is (29/30)i−1N . In
accordance, the cost accompanying the ith level is O(i · (29/30)i−1N). Summing
the costs for all the levels, it follows that T (1, N) = O(N). The intuition behind
the result is that, in spite of the overhead caused by the traversals in the wavelet
stack, which increases as a linear function of h, the size of the subproblems
decreases exponentially with h.



154 A. Elmasry et al.

Since the size of the subproblems is the same as for the original algorithm, the
total size of all bit vectors constructed is O(N) too. In addition to the wavelet
stack, we need a recursion stack to keep track of the type of the subproblems
being solved. However, the depth of recursion is only logarithmic so the recursion
stack never uses more than O(lg2 N) bits.

The performance of the algorithm is summarized in the following theorem:

Theorem 2. The kth smallest of N elements in a read-only array can be found
in Θ(N) time using O(N) extra bits in the worst case.

5 General Solution with O(S) Bits

In this section we extend our algorithm to handle the more general case of using
a workspace of O(S) bits, where lg3 N ≤ S ≤ N . The main idea is to use
Frederickson’s algorithm [8] to prune the elements and stop its execution when
the number of alive elements is at most S. To finish the selection process, we
resume pruning using an O(N)-time algorithm that we shall present next.

First we mention the following lemma about Frederickson’s algorithm, and
omit its proof from this version of the paper. We also refer the reader to [8].

Lemma 1. By applying a trimmed execution of Frederickson’s algorithm, we
can prune the elements until the number of alive elements is at most S in
O(N lg∗(N/S)) worst-case time, assuming S = Ω(lg3 N).

If S ≤
√
N lgN , we simply use Frederickson’s algorithm all the way. The re-

sulting running time is O(N lg∗ ((N lgN)/S)+N lgN/ lgS) = O(N lg∗(N/S)+
N lgN/ lgS) as claimed. From now on we assume that S >

√
N lgN . We apply

a trimmed execution of Frederickson’s algorithm as specified by Lemma 1. The
outcome is two filters that guard the—at most—S candidates. Consequently, we
are left with the task of selecting the designated element among those candidates.

Using a wavelet stack and a bit vector supporting rank and select queries, we
can finish the pruning in O(N) time. We create and maintain a wavelet stack
H—an element hierarchy where each bit corresponds to an element among those
whose values fall between the filters. Since there are at most S such elements,
the wavelet stack H uses O(S) bits. While our algorithm is in action, the wavelet
stack is to be updated to indicate the elements that are currently surviving the
pruning phases. We divide the input sequence (consisting of N elements) into S
buckets, where the uth bucket consists of the elements from the input sequence
with indices from the range [u · �N/S� . . (u+ 1) · �N/S� − 1], for 0 ≤ u ≤ S − 1
(except possibly the last bucket). In addition, we create the count vector C—a
static bit vector that indicates the number of candidates originally contained in
each bucket after the execution of Frederickson’s algorithm. The count vector C
should efficiently support rank and select queries. We store these counts encoded
in unary, using a 0-bit to mark the border between every two consecutive buckets.
Since a total of at most S candidates need to be stored, the count vector C
contains at most S ones; and since we have exactly S buckets, C contains S − 1
zeros. The count vector thus uses O(S) bits as well.



Selection from Read-Only Memory with Limited Workspace 155

We can now iterate efficiently through the alive candidates. Let i − 1 be the
rank of the element that has just been considered in our iterative scan within the
alive elements. First, we find the index j of the next element to be considered
within the wavelet stack. For that we set

j = H.index(i),

which is the index of the element we are looking for with respect to those falling
between the two filters inherited from Fredrickson’s algorithm. Since the differ-
ence between the index of a bit, in the count vector C, and its rank is exactly
the index of the bucket its corresponding element belongs to, we can compute
the index u (first bucket has index 0) of the bucket containing this element as

u = C.select(j)− j.

We then calculate the index t that corresponds to the 0-bit resembling the
border between the uth and (u − 1)th buckets. This is done by setting t =
C̄.select(u), where C̄ is the complement vector of C. Since the total number
of elements, among those surviving Frederickson’s algorithm, stored in the u
preceding buckets to the current one can be computed by a rank query for
t within C, we determine the position p of the sought element among those
candidates within the surviving elements of the uth bucket as:

p = j − C.rank(t).

If the element that has just been reported was also from bucket u, we continue
scanning the elements of the uth bucket from where we stopped. Otherwise, we
jump to the beginning of the uth bucket, i.e. to the element whose index is
u · �N/S� in the input array. We sequentially scan the elements of the located
bucket, discard the ones falling outside the filters, and count the others until
locating the pth element among them; this is the element we are looking for.

We can now proceed as in the O(N)-bit solution. Starting with the elem-
ents surviving Frederickson’s algorithm, we recursively determine the median-
of-medians and use it to perform the pruning. During this process we keep the
wavelet stack up to date as before. The pruning process continues until only
one bucket remains, at such point only O(N/S) elements are alive. Since this
procedure of the algorithm is employed only when S = Ω(

√
N lgN), the indices

of the alive elements can fit in the allowable workspace, each in O(lgN) bits,
and we continue the selection in linear time.

Since we are operating on buckets, we might have to spend Θ(N/S) time for
scanning per bucket. However, we note that initially there is at most S candidates
and accordingly at most S buckets. Since we prune a constant fraction of the
candidates in each iteration, we also reduce the bound on the number of the
remaining buckets (those having at least one alive element each) by the same
constant fraction. Noting that we skip the buckets that have no alive elements,
the work done per pass to iterate over the buckets that have at least one alive
element can be bounded, as elaborated in the next lemma.



156 A. Elmasry et al.

Lemma 2. Given a read-only input array X, where |X | = N , and two filters f1
and f2, such that the element to be selected lies in I = {e|f1 ≤ e ≤ f2, e ∈ X} and
|I| ≤ S; that is, at most S elements lie between the filters. If S = Ω(

√
N lgN),

we can solve the selection problem in O(N) time.

Proof. In each pruning iteration we spend time proportional to the number of
buckets remaining, while scanning the elements in these buckets and comparing
them with the filters. The number of alive elements after we apply the ith pruning
iteration of the median-of-medians algorithm is O(S/ci), for some constant c > 1.
Obviously, the number of buckets that have alive elements cannot exceed the
number of elements. It follows that, throughout all the passes of the algorithm,
the number of scanned buckets is at most O(

∑
i≥0 S/c

i) = O(S). Accordingly,
the overall work done in scanning these buckets is O(N). Once we have O(N/S)
elements remaining, as S = Ω(

√
N lgN), we can continue the selection process

in the working memory in O(N/S) time. ��
The main result of this paper is summarized in the upcoming theorem.

Theorem 3. Given a read-only array of N elements and a workspace of O(S)
bits such that lg3 N ≤ S ≤ N , it is possible to solve the selection problem in
O(N lg∗(N/S) + N lgN/ lgS) worst-case time in the space-restricted random-
access model.

Theorem 3 implies that, in the read-only space-limited setting, Chan’s lower
bound [4] for the selection problem in the multi-pass streaming model does not
apply to the space-restricted random-access model. This, in turn, indicates that
the space-restricted random-access model is more powerful than the multi-pass
streaming model.

6 Conclusions

We showed that, given an array of N elements in a read-only memory, the kth
smallest element can be found in Θ(N) worst-case time using O(N) bits of extra
space. We also generalized our algorithm to run in O(N lg∗(N/S)+N lgN/ lgS)
time using a workspace of O(S) bits, lg3 N ≤ S ≤ N . Our main purpose was
to show that the lower bound proved by Chan [4] for the multi-pass streaming
model can be bypassed in the space-restricted random-access model.

In the read-only setting the selection problem has been studied since 1980 [13].
In contrast to sorting, the exact complexity of selection is still open. The space-
time trade-off for sorting is known to be Θ(N2/S+N lg S) [2,17], where S is the
asymptotic target for the size of the workspace in bits, lgN ≤ S ≤ N/ lgN . The
optimal bound for sorting can even be realized using a natural priority-queue-
based algorithm [1].

References

1. Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-
only data. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS,
vol. 7876, pp. 32–41. Springer, Heidelberg (2013)



Selection from Read-Only Memory with Limited Workspace 157

2. Beame, P.: A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput. 20(2), 270–277 (1991)

3. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. System Sci. 7(4), 448–461 (1973)

4. Chan, T.M.: Comparison-based time-space lower bounds for selection. ACM Trans.
Algorithms 6(2), 26:1–26:16 (2010)

5. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3), 427–462 (1988)

6. Clark, D.: Compact Pat Trees. Ph.D. thesis, Department of Computer Science,
University of Waterloo, Waterloo (1996)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

8. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection.
J. Comput. System Sci. 34(1), 19–26 (1987)

9. Golynski, A.: Optimal lower bounds for rank and select indexes. Theoret. Comput.
Sci. 387(3), 348–359 (2007)

10. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: SODA 2003, pp. 841–850. SIAM, Philadelphia (2003)

11. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS 1989, pp. 549–554.
IEEE Computer Society, Los Alamitos (1989)

12. Knuth, D.E.: Combinatorial Algorithms: Part 1, The Art of Computer Program-
ming, vol. 4A. Addison-Wesley, Boston (2011)

13. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoret.
Comput. Sci. 12(3), 315–323 (1980)

14. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

15. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with mini-
mum data movement. Theoret. Comput. Sci. 165(2), 311–323 (1996)

16. Navarro, G.: Wavelet trees for all. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012.
LNCS, vol. 7354, pp. 2–26. Springer, Heidelberg (2012)

17. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: FOCS 1998,
pp. 264–268. IEEE Computer Society, Los Alamitos (1998)

18. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), Article 43 (2007)

19. Raman, V., Ramnath, S.: Improved upper bounds for time-space trade-offs for
selection. Nordic J. Comput. 6(2), 162–180 (1999)

Answer:BysubstitutiononecanshowthatΩ(N
2
)<T(N−2,N)<O(N

3
).



Deternimization of Büchi Automata as Partitioned
Automata�

Cong Tian1, Zhenhua Duan1,��, and Mengfei Yang2

1 ICTT and ISN Lab, Xidian University, Xi’an, 710071, P.R. China
2 China Academy of Space Technology, Beijing, 100094, P.R. China

Abstract. In this paper, Nondeterministic Büchi Automata (NBA) are equiva-
lently transformed as a new kind of deterministic omega automata, Determinis-
tic Partitioned Automata (DPA). Different from the existing automata, at most
three different transitions may occur between two states of a DPA. This leads to
a determinization construction of NBA with smaller state complexity but larger
transition complexity. Compared with the existing determinization constructions
of NBA, the new one is intuitive and easily implementable since it is completely
based on subset construction. In addition, we have proved that both nondetermin-
istic and deterministic partitioned automata share the same expressive power with
NBA.

Keywords: Büchi automata, Determinization, Verification, Partitioned au-
tomata, Subset construction.

1 Introduction

The theory of automata over infinite words underpins much of formal verification. In
automata-based model checking [1,2,5,6], to decide whether a given system described
by an automaton satisfies a desired property specified by a Büchi automaton [3], one
constructs the intersection of the system automaton with the complementation of the
property automaton, and checks its emptiness [1,2]. To complement Nondeterministic
Büchi automata (NBA), Rabin, Muller, Parity as well as Streett automata [4] are often
involved, since deterministic Büchi automata are not closed under complementation.
Recently, co-Büchi automata have attracted much attention because of its simplicity
and its surprising utility [11,12,13].

Complementation of Büchi automata is hard and has been a forty years investi-
gated question since 60s [7,8]. In 1962, Büchi introduced Büchi automaton and gave
a complementation construction with the state complexity being 22O(n)

[3]. In [15], an
improved complementation of Büchi’s construction was described with 2O(n2) states.
Further, in [9], Safra presented a determinization construction, which also enabled
a complementation construction with n2n state complexity. Friedgut, Kupderman and
Vardi presented a new construction with complexity being (0.97n)n in 2006 [14]. Fi-
nally, Schewe closed this problem by a construction with complexity being (0.76n)n

� This research is supported by the NSFC Grant No. 61003078, 61133001, and 61272117, 973
Program Grant No. 2010CB328102 and ISN Lab Grant No. ISN1102001.

�� Corresponding author.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 158–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Deternimization of Büchi Automata as Partitioned Automata 159

[19] that matches the lower bound proved by Yan [18]. All the existing constructions
are analyzed by state complexity without considering the transition complexity. Most
often, it is sufficient to analyze the size of an automaton by computing the state space.
However, in some circumstance, the state space can be exponentially saved by consid-
erable waste of transitions. Thus, in these cases, the transition complexity cannot be
ignored.

In general, determinization makes complementing omega automata easier. There-
fore, nearly at the same time when researching on complementing Büchi automata was
started, determination of Büchi automaton was also taken into account [16]. In 1966,
McNaughton proved that a Büchi automaton can equivalently be transformed into a
Deterministic Muller Automaton (DMA) [17]. Subsequently, in 1988, Safra [9] pro-
posed a method to transform a nondeterministic Büchi automaton into a deterministic
Rabin or Muller automaton. With this approach, given a nondeterministic Büchi au-
tomaton with n states, the equivalent deterministic automaton has 12nn2n states. Safra’s
construction is often difficult. In 1995 Muller and Schupp presented a more intuitive al-
ternative [10]. Piterman [20] presented a tighter construction by utilizing compact Safra
trees which are obtained by using a dynamic naming technique throughout the construc-
tion of Safra trees. With compact Safra trees, a nondeterministic Büchi automaton can
be transformed into an equivalent deterministic parity automaton with 2nnn! states and
2n priorities (can be equivalently transformed to a deterministic Rabin automaton with
the same complexity and n priorities). The advantage of Piterman’s determinization
is to output deterministic Parity automata which is easier to manipulate. By separat-
ing the principal acceptance mechanism from the concrete acceptance condition of a
Büchi automaton with n states, Schewe presented the construction of an equivalent de-
terministic Rabin transition automaton with o((1.65n)n) states, which can be simply
translated to a standard Rabin automaton with o((2.66n)n) states [22]. Based on his-
tory trees, Schewe also obtained an O((n!)2) transformation from Büchi automata to
deterministic parity automata that factually resembles Piterman’s construction (Liu and
Wang [21] independently present a similar state complexity result to Piterman’s deter-
minization). Schewe’s construction is mainly based on a new data structure, namely,
history tree which is an ordered tree with labels. Compared to Safra’s construction,
Schewe’s construction is simple and intuitive. Subsequently [23], a lower bound for
the transformation from Büchi automata to deterministic Rabin transition automata is
proved to be O((1.64n)n) [23]. Therefore the state complexity for Schewe’s construction
of Rabin transition automata is optimal. For the ordinary Rabin acceptance condition,
the construction via history trees also conducts the best upper-bound complexity result
o((2.66n)n). However, the price paid for that is the use of 2n−1 Rabin pairs (instead of
n in Safra’s construction). So it is hard to judge the efficiency of the determinization of
NBW in Rabin acceptance condition via history trees.

In this paper, a new kind of omega automaton, Partitioned Automaton (PA), is pro-
posed for determinizing a Büchi automaton. Different from the traditional automata,
possibly, at most three different transitions occur between two states. This brings to
partitioned automaton an essential 3n times larger transition complexity than the tra-
ditional automata. However, by partitioned automaton, a novel construction for deter-
minizing Büchi automaton is obtained with the state complexity being exponentially



160 C. Tian, Z. Duan, and M. Yang

smaller than the constructions by the traditional automata such as Rabin, Street, Parity
and Muller automata. The new construction is intuitive and easily implementable since
it is completely based on subset construction. In addition, the properties of PA are stud-
ied, especially, it is proved that Nondeterministic PA (NPA), Deterministic PA (DPA)
and NBA have the same expressive power.

The rest parts of the paper are organized as follows. The next section briefly presents
preliminaries including the definition of Büchi automata as well as its relevant proper-
ties. Section 3 is devoted to introducing the new omega automaton, partitioned automa-
ton. Constructions for determinizing Büchi automaton through partitioned automaton is
presented in section 4. While properties of partitioned automaton are studied in section
5. Finally, conclusions are drawn in section 6.

2 Preliminaries

Let Σ denote a finite set of symbols called an alphabet. An infinite word α ∈ Σω is
an infinite sequence of symbols from Σ. Σω is the set of infinite words over Σ. We
present α as a function α : N0 → Σ, where N0 is the set of non-negative integers. Thus,
α(i) denotes the letter occurring at the ith position. In general, Inf(α) denotes the set of
symbols from Σ which occur infinitely often in α. Formally, Inf(α) = {a ∈ Σ | ∃ωn ∈
N0 : α(n) = a}.

Definition 1. (Büchi Automaton) A Büchi automaton over Σ is a tuple B = (S ,→,
I, F) where S is a, non-empty, finite set of states, I ⊆ S is a set of initial states, →⊆
S × Σ × S is a transition relation, and F ⊆ S is the set of accepting states. �

A run of B on an infinite words α is an infinite sequence ρ : N0 → S such that ρ(0) ∈ I
and for all i ∈ N0, (ρ(i), α(i), ρ(i + 1)) ∈→. B accepts an input α : N0 → Σ if there is a
run ρ of B on α such that Inf(ρ) ∩ F � ∅. A Büchi automaton is said to be deterministic
if I is a singleton, and for any (s, a, s′) ∈ →, there exist no (s, a, s′′) ∈→ with s′′ being
different from s′.

It is well known that nondeterministic Büchi automata is strictly more powerful than
Deterministic Büchi Automata (DBA), i.e. for some NBA B1 there exists no DBA B2

such that L(B1) = L(B2). A widely used example is the ω-language (a + b)∗ · bω, which
can only be accepted by NBA B1 in Fig.1, but not by a deterministic one. This induces
the failure of the traditional subset construction used to determinize a finite state au-
tomaton. When applying subset construction to B1, DBA B2 in Fig.1 is obtained. It is
transparent that B2 will accept (a∗ ·b)ω, which is a super set of (a+b)∗ ·bω. Accordingly,
to determinize a Büchi automaton, the traditional subset construction does not work.

Definition 2. (Muller Automata) A Muller automaton is over Σ is a tuple A = (S ,→
, I, T ), where S ,→ and I are the same as before, T = {T1, T2, ..., Tk} is a set of accepting
sets with Ti ⊆ S for each i ∈ {1, 2, ..., k}. �

An automaton A accepts an input α : N0 → Σ if there is a run ρ of A on α such that
Inf(ρ) ∈ T , that is, Inf(ρ) = Ti for some i ∈ {1, 2, ..., k}.



Deternimization of Büchi Automata as Partitioned Automata 161

a b

b

as1 s2

a, b b

bs1 s2

B1 B2

Fig. 1. NBA B1, and deterministic version of B1 by subset construction

3 Partitioned Automata

Now we present the definition of the new proposed omega automaton, namely Parti-
tioned Automaton (PA). Different from the traditional automata, at most three different
transitions may occur between two states in a partitioned automaton.

Definition 3. (Partitioned Automata) A partitioned automaton is a tuple P = (S ,→
, I,Q), where S = S C ∪ S R ∪ S l

R ∪ S r
R is the set of states, I ⊆ S C ∪ S R is the set of

initial states. Let Q′ ⊆ S C. Q = Q′ ∪ S R ∪ S l
R denotes the set of accepting states,

→= S × Σ × (S C ∪ S R) is the set of transitions. �

In a partitioned automaton, a state in S C , called a circle state, is identical to the states in
the general automata and denoted by a circle, while a state s ∈ S R, named a rectangle
state, is a duple, s = (sl, sr), and denoted by a rectangle divided in to two sides with an
underline. The rectangle is labeled with s, the left part, called left state of s, is labeled
by sl and the right part, called right state of s, is labeled with sr . For convenience, let
le f t(s) denote the left state sl and right(s) denote the right state sr of a rectangle state
s = (sl, sr). Further, S l

R = {le f t(s) | s ∈ S R} and S r
R = {right(s) | s ∈ S R} is the set

of left states and right states of states in S R respectively. Moreover, for a state sl in S l
R,

rec(sl) = s, if le f t(s) = sl, and for sr in S r
R, rec(sr) = s, if right(s) = sl. An example of

s1

a

b

b

as0

s1r
s1l

c

Fig. 2. A partitioned automaton

partitioned automaton is illustrated in Fig.2, where S = {s0, s1, s1l , s1r }, s1 = (s1l , s1r ),
I = {s0},→= {(s1, b, s1), (s0, b, s1), (s0, a, s0), (s1l , c, s0), (s1r , a, s0)} and Q = {sl

1, s1}.
A run of a partitioned automaton on an infinite sequence α ∈ Σω is an infinite se-

quence ρ : N0 → S such that ρ(0) ∈ I and for all i ∈ N0, if ρ(i + 1) ∈ S C ∪ S R,
(ρ(i), α(i), ρ(i + 1)) ∈→, while if ρ(i + 1) ∈ S l

R ∪ S r
R, (ρ(i), α(i), rec(ρ(i + 1))) ∈→. P



162 C. Tian, Z. Duan, and M. Yang

accepts an input α : N0 → Σ if there is a run ρ of P onα such that Inf(ρ)∩Q � ∅. Accord-
ingly, for the partitioned automaton in Fig.2, sequences aaaaa... and babababababa...
are not acceptable while bbbbbb... and bcbcbcbcbcbc... are acceptable.

A partitioned automaton is said to be deterministic if I is a singleton. Also, for any
(s, a, s′) ∈→, there exists no (s, a, s′′) ∈→ with s′′ being different to s′; if s ∈ S R,
there exists no (le f t(s), a, s′′) and (right(s), a, s′′) ∈→; if s ∈ S l

R, there exists no
(rec(s), a, s′′) and (right(rec(s)), a, s′′) in→; and if s ∈ S r

R, there exists no (rec(s), a, s′′)
and (le f t(rec(s)), a, s′′) in →. For instance, the PA in Fig.2 is deterministic. And if an
extra transition (s1r, b, s0) from state s1r to s0 is added, the PA will be nondeterministic.

It can be directly observed that PA is an extension of Büchi automaton and Büchi
automaton is in fact a special case of RA by designating S R to be empty. More properties
concerning partitioned automaton will be discussed in section 5.

4 Determinization of Büchi Automata

Basically, our transforming method is derived from the traditional subset construction
for determinating Nondeterministic Finite state Automata (NFA). Accordingly, to con-
struct a Deterministic Partitioned Automaton (DPA) P = (S ,→, I,Q) of a nondeter-
ministic Büchi automaton B1 = (S 1,→1, I1, F1), we first construct the deterministic
version B2 = (S 2,→2, I2) of B1 by subset construction without designating the accept-
able states. By subset construction, it is easily to be obtained that S 2 ⊆ 2S 1

, and I2 is a
set with single member. Further, by B1 and B2, the deterministic partitioned automaton
P of B1 is constructed as follows. For convenience, we use s1

0, s1
1, s1

2, ... to denote the
states in S 1 and s2

0, s2
1, s2

2, ... to denote the states in S 2.

1. For any state s2 ∈ S 2, if any s1 ∈ s2 is non acceptable in B1, i.e. s1 � F1, then
s2 ∈ S C ; if any s1 ∈ s2 is acceptable in B1, i.e. s1 ∈ F1, then s2 ∈ S C and s2 ∈ Q; if
s2 = {s1

0, ..., s
1
m, s

1
m+1, ..., s

1
n}, and for each 0 ≤ i ≤ m, s1

i ∈ F1, while for each m < i ≤
n, s1

i � F1, then s2 ∈ S R with le f t(s2) = {s1
0, ..., s

1
m} and right(s2) = {s1

m+1, ..., s
1
n}.

Consequently, S = S C ∪ S R ∪ S l
R ∪ S r

R.
2. I = I2.
3. For each transition (s2

i , a, s
2
i+1) ∈→2,

– if s2
i ∈ S C , then (s2

i , a, s
2
i+1) ∈→;

– if s2
i ∈ S R, and
• if there exists s1

k ∈ le f t(s2
i ) and s1

l ∈ s2
i+1, such that (s1

k , a, s
1
l ) ∈→1, and

∗ if there exists s1
m ∈ right(s2

i ) and s1
n ∈ s2

i+1 such that (s1
n, a, s

1
m) ∈→1,

then (s2
i , a, s

2
i+1) ∈→;

∗ if there exists no s1
m ∈ right(s2

i ) and s1
n ∈ s2

i+1 such that (s1
n, a,s

1
m) ∈→1,

then (le f t(s2
i ), a, s2

i+1) ∈→;
• if there exists s1

k ∈ right(s2
i ) and s1

l ∈ s2
i+1, such that (s1

k , a, s
1
l ) ∈→1, and

there exists no s1
m ∈ le f t(s2

i ) and s1
n ∈ s2

i+1 such that (s1
n, a, s

1
m)∈→1, then

(right(s2
i ), a, s2

i+1) ∈→. �

Example 1. Construct DPA P = (S , I,→,Q) of the NBA B1 = (S 1, I1,→1, F1) with
S 1 = {s1

0, s
1
1}, I1 = {s1

0},→
1= {(s1

0, a, s
1
0), (s1

0, b, s
1
0), (s1

0, b, s
1
1), (s1

1, b, s
1
1)} and F1 = {s1

1}
as depicted Fig.3.



Deternimization of Büchi Automata as Partitioned Automata 163

a b

b

a s21 : {s10, s11}s20 : {s10}

a, b b

b

s10 s11

B2NBA B1

Fig. 3. NBA B1, Deterministic version B2 by subset construction

First, B2 = (S 2, I2,→2), where S 2 = {s2
0, s

2
1}, I2 = {s2

0}, and→2= {(s2
0, a, s

2
0), (s2

0, b, s
2
1),

(s2
1, b, s

2
1), (s2

1, a, s
2
0)}, is obtained by applying subset construction to B1 without des-

ignating the accepting states as depicted in Fig.3. According to the transformation
method, as illustrated in Fig.4, S C = {s2

0}, S R = {s2
1}with le f t(s2

1) = {s1
0} and right(s2

1) =
{s1

1}. Since both (s1
0, b, s

1
0) and (s1

1, b, s
1
1) ∈→1, (s2

1, b, s
2
1) ∈→. Further, (right(s2

1), a, s2
0) ∈

s21

a

b

b

a
s20

{s11}{s10}

Fig. 4. DPA P

→, since (s1
1, a, s

1
0) ∈→1 and there exist no transition labeled by a departing from s1

0 in
→1. �

Theorem 1. For the deterministic partitioned automaton P = (S ,→, I,Q) constructed
from a Büchi automaton B = (S 1,→1, I1, F1), L(P) = L(B).

Proof: (1) L(P) ⊆ L(B).
For an arbitrary word ξ ∈ L(P), there must exist a unique run ρ of P on ξ such that

Inf(ρ) ∩ Q � ∅. According to the definition of the accepting set Q, there are three cases
for ρ: (a) There exists at least one state s ∈ Inf(ρ) such that s ∈ Q and s ∈ S c. (b) There
exists at least one state s ∈ Inf(ρ) such that s ∈ Q and s ∈ S R. (c) There exists at one
state s ∈ Inf(ρ) such that s ∈ Q and s ∈ S l

R.
For case (a), a run ρ of P on ξ can be illustrated as shown in Fig.5 (a). Accordingly,

each state in the run is composed by a set of states in B. Suppose s2
k = {s

1
0, ..., s

1
n} is

acceptable and s2
k ⊆ F1. By the construction of P, there must exist at least one infinite

run ρ′ in B on the infinite word ξ = a0a1ai−1ai, ..., a j, ai, ..., a j, ... such that ρ(l)′ ∈ ρ(l),
l ≥ 0. Since, s2

k = {s
1
0, ..., s

1
n} is a finite set, there must exist at least one state in s2

k , let it
be s1

0, such that there are infinitely many m ∈ N0, and ρ′(m) = s1
0. Obviously, ρ′ of B on

ξ is acceptable in B since Inf(ρ′) ∩ F1 = {s1
0}. Thus ξ ∈ L(B).



164 C. Tian, Z. Duan, and M. Yang

· · ·

aj−1 aj+1

a0

s2j

(b) (c)

· · ·
· · ·

ai−1

ak−1

ak+1

· · ·

ak−1

ak

s2k

s20

s2i· · ·
a1

a0

ak−2ai+1

s20

s21

s2k−2

aj−1

s2j

· · ·
ai+1

ai+1

s2k

aj+1

(a)

ai−1
s2i

s2k+1

· · ·

aj−1 aj+1

a0

s2j

· · ·

ai−1

ak−1

ak+1

· · ·

ak

s20

s2i

ak−2
s2k−2

ai+1

s2k

s2k+1

Fig. 5. Acceptable runs of P on ξ

For case (b), a run ρ of P on ξ is depicted in Fig.5 (b). Suppose le f t(s2
k ) = {s1

0, ..., s
1
n}

is acceptable and le f t(s2
k) ⊆ F1. By the construction of P, there must exist at least

one infinite run ρ′ in B on the infinite word ξ = a0a1ai−1ai, ..., a j, ai, ..., a j, ... such that
ρ′(l) ∈ ρ(l), l ≥ 0. Since, le f t(s2

k ) = {s1
0, ..., s

1
n} is a finite set, there must exist at least

one state in s2
k , let it be s1

0, such that there are infinitely many m ∈ N0, and ρ′(m) = s1
0.

Obviously, ρ′ of B on ξ is acceptable in B since Inf(ρ′) ∩ F1 = {s1
0}. Thus ξ ∈ L(B).

For case (c), a run ρ of P on ξ is depicted in Fig.5 (c). Suppose le f t(s2
k ) = {s1

0, ..., s
1
n}

is acceptable and le f t(s2
k) ⊆ F1. By the construction of P, there must exist at least

one infinite run ρ′ in B on the infinite word ξ = a0a1ai−1ai, ..., a j, ai, ..., a j, ... such that
ρ′(l) ∈ ρ(l), l ≥ 0 and l � k, while ρ(k)′ ∈ le f t(s2

k ). Since, le f t(s2
k ) = {s1

0, ..., s
1
n} is

a finite set, there must exist at least one state in s2
k , let it be s1

0, such that there are
infinitely many m ∈ N0, and ρ′(m) = s1

0. Obviously, ρ′ of B on ξ is acceptable in B since
Inf(ρ′) ∩ F1 = {s1

0}. Thus ξ ∈ L(B).
(2) L(B) ⊆ L(P).
For a word ξ ∈ L(B), there exists at least but may be more than one acceptable runs

ρA, ρB, ..., ρN of B on ξ. For convenience, without the loss of generality, let ρA(i),
ρB( j),..., ρN(k) ∈ F1 are acceptable in B. By the construction of DPA from NBA,
there must exist an unique acceptable run ρ of P on ξ where for each ρ(l), l ≥ 0,
{ρA(l), ρB(l), ..., ρB(l)} ⊆ ρ(l) as shown in Fig.6. Note that each transition departing from
a left state may be replaced by a transition departing from the corresponding rectangle
state (see the gray directed edges in Fig.6). By the definition for acceptable runs of DPA
on infinite words, ρ of P on ξ is acceptable. Thus, ξ ∈ L(P). �
Theorem 1 shows that any Büchi automata can be determined as a deterministic par-
titioned automaton via subset construction. As we known, subset construction is not
enough for all the existing determinization construction. We present a counterexample



Deternimization of Büchi Automata as Partitioned Automata 165

· · ·

· · ·

· · ·

· · ·
{ρA(k), ρB(k), ..., ρN (k)} ⊆ ρ(k)

{ρA(0), ρB(0), ..., ρN (0)} ⊆ ρ(0)

{ρA(1), ρB(1), ..., ρN (1)} ⊆ ρ(1)

ρA(k) ∈ left(ρ(k))

{ρA(j), ρB(j), ..., ρN (j)} ⊆ ρ(j)

ξ(k)

ξ(0)

ξ(1)

ξ(k + 1)

ξ(j)

ξ(i)

ξ(i − 1)

{ρA(i), ρB(i), ..., ρN (i)} ⊆ ρ(i)

ρA(i) ∈ left(ρ(i))

ρA(j) ∈ left(ρ(j))

Fig. 6. An acceptable run of P on ξ

a

s21 : {s11, s12}
b

s20 : {s10}
s10

s12

B2NBA B1

s11

a

c
b, c

a

Fig. 7. NBA B1, Deterministic version B2 by subset construction

that illustrates that subset construction is insufficient to obtain an equivalent DMA from
an NBA. As depicted in Fig.7, a deterministic automaton B2 produced from NBA B1

by subset construction without designating the accepting set. Treated as a Muller au-
tomaton, the possible accepting table can be T = {{s2

0}, {s
2
1}, {s

2
0, s

2
1}}. However, {s2

0}
and {s2

1} are impossible to be accepting sets since any infinite run contains two states,
s2

0 and s2
1. So the only possible accepting set could be {s2

0, s
2
1}, and we could have

(a · (b + c))ω ∈ L(B2) = L(B1). This is not possible since B1 does not accept word
(a · c)ω. Therefore, it is impossible to designate Muller accepting table on B2 to equiva-
lently accept the language defined by B1.

By Theorem 1, partitioned automata is an omega automata where subset construction
is sufficient for determinizing a nondeterministic Büchi automaton. For example, the
NBA in Fig.7 can be determinized as a DPA as depicted in Fig.8.



166 C. Tian, Z. Duan, and M. Yang

c

s21 = (s11, s12)

s20

b a

s11 s12

Fig. 8. DPA of B1 in Figure 7

Complexity Discussion: By the construction of DPA from NBA, for an NBA B with
n states, at most 3 × 2n states will be created in the DPA P. Accordingly, the state
complexity for determinizing NBA via partitioned automata is 2O(n). However, in a
DPA, different to the traditional automata, there are possibly three transitions between
two states. Essentially, this brings that the transition complexity of partitioned automata
will be 3n times larger than other traditional automata, such as Rabin, Street and Muller
automata.

5 Properties of Partitioned Automaton

Being a new proposed omega automaton, properties, particularly, expressive powers
of the deterministic and nondeterministic versions of PA are interesting researching
points. From the definitions, it can be directly observed that PA is an extension of Büchi
automaton and Büchi automaton is in fact a special case of RA by designating S R to be
empty. Further, by Theorem 1, the following corollary can be obtained.

Corollary 2. Deterministic partitioned automaton has at least the same expressiveness
with nondeterministic Büchi automaton. �

Further, the following Lemma can be proved.

Lemma 3. Any DPA can be equivalently transformed to a nondeterministic Büchi au-
tomaton.

Proof: Given a DPA P = (S ,→, I,Q) with S = S C ∪ S R ∪ S l
R ∪ S r

R. An NBA B =
(S ′,→′, I′, F) can be constructed as follows:

– S ′ = S C ∪ S l
R ∪ S r

R;

– I′ =

{
I, if I = {s0} and s0 ∈ S C

{le f t(s0), right(s)}, if I = {s0} and s0 ∈ S R

– F = Q ∩ (S C ∪ S l
R)

– →′= {(s, a, s′) | (s, a, s′) ∈→, s ∈ S C ∪ S l
R ∪ S r

Rand s′ ∈ S C}
∪ {(s, a, le f t(s′)), (s, a, right(s′)) | (s, a, s′) ∈→, s ∈ S C ∪ S l

R ∪ S r
R and s′ ∈ S R}

∪ {(le f t(s), a, s′), (right(s), a, s′) | (s, a, s′) ∈→, s ∈ S R and s′ ∈ S C}
∪ {(le f t(s), a, le f t(s′)), (right(s), a, le f t(s′)), (le f t(s), a, right(s′)),
(right(s), a, right(s′)) | (s, a, s′) ∈→, s ∈ S R and s′ ∈ S R}



Deternimization of Büchi Automata as Partitioned Automata 167

The proof for the correctness of the transformation is trivial and omitted here. �

Accordingly, Theorem 4 is ready to be proved.

Theorem 4. Deterministic partitioned automaton has the same expressive power with
nondeterministic Büchi automaton.

Proof: This theorem is a direct consequence of Theorem 1 and Lemma 3. �

Similar to Lemma 3, Lemma 5 for nondeterministic partitioned automaton can also be
proved.

Lemma 5. Any partitioned automaton can be equivalently transformed to a nondeter-
ministic Büchi automaton.

Proof: The lemma can be proved by a construction from PA to NBA similar to the one
from DPA to NBA . �

Theorem 6. Any partitioned automaton can be determinized as a deterministic parti-
tioned automaton.

Proof: This theorem is a direct consequence of Theorem 1 and Lemma 5. �

Moreover, since DPA is a special case of PA, the following corollary is obtained.

Corollary 7. Nondeterministic partitioned automaton, deterministic partitioned
automaton and nondeterministic Büchi automaton have the same expressive power. �

6 Conclusions

By the introduction of partitioned automaton, for which both the deterministic and
nondeterministic versions have the same expressive power with NBA, a new deter-
minization construction of Büchi automata is proposed. For partitioned automaton is
essentially different to the traditional automata, state spaces for determinizing Büchi
automata are exponentially saved by considerable waste of transitions. Intuitively, the
new construction is easily implementable since it is completely based on subset con-
struction. In the near future, we will further study whether deterministic partitioned
automata are useful in automata based verification and complementing Büchi automata.

References

1. Clark, M., Gremberg, O., Peled, A.: Model Checking. The MIT Press (2000)
2. Katoen, J.-P.: Concepts, Algorithms and Tools for Model Checking. Arbeitsberichte der In-

formatik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg 32(1) (1999)
3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proceedings of

the International Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford
University Press (1962)

4. Thomas, W.: Languages, automata and logic. In: Handbook of Formal Languages, vol. 3, pp.
389–455. Springer, Berlin (1997)



168 C. Tian, Z. Duan, and M. Yang

5. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineering 23(5),
279–295 (1997)

6. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,
vol. 2500. Springer, Heidelberg (2002)

7. Jain, H.: Automata on Infinite Objects. B.Tech Seminar Report, India, internal report (1996)
8. Vardi, M.Y.: The Büchi Complementation Saga. In: Thomas, W., Weil, P. (eds.) STACS 2007.

LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)
9. Safra, S.: On the complexity of omega-automata. In: Proceedings of the 29th Annual Sym-

posium on Foundations of Computer Science, FOCS 1988, pp. 319–327. IEEE Computer
Society Press (1988)

10. Muller, D.E., Schupp: Simulating alternating tree automata by nondeterministic automata:
New results and new proofs of the theorems of Rabin, McNaughton and Safra. Theoretical
Computer Science 141(1-2), 69–107 (1995)

11. Boker, U., Kupferman, O.: Co-ing Büchi Made Tight and Useful. In: LICS 2009, pp.
245–254 (2009)

12. Boker, U., Kupferman, O.: The Quest for a Tight Translation of Büchi to co-Büchi Automata.
In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS,
vol. 6300, pp. 147–164. Springer, Heidelberg (2010)

13. Boker, U., Kupferman, O.: Co-Büching Them All. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 184–198. Springer, Heidelberg (2011)

14. Friedgut, E., Kupderman, O., Vardi, M.Y.: Büchi complementation made tighter. Interna-
tional Journal of Foundations of Computer Science 17(4), 851–863 (2006)

15. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with
applications to temporal logic. Theoretical Computer Science 49, 217–237 (1987)

16. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the 4th IEEE Sym-
posioum on Switching Circuit Theory and Logical Design, pp. 3–16 (1963)

17. McNaughton: Testing and generating infinite sequences by a finite automaton. Information
and Control 9(5), 521–530 (1966)

18. Yan, Q.: Lower bounds for complementation of ω-automata via the full automata technique.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052,
pp. 589–600. Springer, Heidelberg (2006)

19. Schewe, S.: Büchi Complementation Made Tight. In: STACS 2009, pp. 661–672 (2009)
20. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity au-

tomata. Journal of Logical Methods in Computer Science 3 (2007)
21. Liu, W., Wang, J.: A tighter analysis of Piterman’s Büchi determinization. Inf. Process.

Lett. 109(16), 941–945 (2009)
22. Schewe, S.: Tighter Bounds for the Determinisation of Büchi Automata. In: de Alfaro, L.

(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009)
23. Colcombet, T., Zdanowski, K.: A Tight Lower Bound for Determinization of Transition La-

beled Büchi Automata. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 151–162. Springer, Heidelberg
(2009)



On Linear-Size Pseudorandom Generators

and Hardcore Functions

Joshua Baron1, Yuval Ishai2, and Rafail Ostrovsky3

1 HRL Laboratories, Malibu, CA, USA 90265
jwbaron@hrl.com

2 Technion, Haifa, Israel 32000
yuvali@cs.technion.ac.il

3 UCLA, Los Angeles, CA, USA 90095
rafail@cs.ucla.edu

Abstract. We consider the question of constructing pseudorandom gen-
erators that simultaneously have linear circuit complexity (in the output
length), exponential security (in the seed length), and a large stretch (lin-
ear or polynomial in the seed length). We refer to such a pseudorandom
generator as an asymptotically optimal PRG. We present a simple con-
struction of an asymptotically optimal PRG from any one-way function
f : {0, 1}n → {0, 1}n which satisfies the following requirements:

1. f can be computed by linear-size circuits;

2. f is 2βn-hard to invert for some constant β > 0, and the min-entropy
of f(x) on a random input x is at least γn for a constant γ > 0 such
that β/3 + γ > 1.

Alternatively, building on the work of Haitner, Harnik and Reingold
(SICOMP 2011), one can replace the second requirement by:

2′. f is 2βn-hard to invert for some constant β > 0 and it is regular in
the sense that the preimage size of every output of f is fixed (but
possibly unknown).

Previous constructions of PRGs from one-way functions can do with-
out the entropy or regularity requirements, but even the best such con-
structions achieve slightly sub-exponential security (Vadhan and Zheng,
STOC 2012).

Our construction relies on a technical result about hardcore func-
tions that may be of independent interest. We obtain a family of hardcore
functions H = {h : {0, 1}n → {0, 1}αn} that can be computed by linear-
sized circuits for any 2βn-hard one-way function f : {0, 1}n → {0, 1}n
where β > 3α. Our construction of asymptotically optimal PRGs uses
such hardcore functions, which can be obtained via linear-size com-
putable affine hash functions (Ishai, Kushilevitz, Ostrovsky and Sahai,
STOC 2008).

Keywords: Pseudorandom generators, hardcore functions, circuit com-
plexity, exponential hardness, pairwise independence, bilinear hash
families.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 169–181, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



170 J. Baron, Y. Ishai, and R. Ostrovsky

1 Introduction

A pseudorandom generator (PRG) [7,30] is a deterministic algorithm which
stretches a short random seed into a longer output which looks random to
any computationally bounded observer. PRGs have numerous applications in
cryptography. In particular, they serve as useful building blocks for basic cryp-
tographic tasks such as (symmetric) encryption, commitment, and message au-
thentication.

A seemingly weaker primitive, which satisfies a much milder form of hardness
requirement, is a one-way function (OWF). A OWF is an efficiently computable
function which is hard to invert on a random input. We say that f is t(n)-hard
to invert (or t(n)-hard for short) if every algorithm running in time t(n) can find
a preimage of f(x) for a random x ∈ {0, 1}n with at most 1/t(n) probability, for
all sufficiently large n. We say that f is exponentially hard if it is 2βn-hard for
some constant β > 0.

Every PRG which significantly stretches its seed is also a OWF. However,
because of its crude form of security, a OWF is easier to construct heuristically
than a PRG. There are many natural candidates for a OWF (even an exponen-
tially strong OWF) which do not immediately give rise to a similar PRG. This
motivated a line of work on constructing PRGs from different types of OWFs,
which culminated in the seminal result of H̊astad, Impagliazzo, Levin and Luby
(HILL) [21] that a PRG can be constructed from an arbitrary OWF. More re-
cently, there has been another fruitful line of work on simplifying and improving
the efficiency of the HILL construction [22,17,18,19,20,16,29].

The main focus in the above works has been on optimizing efficiency un-
der minimal assumptions. The present work is motivated by the following dual
question: under which assumptions can we obtain optimal efficiency? Ideally,
we would like to obtain a PRG G : {0, 1}n → {0, 1}l(n) satisfying the following
requirements:

– G has large stretch; that is, l(n) > cn or even l(n) > nc for some constant
c > 1. A large stretch is crucial for most cryptographic applications of PRGs.

– G has linear circuit complexity; that is, the output of G can be computed by
a uniform family of (bounded fan-in) boolean circuits of size O(l(n)). This
implies linear-time computation also in other, more liberal, models such as
unbounded fan-in circuits or different flavors of RAM.

– G has exponential security; that is, there exists a constant δ > 0 such that
any algorithm running in time 2δn can distinguish between the output of G
and a truly random string of length l(n) with at most a 2−δn advantage. In
typical PRG applications, exponential security is useful for minimizing the
asymptotic length of the secret keys or the amount of true randomness.

We refer to a PRG as above as an asymptotically optimal PRG. Using this
terminology, the main question we pose in this work is the following:

Which types of one-way functions imply an asymptotically optimal PRG?



On Linear-Size Pseudorandom Generators and Hardcore Functions 171

The above question is motivated by the broad goal of obtaining efficient cryp-
tographic constructions whose security can be proved under conservative as-
sumptions. Indeed, the efficiency of encryption schemes and other cryptographic
applications of PRGs is often dominated by the efficiency of the underlying
PRG [25].

A natural conjecture is that an asymptotically optimal PRG can be con-
structed from any OWF f : {0, 1}n → {0, 1}n which can be computed by linear-
size circuits and is exponentially hard to invert. However, this conjecture does
not seem to follow from the current state of the art. A recent result of Vadhan
and Zheng [29] (improving on [18,20]) comes close to proving the conjecture.
Combined with linear-size computable pairwise independent hash functions [25],
the result from [29] implies a PRG construction which satisfies the first two re-
quirements but falls short of the third. More concretely, the construction adds a
polylog(n) multiplicative overhead to the seed length.

A recent PRG construction of Applebaum [3] satisfies the first two require-
ments and has the additional feature of a constant output locality (namely, each
output bit depends on a constant number of input bits). This construction relies
on variants of a one-wayness assumption due to Goldreich [12]. Roughly speak-
ing, this assumption asserts that a randomly chosen function from the class of
functions having constant output locality is one-way with high probability.

A construction of an asymptotically optimal PRG based on an exponential
version of an indistinguishability assumption due to Alekhnovich [1] follows from
the work of Applebaum, Ishai, and Kushilevitz [6] (see also [25,3]). The question
of constructing asymptotically optimal PRGs under more general assumptions
remained open.

1.1 Our Contribution

We prove the above conjecture for one-way functions f that are either “regular”
(in the sense that every output f(x) has the same number of preimages) or alter-
natively have a “random enough output” on a random input x. More concretely,
we prove the following result:

Theorem 1 (Asymptotically Optimal PRGs). Suppose that f : {0, 1}n →
{0, 1}n is 2βn-hard to invert for some β > 0. Suppose that either f is regular
or the min-entropy of f(x) is larger than γn for some constant γ such that
γ > 1 − β/3 (and for sufficiently large n). Then there exists an exponentially
strong PRG G : {0, 1}n → {0, 1}2n that can be computed by linear-size circuits
using O(1) oracle calls to f .

Using a standard tree-based PRG extension, the above theorem yields an asymp-
totically optimal PRG with an arbitrary polynomial stretch; see the full version
of this paper for further details.

The above entropy requirement seems quite mild and in some cases of interest
it can be proved unconditionally. In particular, there are natural variants of
Goldreich’s OWF candidate [12] that can be shown to have fractional entropy



172 J. Baron, Y. Ishai, and R. Ostrovsky

that tends to 1 with the locality degree (see [9] and the full version of this paper),
whereas the expected hardness of inverting does not seem to decrease (and may
even grow) with the locality.

Hardcore Functions. Our construction of asymptotically optimal PRGs is ob-
tained via a technical result about hardcore functions that may be of independent
interest. Recall that a hardcore predicate b is a function that outputs a single bit
b(x) which is hard to predict even given f(x). A hardcore function for a one-way
function f is a function h (which can output more than one bit) whose output
h(x) is hard to distinguish from random even when f(x) is known. More pre-
cisely, we allow h to be picked at random from a function family H and provide
a description of h as an additional input to the distinguisher. Hardcore functions
are a fundamental cryptographic object, with applications to pseudoentropy and
pseudorandomness. Goldreich and Levin [15] introduced the first hardcore pred-
icates and functions for general OWFs, showing that a random linear function
is hardcore and so is the linear function defined by a random Toeplitz matrix.

We consider families of linear functions H = {hi : {0, 1}n → {0, 1}m} over the
binary field. We refer to such a family as a bilinear uniform output hash family
if it satisfies two properties. First, for any x �= 0, the random variable hi(x) (in-
duced by a uniformly random choice of the index i) is uniformly distributed over
{0, 1}m. Second, H forms a subgroup of the (additive) group of linear functions
from Fn

2 to Fm
2 . Using a result of Holenstein, Maurer, and Sjödin [23], we show

that any such family of functions is hardcore for any sufficiently hard OWF.

Theorem 2 (Bilinear Uniform-Output Hash Families are Hardcore).
Let H = {h : {0, 1}n → {0, 1}αn} be a bilinear uniform output hash family and
let f : {0, 1}n → {0, 1}n be a 2βn-hard one-way function. Then H is a family of
exponentially strong hardcore functions for f if β > 3α.

A construction of linear-size computable pairwise independent hash functions
was given by Ishai, Kushilevitz, Ostrovsky and Sahai [25]. Observing that the
construction can be instantiated so that each function in the family is affine,
and constructing linear uniform-output hash families from such families, we can
use the above theorem to obtain linear-size computable hardcore functions with
a long output. Using such a hardcore function, the construction of an asymptot-
ically optimal PRG proceeds in a simple way. In the high entropy case, we first
extract the randomness from the output of f by applying a (linear-size) pair-
wise independent hash function (appealing to the Leftover Hash Lemma [21]).
Then, we extract sufficient pseudorandomness from the input of f by apply-
ing the (linear-size) hardcore function to the input x. If f has sufficiently high
min-entropy and is hard enough to invert, these techniques combine so that the
output has length cn for c > 1. From this PRG, we can use standard PRG ex-
tension techniques to obtain an asymptotically optimal PRG with an arbitrary
polynomial stretch.

In the case where the OWF f is regular, we combine the hardcore function
result with a PRG construction of Haitner, Harnik and Reingold [17,19] (the



On Linear-Size Pseudorandom Generators and Hardcore Functions 173

HILL construction [21] yields a similar result for regular f with known preimage
size).

1.2 Related Work

Pseudorandom Generators. Following the pioneering works of Blum and
Micali [7] and Yao [30], who constructed a PRG from a one-way permutation,
Goldreich, Krawczyk and Luby [14] constructed a PRG from any regular OWF
with unknown preimage size (a OWF is regular if every output of f has the
same preimage size). H̊astad, Impagliazzo, Levin and Luby [21] gave the first
construction of a PRG from any OWF. The first effort towards simplifying and
improving the HILL construction was made by Holenstein [22], who also ex-
plicitly considered the case of exponentially strong OWFs. Haitner, Harnik and
Reingold [17,18,19] improved the construction of [14] by relying only on pairwise
independent hash functions ([14] had required n-wise independent hash func-
tions) and by reducing the seed length. More recently, Haitner, Reingold and
Vadhan [20] further improved the seed length of PRGs from general OWFs. The
most efficient general constructions to date are given in the aforementioned work
of Vadhan and Zheng [29], who also noted that combining their construction with
the pairwise independent hash functions of [25] gives a linear-stretch linear-size
PRG from any exponentially hard OWF. (This construction does not depend
on the hash functions being affine.) As discussed above, this construction still
falls short of our main goal because of its polylogarithmic overhead to the seed
length, but otherwise it is stronger in several important aspects. In particular,
it does not require f to satisfy any entropy or regularity requirement.

Constructions of PRGs in NC0 (i.e., with constant output locality) were first
given by Applebaum, Ishai, and Kushilevitz [5] under standard assumptions.
Note that any NC0 function can be realized by linear-size circuits (in the output
length). However, the PRGs in NC0 from [5] have sublinear stretch. Linear-
stretch PRGs in NC0 were constructed in [6] under an indistinguishability as-
sumption due to Alekhnovich [1]. Under an exponentially strong version of the
assumption from [1], this construction yields an asymptotically optimal PRG.

A family of linear-stretch PRGs in NC0 whose security is based on a nat-
ural one-wayness assumption was given by Applebaum [3], who under similar
assumptions also obtained a PRG with polynomial stretch in NC0. However, the
security level of the PRGs constructed in [3] does not meet the third requirement
of an asymptotically optimal PRG, even under exponential one-wayness assump-
tions. Furthermore, the underlying OWFs in these constructions are restricted
to special distributions over NC0 functions, whereas our construction does not
require the underlying OWF to be in NC0 (nor does it yield a PRG in NC0).

Finally, Applebaum, Bogdanov, and Rosen [4] (following earlier works of
Cryan and Miltersen [11] and Mossel, Shpilka, and Trevisan [26]) present a broad
class of randomized constructions of small-bias PRGs in NC0, namely PRGs in
NC0 which provably fool all linear distinguishers. Such small-bias PRGs may
serve as plausible candidates for asymptotically optimal PRGs, though their
security does not seem to follow from any natural one-wayness assumption.



174 J. Baron, Y. Ishai, and R. Ostrovsky

Goldreich’s One-Way Function. Goldreich [12] put forward the following
graph-based one-way function candidate: Consider a d-ary (nonlinear) predicate
P and a bipartite graph G = (V,E) with left nodes u1, . . . , un, right nodes
v1, . . . , vn, and right degree d. Define f : {0, 1}n → {0, 1}n by labeling the left
(input) nodes of G with the bits of x. We define the jth output bit of f on x,
f(x)j , as P (xi1 , . . . , xid), where ui1 , . . . , uid are the input nodes that are in the
neighborhood of vj , the jth output node of G. We note that f can be computed
by linear-size circuits as long as d is a constant. Goldreich conjectured that most
functions f as above are one-way.

Recent works on this class of functions [28,2,9,10,8] may be viewed as sup-
porting the possibility that they are exponentially hard; however, Bogdanov and
Qiao [8] have shown that for variants where the output stretch is a large constant
(at least exponential in the input degree), there exist instantiations that are in-
vertible in polynomial time. Applebaum’s construction of a linear-stretch PRG
in NC0 [3] uses a variant of Goldreich’s one-way function with a large constant
stretch. He demonstrates that the one-wayness of such local functions implies
that the output has sufficiently good pseudoentropy to allow the construction of
a PRG. By contrast, the one-way functions required for the constructions in this
paper are from n bits to n bits and, as discussed above, the security reduction
from [3] is not tight enough to yield an asymptotically optimal PRG.

In the full version of this paper, we show that a random d-local one-way
function from n bits to n bits, instantiated with a random and independent d-
ary predicate for each output bit of the function, has high min-entropy except
with exponentially small probability over the choice of graph and predicates.
This is useful towards instantiating the types of OWFs on which our main result
relies. Previous works (e.g., [9,10]) have examined instances with more concrete
choices of the predicate P and proved them also to have high min-entropy except
with exponentially small probability over the choice of the function.

Hardcore Functions. Goldreich and Levin [15] demonstrated that the set of all
inner product functions constitutes a family of hardcore predicates for any one-
way function. More generally, they proved that the set of all linear functions with
input in {0, 1}n and the set of Toeplitz matrices with input {0, 1}n are families
of hardcore functions for any one-way function (for appropriately sized outputs).
The central idea of their proof is that if a random XOR of a candidate hardcore
function output is hard to distinguish, then the function is indeed hardcore; they
constructed such an argument for the set of all matrices and Toeplitz matrices,
respectively, by direct calculation.

Näslund [27] showed that the family of all affine functions over GF [2n] and
the family of all linear functions over the integers modulo a prime are families
of hardcore functions for any one-way function.

Holenstein, Maurer and Sjödin [23] generalized the results of [15] to give a
complete classification of all so-called bilinear hardcore function families over
arbitrary fields; that is, the hardcore functions are additively homomorphic both
in their function inputs and in the strings that represent each function (this



On Linear-Size Pseudorandom Generators and Hardcore Functions 175

is the case when the set of hardcore functions forms an additive group). Our
construction of linear-size computable hardcore functions will rely on this result.

1.3 Definitions and Preliminaries

We denote by Un the random variable uniformly distributed over {0, 1}n. We
provide some definitions and preliminaries used in this paper; see the full ver-
sion for other definitions, such as bilinear functions, full rank bilinear functions,
one-way functions, hardcore functions, pseudorandom generators and pairwise
independent hash families. In particular, we say that a function is a β-exponential
one-way function if it is a (2βn, 2−βn) one-way function. We also say that a pair-
wise independent hash family where each function in the family is affine is an
affine pairwise independent (API) hash family.

Definition 3. Let Hn,m = {hi : {0, 1}n → {0, 1}m} be a multiset of func-
tions (that is, we allow distinct indices to represent the same function). We say
that Hn,m is a family of uniform-output hash functions if for every non-zero
x ∈ {0, 1}n, the random variables Hn,m(x) induced by a uniform choice of h
from Hn,m is uniformly distributed over {0, 1}m. If every hi ∈ Hn,m is a linear
function over the binary field (i.e., a function of the form Aix), we call Hn,m a
linear uniform-output (LUO) hash family.

Further, a LUO hash family of size 2k that can be expressed as a bilinear
function h : {0, 1}n × {0, 1}k → {0, 1}m (where the second argument represents
the index i) is denoted a bilinear uniform-output (BLUO) hash family.

We will typically consider infinite collections of families Hn,m parameterized
by the input and output length. In such a case we require the existence of a
representation length �n,m = poly(n,m) such that Hn,m contains 2�n,m (not
necessarily distinct) functions hi indexed by all binary strings of length �n,m
(which equals k in the above definitions). For convenience, we will abuse notation
and refer to hi ∈ Hn,m as both a function and the string representing it. We
assume that there is a polynomial-time evaluation algorithm that, given hi and
x, outputs hi(x). In fact, we will rely on families for which this algorithm can
be implemented by linear-size circuits.

Claim 4. Let H ′
n,m be an API hash family. Then the multiset Hn,m = {hi :

hi(x) = h′
i(x)− h′

i(0), h′
i ∈ H ′} is an LUO hash family.

The proof of the claim is immediate from the fact that for any x �= 0, H ′
n,m(x)

and H ′
n,m(0) are distributed uniformly and independently at random, and that

each function in Hn,m is linear.

2 Linear-Size Hardcore Functions

We now give our main result for the existence of linear-size hardcore functions.



176 J. Baron, Y. Ishai, and R. Ostrovsky

Theorem 5. Let Hn,l(n) be a BLUO hash family, let f : {0, 1}n → {0, 1}n
be a (t(n), 1/t(n)) one-way function, and let θ > 1 be an arbitrary constant.
Then Hn,l(n) is a (t′(n), 1/t′(n)) family of hardcore functions for f if 3θ(l(n) +
log t′(n)) < log t(n).

Corollary 6. Let Hn,l(n) be a BLUO hash family and let f : {0, 1}n → {0, 1}n
be a one-way (resp. β-exponential one-way) function. Then Hn,l(n) is a family of

hardcore functions (resp. is a (2Ω(n), 2−Ω(n)) family of hardcore functions) for
f for any l(n) ∈ O(log n) (resp. l(n) < βn

3θ for any constant θ > 1).

We initiate the proof of Theorem 5 by proving a technical lemma.

Lemma 7. Let H be a BLUO hash family specified by the bilinear function h.
Then h is full rank.

Proof of Lemma 7. Let h : {0, 1}n×{0, 1}k → {0, 1}m be the bilinear function
that specifies H. Then, by definition of LUO hash families, for any 0 �= x ∈
{0, 1}n, the distribution {h(x, r)}r←Uk

is distributed uniformly over {0, 1}m.
Let l : {0, 1}m → {0, 1} be an arbitrary non-zero linear function. Then for any
0 �= x ∈ {0, 1}n, {l◦h(x, r)}r←Uk

is also distributed uniformly over {0, 1} and, in
particular, the linear map r �→ h(x, r) is surjective onto {0, 1} for any non-zero
x.

Let Ml be the n × k matrix denoting l ◦ h : {0, 1}n × {0, 1}k → {0, 1}. We
would like to prove that rank(Ml) = n. This follows from the fact that for every
non-zero x ∈ {0, 1}n, there exists some rx such that xT ·M ·rx = 1, which implies
that every non-trivial linear combination of the rows of Ml is non-zero, and the
lemma follows. ��

We now proceed to prove Theorem 5.

Proof of Theorem 5. We will proceed by contradiction, and assume that
there exists a probabilistic algorithm D running in time t′(n) such that |Pr[x←
Un, h ← Hn,l(n) : D(f(x), h, h(x)) = 1] − Pr[x ← Un, h ← Hn,l(n), y ← Ul(n) :
D(f(x), h, y) = 1]| > ε′(n) = 1/t′(n) for infinitely many n.

More specifically, let Pr[x ← Un, h ← Hn,l(n) : D(f(x), h, h(x)) = 1] = δ and
Pr[x ← Un, h ← Hn,l(n), y ← Ul(n) : D(f(x), h, y) = 1] = (1 + ε)δ. Without
loss of generality, let ε > 0 (otherwise, let D′ be the algorithm that outputs
the opposite bit that D does and use D′ for the remainder of this proof); then
εδ ≥ ε′(n).

Let α(n) be such that for some θ > 1, 3θ(l(n)+log t′(n))+logα(n) < log t(n).
Since by Lemma 7, H can be specified by a full rank bilinear function, a slightly
modified version of the hardcore result of [23] (see the full version for details)
implies that there exists an algorithm Aα and some c > 0 that inverts f in time

α(n) · 22l(n)

δε2 · nc · t′(n) ≤ α(n) · 22l(n)+1

ε′(n)2 · nc · t′(n) = α(n) · 22l(n)+1 · nc · t′3(n),
which, by assumption, is less than t(n). Further, Aα inverts f with probability

≥ δε2

4·22l(n) − 1
α(n) ≥

ε′(n)2

4·22l(n) − 1
α(n) , which, by assumption, is larger than ε(n) =

1/t(n), contradicting the one-wayness of f . ��



On Linear-Size Pseudorandom Generators and Hardcore Functions 177

Ishai et al [25] construct a family of pairwise independent hash functions from
{0, 1}n to {0, 1}n which can be computed by circuits of size O(n). This con-
struction uses an arbitrary pairwise independent hash function (applied on a
constant-size input domain) as a building block. Using a family of affine func-
tions as a building block (e.g., Ax + b where A is a random binary matrix and
b a random binary vector) yields a linear-size computable family of affine pair-
wise independent hash functions. We use this family to construct a linear-size
computable BLUO hash family1.

Proposition 8 (Implicit in [25]). For any 0 < c ≤ 1, there exists a family of
affine pairwise independent hash functions from {0, 1}n to {0, 1}cn which can be
computed by linear-size circuits.

Combining Proposition 8 with Claim 4, we obtain the following lemma.

Lemma 9. For any 0 < c ≤ 1, there exists a BLUO hash family from {0, 1}n
to {0, 1}cn which can be computed by linear-size circuits.

Applying Theorem 5 with these hash functions yields the following result.

Corollary 10. Let f : {0, 1}n → {0, 1}n be a β-exponential one-way function.
For any l(n) and θ > 1 such that 3l(n) < βnθ, there exists a BLUO hash family
Hn,l(n) such that Hn,l(n) is a (2Ω(n), 2−Ω(n)) family of hardcore functions of f
which can be computed by linear-size circuits.

3 PRGs Computable by Linear-Size Circuits

We discuss how hardcore functions that can be computed by linear-size circuits
can be used to construct linear-stretch PRGs that can be computed by linear-size
circuits. When f is an exponentially hard one-way function, various assumptions
about the min-entropy of the output of f can be used to construct such PRGs.
We first construct a PRG in the case that the output of f has high enough
min-entropy. We then examine previously made restrictions on f that have been
used to construct linear-stretch PRGs.

3.1 PRGs for One-Way Functions with Lower-Bounded
Min-Entropy

We demonstrate that there exist linear-stretch pseudorandom number generators
that can be computed by linear-size circuits provided that there exists a suitable
class of exponentially hard one-way functions. We discuss the plausibility of these
assumptions in the full version of this paper.

1 When we say that a family of hash functions can be computed by linear-size circuits
we mean that there is a universal constant c such that for every sufficiently large
m and n, there is a circuit Cn,m of size cn which computes the restriction of the
family to functions from {0, 1}n to {0, 1}m. The input to Cn,m includes the (binary
representation of) the index i of the hash function and the input for hi.



178 J. Baron, Y. Ishai, and R. Ostrovsky

Assumption 11. There exist a function f : {0, 1}n → {0, 1}n and constants
β > 0, θ > 1, and γ such that γ > 1− β

3θ with the following properties:

(i) f is a β-exponential one-way function.
(ii) f can be computed by linear-size circuits.
(iii) H∞(f(Un)) > γn.

Under this assumption, the following theorem can be proved.

Theorem 12. If Assumption 11 holds, there exists a (2Ω(n), 2−Ω(n)) linear-
stretch PRG G that can be computed by linear-size circuits with a single oracle
call to f .

Using either the construction in [25] or the construction in [13] (see Section 3.3.2
there) with the PRG G of Theorem 12, we obtain the following corollary.

Corollary 13. If Assumption 11 holds, then for any polynomial l(n) > n there
exists a (2Ω(n), 2−Ω(n)) PRG G : {0, 1}n → {0, 1}l(n) such that G can be com-
puted by circuits of size O(l(n)) with O(l(n)/n) oracle calls to f .

In the following Construction 14, we describe an algorithm that we prove satisfies
Theorem 12; see the full version for the full proof of Theorem 12. It can be
shown that it is possible to specify a BLUO hash family (and also an API hash
family) h ∈ Hm,αm by specifying a string from {0, 1}μm for some constant μ.
Let f : {0, 1}n → {0, 1}n be a β-exponential one-way function. Set c0 = γ and
c1 = 1− γ + ε2 for any constant 0 < ε2 < γ − (1 − β

3θ ). Construct an API hash
family, Hn,c0n, and a BLUO hash family, Hn,c1n, which are indexed by the sets
{0, 1}k0n and {0, 1}k1n for some constants k0 and k1, respectively.

Construction 14. Let Hn,c0n be an API hash family and Hn,c1n be a BLUO
hash family with h0 and h1 drawn from Hn,c0n and Hn,c1n, respectively. Let
f : {0, 1}n → {0, 1}n satisfy Assumption 11. Then set:

G(x, h0, h1) = (h0, h0(f(x)), h1, h1(x)).

Note that |(x, h0, h1)| = (1+k0+k1)n and |G(x, h0, h1)| = k0n+c0n+k1n+c1n =
(1+ε2+k0+k1)n, so G has linear stretch. G can also be computed by linear-size
circuits because h0, h1, and f can all be computed by linear-size circuits.

We note that it may be the case that one can only generate “good” one-way
functions that satisfy Assumption 11 with constant probability; for instance,
randomly selected bipartite graphs may only yield “good” OWFs with constant
probability. One can still construct a family of PRGs from such a family of one-
way functions, but the resulting PRGs will not be optimal because they will only
be (2Ω(

√
n), 2−Ω(

√
n)) PRGs; see the full version for further details.

PRGs from Regular One-Way Functions. We have so far presented a
construction of a PRG for exponentially hard one-way functions with certain
preimage constraints. Using the hardcore and hash families outlined here that



On Linear-Size Pseudorandom Generators and Hardcore Functions 179

can be computed by linear sized circuits, we can also modify a result of [19,16] to
obtain asymptotically optimal PRGs for regular one-way functions with possibly
unknown preimage size (recall that a one-way function f is regular if every every
output f(x) has the same number of preimages. We refer the reader to the full
for details2.

Corollary 15. If f : {0, 1}n → {0, 1}n is a β-exponential regular one-way func-
tion (with possibly unknown preimage size), then there exists a (2Ω(n), 2−Ω(n))
pseudorandom generator G with linear stretch that can be computed by linear-size
circuits with O(1) oracle calls to f .

Acknowledgements. The authors wish to thank Benny Applebaum, Andrej
Bogdanov, Iftach Haitner, and Salil Vadhan for helpful discussions. This work
was done in part while the first and second authors were at UCLA. The work
of the first and third authors is supported in part by NSF grants CCF-0916574,
IIS-1065276, CCF-1016540, CNS-1118126, CNS-1136174, and by US-Israel BSF
grant 2008411. It was also supported by the OKAWA Foundation Research
Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award and Lockheed-Martin
Corporation Research Award. The material contained herein is also based upon
work supported by the Defense Advanced Research Projects Agency through
the U.S. Office of Naval Research under Contract N00014-11-1-0392. The views
expressed are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government. The work of the
second author is supported by the European Research Council as part of the
ERC project CaC (grant 259426), ISF grant 1361/10, and BSF grant 2008411.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: Proc.
FOCS 2003, pp. 298–307 (2003)

2. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. J. Autom. Reasoning.
35(1-3), 51–72 (2005)

3. Applebaum, B.: Pseudorandom Generators with Long Stretch and Low Locality
from Random Local One-Way Functions. In: Proc. STOC 2012, pp. 805–816 (2012)

4. Applebaum, B., Bogdanov, A., Rosen, A.: A Dichotomy for Local Small-Bias Gen-
erators. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 600–617. Springer,
Heidelberg (2012)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. on Com-
puting 36(4), 845–888 (2006)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: On Pseudorandom Generators with Lin-
ear Stretch in NC0. J. Comp. Compl. 17(1), 38–69 (2008)

7. Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. SIAM J. on Computing 13(4), 850–864 (1985)

2 We note that we can similarly modify a result of HILL for OWFs with known preim-
age size to yield asymptotically optimal PRGs as well; see the full version for details.



180 J. Baron, Y. Ishai, and R. Ostrovsky

8. Bogdanov, A., Qiao, Y.: On the Security of Goldreich’s One-Way Function. In:
Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009.
LNCS, vol. 5687, pp. 392–405. Springer, Heidelberg (2009)

9. Cook, J., Etesami, O., Miller, R., Trevisan, L.: Goldreich’s One-Way Function
Candidate and Myopic Backtracking Algorithms. In: Reingold, O. (ed.) TCC 2009.
LNCS, vol. 5444, pp. 521–538. Springer, Heidelberg (2009)

10. Cook, J., Etesami, O., Miller, R., Trevisan, L.: On the One-Way Function Candi-
date Proposed by Goldreich. ECCC, Report No. 175 (2012)

11. Cryan, M., Miltersen, P.B.: On Pseudorandom Generators in NC0. In: Sgall, J.,
Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 272–284. Springer,
Heidelberg (2001)

12. Goldreich, O.: Candidate One-Way Functions Based on Expander Graphs. ECCC,
Report No. 90 (2000)

13. Goldreich, O.: Foundations of Cryptography. Cambridge U. Press, Cambridge
(2001)

14. Goldreich, O., Krawczyk, H., Luby, M.: On the Existence of Pseudorandom Gen-
erators. SIAM J. on Computing 22(6), 1163–1175 (1993)

15. Goldreich, O., Levin, L.A.: Hard-core Predicates for any One-Way Function. In:
Proc. STOC 1989, pp. 25–32 (1989)

16. Haitner, I.: New Implications and Improved Efficiency of Constructions Based on
One-way Functions. Ph.D. Thesis (March 2008)

17. Haitner, I., Harnik, D., Reingold, O.: Efficient Pseudorandom Generators from
Exponentially Hard One-Way Functions. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 228–239. Springer, Heidelberg
(2006)

18. Haitner, I., Harnik, D., Reingold, O.: On the Power of the Randomized Iterate. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22–40. Springer, Heidelberg
(2006)

19. Haitner, I., Harnik, D., Reingold, O.: On the Power of the Randomized Iterate.
SIAM J. on Computing 40(6), 1486–1528 (2011)

20. Haitner, I., Reingold, O., Vadhan, S.: Efficiency Improvements in Constructing
Pseudorandom Generators from One-way Functions. In: Proc. STOC 2010, pp.
437–446 (2010)

21. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A Psedorandom Generator
From Any One-Way Function. SIAM J. on Computing 28(4), 1364–1396 (1999)

22. Holenstein, T.: Pseudorandom Generators from One-Way Functions: A Simple
Construction for Any Hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 443–461. Springer, Heidelberg (2006)

23. Holenstein, T., Maurer, U., Sjödin, J.: Complete Classification of Bilinear Hard-
Core Functions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 73–91.
Springer, Heidelberg (2004)

24. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-Random Generation From One-
Way Functions (Extended Abstract). In: Proc. STOC 1989, pp. 12–24 (1989)

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with Constant
Computational Overhead. In: Proc. STOC 2008, pp. 433–442 (2008)

26. Mossel, E., Shpilka, A., Trevisan, L.: On epsilon-biased generators in NC0. Random
Struct. Algorithms 2(1), 56–81 (2006)

27. Näslund, M.: Universal Hash Functions & Hard Core Bits. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 356–366.
Springer, Heidelberg (1995)



On Linear-Size Pseudorandom Generators and Hardcore Functions 181

28. Panjwani, S.K.: An experimental evaluation of goldreich’s one-way function. Tech-
nical report, IIT, Bombay (2001)

29. Vadhan, S., Zheng, C.J.: Characterizing Pseudoentropy and Simplifying Pseudo-
random Generator Constructions. In: Proc. STOC 2012, pp. 817–836 (2012)

30. Yao, A.C.: Theory and application of trapdoor functions. In: Proc. FOCS 1982,
pp. 80–91 (1982)



A Fast Algorithm Finding the Shortest Reset
Words

Andrzej Kisielewicz1,2,�, Jakub Kowalski1, and Marek Szykuła1

1 Department of Mathematics and Computer Science, University of Wrocław, Poland
2 Institute of Mathematics and Computer Science, University of Opole, Poland

andrzej.kisielewicz@math.uni.wroc.pl,
{kot,msz}@ii.uni.wroc.pl

Abstract. In this paper we present a new fast algorithm for finding
minimal reset words for finite synchronizing automata, which is a prob-
lem appearing in many practical applications. The problem is known to
be computationally hard, so our algorithm is exponential in the worst
case, but it is faster than the algorithms used so far and it performs well
on average. The main idea is to use a bidirectional BFS and radix (Pa-
tricia) tries to store and compare subsets. Also a number of heuristics
are applied. We give both theoretical and practical arguments showing
that the effective branching factor is considerably reduced. As a practi-
cal test we perform an experimental study of the length of the shortest
reset word for random automata with n ≤ 300 states and 2 input letters.
In particular, we obtain a new estimation of the expected length of the
shortest reset word ≈ 2.5

√
n− 5.

Keywords: Synchronizing automaton, synchronizing word, Černý con-
jecture.

1 Introduction

We deal with (complete deterministic) finite automata A = 〈Q,Σ, δ〉 with the
state set Q, the input alphabet Σ, and the transition function δ : Q ×Σ → Q.
The action of Σ on Q given by δ is denoted simply by concatenation: δ(q, a) = qa.
This action extends naturally to the action qw of words for any w ∈ Σ∗. If
|Qw| = 1, that is, the image of Q by w consists of a single state, then w is called
a reset (or synchronizing) word for A, and A itself is called synchronizing. (In
other words, w resets (synchronizes) A in the sense that, under the action of w,
all the states are sent into the same state). The synchronizing property is very
important, because it makes the automaton resistant to errors that could occur
in an input word. After detecting an error a synchronizing word can be used
to reset the automaton to its initial state. Synchronizing automata have many
practical applications. They are used in robotics (for designing so-called part
orienters) [2], bioinformatics (the reset problem) [3], network theory [11], theory
of codes [10] etc.
� Supported in part by Polish MNiSZW grant N N201 543038.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 182–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Fast Algorithm Finding the Shortest Reset Words 183

Theoretical research in the area is mainly motivated by the Černý conjecture
stating that every synchronizing automaton A with n states has a reset word
of length ≤ (n − 1)2. This conjecture was formulated by Černý in 1964 [4],
and is considered the most longstanding open problem in the combinatorial
theory of finite automata. So far, the conjecture has been proved only for a few
special classes of automata and a general cubic upper bound (n3−n)/6 has been
established (see Volkov [24] for an excellent survey of the results, and Trahtman
[23] for a recently found new cubic bound). Using computers the conjecture
has been verified for small automata with 2 letters and n ≤ 10 states (and with
k ≤ 4 letters and n ≤ 7 states [22]; see also [1] for n = 9 states). It is known that,
in general, the problem is computationally hard, since it involves an NP-hard
decision problem. Recently, it has been shown that the problem of finding the
length of the shortest reset word is FPNP[log]-complete, and the related decision
problem is both NP- and coNP-hard [14].

On the other hand, there are several theoretical and experimental results
showing that most synchronizing automata have relatively short reset words and
those slowly synchronizing (with the shortest reset words of quadratic length) are
rather exceptional [1]. An old result by Higgins [9] on products in transformation
semigroups shows that a random automaton with an alphabet of size larger than
2n has, with high probability, a reset word of length ≤ 2n. More recently, it was
proved that, for every ε > 0, a random automaton with n states over an alphabet
of size n0.5+ε, with high probability, is synchronizing and satisfies the Černý
conjecture [20]. In computing reset words, either exponential algorithms finding
the shortest reset words [19,22,12] or polynomial heuristics finding relatively
short reset words [8,12,16,17,22] are widely used. The standard approach is to
construct the power automaton and to compute the shortest path from the whole
set state to a singleton [18,22,12,24]. Most naturally, the breadth-first-search
method is used which starts from the set of all states of the given automaton
and forms images applying letter transformations until a singleton is reached.
Based on these ideas computation packages have been created (TESTAS [21]
and recently developed COMPAS [5]). In [17], Roman uses a genetic algorithm
to find a reset word of randomly generated automata and thus obtains upper
bounds on the length of the shortest reset word.

A new interesting approach for finding the exact length using a SAT-solver
has been applied recently by Skvortsov and Tipikin [19]. The problem of deter-
mining if an automaton has a reset word of length at most l is reduced to the
SAT problem and the binary search for the exact length is performed. Using
this approach, the following experimental study is done. For chosen numbers n
of states from the interval [1, 100] random automata with 2 input letters are
generated, checked if they are synchronizing, and if so, the shortest reset word
is computed. The results directly contradict the conjecture made by Roman [17]
that the mean length of the shortest reset word for a random n-state synchro-
nizing automaton is linear and almost equal to 0.486n. Skvortsov and Tipikin
argue that their experiment based on a larger set of data shows that this length
is actually sublinear and ≈ 1.95n0.55.



184 A. Kisielewicz, J. Kowalski, and M. Szykuła

In this paper we present a new algorithm based on a bidirectional breadth-
first-search. Implementing this idea requires efficiently solving the problem of
storing and comparing resulted subsets of states. To this aim radix tries (also
known as Patricia tries [13]) are used. We analyze the algorithm from both
theoretical and practical sides. As the first test of efficiency we have performed
experiments analogous to those done by Skvortsov and Tipikin. Due to the well
performance of the algorithm we were able to generate and check one million
automata for each n ≤ 100, (compared with 200–2000 generated by Skvortsov
and Tipikin), and we were able to test much larger automata with up to n = 320
states. Our data confirm the hypothesis that the expected length of the shortest
reset word is sublinear, but show that more precise is a smaller approximation
≈ 2.5

√
n− 5. In addition, the larger set of data enables us to estimate the error

and to show that for our approximation with high probability the error is very
small. We also verify and discuss other results and claims of [19].

Our algorithm makes also possible to find a reset word of the shortest length
(not only the length). Curiously, it works in polynomial time for known slowly
synchronizing automata series [1]. So far, most of the empirical research in the
area concerns automata with 2 input letters. Some researches suggest that au-
tomata with more letters may exhibit a different behavior. We plan to use the
algorithm to perform an extensive research on automata with k > 2 letters.

2 Algorithm

The algorithm gets an automaton A = 〈Q,Σ, δ〉 with n states and k input
letters. First, A is checked if it is synchronizing using the well known (and
efficient) algorithm [7]. If so, then we proceed to search for a synchronizing word
of the shortest length. Here, one may perform the breadth-first search (BFS)
on the power automaton of A starting from the set Q of all the states and
computing successive images by the letters of the alphabet Σ (and recording the
sequences of the letters applied). One may also search in the inverse (backward)
direction starting from the singleton sets and computing successive preimages
(this search will be refereed to as IBFS). Both the searches have branching factor
k (the number of input letters) and need to compute O(kl) sets (or O(nkl) in
IBFS) to find a synchronizing word of the shortest length l. The idea behind
bidirectional search is to perform two searches simultaneously and check if they
meet. Then a synchronizing word may be found in only O(nkl/2) steps. However,
to implement this idea there must be an efficient way to check each new subset
to see if it already appears in the search tree of the other half of the search.

2.1 General Ideas

For each search we maintain the current list of subsets that can be obtained
from the start in a given number of steps. Since the lists have a tendency to
grow exponentially and to contain subsets obtained on earlier steps, it is more
efficient to maintain additional lists of visited subsets (for each search) and to



A Fast Algorithm Finding the Shortest Reset Words 185

use them to remove from the current lists redundant subsets. We have checked
experimentally that it is a good strategy to decrease the branching factor.

To check if the two searches meet one needs to perform subset checking: after
each step, BFS or IBFS, we check if a set on the current IBFS list contains a set
on the current BFS list. If so, it means that there are words u,w ∈ Σ∗ such that
the image Qu is a subset of the preimage {q}w−1 for some q ∈ Q. Consequently,
Quw = {q}, as required.

Since, in the bidirectional approach, subset checking must be performed any-
way, it may be also applied to reduce lists using the following simple observation.
If S and T are subsets of Q such that S ⊆ T , then |Tw| = 1 implies |Sw| = 1 for
any w ∈ Σ∗. It follows that, for example, a subset on the IBFS list contains a
subset on the BFS list if and only if – with respect to inclusion – a maximal ele-
ment on the IBFS list contains a minimal element on the BFS list. Consequently,
the only subsets on the BFS lists we need to consider are those minimal with
respect to inclusion and the only subsets on the IBFS lists we need to consider
are those maximal with respect to inclusion.

To store and check subsets on the lists we apply an efficient data structure
known as radix trie (Patricia trie) [13]. We show that the subset checking oper-
ation (checking whether a given set S has a subset stored in the trie) and the
dual superset checking (checking whether a given set S has a superset stored in
the trie) are efficient enough for these structures to make a combination of the
ideas presented above work well in practice.

This approach is fast but memory consuming. In order to also make the al-
gorithm work efficiently for larger automata, when the memory limit is reached,
the bidirectional approach is replaced by a sort of an inverse DFS search not
involving the tries of visited subsets anymore. We also apply several technical
optimizations and heuristics which yields a considerable speed-up. They are de-
scribed in Section 3.

2.2 Radix Tries

A radix trie is a binary tree of the maximal depth n which stores subsets of a
given n-set Q in its leaves. Having a fixed linear order of elements q1, . . . , qn ∈ Q,
each subset S of Q encodes a path from the root to a leaf in the natural way:
after i steps the path goes to the right child whenever qi ∈ S, and goes to the
left, otherwise. A radix trie is compressed in the sense that instead in a node at
depth n it stores a subset in the first node that determines uniquely the subset
in the stored collection (no other subset shares the same path as a prefix of the
encoding); c.f. [13].

The insert operation for radix tries is natural and can be performed in at
most n steps. The subset checking operation is performed by a depth-first-search
checking if the given set S ⊆ Q contains a subset stored in the visited leaf. An
essential advantage is that the search does not need to branch into the right
child of a node if the checked subset S does not contain the state corresponding
to the current level. The superset checking operation (for IBFS) is done in the
dual way. These issues are discussed in more detail in 2.3.



186 A. Kisielewicz, J. Kowalski, and M. Szykuła

Algorithm 1. The main part
Input A = 〈Q,Σ, δ〉 – a synchronizing automaton with n = |Q| states and k = |Σ|

input letters.
Input maxlen – maximum length of words to be checked.

� Initialize four radix tries to store and handle subsets of Q:
1: Tc ← EmptyTrie � BFS current trie
2: Tv ← EmptyTrie � BFS visited trie
3: Tic ← EmptyTrie � IBFS current trie
4: Tiv ← EmptyTrie � IBFS visited trie
5: Tc.insert(Q)
6: Tv.insert(Q)
7: for all q ∈ Q do
8: Tic.insert({q})
9: Tiv.insert({q})

10: end for
11: for l ← 1 to maxlen do
12: if estimated time of the BFS step is smaller than that of IBFS then
13: BFS_Step(Tc,Tv) � Modify BFS tries; minimize Tc using Tv

14: else
15: IBFS_Step(Tic,Tiv) � Modify IBFS tries; minimize Tic using Tiv

16: end if
17: for all S ∈ Tic do � The goal test loop
18: if Tc.contains_subset_of(S) then
19: return l � The length of the shortest reset word
20: end if
21: end for
22: end for
23: return ”No synchronizing word of length ≤ maxlen”

2.3 Description

The main part of the algorithm is given in Algorithm 1. To make it clearer we
restrict the task to finding the shortest length of a reset word only. Yet, the
algorithm can be easily modified to return also a reset word of such length (see
2.4).

We use, in principle, four radix tries Tc, Tv, Tic, Tiv to maintain the BFS cur-
rent, BFS visited, IBFS current, and IBFS visited lists, respectively. After ini-
tializing the tries we enter a loop consisting of at most maxlen steps (line 11). In
each step we perform a step of the BFS procedure or IBFS procedure depending
on comparison of estimated expected execution time of both steps, which we
discuss in 3.1.

With no regard if BFS or IBFS step was performed recently, in lines 17-
21 of Algorithm 1, the same goal test loop is performed. For each S in Tic, the
procedure Tc.contains_subset_of(S) is executed, which checks if Tc contains
a subset of S. If so, we claim that l is the shortest length of a rest word for A.
To prove this we need to analyze the content of the BFS and IBFS steps.



A Fast Algorithm Finding the Shortest Reset Words 187

In BFS step (Algorithm 2), for each set S′ in the current BFS trie and for each
input letter a we compute the image S = S′a and insert it to the list L. For each
set S ∈ L we check if a subset of S is already in the BFS visited trie. If so, we skip
it. If not, we insert S into the BFS visited trie and in the (newly formed; line 9)
BFS current trie Tc. Processing elements of L (line 10) in ascending cardinality
order is a heuristic aimed in getting more subsets skipped in the checking subset
procedure in line 11, and in consequence, to deal with smaller structures. It also
guarantees that Tc contains only minimal sets in terms of inclusion (the proof of
this fact and all other proofs will be given in the extended version of this paper).

After executing lines 10-15 of Algorithm 2 the trie Tv may contains some
redundant subsets (which are not minimal with respect to inclusion). Therefore
in lines 16-18 we have an additional procedure to reduce Tv completely.

The procedure Tv.reduce consists of two steps. First, we form a list of ele-
ments of Tv using a DFS-search from the left to the right (smaller subsets first).
This guarantees that if S precedes T on the list then S does not contain T . Hence
the only pairs of comparable elements on the list are those with S preceding T
and S ⊂ T . In the second step we insert the elements from the list into the empty
Tv depending on the result of subset checking performed before each insertion.
This guarantees that if a subset S of T is inserted then T will be skipped on
the later step. Hence the resulting trie Tv contains no comparable subsets, as
required.

Unfortunately, this procedure applied for such a large trie as Tv (which may
be of exponential size in terms of n) may be time-consuming. We found exper-
imentally that if the trie has not grown too large since the last reduction it is
more effective to process a larger trie rather than to perform reduction. In our
implementation we perform it after the first step and then only when Tv contains
at least k times more sets since it had after the last reduction (which is the worse
case for one step with branching factor k = |Σ|).

The IBFS step is dual and completely analogous. In line 10 ascending cardinal-
ity order is replaced by descending one, in line 5 we compute preimages instead
of images, and in line 11 subset checking is replaced by superset checking.

One can prove the following

Theorem 1. Given a synchronizing n-state automaton A = 〈Q,Σ, δ〉, Algo-
rithm 1 returns the shortest length of a reset word for A or reports that no such
a word of length ≤ maxlen exists.

2.4 Finding a Reset Word

In order to find a reset word of the found minimal length l, one needs to apply
the following slight modification to the algorithm described above. The main
point is that together with the sets stored in the current tries we need to store
also the words assigned to these sets. To this end, in line 5 of Algorithm 2
(and analogously in the IBFS procedure) we assign to S′ the word obtained by
concatenating the word assigned earlier to S with the letter a (at the end or
at the beginning, respectively). When the goal is reached, the two words are



188 A. Kisielewicz, J. Kowalski, and M. Szykuła

Algorithm 2. BFS step procedure
1: procedure BFS_Step(Tc,Tv)
2: L ← EmptyList � The list of all new images
3: for all S′ ∈ Tc do
4: for all a ∈ Σ do
5: S ← δ(S′, a) � Compute the image of S′ by the letter a
6: L.insert(S)
7: end for
8: end for
9: Tc ← EmptyTrie

10: for all S ∈ L in ascending cardinality order do
11: if not Tv.contains_subset_of(S) then
12: Tv.insert(S)
13: Tc.insert(S)
14: end if
15: end for
16: if Tv has grown large since the last reduction then
17: Tv.reduce

18: end if
19: end procedure

simply merged to form the required reset word. Of course, instead of complete
words, with each set we store only a letter and a pointer to the previous part
of the word. From these the word is reconstructed when we reach the goal. We
note that in this way the asymptotic time and space complexity of the algorithm
remain the same.

3 Heuristics and Optimizations

In addition to the main part of the algorithm described in the previous section
we use a number of heuristics and optimizations. They are justified both by
experiments and theoretical arguments. Altogether they can reduce computation
time by a factor of at least 25 relative to the implementation without these
optimizations. We describe briefly only the most important of them.

3.1 Estimation of Expected Step Time

To decide which step will be performed in line 12 of the Algorithm 1 we follow the
greedy strategy choosing this step whose execution time, together with the goal
test, seems to be smaller at the moment. We use a rough estimation of expected
execution time by calculating upper bounds for the expected number of visited
nodes in subset checking operations, under some simplifying assumptions. Since
all other operations in the steps in question are linear in terms of n and the sizes
of the current lists, subset checking are the most time consuming operations. The
base for the estimation is the following theoretical result we have established. (A



A Fast Algorithm Finding the Shortest Reset Words 189

set S ⊂ X is a random subset of X with Bernoulli distributions in [q, r] if each
element x of X is a member of S with probability px ∈ [q, r].)

Theorem 2. Let p, q, r ∈ (0, 1) be such that q ≤ r and q > pr. Let F be a family
of m random subsets of a given set X with Bernoulli distributions in [q, r], and
let S be a random subset of X with Bernoulli distributions in [0, p]. Then in the
trie constructed for the family F , the expected number of visited nodes by the
subset checking procedure for S is at most(

1 + p

p
+

1

q − pr

)
mlogw (1+p),

where w = 1+p
1+pr−q .

In our empirical observations this optimization reduces computation time by an
average of 70% relative to the implementation performing the BFS and IBFS
steps alternatingly. It usually leads to perform slightly more BFS steps, since
average sizes of subsets decrease much faster in BFS than increase in IBFS.
By a result of Higgins after applying two BFS steps the average size of subsets
not greater than 0.55n (see [9]). Our empirical observations show that the two
searches meet when the sizes of subsets are as small as 0.03n. This fact is also the
reason why in the goal test we decided to use subset checking of Tc rather than
superset checking of Tic (subset checking does not require branching in subtries
corresponding to elements not belonging to the queried set).

3.2 Adding the IDFS Phase

This is the most important optimization improving not only the performance,
but also modifying the general idea. Bidirectional BFS works if we have no
limit on memory resources. Since the number of sets stored in the tries grows
exponentially with the number of steps performed, for large automata, we can
easily run out of memory. To deal with this, we change the search strategy when
we reach the memory limit. Rather than to continue BFS searches we switch to
depth-first search, which has restricted memory requirements, and may use the
subsets and words computed so far. Moreover, assuming the Černý conjecture,
we may impose an initial limit on the depth of the search, which allows to make
the DFS search complete. After each recursive call, when a shorter reset word is
found, the limit on the depth of the search is suitably decreased. The search is
finished when no limit decreasing is possible and all paths of the limited DFS are
exhausted. The search returns either the shortest reset word or a counterexample
to the Černý conjecture. The IDFS phase is used also to reduce the computation
time of the algorithm (even if we are far from reaching the memory limit). This
will be discussed in subsection 3.5.

Our experiments show that it is more efficient to apply the inverse DFS,
that is, one starting from the sets in Tic and computing the preimages to find a
set containing a member of Tc (rather than the forward DFS starting from the
sets in Tc and computing images to find a set contained in a member of Tic).



190 A. Kisielewicz, J. Kowalski, and M. Szykuła

An important modification is that we perform search on partial lists of subsets
making use of all available memory rather then on single subsets. This gives an
additional boost.

3.3 Reduction of the Automaton

If the input automaton is not strongly connected, after some steps of BFS it can
be reduced to a smaller automaton without the states not involved in computa-
tion anymore. More precisely, we can remove the states which are not reachable
from any state in any subset in the current BFS list. So, at the beginning, before
the main loop of Algorithm 1 (line 11), we perform a few steps of BFS and when
the size of Tc is larger than sn, where s is an experimentally established constant,
we check if there are unreachable states in Q. This is done by the standard DFS
search on Q. If this is the case, we create a reduced automaton A′ removing
the unreachable states, and rebuild all the tries to make them compatible with
the reduced automaton. Then, the algorithm may continue using the parameters
computed so far.

Our experiments show that after the first reduction the automaton is usually
strongly connected (and no further reduction of this kind can be done). Yet,
this optimization is efficient since we have proved that the fraction of strongly
connected automata to all automata with n states tends to 0 as n goes to infinity,
and that the size of the minimal strongly connected component is on average less
than 1−1/ek (provided most automata are synchronizing). From our experiments
it follows that for synchronizing automata with k = 2 this size is ≈ 0.7987n.
Thus, for example, automata with n = 200 states are reduced on average by as
much as 40 states.

3.4 Reordering of the States

Efficiency of operations on radix tries depends on the order in which the input
automaton’s states are processed. We found that the subset checking is per-
formed faster if the states occurring more frequently in queried subsets are later
in the ordering. This is because radix tries tends to have logarithmic height (cf.
[6]), and the states at the end in the ordering are rarely or never checked. As a
result, the "effective size" of the queried sets is smaller. To establish frequencies
of occurrences of states, and a preferred initial order based on them, we use a
stationary distribution of a Markov chain based on the underlying digraph of
the automaton. The details will be given in the extended version of the paper.
This optimization is performed before the bidirectional search phase.

The situation changes completely during the IDFS phase, when the trie Tc

is fixed and does not change anymore. The frequencies of occurrences of the
subsets in Tc may by computed exactly. This leads to a different reordering.
Both reorderings have been confirmed as optimal by experiments. They show
that these optimization reduce computation time by an average of 27%.



A Fast Algorithm Finding the Shortest Reset Words 191

3.5 Using Heuristic Algorithms and IDFS Shortcut

In order to save a step of search computation we may use known heuristic algo-
rithms to find quickly a good bound for search depth. Therefore, at the beginning
of the algorithm, before starting the bidirectional search, we apply a few poly-
nomial time algorithms finding upper bounds for the length of the shortest reset
word. In our implementation we use Eppstein algorithm [7], FastSynchro algo-
rithm [12] and our procedure Cut-Off IBFS. The latter is the standard IBFS
search with cutting the branches of the search with smallest subsets. This may
spare one step in bidirectional search, if the heuristic algorithms find the shortest
word.

Yet, more importantly, combined with the IDFS phase, this makes possible
to reduce the computation time by several orders of magnitude. Knowing that
bidirectional search is close to end it is profitable to switch to IDFS phase: at the
end the IDFS works much faster, since we do not need to check visited sets and
do not need to reconstruct Tc anymore. We call this optimization the shortcut.
Between steps we use an estimate if it is faster to continue the bidirectional phase
or to switch to IDFS phase. Note that the IDFS has a lower constant factor, but
the branching factor is equal to k. So, it slows the search if started too early. For
estimation we use the formula in Theorem 2. Our experiments show that this
optimization reduces computation time by as much as 89%.

4 Complexity

The efficiency gain of the algorithm relies mainly on two properties of the ma-
jority of automata. First, the average size of subsets decreases fast during the
first BFS steps, but increases slow during IBFS steps (cf. subsection 3.1). Due to
this fact the maintained subsets are usually small. Second, the branching factors
of both BFS and IBFS are less than k, because of skipping redundant visited
sets. Both of the properties are hard to study in a theoretical way, we however
have observed them in series of experiments.

To provide a theoretical argument we analyze here the expected running time
of the algorithm under some artificial assumptions. We give an upper bound for
the bidirectional search only, which is a rough estimate of the expected time,
but shows a significant impact of the automata properties on performance. The
following assumptions are made:

1. The input is a synchronizing automaton with n states on k letters.
2. The overall branching factor is r in each step of both BFS and IBFS, 1 <

r < k. This corresponds to an effective branching factor, which in view of
our experiments is considerably less than k.

3. The sets in the tries Tc, Tv and Tic, Tiv have random Bernoulli distribution:
in each step, they contain any given state with probability 0 < pc < 1 (for
BFS steps) and 0 < pic < 1 (for IBFS steps). We assume also that pic ≤ pc.

4. The steps of BFS and IBFS are performed alternatingly, starting from BFS.
5. No reductions of the visited tries are made and no IDFS phase is performed.



192 A. Kisielewicz, J. Kowalski, and M. Szykuła

While the assumptions 2-3 are purely theoretical, they may be treated as an
idealization of a typical situation. Using these assumption, denoting by l the
length of the shortest reset word of the automaton, we can prove that there
exists an integer 0 < d < 1, depending on probabilities pc, pic, such that the
following holds.

Theorem 3. Under the assumptions (1-5) above, and with l denoting the length
of the shortest reset word of the automaton, the expected time complexity of the
algorithm is O(kn2rl(1+d)/2)), and the space complexity is O(n(k + n) + nrl/2).

We can observe that the expected time is exponential with regard to the length
l, but the exponent is less than l, since (1 + d)/2 < 1. It is an improvement
over the standard BFS algorithm, which has time bound O(knRl) (assuming
we can check visited sets in constant time). Moreover the standard algorithm
usually has a larger branching factor R > r, since strict supersets of visited sets
are not skipped. The expected space complexity also yields an improvement in
comparison to the O(nRl) space bound for the standard BFS.

While, generally, our algorithm is exponential in the length l of the shortest
reset word, surprisingly, it works fast in polynomial time for the known series of
slowly synchronizing automata, that is those with l close to the Černý bound.
These are automata Cn (the Černý automaton), Wn,D ′

n,D ′′
n , and Bn introduced

in [1].

Theorem 4. For the class of the Černý automata Cn, and the classes a
Wn,D ′

n,D ′′
n , and Bn introduced in [1] the algorithm works in O(n4) time and

O(n3) space.

The proof is based on the exact description of the heuristic mentioned in 3.1,
which shows that for each of the mentioned slowly synchronizing automata the
algorithm performs mainly IBFS steps (rather than BFS), and the IBFS lists
keep containing only one or two sets (due to reductions of visited subsets).

5 Experiments

We performed a series of the following experiments for various n ≤ 320. For a
given n, we generate a random automaton A with n states and 2 input letters,
check whether A is synchronizing and if so, we find the minimal length of a reset
word using the algorithm described in Section 2. On the basis of the obtained
results we estimate the expected length of the shortest reset word.

5.1 Computations

In the experiments we have used the standard model of random automata, where
for each state and each letter all the possible transitions are equiprobable. A ran-
dom automaton with n states and 2 input letters can be then represented as
a sequence of 2n uniformly random natural numbers from [0, n− 1]. To gener-
ate high quality random sequences we have used the WELL number generator



A Fast Algorithm Finding the Shortest Reset Words 193

[15] (variants 1024 and 19937) seeded by random bytes from /dev/random de-
vice. For comparison, recall that Skvortsov and Tipikin, in their experimental
study [19], have generated and checked the following numbers of random au-
tomata: 2000 automata for each n ∈ {1, 2, . . . , 20, 25, 30, . . . , 50}, 500 automata
for each n ∈ {55, 60, 65, 70}, and 200 automata for each n ∈ {75, 80, . . . , 100}.
In our experiment, up to 7 states, we have computed exact results checking all
automata. For each 8 ≤ n ≤ 100 we checked one million automata, and for
each 101 ≤ n ≤ 260 and n = 265, 270, . . . , 320 we checked 10000 automata.
Our computations have been performed mostly on 16 computers with Intel(R)
Core(TM) i7-2600 CPU 3.40GHz 4 cores and 16GB of RAM. The algorithm was
implemented in C++ and compiled with g++. Distributed computations were
managed by a dedicated server and clients applications written in Python.

The average computation time is about 100 or 1000 times faster than the
time of Trahtman’s program TESTAS [21,22] for automata with 50 states. The
reduction to SAT used in [19] seemed to be the fastest recently known algorithm
and the reported average time for 50 states automata is 2.7 seconds, and for
100 states automata is 70 seconds. Our comparable results are less than 0.006
and 0.07 seconds, respectively (we have used faster machines, but only about
twice as fast). The Table 1 presents a rough comparison. The average times are
relatively small because of rare occurrences of slowly synchronizing automata.
We present also the maximum computation time.

Table 1. Comparison of average and maximum computation time for random automata

n 50 100 150 200 250 300
TESTAS ([21]) 1.4 s time-out – – – –
SAT reduction ([19]) 2.7 s 70 s – – – –
Our average time 0.005 s 0.06 s 0.469 s 2.88 s 31.637 s 596.249 s
Our maximum time 0.26 s 3.79 s 10.12 s 159.670 s 5 h 19 min 7 h 55 min

5.2 Results

Our experiment confirms that for the standard random automata model A(n)
on the binary alphabet the probability that the automaton is synchronizing
seems to tend to 1 as the number n of states grows. This conjecture is posed in
[19], but we have heard it earlier from Peter Cameron during BCC conference
in Exeter 2011. For n = 100, 2250 of one million automata turned out to be
non-synchronizing (0.225%), and for n = 300, only five of 10000 automata. The
graphical representations of our experiments in this respect forms a smooth curve
very fast converging to 1. We observe also that random automata mostly are not
strongly connected.

The main result of our experiments is the estimation of the expected length
of the shortest reset word. We deal with the infinite sequence of random vari-
ables �(n) defined as the length of the shortest reset word for a random syn-
chronizing automaton with n states. We have observed that the approximation
E[�(n)] ≈ 1.95n0.55 proposed in [19] is inflated. Based on currently available



194 A. Kisielewicz, J. Kowalski, and M. Szykuła

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  20  40  60  80  100  120  140  160  180  200  220  240  260  280  300  320

Le
ng

th
 o

f t
he

 s
ho

rt
es

t r
es

et
 w

or
d

Numer of states: n

Experimental mean length

Proposed estimation: 2.5 sqrt(n-5)

Skvortsov, Tipikin estimation: 1.95 n0.55

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  20  40  60  80  100  120  140  160  180  200  220  240  260  280  300  320

Le
ng

th
 o

f t
he

 s
ho

rt
es

t r
es

et
 w

or
d

Numer of states: n

Experimental mean length

Proposed estimation: 2.5 sqrt(n-5)

Skvortsov, Tipikin estimation: 1.95 n0.55

Fig. 1. Experimental mean length of the shortest reset words compared with
estimations

data, we propose a new more precise experimental approximation for the ex-
pected length E[�(n)] ≈ 2.5

√
n− 5. A comparison of the estimations with the

experimentally obtained mean length is given in Figure 1. We observe also that
our result suggest that the expected length may belong to Θ(

√
n).

In contrast with the experiments by Skvortsov and Tipikin [19], our experi-
ments allow also to obtain a good estimation of the approximation error. Making
use of the well-known Hoeffding’s inequality, we obtain the following:

Theorem 5. Let ML(n) denotes the mean length of the shortest reset word of
the automata in the sample of m randomly generated synchronizing n-state au-
tomata. If the ratio of the automata with the length of the shortest reset word
larger than Mn to all automata in the sample does not exceed r, then with prob-
ability at least 1− p

|ML(n)− E[�(n)]| ≤Mn(1− r)

√
log(2/p)

2m
+

n3

6
r.

Assuming the Černý conjecture in the last term n3/6 may be replaced by (n−1)2
(giving essentially better estimation). Let us take n = 100, m = 106 and p =
0.0001. Since, with probability q = (1− r)m the ratio of the automata with the
shortest reset word longer than Mn is less than r, one may see that for 1/r ≥
100975, q < 0.0001. Hence, with high probability 1/r > 100975, and taking



A Fast Algorithm Finding the Shortest Reset Words 195

into account the experimental value M100 = 41, the error is less than 1.75 (or
0.19 assuming the Černý conjecture). This means that with high probability the
expected length of the shortest reset word for synchronizing automata with n =
100 states is close to our experimental result ML(100) = 24.34. Comparing this
with the results of Skvortsov and Tipikin [19], we note that, for automata with
100 states, they also have obtained the expected length close to 24, but the small
size of their sample m = 200 does not allow any reasonable estimation of the
error. Other interesting claims of [19] concerning the variance and approximation
of �(n) will be discussed in the extended version of the paper.

References

1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and di-
graphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65.
Springer, Heidelberg (2010)

2. Ananichev, D., Volkov, M.: Synchronizing monotonic automata. In: Ésik, Z., Fülöp,
Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 111–121. Springer, Heidelberg (2003)

3. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule
provides a computing machine with both data and fuel. Proceedings of the National
Academy of Sciences 100(5), 2191–2196 (2003)

4. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)
(in Slovak)

5. Chmiel, K., Roman, A.: COMPAS - A computing package for synchronization.
In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 79–86.
Springer, Heidelberg (2011)

6. Devroye, L.: A note on the average depth of tries. Computing 28, 367–371 (1982)
7. Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on Com-

puting 19, 500–510 (1990)
8. Gerbush, M., Heeringa, B.: Approximating minimum reset sequences. In:

Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 154–162.
Springer, Heidelberg (2011)

9. Higgins, P.: The range order of a product of i-transformations from a finite full
transformation semigroup. Semigroup Forum 37, 31–36 (1988)

10. Jürgensen, H.: Synchronization. Information and Computation 206(9-10),
1033–1044 (2008)

11. Kari, J.: Synchronization and stability of finite automata. Journal of Universal
Computer Science 8(2), 270–277 (2002)

12. Kudłacik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert
Systems with Applications 39(14), 11746–11757 (2012)

13. Morrison, D.R.: PATRICIA – practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM 15, 514–534 (1968)

14. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite au-
tomata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
568–579. Springer, Heidelberg (2010)

15. Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators
based on linear recurrences modulo 2. ACM Transactions on Mathematical Soft-
ware 32(1), 1–16 (2006)



196 A. Kisielewicz, J. Kowalski, and M. Szykuła

16. Roman, A.: New algorithms for finding short reset sequences in synchronizing au-
tomata. In: International Enformatika Conference (Prague), pp. 13–17 (2005)

17. Roman, A.: Genetic algorithm for synchronization. In: Dediu, A.H., Ionescu, A.M.,
Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 684–695. Springer,
Heidelberg (2009)

18. Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

19. Skvortsov, E., Tipikin, E.: Experimental study of the shortest reset word of random
automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D.
(eds.) CIAA 2011. LNCS, vol. 6807, pp. 290–298. Springer, Heidelberg (2011)

20. Skvortsov, E., Zaks, Y.: Synchronizing random automata. Discrete Mathematics
and Theoretical Computer Science 12(4), 95–108 (2010)

21. Trahtman, A.N.: A package TESTAS for checking some kinds of testability.
In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp.
228–232. Springer, Heidelberg (2003)

22. Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples con-
cerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006.
LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)

23. Trahtman, A.N.: Modifying the upper bound on the length of minimal synchroniz-
ing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

24. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)



The Discrete Voronoi Game in a Simple

Polygon�

Aritra Banik1, Sandip Das1, Anil Maheshwari2, and Michiel Smid2

1Indian Statistical Institute, Kolkata 700108, India
{aritra.banik,sandip.das.69}@gmail.com

2School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada
{anil,michiel}@scs.carleton.ca

Abstract. Let P be a simple polygon with m vertices and let U be a
set of n points in P . We consider the points of U to be “users”. We
consider a game with two players P1 and P2. In this game, P1 places a
point facility inside P , after which P2 places another point facility inside
P . We say that a user u ∈ U is served by its nearest facility, where
distances are measured by the geodesic distance in P . The objective of
each player is to maximize the number of users they serve. We show that
for any given placement of a facility by P1, an optimal placement for P2

can be computed in O(m + n(log n + logm)) time. We also provide a
polynomial-time algorithm for computing an optimal placement for P1.

1 Introduction

In a facility location problem, we are interested in finding a placement of a set of
facilities so that, for a given set of users, certain optimality criteria are met. In a
typical geometric facility location problem, the facilities and users are modeled as
points. Each user is served by its nearest facility, with respect to an appropriate
distance measure (e.g., Euclidean distance). Consequently, each facility has its
service zone, consisting of the set of users that are served by it. The aim is to
place the facilities so that certain optimality criteria are satisfied.

The Voronoi game is a competitive facility location problem introduced by
Ahn et al.[1]. Given a user space, two players, P1 and P2, sequentially place
a set of point facilities. These facilities partition the user space into a set of
regions, such that all users within a region are served by a particular facility. The
objective of each player is to maximize the total service zone of all its facilities.
This problem is generally intractable. Teramoto, Demaine, and Uehara [9] have
shown that even if the underling user space is a graph, finding a winning strategy
of P2 (even for a very restricted case) is NP hard. Similar results can also be
found in a seminal paper of Hakimi [7].

The discrete version of the Voronoi game is studied by Banik, Battacharya
and Das [3]. Their user space is a line containing a set U of n point users. Each of
the players P1 and P2 can place k = O(1) point facilities. First, P1 chooses a set

� Research supported by NSERC and DFAIT Commonwealth Scholarship.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 197–207, 2013.
© Springer-Verlag Berlin Heidelberg 2013



198 A. Banik et al.

F1 of k facilities, after which P2 chooses a set F2 of k facilities, disjoint from F1.
The payoff of P2 is defined to be the cardinality of the set of points in U which
are closer to some facility owned by P2 than to every facility owned by P1. The
payoff of P1 is the number of users in U minus the payoff of P2. The objective
of both players is to maximize their respective payoffs. Banik et al. show that, if
the sorted order of points in U along the line is given, an optimal strategy of P2

for any given placement of facilities of P1 can be computed in linear time. They
also provide results for determining an optimal strategy for P1.

Given a set of existing facilities, the problem of placing a set of new facilities, to
maximize the number of users served by the new ones, has been actively studed.
Cabello et al. [5] study the case when only one new facility by P2 is introduced.
This problem is referred to as the MaxCov problem. They have shown that
the optimal placement for the new facility can be found in O(n2) time. The
2-MaxCov problem, which considers the problem of placing two new facilities,
has been studied by Bhattacharya and Nandy [4]. Recently Bandyapadhyay et
al.[2] studied the one round discrete Voronoi game for graphs. Discrete Voronoi
game for paths have been studied in the paper [8].

In this paper, we consider the Voronoi game, where the underlying user space
is a simple polygon P with distance measure defined to be the geodesic (i.e.,
shortest-path) distance in P . The game consists of a set U of n point-users inside
P , and two players P1 and P2. Initially, P1 places a set F1 of k point-facilities,
after which P2 places a set F2 of k point-facilities, where F1 ∩F2 = ∅. Each user
u ∈ U is served by the nearest facility according to the nearest neighbor rule
(i.e., by the facility which is at the least geodesic distance from u).

Definition 1. (Service zone) For each facility f ∈ F1∪F2, we define its service
zone UF1∪F2({f}) to be the set of users in U that are closer to f than to any
other facility of F1 ∪ F2.

Given a set S ⊆ F1 ∪ F2, we define the service zone of S to be the set
of users which are assigned to one of the facilities in S, i.e., UF1∪F2(S) =
∪f∈SUF1∪F2({f}).

Ties will be broken in favor of the facility placed later. With this definition, the
problem considered in this paper can be formally described as follows.

Definition 2. One Round Discrete Voronoi Game for a Simple Polygon P : Given
a set U of n point-users and two players P1 and P2, having k facilities each, P1

chooses a set F1 of k point-facilities in P , after which P2 chooses a set F2 of k
point-facilities in P , where F1 ∩ F2 = ∅.

(a) Given any choice of F1 by P1, the objective of P2 is to choose a set S = F2

that maximizes |UF1∪S(S)| over all sets S, with |S| = k and F1 ∩ S = ∅.
(b) The objective of P1 is to place a set F1 of k facilities such that the maximum

possible payoff of P2 is minimized. In other words, the objective of P1 is to
choose a set F = F1 of size k that minimizes maxS |UF∪S(S)|, where the
maximum is taken over all sets S, with |S| = k and F ∩ S = ∅.



The Discrete Voronoi Game in a Simple Polygon 199

In this paper, we consider the case when k = 1. Thus, P1 will place a single
facility inside P , after which P2 places another facility inside P . In the next
section, we characterize an optimal placement for P2 and show that, given any
placement of a facility by P1, an optimal strategy for P2 can be computed in
O(m+n(logn+logm)) time, where m is the number of vertices of P . In Section
3, we will provide an algorithm that computes an optimal strategy for P1.

2 Computing an Optimal Placement for P2

Let f (= first) and s (= second) be the facilities in P that are placed by players
P1 and P2, respectively.

Given any placement of the facility f by P1, we will provide an algorithm that
computes a point s that maximizes |U{f,s}({s})| over all points s ∈ P , where
s �= f .

Consider the set U = {u1, u2, . . . , un} of users. For each user ui, let di denote
the geodesic distance between ui and f , and let Γi denote the set of points in
the polygon P whose geodesic distance to ui is at most di (see Figure 1).

Observation 1. A user ui ∈ U is served by a facility s placed by P2 if and only
if s belongs to Γi.

Hence, if we consider the arrangement inside P defined by f and the set of
regions Γ = {Γ1, Γ2, . . . Γn}, then an optimal placement for P2 belongs to a cell
in this arrangement having maximum depth where depth of a cell is the number
of regions in Γ pierced by any point in that cell.

For any two points p1 and p2 in P , denote the geodesic path between p1 and
p2 by λ(p1, p2). The length of a geodesic path λ is denoted by |λ|. The anchor
of f with respect to ui is defined to be the last vertex on the path λ(ui, f) from
ui to f ; we denote this anchor by ai(f). If f is visible from ui then we define
ai(f) = ui. Let Ci denote the circle centered at ai(f) and passing through f .
For any two points p1, p2 ∈ P , denote the line segment joining them by [p1, p2].

For any anchor vertex ai(f), let li denote the line tangent to the circle Ci

and passing through the point f (see Figure 2(a)). Consider the line segment
[c, d] ⊂ liof maximum length that is completely contained in P and that contains
f . Observe that [c, d] divides the polygon into two parts. Denote the part which
contains ui by Pi.

Lemma 1. For any user ui, Γi ⊆ Pi.

Proof. If ai(f) = ui, then there is nothing to prove. In the rest of the proof,
we assume that ai(f) �= ui. It is sufficient to prove that for any point q ∈ [c, d],
|λ(ui, q)| > |λ(ui, f)|. Observe that [ai(f), f ] divides Pi in two parts. Without
loss of generality, assume that d and ui belong to the same sub-polygon and that c
belongs to the other sub-polygon. For all points q ∈ [c, f ], the shortest path from
ui to q is through ai(f). Hence, for all points q ∈ [c, f ], |λ(ui, q)| > |λ(ui, f)|.



200 A. Banik et al.

ui

f
Γi

ai(f )

Fig. 1. Span of the user ui

Assume there exists a point r in [f, d], such that |λ(ui, r)| < |λ(ui, f)|. Let
r ∈ [f, d] be such a point that is closest to f .

Claim: The set of vertices in λ(ui, r) is a subset of the set of vertices in λ(ui, f).
Proof of Claim. Let the vertices on the path λ(ui, f) be

λ(ui, f) = (v1, v2, . . . , vj , v
f
j+1, . . . , v

f
τ , f)

and let the vertices on the path λ(ui, r) be

λ(ui, r) = (v1, v2, . . . , vj , v
r
j+1, . . . , v

r
ω, r),

see Figure 2(a). Observe that the line joining vj and vfj+1 either intersects the
line segment [f, r] or intersects some edge in λ(vj , r). If this line intersects [f, r]
then that contradicts the fact that r is the closest point from f in [f, d] for

which |λ(ui, r)| < |λ(ui, f)|. Hence, the line joining vj and vfj+1 intersects an
edge of λ(vj , r) (see Figure 2(a)) at a point α. From the convexity properties

of geodesic paths and the triangle inequality, |λ(vj , vfj+1, α)| < |λ(vj , vrj+1, α)|.
This contradicts the fact that the shortest path between vj and r is via vrj+1.
Hence the claim holds.

We continue with the proof of Lemma 1. Let j be the index such that r is the
intersection of li and the line joining the two consecutive vertices vj and vj+1 of
λ(ui, f) (see Figure 2(b)). Denote the intersection between li and the line joining
vj+1 and vj+2 by r∗. Observe that |λ(ui, r

∗)| < |λ(ui, r)|. This contradicts the
fact that r is the closest point from f in [f, d] for which |λ(ui, r)| < |λ(ui, f)|.
Hence r must be the intersection of li and the line joining ai(f) and bi, where bi is
the vertex previous to ai(f) on the path λ(ui, f). But |λ(ai(f), f)| < |λ(ai(f), r)|.
Therefore, |λ(ui, f)| < |λ(ui, r)|. Hence, we arrive at a contradiction. �
For any anchor vertex ai(f), let Zi denote the set of points in P which are at
distance at most |ai(f)f | from ai(f).



The Discrete Voronoi Game in a Simple Polygon 201

ui

ai(f )

f

vj

lic d

v
f
j+1 vrj+1

α

Pi

r

Ci

(a)

ui

f

vj

r li

Ci

c d

vj+1

r∗

ai(f )

(b)

Fig. 2. Illustration of the proof of Lemma 1

Observation 2. For any two users ui and uj, we have (Γi ∩ Γj) \ {f} = ∅ if
and only if (Zi ∩ Zj) \ {f} = ∅.

Proof. Observe that Zi ⊆ Γi and Zj ⊆ Γj . Therefore, if (Zi∩Zj)\{f} �= ∅, then
(Γi ∩ Γj) \ {f} �= ∅.

Assume that (Zi ∩ Zj) \ {f} = ∅. Observe that both Zi and Zj contain the
point f . Hence, both the circles Ci and Cj share the same tangent lij passing
through f . Now lij divides P into two disjoint subpolygons Pi and Pj . Observe
that Pi ⊂ Γi and Pj ⊂ Γj . Therefore, (Γi ∩ Γj) \ {f} = ∅. �
Observation 3. For any placement of a facility f by P1, an optimal placement
of a facility by P2 is the point s̊ �= f in P that pierces the maximum number of
regions among {Z1, Z2, . . . Zn}.

Proof. Observe that it is enough to prove that for any subset of users U ′ ⊂ U ,
(∩ui∈U ′Γi) \ {f} �= ∅ if and only if (∩ui∈U ′Zi) \ {f} �= ∅. Now suppose U ′

be any subset of users for which (∩ui∈U ′Γi) \ {f} �= ∅. Hence for each pair
of users ui, uj ∈ U ′, (Γi ∩ Γj) \ {f} �= ∅. Therefore from Observation 2 for all
ui, uj ∈ U ′, (Zi∩Zj)\{f} �= ∅. Now all Zi are subset of the disk passing through
f . Hence (∩ui∈U ′Zi) \ {f} �= ∅. On the other hand if for any subset of users U ′,
(∩ui∈U ′Zi) \ {f} �= ∅ then (∩ui∈U ′Γi) \ {f} �= ∅ because Zi ⊂ Γi. Hence the
result holds. �
The arrangement of the regions Z1, Z2, . . . Zn divides P into cells. All points
within the same cell pierce the same set of regions. Define the depth of a cell
to be the number of regions pierced by any point in that cell. The cell with
maximum depth contains f , because all regions Z1, Z2, . . . Zn contain f .

Consider a circle Cε with radius ε > 0 that is centered at f ; this circle pierces
all cells containing f (see Figure 3(a)). Observe that Cε ∩ P can be a set of



202 A. Banik et al.

f Cε

μ1

μ2
μ3

(a)

f
Cε

Z1(f )

Z2(f )

Z3(f )

Z4(f )

s̊

�ε

u2
u3

u1 u4

λ∗

(b)

Fig. 3. Arrangement of the regions {Z1, Z2, . . . Zn}

disjoint subsets of Cε. If f is in the interior of P , then we can choose ε such that
Cε is completely contained in the interior of P . If f belongs to the boundary of
P , then we can choose ε such that Cε ∩P is a single connected subset of Cε (see
Figure 3(a) where Cε ∩ P consists of three disjoint sets μ1, μ2, and μ3).

Consider any optimal placement s for P2. Let γ be the cell that contains s.
From the previous discussion, any point in γ acts as an optimal placement for
P2. Hence, the intersection point between the boundary of γ and Cε is also an
optimal placement. Thus, one of the optimal placements for P2 belongs to the
set αε = {Ci ∩ Cε : 1 ≤ i ≤ n}.

Consider any optimal placement of facility s̊ ∈ αε for P2. Let s̊ be the inter-
section point between Ci and Cε. Consider the perpendicular bisector � of f and
s̊. Let �ε ⊆ � be the maximal line segment in P that contains the midpoint of
the line segment joining f and s̊ (see Figure 3(b)).

Observation 4. The line segment �ε passes through ai(f).

Proof. Observe that [̊s, f ] is a chord of the circle Ci. The perpendicular bisector
of any chord always passes through the center of the circle. Hence, the result
holds. �

Note that �ε divides P into two sub-polygons, one containing f and the other
containing s̊. If P2 places its facility at s̊, P2 will serve the set of users ui such
that ai(f) belongs to the sub-polygon containing s̊. As ε tends to 0, �ε tends to
the line joining f and ai(f). Hence, for all ai(f), if we consider the chord passing
through f and ai(f), then we can find an optimal placement for P2. Note that
all anchor vertices are visible from f . Thus, using an angular sorting, we can
find an optimal placement for P2. We obtain the following result.

Theorem 1. Let P be a polygon with m vertices and let U be a set of n point-
users in P . Given the placement of a point f ∈ P by P1, a point s ∈ P maxi-
mizing P2’s payoff can be computed in O(m+ n(logm+ log n)) time.

Proof. Let f be any placement of a facility by P1. Consider the visibility region
Vf of f in P , i.e., the set of points which are visible from f . Observe that



The Discrete Voronoi Game in a Simple Polygon 203

P \ Vf consists of a set of possibly disjoint sub-polygons of P . For each such
sub-polygon Pi, for all points q ∈ Pi, the anchor vertex on the path λ(q, f) will
be the same. Given f , we can construct a data structure in O(m) time that
can report the anchor vertex on the path λ(q, f), for any query point q ∈ P , in
O(logm) time [6]. Using this data structure, in O(n logm) time, we can find the
set of all anchor vertices on the paths from users in U to f . Once we have the list
of anchor vertices, using angular sorting, we can compute the half plane passing
through f which contains the maximum number of anchor vertices. Hence the
result follows. �

3 Computing an Optimal Placement for P1

As before, let P be a simple polygon with m vertices and let U = {u1, u2 . . . un}
be a set of n point-users in P . We will present an algorithm that computes an
optimal placement of a facility for P1.

For any placement of f by P1, let ν(f) = maxs |Uf∪s({s})|, where the maxi-
mum is taken over all points s in P with s �= f . Our objective is to find a point
f̊ ∈ P which minimizes ν; we call such a point an optimal placement for P1.
Observe that there are two cases:

Case 1: f̊ belongs to the boundary of P .
Case 2: f̊ is in the interior of P .

In Section 3.1, we will give an algorithm that computes an optimal placement
on the boundary of P for P1. Formally, we will show how to compute a point fb
on the boundary of P such that ν(fb) = minf ν(f), where the minimum is taken
over all points f on the boundary of P . In Section 3.2, we will give an algorithm
that computes an optimal placement in the interior of P for P1.

3.1 The Boundary Case

Let us begin our discussion with the following two simple observations (see Figure
4).

Observation 5. For any placement f by P1, where f is on any convex vertex
of P , there exists a placement s for P2 such that ν(f) = n.

Observation 6. Let (vi, vi+1) be an edge of P such that at least one of vi and
vi+1 is a convex vertex. For any placement f by P1 on the edge (vi, vi+1), there
exists a placement s for P2 such that ν(f) = n.

Hence, an optimal placement for P1 must be either at a reflex vertex or on an
edge (vi, vi+1) for which both vi and vi+1 are reflex vertices.

Observation 7. Let (vi, vi+1) be an edge of P such that both vi and vi+1 are
reflex vertices. For any placement f by P1 on the edge (vi, vi+1), ν(f) ≥ ν(vi)
and ν(f) ≥ ν(vi+1).



204 A. Banik et al.

f

s

(a)

f

s

(b)

Fig. 4. (a) Placements for which P1 gets no users

vi f vi+1

s(vi)
s

Fig. 5. Illustration of the proof of Observation 7

Proof. Let p and q be arbitrary placements by P1 and P2, respectively. The
perpendicular bisector of p and q divides P into two sub-polygons. Denote the
sub-polygon that contains p by P+(p, q), and the other sub-polygon by P−(p, q).

Let f be any placement by P1 on the edge (vi, vi+1) (see Figure 5). Let s(vi) be
an optimal placement for P2, when P1 places its facility at vi. Hence, ν(vi) is the
number of users in P−(vi, s(vi)). When P1 places its facility at f , there always
exists a placement s by P2, such that s serves the set of users in P−(vi, s(vi))
(see Figure 5). Therefore, ν(f) ≥ ν(vi) and the claim holds. �

Thus, if there is optimal placement on the boundary of P for P1, that must be at
a reflex vertex of P . By checking all reflex vertices, we can compute an optimal
placement for P1 on the boundary of P in O(m2 +mn(logm+ logn)) time.

3.2 The Interior Case

In this section, we present an algorithm that computes an optimal placement
for P1 in the interior of the polygon P . Let R denote the set of reflex vertices
of P . Consider the set L of all maximal line segments which are fully contained
in P and contain at least two points from R ∪ U (see Figure 6(a)). The set L
tessellates P into a collection of cells. Denote the tessellation by Π(P ).

Recall the notion of an anchor vertex defined in Section 2.

Lemma 2. For any cell C in Π(P ), for any two points f1 and f2 in C, and for
any user ui, we have ai(f1) = ai(f2).



The Discrete Voronoi Game in a Simple Polygon 205

u1

u3

r1

r2

r3
u2

(a)

vj

f1

f2

vk

ui

(b)

Fig. 6. (a) Tessellation of P (b) Illustration of the proof of Lemma 2

Proof. Assume there exists a user ui whose anchor vertex ai(f1) on the geodesic
path from ui to f1 is different from the anchor vertex ai(f2) on the geodesic
path from ui to f2.

Let vj be the last vertex that is common to the paths λ(ui, f1) and λ(ui, f2).
Observe that one of ai(f1) and ai(f2) is not equal to vj , because otherwise,
we would have ai(f1) = ai(f2) = vj . Assume, without loss of generality, that
ai(f2) �= vj (see Figure 6(b)).

Let vk be the vertex next to vj on the shortest path from vj to f2. Observe
that f1 and f2 are on different sides of the line joining vj and vk. Hence, f1 and
f2 belong to two different cells of the tessellation Π(P ). �

Let C be any cell in Π(P ). For any user ui, all points f in C have the same
anchor vertex; denote this anchor vertex by aCi . Assign a weight wC

i which is
the number of shortest paths from any user uj to any point f ∈ C, in which aCi
is the anchor vertex.

Recall that a chord of P is a closed line segment whose interior is contained
in the interior of P and whose endpoints are on the boundary of P . Let f be any
placement by P1. Any chord passing through f divides P into two sub-polygons,
which we call half polygons with respect to f . From Section 2, we know that
for any placement f by P1, the maximum number of users that P2 can serve,
by placing one facility, is equal to maxPf

∑
aC
i ∈Pf

|wC
i |, where Pf is any half

polygon with respect to f , i.e., the maximum number of anchor vertices in any
half polygon with respect to f .

For any point f in any cell C, we define the weighted half-space depth of f to
be maxPf

∑
wC

j such that aj ∈ Pf . Observe that an optimal placement for P1

in the cell C corresponds to a point with minimum weighted half-space depth.

Lemma 3. One of the optimal placements for P1 belongs to the set of vertices
of the tessellation Π(P ).



206 A. Banik et al.

v
f

aj

cfcv
c

Fig. 7. Illustration of the proof of Lemma 3

Proof. Assume that none of the optimal placements for P1 belongs to the set of
vertices of Π(P ). Let f be any optimal placement for P1. Suppose f belongs to
the cell C ∈ Π(P ). Let v any vertex of this cell. Let δ be the payoff of P1, when
P1 places a facility at v, and assume that δ is less then the optimal payoff of P1.
Then there exists a half-polygon Pv bounded by a chord cv, which contains n−δ
users. With out loss of generality, we may assume that cv is passing through some
anchor vertex aj . Since aj is visible from v, aj is also visible from f . Consider
the chord cf passing through f and aj (see Figure 7). Consider the half polygon
Pf bounded by cf . Observe that Pv \Pf = ∅, because otherwise, v and f belong
to different cells of Π(P ). It follows that the claim holds. �

Since the cardinality of R ∪ U is at most n + m, the number of cells and the
number of vertices in the tessellation Π(P ) is O((n+m)4). For each vertex, we
can check the optimal payoff of P1 in O(m + n(logn+ logm)) time. Hence, we
have proved the following result.

Theorem 2. Let P be a polygon with m vertices and let U be a set of n point-
users in P . An optimal placement of a facility for P1 can be computed in poly-
nomial time.

4 Conclusion

We have considered the Discrete Voronoi Game for a Simple Polygon P . The
game consists of two players P1 and P2, and a finite set of users in a simple
polygon P . Initially, P1 places one facility in P , after which P2 places another
facility in P . Each user is then assigned to one of the facilities according to the
nearest neighbor rule, where distances are measured using the geodesic distance
in P . We have shown that an optimal strategy for P2, given any placement of



The Discrete Voronoi Game in a Simple Polygon 207

P1, can be found in O(m + n(logm+ logn)) time, and an optimal strategy for
P1 can be found in polynomial time.

There are many open problems in this area. Obtaining an algorithm to find
an optimal placement for P1 and P2, where each of them places k > 1 facilities
is a problem that remains to be solved. Another variant of the game where the
two players place k > 1 facilities alternately is also an interesting problem to
study.

References

1. Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M.J., van Oostrum, R.: Competitive
facility location: the Voronoi game. Theor. Comput. Sci. 310(1-3), 457–467 (2004)

2. Bandyapadhyay, S., Banik, A., Das, S., Sarkar, H.: Voronoi game on graphs. In:
Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 77–88.
Springer, Heidelberg (2013)

3. Banik, A., Bhattacharya, B.B., Das, S.: Optimal strategies for the one-round discrete
Voronoi game on a line. Journal of Combinatorial Optimization, 1–15 (2012)

4. Bhattacharya, B.B., Nandy, S.C.: New variations of the maximum coverage facility
location problem. European Journal of Operational Research 224(3), 477–485 (2013)

5. Cabello, S., Dı́az-Báñez, J.M., Langerman, S., Seara, C., Ventura, I.: Facility lo-
cation problems in the plane based on reverse nearest neighbor queries. European
Journal of Operational Research 202(1), 99–106 (2010)

6. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J.
Comput. Syst. Sci. 39(2), 126–152 (1989)

7. Hakimi, S.L.: On locating new facilities in a competitive environment. European
Journal of Operational Research 12(1), 29–35 (1983)

8. Kiyomi, M., Saitoh, T., Uehara, R.: Voronoi game on a path. IEICE Transactions
94-D(6), 1185–1189 (2011)

9. Teramoto, S., Demaine, E.D., Uehara, R.: The Voronoi game on graphs and its
complexity. J. Graph Algorithms Appl. 15(4), 485–501 (2011)



Facets for Art Gallery Problems

Sándor P. Fekete, Stephan Friedrichs,
Alexander Kröller, and Christiane Schmidt

TU Braunschweig, IBR, Algorithms Group
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany

{s.fekete,stephan.friedrichs,a.kroeller,c.schmidt}@tu-bs.de

Abstract. We demonstrate how polyhedral methods of mathematical
programming can be developed for and applied to computing optimal
solutions for large instances of a classical geometric optimization problem
with an uncountable number of constraints and variables.

The Art Gallery Problem (AGP) asks for placing a minimum
number of stationary guards in a polygonal region P , such that all points
in P are guarded. The AGP is NP-hard, even to approximate. Due to
the infinite number of points to be guarded as well as possible guard
positions, applying mathematical programming methods for computing
provably optimal solutions is far from straightforward.

In this paper, we use an iterative primal-dual relaxation approach for
solving AGP instances to optimality. At each stage, a pair of LP relax-
ations for a finite candidate subset of primal covering and dual pack-
ing constraints and variables is considered; these correspond to possible
guard positions and points that are to be guarded.

Of particular interest are additional cutting planes for eliminating
fractional solutions. We identify two classes of facets, based on Edge

Cover and Set Cover (SC) inequalities. Solving the separation prob-
lem for the latter is NP-complete, but exploiting the underlying geo-
metric structure of the AGP, we show that large subclasses of fractional
SC solutions cannot occur for the AGP. This allows us to separate the
relevant subset of facets in polynomial time.

Finally, we characterize all facets for finite AGP relaxations with co-
efficients in {0, 1, 2}. We demonstrate the practical usefulness of our ap-
proach with improved solution quality and speed for a wide array of large
benchmark instances.

Keywords: Art Gallery Problem, geometric optimization, algorithm
engineering, set cover polytope, solving NP-hard problem instances to
optimality.

1 Introduction

The Art Gallery Problem (AGP) is one of the classical problems of geo-
metric optimization: given a polygonal region P with n vertices, find as few
stationary guards as possible, such that any point of the region is visible by
one of the guards. As first proven by Chvátal [1] and then shown by Fisk [2]

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 208–220, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Facets for Art Gallery Problems 209

in a beautiful and concise proof (which is highlighted in the shortest chapter in
“Proofs from THE BOOK” [3]), n3 � guards are sometimes necessary and always
sufficient when P is a simple polygon. Worst-case bounds of this type are summa-
rized under the name “Art-Gallery-type theorems”, and used as a metaphor even
for unrelated problems; see O’Rourke [4] for an early overview, and Urrutia [5]
for a more recent survey.

Algorithmically, the AGP is closely related to the Set Cover (SC) problem;
it is NP-hard, even for a simply connected polygonal region P [6]. There are,
however, two differences to a discrete SC problem. On the one hand, it is well
known that geometric variants of problems may be easier to solve or approximate
than their discrete, graph-theoretic counterparts, so it is natural to explore ways
to exploit the geometric nature of the AGP; on the other hand, the AGP is far
from being discrete, as both the set to be covered (all points in P ) as well as the
covering family (all star-shaped subregions around some point of P ) usually are
uncountably infinite.

It is natural to consider more discrete versions of the AGP. Ghosh [7] showed
that restricting possible guard positions to the n vertices, i.e., the AGP with
vertex guards, allows an O(log n)-approximation algorithm of complexity O(n5);
conversely, Eidenbenz et al. [8] showed that for a region with holes, finding an
optimal set of vertex guards is at least as hard as SC, so there is little hope of
achieving a better approximation guarantee than Ω(log n). While these results
provide tight bounds in terms of approximation, they do by no means close the
book on the arguably most important aspect of mathematical optimization: com-
bining structural insights with powerful mathematical tools in order to achieve
provably optimal solutions for instances of interesting size. Moreover, even a star-
shaped polygon may require a large number of vertex guards, so general AGP
instances may have significantly better solutions than the considerably simpler
discretized version with vertex guards.

Computing optimal solutions for general AGP instances is not only relevant
from a theoretical point of view, but has also gained in practical importance in
the context of modeling, mapping and surveying complex environments, such as
in the fields of architecture or robotics and even medicine, which are seeking to
exploit the ever-improving capabilities of computer vision and laser scanning.
Amit, Mitchell and Packer [9] have considered purely combinatorial primal and
dual heuristics for general AGP instances. Only very recently have researchers
begun to combine methods from integer linear programming with non-discrete
geometry in order to obtain optimal solutions. As we showed in [10], it is possible
to combine an iterative primal-dual relaxation approach with structures from
computational geometry in order to solve AGP instances with unrestricted guard
positions; this approach is based on considering a sequence of primal and dual
subproblems, each with a finite number of primal variables (corresponding to
guard positions) and a finite number of dual variables (corresponding to “witness”
positions). Couto et al. [11,12,13] used a similar approach for the AGP with
vertex guards. Due to space limitations, we omit a detailed discussion of the
abundant work on the AGP. Highly relevant is the paper by Balas and Ng [14]



210 S.P. Fekete et al.

Fig. 1. An optimal fractional solution of value 5 without (left) and an optimal integer
solution of value 6 with cutting planes (right). Circles show guards, fill-in indicates
fractional amount. Cutting planes enforce at least two guards in the left and three in
the right area, both marked in grey.

on the discrete SC polytope, which describes all its facets with coefficients in
{0, 1, 2}.

Formal Description. We consider a polygonal region P with n vertices that
may have holes, i.e., that does not have to be simply connected. For a point
p ∈ P , we denote by V(p) the visibility polygon of p in P , i.e., the set of all
q ∈ P , such that the straight-line connection pq lies completely in P . P is star-
shaped if P = V(p) for some p ∈ P . The set of all such points is the kernel of P .
For a set S ⊆ P , V(S) := ∪p∈SV(p). A set C ⊆ P is a guard cover, if V(C) = P .
The AGP asks for a guard cover of minimum cardinality c; this is the same as
covering P by a minimum number of star-shaped sub-regions of P . Note that
Chvátal’s Watchman Theorem [15] guarantees c ≤

⌊
n
3

⌋
.

Our Results. In this paper, we extend and deepen our recent work on it-
erative primal-dual relaxations, by proving a number of polyhedral properties
of the resulting AGP polytopes. We provide the first study of this type, and
give a full characterization of all facets with coefficients 0, 1, and 2. Remarkably,
we are able to exploit geometry to prove that only a very restricted family of
facets of the general SC polytope will typically have to be used as cutting planes
for removing fractional variables. Instead, we are able to prove that many frac-
tional solutions only occur in intermittent SC subproblems; thus, they simply
vanish when new guards or witnesses are introduced. This saves us the trouble
of solving an NP-complete separation problem. Computational results illustrate
greatly reduced integrality gaps for a wide variety of benchmark instances, as
well as reduced solution times. Details are as follows; due to space restrictions,
proofs are omitted. Related SC results are described by Balas et al. [14].

– We show how to employ cutting planes for an iterative primal-dual frame-
work for solving the AGP. This is interesting in itself, as it provides an
approach to tackling optimization problems with infinitely many constraints
and variables. The particular challenge is to identify constraints that remain
valid for any choice of infinitely many possible primal and dual variables, as
we are not solving one particular IP, but an iteratively refined sequence.



Facets for Art Gallery Problems 211

– Based on a geometric study of the involved SC constraints, we characterize
all facets of involved AGP polytopes that have coefficients in {0, 1, 2}. In the
SC setting, these facets are capable of cutting off fractional solutions, but
the separation problem is NP-complete. We use geometry to prove that only
some of these facets are able to cut off fractional solutions in an AGP setting
under reasonable assumptions, allowing us to solve the separation problem
in polynomial time.

– We provide a class of facets based on Edge Cover (EC) constraints.
– We demonstrate the practical usefulness of our results by showing greatly

improved solution speed and quality for a wide array of large benchmarks.

2 Mathematical Programming Formulation and
LP-Based Solution Procedure

Let P be a polygon and G,W ⊆ P sets of points for possible guard locations
and witnesses, i. e., points to be guarded, respectively. We assume W ⊆ V(G).
The AGP can be formulated as an IP denoted by AGP(G,W ):

min
∑
g∈G

xg (1)

s. t.
∑

g∈G∩V(w)

xg ≥ 1 ∀w ∈W (2)

xg ∈ {0, 1} ∀g ∈ G (3)

where Chvátal’s Watchman Theorem [15] guarantees that only a finite number
of variables are non-zero. The original AGP, AGP(P, P ), has uncountably many
variables and constraints, so it cannot be solved directly. Thus we consider finite
G,W ⊂ P and solve AGP(G,W ). For dual separation and to generate lower
bounds, we require the LP relaxation AGR(G,W ) obtained by relaxing the in-
tegrality constraint (3):

0 ≤ xg ≤ 1 ∀g ∈ G (4)

The relation between a solution of AGR(G,W ) and AGR(P, P ) is not obvious,
see Figure 2. In [10], we show that AGR(P, P ) can be solved optimally for many
problem instances by using finite G and W . The procedure uses primal/dual
separation (i. e., cutting planes and column generation) to connect AGR(G,W )
to AGR(P, P ). For some finite sets G and W , we solve AGR(G,W ) using the
simplex method. This produces an optimal primal solution x∗ and dual solution
y∗ with objective value z∗. The primal is a minimum covering by guards, the
dual a maximum packing of witnesses. We analyze x∗ and y∗ as follows:

1. If there exists a point w ∈ P \W with x∗(G∩V(w)) < 1, then w corresponds
to an inequality of AGR(P, P ) that is violated by x∗. The new witness w is
added to W , and the LP is re-solved. If such a w cannot be found, then x∗

is optimal for AGR(G,P ), and z∗ is an upper bound for AGR(P, P ).



212 S.P. Fekete et al.

AGP(P, P )

AGR(P, P )

relaxation

��

upper bound ��

��x∗ integral?

��

AGR(G,P )

dual relaxation

��

AGR(P,W )

primal relaxation

��

lower bound��

		





AGR(G,W )

dual relaxation

��
primal relaxation

��

x∗, y∗

��
•

does not exist?

��

•
primal separation: find violated w ∈ P \ W

��
dual separation: find violated g ∈ P \ G

�� •

does not exist?

��

Fig. 2. The AGP and its relaxations for G,W ⊆ P . Dotted arrows represent which
conclusions may be drawn from the primal and dual solutions x∗ and y∗.

2. If there exists a point g ∈ P \G with y∗(W ∩V(g)) > 1, then it corresponds
to a violated dual inequality of AGR(P, P ). We create the LP column for g
and re-solve the LP. If such a g does not exist, y∗ is an optimal dual solution
for AGR(P,W ) and z∗ is a lower bound for AGR(P, P ).

Both separation problems can be solved efficiently using the overlay of the vis-
ibility polygons of all points g ∈ G with x∗

g > 0 (for the primal case) and all
w ∈ W with y∗w > 0 (for the dual case), which decomposes P into a planar
arrangement of bounded complexity.

Should the upper and the lower bound meet, we have an optimal solution of
AGR(P, P ) [10].

In this paper, we use cutting planes α that must remain feasible in all itera-
tions of our algorithm, so feasibility for AGP(G,W ) is insufficient; we require α
not to cut off any x ∈ {0, 1}G′

for an arbitrary P ⊇ G′ ⊃ G, such that x is feasi-
ble for AGP(G′, P ). An LP with a set A of such additional constraints is denoted
by AGR(G,W,A), its IP counterpart by AGP(G,W,A). Note that AGP(G,P )
and AGP(G,P,A) are equivalent. By AGP(G,W ), we sometimes denote the set
of its feasible solutions rather than the IP itself, as in conv(AGP(G,W )).

3 Set Cover Facets

In this section, we discuss a family of SC facets, and show that the underlying
geometry greatly reduces their impact on the involved AGP polytopes.

3.1 A Family of Facets

Let P be a polygon and G,W ⊂ P finite sets of guard and witness positions.
Consider a finite non-empty subset ∅ ⊂ S ⊆W of witness positions; the overlay
of visibility regions of S is called αS . It contains the following partition P =



Facets for Art Gallery Problems 213

J0 ∪̇ J1 ∪̇ J2, cf. Fig. 3; this is analogous to what Balas and Ng [14] did for the
SC polytope.

1. J2 := {g ∈ P | S ⊆ V(g)}, the set of positions that cover all of S.
2. J0 := {g ∈ P | V(g) ∩ S = ∅}, the set of positions that see none of S.
3. J1 := P \ (J2 ∪ J0) the set of positions that cover a non-trivial subset of S.

Every feasible solution of the AGP has to cover S. Thus, it takes one guard in
J2, or at least two guards in J1 to cover S. For any G, this induces the following
constraint (5); for the sake of simplicity, we will also refer to this by αS .∑

g∈J2∩G

2xg +
∑

g∈J1∩G

xg ≥ 2 (5)

In the context of our iterative algorithm, αS is represented by J0, J1 and J2,
independent of a specific set G; any guard g ∈ Ji in current or future iterations
simply gets the coefficient αS(g) = i.

w2

w1

w4

w3

J0
J2 J1

Fig. 3. Polygon and witness selection S = {w1, w2, w3, w4}. Guards located in J2 can
cover all of S, and those in J1 some part of it, while those in J0 cover none of S.

Sufficient coverage of S is necessary for sufficient coverage of P , so (5) is valid
for any x ∈ {0, 1}G that is feasible for AGP(G,P ). However, covering S may
require more than two guards in J1, so (5) does not always provide a supporting
hyperplane of conv(AGP(G,W )).

It is easy to see that for |S| ≤ 2, (5) only yields constraints that are fulfilled
by all feasible solutions of AGR(G,W ). Thus, we consider |S| ≥ 3.

In order to show when (5) defines a facet of conv(AGP(G,W )), we need to
apply a result of [14] to the AGP setting.

Lemma 1. Let P be a polygon and G,W ⊂ P finite sets of guard and witness
positions. Then conv(AGP(G,W )) is full-dimensional, if and only if

∀w ∈ W : |V(w) ∩G| ≥ 2 (6)

We require more terminology adapted from [14]. Two guards g1, g2 ∈ J1 are a
2-cover of αS , if S ⊆ V({g1, g2}). The 2-cover graph of G and αS is the graph
with nodes in J1 ∩ G and an edge between g1 and g2 iff g1, g2 are a 2-cover of
αS . In addition, we have T (g) = {w ∈ V(g) ∩W | V(w) ∩G ∩ (J0 \ {g}) = ∅}.
Theorem 1. Given a polygon P and finite G,W ⊂ P , let conv(AGP(G,W )) be
full-dimensional and let αS be as defined in (5), such that S is maximal, i. e.,
there is no w ∈ W \ S with V(w) ⊆ V(S). Then the constraint induced by αS

defines a facet of conv(AGP(G,W )), if and only if:



214 S.P. Fekete et al.

w2
w1

w3

g1
g3

g2
w2

w1

w4

w3

g3 g2

g1g4

g∗

g2

g3 g4

g1

w3

w1

w4

w2

w∗

Fig. 4. P 2
3 (left) and two attempts for P 3

4 (middle and right). In the left case, Ineq. (5)
enforces using two guards instead of three 1

2
-guards. The attempts for P 3

4 are star-
shaped (middle) or invalid (right, at w∗, as xg1 = · · · = xg4 = 1

3
).

1. Every component of the 2-cover graph of αS and G has an odd cycle.
2. For every g ∈ J0 ∩G such that T (g) �= ∅ there exists either

(a) some g′ ∈ J2 ∩G such that T (g) ⊆ V(g′);
(b) some pair g′, g′′ ∈ J1 ∩G such that T (g) ∪ S ⊆ V(g′) ∪ V(g′′).

3.2 Geometric Properties of αS

It is easy to construct SC instances for any choice of |S| ≥ 3, such that the SC
version of αS cuts off a fractional solution, cf. [14]. In general, finding αS is NP-
complete. But in the following, we show that in an AGP setting, only αS with
|S| = 3 actually plays a role in cutting off fractional solutions under reasonable
assumptions, allowing us to separate it in polynomial time.

Lemma 2. Let P be a polygon, G,W ⊂ P finite sets of guard and witness
positions and ∅ ⊂ S ⊆ W . If every guard in J1 ∩ G belongs to some 2-cover of
αS and S is minimal for G, i. e., there is no proper subset T ⊂ S such that αT

and αS induce the same constraint for G, the matrix of AGP(G,S) contains a
permutation of the full circulant of order k = |S|, which is

Ck−1
k =

⎛⎜⎜⎜⎜⎝
0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1
1 · · · 1 0

⎞⎟⎟⎟⎟⎠ ∈ {0, 1}k×k (7)

Lemma 2 holds, because the 2-cover property holds iff no guard’s coefficient in
αS can be reduced without turning Inequality (5) invalid [14]. As S is minimal,
removing w from S must increase coefficients, i. e., relocate a guard g ∈ J1 ∩G
to J2. So V(g) ∩ S = S \ {w}. Such a guard exists for every w ∈ S.

This motivates a formal definition of a polygon corresponding to Ck−1
k .

Definition 1 (Full Circulant Polygon). A polygon P along with G(P ) =
{g1, . . . , gk} ⊂ P and W (P ) = {w1, . . . , wk} ⊂ P for 3 ≤ k ∈ N is called Full
Circulant Polygon or P k−1

k , if



Facets for Art Gallery Problems 215

∀1 ≤ i ≤ k : V(gi) ∩W (P ) = W (P ) \ {wi} (8)
∀w ∈ P : |V(w) ∩G(P )| ≥ k − 1 (9)

We may refer to G(P ) and W (P ) by just G and W respectively.

Note that P k−1
k is defined such that the full circulant Ck−1

k completely describes
the visibility relations between G and W . This implies that the optimal solution
of AGR(G,W ) is 1

k−1 · 1, with cost k
k−1 . It is feasible for AGR(G,P k−1

k ) by
Property (9), as any point w ∈ P k−1

k is covered by at least (k − 1) · 1
k−1 = 1.

Figure 4 captures construction attempts for models of Ck−1
k . P 2

3 exists, but
for k ≥ 4, the polygons are either star-shaped or not full circulant. If they are
star-shaped, the optimal solution is to place one guard within the kernel. If they
are not full circulant polygons, the optimal solution of AGR(G,W ) is infeasible
for AGR(G,P ) and the current fractional solution is intermittent, i.e., cut off in
the next iteration. Both cases eliminate the need for a cutting plane, and we may
avoid the NP-complete separation problem by restricting separation to k = 3.

In the following we prove that P k−1
k is star-shaped for k ≥ 4. We start with

Lemma 3, which shows that any pair of guards in G is sufficient to cover P k−1
k .

Lemma 3. Let P k−1
k be a full circulant polygon. Then P k−1

k is the union of the
visibility polygons of any pair of guards in G

(
P k−1
k

)
= {g1, . . . , gk}:

∀1 ≤ i < j ≤ k : P k−1
k = V(gi) ∪ V(gj) (10)

The next step is Lemma 4, which restricts the possible structure of P k−1
k .

Lemma 4. Let P k−1
k be a full circulant polygon with G

(
P k−1
k

)
= {g1, . . . , gk}.

Suppose k ≥ 4. Then P k−1
k has no holes.

k ≥ 4 is tight: a triangle with a concentric triangular hole is an example of P 2
3 ,

with guards in the outside corners, and witnesses on the inside edges.
We require one final lemma before proceeding to the main Theorem 2.

Lemma 5. Consider two disjoint non-empty convex polygons, described as the
intersection of half-spaces: P1 =

⋂
i=1,...,nHi and P2 =

⋂
i=n+1,...,n+mHi. Then

some Hi, 1 ≤ i ≤ n+m separates P1 and P2.

Theorem 2. A full circulant polygon P k−1
k with k ≥ 4 is star-shaped.

Note that Theorem 2 does not rule out situations in which P k−1
k is part of a larger

polygon, as shown in Figure 5. This example has no integrality gap; placing at
least five copies of P 3

4 around an appropriate central subpolygon with a hole can
actually create one. However, such cases are much harder to come by, making
these facets a lot less useful for cutting off fractional solutions; we demonstrate
this in our experimental section.



216 S.P. Fekete et al.

g14

g13

g11

g12
g24

g23

g21

g22
g34

g33

g31

g32

Fig. 5. Three instances of P 3
4 embedded into a larger polygon. Setting all guards to 1

3

is feasible and optimal, even though no guard is placed in any of the P 3
4 kernels.

3.3 All Art Gallery Facets with Coefficients 0, 1, 2

Balas and Ng [14] identified all SC facets with coefficients in {0, 1, 2}; for finite
G,W ⊂ P , AGP(G,W ) is also an SC instance. Thus, all AGP facets with these
coefficients must be among those facets. This includes three trivial facet classes,
the constraints and the conditions under which they are facet-defining are easily
translated into AGP terms; however, they are all satisfied by any feasible solution
of AGR(G,W ), so they do not play a role in cutting off fractional solutions. The
only non-trivial AGP facet class with coefficients in {0, 1, 2} is the one of type
αS , as discussed above.

4 Edge Cover Facets

Solving AGR(G,W ) for finite G,W ⊂ P such that no guard can see more than
two witnesses is equivalent to solving fractional EC on the graph with nodes W ,
an edge between v �= w ∈ W for each g ∈ G with V(g) ∩W = {v, w}, and a
loop for each g ∈ G with V(g)∩W = {w}. The fractional EC polytope is known
to be half-integral [16], which can be exploited to show that fractional solutions
always form odd-length cycles of 1

2 -guards.
In the conclusions of [10], we proposed a class of valid inequalities motivated

by this.
A fractional optimal solution has all guard values on the cycle at 1

2 . For an
odd k, ∑

g∈V(W )

xg ≥
⌈
k

2

⌉
=

k + 1

2
(11)

separates these fractional solutions from feasible, integral solutions.
Obviously, for any choice of G ⊂ P , (11) does not cut off any feasible solution

x ∈ {0, 1}G of AGP(G,P ), as long as no point exists that sees more than two
of these witnesses. So, analogously to the SC cuts, a cut can be kept in future
iterations once it has been identified.

It is not hard to show that these are facet defining under relatively mild
conditions.



Facets for Art Gallery Problems 217

Theorem 3. Let P be a polygon with finite sets of guard and witness posi-
tions G,W ⊂ P , such that conv(AGP(G,W )) is full-dimensional. Let W =
{w1, . . . , wk} ⊆W be an odd subset of k ≥ 3 witnesses, such that

1. No guard sees more than two witnesses in W :

∀g ∈ G :
∣∣V(g) ∩W

∣∣ ≤ 2 (12)

2. If a guard sees two witnesses wi �= wj ∈ W , they are a successive pair, i. e.,
i+ 1 = j or i = 1 and j = k.

3. Each of the k successive pairs is seen by some g ∈ G.
4. No guard inside of V

(
W
)

sees a witness outside of W :

∀g ∈ G ∩ V
(
W
)
: V(g) ∩W ⊆W (13)

Then the constraint ∑
g∈V(W)∩G

xg ≥
⌈∣∣W ∣∣

2

⌉
(14)

is a facet of conv(AGP(G,W )).

5 Computational Experience

A variety of experiments on benchmark polygons demonstrates the usefulness of
our cutting planes. The test algorithm is a variation of the one introduced in [10].
In each test, the sets G and W are initialized with the vertices of P , while A = ∅.
In the primal phase, we solve AGP(G,W,A). Should the solution be feasible for
AGP(G,P,A), we have identified an upper bound. Otherwise, there are witnesses
W ′ ⊆ P \ W whose constraint is violated. In this case, the primal phase is
continued and AGP(G,W ∪W ′, A) is solved. After an upper bound is found, the
dual phase is entered. A lower bound is generated by iteratively solving the dual
of AGR(G,W,A). If the solution is feasible for the dual of AGR(P,W,A) and the
cut separators do not find a violated constraint either, we have a lower bound.
Otherwise, guards with violated dual constraints are added to G, violated cut
conditions are added to A, and the dual phase continues. This process is repeated
until the upper and the lower bound meet, or a timeout occurs.

Just as in [10], we employed four different classes of benchmark polygons.

1. Random von Koch polygons are inspired by Koch curves, see Fig. 6, left.
2. Random floorplan-like Orthogonal polygons as in Fig. 6, second polygon.
3. Random Spike polygons (mostly with holes) as in Fig. 6, third polygon.
4. Random non-orthogonal Simple polygons as in Fig. 6, fourth polygon.

Each polygon class was evaluated for different sizes n ∈ {60, 200, 500, 1000},
where n is the approximate number of vertices in a polygon.

Different combinations of cut separators were also employed. The EC-related
cuts from Section 4 are referred to as EC cuts, while the SC-related cuts of



218 S.P. Fekete et al.

Fig. 6. Small von Koch, Orthogonal, Spike and Simple test polygons

Section 3 that rely on separating a maximum of 3 ≤ k witnesses are denoted by
SCk cuts. Note that for k ≤ m, SCm cuts also include all SCk cuts.

Whenever the above algorithm separates cuts, it applies all configured cut
separators and we test the following combinations: no cut separation at all, SC3
cuts only, SC4 cuts only, EC cuts only, and SC3 and EC cuts at the same time.

In total, we have five combinations of separators, four classes of polygons
and four polygon sizes; for each combination, we tested 10 different polygons.
The experiments were run on 3.0GHz Intel dual core PCs with 2GB of memory,
running 32 bit Debian 6.0.5 with Linux 2.6.32-686. Our algorithms were not par-
allelized, used version 4.0 of the “Computational Geometry Algorithms Library”
(CGAL) and CPLEX 12.1. Each test run had a time limit of 600 s.

Below we present the relative gap over time for the five tested cut separator
selections for the von Koch-type polygons with 1000 vertices. Fig. 7 shows the
distribution of relative gaps over time for the different combination of cutting
planes. Q0, . . . , Q4 indicate the different quartiles; in particular, Q0 is the best
case, Q2 the median, and Q4 the worst case. The graphs for the other test
polygon types have been omitted due to space restrictions. Their analysis allows
the same interpretation as ours of Fig. 7.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560

580

600

0

2

4

6

8

10

12

14

16

18

20

Q4

Q3

Q2

Q1

Q0

ga
p 

[%
]

(a) No Cuts
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560

580

600

Q4

Q3

Q2

Q1

Q0

(b) EC
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560

580

600

Q4

Q3

Q2

Q1

Q0

(c) SC3

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560

580

600

0

2

4

6

8

10

12

14

16

18

20

Q4

Q3

Q2

Q1

Q0

time [s]

ga
p 

[%
]

(d) SC3 and EC

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560

580

600

Q4

Q3

Q2

Q1

Q0

time [s]

(e) SC4

Fig. 7. Relative gap over time in IP mode for 1000-vertex von Koch-type polygons



Facets for Art Gallery Problems 219

Fig. 7(a) shows the relative gap over time without cut separation. After about
400 s, gaps are fixed between 0% and 6%, the median gap being 2%. When
applying the EC separator (Fig. 7(b)), 75% of the gaps drop to zero and the
largest gap is 2%. Using the SC3 separator (Fig. 7(c)) yields an even better
result in terms of both speed and relative gap. All gaps are closed, many of
them earlier than with the EC separator. Combining both, see Fig. 7(d), yields
a result comparable to using only SC3. Moving to the SC4 separator (Fig. 7(e))
yields a weaker performance: computation times go up, and not all gaps reach
0% within the allotted time, because separation takes longer without improving
the gap. This illustrates the practical consequences of Theorem 2.

6 Conclusion

In this paper, we have shown how we can exploit both geometric properties and
polyhedral methods of mathematical programming to solve a classical and natu-
ral, but highly challenging problem from computational geometry. This promises
to pave the way for a range of practical AGP applications that have to deal with
additional real-life aspects. We are optimistic that our basic approach can also be
used for other geometric optimization problems related to packing and covering.

Acknowledgments. This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under contract number KR 3133/1-1 (Kunst!).

References

1. Chvátal, V.: A combinatorial theorem in plane geometry. J. Combin. Theory Ser.
B 18, 39–41 (1975)

2. Fisk, S.: A short proof of Chvátal’s watchman theorem. Journal of Combinatorial
Theory (B 24), 374 (1978)

3. Aigner, M., Ziegler, G.M.: Proofs from the Book, 3rd edn. Springer (2004)
4. O’Rourke, J.: Art Gallery Theorems and Algorithms. International Series of Mono-

graphs on Computer Science. Oxford University Press, New York (1987)
5. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.)

Handbook on Computational Geometry, pp. 973–1026. Elsevier (2000)
6. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE

Trans. Inf. Theor. 32(2), 276–282 (1986)
7. Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons and

terrains. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942,
pp. 21–34. Springer, Heidelberg (2010)

8. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding
polygons and terrains. Algorithmica 31(1), 79–113 (2001)

9. Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of
polygons. Int. J. Comput. Geometry Appl. 20(5), 601–630 (2010)

10. Kröller, A., Baumgartner, T., Fekete, S.P., Schmidt, C.: Exact solutions and bounds
for general art gallery problems. J. Exp. Alg. (2012)



220 S.P. Fekete et al.

11. Couto, M.C., de Souza, C.C., de Rezende, P.J.: An exact and efficient algorithm
for the orthogonal art gallery problem. In: SIBGRAPI 2007, pp. 87–94. IEEE
Computer Society, Washington, DC (2007)

12. Couto, M.C., de Souza, C.C., de Rezende, P.J.: Experimental evaluation of an
exact algorithm for the orthogonal art gallery problem. In: McGeoch, C.C. (ed.)
WEA 2008. LNCS, vol. 5038, pp. 101–113. Springer, Heidelberg (2008)

13. Couto, M.C., de Rezende, P.J., de Souza, C.C.: An exact algorithm for minimiz-
ing vertex guards on art galleries. International Transactions in Operational Re-
search 18, 425–448 (2011)

14. Balas, E., Ng, M.: On the set covering polytope: I. all the facets with coefficients
in {0, 1, 2}. Math. Program. 43(1), 57–69 (1989)

15. Chvátal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial
Theory, Series B 18(1), 39–41 (1975)

16. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer
(2003)



Hitting and Piercing Rectangles Induced by a Point Set

Ninad Rajgopal, Pradeesha Ashok, Sathish Govindarajan, Abhijit Khopkar,
and Neeldhara Misra

Indian Institute of Science, Bangalore, India
{ninad.rajgopal,pradeesha,gsat,abhijit}@csa.iisc.ernet.in,

mail@neeldhara.com

Abstract. We consider various hitting and piercing problems for the family of
axis-parallel rectangles induced by a point set. Selection Lemmas on induced ob-
jects are classical results in discrete geometry that have been well studied and
have applications in many geometric problems like weak epsilon nets and slim-
ming Delaunay triangulations. Selection Lemma type results typically bound the
maximum number of induced objects that are hit/pierced by a single point. First,
we prove an exact result on the strong and the weak variant of the First Selection
Lemma for rectangles. We also show bounds for the Second Selection Lemma
which improve upon previous bounds when there are near-quadratic number of
induced rectangles. Next, we consider the hitting set problem for induced rectan-
gles. This is a special case of the geometric hitting set problem which has been
extensively studied. We give efficient algorithms and show exact combinatorial
bounds on the hitting set problem for two special classes of induced axis-parallel
rectangles. Finally, we show that the minimum hitting set problem for all induced
lines is NP-Complete.

Keywords: Hitting set, Selection Lemma, Centerpoint, Induced rectangles.

1 Introduction

Let P be a set of points in Rd and let R be the family of all distinct objects of a
particular kind (hyperspheres, boxes, simplices, . . . ), such that each object in R has a
distinct tuple of points from P on its boundary. For ex., in d = 2,R could be the family
of
(
n
3

)
triangles such that each triangle has a distinct triple of points of P as its vertices.

R is called the set of all objects induced (spanned) by P . Various questions related
to geometric objects induced by a point set have been studied in the last few decades.
In this paper, we focus on various piercing and hitting questions on the set of induced
objectsR. The questions are broadly classified into the following two categories:

1. What is the largest subset ofR that is hit/pierced by a single point?
2. What is the minimum set of points needed to hit all the objects inR?

Combinatorial results on the first category of questions are referred as Selection Lem-
mas and are well studied. A classical result in discrete geometry is the First Selection
Lemma [9], which shows that the centerpoint [23] is present in n3

27 (constant fraction of)
triangles induced by P . Moreover, it is known that the constant in this result is tight.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 221–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



222 N. Rajgopal et al.

This question has also been considered for induced simplices in Rd. Bárány [7] showed
that there exists a point p ∈ Rd contained in at least cd ·

(
n

d+1

)
simplices induced from

P . This is an important result in discrete geometry and it has been used in the con-
struction of weak ε-nets for convex objects [20]. Finding the exact constant for induced
simplices in Rd, d ≥ 3 is considered a challenging open problem [8].

A generalization of the first selection lemma, known as Second Selection Lemma,
considers an m-sized arbitrary subset S ⊆ R of distinct induced objects of a particular
kind and shows that there exists a point which is contained in f(m,n) objects of S. The
second selection lemma has been considered for various objects like simplices, boxes
and hyperspheres in Rd [2,11,20,24]. These results have found applications in the clas-
sical halving plane problem [2] and slimming Delaunay triangulations in 3-space [11].
For axis-parallel rectangles in R2, [11] shows a lower bound of Ω( m2

n2 log2 n
) using in-

duction. [24] gives an alternate proof of the same bounds using an elegant probabilistic
argument and also gives an upper bound of O( m2

n2 log(n2

m )
). An interesting open problem

mentioned in [24] is to tighten the polylogarithmic gap between these lower and upper
bounds.

In this paper, we focus on induced axis-parallel rectangles in the plane. Let P be a
set of n points in R2 in general position i.e., no 2 points have the same x or y-coordinate
and R is the set of all axis-parallel rectangles induced (spanned) by P i.e., the set of(
n
2

)
axis-parallel rectangles whose diagonal points are fixed by a pair of points from P .

We obtain the following selection lemmas for axis-parallel rectangles:

– We prove a first selection lemma for axis-parallel rectangles with exact constants.
We also show a strong variant of the first selection lemma with exact constants,
where we add the constraint that the piercing point p ∈ P . To our knowledge, there
has been no previous work on the first selection lemma for axis-parallel rectangles.
Interestingly, we use the weak and strong centerpoint for rectangles [1,6] to prove
this result.

– We show bounds on f(m,n) (second selection lemma) for axis-parallel rectangles.
More precisely, we show that there exists a point p ∈ R2 that is contained in at least
m3

24n4 axis-parallel rectangles of S. This bound is an improvement over the previous

bound in [24] when m = Ω( n2

log2 n
).

The second category of questions which we address in this paper, relates to finding a
small sized hitting set for the induced objects. We consider both the algorithmic and the
combinatorial bound questions on this problem.

Combinatorial bounds on the hitting set size have been studied for disks, axis-parallel
rectangles and triangles [3,4,13,18]. In this paper, we focus on showing combinatorial
bounds on the size of the hitting set for rectangles induced by a point set. This problem
is combinatorially equivalent to hitting all rectangles containing at least 2 points. Thus,
this problem is a special case of the epsilon net problem where ε = 1/n. Also, hitting
all the induced rectangles is equivalent to hitting only those induced rectangles that do
not contain any other point of P . Thus, it can be reduced to computing minimum vertex
cover in the Delaunay graph w.r.t. rectangles. Bounds on the size of the independent set
(complement of vertex cover) of these Delaunay graphs is well studied and is considered
a challenging open problem [10,12].



Hitting and Piercing Rectangles Induced by a Point Set 223

The algorithmic problem is a special case of the geometric hitting set problem. The
geometric hitting set problem is NP-hard, even for simple objects like lines and unit
disks [15,21] and several approximation algorithms have been proposed [5,17,22].

We show the following results on two special classes of induced axis-parallel rect-
angles.

– We first consider the special case of induced axis-parallel skyline rectangles. We
give a simple O(n logn) time algorithm that computes the minimum hitting set.
We also give an exact combinatorial bound of 2

3n on the size of the hitting set
for induced skyline rectangles. Recently, an O(n4) time dynamic programming
based algorithm [16] was given for the more general hitting set problem for skyline
rectangles (which need not be induced). Thus, our algorithm can be considered as
an improvement for the case of induced skyline rectangles.

– Next, we consider the special case of induced axis-parallel slabs. We prove an exact
combinatorial bound of 3

4n on the size of the hitting set for induced axis-parallel
slabs.

For most induced geometric objects, it is not known if the algorithmic problem of com-
puting the minimum hitting set is polynomially solvable. It is known to be polynomial
solvable for skyline rectangles and halfspaces. However, we show that the hitting set
problem for induced lines is NP-complete by giving a reduction from Multi-colored
clique. To the best of our knowledge, this is the only NP-hardness proof known for a
hitting set problem in the context of objects induced by a point set. It also implies a
(simpler) NP-hardness proof for the more general point line cover problem.

2 First Selection Lemma for Axis-Parallel Rectangles

Let P be a set of n points in R2 in general position i.e., no 2 points have the same x
or y-coordinate. Let R(u, v) be the axis-parallel rectangle induced by u and v where
u, v ∈ P i.e., R(u, v) has u and v as diagonal points. Let R be the set of all induced
axis-parallel rectangles R(u, v) for all u, v ∈ P . For any point p, let Rp ⊂ R be the
set of axis-parallel rectangles that contain p and let fp = |Rp|. Consider the quad-
rants formed by a horizontal and a vertical line intersecting at p. Rp consists of exactly
those rectangles which are induced by a pair of points present in diagonally opposite
quadrants (see figure 1).

In this section, we prove the first selection lemma for axis-parallel rectangles. We
consider two variants : (1) Strong variant, where the hitting point p ∈ P and (2) Weak
variant, where the piercing point p ∈ R2.

2.1 Strong Variant

In this section, we obtain exact bounds for f(n) where f(n) = min
P,|P |=n

(max
p∈P

fp).

Theorem 1. f(n) = n2

16



224 N. Rajgopal et al.

A

CD

B

p
h

v

Fig. 1. Lower bound

n
4
− k

v

h
p

k
k

n
4
− k

Fig. 2. Upper bound construction

Proof. Let p be the strong centerpoint of P w.r.t axis-parallel rectangles. Then any axis-
parallel rectangle that contains more than 3n

4 points from P contains p [6]. We claim

that p is contained in at least n2

16 rectangles fromR.
Let h and v be the horizontal and vertical lines passing through p that partition P

into four quadrants as shown in figure 1. Let |A| denote |A∩P |, for any quadrant A. If
|A|, |C| ≥ n

4 , then p is contained in at least n2

16 rectangles from R. Therefore, assume
|A| = n

4 − x. Now, there are two cases.

Case 1. |C| ≤ n
4 : W.l.o.g, assume that |C| = n

4 − y and x ≥ y. Therefore |B ∪D| =
n
2 + x + y. The value of fp is minimized when the value of |B| × |D| is minimized.
Since |A| = n

4 − x and there can be at most 3n
4 points on either sides of h and v, both

B and D contain at least x points. Therefore, fp is minimized when |B| = n
2 + y and

|D| = x. Then,

fp ≥ (n4 − x)(n4 − y) + (n2 + y)x ≥ n2

16

Case 2. |C| > n
4 : Assume |C| = n

4 + y. Therefore |B ∪D| = n
2 + x − y. By similar

reasons as in case 1, the value of fp is minimized when |B| = n
2 − y and |D| = x.

Therefore,

fp ≥ (n4 − x)(n4 + y) + (n2 − y)x ≥ n2

16 − 2xy + n
4 (x+ y)

The value of fp is minimized at the domain bundaries and thus fp ≥ n2

16 .
For the upper bound, consider a set P of n points arranged uniformly along the

boundary of a circle as in figure 2. Now, we claim that any point p ∈ P is contained in
at most n2

16 rectangles ofR. W.l.o.g, let p be a point in the top left quadrant of the circle
that is k points away from the topmost point in P . Let h and v be the horizontal and
vertical lines passing through p. h and v divide the plane into four quadrants. Therefore
fp = (n2 − 2k)2k = nk − 4k2. This value is maximized when k = n

8 . Thus, f(n) ≤
n2

16 .



Hitting and Piercing Rectangles Induced by a Point Set 225

2.2 Weak Variant

In this section, we obtain tight bounds for f(n) where f(n) = min
P,|P |=n

(max
p∈R2

fp).

Theorem 2. f(n) = n2

8 .

Proof. Let h and v be the horizontal and vertical lines that bisect P and partition the
plane into four quadrants. Let h and v intersect at p, which is the weak centerpoint for
rectangles [1]. We claim that fp ≥ n2

8 .

(n/4− x) (n/4 + x)

(n/4− x)(n/4 + x)

p

v

h

Fig. 3. Lower bound

b

n
4

n
4 − a

a

p

a

b

h

v1 v

n
4 − a − b

n
4 − b

o
h1

Fig. 4. Upper bound construction

Assume w.l.o.g, that the top left quadrant contains (n4 + x) points. Therefore, the
remaining points are distributed among the three other quadrants as shown in figure 3.
Then,

fp = (n4 − x)2 + (n4 + x)2 = 2 · (n2

16 ) + 2 · x2

Thus, fp ≥ n2

8 . Therefore, f(n) ≥ n2

8 .

For the upper bound, consider a set P of n points uniformly arranged along the
boundary of a circle. Let h and v be horizontal and vertical lines that bisect P , inter-
secting at o. W.l.o.g, let p be any point inside the circle in the top left quadrant and let
h1 and v1 be the horizontal and vertical lines passing through p. Let a be the number
of points from P below h1 that is present in the top left quadrant defined by h and v.
Similarly, let b be the number of points from P to the right of v1 that is present in the
top left quadrant defined by h and v. The number of points in each of the four quadrants
defined by h1 and v1 is as shown in figure 4.

fp = (n4 − b+ a)(n4 − a+ b) + (n4 − a− b)(n4 + a+ b) = n2

8 − 2(a2 + b2)

Since a, b ≥ 0, fp ≤ n2

8 for all points p ∈ R2. Therefore, f(n) ≤ n2

8 .



226 N. Rajgopal et al.

3 Second Selection Lemma for Axis-Parallel Rectangles in R2

Let P be a set of n points in R2. Let S ⊆ R be any set of m induced axis-parallel
rectangles. In the second selection lemma, we bound the maximum number of induced
rectangles of S that can be pierced by a single point p. The main idea of our approach
is an elegant double counting argument.

Let R(p, q) denote the rectangle induced by the points p and q. S is partitioned into
sets Xi as follows : any rectangle R(xi, u) ∈ S where xi, u ∈ P , is added to the
partition Xi if u is higher than xi. Let Pi = {u|R(xi, u) ∈ Xi}. Let |Pi| = |Xi| =
mi. Any rectangle R(xi, u) ∈ Xi is placed in one of two sub-partitions, X ′

i or X ′′
i ,

depending on whether u is to the right or left of xi. Let |X ′
i| = m′

i and |X ′′
i | = m′′

i .
Similarly, we partition Pi into P ′

i and P ′′
i . Let

∑n
i=1 m

′
i = m′ and

∑n
i=1 m

′′
i = m′′.

The rectangles in X ′
i (or X ′′

i ) and the points in P ′
i (or P ′′

i ) are ordered by decreasing
y-coordinate.

We construct a grid out of P by drawing horizontal and vertical lines through each
point in P . Let the resulting set of grid points be G (P ⊂ G), where |G| = n2. We use
the grid points in G as the candidate set of points for the second selection lemma.

Let Jr be the number of grid points in G present in any rectangle r ∈ S. W.l.o.g
consider the set of rectangles present in X ′

i . We obtain a lower bound on
∑

r∈X′
i
Jr.

Lemma 1.
∑
r∈X′

i

Jr ≥
(m′

i)
3

6
.

Proof. Let c =
∑

r∈X′
i
Jr. We prove the lemma by induction on the size of m′

i. For the
base case, let m′

i = 2. There are only two ways in which the point set can be arranged,
as shown in figure 5(a). It can be seen that the statement is true for the base case.

≥

(i)

xi

(ii)

xi

(a) (b)

xi

a1

l

a2

a3

ak

xi

l

a1

a2

a3

ak

a1a1

a2 a2

Fig. 5. The dotted lines represent the grid lines and the solid lines represent the rectangle edges.
(a) Base cases. (b) Inductive case - the case when a1 is not the leftmost point in P ′

i .

For the inductive case, assume that the statement is true for m′
i = k − 1 and let

m′
i = k. Let P ′

i = {a1, a2, ..., ak}. Let a1 be the topmost point in P ′
i as seen in figure

5(b) and l be the vertical line passing through a1. We have 2 cases :



Hitting and Piercing Rectangles Induced by a Point Set 227

Case 1 : If a1 is the leftmost point in P ′
i , then we remove a1 from P ′

i and R(xi, a1)
from X ′

i . By the induction hypothesis, the lemma is true for the remaining k− 1 points.
On adding a1 back, we see that the line l contributes k grid points to the next rect-
angle in X ′

i , R(xi, a2). This contribution of grid points by l becomes k − 1 for the
next rectangle R(xi, a3) and decreases by one as we move through the ordered set
X ′

i and it is two for R(xi, ak). Thus, the total number of points contributed by l to c

is given by k(k+1)
2 − 1. The rectangle R(xi, a1) also contributes 2k + 2 to c. Thus,

c ≥ (k−1)3

6 + k(k+1)
2 + (2k + 1) ≥ k3

6 . Thus, the statement is true for m′
i = k.

Case 2 : If a1 is not the leftmost point, then we claim that c does not increase when we
make a1 as the leftmost point by moving line l to the left. To see this, refer figure 5(b)
where the grid points on l are shown as solid circles. Let j be the number of points from
P ′
i present to the left of l. When we make the point a1 as the leftmost by moving l to

the left, we see that

– The rectangles induced by xi and the points to the left of l have an increase in
the number of grid points, which is contributed by l. Thus, c increases by t ≤
k + (k − 1) + ...+ (k − j + 1) = j(2k+1−j)

2 .
– R(xi, a1) loses d = (j+2)(k+1)−2(k+1) = j(k+1) points. Thus, c decreases

by d.
– The number of grid points in the rectangles induced by xi and the points to the right

of l remains the same.

By a simple calculation we can see that d ≥ t. Thus, when a1 is moved to the left, c
does not increase. As a1 is now the leftmost point, we can apply case 1 and show that
the lemma is true for m′

i = k.

Theorem 3. Let P be a point set of size n in R2 and let S be a set of induced rectangles
of size m. If m = Ω(n

4
3 ), then there exists a point p ∈ G which is present in at least

m3

24n4 rectangles of S.

Proof. The summation of the number of grid points present in the rectangles in Xi is
given by

∑
r∈Xi

Jr =
∑

r∈X′
i
Jr +

∑
r∈X′′

i
Jr. Using the lower bound from Lemma 1

we have,
∑

r∈Xi
Jr ≥ (m′

i)
3+(m′′

i )
3

6 .
Since S is partitioned into the sets Xi, the summation of the number of grid points

present in the rectangles in S is given by∑
r∈S

Jr =

n∑
i=1

∑
r∈Xi

Jr ≥
(

n∑
i=1

(m′
i)

3 +

n∑
i=1

(m′′
i )

3

)
/6

Using Hölder’s inequality in Rn (generalization of the Cauchy-Schwartz inequality),

we have
∑n

i=1(m
′
i)

3 ≥ (m′)3

n2 . Thus, we get
∑

r∈S Jr ≥ (m′)3+(m′′)3

6n2 . This sum is

minimized when m′ = m′′ = m
2 and thus,

∑
r∈S Jr ≥ m3

24n2 .
Let Ig be the number of rectangles of S containing the grid point g ∈ G. Now, by

double counting, we have∑
g∈G

Ig =
∑
r∈S

Jr =⇒
∑
g∈G

Ig ≥
m3

24n2



228 N. Rajgopal et al.

By pigeonhole principle, there exists a grid point p ∈ G which is present in at least
m3

24n4 rectangles in S.

4 Hitting all Induced Rectangles

In this section, we consider the problem of hitting all induced rectangles. Specifically
we consider two special cases of rectangles, namely, skylines and axis-parallel slabs.

4.1 Hitting Induced Skyline Rectangles

We first consider the special case of induced skyline rectangles, i.e., all the induced
axis-parallel rectangles have their base extended and anchored on a common horizontal
line. This is combinatorially equivalent to 3-sided axis-parallel rectangles whose base is
unbounded. Let S(u, v) denote the skyline rectangle induced by u and v where u, v ∈ P
and let S(P ) denote the set of all induced skyline rectangles S(u, v) for all u, v ∈ P .

We now consider the problem of computing a minimum hitting set to hit S(P ) for
a given point set P . For any point u ∈ P , let L(u) denote the point in P which is the
closest point to u by x-coordinate among the points which are present in the bottom-left
quadrant w.r.t. u. Similarly, let R(u) denote the point in P which is the closest point
to u by x-coordinate among the points which are present in the bottom-right quadrant
w.r.t. u. We propose a sweep-line based algorithm to compute the minimum hitting set.

Algorithm 1. An Algorithm to hit induced skyline rectangles
-Set all points in P as unmarked initially.
-Consider points u ∈ P in decreasing order of y-coordinate.
if u is unmarked then

-Let v1 = L(u) and v2 = R(u).
-Include v1 and v2 in the hitting set, if they are not included already
-Mark v1 and v2, if they are not marked already

else
Continue to next point

end if

Lemma 2. Algorithm 1 computes a minimum hitting set for S(P ) in O(n log n) time.

Proof. We first argue that the hitting set returned by above algorithm hits all the induced
skyline rectangles in S(P ). Note that it is sufficient to hit induced skyline rectangles
that do not contain any other point of P i.e., the hitting set forms a vertex cover in
the delaunay graph of skyline rectangles. Recall that the delaunay graph for skyline
rectangles has an edge (p, q) if the induced skyline rectangle S(p, q) does not contain
any other point of P . First, observe that a point u has at most two edges (in the delaunay
graph) to points below u, namely L(u) and R(u). In our algorithm, either u or both
L(u) and R(u) are selected (marked) in the hitting set. Thus, edges from u to vertices
below u are covered and since this is true for every point u, the hitting set is a valid
vertex cover.



Hitting and Piercing Rectangles Induced by a Point Set 229

Next, we argue that our hitting set H is in fact a minimum vertex cover (MVC). Let,
if possible, there exist a different MVC O. We show that O can be transformed to H
as follows: Let u be the topmost point in O that is not present in H . Assume w.l.o.g
that v1 = L(u) and v2 = R(u) exist. Since u is not present in H (unmarked), by our
algorithm, v1 and v2 will be present in H . The points u, v1, v2 induce a triangle in the
delaunay graph. Thus, at least two points in u, v1, v2 must be selected in any vertex
cover. All the three points cannot be present since then u is not needed and can be
discarded. W.l.o.g, let O contain u and v1. Now, we can replace u by v2 in the vertex
cover, since u has edges only to v1 and v2 among the points below u. Performing this
exchange argument from top to bottom, we transform O to H .

Sorting the points take O(n log n) time. For a point u being considered, L(u) and
R(u) can be found in O(log n) time using range tree with fractional cascading [19].
Building the range tree takes O(n log n) time and O(n log n) extra space. Thus, the
total running time of Algorithm 1 is O(n logn).

We now obtain combinatorial bounds on the size of the hitting set.

Theorem 4. Let P be a set of n points and S(P ) be the family of skyline rectangles
induced by P . S(P ) can be hit by at most 2n

3 points of P and this bound is tight

Proof. We claim that the hitting set returned by Algorithm 1 is of size at most 2
3n.

Algorithm 1 adds at most 2 points to the hitting set for every unmarked point in P and
it does nothing on the selected (marked) points. Since, an unmarked point is not present
in the hitting set, the size of the hitting set is at most 2

3n.
To show the lower bound, we consider a point set P1 of three points. Let the points

when sorted according to x and y co-ordinates be p1, p2, p3 and p3, p1, p2 respectively.
Clearly, two points are needed to hit all skyline rectangles induced by P1. Let P be
arranged as n

3 copies of P1 placed in the diagonal cells of a n
3 ×

n
3 grid. Since the three

skyline rectangles of a diagonal grid cell are disjoint with those of a different diagonal
grid cell, at least 2n

3 hitting points are required to hit all the induced skyline rectangles.

4.2 Axis-Parallel Slabs

An axis-parallel slab is another special case of axis-parallel rectangle where two hori-
zontal or vertical sides are unbounded. Thus a vertical axis-parallel slab is of the form
[a, b]×(−∞,+∞) and a horizontal axis-parallel slab is of the form (−∞,+∞)×[a, b].
Two points p(x1, y1) and q(x2, y2) induce two axis-parallel slabs [x1, x2]×(−∞,+∞)
and (−∞,+∞)× [y1, y2]. A family of axis-parallel slabs induced by a point set P con-
tains all axis-parallel slabs induced by every pair of points in P .

Theorem 5. Let P be a set of n points and S be the family of axis-parallel slabs in-
duced by P . S can be hit by at most 3n

4 points of P and this bound is tight.

Proof. Let Px and Py be ordered lists of points in P sorted according to their x and
y coordinates respectively. Clearly, hitting all axis-parallel slabs of S is equivalent to
hitting all empty axis-parallel slabs in S. These are exactly the vertical slabs defined
by two points which are adjacent in Px and the horizontal slabs defined by two points



230 N. Rajgopal et al.

which are adjacent in Py . Therefore, at least n
2 points from Px as well as Py have to

be chosen as part of the hitting set, H . It will suffice to choose every alternate point
starting from the first point(odd points) or starting from the second point (even points)
from both Px and Py . W.l.o.g, assume that we add all odd points from Px to H . Now
we have the option to select either the odd points or even points from Py . Note that Py

is a permutation of Px. Therefore by pigeon hole principle, either the odd points from
Py or the even points from Py contain at least n

4 odd points from Px. Add this set of
points to H . Now H is a hitting set for S and |H | ≤ 3n

4 .
To show that this bound is tight, we give a point set that needs 3n

4 points in the hitting
set. Let P1 be a set of four points. Let the ordered lists of points in P1 when sorted
according to the x and y coordinates be p1, p2, p3, p4 and p2, p4, p1, p3 respectively.
Clearly three points are needed to hit all axis-parallel slabs induced by P1. Let P contain
n
4 copies of P1 each placed along the diagonal of a n

4 ×
n
4 grid. Since the induced axis-

parallel slabs of a diagonal grid cell are disjoint with those of a different diagonal grid
cell, at least 3n

4 hitting points are required to hit all the induced axis-parallel slabs.

5 Hitting All the Induced Lines Is NP-Complete

Recall that the Hitting Set problem for Induced Lines is the following: given a point set
P , and an integer k, we would like to determine if there is a subset S ⊆ P , |S| ≤ k,
such that the set of all lines induced by P is hit by S. For points p and q in the plane, we
use L(p, q) to denote the unique line passing through the points p and q. In this section,
we show the following theorem.

Theorem 6. The Hitting Set problem for Induced Lines is NP-complete.

We show the NP-hardness of the hitting set for induced lines, by a reduction from
Multi-Colored Clique: Given a graph G = (V,E) and a partition of V into k sets
{V1, V2, . . . , Vk}, is there a clique C of size k such that C has exactly one vertex from
each Vi? This problem is well-known to be NP-Complete by an easy reduction from the
classical MaxClique problem [14].

Let G = (V = V1 ∪ · · · ∪ Vk, E) be an instance of Multi-Colored Clique, and let
n := |V |, m := |E|. We assume w.l.o.g, that G[Vi] is an independent set. We begin by
associating a point pv with every vertex v ∈ V , and a point pe for every edge e ∈ E.
We use PV (respectively, PE) to refer to the set of points corresponding to vertices
(respectively, edges). The entire point set PG, therefore, is PE ∪ PV , and we note that
|P | = (m+ n).

The placement of the points in the plane is as follows. The points in PV are placed in
general position. The points in PE are placed to satisfy the following properties: (a) A
point pe where e = (u, v), is placed on the line L(pu, pv) and for any x �= u or y �= v,
pe does not lie on L(px, py). (b) No three points in PE lie on a line. Further, for any
e, f ∈ E and u ∈ V , there is no line that contains pe, pf ∈ PE and pu ∈ PV . This
completes the description of the placement on points in PG. We say that PG, defined as
PV ∪ PE , is normalized with respect to G if it satisfies these properties.



Hitting and Piercing Rectangles Induced by a Point Set 231

Lemma 3. (G, k), where G = (V,E), and n := |V |, m := |E| is a YES-instance of
Multi-Colored Clique if, and only if, (PG, n+ m− k) is a YES-instance of Hitting Set
for Induced Lines.

Proof. For this proof, we assume (w.l.o.g), that k ≥ 3. In the forward direction, let
S ⊆ V be clique in G such that |S| = k. Note that S∗ := PE ∪ (PV \ {pv | v ∈ S}) is
a hitting set for PG of size (m + n − k). Let e = (u, v). Observe that L(u, v), where
both u and v belong to {pv | v ∈ S} is hit by pe ∈ S∗ , and all other lines are trivially
hit.

In the reverse direction, let S∗ be a hitting set of size at most (n + m − k). Let
Pi ⊆ PV denote the set {pv | v ∈ Vi}. It can be argued, based on the fact that G[Vi] is
independent, that |S∗∩Pi| ≥ |Pi|−1. Next, we show that S∗∩PE = PE . First note that
|S∗ ∩PE | ≥ (m− 1) (this is easy to derive by contradiction, given the second property
of a normalized point set). Now, suppose |S∗ ∩ PE | = (m− 1). Let PE \ S∗ = {pe}.
Since |S∗| ≤ n+m−k, there are at least (k−1) parts Pi for which |S∗∩Pi| = (Pi−1)
(if not, then |S∗| > (n + m − k)). Since k ≥ 3, there are at least two parts for which
|S∗∩Pi| = (|Pi|−1). Let the parts be Pa and Pb, and let the vertices in S∗\Pa, S∗\Pb

be u and v, respectively. It is easy to see that at least one of L(pe, pu), L(pe, pv) is not
hit by S∗, giving us the desired contradiction.

We now have that PE ⊆ S∗. Since |S∗| ≤ (n+m−k) and |S∗∩Pi| ≥ (|Pi|−1) for
all 1 ≤ i ≤ k, it follows that |S∗∩Pi| = (|Pi|− 1), 1 ≤ i ≤ k. Let {Pi \S∗} = {pvi}.
Let S = {v1, . . . , vk}. We claim that G[S] forms a multi-colored clique in G. It is clear
that |S ∩ Vi| = 1 for all 1 ≤ i ≤ k. Also, (vi, vj) ∈ E for all 1 ≤ i �= j ≤ k. If not,
then it is not hard to see that the line L(pvi , pvj ) is not hit by S∗. This concludes the
proof.

Lemma 4. Given a graph G, a point set PG that is normalized with respect to G can
be constructed in polynomial time.

Proof. We begin by placing the points corresponding to PV on a circle. Let E =
{e1, . . . , em}, where ei = {ui, vi}. Let A1 denote the set of points where L(u1, v1)
intersects L(x, y) for some x �= u1 or y �= v1 (note that |A1| is at most

(
n
2

)
). We place

pe1 arbitrarily on L(u1, v1) \ A1. We continue this procedure iteratively. In particular,
we place pei arbitrarily on L(ui, vi) \Ai, where Ai is the set of points where L(ui, vi)
intersects lines formed by pairs of points in PV and pairs of points in {e1, . . . , ei−1}.
It is easily checked that this choice of placement is normalized with respect to G, and
that max |Ai| = O(n4).

Acknowledgements.We would like to thank Saurabh Ray and Ajit Diwan for helpful
discussions.

References

1. Aronov, B., Aurenhammer, F., Hurtado, F., Langerman, S., Rappaport, D., Seara, C.,
Smorodinsky, S.: Small weak epsilon-nets. Computational Geometry 42(5), 455–462 (2009)



232 N. Rajgopal et al.

2. Aronov, B., Chazelle, B., Edelsbrunner, H.: Points and triangles in the plane and halving
planes in space, vol. 6, pp. 435–442 (1991)

3. Aronov, B., Dulieu, M., Hurtado, F.: Witness (delaunay) graphs. Comput. Geom. 44(6-7),
329–344 (2011)

4. Aronov, B., Dulieu, M., Hurtado, F.: Witness gabriel graphs. Computational Geometry
(2011)

5. Aronov, B., Ezra, E., Sharir, M.: Small-size ε-nets for axis-parallel rectangles and boxes.
SIAM J. Comput. 39(7), 3248–3282 (2010)

6. Ashok, P., Govindarajan, S., Kulkarni, J.: Small strong epsilon nets. In: CCCG, pp. 155–158
(2010)

7. Bárány, I.: A generalization of carathéodory’s theorem. Discrete Mathematics 40(2-3),
141–152 (1982)

8. Basit, A., Mustafa, N.H., Ray, S., Raza, S.: Hitting simplices with points in R3. Discrete &
Computational Geometry 44(3), 637–644 (2010)

9. Boros, E., Füredi, Z.: The number of triangles covering the center of an n-set. Geometriae
Dedicata 17, 69–77 (1984)

10. Chan, T.: Conflict-free coloring of points with respect to rectangles and approximation al-
gorithms for discrete independent set. In: Proceedings of the 2012 Symposuim on Computa-
tional Geometry, pp. 293–302. ACM (2012)

11. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Hershberger, J., Seidel, R., Sharir, M.: Selecting
heavily covered points. SIAM J. Comput. 23(6), 1138–1151 (1994)

12. Chen, X., Pach, J., Szegedy, M., Tardos, G.: Delaunay graphs of point sets in the plane with
respect to axis-parallel rectangles. Random Struct. Algorithms 34(1), 11–23 (2009)

13. Czyzowicz, J., Kranakis, E., Urrutia, J.: Dissections, cuts and triangulations. In: CCCG
(1999)

14. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity
of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)

15. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the plane are
np-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

16. Grant, E., Chan, T.M.: Exact algorithms and apx-hardness results for geometric set cover. In:
CCCG (2011)

17. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in
image processing and vlsi. J. ACM 32(1), 130–136 (1985)

18. Katchalski, M., Meir, A.: On empty triangles determined by points in the plane. Acta Math-
ematica Hungarica 51(3-4), 323–328 (1988)

19. Lueker, S.: A data structure for orthogonal range queries. In: Proceedings of the 19th Annual
Symposium on Foundations of Computer Science, SFCS 1978, pp. 28–34. IEEE Computer
Society, Washington, DC (1978)

20. Matousek, J.: Lectures on Discrete Geometry. Springer (2002)
21. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Opera-

tions Research Letters 1(5), 194–197 (1982)
22. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete & Com-

putational Geometry 44(4), 883–895 (2010)
23. Rado, R.: A theorem on general measure. Journal of the London Mathematical Society 1(4),

291–300 (1946)
24. Smorodinsky, S., Sharir, M.: Selecting points that are heavily covered by pseudo-circles,

spheres or rectangles. Combinatorics, Probability & Computing 13(3), 389–411 (2004)



Realistic Roofs over a Rectilinear Polygon

Revisited�

Jessica Sherette1 and Sang Duk Yoon2

1 Department of Computer Science, University of Texas at San Antonio, USA
jsherett@cs.utsa.edu

2 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
egooana@postech.ac.kr

Abstract. A common task in automatically reconstructing a three di-
mensional city model from its two dimensional map is to compute all
the possible roofs over the ground plans. A roof over a simple polygon
in the xy-plane is a terrain over the polygon such that each face f of
the terrain is supported by a plane passing through at least one polygon
edge and making a dihedral angle π

4
with the xy-plane [3]. This defini-

tion, however, allows roofs with faces isolated from the boundary of the
polygon and local minimum edges inducing pools of rainwater. Recently,
Ahn et al. [1,2] introduced “realistic roofs” over a simple rectilinear poly-
gon P with n vertices by imposing two additional constraints under which
no isolated faces and no local minimum vertices are allowed. Their defi-
nition is, however, too restrictive that it excludes a large number of roofs
with no local minimum edges. In this paper, we propose a new definition
of realistic roofs corresponding to the class of roofs without isolated faces
and local minimum edges. We investigate the geometric and combina-
torial properties of realistic roofs and show that the maximum possible
number of distinct realistic roofs over P is at most 1.3211m

(
m

�m
2
�
)
, where

m = n−4
2

. We also present an algorithm that generates all combinatorial
representations of realistic roofs.

1 Introduction

A common task in automatically reconstructing a three dimensional city model
from its two dimensional map is to compute all the possible roofs over the ground
plans of its buildings extensively [5,6,9,7,8,10]. For some applications, a correct
or reasonable roof over a building is chosen from the candidates using some other
information such as its images.

Aichholzer et al. [3] defined a roof over a simple (not necessarily rectilinear)
polygon in the xy-plane as a terrain over the polygon such that each face of
the terrain is supported by a plane passing through at least one polygon edge
and making a dihedral angle π

4 with the xy-plane. This definition, however, is

� This research was supported by NRF grant 2011-0030044 (SRC-GAIA) funded by
the government of Korea.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 233–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



234 J. Sherette and S.D. Yoon

not tight enough that it allows roofs with faces isolated from the boundary of
the polygon (Figure 1(a)) and local minimum edges (Figure 1(b)) which are
undesirable for some practical reasons – for example, a local minimum edge
serves as a pool of rainwater. Note that a pool of rainwater on a roof always
contains a local minimum edge.

(a) (b) (c)

u

e

v

s t

f

f ′

Fig. 1. (a) A roof with isolated faces f and f ′. (b) A roof with a local minimum edge
e. (c) Not a realistic roof according to Definition 1; vertex u has no adjacent vertex v
that is lower than u.

1.1 Related Work

Brenner [6] designed an algorithm that computes all the possible roofs over a
rectilinear polygon, but no polynomial bound on its running time is known.
Recently, Ahn et al. [1,2] introduced “realistic roofs” over a rectilinear polygon
P with n vertices by imposing two additional constraints as follows.

Definition 1 ([1]). A realistic roof over a simple rectilinear polygon P is a roof
over P satisfying the following constraints.

C1. Each face of the roof is incident to at least one edge of P .

C2. Each vertex u of the roof is higher than at least one of its neighboring
vertices.

They showed some geometric and combinatorial properties of realistic roofs,
including a connection to the straight skeleton [3,4]. Consider a roof R∗(P ) over
P constructed by shrinking process, where all of the edges of P move inside,
being parallel to themselves, with the same speed while moving upward along
the z-axis with the same speed. Ahn et al. [1,2] showed that R∗(P ) is unique, its
projection on the xy-plane is the straight skeleton of P , and it is the point-wise
highest realistic roof over P . From the fact that R∗(P ) does not have a “valley”,
we can construct another realistic roof R over P which is different to R∗(P ) by
adding a set of “compatible valleys” to R∗(P ). They showed that the number of
realistic roofs lies between 1 and

(
m

	m
2 

)
where m = n−4

2 , and presented an output

sensitive algorithm generating all combinatorial representations of realistic roofs
over P in O(1) time per roof, after O(n4) preprocessing time.



Realistic Roofs over a Rectilinear Polygon Revisited 235

1.2 Our Results

Constraint C1 in Definition 1 is to exclude roofs with isolated faces and con-
straint C2 is introduced to avoid pools of rainwater. However, C2 is too restric-
tive that it also excludes a large number of roofs with no local minimum edges.
For example, the roof in Figure 1 (c) is not realistic according to Definition 1
– u is a local minimum vertex – though rainwater can be drained well along
uv. Therefore, Definition 1 by Ahn et al. does describe only a proper subset of
“realistic” roofs.

We introduce a new definition of realistic roofs by replacing C2 of Definition 1
with a relaxed one that excludes roofs with local minimum edges.

Definition 2. A realistic roof over a simple rectilinear polygon P is a roof over
P satisfying the following constraints.

C1. Each face of the roof is incident to at least one edge of P .

C2 ′. For each roof edge uv, u or v is higher than at least one of its neighboring
vertices.

From now on, we use Definition 2 for realistic roofs unless stated explicitly. One
important difference is that our realistic roofs do not have local minimum edges.
Our definition corresponds to the class of roofs without isolated faces and local
minimum edges exactly. This is often required for roofs in the real-world, as
rainwater cannot be well drained from a local minimum along the roof surface.

Our main results are threefold:

1. We provide a new definition of “realistic roofs” corresponding to the real-
world roofs and investigate geometric properties of them.

2. We show that the maximum possible number of realistic roofs over a recti-
linear n-gon is at most 1.3211m

(
m

	m
2 

)
, where m = n−4

2 .

3. We present an algorithm that generates all combinatorial representations of
realistic roofs over a rectilinear n-gon, including roofs with open valleys only
and roofs with half-open valleys. Precisely, it generates a roof with open val-
leys only in O(1) time after O(n4) preprocessing time [1]. For each such roof,
it generates O(1.3211m) roofs with half-open valleys in time O(m1.3211m).

2 Preliminary

For a point p in R3, we denote by z(p) the z-coordinate of p and by p the
orthogonal projection of p onto the xy-plane. For a point p ∈ R, let D(p) be
a square centered at p with side length z(p). For any two points s, t ∈ R2, let
d∞(s, t) be L∞ distance between s and t, and d∞(s, A) := infa∈Ad∞(s, a) for
any set A in R2. We denote by ∂P the boundary of P and by edge(f) the edge
of ∂P incident to a face f of a roof.

Lemma 1. ([1]) Let R be a roof over a rectilinear simple polygon P . The fol-
lowings hold.



236 J. Sherette and S.D. Yoon

1. For any point p ∈ R, we have z(p) ≤ d∞(p, ∂P ) and D(p) ⊆ P .
2. For each edge e of P , there exists a unique face f of R incident to e.
3. Every face f of R is monotone with respect to the line containing edge(f).

Edge Types. Edges of a realistic roof R over P can be classified into two groups,
convex edges and reflex edges. An edge e of a roof R is called convex if R is locally
convex along e, and an edge e′ is called reflex if R is locally reflex along e′. Also,
we will call an edge e a valley if e is reflex and parallel to the xy-plane, and call
an edge e′ a ridge if e′ is convex and parallel to the xy-plane.

3 Valleys of a Realistic Roof

In this section, we investigate local structures of realistic roofs. Ahn et al. showed
that realistic roofs with Definition 1 can have vertices of 5 different types for a
ridge and vertices which are not incident to a valley or a ridge are degenerated
forms of valleys or ridges. Since replacing constraint C2 to C2 ′ does not affect
ridges, so we care about only valleys.

We define three types of valleys and describe the structures of valleys that
a realistic roof can have. We call a vertex of a roof open if it is higher than at
least one of its neighboring vertices, and closed otherwise. We call a valley open
if both corners are open vertices, half-open if one corner is an open vertex and
the other is a closed vertex, and closed if both corners are closed vertices. By
Definition 2, a realistic roof can contain open and half-open valleys unless they
make an isolated face, but it does not contain closed valleys. Ahn et al. showed
that each open valley always has the same structure as st in Figure 1(c). More
specifically, they showed that there are only 5 possible configurations at a corner
of a valley of a roof because of the roof constraints such as the monotonicity of
a roof, and the slope and orientations of faces as illustrated in Figure 2. They
showed that a realistic roof has an open valley both corners of which are of type
(v1) and oriented symmetrically along the valley. Also each corner of an open
valley is connected to a reflex vertex of P by a reflex edge. We call these two
reflex vertices a candidate pair.

In the following we investigate the structure of a half-open valley that a real-
istic roof can have. It is not difficult to see that the open corner is always of type

v v v v v
rf cv rf

rf

rfcv

cv cv cvcv

v′v′

(v1) (v2) (v3) (v4) (v5)

f f f f f

f ′f ′f ′f ′ f ′
u u

u
u u

Fig. 2. 5 configurations around a vertex of a valley uv, where rf denotes a reflex edge
and cv denotes a convex edge. Each convex or reflex edge is oriented from the endpoint
with smaller z-coordinate to the other one with larger z-coordinate.



Realistic Roofs over a Rectilinear Polygon Revisited 237

(v1) – all the others cannot have a lower neighboring vertex because of the roof
constraints, that is, they are all closed. We will show that the closed corner of a
realistic roof is always of type (v2). For this, we need a few technical lemmas. A
proof of the following lemma can be found in the full version of the paper.

Lemma 2. Let uv be a valley and uv′ be a convex edge connected to u. Also,
let � be the line in the xy-plane passing through v and orthogonal to uv. Then
the face f incident to both uv and uv′ has edge(f) in the half-plane of � in the
xy-plane not containing u.

Imagine that a face f is incident to a valley uv and two convex edges one of
which is incident to u and the other to v. Then both convex edges must lie in
the same side of the plane containing uv and parallel to the z-axis. Since both
convex edges make an angle 45◦ with uv in their projection on the xy-plane, f
cannot have a ground edge, by Lemma 2, that is, f is isolated.

Lemma 3. Let uv be a half-open valley of a realistic roof where u is closed and
v is open. Then v is of type (v1) and u is of type (v2).

Proof. If u is of type (v3), then one of two faces incident to uv becomes isolated
by Lemma 2. If u is of type (v5), then there always is another valley uv′ that is
orthogonal to uv and has a closed corner at u of type (v3) as shown in Figure 2.
Therefore one of faces incident to uv′ is isolated.

Next, assume that u is of type (v4). Then there always is another valley uv′

orthogonal to uv. Therefore, we need to check two connected valleys uv and
uv′ simultaneously. Figure 3 illustrates all possible combinations of these two
valleys. For cases (a) and (b), there is an isolated face incident to uv or uv′. For
case (c), let f and f ′ be the faces incident to uv and uv′ respectively, as shown
in Figure 3(c). Let � (�′ resp.) be a line in the xy-plane which contains uv (uv′

resp.). By Lemma 2, edge(f) and edge(f ′) are located in opposite quadrants de-
fined by � and �′. Then one of f and f ′ violate the monotonicity property (3) of
Lemma 1. All valleys containing a vertex of type (v4) are invalid; the remaining
closed corner is of type (v2).

Now we are ready to describe the structure of a half-open valley. A proof of the
following lemma can be found in the full version of the paper.

rf

cv

(a) (b) (c)

rf cv cv

rf cv

rf cv rf

rf

cv

cv

rf cv
rf

v u v u v u

v′ v′

v′
f

f ′

Fig. 3. Three possible combinations around a (v4) type vertex



238 J. Sherette and S.D. Yoon

Lemma 4. Let uv be a half-open valley where u is closed and v is open. Then
uv is associated with three reflex vertices of P that have mutually different ori-
entations as in Figure 4.

rf3rf1

v

a1

a2

a3

rf4
rf2

rf5

u

s

Fig. 4. A half-open valley uv must be connected to three reflex vertices a1, a2 and a3

via 5 reflex edges. Call the vertex s which is incident to rf1 and rf4 as a peak point of
uv.

4 Realistic Roofs with Half-Open Valleys

Three Reflex Vertices from a Half-Open Valley. We investigate local and
global properties of half-open valleys. From Lemma 4, we know that a half-
open valley is associated with three reflex vertices that have mutually different
orientations. Therefore, we need a condition to check whether chosen three reflex
vertices could induce a half-open valley. Let a1, a2 and a3 be reflex vertices which
have mutually different orientations. Without loss of generality, we can assume
that these vertices are arranged as in Figure 4. Let the horizontal difference of
two vertices ai and aj be dh(ai, aj) and the vertical difference be dv(ai, aj). We
now consider two squares and one rectangle to determine whether these three
vertices form a half-open valley. Let r1 be the square with a1 on its top left
corner and side length dh(a1, a3). Let r2 be the rectangle with a2 on its bottom
right corner with height dv(a1, a2) and width dv(a1, a2) + dh(a2, a3). Finally, let
r3 be the square with a3 on its top right corner and side length dv(a2, a3).

Next, define three rectilinear subpolygons of P . Let P1 be the polygon formed
by r1 ∪ r2 and the cut off portion of P below r1, r2 and r3 (Figure 5(a)). Let
P2 be the polygon formed by r2 ∪ r3 and the cut off portion of P right of r1, r2
and r3 (Figure 5(b)). Let P3 be the polygon formed by r1 ∪ r3 and the cut off
portion of P above of r1, r2 and r3 (Figure 5(c)). We now present the following
lemma, and a proof of the lemma can be found in the full version of the paper.

Lemma 5. Three reflex vertices a1, a2 and a3 form a half-open valley uv if and
only if (r1 − a1) ∩ ∂P = ∅, (r2 − a2) ∩ ∂P = ∅ and (r3 − a3) ∩ ∂P = ∅.
If three reflex vertices a1, a2 and a3 induce a half-open valley uv, we call the
triple (a1, a2, a3) a candidate triple of uv. Assume that three reflex vertices of
a candidate triple are ordered as depicted in Figure 4, or the mirror image of
Figure 4. Also, We will call r1 ∪ r2 ∪ r3 as the free space of uv.



Realistic Roofs over a Rectilinear Polygon Revisited 239

a1

a3
r3

r1

P1

(a) (b) (c)

a1

a3

a2

u v

r3

r2

r1

a1

a3

a2

u v

r3

r2

r1

P3

P2

a2

u

r2

v

Fig. 5. Dividing P into three rectilinear subpolygons, P1, P2 and P3, along a half-open
valley uv

Compatibility. What we have to do next is to consider compatibilities. There
are two cases: compatibility between two half-open valleys, and compatibility
between an open valley and a half-open valley. We start with a lemma which
states the compatibility between two open valleys.

Lemma 6 ([1]). Let (a1, a2) and (a′1, a
′
2) be the candidate pairs for open val-

leys uv and u′v′, respectively. (a1, a2) and (a′1, a
′
2) are compatible if and only if

Ca1a2 ∩Ca′
1a

′
2
= ∅, where Ca1a2 := a1u∪uv∪va2 and Ca′

1a
′
2
:= a′1u

′∪u′v′∪va′2.

Following two lemmas describe the compatibilities between two half-open valleys,
and between a half-open valley and an open valley.

Lemma 7. Let (a1, a2, a3) and (a′1, a
′
2, a

′
3) be candidate triples for two half-open

valleys uv and u′v′. Then uv and u′v′ are compatible if

1. All a1, a2 and a3 are contained in one of ∂P\{a′1, a′2, a′3}.
2. Let P1a′ , P2a′ and P3a′ be rectilinear subpolygons of P divided by u′v′ as we

did before. If condition 1 is hold, then the free space of uv is contained in
one of P1a′ , P2a′ and P3a′ that contains a1, a2 and a3 in its boundary.

Proof. Lemma 4 shows that a half-open valley must be connected to three reflex
vertices via 5 reflex edges. Suppose that condition 1 does not hold. It makes some
of reflex edges of uv and u′v′ crossing in their projection on the xy-plane. Among
crossing edges, the lower edge cannot appear as an edge of a realistic roof. Hence,
condition 1 is required.

Figure 6(a) shows the only possible configuration which violates condition 2
while satisfying condition 1. Consider two peak points of uv and u′v′, s and s′.
We cannot get a proper face between s and s′ because of their heights. Therefore
we cannot get a realistic roof which contains uv and u′v′ in this case.

Suppose that uv and u′v′ satisfy both conditions 1 and 2. First, divide P into
three pieces, P1a, P2a and P3a along uv. Next, divide one of P1a, P2a and P3a

which contains a′1, a
′
2 and a′3, into three pieces along u′v′. The latter division

is possible because of condition 2. After two divisions, we get 5 rectilinear sub-
polygons of P , denoted by P1, . . . , P5. By taking the upper envelope of the roofs
R∗(Pi), we can get a realistic roof which contains uv and u′v′.



240 J. Sherette and S.D. Yoon

Lemma 8. Let (a1, a2, a3) be a candidate triple for a half-open valley uv and
(a′1, a

′
2) be a candidate pair for an open valley u′v′. uv and u′v′ are compatible

if

1. Both a′1 and a′2 are contained in one of ∂P\{a1, a2, a3}.
2. Let P1a, P2a, and P3a be rectilinear subpolygon of P divided by uv, as we

did before. If condition 1 is hold, then a′1 and a′2 are contained in one of
P1a, P2a, and P3a, denoted by Pa. If P1a = Pa, then r1 of uv, denoted by
r1a, and the smallest axis parallel rectangle containing a and a′, denoted by
Ba′

1a
′
2
, satisfy the pseudo-disk property: r1a and Ba′

1a
′
2
do not cross.

Proof. Lemma 4 shows that a half-open valley must be connected to three
reflex vertices via 5 reflex edges. Also an open valley must be connected to two
reflex vertices via two reflex edges. As we see in the proof of Lemma 7, violating
condition 1 makes some reflex edges of uv and u′v′ crossing in their projection
on the xy-plane, so condition 1 is required.

Suppose that r1a and Ba′
1a

′
2
violate the pseudo-disk property. From the height

difference between the peak point of uv and the open valley u′v′, we can not get
a proper face between them (Figure 6(b)). Therefore we cannot get a realistic
roof which contains uv and u′v′.

Ahn et al. showed how to construct a realistic roof R over P with a candidate
pair (a′1, a

′
2) for an open valley u′v′ : Divide P into two pieces along Ca′

1a
′
2
; Make

two rectilinear subpolygon P ′
1 and P ′

2 by attaching Ba′
1a

′
2
to each divided part;

Take the upper envelope of R∗(P ′
1) ∪R∗(P ′

2).
Suppose that uv and u′v′ satisfy both condition 1 and 2. First, divide P into

three pieces, P1a, P2a, and P3a. Next, divide Pa which contains a′1 and a′2 into
two pieces by using u′v′. After that, we can get 4 rectilinear subpolygons of P ,
denoted by P1, . . . , P4. By taking the upper envelope of the roofs R∗(Pi), we can
get a realistic roof which contains uv and u′v′.

Let V be a set of candidate pairs and candidate triples. If any two elements of
V satisfy Lemma 6 or Lemma 7 or Lemma 8, we can find a unique realistic roof
R whose valleys correspond to V . Also, we call such V as a compatible set of P .
Now we can conclude the following theorem.

Theorem 1. Let P be a rectilinear polygon with n vertices and V be a compatible
set of k candidate pairs and l candidate triples with respect to P . Then there
exists a unique realistic roof R whose valleys correspond to V . In addition, there
exist k + 2l+ 1 rectilinear polygons P1, . . . , Pk+2l+1contained in P such that

1. ∪iPi = P, i = 1, . . . , k + 2l + 1.
2. R coincides with the upper envelope of R∗(Pi) for all i = 1, . . . , k + 2l+ 1.

5 The Number of Realistic Roofs

We give an upper bound of the number of possible realistic roofs over P in terms
of n. For this, we need a few technical lemmas.



Realistic Roofs over a Rectilinear Polygon Revisited 241

a1

a2

a3

a′1

a′2

u v

v′

∂P1a′\∂P

a1

a2

a3

a′1

a′2

u v

u′
v′

a′3

(a) (b)

s

s′
s

u′

r1a r1a

Ba′1a
′
2

Fig. 6. (a) r1a, r1 of uv, meets ∂P1a′\∂P . Between two peak points s and s′, we
cannot construct a roof face. (b) Between the peak point s the open valley uv, we
cannot construct a roof face.

Lemma 9. Let (a1, a2, a3) be a candidate triple, where a1 and a2 have opposite
orientations. Then (a1, a2) is also a candidate pair.

Proof. The candidate triple (a1, a2, a3) admits a half open valley uv. The free
space of uv containsBa1a2 , so a1 and a2 admit an open valley u′v′ related to uv.

Lemma 10. Let (a1, a2, a3) be a candidate triple for a a half-open valley uv,
where a1 and a2 have opposite orientations. If a candidate pair (a4, a5) is com-
patible with (a1, a2, a3), then (a3, a4, a5) is not a candidate triple.

Proof. Without loss of generality, assume that the three reflex vertices a1, a2, a3
and the valley uv located as in Figure 7(a). By Lemma 8, both a4 and a5 must
be contained one of three rectilinear subpolygons of P , P1, P2 and P3 defined
by uv, as we did before. Assume to the contrary that (a3, a4, a5) is a candidate
triple for a half-open valley u′v′.

Case 1. a4, a5 ∈ ∂P3. There is only one possible configuration (Figure 7(b)).
By some careful case analysis, we have dh(a5, a3) > dh(a4, a3) > dv(a4, a3),
which makes a4 be contained in the interior of the free space of u′v′.

Case 2. a4, a5 ∈ ∂P2. There is no possible configuration.
Case 3. a4, a5 ∈ ∂P1. There are two possible configurations. In case of Figure

7(c), we have dh(a5, a3) > dh(a1, a3) > dv(a1, a3), which makes a1 be con-
tained in the interior of the free space of u′v′. In case of Figure 7(d), we have
dv(a4, a3) > dh(a1, a3) > dv(a1, a3), which again makes a1 be contained in the
interior of the free space of u′v′.

Now we can find an upper bound of the number of realistic roofs over P .

Theorem 2. Let P be a rectilinear polygon with n vertices. There are at most
1.3211m

(
m

	m
2 

)
distinct realistic roofs over P , where m = n−4

2 .



242 J. Sherette and S.D. Yoon

a1

a2

a3 a1

a2

a3 a1

a2

a3

a4

a5

a3

a1

∂P3
a5

a4

∂P1 ∂P1

a5

a4

(a) (b) (c) (d)

∂P1

∂P3

∂P2u v

Fig. 7. Illustration of the proof of Lemma 10. Gray regions are free spaces.

Proof. Let R be a realistic roof over P with a half-open valley uv. By Lemma 9,
we can get an open valley u′v′ related to uv. Therefore, we can get a new realistic
roof by replacing uv to u′v′. By repeating this process, we can get a realistic roof
R′ which does not contain any half-open valleys. It means that for any realistic
roof R over P , there exist a unique realistic roof R′ which has no half-open
valleys. We can get the number of distinct realistic roofs over P with two steps:
counting the number of realistic roofs R′ over P which has no half-open valleys
and counting the number of realistic roofs R which can be transformed to each
R′ by replacing its half-open valleys to related open valleys.

Ahn et al. [1,2] proved that the number of realistic roofs R′ over P which has
no half-open valleys is at most

(
m

	m
2 

)
, where m = n−4

2 . We calculate the number

of realistic roofs R over P corresponding to each R′. Suppose that R′ contains k
open valleys, u1v1, u2v2, . . . , ukvk. P has m−2k reflex vertices that are not used
to make open valleys. Let us call these reflex vertices as free vertices of R′. By
Lemma 10, each of free vertices can make a half-open valley with at most one
valley of u1v1, u2v2, . . . , ukvk. Let xi, 1 ≤ i ≤ k, be the number of free vertices
of R′ which can make a half-open valley with uivi. Then the number of realistic
roofs that can be transformed to R′ is at most (x1+1)(x2+1) . . . (xk+1), where
x1 + x2 + . . . + xk ≤ m − 2k. From the inequality of arithmetic and geometric
means, we can get (x1 +1)(x2 +1) . . . (xk +1) ≤ (x1+x2+...+xk+k

k )k ≤ (m−k
k )k =

((mk − 1)
k
m )m. For a positive real number x, sup{(x − 1)

1
x } ≈ 1.3210997 . . ., so

((mk − 1)
k
m )m < 1.3211m. Therefore, we can get at most 1.3211m different re-

alistic roofs over P corresponding to each R′, and the total number of distinct
realistic roofs over P is at most 1.3211m

(
m

	m
2 

)
.

6 Algorithm

In this section, we will present an algorithm that generates all possible realistic
roofs over given rectilinear polygon P . Ahn et al. [1,2] suggested an efficient
algorithm that generates all realistic roofs which do not have half-open valleys.
Let us call the algorithm Ahn’s algorithm. Ahn’s algorithm uses O(n4) time
as preprocessing and generates realistic roofs one by one in O(1) time each.



Realistic Roofs over a Rectilinear Polygon Revisited 243

We also use O(n4) preprocessing time. P has O(n3) triples and O(n2) pairs of
reflex vertices, and checking whether each triple and pair is a candidate triple
or candidate pair takes O(n) time. After O(n4) time, we can get all candidate
triples and pairs of P . Create an empty list of reflex vertices for each candidate
pair and add a reflex vertex ai to a candidate pair’s list if ai and the candidate
pair form a candidate triple.

Our algorithm works as follows. Run Ahn’s algorithm and get a realistic roof
R with k open valleys u1v1, . . . , ukvk. A candidate pair (ai, a

′
i) corresponding

to uivi, 1 ≤ i ≤ k, has a list of reflex vertices and let xi be a reflex vertex
chosen from the list. If we do not choose any vertex from the list of (ai, a

′
i),

let xi = ∅. For the chosen vertices x1, . . . , xk, check whether the set of candi-
date pairs and triples V = {(a1, a′1, x1), . . . , (ak, a

′
k, xk)} is a compatible set of

P where (ai, a
′
i, ∅) = (ai, a

′
i). If (x1, . . . , xk) = (∅, . . . , ∅), R is the realistic roof

whose valleys correspond to V . By changing (x1, . . . , xk) one by one, checking
the compatibility of V takes O(k) time. Suppose that (. . . , xi, . . .) is changed to
(. . . , x′

i, . . .). We already know compatibilities between valleys which are induced
by (aj , a

′
j , xj) for j = 1, . . . , k and keep the total number of “conflicts” between

the valleys. Check compatibilities between the valley induced by (ai, a
′
i, xi) and

the others, and decrease the total number of conflicts when it is not compatible
with others. Next, check compatibilities between the valley induced by (ai, a

′
i, x

′
i)

and the others, and increase the total number of conflicts when it is not compati-
ble with others. After that, if the total number of conflicts is zero, then the set V
is compatible for P . Therefore, our algorithm finds all realistic roofs correspond
to each R in O(m1.3211m) time.

Theorem 3. Given a rectilinear polygon P with n vertices, m of which are
reflex vertices, after O(n4)-time preprocessing, all the compatible sets of P can
be enumerated in O(m1.3211m

(
m

	m
2 

)
).

References

1. Ahn, H.-K., Bae, S.W., Knauer, C., Lee, M., Shin, C.-S., Vigneron, A.: Generating
realistic roofs over a rectilinear polygon. In: Asano, T., Nakano, S.-I., Okamoto, Y.,
Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 60–69. Springer, Heidelberg
(2011)

2. Ahn, H.-K., Bae, S.W., Knauer, C., Lee, M., Shin, C.-S., Vigneron, A.: Realistic
roofs over a rectilinear polygon. Submitted to a Journal. Personal Communication

3. Aichholzer, O., Albertsa, D., Aurenhammer, F., Gärtner, B.: A novel type of skele-
ton for polygons. J. Universal Comput. Sci. 1, 752–761 (1995)

4. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures
in the plane. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090,
pp. 117–226. Springer, Heidelberg (1996)

5. Brenner, C.: Interactive modelling tools for 3D building reconstruction. In: Fritsch,
D., Spiller, R. (eds.) Photogrammetric Week 1999, pp. 23–34 (1999)

6. Brenner, C.: Towards fully automatic generation of city models. Int. Archives of
Photogrammetry and Remote Sensing XXXIII(pt. B3), 85–92 (2000)



244 J. Sherette and S.D. Yoon

7. Khoshelham, K., Li, Z.L.: A split-and-merge technique for automated reconstruc-
tion of roof planes. Photogrammetric Engineering and Remote Sensing 71(7),
855–863 (2005)

8. Krauß, T., Lehner, M., Reinartz, P.: Generation of coarse 3D models of urban areas
from high resolution stereo satellite images. Int. Archives of Photogrammetry and
Remote Sensing XXXVII, 1091–1098 (2008)

9. Laycock, R.G., Day, A.M.: Automatically generating large urban environments
based on the footprint data of buildings. In: Proc. 8th ACM Sympos. Solid Model.
Appl., pp. 346–351 (2003)

10. Sohn, G., Huang, X.F., Tao, V.: Using a binary space partitioning tree for recon-
structing polyhedral building models from airborne lidar data. Photogrammetric
Engineering and Remote Sensing 74(11), 1425–1440 (2008)



Parametric Power Supply Networks

(Extended Abstract)

Shiho Morishita and Takao Nishizeki

Department of Informatics, Faculty of Science and Technology
Kwansei Gakuin University

2-1 Gakuen, Sanda 669-1337, Japan
morishita0731@gmail.com, nishi@kwansei.ac.jp

Abstract. Suppose that each vertex of a graph G is either a supply
vertex or a demand vertex and is assigned a supply or a demand. All
demands and supplies are nonnegative constant numbers in a steady
network, while they are functions of a variable λ in a parametric net-
work. Each demand vertex can receive “power” from exactly one supply
vertex through edges in G. One thus wishes to partition G to connected
components by deleting edges from G so that each component has ex-
actly one supply vertex whose supply is at least the sum of demands
in the component. The “partition problem” asks whether G has such a
partition. If G has no such partition, one wishes to find the maximum
number r∗, 0 ≤ r∗<1, such that G has such a partition when every de-
mand is reduced to r∗ times the original demand. The “maximum supply
rate problem” asks to compute r∗. In this paper, we deal with a network
in which G is a tree, and first give a polynomial-time algorithm for the
maximum supply rate problem for a steady tree network, and then give
an algorithm for the partition problem on a parametric tree network,
which takes pseudo-polynomial time if all the supplies and demands are
piecewise linear functions of λ.

1 Introduction

Consider a graph G in which each vertex is either a supply vertex or a demand
vertex and is assigned a supply or a demand. Such a graph G is called a power
supply network. All the supplies and demands are nonnegative constant numbers
in an ordinary network, called a steady network, which has been considered so
far [6,7,8,9,10]. This paper introduces a parametric power supply network, in
which all the supplies and demands are functions of a parameter λ. The supply
of a vertex v is denoted by sv(λ) and the demand by dv(λ). Figure 1 depicts
steady networks; each supply vertex is drawn by a square, each demand vertex
by a circle, and the supply or demand is written inside. Figure 2(a) depicts a
parametric network, whose variable demands dv3(λ) and dv4(λ) are drawn in
Fig. 2(b).

Each demand vertex v must receive an amount dv(λ) of “power” or “com-
modity” from exactly one supply vertex through edges in a network G, while

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 245–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

morishita0731@gmail.com,
nishi@kwansei.ac.jp


246 S. Morishita and T. Nishizeki

each supply vertex v can supply, to demand vertices, at most an amount sv(λ)
of “power” in total. One thus wishes to partition G into connected components
by deleting edges from G so that each component C has exactly one supply
vertex whose supply is at least the sum of all demands in C. Such a partition
is called a feasible partition of G. The partition problem asks, for each value of
λ, whether G has a feasible partition. If G has no feasible partition for some
value of λ, one wishes to find the maximum number r∗, 0 ≤ r∗ < 1, such that G
has a feasible partition for the value if every demand dv(λ) is uniformly reduced
to a new demand d′v(λ) = r∗ · dv(λ). We call r∗ the maximum supply rate, and
call the problem of computing r∗ the maximum supply rate problem. The maxi-
mum supply rate problem for a steady network is a special case of the partition
problem for a parametric network, as will be observed in Section 2.

The steady network in Fig. 1(a) has no feasible partition, and the maximum
supply rate r∗ is 0.7; Fig. 1(b) depicts a new network with d′v = 0.7 · dv and
illustrates a feasible partition by dotted lines.

The partition problem and the maximum supply rate problem have some
applications to the power supply problem for power delivery networks, in which
a supply or demand may depend on a parameter λ such as time, temperature, oil
price, etc.[1,11,12,13]. The partition problem is NP-complete even for a steady
network on a series-parallel graph, because the “set partition problem” [5, p. 47]
can be easily reduced to the partition problem for a steady network on a complete
bipartite graph K2,n−2, which is a series-parallel graph [9]. Therefore, the max-
imum supply rate problem is NP-hard even for series-parallel steady networks.
Hence, it is very unlikely that these problems can be solved in polynomial time
even for series-parallel steady networks. However, the partition problem can be
solved for steady tree networks in linear time [9].

In this paper, we first give a polynomial-time algorithm to solve the maximum
supply rate problem for a steady tree network T . It takes time O(nL), where n is
the number of vertices in T and L is the logarithmic size of T . We then present
an algorithm to solve the partition problem for a parametric tree network. It
takes pseudo-polynomial time if all supplies and demands are piecewise linear
functions with integer coefficients. More precisely, it takes time O(nW 2), where
W is the sum of absolute values of all integer coefficients of supplies and demands.

7

8

14

10

6

10

4

15 12

1812

2 42

1428

(a)

4.9

5.6

9.8

7.0

4.2

42

14287.0

2.8 1.4

8.4

10.5 8.4

12.6

(b)

Fig. 1. (a) Steady tree network T with no feasible partition, and (b) new network
constructed from T for the maximum supply rate r∗ = 0.7



Parametric Power Supply Networks 247

2

���
���

88��
��

�� ��

�� �

��		


(a)

�
��

�  , �
��
���

0
�

8

3

3 6

10

6

10

�
��
���

�
��
���

(b)

�
��

0
�

8

3

3 6

6

10

(c)

0
�

8

2

10

12

10

�����

(d)

Fig. 2. (a) Parametric tree network T rooted at v5, (b) variable demands dv3(λ) and
dv4(λ), (c) surplus fT (λ), and (d) deficit gT (λ) of T

2 Maximum Supply Rate Problem

In this section we deal with steady networks in which all supplies and demands
are positive integers, and show that the maximum supply rate problem can be
solved for steady tree networks in polynomial time.

Let G = (V,E) be a steady network, where V is the set of vertices and E
is the set of edges of G. Let Vs be the set of all supply vertices, and let Vd be
the set of all demand vertices, then V = Vs

⋃
Vd and Vs

⋂
Vd = ∅. Let n = |V |

and ns = |Vs|. We denote by dv the positive integral demand of a demand vertex
v ∈ Vd, and by sv the positive integral supply of a supply vertex v ∈ Vs. The
partition problem asks whether V can be partitioned to a number ns of subsets
V1, V2, · · · , Vns such that each Vi, 1 ≤ i ≤ ns, induces a subtree of T , contains
exactly one supply vertex, say u, and



248 S. Morishita and T. Nishizeki

∑
v∈Vi/{u}

dv ≤ su.

We call such a partition of V a feasible partition of G. Ito et al. [9] gave an
algorithm to solve the partition problem in time O(n) if G is a tree. We call the
algorithm.

Partition. Note that our parametric algorithm in Section 3 also runs in time
O(n) for a steady tree network.

The maximum supply rate problem for G asks to find the maximum number
r(> 0) such that G has a feasible partition if the demand dv is replaced by a new
demand d′v = r ·dv for every demand vertex v. We call the maximum value r∗ of
such a number r the maximum supply rate of G. Thus the maximum supply rate
r∗ may be greater than 1. When r∗ < 1, the value 1− r∗ is called the minimum
power saving rate of G.

The maximum supply rate problem for a steady network G can be formulated
as a partition problem for a parametric network Gpara, in which the demand of
every demand vertex v is a linear function dv(λ) = dv ·λ and the supply of every
supply vertex u is a constant function su(λ) = su. The maximum supply rate r∗

of G is equal to the maximum value of λ for which Gpara has a feasible partition.
Obviously, the following lemma holds.

Lemma 1. Suppose that a steady network G has a feasible partition when
every demand dv is replaced by d′v = r · dv for a positive real number r. Then,
for any number r′ with 0 ≤ r′ ≤ r, G has a feasible partition when every demand
dv is replaced by d′v = r′ · dv.

One can thus compute r∗ for a steady tree network T by a binary search on the
infinite set of all positive real numbers r with the aid of the algorithmPartition.
However, such a simple binary search either cannot exactly compute r∗ or does
not run in polynomial time. The idea of our algorithm is to notice that r∗ is a
rational number, as follows.

Lemma 2. Let r∗ be the maximum supply rate of a steady network G = (V,E),
and let S =

∏
v∈Vs

sv and D =
∑

v∈Vd
dv. Then

r∗ ∈ {S/z| z is an integer and S ·D ≥ z ≥ 1}.

Proof. Since r∗ is the maximum supply rate, there is a partition of V to subsets
V1, V2, · · · , Vns such that each Vi, 1 ≤ i ≤ ns, contains exactly one supply vertex,
say u, and ∑

v∈Vi/{u}
r∗ · dv ≤ su.



Parametric Power Supply Networks 249

The inequality above holds in equality for some i, 1 ≤ i ≤ ns, that is,

r∗
∑

v∈Vi/{u}
dv = su;

otherwise, r∗ would not be the maximum supply rate. Let z∗ = S/r∗, then from
the two equations above we have

z∗ =

(∏
v∈Vs

sv

su

)
·

∑
v∈Vi/{u}

dv.

Thus z∗ is an integer, and 1 ≤ z∗ ≤ S·D. Therefore, r∗ (= S/z∗) is equal to S/z
for some integer z, 1 ≤ z ≤ S ·D. ��

Thus, one can find the maximum supply rate r∗ of a steady tree network T =
(V,E) by a binary search on the finite set {S/z| S ·D ≥ z ≥ 1} of rational
numbers with the aid of Partition in time O(n log2(S ·D)).

The logarithmic size L of a steady network T is

L =
∑
u∈Vs

�log2(sv + 1)�+
∑
v∈Vd

�log2(dv + 1)�,

and clearly log2(S ·D) ≤ L. We thus have the following theorem.

Theorem 1. The maximum supply rate problem can be solved in time O(nL)
for a steady tree network T , where n is the number of vertices and L is the
logarithmic size of T .

3 Parametric Networks

In this section we present an algorithm to solve the partition problem for a
parametric tree network T .

3.1 Definitions

One may assume without loss of generality that a tree T is rooted at an arbi-
trarily chosen vertex vroot. We also assume that all supplies sv(λ) and demands
dv(λ) in T are functions of a common nonnegative real variable λ(≥ 0).

A feasible partition πλ = (V1, V2, · · · , Vns) of a rooted tree network T = (V,E)
for a value λ is a partition of V to a number ns of subsets V1, V2, · · · , Vns such
that

(a) the root of T is contained in V1, that is, vroot ∈ V1; and
(b) each Vi, 1 ≤ i ≤ ns, induces a subtree of T , contains exactly one

supply vertex, say u, and∑
v∈Vi/{u}

dv(λ) ≤ su(λ).



250 S. Morishita and T. Nishizeki

The partition problem asks to find every value of λ for which T has a feasible
partition. We actually find every interval of nonnegative real numbers such that
T has a feasible partition πλ for each value λ in the interval.

For the network T in Fig. 2(a), v5 = vroot, sv1(λ) = sv2(λ) = 8, dv5(λ) = 2,
and the variable demands dv3(λ) and dv4(λ) are drawn in Fig. 2(b). A feasible
partition of T for 0 ≤ λ ≤ 6 is indicated by dotted lines in Fig. 2(a). The solution
for T is a set of two intervals [0, 8] and [10,∞).

We find a feasible partition of T by the bottom-up computation on a rooted
tree T . More precisely, we find a feasible partition and an extended partition,
called a “root-feasible partition,” from those of smaller subtrees.

A root-feasible partition πλ = (V1, V2, · · · , Vns+1) of T for λ is a partition of
V to a number ns + 1 of subsets V1, V2, · · · , Vns+1 such that

(a) vroot ∈ V1 and V1 ∩ Vs = ∅; and
(b) each Vi, 2 ≤ i ≤ ns + 1, induces a subtree of T , contains exactly one

supply vertex, say u, and∑
v∈Vi/{u}

dv(λ) ≤ su(λ).

Thus, T has no root-feasible partition for any λ if vroot is a supply vertex. (A
root-feasible partition of T in Fig. 2(a) for 0 ≤ λ ≤ 8 is ({v5},{v1, v3},{v2, v4}).)

Let πλ = (V1, V2, · · · , Vns) be a feasible partition of T for a value λ, and let
u be the supply vertex in V1. Then the surplus surp(πλ) of πλ is

surp(πλ) = su(λ)−
∑

v∈V1/{u}
dv(λ).

We now define a function fT (λ), called the surplus of a parametric tree network
T, as follows:

fT (λ) = max
πλ

surp(πλ)

where the maximum is taken over all feasible partitions πλ of T for λ. Let fT (λ) =
−∞ if T has no feasible partition for λ. Intuitively, fT (λ) is the maximum amount
of power that can be delivered outside T through the root when all demand
vertices are supplied power. (Figure 2(c) depicts fT (λ) for T in Fig. 2(a).)

Let πλ = (V1, V2, · · · , Vns+1) be a root-feasible partition of T for a value λ.
Then vroot ∈ V1, vroot is a demand vertex, and V1 contains no supply vertex.
The deficit def(πλ) of πλ is

def(πλ) =
∑
v∈V1

dv(λ).

We now define a function gT (λ), called the deficit of T , as follows:

gT (λ) = min
πλ

def(πλ)



Parametric Power Supply Networks 251

where the minimum is taken over all root-feasible partitions πλ of T for λ. Let
gT (λ) = +∞ if T has no root-feasible partition for λ. Thus gT (λ) = +∞ for any
λ if vroot is a supply vertex. Intuitively, gT (λ) is the minimum amount of power
that must be delivered inside T through vroot when vroot and possibly some other
demand vertices are supplied power from outside. (Figure 2(d) depicts gT (λ) for
T in Fig. 2(a).)

We similarly define the surplus fT ′(λ) and deficit gT ′(λ) for a rooted subtree
T ′ of T .

For a vertex v of T , we denote by Tv the maximum subtree of T rooted at
v. Let v1, v2, · · · , vl be the children of v in T , and let ei, 1 ≤ i ≤ l, be the edge
joining v and vi. Let Tvi , 1 ≤ i ≤ l, be the maximum subtree of T rooted at vi.
We denote by T i

v the subtree of Tv which consists of vertex v, edges e1, e2, · · · , ei
and subtrees Tv1 , Tv2 , · · · , Tvi . In Fig. 3 Tv and T i

v are surrounded by dotted
lines. Clearly T = Tvroot and Tv = T l

v. We denote by T 0
v the subtree consisting

of a single vertex v.

3.2 Algorithm

Our algorithm computes the surplus fTv (λ) and deficit gTv (λ) for each vertex
v of T from leaves to the root of T by means of a dynamic programming ap-
proach, as described in (i)-(iii) below. From the surplus fT (λ) of T = Tvroot , one
can easily find every interval of nonnegative real numbers such that fT (λ) ≥ 0
for every value λ in the interval. We output the set of all these intervals as the
solution of the partition problem of a parametric tree network T .

(i) We first compute the surplus and deficit of T 0
v for each vertex v of T as

follows. (Remember that T 0
v consists of a single vertex v.) If v is a supply vertex,

then fT 0
v
(λ) = sv(λ) and gT 0

v
(λ) = +∞ for every λ. If v is a demand vertex,

then fT 0
v
(λ) = −∞ and gT 0

v
(λ) = dv(λ) for every λ. Since Tv = T 0

v for every leaf
v of T , we have thus computed fTv and gTv for every leaf v of T .

・・・・・・

Fig. 3. Rooted subtrees



252 S. Morishita and T. Nishizeki

��

�

(a)

�

��

(b)

��

�

(c)

Fig. 4. Feasible partitions πλ of T i
v

(ii) We next compute the surplus and deficit of a tree T i
v, 1 ≤ i ≤ l, for each

internal vertex v of T from those of its subtrees T i−1
v and Tvi , where l is the

number of the children of Tv. Note that Tv = T l
v and that T i

v is obtained from
T i−1
v and Tvi by joining v and vi as illustrated in Fig. 4.
We now explain how to compute the surplus fT i

v
of T i

v. Let ni be the number

of supply vertices in T i
v. Assume that fT i

v
(λ) �= −∞, that is, T i

v has a feasible

partition for λ. Let πλ = (V1, V2, · · · , Vni) be a feasible partition of T i
v such that

fT i
v
(λ) = surp(πλ). Then V1 contains the root v of T i

v, as illustrated in Fig. 4
where πλ is indicated by dotted lines and a supply vertex is drawn by a square.
There are the following three cases to consider.

Case (a): vi /∈ V1.
In this case, fTvi

(λ) ≥ 0, and πλ induces feasible partitions of T i−1
v and Tvi . (See

Fig. 4(a).) For this case we compute the following function fa
T i
v
from fT i−1

v
and

fTvi
:

fa
T i
v
(λ) =

{
fT i−1

v
(λ) if fTvi

(λ) ≥ 0;

−∞ otherwise.



Parametric Power Supply Networks 253

Case (b): vi ∈ V1, and the supply vertex u in V1 is contained in T i−1
v .

In this case, fT i−1
v

(λ) ≥ gTvi
(λ), and πλ induces a feasible partition of T i−1

v

and a root-feasible partition of Tvi . (In Fig. 4(b) the arrow attached to edge (v, vi)
indicates the direction of power flow through it.) For this case we compute the
following function fb

T i
v
:

fb
T i
v
(λ) =

{
fT i−1

v
(λ)− gTvi

(λ) iffT i−1
v

(λ) ≥ gTvi
(λ);

−∞ otherwise.

Case (c): vi ∈ V1, and the supply vertex u in V1 is contained in Tvi .
In this case, gT i−1

v
(λ) ≤ fTvi

(λ), and πλ induces a root-feasible partition of

T i−1
v and a feasible partition of Tvi . (See Fig. 4(c).) For this case we compute

the following function f c
T i
v
:

f c
T i
v
(λ) =

{
−gT i−1

v
(λ) + fTvi

(λ) if gT i−1
v

(λ) ≤ fTvi
(λ);

−∞ otherwise.

From the three functions fa
T i
v
, fb

T i
v
and f c

T i
v
above, we can now compute fT i

v
as

follows:
fT i

v
(λ) = max{fa

T i
v
(λ), fb

T i
v
(λ), f c

T i
v
(λ)}.

One can similarly compute the deficit gT i
v
of T i

v. The detail is omitted in this
extended abstract.

(iii) Repeating the computation in (ii) above for each edge (v, vi) of T , we
can compute fT (λ) and gT (λ).

3.3 Computation Time

In this subsection we assume that all the supplies and demands are piecewise
linear functions of a common variable λ(≥ 0), and analyze the computation time
of our algorithm.

A breakpoint of a piecewise linear function f is defined to be a point λ at
which the slope of the curve of f changes, and the number of breakpoints of
f is denoted by p(f). For the sake of convenience, we assume that λ = 0 is a
breakpoint of f . (For example, p(dv3(λ)) = 2 and p(fT (λ)) = 5 for dv3(λ) and
fT (λ) in Fig. 2 where a breakpoint is drawn as a black dot.) Then the size N of
a parametric tree network T = (V,E) is

N =
∑
v∈Vs

p(sv(λ)) +
∑
v∈Vd

p(dv(λ)).

We define P as follows:

P = max
T ′

max{p(fT ′(λ)), p(gT ′ (λ))}



254 S. Morishita and T. Nishizeki

where T ′ runs over all rooted subtrees of T . Note that fT ′ and gT ′ are piecewise
linear functions.

Clearly one can compute the surplus fT 0
v
(λ) and deficit gT 0

v
(λ) of all vertices

v in T in time O(N) as in (i) of Sect. 3.2.
One can compute fT i

v
and gT i

v
for tree T i

v from those for its subtrees T i−1
v and

Tvi in time O(P ) as in (ii) of Sect. 3.2. (Note that the maximum and minimum of
two piecewise linear functions can be computed by finding the upper and lower
envelopes of the two piecewise linear curves, respectively.) The computation of
(ii) occurs n− 1 times since T has n− 1 edges. Hence, one can compute fT (λ)
and gT (λ) in time O(nP ). From fT (λ) one can find, in time O(P ), all intervals
such that T has a feasible partition πλ for any value λ in each integral. Thus the
partition problem can be solved in time O(nP ).

P may be greater than N . (For example, neither the breakpoint λ = 3 nor λ =
8 of fT (λ) is a breakpoint of any supply or demand of T in Fig. 2(a).) However,
P is often bounded by a polynomial in N in many practical applications. In
particular, if T is a steady network then P = 1 and hence our algorithm takes
time O(n). If all supplies and demands are staircase functions, then P ≤ N and
hence our algorithm takes time O(nN).

3.4 Bounds on P

In this subsection we assume that all the supplies and demands of T are piecewise
linear functions with integer coefficients.

Let B be the number of breakpoints of supplies and demands, and let
p1, p2, · · · , pB be these points. (For T in Fig. 2(a) B = 3 as indicated by three
black dots in Fig. 2(b).) One may assume that 0 = p1 < p2 < · · · < pB, and let
pB+1 =∞. We now assume that

(a) if v is a supply vertex and pi < λ < pi+1, 1 ≤ i ≤ B, then

sv(λ) = aviλ+ bvi

for some integers avi and bvi (possibly after multiplying them by the
least common multiple of denominators); and

(b) if v is a demand vertex and pi < λ < pi+1, 1 ≤ i ≤ B, then

dv(λ) = aviλ+ bvi

for some integers avi and bvi.

Let

W =

B∑
i=1

∑
v∈V

(|avi|+ |bvi|).

Then we show that P is bounded by a pseudo-polynomial, that is, P is bounded
by a polynomial in W . More precisely, we have the following lemma, whose proof
is omitted in this extended abstract.



Parametric Power Supply Networks 255

Lemma 3. P = O(W 2).
From the lemma above we have the following theorem.

Theorem 2. The partition problem for a parametric tree network can be solved
in time O(nW 2) if all supplies and demands are piecewise linear functions with
integer coefficients, where W is the sum of absolute values of all coefficients of
supplies and demands.

Thus, our algorithm runs in polynomial time if W is polynomial in N .

4 Conclusions

In the paper we first showed that the maximum supply rate problem for a steady
tree network T can be solved in time O(nL), where n is the number of vertices in
T and L is the logarithmic size of T . It would be interesting to obtain a strongly
polynomial-time algorithm for the problem, whose computation time is bounded
by a polynomial only in n.

We then gave an algorithm to solve the partition problem for a parametric tree
network. The algorithm runs in pseudo-polynomial time if all the supplies and
demands are piecewise linear functions with integer coefficients. We assumed for
the sake of convenience that the supplies and demands are functions of a single
variable λ. However, our algorithm in Section 3.2 can be easily extended to the
case where the supplies and demands are functions of two or more variables.

Kawabata and Nishizeki [10] considered a steady tree network in which each
edge is also assigned a constant edge-capacity, and gave a linear algorithm to
solve the partition problem. Our algorithm for the maximum supply rate prob-
lem in Section 2 can be easily extended to the case of a steady tree network with
constant edge-capacity, and our algorithm for the partition problem in Section
3.2 can be extended to the case of a parametric tree network in which edge capac-
ity is also a function of λ. Note that our problems with (constant or functional)
edge-capacity cannot be formulated by the multi-source multi-sink parametric
flow problem or the unsplitable parametric flow problem [2,3,4,11].

If a tree network T has no feasible partition, one would like to solve the
maximum partition problem, which asks to find a partition of T to subtrees such
that

(a) each subtree contains at most one supply vertex;
(b) if a subtree contains a supply vertex, then the supply is no less than

the sum of demands in the subtrees; and
(c) the sum of demands in all subtrees, each containing a supply vertex,

is maximum among all these partitions of T .

There are fully polynomial-time approximation schemes (FPTAS) for the prob-
lem on a steady tree network without edge-capacity [8] and on a steady tree
network with constant edge-capacity [10]. It would be interesting to obtain an
FPTAS for the problem on a parametric tree network with or without edge-
capacity.



256 S. Morishita and T. Nishizeki

Acknowledgments. This research was supported by MEXT-Supported Pro-
gram for the Strategic Research Foundation at Private Universities.

References

1. Boulaxis, N.G., Papadopoulos, M.P.: Optimal feeder routing in distribution system
planning using dynamic programming technique and GIS facilities. IEEE Trans.
Power Delivery 17(1), 242–247 (2002)

2. Chekuri, C., Ene, A., Korula, N.: Unsplittable flow in paths and trees and column-
restricted packing integer programs. In: Dinur, I., Jansen, K., Naor, J., Rolim,
J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 42–55. Springer,
Heidelberg (2009)

3. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree.
ACM Trans. on Algorithms 3, Article 3 (2007)

4. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

6. Ito, T., Demaine, E.D., Zhou, X., Nishizeki, T.: Approximability of partitioning
graphs with supply and demand. Journal of Discrete Algorithms 6, 627–650 (2008)

7. Ito, T., Hara, T., Zhou, X., Nishizeki, T.: Minimum cost partitions of trees with
supply and demand. Algorithmica 64, 400–415 (2012)

8. Ito, T., Zhou, X., Nishizeki, T.: Partitioning graphs of supply and demand. Discrete
Applied Math. 157, 2620–2633 (2009)

9. Ito, T., Zhou, X., Nishizeki, T.: Partitioning trees of supply and demand. Int. J.
Found. Comput. Sci. 16, 803–827 (2005)

10. Kawabata, M., Nishizeki, T.: Partitioning trees with supply, demand and edge-
capacity. In: Proc. of ISORA 2011. Lecture Notes in Operation Research, vol. 14,
pp. 51–58 (2011); also IEICE Trans. on Fundamentals of Electronics, Communica-
tions and Computer Science (to appear)

11. Minieka, E.: Parametric network flows. Operation Research 20(6), 1162–1170
(1972)

12. Morton, A.B., Mareels, I.M.Y.: An efficient brute-force solution to the network
reconfiguration problem. IEEE Trans. Power Delivery 15, 996–1000 (2000)

13. Teng, J.-H., Lu, C.-N.: Feeder-switch relocation for customer interruption cost
minimization. IEEE Trans. Power Delivery 17, 254–259 (2002)



Approximating the Minimum Independent

Dominating Set in Perturbed Graphs

Weitian Tong, Randy Goebel, and Guohui Lin�

Department of Computing Science
University of Alberta

Edmonton, Alberta T6G 2E8, Canada
{weitian,rgoebel,guohui}@ualberta.ca

Abstract. We investigate the minimum independent dominating set in
perturbed graphs g(G, p) of input graph G = (V,E), obtained by negat-
ing the existence of edges independently with a probability p > 0. The
minimum independent dominating set (MIDS) problem does not admit a
polynomial running time approximation algorithm with worst-case per-
formance ratio of n1−ε for any ε > 0. We prove that the size of the
minimum independent dominating set in g(G, p), denoted as i(g(G, p)),
is asymptotically almost surely in Θ(log |V |). Furthermore, we show that

the probability of i(g(G, p)) ≥
√

4|V |
p

is no more than 2−|V |, and present

a simple greedy algorithm of proven worst-case performance ratio
√

4|V |
p

and with polynomial expected running time.

Keywords: Independent set, independent dominating set, dominating
set, approximation algorithm, perturbed graph, smooth analysis.

1 Introduction

An independent set in a graphG = (V,E) is a subset of vertices that are pair-wise
non-adjacent to each other. The independence number of G, denoted by α(G),
is the size of a maximum independent set in G. One close notion to independent
set is the dominating set, which refers to a subset of vertices such that every
vertex of the graph is either in the subset or is adjacent to some vertex in the
subset. In fact, an independent set becomes a dominating set if and only if it is
maximal. The size of a minimum independent dominating set of G is denoted by
i(G), while the domination number of G, or the size of a minimum dominating
set of G, is denoted by γ(G). It follows that γ(G) ≤ i(G) ≤ α(G).

Another related notion is the (vertex) coloring of G, in which two adjacent
vertices must be colored differently. Note that any subset of vertices colored
the same in a coloring of G is necessarily an independent set. The chromatic
number χ(G) of G is the minimum number of colors in a coloring of G. Clearly,
α(G) · χ(G) ≥ |V |.
� Correspondence author.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 257–267, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



258 W. Tong, R. Goebel, and G. Lin

The independence number α(G) and the domination number γ(G) (and the
chromatic number χ(G)) have received numerous studies due to their central
roles in graph theory and theoretical computer science. Their exact values are
NP-hard to compute [4], and hard to approximate. Raz and Safra showed that the
domination number cannot be approximated within (1− ε) log |V | for any fixed
ε > 0, unless NP ⊂ DTIME(|V |log log |V |) [9,3]; Zuckerman showed that neither
the independence number nor the chromatic number can be approximated within
|V |1−ε for any fixed ε > 0, unless P = NP [14]; for i(G), Halldórsson proved that
it is also hard to approximate within |V |1−ε for any fixed ε > 0, unless NP ⊂
DTIME(2o(|V |)) [5].

The above inapproximability results are for the worst case. For analyzing the
average case performance of approximation algorithms, a probability distribution
of the input graphs must be assumed and the most widely used distribution of
graphs on n vertices is the random graph G(n, p), which is a graph on n labeled
vertices 1, 2, . . . , n, and each edge is chosen to be an edge of G independently
and with a probability p, where 0 ≤ p = p(n) ≤ 1. A graph property holds
asymptotically almost surely (a.a.s.) in G(n, p) if the probability that a graph
drawn according to the distribution G(n, p) has the property tends to 1 as n
tends to infinity [1].

Let Ln = log1/(1−p) n. Bollobás [2] and �Luczak [7] showed that a.a.s.
χ(G(n, p)) = (1 + o(1))n/Ln for a constant p and χ(G(n, p)) = (1 +
o(1))np/(2 ln(np)) for c/n ≤ p(n) ≤ o(1) where c is a constant. It follows
from these results that a.a.s. α(G(n, p)) = (1 − o(1))Ln for a constant p and
α(G(n, p)) = (1 − o(1))2 ln(np)/p for C/n ≤ p ≤ o(1). The greedy algorithm,
which colors vertices of G(n, p) one by one and picks each time the first available
color for a current vertex, is known to produce a.a.s. in G(n, p) with p ≥ nε−1 a
coloring whose number of colors is larger than the χ(G(n, p)) by only a constant
factor (see Ch. 11 of the monograph of Bollobás [1]). Hence the largest color
class produced by the greedy algorithm is a.a.s. smaller than α(G(n, p)) only by
a constant factor.

For the domination number γ(G(n, p)), Wieland and Godbole showed that
a.a.s. it is equal to either Ln− L((Ln)(ln n))�+1 or Ln− L((Ln)(ln n))�+2, for
a constant p or a suitable function p = p(n) [13]. It follows that a.a.s. i(G(n, p)) ≥
Ln− L((Ln)(ln n))�+ 1. Recently, Wang proved for i(G(n, p)) an a.a.s. upper
bound of Ln− L((Ln)(lnn))�+k+1, where k = k(p) ≥ 1 is the smallest integer
satisfying (1− p)k < 1

2 [12].
Average case performance analysis of an approximation algorithm over ran-

dom instances could be inconclusive, because the random instances usually have
very special properties that distinguish them from real-world instances. For in-
stance, for a constant p, the random graph G(n, p) is expected to be dense. On
the other hand, an approximation algorithm performs very well on most random
instances can fail miserably on some “hard” instances. For instance, it has been
shown by Kučera [6] that for any fixed ε > 0 there exists a graph G on n vertices
for which, even after a random permutation of vertices, the greedy algorithm
produces a.a.s. a coloring using at least n/ log2 n colors, while χ(G) ≤ nε. To



Approximating the Minimum Independent Dominating Set 259

overcome this, Spielman and Teng [10] introduced the smoothed analysis. This
new analysis is a hybrid of the worst-case and the average-case analyses, and
it inherits the advantages of both, by measuring the expected performance of
the algorithm under slight random perturbations of the worst-case inputs. If the
smoothed complexity of an algorithm is low, then it is unlikely that the algo-
rithm will take long time to solve practical instances whose data are subject to
slight noises and imprecision. Though the smoothed analysis concept was intro-
duced for the complexity of algorithms, we extend its idea to depict the essential
properties of problems.

In this paper, we study the approximability of the minimum independent
dominating set (MIDS) problem under the smoothed analysis, and we present
a simple deterministic greedy algorithm beating the strong inapproximability
bound of n1−ε, with polynomial expected running time. Our probabilistic model
is the smoothed extension of random graph G(n, p) (also called semi-random
graphs in [8]), proposed by Spielman and Teng [11]: given a graph G = (V,E),
we define its perturbed graph g(G, p) by negating the existence of edges inde-
pendently with a probability of p > 0. That is, g(G, p) has the same vertex set
V as G but it contains edge e with probability pe, where pe = 1− p if e ∈ E or
otherwise pe = p. For sufficiently large p, Manthey and Plociennik presented an
algorithm approximating the independence number α(g(G, p)) with a worst-case
performance ratio O(

√
np) and with polynomial expected running time [8].

Re-define Ln = log1/p n. We first prove on γ(g(G, p)), and thus on i(g(G, p))

as well, an a.a.s. lower bound of Ln−L((Ln)(ln n)) if p > 1
n . We then prove on

α(g(G, p)), and thus on i(g(G, p)) as well, an a.a.s. upper bound of 2 lnn/p if
p < 1

2 or 2 lnn/(1− p) otherwise. Given that the a.a.s. values of α(G(n, p)) and
i(G(n, p)) in random graph G(n, p), our upper bound comes with no big surprise;
nevertheless, our upper bound is derived by a direct counting process which
might be interesting by itself. Furthermore, we extend our counting techniques
to prove on i(g(G, p)) a tail bound that, when 4 ln2 n/n < p ≤ 1

2 , Pr[i(g(G, p)) ≥√
4n/p] ≤ 2−n. We then present a simple greedy algorithm to approximate

i(g(G, p)), and prove that its worst case performance ratio is
√
4n/p and its

expected running time is polynomial.

2 A.a.s. Bounds on the Independent Domination Number

We need the following several facts.

Fact 1. e
x

1+x ≤ 1 + x ≤ ex holds for all x ∈ [−1, 1].

Fact 2.
(
n
r

)r ≤ (
n
r

)
≤
(
ne
r

)r
holds for all r = 0, 1, 2, . . . , n.

Fact 3. (Jensen’s Inequality) For a real convex function f(x), numbers x1, x2,

. . ., xn in its domain, and positive weights ai, f
(∑

aixi∑
ai

)
≤

∑
aif(xi)∑

ai
; the in-

equality is reversed if f(x) is concave.



260 W. Tong, R. Goebel, and G. Lin

Given any graph G = (V,E), let g(G, p) denote its perturbed graph, which has
the same vertex set V as G and contains edge e with a probability of

pe =

{
1− p, if e ∈ E,

p, otherwise.

2.1 An a.a.s. Lower Bound

Recall that γ(g(G, p)) and i(g(G, p)) are the domination number and the inde-
pendent domination number of g(G, p), respectively. Also, Ln = log1/p n.

Theorem 1. For any graph G = (V,E) and 1
n < p ≤ 1, a.a.s.

γ(g(G, p)) ≥ Ln− L((Ln)(lnn)).

Proof. Let Sr be the collection of all r-subsets of vertices in g(G, p), and these(
n
r

)
sets of Sr are ordered in some way. Define Irj as a boolean variable to indicate

whether or not the j-th r-subset of Sr, Vj , is a dominating set; set Xr =
∑

j I
r
j .

Clearly, γ(g(G, p)) < r implies that there are size-r dominating sets. There-
fore,

Pr[γ(g(G, p)) < r] ≤ Pr[Xr ≥ 1] ≤ E(Xr),

where E(Xr) is the expected value of Xr. (We abuse the notation E a little, but
its meaning should be clear at every occurrence.)

For the j-th r-subset Vj , let Ej be the subset of induced edges on Vj from the
original graph G = (V,E); let V c

j = V − Vj , the complement subset of vertices.
Also, for each vertex u ∈ V c

j , define E(u, Vj) = {(u, v) ∈ E | v ∈ Vj}, and its
size nuj = |E(u, Vj)|. Using Fact 1, we can estimate E(Xr) as follows:

E(Xr) =

(nr)∑
j=1

E(Irj ) =

(nr)∑
j=1

∏
u∈V c

j

⎛⎝1−
∏
v∈Vj

(
1− p(u,v)

)⎞⎠
≤

(nr)∑
j=1

∏
u∈V c

j

exp

⎛⎝− ∏
v∈Vj

(
1− p(u,v)

)⎞⎠
=

(nr)∑
j=1

exp

⎛⎝− ∑
u∈V c

j

∏
v∈Vj

(
1− p(u,v)

)⎞⎠
=

(nr)∑
j=1

exp

⎛⎝− ∑
u∈V c

j

pnuj (1− p)r−nuj

⎞⎠
=

(nr)∑
j=1

exp

⎛⎝− ∑
u∈V c

j

(
p

1− p

)nuj

(1− p)r

⎞⎠ .



Approximating the Minimum Independent Dominating Set 261

Since function f(x) = ( p
1−p )

x is convex in the domain [0, n], by Jensen’s Inequal-
ity, the above becomes

E(Xr) ≤
(nr)∑
j=1

exp

⎛⎜⎜⎜⎝−
(

p

1− p

) 1

n− r

∑
u∈V c

j

nuj

(n− r)(1 − p)r

⎞⎟⎟⎟⎠ .

Since function g(x) = e−axb with a = ( p
1−p )

1
n−r and b = (n−r)(1−p)r is concave

in the domain [0, n2], again by Jensen’s Inequality, we further have

E(Xr) ≤
(
n

r

)
exp

⎛⎜⎜⎜⎜⎜⎜⎝−
(

p

1− p

) 1

(n− r)
(
n
r

) (nr)∑
j=1

∑
u∈V c

j

nuj

(n− r)(1 − p)r

⎞⎟⎟⎟⎟⎟⎟⎠ . (1)

Recall that nuj is number of edges in the original graph G = (V,E) between
u and vertices of Vj . Each edge e ∈ E is thus counted towards the quantity⎛⎜⎝(nr)∑

j=1

∑
u∈V c

j

nuj

⎞⎟⎠ exactly 2

(
n− 2

r − 1

)
times. That is,

(nr)∑
j=1

∑
u∈V c

j

nuj = 2

(
n− 2

r − 1

)
|E| =

(
n
r

)
r(n − r)|E|(

n
2

) . (2)

Using Eq. (2), Fact 2 and r = Ln− L((Ln)(ln n)), Eq. (1) becomes

E(Xr) ≤
(
n

r

)
exp

⎛⎝−( p

1− p

) r|E|

(n2) (n− r)(1 − p)r

⎞⎠
≤
(
n

r

)
exp

(
−
(

p

1− p

)r

(n− r)(1 − p)r
)

≤
(
ne

r

)r

exp
(
− pr(n− r)

)
≤ exp

(
r lnn+ r − r ln r − (Ln)(lnn)

n
(n− r)

)
= exp((Ln)(lnn)− L((Ln)(lnn)) lnn+ r − r ln r

−(Ln)(lnn) + r(Ln)(ln n)/n)

= exp (−L((Ln)(lnn)) lnn− r (ln r − (Ln)(lnn)/n− 1))

≤ exp (−L((Ln)(lnn)) lnn− r (ln r − 2)) . (3)



262 W. Tong, R. Goebel, and G. Lin

The right hand side in Eq. (3) approaches 0 when n → +∞. Since p > 1
n

guarantees r ≥ 1, Ln − L((Ln)(lnn)) is an a.a.s. lower bound on γ(g(G, p)).
This proves the theorem. �

Since Pr[i(g(G, p)) < r] ≤ Pr[γ(g(G, p)) < r], we have the following corollary:

Corollary 1. For any graph G = (V,E) and 1
n < p ≤ 1, a.a.s.

i(g(G, p)) ≥ Ln− L((Ln)(ln n)).

2.2 An a.a.s. Upper Bound

Recall that α(g(G, p)) is the independence number of g(G, p).

Theorem 2. For any graph G = (V,E), a.a.s.

α(g(G, p)) ≤
{

2 lnn
p , if p ∈ (2 lnn

n , 1
2 ],

2 lnn
1−p , if p ∈ [ 12 , 1−

2 lnn
n ).

Proof. Let Sr be the collection of all r-subsets of vertices in g(G, p), and these(
n
r

)
sets of Sr are ordered in some way. Define Irj as a boolean variable to indicate

whether or not the j-th r-subset of Sr is an independent set; set Xr =
∑

j I
r
j .

Since α(g(G, p)) > r implies that there is at least one independent r-subset, i.e.
Xr > 0, the probability of the event α(g(G, p)) > r is less than or equal to the
probability of the event Xr > 0, i.e.

Pr[α(g(G, p)) > r] ≤ Pr[Xr > 0].

On the other hand, let Ar
j denote the event Irj = 0, i.e. the j-th r-subset is not

independent. It follows that Xr = 0 is equivalent to the joint event ∩jAr
j , i.e.

Pr[Xr = 0] = Pr[∩jAr
j ] ≥

∏
j

Pr[Ar
j ] =

∏
j

(1− Pr[Irj = 1]).

Therefore, we have

Pr[α(g(G, p)) > r] ≤ 1−
∏
j

(1− Pr[Irj = 1]). (4)

Let Er
j denote the subset of edges of g(G, p), each of which connects two vertices

in the j-th r-subset of Sr. Note that |Er
j | ∈ [0,

(
r
2

)
]. Among all the edges of Er

j ,
assume there are nr

j of them coming from the original edge set E of G. It follows
that

Pr[Irj = 1] =
∏
e∈Er

j

(1− pe) =

(
p

1− p

)nr
j

(1− p)(
r
2).

Using this and Fact 1 in Eq. (4) gives us

Pr[α(g(G, p)) > r] ≤ 1−
∏
j

(1− Pr[Irj = 1])



Approximating the Minimum Independent Dominating Set 263

≤ 1−
(nr)∏
j=1

exp

(
−

Pr[Irj = 1]

1− Pr[Irj = 1]

)

= 1− exp

⎛⎜⎝− (nr)∑
j=1

Pr[Irj = 1]

1− Pr[Irj = 1]

⎞⎟⎠
= 1− exp

⎛⎜⎝− (nr)∑
j=1

(
p

1−p

)nr
j

(1 − p)(
r
2)

1−
(

p
1−p

)nr
j

(1− p)(
r
2)

⎞⎟⎠ . (5)

Consider the function f(x) = axb
1−axb in Eq. (5), where a = p

1−p > 0, b = (1 −
p)(

r
2) ∈ (0, 1), and 0 ≤ x ≤

(
r
2

)
. Since its derivative

f ′(x) =
axb ln a

(1− axb)2

⎧⎪⎨⎪⎩
< 0, if a < 1,

= 0, if a = 1,

> 0, if a > 1,

f(x) is strictly decreasing if a < 1, or strictly increasing if a > 1. Therefore, the
maximum value of function f(x) is achieved at x = 0 if a ≤ 1, or at x =

(
r
2

)
if

a ≥ 1.
When p ≤ 1

2 , that is a = p
1−p ≤ 1, Eq. (5) becomes

Pr[α(g(G, p)) > r] ≤ 1− exp

⎛⎜⎝− (nr)∑
j=1

(1− p)(
r
2)

1− (1− p)(
r
2)

⎞⎟⎠
= 1− exp

(
−
(
n

r

)
(1− p)(

r
2)

1− (1− p)(
r
2)

)
. (6)

To prove Pr[α(g(G, p)) > r] → 0 as n → +∞, we only need to prove that(
n
r

) (1−p)(
r
2)

1−(1−p)(
r
2)
→ 0 as n→ +∞. Using Fact 2, we have

(
n

r

)
(1 − p)(

r
2)

1− (1− p)(
r
2)

=

(
n
r

)
(

1
1−p

)(r2) − 1

≤
(
ne
r

)r(
1

1−p

)(r2) − 1

. (7)

Setting r = 2 lnn/p. We see that r → +∞ as n → +∞. On the other hand,
when r is large enough, we have(

1

1− p

)(r2)
− 1 =

(
1

1− p

)(r2)
(1− o(1)). (8)

Using Eq. (8) and Fact 1, when n is sufficiently large, Eq. (7) becomes



264 W. Tong, R. Goebel, and G. Lin

(
n

r

)
(1− p)(

r
2)

1− (1− p)(
r
2)
≤

(
ne
r

)r(
1

1−p

)(r2) (1 + o(1)) =

⎛⎜⎜⎝ ne

r
(

1
1−p

) r−1
2

⎞⎟⎟⎠
r

(1 + o(1))

=

⎛⎜⎜⎝ ne

r
(
1 + p

1−p

) r−1
2

⎞⎟⎟⎠
r

(1 + o(1))

≤

⎛⎜⎝ ne

r exp
( p

1−p

1+ p
1−p
· r−1

2

)
⎞⎟⎠

r

(1 + o(1))

=

(
ne

r exp
(
p · r−1

2

))r

(1 + o(1))

=

(
ne1+

p
2

re
rp
2

)r

(1 + o(1)) (9)

=

(
e1+

p
2

r

)r

(1 + o(1))

≤
(

e
5
4

r

)r

(1 + o(1)). (10)

The quantity

(
e

5
4

r

)r

in Eq. (10) is less than 0.5r when n is sufficiently large, the

latter approaches 0 when n→ +∞. This proves that when p ≤ 1
2 , Pr[α(g(G, p)) >

r]→ 0 as n→ +∞. That is, when p ≤ 1
2 , a.a.s. α(g(G, p)) ≤ 2 lnn/p.

When p ≥ 1
2 , that is a = p

1−p ≥ 1, q = 1 − p ≤ 1
2 and exactly the same

argument as when p ≤ 1
2 applies by replacing p with 1 − q, which shows that

a.a.s. α(g(G, p)) ≤ 2 lnn/(1− p). This proves the theorem. �

Since α(g(G, p)) ≥ i(g(G, p)), Pr[i(g(G, p)) > r] ≤ Pr[α(g(G, p)) > r] and thus
we have the following corollary:

Corollary 2. For any graph G = (V,E), a.a.s.

i(g(G, p)) ≤
{

2 lnn
p , if p ∈ (2 lnn

n , 1
2 ],

2 lnn
1−p , if p ∈ [ 12 , 1−

2 lnn
n ).

3 A Tail Bound on the Independent Domination Number

Theorem 3. For any graph G = (V,E) and p ∈ (4 ln2 n
n , 1

2 ],

Pr[i(g(G, p)) ≥
√

4n

p
] ≤ Pr[α(g(G, p)) ≥

√
4n

p
] ≤ 2−n.



Approximating the Minimum Independent Dominating Set 265

Proof. The proof of this theorem flows exactly the same of the proof of Theo-
rem 2. In fact, with p ≤ 1

2 , we have both Eq. (6) and Eq. (7) hold. Different from

the proof of Theorem 2 where r = 2 lnn/p, we have now r =
√

4n
p ≥ 2 lnn/p

and therefore Eq. (8) holds as well. Again, using Eq. (8) and Fact 1, when n
is sufficiently large, Eq. (9) still holds. It then follows from Fact 1 that Eq. (6)
becomes

Pr[i(g(G, p)) ≥ r] ≤ Pr[α(g(G, p)) ≥ r]

≤ 1− exp

(
−
(
ne1+

p
2

re
rp
2

)r

(1 + o(1))

)
. (11)

Using r =
√

4n
p , we prove in the following that

(
ne1+

p
2

re
rp
2

)r

(1+ o(1)) = o(1). And

consequently by Fact 1 again and r =
√

4n
p ≥

√
8n, Eq. (11) becomes

Pr[i(g(G, p)) ≥ r] ≤
(
ne1+

p
2

re
rp
2

)r

(1 + o(1)) ≤ e

2

(
ne1+

p
2

re
rp
2

)r

=
e

2
exp

(
−r

(
ln r +

1

2
rp− lnn− 1− p

2

))
=

e

2
exp

(
−r

(
ln r +

1

4
rp− lnn− 1− p

2

)
− 1

4
r2p

)
=

e

2
exp

(
−r

(
ln r +

1

4
rp− lnn− 1− p

2

)
− n

)
. (12)

The quantity
(
ln r + 1

4rp− lnn− 1− p
2

)
in Eq. (12) is non-negative when n ≥ 2,

since

ln r +
1

4
rp− lnn− 1− p

2
≥ 1

2
ln(8n) +

1

4

√
4np− lnn− 1− 1

4

≥ 1

2
ln(8n) +

1

4

√
4n · 4 ln

2 n

n
− lnn− 1− 1

4

=
1

2

(
ln(8n)− 5

2

)
≥ 0.

It follows that Eq. (12) becomes

Pr[i(g(G, p)) ≥ r] ≤ e

2
exp

(
−r

(
ln r +

1

4
rp− lnn− 1− p

2

)
− n

)
≤ e

2
e−n < 2−n.

This proves the theorem. �



266 W. Tong, R. Goebel, and G. Lin

4 Approximating the Independent Domination Number

We present next a simple algorithm, denoted as Approx-IDS, for computing an
independent dominating set in g(G, p). In the first phase, algorithm Approx-IDS
repeatedly picks a maximum degree vertex and updates the graph by deleting the
picked vertex and all its neighbors; it terminates when there is no more vertex

and returns a subset I of V . If |I| ≤
√

4n
p , algorithm Approx-IDS terminates

and outputs I; otherwise it moves into the second phase. In the second phase,
algorithm Approx-IDS performs an exhaustive search over all subsets of V , and
returns the minimum independent dominating set I∗.

Theorem 4. For any graph G = (V,E) and p ∈ (4 ln2 n
n , 1

2 ], algorithm Approx-

IDS is a
√

4n
p -approximation to the MIDS problem on the perturbed graph g(G, p),

and it has polynomial expected running time.

Proof. Note that i(g(G, p)) ≥ 1. The subset I of V computed by algorithm
Approx-IDS is a dominating set, since every vertex of V is either in I, or is
a neighbor of some vertex in I. Also, no two vertices of I can be adjacent,
since otherwise one would be removed in the iteration its neighbor was picked
by the algorithm. Therefore, I is an independent dominating set of g(G, p).
It follows that if algorithm Approx-IDS terminates after the first phase, |I| ≤√

4n
p · i(g(G, p)). Also clearly the first phase takes O(n3) time.

In the second phase, a maximum of 2n subsets of V are examined by the
algorithm. Since checking each of them to be an independent dominating set or
not takes no more than O(n2) time, the overall running time is O(2nn2). Note

that this phase returns I∗ with |I∗| = i(g(G, p)). As α(g(G, p)) ≥ |I| >
√

4n
p ,

Theorem 3 tells that the probability of executing this second phase is no more
than 2−n. Therefore, the expected running time of the second phase is O(n2).
This proves the theorem. �

5 Conclusions

We have performed a smooth analysis for approximating the minimum indepen-
dent dominating set problem. The probabilistic model we used is the perturbed
graph g(G, p) of the input graph G = (V,E) [11]. We have proved a.a.s. bounds
and a tail bound on the independent domination number of g(G, p), and pre-

sented an algorithm with the worst-case performance ratio of
√

4|V |
p and with

polynomial expected running time.

References

1. Bollobás, B.: Random Graphs. Academic Press, New York (1985)



Approximating the Minimum Independent Dominating Set 267

2. Bollobás, B.: The chromatic number of random graphs. Combinatorica 8, 49–55
(1988)

3. Feige, U.: A threshold of for approximating set cover. Journal of the ACM 45,
634–652 (1998)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman and Company, San Francisco (1979)

5. Halldórsson, M.M.: Approximating the minimum maximal independence number.
Information Processing Letters 46, 169–172 (1993)

6. Kučera, L.: The greedy coloring is a bad probabilistic algorithm. Journal of Algo-
rithms 12, 674–684 (1991)

7. �Luczak, T.: The chromatic number of random graphs. Combinatorica 11, 45–54
(1991)

8. Manthey, B., Plociennik, K.: Approximating independent set in perturbed graphs.
Discrete Applied Mathematics (2012) (in press)

9. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-
constant error-probability PCP characterization of NP. In: Proceedings of the 29th
Annual ACM Symposium on Theory of Computing (STOC), pp. 475–484 (1997)

10. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM 51, 385–463 (2004)

11. Spielman, D.A., Teng, S.-H.: Smoothed analysis: an attempt to explain the behav-
ior of algorithms in practice. Communications of the ACM 52, 76–84 (2009)

12. Wang, C.: The independent domination number of random graph. Utilitas Math-
ematica 82, 161–166 (2010)

13. Wieland, B., Godbole, A.P.: On the domination number of a random graph. The
Electronic Journal of Combinatorics 8, #R37 (2001)

14. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing 3, 103–128 (2007)



A Linear-Time Algorithm for the Minimum

Degree Hypergraph Problem
with the Consecutive Ones Property

Chih-Hsuan Li, Jhih-Hong Ye, and Biing-Feng Wang

Department of Computer Science, National Tsing Hua University
Hsinchu, Taiwan 30013, Republic of China
{chsuan,jhong,jhong}@cs.nthu.edu.tw

Abstract. Given a set S, two collections Cr and Cb of non-empty sub-
sets of S and a positive integer k < |S|, the minimum degree hypergraph
(MDH) problem is to find a subset S′ of S such that S′ ∩ B �= ∅ for all
B ∈ Cb and |S′∩R| ≤ k for all R ∈ Cr. This paper presents a linear-time
algorithm for the MDH problem with Cr∪Cb having the consecutive ones
property. The presented algorithm improves the previous upper bound
from O(|S|2).

1 Introduction

Due to practical considerations, numerous generalizations of the set cover prob-
lem have been defined and studied [4, 5, 7, 8, 11, 12]. The minimum degree
hypergraph (MDH) problem and the red-blue set cover (RBSC) problem are
two examples. Let S be a set and let Cb (blue collection) and Cr (red collection)
be two collections of subsets of S. The MDH problem is to find a subset S′ ⊆ S
such that S′∩B �= ∅ for all B ∈ Cb and |S′∩R| ≤ k for all R ∈ Cr, where k < |S|
is a given positive integer. The RBSC problem is to find a subset S′ ⊆ S with
S′ ∩ B �= ∅ for all B ∈ Cb which minimizes |{R|R ∈ Cr, S

′ ∩ R �= ∅}|. Feder et
al. [8] introduced the MDH problem and gave a polynomial-time approximation
algorithm that has an approximation ratio of O(lg |S|). Kuhn et al. [9] studied
a special case of the MDH problem, in which Cr = Cb, and showed that it has
similar approximation properties as the classical set cover problem. The RBSC
problem was introduced by Carr et al. [5]. They provided several positive and
negative results concerning the polynomial-time approximability of the RBSC
problem.

Since the set cover problem is NP-complete, one may only hope to find effi-
cient algorithms for special cases of practical interest. A famous case is the set
cover problem with the consecutive ones property (C1P), which means that the
elements of S can be arranged in a linear order such that each set in C contains
consecutive elements of S. This special case admits a polynomial-time solution,
a fact which is utilized in many practical applications [10–13]. Recently, Dom et
al. [7] studied the MDH and the RBSC problems with the C1P. Their study is
motivated by applications in geographic background which may have the C1P

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 268–279, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Linear-Time Algorithm for the MDH Problem with the C1P 269

or be “close” to the C1P [9–11]. They proved several NP-completeness results
in case that at most one of Cb and Cr has the C1P. And, they gave efficient
algorithms for the MDH and the RBSC problems with Cr ∪Cb having the C1P.
In addition, they gave an efficient algorithm for the MDH problem with k = 1
and all sets in Cb having size two. For the RBSC problem with the C1P, Dom
et al.’s algorithm requires O(|Cb||Cr||S|2) time. Chang et al. [6] improved this
result to O(|Cb||S|+ |Cr||S|+ |S|2). Later, Wang and Li [14] further reduced this
upper bound to O(|Cb|+ |Cr| lg |S|+ |S| lg |S|). For the MDH problem with the
C1P, Dom et al.’s algorithm requires O(|Cb||S| + |Cr||S| + |S|2) time. For the
MDH problem with k = 1 and subset size two, Dom et al.’s algorithm requires
O(|S|+ |Cb|+

∑
R∈Cr

|R|2) time. Wang and Li [14] gave an improved linear-time
algorithm.

Contribution: The focus of this paper is the MDH problem with Cr∪Cb having
the C1P. For this problem, Dom et al.’s algorithm requires O(|S|2) time. In this
paper, we first characterize two special cases of this problem, where the first is
obviously infeasible, and the second is feasible and admits a simple linear-time
algorithm. Then, we show that any input instance can be reduced to either the
first or the second special case. Finally, we give a sophisticated algorithm that
performs the reduction in linear time. Consequently, we obtain an optimal algo-
rithm for the MDH problem with Cr ∪ Cb having the C1P.

Table 1. Results on the MDH problem with the C1P

Time Remark

O(|S|2 + |Cb||S|+ |Cr||S|) [7]

O(|S|+ |Cb|+ |Cr|) this paper

Section 2 gives notation and definitions. Section 3 presents an O(|S|2)-time
algorithm. Section 4 reduces the time complexity of the algorithm in Section 3
to O(|S|α(|S|)), where α is the inverse Ackermann’s function. Section 5 further
reduces the time complexity to O(|S| + |Cb|+ |Cr|).

2 Notation and Preliminaries

Let S be a set of n elements. Without loss of generality, assume that the elements
of S are already sorted in a linear order such that each set in Cr ∪ Cb contains
consecutive elements of S. In case this is not true, such a linear order can be found
in O(|S|+

∑
A∈Cr∪Cb

|A|) time [3]. For ease of presentation, the ith element in S
is simply denoted by i, 1 ≤ i ≤ n. Assume that each set {i, i+1, ..., j} ∈ Cr ∪Cb

is given by an interval [i, j]. Each interval in Cb is called a blue interval and each
interval in Cr is called a red interval. We use left(I) and right(I), respectively,
to denote the left and right endpoints of an interval I.



270 C.-H. Li, J.-H. Ye, and B.-F. Wang

Let S′ be a subset of S. It covers a blue interval B if S′ ∩B �= ∅, and it hits
a red interval R m times if |S′ ∩ R| = m. If there exists a subset S′ ⊆ S that
covers all intervals in Cb and hits each red interval in Cr at most k times, then
(Cr, Cb) is feasible; otherwise, (Cr, Cb) is infeasible. If a blue interval B contains
another blue interval B′, it can be removed from Cb, since any subset that covers
B′ also covers B. Similarly, if a red interval R is a subinterval of another red
interval R′, it can be removed from Cr , since any subset that hits R′ at most k
times also hits R at most k times. Thus, we have the following.

Lemma 1. If a blue interval contains another blue interval, it can be removed
from Cb without changing the feasibility of (Cr , Cb). If a red interval is con-
tained in another red interval, it can be removed from Cr without changing the
feasibility of (Cr, Cb).

A collection of intervals has the non-nested property if no interval is contained in
another. Two instances (Cr, Cb) and (C′

r , C
′
b) of the MDH problem are equivalent

if they have the same feasible solutions. By Lemma 1, we can reduce a given
(Cr, Cb) into an equivalent instance in which the blue and red collections both
satisfy the non-nested property. It is easy to do the reduction in linear time.
In the remainder of this paper, we assume that both Cb and Cr satisfy the
non-nested property. Consequently, both |Cb| and |Cr| are not larger than n. In
addition, we assume that the intervals in Cb and Cr are, respectively, ordered
by increasing left endpoints. We use Bi to denote the ith interval in Cb and use
Rj to denote the jth interval in Cr .

3 A Two-Phase Algorithm

3.1 The Framework

We start with the following simple observation.

Lemma 2. If there is an interval R in Cr that contains k + 1 pairwise disjoint
intervals in Cb, then (Cr, Cb) is infeasible.

The intervals in Cr are classified into three types: witnesses of infeasibility, crit-
ical intervals, and non-critical intervals. Consider an interval R ∈ Cr. If R con-
tains a set of k + 1 pairwise disjoint intervals in Cb, then R is a witness of
infeasibility (or, simply a witness). If R is not a witness but there exist k + 1
pairwise disjoint intervals in Cb whose left endpoints are contained in R, then R
is a critical interval. Note that if R contains the left endpoints of k+ 1 pairwise
disjoint intervals in Cb, it is either a witness or a critical interval. If there do not
exist k + 1 pairwise disjoint intervals in Cb whose left endpoints are contained
in R, then R is a non-critical interval. Consider the example in Figure 1(a). If
k = 2, R1 is a witness, since it contains B1, B3, and B4. If k = 3, R1 is not a
witness but is critical, since it contains the left endpoints of B1, B3, B4, and B5.
For k ≥ 4, R1 is non-critical.



Linear-Time Algorithm for the MDH Problem with the C1P 271

By Lemma 2, if Cr contains a witness, (Cr , Cb) is infeasible. Before pro-
ceeding, we remark that even if there is no witness in Cr, the feasibility of
(Cr, Cb) is undetermined. Consider the example of Cr = {[1, 4], [4, 7]}, Cb =
{[1, 1], [2, 2], [3, 5], [6, 6], [7, 7]}, and k = 2. In this example, no red interval is a
witness. However, it is easy to check that any subset S′ that covers all the blue
intervals hits either R1 or R2 three times.

 

1 
2

3 4 5 8 9
10
11 

12

13 14 15 

R1 
R2 R3

6
7 

(a) an input (Cr, Cb) 

1
2

3 4 5 8 9
10
11 

12 

13 14 15 

R1
R2 R3

6
7τ(R1) β(R1)

(b) j = 1

(c) j = 2
R3 

1 
2

3 4 5 8 9
10
11

12 

13 14 15

R1 
R2 

τ(R2) β(R2)

(d) j = 3

1
2 

3 4 5 8 9 
10 

11 13 14 15 

R1
R2 

τ(R3) β(R3)

R3 

Fig. 1. An illustration of Algorithm 1, in which k = 3

For convenience, we call (Cr , Cb) a bad instance (of the MDH problem) if
Cr contains a witness. If (Cr , Cb) is not a bad instance, we call it an ambiguous
instance if it contains a critical interval. If every interval in Cr is neither a witness
nor a critical interval, we call (Cr , Cb) a good instance.

Our algorithm consists of two phases. Phase 1 checks whether (Cr, Cb) is
feasible. In addition, if (Cr , Cb) is feasible, Phase 1 reduces (Cr, Cb) into an
equivalent good instance (Cr, C

′
b). Next, if (Cr , Cb) is feasible, Phase 2 further

finds a feasible solution by solving the good instance (Cr , C
′
b).

By Lemma 2, any bad instance is infeasible. Given a good instance (Cr, Cb),
Phase 2 finds a feasible solution S′ in O(n) time as follows: examine the intervals
Bi from right to left and include left(Bi) into S′ if no element of Bi is contained
in the current S′. Our Phase 2 algorithm shows that any good instance is feasible.

3.2 Algorithm for Phase 1

Phase 1 examines each interval in Cr, from left to right, to see whether it is a
witness. The checking of an interval Rj is described as follows. For each interval
Bi, let π(Bi) be the first blue interval to its right that is disjoint from Bi. For
each interval Bi and m ≥ 1, define a function πm(Bi) as follows: π

1(Bi) = π(Bi)
and πm(Bi) = πm−1(π(Bi)) for m ≥ 2. For example, in Figure 1(a), π3(B1) =
π2(B3) = π1(B4) = B5. For ease of presentation, we assume that there are



272 C.-H. Li, J.-H. Ye, and B.-F. Wang

infinite pseudo blue intervals to the right of B|Cb| which are pairwise disjoint, so
that πm(Bi) is well-defined.

Let τ(Rj) be the first blue interval Bi whose left endpoint is contained in Rj .
Let β(Rj) = πk(τ(Rj)). For example, in Figure 1(a), τ(R1) = B1 and if k = 3,
β(R1) = π3(B1) = B5. Since Cb has the non-nested property and the intervals in
Cb are ordered by increasing left endpoints, left(β(Rj)) is the smallest integer
x such that [left(Rj), x] contains the left endpoints of k + 1 pairwise disjoint
intervals in Cb, and right(β(Rj)) is the smallest integer x such that [left(Rj), x]
contains k + 1 pairwise disjoint intervals in Cb. Therefore, whether Rj is a crit-
ical interval or a witness can be determined, respectively, by the following two
procedures.

Procedure CRITICAL(Rj , β(Rj))
begin
1. if (right(Rj) ≥ left(β(Rj))) and (right(Rj) < right(β(Rj)))

then return TRUE

2. else return FALSE

end

Procedure WITNESS(Rj , β(Rj))
begin
1. if right(Rj) ≥ right(β(Rj)) then return TRUE

2. else return FALSE

end

If WITNESS(Rj , β(Rj)) returns FALES, we say that Rj passes the witness-
checking. As mentioned, even all intervals Rj pass the witness-checking, the
feasibility of (Cr, Cb) is undetermined. Our intent is to give an algorithm such
that (Cr, Cb) is feasible if and only if all Rj pass the witness-checking. To achieve
this goal, if an interval Rj passes the witness-checking, we further check whether
it is a critical interval. If it is, we update Cb to make Rj a non-critical interval.
More specifically, if Rj is a critical interval, we update Cb to produce an equiv-
alent instance in which R1, R2, ..., Rj are all non-critical. Consequently, once
all Rj pass the witness-checking, the given instance (Cr, Cb) is reduced to an
equivalent good instance and we can conclude that it is feasible. We proceed to
describe the update of Cb for a critical interval Rj .

Lemma 3. If Rj is a critical interval in Cr, no feasible solution to (Cr , Cb)
contains an element in [left(β(Rj)), right(Rj)].

Given an interval Bi and an element c ∈ Bi, define CUT(Bi, c) to be an opera-
tion that removes [left(Bi), c] from Bi (i.e., update left(Bi) into c+ 1). Given
an interval Bi, define TRIM(Bi) to be an operation that removes all intervals in
Cb that contain Bi. When a critical interval Rj is encountered, we perform the
following procedure to make Rj non-critical.



Linear-Time Algorithm for the MDH Problem with the C1P 273

Procedure UPDATE(Rj , β(Rj))
begin
1. CUT(β(Rj), right(Rj))
2. TRIM(β(Rj))
end

Consider the interval R1 in Figure 1(a). In this example, k = 3, R1 is crit-
ical, and β(R1) = B5. Thus, UPDATE(R1, B5) is performed, in which the CUT

operation shortens B5 and then the TRIM operation removes the intervals B6

and B7. (See Figure 1(b).) Note that after UPDATE(Rj , β(Rj)), Cb still has the
non-nested property and the intervals in Cb are still in order of increasing left
endpoints.

Lemma 4. If Rj is a critical interval, UPDATE(Rj , β(Rj)) makes Rj non-critical.

Lemma 5. If Rj is a critical interval, UPDATE(Rj , β(Rj)) reduces (Cr , Cb) into
an equivalent instance.

Our algorithm for Phase 1 is as follows.

Algorithm 1. Phase 1
begin
1. for j ← 1 to |Cr| do /* examine the red intervals from left to right
2. begin
3. τ(Rj)← the first interval Bi (in the current Cb) with left(Bi) ≥ left(Rj)
4. β(Rj)← πk(τ(Rj)) (with respect to the current Cb)
5. if WITNESS(Rj , β(Rj)) = TRUE

then output FALSE /* the input is infeasible
6. if CRITICAL(Rj , β(Rj)) = TRUE

then UPDATE(Rj , β(Rj)) /* make Rj non-critical
7. end
8. output (Cr, Cb) /* the input is feasible
end

Figure 1 gives illustrations of Algorithm 1. The correctness of Algorithm 1 is
discussed as follows. By Lemma 5, the UPDATE operation in line 6 always reduces
(Cr, Cb) into an equivalent instance. Thus, if Algorithm 1 outputs FALSE, the
given input is certainly infeasible. If all Rj pass the witness-checking in line 5,
the following lemma shows that Algorithm 1 reduces the given input into a good
instance, from which we conclude that the input is feasible.

Lemma 6. Suppose that all Rj pass the witness-checking in line 5 of Algorithm
1. After the jth iteration of the for-loop, the input is reduced to an instance in
which R1, R2, ..., Rj are non-critical, where 1 ≤ j ≤ |Cr|.



274 C.-H. Li, J.-H. Ye, and B.-F. Wang

Theorem 1. If the input (Cr , Cb) is infeasible, Algorithm 1 outputs FALSE;
otherwise, it outputs a good instance that is equivalent to (Cr , Cb).

The running time of Algorithm 1 is analyzed as follows. Consider a fixed iteration
of the for-loop. The finding of τ(Rj) in line 3 is done by a scan on the intervals
in the current Cb, from left to right. The scan starts from τ(Rj−1) and stops
when τ(Rj) is encountered. Thus, line 3 takes O(1) amortized time. Given τ(Rj),
the finding of β(Rj) in line 4 can be easily done in O(|Cb|) time. Line 5 takes
O(1) time. If Rj is critical, the call to UPDATE in line 6 removes a set Δj of
intervals from Cb. It is easy to check that Δj is the set of intervals in Cb with
left endpoints contained in (left(β(Rj)), right(Rj)+1]. Since the intervals in Cb

are ordered by increasing left endpoints, given the interval β(Rj), the removal
of Δj can be easily done in O(|Δj |) time. Therefore, the overall time complexity
of Algorithm 1 is O(|Cr |n+

∑
|Δj |) = O(|Cr |n+ |Cb|) = O(n2).

4 An O(nα(n))-Time Algorithm

The bottleneck of the algorithm in Section 3 is the finding of β(Rj) in line 4 of
Algorithm 1. In this section, we show that the finding can be done in amortized
O(α(n)) time. Our idea is to maintain a dynamic forest F for the intervals in
Cb according to the π function, so that the finding of β(Rj) can be done by an
upward traversal from a node in F . More specifically, each node in F represents
an interval Bi and the parent of an interval Bi is π(Bi). Then, β(Rj) is found
by searching the (k + 1)th node on the path from τ(Rj) to its root.

If Cb is static, it is not difficult to construct the forest F in linear time. How-
ever, since Cb may be modified by UPDATE, we need to maintain F dynamically.
For ease of discussion, in the remainder of this section, we assume that Algo-
rithm 1 does not stop in any iteration of j < |Cr|. Let Cj

b denote the content
of Cb at the end of the jth iteration. When Cb is modified by UPDATE, we may
need to delete some nodes in F and link their children to new parents. To avoid
deletion of nodes, we do not maintain all intervals of Cb in F . Instead, at the end
of the jth iteration of Algorithm 1, F maintains only the intervals in Cj

b that are
to the left of β(Rj). Figure 2(a)(b) gives an illustration, in which β(Rj) = B28.

Given two roots t and t′ in F , define LINK(t, t′) to be an operation that makes
t′ the rightmost child of t. Given a node v in F , define FINDROOT(v) to be
an operation that returns a pair (r, d), where r is the root of v in F and d is
the number of edges from v to r. Alstrup and Holm’s [2] had an efficient algo-
rithm for the level-ancestor problem in a dynamic tree. With some modification,
their algorithm can be used to support each LINK and FINDROOT operation in
amortized O(α(n)) time [1].

Initially, F is empty. In the jth iteration of Algorithm 1, we insert to F those
intervals in Cj

b which are to the left of β(Rj) but not in F . For ease of description,
we call i the index of Bi. The index of β(Rj) is non-decreasing as j increases.
Since UPDATE(Rj , β(Rj)) does not remove or modify any interval to the left of
β(Rj), it is easy to conclude the following.



Linear-Time Algorithm for the MDH Problem with the C1P 275

 

1 
2

3 

4
5

6
9

13

15 
18 

21
24 
27 28

(a) blue intervals 

6 9
21 

1 2
13 
3

24 15
4 

18 
5

27 

28 

(c) insertion of B28 (b) F contains the intervals 
to the left of B28

1 2 3 4
6 9
21 

13
24

15 18
5

27

Fig. 2. An illustration of the forest F

Lemma 7. If an interval Bi is inserted to F in the jth iteration, it will not be
deleted from Cb in the remaining iterations.

We proceed to present the detailed maintenance of F . Consider the jth iteration
of Algorithm 1. At the beginning, the set of intervals in F is the set of intervals
in Cj−1

b that are to the left of β(Rj−1). The following procedure computes β(Rj)
and updates F .

Procedure COMPUTING-β
begin
1. p← the index of β(Rj−1)
2. if τ(Rj) ∈ F then (Bt, k

′)← FINDROOT(τ(Rj))
3. else(Bt, k

′)← (τ(Rj), 0)

4. Bp′ ← πk−k′
(Bt) /* note that Bp′ = πk−k′

(πk′
(τ(Rj))) = β(Rj)

5. for i = p to p′ − 1 do
6. if Bi exists in the current Cb then insert Bi into F
7. return (Bp′ )
end

Line 1 takes O(1) time. Lines 2-3 computes Bt = πk′
(τ(Rj)) in amortized

O(α(n)) time, where π0(τ(Rj)) = τ(Rj). Note that k′ < k, since the index of
β(Rj) is not smaller than that of β(Rj−1) and F maintains only intervals to the
left of β(Rj−1). Line 4 is done in O(p′ − p) time by a left-to-right scan on the

intervals in the current Cb, starting from Bp and stopping when πk−k′
(Bt) is

encountered.
We proceed to discuss the insertion of Bi into F in line 9. (See Figure 2(b).)

Before the insertion, the set of intervals in F is the set of intervals in Cj
b that

are to the left of Bi. Thus, our job is to create a root node Bi and to make each
Bi′ with π(Bi′) = Bi a child of Bi by invoking LINK(Bi, Bi′). Let Q be the set
of intervals that should be linked to Bi. Since left(Bi) is larger than the left
endpoint of any interval currently in F , the occurrence of Bi does not change
any edge in the current F . Thus, Q is a subset of the roots. For any m ≥ 1, the



276 C.-H. Li, J.-H. Ye, and B.-F. Wang

index of πm(Bi) is non-decreasing as i increases. Thus, we have the following,
which is useful to the identification of Q.

Lemma 8. Let m ≥ 1 be an integer. Let Bx and By be two intervals in Cj
b such

that x < y and πm(Bx) = πm(By). Then, π
m(Bz) is the same for all intervals

Bz with x ≤ z ≤ y in Cj
b .

From Lemma 8, we conclude that the roots in F are those intervals that have
the first g largest indices (among the intervals in F ), where g is the number of
roots. Moreover, the set Q is the set of roots that have the first |Q| smallest
indices. Therefore, Q can be found by a simple scan on the roots in F , in order
of increasing indices. The scan stops when a root intersecting Bi is encountered
or all roots are examined. Thus, the computation of Q takes O(|Q|) time. And
therefore, COMPUTING-β requires O(α(n) + (p′ − p) + δjα(n)) amortized time,
where δj is the total number of intervals and edges added to F at the jth
iteration. Since each interval Bi is inserted into F at most once, O(

∑
δi) = O(n).

Consequently, the time complexity of the algorithm in Section 3.2 is reduced to
O(nα(n)).

5 A Linear-Time Algorithm

In Section 4, a forest F is used to help the finding of each β(Rj). By using
the algorithm in [2], each β(Rj) is found in amortized O(α(n)) time. Instead
of using the algorithm in [2], this section explores more properties of F and
presents a very simple data structure that supports the finding of each β(Rj)
in amortized O(1) time. We assume that the children of each node in F are
ordered by increasing indices. Consider a tree with root t in F . For m ≥ 0, let
V (t,m) be the set of nodes at depth m. By definition, each node v in V (t,m) has
πm(v) = t. Recall that intervals are inserted to F in order of increasing index.
The ath interval inserted into F is associated with a rank a. The rank of an
interval Bi increases as i increases. Therefore, we can obtain the following from
Lemma 8.

Lemma 9. For any root t in F and depth m ≥ 0, the nodes in V (t,m) have
consecutive ranks.

By Lemma 9, V (t,m) can be represented by an interval of ranks, denoted by
A(t,m). To speedup the finding of each β(Rj), more information is maintained.
Let T be a tree with root t in F . The root t is associated with an integer h(t)
and two intervals L(t) and N(t), where h(t) records the height of T , L(t) records
A(t, h(t)), which represents the leaves of T , and N(t) records A(t, k − 1), which
represents the nodes at depth k − 1.

Each node v in T is associated with two pointers pnext(v) and plast(v). Con-
sider the nodes in V (t,m) for a fixed depth m < h(t). Assume that the nodes
are in order of increasing ranks. Let Ba and Bb be, respectively, the first and
last nodes in V (t,m). Let Bx and By be, respectively, the first and last nodes



Linear-Time Algorithm for the MDH Problem with the C1P 277

in V (t,m) that are internal nodes of T . We say that the left side of V (t,m) is
ready if either (i) Bx = Ba and Bx points to itself by using plast(Bx), or (ii)
Bx �= Ba and Ba and Bx point to each other by using pnext(Ba) and plast(Bx).
Similarly, we say that the right side of V (t,m) is ready if either (i) By = Bb and
By points to itself by using pnext(By), or (ii) By �= Bb and By and Bb point
to each other by using pnext(By) and plast(Bb). We say that V (t,m) is ready if
its both sides are ready. The pointers pnext and plast are maintained such that
V (t,m) is ready for any depth m < h(t).

Lemma 10. Given a root t in F , the interval A(t, k − 2) can be determined in
O(1) time.

We proceed to describe the insertion of an interval Bi into F . Recall that
LINK(t, t′) is an operation that makes t′ the rightmost child of t. The inser-
tion of Bi is done as follows. Let g be the rank of Bi and let Q be the set of
roots in F that should be linked to Bi. First, we create a tree of a single node to
represent Bi, in which h(Bi) = 0, L(Bi) = [g, g], N(Bi) is ∅ if k > 1 and is [g, g]
otherwise, and plast(Bi) = pnext(Bi) = Bi. Next, repeatedly, we make each root
t′ in Q, in order of increasing index, a child of Bi by invoking LINK(Bi, t

′).
The implementation of LINK(t, t′) is discussed as follows. If we make t′ the

rightmost child of t, V (t′,m − 1) is included to V (t,m) for 1 ≤ m ≤ h(t′) + 1.
Thus, by Lemma 9, the nodes in V (t,m) and V (t′,m − 1) have consecutive
ranks. More specifically, if both V (t,m) and V (t′,m − 1) are non-empty, we
have right(A(t,m)) = left(A(t′,m− 1))− 1. Let h = h(t) and h′ = h(t′). Three
cases are considered.

Case 1: h = h′ + 1. The height h(t) remains the same. We update L(t) to
L(t) ∪ L(t′), which is [left(L(t)), right(L(t′))], and update N(t) to N(t) ∪
A(t′, k−2), which is [left(N(t)), right(A(t′, k−2))]. By Lemma 10, A(t′, k−
2) is found in O(1) time. The problem remains is to update some pointers
pnext and plast, so that the new V (t,m) is ready for each m < h. Since
V (t, 0) remains the same, update is not required for m = 0. Consider a fixed
m with 1 ≤ m < h. Before LINK(t, t′), V (t,m) and V (t′,m − 1) are both
ready. Note that since m < h, each of V (t,m) and V (t′,m− 1) contains at
least one internal node. After LINK(t, t′), the first node and the first internal
node in V (t,m) remain the same; and the last node and last internal node in
V (t′,m− 1) become those of the new V (t,m). Consequently, after including
V (t′,m− 1), V (t,m) is still ready. Thus, for 1 ≤ m < h, update is also not
required.

Case 2: h > h′ + 1. The height h(t) and the interval L(t) remain the same.
We update N(t) to N(t) ∪ A(t′, k − 2). Consider the update of pnext and
plast for each depth m, where 0 ≤ m < h. Similar to Case 1, no update is
required for 0 ≤ m ≤ h′. Also, no update is required for m > h′ + 1, since
V (t,m) remains the same. Finally, consider the update for m = h′ + 1. The
left side of the original V (t, h′ + 1) is ready. Thus, after LINK(t, t′), its left
side is still ready. All nodes in V (t′, h′) are leaves. To make the right side of
the new V (t, h′ +1) ready, we need to find the last node Bb′ in V (t′, h′) and



278 C.-H. Li, J.-H. Ye, and B.-F. Wang

the last internal node By in the original V (t, h′ +1) and then to make them
point to each other. The node Bb′ is the node whose rank is right(L(t′)). By
Lemma 9, the last node in V (t, h′ + 1), denoted by Bb, is the node whose
rank is left(L(t′))−1. If Bb is an internal node, we have By = Bb; otherwise,
we have By = plast(Bb). Thus, By and Bb′ can be found in O(1) time. And
therefore, the update for m = h′ + 1 takes constant time.

Case 3: h < h′ + 1. We update h(t) to h′ +1, N(t) to N(t)∪A(t′, k− 2), and
L(t) to L(t′). The update of pnext and plast is similar to Case 2.

Next, we proceed to present an algorithm for the finding of each β(Rj). An
extra pointer p is maintained. Initially, p points to B1. After the jth iteration of
Algorithm 1, p points to πk−1(τ(Rj)). Note that since F contains only intervals
to the left of β(Rj), p is a root. We compute β(Rj) as follows.

Step 1. If τ(Rj) is not an interval in the current F , adds un-inserted intervals

in Cj−1
b into F , in increasing order of index, until τ(Rj) becomes one. Let x

be the rank of τ(Rj).
Step 2. Scan the roots in F , starting from p = πk−1(τ(Rj−1)), in increase order

of index, until a root t with x ∈ N(t) (i.e., t = πk−1(τ(Rj))) is encountered.

If no such t exists, adds un-inserted intervals in Cj−1
b into F , in increasing

order of index, until t appears.
Step 3. Find the interval π(t), which is obtained by examining the un-inserted

intervals in Cj−1
b , in increasing order of index, until an interval that is disjoint

from t appears.
Step 4. Set β(Rj) = π(t) and p = t.

Each LINK operation takes O(1) time. Thus, each insertion to F requires O(1)
amortized time. Consequently, we obtain the following.

Theorem 2. After an O(|Cr |+|Cb|+|S|)-time preprocessing, the MDH problem
with Cr ∪Cb having the C1P can be solved in O(|S|) time.

References

1. Alstrup, S.: Private communication (2012)
2. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic

trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 73–84. Springer, Heidelberg (2000)

3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. Journal of Computer and
System Sciences 13(3), 335–379 (1976)

4. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem.
Annals of Operations Research 98, 353–371 (2000)

5. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover prob-
lem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 345–353 (2000)



Linear-Time Algorithm for the MDH Problem with the C1P 279

6. Chang, M.S., Chung, H.H., Lin, C.C.: An improved algorithm for the red-blue
hitting set problem with the consecutive ones property. Information Processing
Letters 110(20), 845–848 (2010)

7. Dom, M., Guo, J., Niedermeier, R., Wernicke, S.: Red-blue covering problems and
the consecutive ones property. Journal of Discrete Algorithms 6(3), 393–407 (2008)

8. Feder, T., Motwani, R., Zhu, A.: k-connected spanning subgraphs of low degree.
Tech. Rep. TR06-041, Electronic Colloquium on Computational Complexity (2006)

9. Kuhn, F., von Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Interfer-
ence in cellular networks: The minimum membership set cover problem. In: Wang,
L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 188–198. Springer, Heidelberg (2005)

10. Mecke, S., Schöbel, A., Wagner, D.: Station location - complexity and approxima-
tion. In: 5th Workshop on Algorithmic Methods and Models for Optimization of
Railways (2005)

11. Mecke, S., Wagner, D.: Solving geometric covering problems by data reduction. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 760–771. Springer,
Heidelberg (2004)

12. Ruf, N., Schobel, A.: Set covering with almost consecutive ones property. Discrete
Optimization 1(2), 215–228 (2004)

13. Veinott, A.F., Wagner, H.M.: Optimal capacity scheduling. Operations Re-
search 10(4), 518–532 (1962)

14. Wang, B.F., Li, C.H.: On the minimum degree hypergraph problem with subset
size two and the red-blue set cover problem with the consecutive ones property. In:
Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434,
pp. 169–180. Springer, Heidelberg (2012)



On the Conjunctive Capacity of Graphs

Miroslav Chleb́ık1 and Janka Chleb́ıková2

1 University of Sussex, UK
m.chlebik@sussex.ac.uk

2 University of Portsmouth, UK
janka.chlebikova@port.ac.uk

Abstract. The investigation of the asymptotic behaviour of various
graph parameters in powers of a fixed graph G = (V,E) is motivated
by problems in information theory and extremal combinatorics. Consid-
ering various parameters and/or various notions of graph powers we can
arrive at different notions of graph capacities, of which the Shannon ca-
pacity is best known. Here we study a related notion of the so-called
conjunctive capacity of a graph G, CAND(G), introduced and studied by
Gargano, Körner and Vaccaro [5], [6]. To determine CAND(G) is a convex
programming problem. In this paper we show that the optimal solution
to this problem is unique and describe the structure of the solution in any
(simple) graph. We show that its reciprocal value vcC(G) := 1

CAND(G)
is

an optimal solution of the newly introduced problem of Minimum Ca-
pacitary Vertex Cover that is closely related to the LP-relaxation of the
Minimum Vertex Cover Problem. We also describe its close connection
with the binding number/binding set of a graph, and with the strong
crown decomposition of graphs introduced in [2].

Keywords: graph capacities, compound channel, Shannon capacity for
graph families, fractional vertex cover, binding number, strong crown
decomposition.

1 Introduction

An induced complete subgraph of a graph G is called a clique and the cardinality
of the largest clique of G is called its clique number, ω(G). The analysis of its
growth in large product graphs leads to several interesting problems in combina-
torics. The problem was originated by Shannon [11] in 1956 in his analysis of the
capability of certain noisy communication channels to transmit information in
an error-free manner. Shannon’s model associated a graph with every channel.
In our notation the vertex set of the graph represents the symbols that can be
transmitted through the channel and two vertices are connected by an edge if
the corresponding symbols can never get confused by the receiver. This model
naturally leads to a product of graphs through the repeated use of the channel
for the transmission of symbol sequences of some fixed length n. If the graph
G = (V,E) is a simple graph (all graphs in this paper are assumed simple),
then Gn denotes the graph with vertex set V n whose edge set contains those

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 280–291, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



On the Conjunctive Capacity of Graphs 281

pairs of sequences in V n which can never get confused by the receiver. Formally,
{x, y} ∈ E(Gn) if and only if ∃i {xi, yi} ∈ E, where E denotes the edge set of
the graph G and x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) are elements of V n.
Following Berge [1], Gn is called the n-th co-normal power of G. Shannon [11]
observed that if K is a clique in G then Kn is a clique in Gn, whence the size
of the clique number of Gn is at least the n-th power of the clique number of G.
(In fact, these two quantities coincide whenever the clique number of G equals
its chromatic number. This observation led Berge to his celebrated concept of
perfect graphs.) The observation logically leads to the concept introduced by

Shannon – to determine the always existing limit C(G) = lim
n→∞

logω(Gn)
n , which

is called the Shannon capacity of G. An analogous approach was initiated in [9]
where the notion of Sperner capacity was introduced as the natural counterpart
of Shannon capacity in the case of directed graphs. These notions became the
key to the solution of some important open problems in extremal combinatorics
[5], [6].

We have to warn that many traditional papers use a complementary language
and define Shannon capacity C(G) as our C(G), when C(G) is then defined
using independent sets in the normal powers instead of cliques in the co-normal
powers of G.

One can also extend the definition of Shannon capacity to graph families.
Let G = {G1, G2, . . . , Gk} be a family of graphs on a common set of vertices
V (Gi) = V . We define the Shannon capacity C(G) of a family G by

C(G) = lim
n→∞

1

n
log ω(Gn

1 ∩Gn
2 ∩ · · · ∩Gn

k ).

The Shannon capacity of a family is motivated as the zero-error capacity of the
compound channel described by G. Additional motivation comes from extremal
combinatorics.

Let us be given a graph G = (V,E). The Shannon capacity can be consid-
ered an “OR-capacity” for G. In its definition, two elements x and y of V n are
considered “really different” if there is a coordinate i for which {xi, yi} ∈ E, i.e.
at least one of the edges of G occurs among the coordinate pairs {xi, yi}. The
important fact is that it can be either one of the edges of G – this is what we
mean by calling C(G) above as OR-capacity.

The second natural capacity associated with the graph G is “AND-capacity”
(the conjunctive capacity), denoted by CAND(G). In its definition one would re-
quire that every edge of the graph G be present among the coordinate pairs of the
sequences. More explicitly, now we define the n-th conjunctive power of G as the
graph Gn

AND = (V n, E(Gn
AND)) such that {(x1, x2, . . . , xn), (y1, y2, . . . , yn)} ∈

E(Gn
AND) if and only if for every e ∈ E there exists a coordinate 1 ≤ i ≤ n such

that {xi, yi} = e, and CAND(G) = lim
n→∞

logω(Gn
AND)

n .

The conjunctive capacity is clearly a special case of the Shannon capacity
of a family of graphs. Given a graph G = (V,E), let us denote by G := F(G)
the family of single-edge graphs obtained by considering for every e ∈ E the
graph Ge defined by setting V (Ge) = V and E(Ge) = {e}. Thus G := F(G) is



282 M. Chleb́ık and J. Chleb́ıková

the family of the |E| different single-edge graphs and the conjunctive capacity,
CAND(G), of G is just the Shannon capacity C(F(G)) of this simple family of
graphs.

The problem of determining the Shannon capacity C(G) of a given graph G
is not even known to be NP-hard although it seems plausible that it is in fact
much harder; the problem of deciding whether the Shannon capacity of a given
graph exceeds a given value is not known to be decidable. On the other hand, to
determine the conjunctive capacity CAND(G) is algorithmically much simpler.

In this paper we show that the reciprocal value 1
CAND(G) is an optimal solution

of the newly introduced problem of Minimum Capacitary Vertex Cover that is
closely related to the LP-relaxation of the Minimum Vertex Cover Problem (Sec-
tion 2). We prove that the optimal solution to the problem is unique (Section 5)
and describe the structure of the solution in any (simple) graph (Section 6). We
also point out its close connection with the binding number/binding set of a
graph and the strong crown decompositions of graphs described in [2].

2 The Conjunctive Capacity

In [3] and [5] the authors study the asymptotic value CAND(G). These results
have been used to answer a long-standing open question on the asymptotics of
the maximum number of qualitatively independent partitions in the sense of
Rényi [10]. They provide a computable formula for determining the conjunctive
capacity CAND(G) of any graph G = (V,E) as

CAND(G) = max
P

min
{u,v}∈E

(P (u) + P (v))h
(

P (u)
P (u)+P (v)

)
, (1)

where the maximum is over all probability distributions P on the vertex set V of
G, h is the binary entropy function, h(t) = −t log t− (1− t) log(1− t), t ∈ (0, 1)
which is continuously extended by h(0) = h(1) = 0 to the interval [0, 1]. (Here
and in the sequel logarithms are to the base 2.) The formula (1) is starting point
to our results.

In this paper we study the structure of the optimal solution of the convex
programming problem defined on the graph G, introduced by the right hand
side of (1). In what follows we use the function f : [0,∞) × [0,∞) → [0,∞)
defined by f(x, y) = (x + y)h( x

x+y ), (x, y) ∈ [0,∞) × [0,∞) \ {(0, 0)}, and
f(0, 0) = 0. Notice that f is continuous on [0,∞) × [0,∞), and it simplifies to
f(x, y) = (x+ y) log(x+ y)− x log x− y log y for x, y > 0.

Let G = (V,E) be a graph. The conjunctive capacity of G can then be ex-
pressed as

CAND(G) = max
P

min
{u,v}∈E

f(P (u), P (v)) (2)

where maximum is taken over all probability distributions P on V . (If G does
not have any edges then we set CAND(G) = infinity.) If G has at least one edge, a
distribution P for which the maximum in the definition of CAND(G) is achieved
clearly exists. We will show later that such a distribution is unique and describe
the structure of this optimal distribution.



On the Conjunctive Capacity of Graphs 283

The Minimum Capacitary Vertex Cover Problem

Recall that in the LP-relaxation of Minimum Vertex Cover the task is for a given
graph G = (V,E) to minimize its fractional vertex cover

vc∗(G) = min
x
{x(V ) : (x(u), x(v)) ∈ T for every {u, v} ∈ E}, (3)

where T = {(a, b) ∈ [0,∞)× [0,∞) : a+ b ≥ 1} and the minimum is taken over
all x : V → [0,∞). (Here and in the sequel x(V ) :=

∑
u∈V x(u).)

Now let us consider for a graph G = (V,E) and any fixed t > 0 the following
minimization problem over all nonnegative functions x : V → [0,∞):

g(t) = min
x
{x(V ) : f(x(u), x(v)) ≥ t for every {u, v} ∈ E}. (4)

The edge constraints in (4) are similar to those of the LP-relaxation of the
Minimum Vertex Cover problem for G. If we denote

T (t) = {(a, b) ∈ [0,∞)× [0,∞) : f(a, b) ≥ t}, (5)

then (4) reads as g(t) = minx{x(V ) : (x(u), x(v)) ∈ T (t) for every {u, v} ∈ E}.
It can easily be verified by direct computation that the function f is positive

homogene which means f(cx, cy) = cf(x, y) for each c > 0 and each (x, y) ∈
[0,∞) × [0,∞). So the function g(t) has nice scaling properties, in particular
g(t) = tg(1) for every t > 0. Hence CAND(G) is the only t > 0 such that g(t) = 1
and consequently, g(1) = 1

CAND(G) as g(CAND(G)) = 1).

To determine CAND(G) and a maximizing distribution P for G in (2) we
introduce the following optimization problem that we call the Minimum Ca-
pacitary Vertex Cover problem:

Instance: A graph G = (V,E).
Feasible solution: A function x : V → [0,+∞) satisfying constraints (x(u), x(v)) ∈

T (1) for every edge {u, v} ∈ E, where T (1) is defined by
T (1) = {(a, b) ∈ [0,∞)× [0,∞) : f(a, b) ≥ 1}.

Goal: To minimize x(V ) :=
∑

u∈V x(u) over all feasible solutions.

Denote vcC(G) the optimum value of the Minimum Capacitary Vertex Cover
problem.

One can compare the shapes of T and T (1) (Figure 1):

(1,0)

(0,1)
T

(12 , 0)

(0, 1
2 )

T (1)

The main difference is in the presence of flat parts of the boundary of T that is
not present when dealing with T (1). Except that the structure of the optimum
solutions is similar for both problems as we will see later.



284 M. Chleb́ık and J. Chleb́ıková

Clearly, vcC(G) = 1
CAND(G) , and a minimizer x : V → [0,∞) realizing vcC(G)

corresponds to a scaled capacity distribution P that realizes CAND(G). In what
follows we will deal with the functional vcC(·) rather than with CAND(·), as
vcC(·) appears to be additive with respect to certain natural decompositions ofG.

3 Strong Crown Decomposition

In this section we recall some notions and results from our paper [2] trying to
keep notation the same. Consider a graph G = (V,E). For U ⊆ V , let N(U)
denote the set of its neighbors in G, N(U) := {v ∈ V : ∃u ∈ U such that
{u, v} ∈ E}, and G[U ] be the subgraph of G induced by U .

Recall that a strong crown in a graphG = (V,E) is a nonempty independent
set I of G such that |N(U) ∩ I| > |U | holds for every nonempty set U ⊆ N(I).
If I is a strong crown in G then I is the only maximum independent set in
G[I ∪N(I)] or even in the bipartite graph G[I,N(I)] obtained from G[I ∪N(I)]
removing all edges within N(I) (if any). It turns out that graphs containing a
strong crown can be recognized efficiently and its strong crown can be found
efficiently. As it may not be unique our aim is to find a maximal one.

For any graph G = (V,E) there is a unique strong crown decomposition
(I,H,K), where I is a strong crown, H = N(I) and K = V \ (I ∪ H) is such
that G[K] contains no strong crowns. We will refer to (I,H,K) as the canonical
strong crown decomposition of G in what follows (see [2] for more details).

We have I = ∅ in the decomposition above exactly when (I,H,K) = (∅, ∅, V ),
which is equivalent to the graph G = (V,E) being Hallian; this means it satisfies
Hall’s property |N(I)| ≥ |I| for each independent set I of G or, equivalently,
|N(U)| ≥ |U | for each U ⊆ V . In particular, the graphs G[K] obtained by this
decomposition always satisfy the Hall’s property.

In questions of conjunctive capacity studied in this paper, Hallian graphs
appear to be trivial. Nontrivial graphs are those with a nontrivial strong crown
part G[I ∪H ] in their canonical strong crown decomposition.

4 Binding Number and Binding Set of a Graph

The concept of the binding number of a graph was introduced by Woodall [12]
in 1973. The binding number of a graph G = (V,E), denoted bind(G), is given
by

bind(G) = min
U⊆V

{
|N(U)|
|U | : U �= ∅, N(U) �= V

}
.

A binding set of G is any set U in G with bind(G) = |N(U)|
|U| .

There has been an increased interest in binding numbers as they may be
related to other important graph properties. For example, if bind(G) ≥ 3

2 and
G has at least three vertices then G has a Hamiltonian circuit.

The binding number and the binding set can be computed in polynomial
time ([4]). The approach to computing bind(G) is based on a standard idea



On the Conjunctive Capacity of Graphs 285

for ratio minimization. Let’s consider the problem of minimizing the difference
|N(U)|−λ|U |, for λ ≥ 0 a fixed number. If d(G, λ) denotes min{|N(U)|−λ|U | :
U ⊆ V, U �= ∅, N(U) �= V }, it is easy to see that bind(G) ≥ λ if and only if
d(G, λ) ≥ 0.

Since bind(G) is a rational number whose numerator and denominator are
bounded by |V |, we can deal with λ of this form only. The corresponding min-
imization problem can be solved by a network flow method, but the condition
N(U) �= V makes the problem difficult. We point out that in the situation of
our main interest, namely, bind(G) < 1, bind(G) can be computed faster with
one minimum cut calculation in time O(log |V |). The reason behind this is that
if λ < 1, the restriction that N(U) �= V can be dropped from the definition of
d(G, λ) without changing its value (if there is a binding set U with property
N(U) = V then bind(G) ≥ 1).

It is more relevant to focus our attention to the problem of determining the
truncated version of the binding number (and binding set) problem, namely
min{bind(G), 1}. Given a graph G, we either conclude that bind(G) ≥ 1 or, if
bind(G) < 1, we want to find inclusionwise maximal binding set U . If bind(G) <
1 then every binding set U of G is an independent set of G ([8]). In the following
lemma we prove some important properties of binding sets.

Lemma 1. Let G be a graph and let (I,H,K) be its canonical strong crown
decomposition. If bind(G) < 1 then

(i) every binding set of G is contained in I,
(ii) whenever U and W are two binding sets of G then U ∪W is a binding set,

and U ∩W is either empty or a binding set; in particular, the union of all
binding sets of G is a binding set.

Remark 1. Given any graph G = (V,E) with bind(G) < 1, it is an important
partial problem to find the unique inclusionwise maximal binding set I∗ of G.
We know that we can compute efficiently a binding set I1, let H1 = N(I1) and
G1 = G[V \ (I1 ∪H1)]. One can observe that bind(G1) ≥ bind(G) (otherwise for

a binding set I2 of G1 setting H2 = NG1(I2) we would get |H1∪H2|
|I1∪I2| < bind(G), a

contradiction).
Moreover, bind(G1) > bind(G) holds if and only if I1 = I∗. Firstly, if

bind(G1) = bind(G) we get that |H1∪H2|
|I1∪I2| = bind(G), so I1∪I2 is a larger binding

set of G and, in particular, I1 cannot be whole of I∗. Secondly, if I1 �= I∗ then
bind(G1) = bind(G). To show that, it is sufficient to show bind(G1) ≤ bind(G).
Setting H∗ = N(I∗), b := bind(G), we have |H∗| = b|I∗|, |H1| = b|I1| and
consequently NG1(I

∗ \ I1) = H∗ \ H1 and |H∗ \ H1| = b|I∗ \ I1|, showing
bind(G1) ≤ bind(G).

Now we can set G2 = G[V \ (I1 ∪ I2 ∪ H1 ∪ H2)]. If I1 ∪ I2 is not I∗, i.e.
bind(G2) = bind(G), for a binding set I3 of G2 that we then compute with
H3 = NG2(I3) we get that I1 ∪ I2 ∪ I3 is a larger binding set of G. We can
continue in this way until I1 ∪ I2 ∪ · · · ∪ Ik will be that maximal binding set I∗

of G.



286 M. Chleb́ık and J. Chleb́ıková

5 Minimum Capacitary Vertex Cover and Its Properties

Now we study the properties of the optimal solutions of the Minimum Capacitary
Vertex Cover problem. Recall that this is a convex programming problem defined
on a graph G = (V,E) by

vcC(G) = min
x
{x(V ) : (x(u), x(v)) ∈ T (1) for every {u, v} ∈ E}.

Here T (1) = {(a, b) ∈ [0,∞) × [0,∞) : f(a, b) ≥ 1}, where f(x, y) = (x +
y) log(x + y) − x log x − y log y for x, y > 0, extended continuously to [0,∞)×
[0,∞).

It is important that f is concave on (0,∞) × (0,∞). To verify this, we can
compute the Hessian matrix H(x, y) of f(x, y) which reads as

H(x, y) =

(
1

x+y −
1
x ,

1
x+y

1
x+y ,

1
x+y −

1
y

)
and so det(λI−H(x, y)) = λ

(
λ+

1

x
+
1

y
− 2

x+ y

)
.

As its eigenvalues are non-positive, H(x, y) is negative semidefinite, and so
f(x, y) is concave. Consequently, T (1) is a convex set.

Let us denote by ϕ(x) the function whose graph describes the boundary ∂T (1).
For any x ∈ (0,∞), ϕ(x) denotes a unique y = ϕ(x) such that (x + y) log(x +
y)− x log x − y log y = 1 . As T (1) is symmetric with respect to the line y = x,
ϕ(ϕ(x)) = x for each x ∈ (0,∞). Moreover, ϕ(12 ) =

1
2 , and ϕ : (0,∞)→ (0,∞)

is a real analytic function. We can observe that ∂T (1) does not contain any
line segment, as the uniqueness theorem for real analytic functions would allow
such behaviour of ϕ only for functions that are affine globally in (0,∞), which ϕ
certainly is not. We can thus conclude that T (1) is strictly convex. The fact that
its boundary does not contain any line segments will be important in our proof
that the optimal solution to the Minimum Capacitary Vertex Cover problem is
unique.

Note. It is sometimes useful to have ϕ(x) parametrized by the ratio t = ϕ(x)
x .

Given any t ∈ (0,∞), as f(x, tx) simplifies to x
(
(1 + t) log(1 + t)− t log t

)
, 1 =

f(x, xt) implies x = 1
(1+t) log(1+t)−t log t . It is easy to check that with decreasing

t ∈ (0,∞) this x ∈ (0,∞) increases. So ∂T (1) parametrized by t = ϕ(x)
x reads as

∂T (1) =
{(

1
(1+t) log(1+t)−t log t ,

t
(1+t) log(1+t)−t log t

)
: t ∈ (0,∞)

}
.

Moreover, differentiating (x + ϕ(x)) log(x + ϕ(x)) − x log x − ϕ(x) logϕ(x) = 1
we can derive that

ϕ′(x) = −
log(1 + ϕ(x)

x )

log(1 + x
ϕ(x))

,

from which it is pretty obvious that ϕ′ : (0,∞) → (−∞, 0) smoothly increases
from −∞ to 0 for x varying from 0 to +∞.



On the Conjunctive Capacity of Graphs 287

Let G = (V,E) be a graph. It is clear that a minimum capacitary vertex cover
x : V → [0,∞) for G achieves value 0 at each isolated vertex of G. Removing all
isolated vertices of G (if any) will reduce the problem to the equivalent one on a
graph without isolated vertices. The following lemma is a starting point to the
study of exact solutions to the Minimum capacitary vertex cover problem.

Lemma 2. Let G = (V,E) be a graph without isolated vertices and x : V →
(0,∞) be a minimum capacitary vertex cover for G. Then the following hold:

(i) Ex := {{u, v} ∈ E : f(x(u), x(v)) = 1} is an edge cover of G.

(ii) Let V x
< := {u ∈ V : x(u) < 1

2}, V x
> := {u ∈ V : x(u) > 1

2}, and
V x
= := {u ∈ V : x(u) = 1

2}. Then V x
< is an independent set in G and

N(V x
<) = V x

> .

(iii) Every connected component F = (V (F ), E(F )) of the graph (V,Ex) is
either the component of G[V x

= ], or the component of the bipartite graph
G[V x

< , V x
> ]. In the latter case there exists q ∈ (0, 1

2 ) (depending on F ) such
that

x(u) =

{
q, if u ∈ V (F ) ∩ V x

<

ϕ(q), if u ∈ V (F ) ∩ V x
> .

Theorem 1. For any graph G = (V,E) the minimum capacitary vertex cover
for G is unique.

Auxiliary Two-Valued Capacitary Vertex Cover

While for any graph G = (V,E) the function x ≡ 1
2 on V is always a feasible

capacitary vertex cover, there are situations when this choice of x would clearly
be suboptimal; for example, if G contains isolated vertices.

In view of part (iii) of Lemma 2, it is interesting to consider (minimum)
capacitary vertex covers that assume exactly two different values on the vertex
set of a graph without isolated vertices. More specifically, let q < 1

2 and p =
ϕ(q) > 1

2 be these two values of a minimum capacitary vertex cover x, and let
I ∪H be the partition of V such that x|I = q and x|H = p. Then, clearly, I is

an independent set in G and we show that |I| > |V |
2 .

More generally, for any partition I ∪ H of V into two nonempty sets we can
consider the following auxiliary two-valuedminimization problem s := min{q|I|+
p|H | : (q, p) ∈ T (1)}. Let us consider the lines LR = {(q, p) : q|I| + p|H | = R}
for any real R. They all have a slope − |I|

|H| and exactly one of them touches the

boundary ofT (1).The point of this touching, (x, ϕ(x)) has to satisfyϕ′(x) = − |I|
|H| .

As we observed earlier, ϕ′(x) = − log(1+ϕ(x)
x )

log(1+ x
ϕ(x)

) , so in terms of the parameter

t = ϕ(x)
x , this point of touching corresponds to the unique root t (denoted as

t = F ( |H|
|I| ), as it depends on the ratio |H|

|I| only) to the equation log(1+t)

log(1+ 1
t )

= |I|
|H|

(or, equivalently, 1− |H|
|I| = log t

log(t+1) ).



288 M. Chleb́ık and J. Chleb́ıková

The optimal solution s to the above minimization problem will then read in

terms of F ( |H|
|I| ) as

s =
|I|

log(1 + F ( |H|
|I| ))

=
|H |

log(1 + 1

F ( |H|
|I| )

)
.

In another words, this minimum is the unique real root s to the equation 2−
|H|
s +

2−
|I|
s = 1. In addition to F ( |H|

|I| ), we will denote by Ψ( |H|
|I| ) that (q, p) that

minimizes s above, hence the point of touch. Namely, Ψ( |H|
|I| ) is the point(

1

(1+F (
|H|
|I| )) log(1+F (

|H|
|I| ))−F (

|H|
|I| ) logF (

|H|
|I| )

,
F (

|H|
|I| )

(1+F (
|H|
|I| )) log(1+F (

|H|
|I| ))−F (

|H|
|I| ) logF (

|H|
|I| )

)
,

the unique point on ∂T (1) with the slope − |I|
|H| .

This auxiliary problem makes perfect sense for any partition I ∪H of V into
two nonempty sets, but it is related to the minimum capacitary vertex cover
problem only under some additional assumptions. By symmetry, we could confine

ourselves to the case when |I| ≥ |H |, so that point (q, p) = Ψ( |H|
|I| ) of ∂T (1) with

the slope − |I|
|H| will have q ≤ 1

2 . As |I| = |H | corresponds to the touching point

(p, q) = (12 ,
1
2 ), to achieve a two-valued solution we assume |I| > |H |, leading to

q < 1
2 .

If one defines x|I = q and x|H = p then it will be a feasible capacitary
vertex cover only if I is an independent set in G, otherwise the constraints
(x(u), x(v)) ∈ T (1) for any edge with both vertices u and v in I, are not met.

We can then observe that a necessary condition for a graph G = (V,E) to
have a two-valued minimum capacitary vertex cover is to have an independent

set I of size > |V |
2 . Later (in Theorem 4) we will be able to provide necessary

and sufficient conditions for G to have a two valued minimum capacitary vertex
cover.

Minimum Fractional and Capacitary Vertex Covers

It is easy to see that any capacitary vertex cover for G = (V,E) is a fractional
vertex cover for G (as T (1) ⊆ T , see Fig. 1), so vc∗(G) ≤ vcC(G). Moreover,
the uniform function x ≡ 1

2 on V is always a feasible capacitary vertex cover.

Consequently, vc∗(G) ≤ vcC(G) ≤ |V |
2 . In terms of the conjunctive capacity,

2

|V | ≤ CAND(G) ≤ 1

vc∗(G)
.

The Hallian graphs, i.e. those graphs that contain a system of vertex disjoint
edges and (odd) cycles covering all the vertices are extremals for these bounds.
Namely, assuming that a graph G = (V,E) does not have isolated vertices,

vc∗(G) = |V |
2 if and only if G is Hallian.

In the following theorem we prove that a similar result also holds for the
Minimum Capacitary Vertex problem.



On the Conjunctive Capacity of Graphs 289

Theorem 2. Let G = (V,E) be a graph without isolated vertices, then vcC(G) =
|V |
2 if and only if G is Hallian.

6 The Structure of Minimum Capacitary Vertex Covers

Now we describe in detail how the unique minimum capacitary vertex cover
x : V → (0,∞) for a graph G = (V,E) without isolated vertices can look like.
Let (I,H,K) be the canonical strong crown decomposition of G. We show that
then V x

< = I, V x
> = H , and V x

= = K. Moreover, we describe how the exact values
of x on I ∪H can be found by computing binding sets of certain graphs.

Theorem 3. Let G = (V,E) be a graph without isolated vertices with the canon-
ical strong crown decomposition (I,H,K) and let x : V → (0,∞) be the min-
imum capacitary vertex cover for G. Assume that x|H achieves m ≥ 1 values,
p1 > p2 > · · · > pm. Then pm > 1

2 , and x|I achieves m values q1 = ϕ(p1) <
q2 = ϕ(p2) < · · · < qm = ϕ(pm) < 1

2 .
Put Ii := {v ∈ I : x(v) = qi}, Hi := {v ∈ H : x(v) = pi} for i =

1, 2, . . . ,m. Then Hi ⊆ N(Ii) ⊆ ∪ij=1Hj and Ii ⊆ N(Hi) ∩ I ⊆ ∪mj=iIj for
each i = 1, 2, . . . ,m.

The ratio |Hi|
|Ii| is uniquely determined by the values (qi, pi), namely (qi, pi) =

Ψ( |Hi|
|Ii| ). Moreover, for each connected component F = (V (F ), E(F )) of the graph

(V,Ex) with V (F ) ⊆ Ii∪Hi we have the same ratio |V (F )∩Hi|
|V (F )∩Ii| = |Hi|

|Ii| , as (qi, pi) =

Ψ( |V (F )∩Hi|
|V (F )∩Ii| ) holds.

In particular, |H1|
|I1| < |H2|

|I2| < · · · < |Hm|
|Im| < 1.

We are now ready to describe graphs G = (V,E) for which a two-valued ca-
pacitary vertex cover is optimal. Such graphs have their canonical strong crown
decomposition (I,H,K) with the Hallian part K empty and with I a binding
set of G. In other words one could describe such graphs G = (V,E) as those

with α(G) > |V |
2 and such that for each non-empty independent set U in G

|N(U)|
|U | ≥ τ(G)

α(G)
. Here α(G) is the size of the maximum independent set and

τ(G) is the size of the minimum vertex cover in the graph G.

Theorem 4. Let G = (V,E) be a graph without isolated vertices and with the
canonical strong crown decomposition (I,H, ∅) and assume that I �= ∅ is a bind-
ing set of G. Then the minimum capacitary vertex cover x : V → (0,∞) is

two-valued, x|I = q, x|H = p, with (q, p) = Ψ( |H|
|I| ).

Let G = (V,E) be a graph without isolated vertices, let (I,H,K) be its canonical
strong crown decomposition and assume that I �= ∅ (so bind(G) < 1). Let I1
be the inclusionwise maximal binding set of G. As we observed earlier I1 ⊆ I.

Put H1 := N(I1) and (q1, p1) = Ψ( |H1|
|I1| ). Let us take x|I1 = q1, x|H1 = p1. In

the induced graph G[I1 ∪H1] we can conclude by the previous theorem that the



290 M. Chleb́ık and J. Chleb́ıková

minimum capacitary vertex cover is two-valued and achieves the values we have
assigned them.

Now we study the question on the graph obtained by removing I1 and H1

from G. Denote G1 = G[V \ (I1 ∪H1)]. It can be easily verified that G1 has the
canonical strong crown decomposition (I \I1, H \H1,K). (It is sufficient to check
that it is still |N(U) ∩ I| > |U | whenever U is a nonempty subset of H \H1.)

If I \ I1 �= 0 (so bind(G1) < 1) we can take I2, the inclusionwise maximal

binding set of G1, H2 := NG1(I2) and put (q2, p2) = Ψ( |H2|
|I2| ). We take x|I2 = q2,

x|H2 = p2. With this choice of x in the induced graph G[I2 ∪H2], x defines the
minimum capacitary vertex cover.

Observe now that bind(G) = |H1|
|I1| < |H2|

|I2| = bind(G1). If not, then
|H1∪H2|
|I1∪I2| ≤

bind(G) and I1 ∪ I2 would be an inclusionwise larger binding set of G than I1,
a contradiction. So

|H1|
|I1|

<
|H2|
|I2|

, and as (qi, pi) = Ψ(
|Hi|
|Ii|

), i = 1, 2, . . .

we conclude that q1 < q2 < 1
2 and p1 > p2 > 1

2 .
We can continue in the same way and stop after m steps once ∪mi=1Ii exhausts

I. The rest is the Hallian graph G[K]. For K we take x|K ≡ 1
2 as we know that

for Hallian graphs it is the optimal value of the minimum capacitary vertex cover
(Theorem 2). We have

|H1|
|I1|

<
|H2|
|I2|

< · · · < |Hm|
|Im|

< 1, (qi, pi) = Ψ(
|Hi|
|Ii|

), x|Ii = qi, x|Hi = pi,

for i = 1, 2, . . . ,m and q1 < q2 < · · · < qm < 1
2 .

If we define x : V → (0,∞) this way, we have a potential solution that is
locally optimal on each of G[I1 ∪H1], G[I2 ∪H2], . . . , G[Im ∪Hm], and G[K].
So vcC(G) is at least x(V ) and to show that it is indeed x(V ) we need to check
that x is a feasible capacitary vertex cover for G satisfying all the constraints
(x(u), x(v)) ∈ T (1) also for pairs {u, v} ∈ E belonging to distinct pieces of
G[I1∪H1], G[I2∪H2], . . . , G[Im∪Hm], and G[K]. For this it is sufficient to check
that all vertices of I that have assigned x(u) < 1

2 , have their neighbours v with
x(v) large enough. If u ∈ Ii, say, then x(u) = qi, and any neighbour v of u needs
to have x(v) ≥ ϕ(qi) = pi to comply with the constraints, so only v ∈ ∪ij=1Hj

would be allowed. But our construction ensures that Hi ⊆ N(Ii) ⊆ ∪ij=1Hj for
each i = 1, 2, . . . ,m, so there are no edges from u ∈ Ii to any v ∈ Hj with j > i.
Hence our x is indeed a feasible capacitary vertex cover for G and consequently
it is the minimum capacitary vertex cover for G.

Theorem 5. Let G = (V,E) be a graph without isolated vertices and with the
canonical strong crown decomposition (I,H,K), and let x : V → (0,∞) be the
(unique) minimum capacitary vertex cover for G. Then I = {v ∈ V : x(v) < 1

2},
H = {v ∈ V : x(v) > 1

2} and K = {v ∈ V : x(v) = 1
2}. If G is not Hallian,

then x|I has m ≥ 1 values q1 < q2 < . . . qm < 1
2 and x|H has m values p1 =

ϕ(q1) > p2 = ϕ(q2) > · · · > pm = ϕ(qm) > 1
2 with Ii := {u ∈ I : x(v) = qi},



On the Conjunctive Capacity of Graphs 291

Hi := {v ∈ H : x(v) = pi}. Here I1 is the inclusionwise maximal binding

set for G, H1 = N(I1) and (q1, p1) = Ψ( |H1|
|I1| ). Moreover, after removing the

vertices I1∪H1 from the graph, x|V \(I1∪H1) is still a minimum capacitary vertex
cover in the rest G[V \ (I1 ∪ H1)]. We can find all pairs (Ii, Hi) of sets and
their corresponding values (qi, pi), i = 1, 2, . . . ,m, by repeatedly computing the
inclusionwise maximal binding set Ii in Gi−1 := G[V \ ∪j<i(Ij ∪ Hj)], Hi =

NGi−1(Ii), and (qi, pi) = Ψ( |Hi|
|Ii| ).

Remark 2. As the convex programming problem of finding the minimum capac-
itary vertex cover problem is efficiently computable one can use it as an alter-
native way of computing the canonical strong crown decomposition (I,H,K) of
any graph G = (V,E) without isolated vertices, given that I = V x

< , H = V x
> ,

and K = V x
= .

References

1. Berge, C.: Graphs. North-Holland, Amsterdam (1985)
2. Chleb́ık, M., Chleb́ıková, J.: Crown reductions for the Minimum Weighted Vertex

Cover problem. Discrete Applied Mathematics 156, 292–312 (2008)
3. Cohen, G., Körner, J., Simonyi, G.: Zero-error capacities and very different se-

quences. In: Capocelli, R.M. (ed.) Sequences: Combinatorics, Compression, Secu-
rity and Transmission, pp. 144–155. Springer (1990)

4. Cunningham, W.H.: Computing the binding number of a graph. Discr. Appl.
Math 27, 283–285 (1990)

5. Gargano, L., Körner, J., Vaccaro, U.: Sperner capacities. Graphs and Combina-
torics 9, 31–46 (1993)

6. Gargano, L., Körner, J., Vaccaro, U.: Capacities: from information theory to ex-
tremal set theory. J. Comb. Theory Ser. A 68, 296–316 (1994)

7. Greco, G.: Capacities of graphs and 2-matchings. Discrete Mathematics 186,
135–143 (1998)

8. Kane, V.G., Mohanty, S.P., Straus, E.G.: Which rational numbers are binding
numbers? Journal of Graph Theory 5, 379–384 (1981)

9. Körner, J., Simonyi, G.: A Sperner-type theorem and qualitative independence. J.
Comb. Theory 59, 90–103 (1992)

10. Rényi, A.: Probability theory. North-Holland, Amsterdam (1970)
11. Shannon, C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inform.

Theory 2, 8–19 (1956)
12. Woodal, D.R.: The binding number of a graph and its Anderson number. J. Com-

bin. Theory Ser. B 15, 225–255 (1973)



Improved Approximation Algorithms

for the Facility Location Problems
with Linear/submodular Penalty

Yu Li1, Donglei Du2, Naihua Xiu1, and Dachuan Xu3,�

1 Department of Mathematics, School of Science, Beijing Jiaotong University, 3
Shangyuancun, Haidian District, Beijing 100044, P.R. China

2 Faculty of Business Administration, University of New Brunswick, NB Canada
Fredericton E3B 9Y2

3 Department of Applied Mathematics, Beijing University of Technology, 100
Pingleyuan, Chaoyang District, Beijing 100124, P.R. China

xudc@bjut.edu.cn

Abstract. We consider the facility location problem with submodular
penalty (FLPSP) and the facility location problem with linear penalty
(FLPLP), two extensions of the classical facility location problem (FLP).
First, we introduce a general algorithmic framework for a class of cov-
ering problems with submodular penalty, extending the recent result of
Geunes et al. [11] with linear penalty. This framework leverages existing
approximation results for the original covering problems to obtain corre-
sponding results for their submodular penalty counterparts. Specifically,
any LP-based α-approximation for the original covering problem can be

leveraged to obtain an 1/
(
1− e−1/α

)
-approximation algorithm for the

counterpart with submodular penalty. Consequently, any LP-based ap-
proximation algorithm for the classical FLP (as a covering problem) can
yield, via this framework, an approximation algorithm for the submod-
ular penalty counterpart. Second, by exploiting some special properties
of FLP, we present an LP rounding algorithm which has the currently
best 2-approximation ratio over the previously best 2.50 by Hayrapetyan
et al. [13] for the FLPSP and another LP rounding algorithm which has
the currently best 1.5148-approximation ratio over the previously best
1.853 by Xu and Xu [27] for the FLPLP, respectively.

Keywords: Approximation algorithm, facility location problem, LP
rounding, submodular function.

1 Introduction

The classical facility location problem (FLP) is one of the most important mod-
els in combinatorial optimization with applications in operations research and
computer science in general, and inventory management and supply chain man-
agement in particular. This problem is NP-hard and therefore much attention

� Corresponding author.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 292–303, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Improved Approximation Algorithms for the Facility Location Problems 293

has been focused on designing approximation algorithms with good performance.
Following the first constant-factor approximation algorithm by Shmoys et al.
[22], there was a long list of work on designing improved approximation algo-
rithms for this problem over the years. As a result, four basic schemes have
emerged in the design of these approximation algorithms, namely LP-rounding
[3,8,18,22,24], primal-dual [16], dual-fitting [14,15,20], and local search [4,12,17].
These four competitive and complementary schemes possess different features.
LP-rounding is non-combinatorial in nature mainly because of the resolving of
the underlying LP-relaxation, while the other three are combinatorial, hence
offering faster approximation algorithms than LP rounding. However, the first
scheme usually allows us to design algorithms with better approximation ratios
compared to the other three—e.g., the currently best approximation ratio of
1.488 by Li [18] is obtained by combining LP-rounding and dual-fitting algo-
rithms. Among the latter three, primal-dual can be adapted to solve variants
of the classical FLP. Dual-fitting is essentially one special type of primal-dual
methods, and usually offers better approximation ratio than a typical primal-
dual, but is less robust. Local search is more powerful on the hard capacitated
version of the FLP (cf. [30]).

On the impossibility of approximation, Guha and Khuller [12] show that the
approximation ratio for FLP is at least 1.463, unless NP ⊆ DTIME(nlog logn),
later strengthened to unless P = NP by Sviridenko ([25]). For other variants of
the FLP, we refer to [1,2,6,19,21,23,28,29,30] and the references therein.

In this work, we study two facility location problems with penalty, namely
the facility location problem with linear penalty (FLPLP) and the more general
facility location problem with submodular penalty (FLPSP), first introduced, as
important extensions of the classical FLP, by Charikar et al. [5] and Hayrapetyan
et al. [13], respectively. The FLPLP can be formally defined as follows. Consider
a set F of facilities and a set D of clients. For every facility i ∈ F and every client
j ∈ D, there is a nonnegative opening cost fi, a penalty cost pj , and a connection
cost cij . Unlike the regular FLP, the FLPLP does not require that every client
must be served by some open facility. Instead, a client j can be either served by
an open facility or rejected for service with penalty cost pj. The problem is to
open a subset of facilities such that each client j ∈ D is either assigned to an open
facility or rejected with the objective to minimize the total cost, including the
open, connection and linear penalty costs. We assume that the connection cost
between clients and facilities is metric, i.e., cij ≤ cij′ + ci′j′ + ci′j . The FLPSP is
similar to the FLPLP except that the linear penalty cost is replaced by a general
monotonically increasing submodular function. A set function P : 2D → R+ is
submodular if P (X ∩Y )+P (X ∪Y ) ≤ P (X)+P (Y ) for any subsets X,Y ∈ 2D.
We assume that P (∅) = 0.

For the FLPLP, four constant-factor approximation algorithms were known
in the literature. Charikar et al. [5] gave a primal-dual 3-approximation algo-
rithm. Xu and Xu [26,27] presented an LP-rounding based 2 + e−1 ≈ 2.736-
approximation algorithm, and a combinatorial 1.853-approximation algorithm
by integrating primal-dual with local search technique. Recently, Geunes et al.



294 Y. Li et al.

[11] gave an improved LP-rounding based 2.056-approximation algorithm. In
particular, Geunes et al. [11] presented an algorithmic framework which can con-

vert any LP-based α-approximation for the classical FLP to an
(
1− e−1/α

)−1
-

approximation algorithm for the counterpart with linear penalty.
For the FLPSP, three approximation algorithms were proposed in the litera-

ture. Hayrapetyan et al. [13] gave a simple LP-rounding based 2.50-approximation
algorithm. Chudak and Nagano [7] gave a faster (2.50 + ε)-approximation algo-
rithm by solving a convex relaxation rather than an LP relaxation of the FLPSP.
Very recently, Du et al. [9] presented a primal-dual 3-approximation algorithm.

In summary, for the FLPLP, the best known approximation ratio is 1.853
[27], and the best known non-combinatorial ratio is 2.056 [11]. For the FLPSP,
the best known combinatorial approximation ratio is 3 [9] and the best known
non-combinatorial ratio is 2.50 [13].

The main contributions of this work are summarized as follows.

– We extend Geunes et al. [11]’s algorithmic framework for linear penalty to
submodular penalty by showing that our framework can leverage any LP-

based α-approximation to construct an
(
1− e−1/α

)−1
-approximation algo-

rithm for the counterpart with submodular penalty.

– Combining a novel LP-rounding technique with the JMS algorithm of [14,15],
along with the exploitation of the special properties of the submodular
penalty function, we provide an improved 2-approximation algorithm for
the FLPSP over the previously best approximation ratio 2.50 [13].

– Note that for the FLPLP, the existing combinatorial ratio is better than the
existing non-combinatorial ratio. This phenomena is generally “abnormal”
and our third contribution corrects this “abnormality” by offering the cur-
rently best LP-rounding 1.5148-approximation algorithm which exploits the
special properties of the linear penalty function.

There are intrinsic differences between the two LP-based algorithms for the
FLPSP in Section 2 and the FLPLP in Section 3 due to the essential difference
between linear and submodular functions. In general, linear penalty functions
possess important properties not applicable to submodular penalty functions.
Our algorithm and analysis indicate that the latter is substantially harder to
approximate than the former because the techniques for the FLPLP, such as that
by Byrka and Aardal [3], is not directly applicable to the FLPSP. To overcome
this difficulty, our algorithm for the latter will exploit the special structure of
the optimal LP relaxation solution of the FLPSP.

The rest of this paper is organized as follows. In Section 2, we first show that
any LP-based α-approximation algorithm for the classical FLP can be lever-

aged to an
(
1− e−1/α

)−1
-approximation algorithm for the submodular penalty

counterpart. This result will serve as a concrete example in deriving a general
framework for a class of covering problems with submodular penalty. And this
framework also extends Geunes et al. [11]’s technique for the linear penalty model
to the submodular case. In Sections 3 and 4, we present the 2-approximation



Improved Approximation Algorithms for the Facility Location Problems 295

algorithm for the FLPSP, and the 1.5148-approximation algorithm for the
FLPLP, respectively.

We use the following notations throughout the paper: nf = |F| and nc = |D|.
In the rest of this paper, all proofs are omitted and deferred to the journal
version.

2 Algorithmic Scheme for Problems with Submodular
Penalty

We will use the FLPSP as an example to show our algorithmic framework, which
then will be extended to a more general class of covering problems.

2.1 An LP-Rounding Approximation Algorithm for the FLPSP

The following LP relaxation for the FLPSP first appeared in Hayrapetyan et al.
[13].

min
∑
i∈F

∑
j∈D

cijxij +
∑
i∈F

fiyi +
∑
S⊆D

P (S)zS

s.t.
∑
i∈F

xij +
∑

S⊆D:j∈S

zS ≥ 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F , j ∈ D, (1)

xij , yi, zS ≥ 0, ∀i ∈ F , j ∈ D, S ⊆ D,

where P (S) is a nondecreasing submodular function and P (∅) = 0. Let us give
some intuitive interpretation for the corresponding integer program as follows.
The binary variables xij indicates whether client j is served by facility i; yi
indicates whether facility i is open; zS indicates whether client set S is penalized,
respectively. The first set of constraints says that each client j is served by some
facility or rejected at some client set. The second set of constraints says that
each client j can only be served by an open facility.

Now, we give an LP-rounding based approximation algorithm similar to that
by Geunes et al. [11].

Algorithm 1.

STEP 1. Solve the LP relaxation (1) to obtain an optimal fractional solution
(x∗, y∗, z∗).

STEP 2. Construct a new variable z such that zj := 1−
∑

i∈F x∗
ij .

STEP 3. Select parameter β uniformly at random from the interval [0, δ).
STEP 4. Reject the subset S := {j|zj ≥ β}, and pay the penalty cost P (S).
STEP 5. Construct an instance of the classical FLP with the set of facilities
F , the set of clients D\S and the connection cost cij (i ∈ F , and j ∈ D\S).
Then run the 1.488-approximation algorithm [18] for the instance and assign
the clients in D \ S to the closest open facilities.



296 Y. Li et al.

Lemma 1. The expected penalty cost of the solution generated by Algorithm 1
is no more than δ−1

∑
S⊆D P (S)z∗S.

Theorem 2. Setting δ = 1− e−1/1.488, the approximation ratio of Algorithm 1

for the FLPSP is no more than
(
1− e−1/1.488

)−1 ≤ 2.044.

We remark that there is a convex relaxation for the FLPSP presented by Chudak
and Nagano [7],

min
∑
i∈F

∑
j⊆D

cijxij +
∑
i∈F

fiyi + P ′(z) (2)

s.t.
∑
i∈F

xij + zj ≥ 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F , j ∈ D, (3)

xij , yi, zj ≥ 0, ∀i ∈ F , j ∈ D,

in which,

P ′(z) = max
∑
j∈D

αjzj

s.t.
∑
j∈S

αj ≤ P (S), ∀S ⊆ D,

αj ≥ 0, ∀j ∈ D.

It is not hard to see that in Algorithm 1 the solution (x∗, y∗, z) constructed in
Step 2 is actually an optimal solution to (3). To avoid solving (1) with exponential
number of variables, we can replace the first two steps in Algorithm 1 by just
solving the convex relaxation (3) to obtain an new algorithm with the same
approximation ratio except the extra term ε.

2.2 General Rounding Framework

We can extend our rounding technique in the previous section to the following
more general model:

min ϕ(w) +
∑
S⊆D

P (S)zS

s.t. wj +
∑

S⊆D:j∈S

zS ≥ 1, ∀j ∈ D, (4)

wj , zS ∈ {0, 1}, ∀j ∈ D, S ⊆ D.

This model captures a class of covering problems, in which the clients can receive
service or be rejected, and the subset of clients Srej rejected will incur a penalty
cost P (Srej). The binary vector w indicates whether the client j receives service
or not. The term ϕ in the objective function satisfies Assumption 3 below. This
new problem embeds a subproblem, denoted as φ(w).



Improved Approximation Algorithms for the Facility Location Problems 297

Assumption 3. There exists a function ϕ̄: [0, 1]nc �−→ R+, such that

1) ϕ̄ is a lower bound on ϕ, i.e. ϕ̄(w) ≤ ϕ(w), for all w ∈ [0, 1]nc ;

2) for any fixed w ∈ {0, 1}nc, we can efficiently find a solution to φ(w) of cost
at most αϕ̄(w), where α ≥ 1;

3) the optimization problem

min ϕ̄(w) +
∑
S⊆D

P (S)zS

s.t. wj +
∑

S⊆D:j∈S

zS = 1, ∀j ∈ D, (5)

wj , zS ∈ [0, 1], ∀j ∈ D, S ⊆ D,

can be solved efficiently.

In general the subproblem ϕ(w) is NP-hard—e.g., for the FLPSP, φ(w) is the
classical FLP. The above assumption will make it possible for us to design a
constant-factor approximation algorithm for the general model. Note that (5) is
a relaxation of (4), and becomes (1) in the case of the FLPSP, for example.

The following algorithm is an extension of Algorithm 1.

Algorithm 2.

STEP 1. Solve the relaxation problem (5) to obtain an optimal fractional so-
lution (w∗, z∗).

STEP 2. Select the parameter β uniformly at random from the interval [0, δ).

STEP 3. Reject the subset S := {j|1 − w∗
j ≥ β}, and pay the penalty cost

P (S). Construct variable w ∈ {0, 1}nc by setting w := I(D \ S).
STEP 4. Find a solution to the subproblem φ(w) and serve all the unrejected

clients D \ S.

We need one more assumption called scaling property [11].

Assumption 4. The function ϕ̄ satisfies the scaling property if

ϕ̄(w) ≤ 1

1− β
ϕ̄(w∗), ∀ w∗ ∈ [0, 1]nc , ∀ 0 ≤ β < 1.

Note that this assumption indeed holds in the FLPSP, because (x∗/(1− β),
y∗/(1− β)) is a feasible solution to the relaxed problem.

With Assumptions 3 and 4, similar proofs to those in Lemma 1 and Theorem
2 lead to the following result:

Theorem 5. Setting δ = 1− e−1/α, the approximation ratio of Algorithm 2 for

(4) is no more than
(
1− e−1/α

)−1
.



298 Y. Li et al.

3 Improved 2-Approximation Algorithm for the FLPSP

In the previous section, we presented a general algorithmic frame for a class of
covering problems with submodular penalty, but this frame can be too crude to
be applied to certain specific problems and hence sometimes we need to refine
the general frame to yield improved approximation ratios. For example, when
we applied it to the FLPSP earlier in Section 2.1, the algorithm and its analysis
ignored the possibility where unrejected clients may have paid fractional cost
for penalty. In this section, we will incorporate this ignored cost into the design
and analysis of our algorithms to obtain improved approximation ratio for the
FLPSP.

Algorithm 3.

STEP 1. Solve the convex relaxation (2) of the problem to obtain an optimal
fractional solution (x∗, y∗, z∗). Or solve the LP relaxation (1) and convert
its solution into (x∗, y∗, z∗) for (2).

STEP 2. Reject the subset Sr := {j|zj ≥ 1
2}, and pay the penalty cost P (S).

STEP 3. Construct an instance of classical FLP with the set of facilities F , the
set of clients D\Sr and the connection cost cij , i ∈ F , j ∈ D\Sr. Then run
the JMS algorithm [14,15] for the instance and assign the clients in D \ Sr

to the closest open facilities.

We will show that Algorithm 3 offers an improved approximation ratio. After the
Step 1 of Algorithm 3, we know the total cost of the optimal fractional solution
(x∗, y∗, z∗) for (1) is ∑

i∈F

∑
j⊆D

cijx
∗
ij +

∑
i∈F

fiy
∗
i + P ′(z∗).

Moreover, we have

Lemma 6.

(1)
∑
j∈D

α∗
jz

∗
j = P ′(z∗);

(2) P (Sr) ≤ 2
∑

j∈Sr

α∗
jz

∗
j ;

(3) For any j /∈ Sr, if z∗j > 0 and x∗
ij > 0, then α∗

j ≥ cij.

We now present the approximation ratio of the above algorithm.

Theorem 7. Algorithm 3 is a 2-approximation algorithm for the FLPSP.

4 Improved 1.5148-Approximation Algorithm for the
FLPLP

Recently, Li [18] offered an improved analysis of the LP rounding algorithm by
Byrka and Aardal [3] to obtain the currently best approximation ratio for the



Improved Approximation Algorithms for the Facility Location Problems 299

classical to FLP. In this section, we extend the LP rounding algorithm by Byrka
and Aardal and the analysis by Li to obtain an improved algorithm for the
FLPLP, which has a natural integer programming formulation:

min
∑
i∈F

∑
j∈D

cijxij +
∑
i∈F

fiyi +
∑
j∈D

pjzj

s.t.
∑
i∈F

xij + zj ≥ 1, ∀j ∈ D, (6)

xij ≤ yi, ∀i ∈ F , j ∈ D,
xij , yi, zj ∈ {0, 1}, ∀i ∈ F , j ∈ D,

where the binary variable xij indicates whether client j is connected to facility i
or not, binary variable yi indicates whether facility i is open or not, and binary
variable zj indicates whether client j is penalized or not.

Denote the optimal solution of the LP relaxation as (x∗, y∗, z∗) and the cor-
responding optimal dual solution as (α∗, β∗). The total optimal fractional cost
includes three parts: the opening cost F ∗ =

∑
i∈F fiy

∗
i , the connection cost

C∗ =
∑

i∈F
∑

j∈D cijx
∗
ij =

∑
j∈D C∗

j , and the penalty cost P ∗ =
∑

j∈D pjz
∗
j =∑

j∈D P ∗
j .

We have the following lemma to capture the property of the optimal fractional
solution (x∗, y∗, z∗).

Lemma 8. For any j ∈ D, if z∗j > 0 and x∗
ij > 0, then pj ≥ cij.

For any given parameter γ > 1, we partition the set of clients D into two subsets.

Dγ =

{
j ∈ D|

∑
i∈F

x∗
ij ≥

1

γ

}
,

D̄γ = D \ Dγ .

In our algorithm, we first randomly scale y∗ by γ > 1 to obtain a suboptimal
fractional solution (x∗, γy∗, z∗), making room for modification of x∗ and z∗ in
order to reduce the fractional connection cost and the fractional penalty cost
respectively. Then, for each client j, we modify the corresponding x∗ to connect
facility as close as possible subject to that the summation

∑
i∈F xij equals to

min{γ
∑

i∈F x∗
ij , 1}, followed by modifying the corresponding z∗ to guarantee

the first constrain of (6), resulting in a new feasible solution. However, Lemma
8 implies that for any client j ∈ Dγ , the new z-variable must be zero. So for
j ∈ Dγ , we can omit z-variables and let (x̄, ȳ) be the resultant complete solution
(i.e. there exists no i ∈ F and j ∈ D such that 0 < x̄ij < ȳi; otherwise we may
split the facilities to obtain an equivalent instance with a complete solution—
refer to Lemma 1 in [24] for a more detailed argument). For a client j, we say
that a facility i is one of its close facilities if it fractionally serves client j in
(x̄, ȳ). If x̄ij = 0, but facility i was serving client j in solution (x∗, y∗, z∗), then
we say that i is a distant facility of client j.



300 Y. Li et al.

For any client j ∈ D, let i1, i2, . . . , im be the facilities, arranged in the non-
decreasing order of distances, to which client j is connected to fractionally in
(x∗, y∗, z∗). Then we define hj(p) = cit,j , where t is minimum number such that∑t

s=1 y
∗
is
≥ p, or hj(p) = pj when p >

∑m
s=1 y

∗
is
.

Note that for every client j ∈ D, the following facts hold:

– The sum of average connection and penalty costs equals Dav =
∫ 1

0
hj(p)dp =

F ∗
j + P ∗

j .

– The average connection cost to a close facility equals DC
av = γ

∫ 1/γ

0 hj(p)dp.
– The average connection cost to a distant or rejected facility equals DD

av =
γ

γ−1

∫ 1

1/γ
hj(p)dp.

– The maximal distance to a close facility is at most the average distance to a
distant facility, DC

max = hj(1/γ).

Fig. 1.

We are now ready to present our algorithm. Consider the bipartite graph G ob-
tained from the solution (x̄, ȳ), where each client j ∈ Dγ is directly connected to
his close facilities. Clients connected to the same facility in G are called neigh-
bors. The main component in the algorithm is to cluster this graph recursively
in a greedy fashion (Step 4), similarly to that used by Byrka and Aardal [3].

We let γ = 1.3360 with probability 0.45 and with the remaining 0.55 probabil-
ity, we choose γ between (1.3360,1.9860] uniformly. We denote the distribution
as μ(γ). The main idea on how to choose this distribution μ(γ) is to first con-
duct numerical test to hypothesize the distribution function form such that the
approximation ratio is as small as possible; and then the hypothesized functional
form can be proved rigorously afterwards.



Improved Approximation Algorithms for the Facility Location Problems 301

Algorithm 4.

STEP 1. Solve the LP relaxation (6) to obtain an optimal fractional solution
(x∗, y∗, z∗).

STEP 2. Scale up the value of the facility opening variables y∗ by a random
number γ obeying μ(γ). Then modify the value of the x∗, z∗-variables so
that each client is connected to its closest fractionally open facilities.

STEP 3. If necessary, split facilities to obtain a complete solution (x̄, ȳ).
STEP 4. Construct a greedy clustering from solution (x̄, ȳ) by choosing recur-

sively as cluster centers the unclustered clients in Dγ with minimal DC
av(j)+

DC
max(j).

STEP 5. For every cluster center j, open one of its close facilities randomly
with probabilities x̄ij .

STEP 6. For each facility i that is not a close facility of any cluster center,
open it independently with probability ȳi.

STEP 7. For any client j ∈ D, connect it to an open facility or pay penalty
cost when the minimal connection cost to an open facility is larger than pj .

We remark that only clients in Dγ can be chosen as cluster centers, which is
different from the LP rounding algorithm in Byrka and Aardal [3] and Li [18].

During the analysis of the above algorithm, we will use the following lemma
from [18] which holds also for our algorithm.

Lemma 9. For any client j, we have

E[Cj + Pj ] ≤
∫ 1

0

hj(p)e
−γpγdp+ e−γ

(
γ

∫ 1

0

hj(p)dp+ (3 − γ)hj

(
1

γ

))
.

Now we present our main result for the FLPLP which follows the approach of
Li [18].

Theorem 10. Algorithm 4 produces a solution with expected cost

E[F + C + P ] ≤ 1.5148(F ∗ + C∗ + P ∗),

implying that Algorithm 4 is a 1.5148-approximation algorithm.

Acknowledgements. The research of the second author is supported by the
Natural Sciences and Engineering Research Council of Canada (NSERC) grant
283106. The third author’s research is supported by the National Basic Re-
search Program of China (No. 2010CB732501). The fourth author’s research
is supported by NSF of China (No. 11071268) and Scientific Research Common
Program of Beijing Municipal Commission of Education (No. KM201210005033).

References

1. Aardal, K.I., Chudak, F.A., Shmoys, D.B.: A 3-approximation algorithm for the
k-level uncapacitated facility location problem. Information Processing Letters 72,
161–167 (1999)



302 Y. Li et al.

2. Ageev, A., Ye, Y., Zhang, J.: Improved combinatorial approximation algorithms for
the k-level facility location problem. SIAM Journal on Discrete Mathematics 18,
207–217 (2003)

3. Byrka, J., Aardal, K.I.: An optimal bi-factor approximation algorithm for the
metric uncapacitated facility location problem. SIAM Journal on Computing 39,
2212–2231 (2010)

4. Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location
and k-median problems. In: Proceedings of FOCS, pp. 378–388 (1999)

5. Charikar, M., Khuller, S., Mount, D.M., Naraasimban, G.: Algorithms for facility
location problems with outliers. In: Proceedings of SODA, pp. 642–651 (2001)

6. Chen, X., Chen, B.: Approximation algorithms for soft-capacitated facility location
in capacitated network design. Algorithmica 53, 263–297 (2007)

7. Chudak, F.A., Nagano, K.: Efficient solutions to relaxations of combinatorial prob-
lems with submodular penalty via the Lovász extension and non-smooth convex
optimization. In: Proceedings of SODA, pp. 79–88 (2007)

8. Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the unca-
pacitated facility location problem. SIAM Journal on Computing 33, 1–25 (2003)

9. Du, D., Lu, R., Xu, D.: A primal-dual approximation algorithm for the facility
location problem with submodular penalty. Algorithmica 63, 191–200 (2012)

10. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete
Mathematics, vol. 58. Elsevier (2005)

11. Geunes, J., Levi, R., Romeijn, H.E., Shmoys, D.B.: Approximation algorithms for
supply chain planning and logistics problems with market choice. Mathematical
Programming 130, 85–106 (2011)

12. Guha, S., Khuller, S.: Greedy strike back: improved facility location algorithms.
Journal of Algorithms 31, 228–248 (1999)

13. Hayrapetyan, A., Swamy, C., Tardös, E.: Network design for information networks.
In: Proceedings of SODA, pp. 933–942 (2005)

14. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. Journal
of the ACM 50, 795–824 (2003)

15. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location
problems. In: Proceedings of STOC, pp. 731–740 (2002)

16. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation.
Journal of the ACM 48, 274–296 (2001)

17. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuristic
for facility location problems. In: Proceedings of SODA, pp. 1–10 (1998)

18. Li, S.: A 1.488 Approximation algorithm for the uncapacitated facility location
problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

19. Mahdian, M.: Facility location and the analysis of algorithms through factor-
revealing programs. Ph. D. thesis, MIT, Cambridge, MA (2004)

20. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric
facility location problems. SIAM Journal on Computing 36, 411–432 (2006)

21. Shmoys, D.B., Swamy, C.: An approximation scheme for stochastic linear program-
ming and its application to stochastic integer programs. Journal of the ACM 53,
978–1012 (2006)

22. Shmoys, D.B., Tardös, E., Aardal, K.I.: Approximation algorithms for facility lo-
cation problems. In: Proceedings of STOC, pp. 265–274 (1997)



Improved Approximation Algorithms for the Facility Location Problems 303

23. Shu, J., Teo, C.P., Shen, Z.J.: Max: Stochastic transportation-inventory network
design problem. Operations Research 53, 48–60 (2005)

24. Sviridenko, M.: An improved approximation algorithm for the metric uncapacitated
facility location problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS,
vol. 2337, pp. 240–257. Springer, Heidelberg (2002)

25. Vygen, J.: Approximation algorithms for facility location problems (Lecture
Notes). Report No. 05950-OR, Research Institute for Discrete Mathematics,
University of Bonn (2005), http://www.or.uni-bonn.de/vygen/fl.pdf

26. Xu, G., Xu, J.: An LP rounding algorithm for approximating uncapacitated facility
location problem with penalty. Information Processing Letters 94, 119–123 (2005)

27. Xu, G., Xu, J.: An improved approximation algorithm for uncapacitated facility
location problem with penalty. Journal of Combinatorial Optimization 17, 424–436
(2008)

28. Ye, Y., Zhang, J.: An approximation algorithm for the dynamic facility loca-
tion problem. In: Combinatorial Optimization in Communication Networks, pp.
623–637. Kluwer Academic Publishers (2005)

29. Zhang, J.: Approximating the two-level facility location problem via a quasi-greedy
approach. Mathematical Programming 108, 159–176 (2006)

30. Zhang, J., Chen, B., Ye, Y.: A multiexchange local search algorithm for the capac-
itated facility location problem. Mathematics of Operations Research 30, 389–403
(2005)

http://www.or.uni-bonn.de/vygen/fl.pdf


An Improved Semidefinite Programming

Hierarchies Rounding Approximation Algorithm
for Maximum Graph Bisection Problems

Chenchen Wu1, Donglei Du2, and Dachuan Xu3,�

1 School of Mathematical Sciences, Nankai University, Tianjin 300071, P.R. China
2 Faculty of Business Administration, University of New Brunswick, NB Canada

Fredericton E3B 9Y2
3 Department of Applied Mathematics, Beijing University of Technology,

100 Pingleyuan, Chaoyang District, Beijing 100124, P.R. China
xudc@bjut.edu.cn

Abstract. We present a unified semidefinite programming hierarchies
rounding approximation algorithm for a class of maximum graph bisec-
tion problems with improved approximation ratios.

Keywords: Semidefinite programming hierarchies, approximation
algorithm, graph bisection problems.

1 Introduction

The semidefinite programming (SDP) hyperplane rounding technique was initial-
ized in the seminal paper of Goemans and Williamson [4], and has been applied
to design approximation algorithms for many combinatorial optimization prob-
lems, including graph bisection problems [2,3,4,5,6,9,10]. The main interest of
this work is to provide improved approximation ratios for these maximum graph
bisection problems by a new variant of the SDP rounding, namely, the semidef-
inite programming hierarchies rounding (SDPH), which was recently developed
by Lasserre [7] and has become a powerful tool in designing approximation al-
gorithms for the maximum bisection cut problem [1,8]. The SDPH is also called
the Lasserre SDP relaxation, which will be used interchangeably in this paper.

Given an undirected graph G = (V,E) with nonnegative edge weights wij

((i, j) ∈ E) and even number of nodes n = |V |, we consider six types of maximum
graph bisection problems, where the first four are defined on undirected graph,
and the last two on directed graph. A cut (S, S̄) in a undirected graph contains
all edges between S ⊆ V and S̄ = V \S. A directed cut (S, S̄) contains all directed
edges from S ⊆ V to S̄ = V \S. A k-cut is a cut (S, S̄) such that |S| = k.

(1) Max-n2 -cut: find a n
2 -cut (S, S̄) to maximize the total weight of cut edges,

namely
∑

(i,j)∈(S,S̄) wij ;

� Corresponding author.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 304–315, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



An Improved SDP Hierarchies Rounding Approximation Algorithm 305

(2) Max-n2 -uncut: find a n
2 -cut to maximize the total weight of edges that do

not cross the cut, namely
∑

(i,j)/∈(S,S̄) wij ;

(3) Max-n2 -dense-subgraph: find a vertex S ⊆ V with |S| = n
2 to maximize

the total weight of edges within one component, namely
∑

i∈S

∑
j∈V wij ;

(4) Max-n2 -vertex-cover: find a vertex S ⊆ V with |S| = n
2 to maximize the

total weight of edges touching this set, namely
∑

i∈S,j∈V wij ;

(5) Max-n2 -directed-cut: find a directed n
2 -cut (S, S̄) to maximize the total

weight of cut edges, namely
∑

(i,j)∈(S,S̄) wij ;

(6) Max-n2 -directed-uncut: find a directed n
2 -cut to maximize the total

weight of edges that do not cross the cut, namely
∑

(i,j)/∈(S,S̄) wij .

Table 1 below summarizes the best known approximation ratios for these prob-
lems, where the last column contains results obtained via the standard SDP
rounding technique, and the second column contains resulted obtained by the
semidefinite programming hierarchies (SDPH) rounding technique.

Table 1. Approximation ratios

Problem Ratio (SDPH) Ratio (SDP)

Max-n
2
-cut 0.8776 [1] 0.7028 [2]

Max-n
2
-uncut 0.8776 (this work) 0.6436 [5]

Max-n
2
-dense-subgraph 0.8731 (this work) 0.6236 [9]

Max-n
2
-vertex-cover 0.9401 (this work) 0.8452 [5]

Max-n
2
-directed-cut 0.8731 (this work) 0.6458 [9]

Max-n
2
-directed-uncut 0.9401 (this work) 0.8118 [5]

The main technique in obtaining the improved ratios (Column 2 in Table 1)
in this work involves integrating the SDPH rounding technique [1,8] and the size
adjusting technique [6]. The main contributions of our paper are summarized as
follows:

(i) We present a unified SDPH rounding approximation algorithm for six max-
imum graph bisection problems.

(ii) Under the above algorithmic framework, we show that the approximation
ratios of Max-n2 -cut, Max-n2 -dense-subgraph, and Max-n2 -vertex-
cover are equal to those of Max-n2 -uncut, Max-n2 -directed-cut, and
Max-n2 -directed-uncut, respectively.

In the remainder of this paper, we present some preliminaries in Section 2.
The SDPH rounding algorithm and its analysis are given in Sections 3 and 4
respectively. Finally, we give some concluding remarks in Section 5.

2 Preliminaries

In order to give a unified mathematical program for the maximum graph bisec-
tion problems, we adopt the following notations (cf. [5,6]) which are listed in
Table 2.



306 C. Wu, D. Du, and D. Xu

Table 2. Notations

Problem c0 c1 c2 c3
Max-n

2
-cut 1/2 0 0 −1/2

Max-n
2
-uncut 1/2 0 0 1/2

Max-n
2
-dense-subgraph 1/4 1/4 1/4 1/4

Max-n
2
-vertex-cover 3/4 1/4 1/4 −1/4

Max-n
2
-directed-cut 1/4 1/4 −1/4 −1/4

Max-n
2
-directed-uncut 3/4 −1/4 1/4 1/4

These maximum graph bisection problems can be unified as the following
binary integer quadratic program:

OPT := max
∑

(i,j)∈E

wij (c0 + c1x0xi + c2x0xj + c3xixj)

s. t.
∑
i∈V

x0xi = 0,

xi ∈ {−1, 1}, ∀i ∈ V,

along with its SDP relaxation:

max
∑

(i,j)∈E

wij (c0 + c1〈v0, vi〉+ c2〈v0, vj〉+ c3〈vi, vj〉)

s. t.

〈
v0,

∑
i∈V

vi

〉
= 0,〈∑

i∈V

vi,
∑
i∈V

vi

〉
= 0,

〈vi, vi〉 = 1, ∀i ∈ V ∪ {0}.

In order to introduce the �th-round Lasserre SDP relaxation, we present the
following equivalent binary integer program involving

∏
i∈S xi for any small set

S ∈ S := {S : S ⊆ V, |S| ≤ �}:

max
∑

(i,j)∈E

wij (c0 + c1x0xi + c2x0xj + c3xixj)

s. t. x0

∑
i∈V

(∏
j∈S

xj

)
xi = 0, S ∈ S ,

∏
i∈S1

xi

∏
j∈S2

xj =
∏
i∈S3

xi

∏
j∈S4

xj , ∀S1, S2, S3, S4 ∈ S , such that S1�S2 = S3�S4,

xi ∈ {−1, 1}, ∀i ∈ V ∪ {0},

in which the symbol ' denotes the operation of symmetric difference. Introduce
a variable vS which simulates

∏
i∈S xi for any small set S ∈ S. Then we get the

�th-round Lasserre SDP relaxation:



An Improved SDP Hierarchies Rounding Approximation Algorithm 307

max
∑

(i,j)∈E

wij (c0 + c1〈v0, vi〉+ c2〈v0, vj〉+ c3〈vi, vj〉)

s. t.

〈
v∅,

∑
i∈V

vS�{i}

〉
= 0, ∀S ∈ S,

〈vS1 , vS2〉 = 〈vS3 , vS4〉 , ∀S1, S2, S3, S4 ∈ S, such that S1'S2 = S3'S4,

〈v∅, v∅〉 = 1.

In the above SDPH, we also use v0 for v∅ alternatively.
Throughout the paper, denote Φ(t) as the cumulative distribution function of

the standard normal random variable, and let Φ−1 be the inverse function of Φ:

Φ(t) :=

∫ t

−∞

1√
2π

exp

{
−s2

2

}
ds, Φ−1 : [0, 1] −→ [−∞,∞].

3 Algorithm

Now we are ready to present the unified SDPH rounding algorithm for the max-
imum graph bisection problems.

Algorithm 1 (Algorithm SDPH-GB)

Step 0 (Initialization)
θ ∈ [0, 1], ε > 0, and t := (20 �1/ε�)12.

Step 1 (SDPH-GB solving)
Solve the (t + 1)th-round Lasserre SDP relaxation to obtain an optimal so-
lution {vS : |S| ≤ t+ 1}.

Step 2 (Sampling by conditioning) Repeat Steps 2.0-2.4 below until there
exists a set of vectors v′0, v

′
1, ..., v′n such that∑

(i,j)∈E

wij

(
c0 + c1〈v′0, v′i〉+ c2〈v′0, v′j〉+ c3〈v′i, v′j〉

)
≥ OPT − 9ε/20,

∑
i,j∈V

[|〈w′
i, w

′
j〉|] ≤ (ε/20)5,

where
w′

i = v′i − 〈v′0, v′i〉v′0.
Step 2.0 vt+1

S := vS for all |S| ≤ t+ 1, and k := 1.
Step 2.1 Pick an index jk ∈ V at random.
Step 2.2 Sample an assignment a ∈ {−1, 1} for index jk from its marginal

distribution.
Step 2.3 Condition distribution on this assignment. vt+1−k

S := vt+2−k
S∪{jk} for

all |S| ≤ t+1−k. Then
{
vt+1−k
S : |S| ≤ t+ 1− k

}
is an optimal solution

for the (t+ 1− k)th-round Lasserre SDP relaxation.



308 C. Wu, D. Du, and D. Xu

Step 2.4 If k = t, stop; otherwise, k := k + 1, go to Step 2.1.

Step 3 (Randomized rounding)
Step 3.1 Define

v0 := v′0,

vi :=

{
v′i, if ||w′

i||2 ≥ t−1/12;
v′i − w′

i + w∗
i , otherwise,

i = 1, ..., n,

where w∗
i is a new vector of length ||w′

i||2 and orthogonal to all other
vectors.

Step 3.2 For i = 1, ..., n,

μi := 〈v0, vi〉,
wi := vi − μiv0,

w̄i :=

{
wi/||wi||2 if ||wi||2 �= 0;
a unit vector orthogonal to all other vectors, if ||wi||2 = 0.

Step 3.3 Pick a standard n-dimensional Gaussian random vector g. Initial-
ize x̃0 := 1. For all i = 1, ..., n,

x̃i :=

⎧⎨⎩−1, if 〈w̄i, g〉 < Φ−1

(
1− θμi

2

)
;

1, otherwise.

Step 4 (Size adjusting [6]) Let S̃ := {i ∈ V : x̃i = 1}. If |S̃| �= n
2 , greedily

adjust the size to n
2 . Let us denote the adjusted binary solution {x̂i} with

x̂0 = 1 and the corresponding set Ŝ := {i ∈ V : x̂i = 1}.

For any i, j ∈ V , denote ρij := 〈vi, vj〉. In the following proof, we need to
consider Pr{x̃i = x̃j} for any i, j ∈ V , which motivates us to focus on the
probability distributions of the two variables 〈w̄i, g〉 and 〈w̄j , g〉, where g is the
standard n-dimensional Gaussian random vector. Evidently 〈w̄i, g〉 and 〈w̄j , g〉
are jointly normal random variables with mean 0 and covariance matrix(

< w̄i, w̄i > < w̄i, w̄j >
< w̄i, w̄j > < w̄j , w̄j >

)
=

(
1 hij

hij 1

)
,

where

hij = h(μi, μj , ρij) :=

⎧⎪⎨⎪⎩
0, if μi = ±1, or μj = ±1;

ρij − μiμj√
(1− μ2

i )(1 − μ2
j)

, otherwise.

Denote the corresponding density function

p(si, sj ;hij) :=
1

2π
√
1− h2

ij

exp

{
− 1

2(1− h2
ij)

[
s2i − 2hijsisj + s2j

]}
.



An Improved SDP Hierarchies Rounding Approximation Algorithm 309

It follows from Lemma 3.4 in [1] that

Pr{x̃i = x̃j} =
θ

2
(μi+μj)+2

∫ Φ−1
(

1−θμi
2

)

−∞

∫ Φ−1
(

1−θμj
2

)

−∞
p(si, sj ;hij)dsidsj . (1)

Now we consider Step 4 in Algorithm 1 (the size adjusting). Denote

w(S̃) :=
∑

(i,j)∈E

(c0 + c1x̃0x̃i + c2x̃0x̃j + c3x̃ix̃j) ,

w(Ŝ) :=
∑

(i,j)∈E

(c0 + c1x̂0x̂i + c2x̂0x̂j + c3x̂ix̂j) .

The following lemma comes from [6] which shows the relationship between w(S̃)
and w(Ŝ).

Lemma 1. ([6]) The size adjusting of Algorithm 1 has the following properties
with respect to the six types of maximum graph bisection problems.

– Max-n2 -cut.

w(Ŝ) ≥

⎧⎪⎪⎨⎪⎪⎩
n/2

|S̃|
w(S̃), if |S̃| ≥ n

2
;

n/2

n− |S̃|
w(S̃), otherwise.

– Max-n2 -uncut.

w(Ŝ) ≥

⎧⎪⎪⎨⎪⎪⎩
n
2 (

n
2 − 1)

|S̃|(|S̃| − 1)
w(S̃), if |S̃| ≥ n

2
;

n
2 (

n
2 − 1)

(n− |S̃|)(n− |S̃| − 1)
w(S̃), otherwise.

– Max-n2 -dense-subgraph.

w(Ŝ) ≥

⎧⎨⎩
n
2 (

n
2 − 1)

|S̃|(|S̃| − 1)
w(S̃), if |S̃| ≥ n

2
;

w(S̃), otherwise.

– Max-n2 -vertex-cover.

w(Ŝ) ≥

⎧⎨⎩
n/2

|S̃|
w(S̃), if |S̃| ≥ n

2
;

w(S̃), otherwise.

– Max-n2 -directed-cut.

w(Ŝ) ≥

⎧⎪⎪⎨⎪⎪⎩
n/2

|S̃|
w(S̃), if |S̃| ≥ n

2
;

n/2

n− |S̃|
w(S̃), otherwise.



310 C. Wu, D. Du, and D. Xu

– Max-n2 -directed-uncut.

w(Ŝ) ≥

⎧⎪⎪⎨⎪⎪⎩
n
2 (

n
2 − 1)

|S̃|(|S̃| − 1)
w(S̃), if |S̃| ≥ n

2
;

n
2 (

n
2 − 1)

(n− |S̃|)(n− |S̃| − 1)
w(S̃), otherwise.

4 Analysis

First, Algorithm 1 is well-defined thanks to the following lemma.

Lemma 2. ([1]) The process of sampling by conditioning in Algorithm 1 is im-
plemented in (expected) 60 �1/ε� times. Moreover, the vectors v0, ..., vn produced
by Algorithm 1 satisfies the following properties:

(a)
∑

(i,j)∈E

wij (c0 + c1〈v0, vi〉+ c2〈v0, vj〉+ c3〈vi, vj〉) ≥ OPT − ε/2;

(b)
∑

i∈V 〈v0, vi〉 = 0;
(c) We have the following triangle inequalities:

μi + μj + ρij ≥ −1, μi − μj − ρij ≥ −1,
−μi + μj − ρij ≥ −1, −μi − μj + ρij ≥ −1;

(d)
∑

i,j∈V [|〈w̄i, w̄j〉|] ≤ (ε/20)3.

The above lemma implies that the objective value of {vi} from randomized
rounding (in polynomial time) is close to the optimal value, which can thus
be replaced by that of {vi} in the approximation ratio analysis. Moreover, the
last conclusion (d) in the above lemma implies that the differences between the
cardinality of S̃ and V \ S̃ is small, resulting in Lemma 7 shortly.

Second, we estimate the first two moments of solution {x̃}.

Lemma 3. For any i, j ∈ V , we have E[x̃i] = θμi and

E[x̃ix̃j ] = f(μi, μj , ρij),

where

f(μi, μj , ρij) := θ(μi+μj)− 1+4

∫ Φ−1
(

1−θμi
2

)

−∞

∫ Φ−1
(

1−θμj
2

)

−∞
p(si, sj;hij)dsidsj .

Proof. From the definition of {x̃}, we have

E[x̃i] = Pr{x̃i = 1} − Pr{x̃i = −1} = 1− 2Pr{x̃i = −1}

= 1− 2Pr

{
〈w̄i, g〉 < Φ−1

(
1− θμi

2

)}
= 1− 2

1− θμi

2
= θμi.



An Improved SDP Hierarchies Rounding Approximation Algorithm 311

From (1), we have

E[x̃ix̃j ] = Pr{x̃ix̃j = 1} − Pr{x̃ix̃j = −1} = 2Pr{x̃ix̃j = 1} − 1

= 2Pr{x̃i = x̃j} − 1

= θ(μi + μj)− 1 + 4

∫ Φ−1
(

1−θμi
2

)

−∞

∫ Φ−1
(

1−θμj
2

)

−∞
p(si, sj ;hij)dsidsj

= f(μi, μj , ρij).

��

Denote

F :=

⎧⎪⎪⎨⎪⎪⎩(μ1, μ2, ρ) ∈ [−1, 1]3 :

⎛⎝1 μ1 μ2

μ1 1 ρ
μ2 ρ 1

⎞⎠ ( 0,

μ1 + μ2 + ρ ≥ −1
μ1 − μ2 − ρ ≥ −1
−μ1 + μ2 − ρ ≥ −1
−μ1 − μ2 + ρ ≥ −1

⎫⎪⎪⎬⎪⎪⎭ ,

and

α(θ; c0, c1, c2, c3) := min
(μ1,μ2,ρ)∈F

c0 + c1θμ1 + c2θμ2 + c3f(μ1, μ2, ρ)

c0 + c1μ1 + c2μ2 + c3ρ
.

To simply the notions, let α(θ) := α(θ; c0, c1, c2, c3). Then we have

Lemma 4.

E
[
w(S̃)

]
≥ α(θ)

∑
(i,j)∈E

(c0 + c1〈v0, vi〉+ c2〈v0, vj〉+ c3〈vi, vj〉) .

Proof. It follows from Algorithm 1, Lemma 3 and the definitions of F and α(θ)
that

E
[
w(S̃)

]
=

∑
(i,j)∈E

(c0 + c1E[x̃i] + c2E[x̃j ] + c3E[x̃ix̃j ])

=
∑

(i,j)∈E

(c0 + c1θμi + c2θμj + c3f(μi, μj , ρij))

=
∑

(i,j)∈E

c0 + c1θμi + c2θμj + c3f(μi, μj, ρij)

c0 + c1μi + c2μj + c3ρij
(c0 + c1μi + c2μj + c3ρij)

≥ α(θ)
∑

(i,j)∈E

(c0 + c1〈v0, vi〉+ c2〈v0, vj〉+ c3〈vi, vj〉) .

��

Third, we present some equivalent properties for the ratios α(θ).



312 C. Wu, D. Du, and D. Xu

Lemma 5. For any (μ1, μ2, ρ) ∈ F, we have

(a) f(μ1,−μ2,−ρ) = −f(μ1, μ2, ρ);
(b) f(−μ1, μ2,−ρ) = f(μ1, μ2, ρ).

Proof. Since the proof of (b) is analogous to (a), we only prove (a) below. De-
note that h0 = h(μ1, μ2, ρ). By the definition of h(·), we have h(μ1,−μ2,−ρ) =
−h(μ1, μ2, ρ). Together with the definition of p(·), we have

p(si, sj ;h(μ1,−μ2,−ρ))

=
1

2π
√

1 − h(μ1,−μ2,−ρ)2
exp

{
−

1

2(1 − h(μ1,−μ2,−ρ)2)

[
s
2
i − 2h(μ1,−μ2,−ρ)sisj + s

2
j

]}

=
1

2π
√

1 − h2
0

exp

{
−

1

2(1 − h2
0)

[
s2i + 2h0sisj + s2j

]}

Noting that Φ−1(12 + x) = −Φ−1(12 − x) and

∫ +∞

−∞
p(si, sj;h0)dsj = 1 for any

fix si, we have

∫
Φ−1

(
1−θμ1

2

)

−∞

∫
Φ−1

(
1+θμ2

2

)

−∞
p(si, sj ;h(μ1,−μ2,−ρ))dsidsj

=

∫ Φ−1
(

1−θμ1
2

)

−∞

∫ −Φ−1
(

1−θμ2
2

)

−∞

1

2π
√

1 − h2
0

exp

{
−

1

2(1 − h2
0)

[
s
2
i + 2h0sisj + s

2
j

]}
dsidsj

=

∫
Φ−1

(
1−θμ1

2

)

−∞

∫
+∞

Φ−1
(

1−θμ2
2

) 1

2π
√

1 − h2
0

exp

{
−

1

2(1 − h2
0)

[
s2i − 2h0sisj + s2j

]}
dsidsj

=

∫
Φ−1

(
1−θμ1

2

)

−∞

∫
+∞

Φ−1
(

1−θμ2
2

) p(si, sj ;h0)dsidsj

=

∫
Φ−1

(
1−θμ1

2

)

−∞

⎛
⎝1 −

∫
Φ−1

(
1−θμ2

2

)

−∞
p(si, sj ;h0)dsj

⎞
⎠ dsi

=
1 − θμ1

2
−

∫
Φ−1

(
1−θμ1

2

)

−∞

∫
Φ−1

(
1−θμ2

2

)

−∞
p(si, sj ;h0)dsidsj .

The above equality together with the definition of f imply that

f(μ1,−μ2,−ρ)

= θ(μ1 − μ2)− 1 + 4

∫ Φ−1( 1−θμ1
2 )

−∞

∫ Φ−1( 1+θμ2
2 )

−∞
p(si, sj;h(μ1,−μ2,−ρ))dsidsj

= θ(μ1 − μ2)− 1 + 4
1− θμ1

2
− 4

∫ Φ−1( 1−θμ1
2 )

−∞

∫ Φ−1( 1−θμ2
2 )

−∞
p(si, sj ;h0)dsidsj

= −θ(μ1 + μ2) + 1− 4

∫ Φ−1( 1−θμ1
2 )

−∞

∫ Φ−1( 1−θμ2
2 )

−∞
p(si, sj ;h(μ1, μ2, ρ))dsidsj

= −f(μ1, μ2, ρ).

��



An Improved SDP Hierarchies Rounding Approximation Algorithm 313

Lemma 6. The ratios α(θ) for different maximum graph bisection problems
have the following properties:

(a) α
(
θ; 1

2 , 0, 0,
1
2

)
= α

(
θ; 1

2 , 0, 0,−
1
2

)
;

(b) α
(
θ; 1

4 ,
1
4 ,

1
4 ,

1
4

)
= α

(
θ; 1

4 ,
1
4 ,−

1
4 ,−

1
4

)
;

(c) α
(
θ; 3

4 ,
1
4 ,

1
4 ,−

1
4

)
= α

(
θ; 3

4 ,−
1
4 ,

1
4 ,

1
4

)
.

Proof. By Lemma 5 and the definition of α, we have the following relations.

(a)

α

(
θ;

1

2
, 0, 0,−1

2

)
= min

(μ1,μ2,ρ)∈F
1− f(μ1, μ2, ρ)

1− ρ

= min
(μ1,μ2,ρ)∈F

1− f(μ1,−μ2,−ρ)
1 + ρ

= min
(μ1,μ2,ρ)∈F

1 + f(μ1, μ2, ρ)

1 + ρ

= α

(
θ;

1

2
, 0, 0,

1

2

)
.

(b)

α

(
θ;

1

4
,
1

4
,−1

4
,−1

4

)
= min

(μ1,μ2,ρ)∈F
1 + θμ1 − θμ2 − f(μ1, μ2, ρ)

1 + μ1 − μ2 − ρ

= min
(μ1,μ2,ρ)∈F

1 + θμ1 + θμ2 − f(μ1,−μ2,−ρ)
1 + μ1 + μ2 + ρ

= min
(μ1,μ2,ρ)∈F

1 + θμ1 + θμ2 + f(μ1, μ2, ρ)

1 + μ1 + μ2 + ρ

= α

(
θ;

1

4
,
1

4
,
1

4
,
1

4

)
.

(c)

α

(
θ;

3

4
,−1

4
,
1

4
,
1

4

)
= min

(μ1,μ2,ρ)∈F
3− θμ1 + θμ2 + f(μ1, μ2, ρ)

3− μ1 + μ2 + ρ

= min
(μ1,μ2,ρ)∈F

3 + θμ1 + θμ2 + f(−μ1, μ2,−ρ)
3 + μ1 + μ2 − ρ

= min
(μ1,μ2,ρ)∈F

3 + θμ1 + θμ2 − f(μ1, μ2, ρ)

3 + μ1 + μ2 − ρ

= α

(
θ;

3

4
,
1

4
,
1

4
,−1

4

)
.

��



314 C. Wu, D. Du, and D. Xu

Finally, we estimate the quality of solution {x̂}.
Lemma 7. ([1])

Pr

[∣∣∣∣∣∑
i∈V

x̃i

∣∣∣∣∣ ≥ εn

10

]
≤ ε

10
.

Lemmas 1 and 7 imply the following lemma, whose proof is deferred to the
journal version.

Lemma 8.
E
[
w(Ŝ)

]
≥
(
1− ε

2

)
E
[
w(S̃)

]
.

Now we are able to present the approximation ratios of Algorithm 1 for the
graph bisection problems in Table 3 by using a computer-assisted proof.

Table 3. Approximation ratios

Problem Ratio

Max-n
2
-cut 0.8732 (θ = 0.87)

Max-n
2
-uncut 0.8732 (θ = 0.87)

Max-n
2
-dense-subgraph 0.8731 (θ = 0.87)

Max-n
2
-vertex-cover 0.9401 (θ = 0.94)

Max-n
2
-directed-cut 0.8731 (θ = 0.87)

Max-n
2
-directed-uncut 0.9401 (θ = 0.94)

Table 4. Approximation ratios for the k-cut problems where the first two ratios 0.8582
are due to Raghavendra and Tan [8]

Problem Ratio

Max-k-cut 0.8582 (θ = 1)
Max-k-uncut 0.8582 (θ = 1)

Max-k-dense-subgraph 0.1079 (θ = 1)
Max-k-vertex-cover 0.9291 (θ = 1)
Max-k-directed-cut 0.1079 (θ = 1)

Max-k-directed-uncut 0.9291 (θ = 1)

Note that the first two ratios in Table 3 are not as good as the corresponding
ratios in Table 1. The latter were obtained by a slightly involved rounding tech-
nique, namely, the pairing vertices selection algorithm in [1] forMax-n2 -cut, and
hence implying the same approximation ratio for Max-n2 -uncut via Lemma 6.

5 Discussions

In this paper, we present a unified SDPH rounding approximation algorithm for
six types of maximum graph bisection problems. Analogous algorithm and anal-
ysis can be extended to the more general k-cut problems (we assume that k/n is
a positive constant), whose approximation ratios are illustrated in Table 4.



An Improved SDP Hierarchies Rounding Approximation Algorithm 315

Acknowledgments. The authors would like to thank the anonymous refer-
ees for the insightful and helpful comments. The second author’s research is
supported by National Science and Engineering Research Council of Canada
(NSERC) grants 283106. The third author’s research is supported by NSF of
China (No. 11071268) and Scientific Research Common Program of Beijing Mu-
nicipal Commission of Education (No. KM201210005033).

References

1. Austrin, P., Benabbas, S., Georgiou, K.: Better balance by being biased: a 0.8776-
approximation for max bisection. In: Proceedings of SODA, pp. 277–294 (2013),
Full version available as arXiv eprint 1205.0458v2

2. Feige, U., Langberg, M.: The RPR2 rounding technique for semidefinite programs.
Journal of Algorithms 60, 1–23 (2006)

3. Frieze, A.M., Jerrum, M.: Improved approximation algorithms for MAX k-CUT
and MAX BISECTION. Algorithmica 18, 67–81 (1997)

4. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of
the ACM 42, 1115–1145 (1995)

5. Halperin, E., Zwick, U.: A unified framework for obtaining improved approxima-
tion algorithms for maximum graph bisection problems. Random Structures &
Algorithms 20, 382–402 (2002)

6. Han, Q., Ye, Y., Zhang, J.: An improved rounding method and semidefinite pro-
gramming relaxation for graph partition. Mathematical Programming, Series B 92,
509–535 (2002)

7. Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear
0-1 programs. SIAM Journal on Optimization 12, 756–769 (2002)

8. Raghavendra, P., Tan, N.: Approximating CSPs with global cardinality constraints
using SDP hierarchies. In: Proceedings of SODA, pp. 373–387 (2012), Full version
available as arXiv eprint 1110.1064v1

9. Xu, D., Han, J., Huang, Z., Zhang, L.: Improved approximation algorithms for
MAX n/2-DIRECTED-BISECTION and MAX n/2-DENSE-SUBGRAPH. Jour-
nal of Global Optimization 27, 399–410 (2003)

10. Ye, Y.: A .699-approximation algorithm for Max-Bisection. Mathematical Pro-
gramming 90, 101–111 (2001)



Improved Local Search

for Universal Facility Location�

Eric Angel, Nguyen Kim Thang, and Damien Regnault

IBISC, University of Evry Val d’Essonne, France
{angel,thang,regnault}@ibisc.univ-evry.fr

Abstract. We consider the universal facility location problem in which
the goal is to assign clients to facilities in order to minimize the sum
of connection and facility costs. The connection cost is proportional to
the distance each client has to travel to its assigned facility, whereas the
cost of a facility is a non-decreasing function depending on the number
of clients assigned to the facility. This model generalizes several vari-
ants of facility location problems. We present a (5.83+ ε) approximation
algorithm for this problem based on local search technique.

1 Introduction

The class of facility location problems is fundamental in operations research and
is subject of extensive study. In the classical model, facilities are opened to satisfy
client demands and the opening cost of a facility is fixed. However, this model is
not fully appropriate in the contexts where the cost of a facility to serve clients
(the delay) crucially depends on its allocated capacity. This phenomenon widely
occurs in practical situations. The following model of Universal Facility Location
captures this phenomenon and is also a generalization of several variants of
facility location problems.

Universal Facility Location. Let C be the set of (clients) and F be a set of
facilities where n = |C| and m = |F|. Each facility i is characterized by a non-
decreasing cost function fi : N → R+ where fi(0) = 0. Consider the complete
bipartite graph G = (C ∪ F , E) where the distances d(i, j) associated to facility
i and client j follow the triangle inequality. We denote also by d(i, i′) the length
of a shortest path between two facilities i and i′ in the graph.

The goal is to assign clients to the facilities and install capacities at every
facility in order to serve clients. Given a solution S = (u, x), where x is the
assignment (xij = 1 if client j is served by facility i; and 0 otherwise) and u is
the allocation (ui ∈ N denotes the capacity allocated at facility i, which equals
the number of clients assigned to facility i), the connection cost is defined as
Cs(S) =

∑
i∈F ,j∈C d(i, j)xij and the facility cost is Cf (S) =

∑
i∈F fi(ui). The

objective is to find a feasible solution minimizing the total cost C(S) defined as
Cs(S) + Cf (S).

� This work has been supported by ANR project TODO (09-EMER-010) and
GdR RO.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 316–324, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Improved Local Search for Universal Facility Location 317

Related Works. The model of Universal Facility Location captures several vari-
ants of Facility Location. Many interesting algorithms with deep, powerful tech-
niques have been designed for the latter. Among others, the technique of local
search is extensively studied. Arya et al. [1] introduced the local search technique
to study Facility Location and k-median problem. From that, local search plays
an important role to study variants of Facility Location.

A particular interesting variant is the Capacitated Facility Location Problem,
where fi(·) is constant if the assigned amount to facility i is smaller than a given
capacity; and is infinity otherwise. The first constant approximation ratio for
this problem is 8.53 due to Pál and Tardos [7]. Then the approximation ratio
for Capacitated Facility Location Problem was improved to (5.83+ ε) by Zhang
et al. [9] and recently to (5 + ε) by Bansal et al. [2].

Mahdian and Pál [6] introduced the model of Universal Facility Location and
gave a (7.88 + ε)-approximation algorithm. Garg et al. [3] proposed extended
operations and a schema of analysis to prove a (5.83 + ε)-approximation ratio.
However, one of their operations is unlikely to be polynomially computable (N.
Garg, personal communication, 2012). Subsequently, Vygen [8] improved the ap-
proximation ratio to (6.702 + ε). All those algorithms are based on local search
approach and the successive improvements are done by extending and general-
izing the previous operations together with more subtle analyses.

Besides, Hajiaghayi et al. [4] considered Universal Facility Location with con-
cave cost function and designed a 1.861-approximation algorithm. Recently, Li
and Khuller [5] have proved a (lnn+1)-approximation for the Universal Facility
Location in non-metric space.

Contributions. We present a (5.83+ε)-approximation algorithm also based on lo-
cal search. The contribution of the paper is a simple, polynomially computable
operation called Open-close. With this operation together with other opera-
tions, we manage to show the improved performance on the approximation of
the Universal Facility Location. Note that the analysis follows closely the ones
in [9,3] with Open-close as the main operation.

2 Algorithm and Analysis

2.1 Operations

In this section we describe the set of operations that will be used in the algorithm.

– Add(s, δ): increase the capacity of facility s by δ, and find the minimum cost
assignment of demands to facilities, given their allocated capacities.

– Open(s, δ): increase the capacity of s by sending δ units of flow from one or
several facilities i1, i2, . . . to s via the shortest paths between i1, i2, . . . and s
(and decrease the capacity of i1, i2, . . .).

– Close(s, δ): Inversely, decrease the capacity of s by sending δ units of flow
from s to one or several facilities i1, i2, . . . via shortest path between s and
i1, i2, . . . (and increase the capacity of i1, i2, . . .).



318 E. Angel, N.K. Thang, and D. Regnault

– Open-close(s, t, δs, δt): increase the capacity of s by δs and decrease the
capacity of t by δt. This operation consists in orienting some amount from t
to s and then routing some amounts from one or several facilities i1, i2, . . .
to s and from t to one or several facilities i′1, i

′
2, . . .. The transfers are carried

out via shortest paths between facilities.

In the following for each operation, given its input, we show how to compute
the minimum cost (of the operation on the input) in polynomial time. The min-
cost of operation Add(s, δ) has been shown to be efficiently computable [6,8].
Note that the operations Open(s, δ) and Close(s, δ) are particular cases of the
operation Open-close(s, t, δs, δt), hence it is sufficient to prove that the min-cost
of the latter could be computed in polynomial time.

Lemma 1. Let S = (u, x) be a solution and s, t be two facilities and 0 ≤ δs, δt ≤
n. Then, the minimum cost of the operation Open-close(s, t, δs, δt) can be com-
puted in polynomial time with respect to n,m.

Proof. Observe that if in operation Open-close(s, t, δs, δt), some amount is sent
from t to some facility i and later is reoriented to s then we can modify the
transfer in such a way that the amount is routed directly from t to s. Since the
distance d follows the triangle inequality, the modification results in a solution
at least as good as the previous one. Hence, in the sequel we assume that for
any facility, either it receives some flow or it sends out some flow.

We compute the minimum cost of Open-close(s, t, δs, δt). Name 1, . . . ,m− 2
the facilities of F \{s, t}. Let 0 ≤ δ ≤ min{δs, δt} be the amount of flow directly
sent from t to s. We need to route δs − δ flow units to s and δt − δ units out of
t. Let g(i, a, b) be the minimum cost of having already sent a flow units to s and
having already sent b flow units out of t after considering the facilities 1, 2, . . . , i.
We have:

Open-close(s, t, δs, δt) = min
0≤δ≤min{δs,δt}

g(n− 2, δs − δ, δt − δ) + δ · d(s, t)+(
fs(us + δs)− fs(us) + ft(ut − δt)− ft(ut)

)
Now we compute g(i, a, b) for 1 ≤ i ≤ m − 2, 0 ≤ a ≤ δs − δ, 0 ≤ b ≤ δt − δ

by dynamic programming. At facility i, either i will transfer some amount to
facility s or i will receive some amount from t. So we derive the recursive formula

g(i, a, b) = min

{
min

0≤w≤a
g(i− 1, a− w, b) +

[
w · d(i, s) + fi(ui − w)− fi(ui)

]
,

min
0≤w≤b

g(i− 1, a, b− w) +

[
w · d(i, t) + fi(ui + w)− fi(ui)

]}
for 2 ≤ i ≤ n− 2, 0 ≤ a ≤ δs − δ, 0 ≤ b ≤ δt − δ and

g(1, a, b) =

⎧⎪⎨⎪⎩
a · d(1, s) + f1(u1 − a)− f1(u1) if b = 0

b · d(1, t) + f1(u1 + b)− f1(u1) if a = 0

∞ if a �= 0, b �= 0.



Improved Local Search for Universal Facility Location 319

where the last case indicates that a facility can either receive or send out
some amount but not both. As δs and δt are bounded by n, we can compute
Open-close(s, t, δs, δt) in O(mn4). ��

2.2 The Local Search Algorithm

Fix ε > 0 be a small constant. Let S be an arbitrary feasible solution. As long as
there still exits some operation Add(s, δ) for 0 ≤ δ ≤ α or Open-close(s, t, δs, δt)
for 0 ≤ δs, δt ≤ α (using Lemma 1) such that after the operation the cost is
reduced by at least εC(S), improve S by the operation. Otherwise, return S.

By the results of the previous section, at each step we can verify in polynomial
time whether there is some improvement due to the operations. Moreover, the

algorithm halts after at most 1
ε log

C(S)
C(S∗) iterations where S∗ is a global optimum.

Hence, the running time of the algorithm is polynomial in the size of the input.

2.3 The Analysis

Note that the solution returned by the algorithm is not a local optimum (ac-
cording to the operation given in previous section), but is an approximate one.
However, the cost of the latter is only (1 + 3ε) factor worse than the bound of
a local optimum. Hence, by standard argument in local search, it is sufficient to
prove the bound r of a local optimum (with respect to the operations described
in the previous section) to a global optimum. Consequently, the approximation
ratio is r(1 + ε′) where ε′ = 3ε.

Let S = (u, x) and S∗ = (u∗, x∗) be a local optimum solution and a global
optimum, respectively. With respect to the Add operation, the connection cost
has been bounded by the following lemma.

Lemma 2 ([6,8]). Cs(S) ≤ Cs(S
∗) + Cf (S

∗).

The remaining of the paper is devoted to bound Cf (S) in function of Cs(S
∗)

and Cf (S
∗) by the following strategy.

Strategy. Define F+ := {i ∈ F : ui > u∗
i } and F− := {i ∈ F : ui < u∗

i }. The
idea of the proof is to transfer some capacity amounts from facilities in F+ to
facilities in F− based on the operations defined in the previous section while
maintaining the following properties.

– For each facility i ∈ F+, move once the exact amount of (ui−u∗
i ) units from

i to some facilities in F−. We say that facility i is closed.
– For each facility i ∈ F−, the amount that i receives each time is at most

u∗
i − ui. Each time i receives some capacity amount, we say that facility i is

opened.
– The transportation cost of the transfer — the cost to route capacity amounts

between facilities where each unit travelling from facility i to i′ along a path
incurs a cost as the total length of that path — is small.



320 E. Angel, N.K. Thang, and D. Regnault

Note that a transfer is not a sequence of successive operations but is a “union” of
different operations. Ideally, in the second property each facility in F− is opened
once. However, the operations fulfilling this purpose may not be computed in
polynomial time. Let r be the maximum number of times a facility in F− is
open in such a transfer. Suppose that there exists a transfer with the desired
properties. We show how the strategy leads to useful bounds of the facility cost.
Let Ct be the transportation cost of the transfer. As S is local optimum, any
operation with respect to the solution S must have non-negative cost. Denote
δi,r′ be the amount transferred to facility i ∈ F− at its r′-th opening. Combining
all inequalities corresponding to operations in the transfer, we have

∑
i∈F+

(fi(u
∗
i )− fi(ui)) +

r∑
r′=1

∑
i∈F−

(fi(ui + δi,r′)− fi(ui)) + Ct ≥ 0. (1)

Therefore, ∑
i∈F+

(fi(u
∗
i )− fi(ui)) + r ·

∑
i∈F−

(fi(u
∗
i )− fi(ui)) + Ct ≥ 0. (2)

since for i ∈ F−, fi(u
∗
i ) ≥ fi(ui + δi,r′), which is due to δi,r′ ≤ u∗

i − ui by the
second property, thus the lefthand side of (1) is upper-bounded by that of (2).
Summing both sides of (2) by

∑
i:i/∈F−∪F+ fi(ui) and rearranging the terms, we

get Cf (S) ≤ rCf (S
∗)+Ct. Whenever Ct is small, we can derive a bound on the

facility cost Cf (S). We say that a transfer is feasible if it satisfies the first two
properties. We will look for feasible transfers with small transportation cost and
r as small as possible.

Consider a transportation problem: finding a min cost flow such that each
facility i ∈ F+ sends out ui − u∗

i units of flow and each facility i ∈ F− receives
u∗
i − ui units. The cost of shipping one flow unit between i and i′ equals d(i, i′).

Mahdian and Pál [6] proved that the minimum cost flow was at most Cs(S) +
Cs(S

∗). Moreover, the support graph of the min cost transportation forms a
forest with edges going between F+ and F−. The transfers that we will define
later are carried out based on this forest.

Root each tree in the forest at some fixed facility in F−. For each vertex
v, denote K(v) the set of its children. For each vertex t ∈ F−, let Tt be the
subtree of depth exactly 2 rooted at t containing all its children and grand
children. (We can add some dummy vertices where the in-flow and out-flow
are 0 such that every tree Tt has depth 2.) Let y be the optimal flow of the
transportation problem where y(s, t) the flow between s ∈ F+ and t ∈ F−. We
denote y(s, V −) =

∑
t∈V − y(s, t) and y(V +, t) =

∑
s∈V + y(s, t) for V − ⊂ F−

and V + ⊂ F+, respectively. For special cases where V − = F− and V + = F+, we
simply denote y(·, t) as y(F+, t) and y(s, ·) as y(s,F−) the total flows received
at t and the total flow sent from s, respectively. Hence, for s ∈ F+ and t ∈ F−

y(·, t) = u∗
t − ut and y(s, ·) = us − u∗

s.
In the remaining, we will give a feasible transfer which closes each facility in

F+ once, opens each facility in F+ at most three times and the transportation



Improved Local Search for Universal Facility Location 321

cost of the transfer is also bounded by twice that of the optimal flow y. The
transfer scheme follows the same scheme in [3] with Open-close as the main
operation. For completeness, we present the schema in the following.

Consider a facility t of F− and the subtree Tt. Note that K(t) = Tt∩F+. We
will classify the facilities into groups indicating where the main part of the sent
(received) flow amount goes to (comes from). We say that a facility t ∈ F− is
strong if y(·, t) ≥ 2y(K(t), t); and weak otherwise. Intuitively, t is strong means
that the main part of flow that t receives comes from its parent. Similarly, a
facility s ∈ F+ is dominant if y(s, t) ≥ y(s,K(s)); and non-dominant otherwise.
Again, intuitively a dominant facility routes out the main part of its out-flow
to its parent. In the tree Tt, let Dom(t) and NDom(t) be the sets of dominant and
non-dominant facilities of K(t), respectively. For each facility s ∈ K(t), let S(s)
and W (s) be the set of strong and weak facilities in K(s), respectively.

s�

t

s� s̄

t

s1 si si+1

Fig. 1. In the figures, the squares and diamonds represent non-dominant and domi-
nant facilities in F+ ∩ Tt, respectively. Besides, the circles and black circles represent
weak and strong facilities in F− ∩ Tt, respectively. The figure in the left illustrates
operation Close(si, y(si, ·)) in Step 1. The figure in the right illustrates operation
Open-close(t, s�, y(s�, t) +

∑
s∈Dom2

y(s, ·), y(s�, ·)) in Step 2c where black diamonds
stands for facilities in Dom2.

Consider the transfer by performing the following operations. (An illustration
is shown in Figure 1.)

1. For each facility s ∈ NDom(t), define Rem(s) := max{y(s, t) − y(s,W (s)), 0}.
Order facilities in NDom(t) as {s1, . . . , s�} such that Rem(s1) ≤ . . . ≤ Rem(s�).
For i ∈ {1, . . . , � − 1}, consider Close(si, y(si, ·)): decrease the capacity at
si by moving out 2y(si, t

′) units to every facility t′ ∈ W (si), y(si, t
′) units

to every facility t′ ∈ S(si) and Rem(si) units to facilities in S(si+1). The
latter must be distributed in such a way that each facility in t′ ∈ S(si+1)
receives at most y(si+1, t

′) units. That can always be done since Rem(si) ≤
Rem(si+1) ≤ y(si+1,K(si+1)) − y(si+1,W (si+1)) = y(si+1, S(si+1)) where
the second inequality is because si+1 is non-dominant.

2. We adopt different procedures depending on different cases.
a. If t is strong.

Consider Open-close(t, s�, y(s�, t)+
∑

s∈Dom(t) y(s, ·), y(s�, ·)): facility t re-

ceives y(s, ·) units from each facility s ∈ Dom(t) in addition with y(s�, t)
units from s�; send out y(s�, t

′) units from s� to every facility t′ ∈ K(s�)∪t.



322 E. Angel, N.K. Thang, and D. Regnault

b. If t is weak and there is a facility h ∈ Dom(t) such that y(h, t) ≥
y(·, t)/2.
– Consider Close(h, y(h, ·)): decrease the capacity at h by sending out

y(h, t′) units to every facility t′ ∈ K(h) ∪ t.
– Consider Open-close(t, s�, y(s�, t) +

∑
s∈Dom(t),s�=h y(s, ·), y(s�, ·)): fa-

cility t receives y(s, ·) units from each facility s ∈ Dom(t) \ {h} in
addition with y(s�, t) units from s�; send out y(s�, t

′) units from s� to
every facility t′ ∈ K(s�) ∪ t.

c. If t is weak and there is no facility h ∈ Dom(t) such that y(h, t) ≥
y(·, t)/2.
In this case, Zhang et al. [9] has proved that there exist a facility s̄ ∈ Dom(t)
such that the set Dom(t) \ {s̄} can be partitioned into Dom1 and Dom2
satisfying y(s̄, t) +

∑
s∈Dom1 y(s, ·) ≤ y(·, t) and y(s�, t) +

∑
s∈Dom2 y(s, ·) ≤

y(·, t).
– Consider Open-close(t, s̄, y(s̄, t) +

∑
s∈Dom1 y(s, ·), y(s̄, ·)): facility t

receives y(s, ·) units from each facility s ∈ Dom1 in addition with
y(s̄, t) units from s̄; send out y(s̄, t′) units from s̄ to every facility
t′ ∈ K(s̄) ∪ t.

– Similarly, consider Open-close(t, s�, y(s�, t)+
∑

s∈Dom2 y(s, ·), y(s�, ·)):
facility t receives y(s, ·) units from each facility s ∈ Dom2 in addition
with y(s�, t) units from s�; send out y(s�, t

′) units from s� to every
facility t′ ∈ K(s�) ∪ t.

Lemma 3. The transfer is feasible.

Proof. Fix a tree Tt. By the transfer procedure, each facility s ∈ Tt ∩ F+ sends
out exactly y(s, ·) units. It remains to prove that every facility t′ ∈ Tt ∩ F−

receives each time at most y(·, t′).
Consider t′ ∈ Tt ∩F− \ {t} and suppose that t′ ∈ K(s) for some s ∈ Tt ∩F+.

By the transfer on tree Tt, at any operation, if t′ is weak then it receives at most
2y(s, t′), which is bounded by y(·, t′); otherwise (if t′ is strong) the received
amount is at most y(s, t′). In any case, t′ receives at most y(·, t′).

Consider the root t of tree Tt. Note that facility t only receives flow in Step 2
of the procedure. If t is strong, the total amount sent to t is

y(s�, t) +
∑

s∈Dom(t)
y(s, ·) ≤ y(s�, t) +

∑
s∈Dom(t)

2y(s, t) ≤ 2y(K(t), t) ≤ y(·, t)

where the first and the last inequalities follow by the definition of dominant
facilities and the fact that t is strong, respectively.

If t is weak and there is facility h ∈ Dom(t) such that y(h, t) ≥ y(·, t)/2. Facility
t receives y(h, t) units in the operation that closes facility h. In the operation
that opens facility t and closes facility s�, the amount sent to t is

y(s�, t)+
∑

s∈Dom(t),s�=h

y(s, ·) ≤ y(s�, t) +
∑

s∈Dom(t),s�=h

2y(s, t)

≤ 2y(K(t) \ {h}, t) ≤ 2(y(·, t)− y(h, t)) ≤ y(·, t).



Improved Local Search for Universal Facility Location 323

If t is weak and there is no facility h ∈ Dom(t) such that y(h, t) ≥ y(·, t)/2. The
amounts that i receives are y(s̄, t) +

∑
s∈Dom1 y(s, ·) and y(s�, t) +

∑
s∈Dom2 y(s, ·)

by the first and second operations of this case, respectively. As mentioned in the
transfer procedure, those amounts are both bounded by y(·, t). Hence, in any
case, t receives at most y(·, t) units at each operation. ��

Lemma 4. In the transfer, each facility in F+ is closed exactly once, each facil-
ity in F− is opened at most three times and the flow across every edge e = (s, t)
in the forest (the support graph of the optimal solution in the transportation
problem) is at most 2y(s, t).

Proof. Clearly by the decomposition of the forest into subtrees, a facility in F+

belongs to exactly one subtree and a facility in F− belongs to at most two
subtrees Tt. Hence, by the previous lemma, every facility in F+ is closed exactly
once. Consider a facility t ∈ F−. Let t̃ be the grand parent of t. If t is strong
then it will be opened once by the transfer procedure on tree Tt and it is opened
at most twice during the procedure on tree Tt̃. If t is weak then it will be opened
at most twice by the procedure on tree Tt and once by the procedure on tree Tt̃.
In any case, t is opened at most three time in the transfer.

Observe that edges in the subtrees Tt for all t are disjoint, so the flow across
an edge e in the transfer is the one across the edge in the transfer restricted on
the subtree containing e. Consider an edge e in a subtree Tt and the following
cases.

Case 1: e = (s, t) where s ∈ Tt∩F+. If s is dominant, then the total flow routed
along (s, t) is at most y(s, ·), which is bounded by 2y(s, t). If s is non-dominant,
suppose that s = si for some 1 ≤ i ≤ � where NDom(t) = {s1, . . . , s�} ordered
according to the Rem functions. The total flow across (si, t) is due to: (1) the
operation closing si−1; and (2) the one closing si (especially for s�, that is an
operation opening t and closing s�). The first operation sends through (si, t) a
flow Rem(si−1) ≤ Rem(si) ≤ y(si, t); the second operation routes along (si, t) a
flow at most y(si, t). Therefore, the total flow across e is at most 2y(e).

Case 2: e = (s, t′) where s ∈ Tt∩F+ and t′ ∈ Tt∩F−\{t}. If s ∈ Dom(t) then by
the transfer procedure the flow routed through (s, t′) is at most y(s, t′). If s = si
is non-dominant and t′ is weak then the flow across (s, t′) is either 2y(s, t′) in
case s �= s� or y(s, t′) in case s = s�. If s = si is non-dominant and t′ is strong
then the flow sending from si−1 to t′ is at most y(si, t

′). So together with the
flow y(si, t

′) routing from si, the total flow across (si, t
′) is at most 2y(si, t

′).
In summary, the flow across every edge e in the forest is at most 2y(e). The

lemma follows. ��

Theorem 1. It holds that Cf (S) ≤ 4Cs(S
∗) + 5Cf (S

∗) and Cs(S) ≤ Cs(S
∗) +

Cf (S
∗). Consequently, the local search algorithm is (3+2

√
2+ ε)-approximation

(≈ (5.83 + ε)-approx).



324 E. Angel, N.K. Thang, and D. Regnault

Proof. By the previous lemma, the transportation cost of the transfer is at most
2(Cs(S)+Cs(S

∗)) and a facility of F− is opened at most three times. Therefore,

Cf (S) ≤ 3Cf (S
∗) + 2(Cs(S) + Cs(S

∗)) ≤ 4Cs(S
∗) + 5Cf (S

∗)

since Cs(S) ≤ Cs(S
∗) + Cf (S

∗). Hence, the total cost of solution S is

Cs(S) + Cf (S) ≤ Cs(S
∗) + Cf (S

∗) + 4Cs(S
∗) + 5Cf(S

∗) = 5Cs(S
∗) + 6Cf (S

∗)

which yields an approximation ratio (6 + ε).
By a standard scaling technique, we multiply the cost function of every facility

by a factor λ (to be defined later) then apply the algorithm to this instance. Let
C′

f (·) and Cf (·) be the facility cost function of the modified and original solution.

Note that C′
f (·) = λCf (·). Let S a local optimum (on the modified instance) and

S∗ be any feasible solution. The same analysis leads to the following inequalities:
C′

f (S) ≤ 4Cs(S
∗) + 5C′

f (S
∗) and Cs(S) ≤ Cs(S

∗) + C′
f (S

∗). Therefore, the
original total cost

Cf (S) + Cs(S) = C′
f (S)/λ+ Cs(S) ≤

1

λ
(4Cs(S

∗) + 5C′
f (S

∗)) + Cs(S
∗) +C′

f (S
∗)

= (5 + λ)Cf (S
∗) + (

4

λ
+ 1)Cs(S

∗).

Choosing λ = 2
√
2− 2, we get C(S) ≤ (3 + 2

√
2)C(S∗). Therefore, the approxi-

mation ratio is (3 + 2
√
2 + ε) ≈ (5.83 + ε). ��

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput-
ing 33(3), 544–562 (2004)

2. Bansal, M., Garg, N., Gupta, N.: A 5-approximation for capacitated facility loca-
tion. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 133–144.
Springer, Heidelberg (2012)

3. Garg, N., Khandekar, R., Pandit, V.: Improved approximation for universal facility
location. In: Proc. 16th Symposium on Discrete Algorithms, pp. 959–960 (2005)

4. Hajiaghayi, M.T., Mahdian, M., Mirrokni, V.S.: The facility location problem with
general cost functions. Networks 42(1), 42–47 (2003)

5. Li, J., Khuller, S.: Generalized machine activation problems. In: Proc. of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 80–94
(2011)

6. Mahdian, M., Pál, M.: Universal facility location. In: Di Battista, G., Zwick, U.
(eds.) ESA 2003. LNCS, vol. 2832, pp. 409–421. Springer, Heidelberg (2003)

7. Pál, M., Tardos, É., Wexler, T.: Facility location with nonuniform hard capaci-
ties. In: Proc. 42nd Annual Symposium on Foundations of Computer Science, pp.
329–338 (2001)

8. Vygen, J.: From stars to comets: Improved local search for universal facility location.
Operations Research Letters 35(4), 427–433 (2007)

9. Zhang, J., Chen, B., Ye, Y.: A multiexchange local search algorithm for the capaci-
tated facility location problem. Mathematics of Operations Research 30(2), 389–403
(2005)



Improved Approximation Algorithms
for Computing k Disjoint Paths Subject

to Two Constraints

Longkun Guo1,2,�,��, Hong Shen1,3, and Kewen Liao3

1 School of Information Science and Technology, Sun Yat-Sen University, China
2 College of Mathematics and Computer Science, Fuzhou University, China

3 School of Computer Science, University of Adelaide, Australia
lkguo@fzu.edu.cn

Abstract. For a given graph G with positive integral cost and delay on
edges, distinct vertices s and t, cost bound C ∈ Z+ and delay bound
D ∈ Z+, the k bi-constraint path (kBCP) problem is to compute k
disjoint st-paths subject to C and D. This problem is known NP-hard,
even when k = 1 [4]. This paper first gives a simple approximation al-
gorithm with factor-(2, 2), i.e. the algorithm computes a solution with
delay and cost bounded by 2 ∗D and 2 ∗ C respectively. Later, a novel
improved approximation algorithm with ratio (1 + β, max{2, 1 + ln 1

β
})

is developed by constructing interesting auxiliary graphs and employ-
ing the cycle cancellation method. As a consequence, we can obtain a
factor-(1.369, 2) approximation algorithm by setting 1 + ln 1

β
= 2 and a

factor-(1.567, 1.567) algorithm by setting 1 + β = 1 + ln 1
β
. Besides, by

setting β = 0, an approximation algorithm with ratio (1, O(lnn)), i.e. an
algorithm with only a single factor ratio O(lnn) on cost, can be immedi-
ately obtained. To the best of our knowledge, this is the first non-trivial
approximation algorithm for the kBCP problem that strictly obeys the
delay constraint.

Keywords: k-disjoint bi-constraint path, NP-hard, bifactor approxima-
tion algorithm, auxiliary graph, cycle cancellation.

1 Introduction

In real networks, there are many applications that require quality of service and
some degree of robustness simultaneously. Typically, the quality of service (QoS)
related problem requires routing between the source node and the destination
node to satisfy several constraints simultaneously, such as bandwidth, delay,
cost and energy consumption. Nevertheless, in networks, some time-critical ap-
plications also require routing to remain functioning while edge or vertex failure
� This project was supported by the Natural Science Foundation of Fujian Province

(2012J05115), Doctoral Fund of Ministry of Education of China for Young Scholars
(20123514120013) and Fuzhou University Development Fund (2012-XQ-26).

�� Corresponding author.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 325–336, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



326 L. Guo, H. Shen, and K. Liao

occurs. A common solution is to compute k disjoint paths that satisfy the QoS
constraints, and use one path as an active path whilst the other paths as backup
paths. The routing traffic is carried on the active path, and switched to the
disjoint backup paths while an edge or vertex failure occurs on the active path.
However, for some time-critical applications even the time to discover failures of
routing and restore data transmission in backup paths is too long for them. For
such applications, packages are routed via k paths simultaneously, and the traffic
is switched from failed paths to functioning paths if edge or vertex failures occur,
such that routing can tolerate k− 1 edge (vertex) failures. Therefore, given cost
and delay as the QoS constraints, the disjoint QoS Path problem arises as below:

Definition 1. For a graph G = (V, E) and a pair of distinct vertices s, t ∈ V ,
a cost function c : E → Z+, a delay function d : E → Z+, a cost bound C ∈ Z+

and a delay bound D ∈ Z+, the k-disjoint QoS Paths problem is to compute k
disjoint st-paths P1, . . . , Pk, such that

∑
i=1,...,k

c(Pi) ≤ C and d(Pi) ≤ D for every

i = 1, . . . , k.

This problem is NP-hard even when all edges of G are with cost 0 [8], which
results in the difficulty to approximate the k-disjoint QoS Paths problem. An
alternative method is to compute k disjoint with total cost bounded by C and
delay bounded by D ( equal to kD in Definition 1), and then route the packages
via the paths according to their urgency priority, i.e., route urgent packages
via paths of low delay whilst deferrable ones via paths of high delay of the k
disjoint paths. Therefore, The disjoint bi-constraint path problem arises as in
the following:

Definition 2. (The k disjoint bi-constraint path problem, kBCP) For a graph
G = (V,E) with a pair of distinct vertices s, t ∈ V , a cost function c : E → R+,
a delay function d : E → R+, a cost bound C ∈ Z+ and a delay bound D ∈
R+, the k-disjoint bi-constraint path problem is to calculate k disjoint st-paths
P1, . . . , Pk, such that

∑
i=1,...,k

c(Pi) ≤ C and
∑

i=1,...,k

d(Pi) ≤ D.

This paper will focus on bifactor approximation algorithms for the kBCP prob-
lem, which are introduced as below:

Definition 3. An algorithm A is a bifactor (α, β)-approximation for the kBCP
problem, if and only if for every instance of kBCP, A computes k disjoint st-
paths of which the delay sum and the cost sum are bounded by α ∗D and β ∗ C
respectively.

Since a β-approximation with the single factor ratio on cost is identical to a
bifactor (1, β)-approximation, we use them interchangeably in the text.

1.1 Related Work

This kBCP problem is NP-hard even when k = 1 [4]. To the best of our knowl-
edge, this paper is the first one that presents non-trivial approximation algo-



Improved Approximation Algorithms for Computing k Disjoint Paths 327

rithms for the kBCP problem formally. However, a number of papers have ad-
dressed problems closely related to kBCP, in particular the k restricted shortest
path problem (kRSP), which is to calculate k disjoint st-paths of minimum
cost-sum under the delay constraint

∑
i=1,...,k

d(Pi) ≤ D. An algorithm with bifac-

tor approximation ratio (2, 2) has been developed in [6] for general k, while
no approximation solution that strictly obeys the delay (or cost) constraint
is known even when k = 2. For a positive real number r, bifactor ratio of
(1 + 1

r , r(1 +
2(log r+1)

r )(1 + ε)) and (1 + 1
r , r(1 +

2(log r+1)
r )) have been achieved

respectively in [10,3] for the case k = 2 and under the assumption that the delay
of each path in the optimal solution of kRSP is bounded by D

k .
Special cases of this problem have been studied. When the delay constraint is

removed, this problem is reduced to the min-sum problem, which is to calculate
k disjoint paths with the total cost minimized. This problem is known polyno-
mially solvable [11]. Moreover, when k = 1, the problem reduces to the single
bi-constraint path (BCP) problem, which is known as the basic QoS routing
problem [4] and admits full polynomial time approximation scheme (FPTAS)
[4,9]. Recently, the single BCP problem is still attracting considerable interests
of the researchers. The strongest result known is a (1+ ε)-approximation due to
Xue et al [14].

Additionally, when the cost constraint is removed, the disjoint QoS problem
reduces to the length bounded disjoint path problem of finding two disjoint
paths with the length of each path constrained by a given bound. This problem
is a variant of the min-Max problem of finding two disjoint paths with the
length of the longer path minimized . Both of the two problems are known
to be NP-complete [8], and with the best possible approximation ratio of 2 in
digraphs [8], which can be achieved by applying the algorithm for the min-sum
problem in [11,12]. Contrastingly, the min-min problem of finding two paths with
the length of the shorter path minimized is NP-complete and doesn’t admit K
approximation for any K ≥ 1 [5,13,2]. The problem remains NP-complete and
admits no polynomial time approximation scheme in planar digraphs [7].

1.2 Our Techniques and Results

The main result of this paper is a factor-(1+β, max{2, 1+ln 1
β}) approximation

algorithm for any 0 < β ≤ 1 for the kBCP problem. The main idea of the algo-
rithm is firstly to compute k-disjoint paths with delay-sum bounded by αD and
cost-sum bounded by (2−α)∗C, where 0 ≤ α ≤ 2 is a real number, and secondly
to improve the computed k paths by novelly combining cycle cancellation [10]
and cost-bounded auxiliary graph construction [14]. The key technique to prove
the algorithm’s approximation ratio is using definite integral to compute a close
form for the sum of the cost increment during the improving phase.

As a consequence of the main result, we can obtain a factor-(1.369, 2) approx-
imation algorithm by setting 1+ ln 1

β = 2, and a factor-(1.567, 1.567) algorithm
by setting 1 + β = 1 + ln 1

β and slightly modifying our algorithm (to improve
either cost or delay that is with worse ratio). Nevertheless, by slightly modifying



328 L. Guo, H. Shen, and K. Liao

Algorithm 1. A basic approximation algorithm for the k-BCP problem
Input: A graph G = (V,E), each edge e with cost c(e) and delay d(e), a given cost
constraint C ∈ Z+ and delay constraint D ∈ Z+;
Output: k disjoint paths P1, P2 . . . , Pk.

1. Set the new cost of edge e as b(e) = c(e)
C

+ d(e)
D

;
2. Compute the k disjoint paths P1, P2 . . . , Pk in G by using Suurballe and Tarjan’s

algorithm [11,12], such that
∑k

i=1

∑
e∈Pi

b(e) is minimized;
3. Return P1, P2 . . . , Pk.

our ratio proof, we show that an approximation algorithm with ratio (1, O(lnn)),
i.e. an algorithm with single factor ratio of O(lnn) on cost, can be immediately
obtained by setting β = 0. To the best of our knowledge, this is the first non-
trivial approximation algorithm for the kBCP problem that strictly obeys the
delay constraint.

We note that our algorithms are with pseudo-polynomial time complexity,
since the auxiliary graph we construct is of size O(C ∗n). However, by using the
classic polynomial time approximation scheme design technique [4], i.e. for any
small ε > 0 setting the cost of every edge to

⌊
c(e)
εC
n

⌋
in G before the construction

of auxiliary graph, we can immediately obtain a polynomial time algorithm with
ratio ((1 + β) ∗ (1+ ε), max{2, 1+ ln 1

β } ∗ (1+ ε)). We shall omit the details due
to the paper length limitation.

2 An Improved Approximation Algorithm for Computing
k Disjoint Bi-constraint Paths

This section will first present a simple approximation method for computing k-
disjoint paths with delay-sum bounded by αD and cost-sum bounded by (2 −
α) ∗ C, where 0 ≤ α ≤ 2 is a real number, and secondly improve the computed
k paths by balancing the value of α and 2 − α. Though the presented simple
algorithm is with worse ratio than that of the algorithm for k = 2 in [10], it suits
the improving phase better.

2.1 A Basic Approximation Algorithm

Observing that the difficulty of computing k-disjoint bi-constraint paths mainly
comes from the two given constraints, the key idea of our algorithm is to deal
with one new constraint B instead of the two given constraints C and D. Our
algorithm firstly assigns a new mixed cost b(e) = c(e)

C + d(e)
D to every edge in

graph, and secondly computes k disjoint paths with the new cost sum bounded
by B = C

C +D
D = 2. Note that the second step can be accomplished in polynomial

time by employing the SPP algorithm due to Suurballe and Tarjan [11,12]. The
detailed algorithm is as in Algorithm 1.



Improved Approximation Algorithms for Computing k Disjoint Paths 329

The time complexity and performance guarantee of Algorithm 1 is given by
the following theorem:

Theorem 4 Algorithm 1 runs in O(km log1+m
n
n) time, and computes k-disjoint

paths with delay-sum bounded by αD and cost-sum bounded by (2−α)∗C , where
0 ≤ α ≤ 2 is a real number.

Proof. The main part of Algorithm 1 takes O(km log1+m
n
n) to compute k-

disjoint paths by using Surrballe and Tarjan’s algorithm [11,12], and other parts
of the algorithm take trivial time. Hence the time complexity of the algorithm
is O(km log1+m

n
n).

It remains to show the approximation ratio. To make the proof concise, we
denote by OPT an optimal solution for the k-disjoint BCP paths problem, and
SOL the solution of Algorithm 1. Obviously

∑
e∈OPT b(e) ≤ 2 holds. Then since

the k disjoint paths is with minimum new cost, we have∑
e∈SOL

b(e) ≤
∑

e∈OPT

b(e) ≤ 2. (1)

Assume the delay-sum of the algorithm is α times of d(OPT ), then follow-
ing Algorithm 1 0 ≤ α ≤ 2 holds. Therefore, we have

∑
e∈SOL b(e) =∑k

i=1

∑
e∈Pi

b(e) = α + c(SOL)
c(OPT ) . From Inequality (1), α + c(SOL)

c(OPT ) ≤ 2 holds.
That is, c(SOL) ≤ (2− α)c(OPT ) ≤ (2− α)C. This completes the proof.

Note that α differs for different instances, i.e. Algorithm 1 may return a solution
with cost 2 ∗ c(OPT ) and delay 0 for some instances, while a solution with cost
0 and delay 2 ∗ d(OPT ) for other instances. Hence, the bifactor approximation
ratio for Algorithm 1 is actually (2, 2).

In real networks, the two given constraints may not be of equal importance,
say, delay is far more important comparing to cost. In this case, applications
require that the delay of the resulting solution is bounded by (1 + β)D, where
0 < β < 1 is a positive real number. Apparently, we could get an algorithm
similar to Algorithm 1 excepting setting the new cost as b(e) = β c(e)

C + d(e)
D . The

ratio of the new algorithm is given as below:

Corollary 5. By setting the new cost as b(e) = β c(e)
C + d(e)

D for a given real
number 0 < β < 1 , Algorithm 1 returns k paths with delay-sum bounded by αD
and cost-sum bounded by 1+β−α

β ∗ C , where 0 ≤ α ≤ 1 + β is a real number.
Therefore the ratio of the algorithm is (1 + β, 1 + 1

β ).

The proof of Corollary 5 is omitted here, since it is very similar to the proof
of Theorem 1. According to Corollary 5, our algorithm can bound the delay-
sum of the k-disjoint path by (1 + β)D for any 0 < β < 1, by relaxing the
cost constraint to (1 + 1

β ) ∗ C. For example, if β = 0.01, then the bifactor
approximation ratio of the algorithm is (1.01, 101). Thus, the algorithm decrease
the delay of the k-disjoint paths at a high price. In the next subsection, we shall
develop an improved method that pays less to make delay-sum of the k-disjoint
paths bounded by (1 + β)D.



330 L. Guo, H. Shen, and K. Liao

Algorithm 2. An improved algorithm based on cycle cancellation.
Input: A graph G = (V,E), each edge e with cost c(e) and delay d(e), a given cost
constraint C ∈ Z+ and delay constraint D ∈ Z+, disjoint QoS paths P1, P2 . . . , Pk

computed by Algorithm 1;
Output: Improved disjoint QoS paths Q1, Q2 . . . , Qk.

1. If
∑k

i=1 d(Pi) ≤ (1 + β)D ;
then return P1, P2 . . . , Pk as Q1, Q2 . . . , Qk , terminate;

2. Reverse direction of the edges of P1, P2 . . . , Pk in G , set their cost to a small
positive real number 0 < ε < 1

mnD
, and negative their delay;

3. Compute cycle Oj with c(Oj) ≤ C, d(Oj) < 0 and d(Oj)

c(Oj)
attaining minimum, by

the method given in next section;
/* Following clause 2 of Proposition 6, if

∑k
i=1 d(Pi) ≥ d(OPT ) and

∑k
i=1 c(Pi) ≥

0, there always exist cycle Oj with c(Oj) ≤ C and d(Oj) < 0. */
4. Improve P1, P2 . . . , Pk by adding the edges of Oj and removing the pairs of parallel

edges in opposite direction;
5. Go to Step 1.

2.2 The Improving Phase

To make the delay of the solution resulting from Algorithm 1 bounded by (1 +
β)D, our improving phase is, basically a greedy method, using the so-called cycle
cancellation to improve the disjoint paths in iterations until a solution with the
best possible ratio (1 + β, max{2, 1 + ln 1

β}) is obtained. The cycle cancellation
method is an approach of using cycles to change the edges of the disjoint paths,
which first appears in [10] and is derived from the following proposition that can
be immediately obtained from flow theory [1]:

Proposition 6. Let P1, P2 . . . , Pk and Q1, Q2 . . . , Qk be two sets of k disjoint
st-paths in G, G be G excepting that all edges of P1, P2 . . . , Pk are reversed, and
O be a cycle in G. Then

1. The edges of P1, P2 . . . , Pk and O, excepting the pairs of parallel edges with
opposite direction, compose k-disjoint paths;

2. There exist a set of edge disjoint cycles O1, . . . , Oh in G, such that the edges
of P1, P2 . . . , Pk and O1, . . . , Oh, excepting the pairs of parallel edges with
opposite direction, compose Q1, Q2 . . . , Qk.

From the proposition above, it is obvious that there exists a set of cycles O1, . . . ,
Oh that can improve k disjoint QoS paths P1, P2 . . . , Pk to an optimal solution.
However, it is hard to identify all the cycles O1, . . . , Oh, so we employ a greedy
approach to compute a set of cycles to obtain an approximation approach. The
improving phase is composed by iterations, each of which computes a cycle and
then uses it to improve P1, P2 . . . , Pk. More precisely, to obtain a good ratio,
the algorithm computes in iteration j a cycle Oj with d(Oj)

c(Oj)
minimized among

the cycles in G. The layout of the algorithm is as given in Algorithm 2.



Improved Approximation Algorithms for Computing k Disjoint Paths 331

Following clause 1 of Proposition 6, Algorithm 2 will correctly return k disjoint
paths. It remains to show the cost and delay of the k disjoint paths is constrained
as below:

Theorem 7 The approximation ratio of Algorithm 2 is (1+β,max{2, 1+ln 1
β }).

Proof. For the case that
∑k

i=1 d(Pi) ≤ (1 + β)D holds before the improving
phase, the approximation ratio of Algorithm 2 is obviously (1 + β, 2).

It remains to show the ratio of the algorithm is (1 + β, 1 + ln 1
β ) for the case

that
∑k

i=1 d(Pi) > (1 + β)D. Assume that Algorithm 2 runs in h iterations, the
key idea of the proof is to sum up the cost increment while using the cycle to
improve the k disjoint paths in iterations, and show that the cost sum is bounded
(by giving the cost sum a close form).

Note that in the case, we have αD ≥
∑k

i=1 d(Pi) > (1 + β)D, so α > 1 + β
holds. Let ΔD = d(OPT ) − d(SOL) ≥ (1 − α)d(OPT ) and ΔC = c(OPT ) −
c(SOL) ≤ (α − 1)c(OPT ). Clearly, ΔD < 0 and ΔC > 0 hold. Let the cycle
computed in the jth iteration be Oj , then since d(Oj)

c(Oj)
attains minimum in Step

3 of Algorithm 2, we have d(Oj)
c(Oj)

≤ ΔD−
∑j−1

i=1 d(Oi)

C . That is,

c(Oj) ≤
d(Oj)

ΔD −
∑j−1

i=1 d(Oi)
C.

By summing up c(Oj) in h− 1 iterations (excluding the last iteration), we have:

h−1∑
j=1

c(Oj) ≤ C

h−1∑
j=1

d(Oj)

ΔD −
∑j−1

i=1 d(Oi)
.

Following the definition of Definite Integral, we have:

h−1∑
j=1

d(Oj)

ΔD −
∑j−1

i=1 d(Oi)
=

h−1∑
j=1

1

ΔD −
∑j−1

i=1 d(Oi)
d(Oj) ≤

∫ ΔD−
∑h−1

i=1 d(Oi)

ΔD

1

x
dx,

(2)
where the maximum is attained when d(Oj) = −1 for every j.

Algorithm 2 terminates when d(SOL) +
∑h

i=1 d(Oi) ≤ (1 + β)D, so in the
h − 1 iterations d(SOL) +

∑h−1
i=1 d(Oi) > (1 + β)D holds. That is d(SOL) −

D +
∑h−1

i=1 d(Oi) > βD, and hence −ΔD +
∑h−1

i=1 d(Oi) > βD > 0 holds. So we
obtain a close form for the cost sum of the h− 1 iterations:

∫ ΔD−∑h−1
i=1 d(Oi)

ΔD

1

x
dx =

∫ −ΔD

−ΔD+
∑h−1

i=1
d(Oi))

1

x
dx ≤

∫ −ΔD

βD

1

x
dx = ln

|ΔD|
βD

= ln
α− 1

β
.

(3)



332 L. Guo, H. Shen, and K. Liao

At last, the cost increment in the hth iteration is bounded by c(OPT ). So the
final cost is c(SOL2) ≤ (2 − α)C + C ln α−1

β + C = C(3 − α + ln α−1
β ), where

SOL2 is the solution resulting from Algorithm 2.
Let f(α) = 3−α+ ln α−1

β . Remind that α ≤ 2, so f ′(α) = 1
α−1 − 1 > 0, f(α)

is monotonous increasing on α, and attains maximum while α = 2. So we have
c(SOL2) ≤ (1 + ln 1

β )c(OPT ).
Therefore, the cost of the output of Algorithm 2 is bounded by (1 + ln 1

β )

c(OPT ), and delay bounded by (1 + β)d(OPT ). This completes the proof.

From Theorem 7, by setting 1+ln 1
β = 2, we can immediately obtain an improved

algorithm with best possible delay ratio under the same cost bound 2C. That
is:

Corollary 8. By setting 1 + ln 1
β = 2, we have β = 1

e , and hence Algorithm 2
is now with a bifactor approximation ratio of (1 + 1

e , 2) = (1.369, 2).

For those applications in which delay and cost are of equal importance, by setting
1 + ln 1

β = 1 + β and slightly modifying Algorithm 2 to improve either cost or
delay that is of worse ratio, we can obtain an improved algorithm with ratio as
in the following corollary:

Corollary 9. If 1 + ln 1
β = 1+ β, Algorithm 2 is with a bifactor approximation

ratio of (1.567, 1.567).

Now we consider the case that β = 0, i.e. the delay constraint is strictly satisfied.
In this case, Inequality (3) in the proof of Theorem 7 will become∑h−1

j=1
d(Oj)

ΔD−
∑j−1

i=1 d(Oi)
≤
∫ |ΔD|
|βD=0|

1
xdx = ln |ΔD| ≤ lnD. So we have:

Corollary 10. When β = 0, Algorithm 2 is with a ratio of (1, O(lnn)).

From Corollary 10, we can see that the price of obeying one constraint strictly
is very high, i.e. it requires extra O(lnn) times of cost. However, this is the first
algorithm with logarithmic factor approximation ratio for the k-BCP problem
with strict delay constraint.

3 Computing Cycle Oj with Minimum d(Oj)

c(Oj)

Let G = (V,E) be G, excepting that the edges of P1, P2 . . . , Pk are with direc-
tion reversed, cost sat to 0, and delay negatived. This section will show how to
compute a cycle O with cost bounded by C and d(O)

c(O) minimized in G. The key
idea is firstly to construct an auxiliary graphs H(v) for each v where every cycle
is with cost at most C, secondly to compute the cycle O′ with minimum d(O′)

c(O′)

among all cycles in all H(v)s for each v ∈ G, and thirdly to obtain cycle O with
minimum d(O(v))

c(O(v)) in G according to O′.



Improved Approximation Algorithms for Computing k Disjoint Paths 333

Algorithm 3. Construction of auxiliary graph H .
Input: Graph G = (V,E), two distinct vertices s, t ∈ V , a cost c : e → Z+

0 and a
delay d : e → Z+

0 on every edge e ∈ E, a cost constraint C and a delay constraint D;
Output: Auxiliary graph H(v).

1. For every vertex vl of V , add to H(v) vertices v1l , . . . , v
C
l ;

2. For every edge e = 〈vj , vl〉 ∈ E, add to H(v) the edges〈
v1j , v

c(e)+1
l

〉
, . . . ,

〈
v
C−c(e)
j , vCl

〉
, each of which is with cost c(e) and delay

d(e);
/*Note that d(e) can be negative in G = (V,E).*/

3. For all i = 2, . . . , C, add to H(v) backward edge
〈
vi, v1

〉
with delay 0 and cost 0,

where a backward edge is an edge
〈
vi, vj

〉
where i > j.

/*H(v) contains backward edges, and hence cycles, only after adding the edges of
Step 3.*/

3.1 Construction of Auxiliary Graph H(v)

The algorithm of constructing the auxiliary graph H(v) is inspired by the method
of computing a single path subject to multiple constraints [14]. The full layout
of the algorithm is as shown in Algorithm 3 (An example of such construction
is as depicted in Figure 1).

Following Algorithm 3, every backward edge in the constructed auxiliary
graph H(v) must contain vertex v1. Hence every cycle in H(v) contains at most
one backward edge. On the other hand, following Algorithm 3 a cycle in H(v)
contains at least one backward edge. Therefore, there exist exactly one backward
edge in any cycle of H(v). Because H(v) \ {

〈
v2, v1

〉
, . . . ,

〈
vC , v1

〉
} is an acyclic

graph where any path is with cost at most C, we have:

Lemma 11. Any cycle in H(v) is with cost at most C.

Let O(v) be a cycle in H(v), then following the construction of H(v), O(v)
apparently corresponds to a set of cycles in G. Conversely, every cycle containing
v in G corresponds to a cycle in H(v). Based on the observation, the following
lemma gives the key idea of computing a cycle O of G with d(O)

c(O) minimized and
cost bounded by C:

Lemma 12. Let O(vi) be a cycle with minimum d(O(vi))
c(O(vi))

in H(vi), and O(v) be

the cycle with minimum d(O(v))
c(O(v)) among the n cycles O(v1), . . . , O(vn). Assume O

is a cycle with minimum d(O)
c(O) in the set of cycles in G that correspond to O(v).

Then for any cycle O′ in G with c(O′) ≤ C, d(O)
c(O) ≤

d(O′)
c(O′) holds.

Proof. Suppose this lemma is not true, then there must exist in G a cycle, say O′,
such that d(O)

c(O) > d(O′)
c(O′) and c(O′) ≤ C hold. Then the cycle O′(v) in H(v) that

corresponds to O′ is also with d(O′(v))
c(O′(v)) = d(O′)

c(O′) < d(O)
c(O) ≤

d(O(v))
c(O(v)) , contradicting

with the minimality of O(v) in H(v). This completes the proof.



334 L. Guo, H. Shen, and K. Liao

s

x

y

z

t

s0

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

z0 z1 z2 z3 z4 z5 z6

t0 t1 t2 t3 t4 t5 t6

(1, 4)

(1,1)

(a)

(b)

edge with delay and cost equal to its corresponding edge in G

edge with delay 0 and cost ε

s1 s2 s3 s4 s5 s6

(2,1)(1,2) (2,1)

(−7, ε)

(2, 6)

Fig. 1. Construction of auxiliary graph H(v = s) with cost constraint C = 6: (a) graph
G; (b) auxiliary graph H(v = s). The cycle O = syts in G is exclude in the auxiliary
graph H(s) as shown in (b), keeping the cost of k disjoint paths constrained by C = 6.



Improved Approximation Algorithms for Computing k Disjoint Paths 335

3.2 Computing the Cycle O with Minimum d(O)
c(O)

The main idea of the algorithm to compute a cycle O with d(O)
c(O) minimized in G

is to compute the cycle O′ with minimum d(O′)
c(O′) among all cycles in all H(v)s for

each v ∈ G. Following Lemma 12, the cycle O in G is the cycle with minimum
d(O)
c(O) among the cycles in G corresponding to all the computed O′s. The detailed
steps are as below:

1. For i = 1 to n

(a) Construct H(vi) for vi ∈ G by Algorithm 3;
(b) Compute cycle O(vi) with minimum d(O(vi))

c(O(vi))
in H(vi) by employing the

minimum cost-to-time ratio cycle algorithm in [1];
(c) Select O(v) with minimum d(O(v))

c(O(v)) from the n computed cycles
O(v1), . . . , O(vn);

2. Select the cycle O with minimum d(O)
c(O) among the cycles in G that correspond

to O(v).

Clearly, the cycle O attains minimum d(O)
c(O) in G. Besides, following Lemma 11

we have c(O) ≤ C. Therefore the cycle O is correctly the promised cycle. This
completes the proof of the approximation ratio.

4 Conclusion

This paper gave a novel approximation algorithm with ratio (1 + β, max{2, 1+
ln 1

β}) for the kBCP problem based on improving a simple (α, 2 − α)-
approximation algorithm by constructing interesting auxiliary graphs and
employing the cycle cancellation method. By setting β = 0, an approximation al-
gorithm with bifactor ratio (1, O(lnn)), i.e. an O(lnn)-approximation algorithm
can be obtained immediately. To the best of our knowledge, it is the first non-
trivial approximation algorithm for this problem that obeys the delay constraint
strictly. We are now investigating whether any constant factor approximation al-
gorithm exists for computing a solution that strictly obey the delay constraint.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and
applications (1993)

2. Bhatia, R., Kodialam, M., Lakshman, T.V.: Finding disjoint paths with related
path costs. Journal of Combinatorial Optimization 12(1), 83–96 (2006)

3. Chao, P., Hong, S.: A new approximation algorithm for computing 2-restricted
disjoint paths. IEICE Transactions on Information and Systems 90(2), 465–472
(2007)

4. Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman, San Francisco
(1979)



336 L. Guo, H. Shen, and K. Liao

5. Guo, L., Shen, H.: On Finding Min-Min disjoint paths. accepted by Algorithmica
6. Guo, L., Shen, H.: Efficient approximation algorithms for computing k disjoint

minimum cost paths with delay constraint. In: IEEE PDCAT, pp. 627–631. IEEE
(2012)

7. Guo, L., Shen, H.: On the complexity of the edge-disjoint min-min problem in
planar digraphs. Theoretical Computer Science 432, 58–63 (2012)

8. Li, C.L., McCormick, T.S., Simich-Levi, D.: The complexity of finding two dis-
joint paths with min-max objective function. Discrete Applied Mathematics 26(1),
105–115 (1989)

9. Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted
shortest path problem. Operations Research Letters 28(5), 213–219 (2001)

10. Orda, A., Sprintson, A.: Efficient algorithms for computing disjoint QoS paths. In:
IEEE INFOCOM, vol. 1, pp. 727–738. Citeseer (2004)

11. Suurballe, J.W.: Disjoint paths in a network. Networks 4(2) (1974)
12. Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint

paths. Networks 14(2) (1984)
13. Xu, D., Chen, Y., Xiong, Y., Qiao, C., He, X.: On the complexity of and algorithms

for finding the shortest path with a disjoint counterpart. IEEE/ACM Transactions
on Networking 14(1), 147–158 (2006)

14. Xue, G., Zhang, W., Tang, J., Thulasiraman, K.: Polynomial time approximation
algorithms for multi-constrained qos routing. IEEE/ACM Transactions on Net-
working (TON) 16(3), 656–669 (2008)



The k-Separator Problem

Walid Ben-Ameur, Mohamed-Ahmed Mohamed-Sidi, and José Neto

Institut Mines-Télécom, Télécom SudParis, CNRS Samovar UMR 5157
9 Rue Charles Fourier, 91011 Evry Cedex, France

walid.benameur@it-sudparis.eu, m-ahmed.m-sidi@it-sudparis.eu,

jose.neto@it-sudparis.eu

Abstract. Given a vertex-weighted undirected graph G = (V,E,w) and
a positive integer k, we consider the k-separator problem: it consists in
finding a minimum-weight subset of vertices whose removal leads to a
graph where the size of each connected component is less than or equal to
k. We show that this problem can be solved in polynomial time for some
graph classes: for cycles and trees by a dynamic programming approach
and by using a peculiar graph transformation coupled with recent results
from the literature for mK2-free, (G1, G2, G3, P6)-free, interval-filament,
asteroidal triple-free, weakly chordal, interval and circular-arc graphs.
Approximation algorithms are also presented.

Keywords: graph partitioning, complexity theory, optimization,
approximation algorithms, communication networks.

1 Introduction

Given a vertex-weighted undirected graph G = (V,E,w), the minimum vertex
cover problem consists in computing a minimum-weight set of vertices S ⊂ V
such that V \ S is a stable set. A minimum-weight vertex cover can then be
exhibited if one can find a maximum-weight stable set. While the problem can
be solved in polynomial time in some cases (bipartite graphs, perfect graphs,
etc.), it is known to be NP-hard in general (see, e.g., [10,17]).

Let k be a positive number. We consider the following natural generalization of
the vertex cover problem. The objective is to compute a minimum-weight subset
of vertices S whose removal leads to a graph where the size of each connected
component is less than or equal to k. Let us call such a set a k-separator. If
k = 1 we get the classical vertex cover problem. The case k = 2 is equivalent to
computing the dissociation number of a graph (in the case of unit weights) [21].
This problem is NP-hard even if the graph is bipartite.

The k-separator problem has many applications. If vertex weights are equal
to 1, the size of a minimum k-separator can be used to evaluate the robustness of
a graph or a network. Intuitively, a graph for which the size of the minimum k-
separator is large, is more robust. Unlike the classical robustness measure given
by the connectivity, the new one seems to avoid to underestimate robustness
when there are only some local weaknesses in the graph. Consider for example

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 337–348, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



338 W. Ben-Ameur, M.-A. Mohamed-Sidi, and J. Neto

a graph containing a complete subgraph and a vertex connected to exactly one
vertex of the subgraph. Then the vertex-connectivity of this graph is 1 while the
graph seems to be robust everywhere except in the neighborhood of one vertex.
The size of a minimum k-separator of this graph is |V | − 1− k.

The minimum k-separator problem has some other network applications. A
classical problem consists in partitioning a graph/network into different sub-
graphs with respect to different criteria. For example, in the context of social
networks, many approaches are proposed to detect communities. By solving a
minimum k-separator problem, we get different connected components that may
represent communities. The k-separator vertices represent persons making con-
nections between communities. The k-separator problem can then be seen as a
special partitioning/clustering graph problem.

Computing a k-separator can also be useful to build algorithms based on
divide-and-conquer approaches. In some cases, a problem defined on a graph
can be decomposed into many subproblems on smaller subgraphs obtained by
the deletion of a k-separator (see e.g., [18]).

The k-separator problem is closely related to the vertex-separator problem
where we aim to remove a minimum-weight set of vertices such that each con-
nected component in the remaining graph has a size less than α|V | (for a fixed
α < 1). A polyhedral study of this problem is proposed in [1] (see also the ref-
erences therein). When the vertex-separator problem is considered, the graph is
generally partitioned into 3 subgraphs: the separator, and two subgraphs each
of size less than α|V |. The philosophy is different in the case of the k-separator
where the graph is partitioned into many components each of size less than k.

The k-separator problem was considered in one published paper [14] where
it was presented as a problem of disconnecting graphs by removing vertices. An
extended formulation is proposed in [14] with some polyhedral results. Some
other applications were also mentioned in [14]. This includes a constraint matrix
decomposition application where each row Ai of a matrix A is represented by a
vertex vi and two vertices vi and vj are adjacent if there is at least one column
h with nonzero coefficients in the corresponding two rows (aih �= 0 and ajh �= 0).
The problem is to assign as many rows as possible to so-called blocks such that no
more than k rows are assigned to the same block, and rows assigned to different
blocks are not connected (i.e., there is not any column h such that aihajh �= 0
if Ai and Aj are in different blocks) [3]. This matrix decomposition may help
the solution process of linear or integer programs where the constraint matrix
is defined by A. Another reported application is related to the field of group
technology (see [14] for details).

The paper is organized as follows. Some notation is presented in Section 2.
In Section 3 we discuss on cases for which we show the k-separator problem
can be solved in polynomial time. We firstly deal (Subsection 3.1) with the
case of trees and cycles. A particular graph transformation connecting the k-
separator problem to the stable set problem is then presented (Subsection 3.2).
Investigations on its structural properties coupled with recent results from the
literature allowed us to show the polynomial-time solvability of the k-separator



The k-Separator Problem 339

problem and to provide methods to deal with the cases when the graph is of type:
mK2-free, (G1, G2, G3, P6)-free, interval-filament, asteroidal triple-free, weakly
chordal, interval or circular-arc. Approximations algorithms are then described
in Section 4.

2 Notation

Given a graph G = (V,E) and a vertex subset U ⊂ V , the complement of U in
G, i.e. the vertex set V \ U is denoted U . Given a vertex subset S ⊂ V , the set
of vertices in S that are adjacent to at least one vertex in S is denoted N(S).
Given a subset of vertices S ⊂ V , χ(S) ∈ {0, 1}n denotes the incidence vector of
S, with n = |V |. The convex hull of all the incidence vectors of k-separators in
the graph G is denoted Sk(G). We also use G(S) to denote the subgraph of G
that is induced by a subset of vertices S ⊂ V .

The size of a graph denotes its number of vertices. Kn denotes a complete
graph with size n. Given some integer m, mK2 denotes a matching with m edges.

If G does not have a graph H as an induced subgraph, then we say that G is
H-free.

If G is a path with vertex set {v1, . . . , vn} and edge set {(vi, vi+1) : i =
1, . . . , n− 1}, then the notation [vi, vj ] (resp. ]vi, vj [, [vi, vj [, ]vi, vj ]) with i < j,
i, j ∈ {1, . . . , n} stands for the vertex set {vi, vi+1, . . . , vj} (resp. {vi+1, . . . , vj−1},
{vi, vi+1, . . . , vj−1}, {vi+1, . . . , vj}). The set of all the simple paths joining i and
j will be denoted Pij . Given a simple path p joining i and j, x(p) stands for the
sum of the xv values over all vertices belonging to p (including i and j).

3 Polynomial Cases

3.1 Trees and Cycles

Due to space limitations, the description of a dynamic programming algorithm
in order to solve the k-separator problem when the graph is a tree or a cycle will
appear in another paper. It directly leads to the following result.

Proposition 1. The k-separator problem can be solved in polynomial time for
trees and cycles. This holds even if k is part of the input. ��

3.2 Further Polynomiality Results from Connections with the
Stable Set Problem

From k-Separators to Stable Sets . . . and Conversely
We now present a construction to reduce the k-separator problem to a maximum
weight stable set problem.

Given a vertex-weighted graph G, we build a vertex-weighted extended graph
G� = (V �, E�, w) as follows. Each subset of vertices S ⊂ V such that 1 ≤ |S| ≤
k and G(S) is connected, is represented by a vertex in G�. In others words,



340 W. Ben-Ameur, M.-A. Mohamed-Sidi, and J. Neto

V � = {S ⊂ V, |S| ≤ k,G(S) is connected}. The set of edges is defined as follows:
E� = {(S, T ), S ∈ V �, T ∈ V �, S �= T, such that either S ∩ T �= ∅, or (u, v) ∈
E for some u ∈ S and v ∈ T }. Said another way, S ∈ V � and T ∈ V � are
connected by an edge if the subsets of vertices of G they are representing either
have a common vertex or contain two adjacent vertices. The weight of a vertex
S ∈ V � is defined by wS =

∑
v∈S wv.

Let R be a maximum-weight stable set of G�. If two vertices S ∈ V � and
T ∈ V � belong to this stable set R, then S ∩ T = ∅ and there are no edges in
G with one endvertex in S and another endvertex in T . In other words, if we
consider ∪S∈RS, we get a set of vertices in V inducing a subgraph where each
connected component has a size less than or equal to k. The complementary set
of ∪S∈RS in V is a k-separator for the graph G. This graph construction can be
seen as a generalization of a construction proposed by [12] for the dissociation
problem (k = 2).

Let us now illustrate the fact that the graph transformation we just described
may be used to derive interesting formulations for the k-separator problem. Here-
after is an initial formulation which straightforwardly follows from the original
problem statement: the objective is to find a set of vertices with minimum cost
such that it intersects each set of vertices inducing a connected component hav-
ing size k + 1 in the original graph. The boolean variable xv represents the fact
that the vertex v belongs (xv = 1) or not (xv = 0) to the k-separator.

(IP1)

⎧⎨⎩ min
∑

v∈V wvxv∑
v∈S xv ≥ 1, ∀S ⊂ V, |S| = k + 1, G(S) connected ,

xv ∈ {0, 1}, ∀v ∈ V .

Now, from the graph transformation above we can easily derive another for-
mulation that we may express as follows: find a stable set in G� (this corresponds
to the set of variables (yS)S∈V � and the constraints yS + yT ≤ 1, ∀(S, T ) ∈ E�),
so that the set of nodes in V that are not represented in this stable set (i.e.
a k-separator in G, from our discussion above) has minimum total cost. The
boolean variable yS , S ∈ V �, represents the fact that the node S ∈ V � in G�

either belongs to the stable set (yS = 1) or not (yS = 0).

(IP2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

∑
v∈V wvxv

xv = 1−
∑

S∈Qv

yS, ∀v ∈ V ,

yS + yT ≤ 1, ∀(S, T ) ∈ E�,
yS ∈ {0, 1}, ∀S ∈ V �,

with Qv = {T ∈ V � : v ∈ T }. Let F1 (resp. F2) stand for the set of feasible
solutions of the linear relaxation of (IP1) (resp. (IP2)) with respect to variables
(xv)v∈V .

Proposition 2. The following inclusion holds: F2 ⊆ F1.

Proof. Let (x, y) stand for a feasible solution of the linear relaxation of (IP2). Let
C denote a connected component of size k+1 in the original graphG = (V,E). So



The k-Separator Problem 341

we have:
∑

v∈C xv = k+1−
∑

v∈C

∑
S∈Qv

yS. Notice that in the last expression
each variable yS such that S has a nonempty intersection with C occurs exactly
|S ∩ C| times.
Let T denote a spanning tree of C (in the original graph) and consider the
following quantity:

∑
(v,w)∈T

∑
S∈Qv∪Qw

yS . Notice that in the last expression,
the number of times a variable yS occurs is equal to the number of edges of T
that intersect with S, and thus is larger than or equal to |S ∩ C|. From this we
deduce that

∑
v∈C

∑
S∈Qv

yS ≤
∑

(v,w)∈T

∑
S∈Qv∪Qw

yS . Moreover, using the

feasibility of (x, y), we can write that
∑

(v,w)∈T

∑
S∈Qv∪Qw

yS ≤ k.

Combining the two previous inequalities leads to
∑

v∈C

∑
S∈Qv

yS ≤ k. Con-
sequently, inequality

∑
v∈C xv ≥ 1 holds. In other words, x is a feasible solution

of the linear relaxation of (IP1). ��
Both linear relaxations of (IP1) and (IP2) may be easily strengthened with
many families of inequalities. Such strengthened formulations and some others
are under study and computational experiments to compare them (w.r.t. quality
of approximation and computing times, notably) are being carried out. However
those investigations go beyond the scope of this article and will be the topic of
another paper. In the rest of this section we show the k-separator problem is
polynomial-time solvable for many graph classes.

mK2-Free Graphs
Assume that the graph G does not contain an induced matching of size m where
m is a constant, i.e. G is mK2-free.

It is shown in [15] that the dissociation problem is easy to solve in this case.
Remember that the latter is equivalent to the k-separator problem with k = 2.
We generalize this result for any constant k.

Proposition 3. The k-separator problem can be solved in polynomial time for
mK2-free graphs if we assume that m and k are constants.

Proof. Consider the extended graph G�. Since k is a constant, G� has a poly-
nomial size. We know from [2] that the stable set problem can be solved in
polynomial time if the graph is mK2-free. It is then enough to prove that G� is
mK2-free if G is mK2-free.

Suppose that G� contains an induced matching of size m. Consider an edge
(u,w) of E�. Remember that u (resp. w) represents a subset Vu (resp. Vw) of
vertices of V of size less than k such that G(Vu) (resp. G(Vw)) is connected.
Suppose that either |Vu| > 1 or |Vw| > 1, then by connectivity of G(Vu) and
G(Vw), there is an edge in G connecting two vertices belonging to Vu ∪ Vw. If
|Vu| = 1 and |Vw| = 1, then the unique vertex in Vu is clearly adjacent to the
unique vertex in Vw since u and w are adjacent in G�. In other words, there is
always at least one edge connecting two vertices of Vu ∪ Vw.

Moreover, given two edges of the induced matching (u1, w1) and (u2, w2), then
each vertex in Vu1 ∪ Vw1 is not adjacent to any vertex in Vu2 ∪ Vw2 (otherwise,
the matching is not an induced one). Consequently, the graph G contains an
induced matching of size m. This terminates the proof. ��



342 W. Ben-Ameur, M.-A. Mohamed-Sidi, and J. Neto

(G1, G2, G3, P6)-Free Graphs
Let G1 be the chair graph (or fork) obtained from the claw by a single subdivision
of one if its edges. G1 is represented on the left of Figure 1. It is proved in [11]
that the maximum weight stable set problem can be solved in polynomial time
if the graph is G1-free. Their result is an improvement of the classical result of
[16,13] related to claw-free graphs since the class of G1-free graphs includes the
class of claw-free graphs.

When k = 2, it is proved in [15] that the graph G� is G1-free if and only
if G is (G1, G2, G3)-free where G2 and G3 are shown on Figure 1. Formally,
G2 = (V2, E2), with V2 = {1, 2, . . . , 6}, E2 = {12, 13, 23, 14, 25, 36} and G3 =
(V3, E3), with V3 = {1, 2, . . . , 6}, E3 = {12, 13, 23, 24, 15, 56}. In the following
proposition we extend this result when k ≥ 3. Its proof is technical and, due to
space limitations, it will be reported in another paper. The graphs G1, G2, G3,
and P6 are represented in Figure 1.

G G G P1 2 3 6

Fig. 1. The graphs G1, G2, G3 and P6

Proposition 4. Assuming that k ≥ 3, the extended graph G� is G1-free if and
only if the original graph G is (G1, G2, G3, P6)-free. ��

Corollary 1. Assuming that k is a constant ≥ 3, the k-separator problem can
be solved in polynomial time for (G1, G2, G3, P6)-free graphs.

Proof. If k is a constant, then G� has a polynomial size. Using Proposition 4
and the algorithm of [11] to compute a maximum weight stable set problem, one
can solve the k-separator problem in polynomial time. ��

Interval-Filament, Asteroidal Triple-Free and Weakly Chordal Graphs
The results of this section are a direct consequence of the results of [5]. Given
a graph G and a family H of fixed connected graphs, a H-packing of G is a
pairwise vertex-disjoint set of subgraphs of G, each isomorphic to a member of
H [5]. If we add the requirement that each two subgraphs of the packing are not
joined by edges, we get independent H-packings. To study this problem, a graph
H(G) is introduced in [5]. Each subgraph of G which is isomorphic to a member
of H is represented by a vertex of H(G), and two vertices are adjacent if the two
subgraphs either intersect or are joined by an edge.



The k-Separator Problem 343

Consider a collection of intervals on a line L. Suppose that for each interval,
we are given a curve above the line, connecting the endpoints of the interval,
and remaining within the limits of the interval. An interval-filament graph is the
intersection graph of such a collection of intervals [6]. Computing a maximum
weight stable set in interval-filament graph can be done in polynomial time [6].
It is proved in [5] that if G is an interval-filament graph, then H(G) is also an
interval-filament graph. In other words, the class of interval-filament graphs is
closed under the operation G→ H(G). Notice that the class of interval-filament
graphs includes polygon-circle graphs and cocomparability graphs.

The same was also proved in [5] for the class of weakly chordal graphs [9]
(graphs such that neither the graph nor its complement contain an induced
cycle on 5 or more vertices) and the class of asteroidal triple-free graphs (graphs
not containing an asteroidal triple defined as a stable set of 3 vertices such
that between each pair of vertices of this triple, there is path connecting them
and avoiding the neighborhood of the third vertex). We know from [4] that
the maximum weight stable set problem can be solved in polynomial time for
asteroidal triple-free graphs. The same holds for weakly chordal graphs (see,
e.g., [19]).

Let us now go back to the k-separator problem and let us slightly change the
definition of H by allowing it to depend on G. More precisely, let H be the set
of all connected subgraphs of G containing at most k vertices. Then, H(G) is
exactly the graph G�. Consequently, the results of [5] can be directly applied
here to deduce that the problem is easy to solve. We only have to ensure that
the size of G� = H(G) is polynomially bounded. This of course occurs if k is a
constant.

Proposition 5. Assuming that k is a constant, the k-separator problem can be
solved in polynomial time for interval-filament, asteroidal triple-free and weakly
chordal graphs. ��

Interval and Circular-arc Graphs
Interval graphs are graphs where a vertex corresponds to an interval and an edge
(u, v) exists if there is a nonempty intersection between the intervals represented
by u and v. We prove below that the k-separator problem is easy to solve for
interval graphs.

Since interval graphs are interval-filament and chordal graphs the results of
Section 3.2 can be applied here to deduce that the k-separator problem can be
solved in polynomial-time for this class of graphs. However, in Section 3.2, k is
required to be constant. This was necessary to get a graph G� with a polynomial
size. We prove in this section that the problem is easy to solve even if k is part
of the input.

Given a graph G, one can check in linear time if the graph is an interval graph
and provide a family I of intervals such the graph is the intersection graph of
the family [8]. We can obviously assume that for each pair of intervals [a, b] and
[c, d] of I, the endpoints are different (a �= b �= c �= d). Let [aw, bw] be the interval
related to vertex w ∈ V . Then, I = {[aw, bw] : w ∈ V }.



344 W. Ben-Ameur, M.-A. Mohamed-Sidi, and J. Neto

When G� is built, the number of vertices can be non-polynomial. However,
since each vertex v� of G� corresponds to a connected graph of G, and each
vertex w of G corresponds to an interval, one can associate to v� the union
of the intervals ∪w∈v� [aw, bw]. The connectivity of the subgraph related to v�

clearly implies that ∪w∈v� [aw, bw] is an interval. Two vertices v� and u� are
adjacent in G� if and only if the two intervals associated with v� and u� intersect:
∪w∈v� [aw, bw] ∩ ∪w∈u� [aw, bw] �= ∅.

While the number of vertices of G� can be non polynomial, the number of in-
tervals that can be obtained as a union of intervals of I is polynomial (quadratic).
In other words, for an interval [x, y] where x and y belong to ∪w∈V {aw, bw},
we might have many vertices v� for which ∪w∈v� [aw, bw] = [x, y]. However, a
stable set in G� cannot simultaneously contain v� and u� if ∪w∈v� [aw, bw] =
∪w∈u� [aw, bw] since u� and v� are adjacent in G�.

It becomes now clear that instead of building G�, we should consider a more
restricted graphG��, where all vertices v� having the same ∪w∈v� [aw, bw] = [x, y]
are represented by only one vertex v[x,y]. Two vertices v[x,y] and v[a,b] are adjacent
if [x, y] and [a, b] intersect. The graph G�� obviously has a polynomial size.

In order to transform the maximum weight stable set problem in G� into a
maximum weight stable set problem in G��, we have to define the weight of a
vertex v[x,y] of G

��.
Observe that v[x,y] exists if the interval [x, y] is the exact union of at most

k intervals of I. Since a weight wv is associated with each interval [av, bv] ∈ I,
the weight of v[x,y] is given by the maximum weight of at most k intervals of I
whose union is equal to [x, y]. More precisely, for each interval [x, y] where x and
y belong to ∪w∈V {aw, bw}, we should solve the problem

max
A⊂V :|A|≤k,

[x,y]=
⋃

v∈A
[av,bv ]

∑
v∈A

wv. (1)

If (1) does not have a solution, then [x, y] is not represented by a vertex in G��.
Otherwise, the weight of v[x,y] is equal to the maximum objective value of (1). We
show below that (1) can be solved in polynomial time. For an interval [a, b] ∈ I,
we will use w[a,b] to denote the weight wv of the vertex v ∈ V representing this
interval.

Lemma 1. Problem (1) can be solved in polynomial time by dynamic
programming.

Proof. First, observe that all the intervals [av, bv] ∈ I that are not included in
[x, y] can be eliminated when we are solving (1). Let S = {c1 = x, c2, ..., cr = y}
be the set of endpoints of the intervals included in [x, y]: S =

⋃
v∈V :

[av,bv ]⊂[x,y]
{av, bv}.

The sequence (ci)1≤i≤r is an increasing one. Notice that we can assume that
c1 = x and cr = y, since otherwise problem (1) does not have a solution.

The cardinality of S denoted by r is of course less than 2|V |. Let O ⊂ {1, ..., r}
be the subset of indexes j such that there exists v ∈ V satisfying [av, bv] ⊂ [x, y]
and av = cj . In this case, let j + δ(j) be the index such that bv = cj+δ(j). Thus,
if j ∈ O, then 1 ≤ δ(j) ≤ r − j.



The k-Separator Problem 345

Figure 2 illustrates the definitions where we have r = 16, O = {1, 2, 3, 6, 7, 8,
11, 14}, δ(1) = 4, δ(2) = 8, δ(3) = 1, δ(6) = 3, etc. Assume that k = 6 and
suppose that the optimal solution of problem (1) is given by the intervals rep-
resented by thick arrows in Figure 2. The intervals belonging to the optimal
solution can be numbered according to the order of their starting points. In
Figure 2, they are numbered from 1 to 6. Let us, for example, consider the 3
first intervals belonging to the optimal solution. According to Figure 2, these 3
intervals cover the interval [c1, c10]. To reach y = c16, it is clear that we should
at least cover the interval [c10, c16] using intervals starting after c4 (because the
third interval starts at c3). Since we already used 3 intervals to reach c10, we
should use at most k−3 = 3 intervals to reach y = c16. Intervals numbered from
4 to 6 necessarily constitute an optimal solution of the problem that consists in
covering [c10, c16] by no more than 3 intervals starting after c4.

x=c 1 c2 c3 rc  = yc10

1

2

3

4

5

6

Fig. 2. On the dynamic programming approach to solve problem (1)

The simple observation made above directly leads to a dynamic programming
approach. To make things more precise, let us introduce further notation. Let i0
and i1be two integer numbers such that 1 ≤ i0 ≤ i1 ≤ r. For any integer number
1 ≤ l ≤ k, let f(i0, i1, l) be the maximum weight that we can have to cover the
interval [ci1 , y] using at most l intervals among those starting after ci0 , i.e., the
set of intervals {[aw, bw] : w ∈ V, ci0 ≤ aw, bw ≤ y}.

If i1 < r, it is clear that to cover [ci1 , y], we need at least one interval belonging
to {[aw, bw] : w ∈ V, ci0 ≤ aw, bw ≤ y}. This clearly leads to the following
induction formula:

f (i0, i1 < r, l) = max
j∈O:i0≤j≤i1

w[cj ,cj+δ(j)) ] + f (j + 1,max (j + δ(j), i1) , l − 1) .

(2)
If O ∩ {i0, i0 + 1, ..., i1 < r} = ∅, then f (i0, i1 < r, l) = −∞. If l = 0, we also
have f (i0, i1 < r, 0) = −∞.

If i1 = r, then y = cr is already reached. The induction formula is then
given by:

f (i0, r, l) = max

(
0, max

j∈O:i0≤j≤r
w[cj ,cj+δ(j)) ] + f (j + 1, r, l− 1)

)
. (3)

Problem (1) is solved by computing f(1, 1, k). The complexity of the dynamic
programming algorithm is obviously given by O(kn3). ��



346 W. Ben-Ameur, M.-A. Mohamed-Sidi, and J. Neto

Proposition 6. The k-separator problem can be solved in polynomial time for
interval graphs. This holds even if k is not constant.

Proof. We already observed that the size of the graph G�� is polynomially
bounded. Since problem (1) can be solved in polynomial time, the weight of
each vertex of G�� is easy to compute. Then, we only have to solve the maxi-
mum weight stable set problem in G��. Using the fact that this problem is easy
to solve for interval graphs, the proof is complete. ��

Circular-arc graphs are a simple generalization of interval graphs. They are de-
fined by the intersection graphs of a set of arcs on the circle. The previous propo-
sition and the algorithm described in the proof of Lemma 1 can be generalized
in an obvious way.

Proposition 7. The k-separator problem can be solved in polynomial time for
arc-circular graphs. This holds even if k is not constant. ��

4 Approximation Algorithms

The first approximation algorithm we give relies on the linear relaxation (LP1) of
the integer program (IP1) introduced in Section 3.2. Notice that the separation
of inequalities “

∑
v∈S xv ≥ 1, ∀S ⊂ V, |S| = k + 1, G(S)connected ” in (IP1) is

NP-hard even if all vertex-weights belong to {0, 1} when k is part of the input
[7]. If k is constant, the separation is obviously easy. It is also known that a
maximum-weight connected subgraph of size k+1 can be computed easily if the
graph is a tree [7].

An LP-based approximation algorithm (Algorithm 1) is obtained by general-
izing the basic approximation algorithm for the vertex cover problem.

A connected subgraph G(S) is said to be large if |S| ≥ k + 1.

Algorithm 1. LP-based Approximation Algorithm

1: Input: A vertex-weighted undirected graph G = (V,E,w) and an integer k.
2: Output: A k-separator S.
3: Solve (LP1) and let x be an optimal solution of (LP1).
4: Set S := ∅.
5: while G(V \ S) contains large connected components do
6: Select R ⊂ V \ S such that |R| = k + 1 and G(R) connected.
7: Select v ∈ R such that xv is maximum and set S := S ∪ {v}.
8: end while

Proposition 8. The LP-based approximation algorithm (Algorithm 1) is a
(k + 1)-approximation algorithm.



The k-Separator Problem 347

Proof. Since
∑

y∈R xy ≥ 1 for each subset R ⊂ V \ S where |R| = k + 1 and
G(R) is connected, the vertex v (maximizing xv inside R) necessarily satisfies
xv ≥ 1

k+1 . Adding v to S is equivalent to rounding xv to 1. The final solution
is clearly a k-separator. The weight of this k-separator is not more than k + 1
times the weight of the fractional solution x (since in the rounding procedure,
xv is multiplied by at most k + 1). Since the weight of the fractional solution
x is a lower bound of the optimal weight, we deduce that we have a (k + 1)-
approximation. ��

Observe that the algorithm described above is a polynomial-time algorithm if
we assume that k is bounded by a constant. This is necessary to guarantee that
the size of (LP1) is polynomial. The primal-dual approach (see, .e.g., [20]) leads
also to a (k+1)-approximation. In fact, the k-separator problem is a special-case
of the hitting set problem where we want to hit large connected components.

If all vertex weights are equal to 1, then there is another simple (k + 1)-
approximation algorithm (Algorithm 2).

Algorithm 2. Greedy Approximation Algorithm

1: Input: A graph G = (V,E) and an integer k.
2: Output: A k-separator S.
3: Set S := ∅.
4: while G(V \ S) contains large connected components do
5: Select R ⊂ V \ S such that |R| = k + 1 and G(R) is connected.
6: S := S ∪R.
7: end while

Proposition 9. For the case when all vertex weights are equal to 1, the greedy
algorithm (Algorithm 2) is a (k+1)-approximation algorithm for the k-separator
problem. ��

The greedy algorithm obviously has a polynomial time complexity even if k is
part of the input.

References

1. Balas, E., de Souza, C.: The vertex separator problem: a polyhedral investigation.
Mathematical Programming 103, 583–608 (2005)

2. Balas, E., Yu, C.: On graphs with polynomially solvable maximum-weight clique
problem. Networks 19, 247–253 (1989)

3. Borndörfer, R., Ferreira, C.E., Martin, A.: Decomposing matrices into blocks.
SIAM Journal on Optimization 9, 236–269 (1998)

4. Broersma, H., Kloks, T., Kratsch, D., Müller, H.: Independent sets in asteroidal
triple-free graphs. SIAM Journal on Discrete Math. 12, 276–287 (1999)

5. Cameron, K., Hell, P.: Independent packings in structured graphs. Mathematical
Programming, Ser. B 105, 201–213 (2006)



348 W. Ben-Ameur, M.-A. Mohamed-Sidi, and J. Neto

6. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of
filaments. Information Processing Letters 73, 181–188 (2000)

7. Goldschmidt, O., Hochbaum, D.: K-Edge Subgraphs Problems. Discrete Applied
Mathematics 74, 159–169 (1997)

8. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition, and
consecutive ones testing. Theor. Comput. Sci. 234, 59–84 (2000)

9. Hayard, R.B.: Weakly triangulated graphs. Journal of Combinatorial Theory, Ser.
B 39, 200–209 (1985)

10. Korte, B., Vygen, J.: Combinatorial optimization: theory and algorithms. Springer
(2005)

11. Lozin, V., Milanic, M.: A polynomial algorithm to find an independent set of
maximum weight in a fork-free graph. Journal of Discrete Algorithms 6, 595–604
(2008)

12. Lozin, V., Rautenbach, D.: Some results on graphs without long induced paths.
Inform. Process. Lett. 88, 167–171 (2003)

13. Minty, G.: On maximal independent sets of vertices in claw-free graphs. Journal of
Combinatorial Theory, Ser. B 28, 284–304 (1980)

14. Oosten, M., Rutten, J., Spiksma, F.: Disconnecting graphs by removing vertices:
a polyhedral approach. Statistica Neerlandica 61, 35–60 (2007)

15. Orlovich, Y., Dolgui, A., Finke, G., Gordon, V., Werner, F.: The complexity of
dissociation set problems in graphs. Discrete Applied Mathematics 159, 1352–1366
(2011)

16. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un
graphe sans étoile. Discrete Mathematics 29, 53–76 (1980)

17. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer
(2003)

18. Shmoys, D.: Cut problems and their application to divide-and-conquer. In:
Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp.
192–235. PWS Publishing (1997)

19. Spinrad, J.P., Sritharan, R.: Algorithms for weakly triangulated graphs. Discrete
Appl. Math. 59, 181–191 (1995)

20. Williamson, D.: The primal-dual method for approximation algorithms. Mathe-
matical Programming, Ser. B 91, 447–478 (2002)

21. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM Journal on
Computing 10, 310–327 (1981)



On the Treewidth of Dynamic Graphs

Bernard Mans and Luke Mathieson

Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
{bernard.mans,luke.mathieson}@mq.edu.au

Abstract. Dynamic graph theory is a novel, growing area that deals
with graphs that change over time and is of great utility in modelling
modern wireless, mobile and dynamic environments. As a graph evolves,
possibly arbitrarily, it is challenging to identify the graph properties
that can be preserved over time and understand their respective
computability.

In this paper we are concerned with the treewidth of dynamic graphs.
We focus on metatheorems, which allow the generation of a series of
results based on general properties of classes of structures. In graph the-
ory two major metatheorems on treewidth provide complexity classifica-
tions by employing structural graph measures and finite model theory.
Courcelle’s Theorem gives a general tractability result for problems ex-
pressible in monadic second order logic on graphs of bounded treewidth,
and Frick & Grohe demonstrate a similar result for first order logic and
graphs of bounded local treewidth.

We extend these theorems by showing that dynamic graphs of bounded
(local) treewidth where the length of time over which the graph evolves
and is observed is finite and bounded can be modelled in such a way that
the (local) treewidth of the underlying graph is maintained. We show the
application of these results to problems in dynamic graph theory and
dynamic extensions to static problems. In addition we demonstrate that
certain widely used dynamic graph classes naturally have bounded local
treewidth.

1 Introduction

Graph theory has proven to be an extremely useful tool for modelling com-
putational systems and with the advent and growing preponderance of mobile
devices and dynamic systems it is natural that graph theory is extended and
adapted to capture the evolving aspects of these environments. Dynamic graphs
have been formalised in a number of ways: e.g., time-varying graphs [7,8,16],
carrier-based networks [4], evolving graphs [6,15,5], delay-tolerant networks [22],
dynamic networks [25,24], scheduled networks [1], temporal networks [23], op-
portunistic networks [9,21], Markovian [10]. When considering the dynamic as-
pects of a dynamic graph, even classically simple properties such as shortest
paths become more complex to compute and may even become definitionally
ambiguous [5].

In this paper, we are not particularly interested in any particular dynamic
model. Initially we will loosely use the term dynamic graph and for our purpose

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 349–360, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



350 B. Mans and L. Mathieson

we will define the term formally using the simplest possible definition as it is a
generalized and reasonably assumption free model for a dynamic graph. For this
paper, one of the key questions in moving from static graph theory to dynamic
graph theory concerns the preservation of properties and their computability.

One important general approach to the complexity and computability of prop-
erties in (static) graphs is the application of metatheorems which classify large
classes of problems. Arguably the most famous of these metatheorems is Cour-
celle’s theorem (stated and proved over a series of articles from [12] to [13])
which gives a polynomial time algorithm for any monadic second-order express-
ible property on graphs of bounded treewidth. More precisely the model checking
problem for monadic second-order logic is fixed-parameter tractable with param-
eter |φ| + k where φ is the sentence of logic and k is the treewidth of the input
structure. Frick and Grohe [19] give a similar metatheorem for first-order logic
and structures of locally bounded treewidth, which allows a greater class of struc-
tures (all structures of bounded treewidth have locally bounded treewidth), but
constrains the logical expressibility. In fact Dvořák et al. [14] show that prop-
erties expressible in first-order logic are decidable in linear time for graphs of
bounded expansion, a superclass of several classes of sparse graphs, including
those with bounded local treewidth. Stewart [26] demonstrates that Frick and
Grohe’s result holds if the bound on the local treewidth is dependent on the
parameter of the input problem, rather than simply constant.

Such metatheorems are extremely useful classification tools, and having them
available for use in the context of dynamic graphs would be highly desirable.
Two questions immediately arise when considering such an extension — are
there any restrictions that have to be made to the logic and are there any fur-
ther constraints on the structures (in this case the graphs)? Answering the first
question is simple: no. An apparent natural match for dynamic graphs is tempo-
ral logic (a form of modal logic), however temporal logic has a simple canonical
translation into first-order and monadic second-order logic. The addition of a
“time” relation, that provides a temporal ordering is sufficient to capture the
ideas of temporal logic. Thus we are not limited (more than before) with the log-
ics that are applicable. With regards to the structure, we must first consider the
setting of these metatheorems. They are both true in the context of finite model
theory, emphasizing the finite. Therefore we are immediately limited to finite
temporal domains (a finite domain for the vertices and hence edges of the graph
is expected of course). Beyond this if we are to capture the temporal aspect in
the structure, we must do so in a manner that is both useable and respects the
constraints on the structure necessary for the metatheorems — namely bounded
treewidth and local treewidth respectively.

Dynamic problems have been approached before in a number of ways. For in-
stance, Hagerup [20] examines the situation where the logical expression changes
(i.e. the question being asked changes), and Bodlaender [3], Cohen et al. [11]
and Frederickson [18] give a variety of results that deal with graphs that change,
requiring changes in the tree decompositions used. In contrast this work deals
with problems that include the temporal dimension as an intrinsic aspect, rather



On the Treewidth of Dynamic Graphs 351

than problems that can be answered at an instant in time (and then may need
to be recomputed). A simple example is a journey, the temporal extension of a
path, where the route between two vertices may not exist at any given point of
time, but as the graph changes the schedule of edges may allow traversal.

The remainder of this paper deals with the translation of dynamic graphs
into structures that maintain these bounds if the original graph did so at every
point in time. In addition we demonstrate the utility of these metatheorems in
classification by application to some open problems on dynamic graphs.

2 Preliminaries

The graphs we employ are simple graphs, both directed and undirected. We
define a dynamic graph for our purposes as a (di)graph augmented with a set T
of times, a function ζe which maps the edge set to a subset of T and a function
ζv that maps the vertex set to subsets of T , representing the times at which the
edge or vertex exists. We will consider a discrete and finite set T of times for
two main reasons: (i) typically, in most applications at hand, a continuous set T
could be easily made discrete when considering time of changes of the graph as
an event-based model; (ii) similarly, applications of interest are not focussed on
the observation of the evolution of the graph over an infinite period, but rather
on some sufficiently large, yet finite, period where some expected or asymptotic
behaviour can be identified.

More formally a dynamic graph G = (V,E, T, ζv, ζe) consists of a set V of
vertices, a set E ⊂ V × V of edges (where vv /∈ E for any v ∈ V ), a set T of
times, a function ζv : V → 2T and a function ζe : E → 2T .

We denote the static graph derived from a dynamic graph G by taking the
snapshot at time t as Gt. We do not allow edges to exist when either of their
vertices do not, although the case where they do could be of interest in modelling,
for example, wireless networks with long transmission ranges. We also assume
that there is some order <T defined over T (G), however except where specified
we do not assume that this order has any particular properties (i.e. we assume
neither totality nor transitivity).

A journey in a dynamic graph is simply a path over time, that is it is a path
where the edges (and vertices) of the path may not all exist at a single point
in time, but where there is an ordered sequence of times such that each edge in
sequence exists at a point in time after its predecessor. Note that this inherently
makes a journey directed. We will denote a journey from vertex u to vertex v
by J (u, v).

This dynamic graph definition is independent from other referenced defini-
tions, though relationships can be drawn. Again, here, we aim to focus on the
graph theoretic aspects, rather than modelling a particular system, thus we at-
tempt to keep the definition as simple and open as possible. We also note that
a similar definition with a continuous notion of time can be converted to an
event-based model, which then fulfils the requirements of our definition.



352 B. Mans and L. Mathieson

3 Dynamic Graphs as Logical Structures

Let G be a dynamic graph. We give two translations of G into a logical structure,
with different properties and limitations appropriate to different applications.

3.1 Local Treewidth Preserving Structure

Let G = (V,E, T, ζv, ζe) be a dynamic graph.
Let A(G) be the structure obtained from G with universe A and vocabulary τ

where A consists of an element vt for each v ∈ V (G) if t ∈ ζv(v), with a function
fV such that fV (v

t) = fV (u
t′) if and only if vt and ut′ are derived from the same

vertex v ∈ V (G), an element for each t ∈ T (G), and τ = {V A, EA, TA, RA, LA
t }

for all t ∈ T where v ∈ V A(G) if and only if v ∈ V (G), uv ∈ EA(G) if and only
if uv ∈ E(G), t ∈ TA(G) if and only if t ∈ T (G), (t1, t2) ∈ RA(G) if and only if

t1, t2 ∈ T (G) and t1 <T t2, v ∈ L
A(G)
t if and only if t ∈ ζv(v), and uv ∈ L

A(G)
t if

and only if t ∈ ζe(uv).
When the structure is understood from context, we will drop the A

superscript.

Theorem 1. Given a dynamic graph G, if Gt has local treewidth (effectively)
bounded by f(r) at each time t ∈ T (G), then the Gaifman graph G obtained from
A(G) has local treewidth (effectively) bounded by max{f(r), |T (G)| − 1}.

Proof. Let Gt be the graph at time t ∈ T (G) and Gt the corresponding compo-
nent of G. Gt is essentially Gt.

As Gt has (effectively) bounded local treewidth, there is a function f such
that for each v ∈ V and r ∈ N we have tw([Nr(v)]) ≤ f(r) in Gt (note that this
may not be true if we consider G in total, ignoring the timing of the edges). In
particular for each v and r in each Gt, we have a tree decomposition where each
bag has at most f(r) + 1 elements. Moreover we have such a decomposition at
each time t, with no interaction between any two snapshots. Therefore the width
of the decomposition is at most f(r).

The only component of G that does not have an appropriate decomposition
is the clique defined by the time elements representing T (G). The only possibly
decomposition is to place all elements in one bag, with width |T (G)| − 1.

As each Gt and the clique are disjoint, there are no additional edges to consider
in the possible decompositions. ��

We note also that if the graph has bounded degree at every t ∈ T (G), this prop-
erty is also preserved in the Gaifman graph. With the construction of Section 3.3,
planarity can also be preserved.

3.2 Treewidth Preserving Structure

If we are only concerned with the treewidth of the structure, we can use some-
what more natural structure.



On the Treewidth of Dynamic Graphs 353

Let G = (V,E, T, ζv, ζe) be a dynamic graph.
In this case the universe A consists of an element vt for each v ∈ (V ) if

t ∈ ζv(v), an element for each t ∈ T (G), and τ = {V A, LA
v , ΞA, TA, RA } where

vt ∈ V A(G) if and only if v ∈ V (G) and t ∈ ζv(v), v
t ∈ L

A(G)
v if and only if vt

is generated from v, (u, v, t) ∈ ΞA(G) if and only if uv ∈ E(G) and t ∈ ζe(uv),
t ∈ TA(G) if and only if t ∈ T (G), and (t1, t2) ∈ RA(G) if and only if t1, t2 ∈ T (G)
and t1 <T t2.

Theorem 2. If G has tw(G) ≤ k at every time t ∈ T (G) then the Gaifman
graph G obtained from A(G) has tw(G) ≤ max{k + 1, |T (G)| − 1}.

Proof. Let Gt be the snapshot of G at time t ∈ T (G) and let tw(Gt) ≤ k for
every t ∈ T (G). The Gaifman graph G consists of |T (G)| + 1 components; a
component Gt for each Gt which is the normal Gaifman graph translation of
a graph, i.e. the graph itself, and a (|T (G)|)-clique corresponding to the time
elements of A. Each element of the time clique is connected to every vertex in
exactly one Gt (precisely the element corresponding to time t ∈ T (G)) and each
vertex in each Gt is connected to exactly one vertex of the time clique.

By assumption for each Gt we have tw(Gt) ≤ k. Thus each Gt has a tree
decomposition where each bag has at most k+1 elements. To each of these bags
we add the element corresponding to time t ∈ T (G). The time clique forms a
bag of size |T (G)|. We add an edge to the tree decomposition between the time
clique bag and an arbitrarily chosen bag from each decomposition of each Gt.
Thus we have a tree decomposition of G with bag size at most max{k+2, |T (G)|}
and therefore tw(G) ≤ max{k + 1, |T (G)| − 1}. ��

3.3 Structures for Totally Ordered Time

If we can assume that time is linear for our dynamic graph G, i.e. there exists
a total order on the elements of T (G), we may construct a structure where the
Gaifman graph avoids the clique created by the elements corresponding to the
times. The trade-off is that the contruction of logical sentences becomes more
involved in the sense that the sentences become longer.

To obtain this modified structure we restrict the relation R in each τ such
that (t1, t2) ∈ R if and only if t1 immediately precedes t2. Furthermore we add a
constant s such that (s, ti) ∈ R if and only if ti is the earliest time element. Then
the component of the Gaifman graph constructed from A(G) corresponding to
R is a path, where each ti subtends a vertex, and there is an edge between
two such vertices if and only if one immediately precedes the other temporally.
Moreover we can define the distance between each time element and s recursively:
d1(ti) := Rsti and dn(ti) := ∃tj(T tj ∧Rtitj ∧ dn−1(tj)).

Note of course that as first order logic is compact, these formulæ must be
defined separately for each |T (G)|, giving a finite set in each case. As |T (G)|
will always be taken as a parameter we effectively produce an infinite family of
such formulæ, and select the appropriate subset for each instance of whichever
problem we deal with. In the case of second order logic this problem does not



354 B. Mans and L. Mathieson

exist, but it is convenient to use the first order construction. Then within the
logic we can define the order relation over the time elements as ti ≤ tj := (ti =
tj) ∨

∨
l∈[1,|T (G)|](dl(ti) ∧ ¬dl(tj))

The operator ≤ allows comparison over all times, but at the cost of formulae
which may depend on the size of T (G). However there is a notable change in
treewidth and local treewidth of the structures using this approach.

Theorem 3. Given a dynamic graph G, let A(G) be the structure constructed
from G as a Local Treewidth Preserving Structure, except with a linear time
relation R.

If G has local treewidth (effectively) bounded by f(r) at every t ∈ T (G), then
the Gaifman graph G derived from A(G) has local treewidth (effectively) bounded
by f(r).

Proof. The only change to the structure in this case is the component concerned
with the time elements. In the first construction this was a clique of size |T (G)|,
but now is a path of length |T (G)|. As trees have treewidth 1, and local treewidth
is bounded by treewidth, the local treewidth of this component is at most 1. ��

Theorem 4. Given a dynamic graph G, let A(G) be the structure constructed
from G as Treewidth Preserving Structure, except with a linear time relation R.

If G has tw(G) ≤ k at every t ∈ T (G), then the Gaifman graph G derived
from A(G) has tw(G) ≤ k + 1.

Proof. As before each component corresponding to the graph Gt at time t has
treewidth at most k, and as before we add t to each bag of this decomposition.
For the time component we construct the following tree decomposition:

1. Each vertex t is given a bag labelled {t},
2. Each edge st is given a bag labelled {s, t} and
3. each vertex bag is connected in the decomposition to the two edge bags that

contain the same label.

This component clearly has treewidth 1. Then we complete the decomposition
for G by adding a decomposition edge from the vertex bag for time element t to
an arbitrary bag in the decomposition of Gt. Clearly this is still a tree, and the
whole decomposition has width at most k + 1. ��

Note that for both representations of the temporal element of the graph, the
complexity of the problem is at least partially dependent on |T (G)|, in that
either the (local) treewidth depends on |T (G)|, or the length of any formula
where we have to compare times does.

4 Applications to Dynamic Graph Problems

4.1 Adapting the Metatheorems to the Dynamic Context

Theorem 5. Let G be a dynamic graph with tw(G) ≤ k at every time t and
φ a sentence of monadic second order logic. The problem MC(G,φ) is fixed-
parameter tractable with parameter k + |φ|+ |T (G)|.



On the Treewidth of Dynamic Graphs 355

Proof. Courcelle’s Theorem gives us that the model checking problem for graphs
of bounded treewidth is fixed-parameter tractable with the treewidth and the
length of the formula as a combined parameter.

In our case we may apply Courcelle’s theorem to the Gaifman graph derived
from the dynamic graph. As the treewidth of the Gaifman graph is bounded by
the treewidth of the original graph and |T (G)|, we obtain our result. Note that
in the case where we use the linear time structure variant, |T (G)| is implicitly
included in |φ|, if necessary. ��

Theorem 6. Let G be a dynamic graph with effectively bounded local treewidth
at every time t and φ a sentence of first order logic. The problem MC(G,φ) is
fixed-parameter tractable with parameter |φ|+ |T (G)|.

Proof. By Frick and Grohe’s Theorem, the model checking problem for graphs of
effectively bounded local treewidth is fixed parameter tractable with the length
of the formula as the parameter. Again the length of the formula may implicitly
depend upon other parameters as part of the problem.

Stewart notes that Frick and Grohe’s theorem still holds if the bound on the
local treewidth depends upon a parameter, rather than simply being constant.
In the case where we do not use the linear time construction, the local treewidth
is bounded by max{f(r), |T (G)| − 1}. ��

We demonstrate the use of these theorems by application to some dynamic graph
problems of general interest. Bhadra and Ferreira [2] prove that the problem
of finding a connected component of size at least k in an evolving digraph is
NP -complete.

Strongly Connected Dynamic Component (SCDC)

Instance: A dynamic digraph D = (V,E, T, ζv, ζe), an integer k.
Parameter: k + |T |.
Question: Is there a set V ′ ⊆ V with |V ′| ≥ k such that for every pair
u, v ∈ V ′ we have J (u, v)?

Adapting the structures for directed graphs is simply a matter of semantics
for the E relation in τ . Using this we apply the metatheorem to demonstrate
that the problem is fixed-parameter tractable.

Lemma 1. SCDC is expressible in first order logic.

Proof. We first define a sentence that expresses the idea of a journey:

Jn(u, v) := Jn−1(u, v) ∨
∃x1, . . . , xn+1, t1, . . . , tn(

∧
i∈[1,n+1]

V xi ∧
∧

i∈[1,n]

T ti) ∧

(
∧

i∈[1,n]

Exixi+1 ∧ Ltixixi+1) ∧

(
∧

i∈[1,n]

ti ≤ ti+1) ∧ (fV (u) = fV (x1) ∧ fV (v) = fV (xn+1)).



356 B. Mans and L. Mathieson

Using this the problem can be succinctly defined in first order logic as:
∃v1, . . . , vk∀x, y(fV (x) = fV (vi) ∧ fV (y) = fV (vj)⇒ Jk(x, y))

Note that the length of the sentence depends upon only k and |T (G)| and that
we again avoid running afoul of the compactness of first order logic by restricting
the possible journey lengths to k for each instance. ��

Combining Theorem 6 and Lemma 1 we obtain the tractability result.

Corollary 1. SCDC is fixed-parameter tractable for dynamic graphs of bounded
local treewidth.

As first order logic is a subset of monadic second order logic we may also use
Theorem 5.

Corollary 2. SCDC is fixed-parameter tractable for dynamic graphs of bounded
treewidth.

Another interesting dynamic graph problem is whether a sending vertex can
receive a reply without the reply having to travel too far.

Short Message Return Path (SMRP)

Instance: A dynamic digraph D = (V,E, T, ζv, ζe) with an identified
vertex v ∈ V and an integer k.
Parameter: k + |T |.
Question: Is there a journey from each u ∈ Nout(v) to v of length at
most k?

Lemma 2. SMRP is expressible in first order logic.

Proof. Using the ability to express the idea of a journey in first order logic,
SMRP is simple to express: ∀u(V u∧Evu⇒ ∃u′(fV (u) = fV (u)∧Jk(u, v))) ��

Using Theorems 6 and 5 with Lemma 2 we obtain the following tractability
result.

Corollary 3. Short Message Return Path is fixed-parameter tractable for
dynamic graphs of bounded local treewidth and bounded treewidth.

4.2 Transferring Static Results

The transference of Courcelle’s and Frick & Grohe’s metatheorems also imply
the transference of previous results on static graph, with only minor changes
in problem formulation. Most immediately, these results hold where we relax
requirements such that the edges required for the solution exist at some point.

We demonstrate by “temporalizing” k-Coloring and the associated MSO
formula that demonstrates it fixed-parameter tractability for graphs of bounded
treewidth.



On the Treewidth of Dynamic Graphs 357

Permanent Coloring

Instance: A dynamic graph G = (V,E, T, ζv, ζe), an integer k.
Parameter: k + |T |.
Question: Is there a static assignment of k colors to V that is a proper
coloring of G at each time t ∈ T ?

Lemma 3. Permanent Coloring is expressible in monadic second order
logic.

Proof (Sketch).

∃V1, . . . , Vk∀x, y, t(
∨

i∈[1,k]

∧
j �=i(Vix ∧ ¬Vjx) ∧

∨
i∈[1,k]

∧
j �=i(Viy ∧ ¬Vjy)∧

V x ∧ V y ∧ T t ∧Exyt⇒
∧

i∈[1,k] ¬(Vix ∧ Viy))

��

Alternatively we can reframe the problem as requiring a solution that is true at
every point in time.

Evolving Coloring

Instance: A dynamic graph G = (V,E, T, ζv, ζe), an integer k.
Parameter: k + |T |.
Question: Is there a (possibly different) proper k-coloring of G at each
time t ∈ T ?

Lemma 4. Evolving Coloring is expressible in monadic second order logic.

Proof (Sketch).

∀t∃V1, . . . , Vk∀x, y(
∨

i∈[1,k]

∧
j �=i(Vix ∧ ¬Vjx) ∧

∨
i∈[1,k]

∧
j �=i(Viy ∧ ¬Vjy)∧

V x ∧ V y ∧ T t ∧ Exyt⇒
∧

i∈[1,k] ¬(Vix ∧ Viy))

��

Then by Theorem 5:

Corollary 4. Permanent Coloring and Evolving Coloring are fixed pa-
rameter tractable on graphs of bounded treewidth.

It is easy to see that, although the formulæ become somewhat more complex,
it is a simple matter to translate existing expressibility results (often already in
the context of parameterized tractability) into results for dynamic graphs. Thus
the permanent and evolving versions of interesting problems such as Dominat-

ing Set, Independent Set, Vertex Cover, Clique and Subgraph Iso-

morphism are fixed-parameter tractable on dynamic graphs of bounded (local)
treewidth (Flum & Grohe [17] give appropriate static results).



358 B. Mans and L. Mathieson

5 Dynamic Graph Classes with Bounded (Local)
Treewidth

One broad class of dynamic graphs that has proven interesting due to the connec-
tivity problems induced are sparse dynamic graphs. There are several definitions
of what constitutes a sparse graph in the dynamic context, with two common
definitions involving Markovian processes and bounded degree graphs. Both of
these classes in fact have bounded local treewidth.

Flum & Grohe [17] note that given a graph G of maximum degree d we have
ltw(G, r) ≤ dr. Thus the class of bounded degree dynamic graphs has bounded
local treewidth.

As mentioned, sparse graphs may also be defined by Markovian processes on
the edges of the graph where the probability of an edge existing, and continuing
to exist are bounded (e.g., [10]). This also leads to bounded local treewidth for
such graphs.

Theorem 7. Let G = (G1, . . . , Gt) be a edge-Markovian dynamic graph where
the probability of a non-edge becoming an edge is p ≤ c1/n and the probability of
an edge becoming a non-edge is q ≤ 1− c2/n, then the expected maximum degree
for each Gi≥2 is at most c1 + c2.

Proof. At any time t, for each vertex v ∈ V (G) we have

|Nt+1(v)| = (1− q) · |Nt(v)|+ p(n− 1− |Nt(v)|)
≤ c2

n
· |Nt(v)| +

c1
n
· n− c1

n
· |Nt(v)| −

c1
n

= c2 ·
|Nt(v)|

n
+ c1 − c1

|Nt(v)| + 1

n
≤ c1 + c2

��

Corollary 5. Let G = (G1, . . . , Gt) be a edge-Markovian dynamic where the
probability of a non-edge becoming an edge is p ≤ c1/n and the probability of an
edge becoming a non-edge is q ≤ 1 − c2/n, then G is expected to have bounded
local treewidth.

We note that the third common definition for sparse dynamic graphs, using some
measure of density of the graph, does not lead to bounded local treewidth. Some
measures of density lead to bounded local treewidth, but essentially by implying
bounded degree.

6 Conclusion

The structural parameters treewidth and local treewidth have proven to be very
useful in algorithmic design when dealing with hard problems. Aiding in this task
are the metatheorems of Courcelle and Frick & Grohe that provide complexity



On the Treewidth of Dynamic Graphs 359

classifications for large classes of graphs using logical expressibility. As dynamic
graph theory and dynamic graph problems become more prominent thanks to the
advance of technology, questions of treewidth arise. We have shown that given
a finite, bounded temporal context the notions of logical expressibility and the
corresponding metatheorems can be extended to provide tools for classification
of problems on dynamic graphs. In particular if a dynamic graph has bounded
(local) treewidth at every point in time, then we can construct a logical struc-
ture, and hence Gaifman graph where the (local) treewidth remains bounded.
Furthermore in the finite, bounded temporal context first order and thus second
order logic can be augmented (finitely) with relations that can express the tem-
poral notion of before and after. With these tools we can easily classify many
problems, including temporal extension of static problems.

A natural focus for extending this work would be to increase the graph classes
that can be classified, ideally up to graphs of bounded expansion à la Dvořák et
al. [14], though of course we cannot do better unless it is also possible for static
graphs.

This approach however is limited by the fact that we require the length of the
time interval to be finite and a parameter. If the length of time is unbounded
(even finite but unbounded), then we do not have the logical expressibility to
deal with these problems. Thus certain classes of dynamic graphs are excluded
by this condition. However we can still easily express properties over a finite
amount of time, or in periodic graphs, which covers a significant amount of
real applications, where finite time is a constraint of the setting, rather than an
artificial stipulation of the theory.

References

1. Berman, K.A.: Vulnerability of scheduled networks and a generalization of Menger’s
theorem. Networks 28, 125–134 (1996)

2. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs
and the computation of multicast trees in dynamic networks. In: Pierre, S.,
Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp.
259–270. Springer, Heidelberg (2003)

3. Bodlaender, H.L.: Dynamic algorithms for graphs with treewidth 2. In: van
Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 112–124. Springer, Heidelberg
(1994)

4. Brejová, B., Dobrev, S., Královič, R., Vinař, T.: Routing in carrier-based mobile
networks. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796,
pp. 222–233. Springer, Heidelberg (2011)

5. Bui-Xuan, B.-M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

6. Casteigts, A., Chaumette, S., Ferreira, A.: Characterizing topological assumptions
of distributed algorithms in dynamic networks. In: Kutten, S., Žerovnik, J. (eds.)
SIROCCO 2009. LNCS, vol. 5869, pp. 126–140. Springer, Heidelberg (2010)

7. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations in
time-varying graphs: Broadcasting under unstructured mobility. In: Calude, C.S.,
Sassone, V. (eds.) TCS 2010. IFIPAICT, vol. 323, pp. 111–124. Springer, Heidelberg
(2010)



360 B. Mans and L. Mathieson

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

9. Chaintreau, A., Mtibaa, A., Massoulié, L., Diot, C.: The diameter of opportunistic
mobile networks. In: CoNEXT, p. 12 (2007)

10. Clementi, A.E.F., Monti, A., Silvestri, R.: Modelling mobility: A discrete revolu-
tion. Ad Hoc Networks 9(6), 998–1014 (2011)

11. Cohen, R.F., Sairam, S., Tamassia, R., Vitter, J.S.: Dynamic algorithms for op-
timization problems in bounded tree-width graphs. In: Rinaldi, G., Wolsey, L.A.
(eds.) Proceedings of the 3rd Integer Programming and Combinatorial Optimiza-
tion Conference, Erice, Italy, pp. 99–112. CIACO (1993)

12. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Information and Computation 85(1), 12–75 (1990)

13. Courcelle, B.: The monadic second-order logic of graphs xvi: Canonical graph de-
compositions. Logical Methods in Computer Science 2(2) (2006)

14. Dvořák, Z., Král, D., Thomas, R.: Deciding first-order properties for sparse graphs.
In: 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, Las Vegas, Nevada, pp. 133–142. IEEE Computer Society (2010)

15. Ferreira, A.: Building a reference combinatorial model for manets. IEEE Net-
work 18(5), 24–29 (2004)

16. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theor. Comput. Sci. 469, 53–68 (2013)

17. Flum, J., Grohe, M.: Parameterized complexity theory. Springer (2006)
18. Frederickson, G.N.: Maintaining regular properties dynamically in k-terminal

graphs. Algorithmica 22(3), 330–350 (1998)
19. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable

structures. Journal of the ACM 48(6), 1184–1206 (2001)
20. Hagerup, T.: Dynamic algorithms for graphs of bounded treewidth. Algorith-

mica 27(3), 292–315 (2000)
21. Jacquet, P., Mans, B., Mühlethaler, P., Rodolakis, G.: Opportunistic routing in

wireless ad hoc networks: Upper bounds for the packet propagation speed. IEEE
Journal on Selected Areas in Communications 27(7), 1192–1202 (2009)

22. Jacquet, P., Mans, B., Rodolakis, G.: Information Propagation Speed in Mobile
and Delay Tolerant Networks. IEEE Transactions on Information Theory 56(1),
5001–5015 (2010)

23. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for
temporal networks. In: STOC, pp. 504–513 (2000)

24. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: STOC, pp. 513–522 (2010)

25. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT
News 42(1), 82–96 (2011)

26. Stewart, I.A.: On the fixed-parameter tractability of parameterized model-checking
problems. Information Processing Letters 106(1), 33–36 (2008)



Square-Orthogonal Drawing

with Few Bends per Edge

Yu-An Lin1,� and Sheung-Hung Poon1,�

Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
vincent9895@yahoo.com.tw, spoon@cs.nthu.edu.tw

Abstract. We investigate square-orthogonal drawings of non-planar
graphs with vertices represented as unit grid squares. We present
quadratic-time algorithms to construct the square-orthogonal drawings
of 5-graphs, 6-graphs, and 8-graphs such that each edge in the drawing
contains at most two, two, and three bends, respectively. In particular,
the novel analysis method we use to split a vertex so as to build some spe-
cific propagation channels in our algorithms is an interesting technique
and may be of independent interest. Moreover, we show that the deci-
sion problem of determining whether an 8-graph has a square-orthogonal
drawing without edge-bends is NP-complete.

1 Introduction

A drawing (or embedding) of a graph in the plane roughly consists of a repre-
sentation of the vertices by objects, an assignment of the vertices to geometric
positions in the plane, and a representation of the edges by simple open curves
between the objects representing two vertices. In particular, in an orthogonal
drawing, edges are represented by simple polygonal chains consisting of horizon-
tal and vertical segments. Forcing a graph to be drawn orthogonally has the
advantage of showing the maximal distinctiveness of adjacent edges in the draw-
ing. The price we may need to pay for such type of clarity is to admit bends in
the path representing an edge. In order to avoid confusion caused by too complex
paths, it is desirable to place a low number of bends on each edge.

A k-graph is a graph of maximum vertex degree k. For an orthogonal drawing
under the model that vertices are drawn as grid points (see Fig. 1(a)), Tamas-
sia [13] showed that the planar drawing with minimum number of bends on
edges for a plane 4-graph can be computed in near quadratic time. However,
any plane k-graph with k ≥ 5 does not have orthogonal drawing. In order to
draw graphs with higher vertex degree, and with simple shapes representing ver-
tices, we investigate the orthogonal drawing with vertices represented as unit grid
squares, which is called square-orthogonal drawing (see Fig. 1(b)). Researchers

� Supported by grants 97-2221-E-007-054-MY3 and 100-2628-E-007-020-MY3 of the
National Science Council (NSC), Taiwan, R.O.C.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 361–372, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



362 Y.-A. Lin and S.-H. Poon

(a) (b)

Fig. 1. Vertex drawn as
(i) a grid point; or (ii) a
unit grid square

(a) (b)

Fig. 2. (a) Vertices drawn as unit grid squares.
(b) Vertices drawn as unit-diameter disks, and
edges cased.

also considered even more general objects like rectangles to represent the ver-
tices of the graph, for instance [3,4,6,7,8,11]. However, one clear disadvantage
of using rectangular shapes to represent vertices is that rectangles could be fat
or skinny, and hence irregular. This sometimes will hinder the readability of
the whole drawing of a graph. We observe that orthogonal drawing with consis-
tent shapes for all vertices may have the advantage of clarity for visualization.
Some researchers [3,6,7] also investigated the planar orthogonal drawing under
the model of representing vertices by uniformly small squares. However, in their
drawings, adjacent edges are allowed to run in parallel with very small gap be-
tween them, which hinders the readability and clarity of some specific parts
of the drawing. Instead, in our representation model, only edges lying on the
grid lines are allowed, which prevents adjacent edges from congesting together.
We focus on drawing non-planar graphs whereas some of the motivating work
above only applies to planar graphs. Moreover, with our current representation
model, we can afford to draw k-graphs, where k can be at most 8. Note that
in our drawings, edge crossings are allowed, but edge overlapping is not allowed
(see Fig. 2(a)). In our original formulation, nodes are represented as unit grid
squares, and edges can cross each other; however, in practice, nodes can in fact
be represented as unit-diameter disks, and the intersecting edges can be drawn
using some well-known techniques, such as edge-casing (see Fig. 2(b)).

Previous Work. Let n and m be the number of vertices and edges in the input
graph. We first consider the research work under the model of representing ver-
tices by points on the plane. Schaffter [12] presented an algorithm to compute
an orthogonal drawing, for 4-graphs, of 2n×2n grid and with at most two bends
on each edge. Biedl and Kant [2] gave a linear-time algorithm to compute an
orthogonal drawing of n× n grid area and with at most 2n+ 2 total number of
edge bends. Papakostas and Tollis [9,10] further improved the area upper bound
to 0.76n2 grid area while keeping the same bound on total number of edge bends.
For graphs with vertex degrees higher than four, Biedl, Madden and Tollis [4]
used the model of representing vertices by rectangles, and they presented an al-
gorithm to compute an orthogonal drawing on (m+n

2 )× (m+n
2 ) grid and with at

most one bend per edge. Later, Papakosta and Tollis [11] improved the drawing
area to be within (m−1)×(m2 +2) while keeping the same bound on edge bends.



Square-Orthogonal Drawing with Few Bends per Edge 363

The rest of this paper is organized as follows. In Sections 2, we present some
preliminaries. In Sections 3 and 4, we present algorithms to construct the square-
orthogonal drawing for 5-graphs and 6-graphs such that each edge contains at
most two bends, and to construct the square-orthogonal drawing of 8-graphs
such that each edge contains at most three bends. In Section 5, we show that
the decision problem of determining whether an 8-graph has a square-orthogonal
drawing without edge-bends is NP-complete.

2 Preliminaries

The framework of our algorithms is as follows. At the very beginning of the
algorithm, we embed the vertices V = {v1, v2, . . . , vn} of the input graph G di-
agonally, beginning at the top-left corner and towards the bottom-right corner,
reserving for each vertex vi a unit square Vi (see Fig. 3). We remark that the

. . .

V1

V2

V3

Vn

Fig. 3. The vertices are embedded along a
diagonal

left right

upper

lower
outgoing

outgoing

incoming

incoming Vi

Fig. 4. Contact ports of a unit
square node

horizontal and vertical distances between two adjacent vertices will be deter-
mined after all edges in the graph are drawn. We then proceed to insert the
edges of G one by one. Each time we insert an edge, if we cannot establish an
immediate connection with low bend number, we will make some modifications
to the related edges so that the target bend number is attained for the inserted
edge. Below we introduce some conventions and definitions.

We adopt here Schaffter’s [12] convention about the naming of connection
contacts at the surrounding of unit squares. There can be at most eight grid
edges incident to a unit square Vi, which distribute along the four sides of square
Vi. A contact port is called a left, right, upper, or lower one depending on which
side of Vi it locates. See Fig. 4. Suppose we try to insert edge vivj by connecting
unit squares Vi and Vj (i < j). In order to obtain low bend number, it is always
good to connect a right or lower contact of Vi to a left or upper contact of Vj .
Thus we give these two categories of contacts different names for distinction.
The left and upper contacts of Vi are called incoming contacts of Vi, and its
right and lower contacts outgoing contacts. A contact is called occupied if it is
already connected to some drawn edge; otherwise, it is called unoccupied or free.

For the convenience of our description later on, we categorize the edges ac-
cording to their number of bends as follows. We call one-bend edges L-edges (see



364 Y.-A. Lin and S.-H. Poon

Fig. 5). Two-bend edges are classified into two types called Z-edges and U -edges,
respectively (see Fig.s 6 and 7). Three-bend edges are classified into two types
called C-edges and η-edges (see Fig. 8). Finally, in Fig. 9, we show two different
orientations of 4-bend edges, called S-edges.

(a) (b)

Fig. 5. An L-edge

(a) (b)

Fig. 6. A Z-edge

(a) (b)

Fig. 7. A U -edge

(a) (b)

Fig. 8. (a) A C-edge, and (b) an η-edge

(a) (b)

Fig. 9. Two 4-bend S-edges

3 Drawing 5-Graphs and 6-Graphs

In this section, we describe algorithms to draw 5-graphs and 6-graphs so that
each edge contains at most two bends. We insert edges incrementally, and each
time we insert an edge, we do modifications immediately so that no edges are
drawn with more than two bends. As 5-graphs are subset of 6-graphs, we first
present some common properties and operations for general 6-graphs. Then we
proceed to consider operations specific to either kinds of graphs.

Suppose that we are currently inserting edge vivj(i < j). If either (i) Vj has a
free incoming contact, or (ii) Vi has a free outgoing contact, then we will show
that edge vivj can be established as an edge of at most two bends. Here we only
give the proof for case (i) since the proof for case (ii) is symmetric. The contact
of edge vivj at Vj could be left or upper contact. In any case, a connection of
at most two bends can be obtained by connecting another end of edge vivj to
one unoccupied contact among the six left, right, or lower contacts of Vi (see
Fig. 10) because the maximum degree of any vertex in G is 6.

If we do not reach any situation as in the previous paragraph, this means
that we reach the situation that neither Vi contains any free outgoing contact,
nor Vj contains any free incoming contact. We proceed to temporarily connect
a left contact of Vi to a lower contact of Vj by a three-bend C-edge as shown in
Fig. 11, and we justify in the following how we can modify this three-bend edge



Square-Orthogonal Drawing with Few Bends per Edge 365

Vi

Vj

Fig. 10. Six contacts to connect at Vi for
drawing vivj with at most two bends

Vi

Vj

Fig. 11. The case that a three-
bend C-edge is formed temporar-
ily

and a series of other related edges so that at the end, we result in a drawing
only with edges of at most two bends. First, suppose Vi is our focus vertex
for performing modifying operation. We call that the three-bend C-edge vivj
can be repaired immediately if all drawn edges becomes to possess at most two
bends after some connection contacts of the edge vivj and another edge are
exchanged appropriately. Such a scenario is less complicated comparing to other
scenarios where more modification operations are required to make the three-
bend edge disappear. There are two cases for which C-edge vivj can be repaired
immediately: either (i) by modifying vivj and another edge connecting to a lower
contact of Vi, or (ii) by modifying vivj and another edge connecting to a left
contact of Vj . Here we only consider case (i) since the argument for case (ii) will
be symmetric. We need to investigate different situations that the target edge
vivk connects to lower contact of Vi. If vivk is an L-edge, C-edge vivj can be
repaired by making a switch between two contact ports of Vi from edges vivj and
vivk (see Fig. 12). If vivk is an Z-edge, the C-edge can be solved by reconnecting

Vi

Vj

Vk

(a) (b)

Vi

Vj

Vk

Fig. 12.

Vi

Vj

Vk

(a) (b)

Vi

Vj

Vk

Fig. 13.

Vi

Vj

Vk

(a) (b)

Vi

Vj

Vk

Fig. 14.

Vk to a free upper contact of Vi (see Fig. 13). If vivk is an U -edge where k < i,
the C-edge can also be solved by making a switch between two contact ports
of Vi from edges vivj and vivk (see Fig. 14). The complete argument is omitted
due to lack of space.

The remaining case is that there is a lower contact of Vi that connects to
Vk(k > i) with a U -edge (see Fig. 15(a)), or symmetrically there is a left contact
of Vj that connects to Vk(k < j) with a U -edge. We only consider the former
subcase as the latter subcase is symmetric. Now, the C-edge between Vi and Vj

may not be repaired immediately by making some local modifications. Exchang-
ing operations may only make the C-edge propagate to other edge wires. For
example, the C-edge reappears as edge vivk after we exchange the two contact
ports at Vi from edges vivj and vivk (see Fig. 15). The difficulty we reach here is



366 Y.-A. Lin and S.-H. Poon

Vi

Vj

Vk

(a) (b)

Vi

Vj

Vk

Fig. 15. (a) A lower contact of Vi con-
nects to Vk(k > i) with a U -edge. (b)
The C-edge reappears even after the ex-
changing operation.

Vi

Vj

Vk

(a) (b)

V�

Vi

Vj

Vk

V�

Fig. 16. The C-edge vivk further propa-
gates to C-edge vkv�

that the propagation of C-edges may repeat. See Fig. 16 for an example, where
C-edge vivk further propagates to C-edge vkv�. The bad case we worry about is
that if the propagation goes into a loop, we may not be able to repair the C-edge
ultimately. We have to carefully choose how to proceed for further exchanging
operations. In fact, for example, if the next exchanging operation we execute is
between the C-edge of vivk and the U -edge vivj , then we really get into an in-
finite loop of exchanging operations. To prevent such situation from happening,
our idea is to keep switching the focus vertex where contacts are examined. For
example, at the beginning of this case, we examine the lower contacts of Vi to
look for candidate edges for exchanging contacts with C-edge vivj ; but when vivk
becomes a C-edge after we exchange some contacts, we should switch our focus
vertex to Vk to examine its left contacts to look for edges for possible exchanging
operations with C-edge vivk. For the convenience of later descriptions, we define
a leader vertex (resp. follower vertex) to be the end vertex of a C-edge, whose
outgoing (resp. incoming) contacts are fully occupied. For example, the above
mentioned Vi and Vj are leader and follower vertices, respectively. We remark
that for a leader vertex, we examine its lower contacts for further exchanging
operations; but for a follower vertex, we have to examine its left contacts for
further exchanging operations.

Now suppose that we result in the C-edge vivk after we make the above men-
tioned exchanging operations. When we are examining the left contacts of Vk, we
may immediately repair the C-edge in some good case as stated previously, or in
the bad case, the C-edge may propagate again even after some exchanging oper-
ation. The question is whether this propagation can continue and ultimately get
trapped into a loop. We report negative answer to this question in the following
subsections.

3.1 Drawing 5-Graphs

We notice that whenever we reach a C-edge, one of whose end vertices is neither
a leader nor a follower, then the C-edge can be immediately repaired. Thus in
order for the propagations of C-edges to continue, the end-vertices of C-edges in
order of their appearances must be a series of leaders and followers. We denote
this order of vertices as O = {Vj , Vi, Vk, V�, . . .} in the way that C-edge vjvi
propagates to C-edge vivk, which in turn propagates to C-edge vivk, and so on.



Square-Orthogonal Drawing with Few Bends per Edge 367

It is clear that if two adjacent vertices in O are both leaders or both followers,
then the current C-edge can be immediately repaired, and the propagation ends.
Hence the worst case is that the leaders and followers in the order O shows up
in an alternative fashion. We prove in the following lemma that the vertices in
order O never repeat.

Lemma 1. The vertices in the order O do not repeat.

Proof. Suppose to the contrary that the vertices in the order O repeats, and let
the first repeated vertex is vertex Vr. We further let Vp be the vertex just after
the first occurrence of Vr, and Vq be the vertex just before second occurrence
of Vr . Now, O should appear as {Vj , Vi, . . . , Vr, Vp, . . . , Vq, Vr, . . .}. We have two
cases depending on whether Vr is a leader or a follower. We first give the proof
for former case, and then afterwards we describe the difference in the proof for
the latter case.

Suppose that Vr is a leader. As Vp might be the same as Vq, we have to
consider two cases, which are either Vp �= Vq or Vp = Vq. We first consider the
case that Vp �= Vq. Suppose we are currently handling the C-edge vqvr. Now
notice that after we handled the C-edge vpvr some time ago, there exists a U -
edge connecting a left contact of Vp to a left contact of Vr (see Fig. 17). This is

Vr

Vp

Vq

Vr

Vr

Vp

Vq

Vr

(a) (b)

Fig. 17. Vr cannot repeat

1

1

2

2
(a)

V 1
i

V 2
i

1

1

2

2
(b)

V 1
j

V 2
j

Fig. 18. Pairing up con-
tacts to form two fixed
channels (a) for leader
vertex Vi, and (b) for fol-
lower vertex Vj

1 2

V 1
i V 2

i

1 2

Fig. 19. Pairing up
contacts to form
two fixed channels
for vertex Vi

the only occupied left contact of Vr since Vr is a leader. However, currently, we
also have another C-edge vqvr connecting to an occupied left contact of Vr. This
is a contradiction. Next, we consider the case that Vp = Vq. Now, the identical
edges vpvr and vqvr use different ports of Vp to connect to Vr (see Fig. 17(a)).
This is again a contradiction. Hence, Vr cannot repeat for this case. We now
consider the latter case when Vr is a follower. Its proof is similar to that for the
former case above (see Fig. 17(b)).

This lemma implies that the C-edge can propagate at most n times across all
vertices in G. Thus repairing one 3-bend C-edge takes O(n) time in the worst
case. Therefore the whole graph can be drawn in O(n2) time. We summarize our
result in the following theorem.



368 Y.-A. Lin and S.-H. Poon

Theorem 1. There is an O(n2)-time algorithm to compute a square-orthogonal
drawing with edges of at most two bends for a 5-graph such that the drawing area
is O(n2).

3.2 Drawing 6-Graphs

In a 6-graph G, one main difference comparing to 5-graphs is that for a leader
vertex Vi, there can be two edges connecting the left contacts of Vi. If any of
these two edges is a C-edge, it needs to make some exchanges with some edge
connecting to a lower contact of Vi. Suppose that the C-edge propagation starts
with vivj . Later on, it may be possible that the C-edge propagates back to be-
come vivk with connection to the other left contact of Vi. Thus the situation
here is more complicated than what we reach in 5-graphs because the related
vertices during the propagation of C-edges may repeat. However, we show below
that the vertex Vi cannot be visited for the third time during the propagation.
Since the two edges connecting to the two left contacts of Vi may make some
exchanges with the two edges connecting to the two lower contacts of Vi, for
the convenience of our analysis, we pair up the contact ports to form two fixed
channels as shown in Fig. 18(a). (The paired contacts to form channels for fol-
lower vertex Vj is shown in Fig. 18(b).) According to the two fixed channels, we
can treat the single vertex Vi as being split into two small vertices, say V 1

i and
V 2
i . Thus when Vi does repeat for the first time in the propagation sequence of

the C-edges, we can treat this situation as if we reach a new vertex by using the
above split vertices. Hence, the similar arguments as in Lemma 1 can be used
to argue that there will be no repeats on the sequence of split vertices along the
propagation of C-edges. So we obtain the following lemma.

Lemma 2. Any vertex appeared during the propagation of C-edges cannot repeat
for the third time.

We use similar argument as for Theorem 1 to obtain the following theorem.

Theorem 2. There is an O(n2)-time algorithm to compute a square-orthogonal
drawing with edges of at most two bends for a 6-graph such that the drawing area
is O(n2).

4 Drawing 8-Graphs

In this section, we describe the algorithm to draw 8-graphs so that each edge
contains at most three bends. Again, we insert edges incrementally, and each
time we insert an edge, we do modifications immediately so that no edges are
drawn with more than three bends.

Suppose that we are currently inserting edge vivj(i < j). Since both unit
squares Vi and Vj have four sides, vivj has 16 combination ways to do connection
depending on the availability of the contact ports of Vi and Vj . Among all these
combinations, there are only two ways a 4-bend S-edge can be possibly created:



Square-Orthogonal Drawing with Few Bends per Edge 369

(i) an upper contact of Vi connects to a lower contact of Vj (see Fig. 9(a));
and (ii) a left contact of Vi connects to a right contact of Vj (see Fig. 9(b)). If
any of these two cases happens, we need to proceed to perform some modifying
operations to repair the 4-bend edge vivj . As handling case (ii) is symmetric
to case (i), we investigate here the details for case (i) only. Suppose Vi is our
current focus vertex for performing modifying operation. First, we examine the
lower contacts of Vi to look for opportunities for modifying operations. If there is
still a free lower contact at Vi, then S-edge vivj can be repaired immediately by
changing the connection contact of edge vivj to the free lower contact. Otherwise,
both lower contacts of Vi are occupied. We will then try to perform exchanging
operations on edge vivj and another edge vivk of at most 3 bends of Vi. The
edge vivk may link to a left contact of Vi (see Fig. 20(a) and Fig. 21(a)), a
lower contact of Vi (see Fig. 20(b) and Fig. 21(b)), or a right contact of Vi (see
Fig. 20(c) and Fig. 21(c)). These cases shown in these figures are the cases
that S-edge vivj can be repaired immediately by local modifying operations.
The detailed arguments are omitted due to lack of space. Apart from these

Vk

Vi

Vj

Vk

Vi

Vj

Vk

Vi

Vj

(a) (b) (c)

Fig. 20. The cases that S-edge vivj can
be repaired immediately when k < i

Vi

Vk

Vj

Vi

Vk

Vj

Vi

Vk

Vj

(a) (b) (c)

Fig. 21. The cases that S-edge vivj can
be repaired immediately when k > i

easy cases as shown in Fig.s 20 and 21, we still have three remained cases (see
Fig. 22(a)): (i) vivk(k > i) is a C-edge connecting a left contact of Vi and a
lower contact of Vk; (ii) vivk(k > i) is a U -edge connecting a lower contact
of Vi and a lower contact of Vk; and (iii) vivk(k > i) is a η-edge connecting
a right contact of Vi and a lower contact of Vk. For such cases, S-edge vivj
may not be repaired immediately by making some local exchanging operations.
Local exchanging operations may only make S-edge vivj propagate to some
other edge wire. For example, in Fig. 22(b), the S-edge reappears as edge vivk
after we exchange the contacts at Vi of edges vivj and vivk. We will show that

Vi

Vk

Vj

Vi

Vk

Vj

(a) (b)

Fig. 22. S-edge vivj propagates to
another S-edge vivk

Vi

(a) (b)

leader

Vj

follower

Fig. 23. (a) A leader, and (b) a follower



370 Y.-A. Lin and S.-H. Poon

the propagation sequence of S-edges does not get trapped into a loop. For this
purpose, we use the similar idea as in Section 3 by keeping switching the current
focus vertex for operations whenever some modifying operation is performed.
We take Fig. 22 as an example to illustrate our propagation procedure. First,
we examine the lower contacts of Vi to look for candidate edges for exchanging
contacts; but when vivk becomes an S-edge after we exchange some contacts,
we switch our focus vertex to Vk to examine its upper contacts to look for edges
for further modifying operations, and so forth. For our convenience, we define a
leader vertex to be the upper end vertex Vi of an S-edge, whose six left, right,
and lower contacts connect to some lower contacts of some other vertices below
Vi, respectively. A follower vertex is defined to be the lower end vertex Vj of an
S-edge, whose six left, right, and upper contacts connect to some lower contacts
of some other vertices above Vj , respectively. See Fig. 23 for an example. We
note here that the definitions of leader and follower vertices are different from
those in Section 3.

Now, as in Section 3.2, we split each leader or follower vertex Vi to become
two small vertices, V 1

i and V 2
i , as shown in Fig. 19; and we establish two fixed

channels for the propagation of S-edges to go through Vi. Then using similar
arguments as for Lemma 2, we can obtain the following lemma, whose complete
proof is omitted.

Lemma 3. Any vertex appeared during the propagation of S-edges cannot repeat
for the third time.

Hence we have the following theorem.

Theorem 3. There is an O(n2)-time algorithm to compute a square-orthogonal
drawing with edges of at most three bends for a 8-graph such that the drawing
area is O(n2).

5 Hardness Result

In this section, we show the NP-hardness of deciding whether there is a square-
orthogonal drawing without bends on edges under our vertex representation
model for an 8-graph. We provide a sketchy proof here, and the complete proof
is omitted due to lack of space.

Theorem 4. The problem of deciding whether an 8-graph has a square-
orthogonal drawing without bends on edges is NP-complete.

Proof. (Sketch.) The problem is clearly in NP. To prove the NP-hardness of our
problem, we reduce the 3SAT problem to our problem. Let {x1, x2, · · · , xn} be
a set of n variables, and let {c1, c2, · · · , ck} be a set of k clauses, each of which
contains exactly 3 literals. The 3SAT problem is to decide whether there is a
truth assignment to the n variables so that all the k clauses are true.

In our polynomial-time reduction, we construct the basic construction unit
called a diamond, and three important gadgets called skeleton, variable towers,



Square-Orthogonal Drawing with Few Bends per Edge 371

U0

U1

u2

U3

U4

U5

U6

U7

V

u0

u1 u7

U2u6

u5

u4

u3

v

Fig. 24. The diamond
structure

c2

xn

ck

. . .x1

...

c1

Fig. 25. Skeleton containing vertex ports for linking
to variable towers and clause linkages

xi,k

xi,2

xi = True

...
...

xi,1

xi,1

xi,2

xi,k

xi,k

xi,2

xi = False

...
...

xi,1

xi,1

xi,2

xi,k

xixi xi

(a) (b)

Fig. 26. Variable tower for
xi and its truth-value repre-
sentations

xlxi

cj

xi,j

xi,j

xl,j

xl,j

xk,j

xk,j

xk

Fig. 27. Clause gadget for clause cj = xi ∨ xk ∨ xl

and clause linkages. The diamond structure is shown in Fig. 24, which can be
proven to be stable in the sense the relative positions of the eight surrounding
vertex squares relative to the center vertex square are fixed. (Its proof is omitted
here.) Using this structure as basic construction units, we construct the skeleton
as shown in Fig. 25, where the upper spikes along the horizontal list of diamonds
will connect to the variable towers, which we will construct later on, and the right
spikes along the vertical list of diamonds will connect to the clause linkages,
which we will construct later on.

We construct the variable tower for variable xi as shown in Fig. 26(a). Each
of the two possible embeddings of the variable tower represents the True and



372 Y.-A. Lin and S.-H. Poon

False values for xi, respectively. See Fig. 26(a) and (b). Note that the literals
on the right hand side of the tower always has the True value in either way the
tower is embedded.

Next, we describe the construction of the clause linkage for clause cj . As an
example, we suppose that cj = xi∨xk ∨xl. We connect vertex cj on the skeleton
to literals xi,j , xk,j , xl,j , respectively, with a 3-path. See Fig. 27. We observe that
cj = True corresponds to the 3-edge path connecting to a right port of node
cj . With this observation, it is not hard to show that the given 3SAT formula
is satisfiable iff the constructed graph has a square-orthogonal drawing without
bends on edges. The complete proof is omitted due to lack of space.

References

1. Bertolazzi, P., Battista, G.D., Didimo, W.: Computing orthogonal drawings with
minimum number of bends. IEEE Trans. on Computers 49(8), 826–840 (2000)

2. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Compu-
tational Geometry: Theory and Applications 9, 159–180 (1998)

3. Biedl, T.C., Kaufmann, M.: Area-efficient static and incremental graph drawings.
In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52.
Springer, Heidelberg (1997)

4. Biedl, T.C., Madden, B.P., Tollis, I.G.: Drawing high-degree graphs with small
grid-size. Technical Report 37–96, RUTCOR, Rutgers University (November 1996)

5. Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F.T.,
Symvonis, A., Welzl, E., Woeginger, G.J.: Drawing graphs in the plane with high
resolution. In: Proceedings IEEE Symposium on FOCS, pp. 86–95 (1990); SIAM
Journal on Computing 22(5), 1035–1052 (1993)

6. Fößmeier, U., Kaufmann, M.: Algorithms and Area Bounds for Nonplanar Orthog-
onal Drawings. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 134–145.
Springer, Heidelberg (1997)

7. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer,
Heidelberg (1996)

8. He, X.: A simple linear time algorithm for proper box rectangular drawings of plane
graphs. Journal of Algorithms 40(1), 82–101 (2001)

9. Papakostas, A., Tollis, I.G.: A pairing technique for area-efficient orthogonal draw-
ings. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 355–370. Springer,
Heidelberg (1997)

10. Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings.
Computational Geometry: Theory and Applications 9(1-2), 83–110 (1998)

11. Papakostas, A., Tollis, I.G.: Efficient orthogonal drawings of high degree graphs.
Algorithmica 26(1), 100–125 (2000)

12. Schaffter, M.: Drawing graphs on rectangular grids. Discrete Applied Math. 63(1),
75–89 (1995)

13. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM Journal on Computing 16(3), 421–444 (1987)

14. Tamassia, R.: Planar orthogonal drawings of graphs. In: Proc. of the IEEE Inter-
national Symposium on Circuits and Systems, pp. 319–322 (1990)

15. Valiant, L.: Universality considerations in VLSI circuits. IEEE Trans. on Comput-
ers 30(2), 135–140 (1981)



Covering Tree with Stars

Jan Baumbach1,3,�, Jiong Guo2,�, and Rashid Ibragimov1,��

1 Max Planck Institute für Informatik, Saarbrücken 66123, Germany
ribragim@mpi-inf.mpg.de

2 Universität des Saarlandes, Campus E 1.7, Saarbrücken 66123, Germany
jguo@mmci.uni-saarland.de

3 University of Southern Denmark, Campusvej 5, 5230 Odense M, Denmark
jan.baumbach@imada.sdu.dk

Abstract. We study the tree edit distance problem with edge deletions
and edge insertions as edit operations. We reformulate a special case of
this problem as Covering Tree with Stars (CTS): given a tree T
and a set S of stars, can we connect the stars in S by adding edges
between them such that the resulting tree is isomorphic to T ? We prove
that in the general setting, CST is NP-complete, which implies that the
tree edit distance considered here is also NP-hard, even when both input
trees having diameters bounded by 10. We also show that, when the
number of distinct stars is bounded by a constant k, CTS can be solved
in polynomial time by presenting a dynamic programming algorithm
running in O(|V (T )|2 · k · |V (S)|2k) time.

Keywords: graph algorithms, tree edit distance, NP-completeness,
dynamic programming.

1 Introduction

Given two graphs G1 and G2, the edit distance between G1 and G2 is defined to
be the minimum number of edit operations to transform G1 to G2. Graph edit
distance is one of the major measures for studying the similarity of graphs and
has found applications in many areas [1,2,3]. However, in the general problem
statement application of the edit distance is limited by its complexity, since
computing edit distance between two graphs is not easier than the subgraph
isomorphism problem, which is NP-complete [4].

Restricting graphs to trees branched in investigating the tree edit distance.
Hereby, one distinguishes mostly ordered and unordered versions, for which such
edit operations as vertex deletion, vertex insertion, and vertex relabeling are
applied. With this set of the edit operations, for which the hierarchy as well
as vertex labels are important, the edit distance between trees and forests has
been extensively studied [5,6,7]. For the ordered version of tree edit distance,
an algorithm requiring O(n3) time was developed [8], where n denotes the size
� Partially supported by the DFG Excellence Cluster MMCI.

�� Partially supported by the International Max Planck Research School.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 373–384, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



374 J. Baumbach, J. Guo, and R. Ibragimov

of the input trees or forests. The tree edit distance in the unordered case was
shown to be NP-hard [9] and MAX SNP-hard [10]. In [5], a fixed-parameter
algorithm running in O(2.62k · poly(n)) time is presented for unordered version,
where k is the upper bound of the edit distance. A short review and further
recent developments of the problem can be found in [11].

In this paper we aim at exploring the complexity of computing the edit dis-
tance between trees with the edit operations affecting only the edges, namely,
deleting and inserting edges:

Tree Edit Distance with Edge Insertion and Deletion (TED-ID)

Input: Trees T1 and T2, a non-negative integer d
Question: Can we modify T1 by adding or deleting at most d edges in
it such that the resulting tree is isomorphic to T2?

TED-ID is partially motivated by alignment of a backbone trees extracted
from biological networks of different species in Bioinformatics. Here, large con-
tinuous regions of aligned subtrees can serve as strong indication for biologically
meaningful node-to-node correspondence, easing at the same time matching of
the other not matched nodes of the networks (similar to [12]). Note that the
problem of modifying a given graph by deleting and inserting edges, such that
the resulting graph meets some specified properties, has been extensively studied
in the last years, motivated by various applications from Bioinformatics, data
mining, etc. For most classical graph properties, the corresponding modification
problems turned out to be NP-hard [13,14].

Given a solution for TED-ID, we can perform the edit operations in the order
of first deleting edges from the first tree, resulting in a forest, and then inserting
other edges to connect the forest. Thus, the problem of transforming a given
forest to a given tree by deleting zero edges and adding a number of edges
can be considered as a separate phase of the tree edit distance problem. We
observe that, the NP-completeness of the subforest isomorphism problem [4]
implies that this edge addition problem is NP-complete. By a simple reduction
from 3-Partition [4], we can even prove the NP-hardness for the forest being
a collection of paths.

Motivated by these NP-hardness results, we consider another restriction on
the components of the forest, that is, all components being stars, and intend to
find a boundary of the complexity for the tree edit distance problem:

Input: A collection of stars S and a tree T .
Question: Can we connect the stars in S by adding edges between them
such that the resulting tree is isomorphic to T ?

We call this problem Covering Tree with Stars (CTS), since one can con-
sider CTS as using the stars to covering the vertices of the tree. We use |S|
to denote the number of stars in S and k the number of distinct stars in S.
Moreover, let V (S) and V (T ) be the set of the vertices in the stars of S and T ,
respectively. Clearly, we can assume |V (S)| = |V (T )|. Moreover, the number
of edges added to the stars is exactly |S| − 1. CTS can also be formulated as



Covering Tree with Stars 375

a matching problem between S and T . Here, one is seeking for a one-to-one
mapping f from V (S) to V (T ) such that f “preserves” the edges in S, that is,
if u, v ∈ V (S) are adjacent, then f(u) and f(v) must be adjacent. We obtain a
classification of the complexity of CTS with respect to the number k of distinct
stars in S: CTS can be solved in polynomial time, if k is bounded by a constant;
otherwise, this problem is NP-complete. The latter is shown again by a reduc-
tion from 3-Partition. As a corollary of this NP-complete result, we show that
TED-ID remains NP-hard, even when both trees have bounded diameters.

Preliminaries. Throughout the paper, we consider only simple, undirected graphs
without self-loop. Given a graph G, we use V (G) to denote the vertex set of G.
The neighborhood of a vertex in a graph G, denoted asN(v), is the set of vertices
which are adjacent to v. The degree of v is then the size of N(v). A forest is an
graph without cycle, while a tree is a connected forest. The degree-one vertices
of a tree are called the leaves and the others are the internal vertices. A star is
a tree with at most one internal vertex. This internal vertex is then called the
center of this star. The size of a star S is the number of edges in S. The length
of a path is the number of edges in this path.

2 NP-Completeness Results

We first show that the edge addition problem to transform a forest to a tree
is NP-hard even for a forest being a collection of paths. Then we show the
NP-hardness of the general setting of Covering Tree with Stars (CTS),
that is, there are unbounded many distinct stars in S. As a corollary of this
hardness, we prove that TED-ID is NP-hard, even when both trees have bounded
diameters.

Theorem 1. Given a collection of paths F and a tree T , transforming F to T
by edge additions is NP-hard.

Proof. To prove the NP-hardness, we reduce from the 3-Partition problem
defined as follows.

Input: A multiset X of 3m integers x1, . . . , x3m and an integer B.
Question: Can X be partitioned into m subsets such that each subset
contains exactly three integers and the sum of the integers in each subset
is B?

Note that that 3-Partition remains NP-hard, even when every integer in X is
bounded by a polynomial in m [4].

Given an instance (X,B), then the corresponding collection F consists of 3m
paths of length xi − 1 for i = 1, . . . , 3m. Every path corresponds to one distinct
element of set X . There is also one additional path p of length 2B. The corre-
sponding tree T is composed of m + 2 paths of length B − 1 connected to one
additional vertex r with m + 2 edges; for each of these paths, there is an edge
between r and one of its end-vertices.



376 J. Baumbach, J. Guo, and R. Ibragimov

To connect all 3m+ 1 paths from F by 3m edge additions, we are forced to
map the middle vertex of path p to vertex r in the tree. The other vertices of p
have to be mapped to two paths of length B − 1 in T . It is not hard to see that
the rest 3m paths from F can be mapped to unmapped vertices in T , if and only
if there is a 3-partition of set X . ��

Theorem 2. CTS is NP-complete.

Proof. Clearly, CTS is in NP, since we can guess |S|− 1 edges between the stars
in S in polynomial time and the isomorphism testing between two trees can be
done in polynomial time [15]. We reduce again from 3-Partition.

Given an instance (X,B), we can safely assume that 0 ≤ xi < B for each i =
1, . . . , 3m. We construct an instance (S, T ) of CTS in the following way. First, S
consists of five subcollections of stars. The first one has only one “large” star,
denoted as SL, which has m4 · B +m leaves. The second subcollection S2 con-
tains 3m stars, one-to-one corresponding to the integers in X . For each integer xi
with i = 1, . . . , 3m, we add a star with m3 ·B+ xi many leaves to S2. The third
subcollection S3 contains 2B ·m stars. More precisely, for each i = 1, . . . ,m, we
create a collection Si3, which contains 2B stars, each havingMi := m2·B+imany
leaves. We set S3 =

⋃m
i=1 Si3. Moreover, we create for each i = 1, . . . ,m a collec-

tion Si4 with B·Mi stars, each havingNi := m·B+i leaves, and set S4 :=
⋃m

i=1 Si4.
Finally, the last subcollection S5 consists of

∑m
i=1(m · 2B ·Mi ·Ni) many “sin-

gletons”. A singleton is an isolated vertex.
Next, we construct the tree T . To ease the description, we describe T as a tree

rooted at a vertex r, which has m4 · B many leaves as children (see also Fig. 1
for the depiction of tree T ). In addition, r has m children r1, . . . , rm, which are
the roots of m subtrees, denoted as T1, . . . , Tm. Let R1 be the set of r’s children.
For each i = 1, . . . ,m, the vertex ri has three children rli with l = 1, 2, 3. Let R2

be set containing all 3m children of the non-leaf vertices in R1. Each vertex rli ∈
R2 has m3 · B leaves as children. In addition, rli has other B children rli[j]
with j = 1, . . . , B, at which the subtrees T l

i [j] are rooted. Let Ri
3 be the set of

the non-leaf children rli[j] of rli for all l = 1, 2, 3. Clearly, |Ri
3| = 3B. We set

R3 :=
⋃m

i=1 R
i
3. Finally, in each T l

i [j], rli[j] has Mi = m2 · B + i many children,
each of which has again Ni = m · B + i many leaves as children. The set Ri

4

contains all children of the vertices in Ri
3, that is, |Ri

4| = 3B · Mi. We set
R4 :=

⋃m
i=1 R

i
4 This completes the construction of T .

Since every integer and thus B are bounded by a polynomial of m, the con-
struction of (S, T ) clearly needs polynomial time. Next, we prove now that (X,B)
is a yes-instance iff (S, T ) is a yes-instance.
“=⇒”: Let X1, . . . , Xm be a partition of X with |Xi| = 3 and

∑
x∈Xi

x = B for
each i = 1, . . . ,m. A mapping f between V (S) and V (T ) can be derived as fol-
lows. First, map the center of SL to the root r of T and SL’s leaves to the children
of r. Then, for each i = 1, . . . ,m, let Xi = {x1i , x2i , x3i }. For each l = 1, 2, 3, we
map the center of the star S in S2, which corresponds to xli, to the child rli of ri.
Note that ri is a child of r and the root of the subtree Ti. Moreover,m3 ·B many
leaves of S are mapped to the m3 ·B leaf children of rli. The remaining xli leaves



Covering Tree with Stars 377

� � � � � �

m4 ·B ������
�� 	��
 r

m ����������
�� 	��
 r

. . . . . .

� � � � � �m3 ·B ������
�� ��� rl

i

B ����������
�� ��� rl

i

������
 �� Ri
3�

� � �
Mi ����	��
�� ��� r2

i
[j]

������
 �� Ri
4�

� � � Ni ������ �� �
���� �� r2

i
[j]

r

ri

r1
i

r2
i r3

i

r2
i
[j]

Fig. 1. The tree T of CTS corresponding to an instance of 3-Partition

of S are then mapped to the non-leaf children of rli. Note that rli has now B−xli
unmapped children and r1i , r2i , r3i have together 2B unmapped children. Let D
be the set of unmapped children of r1i , r2i , r3i and E := Ri

3 \D. Clearly, D ⊆ Ri
3.

Now, we map the centers of the stars in Si3 to the vertices in D. Since each of
the vertices in D has exactly Mi = m2 · B + i many children, the leaves of the
stars in Si3 can be mapped to the children of the vertices in D. By this way,
all stars in S3 can be mapped to the tree. Note that each of the children of the
vertices in D has Ni = m · B + i leaves as children, which are still unmapped.
Let us now consider the stars in S4. Recall that |Si4| = B ·Mi and each star
in Si4 has Ni leaves. Note that the vertices in E are mapped to the leaves of
the stars in Si2 and each vertex in E has Mi many children, each of which has
again m · B + i leaves as children. By |E| = B, we can conclude that the stars
in Si4 can be mapped to the subtrees rooted at the children of the vertices in E.
Finally, recall that, in the above analysis, each of the children of the vertices
in D has Ni := m ·B + i unmapped leaves as children. Thus, in each subtree Ti
there are exactly 2B ·Mi ·Ni many unmapped leaves. Summing up over all Ti’s,
the singletons in S5 can then be mapped. Since we always map the leaves of a
star together with its center, the mapping clearly satisfies the edge-preserving
condition.

“⇐=”: Let f be a mapping from V (S) to V (T ). In order to prove this direction,
we need the following claims. The first three claims follow directly from the
degrees of the root and the vertices in R2 and R3.

Claim 1. The center of the large star SL has to be mapped to the root r of T ,
and the leaves of SL one-to-one to the vertices in R1.



378 J. Baumbach, J. Guo, and R. Ibragimov

Claim 2. The centers of the stars in S2 have to be mapped one-to-one to the
vertices in R2.

Claim 3. The centers of the stars in S3 have to be mapped to the vertices in R3.
By Claim 2, the stars in S2 and thus the integers in X are partitioned by

the mapping f into m subsets, denoted by X1, . . . , Xm, such that |Xi| = 3 for
all i = 1, . . . ,m. It remains to prove that

∑
x∈Xi

x = B for all i = 1, . . . ,m. To
this end, we need the following claim, which is true, since a star in S2 has more
leaves than the number of leaf children of a vertex in R2 and mapping a leaf
in T to a singleton is never better than mapping it to a leaf of star in S.

Claim 4. If (S, T ) is a yes-instance, then there is a mapping such that the leaf
children of the vertices in R2 are all mapped to the leaves of the stars in S2.

According to Claims 3 and 4, 2mB vertices in R3 have to be mapped to
the centers of the stars in S3 and the remaining vertices have to be mapped to
the leaves of the stars in S2. Since we can w.l.o.g. assume

∑
x∈X x = mB, the

following claim holds.

Claim 5. The centers of the stars in S4 have to be mapped to the vertices in R4.
In order to prove

∑
x∈Xi

x = B for all i = 1, . . . ,m, we apply an induction
from i = m to i = 1. For i = m, let Xm = {x1m, x2m, x3m} and let S1, S2, S3 denote
the three stars in S2, which correspond to the integers in Xm and whose roots
are mapped to r1m, r2m, r3m, respectively. By Claim 4, totally

∑3
j=1 x

j
m leaves of

the stars S1, S2, S3 have to be mapped to the vertices in Rm
3 . Moreover, Claim 3

and the fact that the stars in Sm3 have more leaves than all other stars in Sj3
with j < m imply that the centers of the stars in Sm3 have to be mapped to
the vertices in Rm

3 . With |Sm3 | = 2B and |Rm
3 | = 3B, we know

∑3
j=1 x

j
m ≤ B.

Let D be the set of vertices in Rm
3 which are mapped to the leaves of S1, S2, S3,

E1 be the set of vertices in Rm
3 that are mapped to the centers of the stars

in Sm3 , and E2 := Rm
3 \ (D ∪ E1). Clearly, |D| =

∑3
j=1 x

j
m and |E2| = B − |D|.

If E2 �= ∅, then the vertices from E2 can be mapped to the centers of other stars.
However, by Claims 3 and 4, all E2-vertices have to be mapped to the centers of
some stars from

⋃m−1
j=1 S

j
3 , since

∑
x∈X x = mB implies that

∑3
j=1 x

j
i > B for

some i < m. Now, consider the stars in Sm4 . Since all vertices in S1 ∪S2 ∪S3 are
mapped and the stars in Sm4 have more leaves than the degrees of the vertices
in Rj

4 with j < m. The centers of these stars can only be mapped to the vertices
in Rm

4 . However, by mapping the centers of the stars in Sm3 to the vertices in E1

and the centers of some stars from Si3 for some i < m to the vertices in E2, some
of the vertices in Rm

4 are already mapped. For the vertices in E1, all their children
are mapped. Moreover, since |D|+ |E2| = B and at least one of the children of
each of the E2-vertices is mapped, we have at most |D| ·Mm + |E2| · (Mm − 1)
vertices in Rm

4 not mapped to the stars in Sm3 . Recall that every vertex in Rm
3

has Mm = m2 ·B+m many children. However, by |Sm4 | = B ·Mm, the centers of
some stars in Sm4 cannot be mapped to the vertices in Rm

4 , a contradiction. Thus,
we have B = |D| and

∑3
j=1 x

j
m = B. This means that E2 = ∅ and all vertices

in Rm
3 ∪Rm

4 are mapped to stars in Sm3 ∪Sm4 . Thus, the induction step from i+1
to i can be conducted in a similar way as for the case i = m. The reason for this



Covering Tree with Stars 379

is that the center of all stars in Si3 can only be mapped to the vertices in Ri
3.

This holds also for the stars in Si4 and the vertices in Ri
4. In summary, we can

derive a partition from the mapping f such that every subset Xi has exactly
three integers, and

∑
x∈Xi

x = B for each i = 1, . . . ,m. ��

Corollary 1. TED-ID is NP-hard even when the diameters of both trees are
bounded by 10.

Proof. We construct an equivalent instance of TED-ID from the CTS-instance
constructed in the proof of Theorem 2.

Let x be the number of the stars in the CTS-instance (S, T ) in the proof
of Theorem 2. We construct tree T1 as follows. First, create x “big stars”, each
with m8 · B3 leaves. Then, connect the stars in S one-to-one to the big stars:
for each star in S, add an edge between its center and one of the leaves of the
corresponding big star. Finally, create a star with m4 leaves, and add an edge
between the center of this star and each of the centers of the big stars. Clearly,
the resulting tree T1 has a diameter equal to 8.

The second tree T2 is firstly set equal to the tree T of the CTS-instance from
the proof of Theorem 2. Then, add x “big” stars, each having m8 · B3 leaves.
Finally, add an edge between the root r of T and each of the centers of the big
stars. The diameter of the resulting tree T2 is clearly equal to 10.

We set d := 2·(x−1). From the construction of (S, T ), we have d = O(m5 ·B3).
To prove the equivalence between the constructed instance (T1, T2, d) and (S, T ),
observe that the big stars in T1 can only be mapped one-to-one to the big stars
in T2. The reason for this is that the size of these stars is much greater than the
allowed number d of editions. Then, we have to “separate” the stars in S from
the big stars in T1, and map them into the m subtrees of T2, which correspond
to the m partitions of the 3-Partition-instance. ��

3 CTS with Bounded Distinct Stars

The NP-hardness of CTS motivates the study of the special case, when the
number of distinct stars in S is bounded by a constant k. Let S1, . . . , Sk be
the distinct stars in S. Then, S can be denoted by a set of pairs, that is, S =
{(S1, n1), · · · , (Sk, nk)}, where ni for i = 1, . . . , k is the number of copies of Si

in S. Moreover, we use |Si| to denote the number of edges in Si and assume
that |S1| < |S2| < · · · |Sk|. Clearly, |V (T )| =

∑k
i=1(ni · (|Si|+ 1)).

We present in the following a dynamic programming based algorithm solv-
ing CTS in polynomial time, if the number of distinct stars is bounded by a
constant. The algorithm follows a bottom-up approach to process the vertices
in T . Assume T is rooted at an arbitrary vertex r. For each vertex v ∈ V (T ),
T (v) denotes the subtree of T rooted at v. During the bottom-up process, we
collect some information at every vertex v. Hereby, we firstly distinguish two
cases: v is “covered” or “free”. We say v is covered, if v should be mapped to the
center of a star or to a leaf of a star whose center is mapped to a child of v. A
vertex v is free, if v should be mapped to a leaf of a star whose center is mapped



380 J. Baumbach, J. Guo, and R. Ibragimov

Cf

� � � � � �

f−1(v)

Cl

� � � � � �

f−1(v)

Ci
c

� � � � � �

f−1(v)

f−1(u1)f
−1(ui)

Fig. 2. The three cases of mapping a node v ∈ V (T ) to a star Sj ∈ S in CTS with
bounded distinct stars

to v’s parent. Note that a singleton in S, that is, an isolated vertex, has only
one center but no leaf. Concerning a star S with only one edge, we say v is free
if the other vertex of S should be mapped to v’s parent; otherwise, v is covered.
If v is covered with v being mapped to the center of a star S, then we further
distinguish some cases by the size of S. Hereby, notice that the star S does not
have to be from S but has at most |Sk| leaves. The reason for this is that the
parent of v could be mapped to a leaf of S. Note that Sk is the star in S with
the largest number of leaves.

We use Cf to denote the case of v being free and Cl to denote the case that v
is mapped to a leaf of a star whose center is mapped to a child of v. Moreover,
Ci

c with i = 0, . . . , |Sk| denotes the case that v is mapped to the center of a star
with i leaves, which are mapped to the children of v. The three cases of mapping
vertex v and its children u1, . . . , ui to a star Sj are shown on Fig. 2. Altogether,
there are |Sk|+ 3 many cases to consider.

For each of these cases, we store all possible “realizable configurations” for v.
A configuration is defined as a vector K = (c1, . . . , ck) with ci ≤ ni for all
1 ≤ i ≤ k. Each vector K uniquely represents a subcollection S ′ of S, that
is, S ′ = {(S1, c1), . . . , (Sk, ck)}. The number of all possible configurations is
clearly bounded by O(|S|k). We say a configuration K is “realizable” at ver-
tex v with case Cf (or Cl), if there exists a one-to-one mapping f from V (S ′)
to V (T (v)) \ {v} (or V (T (v))) such that, if u, v ∈ V (S ′) are adjacent, then f(u)
and f(v) are adjacent. In the case Ci

c, configurationK is realizable, if there exist a
size-(i+ 1) set V ′ consisting of v and i children of v and a mapping f from V (S ′)
to V (T (v)) \ V ′ with the edges in S ′ being preserved. Thus, the given instance
is a yes-instance, if and only if at the root r, the configuration (n1, . . . , nk) is
realizable with state Cl or (n1, . . . , ni − 1, . . . , nk) is realizable with state C|Si|

c

for some i = 1, . . . , k.

The Algorithm. In order to compute the realizable configurations for every ver-
tex v and every case α, we define the following configuration sets. The set K(v, α)
should contain all realizable configurations at vertex v if the case α applies to v.
Moreover, we define K(v) to be the set of the following configurations:



Covering Tree with Stars 381

– all configurations in K(v, Cl),
– for each configuration K = (c1, . . . , ck) in K(v, Ci

c) with i = |Sα| for a
star Sα ∈ S, the configuration (c1, . . . , cα + 1, . . . , ck).

In other words, K(v) contains all configurations, each of which corresponds to a
subcollection S ′ such that there exists a mapping f from V (S ′) to V (Tv) such
that the edges in the stars in S ′ are preserved. We define an addition operation
on two configurations K1 = (c11, . . . , c

1
k) and K2 = (c21, . . . , c

2
k): K1 + K2 =

(c11 + c21, . . . , c
1
k + c2k), if c1i + c2i ≤ ni for all i = 1, . . . , k; otherwise, K1 +K2 is

set to an all-0 vector. At the begin, K(v, α) and K(v) for all vertices v and all
cases α are set to empty.

At a leaf vertex v, the cases Cl and Ci
c with i > 0 cannot apply and the

corresponding configuration sets remain empty. The case C0
c can apply, only

if S contains the singleton. If so, then S1 is the singleton and both K(v, C0
c )

and K(v) contain only one configuration (c1, . . . , ck) with c1 = 1 and ci = 0
for i > 1; otherwise, the two sets are empty. According to the definition of
realizable configurations, K(v, Cf ) contains only the all-0 vector.

Suppose we arrive at an internal vertex v with j children u1, u2, . . . , uj . We
distinguish the cases Cf , Cl, and Ci

c.

The Free Case Cf . By the definition of Cf , each realizable configuration K
at v has to correspond to a subcollection S ′ such that each star in S ′ has to be
completely mapped to a subtree rooted at one of v’s children. Moreover, every
v’s child ui has to be mapped to either the center or a leaf of a star in S ′ and all
other vertices of this star have to be mapped to the vertices in T (ui). Thus, every
realizable configuration K can be “partitioned” into j configurations K1, . . . ,Kj

such that Ki ∈ K(ui) for every i = 1, . . . , j and K = K1 + . . .+Kj.
Based on this observation, we compute K(v, Cf ) as follows: First, for each i =

1, . . . , j, we first construct K(ui). To this end, we consider K(ui, C|Sα|
c ) for

each α = 1, . . . , k; for each configuration K = (c1, . . . , ck) of this set, we add
a configuration (c1, . . . , cα + 1, . . . , ck) to K(ui). Finally, all configurations in
K(ui, Cl) are added to K(ui). Then, we initiate K(v, Cf ) as a set containing only
the all-0 vector and iterate from i = 1 to i = j. For each i, we perform K +K ′

for every pair of K and K ′ with K being from the old K(v, Cf ) and K ′ ∈ K(ui)
and add the result to the new K(v, Cf ).

Since the number of configurations is bounded by O(|S|k), the computation
of K(v, Cf ) is doable in O(j · |S|2k) time.

The Covered by Leaf Case Cl. In this case, every configuration in K(v, Cl)
has to correspond to a subcollection S ′, which contains one star S with one of
S’s leaves mapping to v and S’s center mapping to a child of v. Note that S
has at least two leaves. The remaining stars of S ′ have to be completely mapped
to the subtrees rooted at the children of v. Therefore, one of v’s children has to be



382 J. Baumbach, J. Guo, and R. Ibragimov

of case C|S|−1
c and others have to be of cases Cl and Ci

c. Then, K(v, Cl) can be
computed as follows:

K(v, Cl) :=
⋃

S∈S,|S|>1

⎛⎝ ⋃
i=1,...,j

KS,i(v, Cl)

⎞⎠ ,

where KS,i(v, Cl) contains all realizable configurations with v being mapped to
a star S whose central is mapped to ui. The set KS,i(v, Cl) can be computed
in a similar way as K(v, Cf ): First, we compute K(ui′) for all i′ �= i, as in
the Cf -case. We initialize KS,i(v, Cl) as a set containing only the all-0 vector
and iterate over all i = 1, . . . , j as in the Cf -case. The only exception is that the
setK(ui) is replaced byK(ui, C|S|−1

c ). Finally, we increase the entry ofKS,i(v, Cl)
corresponding to S by one, since one copy of S is now completely mapped in T (v).

Note that we need only to compute KS,i(v, Cl) for distinct stars S ∈ S. Since
the computation of KS,i(v, Cl) is basically the same as the one of K(v, Cf ), the
overall time for computing K(v, Cl) is bounded by O(k · j2 · |S|2k).

The Covered by Center Case Ci
c. Now, v has to be mapped to the center

of a star S with 0 ≤ i = |S| ≤ |Sk| and S’s leaves have to be mapped to some
of u1, . . . , uj . Note that S does not necessarily appear in S and |S| ≤ j. Similarly
to the Cf - and Cl-cases, all realizable configurations in K(v, C|S|

c ) correspond
to subcollections S ′ whose stars can be partitioned to j subsets, each being
completely mapped to a subtree rooted at v’s children. The only difference here
is that, in order to map v to the center of S, there must be |S| children of v which
are “free”, that is, of case Cf . Thus, it remains to compute all possible realizable
configurations for every distinct star S ∈ S with |S| ≤ j. We apply here again
a dynamic programming approach. Assume that K(ui) for all i = 1, . . . , j have
already been computed, which can be done as described in the Cf -case.

We define a table T of size at most j(j+1)/2. The entry T [α, β] with 1 ≤ α ≤ j
and 0 ≤ β ≤ |S| ≤ j stores all possible realizable configurations, that we can
have in the subtrees T (u1), . . . , T (uα), if exact β many roots of these trees are
set to the free case. Clearly, we consider only T [α, β] with β ≤ α.

The computation of the first row of T is trivial. By definitions, T [1, 0] is clearly
set to K(u1), while T [1, 1] means the same as K(u1, Cf ). The entries T [α, β]
with α > 1 can be computed as follows:

T [α, 0] := T [α− 1, 0] +K(uα) ,

T [α, β] := (T [α− 1, β] +K(uα)) ∪ (T [α− 1, β − 1] +K(uα, Cf )) .

By the definition, the entry T [j, |S|] then contains all possible realizable con-
figurations under the condition that v and |S| many its children are mapped
to S. Thus, we set K(v, C|S|

c ) := T [j, |S|].
With the same argument as in the Cf -case, the operations between config-

uration sets can be done in O(|S|2k) time. Thus, the time for computing T is
bounded by O(j2 · |S|2k).



Covering Tree with Stars 383

Theorem 3. If the number of distinct stars in S is bounded by a constant, then
CTS can be solved in polynomial time.

Proof. The correctness of the dynamic programming algorithm follows from
the correctness of the computation for leaves and the three cases of internal
vertices. From the time analysis of the cases, we can easily derive an overall
O(|V (T )|2 · k · |V (S)|2k)-time bound for the dynamic programming algorithm,
which is polynomial in |V (T )|, if k is bounded by a constant. ��

4 Conclusion

We studied the tree edit distance problem with edge deletions and edge inser-
tions as edit operations and proved its NP-hardness even for trees with bounded
diameters. To this end, we reformulated a restrictive case of the problem as Cov-

ering Tree with Stars (CTS) and showed that it is NP-hard. Moreover, we
show that CTS can be solved in polynomial time when the number of distinct
stars is bounded by k. To this end, we presented a dynamic programming algo-
rithms running in O(|V (T )|2 · k · |V (S)|2k) time. It is still open whether CTS
is fixed-parameter tractable with k as parameter, that is, whether there is an
algorithm for CTS with time f(k) · |V (T )|O(1) for a function f . Moreover, it is
also interesting to find out other constraints, which can lead to polynomial-time
solvability of TED-ID.

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years of Graph Matching in
Pattern Recognition. International Journal of Pattern Recognition and Artificial
Intelligence (2004)

2. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Analysis
& Applications 13(1), 113–129 (2010)

3. Bunke, H., Riesen, K.: Graph Edit Distance – Optimal and Suboptimal Algorithms
with Applications, pp. 113–143. Wiley-VCH Verlag GmbH & Co. KGaA (2009)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco (1979)

5. Akutsu, T., Fukagawa, D., Takasu, A., Tamura, T.: Exact algorithms for computing
the tree edit distance between unordered trees. Theor. Comput. Sci. 412, 352–364
(2011)

6. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput.
Sci. 337(1-3), 217–239 (2005)

7. Akutsu, T.: Tree Edit Distance Problems: Algorithms and Applications to Bioin-
formatics. IEICE Transactions on Information and Systems 93, 208–218 (2010)

8. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

9. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered
labeled trees. Information Processing Letters 42(3), 133–139 (1992)



384 J. Baumbach, J. Guo, and R. Ibragimov

10. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled
trees. Information Processing Letters 49(5), 249–254 (1994)

11. Akutsu, T., Fukagawa, D., Halldórsson, M.M., Takasu, A., Tanaka, K.: Approxima-
tion and parameterized algorithms for common subtrees and edit distance between
unordered trees. Theoretical Computer Science 470, 10–22 (2013)

12. Blin, G., Sikora, F., Vialette, S.: Querying graphs in protein-protein interactions
networks using feedback vertex set. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 7(4), 628–635 (2010)

13. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Applied Mathematics 113(1), 109–128 (2001)

14. Sharan, R.: Graph modification problems and their applications to genomic re-
search. PhD thesis, School of Computer Science (2002)

15. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1974)



A Polynomial Time Approximation Scheme

for the Closest Shared Center Problem

Weidong Li1, Lusheng Wang2, and Wenjuan Cui2

1 Department of Atmospheric Science,
Yunnan University, Kunming, P.R. China

2 Department of Computer Science,
City University of Hong Kong, Hong Kong

weidong@ynu.edu.cn, cswangl@cityu.edu.hk, wenjuacui2@student.cityu.edu.hk

Abstract. Mutation region detection is the first step of searching for
a disease gene and has facilitated the identification of several hundred
human genes that can harbor mutations leading to a disease phenotype.
Recently, the closest shared center problem (CSC) was proposed as a
core to solve the mutation region detection problem when the pedigree
is not given [9]. A ratio-2 approximation algorithm was proposed for the
closest shared center problem. In this paper, we will design a polynomial
time approximation scheme for this problem.

1 Introduction

Mutation region detection is the first step of searching for a disease gene. Linkage
analysis has facilitated the identification of several hundred human genes that
can harbor mutations leading to a disease phenotype. The fundamental problem
in linkage analysis is to identify regions whose allele is shared by all affected
members but by none unaffected family members.

There are mainly two approaches for linkage analysis, probabilistic approach
and deterministic approach. Most methods for linkage analysis are designed for
families with clearly given pedigrees. In probabilistic approaches, recombinant
rates are estimated in a way to maximize the likelihood of the observed data
[1,4,6]. In deterministic approaches, the aim is to minimize the total number of
recombinants to infer the input genotype data so that all diseased individuals
share a segment that is shared by none of the normal individuals [2,8].

Recently, there are some work on the important case, where the sampled
individuals are closely related, but the pedigree is not given [9,10,11]. This
situation happens very often when the individuals share a common ancestor 6
or more generations ago.

Here we assume that for each input individual we know the genotype data
g, over a chromosome. A genotype segment is a string on alphabet {0, 1, 2}. A
haplotype segment is a binary string on alphabet {0, 1}. A haplotype pair for a
genotype segment g is a pair (h, h′) of haplotype segments of the same length as
g such that the following conditions hold for every position q:

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 385–396, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



386 W. Li, L. Wang, and W. Cui

– If g has a 0 or 1 at position q, then both h and h′ have the same letter as g
does at position q.

– If g has a 2 at position q, then one of h and h′ has a 0 at position q while
the other has a 1 at position q.

The general problem is as follows: We are given two sets of genotypes on the
whole chromosome D = {G1, G2, ..., Gk} and N = {Gk+1, Gk+2, ..., Gn}, where
the k genotypes in D are from diseased individuals and the n−k genotypes in N
are from normal individuals. The n individuals in D and N are relatives (in the
same hidden pedigree). The objective is to detect the mutation regions on the
chromosome such that all the diseased individuals share a common haplotype
segment on the region and none of the normal individuals has such a common
haplotype segment on the region. Here, we study monogenic dominant diseases,
which is caused by one single gene. The diseases can happen once the faulty gene
appears on a single haplotype. Therefore, the mutation region is a region on a
single haplotype containing the faulty gene. On each region, each individual
has two haplotype segments. As indicated in [10], if we know the haplotype
of each input individual over the chromosome, the true mutation regions can be
computed by finding the haplotype segments which are shared by all the diseased
individuals but by none of the normal ones. Therefore, to solve the problem, the
key issue is to infer the haplotype segments from the genotype data.

The task of inferring the haplotype of each individual over the whole chromo-
some is difficult. To solve the general problem, Ma et. al. [9] propose a method
that makes use of the known haplotypes of similar population as reference to
infer haplotypes. The main problem they considered is the mutation region de-
tection problem, where a region on a chromosome, denoted by [a, b], is a set of
consecutive SNP sites (positions) starting at position a and ending at position
b. The mutation region detection problem is as follows: We are given three sets
D = {g1, g2, . . . , gk}, N = {gk+1, gk+2, . . . , gn}, and H = {h1, h2, . . ., hm},
where D consists of diseased individuals represented by their genotype data on
a whole chromosome C, N consists of normal individuals represented by their
genotype data on C, and H consists of confirmed haplotype data on C of some
individuals in the same (or similar) population. The objective is to find the true
mutation regions of C. Here, a true mutation region of C means a consecutive
portion of C where all the diseased individuals share a common haplotype seg-
ment that is shared by none of the normal individuals. The true mutation regions
defined here are based on the haplotype segments of all individuals. If we know
the haplotype segments of all the individuals, the true mutation regions can be
easily computed.

To solve the mutation region detection problem, Ma et al. [9] proposed to
decompose the whole chromosome into a set of disjoint regions and test if a
region belongs to the true mutation region. To test if a region belongs to the
true mutation region, Ma et al. [9] proposed a mathematical model, the shared
center problem. They showed that the shared center problem was NP -complete
and then presented a 2-approximation algorithm for the closest shared center



A Polynomial Time Approximation Scheme 387

(CSC, for short) problem which is the minimization version of the shared center
problem.

The formal definition of CSC is presented as follows. We are given three sets
D = {g1, g2, . . . , gk}, N = {gk+1, gk+2, . . . , gn}, and H = {h1, h2, . . ., hm},
where gi is a genotype of length L for i = 1, 2, . . . , n, and hj is a haplotype of
length L for j = 1, 2, . . . ,m. For a genotype g in D ∪ N , the letter g[i] of g at
position i can be 0, 1, or 2. Thus, g = g[1]g[2] . . . g[L]. For a haplotype h in H ,
the letter h[i] of h at position i can be 0 or 1. Thus, h = h[1]h[2] . . . h[L].

For convenience, we say that a position of g ∈ D ∪ N is decided if the letter
of g at the position is 0 or 1, and is undecided otherwise. A haplotype pair for
gi ∈ D∪N is a pair (hi,1, hi,2) of haplotypes satisfying the following conditions:

1) The letter of gi at each decided position q is the same as the letters of
both hi,1 and hi,2 at the same position, i.e., gi[q] = a ∈ {0, 1} indicates that the
inferred haplotypes hi,1 and hi,2 of gi both satisfy hi,1[q] = hi,2[q] = a.

2) For each undecided position of gi, one of hi,1 and hi,2 has a 0 at the position
while the other has a 1 at the position.

For the genotype set D, we define three sets of positions as follows:

– The set of conflicting positions associated with D consists of all positions q
such that q is a decided position of two distinct gi ∈ D and gj ∈ D but the
letters of gi and gj at position q differ. To assure the existence of a feasible
solution, we assume that this set is empty.

– The set Ū of decided positions associated with D consists of all positions q
such that q is a decided position of at least one genotype segment in D.

– The set U of undecided positions associated with D consists of all positions
q such that q is an undecided position for all genotype segment in D.

For two haplotypes h and h′, let d(h, h′) denote the Hamming distance between
h and h′. Let P = {j1, j2, . . . , jl} satisfying 1 ≤ j1 < j2 < . . . < jl ≤ L be a set
of positions. We write h|P to denote the haplotype segment h[j1]h[j2] . . . h[jl].
We also use dP (h, h′) to denote d(h|P , h′|P ). For two positive integers a, b with
a < b, [a..b] denotes the integer set {a, a+ 1, . . . , b− 1, b}.

Let I = (D,N,H) be the input instance. Given an integer d ∈ [0..L] (referred
to as the radius), a feasible solution for I consists of a haplotype s of length
L (referred to as the center haplotype), an index p ∈ [1..m] (referred to as the
center index), and a haplotype pair (hi,1, hi,2) for each genotype gi ∈ D∪N such
that the following conditions hold:

– C1 d(s, hp) ≤ d.
– C2 for each i ∈ [1..k], hi,1 = s and there is an integer li ∈ [1..m] such that
d(hi,2, hli) ≤ d.

– C3 for each i ∈ [k + 1..n] and for each j ∈ {1, 2}, the following hold:
C3a. There is an integer li,j ∈ [1..m] \ {p} with d(hi,j , hli,j ) ≤ d.
C3b. hi,j |Ū �= s|Ū , i.e., there is at least one position q in Ū at which the
letters of hi,j and s differ.

For a given integer d, if there is a feasible solution for I, d is called valid radius.
The CSC problem is to find the minimum valid radius for instance I. In this



388 W. Li, L. Wang, and W. Cui

paper, we design a polynomial time approximation scheme for CSC, i.e., for any
fixed number ε ∈ (0, 1), our algorithm can find a feasible solution with objective
value no more than (1 + ε)d∗, where d∗ is the optimal objective value of the
input instance for the CSC problem.

2 Preliminaries

As in [9], we assume that L is a valid radius for instance I, otherwise, there is
no feasible solution. Let d∗ be the optimal radius for I. Given any fixed number
ε ∈ (0, 1), for each possible center index p ∈ [1..m], our method is to find a
feasible solution with objective value no more than (1 + ε)dp and output the
solution with minimum radius, where dp is the optimal value for the restricted
instance satisfying that p is the center index. As d∗ = min{dp|p ∈ [1..m]}, the
objective value of the outputted solution is no more than (1 + ε)d∗. Hence,
without loss of generality, we assume that the center index p is known.

Here, we first focus on designing an approximation scheme to find a haplotype
pair (hi,1, hi,2) for each genotype gi ∈ D satisfying Conditions C1 and Conditions
C2. If there is a haplotype s of length L shared by the genotypes in D, then
the letter of s at each position q ∈ Ū can be uniquely fixed according to the
following rules:

Rule 1. If some genotype in D is 0 at position q and each of the other segments
in D is 0 or 2 at position q, then the letter of s at position q is 0.

Rule 2. If some genotype in D is 1 at position q and each of the other segments
in D is 1 or 2 at position q, then the letter of s at position q is 1.

Thus, the letter of s at each decided position q ∈ Ū is known. For each i ∈ [1..k]
and q ∈ Ū , if gi[q] = 2, set hi,2[q] = 1−s[q], otherwise set hi,2[q] = s[q]. Thus, we
obtain the letters of hi,2|Ū . The remaining task is to find the letters of s at each
position q ∈ U . Without loss of generality, we assume that U = {1, 2, . . . , u},
where u = |U |.

For a haplotype h of length |h|, h̄ denotes the complement haplotype of h,
where h̄[i] �= h[i] for every i ∈ [1..|h|]. Since s[q] = hi,1[q] �= hi,2[q] for each

q ∈ U , we have s̄|U = hi,2|U . Thus, d(hi,2, hli) = dU (hi,2, hli) + dŪ (hi,2, hli) =

dU (s̄, hli) + d
Ū (hi,2, hli), for each i ∈ [1..k]. Also, we have d(s, hp) = dU (s, hp) +

dŪ (s, hp) = dU (s̄, h̄p)+d
Ū (s, hp). Therefore, the CSC problem can be formulated

as follows.⎧⎪⎪⎨⎪⎪⎩
min d

dU (s̄, h̄p) ≤ d− dŪ (s, hp); Condition C1

dU (s̄, hli) ≤ d− dŪ (hi,2, hli), ∀i ∈ [1..k]. Condition C2

(1)

In the next section, we will design a polynomial time approximation scheme
(PTAS) that can find a feasible solution for (1) with objective value no more
than (1+ ε)dp for any constant ε ∈ (0, 1), where dp is the optimal objective value
for (1).



A Polynomial Time Approximation Scheme 389

3 Approximation Scheme for D

For convenience, let s and hli (i ∈ [1..k]) be the optimal solution for (1) from
now on. The main difficulty for solving (1) is that the indices p and li for each
i ∈ [1..k] are not known. For any positive integer r ≥ 2, consider r haplotypes hi1 ,
hi2 , . . ., hir ∈ {h̄p}∪H . Let Qi1,i2,...,ir ⊆ U be the set of positions in U where hi1 ,
hi2 , . . ., hir agree, and Pi1,i2,...,ir = U \Qi1,i2,...,ir . Firstly, we use hi1 |Qi1,i2,...,ir

to approximate s̄|Qi1,i2,...,ir
. Then, use a random sampling technique to find a

hl′i ∈ H which is close to hli . After replacing hli by hl′i , we reformulate (1) as a
linear programming and use the randomized rounding approach to find a string
of length |Pi1,i2,...,ir | to approximate s̄|Pi1,i2,...,ir

.

3.1 Approximate s̄|Qi1,i2,...,ir

We will prove that there exist r haplotypes hi1 , hi2 , . . ., hir such that hi1 is close
to s̄ at the positions in Qi1,i2,...,ir .

Lemma 1. Let hl0 = h̄p. For any constant r ∈ [2..k], there exist r haplotypes
hi1 , hi2 , . . ., hir in {hl0 , hl1 , . . . , hlk} such that, for each i ∈ [0..k],

dQ(hi1 , hli)− dQ(s̄, hli) ≤
1

2r−1
dp, where Q = Qi1,i2,...,ir .

Proof. Choose hi1 = hl0 . Let T = {q ∈ U |hi1 [q] �= s̄[q]} be the set of positions
where hi1 and s̄ are different. Following Condition C1 in (1), we have |T | ≤ dp.
We use the following method to select the remaining (at most) r − 1 indices.

Step 1. For the remaining haplotypes in {hl1 , . . . , hlk} do
Step 2. Select the haplotype hli satisfying dT (hi1 , hli) ≥

|T |
2 and then set

T = T \ {q ∈ T |hi1 [q] �= hli [q]}. If T = ∅, stop, otherwise, goto Step 3.
Step 3. If we have selected r haplotypes including hi1 , stop; else, goto Step 1.
Clearly, the above procedure will stop after at most r−1 iterations. Since each

time the size of T is reduced by at least half, the size of T after r−1 iterations is at
most 1

2r−1 dp. Note that the selected haplotypes agree at each position q ∈ T and
hi1 [q] = s̄[q] for each q ∈ Q\T by the definition of T . For each i ∈ [0..k], we have
dQ(hi1 , hli)−dQ(s̄, hli) = dT (hi1 , hli)−dT (s̄, hli) ≤ dT (hi1 , hli) ≤ |T | ≤ 1

2r−1 dp.
Next, we will prove that there exists a haplotype satisfying the condition at

Step 2. If not, construct a new haplotype s∗ by modifying s̄: for each q ∈ T ,
set s∗[q] = hi1 [q]. By assumption, for each unselected haplotype hli at Step 2,

we have dT (s∗, hli) = dT (hi1 , hli) <
|T |
2 . For each q ∈ T , if s∗[q] = hli [q], then

s̄[q] �= hli [q]. Thus, we have dT (s̄, hli) >
|T |
2 . Hence, dT (s∗, hli) < dT (s̄, hli),

which implies that dU (s∗, hli) < dU (s̄, hli). By the definition of T , dT (s∗, hli) = 0
holds for each selected haplotype hli . Therefore, for each haplotype hli (selected
or unselected), dU (s∗, hli) < dU (s̄, hli). This contradicts the optimality of s̄.

Although we do not know hli , we can try all possible size r haplotypes (admits
repetition) in {h̄p} ∪ H within O((m + 1)r) time. Thus, we assume that the r
haplotypes hi1 , hi2 , . . ., hir satisfying Lemma 1 are known. For convenience, let
Q = Qi1,i2,...,ir and P = U \Q.



390 W. Li, L. Wang, and W. Cui

Lemma 2. |P | ≤ rdp.
Proof. For each q ∈ P , by the definition of P , there exists some hij (j ∈ [1..r])
such that hij [q] �= s̄[q]. Since dU (s̄, hij ) ≤ dp, each hij contributes at most dp
positions in P . Thus, |P | ≤ rdp.

3.2 Approximate hli by Using the Random Sampling Approach

The following lemma is very useful throughout this section.

Lemma 3. [7] Let X1, X2, . . ., Xn be n independent random 0-1 variables,
where Xi takes 1 with probability pi, 0 < pi < 1. Let X =

∑n
i=1E[Xi]. Then

for any 0 < δ ≤ 1,

Pr(X > μ+ δn) ≤ exp(−1

3
nδ2),

Pr(X < μ− δn) ≤ exp(−1

2
nδ2).

Although we have found a string hi1 |Q which is close to s̄|Q, we know noth-
ing about s̄|P . Also, we do not know hli for each i ∈ [1..k]. We will use the
random sampling strategy to find a hl′i which is near to hli . We randomly pick

�4/δ2 ln(mk)� positions from P . Suppose the multiset of these random positions

is R. By trying 2|R| = O((mk)
4
δ2 ) possible strings, we can assume that we know

s̄|R. For each i ∈ [1..k], we find the haplotype hl′i ∈ H such that

f(hl′i) = dR(s̄, hl′i) · |P |/|R|+ dQ(hi1 , hl′i) + dŪ (hi,2, hl′i)

is minimized.
To prove that hl′i is a good approximation to hli , we introduce a binary string

s∗ of length u satisfying s∗|P = s̄|P and s∗|Q = hi1 |Q.
Lemma 4. With probability at most (mk)−1, there is a haplotype hl′i ∈ H
(i ∈ [1..k]) satisfying

f(hl′i) ≤ d
U (s∗, hl′i) + dŪ (hi,2, hl′i)− δ|P |. (2)

With probability at most (mk)−
1
3 , there is a haplotype hli (i ∈ [1..k]) satisfying

f(hli) ≥ dU (s∗, hli) + dŪ (hi,2, hli) + δ|P |. (3)

Proof. Let ρ = |P |/|R| and then f(h) = ρ · dR(s̄, h) + dQ(hi1 , h) + dŪ (hi,2, h)
for each h ∈ H . We will consider f(hl′i) first. Since R is a set of randomly

independently selected positions, dR(s̄, hl′i) is the sum of |R| independent random
0-1 variables

∑|R|
l=1Xl, where Xl = 1 indicates a mismatch between s̄ and hl′i at

the lth position in R.



A Polynomial Time Approximation Scheme 391

Let μ′ = E[dR(s̄, hl′i)]. Clearly, μ
′ = dP (s̄, hl′i) · |R|/|P | = dP (s̄, hl′i)/ρ. By

Lemma 3, we have

Pr(f(hl′
i
) ≤ dU (s∗, hl′

i
) + dŪ (hi,2, hl′

i
)− δ|P |)

= Pr(ρ · dR(s̄, hl′
i
) + dQ(hi1 , hl′

i
) + dŪ (hi,2, hl′

i
) ≤ dU (s∗, hl′

i
) + dŪ (hi,2, hl′

i
)− δ|P |)

= Pr(ρ · dR(s̄, hl′
i
) + dQ(s∗, hl′

i
) ≤ dU (s∗, hl′

i
)− δ|P |)

= Pr(dR(s̄, hl′
i
) ≤ dP (s̄, hl′

i
)/ρ− δ|P |/ρ)

= Pr(dR(s̄, hl′i
) ≤ μ′ − δ|R|)

≤ exp(−1

2
δ2|R|)

≤ (mk)−2,

where the second equality follows the fact s∗|Q = hi1 |Q. Since |H | = m, there are
at mostm possible haplotypes for each i ∈ [1..k]. Considering all themk f(hl′i)’s,

the probability that there is a hl′i satisfying (2) is at most (mk) × (mk)−2 =

(mk)−1.
Similarly, we have

Pr(f(hli) ≥ dU (s∗, hli) + dŪ (hi,2, hli) + δ|P |) ≤ (mk)−
4
3 .

Considering all the mk hli ’s, the probability that a hli satisfies (3) is at most

(mk)× (mk)−
4
3 = (mk)−

1
3 . Thus, the lemma holds.

Lemma 5.With high probability, dU (s∗, hl′i)+d
Ū (hi,2, hl′i) ≤ (1+ 1

2r−1 )dp+2δ|P |
for each i ∈ [1..k].
Proof. For any two strings t and t′, we have dP (t, t′) + dQ(t, t′) = dU (t, t′).
Combining Lemma 1, for any i ∈ [1..k], we have

dU (s∗, hli) + dŪ (hi,2, hli) = dP (s∗, hli) + dQ(s∗, hli) + dŪ (hi,2, hli)

= dP (s̄, hli) + dQ(hi1 , hli) + dŪ (hi,2, hli)

≤ dP (s̄, hli) + dQ(s̄, hli) +
1

2r−1
dp + dŪ (hi,2, hli)

= dU (s̄, hli) + dŪ (hi,2, hli) +
1

2r−1
dp

≤ (1 +
1

2r−1
)dp,

(4)

where the last inequality follows the fact that dU (s̄, hli) + dŪ (hi,2, hli) ≤ dp.
Thus, we only need to prove that with high probability,

dU (s∗, hl′i) + dŪ (hi,2, hl′i) ≤ d
U (s∗, hli) + dŪ (hi,2, hli) + 2δ|P |. (5)

By Lemma 4, with probability at least 1− (mk)−1 − (mk)−
1
3 , we have

f(hl′i) ≥ d
U (s∗, hl′i) + dŪ (hi,2, hl′i)− δ|P |,



392 W. Li, L. Wang, and W. Cui

and

f(hli) ≤ dU (s∗, hli) + dŪ (hi,2, hli) + δ|P |.

Since we choose hl′i such that f(hl′i) ≤ f(hli) for each i ∈ [1..k], we obtain

dU (s∗, hl′i) + dŪ (hi,2, hl′i) ≤ d
U (s∗, hli) + dŪ (hi,2, hli) + 2δ|P |.

Combining (4), for each i ∈ [1..k], we have

dU (s∗, hl′i) + dŪ (hi,2, hl′i) ≤ (1 +
1

2r−1
)dp + 2δ|P |.

This completes the lemma.

Corollary 6. In polynomial time, we can find a hl′i that satisfies dU (s∗, hl′i) +

dŪ (hi,2, hl′i) ≤ (1 + 1
2r−1 )dp + 2δ|P | for each i ∈ [0..k].

Proof. The algorithm in the proof of Lemma 5 can be derandomized by the
method in [7] (or [3] for details).

When we choose large r and small δ, Corollary 6 implies that hl′i is a good
approximation for hli . From now on, we can assume that hl′i satisfying the con-
dition in Corollary 6 is known for each i ∈ [1..k].

3.3 Approximate s̄|P by Using the Randomized Rounding Approach

Here, we will use a binary string y0 to approximate s̄|P , where y = y0 which will
be defined later is a feasible solution to the following program (6). Replacing hli
by hl′i , and s̄|Q by hi1 |Q, we rewrite (1) as⎧⎪⎪⎨⎪⎪⎩

min d

dP (y, h̄p) ≤ d− dQ(hi1 , h̄p)− dŪ (s, hp);
dP (y, hl′i) ≤ d− d

Q(hi1 , hl′i)− d
Ū (hi,2, hl′i), i ∈ [1..k],

(6)

where y is a binary string of length |P |.
Lemma 7. We can obtain a solution y = y0 for (6) with objective value no more
than (1 + 1

2r−1 + 3δr)dp in polynomial time for any fixed δ > 0.

Proof. Recall that s∗|P = s̄|P and s∗|Q = hi1 |Q. By the definition of hi1 and
Lemma 1, we have

dP (s̄, h̄p) = dP (s∗, h̄p) = dU (s∗, h̄p)− dQ(hi1 , h̄p)

≤ dU (s̄, h̄p) +
1

2r−1
dp − dQ(hi1 , h̄p)

≤ (1 +
1

2r−1
)dp − dQ(hi1 , h̄p)− dŪ (s, hp),



A Polynomial Time Approximation Scheme 393

where the last inequality follows from the fact dU (s̄, h̄p) + dŪ (s, hp) ≤ dp. By
Corollary 6, for each i ∈ [1..k], we have

dP (s̄, hl′i) = dP (s∗, hl′i) = dU (s∗, hl′i)− d
Q(hi1 , hl′i)

≤ (1 +
1

2r−1
)dp + 2δ|P | − dŪ (hi,2, hl′i)− d

Q(hi1 , hl′i)

≤ (1 +
1

2r−1
+ 2δr)dp − dQ(hi1 , hl′i)− d

Ū (hi,2, hl′i),

where the last inequality follows from Lemma 2. Therefore, (6) has a solution
y = s̄|P with cost d ≤ (1 + 1

2r−1 + 2δr)dp. Let d0 be the optimal value for (6),
then

d0 ≤ (1 +
1

2r−1
+ 2δr)dp. (7)

Without loss of generality, we assume that P = [1..|P |]. We use a 0-1 variable
yq,a to indicate whether y[q] = a, where q ∈ [1..|P |] and a ∈ {0, 1}. Denote
χ(hl′i [q], a) = 0 if hl′i [q] = a and 1 if hl′i [q] �= a for i ∈ [1..k]. Similarly, we define

the constant χ(h̄p[q], a). Hence, the program (6) is equivalent to the following
0-1 program:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min d

yq,0 + yq,1 = 1, q ∈ [1..|P |];
|P |∑
q=1

∑
a∈{0,1}

χ(h̄p[q], a)yq,a ≤ d− dQ(hi1 , h̄p)− dŪ (s, hp);

|P |∑
q=1

∑
a∈{0,1}

χ(hl′i [q], a)yq,a ≤ d− d
Q(hi1 , hl′i)− d

Ū (hi,2, hl′i), i ∈ [1..k].

(8)

Let yq,a = ȳq,a (q ∈ [1..|P |], a ∈ {0, 1}) be its fraction optimal solution with
cost d̄ ≤ d0, which can be computed by using the method in [5]. For each
q ∈ [1..|P |], independently, with probability ȳq,a, set y

′
q,a = 1 and y′q,1−a = 0,

where a ∈ {0, 1}. Then, we obtain a feasible solution y = y′, where y′[q] = a if
and only if y′q,a = 1, for q ∈ [1..|P |] and a ∈ {0, 1}.

Clearly, dP (y′, h̄p) =
∑|P |

q=1

∑
a∈{0,1} χ(h̄p[q], a)y

′
q,a is a sum of |P | indepen-

dent 0-1 random variables. Hence,

E[dP (y′, h̄p)] =

|P |∑
q=1

∑
a∈{0,1}

χ(h̄p[q], a)E[y
′
q,a]

=

|P |∑
q=1

∑
a∈{0,1}

χ(h̄p[q], a)ȳq,a

≤ d̄− dQ(hi1 , h̄p)− dŪ (s, hp)
≤ d0 − dQ(hi1 , h̄p)− dŪ (s, hp).



394 W. Li, L. Wang, and W. Cui

Therefore, for any fixed δ > 0, by Lemma 3, we have

Pr(dP (y′, h̄p) ≥ d0 − dQ(hi1 , h̄p)− dŪ (s, hp) + δ|P |)
≤ Pr(dP (y′, h̄p) ≥ E[dP (y′, h̄p)] + δ|P |)

≤ exp(−1

3
δ2|P |).

For each i ∈ [1..k], similarly, we have

Pr(dP (y′, hl′i) ≥ d0 − d
Q(hi1 , hl′i)− d

Ū (hi,2, hl′i) + δ|P |) ≤ exp(−1

3
δ2|P |).

Considering all the k + 1 haplotypes h̄p, hl′1 , . . . , hl′k , we have

Pr(dP (y′, h̄p) ≥ d0 − dQ(hi1 , h̄p)− dŪ (s, hp) + δ|P |,
or dP (y′, si|P ) ≥ d0 − dQ(hi1 , hl′i)− d

Ū (hi,2, hl′i) + δ|P |, ∃i ∈ [1..k])

≤ (k + 1) exp(−1

3
δ2|P |).

If |P | ≥ 4/δ2 ln(k + 1), then (k + 1) exp(− 1
3δ

2|P |) ≤ (k + 1)−1/3. Thus, with

probability at least 1 − (k + 1)−1/3, we obtain a randomized algorithm to find
a solution y′ for (6) with objective value at most d0 + δ|P | . Since the above
randomized algorithm can be derandomized by the standard method [7,12], we
can find a solution y0 for (6) with objective value at most d0+δ|P | in polynomial
time.

If |P | < 4/δ2 ln(k+1), 2|P | < (k+1)4/δ
2

is polynomial in k+1. Thus, we can
enumerate all possible binary strings of length |P | to find an optimal solution y0
with objective value at most d0 for (6) in polynomial time.

Thus, in both cases, we can obtain a solution y = y0 for optimization problem
(6) with cost at most d0 + δ|P | in polynomial time. By (7) and Lemma 2, we
have d0 + δ|P | ≤ (1 + 1

2r−1 + 3δr)dp. This proves the lemma.
For any constant ε ∈ (0, 1), set r = �log 4

ε � and δ = ε/(6r). Then, we can
obtain a solution s′ approximating s|U with objective value no more than (1+ε)dp
for (1), where s′ satisfies that s′|Q = h̄i1 |Q and s′|P = ȳ0. Hence, we obtain the
following theorem.

Theorem 8. There is a randomized algorithm to find a ratio (1 + ε) solution
for (1).

Now we describe the complete randomized algorithm (randomized form) as
follows.

Algorithms for the genotype set D
Input: a genotype set D = {g1, g2, . . . , gk}, a haplotype set H = {h1, h2, . . .,
hm}, a center index p, and a desired accuracy ε ∈ (0, 1).
Output: a haplotype s′, and a haplotype hl′i ∈ H for each i ∈ [1..k].
Step 1. Compute s|Ū and hi,2|Ū for each i ∈ [1..k], and then construct the
program (1) as in Section 2. Let r = �log 4

ε � and δ = ε/(6r).



A Polynomial Time Approximation Scheme 395

Step 2. For each r-element multi-set {hi1 , hi2 , . . ., hir}, where hi1 = h̄p and
hi2 , . . . , hir ∈ H , do

(a) Q = {q ∈ U |hi1 [q] = hi2 [q] = · · · = hir [q]}, P = U \Q.
(b) Let R be a multiset containing �4/δ2 ln(mk)� uniformly random posi-

tions from P .
(c) for every binary sting x of length |R| do
(i) For each i ∈ [1..k], we select the haplotype hl′i ∈ H minimizing

f(hl′i) = dR(x, hl′i) · |P |/|R|+ dQ(hi1 , hl′i) + dŪ (hi,2, hl′i).

(ii) Use the method given in the proof of Lemma 7 to get a solution
y = y0 for (6).

(iii) Let s′ be the haplotype such that s′|Ū = s|Ū , s′|Q = h̄i1 |Q and
s′|P = ȳ0. Let

d = max{d(s′, hp), dU (s̄′, hl′i) + dŪ (hi,2, hl′i), i ∈ [1..k]}

Step 3. Output s′ with minimum d in Step 2 and its corresponding haplotypes
hl′i ∈ H for each i ∈ [1..k].

3.4 Derandomization

The randomized algorithm can be derandomized using some existing techniques
in [7]. The random sampling method in Section 3.2 can be derandomized as
follows: Instead of randomly and independently choosing O(log(mk)) positions
from P , we can pick the vertices encountered on a randomwalk of length
O(log(mk)) on a constant degree expander [3]. Obviously, the number of such
random walks on a constant degree expander is polynomial in terms of nm. Thus,
by enumerating all random walks of length O(log(mk)), we have a polynomial
time deterministic algorithm. The randomized rounding approach in Section 3.3
can be derandmized by a method in [7].

Theorem 9. There is a polynomial time approximation scheme for the problem
formulated in (1).

4 An Ultimate PTAS

In this section, we will consider the haplotypes in N . For each gi ∈ N , let Ui

(respectively, Ūi) denote the set of undecided (respectively, decided) positions
of gi. By definition, gi[q] = 2 if and only if q ∈ Ūi. We call that gi is dead if (1)
|Ū \ Ūi| ≤ 1 and (2) at every position q ∈ Ū ∩ Ūi, the center letter is the same
as the letter of gi. As in [9], we assume that no string gi ∈ N is dead to assure
the existence of a feasible solution.

Lemma 10. [9] Computing a haplotype pair (hi,1, hi,2) for each gi ∈ N with
objective value no more than dp + 1 can be done within O(nLm2) time.



396 W. Li, L. Wang, and W. Cui

If dp ≤ 1
ε , it is easy to verify that the optimal solution can be computed by

trying all possibilities in polynomial time. Otherwise, we have dp+1 < (1+ ε)dp,
which is the desired result.

Combining Theorem 9 in Section 3, we obtain

Theorem 11. There is a polynomial time approximation scheme for the closest
shared center problem.

Acknowledgements. The work is fully supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China [Project
CityU 122511].

References

1. Abecasis, G., Cherny, S., Cookson, W., Cardon, L.: Merlin-rapid analysis of dense
genetic maps using sparse gene flow trees. Nature Genetics 30, 97–101 (2002)

2. Cai, Z., Sabaa, H., Wang, Y., Goebel, R., Wang, Z., Xu, J., Stothard, P., Lin,
G.: Most parsimonious haplotype allele sharing determination. BMC Bioinformat-
ics 10, 115 (2009)

3. Gillman, D.: A Chernoff bound for randomwalks on expanders. In: Proceedings of
the 34th Annual Symposium on Foundations of Computer Science, pp. 680–691
(1993)

4. Gudbjartsson, D.F., Jonasson, K., Frigge, M.L., Kong, A.: Allegro, a new computer
program for multipoint linkage analysis. Nature Genetics 25, 12–13 (2000)

5. Karmarkar, N.: A new polynomial-time algorithm for linear programming.
Combinatorica 4, 373–395 (1984)

6. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P., Lander, E.S.: Parametric and non-
parametric linkage analysis: a unified multipoint approach. American Journal of
Human Genetics 58, 1347–1363 (1995)

7. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. Assoc.
Comput. Mach. 49, 157–171 (2002)

8. Lin, G., Wang, Z., Wang, L., Lau, Y.-L., Yang, W.: Identification of linked regions
using high-density SNP genotype data in linkage analysis. Bioinformatics 24(1),
86–93 (2008)

9. Ma, W., Yang, Y., Chen, Z., Wang, L.: Mutation region detection for closely
related individuals without a known pedigree using high-density genotype data.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(2),
372–384 (2012)

10. Cui, W., Wang, L.: Identifying mutation regions for closely related individuals
without a known pedigree. BMC Bioinformatics 13, 146 (2012)

11. Chen, Z.-Z., Ma, W., Wang, L.: The Parameterized Complexity of the Shared
Center Problem, Algorithmic (to appear)

12. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univ. Press
(1995)



An Improved Approximation Algorithm for Scaffold
Filling to Maximize the Common Adjacencies

Nan Liu1,2, Haitao Jiang1,3, Daming Zhu1, and Binhai Zhu4

1 School of Computer Science and Technology, Shandong University, Jinan, China
htjiang@mail.sdu.edu.cn, dmzhu@sdu.edu.cn

2 School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
liunansdu@gmail.com

3 School of Mathematics and System Science, Shandong University, Jinan, China
4 Department of Computer Science, Montana State University, Bozeman,

MT 59717-3880, USA
bhz@cs.montana.edu

Abstract. Scaffold filling is a new combinatorial optimization problem in
genome sequencing. The one-sided scaffold filling problem can be described as:
given an incomplete genome I and a complete (reference) genome G, fill the
missing genes into I such that the number of common (string) adjacencies be-
tween the resulting genome I ′ and G is maximized. This problem is NP-complete
for genome with duplicated genes and the best known approximation factor is
1.33, which uses a greedy strategy. In this paper, we prove a better lower bound
of the optimal solution, and devise a new algorithm by exploiting the maximum
matching method and a local improvement technique, which improves the ap-
proximation factor to 1.25.

1 Introduction

Motivation. The Next Generation Sequencing technology greatly improves the speed
of genome sequencing, and more organisms for genome analysis can be sequenced.
However, these sequences are often only a part of the complete genome. The whole
genome sequencing problem is, in general, still an intractable problem. Currently, most
sequencing results for genomes usually are in the form of scaffolds or contigs. Some-
times, applying these incomplete genomes for genomic analysis will introduce unnec-
essary errors. So it is natural to fill the missing gene fragments into the incomplete
genome in a combinatorial way, and to obtain an ‘augmented’ genome which is closer
to some reference genome.
Related Results. Muñoz et al. first investigated the one-sided permutation scaffold
filling problem, and proposed an exact algorithm to minimize the genome rearrange-
ment (DCJ) distance [12]. Subsequently, Jiang et al. considered the permutation scaf-
fold filling under the breakpoint distance and showed that even the two-sided problem
is polynomially solvable.

When genomes contain some duplicated genes, the scenario is completely differ-
ent. There are three general criteria (or distance) to measure the similarity of genomes:
the exemplar genomic distance [13], the minimum common string partition (MCSP)

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 397–408, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



398 N. Liu et al.

distance [3] and the maximum number of common string adjacencies [1,10,11]. Unfor-
tunately, unless P=NP, there does not exist any polynomial time approximation (regard-
less of the factor) for computing the exemplar genomic distance even when each gene
is allowed to repeat three times [6,4] or even two times [2,8]. The MCSP problem is
NP-complete even if each gene repeats at most two times [7] and the best known approx-
imation factor for the general problem is O(log n log∗ n) [3]. Based on the maximum
number of common string adjacencies, Jiang et al. proved that the one-sided scaffold
filling problem is also NP-complete, and designed a 1.33-approximation algorithm with
a greedy strategy [10,11].
Our Contribution. In this paper, we design an approximation algorithm with a factor
of 1.25 for the problem of one-sided scaffold filling to maximize the number of string
adjacencies, by using a combined maximum matching and local improvement method.

2 Preliminaries

At first, we review some necessary definitions, which are also defined in [11]. Through-
out this paper, all genes and genomes are unsigned, and it is straightforward to general-
ize the result to signed genomes. Given a gene set Σ, a string P is called permutation if
each element in Σ appears exactly once in P . We use c(P) to denote the set of elements
in permutation P . A string A is called sequence if some genes appear more than once
in A, and c(A) denotes genes of A, which is a multi-set of elements in Σ. For example,
Σ = {a, b, c, d}, A = abcdacd, c(A) = {a, a, b, c, c, d, d}. A scaffold is an incomplete
sequence, typically obtained by some sequencing and assembling process. A substring
with m genes (in a sequence) is called an m-substring, and a 2-substring is also called
a pair, as the genes are unsigned, the relative order of the two genes of a pair does not
matter, i.e., the pair xy is equal to the pair yx. Given a scaffold A=a1a2a3 · · · an, let
PA = {a1a2, a2a3, . . . , an−1an} be the set of pairs in A.

Definition 1. Given two scaffolds A=a1a2 · · ·an and B=b1b2 · · · bm, if aiai+1 =
bjbj+1 (or aiai+1=bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB , we say that aiai+1

and bjbj+1 are matched to each other. In a maximum matching of pairs in PA and PB ,
a matched pair is called an adjacency, and an unmatched pair is called a breakpoint
in A and B respectively.

It follows from the definition that scaffolds A and B contain the same set of adja-
cencies but distinct breakpoints. The maximum matched pairs in B (or equally, in A)
form the adjacency set between A and B, denoted as a(A,B). We use bA(A,B) and
bB(A,B) to denote the set of breakpoints in A and B respectively. A gene is called
a bp-gene, if it appears in a breakpoint. A maximal substring T of A (or B) is call
a bp-string, if each pair in it is a breakpoint. The leftmost and rightmost genes of a
bp-string T are call the end-genes of T , the other genes in T are called the mid-genes
of T . We illustrate the above definitions with the following example. Given scaffolds
A = 〈a b c e d a b a 〉, B = 〈c b a b d a〉, PA = {ab, bc, ce, ed, da, ab, ba} and
PB = {cb, ba, ab, bd, da}. The matched pairs are (ab ↔ ba), (bc ↔ cb), (da ↔ da),
(ab ↔ ab). a(A,B) = {ab, bc, da, ab}, bA(A,B) = {ce, ed, ba}, bB(A,B) = {bd}.
The bp-strings in A are ced and ba, and the bp-string in B is bd.



An Improved Approximation Algorithm for Scaffold Filling 399

Given two scaffoldsA=a1a2 · · ·an and B=b1b2 · · · bm, as we can see, each gene ex-
cept the four ending ones is involved in two adjacencies or two breakpoints or one adja-
cency and one breakpoint. To get rid of this imbalance, we add “#” to both ends ofA and
B, which fixes a small bug in [10,11]. From now on, we assume thatA=a0a1 · · ·anan+1

and B=b0b1 · · · bmbm+1, where a0=an+1=b0=bm+1=#.
For a sequence A and a multi-set of elements X , let A + X be the set of all possi-

ble resulting sequences after filling all the elements in X into A. Now, we define the
problems we study in this paper formally.

Definition 2. Scaffold Filling to Maximize the Number of (String) Adjacencies (SF-
MNSA).
Input: two scaffolds A and B over a gene set Σ and two multi-sets of elements X and
Y , where X = c(B)− c(A) and Y = c(A)− c(B).
Question: Find A∗ ∈ A+X and B∗ ∈ B + Y such that |a(A∗, B∗)| is maximized.

The one-sided SF-MNSA problem is a special instance of the SF-MNSA problem
where one of X and Y is empty.

Definition 3. One-sided SF-MNSA.
Input: a complete sequenceG and an incomplete scaffold I over a gene setΣ, a multi-
set X = c(G)− c(I) �= ∅ with c(I)− c(G) = ∅.
Question: Find I∗ ∈ I +X such that |a(I∗, G)| is maximized.

Note that while the two-sided SF-MNSA problem is more general and more difficult,
the One-Sided SF-MNSA problem is more practical as a lot of genome analysis are
based on some reference genome [12].

We now list a few basic properties of this problem.

Lemma 1. LetG and I be the input of an instance of the One-sided SF-MNSA problem,
and x be any gene which appears the same times in G and I . If x does not constitute
breakpoint inG (resp. I), then it also does not constitute any breakpoint in I (resp.G).

Lemma 2. LetG and I be the input of an instance of the One-sided SF-MNSA problem,
let bp(I) and bp(G) be the multi-set of bp-genes in I andG respectively. Then any gene
in bp(G) appears in bp(I) ∪X , and bp(I) ⊆ bp(G).

Proof. Assume to the contrary that there exists a gene x, x ∈ bp(G), but x /∈ bp(I) ∪
X . Since x /∈ X , x appears the same number of times in G and I; moreover, x /∈
bp(I), then all the pairs in I containing x are adjacencies. From Lemma 1, all the
pairs involving x in G are adjacencies, contradicting the assumption that x ∈ bp(G).
So any gene in bp(G) appears in bp(I) ∪ X . By a similar argument, we can prove
bp(I) ⊆ bp(G). ��

Each breakpoint contains two genes, from what we discussed in Lemma 2, every break-
point in the complete sequence G belongs to one of the three multi-sets according to
the affiliation of its two bp-genes.

– BP1(G): breakpoints with one bp-gene in X and the other bp-gene not in X .
– BP2(G): breakpoints with both of the bp-genes in X .
– BP3(G): breakpoints with both of the bp-genes not in X .



400 N. Liu et al.

3 Approximation Algorithm for One-Sided SF-MNSA

In this section, we present a 1.25-Approximation algorithm for the one-sided SF-MNSA
problem. The goal of solving this problem is, while inserting the genes of X into the
scaffold I , to obtain as many adjacencies as possible. No matter in what order the genes
are inserted, they appears in groups in the final I ′ ∈ I +X , so we can consider that I ′

is obtained by inserting strings (composed of genes of X) into I .
Obviously, inserting a string of length one (i.e., a single gene) will generate at most

two adjacencies, and inserting a string of lengthm will generate at most m+1 adjacen-
cies. Therefore, we will have two types of inserted strings.

1. Type-1: a string of k missing genes x1, x2, . . . , xk are inserted in between yiyi+1

in the scaffold I to obtain k+1 adjacencies (i.e., yix1, x1x2, . . . , xk−1xk, xkyi+1),
where yiyi+1 is a breakpoint.
In this case, x1x2 . . . xk is called a k-Type-1 string, yiyi+1 is called a dock, and we
also say that yiyi+1 docks the corresponding k-Type-1 string x1x2 . . . xk.

2. Type-2: a sequence of l missing genes z1, z2, . . . , zl are inserted in between yjyj+1

in the scaffold I to obtain l adjacencies (i.e., yjz1 or zlyj+1, z1z2, . . . , zl−1zl),
where yjyj+1 is a breakpoint; or a sequence of l missing genes z1, z2, . . . , zl are
inserted in between yjyj+1 in the scaffold I to obtain l+1 adjacencies (i.e., yjz1,
z1z2, . . . , zl−1zl, zlyj+1), where yjyj+1 is an adjacency.

This is the basic observation for devising our algorithm. Most of our work is devoted to
searching the Type-1 strings.

3.1 Searching the 1-Type-1 Strings

To identify the 1-Type-1 strings, we construct a bipartite graph G1 = (X, bI(I,G), E),
where for each gene xi of X and each breakpoint yjyj+1 of bI(I,G), if we can obtain
two adjacencies by inserting xi in between yjyj+1, then there is an edge connecting xi
to yjyj+1. Therefore, a matching of G1 gives us the 1-Type-1 strings and their corre-
sponding docks. In our algorithm, we compute a maximum matching of G1, then the
number of 1-Type-1 strings obtained by our algorithm will not be smaller than that of
the optimal solution.

Algorithm 1: Max-Matching(G, I)
1 Construct a bipartite graph G1 = (X, bI(I,G), E),

(xi, yjyj+1) ∈ E iff yjyj+1 docks xi, for all xi ∈ X and yjyj+1 ∈ bI(I,G).
2 Compute a maximum matching M of G1.
3 Return M .

3.2 Searching the 2-Type-1 Strings

To identify the 2-Type-1 strings, we first find a set Q of 2-Type-1 strings greedily. For
Q, let c(Q) be the multi-set of genes in Q, and let D(Q) be the set of corresponding
docks. Then, we improveQ to find more 2-Type-1 strings using a local search method.
There are two ways to improveQ:



An Improved Approximation Algorithm for Scaffold Filling 401

1. Delete a 2-Type-1 string xixj fromQ, release its corresponding dock ypyp+1, con-
struct two new 2-Type-1 strings xixk and xjxl, where xk, xl /∈ c(Q).

2. Delete a 2-Type-1 string xixj fromQ, release its corresponding dock ypyp+1, con-
struct two new 2-Type-1 strings xixk and xrxl, where xrxl docks ypyp+1, and
xk, xl, xr /∈ c(Q).

Algorithm 2: Local-Optimize(G, I)
1 Identify the breakpoints and adjacencies in G and I , Q ← ∅, D(Q) ← ∅.
2 WHILE (xixj is docked at ypyp+1, where xi, xj ∈ X and ypyp+1 ∈ bI(I,G))
3 { Q ← Q ∪ {xixj}, D(xixj) ← {ypyp+1},

X ← X − {xi, xj}, bI(I,G) ← bI(I,G)− {ypyp+1} }.
4 For each 2-Type-1 string xixj ∈ Q docked at ypyp+1 ∈ bI(I,G)

4.1 if (xixk is docked at yuyu+1, xjxl is docked at yvyv+1, where xk, xl ∈ X ,
yuyu+1, yvyv+1 ∈ bI(I,G))

then { Q ← Q ∪ {xixk, xjxl} − {xixj}, D(xixk) ← {yuyu+1},
D(xjxl) ← {yvyv+1}, X ← X − {xk, xl},
bI(I,G) ← bI(I,G) ∪ {ypyp+1} − {yuyu+1, yvyv+1} }.

goto step 4.
4.2 if (xixk is docked at yuyu+1, xlxr is docked at ypyp+1, where xk, xl, xr ∈ X ,

yuyu+1 ∈ bI(I,G))
then { Q ← Q ∪ {xixk, xlxr} − {xixj}, D(xixk) ← {yuyu+1},

D(xlxr) ← {ypyp+1}, X ← X − {xk, xl, xr} ∪ {xj},
bI(I,G) ← bI(I,G)− {yuyu+1} }.

goto step 4.
5 Return Q and D(Q).

3.3 Searching the 3-Type-1 Strings

To search the 3-Type-1 strings, we use a greedy method.

Algorithm 3: Greedy-Search(G, I)
1 Identify the breakpoints and adjacencies in G and I , F ← ∅, D(F ) ← ∅.
2 WHILE (xixjxk is docked at ywyw+1, where xi, xj , xk ∈ X and ywyw+1 ∈ bI(I,G))
3 {F ← F ∪ {xixjxk}, D(xixjxk) ← {ywyw+1},

X ← X − {xi, xj , xk}, bI(I,G) ← bI(I,G)− {ypyp+1}}.
4 Return F and D(F ).

3.4 Inserting the Remaining Genes

In this subsection, we present a polynomial time algorithm guaranteeing that the number
of adjacencies increases by the same number of the genes inserted. A general idea of
this algorithm was mentioned in [11], with many details missing, and we will present
the details here.

Given the complete sequenceG and the scaffold I , as we discussed in Section 2, the
breakpoints in G can be divided into three sets: BP1(G), BP2(G), and BP3(G). In
any case, the breakpoints in BP3(G) cannot be converted into adjacencies; so we try to
convert the breakpoints in BP1(G) and BP2(G) into adjacencies.



402 N. Liu et al.

Lemma 3. If BP1(G) �= ∅, then there exists a breakpoint in I where after some gene
of X is inserted, the number of adjacencies increases by one.

Proof. Let titi+1 be a breakpoint in G, satisfying that titi+1 ∈ BP1(G), ti ∈ X , and,
from Lemma 2, ti+1 ∈ bp(I). Then, there exists a breakpoint ti+1sj or skti+1 in I .
Hence, if we insert ti in between that breakpoint, we will obtain a new adjacency titi+1

without affecting any other adjacency. ��

Thus, it is trivial to obtain one more adjacency wheneverBP1(G) �= ∅.

Lemma 4. For any x ∈ X ∩ c(I), if there is an “xx” breakpoint in G then after
inserting x in between some “xy” pair in I , the number of adjacencies increases by
one.

Proof. If “xy” is a breakpoint, then after inserting an ‘x’ in between it, we obtain a new
adjacencies “xx”. If “xy” is an adjacency, then after inserting an ‘x’ in between it, we
have “xxy”. The adjacency “xy” still exists, and we obtain a new adjacencies “xx”. ��

Lemma 5. If there is a breakpoint “xy” in BP2(G) and a breakpoint “xz” (resp.
“yz”) in I , then after inserting y (resp. x) in between “xz” (resp. “yz”) in I , the
number of adjacencies increases by one.

Proof. From the definition of BP2(G), we know that x, y ∈ X . Since “xy” is a break-
point in G and “xz” is a breakpoint in I , we obtain a new adjacency “xy” by inserting
y in between “xz”, without affecting any other adjacency. A similar argument for in-
serting x in between “yz” also holds. ��

Next, we show that the following case is polynomially solvable. This case satisfies the
following conditions.

1. BP1(G) = ∅;
2. It does not contain a breakpoint like “xx” in G unless x /∈ X ∩ c(I);
3. For any breakpoint of the form “xy” in BP2(G), all the pairs in I involving x or y

are adjacencies.

Let BS2(G) be the set of bp-strings in G with all breakpoints belonging to BP2(G).

Lemma 6. In the case satisfying (1), (2) and (3), the number of times a gene appears
as an end-gene of some bp-string of BS2(G) is even.

From Lemma 6, if we denote each bp-string of BS2(G) by a vertex, and there is an
edge between two vertices iff their corresponding bp-strings have a common end-gene,
the resulting graph contains a cycle of distinct vertices. Traveling this cycle, concatenat-
ing the bp-strings corresponding to the vertices, and deleting one copy of the common
end-gene, eventually we can obtain a string composed of genes of X . The following
lemma and corollary shows that this string can be inserted into I entirely, generating no
breakpoint at all.



An Improved Approximation Algorithm for Scaffold Filling 403

Lemma 7. In the case satisfying (1),(2) and (3), for a gene x, let q1 be the number that
it appears as an end-gene, let q2 be the number that it appears in some bp-string of
BS2(G) as a mid-gene, and let r be the number that it appears in X . Then, we have
r = q1/2 + q2.

We can summarize the above ideas as the algorithm Insert-Whole-Strings(•), which
ensures us to obtain as many adjacencies as the number of missing genes inserted. The
details will be given in the full version.

Theorem 1. The algorithm Insert-Whole-Strings(•) guarantees that the number of ad-
jacencies increased is not smaller than the number of genes inserted.

4 Analysis of the Approximation Algorithm

4.1 A Lower Bound

Given an instance of One-sided SF-MNSA, let I∗ ∈ I+X be the final scaffold in the op-
timal solution after inserting all genes of X into I . Compared to I , all genes belonging
to X appear as substrings in I∗. Let x1x2 . . . xl be a string inserted in between yiyi+1

in I∗, then either yix1 or xlyi+1 or both are adjacencies. Since otherwise, we could
delete this string from I∗ (number of adjacencies decreases by at most l-1), re-insert
it following the algorithm Insert-Whole-Strings(•) (number of adjacencies increases by
at least l), and obtain one more adjacency. Thus, we have the following corollary of
Theorem 1,

Corollary 1. Each substring in I∗ composed of genes of X is either Type-1 or Type-2.

Now, we present a new lower bound for the optimal number of adjacencies.

Lemma 8. Let OPT be the number of adjacencies between G and I∗, k0 be the num-
ber of adjacencies between G and I , and k1=|X |. Let bi be the number of i-Type-1
substrings and q be the maximum length of Type-1 substrings in the optimal solution
between G and I∗. Then

OPT − k0 = k1 + b1 + b2 + . . .+ bq ≤
5

4
(k1 +

3

5
b1 +

2

5
b2 +

1

5
b3) (1)

Following Lemma 8, if the number of Type-1 substrings computed in the approximation
algorithm is not smaller than (3b1 + 2b2 + b3)/5, then the approximation factor is 5/4.

4.2 Description of the Main Algorithm

There are four steps in our algorithm. Firstly, we try to search the 1-Type-1 strings;
secondly, we try to search the 2-Type-1 strings; thirdly, we try to search the 3-Type-1
strings; finally, we insert the remaining genes in X , guaranteeing that on average we
will obtain at least one adjacency for each inserted missing gene.



404 N. Liu et al.

Main Algorithm
Input: Complete sequence G and incomplete scaffold I , X=c(G)− c(I).
Output: I ′ ∈ I +X
1 Call Max-Matching(G, I), which returns a maximum matching M .

{ Let M1 be the set of 1-Type-1 strings and D(M1) be their corresponding docks.
Insert the 1-Type-1 strings into their corresponding docks.
The resulting incomplete scaffold is denoted as I1. }

2 Call Local-Optimize(G, I1), which returns Q and D(Q).
{ Insert the 2-Type-1 strings of Q into their corresponding docks.
The resulting incomplete scaffold is denoted as I2. }

3 Call Greedy-Search(G, I2), which returns F and D(F ).
{ Insert the 3-Type-1 strings of F into their corresponding docks.
The resulting incomplete scaffold is denoted as I3. }

4 Call Insert-Whole-Strings(G, I3).
{ Let the resulting complete scaffold be I ′. }

5 Return I ′.

4.3 Proof of the Approximation Factor

In our algorithm, we make effort to insert Type-1 substrings as much as possible. But a
Type-1 substring (say Is) inserted by our algorithm may make other Type-1 substrings
in some optimal solution infeasible, we say Is destroys them. The following lemma
shows the number of Type-1 substrings that could be destroyed by a given Type-1
substring.

Lemma 9. A i-Type-1 substring can destroy at most i+1 Type-1 substrings in some
optimal solution.

Proof. Assume that an i-Type-1 substring Is is inserted in between some breakpoint
yjyj+1 in I . Then each of the genes in Is, if not use by Is, could form a distinct Type-1
substring in some optimal solution. Also, there may exist another Type-1 substring that
could be inserted in between the breakpoint yjyj+1 in the optimal solution. Totally, at
most i+1 Type-1 substrings in the optimal solution could be destroyed by Is. ��

Next, we will compare the number of i-Type-1 substrings between our algorithm and
some optimal solution. Above all, we focus on the 1-Type-1 substrings, which are com-
puted by the algorithm Max-Matching(•).

Lemma 10. The 1-Type-1 substrings computed in our algorithm is not smaller than
those in any optimal solution.

For the simplicity of comparison, given an edge e ∈ M and an edge ẽ ∈ W , we say
that e destroys ẽ if e and ẽ have exactly one common endpoint. Actually, e destroys ẽ
implies that the 1-Type-1 substring corresponding to e makes the 1-Type-1 substring
corresponding to ẽ infeasible.

Since M is a maximum matching, each connect component of M ∪W is either a
path or an even cycle, and at least one end-edge of a path belongs to M . So, for each
edge in W −M , we can assign a distinct edge in M −W that destroys it. Under this
assignment, each edge inM −W destroys at most one edge inW −M , i.e., a 1-Type-1



An Improved Approximation Algorithm for Scaffold Filling 405

substring of our algorithm can destroy at most one 1-Type-1 substring of the optimal
solution.

Cases of such substrings which are destroyed by a 1-Type-1 substring of our algo-
rithm (except the 1-Type-1 substrings ofM ∩W ), are described in the following Table
1, where b1j denotes the number of 1-Type-1 substrings of the jth case and “other”
means an i-Type-1 substring (i >3).

Table 1. Cases of substrings destroyed by a 1-Type-1 substring

number of 1-Type-1 one substring another substring
substrings destroyed destroyed

b′11 1-Type-1 2-Type-1
b′12 1-Type-1 3-Type-1
b′13 1-Type-1 other or none
b′14 2-Type-1 2-Type-1
b′15 2-Type-1 3-Type-1
b′16 2-Type-1 other or none
b′17 3-Type-1 3-Type-1
b′18 3-Type-1 other or none
b′19 other other or none

Let b′1 be the number of 1-Type-1 substrings computed by our algorithm, i.e., b′1 =
|M |. Then we have,

b′1 = b′11 + b′12 + b′13 + · · ·+ b′19 + |M ∩W | (2)

Now, we will analyze the number of 2-Type-1 substrings, which are computed by the
algorithm Local-Optimize(•).

Lemma 11. Let b2 be the number of 2-Type-1 substrings of some optimal solution, b′2
be the number of 2-Type-1 substrings obtained by our algorithm. Then

b′2 ≥
1

2
× (b2 − b′11 − 2b′14 − b′15 − b′16). (3)

Proof. Let Q be the set of 2-Type-1 substrings obtained at step 2 (by the Local-
Optimize(•) algorithm), and P be the set of 2-Type-1 substrings in some optimal so-
lution which does not include those 2-Type-1 substrings destroyed at step 1 (by the
Max-Matching(•) algorithm), i.e., |Q| = b′2, |P | = b2 − b′11 − 2b′14 − b′15 − b′16. Let
R = Q∩P be the set of 2-Type-1 substrings which are contained in bothQ and P . We
just proceed to compare the number of 2-Type-1 substrings in P −R andQ−R, even
though we cannot compute P −R explicitly.

LetQ−R = {x1x2, x3x4, . . . , x2q−1x2q} andP−R = {y1y2, y3y4, . . . , y2p−1y2p}.
For simplicity, we mark these gene appearing more than one times in P−R (andQ−R)
with distinct labels. Consider an imaginary bipartite graph G′ = (Q − R,P − R,E),



406 N. Liu et al.

where there exists an edge between two vertices iff their corresponding 2-Type-1 sub-
strings share a common gene (same gene and same label). Then, each vertex in G′ has
degree at most two.

For a vertex xixi+1 ofQ−R and an isolated vertex yjyj+1 in P −R, if both xixi+1

and yjyj+1 dock sksk+1, then mark both xixi+1 and yjyj+1 with a same color. Each
such pair are marked with a distinct color. Since in the Local-Optimize(•) algorithm the
original 2-Type-1 substrings in Q are formed by a greedy search, any isolated vertex of
P −R in G′ must be colored. So G′ is composed of disjoint paths, even cycles, colored
isolated vertices of P −R and isolated vertices of Q−R.

In an even cycle or even path (i.e., with an even number of vertices), the number of
vertices in Q − R and P − R is equal, and in the worst case all the vertices on even
cycles/paths in Q−R are colored.

For an odd path (i.e., with an odd number of vertices), as G′ is bipartite, the two
endpoints are either both in P −R or both inQ−R. In an odd path with both endpoints
in Q−R, the number of vertices in Q−R is one more than that in P −R.

Let p1, q1, p2, q2, . . . , pr, qr, pr+1 be an odd path in G′, where pi ∈ (P − R) (1≤
i ≤ r + 1), and qj ∈ (Q − R) (1≤ j ≤ r). We claim that q1 cannot be colored. Since
otherwise, let pt be the isolated vertex that has the same color with q1, according to
step 4.2 of the Local-Optimize(•) algorithm, q1 should be deleted from Q, p1 and pt
should be added to Q. This contradicts the local optimality of Q. A similar claim holds
for qt. So each odd path in G′ ends with some vertices in P − R whose neighbors are
uncolored.

Let l be the number of odd paths in G′ which end with some vertices in P − R.
Putting all together, we can conclude that: (1) the number of isolated colored vertices in
P −R is at most |Q−R|− l; (2) the vertices in P −R appearing on the cycles or paths
in G′ is at most |Q−R|+ l. Then |P −R| ≤ 2|Q−R|. So |P | ≤ 2|Q|. Since |Q| = b′2
and |P | = b2− b′11 − 2b′14− b′15− b′16, we have b′2 ≥ (b2− b′11− 2b′14− b′15− b′16)/2,
hence the lemma follows. ��

When computing the 2-Type-1 substrings at Step 2, except the 2-Type-1 substrings of
R = Q ∩ P , these 2-Type-1 substrings computed by our algorithm could destroy some
other Type-1 substrings of the optimal solution. It follows from Lemma 9 that a 2-Type-
1 substring can destroy at most three Type-1 substrings in some optimal solution. Cases
of such substrings, which are destroyed by a 2-Type-1 substring of our algorithm, are
described in the following Table 2, where b′2js denote the number of 2-Type-1 substring
in the jth case and “other” means an i-Type-1 substring (i > 3).

Let b′2 denote the number of 2-Type-1 substrings computed by our algorithm, then
we have b′2 = b′20 + b′21 + b′22 + b′23 + · · ·+ b′29 + |R|, where R = Q ∩ P .

At Step 3 (i.e., the Greedy-Search(•) algorithm), let Z be the set of 3-Type-1 sub-
strings both in our algorithm and in the optimal solution. Except those 3-Type-1 sub-
strings of Z , a 3-Type-1 substring computed by our algorithm can destroy at most four
Type-1 substrings in some optimal solution. Cases of such substrings which are de-
stroyed by a 3-Type-1 substring are described in the following Table 3, where b′3js de-
note the number of 3-Type-1 substrings of each case j and “other” means an i-Type-1
substring (i > 3).



An Improved Approximation Algorithm for Scaffold Filling 407

Table 2. Cases of substrings destroyed by a 2-Type-1 substring

number of 2-Type-1 the first substring the second substring the third substring
substrings destroyed destroyed destroyed

b′20 2-Type-1 2-Type-1 2-Type-1
b′21 2-Type-1 2-Type-1 3-Type-1
b′22 2-Type-1 2-Type-1 other or none
b′23 2-Type-1 3-Type-1 3-Type-1
b′24 2-Type-1 3-Type-1 other or none
b′25 2-Type-1 other or none other or none
b′26 3-Type-1 3-Type-1 3-Type-1
b′27 3-Type-1 3-Type-1 other or none
b′28 3-Type-1 other or none other or none
b′29 other other or none other or none

Let b′3 denote the number of 3-Type-1 substrings of our algorithm, then we have
b′3 = b′31 + b′32 + b′33 + b′34 + b′35 + |Z|, where and Z is the set of 3-Type-1 substrings
both in our algorithm and in the optimal solution.

Table 3. Cases of substrings destroyed by a 3-Type-1 substring

number of the 1st substring the 2nd substring the 3rd substring the 4th substring
3-Type-1 substrings destroyed destroyed destroyed destroyed

b′31 3-Type-1 3-Type-1 3-Type-1 3-Type-1
b′32 3-Type-1 3-Type-1 3-Type-1 other or none
b′33 3-Type-1 3-Type-1 other or none other or none
b′34 3-Type-1 other or none other or none other or none
b′35 other other or none other or none other or none

Lemma 12. Let b′1, b
′
2, b

′
3 be the number of new 1-Type-1, 2-Type-1 and 3-Type-1 sub-

strings inserted at step1, step 2 and step 3 in our main algorithm respectively. Then

b′1 + b′2 + b′3 ≥
1

5
× (3b1 + 2b2 + b3).

Theorem 2. The One-sided SF-MNSA problem admits a polynomial time factor-1.25
approximation.

Proof. Following the approximation algorithm, Theorem1, Lemma 8, and Lemma 12,
we have the approximation solution value APP , which satisfies the following
inequalities.

APP − k0 = k1 + b′1 + b′2 + b′3 ≥ k1 +
3

5
b1 +

2

5
b2 +

1

5
b3 ≥

4

5
(OPT − k0).

So, we have APP ≥ 4
5OPT + 1

5k0 ≥
4
5OPT . Hence OPT

APP ≤ 1.25, and the theorem
is proven. ��



408 N. Liu et al.

5 Concluding Remarks

In this paper, we used a mixture of maximum matching and local improvement methods
to obtain a factor-1.25 approximation for One-sided MNSA. It would be interesting to
know whether the 1.25 factor can be further improved.

Acknowledgments. This research is partially supported by NSF of China projects
60070019 and 60928006, by the Doctoral Fund of Ministry of Education of China
under grant 20090131110009, by China Postdoctoral Science Foundation under grant
2011M501133, by NSF under grant DMS-0918034, and by the Open Fund of Top Key
Discipline of Computer Software and Theory in Zhejiang Provincial Colleges at Zhe-
jiang Normal University.

References

1. Angibaud, S., Fertin, G., Rusu, I., Thevenin, A., Vialette, S.: On the approximability of com-
paring genomes with duplicates. J. Graph Algorithms and Applications 13(1), 19–53 (2009)

2. Blin, G., Fertin, G., Sikora, F., Vialette, S.: The EXEMPLAR BREAKPOINT DISTANCE for
non-trivial genomes cannot be approximated. In: Das, S., Uehara, R. (eds.) WALCOM 2009.
LNCS, vol. 5431, pp. 357–368. Springer, Heidelberg (2009)

3. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In:
Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA 2002), pp. 667–676 (2002)

4. Chen, Z., Fowler, R., Fu, B., Zhu, B.: On the inapproximability of the exemplar conserved
interval distance problem of genomes. J. Combinatorial Optimization 15(2), 201–221 (2008)

5. Chen, Z., Fu, B., Xu, J., Yang, B., Zhao, Z., Zhu, B.: Non-breaking similarity of genomes
with gene repetitions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp.
119–130. Springer, Heidelberg (2007)

6. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem.
In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 291–302. Springer,
Heidelberg (2006)

7. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem: Hardness
and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp.
484–495. Springer, Heidelberg (2004); also in: The Electronic Journal of Combinatorics 12,
paper R50 (2005)

8. Jiang, M.: The zero exemplar distance problem. In: Tannier, E. (ed.) RECOMB-CG 2010.
LNCS, vol. 6398, pp. 74–82. Springer, Heidelberg (2010)

9. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint distance.
In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 83–92. Springer, Heidelberg
(2010)

10. Jiang, H., Zhong, F., Zhu, B.: Filling scaffolds with gene repetitions: Maximizing the number
of adjacencies. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 55–64.
Springer, Heidelberg (2011)

11. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and related
distances. IEEE/ACM Trans. Bioinformatics and Comput. Biology 9(4), 1220–1229 (2012)

12. Muñoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold filling, contig
fusion and gene order comparison. BMC Bioinformatics 11, 304 (2010)

13. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917
(1999)



An Efficient Algorithm for One-Sided Block

Ordering Problem with Block-Interchange
Distance

Kun-Tze Chen1, Chi-Long Li1, Chung-Han Yang2, and Chin Lung Lu1,�

1 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
cllu@cs.nthu.edu.tw

2 Institute of Bioinformatics and Systems Biology, National Chiao Tung University,
Hsinchu, Taiwan

Abstract. In this work, we study the one-sided block ordering problem
with block-interchange distance. Given two signed permutations π and
σ of size n, where π represents a partially assembled genome consist-
ing of several blocks (contigs) and σ represents a completely assembled
genome, the one-sided block ordering problem is to order (assemble) the
blocks of π such that the block-interchange distance between the assem-
bly of π and σ is minimized. In addition to genome rearrangements and
phylogeny reconstruction, the one-sided block ordering problem is useful
in genome resequencing, because its algorithms can be used to assemble
the contigs of partially assembled resequencing genomes based on their
completely assembled genomes. By using permutation groups, we design
an efficient algorithm to solve the one-sided block ordering problem with
block-interchange distance in O(n log n) time. Moreover, we show that
the assembly of π can be done in O(n) time and its block-interchange
distance from σ can also be calculated in advance in O(n) time.

1 Introduction

The next-generation DNA sequencing techniques have greatly advanced in the
past decade [1,2], allowing an increasing number of draft genomes to be produced
rapidly in a decreasing cost. Usually, these draft genomes are partially sequenced,
leading to their published genomes as collections of unassembled contigs. How-
ever, these draft genomes in contig form cannot be used immediately by current
genome rearrangement algorithms, because these rearrangement algorithms need
the completely assembled genomes to calculate their genome rearrangement dis-
tances, such as reversal, transposition, block-interchange and/or translocation
distances, which are further required for the studies of rearrangement-based phy-
logeny [3,4]. To adequately address this issue, Gaul and Blanchette [5] introduced
the so-called block ordering problem defined as follows. Given two partially as-
sembled genomes, with each represented as an unordered set of blocks, the block

� Supported in part by National Science Council of Republic of China under grant
NSC100-2221-E-007-129-MY3.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 409–421, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



410 K.-T. Chen et al.

ordering problem is to order and orient (i.e., assemble) the blocks of the two
genomes such that the distance of genome rearrangements between the two as-
sembled genomes is minimized. The blocks mentioned above are the so-called
contigs (short for contiguous fragments), each of which can be represented by
an ordered list of genes or markers. In their work [5], Gaul and Blanchette pro-
posed a linear-time algorithm to solve the block ordering problem if the problem
is further simplified to maximize the number of cycles in the breakpoint graph
corresponding to the assembled genomes. The rationale behind this modification
is totally based on a result obtained by Bourque and Pevzner [6], showing that
the reversal distance between two assembled genomes can be approximated well
by maximizing the number of cycles in their corresponding breakpoint graph.
Actually, in addition to the number of cycles, the number of hurdles, as well as
the presence of a fortress or not, is also important and needed for determining
the actual reversal distance [7]. Therefore, it is still a challenge to efficiently solve
the block ordering problem by optimizing the true rearrangement distance.

In the literature, many different kinds of genome rearrangements have been
extensively studied [8], such as reversal (also called inversion), transposition,
block-interchange (also called generalized transposition), translocation, fusion
and fission. Reversal affects a segment on a chromosome by reversing this seg-
ment and exchanging its strands. Transposition rearranges a chromosome by
interchanging its two adjacent and nonoverlapping segments. Block-interchange
is a generalized transposition that exchanges two nonoverlapping but not nec-
essarily adjacent segments on a chromosome. Translocation acts on two chro-
mosomes by exchanging their end fragments. Both fusion and fission are special
translocations, where fusion joins two chromosomes into one and fission splits a
chromosome into two. In this study, we consider a variant of the block ordering
problem, in which one of the two input genomes is still partially assembled but
the other is completely assembled, with optimizing the block-interchange dis-
tance. For distinguishing this special block ordering problem from the original
one, we call it as one-sided block ordering problem. In addition to genome rear-
rangements and phylogeny reconstruction, this one-sided block ordering problem
has useful applications in genome resequencing [9], because the reference genome
for a resequencing organism can serve as the completely assembled genome in
the one-sided block problem so that the contigs of partially assembled genome
for the resequencing organism can be assembled together.

In this study, we utilize permutation groups in algebra, instead of the break-
point graphs used by Gaul and Blanchette [5], to design an efficient algorithm
of O(n log n) time for solving the one-sided block ordering problem with block-
interchange distance, where n is the number of genes or markers. In addition, we
show that the assembly of the partially assembled genome can be done in O(n)
time and its block-interchange distance from the completely assembled genome
can be calculated in advance in O(n) time. In the rest of the paper, the terms
“block” and “contig” are used interchangeably for convenience.



An Efficient Algorithm for One-Sided Block Ordering Problem 411

2 Preliminaries

In this study, we dedicate ourselves to linear, uni-chromosomal genomes. With
a slight modification, however, our algorithmic result can still apply to circular,
uni-chromosomal genomes, or to multi-chromosomal genomes with linear or cir-
cular chromosomes in a chromosome-by-chromosome manner. Once completely
assembled, a linear, uni-chromosomal genome can be represented by a permu-
tation of n integers between 1 and n, with each integer representing a gene or
marker. If the genome is partially assembled, then it will be represented by an
unordered set of blocks, where each block is an ordered list of some integers.
Given an unordered set of blocks, say B, corresponding to a partially assembled
genome, an ordering of B is an ordered list of its blocks, which induces a per-
mutation of n integers by concatenating the blocks in this ordered list. In fact,
the permutation induced by an ordering of B corresponds to an assembly of the
blocks in B. For simplicity, we denote by assembly(B) the permutation induced
by an optimal ordering of B. The one-sided block ordering problem we study in
this paper is formally defined as follows:

One-sided block ordering problem with block-interchange distance
Input: A partially assembled genome π and a completely assembled genome σ.
Output: Find an ordering of π such that the block-interchange distance between
the permutation induced by this ordering of π and σ is minimized.

For our purpose, as shall be explained below, we use a cycle of some integers
to represent a block of corresponding genes or markers and a product (respec-
tively, addition) of cycles to represent an unordered (respectively, ordered) set
of corresponding blocks. For example, let π = (1, 4)(3, 2)(5, 6) be a partially
assembled genome with three unordered contigs and σ = (1, 2, . . . , 6) be a com-
pletely assembled genome with one contig. Then (1, 4, 5, 6, 3, 2) is the assembled
genome induced by an ordering (1, 4) + (5, 6) + (3, 2) of π. It can be verified
that this ordering is optimal because its induced genome (1, 4, 5, 6, 3, 2) can be
transformed into σ by a block-interchange of blocks (4, 5, 6) and (2).

Permutation groups have been proved to be a very useful tool in the studies of
genome rearrangements [3,10,11,12,13]. Below, we recall some useful definitions,
notations and properties borrowed from our previous work [12]. Basically, given a
set E = {1, 2, . . . , n}, a permutation is defined to be a one-to-one function from E
into itself and usually expressed as a product of cycles. For instance, π = (1)(3, 2)
is a product of two cycles to represent a permutation of E = {1, 2, 3} and means
that π(1) = 1, π(2) = 3 and π(3) = 2. The elements in a cycle can be arranged in
any cyclic order and hence the cycle (3, 2) in the permutation exemplified above
can be rewritten as (2, 3). Moreover, if the cycles in a permutation are all disjoint
(i.e., no common element in any two cycles), then the product of these cycles
is called the cycle decomposition of the permutation. A cycle with k elements
is further called a k-cycle. In convention, the 1-cycles in a permutation are not
written explicitly since their elements are fixed in the permutation. If the cycles
in a permutation are all 1-cycles, then this permutation is called an identity
permutation and denoted by 1. Suppose that α and β are two permutations of



412 K.-T. Chen et al.

E. Then their product αβ, also called their composition, defines a permutation
of E satisfying αβ(x) = α(β(x)) for all x ∈ E. If both α and β are disjoint, then
αβ = βα. If αβ = 1, then α is called the inverse of β, denoted by β−1, and vice
versa.

It is a fact that every permutation can be expressed into a product of 2-
cycles (not necessarily disjoint), in which 1-cycles are still written implicitly.
Given a permutation α of E, its norm, denoted by ‖α‖, is defined to be the
minimum number, say k, such that α can be expressed as a product of k 2-
cycles. In the cycle decomposition of α, let nc(α) denote the number of its
disjoint cycles, notably including the 1-cycles not written explicitly. Given two
permutations α and β of E, α is said to divide β, denoted by α|β, if and only
if ‖βα−1‖ = ‖β‖ − ‖α‖. In our previous work [12], it has been shown that
‖α‖ = |E|−nc(α) and for any k elements in E, say a1, a2, . . . , ak, they all appear
in a cycle of α in the ordering of a1, a2, . . . , ak if and only if (a1, a2, . . . , ak)|α.

Let α = (a1, a2) be a 2-cycle and β be an arbitrary permutation of E. If
α|β, that is, both a1 and a2 appear in a cycle of β, then the composition αβ,
as well as βα, has the effect of fission by breaking this cycle into two smaller
cycles. For instance, let α = (1, 3) and β = (1, 2, 3, 4). Then α|β, since both 1
and 3 are in the cycle (1, 2, 3, 4), and αβ = (1, 2)(3, 4) and βα = (4, 1)(2, 3).
On the other hand, if α � β, that is, a1 and a2 appear in different cycles of β,
then αβ, as well as βα, has the effect of fusion by joining the two cycles into a
bigger cycle. For example, if α = (1, 3) and β = (1, 2)(3, 4), then α � β and, as
a result, αβ = (1, 2, 3, 4) and βα = (2, 1, 4, 3). Intriguingly, a block-interchange
acting on a cycle can be mimicked by two 2-cycles as described in the following
lemma [12].

Lemma 1 ([12]). Let α denote a cycle and u, v, x and y be four elements in
E. If (x, y)|α and (u, v) � (x, y)α, then the effect of (u, v)(x, y)α is a block-
interchange acting on α.

3 Algorithmic Result

To clarify our algorithm, we start with defining some notations. For a contig α
with k genes, we denote it by α = (α[1], α[2], . . . , α[k]) and, by convention, we
call α[1] as tail of α. Let π = π1π2 . . . πm be a linear, uni-chromosomal genome
that is partially assembled into m contigs π1, π2, . . . , πm, and σ = (1, 2, . . . , n)
be a linear, uni-chromosomal genome that is assembled completely. Assume that
there are mi genes in each contig πi, where 1 ≤ i ≤ m. Let C = {ck = n+k+1 :
0 ≤ k ≤ 2m − 1} be a set of 2m caps, each of which is represented by an in-
teger between n + 1 and n + 2m. For the purpose of designing our algorithm
later, we add two caps c2(i−1) and c2(i−1)+1 to the ends of each contig πi, lead-
ing to a capping contig π̂i with π̂i[1] = c2(i−1) and π̂i[mi + 2] = c2(i−1)+1.
Moreover, we insert m − 1 dummy contigs without any genes (i.e., null con-
tigs) σ2, σ3, . . . , σm into σ, where σ becomes σ1, and add two caps c2(i−1) and
c2(i−1)+1 to the ends of each contig σi to obtain a capping contig σ̂i, where
σ̂i[1] = c2(i−1) and σ̂i[mi + 2] = c2(i−1)+1. We denote the capping π and σ



An Efficient Algorithm for One-Sided Block Ordering Problem 413

by π̂ and σ̂, respectively. For example, assume that π = (1, 4)(3, 2)(5, 6) and
σ = (1, 2, . . . , 6). After capping, we have π̂ = (7, 1, 4, 8)(9, 3, 2, 10)(11, 5, 6, 12)
and σ̂ = (7, 1, 2, . . . , 6, 8)(9, 10)(11, 12). To distinguish the two caps in a capping
contig, say π̂i, we call the left cap π̂i[1] as 5

′ cap and the right cap π̂i[mi +2] as
3′ cap.

Given an integer x in E ∪ C, we define a function char(x, α̂) as follows to
represent the character of x in a capping contig α̂ = (α̂[1], α̂[2], . . . , α̂[k + 2]),
which is obtained by adding two caps from C to the ends of a contig α with k
genes. Note that α̂ contains x.

char(x, α̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C5, if x = α̂[1],
that is, x is the 5′ cap in α̂.

C3, if k �= 0 and x = α̂[k + 2],
that is, α is not null and x is the 3′ cap in α̂.

N3, if k = 0 and x = α̂[k + 2],
that is, α is null and x is the 3′ cap in α̂.

T, if k �= 0 and x = α̂[2],
that is, α is not null and x is the tail in α.

O, otherwise.

In addition, we define 5cap(x, α̂) to be the 5′ cap of the capping contig α̂. For
convenience, we extend the above definitions to a capping genome. For instance,
given a capping genome, say π̂, char(x, π̂) denotes the character of x in a capping
contig π̂i containing x, and 5cap(x, π̂) denotes the 5′ cap of π̂i (i.e., char(x, π̂) =
char(x, π̂i) and 5cap(x, π̂) = 5cap(x, π̂i)).

Basically, we deal with the contigs of a capping genome, say π̂, as if they
were linear chromosomes. Let c1 = (x, y) and c2 = (u, v) be two 2-cycles with
character pairs of (non-C5, non-C5) and (C5,C5), respectively. In our previ-
ous study [12], we have shown that performing a translocation τ on π̂ can be
mimicked by the composition of c2c1π̂, if (x, u)|π̂, (y, v)|π̂ and (x, y) � π̂, that
is, x and u, as well as y and v, lie in the same contig in π̂, but x and y oc-
cur in the different contigs in π̂. Moreover, if the character pair of c1 is in
CEpair = {(C3,C3), (C3,N3), (T,T), (T,N3), (N3,N3)}, then τ acts on π̂ by ex-
changing a cap of some contig in π̂ with a cap of another contig and, as a result,
leaves the original genome π unaffected. If c1 is a 2-cycle of character pair (T,C3)
(respectively, (O,N3)), then τ performing on π̂ becomes a fusion (respectively,
fission) acting on π. It is not hard to see that the permutation induced by an
ordering of the uncapped genome π can be considered as the result of applying
consecutive m− 1 fusions to the m contigs in π. Based on the above discussion,
it can be realized that our purpose is to find m− 1 translocations, each of which
can be followed by one or more cap exchanges, to act on π̂ such that their rear-
rangement effects on the original π are m− 1 fusions and the block-interchange
distance between the resulting assembly of the contigs in π and σ is minimum.

Now, we describe our algorithm for efficiently solving the one-sided block
ordering problem with block-interchange distance in the following Algorithm 1,
where δ denotes the block-interchange distance between assembly(π) and σ.



414 K.-T. Chen et al.

Algorithm 1
1: Let σ1 = σ and add m− 1 null contigs σ2, σ3, . . . , σm into σ such that

σ = σ1σ2 . . . σm.
Obtain π̂ = π̂1π̂2 . . . π̂m and σ̂ = σ̂1σ̂2 . . . σ̂m by capping π and σ.

2: Compute σ̂π̂−1.
3: /* To perform cap exchanges */

Let i = 0.
while there are x and y in a cycle of σ̂π̂−1 such that (char(x, π̂), char(y, π̂))
∈ CEpair do

Let i = i+ 1.
Find x and y in a cycle of σ̂π̂−1 with (char(x, π̂), char(y, π̂)) ∈ CEpair.
Let χi = (5cap(x, π̂), 5cap(y, π̂))(x, y).
Calculate new π̂ = χiπ̂ and new σ̂π̂−1 = σ̂π̂−1χ−1

i .
end while

4: /* To find consecutive m− 1 fusions */
Let i = 0.
while there are two adjacent integers x and y in a cycle of σ̂π̂−1 such that
(char(x, π̂), char(y, π̂)) = (T,C3) and (x, y) � π̂ do

Let i = i+ 1.
Find two adjacent integers x and y in a cycle of σ̂π̂−1 such that
(char(x, π̂), char(y, π̂)) = (T,C3) and (x, y) � π̂.
Let τi = (5cap(x, π̂), 5cap(y, π̂))(x, y).
Calculate new π̂ = τiπ̂ and new σ̂π̂−1 = σ̂π̂−1τ−1

i .
end while
while i < m− 1 do

Let i = i+ 1.
Find two adjacent integers x and y in a cycle of σ̂π̂−1 such that
(char(x, π̂), char(y, π̂)) = (T,C3) and (x, y)|π̂.
Find a contig in π̂ with at least a non-cap integer and its 3′ cap, say z,
different from y (that is, char(z, π̂) = C3).
Let τi = (y, z)(x, z).
Calculate new π̂ = τiπ̂ and new σ̂π̂−1 = σ̂π̂−1τ−1

i .
end while
Let π̂j be the capping contig with n+ 2 elements in current π̂.
Let assembly(π) = (π̂j [2], π̂j [3], . . . , π̂j [n+ 1]).

5: /* To find block-interchanges */
Let δ = 0.
while σ̂π̂−1 �= 1 do

Let δ = δ + 1.
Choose any two adjacent integers x and y in a cycle of σ̂π̂−1.
Find two adjacent integers u and v in a cycle of σ̂π̂−1(x, y) such that
(u, v) � (x, y)π̂.
Let βδ = (u, v)(x, y).
Calculate new π̂ = βδ π̂ and new σ̂π̂−1 = σ̂π̂−1β−1

δ .
end while

6: Output assembly(π) and δ.



An Efficient Algorithm for One-Sided Block Ordering Problem 415

We consider an example below to clarify the details of Algorithm 1. Let π =
(1, 4)(3, 2)(5, 6) and σ = (1, 2, . . . , 6). First of all, we add two null contigs into σ
and cap all the contigs in π and σ in a way such that π̂ = (7, 1, 4, 8)(9, 3, 2, 10)
(11, 5, 6, 12) and σ̂ = (7, 1, 2, . . . , 6, 8)(9, 10)(11, 12). Next, we compute σ̂π̂−1 =
(2, 4)(3, 10)(5, 12, 8). It can be found that 12 and 8 are in a cycle of current
σ̂π̂−1 with (char(12, π̂), char(8, π̂)) = (C3,C3). We then perform a cap exchange
on π̂ by multiplying (5cap(12, π̂), 5cap(8, π̂))(12, 8) = (11, 7)(12, 8) with π̂, lead-
ing to new π̂ = (7, 1, 4, 12)(9, 3, 2, 10)(11, 5, 6, 8). We also have new σ̂π̂−1 =
(2, 4)(3, 10)(11, 7)(5, 12). It can be observed that 5 and 12 are in the same cycle
of σ̂π̂−1 with satisfying that char(5, π̂) = T, char(12, π̂) = C3 and (5, 12) � π̂
(since 5 and 12 are in different contigs in current π̂). Hence, we perform a fu-
sion on π̂, by multiplying τ1 = (5cap(5, π̂), 5cap(12, π̂))(5, 12) = (11, 7)(5, 12)
with π̂, to obtain new π̂ = (7, 1, 4, 5, 6, 8)(9, 3, 2, 10)(11, 12). We then have new
σ̂π̂−1 = (2, 4)(3, 10), in which 3 and 10 form a (T,C3) pair but they belong to
the same contig in π̂, that is, (3, 10)|π̂. In this case, π̂ has a contig (7, 1, 4, 5, 6, 8)
whose 3′ cap is 8 that is different from 10. Hence, we multiply (10, 8)(3, 8) with π̂
to obtain new π̂ = (7, 1, 4, 5, 6, 3, 2, 8)(9, 10)(11, 12) and new σ̂π̂−1 = (2, 4)(3, 8).
Finally, we can see that (2, 4)(3, 8)π̂ = σ̂, meaning that we can transform π̂
into σ̂ using a block-interchange by multiplying (2, 4)(3, 8) with π̂. As a result,
we obtain an ordering (1, 4) + (5, 6) + (3, 2) of π whose induced permutation
(1, 4, 5, 6, 3, 2) can be transformed into σ = (1, 2, . . . , 6) by a block-interchange,
which exchanges the block (4, 5, 6) with the block (2) in (1, 4, 5, 6, 3, 2).

Actually, the operation τi = (y, z)(x, z) used in the step 4 of Algorithm 1
acts on π̂ still as a fusion of π, as explained as follows. Notice that (x, y)|π̂,
meaning that x and y are in the same cycle of π̂ and, therefore, 5cap(x, π̂) =
5cap(y, π̂). As a result, we have (5cap(y, π̂), 5cap(z, π̂))(5cap(x, π̂), 5cap(z, π̂)) =
1. This further implies that τi can be rewritten as τi = α2α1, where α1 =
(5cap(x, π̂), 5cap(z, π̂))(x, z) and α2 = (5cap(y, π̂), 5cap(z, π̂))(y, z). As will be
clear later, α1 acts on π̂ as a fusion of π and α2 continues to act on α1π̂ as
a cap exchange since α2 = (5cap(y, α1π̂), 5cap(z, α1π̂))(y, z). As a result, the
rearrangement effect of acting τi on π̂ is still equivalent to a fusion acting on π.
As discussed above, it can be realized that a fusion to π can be mimicked by
a translocation τ , which acts on π̂ as a fusion of π, followed by zero or more
translocations, which act on τπ̂ as cap exchanges.

In the following, we prove the correctness of Algorithm 1. Initially, it is not
hard to see that all the 5′ caps are fixed in σ̂π̂−1. For any integer x with
char(x, π̂i) = T, where 1 ≤ i ≤ m, if π̂−1(x) �= σ̂1[1], that is, the 5′ cap of
π̂i is not equal to that of σ̂1, then the character of σ̂π̂−1(x) in π̂ must be C3.
If any cycle in σ̂π̂−1 contains any two elements x and y with the same charac-
ter (either T or C3) in π̂, then we can extract a 2-cycle (x, y) from σ̂π̂−1 and
multiply (5cap(x, π̂), 5cap(y, π̂))(x, y) with π̂ to exchange the caps of the con-
tigs containing x and y, respectively, in π̂. This is the job to be performed in
the step 3 in Algorithm 1. After finishing the cap exchanges in the step 3, each
cycle in the remaining σ̂π̂−1 has at most one element with T character and at
most one element with C3 character. In other words, after running the step 3,



416 K.-T. Chen et al.

there are exactly m− 1 cycles in the resulting σ̂π̂−1 such that each such a cycle
contains exactly one element, say x, with char(x, π̂) = T and exactly one ele-
ment, say y, with char(y, π̂) = C3, and σ̂π̂−1(x) = y. In this case, we can further
derive (m − 1) 2-cycles from these (m − 1) cycles in σ̂π̂−1 with each 2-cycle
having a character pair of (T,C3). Intriguingly, we shall show below that these
(m− 1) 2-cycles of (T,C3) pair, denoted by f1, f2, . . . , fm−1, can be used to ob-
tain an optimal ordering of π such that the block-interchange distance between
its induced permutation assembly(π) and σ is minimum. The following lemma
is straightforward according to our previous study [12].

Lemma 2. Let c1 = (x, y) be a 2-cycle with char(x, π̂) = T and char(y, π̂) = C3,
and let c2 = (5cap(x, π̂), 5cap(y, π̂)). If (x, y) � π̂, then the effect of c2c1π̂ is a
fusion that acts on π by concatenating the contig containing y with the contig
containing x.

For 1 ≤ k ≤ m − 1, we simply let fk = (xk, yk), where char(xk, π̂) = T and
char(yk, π̂) = C3, and gk = (5cap(xk, π̂), 5cap(yk, π̂)). As mentioned previously,
the permutation induced by an ordering of π can be mimicked by performing
m−1 consecutive fusions on π that hasm contigs initially. According to Lemma 2,
if fk � π̂, where 1 ≤ k ≤ m − 1, then fk, as well as gk, can be applied to π̂ to
function as a fusion of two contigs in π. However, not all f1, f2, . . . , fm−1 have
such a function. Suppose that only the first λ 2-cycles f1, f2, . . . , fλ can be used
to serve as fusions acting on π, where 0 ≤ λ ≤ m−1, that is, fk � π̂ for 1 ≤ k ≤ λ,
but fk|π̂ for λ+ 1 ≤ k ≤ m− 1. In this situation, we shall show below that we
still can use f1, f2, . . . , fm−1 to derive an optimal ordering of π, as we did in the
step 4 in Algorithm 1.

Recall that the 5′ caps are all fixed in the beginning σ̂π̂−1 (before the step 3
in our algorithm). As mentioned before, for any translocation used to perform
on π̂, it can be expressed as two 2-cycles, one with (non-C5, non-C5) character
pair and the other with (C5,C5). It is not hard to verify that during the process
of the step 3, no two elements x and y with char(x, π̂) = C5 but char(y, π̂) �= C5
can be found in a cycle of the σ̂π̂−1, that is, C5 and non-C5 elements are not
mixed together in the same cycle of σ̂π̂−1. Actually, this property still continues
to be asserted when we later perform any translocation on π̂ to function as a
fusion of π. Let us now pay attention on those cycles in σ̂π̂−1 with only non-C5
elements and temporarily denote the composition of these cycles by φ(σ̂π̂−1). If
we still can find any two elements x and y from a cycle in φ(σ̂π̂−1) such that
(5cap(x), 5cap(y))(x, y) is an exchange of caps when applying it to π̂, then we
apply this cap exchange to π̂ until we cannot find any one from φ(σ̂π̂−1). Finally,
we denote such a φ(σ̂π̂−1) without any cap exchange by ψ(σ̂π̂−1). Basically,
ψ(σ̂π̂−1) can be considered as a permutation of E′ = E ∪ {c2i−1 : 1 ≤ i ≤ m}
and hence its norm ‖ψ(σ̂π̂−1)‖ is equal to |E′| − nc(ψ(σ̂π̂−1)).

Lemma 3. Let τ = (5cap(x, π̂), 5cap(y, π̂))(x, y) with char(x, π̂) = T, char(y, π̂)
= C3 and (x, y) � π̂. Then ‖ψ(σ̂π̂−1)‖ − ‖ψ(σ̂π̂−1τ−1)‖ ∈ {−1, 0, 1}.
Proof. For simplicity, it is assumed that we cannot find any cap exchange from
σ̂π̂−1 to perform on π̂. We then consider the following two cases.



An Efficient Algorithm for One-Sided Block Ordering Problem 417

Case 1: Suppose that (x, y)|σ̂π̂−1, that is, both x and y lie in the same cycle,
say α, in σ̂π̂−1. Without loss of generality, let α = (a1, a2, . . . , ai ≡ x, . . . , aj ≡
y). Then α can be expressed as α = α1α2(x, y), where α1 = (a1, a2, . . . , ai) and
α2 = (ai+1, ai+2, . . . , aj). Clearly, after applying τ to π̂, the cycle α becomes
two disjoint cycles α1 and α2 in σ̂π̂−1τ−1. It means that nc(ψ(σ̂π̂

−1τ−1)) =
nc(ψ(σ̂π̂

−1)) + 1 and hence ‖ψ(σ̂π̂−1)‖ − ‖ψ(σ̂π̂−1τ−1)‖ = 1.
Case 2: Suppose that (x, y) � σ̂π̂−1, that is, x and y lie in the different cycles,

say α1 and α2, in σ̂π̂
−1. Then performing τ on π̂ leads α1 and α2 to be joined

together into a cycle, say α, in σ̂π̂−1τ−1. If α1, as well as α2, does not contain
both T and C3 elements simultaneously, then nc(ψ(σ̂π̂

−1τ−1)) = nc(ψ(σ̂π̂
−1))−

1 and hence ‖ψ(σ̂π̂−1)‖ − ‖ψ(σ̂π̂−1τ−1)‖ = −1. If exactly one of α1 and α2

contains both T and C3 elements simultaneously, then joining α1 and α2 will
also change char(x, π̂) from T to O and char(y, π̂) from C3 to N3. Therefore,
the cycle α contains a C3 (or T) element and an N3 element. In this case, we
can use these two elements, along with their corresponding 5′ caps in π̂, as a
cap exchange to perform on π̂, resulting in that the cycle α is divided into two
smaller ones in new σ̂π̂−1. As a result, nc(ψ(σ̂π̂

−1τ−1)) = nc(ψ(σ̂π̂
−1)) and

hence ‖ψ(σ̂π̂−1)‖−‖ψ(σ̂π̂−1τ−1)‖ = 0. Suppose that both α1 and α2 contain T
and C3 elements at the same time. Then, after applying τ to π̂, one of the above
two T elements becomes an O element in new π̂, leading to α containing only
a T element, as well as a C3 element and an N3 element. Next, we can use the
T and N3 elements (or the C3 and N3 elements) in α and their corresponding
5′ caps in π̂ to exchange the caps of π̂. After that, α is divided into two cycles
in the new σ̂π̂−1 and, consequently, nc(ψ(σ̂π̂

−1τ−1)) = nc(ψ(σ̂π̂
−1)) and hence

‖ψ(σ̂π̂−1)‖ − ‖ψ(σ̂π̂−1τ−1)‖ = 0. ��

Note that if π̂ = σ̂, then ‖ψ(σ̂π̂−1)‖ = 0. According to Lemmas 2 and 3, any
translocation τ that acts on π̂ as a fusion of π decreases the norm ‖ψ(σ̂π̂−1)‖ at
most by one. Hence, we call τ as a good fusion of π if ‖ψ(σ̂π̂−1)‖−‖ψ(σ̂π̂−1τ−1)
‖ = 1. By the discussion in the proof of Lemma 3, we have the following corollary.

Corollary 1. Let τ = (5cap(x, π̂), 5cap(y, π̂))(x, y) with char(x, π̂) = T, char(y,
π̂) = C3 and (x, y) � π̂. If (x, y)|σ̂π̂−1, then τ is a good fusion to perform on π.

According to Corollary 1, it can be realized that each fk, where 1 ≤ k ≤ λ,
along with gk can serve as a good fusion to act on π. For simplicity, we assume
that performing any gifi on π̂ will not change the role of other gjfj as a good
fusion of the resulting π, where 1 ≤ i, j ≤ λ. If λ = m− 1, then performing the
m−1 translocations g1f1, g2f2, . . . , gm−1fm−1 on π̂, as used in Algorithm 1, cor-
responds to an optimal ordering of π with an induced permutation assembly(π)
such that the block-interchange distance between assembly(π) and σ is mini-
mum. If λ < m− 1, then we show below that the fusions of m− 1 contigs in π
performed by our algorithm on the basis of f1, f2, . . . , fm−1 is still optimal. As
mentioned before, a fusion to π can be mimicked by a translocation τ acting on
π̂ as a fusion of π, followed by zero or more translocations acting on τπ̂ as cap
exchanges. For convenience, therefore, we assume that any translocation τ that
acts on π̂ to serve as a fusion of π is followed zero or more cap exchanges to



418 K.-T. Chen et al.

further act on τπ̂ such that no more cap exchange can be derived from σ̂π̂−1 in
the following.

Lemma 4. Let τ1, τ2, . . . , τm−1 be any sequence of m− 1 translocations that act
on π̂ as fusions to assemble m−1 contigs in π. Let ω̂k be the genome obtained by
performing τk and zero or more following cap exchanges on ω̂k−1 such that no
more cap exchange can be derived from σ̂ω̂−1

k , where ω̂0 = π̂ and 1 ≤ k ≤ m− 1.
Then ‖ψ(σ̂ω̂−1

0 )‖ − ‖ψ(σ̂ω̂−1
m−1)‖ ≤ λ.

Proof. For simplicity, we assume that in the beginning, no cap exchange can be
derived from σ̂ω̂−1

0 to act on ω̂0. Let ωk denote the genome obtained from ω̂k by
removing its caps. By Lemma 3, ‖ψ(σ̂ω̂−1

k−1)‖ − ‖ψ(σ̂ω̂
−1
k )‖ ∈ {−1, 0, 1} and by

Corollary 1, ‖ψ(σ̂ω̂−1
k−1)‖−‖ψ(σ̂ω̂

−1
k )‖ = 1 if τk is a good fusion to ωk−1. In fact,

there are at most λ translocations from τ1, τ2, . . . , τm−1 that are good fusions.
The reason is as follows. Basically, as mentioned before, we can derive λ 2-cycles
f1, f2, . . . , fλ from σ̂π̂−1 such that g1f1, g2f2, . . . , gλfλ are good fusions to act
on π, as well as other 2-cycles fλ+1, fλ+2, . . . , fm−1 that cannot derive any good
fusions to act on π since their T and C3 elements are in the same contig in π̂. If we
can further extract a 2-cycle f = (x, y) from σ̂π̂−1 such that gf is a good fusion to
act on π, where char(x, π̂) = T, char(y, π̂) = C3 and g = (5cap(x, π̂), 5cap(y, π̂)),
then the C3 element y must locate at a contig whose T element is in some
fk, where 1 ≤ k ≤ λ. It implies that the good fusion gf cannot act on π
together with g1f1, g2f2, . . . , gλfλ at the same time, since the role of gf as a
good fusion will be destroyed after performing g1f1, g2f2, . . . , gλfλ. Suppose that
τ1, τ2, . . . , τm−1 are the translocations obtained by the step 4 of Algorithm 1.
That is, τk = gkfk for 1 ≤ k ≤ λ and τk = (yk, zk)(xk, zk) for λ+1 ≤ k ≤ m− 1,
where zk is the 3′ cap in any contig that is different from the contig containing
yk. Clearly, for 1 ≤ k ≤ λ, ‖ψ(σ̂ω̂−1

k−1)‖ − ‖ψ(σ̂ω̂
−1
k )‖ = 1 since τk is a good

fusion to ωk−1. Moreover, for λ+1 ≤ k ≤ m− 1, ‖ψ(σ̂ω̂−1
k−1)‖− ‖ψ(σ̂ω̂

−1
k )‖ = 0,

due to the following reason. First of all, we have ψ(σ̂ω̂−1
k ) = ψ(σ̂ω̂−1

k−1)τ
−1
k , in

which the composition of (xk, yk)τ
−1
k equals to (xk, yk)(xk, zk)(yk, zk) = (xk, zk),

where notably (xk, yk) is extracted from a cycle in ψ(σ̂ω̂−1
k−1). It means that in

ψ(σ̂ω̂−1
k ), yk will be fixed, which increases the number of cycles by one, and

the cycle (xk, zk) will join other two cycles respectively containing xk and zk
together into one cycle, which decreases the number of cycles by one. As a result,
nc(ψ(σ̂ω̂

−1
k )) = nc(ψ(σ̂ω̂

−1
k−1)) and ‖ψ(σ̂ω̂

−1
k−1)‖ − ‖ψ(σ̂ω̂

−1
k )‖ = 0. Therefore, we

have ‖ψ(σ̂ω̂−1
0 )‖ − ‖ψ(σ̂ω̂−1

m−1)‖ = λ for the (m − 1) translocations obtained

by the step 4 of Algorithm 1. In fact, to let ‖ψ(σ̂ω̂−1
0 )‖ − ‖ψ(σ̂ω̂−1

m−1)‖ > λ
happen, there must be a translocation τi that acts on ω̂i−1 as a fusion of ωi−1

satisfying either (1) ‖ψ(σ̂ω̂−1
i−1)‖ − ‖ψ(σ̂ω̂−1

i )‖ = 0, the number of good fusions
newly created by τi and its following cap exchanges minus that of good fusions
currently destroyed by τi and the following cap exchanges is greater than or
equal to one, and the total available good fusions can assemble more contigs than
before, or (2) ‖ψ(σ̂ω̂−1

i−1)‖−‖ψ(σ̂ω̂−1
i )‖ = −1, the number of good fusions created

by τi and its following cap exchanges minus that of the currently destroyed good
fusions is greater than or equal to two, and the total good fusions can assemble



An Efficient Algorithm for One-Sided Block Ordering Problem 419

more contigs than before. However, we can show that no such a translocation τi
exits, where its details are omitted here due to space constraints. Therefore, we
can conclude that ‖ψ(σ̂ω̂−1

0 )‖ − ‖ψ(σ̂ω̂−1
m−1)‖ ≤ λ. ��

Based on Lemma 4, as well as the discussion in its proof, them−1 fusions derived
by Algorithm 1 correspond to an optimal ordering of π with an induced permuta-
tion assembly(π) such that the block-interchange distance between assembly(π)
and σ is minimized. This block-interchange distance is calculated in the step 5
in Algorithm 1, which is based on the algorithm in our previous study [3], and is

equal to ‖σ̂π̂−1‖
2 , where π̂ is the genome obtained by performing the cap exchanges

and m− 1 fusions on the initial capping of π, as done in the steps 3 and 4 in Al-
gorithm 1, respectively. The total time complexity of Algorithm 1 is O(n log n).
The reason is as follows. Sincem ≤ n, the cost of the step 1 for capping the input
genomes is O(n). The computation of σ̂π̂−1 in the step 2 still can be done in
O(n) time. Recall that after running the step 3, each cycle in σ̂π̂−1 has at most
a T element and at most a C3 element. Totally, there are m T elements and m
C3 elements in the cycles of σ̂π̂−1. Moreover, deriving a 2-cycle to serve as a cap
exchange from a long cycle in σ̂π̂−1 will divide this long cycle into two smaller
cycles. Hence, there are O(n) cap exchanges to be performed in the step 3, which
totally cost O(n) time since each cap exchange needs only constant time. The
step 4 assembles m contigs by utilizing (m− 1) 2-cycles f1, f2, . . . , fm−1, which
can be derived in advance from σ̂π̂−1 in O(n) time. Since each fusion requires
only constant time, the cost of the step 4 is O(m+ n), which is equal to O(n).
As to the step 5, it can be done in O(δn) time, according to the analysis in our
previous study [3]. In fact, this time complexity can be further improved into
O(n+δ log δ) by using the algorithm we proposed in another previous work [11].
Since δ ≤ n, the cost of the step 5 is O(n logn). As a result, the time complexity
of Algorithm 1 is O(n logn). Note that as mentioned above, assembly(π) can
be obtained in O(n) time after finishing the step 4 of Algorithm 1. In addi-

tion, the block-interchange distance δ = ‖σ̂π̂−1‖
2 between assembly(π) and σ can

be computed in O(n) time. It is worth mentioning that in spite of the input
genomes π and σ being linear, uni-chromosomal genomes in our previous discus-
sion, our Algorithm 1 still can apply to circular, uni-chromosomal genomes with
a slight modification, or to the multi-chromosomal genomes with linear or circu-
lar chromosomes in chromosome-by-chromosome manner without increasing its
time complexity.

Theorem 1. Given a partially assembled genome π and a completely assembled
genome σ, the one-sided block ordering problem with block-interchange distance
can be solved in O(n logn) time. Moreover, an optimal ordering of π can be
done in O(n) time and the block-interchange distance between the permutation

induced by the optimal ordering of π and σ is ‖σ̂π̂−1‖
2 that can be computed in

O(n) time, where π̂ is the capping genome of π with the cap exchanges and m−1
fusions being done, σ̂ is the capping genome of σ and n is the number of genes
or markers.



420 K.-T. Chen et al.

4 Conclusion

In this work, we introduced and studied the one-sided block problem with opti-
mizing the block-interchange distance, which has useful applications in the stud-
ies of genome rearrangements, phylogeny reconstruction and genome resequenc-
ing. We finally designed an efficient algorithm to solve this problem in O(n log n)
time, where n is the number of genes or markers. In addition, we showed that
the assembly of the partially assembled genome can be done in O(n) time and
its block-interchange distance from the completely assembled genome can also
be calculated in advance in O(n) time. It would be an interesting future work
to study and design efficient algorithms to solve the (one-sided) block problem
with optimizing other rearrangement distances by considering other operations,
such as reversals and/or translocations.

References

1. Shendure, J., Ji, H.L.: Next-generation DNA sequencing. Nature Biotechnology 26,
1135–1145 (2008)

2. Metzker, M.L.: Sequencing technologies – the next generation. Nature Reviews
Genetics 11, 31–46 (2010)

3. Lin, Y.C., Lu, C.L., Chang, H.Y., Tang, C.Y.: An efficient algorithm for sorting by
block-interchanges and its application to the evolution of vibrio species. Journal of
Computational Biology 12, 102–112 (2005)

4. Huang, Y.L., Huang, C.C., Tang, C.Y., Lu, C.L.: SoRT2: a tool for sorting genomes
and reconstructing phylogenetic trees by reversals, generalized transpositions and
translocations. Nucleic Acids Research 38, W221–W227 (2010)

5. Gaul, É., Blanchette, M.: Ordering partially assembled genomes using gene ar-
rangements. In: Bourque, G., El-Mabrouk, N. (eds.) RECOMB-CG 2006. LNCS
(LNBI), vol. 4205, pp. 113–128. Springer, Heidelberg (2006)

6. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in
the ancestral species. Genome Research 12, 26–36 (2002)

7. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial al-
gorithm for sorting signed permutations by reversals. Journal of the ACM 46, 1–27
(1999)

8. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of
Genome Rearrangements. The MIT Press, Cambridge (2009)

9. Bentley, D.R.: Whole-genome re-sequencing. Current Opinion in Genetics and De-
velopment 16, 545–552 (2006)

10. Lu, C.L., Huang, Y.L., Wang, T.C., Chiu, H.T.: Analysis of circular genome rear-
rangement by fusions, fissions and block-interchanges. BMC Bioinformatics 7, 295
(2006)

11. Huang, Y.L., Huang, C.C., Tang, C.Y., Lu, C.L.: An improved algorithm for sort-
ing by block-interchanges based on permutation groups. Information Processing
Letters 110, 345–350 (2010)

12. Huang, Y.L., Lu, C.L.: Sorting by reversals, generalized transpositions, and translo-
cations using permutation groups. Journal of Computational Biology 17, 685–705
(2010)

13. Huang, K.H., Chen, K.T., Lu, C.L.: Sorting permutations by cut-circularize-
linearize-and-paste operations. BMC Genomics 12, S26 (2011)



A Combinatorial Approach for Multiple

RNA Interaction: Formulations,
Approximations, and Heuristics

Syed Ali Ahmed�, Saad Mneimneh��,� � �,†, and Nancy L. Greenbaum‡

The Graduate Center and Hunter College, City University of New York (CUNY),
New York, USA

sahmed3@gc.cuny.edu,{saad,ngreenba}@hunter.cuny.edu

Abstract. The interaction of two RNA molecules involves a complex in-
terplay between folding and binding that warranted recent developments
in RNA-RNA interaction algorithms. However, biological mechanisms in
which more than two RNAs take part in an interaction exist.

We formulate multiple RNA interaction as a computational problem,
which not surprisingly turns out to be NP-complete. Our experiments
with approximation algorithms and heuristics for the problem suggest
that this formulation is indeed useful to determine interaction patterns
of multiple RNAs when information about which RNAs interact is not
necessarily available (as opposed to the case of two RNAs where one
must interact with the other), and because the resulting RNA structure
often cannot be predicated by existing algorithms when RNAs are simply
handled in pairs. We show instances of multiple RNA interaction that
are accurately predicted by our algorithms.

Keywords: multiple RNA interaction, dynamic programming, approx-
imation algorithms, structure prediction.

1 Introduction

The interaction of two RNA molecules has been independently formulated as
a computational problem in several works, e.g. [1,2,3]. In their most general
form, these formulations lead to NP-hard problems. To overcome this hurdle,
researchers have been either reverting to approximation algorithms, or imposing
algorithmic restrictions; for instance, analogous to the avoidance of pseudoknot
formation in the folding of RNAs.

While these algorithms had limited use in the beginning, they became impor-
tant venues for (and in fact popularized) an interesting biological fact: RNAs

� Supported by NSF Award CCF-AF 1049902 and a CUNY GC Science Fellowship.
�� Supported by NSF Award CCF-AF 1049902 and in part by NIH Award GM07800.

� � � Corresponding author.
† The first two authors contributed equally to this work.
‡ Supported by NSF Award MCB 0929394.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 421–433, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



422 S.A. Ahmed, S. Mneimneh, and N.L. Greenbaum

interact. For instance, micro-RNAs (miRNAs) bind to a complementary part of
messenger RNAs (mRNAs) and inhibit their translation [4]. One might argue
that such a simple interaction does not present a pressing need for RNA-RNA
interaction algorithms; however, more complex forms of RNA-RNA interaction
exist. In E. Coli, CopA binds to the ribosome binding site of CopT, also as a reg-
ulation mechanism to prevent translation [5]; so does OxyS to fhlA [6]. In both
of these structures, the simultaneous folding (within the RNA) and binding (to
the other RNA) are non-trivial to be predicted as separate events. To account
for this, most of the RNA-RNA interaction algorithms calculate the probability
for a pair of subsequences (one of each RNA) to participate in the interaction,
and in doing so they generalize the energy model used for the partition function
of a single RNA to the case of two RNAs [7,8,9,10,11,12]. This generalization
takes into consideration the simultaneous aspect of folding and binding.

Not surprisingly, there exist other mechanisms in which more than two RNA
molecules take part in an interaction. Typical scenarios involve the interaction
of multiple small nucleolar RNAs (snoRNAs) with ribosomal RNAs (rRNAs)
in guiding the methylation of the rRNAs [4], and multiple small nuclear RNAs
(snRNA) with mRNAs in the splicing of introns [13]. Even with the existence of a
computational framework for a single RNA-RNA interaction, it is reasonable to
believe that interactions involving multiple RNAs are generally more complex
to be treated pairwise. In addition, given a pool of RNAs, it is not trivial to
predict which RNAs interact without some prior biological information.

We formulate the problem of multiple RNA interaction by bringing forward
an optimization perspective where each part of an RNA will contribute certain
weights to the entire interaction when binding to different parts of other RNAs.
We seek to maximize the total weight. This notion of weight can be obtained by
using existing RNA-RNA interaction algorithms on pairs of RNAs. We call our
formulation the Pegs and Rubber Bands problem. We show that under certain
restrictions, which are similar to those against pseudoknots, the problem remains
NP-hard (in fact it becomes equivalent to a special instance of the interaction of
two RNAs). We describe a polynomial time approximation scheme PTAS for the
problem, some heuristics, and experimental results. For instance, given a pool
of RNAs in which interactions between pairs of RNAs are known, our algorithm
is capable of identifying those pairs and predicting satisfactorily the pattern of
interaction between them [8]. Moreover, our algorithm finds the correct interac-
tion of a given instance of splicing consisting of two snRNAs (a modified U2-U6
human snRNA complex) and two structurally autonomous parts of an intron
[14], a total of four RNAs. When (partially) mixing the two examples in one
pool, our algorithm structurally separates them.

2 Pegs and Rubber Bands: A Formulation

We introduce an optimization problem we call Pegs and Rubber Bands that
will serve a base framework for the multiple RNA interaction problem. The link



A Combinatorial Approach for Multiple RNA Interaction 423

between the two problems will be made shortly after the description of Pegs and
Rubber Bands.

Consider m levels numbered 1 to m with nl pegs in level l numbers 1 to nl.
There is an infinite supply of rubber bands that can be placed around two pegs
in consecutive levels. For instance, we can choose to place a rubber band around
peg i in level l and peg j in level l+1; we call it a rubber band at [l, i, j]. Every
such pair of pegs [l, i] and [l+1, j] contribute their own weight w(l, i, j). The Pegs
and Rubber Bands problem is to maximize the total weight by placing rubber
bands around pegs in such a way that no two rubber bands intersect. In other
words, each peg can have at most one rubber band around it, and if a rubber
band is placed at [l, i1, j1] and another at [l, i2, j2], then i1 < i2 ⇔ j1 < j2.
We assume without loss of generality that w(l, i, j) �= 0 to avoid the unnecessary
placement of rubber bands and, therefore, either w(l, i, j) > 0 or w(l, i, j) = −∞.
Figure 1 shows an example.

Fig. 1. Pegs and Rubber Bands. All positive weights are equal to 1 and are represented
by dashed lines. The optimal solution achieves a total weight of 8.

Given an optimal solution, it can always be reconstructed from left to right
by repeatedly placing some rubber band at [l, i, j] such that, at the time of this
placement, no rubber band is around peg [l, k] for k > i and no rubber band is
around peg [l+1, k] for k > j. This process can be carried out by a dynamic pro-
gramming algorithm to compute the maximum weight (in exponential time), by
definingW (i1, i2, . . . , im) to be the maximum weight when we truncate the levels
at pegs [1, i1], [2, i2], . . . , [m, im] (see Figure 2). The maximum weight is given by
W (n1, n2, . . . , nm) and the optimal solution can be obtained by standard back-
tracking. When all levels have O(n) pegs, this algorithm runs in O(mnm) time
and O(nm) space.

2.1 Multiple RNA Interaction as Pegs and Rubber Bands

To provide some initial context we now describe how the formulation of Pegs
and Rubber Bands, though in a primitive way, captures the problem of multiple
RNA interaction. We think of each level as an RNA and each peg as one base
of the RNA. The weight w(l, i, j) corresponds to the negative of the energy



424 S.A. Ahmed, S. Mneimneh, and N.L. Greenbaum

W (i1, i2, . . . , im) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (i1 − 1, i2, . . . , im)
W (i1, i2 − 1, i3, . . . , im)

.

.

.
W (i1, . . . , im−1, im − 1)

W (i1 − 1, i2 − 1, i3, . . . , im) + w(1, i1, i2)
W (i1, i2 − 1, i3 − 1, i4, . . . , im) + w(2, i2, i3)

.

.

.
W (i1, . . . , im−2, im−1 − 1, im − 1) + w(m− 1, im−1, im)

where W (0, 0, . . . , 0) = 0.

Fig. 2. Dynamic programming algorithm for Pegs and Rubber Bands

contributed by the binding of the ith base of RNA l to the jth base of RNA
l+1. It should be clear, therefore, that an optimal solution for Pegs and Rubber
Bands represents the lowest energy conformation in a base-pair energy model,
when a pseudoknot-like restriction is imposed on the RNA interaction (rubber
bands cannot intersect). In doing so, we obviously assume that an order on the
RNAs is given with alternating sense and antisense, and that the first RNA
interacts with the second RNA, which in turn interacts with the third RNA,
and so on. We later relax this ordering and condition on the interaction pattern
of the RNAs. While a simple base-pairing model is not likely to give realistic
results, our goal for the moment is simply to establish a correspondence between
the two problems.

2.2 Complexity of the Problem and Approximations

With the above correspondence in mind, the problem of Pegs and Rubber Bands
can be viewed as a instance of a classical RNA-RNA interaction, involving only
two RNAs that is: We construct the first as RNA 1 followed by RNA 4 reversed
followed by RNA 5 followed by RNA 8 reversed and so on, and the second as
RNA 2 followed by RNA 3 reversed followed by RNA 6 followed by RNA 7
reversed and so on, as shown in Figure 3.

Therefore, Pegs and Rubber Bands can be solved as an RNA-RNA interaction
problem. While this RNA-RNA interaction represents a restricted instance of
the more general NP-hard problem, it is still NP-hard. In fact, Pegs and Rubber
Bands itself is NP-hard.

Theorem 1. Pegs and Rubber Bands is NP-hard.

Proof: We make a reduction from the longest common subsequence (LCS) for a
set of binary strings, which is an NP-hard problem. In this reduction, pegs are
labeled and w(l, i, j) depends only on the label of peg [l, i] and the label of peg
[l+1, j]. We describe this weight as a function of labels shortly. Each binary string
is modified by adding the symbol b between every two consecutive bits. A string
of original length n is then transformed into two consecutive (identical) levels
of 2n− 1 pegs each, where each peg is labeled by the corresponding symbol in



A Combinatorial Approach for Multiple RNA Interaction 425

1 4 5 8 first RNA

3 6 7 second RNA2

Fig. 3. Pegs and Rubber Bands as a special instance of RNA-RNA interaction, vertical
lines indicate regions where only interaction (binding of the two RNAs) is allowed, and
curved lines indicate regions where only folding within each RNA is allowed

{0, 1, b}. For any given integer k, the first and last levels consist of k pegs labeled
∗. We now define the weight as a function of labels: w(0, 0) = w(1, 1) = w(b, b) =
w(∗, 0) = w(∗, 1) = w(0, ∗) = w(1, ∗) = 1 and w(x, y) = −∞ otherwise. It is
easy to verify that the strings have a common subsequence of length k if and
only if the optimal solution has a weight of

∑
i(2ni − 1) + k = 2

∑
i ni −m+ k

(when every peg has a rubber band around it), where ni is the original length
of string i and m is the number of strings.

* * * *

| | | |

0b0b1b0b1b1b1

|| | | | ||||

0b0b1b0b1b1b1

| | | |

0b1b0b1b0

| | | ||

0b1b0b1b0

| | | |

1b0b0b1b0b1

|||| | | |

1b0b0b1b0b1

| | | |

* * * *

Fig. 4. Reduction from LCS for {0010111, 01010, 100101} to Pegs and Rubber Bands
(the symbol | denotes a rubber band). The optimal solution with weight 2(7+5+6)−
3 + 4 = 37 corresponds to a common subsequence of length 4, namely 0101.

While our problem is NP-hard, we can show that the same formulation can be
adapted to obtain a polynomial time approximation. A maximization problem
admits a polynomial time approximation scheme (PTAS) iff for every fixed ε > 0
there is an algorithm with a running time polynomial in the size of the input



426 S.A. Ahmed, S. Mneimneh, and N.L. Greenbaum

that finds a solution within (1 − ε) of optimal [15]. We show below that we can

find a solution within (1 − ε) of optimal in time O(m� 1ε �n�
1
ε �), where m is the

number of levels and each level has O(n) pegs.

Theorem 2. Pegs and Rubber Bands admits a PTAS.

Proof: Let OPT be the weight of the optimal solution and denote by W [i . . . j]
the weight of the optimal solution when the problem is restricted to levels i, i+
1, . . . , j (a sub-problem). For a given ε > 0, let k = � 1ε �. Consider the following
k solutions (weights), each obtained by a concatenation of optimal solutions for
sub-problems consisting of at most k levels.

W1 =W [1 . . . 1] +W [2 . . . k + 1] +W [k + 2 . . . 2k + 1] + . . .

W2 =W [1 . . . 2] +W [3 . . . k + 2] +W [k + 3 . . . 2k + 2] + . . .

...

Wk =W [1 . . . k] +W [k + 1 . . . 2k] +W [2k + 1 . . . 3k] + . . .

While each Wi ≤ OPT , it is easy to verify that every pair of consecutive levels
appear in exactly k − 1 of the above sub-problems. Therefore,

k∑
i=1

Wi ≥ (k − 1)OPT

⇒ max
i
Wi ≥

k − 1

k
OPT ≥ (1 − ε)OPT

If m is the total number of levels, then there are O(m) sub-problems of at most
k levels each and, therefore, the running time required to find maxiWi when
every level has O(n) pegs is O(mknk) = O(m� 1ε �n�

1
ε
�).

For a given integer k, the (1− 1/k)-factor approximation algorithm is to simply
choose the best Wi =W [1 . . . i] +W [i+1 . . . i+ k] +W [i+ k+1 . . . i+2k] + . . .
as a solution, where W [i . . . j] denotes the weight of the optimal solution for the
sub-problem consisting of levels i, i+ 1 . . . , j. However, as a practical step, and
instead of using the Wi’s for the comparison, we can fill in for each Wi some
additional rubber bands (interactions) between (RNAs) level i and level i + 1,
between level i+k and level i+k+1, and so on, by identifying the pegs of these
levels (regions of RNAs) that are not part of the solution. This does not affect
the theoretical guarantee but gives a larger weight to the solution. We call it gap
filling.

3 Windows and Gaps: A Better Formulation for RNA
Interaction

In the previous section, we described our initial attempt to view the interaction
of m RNAs as a Pegs and Rubber Bands problem with m levels, where the first



A Combinatorial Approach for Multiple RNA Interaction 427

RNA interacts with the second RNA, and the second with the third, and so on
(so they alternate in sense and antisense). This used a simple base-pair energy
model, which is not too realistic. We now address this issue (and leave the issues
of the ordering and the interaction pattern to Section 3.3). A better model for
RNA interaction will consider windows of interaction instead of single bases. In
terms of our Pegs and Rubber Bands problem, this translates to placing rubber
bands around a stretch of contiguous pegs in two consecutive levels, e.g. around
pegs [l, i1], [l, i2], [l+1, j1], and [l+1, j2], where i2 ≥ i1 and j2 ≥ j1. The weight
contribution of placing such a rubber band is now given by w(l, i2, j2, u, v), where
i2 and j2 are the last two pegs covered by the rubber band in level l and level
l + 1, and u = i2 − i1 + 1 and v = j2 − j1 + 1 represent the length of the two
windows covered in level l and level l + 1, respectively.

j1

i1 i2

j2

Fig. 5. A rubber band can now be placed around a window of pegs, here u = 3 and
v = 2 in the big window.

As a heuristic, we also allow for the possibility of imposing a gap g ≥ 0
between windows to establish a distance at which windows may be considered
energetically separate. This gap is also taken into consideration when we per-
form the gap filling procedure described at the end of Section 3.1. The modified
algorithm is shown in Figure 6, and if we set u = v = 1 and g = 0, then we
retrieve the original algorithm of Figure 2.

W (i1, i2, . . . , im) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (i1 − 1, i2, . . . , im)
W (i1, i2 − 1, i3, . . . , im)

.

.

.
W (i1, . . . , im−1, im − 1)

W ((i1 − u − g)+, (i2 − v − g)+, i3, . . . , im) + w(1, i1, i2, u, v)
W (i1, (i2 − u − g)+, (i3 − v − g)+, i4, . . . , im) + w(2, i2, i3, u, v)

.

.

.

W (i1, . . . , im−2, (im−1 − u − g)+, (im − v − g)+)+
w(m− 1, im−1, im, u, v)

where x+ denotes max(0, x), w(l, i, j, u, v) = −∞ if u > i or v > j, 0 < u, v ≤ w (the maximum
window size), g ≥ 0 (the gap), and W (0, 0, . . . , 0) = 0.

Fig. 6. Modified dynamic programming algorithm for Pegs and Rubber Bands with
the windows and gaps formulation



428 S.A. Ahmed, S. Mneimneh, and N.L. Greenbaum

The running time of the modified algorithm is O(mw2nm) and

O(mw2� 1ε �n�
1
ε �) for the approximation scheme, where w is the maximum win-

dow length. If we impose that u = v, then those running times become O(mwnm)

and O(mw� 1ε �n�
1
ε �) respectively.

For the correctness of the algorithm, we now have to assume that windows are
sub-additive. In other words, we require the following condition (otherwise, the
algorithm may compute an incorrect optimum due to the possibility of achieving
the same window by two or more smaller ones with higher total weight):

w(l, i, j, u1, v1) + w(l, i− u1, j − v1, u2, v2)

≤ w(l, i, j, u1 + u2, v1 + v2)

In our experience, most existing RNA-RNA interaction algorithms produce
weights (the negative of the energy values) of RNA interaction windows that
mostly conform to the above condition. In rare cases, we filter the windows to
eliminate those that are not sub-additive. For instance, if the above condition is
not met, we set w(l, i, j, u1, v1) = w(l, i − u1, j − v1, u2, v2) = −∞ (recursively
starting with smaller windows).

4 Interaction Pattern and Permutations: A Heuristic

We now describe how to relax the ordering and the condition on the interaction
pattern of the RNAs. We first identify each RNA as being even (sense) or odd
(antisense), but this convention can obviously be switched. Given m RNAs and
a permutation on the set {1, . . . ,m}, we map the RNAs onto the levels of a Pegs
and Rubber Bands problem as follows: We place the RNAs in the order in which
they appear in the permutation on the same level as long as they have the same
parity (they are either all even or all odd). We then increase the number of levels
by one, and repeat. RNAs that end up on the same level are virtually considered
as one RNA that is the concatenation of all. However, in the corresponding Pegs
and Rubber Bands problem, we do not allow windows to span multiple RNAs,
nor do we enforce a gap between two windows in different RNAs. For example,
if we consider the following permutation of RNAs {1, 3, 4, 7, 5, 8, 2, 6}, where the
RNA number also indicates its parity (for the sake of illustration), then we end
up with the following placement: RNA 1 and RNA 3 in that order on the first
level, followed by RNA 4 on the second level, followed by RNA 7 and RNA 5 in
that order on the third level, followed by RNA 8, RNA 2, and RNA 6 in that
order on the fourth level, resulting in four virtual RNAs on four levels of pegs
as shown in Figure 7.

But what is the best placement as a Pegs and Rubber Bands problem for
a given set of RNAs? Figure 8 shows a possible (greedy) heuristic that tackles
this question by starting with a random permutation and then searching for the
best one via neighboring permutations (and recall that the permutation uniquely
determines the placement).



A Combinatorial Approach for Multiple RNA Interaction 429

---RNA 1---RNA 3---

---RNA 4---

---RNA 7---RNA 5---

---RNA 8---RNA 2---RNA 6---

Fig. 7. Placement of the permutation {1, 3, 4, 7, 5, 8, 2, 6} where the RNA number also
indicates its parity. The interaction pattern is less restrictive then before; for instance,
RNA 7 can interact with RNA 2, RNA 4, RNA 6, and RNA 8.

Given ε = 1/k and m RNAs
produce a random permutation π on {1, . . . ,m}
let W be the weight of the (1 − ε)-optimal solution given π
repeat

better←false
generate a set Π of neighboring permutations for π
for every π′ ∈ Π (in any order)

let W ′ be the weight of the (1 − ε)-optimal solution given π′

if W ′ > W
then W ← W ′

π ← π′

better←true
until not better

Fig. 8. A heuristic for multiple RNA interaction using the PTAS algorithm

To generate neighboring permutations for this heuristic algorithm one could
adapt a standard 2-opt method used in the Traveling Salesman Problem (or other
techniques). For instance, given permutation π, a neighboring permutation π′

can be obtained by dividing π into three parts and making π′ the concatenation
of the first part, the reverse of the second part, and the third part. In other
words, if π = (α, β, γ), then π′ = (α, βR, γ) is a neighbor of π, where βR is the
reverse of β.

5 Experimental Results

We apply the algorithm of Section 3.3 using the 2-opt method, where the PTAS
is based on the Windows and Gaps formulation of Section 3.2, with windows
satisfying 2 ≤ u, v ≤ w = 26 (RNAup’s default [7]) and a gap g = 4. The
weights w(l, i, j, u, v) are obtained from RNAup as (negative of energy values):

w(l, i, j, u, v) ∝ log pl(i− u+ 1, i) + log pl+1(j − v + 1, j)

+ logZI
l (i− u+ 1, i, j − v + 1, j)

where pl(i1, i2) is the probability that subsequence [i1, i2] is free (does not fold)
in RNA l, and ZI

l (i1, i2, j1, j2) is the partition function of the interaction of



430 S.A. Ahmed, S. Mneimneh, and N.L. Greenbaum

subsequences [i1, i2] in RNA l and [j1, j2] in RNA l + 1 (subject to no folding
within RNAs).

The windows are filtered for sub-additivity as described in Section 3.2. We
impose the condition that u = v for every window. We also have the option to
compress RNAs on level l by removal of a base i whenever w(l, i, j, u, u) is less
than some threshold for every j and every u; however, peg [l, i] can still be part
of some window, e.g. if w(l, i+ x, j, x+ y, x+ y) is added to the solution, where
x, y > 0. We did not use that option here. We pick the largest weight solution
among several runs of the algorithm. The value of k and the gap filling criterion
depend on the scenario, as described below.

5.1 Fishing for Pairs

Six RNAs of which three pairs are known to interact are used [8]. We are inter-
ested in identifying the three pairs. For this purpose, it will suffice to set k = 2
and to ignore gap filling. Furthermore, we only consider solutions in which each
RNA interacts with at most one other RNA. The solution with the largest weight
identifies the three pairs correctly (Figure 9). In addition, the interacting sites
in each pair are consistent (not surprisingly) with the predictions of existing
RNA-RNA interaction algorithms, e.g. [10].

OxyS 5’ ...CCCUUG... ...GUG... ...UCCAG... 3’

|||||| ||| |||||

fhlA 3’ ...GGGAAC... ...CAC... ...AGGUC... 5’

CopA 5’ ...CGGUUUAAGUGGG... ...UUUCGUACUCGCCAAAGUUGAAGA... ...UUUUGCUU 3’

||||||||||||| |||||||||||||||||||||||| ||||||||

CopT 3’ GCCAAAUUCACCC... ...AAAGCAUGAGCGGUUUCAACUUCU... ...AAAACGAA 5’

MicA 5’ ...GCGCA... ...CUGUUUUC... ...CGU... 3’

||||| |||||||| |||

lamB 3’ ...CGCGU... ...GAUAGAGG... ...GCA... 5’

Fig. 9. Known pairs of interacting RNAs with reasonable solutions

5.2 Structure Prediction

The human snRNA complex U2-U6 is necessary for the splicing of a specific
mRNA intron [14]. Only the preserved regions of the intron are considered,
which consist of two structurally autonomous parts, resulting in an instance
with a total of four RNAs. The algorithm is performed with k = 2, 3, 4 and
gap filling. In all three cases, the solution with the largest weight consistently
finds the structure shown in Figure 10. This structure reveals a correct pattern



A Combinatorial Approach for Multiple RNA Interaction 431

described in [13,14], and cannot be easily predicted by considering the RNAs in
pairs; for instance, AUAC in U6 will bind to UAUG in both U2 and I1, and it
is not immediately obvious which one to break without a global view, e.g. that
AUGAU in U2 binds with UACUA in I2 as well. This is a typical issue of using
local information to produce a globally optimal solution.

I1 3’ UGUAUG 5’

||||

U6 5’ AUACA.....GAUUa... ...cGUGAAGCGU 3’

|||| |||||||||

U2 3’ UAUGAUg....CUAGAAu..........gCACUUCGCA 5’

|||||

I2 5’ UACUAAc 3’

Fig. 10. A modified human snRNA U2-U6 complex in the splicing of an intron, as
reported in [14]. Bases indicated by small letters are missing from the interaction.
From left to right: g-c and a-u are missing due to the condition 2 ≤ u = v ≤ 26, but
also due to the added instability of a bulge loop when this condition is relaxed; c-g ends
up being not favored by RNAup. I1 is shifted (UGU should interact with ACA instead)
but this is a computational artifact of optimization that is hard to avoid. Overall, the
structure is accurate and cannot be predicted by a pairwise handling of the RNAs.

5.3 Structural Separation

Six RNAs are used: CopA, CopT, and the four RNAs of the previous scenario.
The algorithm is performed with k = 3 and gap filling. The solution with the
largest weight results in a successful prediction that separates the RNA complex
CopA-CopT of Figure 9 from the RNA structure shown in Figure 10.

5.4 Making Improvements

In this section, we try to eliminate some heuristics, an approach we did not
attempt in a previous work on the subject [16]. We relax the condition that
u = v so we allow arbitrary window sizes and, furthermore, we drop the gap
heuristic so we set g = 0. Some unwanted interactions now start to appear.

To correct for this, we modify RNAup weights in a reasonable way. For sim-
plicity of notation, let A denote the subsequence [i − u + 1, i] in RNA l and B
the subsequence [j − v + 1, j] in RNA l + 1. We now have

w(l, i, j, u, v) ∝ log pA + log pB + log qA + log qB − log(1− pIAB)

where pA and pB are as before the probabilities that the corresponding sub-
sequences are free, ZI is replaced by (1 − pIAB)

−1, and pIAB is the probability
that the two subsequences will interact (as opposed to individually fold) given



432 S.A. Ahmed, S. Mneimneh, and N.L. Greenbaum

they are free (in the following, ZA is the partition function for folding subse-
quence A).

pIAB =
ZI
AB

ZI
AB + ZAZB

The probabilities qA and qB are additional corrective factors that reflect the
preferential choice of the subsequences given they will interact.

qA =
pBpI

AB∑
X pXpI

AX

qB =
pApI

AB∑
Y pY pI

Y B

where X and Y are subsequences in RNA l and RNA l + 1 respectively.
With these newly defined weights, we obtain similar results for Section 5.1

and the exact same results for Section 5.2.

6 Conclusion

While RNA-RNA interaction algorithms exist, they are not suitable for pre-
dicting RNA structures in which more than two RNA molecules interact. For
instance, the interaction pattern may not be known, in contrast to the case of
two RNAs where one must interact with the other. Moreover, even with some ex-
isting knowledge on the pattern of interaction, treating the RNAs pairwise may
not lead to the best global structure. In this work, we formulate multiple RNA
interaction as an optimization problem, prove it is NP-complete, and provide
approximation and heuristic algorithms. We explore three scenarios: 1) fishing
for pairs: given a pool of RNAs, we identify the pairs that are known to interact;
2) structure prediction: we predict a correct complex of two snRNAs (modified
human U2 and U6) and two structurally autonomous parts of an intron, a total
of four RNAs; and 3) structural separation: we successfully divide the RNAs into
independent groups of multiple interacting RNAs.

References

1. Pervouchine, D.D.: Iris: Intermolecular RNA interaction search. In: 15th Interna-
tional Conference on Genome Informatics (2004)

2. Alkan, C., Karakoc, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNA-RNA in-
teraction prediction and antisense RNA target search. Journal of Computational
Biology 13(2) (2006)

3. Mneimneh, S.: On the approximation of optimal structures for RNA-RNA inter-
action. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(2009)

4. Meyer, I.M.: Predicting novel RNA-RNA interactions. Current Opinions in Struc-
tural Biology 18 (2008)

5. Kolb, F.A., Malmgren, C., Westhof, E., Ehresmann, C., Ehresmann, B., Wagner,
E.G.H., Romby, P.: An unusual structure formed by antisense-target RNA binding
involves an extended kissing complex with a four-way junction and a side-by-side
helical alignment. RNA Society (2000)



A Combinatorial Approach for Multiple RNA Interaction 433

6. Argaman, L., Altuvia, S.: fhla repression by oxys: Kissing complex formation at
two sites results in a stable antisense-target RNA complex. Journal of Molecular
Biology 300 (2000)

7. Muckstein, U., Tafer, H., Hackermuller, J., Bernhart, S.H., Stadler, P.F., Hofacker,
I.L.: Thermodynamics of RNA-RNA binding. Journal of Bioinformatics (2006)

8. Chitsaz, H., Backofen, R., Sahinalp, S.C.: biRNA: Fast RNA-RNA binding sites
prediction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp.
25–36. Springer, Heidelberg (2009)

9. Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm
for interacting nucleic acid strands. Journal of Bioinformatics (2009)

10. Salari, R., Backofen, R., Sahinalp, S.C.: Fast prediction of RNA-RNA interaction.
Algorithms for Molecular Biology 5(5) (2010)

11. Huang, F.W.D., Qin, J., Reidys, C.M., Stadler, P.F.: Partition function and base
pairing probabilities for RNA-RNA interaction prediction. Journal of Bioinformat-
ics 25(20) (2009)

12. Li, A.X., Marz, M., Qin, J., Reidys, C.M.: RNA-RNA interaction prediction based
on multiple sequence alignments. Journal of Bioinformatics (2010)

13. Sun, J.S., Manley, J.L.: A novel U2-U6 snRNA structure is necessary for mam-
malian mRNA splicing. Genes and Development 9 (1995)

14. Zhao, C., Bachu, R., Popovic, M., Devany, M., Brenowitz, M., Schlatterer, J.C.,
Greenbaum,N.L.:Conformational heterogeneity of the protein-free human spliceoso-
mal U2-U6 snRNA complex. RNA 19, 561–573 (2013), doi:10.1261/rna.038265.113;
These two autors contributed equally to the manuscript

15. Cormen, T., Leiserson, C.E., Rivest, R.L., Stein, C.: Approximation Algorithms in
Introduction to Algorithms. MIT Press (2010)

16. Mneimneh, S., Ahmed, S.A., Greenbaum, N.L.: Multiple RNA interaction: For-
mulations, approximations, and heuristics. In: Fourth International Conference on
Bioinformatics Models, Methods, and Algorithms (2013)



Maximum Balanced Subgraph Problem Parameterized
above Lower Bound

Robert Crowston, Gregory Gutin, Mark Jones, and Gabriele Muciaccia

Royal Holloway, University of London, UK
{robert,gutin,markj,G.Muciaccia}@cs.rhul.ac.uk

Abstract. We consider graphs without loops or parallel edges in which every
edge is assigned + or −. Such a signed graph is balanced if its vertex set can
be partitioned into parts V1 and V2 such that all edges between vertices in the
same part have sign + and all edges between vertices of different parts have sign
− (one of the parts may be empty). It is well-known that every connected signed
graph with n vertices and m edges has a balanced subgraph with at least m

2
+ n−1

4

edges and this bound is tight. We consider the following parameterized problem:
given a connected signed graph G with n vertices and m edges, decide whether
G has a balanced subgraph with at least m

2
+ n−1

4
+ k

4
edges, where k is the

parameter.
We obtain an algorithm for the problem of runtime 8k(kn)O(1). We also prove

that for each instance (G, k) of the problem, in polynomial time, we can either
solve (G, k) or produce an equivalent instance (G′, k′) such that k′ ≤ k and
|V (G′)| = O(k3). Our first result generalizes a result of Crowston, Jones and
Mnich (ICALP 2012) on the corresponding parameterization of Max Cut (when
every edge of G has sign −). Our second result generalizes and significantly
improves the corresponding result of Crowston, Jones and Mnich for MaxCut:
they showed that |V (G′)| = O(k5).

1 Introduction

We consider undirected graphs with no parallel edges or loops and in which every edge
is labelled by + or−. We call such graphs signed graphs, and edges, labelled by + and
−, positive and negative edges, respectively. The labels + and − are the signs of the
corresponding edges. Signed graphs are well-studied due to their various applications
and interesting theoretical properties, see, e.g., [1,6,9,10,11,12,17].

Let G = (V,E) be a signed graph and let V = V1 ∪ V2 be a partition of the vertex
set of G (i.e., V1 ∩ V2 = ∅). We say that G is (V1, V2)-balanced if an edge with both
endpoints in V1, or both endpoints in V2 is positive, and an edge with one endpoint in
V1 and one endpoint in V2 is negative;G is balanced if it is (V1, V2)-balanced for some
partition V1, V2 of V (V1 or V2 may be empty).

In some applications, we are interested in finding a maximum-size balanced sub-
graph of a signed graph [1,6,12,17]. We will call this problem SIGNED MAX CUT. This
problem is a generalization of MAX CUT and as such is NP-hard (SIGNED MAX CUT

is equivalent to MAX CUT when all edges of G are negative). Hüffner et al. [12] para-
meterized SIGNED MAX CUT below a tight upper bound: decide whether G = (V,E)

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 434–445, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Maximum Balanced Subgraph Problem Parameterized above Lower Bound 435

contains a balanced subgraph with at least |E| − k edges, where k is the parameter1.
Hüffner et al. [12] showed that this parameterized problem is fixed-parameter tract-
able (FPT) using a simple reduction to the EDGE BIPARTIZATION PROBLEM: decide
whether an unsigned graph can be made bipartite by deleting at most k edges (k is
the parameter). Using this result and a number of heuristic reductions, Hüffner et al.
[12] designed a nontrivial practical algorithm that allowed them to exactly solve sev-
eral instances of SIGNED MAX CUT that were previously solved only approximately
by DasGupta et al. [6].

In this paper, we consider a different parameterization of SIGNED MAX CUT: decide
whether a connected signed graph G with n vertices and m edges contains a subgraph
with at least m

2 + n−1
4 + k

4 edges2, where k is the parameter. Note that pt(G) = m
2 + n−1

4
is a tight lower bound on the number of edges in a balanced subgraph of G (this fact
was first proved by Poljak and Turzı́k [15], for a different proof, see [2]). Thus, we will
call this parameterized problem SIGNED MAX CUT ABOVE TIGHT LOWER BOUND

or SIGNED MAX CUT ATLB. Whilst the parameterization of Hüffner et al. of MAX

CUT ATLB is of interest when the maximum number of edges in a balanced subgraph
H of G is close to the number of edges of G, SIGNED MAX CUT ATLB is of interest
when the maximum number of edges in H is close to the minimum possible value in
a signed graph on n vertices and m edges. Thus, the two parameterizations treat the
opposite parts of the SIGNED MAX CUT “spectrum.”

It appears that it is much harder to prove that SIGNED MAX CUT ATLB is FPT than
to show that the parameterization of Hüffner et al. of SIGNED MAX CUT is. Indeed,
SIGNED MAX CUT ATLB is a generalization of the same parameterization of MAX

CUT (denoted by MAX CUT ATLB) and the parameterized complexity of the latter was
an open problem for many years (and was stated as an open problem in several papers)
until Crowston et al. [5] developed a new approach for dealing with such parameterized
problems3. This approach was applied by Crowston et al. [3] to solve an open problem
of Raman and Saurabh [16] on maximum-size acyclic subgraph of an oriented graph.
Independently, this problem was also solved by Mnich et al. [13] who obtained the
solution as a consequence of a meta-theorem which shows that several graph problems
parameterized above a lower bound of Poljak and Turzı́k [15] are FPT under certain
conditions.

While the meta-theorem is for both unlabeled and labeled graphs, all consequences
of the meta-theorem in [13] are proved only for parameterized problems restricted to
unlabelled graphs. A possible reason is that one of the conditions of the meta-theorem
requires us to show that the problem under consideration is FPT on a special family of
graphs, called almost forests of cliques4. The meta-theorem is useful when it is relat-
ively easy to find an FPT algorithm on almost forests of cliques. However, for SIGNED

1 We use standard terminology on parameterized algorithmics, see, e.g., [7,8,14].
2 We use k

4
instead of just k to ensure that k is integral.

3 Recall that MAX CUT is a special case of SIGNED MAX CUT when all edges are negative.
4 Forests of cliques are defined in the next section. An almost forest of cliques is obtained from

a forest of cliques by adding to it a small graph together with some edges linking the small
graph with the forest of cliques.



436 R. Crowston et al.

MAX CUT ATLB it is not immediately clear what an FPT algorithm would be even on
a clique.

Our attempts to check that SIGNED MAX CUT ATLB is FPT on almost forests of
cliques led us to reduction rules that are applicable not only to almost forests of cliques,
but to arbitrary instances of SIGNED MAX CUT ATLB. Thus, we found two alternatives
to prove that SIGNED MAX CUT ATLB is FPT: with and without the meta-theorem.
Since the first alternative required stating the meta-theorem and all related notions and
led us to a slightly slower algorithm than the second alternative, we decided to use the
second alternative.

We reduce an arbitrary instance of SIGNED MAX CUT ATLB to an instance which
is an almost forest of cliques, but with an important additional property which allows us
to make use of a slight modification of a dynamic programming algorithm of Crowston
et al. [5] for MAX CUT ATLB on almost forests of cliques.

Apart from showing that MAX CUT ATLB is FPT, Crowston et al. [5] proved that
the problem admits a kernel with O(k5) vertices. They also found a kernel with O(k3)
vertices for a variation of MAX CUT ATLB, where the lower bound used is weaker
than the Poljak-Turzı́k bound. They conjectured that a kernel withO(k3) vertices exists
for MAX CUT ATLB as well. In the main result of this paper, we show that SIGNED

MAX CUT ATLB, which is a more general problem, also admits a polynomial-size
kernel and, moreover, our kernel hasO(k3) vertices. Despite considering a more general
problem than in [5], we found a proof which is shorter and simpler than the one in [5]; in
particular, we do not use the probabilistic method. An O(k3)-vertex kernel for SIGNED

MAX CUT ATLB does not immediately imply an O(k3)-vertex kernel for MAX CUT

ATLB, but the same argument as for SIGNED MAX CUT ATLB shows that MAX CUT

ATLB admits an O(k3)-vertex kernel. This confirms the conjecture above.

2 Terminology, Notation and Preliminaries

For a positive integer l, [l] = {1, . . . , l}. A cycle C in G is called positive (negative)
if the number of negative edges in C is even (odd)5. The following characterization of
balanced graphs is well-known.

Theorem 1. [11] A signed graph G is balanced if and only if every cycle in G is
positive.

Let G = (V,E) be a signed graph. For a subset W of V , the W -switch of G is the
signed graphGW obtained fromG by changing the signs of the edges between W and
V \W . Note that a signed graphG is balanced if and only if there exists a subset W of
V (W may coincide with V ) such that GW has no negative edges. Indeed, if GW has
no negative edges,G is (W,V \W )-balanced. If G is (V1, V2)-balanced, thenGV1 has
no negative edges.

Deciding whether a signed graph is balanced is polynomial-time solvable.

Theorem 2. [9] LetG = (V,E) be a signed graph. Deciding whetherG is balanced is
polynomial-time solvable. Moreover, if G is balanced then, in polynomial time, we can
find a subset W of V such that GW has no negative edges.

5 To obtain the sign of C simply compute the product of the signs of its edges.



Maximum Balanced Subgraph Problem Parameterized above Lower Bound 437

For a signed graph G, β(G) will denote the maximum number of edges in a balanced
subgraph ofG. Furthermore, for a signed graphG = (V,E), pt(G) denotes the Poljak-
Turzı́k bound: β(G) ≥ pt(G). If G is connected, then pt(G) = |E(G)|

2 + |V (G)|−1
4 ,

and if G has t components, then pt(G) = |E(G)|
2 + |V (G)|−t

4 . It is possible to find, in
polynomial time, a balanced subgraph of G of size at least pt(G) [15].

The following easy property will be very useful in later proofs. It follows from The-
orem 1 by observing that for a signed graph the Poljak-Turzı́k bound does not depend
on the signs of the edges and that, for any cycle in G, the sign of the cycle in G and in
GW is the same.

Corollary 1. Let G = (V,E) be a signed graph and let W ⊂ V . Then pt(GW ) =
pt(G) and β(GW ) = β(G).

For a vertex set X in a graph G, G[X ] denotes the subgraph of G induced by X . For
disjoint vertex sets X,Y of graphG, E(X,Y ) denotes the set of edges betweenX and
Y . A bridge in a graph is an edge that, if deleted, increases the number of connected
components of the graph. A block of a graph is either a maximal 2-connected subgraph
or a connected component containing only one vertex.

For an edge set F of a signed graph G, F+ and F− denote the set of positive and
negative edges of F , respectively. For a signed graph G = (V,E), the dual of G is the
signed graph Ḡ = (V, Ē), where Ē+ = E− and Ē− = E+. A cycle in G is dually
positive (dually negative) if the same cycle in Ḡ is positive (negative).

For a graph G = (V,E), the neighborhoodNG(W ) of W ⊆ V is defined as {v ∈
V : vw ∈ E,w ∈ W} \ W ; the vertices in NG(W ) are called neighbors of W . If
G is a signed graph, the positive neighbors of W ⊆ V are the neighbors of W in
G+ = (V,E+); the set of positive neighbors is denoted N+

G (W ). Similarly, for the
negative neighbors andN−

G (W ).
The next theorem is the ‘dual’ of Theorem 1, in the sense that it is its equivalent

formulation on the dual of a graph.

Theorem 3. Let G = (V,E) be a signed graph. Then the dual graph Ḡ is balanced if
and only if G does not contain a dually negative cycle.

In the next sections, the notion of forest of cliques introduced in [5] plays a key role.
A connected graph is a tree of cliques if the vertices of every cycle induce a clique. A
forest of cliques is a graph whose components are trees of cliques. It follows from the
definition that in a forest of cliques any block is a clique.

Note that a forest of cliques is a chordal graph, i.e., a graph in which every cycle
has a chord, that is an edge between two vertices which are not adjacent in the cycle.
The next lemma is a characterization of chordal graphs which have a balanced dual. A
triangle is a cycle with three edges.

Corollary 2. [�]6 Let G = (V,E) be a signed chordal graph. Then Ḡ is balanced if
and only if G does not contain a positive triangle.

6 Proofs of results marked by [�] can be found in [4].



438 R. Crowston et al.

Corollary 3. Let (G = (V,E), k) be an instance I of SIGNED MAX CUT ATLB, let
X ⊆ V (G) and letG[X ] be a chordal graph which does not contain a positive triangle.
Then there exists a set W ⊆ X , such that Ĩ = (GW , k) is equivalent to I, andGW [X ]
does not contain positive edges.

Proof. By Corollary 2, Ḡ[X ] is balanced: hence, by definition of balanced graph, there
exists W ⊆ X such that ḠW [X ] contains only positive edges, which means that
GW [X ] contains only negative edges. By Corollary 1, (GW , k) is an instance equi-
valent to the original one. ��

Lastly, the next lemmas describe useful properties of MAX CUT ATLB which still hold
for SIGNED MAX CUT ATLB.

Lemma 1. Let G = (V,E) be a connected signed graph and let V = U ∪W such that
U ∩W = ∅, U �= ∅ andW �= ∅. Then β(G) ≥ β(G[U ])+β(G[W ])+ 1

2 |E(U,W )|. In
addition, ifG[U ] has c1 components,G[W ] has c2 components, β(G[U ]) ≥ pt(G[U ])+
k1

4 and β(G[W ]) ≥ pt(G[W ]) + k2

4 , then β(G) ≥ pt(G) + k1+k2−(c1+c2−1)
4 .

Proof. Let H (F ) be a balanced subgraph of G[U ] (G[W ]) with maximum number
of edges and let H (F ) be (U1, U2)-balanced ((W1,W2)-balanced). Let E1 = E+(U1,
W1)∪E+(U2,W2)∪E−(U1,W2) ∪E−(U2,W1) and E2 = E(U,W ) \E1. Observe
that both E(H) ∪ E(F ) ∪ E1 and E(H) ∪ E(F ) ∪ E2 induce balanced subgraphs of
G and the largest of them has at least β(G[U ]) + β(G[W ]) + 1

2 |E(U,W )| edges.
Now, observe that pt(G) = pt(G[U ])+pt(G[W ])+ 1

2 |E(U,W )|+ c1+c2−1
4 . Hence

β(G) ≥ pt(G) + k1+k2−(c1+c2−1)
4 . ��

Lemma 2. [�] Let G = (V,E) be a signed graph, v ∈ V a cutvertex, Y a connected
component of G − v and G′ = G − Y . Then pt(G) = pt(G[V (Y ) ∪ {v}]) + pt(G′)
and β(G) = β(G[V (Y ) ∪ {v}]) + β(G′).

3 Fixed-Parameter Tractability

In this section, we prove that SIGNED MAX CUT ATLB is FPT by designing an al-
gorithm of running time7O∗(8k). This algorithm is a generalization of the FPT al-
gorithm obtained in [5] to solve MAX CUT ATLB. Given an instance (G = (V,E), k)
of MAX CUT ATLB, the algorithm presented in [5] applies some reduction rules that
either answer YES for MAX CUT ATLB or produce a set S of at most 3k vertices such
that G− S is a forest of cliques.

A key idea of this section is that it is possible to extend these rules such that we
include into S at least one vertex for every dually negative cycle of G. As a result,
Theorem 3 ensures that solving SIGNED MAX CUT ATLB on G − S is equivalent
to solving MAX CUT ATLB. Therefore, it is possible to guess a partial solution on S
and then solve MAX-CUT-WITH-WEIGHTED-VERTICES8 on G − S. Since a forest of

7 In the O∗-notation widely used in parameterized algorithmics, we omit not only constants, but
also polynomial factors.

8 This problem is defined just before Theorem 5.



Maximum Balanced Subgraph Problem Parameterized above Lower Bound 439

cliques is a chordal graph, Corollary 2 implies that it is enough to put into S at least
one vertex for every positive triangle in G (instead of every dually negative cycle). Our
reduction rules are inspired by the rules used in [5], but our rules are more involved in
order to deal with positive triangles.

The rules apply to an instance (G, k) of SIGNED MAX CUT ATLB and output an
instance (G′, k′) where G′ is obtained by deleting some vertices of G. In addition, the
rules can mark some of the deleted vertices: marked vertices will form the set S such
thatG−S is a forest of cliques. Note that every time a rule marks some vertices, it also
decreases the parameter k.

The instance (G′, k′) that the rules produce does not have to be equivalent to (G, k),
but it has the property that if it is a YES-instance, then (G, k) is a YES-instance too. For
this reason, these rules are called one-way reduction rules [3].

Note that in the description of the rules, G is a connected signed graph, and C and
Y denote connected components of a signed graph such that C is a clique which does
not contain a positive triangle.

Reduction Rule 1. If abca is a positive triangle such that G − {a, b, c} is connected,
then mark a, b, c, delete them and set k′ = k − 3.

Reduction Rule 2. If abca is a positive triangle such thatG−{a, b, c} has two connec-
ted componentsC and Y , then mark a, b, c, delete them, delete C, and set k′ = k − 2.

Reduction Rule 3. Let C be a connected component of G− v for some vertex v ∈ G.
If there exist a, b ∈ V (C) such thatG−{a, b} is connected and there is an edge av but
no edge bv, then mark a and b, delete them and set k′ = k − 2.

Reduction Rule 4. Let C be a connected component of G− v for some vertex v ∈ G.
If there exist a, b ∈ C such thatG−{a, b} is connected and vabv is a positive triangle,
then mark a and b, delete them and set k′ = k − 4.

Reduction Rule 5. If there is a vertex v ∈ V (G) such that G − v has a connected
componentC, G[V (C) ∪ {v}] is a clique in G, andG[V (C) ∪ {v}] does not contain a
positive triangle, then delete C and set k′ = k.

Reduction Rule 6. If a, b, c ∈ V (G), {ab, bc} ⊆ E(G) but ac /∈ E(G), and G −
{a, b, c} is connected, then mark a, b, c, delete them and set k′ = k − 1.

Reduction Rule 7. Let C, Y be the connected components of G−{v, b} for some ver-
tices v, b ∈ V (G) such that vb /∈ E(G). If G[V (C) ∪ {v}] and G[V (C) ∪ {b}] are
cliques not containing any positive triangles, then mark v and b, delete them, delete C
and set k′ = k − 1.

Definition 1. A one-way reduction rule is safe if it does not transform a NO-instance
into a YES-instance.

The intuitive understanding of how a one-way reduction rule works is that it removes
a portion of the graph (while decreasing the parameter from k to k′) only if given any
solution (i.e., a balanced subgraph) on the rest of the graph there is a way to extend it to
the removed portion while always gaining an additional k − k′ over the Poljak-Turzı́k
bound.



440 R. Crowston et al.

Lemma 3. Let G be a connected graph. If C is a clique of G such that G − C is
connected and if C contains a positive triangle, then either Rule 1 or Rule 2 applies.

Proof. Let abca be a positive triangle in C. Suppose Rule 1 does not apply. This means
that G − {a, b, c} is not connected: more precisely, G − {a, b, c} has two components
G− C and C − {a, b, c}. Note that C − {a, b, c} cannot contain a positive triangle, or
otherwise Rule 1 would have applied. Therefore, Rule 2 applies. ��

Theorem 4. [�] Rules 1-7 are safe.

We now show that the reduction rules preserve connectedness and that there is always
one of them which applies to a graph with at least one edge. To show this, we use
the following lemma, based on a result in [5] but first expressed in the following form
in [3].

Lemma 4. [3] For any connected graph G, at least one of the following properties
holds:

A There exist v ∈ V (G) and X ⊆ V (G) such that G[X ] is a connected component of
G− v andG[X ] is a clique;

B There exist a, b, c ∈ V (G) such that G[{a, b, c}] is isomorphic to path P3 and G −
{a, b, c} is connected;

C There exist v, b ∈ V (G) such that vb /∈ E(G), G − {v, b} is disconnected, and for
all connected components G[X ] of G − {v, b}, except possibly one, G[X ∪ {v}]
andG[X ∪ {b}] are cliques.

Lemma 5. For a connected graph G with at least one edge, at least one of Rules 1-7
applies. In addition, the graphG′ which is produced is connected.

Proof. It is not difficult to see that the graph G′ is connected, since when it is not
obvious, its connectedness is part of the conditions for the rule to apply.

If property A of Lemma 4 holds, andG[X ] contains a positive triangle abca, then by
Lemma 3 either Rule 1 or Rule 2 applies. If 2 ≤ |NG(v) ∩ X | ≤ |X | − 1, then Rule
3 applies. If |NG(v) ∩ X | = |X | and there exist a, b ∈ X such that vabv is a positive
triangle, Rule 4 applies; otherwise,G[X ∪{v}] contains no positive triangles, and Rule
5 applies. Finally, if NG(v) ∩X = {x}, Rule 5 applies for x with clique G[X \ {x}].

If property B of Lemma 4 holds, then Rule 6 applies. If property C of Lemma 4
holds, consider the case whenG− {v, b} has two connected components. Let Z be the
other connected component. If Z is connected to only one of v or b, then property A
holds. Otherwise, if G[X ∪ {x}] contains a positive triangle, where x ∈ {v, b}, then
by Lemma 3 either Rule 1 or Rule 2 applies. So we may assume that G[X ∪ {b, v}]
contains no positive triangles, in which case Rule 7 applies.

If G− {v, b} has at least three connected components, at least two of them, X1, X2,
form cliques with both v and b and possibly one componentY does not. Assume without
loss of generality that Y has an edge to v. Then Rule 6 applies for the path x1bx2, where
x1 ∈ X1, x2 ∈ X2. ��



Maximum Balanced Subgraph Problem Parameterized above Lower Bound 441

The following lemma gives structural results on S and G − S. Note that from now
on, (G = (V,E), k) denotes the original instance of SIGNED MAX CUT ATLB and
(G′ = (V ′, E′), k′) denotes the instance obtained by applying Rules 1-7 exhaustively.
The set S ⊆ V denotes the set of vertices which are marked by the rules.

Lemma 6. [�] Given a connected graph G, if we apply Rules 1-7 exhaustively, either
the set S of marked vertices has cardinality at most 3k, or k′ ≤ 0. In addition, G − S
is a forest of cliques that does not contain a positive triangle.

Finally, it is possible to prove that SIGNED MAX CUT ATLB is FPT. First we state
MAX-CUT-WITH-WEIGHTED-VERTICES as in [5].

MAX-CUT-WITH-WEIGHTED-VERTICES

Instance: A graph G with weight functions w1 : V (G) → N0 and
w2 : V (G) → N0, and an integer t ∈ N.

Question: Does there exist an assignment f : V (G) → {1, 2} such
that

∑
xy∈E |f(x)− f(y)|+

∑
f(x)=1w1(x) +

∑
f(x)=2w2(x) ≥ t?

Theorem 5. SIGNED MAX CUT ATLB can be solved in time O∗(8k).

Proof. Let (G = (V,E), k) be an instance of SIGNED MAX CUT ATLB. Apply Rules
1-7 exhaustively, producing an instance (G′ = (V ′, E′), k′) and a set S ⊆ V of marked
vertices. If k′ ≤ 0, (G′, k′) is a trivial YES-instance. Since the rules are safe, it follows
that (G, k) is a YES-instance, too.

Otherwise, k′ > 0. Note that by Lemma 6, |S| ≤ 3k andG−S is a forest of cliques,
which is a chordal graph without positive triangles. Hence, by Corollary 3, we may
assume that G− S does not contain positive edges.

Therefore, to solve SIGNED MAX CUT ATLB on G, we can guess a balanced
subgraph of G[S], induced by a partition (V1, V2), and then solve MAX-CUT-WITH-
WEIGHTED-VERTICES for G− S. The weight of a vertex v ∈ V (G− S) is defined in
the following way: let n+i (v) be the number of positive neighbors of v in Vi and n−i (v)
be the number of negative neighbors of v in Vi; then w1(v) = n+1 (v) + n−2 (v) and
w2(v) = n+2 (v) + n−1 (v).

Since MAX-CUT-WITH-WEIGHTED-VERTICES is solvable in polynomial
time on a forest of cliques (see Lemma 9 in [5]) and the number of possible
partitions of S is bounded by 23k, this gives an O∗(8k)-algorithm to solve
SIGNED MAX CUT ATLB. ��

4 Kernelization

In this section, we show that SIGNED MAX CUT ATLB admits a kernel with O(k3)
vertices. The proof of Theorem 5 implies the following key result for our kernelization.

Corollary 4. Let (G = (V,E), k) be an instance of SIGNED MAX CUT ATLB. In
polynomial time, either we can conclude that (G, k) is a YES-instance or we can find a
set S of at most 3k vertices for which we may assume that G − S is a forest of cliques
without positive edges.



442 R. Crowston et al.

The kernel is obtained via the application of a new set of reduction rules and using struc-
tural results that bound the size of NO-instances (G, k). First, we need some additional
terminology. For a block C in G − S, let Cint = {x ∈ V (C) : NG−S(x) ⊆ V (C)}
be the interior of C, and let Cext = V (C) \ Cint be the exterior of C. If a block C is
such that Cint ∩ NG(S) �= ∅, C is a special block. We say a block C is a path block if
|V (C)| = 2 = |Cext|. A path vertex is a vertex which is contained only in path blocks.
A block C in G− S is a leaf block if |Cext| ≤ 1.

The following reduction rules are two-way reduction rules: they apply to an instance
(G, k) and produce an equivalent instance (G′, k′).

Reduction Rule 8. Let C be a block in G − S. If there exists X ⊆ Cint such that
|X | > |V (C)|+|NG(X)∩S|

2 ≥ 1,N+
G (x)∩S = N+

G (X)∩S andN−
G (x)∩S = N−

G (X)∩S
for all x ∈ X , then delete two arbitrary vertices x1, x2 ∈ X and set k′ = k.

Reduction Rule 9. Let C be a block in G− S. If |V (C)| is even and there exists X ⊆
Cint such that |X | = |V (C)|

2 and NG(X) ∩ S = ∅, then delete a vertex x ∈ X and set
k′ = k − 1.

Reduction Rule 10. Let C be a block in G − S with vertex set {x, y, u}, such that
NG(u) = {x, y}. If the edge xy is a bridge in G − {u}, delete C, add a new vertex z,
positive edges {zv : v ∈ N+

G−u({x, y})}, negative edges {zv : v ∈ N−
G−u({x, y})}

and set k′ = k. Otherwise, delete u and the edge xy and set k′ = k − 1.

Reduction Rule 11. Let T be a connected component ofG−S only adjacent to a vertex
s ∈ S. Form a MAX-CUT-WITH-WEIGHTED-VERTICES instance on T by defining
w1(x) = 1 if x ∈ N+

G (s)∩T (w1(x) = 0 otherwise) and w2(y) = 1 if y ∈ N−
G (s)∩ T

(w2(y) = 0 otherwise). Let β(G[V (T )∪ {s}]) = pt(G[V (T ) ∪ {s}]) + p
4 . Then delete

T and set k′ = k − p.

Note that the value of p in Rule 11 can be found in polynomial time by solving MAX-
CUT-WITH-WEIGHTED-VERTICES on T .

A two-way reduction rule is valid if it transforms YES-instances into YES-instances
and NO-instances into NO-instances. Theorem 6 shows that Rules 8-11 are valid.

Theorem 6. [�] Rules 8-11 are valid.

To show the existence of a kernel with O(k3) vertices, it is enough to give a bound on
the number of non-path blocks, the number of vertices in these blocks and the number
of path vertices. This is done by Corollaries 6 and 7 and Lemma 11.

While Lemma 11 applies to any graph reduced by Rule 8, the proofs of Corollaries
6 and 7 rely on Lemma 10, which gives a general structural result on forest of cliques
with a bounded number of special blocks and bounded path length. Corollary 5 and
Lemma 9 provide sufficient conditions for a reduced instance to be a YES-instance, thus
producing a bound on the number of special blocks and the path length of NO-instances.
Lastly, Theorem 7 puts the results together to show the existence of the kernel.

Henceforth, we assume that the instance (G, k) is such that G is reduced by Rules
8-11, G− S is a forest of cliques which does not contain a positive edge and |S| ≤ 3k.



Maximum Balanced Subgraph Problem Parameterized above Lower Bound 443

Lemma 7. Let T be a connected component of G − S. Then for every leaf block C of
T ,NG(Cint)∩S �= ∅. Furthermore, if |NG(S)∩V (T )| = 1, then T consists of a single
vertex.

Proof. We start by proving the first claim. Note that if T = C consists of a single
vertex, thenNG(Cint) ∩ S �= ∅ since G is connected. So assume that C has at least two
vertices. Suppose that NG(Cint) ∩ S = ∅ and let X = Cint. Then if |Cint| > |Cext|,
Rule 8 applies. If |Cint| = |Cext| then Rule 9 applies. Otherwise, |Cint| < |Cext| and
since |Cext| ≤ 1 (as C is a leaf block), C has only one vertex, which contradicts our
assumption above. For the second claim, first note that since |NG(S) ∩ V (T )| = 1,
T has one leaf block and so T consists of a single block. Let NG(S) ∩ V (T ) = {v}
and X = V (T ) − {v}. If |X | > 1, Rule 8 applies. If |X | = 1, Rule 9 applies. Hence
V (T ) = {v}. ��

Let B be the set of non-path blocks.

Lemma 8. If there exists a vertex s ∈ S such that
∑

C∈B |NG(Cint) ∩ {s}| ≥ 2(|S| −
1 + k), then (G, k) is a YES-instance.

Proof. Form T ⊆ NG(s) by picking a vertex from each blockC for which |NG(Cint)∩
{s}| = 1: if there exists a vertex x ∈ Cint such that NG(x) ∩ S = {s}, pick this,
otherwise pick x ∈ Cint arbitrarily. Let U = T ∪ {s} andW = V \ U .

Observe that G[U ] is balanced by Theorem 1 as G[U ] is a tree. Thus β(G[U ]) =

|T | = |T |
2 + |T |

4 + |T |
4 = pt(G[U ]) + |T |

4 .
Consider a connected componentQ ofG−S. By Rule 11, |NG(Q)∩S| ≥ 2 and by

Lemma 7, if |NG(S)∩ V (Q)| = 1 thenQ consists of a single vertex. Otherwise, either
(NG(S) \ NG(s)) ∩ V (Q) �= ∅, or Q has at least two vertices in T . Moreover, note
that the removal of interior vertices does not disconnect the component itself. Hence
G[W ] has at most (|S|− 1)+ |T |

2 connected components. Applying Lemma 1, β(G) ≥
pt(G)+ |T |

4 −
(|S|−1)+ |T |

2

4 = pt(G)+ |T |
8 −

|S|−1
4 . Hence if |T | ≥ 2(|S|− 1+ k), then

(G, k) is a YES-instance. ��

Corollary 5. [�] If
∑

C∈B |NG(Cint) ∩ S| ≥ |S|(2|S| − 3 + 2k) + 1, the instance is a
YES-instance. Otherwise,

∑
C∈B |NG(Cint) ∩ S| ≤ 3k(8k − 3).

Lemma 9. [�] If in G − S there exist vertices U = {u1, u2, . . . , up} such that
NG−S(ui) = {ui−1, ui+1} for 2 ≤ i ≤ p − 1, and p ≥ |S| + k + 1, then (G, k)
is YES-instance. Otherwise, p ≤ 4k.

In G − S, a pure path is a path consisting exclusively of path vertices. Note that every
path vertex belongs to a unique pure path.

Lemma 10. [�] SupposeG−S has at most l special blocks and the number of vertices
in each pure path is bounded by p. ThenG−S contains at most 2l non-path blocks and
2pl path vertices.

Corollary 6. G − S contains at most 6k(8k − 3) non-path blocks and 24k2(8k − 3)
path vertices.



444 R. Crowston et al.

Proof. By Corollary 5,G−S contains at most 3k(8k−3) special blocks and by Lemma
9, the length of every pure path is bounded by 4k. Thus, Lemma 10 implies that G− S
contains at most 6k(8k − 3) non-path blocks and 24k2(8k − 3) path vertices. ��

Corollary 7. [�] G− S contains at most 12k(8k− 3) vertices in the exteriors of non-
path blocks.

Lemma 11. [�] For a block C, if |V (C)| ≥ 2|Cext|+ |NG(Cint) ∩ S|(2|S|+ 2k + 1),
then (G, k) is a YES-instance. Otherwise, |V (C)| ≤ 2|Cext|+ |NG(Cint)∩S|(8k+1).

Theorem 7. SIGNED MAX CUT ATLB has a kernel with O(k3) vertices.

Proof. Let (G = (V,E), k) be an instance of SIGNED MAX CUT ATLB. As in The-
orem 5, apply Rules 1-7 exhaustively: either the instance is a YES-instance, or there
exists S ⊆ V such that |S| ≤ 3k and G − S is a forest of cliques which does not
contain a positive edge.

Now, apply Rules 8–11 exhaustively to (G, k) to obtain a new instance (G′, k′). If
k′ ≤ 0, then (G, k) is a YES-instance since Rules 8–11 are valid. Now let G = G′, k =
k′. Check whether (G, k) is a YES-instance due to Corollary 5, Lemma 9 or Lemma
11. If this is not the case, by Corollary 6, G− S contains at most 6k(8k − 3) non-path
blocks and 24k2(8k − 3) path vertices. Hence, by Lemma 11, |V (G)| is at most

|S|+24k2(8k−3)+
∑
C∈B
|V (C)| ≤ O(k3)+2

∑
C∈B
|Cext|+(8k+1)

∑
C∈B
|NG(Cint)∩S|

Now, applying Corollary 5 and Corollary 7, we obtain:

|V (G)| ≤ O(k3) + 48k(8k − 3) + 3k(8k − 3)(8k + 1) = O(k3).

��

It is not hard to verify that no reduction rule of this paper increases the number of pos-
itive edges. Thus, considering an input G of MAX CUT ATLB as an input of SIGNED

MAX CUT ATLB by assigning minus to each edge of G, we have the following:

Corollary 8. MAX CUT ATLB has a kernel with O(k3) vertices.

5 Extensions and Open Questions

In the previous sections, the input of SIGNED MAX CUT ATLB is a signed graph
without parallel edges. However, in some applications (cf. [9,10]), signed graphs may
have parallel edges of opposite signs. We may easily extend inputs of SIGNED MAX

CUT ATLB to such graphs. Indeed, if G is such a graph we may remove all pairs of
parallel edges fromG and obtain an equivalent instance of SIGNED MAX CUT ATLB.

In fact, the Poljak-Turzı́k bound can be extended to edge-weighted graphs [15]. Let
G be a connected signed graph in which each edge e is assigned a positive weightw(e).
The weight w(Q) of an edge-weighted graph Q is the sum of weights of its edges.
Then G contains a balanced subgraph with weight at least w(G)/2 + w(T )/4, where



Maximum Balanced Subgraph Problem Parameterized above Lower Bound 445

T is a spanning tree of G of minimum weight [15]. It would be interesting to estab-
lish parameterized complexities of MAX CUT ATLB and SIGNED MAX CUT ATLB
extended to edge-weighted graphs using the Poljak-Turzı́k bound above.

Acknowledgement. We are thankful to Fedor Fomin for a useful discussion.

References

1. Chiang, C., Kahng, A.B., Sinha, S., Xu, X., Zelikovsky, A.Z.: Fast and efficient bright-field
AAPSM conflict detection and correction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 26(1), 11–126 (2007)

2. Crowston, R., Fellows, M., Gutin, G., Jones, M., Rosamond, F., Thomassé, S., Yeo, A.: Sim-
ultaneously Satisfying Linear Equations Over F2: MaxLin2 and Max-r-Lin2 Parameterized
Above Average. In: FSTTCS 2011. LIPICS, vol. 13, pp. 229–240 (2011)

3. Crowston, R., Gutin, G., Jones, M.: Directed Acyclic Subgraph Problem Parameterized
above the Poljak-Turzı́k Bound. In: FSTTCS 2012. LIPICS, vol. 18, pp. 400–411 (2012)

4. Crowston, R., Gutin, G., Jones, M., Muciaccia, G.: Maximum Balanced Subgraph Problem
Parameterized Above Lower Bound. arXiv:1212.6848

5. Crowston, R., Jones, M., Mnich, M.: Max-Cut Parameterized above the Edwards-Erdős
Bound. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part
I. LNCS, vol. 7391, pp. 242–253. Springer, Heidelberg (2012)

6. DasGupta, B., Enciso, G.A., Sontag, E.D., Zhang, Y.: Algorithmic and complexity results
for decompositions of biological networks into monotone subsystems. Biosystems 90(1),
161–178 (2007)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
9. Gülpınar, N., Gutin, G., Mitra, G., Zverovitch, A.: Extracting Pure Network Submatrices in

Linear Programs Using Signed Graphs. Discrete Applied Mathematics 137, 359–372 (2004)
10. Gutin, G., Zverovitch, A.: Extracting pure network submatrices in linear programs using

signed graphs, Part 2. Communications of DQM 6, 58–65 (2003)
11. Harary, F.: On the notion of balance of a signed graph. Michigan Math. J. 2(2), 143–146

(1953)
12. Hüffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph balancing.

In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 297–310. Springer, Heidelberg
(2007)

13. Mnich, M., Philip, G., Saurabh, S., Suchý, O.: Beyond Max-Cut: λ-Extendible Properties
Parameterized Above the Poljak-Turzı́k Bound. In: FSTTCS 2012. LIPICS, vol. 18, pp.
412–423 (2012)

14. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, Oxford UP (2006)
15. Poljak, S., Turzı́k, D.: A polynomial time heuristic for certain subgraph optimization prob-

lems with guaranteed worst case bound. Discrete Mathematics 58(1), 99–104 (1986)
16. Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals

in tournaments. Theor. Comput. Sci. 351(3), 446–458 (2006)
17. Zaslavsky, T.: Bibliography of signed and gain graphs. Electronic Journal of Combinatorics,

DS8 (1998)



A Toolbox for Provably Optimal Multistage

Strict Group Testing Strategies

Peter Damaschke and Azam Sheikh Muhammad

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

{ptr,azams}@chalmers.se

Abstract. Group testing is the problem of identifying up to d defectives
in a set of n elements by testing subsets for the presence of defectives. Let
t(n, d, s) be the optimal number of tests needed by an s-stage strategy in
the strict group testing model where the searcher must also verify that
no more than d defectives are present. We develop combinatorial tools
that are powerful enough to compute many exact t(n, d, s) values. This
extends the work of Huang and Hwang (2001) for s = 1 to multistage
strategies. The latter are interesting since it is known that asymptoti-
cally nearly optimal group testing is possible already in s = 2 stages.
Besides other tools we generalize d-disjunct matrices to any candidate
hypergraphs, which enables us to express optimal test numbers for s = 2
as chromatic numbers of certain conflict graphs. As a proof of concept
we determine almost all test numbers for n ≤ 10, and t(n, 2, 2) for some
larger n.

1 Introduction

In the group testing problem, a set of n elements is given, each being either
defective (positive) or non-defective (negative). Let P denote the unknown set of
positive elements. A group test takes any subset Q of elements, called a pool. The
test (or pool) is positive if Q∩P �= ∅, and negative otherwise. In the latter case,
obviously, all elements in Q are recognized as negative. The goal is to identify P
using few tests. A group testing strategy may be organized in s stages, where all
tests within a stage are executed in parallel. In adaptive group testing s is not
limited, hence tests can be done sequentially. Case s = 1 is called nonadaptive.
Small s are desired in applications where the tests take much time.

It is expected that |P | ≤ d, for some fixed bound d, with the understanding
that |P | > d is unlikely but not impossible. A searcher wants to identify P if
|P | ≤ d, and just report “|P | > d” otherwise. This setting is called strict group
testing, in contrast to hypergeometric group testing where |P | ≤ d is “promised”
to the searcher. It was argued in, e.g., [1] that strict group testing is preferable.
It does not rely on the assumption |P | ≤ d.

In a few lines one cannot possibly give even a cursory overview of the applica-
tions of group testing in biology and computer science, and of the main complex-
ity results. We only refer to the books [7,8] and a few recent papers [2,5,11,16,19]

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 446–457, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Toolbox for Provably Optimal Multistage Strict Group Testing Strategies 447

as entry points to further studies. As is well known [9], O(d log n) tests are not
enough if s = 1. The breakthrough result in [6] showed that O(d log n) tests are
sufficient already if s = 2, followed by improvements of the hidden constant fac-
tor [10,3]. However, such asymptotic results are designed for optimal behavior as
n goes to infinity, but even asymptotically optimal strategies do not necessarily
entail the optimal strategy for specific input sizes n. Another motivation of the
quest for optimal strategies for specific n is that the pool sizes of asymptotically
optimal strategies increase with n, but in some applications, large pools may be
infeasible (because of technical obstacles, chemical dilution, etc.). Still we can
split an instance into many small instances and solve them independently, now
each with optimal efficiency. To mention a practical example, screening blood
donations for various infectious diseases is performed at some labs in instances
(“minipools”) of, e.g., 16 samples [18], and group testing is proposed [20] to re-
duce the waiting times (can be days) and the considerable costs (for millions of
donations annually).

Due to the preceding discussion, we define t(n, d, s) to be the optimal worst-
case number of tests needed by a strict group testing strategy for n elements,
up to d defectives, and s stages. Some monotonicity relations hold trivially: If
n ≤ n′, d ≤ d′, and s ≥ s′ then t(n, d, s) ≤ t(n′, d′, s′). If t(n, d, s) = t(n, d, n), we
write t(n, d, s+) to indicate that more stages would not lower the test number.

The work closest to ours is [15] from which the exact t(n, d, 1) values follow
for all n ≤ 14 and arbitrary d, as well as some test numbers for larger n. The
novelty of the present work is that we extend the scope to s > 1 stages, which
saves tests compared to s = 1. To our best knowledge, this terrain has not been
systematically explored, with a few exceptions: t(n, 1, 1) = log2 n + o(log2 n) is
the smallest k with

(
k

k/2

)
≥ n due to [17], t(n, 1, 2+) = �log2 n� + 1 is a side

result in [4], and [12] gives partial results on adaptive strategies. The focus in
[12,15] is on the question for which n, d group testing saves tests, compared to
trivial individual testing.

While an upper bound on a specific t(n, d, s) is established once a strategy
is found, the main challenge is to prove matching lower bounds. We stress that
this cannot be done naively by considering all possible pooling designs in every
stage, as their number is doubly exponential in n. Instead we have developed
several combinatorial tools. Each of our lemmas viewed in isolation is relatively
simple, but together they enable us to determine many t(n, d, s) values exactly,
by a branch-and-bound approach. Yet they should also be of independent in-
terest as structural results. Due to severe space limitations, this paper version
demonstrates the use of the theory only for n ≤ 10 (and all d, s) and for t(n, 2, 2),
although even more t(n, d, s) could be managed with our current techniques.

2 Notation

A k-set (≤ k-set, ≥ k-set) is a set with exactly (at most, at least) k elements. We
use this notation also for pools, hyperedges, and other sets with special roles. A
hypergraph is a set of vertices equipped with a family of subsets called hyperedges.



448 P. Damaschke and A. Sheikh Muhammad

A hypergraph with only ≤ 2-hyperedges is a graph with edges. A 1-hyperedge is a
loop. Note that we allow parallel hyperedges, that is, hyperedges being identical
as sets may occur multiple times. Two sets are incomparable if neither is a
subset of the other one. A family of pairwise incomparable sets is an antichain.
We use standard graph-theoretic symbols: Kn, Cn, Km,n is the clique, cycle,
and complete bipartite graph, respectively, with the indicated vertex numbers.
A forest (union of trees) is a cycle-free graph, and a leaf is a vertex incident to
only 1 edge.

During the course of applying a group testing strategy, an element which
has not appeared in any negative pool so far is called a candidate element. A
candidate set is a set of up to d candidate elements that is consistent with all
previous test outcomes. That is, any candidate set is possibly the true set P . The
name candidate element reflects the searcher’s knowledge: An element is possibly
positive until it is discarded, as the member of some negative pool. Therefore we
can have candidate elements outside all candidate sets, called dummy elements.
For example, if n = 5 and d = 2, and we test 2 disjoint 2-pools with positive
outcome, then the 5th element was in no negative pool so far, but any candidate
2-set must take one element from both pools.

In the candidate hypergraph, the candidate elements are the vertices and the
candidate sets form the hyperedges. For d = 2, the candidate hypergraph is just
a candidate graph, possibly with loops. From the definitions it follows that an
instance of the strict group testing problem is solved if and only if the candidate
hypergraph has exactly one hyperedge and no dummy elements.

A pool hypergraph represents a set of pools in dual form: Vertices p1, p2, p3, . . .
are the pools, and hyperedges are the candidate elements. A vertex belongs to a
hyperedge if the corresponding pool contains the corresponding element. Dummy
elements are represented as loops at a symbolic null vertex p0.

3 Lower-Bound Tools

The simple counting bound says that the number of tests is at least log2 of

number of outcomes. In particular we have t(n, d, n) ≥ log2(1+
∑d

i=0

(
n
i

)
) where

the summand 1 accounts for the outcome “|P | > d”. First we give a more
powerful lower bound, which often guarantees one more test.

Lemma 1. If m > 2r candidate sets exist which form an antichain, then strict
group testing requires at least r + 2 tests, even adaptively.

Proof. It suffices to consider m = 2r + 1. We use induction on r. We first prove
that at least 2 tests are required for the base case r = 0, that is, m = 2. Let
C and C′ be incomparable candidate sets. Assume that one pool is enough. If
it intersects either none or both of C and C′, it cannot distinguish between
these candidate sets. Thus the pool must intersect C and be disjoint to C′ (or
vice versa). Now a positive outcome leaves the searcher unsure about the status
(defective or not) of the elements in C′ \ C. For the inductive step assume that
the claim is true for r, and letm = 2r+1+1. In one test outcome, the majority of



A Toolbox for Provably Optimal Multistage Strict Group Testing Strategies 449

candidate sets remain. Therefore, after the first test we would keep at least 2r+1
candidate sets. Using the inductive hypothesis the claim holds for r + 1. ��
Examples. For d = 2 we list, for some pool hypergraphs, the test numbers
enforced by Lemma 1 if all pools respond positively. Note that candidate sets
of the same size form an antichain. These test numbers will be used to get our
specific t(n, d, s) results.

2 loops at a vertex: 2 candidate 1-sets, 2 tests.
2 loops at a pool vertex and 1 loop at p0: 3 candidate 2-sets, 2 tests.
3 loops at a vertex: 3 candidate 2-sets, 3 tests.
4 loops at a vertex: 6 candidate 2-sets, 4 tests.
2 loops at distance 1 or 2: 3 candidate sets, 3 tests.
C3: 3 candidate 2-sets, 3 tests.
C4: 2 candidate 2-sets, 2 tests.

The following lemmas are evident monotonicity observations (proved by a
“the searcher gets less information”-argument), but they are extremely useful
for limiting the strategies that must be considered in lower-bound proofs. Recall
that we consider strict group testing in a prescribed number s of stages.

Lemma 2. In response to a given deterministic test strategy, consider a test
answering strategy A that enforces t tests in the worst case. If the searcher re-
places some pool Q, that is negative (positive) in A, with a subset (superset) of
Q, then still at least t tests are needed in the worst case. ��
Lemma 3. Suppose that the outcomes of some pools of a stage are revealed
to the searcher, and then she may redesign her other pools from scratch. If t
further tests are not sufficient despite redesign, then they are not sufficient for
the original problem instance either. ��
Pools can be arranged as a Boolean matrix. It is well known that a pooling design
solves strict group testing for s = 1 if and only if it forms a d-disjunct matrix. We
withhold the definition of d-disjunct, as we present a straight generalization to
arbitrary candidate hypergraphs. (This should not be confused with the concept
in [13] which addresses a different group testing problem.)

Theorem 1. A nonadaptive strategy solves strict group testing for a given can-
didate hypergraph if and only if, for every pair of a candidate set C and a can-
didate element v /∈ C, it has a pool Q such that v ∈ Q and C ∩Q = ∅.
Proof. To prove necessity, let C be a candidate set and v /∈ C a candidate
element. If C = P then v must be recognized as negative. Hence some negative
pool must contain v, in particular, this pool must be disjoint to C. Next we prove
sufficiency. If P = C then clearly all elements outside C will be recognized as
negative, and all elements in P are still candidate elements. Suppose D ⊂ P is
also a candidate set. Then the searcher can falsify the assumption P = D, since
then all elements in C \ D would be negative and be recognized as such, too.
Hence P is the only remaining candidate set, and no dummy elements remain.
The case when P is none of the candidate sets (but |P | > d instead) is also easily
recognized by the fact that more than d candidate elements are retained. ��



450 P. Damaschke and A. Sheikh Muhammad

A partial vector is a vector where any position either has a fixed value 0 or 1, or
remains open, indicated by the ∗ symbol. We index the candidate elements by
i = 1, 2, 3, . . ., and we encode every pair of a candidate set C and a candidate ele-
ment v /∈ C as a partial vector as follows. We assign 0 to all positions of elements
of C, and 1 to the position of v. All other positions are open. Two partial vectors
conflict if one has 0 while the other one has 1 at the same position. Two partial
vectors that do not conflict are compatible. We translate the candidate hyper-
graph into a conflict graph defined as follows. The vertices represent the partial
vectors for all C and v /∈ C, and two vertices are adjacent if the corresponding
partial vectors are in conflict. A pool is naturally represented as its indicator
vector, that is, a bit vector with 1 at all positions of elements in the pool, and
0 elsewhere. A pool is said to cover a partial vector if all fixed positions in the
partial vector have the same value, 1 or 0, as in the pool’s indicator vector. The
smallest number of colors needed to color a graph G, such that adjacent vertices
get distinct colors, is known as chromatic number χ(G). We refer to χ(G) of a
conflict graph G as conflict chromatic number.

Theorem 2. Solving the strict group testing problem nonadaptively for a given
candidate hypergraph is equivalent to coloring the conflict graph. Consequently,
the conflict chromatic number equals the number of tests required.

Proof. The condition in Theorem 1 can be equivalently expressed saying that,
for every pair of a candidate set C and candidate element v /∈ C, some pool
must cover its partial vector. Observe that a single pool can cover a set of par-
tial vectors if and only if they are pairwise compatible. In the conflict graph,
compatible partial vectors are represented by nonadjacent vertices. Thus, a sub-
set of partial vectors can be covered by a single pool if and only if the vertices
form an independent set. Since partitioning a graph into a minimum number of
independent sets is equivalent to graph coloring, the assertion follows. ��

Of course, the fact that graph coloring is NP-hard does not stop us from com-
puting χ(G) for specific conflict graphs G needed for our purposes. As a first
example, the candidate graph C4 = K2,2 has conflict chromatic number 4, since
the partial vectors [010∗], [0 ∗ 10], [∗001], [10 ∗ 0] conflict pairwise. Therefore, if
d = 2, s = 2, and the pool graph used in stage 1 has 2 vertices with 2 loops
each, then at least 4 more tests are required in stage 2.

A nonadaptive strategy on the candidate graph K1,k requires t(k, 1, 1) tests,
as the central vertex together with either leaf is a candidate set. For instance, if
d = 2, s = 2, and the pool graph used in stage 1 has an edge p1p2 and a total
of k loops at p1, p2, and p0, then we get this situation. Now let K1,k + e denote
the k-star K1,k with one extra edge between two of the leaves. We can prove the
necessity of 1 more test using the conflict chromatic number:

Lemma 4. A nonadaptive strict group testing strategy for the candidate graph
K1,k + e requires t(k, 1, 1) + 1 tests.



A Toolbox for Provably Optimal Multistage Strict Group Testing Strategies 451

Proof. Assume that t(k, 1, 1) tests are enough. Leaving aside the candidate 2-
set represented by the extra edge e, we first consider the partial vectors due
to the k edges of the k-star. (See definitions prior to Theorem 2.) Let the first
position correspond to the center of the k-star, while the further k positions
correspond to the leaves. All partial vectors from the k-star have the form [0 . . .],
since all edges share the center vertex. The second defective is either of the k
leaves. Thus we need already t(k, 1, 1) pools to cover (or “color”) all these partial
vectors. Without loss of generality let e be the edge between the 2nd and 3rd
vertex. Among the partial vectors due to e, we have in particular [100∗ . . .]. This
conflicts all earlier partial vectors with 0 at the 1st position. Thus, another color
(i.e., pool) is needed to cover this partial vector. ��

Example. Let n = 4, d = 2, s = 2, let the pool graph in stage 1 be C3 with
1 loop at 1 vertex, and these pools are positive. Then the candidate graph is
K1,k + e, hence t(3, 1, 1) + 1 = 4 tests are needed in stage 2.

Let G1 and G2 be any two candidate hypergraphs on disjoint sets of vertices
(elements). We define their product G1×G2 as the candidate hypergraph whose
vertices are all elements from G1 and G2, with the hyperedges e1 ∪ e2 for any
pair of hyperedges e1 from G1, and e2 from G2. Let ti be the optimal number
of tests for nonadaptive strict group testing when Gi is given (i = 1, 2), that
is, the respective conflict chromatic number. Trivially, G1 × G2 needs at most
t1 + t2 tests, since we may consider G1 × G2 as two independent “parallel”
problem instances. A natural conjecture is that t1 + t2 is also optimal. However
the difficulty is that the searcher is free to use pools intersecting both vertex sets,
which may cleverly save some tests. In fact, we are able to prove the conjecture
in special cases only, yet they are powerful for our purposes. The prototype is
the following case that uses similar reasoning as in Lemma 4.

Lemma 5. Let G1 be the candidate graph with hyperedges {v1} and {v2} (that is,
exactly one of these 2 elements is defective), and G2 arbitrary. Then nonadaptive
strict group testing on G1 ×G2 needs t2 + 2 tests.

Proof. Let v3, v4, . . . denote the elements of G2. Pools must cover all partial
vectors according to Lemma 1 and Theorem 2. First consider the candidate sets
of G1 × G2 where v1 is positive. Their partial vectors have the fixed value 0
at the 1st position. Hence t2 pools are needed to cover already these partial
vectors. Assume that t2+1 pools are sufficient for G1×G2. Every partial vector
of the form [10 . . .], with further 0s at the positions of some candidate set from
G2, conflict with the t2 former pools. Hence all partial vectors [10 . . .] must be
covered by the same last pool. Since all vi, i > 2, are candidate elements in G2

and give rise to 0s, it follows that this last pool can only be {v1}. The key step
is that, by symmetry, the pool {v2} must also exist. Now the indicator vectors
of these pools, [100 . . .0] and [010 . . . 0], conflict with all t2 pools needed to cover
the partial vectors from G2, since each of these has fixed value 1 at some position
vi, i > 2. In total we need t2 + 2 pools. ��



452 P. Damaschke and A. Sheikh Muhammad

We can similarly prove a more general version of Lemma 5, however with a rather
technical condition to G1. We omit this elaboration. In the reported examples
we will only apply the above basic case. One consequence that we use is that
the candidate graph K2,n needs t(n, 1, 1) + 2 nonadaptive tests. The power of
Lemma 5 is also illustrated by the following example: Consider the product of k
copies of the above G1, that is, k disjoint pairs of elements, where one element
of each pair is defective. Since 2k candidate k-sets exist, the counting bound
is only k tests, whereas inductive application of Lemma 5 gives the tight lower
bound 2k.

4 Upper-Bound Tools (Sub-Strategies)

Lemma 6. Any candidate hypergraph ofm candidate sets permits a nonadaptive
strict group testing strategy with at most m tests.

Proof. Test all complements of candidate sets. These m pools completely adhere
to Theorem 1: For every candidate set C and candidate element v /∈ C, the
complement of C includes v and is disjoint to C. The assertion follows. ��

Lemma 7. Let G be a candidate hypergraph with n > d vertices where all can-
didate sets are d-sets. Let G′ be obtained from G by adding dummy elements.
Then the optimal test number on G′ (for unchanged d, s) is the same as for G.

Proof. Add the dummy elements to every pool of an optimal strategy for G.
Since n − d > 0 elements must be discarded, in every possible application of
the strategy (i.e., for any test outcomes), at least one pool is negative, or we
recognize |P | > d. This negative pool also discards the dummy elements. ��

For instance, candidate graph K1,3+ e can be solved with 3 tests when we allow
2 stages: Let the candidate 2-sets be the edges v1v2, v1v3, v1v4, v2v3. We only
test {v2} in stage 1. Either positive or negative, there remain 2 candidate 2-
sets for stage 2 and perhaps dummy elements, which requires by Lemma 6 and
Lemma 7 only 2 more tests in stage 2.

5 Optimal Strategies for Small Instances

Our aim is now to get exact values t(n, d, s) for as many feasible combinations of
n, d, s as possible. Recall that the t(n, 1, 1), and t(n, 1, 2+) are already completely
known, thus we study d ≥ 2 only. The methodology can be summarized as
follows. In the pool (hyper)graphs in stage 1 we identify certain subsets W of
vertices. If all pools in W are positive and the others negative, the candidate
elements are precisely the edges in the subgraph induced byW , and the defective
edges must cover W . Then we show that the resulting candidate (hyper)graphs
enforce too many further tests, by our lower-bound techniques. – This “practical”
section is intended to be a proof of concept. Readers may skip any items without
losing their thread. Strategy descriptions are highlighted by (S).



A Toolbox for Provably Optimal Multistage Strict Group Testing Strategies 453

t(3,2,1+) = 3, t(4,2,1+) = 4, t(5,2,1+) = 5 hold by the counting bound. For
n = 6 the counting bound gives only t(6, 2, 1+) ≥ 5, nevertheless we can prove:

t(6,2,1+) = 6. It suffices to consider adaptive strategies. If we begin with a
1-pool and it is negative, we need t(5, 2, 1+) = 5 further tests. If we begin with
a 2-pool and it is positive, there remain 9 > 23 candidate 2-sets, hence Lemma
1 requires 5 more tests. Due to Lemma 2 we need not consider more cases.

t(7,2,3+) = 6. The lower bound follows from t(6, 2, 3) = 6. (S) For the upper
bound, use 3 mutually disjoint 2-pools in stage 1. If at most 1 of them responds
positive, at most 3 candidate elements are left, that can be tested individually
in stage 2. If all 3 of them respond positive, we conclude |P | > 2. If exactly 2
of them respond positive, then, in stage 2, we query separately 1 element from
each positive pool (2 tests). A negative outcome means the other element is
positive, whereas a positive outcome renders the queried element positive. Thus,
one positive element is recognized in both cases. A 6th test in stage 3 on the
remaining candidates confirms they are negative, or yields |P | > 2.

t(7,2,2) = 7. We assume for contradiction that t(7, 2, 2) ≤ 6 and consider the
pool hypergraph of stage 1. Assume that some ≥ 3-hyperedge e exists. If e is
positive, e explains 3 or more positive pools. Since t(6, 1, 2) = 4, the searcher
needs 4 more tests for the 2nd defective. Hence the pool hypergraph is merely a
graph. Next, let p be a pool vertex with degree 1. Let p be negative and apply
Lemma 3. The edge incident to p is negative, hence still 2 defectives among 6
elements must be found, and 1 pool is used up. Thus t(6, 2, 2) + 1 = 6 + 1 = 7
tests are needed. Hence the minimum degree is 2. Assume that parallel edges
exist, that is, 2 pools share 2 or more elements. Declare these 2 pools positive
and and apply Lemma 3 together with 1. Since still at least 11 > 23 candidate
2-sets remain, and 2 pools are used up, the searcher needs 2 + 3 + 2 pools.
Altogether, the pool hypergraph must be a graph of minimum degree 2 without
parallel edges. It has at most 5 pool vertices, since 6 pools would forbid a 2nd
stage and require t(7, 2, 1) = 6, contradicting the known t(7, 2, 1) = 7 [15].

Next we can show that cycles C3, C4, C5 together with edges or loops for the
other elements always create bad induced subgraphs that enforce too many tests
in stage 2 due to our Lemmas. Therefore the pool graph is a forest, perhaps
with loops, and all leaves must have loops due to the minimum degree 2. Again,
leaves at any distance create bad induced subgraphs, thus no edges other than
loops can exist. (Details are omitted due to lack of space.)

It follows that all pool vertices are isolated and have at least 2 loops each.
Since 2 such vertices imply already 4 more tests, we can have at most 2 pool
vertices and p0. By the pigeonhole principle, 2 vertices have at least 2 and 3
loops, respectively (or even 1 vertex has 5 loops). Hence the candidate graph
contains K2,3. Using Lemma 5, at least t(3, 1, 1)+2 = 5 more tests are required.
Thus we can have only one pool vertex p1. Since at least 2 loops are at p1, the
candidate graph contains K2,5, and t(5, 1, 1) + 2 = 6 more tests are needed by
Lemma 5.

t(7,3,1+) = 7. Follows from the 35 candidate 3-sets by Lemma 1.



454 P. Damaschke and A. Sheikh Muhammad

t(8,2,2+) = 7. First we show that 7 tests are needed even adaptively. If we
begin with a 2-pool and it is negative, then t(6, 2, 6) = 6 enforces 6 further tests.
If we begin with a 3-pool and it is positive, the 18 > 24 candidate 2-sets and
Lemma 1 enforce 6 more tests. Due to Lemma 2 we need not consider more
cases. (S) To manage with 7 tests in 2 stages, we test only one 2-pool in stage
1. If negative, we test the other 6 elements individually in stage 2. If positive,
we test the 2 elements in this pool individually, and simultaneously we find up
to 1 defective among the other 6 elements using t(6, 1, 1) = 4 tests. Note that
this strategy also reports if |P | > 2.

t(8,2,1) = 8 is implicit in [15].

t(8,3,1+) = 8. Consider the first test of an adaptive strategy. A negative 1-pool
enforces 7 more tests since t(7, 3, 7) = 7. A positive 2-pool leaves us with 36 > 25

candidate 3-sets. Apply Lemma 1 and finally Lemma 2.

t(9,2,2+) = 7. Clearly we only have to show the upper bound for s = 2. (S)
Let the pool graph in stage 1 be K4 (6 edges) plus 3 loops at p0. It is impossible
that exactly 1 pool responds positive. If all pools are negative, then so are the
edges in the K4. If exactly 2 pools are positive, then exactly the edge between
them is positive. In the above cases there remain only 3 candidates (loops) in
stage 2. If 3 or 4 pools are positive, then we get exactly 3 candidate 2-sets, using
edges of the K4 vertices only. Thus Lemma 6 applies.

t(9,2,1) = 9 is known from [15].

t(9,3,1+) = 9. We systematically check the tree of all adaptive strategies and
give test answers + or − to the searcher’s disadvantage. For certain paths in the
search tree we find that the searcher is forced to apply too many tests, using
earlier bounds and Lemma 1. By Lemma 2 and exploring symmetric cases we
can prune most of the tree. Details are omitted due to lack of space, however
we remark that our proof has to check just 11 paths, compared to the host of
possible strategies and answers.

t(10,2,3+) = 7. We have t(10, 2, 3) ≥ t(8, 2, 3) = 7. (S) For the upper bound
we use the following pool graph in stage 1. Take a K4, but delete the edge p1p4
and insert a loop at p1 and p4 instead. These 7 elements are complemented with
3 loops at p0. (Here we particularly emphasize that this pooling design is far
from being obvious, we found it after excluding other options with the help of
our lower-bound methods. The same remark applies to other cases as well.) As
can be quickly checked one by one, all conceivable test outcomes yield one of
the following cases (possibly with further dummy elements): at most 3 candidate
sets; or 1 recognized defective and at most 4 candidates for a 2nd one; or the
candidate graph K1,3 + e. Using t(4, 1, 2) = 3, Lemma 6, and Lemma 7 for the
next 2 stages, we can solve all cases in 2 more stages with 3 more tests.

t(10,2,2) = 8. (S) For t(10, 2, 2) ≤ 8 use K5 as the pool graph in stage 1. It is
easy to check that 3 more tests are always enough in stage 2.

Now assume that t(10, 2, 2) ≤ 7. In the same way as for t(7, 2, 2) we can show,
due to t(9, 1, 2) = 5, t(7, 2, 2) = 7, and Lemma 1, that the pool hypergraph in



A Toolbox for Provably Optimal Multistage Strict Group Testing Strategies 455

stage 1 is a graph without parallel edges, now with minimum degree 4. The latter
implies that at most 5 pool vertices exist. Since a C3 with loop implies 4 more
tests, no further pool vertices can exist. By minimum degree 4, each vertex has
at least 2 loops. If all 3 pools are positive, the 9 candidate 2-sets yield 5 more
tests by Lemma 1. A C3 without loop would mean that any vertex of the C3

has also 2 neighbors outside, leading to 5 pools. But the C3 requires already 3
more tests. Hence no C3 can exist. Lemma 5 gives that 2 vertices with 2 loops
each require 4 more tests. Thus, in a C4 at least 3 vertices must be incident to
further edges. To avoid C3, at least 6 pool vertices are needed. Hence no C4 can
exist either. A C5 cannot exist, since further edges create smaller cycles, and 2
loops per vertex are too many. Hence the pool graph is a forest, with at least 3
loops at every leaf or isolated vertex. Since 2 vertices with 3 and 2 loops imply
5 tests (Lemma 5), at most 2 pool vertices exist. If p1 and p2 exist, we choose 2
loops at p1 and 4 loops at p2 (or possibly the edge p1p2 instead of 1 loop) to get
a candidate graph K2,4 that needs t(4, 1, 1)+ 2 = 6 more tests. If only p1 exists,
we choose 2 loops at p1 and the 8 other loops from p1 or p0 to get a candidate
graph K2,8 that needs t(8, 1, 1) + 2 = 7 more tests.

t(10,2,1) = 9 follows from [15].

t(10,3,3+) = 9. The lower bound holds since t(9, 3, 9) = 9. (S) Our strategy
tests 3 disjoint 2-pools in stage 1. If at most 1 pool is positive, the at most
6 candidate elements are tested individually. If 2 pools are positive, 2 tests
recognize 2 defectives in stage 2 (as in the t(7, 2, 3+) strategy). To find a possible
3rd defective among the other 6 elements in stage 3 we use t(6, 1, 1) = 4. If all
3 pools are positive, we determine the 3 defectives by 3 tests in stage 2, and 1
final test is used to discard the negative elements or report |P | > 3.

t(10,4,1+) = 10. Consider the first test of an adaptive strategy. A negative
1-pool enforces 9 more tests since t(9, 4, 9) = 9. In the case of a positive 2-pool,
even revealing a defective means that 3 defectives out of 9 elements must be
found, but t(9, 3, 9) = 9. By Lemma 2, this case distinction is complete.

6 The Case of Two Defectives and Two Stages

Our t(9, 2, 2) strategy readily extends to larger n as follows. Letm be the smallest
integer with

(
m
2

)
+ 3 ≥ n. Using Km plus 3 loops at p0 (or any subset of this

edge set) as the pool graph in stage 1, the same reasoning as for t(9, 2, 2) yields
t(n, 2, 2) ≤ m+ 3. Although this test number grows as Θ(

√
n), it is optimal (or

close to optimal) for surprisingly many n. Below we report some exact results
and their lower-bound arguments; note that Lemma 3 is silently used.

t(8,2,2) = t(13,2,2) = 8 was already shown.

t(15,2,2) = t(18,2,2) = 9. Assume that t(15, 2, 2) ≤ 8, and consider the pools
in stage 1. A positive ≥ 7-pool allows 70 > 26 candidate 2-sets, hence by Lemma
1 the remaining 7 tests would not be sufficient. A negative≤ 5-pool together with
t(10, 2, 2) = 8 yields 9 tests. Hence only 6-pools can be used. But 2 intersecting



456 P. Damaschke and A. Sheikh Muhammad

positive 6-pools allow at least 25+ 14 = 39 > 25 candidate 2-sets, and 2 disjoint
positive 6-pools allow 36 > 25 candidate 2-sets, such that the remaining 6 tests
are not sufficient. Hence only one 6-pool may be used. If it responds positive,
there remain 69 > 26 candidate 2-sets, implying 8 more tests.

t(22,2,2) = t(24,2,2) = 10. Assume that t(22, 2, 2) ≤ 9, and consider the pools
in stage 1. A positive ≥ 8-pool allows 28 + 8 · 14 = 140 > 27 candidate 2-sets,
leading to 10 tests in total. A negative ≤ 7-pool together with t(15, 2, 2) = 9
yields 10 tests, too. Hence no pool size is usable.

Remarkably, the Km plus 3 loops strategy misses the simple antichain lower
bound of Lemma 1 by at most 1 test up to n = 31, and by at most 2 tests up to
n = 58. However, clearly for large enough n some O(log n) tests strategy takes
over, and it is interesting to ask what constant factor we can achieve.

Theorem 3. We have t(n, 2, 2) ≤ 2.5 log2 n + o(log2 n), and the trivial lower
bound t(n, 2, 2) ≥ 2 log2 n− 1.

Proof. We encode the n elements as vectors over an alphabet of 4 symbols. The
code length is m = log4 n = 0.5 log2 n. In stage 1 we test 4 · 0.5 log2 n = 2 log2 n
pools, each consisting of all elements that share a fixed symbol at a fixed position.
At most 2 of the 4 pools for every position can be positive, otherwise |P | > d is
confirmed. Thus we have at most 2m candidate elements, and by construction
they form disjoint candidate 2-sets. (In the case |P | = 1 the only defective is
already recognized.) We have 2m = 20.5 log2 n =

√
n. Thus, searching for the 2

defectives is equivalent to searching for 1 defective in a ≤
√
n/2-set. This requires

t(�
√
n/2�, 1, 1) = 0.5 log2 n+ o(log2 n) tests in stage 2. ��

7 Conclusions

We provided methods that make the construction of provably optimal multistage
group testing strategies for specific input parameters manageable. The ultimate
goal for further research would be a smooth transition from optimal strategies for
small n to asymptotically optimal ones. The tools may be further refined to limit
the case inspections even more. It would also be helpful to partly automatize
the search and leave case inspections to computer programs. However this is not
straightforward. To avoid combinatorial explosion we must generate certain set
families up to symmetries. Among the open theoretical questions we mention the
most intriguing ones: Is the nonadaptive test number additive for the product
of candidate hypergraphs (see Lemma 5)? Does there exist, for every d, some
s such that t(n, d, s) = t(n, d, n)? In [4] we gave an affirmative answer only for
d = 1, namely s = 2.

Acknowledgments. Support came from the Swedish Research Council (Veten-
skapsr̊adet), grant 2010-4661, “Generalized and fast search strategies for parame-
terized problems”. An early version has been presented at the informal workshop
“Search Methodologies III” 2012, organized by Christian Deppe and Ferdinando
Cicalese at the Center for Interdisciplinary Research, University of Bielefeld.



A Toolbox for Provably Optimal Multistage Strict Group Testing Strategies 457

References

1. Balding, D.J., Torney, D.C.: Optimal Pooling Designs with Error Detection. J.
Comb. Theory A 74, 131–140 (1996)

2. Chen, H.B., Hwang, F.K.: Exploring the Missing Link Among d-Separable, d̄-
Separable and d-Disjunct Matrices. Discr. Appl. Math. 155, 662–664 (2007)

3. Cheng, Y., Du, D.Z.: New Constructions of One- and Two-Stage Pooling Designs.
J. Comp. Biol. 15, 195–205 (2008)

4. Damaschke, P.: Optimal Randomized Group Testing: A Canonical Form and the
One-Defective Case. In: Cicalese, F., Porat, E. (eds.) ICALP2011GT (informal
proceedings), Zürich, pp. 55–67 (2011)

5. De Bonis, A., Di Crescenzo, G.: Combinatorial Group Testing for Corruption Lo-
calizing Hashing. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842,
pp. 579–591. Springer, Heidelberg (2011)

6. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal Two-Stage Algorithms for Group
Testing Problems. SIAM J. Comp. 34, 1253–1270 (2005)

7. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. Series
on Appl. Math., vol. 18. World Scientific (2000)

8. Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. Series
on Appl. Math., vol. 18. World Scientific (2006)

9. Dyachkov, A.G., Rykov, V.V.: Bounds on the Length of Disjunctive Codes. Prob-
lems of Info. Transmission 18, 7–13 (1982) (in Russian)

10. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved Combinatorial Group
Testing Algorithms for Real-World Problem Sizes. SIAM J. Comp. 36, 1360–1375
(2007)

11. Fang, J., Jiang, Z.L., Yiu, S.M., Hui, L.C.K.: An Efficient Scheme for Hard Disk
Integrity Check in Digital Forensics by Hashing with Combinatorial Group Testing.
Int. J. Digital Content Technol. and its Appl. 5, 300–308 (2011)

12. Fischer, P., Klasner, N., Wegener, I.: On the Cut-off Point for Combinatorial Group
Testing. Discr. Appl. Math. 91, 83–92 (1999)

13. Gao, H., Hwang, F.K., Thai, M.T., Wu, W., Znati, T.: Construction of d(H)-
Disjunct Matrix for Group Testing in Hypergraphs. J. Comb. Opt. 12, 297–301
(2006)

14. Goodrich, M.T., Hirschberg, D.S.: Improved Adaptive Group Testing Algorithms
with Applications to Multiple Access Channels and Dead Sensor Diagnosis. J.
Comb. Optim. 15, 95–121 (2008)

15. Huang, S.H., Hwang, F.K.: When is Individual Testing Optimal for Nonadaptive
Group Testing? SIAM J. Discr. Math. 14, 540–548 (2001)

16. Mézard, M., Toninelli, C.: Group Testing With Random Pools: Optimal Two-Stage
Algorithms. IEEE Trans. Info. Th. 57, 1736–1745 (2011)

17. Spencer, J.: Minimal Completely Separating Systems. J. Combin. Theory 8,
446–447 (1970)

18. http://www.redcrossblood.org/learn-about-blood/what-happens-donated-

blood/blood-testing (version as of January 2013)
19. Xuan, Y., Shin, I., Thai, M.T., Znati, T.: Detecting Application Denial-of-Service

Attacks: A Group-Testing-Based Approach. IEEE Trans. Par. Distr. Syst. 21,
1203–1216 (2010)

20. Zhang, B.: Group Testing Regression Models. Dissertation, Dept. of Statistics,
Univ. of Nebraska, Lincoln (2012)

http://www.redcrossblood.org/learn-about-blood/what-happens-donated-blood/blood-testing
http://www.redcrossblood.org/learn-about-blood/what-happens-donated-blood/blood-testing


A Linear Edge Kernel for Two-Layer Crossing

Minimization

Yasuaki Kobayashi, Hirokazu Maruta, Yusuke Nakae, and Hisao Tamaki

Meiji University, Kawasaki, Japan 214-8571
{yasu0207,maruta,nakae,tamaki}@cs.meiji.ac.jp

Abstract. We consider a simple generalization of two-layer crossing
minimization problem (TLCM) called leaf-edge-weighted TLCM (LEW-
TLCM), where we allow positive weights on edges incident to leaves, and
show that this problem admits a kernel with O(k) edges provided that
the given graph is connected. As a straightforward consequence, LEW-
TLCM (and hence TLCM) has a fixed parameter algorithm that runs
in 2O(k log k) + nO(1) time which improves on the previously best known

algorithm with running time 2O(k3)n.

1 Introduction

A two-layer drawing of a bipartite graph G with bipartition (X,Y ) of vertices
places vertices in X on one line and those in Y on another line parallel to the
first and draws edges as straight line segments between these two lines. We call
these parallel lines layers of the drawing. A crossing in a two-layer drawing is a
pair of edges that intersect each other at a point not representing a vertex. Note
that the set of crossings in a two-layer drawing of G is completely determined by
the order of the vertices in X on one layer and the order of the vertices in Y on
the other layer. The problem to find a two-layer drawing whose crossing number
is the minimum is called two-layer crossing minimization, TLCM for short. This
problem is known to be NP-hard [12] (although it is polynomial time solvable for
trees [14] and permutation graphs [15]). We consider this problem and its gener-
alization on a parameterized perspective described as follows. An edge is a leaf
edge if it is incident to a leaf (a vertex of degree one); a non-leaf edge otherwise.

Two-Layer Crossing Minimization (TLCM)
Instance: bipartite graph G = (V (G), E(G))
Parameter: k
Question: Is there a two-layer drawing of G with at most k crossings?

Leaf-Edge-Weighted Two-Layer Crossing Minimization (LEW-TLCM)
Instance: bipartite graph G = (V (G), E(G)), function w : E(G)→ N with
w(e) = 1 for every non-leaf edge e ∈ E(G)
Parameter: k
Question: Is there a two-layer drawing of G with crossings of total weight
at most k, where a crossing (e, e′) has weight w(e)w(e′)?

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 458–468, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Linear Edge Kernel for Two-Layer Crossing Minimization 459

Clearly, LEW-TLCM is a generalization of TLCM. In this paper, we give
kernelizations for these problems.

A kernelization [4] for a parameterized problem is an algorithm that, given
an instance I and a parameter k, computes an instance I ′ and a parameter k′

of the same problem in time polynomial in k and the size of I such that

1. (I, k) is feasible if and only if (I ′, k′) is feasible,
2. the size of I ′ is bounded by a computable function f in k, and
3. k′ is bounded by a function in k.

When the function f is polynomial, we call the algorithm a polynomial kernel-
ization and its output a polynomial kernel.

TLCM is a special case of a problem called h-layer crossing minimization
which decides if a given graph has an h-layer drawing with at most k crossings.
This problem is fixed parameter tractable [6] when parameterized by k + h.

The running time of the algorithm of [6] is 2O((h+k)3)n. Besides having a large
exponent in the running time, this algorithm is rather complicated, involving, in
particular, the fixed parameter algorithm for pathwidth due to Bodlaender and
Kloks [1,2] and is not easy to implement. It is natural to ask if we can obtain
a simpler and faster fixed parameter algorithm for the special case of h = 2,
namely TLCM. To the best of the present authors’ knowledge, neither a faster
algorithm for TLCM than the one given in [6] nor its polynomial kernelization
is previously known.

In contrast to TLCM, several fixed parameter algorithms are known for two-
layer planarization (TLP), where the objective is to find a subset of edges of size
at most k of the given graph whose removal enables a two-layer drawing without
any crossings. This problem is fixed parameter tractable [5] and can be solved
in time O(k · 3.562k + n) where n is the number of vertices of the given graph
[16]. Moreover, a kernel with O(k) edges for TLP is known [5].

Another related problem is one-sided crossing minimization (OSCM), which
asks for a two-layer drawing of the given bipartite graph with minimum number
of crossings, but with the vertex order in one layer fixed as part of the input.
OSCM is also NP-hard [10]. The fixed parameter tractability of OSCM seems
to be better-studied [8,7,11,13] than TLCM. More specifically, [8] gives the first
fixed parameter algorithm, [7] gives a faster fixed parameter algorithm and a
kernel with O(k2) edges, and [11] and [13] give subexponential fixed parameter

algorithms with running time 2O(
√
k log k) +nO(1) and O(3

√
2k + n), respectively.

Our results are as follows.

Theorem 1. TLCM admits a kernel with O(k2) edges provided that the given
graph is connected.

Theorem 2. LEW-TLCM admits a kernel with O(k) edges provided that the
given graph is connected.

The second theorem implies a fixed parameter algorithm with running time
2O(k log k) + nO(1) for both TLCM and LEW-TLCM via the standard approach:



460 Y. Kobayashi et al.

given an instance of TLCM or LEW-TLCM, we construct a kernel with O(k)
edges in LEW-TLCM for each connected component and then do an exhaustive
search to find a solution for each of these kernels. Note that all but k connected
components are crossing-free, assuming that the given instance is feasible, which
can be detected by a simple linear time algorithm [9].

We remark that, although some of the lemmas needed for the kernelization
are non-trivial, the kernelization algorithm itself is quite simple and easy to
implement.

The rest of this paper is organized as follows. In section 2, we give preliminaries
for TLCM. In section 3, we describe a kernelization for TLCM whose output has
O(k2) edges, proving some lemmas necessary for this kernelization. In section 4,
we show that the same method works for LEW-TLCM and gives a kernelization
whose output has O(k) edges. Finally, Section 5 contains the conclusion.

2 Preliminaries

Let G be a bipartite graph with a prescribed bipartition of the vertex set. We
denote by V (G) the set of vertices of G, by (X(G), Y (G)) the bipartition of
V (G), and by E(G) ⊆ X(G) × Y (G) the set of edges of G. We also view G as
a triple (X(G), Y (G), E(G)). For each vertex v ∈ V (G), we denote by d(v) the
degree of v. A leaf is a vertex v with d(v) = 1. We call an edge a leaf edge if the
edge is incident to a leaf; otherwise a non-leaf edge. For an edge e in G, the graph
G − e is a subgraph obtained from G by deleting e. A cut vertex (a bridge) is
a vertex (an edge) whose removal increases the number of components. A block
is a maximal connected subgraph without a cut vertex. We say that a block is
trivial if it has at most two vertices. Otherwise, the block is non-trivial. For each
subset U of V (G), we denote by G[U ] the subgraph of G induced by U . For each
subgraph G′ of G, we denote X(G) ∩ V (G′) by X(G′) and Y (G) ∩ V (G′) by
Y (G′).

A two-layer drawing D of G is defined as a triple (G,<X , <Y ) where <X and
<Y are total orders on X(G) and Y (G), respectively. The number of crossings
in D is the number of pairs of edges that intersect each other:

bcr(D) =
∑

{u,v}∈E(G)

|{(x, y) ∈ E(G) : x <X u, v <Y y}|.

The bipartite crossing number of G, denoted by bcr(G), is the minimum number
of crossings over all two-layer drawings of G. For each subgraph G′ of G, we
denote by D | G′ the two-layer drawing of G′ in which the vertices of V (G′) are
placed in the same order as in D. For distinct vertices u, v ∈ X(G), we say that
a vertex u is to the left (right) of v in D if u <X v (v <X u). A vertex u ∈ X(G)
is the leftmost (rightmost) in D if u <X v (v <X u) for all v ∈ X(G) \ {u}. We
may omit the reference to D when it is clear from the context. We use similar
terminology for vertices in Y (G).



A Linear Edge Kernel for Two-Layer Crossing Minimization 461

3 A Kernel with O(k2) Edges for TLCM

In this section, we give a kernelization for TLCM whose output has O(k2) edges.
The same approach is extended to a kernelization for LEW-TLCM in the next
section. This kernelization is based on some lower bound on the bipartite crossing
number and some reduction rule on bridges. First, we show a technical lemma.

Lemma 1. Let D be a two-layer drawing of a bipartite graph G and let P be
a path in D from a leftmost vertex u, either in X(G) or Y (G), to a rightmost
vertex v, either in X(G) or Y (G). Then, each edge not incident to V (P ) has a
crossing with some edge in P .

Proof. Consider an arbitrary geometric representation of D and connect u and v
with a curve Q not intersecting any edge in the drawing. Then, the closed curve
consisting of Q and the polygonal curve representing P divides the plane into
several regions. One of them contains X(G) \ V (P ) in its interior and another
region, distinct from the first, contains Y (G) \ V (P ) in its interior. Therefore,
each edge not incident to V (P ) must intersect with the closed curve and hence
cross some edge of P , since it does not intersect with Q. See. Fig. 1 for an
example. ��

Fig. 1. The dotted polygonal curve indicates a path P and the solid black line indicates
a curve Q. Each edge not incident to V (P ) has a crossing with P .

Lemma 2. Let G be a biconnected bipartite graph. Then bcr(G) ≥ |E(G)|−1
3 .

Proof. We prove the statement by induction on the number of edges. The base
case where |E(G)| = 4 holds since the edge minimum biconnected bipartite
graph is a cycle of length four, which must have a crossing.

Suppose |E(G)| ≥ 5. Let D be a two-layer drawing of G with the minimum
number of crossings. We consider the three cases: (1) G is triconnected, (2) G is
a cycle, or (3) G is biconnected but neither is triconnected nor is a cycle.

(1) Let e be an edge of G such that e has a crossing with another edge of G.
Since G is triconnected, G − e is biconnected. Then we have, by the induction

hypothesis, bcr(D) ≥ bcr(D | (G− e)) + 1 ≥ |E(G−e)|−1
3 + 1 > |E(G)|−1

3 .
(2) Let u be the leftmost vertex in X(G). If |E(G)|/2 is even (odd), then let

v be the rightmost vertex in Y (G) (X(G)). Then the two paths of G between u



462 Y. Kobayashi et al.

and v cannot have the same length because of the parity. Let P be the shorter

of these two paths. Then, we have |E(P )| ≤ |E(G)|
2 − 1. By Lemma 1, each of

the at least |E(G)|
2 − 1 edges not incident to V (P ) has a crossing with some edge

of P , which is at least |E(G)|−1
3 when |E(G)| ≥ 5.

(3) In this case, there are two vertices u, v where G[V (G) \ {u, v}] is dis-
connected. Let V1, V2, . . . , Vd be the components of G[V (G) \ {u, v}] and Gi =
G[Vi ∪ {u, v}] for 1 ≤ i ≤ d. We assume that at least one of Gi is not a path: we
may choose u and v so that this assumption is satisfied since G is not a cycle.

Suppose first that G has an edge between u and v. Then, for each i, Gi

is biconnected and hence, using the induction hypothesis, we have bcr(Gi) ≥
1
3 (|E(Gi)| − 1). Therefore, we have

bcr(D) ≥
∑

1≤i≤d

bcr(D | Gi)

≥
∑

1≤i≤d

bcr(Gi)

≥ 1

3

∑
1≤i≤d

(|E(Gi)| − 1)

=
1

3
(|E(G)|+ d− 1− d)

=
1

3
(|E(G)| − 1)

and we are done.
Suppose next that G does not have an edge between u and v. For 1 ≤ i ≤ d,

we denote by Bi the set of blocks of Gi and let B =
⋃

1≤i≤d Bi. For each i, since
Gi becomes biconnected when we add an edge between u and v, Gi contains
a path Pi between u and v that goes through all the blocks of Gi. Let Wi be
a minimal subset of V (Pi) \ {u, v} that contains all the cut vertices of Gi and
partitions Pi into paths of odd length. See Fig. 2 for an example. In Pi, replace
each minimal subpath between vertices in Wi∪{u, v} by a single edge and let P ′

i

be the resulting path on Wi ∪ {u, v}. For each edge e of P ′
i , we let π(e) denote

the subpath of Pi that e replaces.
Let H be the graph that is the union of P ′

i , 1 ≤ i ≤ d. Observe that V (H) ⊆
V (G) and H is bipartite with bipartition (X(G) ∩ V (H), Y (G) ∩ V (H)). Let Q
be the set of crossings (e, e′) in D such that e and e′ belong to distinct blocks
in B. We claim that |Q| ≥ bcr(H). To see this, consider the two-layer drawing
D′ of H induced by D: the vertices of H are ordered in D′ as they are ordered
in D. Suppose edges e and e′ of H cross each other in D′. Then, considering
the relative positions of the end-vertices of e and e′ which are exactly the end-
vertices of the paths π(e) and π(e)′, we see that π(e) and π(e′) must intersect in
D. Since π(e) and π(e)′ are vertex disjoint, this intersection must be a crossing
of edges. Moreover, π(e) and π(e)′ belong to two different blocks in B (otherwise
e and e′ are adjacent and do not cross). Therefore, each crossing of D′ gives
rise to a distinct crossing in Q and hence we have |Q| ≥ bcr(D′) ≥ bcr(H) as



A Linear Edge Kernel for Two-Layer Crossing Minimization 463

Fig. 2. An example of paths Pi and P ′
i . Shaded ovals indicate non-trivial blocks and

white circles indicate the vertices in Wi. The length of a path π(e) for e ∈ E(P ′
i ) is

odd.

claimed. Since H is biconnected and |E(H)| < |E(G)| by the assumption that

at least one of Gi is not a path, we have bcr(H) ≥ |E(H)|−1
3 by the induction

hypothesis. It follows that bcr(H) ≥ |B|−1
3 since |E(H)| ≥ |B|.

Now, let us turn to show the inequality in the statement of this lemma. Since

|E(B)| < |E(G)|, for each B ∈ B, we have bcr(B) ≥ |E(B)|−1
3 by the induction

hypothesis. Note that this inequality also holds when B is a trivial block where
bcr(B) = 0 and |E(B)| ≤ 1. Consequently,

bcr(G) ≥
∑
B∈B

bcr(B) + |Q|

≥
∑
B∈B

bcr(B) + bcr(H)

≥
∑
B∈B

|E(B)| − 1

3
+
|B| − 1

3

=
|E(G)| − |B|

3
+
|B| − 1

3

=
|E(G)| − 1

3
.

��

The bound in this lemma is tight. See Fig. 3 for an example, which can be
generalized to a biconnected graph with 3k+1 edges and k crossings for arbitrary
k ≥ 1.

Fig. 3. A biconnected graph G with bcr(G) = |E(G)|−1
3



464 Y. Kobayashi et al.

Fix a bipartite graph G and a positive integer k. We assume that G is con-
nected since our goal is to establish Theorem 1. In the rest of this section, we
show that G can be reduced to a graph G′ such that bcr(G) = bcr(G′) and
|E(G′)| ≤ f(k), where f(k) = O(k2), if bcr(G) ≤ k. This implies a kernelization
with O(k2) edges: we output a trivial infeasible instance if |E(G′)| > f(k).

We say a bridge e of G is order-inducing if each of the two connected com-
ponents of G− e has more than k edges; otherwise e is non-order-inducing. Let
us note that every leaf edge is non-order-inducing. The following lemma justifies
the name of order-inducing bridges.

Lemma 3. Let e = (u, v) be an order-inducing bridge of G and let G1 and G2 be
the connected components of G−e with u ∈ X(G1) and v ∈ Y (G2). If bcr(G) ≤ k
then there is a two-layer drawing D = (G,<X , <Y ) with bcr(D) ≤ k in which
the vertices of G1 are placed entirely to the left of the vertices of G2. That is,
a <X b for a ∈ X(G1), b ∈ X(G2) and a <Y b for a ∈ Y (G1), b ∈ Y (G2).

Proof. Let D′ be an arbitrary two-layer drawing with bcr(D′) ≤ k in which G1

contains the leftmost vertex yl of Y (G).
First, we claim that the rightmost vertex xr of X(G) in D′ is contained in

X(G2). Assume otherwise, that G1 contains both yl and xr. Then, by Lemma 1,
the path from yl to xr in G1 have a crossing with each edge in E(G2), contra-
dicting the assumption that bcr(D′) ≤ k.

We construct a two-layer drawing D = (G,<X , <Y ) as follows:

1. a <X b for a ∈ X(G1), b ∈ X(G2),
2. a <Y b for a ∈ Y (G1), b ∈ Y (G2),
3. D′ | G1 = D | G1, and
4. D′ | G2 = D | G2.

Clearly, <X and <Y are total orders on X and Y respectively. In the following
we show that bcr(D′) ≥ bcr(D). Since each edge of G1 has no crossings with any
edge of G2 in D and the crossings within G1 and within G2 are preserved, to
prove the inequality, it suffices to show that each edge f ∈ E(G1) that crosses
e in D has at least one crossing with E(G2) ∪ {e} in D′, together with the
symmetric property for edges in G2.

Let f = (x, y) be an edge of G1 that crosses e in D. Let P be a path consisting
of e and a path from v to xr in G2. Since e = (u, v) and f = (x, y) cross each
other and y ∈ Y (G1) is to the left of v ∈ Y (G2) in D, x is to the right of u in D.
This order is the same in D′ as u, x ∈ X(G1). Moreover, x �= xr since x ∈ X(G1)
and xr ∈ X(G2). Therefore, f = (x, y) crosses some edge of P , by an argument
similar to the proof of Lemma 1. We are done since E(P ) ⊆ E(G2) ∪ {e}. See
Fig. 4 for an example. ��

We say that an order-inducing bridge e of G is contractable if each end of e is
incident to an order-inducing bridge distinct from e and is not incident to any
non-leaf edge other than e and this order-inducing bridge.

Lemma 4. Suppose G has a contractable bridge e and let H be the result of
contracting e in G. Then, bcr(G) ≤ k if and only if bcr(H) ≤ k.



A Linear Edge Kernel for Two-Layer Crossing Minimization 465

Fig. 4. Path P and edge f = (x, y) in the drawing D′. P , which include e, is shown
in dotted lines. Vertex x is to the right of u as it is in D. Edge f crosses P no matter
whether y is to the left or to the right of v.

Proof. Let e = (v1, v2) and let ei, i = 1, 2, be the order-inducing edge that
is incident to vi and is distinct from e. For i = 1, 2, let Gi be the connected
component of G− ei that does not contain e.

Suppose first that bcr(G) ≤ k and let D be a drawing of G with bcr(D) =
bcr(G). Since e, e1, and e2 are order-inducing, by Lemma 3, we may assume that,
in D, the vertices of V (G1) lie entirely to the left of v1 and v2 while the vertices
of V (G2) lie entirely to the right of v1 and v2. Therefore, the edges of Gi have
no crossings with edges not in E(Gi) ∪ {ei}, for i = 1, 2. Let D′ be the drawing
of H naturally derived from D as follows. Starting from the drawing D, take its
subdrawing D | G′

1, where G
′
1 = G[V (G1) ∪ {v1}], and flip it upside down, that

is, place the vertices in X(G) on the layer for Y (G) and vice versa and keep the
order of vertices within G′

1. Then, contract v1 and v2, now in the same layer,
into one vertex. Finally, place all the leaves adjacent to this contracted vertex
between the drawings of G1 and G2. Clearly, we have bcr(D′) = bcr(D). See
Fig. 5.

Fig. 5. An example of two-layer drawings D and D′. The dotted line indicates a con-
tractable bridge and thick lines indicate order-inducing bridges.

To show the reverse direction, suppose bcr(H) ≤ k and let D′ be a drawing
of H with bcr(D′) = bcr(H). Let v be the vertex of H into which e is contracted
and e′i the edge ei with vi replaced by v, for i = 1, 2. Since e1 and e2 are order-
inducing in G, e′1 and e′2 are order-inducing in H . Therefore, we may assume
that, in D′, the vertices of V (G1) lie entirely to the left of v and V (G2) while
the vertices of V (G2) lie entirely to the right of v and V (G1). By a conversion



466 Y. Kobayashi et al.

that is an inverse of the above conversion from D to D′, we obtain a drawing D
of G such that bcr(D) = bcr(D′). ��

Repeating the contraction of contractable bridges until there is no contractable
bridges, we obtain a kernel of the given instance. The following lemma bounds
the size of the kernel.

Lemma 5. Suppose bcr(G) ≤ k and G does not have any contractable bridge.
Then, the number of non-leaf edges of G is at most 10k + 3.

This lemma follows from the following lemmas.

Lemma 6. If bcr(G) ≤ k then the number of edges belonging to non-trivial
blocks is at most 3k + 1.

Proof. Let B be the set of non-trivial blocks of G. If G has two edge disjoint sub-
graphs G1 and G2, we have bcr(G) ≥ bcr(G1)+bcr(G2). Therefore, by Lemma 2,∑

B∈B |E(B)| ≤ 3k + 1. ��

Lemma 7. If bcr(G) ≤ k then the number of non-order-inducing bridges that
are non-leaf edges is at most 3k.

Proof. LetD be a two-layer drawing ofG with the minimum number of crossings.
Let P be a path of G between a leftmost vertex and a rightmost vertex in D.
There can be at most k non-leaf bridges that are not contained in P , since to
each such bridge we may assign a distinct edge that is not incident to V (P ),
which must have a crossing with some edge of P , by Lemma 1. Of all the non-
leaf bridges contained in P , all but k from the left and k from the right are
order-inducing, since each of them has at least k + 1 edges (k non-leaf bridges
and one additional edge) on both sides of it. ��

Lemma 8. If bcr(G) ≤ k then the number of order-inducing bridges of G that
are not contractable is at most 4k + 2.

Proof. Let D be a two-layer drawing of G with the minimum number of crossings
and let P be a path of G between a leftmost vertex and a rightmost vertex in
D. Note that every order-inducing bridge is contained in P : if there were an
order-inducing bridge not contained in P , then all of the more than k edges in
one side of that bridge would cross P .

Let e be an order-inducing bridge that is not contractable. Then e satisfies
at least one of the following conditions: (1) at least one end of e is incident to
some non-order-inducing bridge of G, (2) at least one end of e is incident to a
non-trivial block of G, or (3) at least one end of G is incident to a non-leaf edge
not contained in P .

There are at most two order-inducing bridges that are not contractable be-
cause of the reason (1). Since there are at most k non-trivial blocks, at most
2k order-inducing bridges that are not contractable because of the reason (2).
Since each non-leaf vertex not on P implies an edge not incident to V (P ) which



A Linear Edge Kernel for Two-Layer Crossing Minimization 467

has a crossing with some edge of P , there are at most k non-leaf edges incident
to but not contained P . Therefore, at most 2k order-inducing bridges are not
contractable because of the reason (3).

Summing up, the number of order-inducing bridges that are not contractable
is at most 4k + 2. ��

Overall, we have Lemma 5.
To obtain a kernel with O(k2) edges, we need an upper bound on the number

of leaf edges of the reduced graph G. Note that we can assume each vertex is
incident to at most k + 1 leaf edges. This follows from the fact that there is a
two-layer drawing D of G with bcr(G) = bcr(D) such that the leaves of G with
a common neighbor appear consecutively in D. This means that, if a vertex has
more than k leaf neighbors, then all but k+1 of them can be discarded without
changing the feasibility of the instance. Therefore, Lemma 4 implies that the
kernel obtained from a feasible instance has at most 10k+3+(10k+4)(k+1) =
10k2 + 24k + 7 edges.

4 A Kernel with O(k) Edges for LEW-TLCM

It is clear that the kernel for TLCM described in the previous section can be
represented by an instance of LEW-TLCM with O(k) edges. Although this ob-
servation is sufficient for algorithmic purposes, we would like to say that LEW-
TLCM has a kernel with O(k) edges for an aesthetic reason. To this end, we
confirm that the lemmas in the previous section are applicable to instances of
LEW-TLCM.

For each leaf-edge-weighted graph G with weight function w, let unfold(G,w)
denote the unweighted graph equivalent to G with weight w: each vertex v that
is incident to a leaf edge e in G is incident to w(e) leaf edges in unfold(G,w).

To adapt the lemmas of the previous section to leaf-edge-weighted instances,
we read “the number of edges” as “the sum of weights of edges” in the definitions
and lemmas. Then the statements of the lemmas for a weighted instance (G,w, k)
are equivalent to the statements for the unweighted instance (unfold(G,w), k)
and hence do hold. Under this interpretation, the kernelization in the previous
section works for an LEW-TLCM instance and produces a kernel with at most
10k + 3 + (10k + 4) = 20k + 7 edges.

5 Concluding Remarks

We have given an O(k) edge kernel for connected instances of a simple gen-
eralization of TLCM. Its consequences are not limited to the fixed parameter
algorithm mentioned in the introduction, which applies a brute-force search to
the kernel. There are other methods for exactly solving TLCM such as integer
programming [17] and semidefinite programming [3]. Our kernelization is ex-
pected to broaden the class of instances practically solvable by such methods.
We are planning an extensive experiments along this line.



468 Y. Kobayashi et al.

References

1. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

2. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewidth of graphs. Journal of Algorithms 21(2), 358–402 (1996)

3. Chimani, M., Hungerländer, P., Jünger, M., Mutzel, P.: An SDP approach to
multi-level crossing minimization. Journal of Experimental Algorithmics 3(3), 1–16
(2012)

4. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer (1999)
5. Dujmović, V., Fellows, M.R., Hallet, M., Kitching, M., Liotta, G., McCartin, C.,

Nishimura, N., Ragde, P., Rosamond, F., Whitesides, S., Wood, D.R.: A fixed
parameter approach to two-layer planarization. Algorithmica 45(2), 159–182 (2006)

6. Dujmović, V., Fellows, M.R., Kitching, M., Liotta, G., McCartin, C., Nishimura,
N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: On the
parameterized complexity of layered graph drawing. Algorithmica 52(2), 267–292
(2008)

7. Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-
sided crossing minimization revisited. Journal of Discrete Algorithms 6(2), 313–323
(2008)

8. Dujmović, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for
1-sided crossing minimization. Algorithmica 40(1), 15–31 (2004)

9. Eades, P., McKay, B.D., Wormald, N.C.: On an edge crossing problem. In: Pro-
ceedings of 9th Australian Computer Science Conference, pp. 327–334 (1986)

10. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs.
Algorithmica 11(4), 379–403 (1994)

11. Fernau, H., Fomin, F.V., Lokshtanov, D., Mnich, M., Philip, G., Saurabh, S.: Rank-
ing and drawing in subexponential time. In: Iliopoulos, C.S., Smyth, W.F. (eds.)
IWOCA 2010. LNCS, vol. 6460, pp. 337–348. Springer, Heidelberg (2011)

12. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM. J. on Alge-
braic and Discrete Methods 4(3), 312–316 (1982)

13. Kobayashi, Y., Tamaki, H.: A fast and simple subexponential fixed parameter
algorithm for one-sided crossing minimization. In: Epstein, L., Ferragina, P. (eds.)
ESA 2012. LNCS, vol. 7501, pp. 683–694. Springer, Heidelberg (2012)

14. Shahrokhi, F., Sýkora, O., Székely, L.A., Vrt’o, I.: On bipartite Drawings and the
linear arrangement problem. SIAM Journal on Computing 30(6), 1773–1789 (2001)

15. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete
Applied Mathematics 18(3), 279–292 (1987)

16. Suderman, M.: Layered graph drawing. PhD thesis, School of Computer Science,
McGill University Montréal (2005)

17. Zheng, L., Buchheim, C.: A new exact algorithm for the two-sided crossing mini-
mization problem. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS,
vol. 4616, pp. 301–310. Springer, Heidelberg (2007)



A Linear-Time Algorithm for Computing

the Prime Decomposition of a Directed Graph
with Regard to the Cartesian Product�

Christophe Crespelle1, Eric Thierry2, and Thomas Lambert3

1 Université Claude Bernard Lyon 1, DANTE/INRIA, LIP UMR CNRS 5668,
ENS de Lyon, Université de Lyon
christophe.crespelle@inria.fr

2 ENS de Lyon, LIP UMR CNRS 5668, Université de Lyon
{eric.thierry,thomas.lambert}@ens-lyon.fr

3 ENS de Lyon, Université de Lyon

Abstract. In this paper, we design the first linear-time algorithm for
computing the prime decomposition of a digraph G with regard to the
cartesian product. A remarkable feature of our solution is that it com-
putes the decomposition of G from the decomposition of its underlying
undirected graph, for which there exists a linear-time algorithm. First,
this allows our algorithm to remain conceptually very simple and in ad-
dition, it provides new insight into the connexions between the directed
and undirected versions of cartesian product of graphs.

The general idea of graph decompositions is to describe a graph as the composi-
tion, through some operations, of a set of simpler (and usually smaller) graphs.
This framework has turned out to be very useful both for proving theorems
(see e.g. [2]) and for solving efficiently difficult algorithmic problems using the
”divide and conquer” approach (see [10]). This is the reason why, in the last
decades, a lot of effort have been made for computing efficiently the decompo-
sition of a graph with respect to a given operation. The cartesian product of
undirected graphs (graphs for short) and directed graphs (digraphs for short),
usually denoted by �, is a classical and useful decomposition operation that
allows to factorise some specifically structured redundancy in a graph. Such re-
dundancy naturally appears in various contexts, both theoretic and practical,
such as accountability, databases or programming. In those contexts, revealing
and factorising these redundancy has a great impact on the efficiency of the
solutions proposed to manage these systems.

Cartesian product has been used from the early times of graph theory, but
the first intensive studies were provided by Sabidussi [9] and Vizing [11]. Both of
them proved independently that any connected graph admits a decomposition
into prime factors (graphs that can not be expressed as product of non trivial
graphs) which is unique up to the order of factors (� is commutative) and up to

� This work was partially supported by the Vietnam Institute for Advanced Study in
Mathematics (VIASM).

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 469–480, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



470 C. Crespelle, E. Thierry, and T. Lambert

isomorphisms. The unicity of the decomposition into prime factors was later ex-
tended to weakly connected digraphs by Feigenbaum [4] and Walker [12] (when
graphs or digraphs are not connected, this prime decomposition is not necessar-
ily unique). From the 80s, a series of papers have investigated the complexity
of computing this prime decomposition. For connected graphs, after the first
polynomial algorithm by Feigenbaum et al [5] in O(n4.5) time, where n is the
number of vertices, the complexity was improved by Winkler [13], Feder [3] and
Aurenhammer et al [1], until Imrich and Peterin [7] finally designed a linear-time
algorithm (this is so far the only linear algorithm).

RelatedWorks. For weakly connected digraphs, the best complexity is achieved
by Feigenbaum’s algorithm [4] which has two steps: first it calls any algorithm
that computes the prime decomposition of the underlying undirected graph (i.e.
the graph obtained by replacing directed arcs by undirected edges), then by
merging some factors it provides the decomposition for the digraph. The first
step can be achieved with Imrich and Peterin’s algorithm in time O(n + m),
where m is the number of edges. Then the time complexity of the second step
is O(n2 log2 n). The problem has also been considered for restricted classes of
digraphs. For connected partially ordered sets (posets), Walker describes a poly-
nomial algorithm in [12] which also starts by factorising the graph once arcs are
made undirected. Its complexity is not analysed precisely in [12], but it is not
linear: it has two nested loops leading to, at least, a Θ(m log2 n) complexity.
For sake of completeness, let us mention that, for posets, Krebs and Schmid
considered a restricted version of the prime decomposition problem that only
asks whether the input poset P admits a factorisation P = P0�2, where P0 is
an arbitrary poset and 2 is the chain with two vertices. In [8], they obtain an
O(n7) algorithm for solving this problem.

Our Results. We present the first linear algorithm to compute the prime de-
composition of digraphs with regard to the cartesian product, therefore improv-
ing the complexities of [4,12,8]. Unlike [12,8], we solve the problem not only for
posets but for arbitrary digraphs G. An interesting feature of our solution is
that we use the algorithm of [7] as a black-box, once, at the beginning of our
algorithm. In other words, we first compute the decomposition of the underly-
ing undirected graph G̃ of G and afterwards only, we deal with the orientation
of arcs, in linear time. This allows our algorithm to remain conceptually very
simple. Compared to [4,12], which proceed in the same way, the improvement of
the complexity relies on 1) the incremental structure of our algorithm that fully
takes advantage of the product structure computed for G̃ by parsing it layer by
layer, and 2) a careful implementation and choice of the data-structure.

Outline of the Paper. Section 1 presents the main definitions and theorems
that we need about the cartesian product. Section 2 describes the general scheme
of our algorithm and the lemmas that will ensure its correctness. Section 3



A Linear-Time Algorithm for Computing the Prime Decomposition 471

describes the algorithm and goes into the details of data-structures and routines
that are used to run it in linear time.

1 Preliminaries

After the formal definition of the cartesian product, we state the factorisation
theorem ensuring the unicity of the prime decomposition. This theorem applies
to both graphs and digraphs, but it was first proved for graphs [9,11] and then ex-
tended to digraphs [4,12]. For any digraph G, we define its underlying undirected
graph G̃ as the graph over the same vertices, where two vertices are adjacent if
and only if there exists at least one arc between them in G. A digraph G will be
called weakly connected if G̃ is connected.

Definition 1 (Cartesian product of digraphs). The cartesian product G =∏
1≤i≤pGi of p directed graphs (Gi)1≤i≤p is the directed graph G = (V (G), A(G))

whose vertex set is V (G) =
∏

1≤i≤p V (Gi) and such that for all x, y ∈ V (G),
with x = (x1, . . . , xp) and y = (y1, . . . , yp), we have xy ∈ A(G) if and only if
there exists i ∈ �1, p� such that ∀j ∈ �1, p� \ {i}, xj = yj and xiyi ∈ A(Gi). The
p-uple (x1, . . . , xp) associated with each vertex x is called the cartesian labelling
associated with this decomposition.

Definition 2 (Prime graph). A digraph G is prime with regard to the carte-
sian product iff for all digraphs G1, G2 such that G = G1�G2 then G1 or G2

has only one vertex.

The two preceding definitions are stated for digraphs but they also apply for
graphs with edges instead of arcs. We now give the fundamental theorem of
cartesian product of graphs.

Theorem 1 (Unicity of the prime decomposition of digraphs [4,12] and
graphs [9,11]). For any weakly connected directed graph (resp. connected graph)
G, there exists a unique p ≥ 1 and a unique tuple (G1, . . . , Gp) of digraphs
(resp. graphs), up to reordering and isomorphism of the Gi’s, such that each
Gi has at least two vertices, each Gi is prime for the cartesian product and
G =

∏
i∈�1,p�Gi. (G1, . . . , Gp) is called the prime decomposition of G.

A key property of the prime decomposition, stated by Theorem 2 below, is that
it properly refines all other decompositions.

Definition 3 (Refinement of a decomposition). Let G be a graph or a di-
graph and let (G1, . . . , Gp), with p ≥ 1, and (H1, . . . , Hk), with k ≥ 1, be two
decompositions of G. We say that decomposition (G1, . . . , Gp) refines decompo-
sition (H1, . . . , Hk) iff k ≤ p and there exists a partition {I1, . . . , Ik} of �1, p�
such that ∀j ∈ �1, k�, Hj =

∏
i∈Ij

Gi.

Theorem 2 (Finest decomposition [6]). Let G be a weakly connected digraph
(resp. connected graph) and let (G1, . . . , Gp), with p ≥ 1, be its prime decomposi-
tion. If (H1, . . . , Hk), with k ≥ 1, is a decomposition of G such that all digraphs
Hi’s have at least two vertices, then (G1, . . . , Gp) refines (H1, . . . , Hk).



472 C. Crespelle, E. Thierry, and T. Lambert

Cartesian product decomposition of graphs can equivalently been defined as
colourings of their arcs or edges. Such colourings constitute the core of the ap-
proach of [7], and of our approach as well.

Definition 4 (Product colouring of arcs (resp. edges) [7]). Let G be a
digraph (resp. a graph) and L the cartesian labelling of a decomposition of G,
then the colouring of arcs of G associated with L is defined as follows: arc (resp.
edge) xy is coloured with colour i iff x and y differ only on coordinate number i.
A colouring of the arcs of a digraph G (resp. edges of graph) is called a product
colouring if it is the colouring associated to some cartesian labelling of some
decomposition of G.

Note that the colouring associated with L is properly defined since each arc (resp.
edge) is assigned a colour and only one. The next theorem restates Theorem 2
in terms of product colourings. It appears as Lemma 2.3 in [7] for graphs and
in [4] for digraphs (stated in terms of partitions of the arcs).

Theorem 3 (Finest product colouring [7]). Let G be a weakly connected
digraph (resp. connected graph) and let C be the arc colouring associated with
the prime decomposition of G, and let C′ be a product colouring of G. Then, the
partition of the arcs of G induced by C refines the one induced by C′. C is called
the finest product colouring of G.

Product colourings have strong structural properties which are characterised
in the next two theorems. These are the key properties on which is based the
correctness and the complexity of our algorithm. The first theorem deals with
undirected graphs. It rephrases several lemmas and reasoning used by Imrich
and Peterin to design and analyse their linear algorithm [7].

Theorem 4 (Square property of product colourings (undirected ver-
sion) [7]). Let C be a colouring of the edges of some connected graph G. C is a
product colouring iff the three following properties hold:

1. all triplets of vertices inducing a triangle in G are monocoloured, and
2. for any bicoloured pair {{u, v}, {v, w}} of edges of G, there exists a unique

vertex v′ such that uvwv′ is a cycle of G, and this vertex v′ is such that
the colour of {u, v′} (resp. {v′, w}) is the same as the one of {v, w} (resp.
{u, v}).

3. for any colour i ∈ �1, |C|�, if there exists a path of G from x to y, where
x �= y, made only of edges coloured i, then there does not exist any path from
x to y having no edge coloured i.

Remark 1. Due to Condition 1, the cycle uvwv′ in Condition 2 necessarily has
no chord: it is called a square.

This characterisation can be extended to digraphs, up to adding a fourth (mi-
nor) condition and carefully checking the arc orientations in Condition 2 of
Theorem 4. For digraphs, a pair of vertices x, y is called monocoloured if all arcs
between x and y (possibly two) have the same colour. We also define some types
to enumerate the different cases of arc orientation between two vertices.



A Linear-Time Algorithm for Computing the Prime Decomposition 473

Definition 5. Let G be a digraph, the type of a couple (x, y) of adjacent vertices,
denoted type(x, y), is: dir iff xy is an arc in G but not yx; ind iff yx is an arc
in G but not xy; and sym iff both xy and yx are arcs in G.

Theorem 5 (Square property of product colourings (directed ver-
sion) [7,4]). Let C be a colouring of the arcs of some weakly connected digraph
G. C is a product colouring iff the four following properties hold:

1. all pairs of vertices are monocoloured, and
2. all triplets of vertices inducing a triangle in G̃ are monocoloured, and
3. for any bicoloured pair {{u, v}, {v, w}} of edges of G̃, there exists a unique

vertex v′ such that uvwv′ is a cycle of G̃, and this vertex v′ is such that the
type and the colour of (u, v′) (resp. (v′, w)) are the same as those of (v, w)
(resp. (u, v)).

4. for any colour i ∈ �1, |C|�, if there exists a path of G̃ from x to y, where
x �= y, made only of edges coloured i, then there does not exist any path from
x to y having no edge coloured i.

Though not stated in a single theorem in literature, this theorem combines Theo-
rem 4 and the forbidden oriented patterns identified by Feigenbaum in products
of digraphs [4]. We take them into account by forcing the types of adjacency
around the squares of the digraph in Condition 3 of Theorem 5. The preserva-
tion of types on opposite edges of squares is due to the fact that both edges
originate from the same pair of vertices in a factor of G, thus their types exactly
reflect the type of this pair. Like for Theorem 4, we have rephrased the charac-
terisation for our needs. We will make an intensive use of Theorem 5 to prove
the correctness of our approach.

2 Our Approach

Like [7], our approach consists in computing the finest product colouring CG of
the arcs of G, which is precisely the one corresponding to the prime decompo-
sition of G. We proceed in two steps: i) first, we compute the finest product
colouring CG̃ of the undirected underlying graph G̃ of G and we colour the arcs
of G accordingly ii) then, we merge some classes of colours into one single colour
in order to obtain CG. Our main result is to show that the classes of colours to
be merged can be computed in linear time with regard to the size of G, and
that the labels of the vertices can be updated in linear time as well during these
merges. The fact that one can always proceed by merging some colours of the
undirected colouring of G̃ is stated by Lemma 1 below.

Lemma 1. Let G be a digraph, let CG be the finest product colouring of G, and
let CG̃ be the finest product colouring of G̃. We denote Cdir the colouring of the
arcs of G induced by CG̃. Then, Cdir is finer than CG.

Sketch of proof. In a directed product colouring, two symmetric arcs are always
assigned the same colour. Then, each directed product colouring of G induces



474 C. Crespelle, E. Thierry, and T. Lambert

a colouring of the edges of G̃. It turns out that this colouring of G̃ is also a
product colouring, since the conditions to be an undirected product colouring
are weaker than the conditions to be a directed product colouring. Now consider
the undirected product colouring induced by CG, since it is a product colour-
ing, from Theorem 3, it is coarser than CG̃. It follows that CG is coarser than Cdir.

In order to design an algorithm, we must be able to determine which classes of
colours have to be merged in Cdir in order to obtain the finest product colouring
CG we aim at computing. We will show that CG can be obtained by merging all
the pairs of colours that are conflicting in Cdir.

Definition 6. Let G be a digraph and let C be a colouring of its arcs such that all
pairs of vertices of G are mono-coloured. Two colours c1, c2 of C are conflicting
iff there exists some bicoloured pair {{u, v}, {v, w}} of edges of G̃ such that {u, v}
is coloured by c1 and {v, w} is coloured by c2 and {{u, v}, {v, w}} does not satisfy
Condition 3 of Theorem 5.

The list of conflicting pairs of colours in Cdir defines a graph Gconf , which we
call the colour-conflict graph, whose vertex set is the colours of Cdir. Lemma 2
below claims that the classes of colours of Cdir that have to be merged into a
single colour in order to obtain the finest product colouring CG of G are precisely
the connected components of Gconf .

Lemma 2. Let G be a digraph and let Cdir be the colouring of G induced by the
finest product colouring of G̃. Consider the colour-conflict graph Gconf whose
vertices are the colours of Cdir.

Then, the colouring Cconf of the arcs of G obtained by merging in Cdir each
connected component of Gconf into one single colour is the finest product colour-
ing CG of G.

Sketch of proof. From Lemma 1, we know that CG can be obtained from Cdir by
only merging some colours. If there is a conflict between colours c1 and c2 in
Cdir on some pair {{u, v}, {v, w}}, then, clearly, the only possibility so that the
conflict disappear in CG is to merge colours c1 and c2. Thus, all pairs of con-
flicting colours have to be merged, which results in the merge of all the colours
in a connected component of Gconf . Thus, Cconf is a colouring of the arcs of G
finer than CG. On the other hand, when all these merges have been performed,
there is no remaining conflicts between colours, that is Condition 3 of Theorem 5
is satisfied. Consequently, since the other conditions of Theorem 5 are satisfied
in Cdir and since these conditions are preserved by merging colours, it follows
that Cconf satisfies all the conditions of Theorem 5 and is therefore a product
colouring of G. As Cconf is finer than CG, we have Cconf = CG.

A key property which we will use in the description of our algorithm, and which
allows it to remain conceptually simple and to run in linear time, is that the
bicoloured pairs of vertices {{u, v}, {v, w}} giving rise to a conflict on their
colours are strongly structured: they necessarily belong to the set of properly



A Linear-Time Algorithm for Computing the Prime Decomposition 475

coloured squares of Cdir. In other words, the only reason why a conflict may
appear between two colours of Cdir is because of the orientation of arcs. This is
what is stated by Lemma 3 below.

Lemma 3. Let G be a digraph, let CG̃ be the finest product colouring of G̃,
and let Cdir be the colouring of the arcs of G induced by CG̃. If two colours are
conflicting in Cdir on some bicoloured pair {{u, v}, {v, w}}, then

1. there exists a unique vertex v′ such that uvwv′ is a cycle of G̃, and this
vertex v′ is such that in Cdir, colour(u, v′) = colour(v, w) and colour(v′, w) =
colour(u, v), but

2. type(u, v′) �= type(v, w) or type(v′, w) �= type(u, v).

Proof. Since pair {{u, v}, {v, w}} is bicoloured in Cdir and since Cdir is induced
from CG̃, then pair {{u, v}, {v, w}} is bicoloured in CG̃. And since CG̃ is a product
colouring, then, from Condition 2 of Theorem 4, Condition 1 of Lemma 3 is sat-
isfied. But since bicoloured pair {{u, v}, {v, w}} is conflicting, it does not satisfy
Condition 3 of Theorem 5. Thus, necessarily, we have type(u, v′) �= type(v, w) or
type(v′, w) �= type(u, v).

3 Algorithm

Our algorithm takes as input the adjacency lists of the digraph G and outputs
the finest product colouring of the arcs of G together with the corresponding
cartesian labelling of the vertices of G. It operates in three steps:

1. Undirected prime decomposition: apply Imrich and Peterin’s algorithm [7]
on G̃ and obtain the induced colouring Cdir of the arcs of G.

2. Conflicting pairs of colours : list all pairs of colours that are conflicting in
Cdir and build the colour-conflict graph Gconf .

3. Merge: merge each connected component of Gconf into one single colour and
update the labels of the vertices of G accordingly.

In this section, we deals with implementation details and show how to perform
all of the three steps above in linear time with regard to the size of G.

Cartesian Representation. Given a product colouring C of a digraph G (or a
product colouring of its underlying undirected graph G̃) and the corresponding
cartesian labelling V =

∏
i∈�1,p� Vi of its vertices, we encode the digraph G, its

colouring C and the cartesian labels of its vertices into a data-structure that we
call the cartesian representation of G. It is very similar to the classical adjacency
lists, except that the lists of neighbours of the vertices are stored in a matrix
Mcart instead of a one-dimensional array.

For all i ∈ �1, p�, we denote ni = |Vi|. The vertices in Vi are numbered from 1
to ni so that the label (x1, . . . , xp) of a vertex x belongs to �1, n1�× . . .× �1, np�.
Mcart is an n1×. . .×np matrix indexed by the labels of the vertices of G and such
that the cell Mcart(x1, . . . , xp) contains two fields storing the information of the



476 C. Crespelle, E. Thierry, and T. Lambert

vertex x whose label is (x1, . . . , xp): the first field is simply the label (x1, . . . , xp)
of x, and the second field is a one dimensional array denoted N(x) and indexed
by the p colours of colouring C, from 1 to p. For any i ∈ �1, p�, the cell indexed i
of N(x) contains the list Ni(x) of neighbours y of x such that the arcs between
x and y are coloured i. Each cell of list Ni(x) corresponding to a neighbour y
of x again contains two fields: the first one is type(x, y) and the second one is a
pointer to the cellMcart(y1, . . . , yp) ofMcart, where (y1, . . . , yp) is the label of y.
Moreover, in the cartesian representation, each list Ni(x) is sorted by increasing
value of the i-th component yi of the neighbours y = (y1, . . . , yi, . . . , yp) of x it
contains. Note that since only the component yi changes in the list Ni(x), the
order defined on Ni(x) by the i-th component of the label is exactly the cartesian
order on the label of vertices of Ni(x). Finally, let us mention that the reason
why we use a pointer toMcart(y1, . . . , yp) instead of simply the label (y1, . . . , yp)
of y is that reading one pointer takes constant time while reading a sequence of
integer takes a time proportional to the length of the sequence. This feature is
necessary in order to achieve linear time.

Undirected Prime Decomposition. In this step, from the adjacency lists
of G, we compute the cartesian representation of G with regard to the product
colouring CG̃ of G̃ given by the algorithm from [7]. First of all, in order to apply
the algorithm from [7], we need to compute the undirected adjacency lists of
G̃, from the directed lists of G. This can be done in linear time, and we can
determine in the same time the types of all adjacent couples of vertices, which
we write into the cells of the adjacency lists.

The adjacency lists of G̃ are then given as input to [7]’s algorithm, which
computes the prime decomposition G̃ =

∏
i∈�1,p� G̃i (as usual we denote ni =

|V (G̃i)|). The algorithm gives the corresponding cartesian labelling of the ver-
tices of G and the colouring of the edges of G̃. More explicitly, it produces
a data-structure that, given a vertex, provides its label in constant time and,
given an edge, provides its colour in constant time. Using this data-structure,
one can build very easily the cartesian representation of G described above. The
only difficulty is to sort all the coloured adjacency lists according to the cartesian
labels of the vertices they contain. To that purpose, we use the classical tech-
nique to sort adjacency lists of a graph G w.r.t. a given order σ on the vertices
of G in linear time: 1) initialise a new copy of the adjacency lists with all lists
empty and 2) for each vertex x of G considered in increasing order w.r.t. σ, parse
its list of neighbours (the order of parsing does not matter here) and for each
vertex y encountered, append x at the end of the list of y in the new copy of the
adjacency lists. Here, we have to take care in addition of the colours of the arcs
and of the type of the couples of vertices, which can be done without penalising
the complexity. Then, the first step of our algorithm takes linear time.

Conflicting Pairs of Colours. This step of the algorithm outputs the list
(eventually with repetitions) of all pairs of conflicting colours. This is the most
challenging part of the algorithm as the conflicts may occur on any properly
coloured square of Cdir. And it turns out that the number of such squares may



A Linear-Time Algorithm for Computing the Prime Decomposition 477

be quadratic, while we aim at achieving a linear complexity. The key point is
that we can actually detect all the conflicts between colours without parsing all
the squares of Cdir, but only a certain subset of them, whose size is linear. To
that purpose, we take advantage of the product structure computed for G̃, which
we parse incrementally layer by layer, each layer being processed in linear time.

Our algorithm has two passes: the first one computes all the pairs (c1, c2) of
colours, with c2 > c1, conflicting on some square because of the orientations of
arcs of colour c2 (remind that from Lemma 3, the only possibility for conflicts
to appear in Cdir is because of the orientation of arcs); then we reverse the order
on colours (which can be done easily in linear time on our data-structure) and
run the same algorithm. Here, we only describe the first pass.

As previously, we denote V =
∏

i∈�1,p� Vi the cartesian labelling of the vertices

of G, with ni = |Vi|. For each i ∈ �1, p�, we number the vertices of Vi from 1 to ni.
For i ∈ �1, p� and j ∈ �1, ni�, we denote xi,j the vertex of Vi numbered j and
we denote N<(xi,j) = {xi,k | k < j and xi,j and xi,k are adjacent in Gi}, and
d<(xi,j) = |N<(xi,j)|. We also denote Yi,j = {x = (x1, . . . , xp) | xi = j and ∀k >
i, xk = 1}, and Xi,j =

⋃
k≤j Yi,k. While n<i and m<i respectively stand for the

number of vertices and the number of adjacent pair of vertices in G[Yi,j ] (these
numbers do not depend on j).

Our algorithm is incremental in the sense that it starts with the set of vertices
{x1,j , j ∈ �1, n1�} ∪ {xi,1, i ∈ �1, p�}, and considers the vertices (xi,j) of the Gi’s
one by one in increasing (i, j) for the cartesian order. Before adding xi,j , it has
already computed all the pairs of colours conflicting on some square of G[Xi,j−1],
and when adding xi,j , our algorithm extends this list with all the pairs (c1, c2)
of colours, with c2 > c1, conflicting on some square of G[Xi,j ] (because of the
orientation of c2-coloured arcs) that involve some vertex of Yi,j . There are two
types of such squares (see Figure 1):

1. layer type: those involving only vertices of Yi,j .

2. cross type: those involving two vertices a, b ∈ Yi,j and two vertices a′, b′ ∈
Xi,j−1, which are necessarily, since a, b, b′, a′ is a square, such that (∀k �=
i, a′k = ak and b′k = bk) and (a′i = b′i = j′), with j′ < j.

In order to detect the layer-type conflicts, we simply recursively apply the algo-
rithm on G[Yi,j ]. Since the cartesian representation of G[Yi,j ] can be extracted
from the one of G in linear time with regard to the size of G[Yi,j ], then, in order
to show that our algorithm performs in linear time, it is sufficient to show that
the cross-type conflicts can be computed in time proportional to the number of
arcs incident to vertices of Yi,j , that is O(n<id<(xi,j)+m<i) time. Note that for
the cross-type conflicts, since we are interested only in the conflicts occurring
because of the orientation of arcs of the higher colour, we need only to check
the orientations of i-coloured arcs incident to vertices of Yi,j . Indeed, in a cross-
type square a, b, b′, a′, the arcs between a and a′ and those between b and b′ are
coloured i, while the arcs linking a and b and linking a′ and b′ have colour at
most i − 1. Note that, from the undirected product structure of Cdir, for any
vertex of Yi,j , the number of its neighbours in Xi,j−1 is d<(xi,j).



478 C. Crespelle, E. Thierry, and T. Lambert

Yi,j

Xi,j−1

a’ b’

a b

a’’ b’’

i−1

i−1

i−1

i−1

i−1
i−3

i−3

i−3

i−3

i−3

i−1i−3

i−1

i−1

i−3

i−1i−3

i−3 i−1

i−3

c
d

Fig. 1. The incremental scheme of our algorithm. The arcs of colours less than i are
depicted in grey, and the arcs of colour i in black (except aa′ and bb′ that are red and
bold). Square abcd is a layer-type conflicting square, because of the orientations of bc
and ad. It will be detected during the recursive call of our algorithm on G[Yi,j ]. Square
abb′a′ is a cross-type conflicting square, because of the orientations of aa′ and bb′. This
conflict will be detected by our algorithm since a and b are linked by an arc and will
not be in the same part of partition P . On the opposite, the conflict between colour
i− 1 and i on the square abb′′a′′ will not be detected in the first pass of the algorithm,
as it occurs because of the orientation of arcs of the lower colour i− 1; though, it will
be detected in he second pass after reversing the order on colours.

In order to list cross-type conflicts, we build an n1 × . . . × ni−1 matrix T
indexed by the vertices y of Yi,j and where each cell contains a one-dimensional
array T (y) indexed from 1 to d<(xi,j). Then, for each vertex y ∈ Yi,j we parse
the vertices z ∈ N(y) ∩Xi,j−1 in increasing order and we set the corresponding
cell of T (y) to type(y, z). This takes O(n<id<(xi,j)) time. Next, we partition
Yi,j into the classes of vertices y having the same vector T (y), and we label each
vertex of Yi,j with the identifier of the class to which it belongs, that is an integer
between 1 and n<i. We compute this partition P by bucket-sorting the vertices
of y ∈ Yi,j according to the value of T (y), with T (y)(1) as primary key, T (y)(2)
as secondary key, and so on. One pass, for one key, takes O(n<i) time since there
are only 3 different values for the key: dir, ind and sym. Thus, the total cost of
the bucket-sort is O(n<id<(xi,j)).

The key property on which lean our algorithm is that the colours conflicting
with colour i on some cross-type squares are exactly the colours of the arcs
of G[Yi,j ] crossing partition P , that is having their extremities in two distinct
classes of the partition (see Figure 1 and its caption). Indeed, if a j-coloured arc
between a and b crosses the partition, the neighbours a′ and b′ of respectively
a and b that distinguished the type vectors T (a) and T (b) form a conflicting
square with a and b. And conversely, if there exist a cross-type square a, b, b′, a′

involving colour j < i, then necessarily a and b are not in the same part of P
and the arc between a and b is coloured j.

As a consequence, in order to compute the list of colours conflicting with
colour i on some cross-type square, we simply parse the arcs of G[Yi,j ] and check



A Linear-Time Algorithm for Computing the Prime Decomposition 479

whether their two extremities have been assigned the same class identifier of
P . This takes O(m<i) time and the total time needed to compute the colours
conflicting with colour i on cross-type squares is then O(n<id<(xi,j) + m<i).
Thus, the running time of our algorithm for listing pairs of colours conflicting
in G is O(n + m). Note that the output we get is a list of length O(n + m)
with repetitions and containing at most p2 distinct pairs of colours. We can
thus obtain the list without repetitions by bucket sorting the list according to
colours, in O(n+m+p2) = O(n+m) time. We can then build the colour-conflict
graph Gconf on the set of colours and parse it in order to obtain its connected
components, which are the classes of colours we need to merge in Cdir in order
to obtain CG (see Lemma 2). This takes O(p2) = O(m) time.

Merge. In the previous step, we computed the classes of colours Cl, l ∈ �1, q�
that have to be merged in order to obtain the finest product colouring of G.
For any l ∈ �1, q� we denote Cl = {l1, . . . , l|Cl|}, with l1 < l2 < . . . < l|Cl|.
We also denote G =

∏
i∈�1,q�G

′
l the prime decomposition of G, and we denote

n′l = nl1nl2 . . . nl|Cl|
the number of vertices of G′

l. In order to obtain the cartesian
representation of G according to the finest colouring CG of its arcs, we need to
achieve three tasks: i) update the labelling of vertices of G and rearrange the
matrix storing the adjacency lists accordingly, ii) for each vertex x merge its
lists of neighbours that now belong to the same class of colours Cl and iii) sort
the obtained lists of neighbours according to the cartesian order on the labels
of their vertices. Task ii) is very easy to achieve by simply parsing the arrays
N(x) of the cartesian representation and merge the appropriate lists. For Task
iii) we can again use the classical technique that allows to sort adjacency lists in
linear time. Therefore, Tasks ii) and iii) need only linear computation time. Let
us now focus on Task i).

In order to rearrange the matrix of the cartesian representation according to
the new label, we first need to compute some matrices and arrays making the cor-
respondences between ancient and new labels of the vertices and between ancient
and new names of colours. First, we number the vertices of the new G′

l’s as fol-
lows. For each l ∈ �1, q�, we build a nl1×. . .×nl|Cl|

matrix NewNamel where cell

NewNamel(a1, . . . , a|Cl|) contains the rank of (a1, . . . , a|Cl|) in the cartesian or-
der on �1, l1�×. . .×�1, l|Cl|�. From matrix NewNamel, we also compute the con-
verse association array AncNamel of size n

′
l where cell AncNamel(k) contains

the |Cl|-tuple (a1, . . . , a|Cl|) ∈ �1, l1�×. . .×�1, l|Cl|� such thatNewNamel(a1, . . . ,
a|Cl|) = k. The t-th component at of AncNamel(k) is denoted AncNamel(k)(t).
Finally, for each i ∈ �1, p� we compute the values Newcolour(i) = l, which is
the number l of the class of colours to which colour i belongs, and Newrank(i)
which is the rank of i in the ordered list Cl of this class of colours. All matrices
NewNamel and arrays AncNamel, for all l, as well as arrays Newcolour and
Newrank can be computed in O(np) = O(m) time.

Then, we achieve Task i) by building a n′1× . . .×n′q matrixMnew to store the
adjacency lists of G organised according to its prime decomposition, that is the
colouring CG of its arcs. Then, for each x′ = (x′1, . . . , x

′
q) ∈ �1, n′1�× . . .× �1, n′q�



480 C. Crespelle, E. Thierry, and T. Lambert

we store in cell Mnew(x
′
1, . . . , x

′
q) the new label (x′1, . . . , x

′
q) of vertex x

′ and the
arrayMdir(x1, . . . , xp) containing the neighbours of vertex x′, where (x1, . . . , xp)
is the former label of vertex x′ in the cartesian representation Mdir (see the
Undirected prime decomposition step of the algorithm). To that purpose, we
only need to compute the xi’s, for i ∈ �1, p�, from the x′j , j ∈ �1, q�. This can be
done thanks to arrays Newcolour,NewRank and arrays AncNamel as follows:
xi = AncNames(x

′
s)(t) with s = Newcolour(i) and t = NewRank(i). For each

vertex x′, writing its new label takes O(q) time, and computing its former label
takes O(p) time. Then, the total time needed to achieve Task i), including the
construction of matrix Mnew, is O(n+ (p+ q)n) = O(n+m), which is also the
total complexity of the merging step of our algorithm.

As a conclusion, each of the three steps of our algorithm runs in O(n + m)
time, which is then the total complexity of our algorithm for computing the
prime decomposition of G. Within this complexity, our algorithm outputs the
corresponding cartesian labelling of vertices of G, the finest product colouring
of the arcs of G, as well as the cartesian representation of G, which is a natural
data-structure for all algorithms willing to exploit the product structure of G.

References

1. Aurenhammer, F., Hagauer, J., Imrich, W.: Cartesian graph factorization at loga-
rithmic cost per edge. Computational Complexity 2, 331–349 (1992)

2. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Annals of Mathematics 164(1), 51–229 (2006)

3. Feder, T.: Product graph representations. Journal of Graph Theory 16, 467–488
(1992)

4. Feigenbaum, J.: Directed cartesian-product graphs have unique factorizations that
can be computed in polynomial time. Discr. Appl. Math. 15, 105–110 (1986)

5. Feigenbaum, J., Hershberger, J., Schäffer, A.A.: A polynomial time algorithm for
finding the prime factors of cartesian-product graphs. Discrete Applied Mathemat-
ics 12, 123–138 (1985)

6. Hammack, R., Imrich, W., Klavzar, S.: Handbook of Product Graphs. CRC Press
(2011)

7. Imrich, W., Peterin, I.: Recognizing cartesian products in linear time. Discrete
Mathematics 307(3-5), 472–483 (2007)

8. Krebs, M., Schmid, J.: Ordering the order of a distributive lattice by itself. Journal
of Logic and Algebraic Programming 76, 198–208 (2008)

9. Sabidussi, G.: Graph multiplication. Mathematische Zeitschrift 72(1), 446–457
(1960)

10. Spinrad, J.P.: Efficient graph representations. Fields Institute Monographs, vol. 19.
American Mathematical Society (2003)

11. Vizing, V.G.: The cartesian product of graphs. Vyčisl. Sistemy 9, 30–43 (1963)
12. Walker, J.W.: Strict refinement for graphs and digraphs. Journal of Combinatorial

Theory Series B 43(2), 140–150 (1987)
13. Winkler, P.M.: Factoring a graph in polynomial time. European Journal on Com-

binatorics 8, 209–212 (1987)



Metrical Service Systems with Multiple Servers

Ashish Chiplunkar and Sundar Vishwanathan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Mumbai, India
{ashishc,sundar}@cse.iitb.ac.in

Abstract. The problem of metrical service systems with multiple
servers ((k, l)-MSSMS) proposed by Feuerstein [16] is to service requests,
each of which is an l-point subset of a metric space, using k servers in an
online manner, minimizing the distance traveled by the servers. We prove
that Feuerstein’s deterministic algorithm actually achieves an improved
competitive ratio of k

((
k+l
l

)
− 1

)
on uniform metrics. In the randomized

online setting on uniform metrics, we give an algorithm which achieves
a competitive ratio O(k3 log l), beating the deterministic lower bound of(
k+l
l

)
− 1. We prove that any randomized algorithm for MSSMS on uni-

form metrics must be Ω(log kl)-competitive. On arbitrary metric spaces,
we have deterministic lower bounds which are significantly larger than
the bound for uniform metrics [8].

For the offline (k, l)-MSSMS, we give a factor l pseudo-approximation
algorithm using kl servers on any metric space, and prove a matching
hardness result, that a pseudo-approximation using less than kl servers
is unlikely, even on uniform metrics.

Keywords: k-server, metrical service system, online, approximation.

1 Introduction

The problem of metrical service systems with multiple servers (MSSMS) gener-
alizes two well-known problems – the k-server problem [27] and metrical service
systems (MSS) [10,27]. These problems share a common paradigm, that there is
an underlying metric space and requests are to be served by moving servers on
the metric space, in such a way that the total distance traveled by the servers
is minimized. For a problem in the online setting, the input is revealed to an
algorithm piece by piece, and the algorithm must take irrevocable decisions on
seeing each piece. In case of the aforementioned problems, each piece in the input
is a request, and the irrevocable decisions are the movements of the servers. A
(possibly randomized) online algorithm is said to be c-competitive if, on every
input, it returns a solution whose (expected) cost is at most c times the cost of
optimal solution for that input. The book by Borodin and El-Yaniv [5] gives a
nice comprehensive introduction to online algorithms and competitive analysis.

The k-Server Problem: The k-server problem of Manasse et. al. [27] is, ar-
guably, the most famous among the problems that are naturally posed in the

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 481–492, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



482 A. Chiplunkar and S. Vishwanathan

online setting. The following quote by Koutsoupias, in his beautiful survey on
the k-server problem [24], upholds the importance of this problem.

The k-server problem is perhaps the most influential online problem: nat-
ural, crisp, with a surprising technical depth that manifests the richness
of competitive analysis. The k-server conjecture, which was posed more
than two decades ago when the problem was first studied within the com-
petitive analysis framework, is still open and has been a major driving
force for the development of the area online algorithms.

In the k-server problem, we have k servers occupying points in a metric space.
Each request is a point in the metric space. To serve the request, one of the
servers has to be moved to the requested point. The k-server conjecture referred
to in the quote states that there is a k-competitive deterministic algorithm for
the k-server problem.

Manasse et. al. [27] proved a lower bound of k on the competitive ratio of
any deterministic algorithm on any metric space with more than k points. They
proved that the competitive ratio is k only for very specific cases, and posed
the k-server conjecture. The conjecture has been shown to hold for a few metric
spaces, for example, the line [9] and tree metric spaces [11]. Fiat, Rabani and
Ravid [18] were the first to give an algorithm for the k-server problem, with com-
petitive ratio bounded by a function of k, which was later improved by Grove
[20,4]. The breakthrough result was due to Koutsoupias and Papadimitriou, who
proved that an algorithm, first proposed by Chrobak and Larmore, and called the
Work Function Algorithm (WFA), is (2k−1)-competitive [25]. In case of random-
ized algorithms, the best known lower bound that holds for every metric space is
Ω(log k/ log log k) due to Bartal et. al. [3], and there do exist metric spaces with
a lower bound more than Hk [21]. No better algorithm than the Work Function
Algorithm is known, even with randomization. The randomized k-server conjec-
ture states that there exists a randomized algorithm for the k-server problem
with competitive ratioO(log k) on any metric space. Recent developments, which
ingeneously adapt the primal-dual framework to the online setting, have been
applied to the k-server problem, culminating in a O(log k)-competitive random-
ized algorithm for star metrics [2], and a O(poly log(k) poly log(n))-competitive
randomized algorithm on metric spaces of n points [1].

The Generalized Server Problem: This is a generalization of the k-server
problem, in which the metric space is a disjoint union of k metric spaces, mu-
tually separated by an infinite distance. A server is located at one point in each
of the subspaces. A request is a set of k points, one from each subspace. The
request is to be served by moving some server to the requested point which lies
in its subspace. An interesting problem, called the Weighted Server problem [19]
is a particular case of the Generalized Server problem. This problem is same
as the k-server problem, except that the servers have different weights, and the
cost of moving a server is equal to the product of its weight and the distance
covered. We can thus think of this as the Generalized Server problem where the
metric spaces are scaled copies of one another. Fiat and Ricklin [19] were the
first to study the Weighted Server problem. They gave a deterministic algorithm



Metrical Service Systems with Multiple Servers 483

with a competitive ratio of 22
O(k)

for uniform metric spaces. They proved that
for every metric space there exist weights so that any deterministic algorithm
must have a competitive ratio of (k + 1)!/2. Chrobak and Sgall [13] studied the
weighted 2-server problem on uniform spaces, and proved that the Work Func-
tion Algorithm achieves the best possible competitive ratio of 5. They proved
that in contrast with the k-server problem, there does not exist a memoryless
randomized algorithm with a finite competitive ratio, even for the weighted 2-
server problem. Recently Sitters [30] proved that the Work Function Algorithm,
in fact, is competitive for the generalized 2-server problem.

Metrical Service System: The term Metrical Service System (MSS) was
coined by Chrobak and Larmore [12] for the following problem. We have a single
server in an underlying metric space. Each request is a set of l points from the
metric space, where l is called the width, and is a parameter to the problem. To
serve a request, the server has to be dispatched to one of the requested points.

Finding shortest paths is a fundamental problem in the offline setting. In the
online setting it is posed as the problem of Layered Graph Traversal (LGT). This
problem, introduced by Papadimitriou and Yannakakis [28], was a precursor of
MSS. Fiat et. al. [17] proved that MSS and LGT are in fact equivalent problems.
That is, there is a c-competitive algorithm for MSS if and only if there is a c-
competitive algorithm for LGT. They also proved that there exists a metric
space on which the competitive ratio of any deterministic algorithm for the
MSS problem is Ω(2l). Further, they gave an O(9l)-competitive algorithm. They
proved that l/2 is a lower bound on the competitive ratio of any randomized
algorithm for LGT. Ramesh [29] gave a better deterministic algorithm for LGT,
which achieves a competitive ratio of l32l, and a randomized l13-competitive
algorithm. He proved that there exists a metric space on which any randomized
algorithm must have competitive ratio Ω(l2/ log1+ε l), for any ε > 0. Burley [7]
proved that a variant of the Work Function Algorithm is O(l ·2l)-competitive for
the MSS (and hence, the LGT) problem. For the uniform metric space, Chrobak
and Larmore [12] proved a lower bound of l on the competitive ratio of any
deterministic algorithm, and also gave an algorithm achieving this bound. It is
easily seen that the lower bound holds for any metric space with at least l + 1
points.

Metrical Service System with Multiple Servers: In a natural generaliza-
tion of both the k-server problem and metrical service system, we have k servers
on an underlying metric space, and each request is a set of l points from the
metric space. To serve a request, one of the k servers has to move to one of the
l requested points. We call this problem Metrical Service System with Multi-
ple Servers, with parameters k and l ((k, l)-MSSMS). It is easy to see that this
problem is in fact, a further generalization of the Generalized Server problem.
Feuerstein [16] studied this problem for uniform metric spaces and called it the
Uniform Service System with parameters k and l (USS(k, l)). He proved a lower
bound of

(
k+l
k

)
− 1 on the competitive ratio of any deterministic algorithm for

this problem. In fact, this proof holds for any (not necessarily uniform) metric
space with at least k + l points. Feuerstein also gave an algorithm and proved



484 A. Chiplunkar and S. Vishwanathan

that its competitive ratio is k · min
(

kl+1−k
k−1 ,

∑k−2
i=0 l

i + lk
)
. He concluded the

paper with the following comment.

An interesting subject of future research is to extend USS(k, l)1 to non-
uniform metric spaces. This would extend both the work in this paper
and the work by Chrobak and Larmore [10] on Metrical Service Systems,
where only one server is considered.

Our Results: In Section 2 we present a simple analysis of Feuerstein’s algorithm,

which improves the bound on its competitive ratio proved in [16], to k·
((

k+l
l

)
− 1

)
.

In Section 3 we give a O(k3 log l)-competitive randomized algorithm on uniform
metric spaces, which beats the deterministic lower bound by an exponential fac-
tor. In Section 4 we consider the offline (k, l)-MSSMS problem on arbitrarymetric
spaces, and we give a pseudo-approximation by a factor of l using kl servers. We
prove a matching lower bound, assuming the Unique Games Conjecture. We con-
clude with a number of interesting open problems in Section 5.

2 Uniform Metric Spaces: The Hitting Set Algorithm

In this section we analyze the algorithm for (k, l)-MSSMS on uniform met-
ric spaces given by Feuerstein [16], which he calls the Hitting Set algorithm.
Feuerstein proved that the competitive ratio of this algorithm is at most k ·
min

(
kl+1−k
k−1 ,

∑k−2
i=0 l

i + lk
)
, whereas we prove an asymptotically better bound,2

of k ·
((

k+l
l

)
− 1

)
.

The Hitting Set (HS) algorithm can be described as follows. HS divides the
request sequence into phases, the first phase starting with the first request of
the sequence. We say that a request produces a fault whenever the requested set
of points is disjoint from the set of points occupied by the servers. Each time a
request produces a fault, the algorithm behaves as follows. First, it computes a
minimum cardinality set H of points that intersects all the requests that pro-
duced a fault during the current phase. If |H | ≤ k then any |H | servers are made
to occupy all points in H . Otherwise, if |H | > k, then the phase terminates and
a new phase begins with the current request.

Theorem 1. HS is an k ·
((

k+l
l

)
− 1

)
-competitive algorithm for (k, l)-MSSMS.

Proof. Feuerstein observed that the adversary must incur a cost of at least one

per phase. He then proved that at most min
(

kl+1−k
k−1 ,

∑k−2
i=0 l

i + lk
)
requests can

produce faults in any phase. We improve this upper bound to
(
k+l
l

)
− 1, and our

1 Feuerstein used ‘w’ for the width parameter, while we use ‘l’.
2 For instance, when k = Θ(l), Feuerstein’s bound is Ω(ll), whereas ours is O(cl) for
some constant c.



Metrical Service Systems with Multiple Servers 485

claim follows, since the algorithm pays at most k for every request that produces
a fault.

Let A1, . . . , Ar−1 be the requests that produced a fault in a given phase, and
let Ar be the first request in the next phase, which must also have produced a
fault. Let Bi be the set of points occupied by the servers when the request Ai was
given. Since Ai produced a fault, we have for every i with 1 ≤ i ≤ r, Ai∩Bi = ∅.
On the other hand, since no request between Ai−1 and Ai produced a fault,
the hitting set chosen to serve Ai−1 must be Bi itself. By the definition of the
algorithm, for any i, j with 1 ≤ j < i ≤ r we have Aj∩Bi �= ∅. The skew Bollobás
theorem due to Lovász [26] asserts that in any set system (A1, B1), . . . , (Ar, Br)
with |Ai| = l and |Bi| = k, which satisfies the two conditions, the number of
pairs (Ai, Bi) is at most

(
k+l
k

)
. Thus, the number of requests in the phase, that

produced a fault, is r − 1 ≤
(
k+l
k

)
− 1, as required. ��

3 Uniform Metric Spaces: Randomized Bounds

In this section we give a randomized version of the Hitting Set algorithm from
Section 2, which we call the Randomized Hitting Set (RHS) algorithm, and prove
that its competitive ratio is O(k3 log l). The algorithm is as follows.

RHS divides the sequence of requests in phases, just like the Hitting Set algo-
rithm. Each time a request produces a fault, the algorithm behaves as follows.
First, it computes the minimum cardinality s, of a set of points that intersects
all the requests in the current phase given so far. If s ≤ k, it chooses a set H
uniformly at random from the collection of all the hitting sets of size s, and then
any s servers are made to occupy all points in H . Otherwise, if s > k the current
phase ends and a new phase begins with the current request.

It is easily seen that the adversary must incur a cost of at least 1 per phase. We
prove that the expected cost of RHS is O(k3 log l) per phase. Note that the value
of s increases from 1 to k as the algorithm progresses in a phase. We divide the
phase into k sub-phases, where the ith sub-phase is the part of the phase when
the value of s is equal to i. We will require the following combinatorial lemma.

Lemma 1. Let s be the size of the smallest hitting set of an l-uniform set system
S. Then the number of minimum hitting sets of S is at most ls.

We present a proof of this lemma in the full version [8].

Theorem 2. RHS is an O(k3 log l) competitive algorithm for (k, l)-MSSMS.

Proof. Consider the s’th sub-phase of any phase. Let A1, . . . , Ar be the sets
requested in this sub-phase and let Bi be the set of locations occupied by the
servers, just before the set Ai was requested. Let S0 be the collection of sets
requested in the current phase before the s’th sub-phase started (that is, before
A1 was requested), and let Si = S0 ∪ {A1, . . . , Ai}. Let Hi be the collection of
all hitting sets of Si, having size s. Thus, each Hi is an s-uniform set system,
and we have S0 � S1 � · · · � Sr and H0 ⊇ H1 ⊇ · · · ⊇ Hr. Further, if Bi ∈ Hi



486 A. Chiplunkar and S. Vishwanathan

then Bi+1 = Bi, else Bi+1 is picked uniformly at random from Hi, due to the
construction of the algorithm. For each Bj there exists a unique tj such that
Bj ∈ Htj−1 \ Htj .

3 Then either tj > j and Bj+1 = Bj , or tj = j and Bj+1

is picked uniformly at random from Hj . The number of requests for which the
algorithm shifts servers, is thus one less than the size of the set T = {tj | 1 ≤
j ≤ r}. We next bound the expected size of T .

Let hi = |Hi|. We know B1 ∈ H0 \ H1, since the current phase started with
A1 which must be disjoint from B1. Thus 1 ∈ T with probability 1. We claim
that for i > 1, Pr[i ∈ T ] = (hi−1 − hi)/hi−1.

For j < i we say that the event Eji has occurred if i, j ∈ T but no i′ between
j and i is in T . This event occurs exactly when Bj /∈ Hj , that is, Bj ∩ Aj = ∅,
and the next set Bj+1, chosen uniformly at random from Hj , turns out to be in
Hi−1\Hi. Thus, we have Pr[Eji | j ∈ T ] = (hi−1−hi)/hj . Note that for a fixed i,
the events Eji are pairwise disjoint and i ∈ T if and only if Eji occurs for some

j < i. Hence Pr[i ∈ T ] =
∑i−1

j=1 Pr[Eji] =
∑i−1

j=1 Pr[Eji | j ∈ T ] Pr[j ∈ T ] =∑i−1
j=1(hi−1 − hi)/hj · Pr[j ∈ T ] = (hi−1 − hi)

∑i−1
j=1 Pr[j ∈ T ]/hj. We proceed

by induction on i. As the base case, we have for i = 2, Pr[2 ∈ T ] = Pr[E12] =
(h1 − h2)/h1, as required. For the inductive step, by induction hypothesis we
have

Pr[i ∈ T ] = (hi−1 − hi)

⎡⎣ 1

h1
+

i−1∑
j=2

hj−1 − hj
hjhj−1

⎤⎦ =
hi−1 − hi
hi−1

The expected size of T is thus given by E[|T |] =
∑r

i=1 Pr[i ∈ T ] = 1 +∑r
i=2(hi−1 − hi)/hi−1 ≤

∑h1

j=1 1/j. Now, h1 = |H1| and H1 is the collection
of all minimum hitting sets of the l-uniform set system S1, with minimum hit-
ting set size s. Thus, by Lemma 1, h1 ≤ ls and hence E[|T |] as well as the
expected number of faults in the s’th sub-phase, is O(s log l). The cost incurred,
for every request which produced a fault, is at most s, and hence the total cost
is O(s2 log l), in the s’th sub-phase. Summing over s from 1 to k, we infer that
the cost incurred in an entire phase is O(k3 log l). ��

While we have a O(k3 log l)-competitive algorithm, we also have the following
lower bound on the competitive ratio of any randomized online algorithm for
(k, l)-MSSMS on uniform metric spaces.

Theorem 3. The competitive ratio of any randomized online algorithm for
(k, l)-MSSMS against an oblivious adversary 4 is Ω(log kl).

We present a proof of this theorem in the full version [8]. In the proof we use
a form of Yao’s principle [32,6,31] and create a distribution of input sequences
which forces every deterministic online algorithm to perform a factor Ω(log kl)
worse than the optimum.

3 Assume Hr+1 = ∅.
4 An oblivious adversary is an adversary who does not have access to the random bits
used by the algorithm.



Metrical Service Systems with Multiple Servers 487

4 The Offline Problem

We elaborate on the offline (k, l)-MSSMS problem in this section. Before that,
we briefly describe the offline algorithms for the k-server problem, and Metrical
Service Systems.

The problem of finding the optimal solution to an instance of k-server prob-
lem can be reduced to the problem of finding a min-cost flow on a suitably
constructed directed graph [9], and hence the offline k-server problem can be
solved in polynomial time. Note that for any instance of min-cost flow, there
exists a solution in which all the flows are integral, and which is no worse than
any fractional solution. We will use this observation later. The offline MSS prob-
lem can be translated to finding the shortest source-to-sink path in a suitably
constructed directed graph of size linear in the size of the instance. Thus, MSS
too can be solved in polynomial time. In fact, (k, l)-MSSMS can be solved in
polynomial time for any constant k. However, the problem is NP-hard for any
fixed l ≥ 2, when k is allowed to vary.

In the subsequent subsections we give a natural Integer Linear Program (ILP)
for the offline (k, l)-MSSMS problem. Although it has an unbounded integral-
ity gap, we use it to design a pseudo-approximation algorithm which uses kl
servers and incurs a cost of at most l times the optimum. We then prove a lower
bound which suggests that nothing better than our pseudo-approximation can
be achieved in polynomial time. This result has implications in the online set-
ting also. Feuerstein [16] gave a polynomial time online algorithm for MSSMS
on uniform spaces which uses kl servers, and achieves a competitive ratio of kl
against an adversary using k servers, where l, as before, is the size of each request
set. Our result implies that it is unlikely, that a polynomial time competitive
algorithm using less than kl servers exists.

4.1 ILP Formulation and Pseudo-approximation Algorithm

For the metric space (M,d) let S = {s1, . . . , sk} be the set of initial positions of
the k servers and let the request sequence be ρ = (R1, . . . , Rm) where Ri ⊆ M
and Ri = {r1i , . . . , rli}. A natural integer linear program is as follows. For each
1 ≤ i < i′ ≤ m and 1 ≤ j, j′ ≤ l we have a variable f(i, j, i′, j′), which is 1 if
some server was present at rji to serve Ri, and that server was next made to shift

to rj
′

i′ in order to serve Ri′ ; and 0 otherwise. For each 1 ≤ k′ ≤ k, 1 ≤ i ≤ m,
1 ≤ j ≤ l we have a variable g(k′, i, j) which is 1 if the k′’th server was first
shifted to rji , to serve Ri, and 0 otherwise. The objective and the constraints are
as follows.

Minimize
∑
k′,i,j

d(sk
′
, rji )g(k

′, i, j) +
∑

i,j,i′,j′

d(rji , r
j′

i′ )f(i, j, i
′, j′)

For all k′ such that 1 ≤ k′ ≤ k ∑
i,j

g(k′, i, j) ≤ 1



488 A. Chiplunkar and S. Vishwanathan

For all i, j such that 1 ≤ i ≤ m, 1 ≤ j ≤ l∑
k′

g(k′, i, j) +
∑

i′<i,j′

f(i′, j′, i, j) ≥
∑

i′′>i,j′′

f(i, j, i′′, j′′)

For all i such that 1 ≤ i ≤ m∑
k′,j

g(k′, i, j) +
∑

i′<i,j′,j

f(i′, j′, i, j) ≥ 1

f(i, j, i′, j′) ∈ {0, 1} for all i, j, i′, j′, g(k′, i, j) ∈ {0, 1} for all k′, i, j
To relax the above ILP to an LP, we replace the constraints f(i, j, i′, j′) ∈
{0, 1} for all i, j, i′, j′ and g(k′, i, j) ∈ {0, 1} for all k′, i, j by the constraints 0 ≤
f(i, j, i′, j′) ≤ 1 for all i, j, i′, j′ and 0 ≤ g(k′, i, j) ≤ 1 for all k′, i, j respectively.
Unfortunately, this relaxation has an unbounded integrality gap [8]. We can,
however, round the solution of the LP relaxation to get a pseudo-approximation
algorithm for MSSMS.

Theorem 4. There is a polynomial time algorithm, which computes a feasible
solution to a given instance of (k, l)-MSSMS using kl servers instead of k, and
such that the cost of the solution is at most l times the cost of the fractional
optimal solution of the LP relaxation of the ILP.

Proof. Given an instance of (k, l)-MSSMS with S, the set of initial server po-
sitions, let the vector (f∗, g∗) be l times the optimum (fractional) solution of
the LP relaxation. Then we have

∑
k′,j g

∗(k′, i, j) +
∑

i′<i,j′,j f
∗(i′, j′, i, j) ≥ l

for each i. Thus, for each i, there exists some ji such that
∑

k′ g∗(k′, i, ji) +∑
i′<i,j′ f

∗(i′, j′, i, ji) ≥ 1. Let r∗i = rjii . The algorithm solves the LP relaxation
and finds r∗1 , . . . , r

∗
m. It then treats r∗1 , . . . , r

∗
m as an instance of the kl-server

problem, and assuming l servers to be initially located at each point in S, com-
putes the optimum solution. Note that this is a feasible solution to the given
instance of (k, l)-MSSMS, except that it uses kl servers instead of k. To ana-
lyze its cost, observe that the vector (f∗, g∗) gives a (fractional) solution to the
instance r∗1 , . . . , r

∗
m of the kl-server problem. Hence the cost of the optimum so-

lution to this instance is no more then the cost of (f∗, g∗), which is in turn, l
times the cost of the optimum fractional solution to the LP relaxation. Thus, the
solution returned by the algorithm has cost at most l times that of the optimum
of the LP relaxation. ��

4.2 Hardness of Pseudo-approximation

The following hardness result essentially implies that nothing better than what
the pseudo-approximation algorithm does, can be achieved in polynomial time.

Theorem 5. Assuming the Unique Games Conjecture (UGC) [22], it is NP-
hard to pseudo-approximate the (k, l)-MSSMS problem, for any fixed l ≥ 2, on
the uniform metric space with n points, within any factor polynomial in n, using
less than kl servers.



Metrical Service Systems with Multiple Servers 489

Proof. Suppose there is a polynomial time algorithm A which, on a metric space
with n points, can pseudo-approximate the solution of an instance of (k, l)-
MSSMS, using K < kl servers, within a factor f(n) = O(np) for some constant
p independent of k. We use this algorithm to construct a polynomial time al-
gorithm B which, when given a l-uniform hypergraph having a vertex cover of
size k, outputs a vertex cover of the hypergraph of size K. Unless P=NP, this
contradicts the hardness result due to Khot and Regev [23], which states that
under the Unique Games Conjecture, it is NP-hard to approximate the size of
the vertex cover of l-uniform hypergraphs within a factor less than l.

Algorithm B does the following. Suppose it is given a hypergraph H = (V,E)
where |V | = n, E = {E1, . . . , Em}, Ei ⊆ V |Ei| = l, and an integer k, with the
promise that H has a vertex cover of size k. B takes the uniform metric space
on the set V .W where W = {w1, . . . , wk}. Then it constructs the instance of
(k, l)-MSSMS, where one server is initially placed at each of the wi’s and the
request sequence is E1, . . . , Em repeated more than kf(n+k) (but polynomially
many) times. We will call each repetition of the sequence E1, . . . , Em a phase.
B then uses algorithm A to find a pseudo-approximate solution of this instance,
using K < kl servers.

Since the hypergraph has a vertex cover V ′ ⊆ V of size k, the requests can
be served by shifting the servers to the points in V ′ once for all, at a cost k.
The cost of the solution returned by algorithm A is therefore at most kf(n+k),
which is less than the number of phases. Thus, there exists a phase in which
A incurs zero cost, which means that A does not shift server during this phase
at all. Since all the hyperedges are requested in each phase, the set of points
occupied by the K servers in this phase must be a vertex cover of H .

Having obtained a solution from algorithm A, B simply searches for a phase
in which A incurred zero cost, and returns the set of K points occupied by the
servers during this phase, as an approximate vertex cover of H . It is easy to see
that B runs in polynomial time. ��

Theorem 5 can be made independent of the validity of UGC, using the facts
that it is NP-hard to approximate the size of the vertex cover of l-uniform
hypergraphs within a factor l − 1 − ε [14], and usual graphs within a factor
1.36− ε [15]. Theorem 5 implies that unless UGC is false, there does not exist a
polynomial time competitive online algorithm for (k, l)-MSSMS, which uses less
than kl servers. This proves the optimality of Feuerstein’s algorithm [16], which
runs in polynomial time but uses kl servers.

5 Open Problems

We conclude with a number of interesting problems left open. The most impor-
tant problem among these is the following.

Problem 1. Design an f(k, l)-competitive deterministic / randomized algorithm
for (k, l)-MSSMS on arbitrary metric spaces, for some function f .



490 A. Chiplunkar and S. Vishwanathan

For (k, l)-MSSMS on arbitrary metric spaces, we do not have an online algo-
rithm with competitive ratio determined by k and l alone. We believe that such
an algorithm exists, and the Work Function Algorithm is the prime candidate
for the deterministic case. However, it is not known whether the Work Function
Algorithm is competitive, even for the Generalized 3-server problem. Not surpris-
ingly, the analysis of this algorithm involves a number of technical complications
[8]. We know that if such a deterministic algorithm exists, it must perform a
super-polynomial amount of computation on the input. It would be interesting
even to find a constant factor competitive algorithm for (2, 2)-MSSMS on special
metric spaces, such as the line.

In the full version of this paper [8] we prove a lower bound of
(
k+2l−1

k

)
−
(
k+l−1

k

)
on the competitive ratio of any deterministic algorithm for (k, l)-MSSMS, even
when the metric space has only two distances. For arbitrary metric spaces, we
also prove a lower bound which is exponential in k for any fixed l. These lower
bounds are improvements to the bound of

(
k+l
k

)
− 1 in [16]. Both these lower

bounds are polynomials in l for a fixed k. We believe that a better lower bound
exists, which is exponential in l as well as k. Such a lower bound can possibly
proved by a construction which combines ideas in the (k + 1)!/2 lower bound
proof for weighted server problem [19] and those in the Ω(2l) lower bound proof
for MSS [17]. In the randomized case, we believe that a lower bound of Ω(poly(l)·
log k) should hold.

Problem 2. Prove an exponential (resp Ω(poly(l) · log k)) lower bound on the
competitive ratio of any deterministic (resp. randomized) algorithm for (k, l)-
MSSMS.

For deterministic algorithms on uniform metric spaces our upper and lower
bounds on the competitive ratio differ by the factor k. We believe that the upper
bound can be improved by carefully choosing the hitting sets, in the Hitting Set
algorithm, described in Section 2. Similarly, there is a significant gap between
the bounds in case of randomized algorithms. In all the upper bound (resp. lower
bound) results we have made the conservative assumption that whenever the al-
gorithm (resp. adversary) faults, it can potentially shift all the k servers and
hence the cost incurred is k, while the adversary (resp. algorithm) shifts at most
one server per fault. This assumption introduces a gap of a factor of k between
the bounds.

Problem 3. For (k, l)-MSSMS on uniform metric spaces, close the gap between

the lower bound of
(
k+l
l

)
− 1 and the upper bound of k ·

((
k+l
l

)
− 1

)
in the

deterministic case, and the lower bound of Ω(log kl) and the upper bound of
O(k3 log l) in the randomized case.

References

1. Bansal, N., Buchbinder, N., Madry, A., Naor, J.: A polylogarithmic-competitive
algorithm for the k-server problem. In: IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, pp. 267–276. IEEE (2011)



Metrical Service Systems with Multiple Servers 491

2. Bansal, N., Buchbinder, N., Naor, J.: A primal-dual randomized algorithm for
weighted paging. In: 48th Annual IEEE Symposium on Foundations of Computer
Science, pp. 507–517. IEEE Computer Society (2007)

3. Bartal, Y., Bollobás, B., Mendel, M.: A ramsey-type theorem for metric spaces and
its applications for metrical task systems and related problems. In: 42nd Annual
Symposium on Foundations of Computer Science, pp. 396–405. IEEE Computer
Society (2001)

4. Bartal, Y., Grove, E.: The harmonic k-server algorithm is competitive. Journal of
the ACM 47(1), 1–15 (2000)

5. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press (1998)

6. Borodin, A., El-Yaniv, R.: On randomization in on-line computation. Information
and Computation 150(2), 244–267 (1999)

7. Burley, W.R.: Traversing layered graphs using the work function algorithm. Journal
of Algorithms 20(3), 479–511 (1996)

8. Chiplunkar, A., Vishwanathan, S.: Metrical service systems with multiple servers.
CoRR, abs/1206.5392 (2012)

9. Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server
problems. SIAM Journal on Discrete Mathematics 4(2), 172–181 (1991)

10. Chrobak, M., Larmore, L.L.: The server problem and on-line games. In: On-Line
Algorithms: Proceedings of a DIMACS Workshop. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 7, pp. 11–64 (1992)

11. Chrobak, M., Larmore, L.L.: An optimal on-line algorithm for k-servers on trees.
SIAM Journal on Computing 20(1), 144–148 (1991)

12. Chrobak, M., Larmore, L.L.: Metrical service systems: Deterministic strategies.
Technical report (1993)

13. Chrobak, M., Sgall, J.: The weighted 2-server problem. Theoretical Computer Sci-
ence 324(2-3), 289–312 (2004)

14. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and
the hardness of hypergraph vertex cover. SIAM Journal on Computing 34(5),
1129–1146 (2005)

15. Dinur, I., Safra, S.: The importance of being biased. In: Proceedings on 34th Annual
ACM Symposium on Theory of Computing, pp. 33–42. ACM (2002)

16. Feuerstein, E.: Uniform Service Systems with k Servers. In: Lucchesi, C.L., Moura,
A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 23–32. Springer, Heidelberg (1998)

17. Fiat, A., Foster, D.P., Karloff, H.J., Rabani, Y., Ravid, Y., Vishwanathan, S.: Com-
petitive algorithms for layered graph traversal. SIAM Journal on Computing 28(2),
447–462 (1998)

18. Fiat, A., Rabani, Y., Ravid, Y.: Competitive k-server algorithms (extended ab-
stract). In: 31st Annual Symposium on Foundations of Computer Science, pp.
454–463. IEEE Computer Society (1990)

19. Fiat, A., Ricklin, M.: Competitive algorithms for the weighted server problem.
Theoretical Computer Science 130(1), 85–99 (1994)

20. Grove, E.F.: The harmonic online k-server algorithm is competitive. In: Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, pp. 260–266. ACM
(1991)

21. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive random-
ized algorithms for nonuniform problems. Algorithmica 11(6), 542–571 (1994)

22. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
34th Annual ACM Symposium on Theory of Computing, pp. 767–775. ACM (2002)



492 A. Chiplunkar and S. Vishwanathan

23. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

24. Koutsoupias, E.: The k-server problem. Computer Science Review 3(2), 105–118
(2009)

25. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. Journal of the
ACM 42(5), 971–983 (1995)

26. Lovász, L.: Flats in matroids and geometric graphs. In: Proc. Sixth British Com-
binatorial Conf., Combinatorial Surveys, Royal Holloway Coll., Egham, pp. 45–86.
Academic Press, London (1977)

27. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for on-line
problems. In: Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, pp. 322–333. ACM (1988)

28. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical
Computer Science 84(1), 127–150 (1991)

29. Ramesh, H.: On traversing layered graphs on-line. Journal of Algorithms 18(3),
480–512 (1995)

30. Sitters, R.: The generalized work function algorithm is competitive for the gener-
alized 2-server problem. CoRR, abs/1110.6600 (2011)

31. Stougie, L., Vestjens, A.P.A.: Randomized algorithms for on-line scheduling prob-
lems: how low can’t you go? Operations Research Letters 30(2), 89–96 (2002)

32. Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In: 18th Annual Symposium on Foundations of Computer
Science, pp. 222–227. IEEE Computer Society (1977)



The String Guessing Problem as a Method to

Prove Lower Bounds on the Advice Complexity�

(Extended Abstract)

Hans-Joachim Böckenhauer, Juraj Hromkovič, Dennis Komm,
Sacha Krug, Jasmin Smula, and Andreas Sprock

Department of Computer Science, ETH Zurich, Switzerland
{hjb,juraj.hromkovic,dennis.komm,sacha.krug,
jasmin.smula,andreas.sprock}@inf.ethz.ch

Abstract. The advice complexity of an online problem describes the
additional information both necessary and sufficient for online algorithms
to compute solutions of a certain quality. In this model, an oracle inspects
the input before it is processed by an online algorithm. Depending on
the input string, the oracle prepares an advice bit string that is accessed
sequentially by the algorithm. The number of advice bits that are read
to achieve some specific solution quality can then serve as a fine-grained
complexity measure. The main contribution of this paper is to study
a powerful method for proving lower bounds on the number of advice
bits necessary. To this end, we consider the string guessing problem as a
generic online problem and show a lower bound on the number of advice
bits needed to obtain a good solution. We use special reductions from
string guessing to improve the best known lower bound for the online set
cover problem and to give a lower bound on the advice complexity of the
online maximum clique problem.

1 Introduction

Numerous computational problems work in so-called online environments, i. e.,
frameworks where the input arrives piecewise in successive time steps. An online
algorithm has to answer every such piece by a part of the final output without
knowing anything about the future requests (i. e., the rest of the input). In 1985,
Sleator and Tarjan introduced the competitive ratio as a tool to measure the
quality of such algorithms [21]. For an introduction to online computation and
competitive analysis, we refer to the standard literature, e. g., [3].

In this paper, we study the model of computing with advice to analyze how
much information is necessary and sufficient to enable online algorithms to im-
prove over purely deterministic strategies. The idea is to consider an oracle that
sees the whole input in advance and writes binary information about this input
onto an advice tape that may, at runtime, be accessed by the online algorithm.

� This work is partially funded by the SNF grant 200021–141089.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 493–505, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



494 H.-J. Böckenhauer et al.

The idea of online computation with advice was introduced in [11]. Revised ver-
sions of this model were simultaneously introduced in [5,15] and [12]. We follow
the most general and exact model from [15] in this paper. The advice complexity
was studied for various online problems in, e. g., [2, 4–7, 9, 12, 13, 16, 17, 20].

Definition 1 (Online Algorithm with Advice [5,15]). Let I = (x1, . . . , xn)
be an input of an online minimization problem. An online algorithm A with ad-
vice computes the output sequence Aφ(I) = (y1, . . . , yn) such that yi is computed
from φ, x1, . . . , xi, where φ is the content of the advice tape, i. e., an infinite
binary sequence. For some output sequence o, cost(o) denotes the cost of o. An
online algorithm A is c-competitive with advice complexity b(n) if there is some
non-negative constant α such that, for every n and for each input sequence I of
length at most n, there is some φ such that cost(Aφ(I)) ≤ c · cost(Opt(I)) + α
and at most the first b(n) bits of φ have been accessed during the computation of
Aφ(I). Here, Opt(I) denotes an optimal solution for I. If α = 0, then A is called
strictly c-competitive. Moreover, A is optimal if it is strictly 1-competitive. The
definition for maximization problems is analogous.

The concept of advice complexity enables us to perform a much more fine-grained
analysis of the hardness of online problems than using the classical competitive
analysis. We are especially interested in lower bounds on the advice complexity.
Such lower bounds not only tell us something about the information content [15]
of online problems, but they also carry over to a randomized setting where they
imply lower bounds on the number of random decisions needed to compute a
good solution [16]. However, similar to most other computing models, also lower
bounds on the advice complexity are hard to prove. Thus, it is desirable to
have some generic proof methods to establish lower bounds. In this paper, we
approach this goal by considering a generic online problem and showing how to
transfer lower bounds on its advice complexity to lower bounds for other online
problems.

1.1 Our Contribution and Related Work

We study the string guessing problem with respect to its advice complexity in
Section 2. This problem is shown to be generic with respect to proving lower
bounds on the advice complexity. Here, a string of length n over an alphabet
of size q has to be guessed symbol by symbol. More specifically, we define two
versions of the problem where, in the first case, the algorithm gets immediate
feedback which decisions would have been correct up to the current time step,
whereas, in the second case, this feedback is not supplied. First, we prove a lower
bound on the advice necessary to achieve some specific number of correct guesses
for both versions. Second, we analyze an upper bound on the size of the advice
depending on both n and q.

Employing this result, we use reductions from the string guessing problem
as a technique to prove lower bounds for other well-studied online problems. It
seems to be a promising approach to take further steps in this direction and



The String Guessing Problem as a Method to Prove Lower Bounds 495

develop general methods to prove lower bounds on the advice complexity. Our
first application, stated in Section 3, deals with an online version of the set
cover problem as introduced in [1]. We show how to use the results on the string
guessing problem to give a lower bound that closes an exponential gap between
the lower and upper bounds given in [17]. Second, in Section 4, we study an online
version of the maximum clique problem where the vertices of the graph arrive
consecutively. In every time step, an online algorithm has to decide whether
the current vertex is part of the solution or not. We give a lower bound on the
number of necessary advice bits that is linear in the number of vertices. Due to
space limitations, some of the proofs have been omitted.

Note that Emek et al. [12] followed a similar approach to prove a lower bound
on the advice complexity of randomized online algorithms with advice for met-
rical task systems. They defined a problem called generalized matching pennies
(GMP), which is basically our string guessing problem with known history, but
with a different, somewhat artificial cost function. This cost function depends
on a parameter τ > 0 such that any online algorithm for GMP pays at least 1/τ
in every time step. Any reduction from GMP depends on the concrete choice of
τ . Moreover, their proof method only gives meaningful results for a number b of
advice bits per time step that is bounded by 1 ≤ b ≤ 1

3 log2 q, whereas our results
cover the complete range 0 ≤ b ≤ log2 q. (Note that log2 q advice bits per time
step obviously allow an algorithm to be optimal.) In particular, in our model
it is possible to prove sublinear upper bounds due to the fact that also values
of b ∈ o(1) are allowed. Additionally, our model allows to prove lower bounds
for any alphabet size q ≥ 2 and for any desired competitive ratio, whereas their
lower bounds are limited to alphabets of size at least 4 and competitive ratios
strictly less than 2. Overall, our string guessing problem offers a more general,
uniform, easy-to-use technique to prove lower bounds on the advice complexity
of online problems.

2 The String Guessing Problem

In many online problems, the question arises whether knowing the history, i. e.,
the parts of an optimal solution that correspond to the input known at a specific
time step, has an effect on the additional information necessary to achieve a
certain competitive ratio. We deal with this question studying a very generic
online problem, namely the string guessing problem. In the first variant, the
algorithm has to guess a character from some fixed alphabet, then, in the next
step, it is told what would have been the correct answer and is asked for the
next character. In the second variant, the algorithm also has to guess character
by character, but it gets no feedback about whether its answer was correct or
not until the very end of the request sequence. In both cases, the length n
of the string is given as the first request and the algorithm then has to guess
n characters step by step.

In what follows, the Hamming distance between two strings of the same length
denotes the number of positions at which these two strings differ. Let us begin
by defining the two variants of the string guessing problem formally.



496 H.-J. Böckenhauer et al.

Definition 2 (String Guessing with Known History). The string guessing
problem with known history over an alphabet Σ of size q ≥ 2 (q-SGKH) is the
following online minimization problem. The input I = (n, d1, d2, . . . , dn) consists
of a natural number n and the characters d1, d2, . . . , dn ∈ Σ, that are revealed one
by one. The online algorithm A computes the output sequence A(I) = y1y2 . . . yn,
where yi = f(n, d1, . . . , di−1) ∈ Σ, for some computable function f . The algo-
rithm is not required to respond with any output in the last time step. The cost of
a solution A(I) is the number of wrongly guessed characters, i. e., the Hamming
distance Ham(d, A(I)) between d = d1d2 . . . dn and A(I).

Definition 3 (String Guessing with Unknown History). The string guess-
ing problem with unknown history over an alphabet Σ of size q ≥ 2 (q-SGUH)
is the following online minimization problem. The input I = (n, ?, ?, . . . , ?, d)
consists of the input size n in the first request, n−1 subsequent requests “?” car-
rying no extra information, and the correct string d = d1 . . . dn ∈ Σn. In each of
the first n time steps, the online algorithm A is required to output one character
from Σ, forming the output sequence A(I) = y1y2 . . . yn. As above, the algorithm
is not required to respond with any output in the last time step, where the string
d is revealed. The cost of a solution A(I) is again the Hamming distance between
d and A(I).

For simplicity, we sometimes speak about the input string d = d1d2 . . . dn when
we mean the input sequence I = (n, d1, d2, . . . , dn) or I = (n, ?, ?, . . . , ?, d) with
n = |d|. Also, we write A(d) instead of A(I). Since the cost of an optimal solution
for any string guessing instance is always 0, it is not meaningful to consider
the competitive ratio as a measure for these problems. We therefore restrict
our analysis to the number of errors produced by an algorithm. Our goal is to
minimize this number.

It is easy to see that, for every deterministic online algorithm without advice,
there is an input string of length n such that the algorithm produces n errors.
This holds for any alphabet of arbitrary size q ≥ 2. To see this, consider an
adversary Adv that, in each time step, produces an input character αi differing
from the deterministic output yi = f(n, α1, . . . , αi−1) of the algorithm. Clearly,
no deterministic online algorithm gains anything by knowing the history.

Considering online algorithms with advice that produce optimal solutions,
we easily see that each such algorithm needs to read at least �n log2 q� advice
bits to be optimal on any input of length n, even in the case of known history:
Assume an optimal algorithm A reads m < �n log2 q� advice bits. There are
qn possible different input strings, but only 2m ≤ 2�n log2 q�−1 < 2n log2 q = qn

different advice strings. Thus, at least two different input strings get the same
advice. There is one position where these two strings differ for the first time.
The algorithm A makes a deterministic decision in the corresponding time step
that is optimal for at most one of the two solutions and Adv can always choose
the other one. A matching upper bound, even in the case of q-SGUH, can be
achieved by simply enumerating all possible inputs and encoding the index of
the concrete instance using �n log2 q� advice bits.



The String Guessing Problem as a Method to Prove Lower Bounds 497

On the other hand, a constant amount of advice can already help to guess a
linear number of characters correctly, even without considering the history.

Observation 1. There is an online algorithm for q-SGUH that guesses at least
�n/q� positions correctly on any input string of size n using �log2 q� advice bits.

Proof. In every input string of length n over an alphabet of size q, at least one
character z occurs at least �n/q� times, and it can be specified by the oracle
using �log2 q� bits. An online algorithm that outputs z in every step guesses at
least �n/q� positions correctly. ��
In the remainder of this section, we estimate the number of advice bits necessary
and sufficient to obtain a specific cost.

2.1 Lower Bounds

First, we show a lower bound on the number of advice bits necessary to guarantee
that there is at most a specific number of wrong answers for q-SGUH. Consider
an online algorithm A using b advice bits. This can be seen as a collection of 2b

different deterministic algorithms [17]. As all inputs look the same on the first
n requests, the behavior of these algorithms can only depend on the advice.

For each of the qn possible inputs, the oracle can choose between 2b different
algorithms, each of which produces a fixed output string. The oracle has to
select a set of 2b such strings, which we call center strings, in such a way that
the maximum distance of any input string to the nearest of these center strings
is minimized. This is exactly the task of constructing a so-called covering code.
A covering code Kq(n, r) over an alphabet Σ of size q of the strings of length n
with radius r is defined as a set of codewords (elements of Σn) with the property
that every string in Σn has a distance of at most r to at least one codeword in
Kq(n, r). For an overview of covering codes, we recommend [8]. The minimum
size of a covering code Kq(n, r) gives us the number of different advice strings
we need to make sure that the worst-case error over all inputs for q-SGUH is at
most r.

To get a simple lower bound on the size of a covering code Kq(n, r), we con-
sider the Hamming balls of radius r around the center strings. A Hamming ball
of radius r around a string s in Σn consists of all strings t with Hamming dis-
tance Ham(s, t) ≤ r. Due to symmetry1 of the hypercube, the size of a Hamming
ball of radius r around some string s does not depend on s. Thus, we denote it
by Volq(n, r). To make sure that no error greater than r occurs for any input
string, the number b of necessary advice bits has to satisfy the condition

qn ≤ 2b · Volq(n, r) = 2b ·
r∑

i=0

(
n

i

)
(q − 1)i. (1)

Let Hq(p) = p logq(q− 1)−p logq p− (1−p) logq(1−p) denote the q-ary entropy
function, for 0 < p < 1. With this, Volq(n, r) can be estimated as follows.

1 The qn strings of length n over an alphabet of size q can be seen as the vertices of
a q-ary hypercube, which is known to be vertex-symmetric.



498 H.-J. Böckenhauer et al.

Lemma 1 (Guruswami et al. [14]). Let p ∈ �, q ∈ �>1, 0 < p ≤ 1 − 1/q.
For sufficiently large n, we obtain Volq(n, pn) ≤ qHq(p)n. ��

An easy calculation immediately yields

Volq(n, pn) ≤ qHq(p)n =

(
q − 1

p

)pn(
1

1− p

)(1−p)n

. (2)

This observation leads to the following linear lower bound for q-SGUH.

Theorem 1. Consider an input string of length n for q-SGUH, for some n ∈ �.
The minimum number of advice bits for any online algorithm that is correct for
more than αn characters, for 1/q ≤ α < 1, is (1−Hq(1− α))n log2 q.

The above argument heavily relies on the fact that, in case of q-SGUH, the
output of a deterministic algorithm is unambiguously determined by the given
advice. In the case of q-SGKH, this is no longer true. A deterministic algorithm
might base its output on the history and thus might output different strings
while reading the same advice. In the following we show that, despite of this
complication, the same lower bound as in Theorem 1 also holds for q-SGKH.

0

00

1

1 1

v(n,0)
v(n−1,0) v(n−1,1)

v(n−2,0) v(n−2,1) v(n−2,2) v(n−2,3)

Fig. 1. Tn representing all input instances for q = 2

For the analysis, we
use the q-ary tree Tn
of depth n as a rep-
resentation of the set
Σn of all input strings
of length n over the al-
phabet Σ (see Fig. 1).
For 0 ≤ i ≤ qn −
1, the leaf v(0,i) repre-
sents the ith string in
lexicographic order in Σn and every inner vertex v(h,i), for 1 ≤ h ≤ n, represents
all 2h strings of the leaves of the subtree rooted in v(h,i). Let A be an online al-
gorithm for q-SGKH that uses at most b advice bits for any input instance of
length n. Due to the pigeonhole principle, at least one advice string is used for
at least �qn/2b� different input instances. For a given advice string φ of length
b, we now take a closer look at the set Iφ of input strings for which A gets the
advice string φ. The algorithm A is not able to distinguish between any two
strings in Iφ at the beginning of the computation. However, this situation may
change during the computation since A gets the additional information of what
would have been the correct output in every time step so far.

We now investigate the maximal cardinality of Iφ such that A can guarantee
that the maximal number of errors is r. We can view every computation of A as
a path in Tn from the root down to a leaf. In every time step, A decides which
subtree to enter. In the following step, it is revealed which direction would have
been correct. If instances in more than one subtree of some vertex are represented
by the given advice, A cannot know which subtree is correct. Thus, the adversary
can enforce an error in this step by selecting the subtree not chosen by A.



The String Guessing Problem as a Method to Prove Lower Bounds 499

For any vertex v in Tn, let F (v) denote the maximal number of errors the
adversary Adv can enforce in the remaining input string inside the subtree rooted
at v, in addition to the errors already made on the way from the root to v.
Moreover, let Ψ : � × � → � be a function such that Ψ(h, r) measures how
many strings in Iφ can at most be represented by a vertex at depth h such that
the enforceable number of errors is at most r. We are interested in the function
Ψ(n, r), which gives us the desired lower bound and can be computed as follows.

Lemma 2. For 0 ≤ r ≤ h ≤ n, we have Ψ(h, r) =
∑r

i=0

(
h
i

)
(q − 1)i = Volq(h, r).

From Lemma 2 for h = n together with Lemma 1, we immediately get the
following lower bound on the advice complexity for q-SGKH. Note that this
result coincides with the above lower bound for q-SGUH.

Theorem 2. Consider an input string of length n for q-SGKH, for some n ∈ �.
The minimum number of advice bits for any online algorithm that is correct for
more than αn characters, for 1/q ≤ α < 1, is (1−Hq(1− α))n log2 q. ��

For q = 2, i. e., for the bit string guessing problem, we get the following result.

Corollary 1. Consider as input a bit string of length n for 2-SGKH. Every
deterministic algorithm that can guarantee to be correct for more than αn bits,
for 1/2 ≤ α < 1, needs to read at least (1 + (1− α) log2(1− α) + α log2α)n
advice bits. ��

2.2 Upper Bounds

To give an upper bound on the advice complexity of q-SGUH on strings of
length n with at most r errors, we analyze the minimal size of a covering code
of length n with radius r.

Lemma 3 (Moser and Scheder [19]). Let n ∈ �>0, q ∈ �>1, r ∈ �. Over
any alphabet of size q, there is a covering code of length n with radius r of size
at most �(n · ln q · qn)/Volq(n, r)�. ��

To estimate an upper bound on the length of the advice string that is sufficient
to guarantee a certain number of correct characters, we need a lower bound on
the volume of the Hamming ball of radius r.

Lemma 4. Let p ∈ �, q ∈ �>1, 0 < p ≤ 1 − 1/q, such that pn ∈ �. For

sufficiently large n, Volq(n, pn) ≥ qHq(p)·n− 1
2 logq(2n).

Now we are ready to prove a linear upper bound on the number of advice bits
sufficient to guarantee more than αn correctly guessed characters.

Theorem 3. Consider an input of length n for q-SGUH, for
some n ∈ �. There is an online algorithm that is correct for
more than αn characters, for 1/q ≤ α < 1, and needs at most
�(1−Hq(1− α))n log2 q + (3 log2 n)/2 + log2(ln q) + 1/2� advice bits.



500 H.-J. Böckenhauer et al.

3 The Online Set Cover Problem

In this section, we study the advice complexity of the unweighted online set cover
problem, which was introduced in [1] and is defined as follows.

Definition 4 (Online Set Cover Problem). Let X = {1, . . . , n} be a ground
set of size n, X ′ ⊆ X a set of requests, and S ⊆ P(X) a set family of size m.
Without loss of generality, no set in S is the subset of another set in S. The set
X and the family S are known beforehand, but the elements of X ′ arrive one by
one in consecutive time steps. Thus, each permutation of X ′ corresponds to one
instance of the online set cover problem (SetCover). Any subset {S1, . . . , Sk}
of S such that

⋃k
i=1 Si ⊇ X ′ is a feasible solution for such an instance. The aim

is to minimize k, i. e., to use as few sets as possible. An online algorithm solves
SetCover if, immediately after each yet uncovered request j, it specifies a set
Si ∈ S such that j ∈ Si.

First, we observe that there is a reduction from q-SGKH to SetCover.

Theorem 4. Assume an online algorithm A solves SetCover with b advice
bits making at most r errors, i. e., choosing at most r sets more than an optimal
algorithm. Then, there is an online algorithm B that solves the string guessing
problem with known history with b advice bits and at most r errors.

Proof sketch. First, we show how to transform an instance IB for q-SGKH

over an alphabet Σ of size q into an instance IA for SetCover. Let the con-
sidered instance for q-SGKH be IB = (k, d1, . . . , dk). Hence, the input string
d = d1 . . . dk has length k. We describe the set X and the family S, which
are known to the SetCover algorithm, depending on k and Σ. We set X =
{Xt | t is a string over Σ of length at most k}. Then, X contains

∑k
i=0 q

i =
(qk+1 − 1)/(q − 1) elements. Moreover, S = {tr(s) | s = s1 . . . sk ∈ Σk}, where
tr(s) = {Xt | t is a prefix of s} = {Xλ, Xs1 , Xs1s2 , . . . , Xs1...sk} is the transfor-
mation of s and λ denotes the empty string. Each set tr(s) contains k+1 elements,
and S consists of qk sets. The requests Xλ, Xd1 , . . . , Xd1...dk

correspond to all
prefixes of the string d1 . . . dk. Clearly, an optimal solution only uses the set
tr(d).

Then we show that, in each time step j, we can transform the jth request of
the q-SGKH instance into a request of the SetCover instance, and we can also
transform the output of a SetCover algorithm A into an output of a q-SGKH

algorithm B such that the following holds: If A uses b advice bits and makes at
most r errors, then also B uses only b advice bits and makes at most r errors. ��
The reduction above helps us to establish a lower bound on the advice complexity
of SetCover. First, we show that it is equally hard to guess a percentage of
α characters over one string of length rk as to guess the same percentage over
r strings of length k over an alphabet of the same size. We start by formally
defining the problem of guessing r strings of size k.

Definition 5 ((q,�,k)-Multiple String Guessing with Known History).
The (q,�,k)-multiple string guessing problem with known history over an alpha-
bet Σ of size q ≥ 2 ((q, �, k)-MultiSGKH for short) is to solve � instances



The String Guessing Problem as a Method to Prove Lower Bounds 501

I1, . . . , I� of q-SGKH of length k over an alphabet of size q. The input I is the
concatenation of I1, . . . , I�. The cost of a solution A(I) is the sum of the costs

on the � consecutive q-SGKH instances, i. e., cost(A(I)) =
∑�

i=1 cost(A(Ii)).

Lemma 5. Assume an online algorithm A solves (q, �, k)-MultiSGKH with b
advice bits and makes r errors. Then there is also an online algorithm B for
q-SGKH on strings of length �k using b advice bits and making r errors.

Theorem 5. Let q ∈ �≥2. For any k ∈ �≥1 and any c ∈ �>1, c ≤ 1 + k(1 −
1/q), every c-competitive online algorithm for SetCover needs to read at least

(1−Hq(
c−1
k ))k·log2 q

qk
·m or (1−Hq(

c−1
k ))k·(q−1)·log2 q

qk+1−1
·n advice bits, where m = |S|

and n = |X |.
Proof. We give a reduction from (q, �, k)-MultiSGKH. Consider a set
{s1, . . . , s�} of � strings of length k each over an alphabet of size q and the
corresponding instance I = (Is1 , . . . , Is�) of (q, �, k)-MultiSGKH. We use the
construction from the proof of Theorem 4 to construct � SetCover instances
(Xj ,Sj) from Isj such that the setsXj (and thus also the families Sj) are pairwise
disjoint. Then we join these subinstances (Xj ,Sj) to get a SetCover instance

(X,S) by setting X =
⋃�

i=1Xi and S =
⋃�

i=1 Si. For each Isj , we construct a
sequence I ′sj of requests for SetCover using the transformation from the proof
of Theorem 4. The order of the I ′sj follows an arbitrary order of the Isj , say
Is1 , . . . , Is� .

The constructed SetCover instance has an optimal solution of size � since
every subinstance has a solution of size 1 and all subinstances are disjoint. The
size of the ground set is (qk+1− 1)/(q− 1) · � = n and the size of the set family is
qk ·� = m. We know from Theorem 4 that, for each algorithm for SetCover that
reads b advice bits and makes r errors, there is an algorithm B for q-SGKH using
the same advice and making the same number of errors. Consider an algorithm
A for the constructed SetCover instance that defines � algorithms A1, . . . , A�
for instances of length k. Each of these algorithms corresponds to one particular
subinstance (Xj ,Sj) of SetCover. Since these subinstances are disjoint, for any
algorithm Aj that makes rj errors while using bj advice bits, there is an algorithm
Bj using bj advice bits that makes the same number of errors for the string sj of
the given instance of (q, �, k)-MultiSGKH. Thus, in total, the number of errors
A makes is the same as the number of errors made by some algorithm B for the
whole (q, �, k)-MultiSGKH instance. Due to Lemma 5, there is an algorithm C

that makes r errors while reading b advice bits for any instance of q-SGKH.
The competitive ratio achieved by A is thus c = (�+(1−α)·�k)/� = 1+(1−α)·k,

hence α = 1− (c− 1)/k, where α denotes the fraction of correct answers. Since
we assume c ≤ 1 + k(1 − 1/q), which implies 1/q ≤ α, we can directly apply
Theorem 2 yielding that at least (1−Hq(

c−1
k ))·�k·log2 q advice bits are necessary

to be c-competitive. To measure in |S| = m and in |X | = n, we calculate
� = m/qk, and � = (q − 1) · n/(qk+1 − 1), and the claim follows. ��
Note that, in [17], a lower bound on achieving a constant competitive ratio was
shown that is merely logarithmic in m. Thus, Theorem 5 yields an exponential
improvement over the best previously known result.



502 H.-J. Böckenhauer et al.

4 The Online Maximum Clique Problem

In this section, we analyze the online maximum clique problem [10]. Here, in
every time step, a vertex of a graph is given together with all edges to vertices
that were already revealed in previous steps, and an online algorithm A has to
decide whether the newly revealed vertex becomes part of the solution.

For giving a reasonable cost function, we briefly give some considerations.
First, assume the input graph G has a maximum clique of size n and the algo-
rithm finds a clique of size n−1. Then, intuitively, the cost of the solution should
be n− 1, irrespective of how many vertices of the found clique are also part of
a largest clique in G. On the other hand, assume the algorithm selects a vertex
that is not connected to any vertex revealed afterwards. Unless this is the only
vertex A takes, A does not output a clique (i. e., its solution is not feasible). To
avoid this, it should be allowed to give an output where not all selected vertices
are part of a clique, different to the situation in [10]. Even if A gives an output in
which many vertices form a large or even a maximum clique, but one additional
vertex is selected, the output is not a clique, but very close to a relatively good
or even optimal solution. Thus, this solution should have almost optimal cost.
Then again, we should clearly prevent the algorithm from simply selecting all
vertices that are given. For an output A(I), we therefore consider not only its size,
but also the maximum clique CA(I) in the graph GA(I) restricted to the selected
vertices A(I). Then, the solution becomes better the larger the maximum clique
in GA(I) is, and it becomes worse as more vertices are selected that are not part
of CA(I). All in all, we propose the cost function given in the following definition.

Definition 6 (Online Maximum Clique Problem). The online maximum
clique problem (MaxClique) is the following online problem. The input is a
graph G = (V,E) and the goal is to find a clique C ⊆ V in G of maximum
size. In each time step i, one vertex vi ∈ V is revealed together with all edges
{{vi, vj} ∈ E | j < i}, and an online algorithm A has to decide whether vi ∈ C or
not. Let A(I) be the set of vertices selected by A, and let CA(I) be a maximum clique
in the graph GA(I). The cost function is defined by cost(A(I)) = |CA(I)|2/|A(I)|.

Clearly, for the optimal solution Opt(I) of a graph with a maximum clique Copt,

we have cost(Opt(I)) =
|Copt|
|Opt(I)| · |Copt| = |Copt|, thus, the competitive ratio of A

on I is c = cost(Opt(I))
cost(A(I)) = |A(I)|

|CA(I)| ·
|Copt|
|CA(I)| . In other words, the quality of the output

of A is given by the product of the two ratios |A(I)|/|CA(I)| and |Copt|/|CA(I)|.
The first ratio measures how many useless vertices A has taken and the second
ratio measures how many correct vertices A has not taken.

In order to give a lower bound on the advice complexity of MaxClique,
we use our results for 2-SGKH. To this end, we investigate the following sub-
class of instances, where every instance corresponds to a particular bit string.
Let s = s1s2 . . . sn′ be a bit string of length n′, for some n′ ∈ �. We con-
struct an input instance Is for MaxClique corresponding to s as follows. Con-
sider the graph GIs = (V (Is), E(Is)) with n = 2n′ + 2 vertices. Let V (Is) =



The String Guessing Problem as a Method to Prove Lower Bounds 503

{v(1,0), v(1,1), . . . , v(n′+1,0), v(n′+1,1)}, and let V ′(Is) = {v(i,si) | 1 ≤ i ≤ n′} be
the set of the n′ vertices that correspond to the string s. Moreover, let

E(Is) = {{v(i,si), v(j,k)} | 1 ≤ i < j ≤ n′, k ∈ {0, 1}}
∪ {{v, v(n′+1,0)}, {v, v(n′+1,1)} | v ∈ V ′(Is)} ∪ {{v(n′+1,0), v(n′+1,1)}}.

Clearly, the vertices from V ′(Is) plus the vertices v(n′+1,0) and v(n′+1,1) form
a unique optimal solution for Is of size n′ + 2. Although the vertices v(i,0) and
v(i,1) are revealed separately (and after each vertex, the algorithm has to re-
spond immediately), for the analysis, we combine them into one pair. After
the first pair is revealed, the vertices of the second pair (v(2,0), v(2,1)) are given,
and so on. An example for the string s = 00101 of length 5 is given in Fig. 2.

Fig. 2. The graph G00101

Assume that A knows that one vertex of each
pair is part of the optimal solution. Then, we
can see MaxClique as guessing one vertex
per pair. Similar to guessing a string s, the
correct decision can only depend on the input
known so far, the history, and the given ad-
vice. However, in general, an algorithm has
four options for every pair that is revealed,
which are to take only the first vertex, only
the second one, both, or none. As a next step, we show that, for any online
algorithm with advice, it is the best strategy to take both vertices of any pair
for which no advice is used. In this way, we derive an upper bound on the cost
of any online algorithm for MaxClique that uses at most b advice bits.

Lemma 6. Let B denote a best online algorithm with advice for 2-SGKH that
reads b advice bits, and let s be any 2-SGKH instance of length n′. Let the
number of bits of s that B guesses correctly be at most αn′, where 0 ≤ α ≤ 1.
Then, no online algorithm A for the corresponding MaxClique instance Is reads
b advice bits and achieves cost(A(Is)) > (αn′+(1−α)n′+2)2/(αn′+2(1−α)n′+2).
Furthermore, an online algorithm A∗ that correctly guesses the same pairs as A

and takes both vertices for all remaining pairs satisfies cost(A∗(Is)) ≥ cost(A(Is)).

In order to give a lower bound on the advice complexity, we analyze an online
algorithm with advice that gets a sufficiently large number of advice bits to know
αn pairs and, following Lemma 6, takes both vertices for all unknown positions.
Using our results from Section 2, we can prove the following theorem.

Theorem 6. Any (c−ε)-competitive online algorithm A for MaxClique needs
at least (1 −H2(c− 1))n−2

2 advice bits, for any 1 < c ≤ 1.5 and ε > 0.

Note that, without advice, an online algorithm for MaxClique can achieve a
competitive ratio of (2n′ + 2)/(n′ + 2) ≈ 2 by just taking every vertex.

Acknowledgments. The authors would like to thank Kfir Barhum and Richard
Královič for enlightening discussions.



504 H.-J. Böckenhauer et al.

References

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover
problem. SIAM Journal on Computing 39(2), 361–370 (2009)

2. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring of
bipartite graphs with and without advice. In: Gudmundsson, J., Mestre, J., Viglas,
T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer, Heidelberg
(2012)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press (1998)

4. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

6. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice com-
plexity of the knapsack problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

7. Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin
packing with advice. Technical Report 1212.4016, arXiv 2012 (2012),
http://arxiv.org/abs/1212.4016

8. Cohnen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. Elsevier (1997)
9. Dorrigiv, R., He, M., Zeh, N.: On the advice complexity of buffer management.

In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp.
136–145. Springer, Heidelberg (2012)

10. Demange, M., Paradon, X., Paschos, V.T.: On-line maximum-order induced hered-
itary subgraph problems. In: Jeffery, K., Hlaváč, V., Wiedermann, J. (eds.)
SOFSEM 2000. LNCS, vol. 1963, pp. 327–335. Springer, Heidelberg (2000)

11. Dobrev, S., Královič, R., Pardubská, D.: How much information about the fu-
ture is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer,
Heidelberg (2008)

12. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theoretical Computer Science 412(24), 2642–2656 (2011)

13. Forǐsek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths.
In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239.
Springer, Heidelberg (2012)

14. Guruswami, V., Rudra, A., Sudan, M.: Essential Coding Theory (2012), Draft avail-
able at http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/

15. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

16. Komm, D., Královič, R.: Advice complexity and barely random algorithms. RAIRO
ITA 45(2), 249–267 (2011)

17. Komm, D., Královič, R., Mömke, T.: On the advice complexity of the set cover
problem. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR
2012. LNCS, vol. 7353, pp. 241–252. Springer, Heidelberg (2012)

18. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 2nd
edn. North-Holland Publishing Company (1978)

http://arxiv.org/abs/1212.4016
http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/


The String Guessing Problem as a Method to Prove Lower Bounds 505

19. Moser, R., Scheder, D.: A full derandomization of Schöning’s k-SAT algorithm. In:
Proc. of STOC 2011, pp. 245–252. ACM (2011)

20. Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server prob-
lem. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp.
198–210. Springer, Heidelberg (2012)

21. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)



Online Algorithms for 1-Space Bounded

2-Dimensional Bin Packing and Square Packing

Yong Zhang1,2,�, Francis Y.L. Chin2,��, Hing-Fung Ting2,� � �, Xin Han3,†,
Chung Keung Poon4, Yung H. Tsin5,‡, and Deshi Ye6,§

1 College of Mathematics and Computer Science, Hebei University, China
2 Department of Computer Science, The University of Hong Kong, Hong Kong

{yzhang,chin,hfting}@cs.hku.hk
3 School of Software, Dalian University of Technology, China

hanxin.mail@gmail.com
4 Department of Computer Science, City University of Hong Kong, Hong Kong

csckpoon@cityu.edu.hk
5 School of Computer Science, University of Windsor, Canada

peter@uwindsor.ca
6 College of Computer Science, Zhejiang University, China

yedeshi@zju.edu.cn

Abstract. In this paper, we study 1-space bounded 2-dimensional bin
packing and square packing. A sequence of rectangular items (square
items) arrive one by one, each item must be packed into a square bin
of unit size on its arrival without any information about future items.
When packing items, 90◦-rotation is allowed. 1-space bounded means
there is only one “active” bin. If the “active” bin cannot accommodate
the coming item, it will be closed and a new bin will be opened. The
objective is to minimize the total number of bins used for packing all
items in the sequence.

Our contributions are as follows: For 1-space bounded 2-dimensional
bin packing, we propose an online packing strategy with competitive
ratio 5.06. A lower bound of 3.17 on the competitive ratio is proven.
Moreover, we study 1-space bounded square packing, where each item is
a square with side length no more than 1. A 4.3-competitive algorithm
is achieved, and a lower bound of 2.94 on the competitive ratio is given.
All these bounds surpass the previously best known results.

1 Introduction

Bin packing is one of the most fundamental problems in computer science. In
the online fashion of bin packing, a sequence of items arrive one by one, each

� Research supported by NSFC 11171086.
�� Research supported by HK RGC grant HKU-711709E.

� � � Research supported by HK RGC grant HKU-716412E.
† partially supported by “the Fundamental Research Funds for the Central Univer-
sities(DUT12LK09)” and NSFC 11101065.

‡ Research supported by NSERC under grant NSERC 7811-2009.
§ Research supported by NSFC 11071215.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 506–517, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 507

item must be packed into a bin on its arrival without any information about
future items. The objective is minimizing the number of used bins for packing
all items in the sequence.

Roughly speaking, the problem of online bin packing has two models: the
unbounded space model and the bounded space model. In the unbounded space
model, any bin can be used to pack the coming item if its empty space is large
enough. In the bounded space bin packing, only “active” bins can be used to
pack items, and the number of “active” bins is bounded by some constant. If
all “active” bins cannot accommodate the coming item, one of such bins will be
closed and a new bin will be opened to pack the coming item.

Our focus in this paper is the bounded space 2-dimensional bin packing, and
the number of “active” bins is restricted to be one. We call it 1-space bounded 2-
dimensional bin packing. In this variant, the coming item is packed either in the
“active” bin, or in a new “active” bin after the closure of the previous “active”
bin. The closed bin cannot be used to pack items any more. In 1-space bounded
bin packing, 90◦ rotation on item is allowed, otherwise, the performance ratio
will be unbounded [5]. We also consider 1-space bounded square packing, where
each item is a square with side length no more than 1. Our target is to find
packing strategies for 1-space bounded 2-dimensional bin packing and square
packing to minimize the number of used bins.

To measure the performance of the 1-space bounded 2-dimensional bin pack-
ing, we use the asymptotic competitive analysis, which is often used for online
problems. For a sequence σ of items, let A(σ) and OPT (σ) denote the number
of used bins by the online packing strategy A and the offline optimal algorithm
OPT , respectively. The asymptotic competitive ratio of the online algorithm A
is defined to be

R∞
A = lim

k→∞
sup
σ
{ A(σ)

OPT (σ)
|OPT (σ) = k}.

Related Works
Online bin packing has been studied for more than thirty years. For one-
dimensional online bin packing, Johnson et al. [8] showed that the First Fit
algorithm (FF) has an asymptotic competitive ratio of 1.7. Yao [13] improved
the algorithm to obtain a better upper bound of 5/3. Lee et al. [9] introduced
the class of Harmonic algorithms, and showed that an asymptotic competitive
ratio of 1.63597 is achievable. The best known upper bound is 1.58889, which
was given by Seiden [10]. As for the lower bound of the competitive ratio of
one dimensional bin packing, Yao [13] showed that no online algorithm can have
an asymptotic competitive ratio less than 1.5. The best known lower bound is
1.54014 [12]. For two-dimensional online bin packing, Seiden and van Stee [11]
showed an upper bound of 2.66013 by implementing the Super Harmonic Algo-
rithm. The best known upper bound of the competitive ratio for two dimensional
bin packing is 2.5545, which was given by Han et al. [6]. The best known lower
bound is 1.907 [1].

For bounded space bin packing, Harmonic algorithm by Lee et al. [9] can
be applied to one dimensional case, the competitive ratio is 1.69103 when the



508 Y. Zhang et al.

number of active bins goes to infinity. Csirik and Johnson [2] presented an 1.7-
competitive algorithm (K-Bounded Best Fit algorithms (BBFK)) for one di-
mensional bin packing using K active bins, where K ≥ 2. For multi-dimensional
case, Epstein et al. [4] gave a 1.69103d-competitive algorithm using (2M − 1)d

active bins, whereM ≥ 10 is an integer such thatM ≥ 1/(1− (1−ε)1/(d+2))−1,
ε > 0 and d is the dimension of the bin packing problem. For 1-space bounded
2-dimensional bin packing, Fujita [5] first gave an O((log logm)2)-competitive
algorithm, where m is the width of the square bin and the size of each item is
a× b (a, b are integers and a, b ≤ m). Chin et al. proposed an 8.84-competitive
packing strategy [3], and the upper bound was further improved to be 5.155 [14],
they also gave the lower bound 3 for 1-space bounded two dimensional bin pack-
ing. If items are restricted to be squares, Zhang et al. [14] showed that the
upper bound and lower bound of the competitive ratio are 4.5 and 8/3, respec-
tively. For 1-space bounded d-dimensional bin packing (d can be any integer), a
4d-competitive packing strategy was given in [15].

In the remaining part, 1-space bounded 2-dimensional bin packing is studied
in Section 2, both upper and lower bounds of the competitive ratio are given;
and in Section 3, we consider 1-space bounded square packing by showing the
upper and lower bounds.

2 1-Space Bounded 2-Dimensional Bin Packing

2.1 Upper Bound

In this section, we give a 5.06-competitive algorithm for 1-space bounded 2-
dimensional bin packing, improving the previous upper bound 5.15. Since 90◦-
rotation is allowed, we may assume that for each rectangular item (w, h), the
width is no less than the height, i.e., w ≥ h. The idea for packing rectangular
items is a refinement of the technique used in [14].

The rectangular items are classified into three classes A, B and C according
to their widths:

A = {(w, h)|w > 1/2},
B = {(w, h)|1/8 < w ≤ 1/2}, and
C = {(w, h)|w ≤ 1/8}.

For simplicity, let A-item denote an item belonging to class A. B-item and C-
item are defined similarly.

Since all items are rectangular, in the packing strategy, items are packed
with sides either vertical or parallel to the boundary of the bin. For A-items, the
packing strategy pack them in the active bin using a top-down approach starting
from the upper boundary of the bin. Since the width of each A-item is strictly
larger than 1/2, any two A-items cannot share the same horizontal line within a
bin. The width of B-item and C-item are upper bounded by 1/2, in the packing
strategy, they are packed either in the left half side or in the right half side of the
bin by using a bottom-up approach starting from the lower boundary of the bin.
The heights of the left side and the right side are packed as balance as possible.



Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 509

If an item cannot be packed into the bin using the strategy, the active bin will
be closed and a new one will be opened to pack this item.

Let the occupation ratio to be the utilization of some area in the bin. For an
A-item (w1, h1), since no other items share the same horizontal line in the bin,
the strip (1, h1) containing this A-item cannot be used to pack other item, thus,
the occupation ratio of this strip is w1·h1

1·h1
. Since the width of each A-item is larger

than 1/2, the occupation ratio of any strip containing A-item is strictly larger
than 1/2. For an B-item (w2, h2), since it is packed into either the left side or
the right side, the strip (1/2, h2) containing this B-item cannot be used to pack
other item, thus, the occupation ratio of this strip is w2·h2

1/2·h2
. Since the width of

B-item is in between 1/8 and 1/2, the occupation ratio of any strip containing
B-item is at least 1/4. Note that C-item may be very tiny, if it is packed by
using the same way as for A-item or B-item, the wastage will be very large and
the performance will be bad.

We first consider how to pack C-item. The width of C-item is upper bounded
by 1/8, but it is not lower bounded by any positive value. C-items are classified
into subclassesC1, C2, C3, .... according to their widths. Let c1 = 1/8, ci = a·ci−1

for i > 1, where a = (6−
√
21)/15 < 1/9. We say

an item (w, h) belongs to subclass

{
C2i−1 if 3a · ci < w ≤ ci
C2i if a · ci < w ≤ 3a · ci

Thus, ci is the maximal width of items from subclass C2i−1 and 3a · ci is the
maximal width of items from subclass C2i. Each item belonging to subclass
C2i−1 or C2i (i > 0) can be packed into a row with height ci and width 1/2. The
items from subclasses C2i−1 are packed from left to right while the items from
subclass C2i are packed from right to left in three subrows (upper, middle and
lower), keeping the lengths of these three subrows balanced at all times (that
means a new item is always packed into the subrow with the shortest packed
length). Note that C-item is packed with a 90◦-rotation. Figure 1 depicts a row
with packed items from subclass C2i−1 and C2i. When handling an item from
subclass C2i−1 (or C2i), a new row of height ci will be created if the existing rows
with height ci cannot accommodate this item by the above packing method.

Consider the packing of C-item. If there is more than one row for the sub-
classes C2i−1 and C2i, the last row could be almost empty and the non-last rows
are almost full. The total height of the last rows is at most

1/2

C2i−1 C2i

ci

upper subrow

middle subrow

lower subrow

Fig. 1. Packing C2i−1 (or C2i)-items (i > 0) into a row



510 Y. Zhang et al.

∑
i>0

ci =
c1

1− a =
1/8

1− (6 −
√
21)/15

≈ 0.138.

Now we analyze the occupation ratio of the non-last rows for subclasses C2i−1

and C2i. In the left side, suppose the occupied length is x, thus, the total occu-
pation in the left side is at least

3a · ci · x.

In the right side, suppose the length of the longest occupied subrow is y1 and the
length of the shortest occupied subrow is y2, the total occupation in the right
side is at least

3a · ci · y2 + a · ci · (y1 − y2).
Since y1 − y2 ≤ 3a · ci (that is owing to the balanced packing in the right side),
the above formula is at least

3a · ci · y1 − 6a2 · c2i .

In the left side, the height of the item may be larger than 3a · ci. Using an
amortized analysis as follows, if packing an item (w, h) which belongs to subclass
C2i−1 will create a new row, this item contributes max{0, h2− 3a · ci · h} to the
row which cannot pack it. If h > 3a · ci, the contribution of this item in the
newly created row is 3a · ci · h and the remaining area of this item is larger than
h2 − 3a · ci · h, which will contribute to the previous row.

Lemma 1. For any non-last row with height ci (i > 0), the amortized occupation
ratio is at least 1/4.

The packing strategy can be described as follows.

Algorithm Packing-Bin: for 1-space bounded 2-dimensional bin packing
1: A-items are packed in a top-down order starting from the top boundary of the bin.
2: B-items and C-items are packed in a bottom-up order along both the left and right

side of the square bin, keeping the heights of these two sides balanced at all times,
i.e., a new B-item or newly created row of C-item is always packed on the side
with smaller height.

3: If there is insufficient space to pack a new item (A-item, B-item) or create a new
row for the coming C-item, the bin is closed and a new bin is opened to pack the
new item or row.

An example of a packing configuration by applying the algorithm Packing-Bin
is illustrated in Figure 2. In this configuration, the height of the packed A-items
is y, the left and right sides of the packed B-items and C-items are of height y1
and y2 respectively. In this example, y1 > y2, according to the algorithm, if a
B-item comes, we pack it in the right side.

For a given sequence of items, suppose the number of bins used by the packing
strategy Packing-Bin is n. Let oiA, o

i
B and oiC be the occupied space of A-, B-

and C- items in the i-th bin respectively. The average occupation for all the bins
is
∑n

i=1(o
i
A + oiB + oiC)/n.



Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 511

A-item B-item C-item

y

y1
y2

Fig. 2. Packing rectangular items into a square bin

Consider the packing configuration of the i-th bin as shown in Figure 2, assume
that the height of the packed A-items is y, the left and right sides of the packed
B-items and C-items are of height y1 and y2 respectively. W.l.o.g., y1 ≥ y2. We
have

oiA ≥ y/2
oiB ≥ (y1 + y2 −

∑
j≥1 cj −m)/8 ≥ (y1 + y2 − 0.138−m)/8

oiC ≥ m/8
where m is the total height of the non-last rows of C-items.

By using an amortized analysis, if an A-item or an B-item cannot be packed
into the active bin by the packing algorithm, this item will contribute some area
to the just recently closed bin. For the i-th bin, let qiA and qiB be the contribution
of A-items and B-items to the (i − 1)-th bin, and piA and piB be the remaining
areas of A-items and B-items in the i-th bin. Formally, if an A-item (w, h) cannot
be packed into the i-th bin,

qiA =
w · h
2

;

if an B-item (w, h) cannot be packed into the i-th bin,

qiB =

{
w · h/2 if 1/4 ≤ h < 1/2
h2 − h/8 if 1/8 ≤ h < 1/4

For this item, the remaining area is{
w · h/2 ≥ h/8 if 1/4 ≤ h < 1/2
w · h− h2 + h/8 ≥ h/8 if 1/8 ≤ h < 1/4

Since we focus on the asymptotic performance, when n is very large, we have∑n
i=1(o

i
A + oiB + oiC)

n
≥ min

1≤i<n
{piA + piB + oiC + qi+1

A + qi+1
B } (1)

By considering cases on the first item which cannot be packed in the i-th bin,
we have the following conclusion.



512 Y. Zhang et al.

Theorem 1. The competitive ratio of the packing strategy Packing-Bin is at
most 5.06.

2.2 Lower Bound

In this part, we prove that the lower bound of the competitive ratio is at least
3.167, improving the previous bound 3.

Theorem 2. The lower bound of the competitive ratio for 1-space bounded 2-
dimensional bin packing is at least 3.167.

Proof. Consider a sequence of items: S = {X1, X2, ..., X2n, A1, B1, A2, B2, ...,
An, Bn, T1, T2, ..., Tn}.

In the first part of the item sequence containing all the Xi items,

X2i−1 = (1/2 + i · ε, 1/2 + i · ε)
X2i = (1/2− (i− 1) · ε, 1/2− (i− 1) · ε)

in which ε = o(1/n2). It can be verified that no online algorithm can pack any
two consecutive items into one unit square bin because the sum of the edge
lengths of any two consecutive X-items is larger than 1. Thus, at least 2n bins
are used for packing all these Xi items. However X2i−1 and X2i+2 can be packed
into the same bin in the optimal packing.

In the second part of the item sequence containing all Ai and Bi items,

Ai = (1/3 + ε, 2/3 + εi+1)
Bi = (1/3 + ε, 1/3− εi)

in which ε = o(1/n2), εi < εi+1 for i ≥ 1, and 0 < εi = o(1/n2) for all i ≥ 1.
In the online fashion, Ai and Ai+1 cannot be packed into the same bin. Thus,
no online algorithm can pack the second part of the item sequence by using less
than n bins. However X2i−1, X2i+2, Ai, Bi+1 can be packed into one bin in the
optimal packing.

In the third part of the item sequence containing all Ti items,

Ti = (1, 1/7 + ε)

in which ε = o(1/n2). It can be verified that any bin can contain at most 6 items
from this part. However, one Ti can be packed together with X2i−1, X2i+2, Ai,
Bi+1 in the optimal packing, as shown in Figure. 3.

Combine these three parts, note that our focus is the asymptotic performance,
there is no online algorithm which can pack all items in this sequence within
2n+n+n/6 bins, while the optimal strategy only uses n bins. Thus, we conclude
that no online algorithm can achieve a competitive ratio less than 3.167 for 1-
space bounded 2-dimensional bin packing. ��



Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 513

X2i−1 X2i+2

Bi+1Ai

Ti

Fig. 3. The optimal
packing

A B

C

D

E

F

E ′3 = (1/24,
√
2/24)

Fig. 4. Partition of unit
bin

3 1-Space Bounded Square Packing

In 1-space bounded square packing, each item is a square with side length no
more than 1. In our packing strategy, square items are packed in bricks where
a brick is a rectangle with aspect ratio

√
2. Packing square items in bricks is

a popular method. The interesting property of this method is: a brick can be
partitioned into two smaller congruent bricks of the same size. Thus, packing a
square into a brick can be done recursively. Given a square Q, let S(Q) denote
the smallest brick which can contain Q. Let |R| denote the area of rectangle R.

The following is a modified algorithm similar to [7] for packing a square Q in
a brick T .

Algorithm Brick(Q,T): Packing a square Q in brick T
1: If there is no empty brick in T of size greater than or equal to S(Q), then give up

packing Q in T .
2: Else pack Q in T as follows:

– if there is an empty brick congruent to S(Q), then pack Q into it;
– else partition the smallest empty brick P that is larger than S(Q) into two con-

gruent bricks P1 and P2. Assume P1 is the left (or the upper) one. Recursively
execute Brick(Q,P1).

Lemma 2. [7] If the above algorithm cannot pack an item Q in a brick B, then
all empty bricks in B are smaller than S(Q). Furthermore, there is at most one
empty brick with area |S(Q)|/2i for each i = 1, 2, ..., and the total area of the
empty bricks is less than |S(Q)|.

Lemma 3. If Q is packed in a brick congruent to S(Q), then at least 1/(2
√
2)

of this brick is occupied.



514 Y. Zhang et al.

3.1 Upper Bound

We partition each unit bin as shown in Figure 4. Bricks A to F are of the same
size (1/3,

√
2/3), and each brick can be further partitioned into two congruent

bricks. We call an item small, middle, and large if the edge length � satisfies
� ≤ 1/3, 1/3 < � ≤ 1/2, and � > 1/2, respectively. There is a small brick
E′

3 = (1/24,
√
2/24) in the right-top of the bin. This brick is used only in some

special cases, which will be described in later analysis. The packing strategy is
described as follows.

Algorithm Packing-Square: For 1-space bounded square packing
1: For a small item s, by using the algorithm Brick(), we search A, B, C, D, E, F ,

in the listed order, for an S(s) to pack s. E.g., if Brick(s, A) cannot pack s, then
consider Brick(s, B).

2: For a middle item s, we search the available position in the following order to pack
item s.
1) the left-bottom corner of the bin;
2) the right-bottom corner of the bin;
3) if there is a middle item s′ packed on the right-bottom corner of the bin,

consider the position immediately to the left of s′;
4) the right-top corner of the bin; and
5) the left-top corner of the bin;

� Note that packing a middle item in the left-corner of the bin may overlap
with bricks E and F since the side length may be larger than

√
2/3. In this case,

bricks E and F are slightly shifted to the right such that there is no overlap with
the packed middle item.

3: For a large item s, we pack it at the right-bottom corner of the unit bin.
4: If item s cannot be packed into the active bin by using the above rules, this bin

will be closed then a new bin will be opened to pack s.

Now we analyze the competitive ratio of the above algorithm. For a sequence
of square items, assume the offline optimal packing strategy uses n bins, and
our algorithm uses x + y + z bins, where x is the number of bins containing a
large item, y is the number of bins not containing large item and closed by the
packing of a large item, and z is the number of remaining bins. In the optimal
packing, a bin contains at most one large item, thus, x ≤ n. From the definition
of y, for each bin with large item, there is at most one previous bin counted in
those y bins, thus, y ≤ x.

By using the idea of amortized analysis, if the amortized occupation of those
x, y, and z items are a, b, and c, respectively, the total area of the sequence of
items is at least ax + by + cz, which is upper bounded by n since the optimal
packing uses n bins. Therefore, the competitive ratio is

max (x+ y + z)/n (2)

s.t. ax+ by + cz ≤ n and

y ≤ x ≤ n



Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 515

In the amortized analysis, if there is a large item s with side length � > 1/2 in
a bin, this item contributes �2− 1/4 to the previous bin and the remaining area
which contributes to its packed bin is 1/4; if a bin is closed by the packing of a
middle item s′ with side length 1/3 < �′ ≤ 1/2, this item contributes (�2−1/9)/2
to the previous bin, and the remaining area which contributes to its packed bin
is �2 − (�2 − 1/9)/2 = �2/2 + 1/18 ≥ 1/9.

For those x bins containing large items, the remaining area is at least 1/4.
Thus, we may set a = 1/4.

For those y bins, they are closed by the packing of large items. The following
lemma analyzed the amortized occupation in this part of bins.

Lemma 4. The amortized occupation in those y bins is at least (10− 6
√
2)/9.

Thus, b = (10− 6
√
2)/9 ≈ 0.1683.

Now we give the amortized occupation for the remaining z bins.

Lemma 5. The amortized occupation in those z bins is at least 1/4.

Thus, c = 1/4.
Next, we give the competitive ratio of the algorithm Packing-Square.

Theorem 3. The competitive ratio of the algorithm Packing-Square is at most
4.3268.

Proof. Substituting the values of a, b, and c into Formula (2),

max (x+ y + z)/n (3)

s.t. x/4 + 0.1683y+ z/4 ≤ n and

y ≤ x ≤ n

Therefore,

(x+ y + z)/4 ≤ n+ 0.0817y ≤ 1.0817n.

The competitive ratio of the packing strategy is at most

x+ y + z

n
≤ 1.0817 · 4 = 4.3268

��

3.2 Lower Bound

Now we derive a lower bound of the competitive ratio for 1-space bounded square
packing. Roughly speaking, the adversary sends items in phases.

– In the first phase, the side lengths of the coming items are very close to 1/2.
– In the second phase, the side lengths of the items are very close to 1/3.
– ...



516 Y. Zhang et al.

The high level idea underlying the lower bound proof is as follows: The adversary
constructs a sequence with 2n items in the first phase, 3n items in the second
phase, ... such that no online packing algorithm can use less than 2n bins for
the first phase, 3n/4 bins for the second phase, ... But for the optimal packing
strategy, n bins is sufficient to pack all items.

Theorem 4. There is no online algorithm with a competitive ratio less than
2.75 for 1-space bounded square packing.

Proof. As mentioned above, the adversary sends items in phases. In the first
phase, the item sequence is (Y1, X1, Y2, X2, ..., Yn, Xn). Let ε = o(1/n2). Let yi
and xi denote the side length of Xi and Yi, respectively. The side lengths of
these items are as follows.

yi = 1/2− (n+ 1− i)ε

xi = 1/2 + (n+ 2− i)ε
It can be verified that any two adjacent items cannot be packed into one bin.
Thus, no online algorithm can pack these items by using less than 2n bins.
However, items Yi and Xi+1 can be packed into the same bin by the optimal
strategy.

In the second phase, the adversary sends 3n items, the arrival order is (U3, U4,
W1,W2, U5, U6,W3,W4, ...Un−1, Un,Wn−3,Wn−2, U1, U2, V1, V2, ...,Vn,Wn−1,
Wn). Let ui, vi, and wi denote the side length of Ui, Vi, and Wi, respectively.
Let ε0 ε1, εi < εi+1 for i ≥ 1, ε2i+1 > ε2i−1+ε2i+2ε for i ≥ 1, and εi = o(1/n2)
for any i. The side lengths of these items are as follows.

ui = 1/3 + εi
vi = 1/3 + ε
wi = 1/3− ε− εi

It can be verified that except (Un, Wn−3, Wn−2, U1, U2, V1) and (Vn, Vn, Vn,
Wn−1, Wn)), any adjacent five items cannot be packed into the same bin. Since
we consider the asymptotic performance, i.e., n is very large, no online algorithm
can pack these items by using 3n/4 bins. However, items Ui, Vi, and Wi can be
packed together with Yi and Xi+1.

After the second phase, any online algorithm uses at least 2n + 3n/4 bins,
while the optimal packing strategy only uses n bins. Thus, the competitive ratio
is at least 2.75. ��
For the above item sequence, the optimal packing in a bin is shown in Figure 5.
There are still some free space in the upper part of the optimal packing. We can
fully utilize these free space to force the online algorithm uses more bins. In the
optimal packing, the height of the empty part is around 1/6. The adversary may
design another phase with 7n items whose side lengths are around 1/7, such that
no consecutive 37 items can be packed into the same bin, thus, 7n/36 bins are
needed for the online packing. In the optimal strategy, 7 item can be packed into
the upper part of the optimal packing as shown in Figure. 5. Thus, we have the
following Theorem.



Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 517

Yi Xi+1

WiViUi

Fig. 5. The optimal packing

Theorem 5. There is no online algorithm with a competitive ratio less than
2.94 for 1-space bounded square packing.

References

1. Blitz, D., van Vliet, A., Woeginger, G.J.: Lower bounds on the asymptotic worst-
case ratio of on-line bin packing algorithms (1996) (unpublished manuscript)

2. Csirik, J., Johnson, D.S.: Bounded Space On-Line Bin Packing: Best is Better than
First. Algorithmica 31, 115–138 (2001)

3. Chin, F.Y.L., Ting, H.-F., Zhang, Y.: 1-Bounded Space Algorithms for 2-
Dimensional Bin Packing. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009.
LNCS, vol. 5878, pp. 321–330. Springer, Heidelberg (2009)

4. Epstein, L., van Stee, R.: Optimal Online Algorithms for Multidimensional Packing
Problems. SIAM Jouranl on Computing 35(2), 431–448 (2005)

5. Fujita, S.: On-Line Grid-Packing with a Single Active Grid. Information Processing
Letters 85, 199–204 (2003)

6. Han, X., Chin, F.Y.L., Ting, H.F., Zhang, G., Zhang, Y.: A New Upper Bound on
2D Online Bin Packing. ACM Transactions on Algorithms 7(4), 50 (2011)

7. Januszewski, J., Lassak, M.: On-line packing sequences of cubes in the unit cube.
Geometriae Dedicata 67, 285–293 (1997)

8. Johnson, D.S., Demers, A.J., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-
Case performance bounds for simple one-dimensional packing algorithms. SIAM
Journal on Computing 3(4), 299–325 (1974)

9. Lee, C.C., Lee, D.T.: A simple on-line bin packing algorithm. J. Assoc. Comput.
Mach. 32, 562–572 (1985)

10. Seiden, S.S.: On the online bin packing problem. J. ACM 49, 640–671 (2002)
11. Seiden, S., van Stee, R.: New bounds for multi-dimensional packing. In: Proc. of

SODA, pp. 486–495 (2002)
12. van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Infor-

mation Processing Letters 43, 277–284 (1992)
13. Yao, A.C.-C.: New Algorithms for Bin Packing. Journal of the ACM 27, 207–227

(1980)
14. Zhang, Y., Chen, J., Chin, F.Y.L., Han, X., Ting, H.-F., Tsin, Y.H.: Improved

Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing. In: Cheong,
O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp.
242–253. Springer, Heidelberg (2010)

15. Zhang, Y., Chin, F.Y.L., Ting, H.-F., Han, X., Chang, Z.: Online Algorithm for 1-
Space Bounded Multi-dimensional Bin Packing. In: Atallah, M., Li, X.-Y., Zhu, B.
(eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 308–318. Springer, Heidelberg (2011)



Improved Lower Bounds

for the Online Bin Packing Problem
with Cardinality Constraints

Hiroshi Fujiwara1,� and Koji Kobayashi2

1 Toyohashi University of Technology
h-fujiwara@cs.tut.ac.jp

2 National Institute of Informatics
kobaya@nii.ac.jp

Abstract. The bin packing problem has been extensively studied and
numerous variants have been considered. The k-item bin packing problem
is one of the variants introduced by Krause et al. in Journal of the ACM
22(4). In addition to the formulation of the classical bin packing problem,
this problem imposes a cardinality constraint that the number of items
packed into each bin must be at most k. For the online setting of this
problem, i.e., the items are given one by one, Babel et al. provided lower
bounds

√
2 ≈ 1.41421 and 1.5 on the asymptotic competitive ratio for

k = 2 and 3, respectively, in Discrete Applied Mathematics 143(1-3). For
k ≥ 4, some lower bounds (e.g., by van Vliet in Information Processing
Letters 43(5)) for the online bin packing problem, i.e., a problem without
cardinality constraints, can be applied to this problem.

In this paper we consider the online k-item bin packing problem. First,
we improve the previous lower bound 1.41421 to 1.42764 for k = 2.
Moreover, we propose a new method to derive lower bounds for general
k and present improved bounds for various cases of k ≥ 4. For example,
we improve 1.33333 to 1.5 for k = 4, and 1.33333 to 1.47058 for k = 5.

1 Introduction

The bin packing problem is a classical problem in the field of computer science,
which has been most extensively studied. This problem is defined as follows. We
are given a sequence of items, each of which has a size in (0, 1], as an input, and
an infinite number of bins. Each item has to be packed into one of the bins, and
the sum of sizes of items packed into each bin has to be at most one. A bin that
contains at least one item is said to be non-empty. The goal of this problem is
to minimize the number of non-empty bins.

The bin packing problem has been studied also in the online setting: The items
are given one by one, and each item has to be packed before the next one is given.
This problem is quite important in both theoretical and applied aspects, and
much work has been done on this problem (e.g. [10,13,11,2]). Online algorithms
are usually evaluated using competitive analysis [3,12]. For any sequence σ of

� This work was supported by KAKENHI (23700014 and 23500014).

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 518–530, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Improved Lower Bounds for the Online Bin Packing Problem 519

Table 1. Previous results and our results for the online k-item bin packing problem

k lower bound upper bound

2
√
2(≈ 1.41421) [1] → 1.42764 [this paper] 1 +

√
5

5
(≈ 1.44721) [1]

3 1.5 [1] 1.75 [5]

4 4
3
(≈ 1.33333) [13] → 1.5 [this paper] 71

38
(≈ 1.86843) [5]

5 4
3
(≈ 1.33333) [13] → 25

17
(≈ 1.47058) [this paper] 771

398
(≈ 1.93719) [5]

6 1.5 [14] 287
144

(≈ 1.99306) [5]

7 to 9 1.5 [14]

2 [1]
10 to 41 1.5 [14] → (See Table 2 in Section 3.)

42 to 293 217
141

(≈ 1.53900) [13]

∞ 248
161

(≈ 1.54037) [2] 1.58889 [11]

items, and any algorithm ALG, let CALG(σ) denote the number of ALG’s non-
empty bins for σ. Let OPT be an optimal offline algorithm. Then, for any online
algorithmON , define RON = lim supn→∞ supσ{CON (σ)/COPT (σ) | COPT (σ) =
n}, which we call the asymptotic competitive ratio (also known as the asymptotic
performance ratio) of ON .

A constraint that the number of items packed into one bin is somehow re-
stricted seems quite realistic in application. For example, there exists the min-
imum size of files used by a computer, and the number of files stored on the
computer is thus bounded. In light of this situation, Krause et al. [8,9] intro-
duced the k-item bin packing problem, in which the cardinality constraint that
each bin can contain at most k items is imposed. (They defined this problem as
a scheduling problem.) This problem has been well studied in both the offline
and online settings.

Previous Results and Our Results. In the online k-item bin packing problem, in
which items are given in an online manner and the number of items in a bin has to
be at most k, Babel et al. [1] showed that for k = 2, the asymptotic competitive
ratio of any online algorithm is at least

√
2 ≈ 1.41421. Also, they presented

a lower bound of 1.5 when k = 3 using the method by Yao [14]. Moreover, for
larger k, various lower bounds by van Vliet [13], Yao [14], and Balogh et al. [2] for
the online bin packing problem, i.e., a problem without cardinality constraints,
can be applied to the online k-item bin packing problem. We mention that the
lower bounds for k = 4 and 5 are straightforwardly given by manipulating the
method in [13]. (See Table 1.)

In this paper, we consider the online k-item bin packing problem. First, we
show that the asymptotic competitive ratio of any algorithm is at least r ≈
1.42764 for k = 2, where r is the root of the equation 2r3 − 17r2 + 30r− 14 = 0
between 4

3 and 3
2 , which improves the previous lower bound. Second, we extend

the method to obtain lower bounds for the online bin packing problem by van
Vliet [13] and get various improved lower bounds for various cases of k ≥ 4. For



520 H. Fujiwara and K. Kobayashi

example, we improve 1.33333 to 1.5 for k = 4, and 1.33333 to 1.47058 for k = 5.
(See Table 1, and Table 2 in Section 3.)

Related Results. In the online k-item bin packing problem, Krause et al. [8,9]
showed that for any k, the asymptotic competitive ratio of the most basic algo-
rithm FirstFit is at most 2.7− 12/5k. Babel et al. [1] established an algorithm
whose asymptotic competitive ratio is at most 2 for any k. Moreover, Babel
et al. [1] and Epstein [5] designed algorithms for small k. These results are also
presented in Table 1. In addition, Epstein [5] established a bounded space al-
gorithm. She showed that its asymptotic competitive ratio is at most 2.69104,
and is asymptotically optimal. Note that while a bounded space algorithm al-
ways has only a constant number of bins available to accept items, the other
results described above, including our new results, focus on unbounded space
algorithms. There are some studies [7,4,6] about approximation algorithms for
the k-item bin packing problem. Needless to say, the online bin packing problem
(without cardinality constraints) has been much studied, and the best upper
and lower bounds are 1.58889 by Seiden [11] and 248/161 ≈ 1.54037 by Balogh
et al. [2], respectively.

2 A Lower Bound for k = 2

In this section we present a lower bound of 1.42764 for k = 2. We first define
an adversary, which determines the size of the next item adaptively according
to the behavior of an online algorithm. The strategy of the adversary is chosen
from the three strategies whose pseudocodes will be later given as Routine1,
2, and 3, respectively.

We begin by mentioning three subroutines called by Routine1, 2, and 3.
See their pseudocodes Subroutine1, 2, and 3 below. Roughly speaking, each
subroutine gives a sequence of items while changing the size within a specified
range. The only difference between them is just the termination conditions. Let
us see the details. Each subroutine is called with four parameters: an online
algorithm ON and three values Min, Max, and Length with Min < Max. Each
subroutine returns the current value of the internal variable tmpMin. The sizes
of given items lie in (Min, Max). For ease of presentation, if an algorithm ALG is
about to put an item into a bin that contains no item, we say that ALG opens
the bin. The termination conditions of the three subroutines are as follows:
Subroutine1 finishes when it has given Length items to ON , Subroutine2
finishes when ON has opened new Length bins, and Subroutine3 finishes when
ON has created Length bins with two items.

Before giving their pseudocodes, we define the function f used in these sub-
routines: for any x, y ∈ (0, 1] with x < y, f(x, y) = (x+ y)/2. (Indeed, f can be
any function that maps x and y to a value between x and y.)



Improved Lower Bounds for the Online Bin Packing Problem 521

Subroutine1(ON , Min, Max, Length):

Step 1. a1 := f(Min, Max), tmpMax := Max, tmpMin := Min, and i := 1.
Step 2. Give an item bi of size ai, and do the following according to ON ’s
action.

Case 2.1. If ON opens a bin and puts bi into it,
ai+1 := f(tmpMin, ai) and tmpMax := ai.

Case 2.2. Otherwise,
ai+1 := f(ai, tmpMax) and tmpMin := ai.

Step 3. If Length = i, then return tmpMin. Otherwise, i := i + 1, and go to
Step 2.

Subroutine2(ON , Min, Max, Length):

Step 1. a1 := f(Min, Max), tmpMax := Max, tmpMin := Min, and i := 1.
Step 2. Give ON an item bi of size ai, and do the following according to ON ’s
action.

Case 2.1. If ON opens a bin and puts bi into it, then
ai+1 := f(tmpMin, ai) and tmpMax := ai.

Case 2.2. Otherwise,
ai+1 := f(ai, tmpMax) and tmpMin := ai.

Step 3. If the number of bins that were opened by ON at Case 2.1 is Length,
then return tmpMin. Otherwise, i := i+ 1, and go to Step 2.

Subroutine3(ON , Min, Max, Length):

Step 1. a1 := f(Min, Max), tmpMax := Max, tmpMin := Min, and i := 1.
Step 2. Give ON an item bi of size ai, and do the following according to ON ’s
action.

Case 2.1. If ON opens a bin and puts bi into it, then
ai+1 := f(tmpMin, ai) and tmpMax := ai.

Case 2.2. Otherwise,
ai+1 := f(ai, tmpMax) and tmpMin := ai.

Step 3. If the number of bins with two items both of which are given at Step 2
is Length, then return tmpMin. Otherwise, i := i+ 1, and go to Step 2.

The purpose of these subroutines is to construct a sequence that has the
following property. The proof of the lemma will be provided in the full version.

Lemma 1. Suppose that Subroutine1 (Subroutine2, Subroutine3, respec-
tively) is called with some ON , Max, and Min with Max > Min. Let βj be the size
of the j(= 1, . . . , n)-th item that is put into a bin at Case 2.1, and let γj′ be
the size of the j′(= 1, . . . ,m)-th item that is put into a bin at Case 2.2. Denote
β0 := Max, γ0 := Min, and tmin (tmax) the value of tmpMin (tmpMax, respectively)
at the moment when the subroutine returns. Then, β0 > β1 > · · · > βn = tmax >
tmin = γm > · · · > γ1 > γ0.

Now we are ready to describe the main routines any of which the adversary
chooses as its strategy. We remark here that Routine1 outputs an equivalent



522 H. Fujiwara and K. Kobayashi

sequence to one used for getting a lower bound for k = 2 in [1]. In that analysis
the competitiveness of an online algorithm depends on how it packs the items
that correspond to Step 1. Our analysis, in addition, examines how to deal with
the items given in Step 3 and Step 4 of Routine2 and 3.

The variables t, b, s, x, y, u, z, w, and v appearing in the pseudocodes are
used both for the execution of the routine and for the later analysis. “#” stands
for “the number of”.

Routine1(ON , Length):

Step 1. Call Subroutine1(ON ,
1
10
,

1
9
, Length), and t := (the return value).

Then, x
2
:= (# bins with two items), and y := (# bins with exactly one item).

Step 2. Give ON x
2
items of size 1− t.

Routine2(ON , Length):

Step 1. Call Subroutine1(ON ,
1
10
,

1
9
, Length), and t := (the return value).

Then, x
2
:= (# bins with two items), and y := (# bins with exactly one item).

Step 2. Give ON x
2
items of size 1− t.

Step 3. Call Subroutine2(ON ,
4
5
,

7
8
, y + x

2
), and b := (the return value).

Then, u := (# bins with one item given in Step 1 and one given in Step 3).

Step 4. Call Subroutine1(ON ,
1
6
, 1− b, u).

Then, z := (# bins with one item given in Step 1 and one given in Step 4).

Routine3(ON , Length):

Step 1. Call Subroutine1(ON ,
1
10
,

1
9
, Length), and t := (the return value).

Then, x
2
:= (# bins with two items), and y := (# bins with exactly one item).

Step 2. Give ON x
2
items of size 1− t.

Step 3. Call Subroutine2(ON ,
4
5
,

7
8
, y + x

2
), and b := (the return value).

Then, u := (# bins with one item given in Step 1 and one given in Step 3).

Step 4. Call Subroutine3(ON ,
1
6
, 1− b, u), and s := (the return value).

Then, z + w := (# bins with one item given in Step 1 and one given in Step 4), and

v := (# bins with exactly one item given in Step 4).

Step 5. Give ON u+ z + w items of size 1− s.

For an arbitrary online algorithm ALG and a positive integer Length, let
Routine1, 2, and 3 run and generate sequences of items σ1, σ2, and σ3, re-
spectively. What should be remarked upon here is that σ1 is a prefix of σ2 and
σ2 is a prefix of σ3. (This verifies the consistency of the variables z(≥ 0) and
w(≥ 0) set in Routine2 and 3.) Now we see what items are included in the
longest sequence σ3. According to the values t, b, and s determined through the
execution of Routine3, we classify all items into the following eight categories:

– t−-items, those which are of size in ( 1
10 , t] and given in Step 1,

– t+-items, those which are of size in (t, 19 ) and given in Step 1,
– (1− t)-items, those which are of size (1− t) and given in Step 2,
– b−-items, those which are of size in (45 , b] and given in Step 3,



Improved Lower Bounds for the Online Bin Packing Problem 523

– b+-items, those which are of size in (b, 78 ) and given in Step 3,

– s−-items, those which are of size in (16 , s] and given in Step 4,

– s+-items, those which are of size in (s, 1− b) and given in Step 4, and

– (1− s)-items, those which are of size (1− s) and given in Step 5.

Lemma 1 clarifies the magnitude relation among items given in each subroutine.
Together with the categorization above, we have the next fact:

Fact. In the execution of Subroutine1 (2, 3, respectively) called by Routine3,
an item that is put into a bin at Case 2.1 is classified as a t+-item (b+-item,
s+-item, respectively), while one that is put into a bin at Case 2.2 is classified
as a t−-item (b−-item, s−-item, respectively).

The lemma below counts the numbers of non-empty bins of ALG and OPT .
See Figure 1 for the packings. The proof will appear in the full version.

Lemma 2. For ALG, OPT , and (x, y, u, z, w, v) determined by each of Rou-

tine1, 2, and 3, it holds that:

Length = x+ y,

CALG(σ1) = x+ y,

COPT (σ1) =
1

2
x+

⌈
1

4
x+

1

2
y

⌉
≤ 3

4
x+

1

2
y +

1

2
,

CALG(σ2) ≥
3

2
x+ 2y +

1

2
(u− z),

COPT (σ2) = x+ y + u,

CALG(σ3) ≥
3

2
x+ y + 3u+ v + 2z + 2w,

COPT (σ3) = x+ y + 2u+ z + w +

⌈
1

2
v

⌉
≤ x+ y + 2u+ z + w +

1

2
v +

1

2
.

The next lemma is the heart of our analysis, which follows from Lemmas 4 and 5.
The proof of Lemma 4 is omitted here.

Lemma 3. For an arbitrary online algorithm ALG and any ε > 0, there exists
a positive integer Length such that: Let Routine1, 2, and 3 run with ALG
and Length as parameters, and generate sequences of items σ1, σ2, and σ3,
respectively. Then, it follows that

max

{
CALG(σ1)

COPT (σ1)
,
CALG(σ2)

COPT (σ2)
,
CALG(σ3)

COPT (σ3)

}
≥ r − ε, (1)

where r(≈ 1.42764) is the root of the cubic equation 2r3 − 17r2 + 30r − 14 = 0
which lies between 4

3 and 3
2 .



524 H. Fujiwara and K. Kobayashi

t+
t-

b+

t+
s-

s+

1-t

x/2 x/2 u z

>=(u-z)/2

b-

t+ t+

s-

s+

C_ALG(sigma2) >= (3/2)x + 2y + (u-z)/2
y+x/2

y

C_OPT(sigma2) = x + y + u

t+
t-

b+

t+
s-

t+

1-s

s+

1-t

x/2 x/2 u z+w

y

b-

t+ t+

s- 1-s
s+

C_ALG(sigma3) >= (3/2)x + y + 3u + v + 2z + 2w
y+x/2 u v

t+t-

b+

s-

1-s

s+

1-t

x/2 y+x/2 u+z+w u

b-

C_OPT(sigma3) = x + y + 2u + z + w + ceil(v/2) <= x + y + 2u + z + w + v/2 + 1/2

t+t-

b+

s- s+

1-t

x/2 y+x/2

u

b- b-

>=2u+2z
  +2w-y

t+
t-

1-t

x/2 x/2 y

t+

C_ALG(sigma1) = x + y

C_OPT(sigma1) = x/2 + ceil(x/4 + y/2) <= (3/4)x + y/2 + 1/2

t-

1-t

x/2

t+
t+

t+

ceil(x/4+y/2)

s+

s+

s+

ceil(v/2)

Fig. 1. Packings by an arbitrary online algorithm and an optimal offline algorithm for
the input sequences generated by Routine1, 2, and 3. The numbers above (or below)
bins indicate the number of bins belonging to that type.



Improved Lower Bounds for the Online Bin Packing Problem 525

Lemma 4. For any ε > 0, there exists a positive integer Length such that for
any nonnegative integers x, y, u, z, w, and v with x+ y = Length,

x+ y
3
4x+

1
2y
− x+ y

3
4x+

1
2y +

1
2

≤ ε, (2)

3
2x+ y + 3u+ 2z + 2w + v

x+ y + 2u+ z + w + 1
2v
−

3
2x+ y + 3u+ 2z + 2w + v

x+ y + 2u+ z + w + 1
2v +

1
2

≤ ε. (3)

Lemma 5. For any nonnegative integers x, y, u, z, w, and v with x+ y > 0,

max

{
x+ y

3
4x+

1
2y
,
3
2x+ 2y + 1

2 (u− z)
x+ y + u

,
3
2x+ y + 3u+ v + 2z + 2w

x+ y + 2u+ z + w + 1
2v

}
≥ r. (4)

Proof. The proof is done by contradiction. Assume the lemma to be false. Then,
all of the operands of the max operation in (4) can fall below r in the same time.
That is to say, there exists a tuple of nonnegative integers (x, y, u, z, w, v) with
x+ y > 0 such that

f1 :=x+ y − r
(
3

4
x+

1

2
y

)
< 0, (5)

f2 :=
3

2
x+ 2y +

1

2
(u− z)− r (x+ y + u) < 0, (6)

f3 :=
3

2
x+ y + 3u+ v + 2z + 2w − r

(
x+ y + 2u+ z + w +

1

2
v

)
< 0. (7)

In what follows we show that there is no such (x, y, u, z, w, v). Specifically, we
derive an inequality that does not contain either x, y, or u from the inequalities
(5), (6), and (7). We then claim that there do not exist z, w, and v which satisfy
the derived inequality.

Recall 4
3 < r < 3

2 . Noting that 3 − 2r and 2r − 1 are both positive, we have
an inequality without u from (6) and (7).

f4 :=4(3− 2r)f2 + 2(2r − 1)f3

=
(
−2r2 + 5r − 2

)
v +

(
−4r2 + 10r − 4

)
w +

(
4r2 − 16r + 15

)
x

+
(
4r2 − 22r + 22

)
y +

(
−4r2 + 14r − 10

)
z

<0.

(Please see that the elimination is done so that the resulting inequality sign
makes sense.) Next, let us eliminate x. The coefficient of x in the above inequality
4r2 − 16r + 15 = (2r − 5)(2r − 3) is confirmed to be positive. Together with
positivity of 3r − 4, we eliminate x using (5).



526 H. Fujiwara and K. Kobayashi

f5 :=4(4r2 − 16r + 15)f1 + (3r − 4) f4

=
(
−6r3 + 23r2 − 26r + 8

)
(v + 2w) +

2
(
2r3 − 17r2 + 30r − 14

)
y + 2

(
−6r3 + 29r2 − 43r + 20

)
z

=
(
−6r3 + 23r2 − 26r + 8

)
(v + 2w) + 2

(
−6r3 + 29r2 − 43r + 20

)
z

<0.

The reason why y has gone is because r is a root of 2r3 − 17r2 + 30r − 14 = 0.
4
3 < r < 3

2 leads to that both (−6r3+23r2−26r+8) and (−6r3+29r2−43r+20)
are positive. Therefore, for fulfilling f5 < 0, either z, w, or v should be negative.
This contradicts the assumption that z, w, and v are all nonnegative. ��

Our new lower bound is obtained almost as a corollary from Lemma 3.

Theorem 1. Any online algorithm for the online 2-item bin packing problem
has an asymptotic competitive ratio of at least r, where r(≈ 1.42764) is the root
of the cubic equation 2r3 − 17r2 + 30r − 14 = 0 which lies between 4

3 and 3
2 .

3 Lower Bounds for k ≥ 4

We propose an approach for deriving a lower bound of the online k-item bin
packing problem for each k ≥ 4, expanding the method of van Vliet [13] for the
problem without a cardinality constraint. His method was to solve a linear pro-
gram in which variables represent the packings by an arbitrary online algorithm
given some patterns of input sequences. We illustrate how to embed a cardinality
constraint into the linear program.

Some existing lower bounds for the problem without a cardinality constraint,
such as [14,13,2], can be interpreted as lower bounds for the online k-item bin
packing for some ranges of k; if the possible item size is restricted to be at least
s, then the problem can be seen as the online k-item bin packing for k ≥  1s�,
since there is no chance that more than  1s� items are packed together. Such
results include: A lower bound of 4

3 for 4 ≤ k ≤ 5 [13], 3
2 for 6 ≤ k ≤ 41 [14], and

217
141 for 42 ≤ k [13]. See Table 1 in Section 1. Note that although the paper [13]
does not provide the value of 4

3 explicitly, it is given just by slightly changing
the settings of his method. In the derivation of these results, it is not assumed
that an algorithm packs items so that the cardinality constraint is kept. After
the reformulation of a linear program, we set k <  1s� and try to obtain a better
lower bound.

We first give our new formulation with the cardinality constraint. We are
given a tuple of item sizes (s1, . . . , sl) with

∑l
i=1 si ≤ 1. Set N a positive integer

divisible by k and  1∑
l
h=i sh

� for all 1 ≤ i ≤ l. Let Li be a sequence of N items

of size si for each 1 ≤ i ≤ l. The adversary issues any of Ll · · ·Li (1 ≤ i ≤ l).
We denote by a vector (t1, . . . , tl)

T a packing of a bin that consists of ti items
of size si for 1 ≤ i ≤ l. Any packing has to satisfy the following constraints: (i)

the capacity constraint
∑l

i=1 tisi ≤ 1, (ii) the cardinality constraint
∑l

i=1 ti ≤



Improved Lower Bounds for the Online Bin Packing Problem 527

k, and (iii) the constraint that only non-empty bins are taken into account∑l
i=1 ti > 0.
Sort all feasible packings in a lexicographical order with an entry of an item

size with a larger index having a bigger priority. For example, for (s1, s2, s3) =
(12+ε,

1
3+ε,

1
7+ε) and k = 4, we have (1, 0, 0)T , (0, 1, 0)T , (1, 1, 0)T , . . . , (1, 0, 3)T ,

(0, 1, 3)T , (0, 0, 4)T . Denote by ti,j the i-th entry of the j-th packing in the sorted
list. The set of ti,j ’s is regarded as a matrix. For the above example,

(ti,j) =

⎛⎝1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 1 1 2 0 0 1 1 2 0 0 1 2 0 0 1 0
0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4

⎞⎠ .

Let m be the number of feasible packings, which is 17 for the example.
Fix an online algorithm ALG arbitrarily. Suppose that given the input se-

quence Ll · · ·L1, ALG creates nj bins with the j-th packing (i.e., (t1,j , . . . , tl,j)
T ).

Define pi as the index of the first column that has a non-zero entry in the i-th
row of the matrix (ti,j). Then it holds that for i ≥ 2 a packing before the pi-th
is one that skips all of items of size sl, . . . , si and begins packing from si−1, and
that p1 = 1. For the above example, p1 = 1, p2 = 2, and p3 = 5. Thus, we can
describe the total number of non-empty bins of ALG for Ll · · ·Li (1 ≤ i ≤ l) as

CALG(Ll · · ·Li) =

m∑
j=pi

nj . (8)

The total number of non-empty bins of an optimal offline algorithm OPT is
bounded by a simple but nontrivial lemma. We will provide the proof in the full
version.

Lemma 6. For 1 ≤ i ≤ l, COPT (Ll · · ·Li) ≤ max{ N
	 1∑l

h=i
sh


 ,
N(l−i+1)

k }.

As a matter of course, the whole set of bins created by ALG for Ll · · ·L1 contains
N items of size si for each 1 ≤ i ≤ l. This fact is described as

∑m
j=1 ti,jnj = N

for all 1 ≤ i ≤ l. Note that as long as this equation holds, the packings for
Ll · · ·Li (1 ≤ i ≤ l − 1) are consistent as well. For later formulation, we rewrite
this as

m∑
j=1

ti,jnj
N
− 1 = 0, 1 ≤ i ≤ l. (9)

The asymptotic competitive ratio RALG is asymptotically lower-bounded by R
such that

CALG(Ll · · ·Li)

COPT (Ll · · ·Li)
−R ≤ 0, 1 ≤ i ≤ l. (10)

A sufficient condition for (10) with slack variables (u1, . . . , ul) is

min
{⌊ 1∑l

h=i sh

⌋
,

k

l− i + 1

} m∑
j=pi

nj
N

+ ui −R = 0, 1 ≤ i ≤ l (11)



528 H. Fujiwara and K. Kobayashi

Table 2. Our new lower bounds for each 4 ≤ k ≤ 45. Bold font indicates improvement.

k lower bound k lower bound k lower bound

4 3
2
(= 1.5) 18 93

61
(≈ 1.52459) 32 496

323
(≈ 1.53560)

5 25
17

(≈ 1.47058) 19 171
112

(≈ 1.52678) 33 341
222

(≈ 1.53603)

6 3
2
(= 1.5) 20 315

206
(≈ 1.52912) 34 527

343
(≈ 1.53644)

7 3
2
(= 1.5) 21 26

17
(≈ 1.52941) 35 1085

706
(≈ 1.53682)

8 3
2
(= 1.5) 22 341

223
(≈ 1.52914) 36 186

121
(≈ 1.53719)

9 3
2
(= 1.5) 23 713

466
(≈ 1.53004) 37 1147

746
(≈ 1.53753)

10 80
53

(≈ 1.50943) 24 124
81

(≈ 1.53086) 38 589
383

(≈ 1.53785)

11 44
29

(≈ 1.51724) 25 775
506

(≈ 1.53162) 39 403
262

(≈ 1.53816)

12 66
43

(≈ 1.53488) 26 403
263

(≈ 1.53231) 40 20
13

(≈ 1.53846)

13 26
17

(≈ 1.52941) 27 279
182

(≈ 1.53296) 41 1271
826

(≈ 1.53874)

14 441
289

(≈ 1.52595) 28 434
283

(≈ 1.53356) 42 1519
993

(≈ 1.52970)

15 315
206

(≈ 1.52912) 29 899
586

(≈ 1.53412) 43 9331
6098

(≈ 1.53017)

16 624
409

(≈ 1.52567) 30 155
101

(≈ 1.53465) 44 4774
3119

(≈ 1.53061)

17 527
346

(≈ 1.52312) 31 961
626

(≈ 1.53514) 45 3255
2126

(≈ 1.53104)

for some ui ≥ 0 (1 ≤ i ≤ l). The derivation follows from (8) and N
COPT (Ll···Li)

≥
min{ 1∑l

h=i sh
�, k

l−i+1} obtained from Lemma 6.

The problem of finding the minimum R that satisfies (9) and (11) is formulated
as a mathematical program (PN ) with a 2l× (m+ l+ 1)-matrix A = (ai,j) and
vectors x, b, and c as below.

ai,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti,j , 1 ≤ i ≤ l, 1 ≤ j ≤ m;

0, 1 ≤ i ≤ l,m+ 1 ≤ j ≤ m+ l + 1;

0, l + 1 ≤ i ≤ 2l, 1 ≤ j ≤ pi−l − 1;

min
{
 1∑

l
h=i sh

�, k
l−i+1

}
, l + 1 ≤ i ≤ 2l, pi−l ≤ j ≤ m;

δi−l,j−m, l + 1 ≤ i ≤ 2l,m+ 1 ≤ j ≤ m+ l;

−1, l + 1 ≤ i ≤ 2l, j = m+ l+ 1.

x =
(n1
N
, . . . ,

nm
N
, u1, . . . , ul, R

)T

, b = (

l︷ ︸︸ ︷
1, . . . , 1,

l︷ ︸︸ ︷
0, . . . , 0)T , c = (

m+l︷ ︸︸ ︷
0, . . . , 0, 1)T

(PN ) minimize cTx

subject to Ax = b,x ≥ 0,x =
(n1
N
, . . . ,

nm
N
, u1, . . . , ul, R

)
(n1, . . . , nm) ∈ Zm, (u1, . . . , ul, R) ∈ Rl+1

Here δ·,· is Kronecker delta (if i = j, δi,j = 1; otherwise, δi,j = 0).



Improved Lower Bounds for the Online Bin Packing Problem 529

In Ax = b, the first l rows correspond to (9), while the (l+1)-th to 2l-th rows
correspond to (11). δi−l,j−m lets the slack variable ui appear in the equation of
the (l+ i)-th row. The objective function is cTx = R. Note that A, b, and c are
independent of the choice of N .

Apparently, the optimal value of the following linear program (P) is a lower
bound on the optimal value of (PN ).

(P) minimize cTx

subject to Ax = b,x ≥ 0,x ∈ Rm+l+1

The next theorem provides a lower bound for each 4 ≤ k ≤ 45. The reason why
we do not mention k ≥ 46 is simply because of space limitation. Note that as
long as the computer power is available, one can calculate a lower bound for
arbitrary k using our method. The proof is left to the full version.

Theorem 2. For each 4 ≤ k ≤ 45, any online algorithm for the online k-item
bin packing problem has an asymptotic competitive ratio of at least the value in
Table 2.

One can see that the new lower bounds for some k, such as k = 5 or 13, are lower
than that for smaller k. We believe, however, that the matching upper and lower
bound increases with respect to k and approaches that for the problem without
a cardinality constraint. The anomaly suggests a limit of our method for some
values of k. It is an interesting open problem to construct a better scheme for a
lower bound for arbitrary k.

References

1. Babel, L., Chen, B., Kellerer, H., Kotov, V.: Algorithms for on-line bin-packing
problems with cardinality constraints. Discrete Applied Mathematics 143(1-3),
238–251 (2004)

2. Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin
packing algorithms. Theor. Comput. Sci. 440-441, 1–13 (2012)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press (1998)

4. Caprara, A., Kellerer, H., Pferschy, U.: Approximation schemes for ordered vector
packing problems. Naval Research Logistics 50(1), 58–69 (2003)

5. Epstein, L.: Online bin packing with cardinality constraints. SIAM J. Discrete
Math. 20(4), 1015–1030 (2006)

6. Epstein, L., Levin, A.: AFPTAS results for common variants of bin packing: A
new method for handling the small items. SIAM Journal on Optimization 20(6),
3121–3145 (2010)

7. Kellerer, H., Pferschy, U.: Cardinality constrained bin-packing problems. Annals
of Operations Research 92, 335–348 (1999)

8. Krause, K.L., Shen, V.Y., Schwetman, H.D.: Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systems. J. ACM 22(4),
522–550 (1975)



530 H. Fujiwara and K. Kobayashi

9. Krause, K.L., Shen, V.Y., Schwetman, H.D.: Errata: “Analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems”. J.
ACM 24(3), 527 (1977)

10. Ramanan, P.V., Brown, D.J., Lee, C.C., Lee, D.T.: On-line bin packing in linear
time. J. Algorithms 10(3), 305–326 (1989)

11. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
12. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.

Commun. ACM 28(2), 202–208 (1985)
13. van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Inf.

Process. Lett. 43(5), 277–284 (1992)
14. Yao, A.C.: New algorithms for bin packing. J. ACM 27(2), 207–227 (1980)



Parameterized Complexity of Flood-Filling

Games on Trees

Uéverton dos Santos Souza1, Fábio Protti1, and Maise Dantas da Silva2

1 Institute of Computing
2 PURO/ICT

Fluminense Federal University, Niterói, RJ, Brazil
{usouza,fabio}@ic.uff.br,
maisedantas@id.uff.br

Abstract. This work presents new results on flood-filling games, Flood-
It and Free-Flood-It, in which the player aims to make the board mo-
nochromatic with a minimum number of flooding moves. As for many
colored graph problems, Flood-filling games have relevant interpretations
in bioinformatics. The standard versions of Flood-It and Free-Flood-It
are played on n × m grids. In this paper we analyze the complexity
of these games when played on trees. We prove that Flood-It remains
NP-hard on trees whose leaves are at distance at most d = 2 from the
pivot, and that Flood-It is in FPT when parameterized by the number
of colors c in such trees (for any constant d). We also show that Flood-It
on trees and Restricted Shortest Common Supersequence (RSCS) are
analogous problems, in the sense that they can be translated from one
to another, keeping complexity features; this implies that Flood-It on
trees inherits several complexity results already proved for RSCS, such as
some interesting FPT and W[1]-hard cases. We introduce a new variant
of Flood-It, called Multi-Flood-It, where each move of the game is played
on various pivots. We also present a general framework for reducibility
from Flood-It to Free-Flood-It, by defining a special graph operator ψ
such that Flood-It played on a graph class F is reducible to Free-Flood-
It played on the image of F under ψ. An interesting particular case
occurs when F is closed under ψ. Some NP-hard cases for Free-Flood-It
on trees can be derived using this approach. We conclude by showing
some results on parameterized complexity for Free-Flood-It played on
pc-trees (phylogenetic colored trees). We prove that some results valid
for Flood-It on pc-trees can be inherited by Free-Flood-It on pc-trees,
using another type of reducibility framework.

Keywords: Combinatorial Games, Fixed Parameter Tractability,
Graph Algorithms, NP-hardness, W[1]-hardness.

1 Introduction

Flood-It is a one-player combinatorial game, originally played on a colored board
consisting of an n×m grid, where each tile of the board has an initial color from a

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 531–542, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



532 U. dos Santos Souza, F. Protti, and M.D. da Silva

fixed color set. In the classic game, two tiles are neighboring tiles if they lie in the
same row (resp. column) and in consecutive columns (resp. rows). A sequence C
of tiles is a path when every pair of consecutive tiles in C is formed by neighboring
tiles. A monochromatic path is a path in which all the tiles have the same color.
Two tiles a and b are m-connected when there is a monochromatic path between
them. In Flood-It, a move consists of assigning a new color c to the top left tile
p (the pivot) and also to all the tiles m-connected to p immediately before the
move. The objective of the game is to make the board monochromatic (“flood
the board”) with the minimum number of moves. Figure 1 shows a sequence of
moves to flood a 3× 3 grid.

Fig. 1. An optimal sequence of moves to flood a 3× 3 grid

A variation of Flood-It is Free-Flood-It, where the player can freely choose
which tile will be the pivot of each move. In addition, these games can easily be
generalized to be played on any graph with an initial coloring ω.

Many complexity issues on Flood-It and Free-Flood-It have recently been
investigated. In [1], Arthur, Clifford, Jalsenius, Montanaro, and Sach show that
Flood-It and Free-Flood-It are NP-hard on n×n grids colored with at least three
colors. Meeks and Scott [19] prove that Free-Flood-It is solvable in polynomial
time on 1 × n grids and on 2-colored graphs, and also that Flood-It and Free-
Flood-It remain NP-hard on 3× n grids colored with at least four colors. Up to
the authors’ knowledge, the complexity of (Free-)Flood-It on 3×n grids colored
with three colors remains as an open question. Clifford, Jalsenius, Montanaro,
and Sach present in [6] a polynomial-time algorithm for Flood-It on 2×n grids.
In [20], Meeks and Scott show that Free-Flood-It remains NP-hard on 2×n grids.
Lagoutte, Noual, and Thierry [16] shows that Flood-It is polynomially solvable
on cycles, and Flood-It and Free-Flood-It are NP-hard on trees.

In this work we analyze the complexity of Flood-It and Free-Flood-It when
played on trees. In Section 2, we prove that Flood-It remains NP-hard on trees
whose leaves are at distance at most d = 2 from the pivot, and that Flood-It
is in FPT when parameterized by the number of colors c in such trees (for any
constant d). Also in Section 2 we show that Flood-It on trees and Restricted
Shortest Common Supersequence (RSCS) are analogous problems, in the sense
that they can be translated from one to another, keeping complexity features;
this implies that Flood-It on trees inherits several complexity results already
proved for RSCS, such as some interesting FPT and W[1]-hard cases. We con-
clude Section 2 by introducing a new variant of Flood-It, called Multi-Flood-It,
where each move is played on a set of fixed pivots; we consider Multi-Flood-
It played on trees where the pivots are the leaves, and derive some results on



Parameterized Complexity of Flood-Filling Games on Trees 533

its complexity. In Section 3, we present a general framework for reducibility
from Flood-It to Free-Flood-It, by defining a special graph operator ψ such that
Flood-It played on a graph class F is reducible to Free-Flood-It played on the
image of F via ψ. An interesting particular case occurs when F is closed under
ψ (for instance, trees are closed under ψ). Some NP-hard cases for Free-Flood-It
on trees can be derived using this approach. We conclude Section 3 by showing
some results on parameterized complexity for Free-Flood-It played on pc-trees
(phylogenetic colored trees). A colored rooted tree is a pc-tree if no color occurs
more than once in any path from the root to a leaf. We prove that some results
valid for Flood-It on pc-trees can be inherited by Free-Flood-It on pc-trees, using
another type of reducibility framework.

Flood-Filling Games in Bioinformatics. Since the 90’s, an increasing num-
ber of papers on biological applications have been dealt with as combinatorial
problems. Vertex-colored graph problems have several applications in bioinfor-
matics [8]. The Colored Interval Sandwich Problem has applications in DNA
physical mapping [10,12] and in perfect phylogeny [18]; vertex-recoloring prob-
lems appear in protein-protein interaction networks and phylogenetic analysis
[5,21]; the Graph Motif Problem [8] was introduced in the context of metabolic
network analysis [15]; intervalizing colored graphs [4] model DNA physical map-
ping [10]; and the Triangulating Colored Graph Problem [4] is polynomially
equivalent to the Perfect Phylogeny Problem [13].

Flood-Filling games on colored graphs are related to many problems in bioin-
formatics. As shown in this paper, Flood-it played on trees is analogous to a
restricted case of the Shortest Common Supersequence Problem [14]. Conse-
quently, these games inherit from the Shortest Common Supersequence Problem
many implications in bioinformatics, such as: microarray production [23], DNA
sequence assembly [3], and a close relationship to multiple sequence alignment
[24]. In addition, some disease spreading models, described in [2], work in a
similar way to flood-filling games.

Additional Definitions and Notation. Neighboring tiles naturally corre-
spond to neighboring vertices of a graph G representing the board; therefore,
from now on, we use the term vertex instead of tile. A subgraph H of G is
adjacent to a vertex v ∈ V (G) if v has a neighbor in V (H). A move is a pair
m = (p, c) where p is the pivot of m (the vertex chosen to have its color changed
by m), and c is the new color assigned to p; in this case, we also say that color
c is played in move m. In Flood-It all moves have the same pivot. A subgraph
H is said to be flooded when H becomes monochromatic. A (free-)flooding is a
sequence of moves in (Free-)Flood-It which floods G (the entire board). An op-
timal (free-)flooding is a flooding with minimum number of moves. A vertex v is
flooded by a move m if the color of v is played in m and v becomes m-connected
to new vertices after playing m. In Free-Flood-It, a move m = (p, c) is played on
subgraph H if p ∈ V (H). We denote by Π ∝f Π ′ a reduction from a problem Π
to a problem Π ′ via a computable function f .



534 U. dos Santos Souza, F. Protti, and M.D. da Silva

2 Flood-It on Trees

We start this section by remarking that Flood-It played on a tree is equivalent
to Flood-It played on a rooted tree whose root is the pivot.

Theorem 1. Flood-It remains NP-hard on trees whose leaves are at distance at
most 2 from the pivot.

Proof. The proof uses a reduction from the Vertex Cover problem. We show
that there is a vertex cover of size k in a graph G if and only if there is a flooding
with n+k moves in the associated tree T . Given a graphG = (V,E) with |V | = n
and |E| = m, construct a tree T as follows:

- create a pivot root s with color cs;
- for each edge ei = uv of G, add to T a subset of vertices Ei = {u′i, v′i, u′′i , v′′i }
such that u′i, v

′
i are children of s, v′′i is a child of u′i, and u

′′
i is a child of v′i;

- define a distinct color cu for each u ∈ V (G), and color all vertices of the
form u′i, u

′′
i (for all i) with the color cu.

Figure 2 shows a graph G and its associated tree T .

(a) (b)

e1

e2

e3
e4 u1’ u3’ u4’z1’ z2’ v4’w2’ w3’

u1” u3” u4”z1” z2” v4”w2” w3”

u

z

v w

s

Fig. 2. (a) A graph G; (b) tree T obtained from G

Suppose that G has a vertex cover V ′ of size k. By construction, the set of
vertices not flooded have n colors. By playing n moves (using all the n colors,
one for each move), each subset Ei still contains a vertex not m-connected to s.
Thus we can play these n moves in the following order: initially, moves played
on colors assigned to vertices of V ′, and then other moves. Since every edge in G
contains at least one of its endpoints in V ′, after these n moves the vertices in T
not m-connected to s have colors associated with vertices of V ′. Since |V ′| = k,
we will need at most k additional moves, and therefore the flooding will have
n+ k moves, as required.

Now assume that T has a flooding with n+k moves. Initially, T contains only
the color cs and n other colors forming a set C of colors. Hence, each color of C
is played at least once. We divide the colors of C into two groups: the first group
is formed by the colors played more than once, and the second group by colors
played only once. In order to flood the subset Ei, the first and the last moves



Parameterized Complexity of Flood-Filling Games on Trees 535

played on it are moves played on colors of the first group. Hence, without loss of
generality, we can assume that the n+k moves are played in the following order:
(a) the first move of all colors in the first group, (b) the moves of the colors in
the second group, and (c) the remaining moves of the colors in the first group.
Thus, after playing the moves corresponding to (a) and (b) (note that these are
n moves, one for each color), one vertex in each subset Ei remains unflooded.
In addition, vertices not m-connected to s have k colors. Since each color in T
represents a distinct vertex in G and in the construction each Ei is associated
with a distinct edge in G, these k colors correspond to a subset of vertices in G
of size k that are a vertex cover of G. ��

Theorem 2. Flood-It on trees whose leaves are at distance at most d from the
pivot, for a constant d, admits a polynomial kernelization (and thus is in FTP)
when parameterized by the number of colors c.

Proof. Let T be a tree with n vertices and pivot p. We show below how to find
a polynomial kernel (i.e., a kernel whose size is bounded by a polynomial in c)
for the problem, in O(n) time. Apply the following kernelization algorithm:

1. set T ′ = T ;
2. contract all children of p in T ′ with color ci into a single vertex of color ci.

Note that this rule can be applied since the contracted vertices will always
be flooded by the same move in T ;

3. recursively repeat the previous step for each non-leaf child of p in T ′.

After applying the above algorithm, each vertex in T ′ has at most c children.
Thus, T ′ has at most cd vertices and is a polynomial kernel for the problem. ��

Definition 1. Two problems Π and Π ′ are said to be analogous if there exist
linear-time computable functions f, g such that:

1. Π ∝f Π ′ and Π ′ ∝g Π;
2. every solution s for an instance I of Π implies a solution s′ for f(I) such

that size(s) = size(s′);
3. every solution s′ for an instance I ′ of Π ′ implies a solution s for g(I ′) such

that size(s′) = size(s).

Definition 2. Let Π and Π ′ be analogous problems. The parameterized prob-
lems Π(k1, . . . , k�) and Π ′(k′1, . . . , k

′
�) are said to be p-analogous if there exist

FPT reductions f, g and a one-to-one correspondence ki ↔ k′i such that:

1. Π(k1, . . . , k�) ∝f Π ′(k′1, . . . , k
′
�) and Π

′(k′1, . . . , k
′
�) ∝g Π(k1, . . . , k�);

2. every solution s for an instance I of Π(k1, . . . , k�) implies a solution s′ for
f(I) such that k′i = ϕ′

i(ki) for some function ϕ′
i (1 ≤ i ≤ �);

3. every solution s′ for an instance I ′ of Π ′(k′1, . . . , k
′
�) implies a solution s for

g(I ′) such that ki = ϕi(k
′
i) for some function ϕi (1 ≤ i ≤ �).

Two easy consequences of the above definitions are: (a) ifΠ andΠ ′ are analogous
problems then Π is in P (is NP-hard) if and only if Π ′ is in P (is NP-hard); (b) if



536 U. dos Santos Souza, F. Protti, and M.D. da Silva

Π(k1, . . . , k�) and Π
′(k′1, . . . , k

′
�) are p-analogous problems then Π(k1, . . . , k�) is

in FTP (admits a polynomial kernel/is W[1]-hard) if and only if Π ′(k′1, . . . , k
′
�)

is in FTP (admits a polynomial kernel/is W[1]-hard).
Lagoutte, Noual, and Thierry used a reduction from the Fixed Alphabet

Shortest Common Supersequence problem [16], to prove that Flood-It on trees
is NP-hard even when the number of colors is fixed. We show that Flood-It on
trees and Restricted Shortest Common Supersequence (RSCS) are analogous
problems. RSCS is a variant of SCS - Shortest Common Supersequence [9].

Shortest Common Supersequence (decision version)
Instance: A set of strings S = s1, . . . , sk over an alphabet Σ, an integer λ.
Question: Does there exist a string s ∈ Σ of length at most λ that is a superse-
quence of each string in S?

Restricted Shortest Common Supersequence (decision version)
Instance: A set of ρ-strings1 R = r1, . . . , rk over an alphabet Σ, an integer λ.
Question: Does there exist a string r ∈ Σ of length at most λ that is a superse-
quence of each ρ-string in R?

Let SCS(|Σ1|, k1) stand for the SCS problem parameterized by |Σ1| and k1
(k1 is the number of strings). The notation RCSC(|Σ2|, k2) is used similarly.

Theorem 3. SCS(|Σ1|, k1) is FPT-reducible to RSCS(|Σ2|, k2).

Proof. Let I be an instance of SCS(|Σ1|, k1). Create an instance I ′ of problem
RSCS(|Σ2|, k2) as follows: for each string si of I define a ρ-string ri of I ′ by
inserting a new symbol ci after each symbol of si. After this construction, I ′

contains k2 = k1 ρ-strings over an alphabet Σ2 such that |Σ2| = |Σ1| + k1. At
this point, it is easy to see that I contains a supersequence of length � if only if
I ′ contains a supersequence of length |s1|+ ...+ |sk1 |+ �. �

Theorem 4. (a) Flood-It on trees and RSCS are analogous problems. (b) Flood-
It on trees parameterized by number of colors, number of leaves, and number of
moves is p-analogous to RSCS(|Σ|, k, q), where q is the length of the solution
string.

Proof. We prove only item (a). Given an instance I of RSCS, we create a colored
tree T as follows: (i) each position of a string in I is converted into a vertex of
T ; (ii) if a position of a string in I contains a character c then the corresponding
vertex of T receives color c; (iii) an edge is added between two vertices of T if
and only if they represent consecutive positions of the same string; (iv) a pivot
vertex p is created in T with a new color; (v) an edge (p, v) is added to T if v
represents the first position of a string in I.

After this construction, note that if I admits a supersequence of size � then
T has a flooding with � moves, obtained by traversing the supersequence and
playing color c in the jth-move if character c is in the jth-position of the super-
sequence. Similarly, given a flooding F of T with � moves, we can construct a

1 A ρ-string is a string with no identical consecutive symbols.



Parameterized Complexity of Flood-Filling Games on Trees 537

supersequence s of size � for I, by just adding character c in position j of s if
and only if color c is played in the jth-move of F .

On the other hand, given an instance T of Flood-It on trees, we create an
instance I of RSCS as follows: (i) each color in T is associated with a character
of the alphabet Σ over which strings in I are defined; (ii) for each path P
from the pivot to a leaf in T , a string r(P ) of I is created by first contracting
each maximal monochromatic subgraph of P into a single vertex with the same
color, and then by adding character c in the jth-position of r(P ) if the vertex
in P at distance j > 0 from the pivot has color c. If T has a flooding with �
moves then I admits a supersequence of size �, since, in order to flood a leaf,
one needs to flood the path that connects it to the pivot. As previously, if I
admits a supersequence of size � then T has a flooding with � moves, obtained
by traversing the supersequence and playing color c in the jth-move if character
c is in the jth-position of the supersequence. ��
Observation. By Theorem 2 and Theorem 4(b), the problem RSCS param-
eterized by |Σ|, where ρ-strings have length bounded by a constant d, admits
a polynomial kernel, namely, a data structure known as trie [11] constructed
from the input ρ-strings. Such a data structure is a prefix tree with at most |Σ|d
nodes.

Corollary 5. Flood-It on paths with arbitrary pivot is analogous to RSCS for
k ≤ 2. �

By Theorem 4, results valid for RSCS can be inherited by Flood-It on trees:

Corollary 6. Flood-It on trees can be solvable in polynomial time when re-
stricted to trees with constant number of leaves.

Proof. Follows from Theorem 4(a) and the analogous result in [17]: SCS (and
thus RSCS) is solvable in polynomial time for a constant number of strings. ��

Corollary 7. Flood-It on trees is W[1]-hard when parameterized by the number
of leaves and the number of colors.

Proof. Follows from Theorems 3, Theorem 4(b), and the analogous result in
[22]: SCS(|Σ1|, k1) is W[1]-hard. ��

Definition 3. A colored rooted tree is a pc-tree (phylogenetic colored tree) if no
color occurs more than once in any path from the root to a leaf.

Corollary 8. Flood-It on trees remains NP-hard even when restricted to pc-trees
with pivot root.

Proof. Follows from Theorem 4(a) and the analogous result in [9]: SCS (and
also RSCS) is NP-hard even for strings where no symbol occurs more than once.

��

Corollary 9. Flood-It on pc-trees with pivot root is W[1]-hard when parameter-
ized by the number of leaves.



538 U. dos Santos Souza, F. Protti, and M.D. da Silva

Proof. Follows from Theorem 4(b) and the analogous result in [9]: SCS (and
also RSCS) restricted to strings where no symbol occurs more than once is W[1]-
hard when parameterized by the number of strings. ��

Corollary 10. Flood-It on pc-trees with pivot root and k leaves is in FPT when
it is asked whether there is a flooding with at most c + r moves, where c is the
number of colors and the pair (k, r) is the parameter.

Proof. Follows from Theorem 4(b) and the analogous result in [9]: SCS (and
thus RSCS) is in FPT when, in the k input strings, each symbol occurs at
most once, and the question is whether there is a common supersequence of size
bounded by |Σ|+ r, where the parameter is the pair (k, r). ��

Definition 4. A pc-tree T is a cpc-tree (complete pc-tree) if each color occurs
exactly once in any path from the root to a leaf.

Corollary 11. Flood-It on cpc-trees with pivot root is in FPT when it is asked
whether there is a flooding with at most c + r moves, where c is the number of
colors and r is the parameter.

Proof. Follows from Theorem 4(b) and the analogous result in [9]: SCS (and
thus RSCS) is in FPT when every symbol occurs exactly once in each string
and the question is whether there is a common supersequence of size bounded
by |Σ|+ r, where r is the parameter. ��

2.1 Multi-Flood-It on Trees

In this subsection we deal with a new variant of Flood-It, Multi-Flood-It, where
each move is played on a set of fixed pivots. We assume that, before a move
m, all the pivots have the same color. The effect of playing a color c in move
m is assigning c to the pivots and to every vertex m-connected to some pivot
immediately before playing m.

We consider Multi-Flood-It played on trees where the pivots are precisely the
leaves, called Multi-Flood-It on trees for short.

Theorem 12. Flood-It on trees with pivot root is reducible to Multi-Flood-It on
trees.

Proof. Let T be an instance of Flood-it on trees with pivot root. We create an
instance T ′ of Multi-Flood-It on trees with leaf pivots as follows:

– For each path pi in T from the root to a leaf li do:
1. create two copies p1i and p2i of pi, keeping the same colors of the vertices

in pi;
2. let rji and lji denote, respectively, the copy of the root of T in pji and the

copy of li in p
j
i , j = 1, 2;

3. add edge (l1i , l
2
i );

– Contract the vertices r1i (for all i) into a single vertex r;



Parameterized Complexity of Flood-Filling Games on Trees 539

– Create a new vertex u with the same color as r, and add edge (u, r).

At this point, it is easy to see that T has a flooding of size k using pivot root if
and only if T ′ has a flooding of size k using the leaf pivots. ��

Corollary 13. Multi-Flood-It on trees is NP-hard.

Proof. Follows from Theorems 1 and 12. ��

Corollary 14. Multi-Flood-It on trees is W[1]-hard when parameterized by the
number of leaves and the number of colors.

Proof. From Theorem 12 it is easy to see that Flood-It on trees and Multi-
Flood-It on trees, both parameterized by the number of leaves and number of
colors, are p-analogous. Thus, by Corollary 7, the result follows. ��

Theorem 15. Multi-Flood-It on trees is in FPT when the number of leaves is
k and it is asked whether there is a flooding with at most c + r moves, where c
is the number of colors and the pair (k, r) is the parameter.

Proof. Suppose the color ca is chosen for a move of the game. For each path
pi from a leaf li to the root, one of the following statements must be true: (1)
The color ca is the first color of pi (different of the pivot color) and does not
otherwise occur in the current pi; (2) The color ca does not occur in the current
pi; (3) The color ca occurs in the current pi, but is not the first color. If for a
move of the game only (1) and (2) occur, we call this a good move. A move that
is not good is bad. Our algorithm is based on the following claims:

Claim 1. If at least r bad moves are played then T has a flooding with at least
c+ r moves.

Claim 2. For any yes-instance of the problem, there is a flooding with at most r
bad moves.

As in [9], we can describe an FPT-algorithm based on the method of search
trees [7]. By Claim 2, if the answer is “yes” then there is a game that completes
with no more than r bad moves. The algorithm is as follows:

(0) The root node of the search tree is labeled with the given input.
(1) A node of the search tree is expanded by making a sequence of good moves

(arbitrarily) until no good move is possible. For each possible nontrivial bad
move (i.e., one that floods at least one vertex), create a child node labeled
with the set of sequences that result after this bad move.

(2) If a node is labeled by the set of empty sequences, then answer “yes”.
(3) If a node has depth r in the search tree, then do not expand any further.

The correctness of the algorithm follows from Claims 1 and 2, and the fact
that the sequence of good moves in step (1) can be made in any order without
increasing the number of moves. The running time of the algorithm is bounded
by O(krn). ��

It is easy to see that we can extend this FPT-algorithm to Flood-It on trees
with pivot root.



540 U. dos Santos Souza, F. Protti, and M.D. da Silva

3 Free-Flood-It on Trees

Definition 5. Let G be a graph, v ∈ V (G), and � a positive integer. The graph
ψ(G, v, �) is constructed as follows: (i) create � disjoint copies G1, G2, . . . , G� of
G; (ii) contract the copies v1, v2, . . . , v� of v into a single vertex v∗.

Definition 6. Let F be a class of graphs. Then:

ψ(F ) = {G | G = ψ(G′, v, �) for some triple (G′ ∈ F , v ∈ V (G′), � > 0) }.

Definition 7. A class F of graphs is closed under operator ψ if ψ(F ) ⊆ F .

Examples of classes closed under ψ are chordal graphs and bipartite graphs.

Theorem 16. Flood-It played on F is reducible in polynomial time to Free-
Flood-It played on ψ(F ).

Proof. Let G be an instance of Flood-It on F (with pivot p). Assume |V (G)| =
n. We create an instance for Free-Flood-It on ψ(F ) by constructing the graph
G′ = ψ(G, p, n) and coloring a vertex wi in copy Gi with the same initial color
of its corresponding vertex w ∈ V (G). Now we show that there is a flooding
for G with at most k moves if and only if there is a free-flooding for G′ with
at most k moves, as follows. First, note that every flooding F for G implies a
free-flooding F ′ for G′ with the same number of moves as F , by simply using p∗

as the pivot of all moves in F ′ and repeating the same sequence of colors played
in F . Conversely, if there is a flooding F ′ for G′ with at most k moves, then: (i)
If on every subgraph Gi (1 ≤ i ≤ n) of G′ a move is played that does not change
the color of p∗ then k ≥ |F ′| ≥ n; in this case, it is easy to see that there is a
flooding for G with at most k moves, since |V (G)| = n and thus n − 1 moves
suffice to flood G. (ii) If there is a subgraph Gi such that every move played on
Gi changes the color of p

∗ then, without loss of generality, the same sequence of
colors played in such moves can be used to flood G, using p as a fixed pivot. ��

Corollary 17. Let F be a class of graphs closed under ψ. Then Flood-It played
on F is reducible in polynomial time to Free-Flood-It played on F .

NP-hardness results valid for Flood-It can be inherited by Free-Flood-It:

Corollary 18. Free-Flood-It remains NP-hard on trees where each leaf is at a
distance at most four of any other vertex.

Proof. Follows from Theorem 16 and Theorem 1. ��

Corollary 19. Free-Flood-It on pc-trees is NP-hard.

Proof. Follows from Corollary 17 and Corollary 8. ��

Theorem 20. In Free-Flood-It on pc-trees, there always exists an optimal free-
flooding which is a flooding with pivot root.



Parameterized Complexity of Flood-Filling Games on Trees 541

Proof. Let T be a pc-tree with root p. Let h(T ) denote the height of T , and let
C = {c1, c2, . . . , ck} be the set of colors assigned to the leaves at level h = h(T )
(the root is at level 0). We use induction on h(T ). The result is clearly valid when
h(T ) = 1, since the sequence of moves (p, c1), (p, c2), . . . , (p, ck) is an optimal free-
flooding of T which is a flooding with pivot p. Now assume that the result is valid
for all pc-trees with height at most h− 1. By induction, there exists an optimal
free-flooding F ′ of the subtree T ′ obtained from T by removing all the leaves at
level h in T , such that F ′ is a flooding with pivot p. Consider the flooding F of
T by appending to F ′ the sequence of moves (p, c1), (p, c1), . . . , (p, ck). Then F
is an optimal free-flooding of T which is a flooding with pivot p. ��
The above theorem implies that Flood-It on pc-trees and Free-Flood-It on
pc-trees are analogous, and parameterized versions of these problems are p-
analogous. Thus:

Corollary 21. Free-Flood-It on pc-trees is W[1]-hard when parameterized by the
number of leaves.

Proof. Follows from Theorem 20 and Corollary 9. ��

Corollary 22. Free-Flood-It on pc-trees with pivot root and k leaves is in FPT
when it is asked whether there is a free-flooding with at most c+ r moves, where
c is the number of colors and the pair (k, r) is the parameter.

Proof. Follows from Theorem 20 and Corollary 10. ��

Corollary 23. Free-Flood-It on cpc-trees with pivot root is in FPT when it is
asked whether there is a free-flooding with at most c + r moves, where c is the
number of colors and r is the parameter.

Proof. Follows from Theorem 20 and Corollary 11. ��

Acknowledgements. We are very grateful to Michael Fellows for his insightful
ideas on the problems dealt with in this work.

References

1. Arthur, D., Clifford, R., Jalsenius, M., Montanaro, A., Sach, B.: The Complexity of
Flood Filling Games. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099,
pp. 307–318. Springer, Heidelberg (2010)

2. Aschwanden, C.: Spatial Simulation Model for Infectious Viral Disease with Focus
on SARS and the Common Flu. In: Proceedings of the 37th Annual Hawaii In-
ternational Conference on System Sciences. IEEE Computer Society, Washington,
DC (2004)

3. Barone, P., Bonizzoni, P., Vedova, G.D., Mauri, G.: An Approximation Algorithm
for the Shortest Common Supersequence Problem: An Experimental Analysis. In:
ACM Symposium on Applied Computing, pp. 56–60 (2001)

4. Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, T., Warnow, T.: The
Hardness of Perfect Phylogeny, Feasible Register Assignment and other Problems
on Thin Colored Graphs. Theoretical Computer Science 244, 167–188 (2000)



542 U. dos Santos Souza, F. Protti, and M.D. da Silva

5. Chor, B., Fellows, M.R., Ragan, M.A., Razgon, I., Rosamond, F.A., Snir, S.: Con-
nected Coloring Completion for General Graphs: Algorithms and Complexity. In:
Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 75–85. Springer, Heidelberg
(2007)

6. Clifford, R., Jalsenius, M., Montanaro, A., Sach, B.: The Complexity of Flood-
Filling Games. Theory of Computing Systems 50(1), 72–92 (2012)

7. Downey, R.G., Fellows, M.R.: Parametrized Computational Feasibility. In: Clote,
P., Remmel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhauser, Boston
(1995)

8. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp Tractability Borderlines
for Finding Connected Motifs in Vertex-Colored Graphs. In: Arge, L., Cachin, C.,
Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351.
Springer, Heidelberg (2007)

9. Fellows, M.R., Hallett, M.T., Stege, U.: Analogs & Duals of the MAST problem
for Sequences & Trees. Journal of Algorithms 49(1), 192–216 (2003)

10. Fellows, M.R., Hallett, M.T., Wareham, H.T.: DNA Physical Mapping: Three Ways
Difficult. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 157–168. Springer,
Heidelberg (1993)

11. Fredkin, E.: Trie Memory. Communications of the ACM 3, 490–499 (1960)
12. Golumbic, M., Kaplan, H., Shamir, R.: On the Complexity of DNA Physical Map-

ping. Advances in Applied Mathematics 15, 251–261 (1994)
13. Gusfield, D.: Efficient Algorithms for Inferring Evolutionary Trees. Networks 21,

19–28 (1981)
14. Hallett, M.T.: An Integrated Complexity Analysis of Problems from Computa-

tional Biology. PhD thesis, University of Victoria (1996)
15. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif Search in Graphs: Application

to Metabolic Networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 3(4), 360–368 (2006)

16. Lagoutte, A., Noual, M., Thierry, E.: Flooding Games on Graphs, HAL: hal-
00653714 (December 2011)

17. Maier, D.: The Complexity of Some Problems on Subsequences and Superse-
quences. Journal of the ACM 25(2), 322–336 (1978)

18. McMorris, F.R., Warnow, T.J., Wimer, T.: Triangulating Vertex-Colored Graphs.
SIAM Journal on Discrete Mathematics 7(2), 296–306 (1994)

19. Meeks, K., Scott, A.: The Complexity of Flood-Filling Games on Graphs. Discrete
Applied Mathematics 160, 959–969 (2012)

20. Meeks, K., Scott, A.: The Complexity of Free-Flood-It on 2 × n Boards,
arXiv:1101.5518v1 [cs.DS] (January 2011)

21. Moran, S., Snir, S.: Convex Recolorings of Strings and Trees: Definitions, Hardness
Results and Algorithms. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 218–232. Springer, Heidelberg (2005)

22. Pietrzak, K.: On the Parameterized Complexity of the Fixed Alphabet Shortest
Common Supersequence and Longest Common Subsequence Problems. Journal of
Computer and System Sciences 67(4), 757–771 (2003)

23. Rahmann, S.: The Shortest Common Supersequence Problem in a Microarray Pro-
duction Setting. Bioinformatics 19(suppl. 2), ii156–ii161 (2003)

24. Sim, J., Park, K.: The Consensus String Problem for a Metric is NP-complete.
Journal of Discrete Algorithms 1(1), 111–117 (2003)



Parameterized Approximability of Maximizing

the Spread of Influence in Networks

Cristina Bazgan1,3, Morgan Chopin1, André Nichterlein2, and Florian Sikora1

1 PSL, Université Paris-Dauphine, LAMSADE UMR CNRS 7243, France
{bazgan,chopin,florian.sikora}@lamsade.dauphine.fr

2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
andre.nichterlein@tu-berlin.de
3 Institut Universitaire de France

Abstract. In this paper, we consider the problem of maximizing the
spread of influence through a social network. Here, we are given a graph
G = (V,E), a positive integer k and a threshold value thr(v) attached
to each vertex v ∈ V . The objective is then to find a subset of k vertices
to “activate” such that the number of activated vertices at the end of
a propagation process is maximum. A vertex v gets activated if at least
thr(v) of its neighbors are. We show that this problem is strongly in-
approximable in fpt-time with respect to (w.r.t.) parameter k even for
very restrictive thresholds. For unanimity thresholds, we prove that the
problem is inapproximable in polynomial time and the decision version
is W[1]-hard w.r.t. parameter k. On the positive side, it becomes r(n)-
approximable in fpt-time w.r.t. parameter k for any strictly increasing
function r. Moreover, we give an fpt-time algorithm to solve the decision
version for bounded degree graphs.

1 Introduction

Optimization problems that involve a diffusion process in a graph are well studied
[16,12,7,1,11,6,2,17]. Such problems share the common property that, according
to a specified propagation rule, a chosen subset of vertices activates all or a fixed
fraction of the vertices, where initially all but the chosen vertices are inactive.
Such optimization problems model the spread of influence or information in
social networks via word-of-mouth recommendations, of diseases in populations,
or of faults in distributed computing [16,12,11]. One representative problem that
appears in this context is the influence maximization problem introduced by
Kempe et al. [12]. Given a directed graph, the task is to choose a vertex subset
of size at most a fixed number such that the number of activated vertices at
the end of the propagation process is maximized. The authors show that the
problem is polynomial-time ( e

e−1 + ε)-approximable for any ε > 0 under some
stochastic propagation models, but NP-hard to approximate within a ratio of
n1−ε for any ε > 0 for general propagation rules.

In this paper, we use the following deterministic propagation model. We are
given an undirected graph, a threshold value thr(v) associated to each vertex

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 543–554, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



544 C. Bazgan et al.

v, and the following propagation rule: a vertex becomes active if at least thr(v)
many neighbors of v are active. The propagation process proceeds in several
rounds and stops when no further vertex becomes active. Given this model,
finding and activating a minimum-size vertex subset such that all or a fixed
fraction of the vertices become active is known as the minimum target set selec-
tion (MinTSS) problem introduced by Chen [7]. It has been shown NP-hard even
for bipartite graphs of bounded degree when all thresholds are at most two [7].
Moreover, the problem was surprisingly shown to be hard to approximate within
a ratio O(2log

1−ε n) for any ε > 0, even for constant degree graphs with thresholds
at most two and for general graphs when the threshold of each vertex is half its
degree (called majority thresholds) [7]. If the threshold of each vertex equals its
degree (unanimity thresholds), then the problem is polynomial-time equivalent
to the vertex cover problem [7] and, thus, admits a 2-approximation and is hard
to approximate with a ratio better than 1.36 [9]. Concerning the parameterized
complexity, the problem is shown to be W[2]-hard with respect to (w.r.t.) the
solution size, even on bipartite graphs of diameter four with majority thresholds
or thresholds at most two [14]. Furthermore, it is W[1]-hard w.r.t. each of the pa-
rameters “treewidth”, “cluster vertex deletion number”, and “pathwidth” [2,8].
On the positive side, the problem becomes fixed-parameter tractable w.r.t. each
of the single parameters “vertex cover number”, “feedback edge set size”, and
“bandwidth” [14,8]. If the input graph is complete, or has a bounded treewidth
and bounded thresholds then the problem is polynomial-time solvable [14,2].

Here, we study the complementary problem of MinTSS, called maximum k-
influence (MaxkInf) where the task is to maximize the number of activated
vertices instead of minimizing the target set size. Since both optimization prob-
lems have the same decision version, the parameterized as well as NP-hardness
results directly transfer from MinTSS to MaxkInf. We show that also MaxkInf
is hard to approximate and, confronted with the computational hardness, we
study the parameterized approximability of MaxkInf.

Our Results. Concerning the approximability of the problem, there are two pos-
sibilities of measuring the value of a solution: counting the vertices activated
by the propagation process including or excluding the initially chosen vertices
(denoted by Max Closed k-Influence and Max Open k-Influence, re-
spectively). Observe that whether or not counting the chosen vertices might
change the approximation factor. In this paper, we consider both cases and our
approximability results are summarized in Table 1.

While MinTSS is both constant-approximable in polynomial time and fixed-
parameter tractable for the unanimity case, this does not hold anymore for
our problem. Indeed, we prove that, in this case, Max Closed k-Influence
(resp. Max Open k-Influence) is strongly inapproximable in polynomial-time
and the decision version, denoted by (k, �)-Influence, is W[1]-hard w.r.t. the
combined parameter (k, �). However, we show that Max Closed k-Influence
(resp. Max Open k-Influence) becomes approximable if we are allowed to
use fpt-time and (k, �)-Influence gets fixed-parameter tractable w.r.t combined
parameter (k,Δ), where Δ is the maximum degree of the input graph.



Parameterized Approximability of Maximizing the Spread of Influence 545

Table 1. Table of the approximation results for Max Open k-Influence and Max

Closed k-Influence

Max Open k-Influence Max Closed k-Influence

Thresholds Bounds poly-time fpt-time poly-time fpt-time

General
Upper n n n n
Lower n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0

Constant
Upper n n n n

Lower n
1
2
−ε,∀ε > 0 n

1
2
−ε,∀ε > 0 n

1
2
−ε,∀ε > 0 n

1
2
−ε,∀ε > 0 [Th. 2]

Majority
Upper n n n n
Lower n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0[Th. 1]

Unanimity
Upper 2k [Th. 5] r(n),∀r [Th. 2] 2k r(n),∀r
Lower n1−ε,∀ε > 0 [Th. 4] ? 1 + ε [Th. 7] ?

Our paper is organized as follows. In Section 2, after introducing some pre-
liminaries, we establish some basic lemmas. In Section 3 we study Max Open

k-Influence and Max Closed k-Influence with majority thresholds and
thresholds at most two. In Section 4 we study the case of unanimity thresholds
in general graphs and in bounded degree graphs. Conclusions are provided in
Section 5. Due to space limitation, some proofs are deferred to a full version.

2 Preliminaries and Basic Observations

In this section, we provide basic backgrounds and notation used throughout this
paper, give the statements of the studied problems, and establish some lemmas.

Graph Terminology. Let G = (V,E) be an undirected graph. For a subset S ⊆ V ,
G[S] is the subgraph induced by S. The open neighborhood of a vertex v ∈ V ,
denoted by N(v), is the set of all neighbors of v. The closed neighborhood of a
vertex v, denotedN [v], is the setN(v)∪{v}. Furthermore, for a vertex set V ′ ⊂ V
we set N(V ′) =

⋃
v∈V ′ N(v) and N [V ′] =

⋃
v∈V ′ N [v]. The set Nk[v], called the

k-neighborhood of v, denotes the set of vertices which are at distance at most k
from v (thus N1[v] = N [v]). The degree of a vertex v is denoted by degG(v) and
the maximum degree of the graph G is denoted by ΔG. We skip the subscript
if G is clear from the context. Two vertices are twins if they have the same
neighborhood. They are called true twins if they are moreover neighbors, false
twins otherwise.

Cardinality Constrained Problem. The problems studied in this paper are car-
dinality constrained. We use the notations and definitions from Cai [4]. A cardi-
nality constrained optimization problem is a quadruple A = (B, Φ, k, obj), where
B is a finite set called solution base, Φ : 2B → {0, 1, 2, . . .} ∪ {−∞,+∞} an
objective function, k a non-negative integer and obj ∈ {min,max}. The goal is
then to find a solution S ⊆ B of cardinality k so as to maximize (or minimize)
the objective value Φ(S). If S is not a feasible solution we set Φ(S) = −∞ if
obj = max and Φ(S) = +∞ otherwise.



546 C. Bazgan et al.

Parameterized Complexity. A parameterized problem (I, k) is said fixed-parameter
tractable (or in the class FPT) w.r.t. parameter k if it can be solved in f(k) · |I|c
time, where f is any computable function and c is a constant (one can see
[10,15]). The parameterized complexity hierarchy is composed of the classes
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P]. A W[1]-hard problem is not fixed-parameter
tractable (unless FPT = W[1]) and one can prove W[1]-hardness by means of
a parameterized reduction from a W[1]-hard problem. This is a mapping of an
instance (I, k) of a problem A1 in g(k) · |I|O(1) time (for any computable g) into
an instance (I ′, k′) for A2 such that (I, k) ∈ A1 ⇔ (I ′, k′) ∈ A2 and k′ ≤ h(k)
for some h.

Approximation. Given an optimization problem Q and an instance I of this
problem, we denote by |I| the size of I, by optQ(I) the optimum value of I and
by val(I, S) the value of a feasible solution S of I. The performance ratio of S

(or approximation factor) is r(I, S) = max
{

val(I,S)
optQ(I) ,

optQ(I)
val(I,S)

}
. The error of S,

ε(I, S), is defined by ε(I, S) = r(I, S) − 1. For a function f (resp. a constant
c > 1), an algorithm is a f(n)-approximation (resp. a c-approximation) if for any
instance I ofQ it returns a solution S such that r(I, S) ≤ f(n) (resp. r(I, S) ≤ c).
An optimization problem is polynomial-time constant approximable (resp. has
a polynomial-time approximation scheme) if, for some constant c > 1 (resp.
every constant ε > 0), there exists a polynomial-time c-approximation (resp.
(1 + ε)-approximation) for it. An optimization problem is f(n)-approximable
in fpt-time w.r.t. parameter k if there exists an f(n)-approximation running in
time g(k) · |I|c, where k is a positive integer depending on I, g is any computable
function and c is a constant [13]. For a cardinality constrained problem a possible
choice for the parameter is the cardinality of the solutions.

Problems definition. Let G = (V,E) be an undirected graph and a threshold
function thr : V → N. In this paper, we consider majority thresholds i.e. thr(v) =

�deg(v)2 � for each v ∈ V , unanimity thresholds i.e. thr(v) = deg(v) for each v ∈ V ,
and constant thresholds i.e. thr(v) ≤ c for each v ∈ V and some constant c > 1.
Initially, all vertices are not activate and we select a subset S ⊆ V of k vertices.
The propagation unfolds in discrete steps. At time step 0, only the vertices in
S are activated. At time step t + 1, a vertex v is activated if and only if the
number of its activated neighbors at time t is at least thr(v). We apply the
rule iteratively until no more activations are possible. Given that S is the set of
initially activated vertices, closed activated vertices, denoted by σ[S] is the set of
all activated vertices at the end of the propagation process and closed activated
vertices, denoted by σ(S), is the set σ[S] ∪ S. The optimization problems we
consider are then defined as follows.

Max Open k-Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and an integer
k.
Output: A subset S ⊆ V , |S| ≤ k such that |σ(S)| is maximum.



Parameterized Approximability of Maximizing the Spread of Influence 547

Similarly, the Max Closed k-Influence problem asks for a set S such that
|σ[S]| is maximum. The corresponding decision version (k, �)-Influence is also
studied. Notice that, in this case, considering either the open or closed activated
vertices is equivalent.

(k, �)-Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and two
integers k and �.
Output: Is there a subset S ⊆ V , |S| ≤ k such that |σ(S)| ≥ � ?

Basic results. In the following, we state and prove some lemmas that will be
used later in the paper.

Lemma 1. Let r be any computable function. If Max Open k-Influence is
r(n)-approximable then Max Closed k-Influence is also r(n)-approximable
where n is the input size.

Proof. Let A be an r(n)-approximation algorithm forMax Open k-Influence.
Let I be an instance of Max Closed k-Influence and opt(I) its optimum

value. When we apply A on I it returns a solution S such that |σ(S)| ≥ opt(I)−k
r(n)

and then |σ[S]| = k + |σ(S)| ≥ opt(I)
r(n) . �

Lemma 2. Let I be an instance of a cardinality constrained optimization prob-
lem A = (B, Φ, k, obj). If A is r1(k)-approximable in fpt-time w.r.t. parameter
k for some strictly increasing function r1 then it is also r2(|B|)-approximable in
fpt-time w.r.t. parameter k for any strictly increasing function r2.

Proof. Let r−1
1 and r−1

2 be the inverse functions of r1 and r2, respectively. We
distinguish the following two cases.

Case 1: k ≤ r−1
1 (r2(|B|)). In this case, we apply the r1(k)-approximation

algorithm and directly get the r2(|B|)-approximation in time f(k) · |B|O(1) for
some computable function f .

Case 2: k > r−1
1 (r2(|B|)). We then have |B| < r−1

2 (r1(k)). In this case,
we solve the problem exactly by brute-force. If obj = max (resp. obj = min)
then try all possible subset S ⊆ B of size k and take the one that maximizes
(resp. minimizes) the objective value Φ(S). The running time is then O(|B|k) =
O(r−1

2 (r1(k))
k
).

The overall running time is O(max{r−1
2 (r1(k))

k
, f(k) · |B|O(1)}), that is, fpt-

time. �

It is worth pointing out that a problem which is proven inapproximable in fpt-
time obviously implies that it is not approximable in polynomial time with
the same ratio. Therefore, fpt-time inapproximability can be considered as a
“stronger” result than polynomial-time inapproximability.



548 C. Bazgan et al.

3 Parameterized Inapproximability

In this section, we consider the parameterized approximability of both Max

Closed k-Influence and Max Open k-Influence. We show that these prob-
lems are W[2]-hard to approximate within n1−ε and n

1
2−ε for any ε ∈ (0, 1) for

majority thresholds and thresholds at most two, respectively. To do so, we use
the following construction from Dominating Set as the starting point. The
Dominating Set problem asks, given an undirected graph G = (V,E) and an
integer k, whether there is a vertex subset S ⊆ V , |S| ≤ k, such that N [S] = V .

Basic Reduction. Given an instance (G = (V,E), k) of Dominating Set we
construct a bipartite graph G′ = (V ′, E′) as follows. For each vertex v ∈ V we
add two vertices vt and vb (t and b respectively standing for top and bottom)
to V ′. For each edge {u, v} ∈ E add the edge {vt, ub}. Finally, set thr(vt) =
degG′(vt) and thr(vb) = 1 for every top vertex vt and every bottom vertex vb,
respectively. Clearly, the construction can be computed in polynomial time and,
furthermore, it has the following property.

Lemma 3. Let G′ = (V ′, E′) be the graph obtained from a graph G using the
above construction. Then G admits a dominating set of size k if and only if G′

admits a subset S′ ⊆ V ′ of size k such that σ[S′] = V ′.

Inapproximability Results. We are now ready to prove the main results of this
section.

Theorem 1. For any ε ∈ (0, 1), Max Closed k-Influence and Max Open

k-Influence with majority thresholds cannot be approximated within n1−ε in
fpt-time w.r.t. parameter k even on bipartite graphs, unless FPT = W[2].

Proof. By Lemma 1, it suffices to show the result for Max Closed k-
Influence. We construct a polynomial-time reduction from Dominating Set

to Max Closed (k + 1)-Influence with majority. In this reduction, we will
make use of the �-edge gadget, for some integer �. An �-edge between two vertices
u and v consists of � vertices of threshold one adjacent to both u and v.

Given an instance I = (G = (V,E), k) ofDominating Set with n = |V |,m =
|E|, we define an instance I ′ of Max Closed (k+1)-Influence. We start with
the basic reduction and modify G′ and the function thr as follows. Replace every
edge {vt, vb} by an (k+2)-edge between vt and vb. Moreover, for a given constant
β = 8−5ε

ε , let L = �nβ� and we add nL more vertices x11, . . . , x
1
n, . . . , x

L
1 , . . . , x

L
n .

For i = 1, . . . , n, vertex x1i is adjacent to all the bottom vertices. Moreover,

for any j = 2, . . . , L, each xji is adjacent to xj−1
k , for any i, k ∈ {1, . . . , n}.

We also add a vertex w and an n + (k + 2)(degG(v) − 1)-edge between w and
vb, for any bottom vertex vb. For i = 1, . . . , n, vertex x1i is adjacent to w. For
i = 1, . . . , n add n pending-vertices (i.e. degree one vertices) adjacent to xLi . For
any vertex vt add (degG(v)+1)(k+2) pending-vertices adjacent to vt. Add also



Parameterized Approximability of Maximizing the Spread of Influence 549

v5 v4

v3v2

v1

G : G′ :

vt1

vb1

vt2

vb2

vt3

vb3

vt4

vb4

vt5

vb5

x1
1 x1

2
. . . x1

5

x2
1 x2

2
. . . x2

5

...
...

...

xL
1 xL

2
. . . xL

5

w

Fig. 1. The graph G′ obtained after carrying out the modifications of Theorem 1. A
thick edge represents an �-edge for some � > 0. A “star” vertex v represents a vertex

adjacent to
degG′ (v)

2
pending-vertices.

n+n2+(k+2)(2m−n) pending-vertices adjacent to w. All vertices of the graph
G′ have the majority thresholds (see also Figure 1).

We claim that if I is a yes-instance then opt(I ′) ≥ nL ≥ nβ+1; otherwise
opt(I ′) < n4. Let n′ = |V ′|, notice that we have n′ ≤ n4 + nL.

Suppose that there exists a dominating set S ⊆ V in G of size at most k.
Consider the solution S′ for I ′ containing the corresponding top vertices and
vertex w. After the first round, all vertices belonging to the edge gadgets which
top vertex is in S′ are activated. Since S is a dominating set in G, after the
second round, all the bottom vertices are activated. Indeed degG′(vb) = 2(n +
(k+2) degG(v)) and after the first round vb has at least k+2 neighbors activated
belonging to an (k+2)-edge between vb and some ut ∈ V and n+(k+2)(degG(v)−
1) neighbors activated belonging to an n + (k + 2)(degG(v) − 1)-edge between
vb and w. Thus, every vertex x1i gets active after the third round, and generally

after the jth round, j = 4, . . . , L+ 2 the vertices xj−2
i are activated, and at the

(L+3)th round all pending-vertices adjacent to xLi are activated. Therefore, the
size of an optimal solution is at least nL ≥ nβ+1.

Suppose that there is no dominating set in G of size k. Without loss of gen-
erality, we may assume that no pending-vertices are in a solution of I ′ since
they all have threshold one. If w does not take part of a solution in I ′, then no
vertex x1i could be activated and in this case opt(I ′) is less than n′ − nL ≤ n4.
Consider now the solutions of I ′ of size k + 1 that contain w. Observe that if a
top-vertex vt gets active through bottom-vertices then vt can not activate any
other bottom-vertices. Indeed, as a contradiction, suppose that vt is adjacent to
a non-activated bottom-vertex. It follows that vt could not have been activated
because of its threshold and that no pending-vertices are part of the solution,
a contradiction. Notice also that it is not possible to activate a bottom vertex
by selecting some x1i vertices since of their threshold. Moreover, since there is
no dominating set of size k, any subset of k top vertices cannot activate all bot-
tom vertices, therefore no vertex xki , i = 1, . . . , n, k = 1, . . . , L can be activated.



550 C. Bazgan et al.

Hence, less than n′−nL vertices can be activated in G′ and the size of an optimal
solution is at most n4.

Assume now that there is an fpt-time n1−ε-approximation algorithm A for
Max Closed (k + 1)-Influence with majority threshold. Thus, if I is a yes-

instance, the algorithm gives a solution of value A(I ′) ≥ nβ+1

(n′)1−ε >
nβ+1

n(1−ε)(β+5) =

n4 since n′ ≤ n4 +nL < n5L. If I is a no-instance, the solution value is A(I ′) <
n4. Hence, the approximation algorithm A can distinguish in fpt-time between
yes-instances and no-instances for Dominating Set implying that FPT = W[2]
since this last problem is W[2]-hard [10]. �

Theorem 2. For any ε ∈ (0, 12 ), Max Closed k-Influence and Max Open

k-Influence with thresholds at most two cannot be approximated within n
1
2−ε

in fpt-time w.r.t. parameter k even on bipartite graphs, unless FPT = W[2].

Using Lemma 2, Theorem 1, and Theorem 2 we can deduce the following
corollary.

Corollary 1. For any strictly increasing function r, Max Closed k-
Influence and Max Open k-Influence with thresholds at most two or major-
ity thresholds cannot be approximated within r(k) in fpt-time w.r.t. parameter k
unless FPT = W[2].

4 Unanimity Thresholds

For the unanimity thresholds case, we will give some results on general graphs
before focusing on bounded degree graphs and regular graphs.

4.1 General Graphs

In this section, we first show that, in the unanimity case, (k, �)-Influence is
W[1]-hard w.r.t. parameter k + � and Max Open k-Influence is not approx-
imable within n1−ε for any ε ∈ (0, 1) in polynomial time, unless NP = ZPP.
However, if we are allowed to use fpt-time then Max Open k-Influence with
unanimity is r(n)-approximable in fpt-time w.r.t. parameter k for any strictly
increasing function r.

Theorem 3. (k, �)-Influence with unanimity thresholds is W[1]-hard w.r.t.
the combined parameter (k, �) even for bipartite graphs.

Theorem 4. For any ε ∈ (0, 1), Max Open k-Influence with unanimity
thresholds cannot be approximated within n1−ε in polynomial time, unless NP =
ZPP.

Theorem 5. Max Open k-Influence and Max Closed k-Influence with
unanimity thresholds are 2k-approximable in polynomial time.

Using Lemma 2 and Theorem 5 we directly get the following.



Parameterized Approximability of Maximizing the Spread of Influence 551

Corollary 2. For any strictly increasing function r, Max Open k-Influence
and Max Closed k-Influence with unanimity thresholds are r(n)-
approximable in fpt-time w.r.t. parameter k.

For example,Max Open k-Influence is log(n)-approximable in time O∗(2k2
k

).

Finding dense subgraphs. In the following we show that Max Open k-
Influence with unanimity thresholds is at least as difficult to approximate
as the Densest k-Subgraph problem, that consists of finding in a graph a
subset of vertices of cardinality k that induces a maximum number of edges. In
particular, any positive approximation result for Max Open k-Influence with
unanimity would directly transfers to Densest k-Subgraph.

Theorem 6. For any strictly increasing function r, if Max Open k-
Influence with unanimity thresholds is r(n)-approximable in fpt-time w.r.t.
parameter k then Densest k-Subgraph is r(n)-approximable in fpt-time w.r.t.
parameter k.

Using Theorem 6 and Corollary 2, we have the following corollary, independently
established in [3].

Corollary 3. For any strictly increasing function r, Densest k-Subgraph is
r(n)-approximable in fpt-time w.r.t. parameter k.

4.2 Bounded Degree Graphs and Regular Graphs

We show in the following that Max Open k-Influence and thus Max Closed

k-Influence are constant approximable in polynomial time on bounded degree
graphs with unanimity thresholds. Moreover, Max Closed k-Influence and
then Max Open k-Influence have no polynomial-time approximation scheme
even on 3-regular graphs if P �= NP. Moreover, we show that (k, �)-Influence
is in FPT w.r.t. parameter k.

Lemma 4. Max Open k-Influence and Max Closed k-Influence with
unanimity thresholds on bounded degree graphs are constant approximable in
polynomial time.

Theorem 7. Max Open k-Influence and Max Closed k-Influence with
unanimity thresholds have no polynomial-time approximation scheme even on
3-regular graphs for k = θ(n), unless P = NP.

In Theorem 3 we showed that (k, �)-Influence with unanimity thresholds is
W[1]-hard w.r.t. parameters k and �. In the following we give several fixed-
parameter tractability results for (k, �)-Influence w.r.t. parameter k on regu-
lar graphs and bounded degree graphs with unanimity thresholds. First we show
that using results of Cai et al. [5] we can obtain fixed-parameter tractable algo-
rithms. Then we establish an explicit and more efficient combinatorial algorithm.
Using [5] we can show:



552 C. Bazgan et al.

Theorem 8. (k, �)-Influence with unanimity thresholds can be solved

in 2O(kΔ3)n2 logn time where Δ denotes the maximum degree and
in 2O(k2 log k)n logn time for regular graphs.

While the previous results use general frameworks to solve the problem, we
now give a direct combinatorial algorithm for (k, �)-Influence with unanimity
thresholds on bounded degree graphs. For this algorithm we need the following
definition and lemma.

Definition 1. Let (α, β) be a pair of positive integers, G = (V,E) an undirected
graph with unanimity thresholds, and v ∈ V a vertex. We call v a realizing vertex
for the pair (α, β) if there exists a vertex subset V ′ ⊆ N2α−1[v] of size |V ′| ≤ α
such that |σ(V ′)| ≥ β and σ[V ′] is connected. Furthermore, we call σ[V ′] a
realization of the pair (α, β).

We show first that in bounded degree graphs the problem of deciding whether a
vertex is a realizing vertex for a pair of positive integers (α, β) is fixed-parameter
tractable w.r.t. parameter α.

Lemma 5. Checking whether a vertex v is a realizing vertex for a pair of positive
integers (α, β) can be done in ΔO(α2) time, where Δ is the maximum degree.

Consider in the following the Connected (k, �)-Influence problem that
is (k, �)-Influence with the additional requirement that G[σ[S]] has to be
connected. Note that with Lemma 5 we can show that Connected (k, �)-
Influence is fixed parameter tractable w.r.t. parameter k on bounded degree
graphs. Indeed, observe that two vertices in σ(S) cannot be adjacent since we
consider unanimity thresholds. From this and the requirement that G[σ[S]] is
connected, it follows that G[σ[S]] has a diameter of at most 2k. Hence, the algo-
rithm for Connected (k, �)-Influence checks for each vertex v ∈ V whether v
is a realizing vertex for the pair (k, �). By Lemma 5 this gives an overall running

time of ΔO(k2) · n.
We can extend the algorithm for the connected case to deal with the case
where G[σ[S]] is not connected. The general idea is as follows. For each con-
nected component Ci of G[σ[S]] the algorithm guesses the number of vertices
in S ∩ Ci and in σ(S) ∩ Ci. This gives an integer pair (ki, �i) for each con-
nected component in G[σ[S]]. Similar to the connected case, the algorithm will
determine realizations for these pairs and the union of these realizations give S
and σ(S). Unlike the connected case, it is not enough to look for just one re-
alization of a pair (ki, �i) since the realizations of different pairs may be not
disjoint and, thus, vertices may be counted twice as being activated. To avoid
the double-counting we show that if there are “many” different realizations for
a pair (ki, �i), then there always exist a realization being disjoint to all realiza-
tions of the other pairs. Now consider only the integer pairs that do not have
“many” different realizations. Since there are only “few” different realizations
possible, the graph induced by all the vertices contained in all these realizations
is “small”. Thus, the algorithm can guess the realizations of the pairs having



Parameterized Approximability of Maximizing the Spread of Influence 553

Algorithm 1. The pseudocode of the algorithm solving the decision problem
(k, �)-Influence. The guessing part in the algorithm behind Lemma 5 is used
in Line 7 as subroutine. The final check in Line 19 is done by brute force checking
all possibilities.

1: procedure solveInfluence(G, thr, k, �)
2: Guess x ∈ {1, . . . , k} � x: number of connected components of G[σ[S]]
3: Guess (k1, �1), . . . , (kx, �x) such that

∑x
i=1 ki = k and

∑x
i=1 �i = �

4: Initialize c1 = c2 = . . . = cx ← 0 � one counter for each integer pair (ki, �i)
5: for each vertex v ∈ V do � determine realizing vertices
6: for i ← 1 to x do
7: if v is a realizing vertex for the pair (ki, �i) then � see Lemma 5
8: ci ← ci + 1
9: T (v, i) = “yes”
10: else
11: T (v, i) = “no”

12: initialize X ← ∅ � X stores all pairs with “few” realizations
13: for i ← 1 to x do
14: if ci ≤ 2 · x ·Δ4k then
15: X ← X ∪ {i}
16: for each vertex v ∈ V do � remove vertices not realizing any pair in X
17: if ∀i ∈ X : T (v, i) = “no” then
18: delete v from G.
19: if all pairs (ki, �i), i ∈ X, can be realized in the remaining graph then
20: return ‘YES’
21: else
22: return ‘NO’

only “few” realizations and afterwards add greedily disjoint realizations of pairs
having “many” realizations. See Algorithm 1 for the pseudocode.

Theorem 9. Algorithm 1 solves (k, �)-Influence with unanimity thresholds

in 2O(k2 log(kΔ)) · n time, where Δ is the maximum degree of the input graph.

5 Conclusions

We established results concerning the parameterized complexity as well as the
polynomial-time and fpt-time approximability of two problems modeling the
spread of influence in social networks, namely Max Open k-Influence and
Max Closed k-Influence.

In the case of unanimity thresholds, we show that Max Open k-Influence
is at least as hard to approximate as Densest k-Subgraph, a well-studied
problem. We established that Densest k-Subgraph is r(n)-approximable for
any strictly increasing function r in fpt-time w.r.t. parameter k. An interest-
ing open question consists of determining whether Max Open k-Influence
is constant approximable in fpt-time. Such a positive result would improve the
approximation in fpt-time for Densest k-Subgraph. In the case of thresholds



554 C. Bazgan et al.

bounded by two we excluded a polynomial time approximation scheme for Max

Closed k-Influence but we did not found any polynomial-time approxima-
tion algorithm. Hence, the question arises, whether this hardness result can be
strengthened. Another interesting open question is to study the approximation
of min target set selection problem in fpt-time.

References

1. Aazami, A., Stilp, K.: Approximation algorithms and hardness for domination with
propagation. SIAM J. Discrete Math. 23(3), 1382–1399 (2009)

2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011)

3. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and
approximation algorithms for densest k-subgraph. In: Ghosh, S.K., Tokuyama, T.
(eds.) WALCOM 2013. LNCS, vol. 7748, pp. 114–125. Springer, Heidelberg (2013)

4. Cai, L.: Parameterized complexity of cardinality constrained optimization prob-
lems. Comput. J. 51(1), 102–121 (2008)

5. Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solv-
ing fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A.
(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

6. Chang, C.-L., Lyuu, Y.-D.: Spreading messages. Theor. Comput. Sci. 410(27-29),
2714–2724 (2009)

7. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete
Math. 23(3), 1400–1415 (2009)

8. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can
make target set selection tractable. In: Even, G., Rawitz, D. (eds.) MedAlg 2012.
LNCS, vol. 7659, pp. 120–133. Springer, Heidelberg (2012)

9. Dinur, I., Safra, S.: The importance of being biased. In: Proc. of STOC, pp. 33–42.
ACM (2002)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
11. Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical

threshold models of the spread of disease and of opinion. Discrete Appl.
Math. 157(7), 1615–1627 (2009)

12. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proc. of KDD, pp. 137–146. ACM (2003)

13. Marx, D.: Parameterized complexity and approximation algorithms. Comput.
J. 51(1), 60–78 (2008)

14. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of
target set selection. Soc. Network Anal. Mining (2012) (online available)

15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

16. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor.
Comput. Sci. 282, 231–257 (2002)

17. Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms
Appl. 15(5), 683–699 (2011)



An Effective Branching Strategy for Some

Parameterized Edge Modification Problems
with Multiple Forbidden Induced Subgraphs�

Yunlong Liu1,2, Jianxin Wang1, Chao Xu1, Jiong Guo3, and Jianer Chen1,4

1 School of Information Science and Engineering, Central South University,
Changsha 410083, P.R. China

2 College of Mathematics and Computer Science, Key Laboratory of High
Performance Computing and Stochastic Information Processing(Ministry of

Education of China), Hunan Normal University,
Changsha 410081, P.R. China

3 Universität des Saarlandes, Campus E 1.7,
D-66123 Saarbrücken, Germany

4 Department of Computer Science and Engineering, Texas A&M University,
College Station, TX 77843, USA

{hnsdlyl,xuchaofay}@163.com, jxwang@mail.csu.edu.cn,

jguo@mmci.uni-saarland.de, chen@cse.tamu.edu

Abstract. Branching on forbidden induced subgraphs is a genetic strat-
egy to obtain parameterized algorithms for many edge modification prob-
lems. For such a problem in which the graph property is defined by
multiple forbidden induced subgraphs, branching process is trivially per-
formed on each subgraph. Thus, the size of the resulting search tree is
dominated by the size of the largest forbidden subgraph. In this paper, we
present a simple strategy for deriving significantly improved branching
rules for dealing with multiple forbidden subgraphs by edge modifica-
tions. The basic idea hereby is that while constructing branching rules
for the largest forbidden subgraph, we sufficiently take into account the
structural relationship between it and other forbidden subgraphs. By
applying this strategy, we obtain improved parameterized algorithms for
edge modification problems for several graph properties such as proper
interval, 3-leaf power, threshold and co-trivially perfect graphs.

1 Introduction

Edge modification problems call for making a minimum number of changes to
the edge set of an input graph in order to obtain a graph with a desired property.
These problems play an important role in computer science and have applica-
tions in several fields, such as molecular biology, numerical algebra and search

� This research was supported in part by the National Natural Science Foundation of
China under Grant No.61070224, No.61232001, and No.61128006, the China Post-
doctoral Science Foundation funded project under Grant No. 2012M521551, and the
DFG Cluster of Excellence “Multimodal Computing and Interaction (MMCI)”.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 555–566, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



556 Y. Liu et al.

games [13]. For NP-hard edge modification problems, studying their parameter-
ized complexity has received much attention in recent years. Positively, many
edge modification problems have been shown to be fixed-parameter tractable
(abbreviated by FPT).

Until now, most parameterized algorithms for edge modification problems
with graph properties, which can be characterized by forbidden induced sub-
graphs, are based on a bounded search tree method, and the size of the search
tree usually dominates the computation time. Decreasing the size of the search
tree has all the way been a focus in the field of parameterized computation and
has received considerable attention. The basic approach stems from extensive
case distinction based on the neighboring structures of the forbidden subgraphs.
The most notable effort along this line of research is the automated search tree
generation introduced by Gramm et al. [6]. Its main steps include enumerating
all “relevant” subgraphs containing the forbidden subgraphs and checking all
possible branching rules for every enumerated subgraph. The implementation
of this complicated process relies on the computational power of computers in
order to generate and analyze the search tree. Another approach for improving
branching on the forbidden subgraphs is to study relaxations of the target graph
classes [7,10,11,14]. Hereby, one has to search for a relaxed graph class such that
optimally modifying a graph from this class to the target graph class can be
done in polynomial time.

For an edge modification problem for which the graph property is defined
by multiple forbidden subgraphs, the common approach is to apply the trivial
branching to each of the forbidden subgraphs separately. Thus, the size of the
resulting search tree is dominated by the largest forbidden subgraph. Therefore,
more effective branching rules for the largest forbidden subgraph can significantly
decrease the search tree size and then the overall running time of the algorithm.
However, a more refined case distinction based on neighboring structures of the
forbidden subgraphs could dramatically increase the number of cases to consider.
The analysis of the branching rules becomes more and more complex. Therefore,
in most works dealing with multiple forbidden subgraphs, only trivial branching
rules usually are performed to avoid the tedious analysis.

Given a graph property with multiple forbidden subgraphs, we can often
observe that there are some structural connections between the forbidden sub-
graphs. More precisely, after deleting or inserting an edge in the largest forbidden
subgraph, another forbidden subgraph may be induced. To destroy the new for-
bidden subgraph, another round of branching has to be performed. Especially,
for some problems with at least three forbidden induced subgraphs, some of
forbidden subgraphs may be chain-induced and a chain of branchings has to
be performed. Combining such chain-branchings could lead to a significantly
improved branching rule for the largest forbidden subgraph. Based on this ob-
servation, we develop a general strategy that sufficiently considers the structural
relationship among distinct forbidden subgraphs. To demonstrate the power of
this strategy, we present new search tree algorithms for several edge modification
problems and obtain improved search tree sizes correspondingly (see Table 1).



An Effective Branching Strategy for Some Parameterized Edge 557

Table 1. Comparison of the current results and ours

Problems The Current Results Ref. Our Results

proper interval edge deletion O(9knO(1)) [14] O(6knO(1))

3-leaf power edge deletion O(6knm) [5] O(5k + n+m)

threshold edge deletion O(4k + kn4) [8] O(2k + kn4)

co-trivially perfect edge deletion O(3k + kn4) [8] O(2k + kn4)

proper interval edge insertion O(16km) [9] O(4k + nm(n+m))

3-leaf power edge insertion O((k + 3)knm) [5] O(4k + n+m)

This general strategy seems promising for obtaining efficient branching rules for
various other problems with multiple forbidden induced subgraphs.

We mention that in the prior study of the trivially-perfect edge deletion prob-
lem by the branching strategy based on graph class relaxation, in a specific
procedure of getting relaxed P4-sparse graphs, Nastos et al. [11] also observed
that deleting any edge from a forbidden subgraph C4 exactly results in another
forbidden subgraph P4, and thus branched on 6 ways to destroy C4.

2 Terminology and Notations

We consider only simple and undirected graphs. For a graph G = (V,E), let n =
|V | and m=|E|. For two vertices x and y, let (x, y) denote the edge between x
and y. Inserting an edge e to G and deleting an edge e from G are denoted
by G + e and G − e, respectively. We use +e to denote the insertion of edge e
and use −e to denote the deletion of e. A subgraph of G induced by a set V ′ ⊂ V
is denoted by G[V ′] = (V ′, E′), where E′ = {(u, v) | (u, v) ∈ E ∧ u, v ∈ V ′}.

A graphG is F -free for the graph F if G does not contain an induced subgraph
isomorphic to F . If a graph class G is F -free for a set F of some graphs, then
the graphs in F are called the forbidden induced subgraphs of G. Moreover, if
|F| > 1, then G is called a graph class with multiple forbidden induced subgraphs.

3 The General Technique

For the edge modification problems with multiple forbidden induced subgraphs,
search tree algorithms based on trivial branching basically consist of a set of
branching rules, each of which corresponds to one subgraph and consists of
all possible cases to destroy the subgraph. To obtain more efficient branching
rules, we mainly take advantage of the underlying relationship among distinct
subgraphs. The idea behind our strategy is roughly described as follows.

First, specify the finite set F of considered forbidden induced subgraphs. For
infinite forbidden induced subgraphs, sometimes only finite of them are necessar-
ily considered. Our aim is to design refined branching rules for some subgraphs
in F for which there are most modification possibilities to consider. Then, for a
determined subgraph U ∈ F , produce a refined branching rule. This procedure



558 Y. Liu et al.

is accomplished by several possible rounds of branchings. After each round of
branching, check whether there exists other induced subgraph f ∈ F in the re-
sulting graphs. If so, then specify f as the branching object of the next round.
Otherwise, the branching process for this subgraph is finished. During each round
of branching, we apply the trivial branching to the branching object.

In the following, we describe the implementation of our strategy.
Given a set F of finite forbidden induced subgraphs and an arbitrary subgraph

U ∈ F , the procedure of constructing an refined branching rule on U is described
in Fig. 1. Assume that the edge modification operation is edge deletion. For the
case of edge insertion, the depiction is similar.

To avoid generating redundant subcases during the branching, we annotate
some edges in the resulting graphs with the label “forbidden”. A forbidden edge
means that it has been considered in one case and can be omitted in other cases.
Note that after performing the CombineBranch-procedure, the repeated cases
should be deleted and only the minimal cases are kept in the resulted branching
rule.

Theorem 1. Given an edge modification problem P with a set F of forbid-
den induced subgraphs, and an arbitrary subgraph U ∈ F , then the procedure
CombineBranch produces a sound branching rule for the subgraph U .

Proof. Assume that I is an instance of problem P , S is a solution for I, and i
is the number of possible branching rounds in CombineBranch. We prove this
theorem by induction on i. The initial case i = 1 is obvious: a subgraph U can
always be branched on itself trivially.

Consider a general number i ≥ 1. Suppose that after the i-th round of branch-
ing, the branching cases on U areB1, B2, . . ., Br, and the corresponding resulting
subgraphs are C1, C2, . . ., Cr. This means that one of cases B1, B2, . . ., Br must
be in S. W.l.o.g., suppose that in the resulting graph Cj (1 ≤ j ≤ r), there
exists at least one forbidden induced subgraph f ∈ F . To destroy the subgraph
f , another round of branching has to be performed. In the following, we analyze
the (i+ 1)-th round of branching.

Let the trivial branching cases for destroying f be {−e1}, {−e2}, . . ., {−em}
(excluding the forbidden cases). In the procedure CombineBranch, f is exactly
branched into these trivial cases. It is obvious that one of cases B1, B2, . . .,
Bj ∪{−e1}, Bj ∪{−e2}, . . ., Bj ∪{−em}, Bj+1, . . ., Br must be in S. Therefore,
after the (i + 1)-th round of branching, the cases produced by the procedure
ComebineBranch constitute a refined branching rule for U .

Next, we argue that the labeled cases in one branching object can be omitted
safely. W.l.o.g, assume that during the (i + 1)-th round of branching, f is the
branching object, and {−ej} is a trivial case in which the edge ej labeled “for-
bidden”. According to the procedure CombineBranch, the edge ej was labeled
“forbidden” means that during the i-th round of branching, ej has already been
considered in one minimal branching case. Hence, during the (i+1)-th round of
branching, {−ej} can be omitted safely. ��



An Effective Branching Strategy for Some Parameterized Edge 559

Procedure CombineBranch(U,F)
Input: A subgraph U and a collection F of forbidden structures ;
Output: A branching rule on U ; /∗ a branching rule is denoted by a family of
edge modification sets ∗ /

Method:
if U does not contain any induced subgraph in F then

Return Q={∅};
else

Pick a subgraph f ∈ F that is contained in U ;
Apply the trivial branching to f excluding the forbidden edges;
Let the deleted edges be e1, . . ., em ;
Let the corresponding resulting graphs be C1, . . ., Cm ;
Set D := ∅ ;
for i = 1 to m do

if Ci does not contain any induced subgraph in F then
{ Set flag wi := 0 ;
Add the corresponding deleted edge ei to D ; }

else
Set flag wi := 1 ;

Set Q := ∅ ;
for i = 1 to m do

{ if wi=1 then
label the edges “forbidden” on Ci according to the edge set D;

CombineBranch(Ci,F) ;
Let the returned collection be Qi ;
if Qi �= ∅ then

for each set B in Qi do add B ∪ {−ei} to Q ; }
Return Q.

Fig. 1. The procedure for constructing branching rule

Observe that the number of the trivial cases for the “smallest” subgraph is
the threshold value of the search tree algorithm. If a subgraph already yields
a branching number better than the threshold value, we proceed with the next
subgraph. This process can be implemented by setting proper forbidden labels.
For some problems with at least three forbidden induced subgraphs, considering
threshold value may result in concise branching rule.

Compared to the case distinction based on neighboring structures of forbidden
subgraphs mentioned above, our strategy has two advantages. First, we need
not to introduce any extended subgraph, and any substructure to be considered
is not more complicated than the “largest” forbidden subgraph. Second, the
improvement on the branching number is obvious.

Our strategy can be applied not only to the problems with finite forbidden
induced subgraphs, but also to some problems with infinite forbidden induced
subgraphs, from which only finite forbidden induced subgraphs need to be con-
sidered.



560 Y. Liu et al.

4 Applications and Results

We apply the general strategy to several edge modification problems.

4.1 Edge Deletion Problems

We discuss four edge deletion problems: proper interval edge deletion, 3-leaf
power edge deletion, threshold edge deletion, and co-trivially perfect edge dele-
tion.

Proper Interval Edge Deletion. A graph is a proper interval graph if and only
if it is {claw, net, tent, hole}-free [15]. Claw, net and tent are graphs containing
at most 6 vertices depicted in Fig. 2, and hole is an induced cycle of length at
least 4. Furthermore, we use Cr to denote a hole of length r ≥ 4.

(a)  Claw (b)  Net (c) Tent (d)  Hole

Fig. 2. The (infinite) family of forbidden induced subgraphs of proper interval graphs

Proper Interval Edge Deletion (PIED) is defined as follows:
Input: An undirected graph G = (V,E) and a positive integer k.
Parameter: k
Task: Find a set F ⊆ E of size at most k such that H = (V,E \ F ) is a

proper interval graph or answer “No”.
For the PIED problem, there exists a polynomial-time algorithm to solve it on

{claw, net, tent, C4, C5, C6}-free graphs. Combining this with branchings on the
forbidden structures claw, net, tent, C4, C5, and C6 results in a parameterized
algorithm with running time O(9knO(1)) [14].

We improve this search tree algorithm with our strategy. Since the forbidden
subgraph tent with the most edge deletion possibilities, we focus on dealing
with it. Our task is to derive a refined branching rule on tent by exploiting the
relationship between it and C4, C5, C6.

Branching Rule 1. Given a tent T = (V,E), in which V = {i, j, h, l, u, w}
(see Fig.3). For the PIED problem, one can branch it into six cases: {−(i, j)},
{−(j, h)}, {−(h, l)}, {−(l, u)}, {−(u,w)}, and {−(w, i)}.

Lemma 1. Branching Rule 1 is safe, and the branching number is 6.

Theorem 2. The PIED problem can be solved in O(6knO(1)) time.

Note that if we apply our strategy as the procedure in Fig. 1 to all other forbidden
subgraphs, we can obtain a branching rule with a branching number at most 3.11.
However, for the purpose of demonstrating the applicability and flexibility of our
strategy, it suffices to show the improvement of the branching number from 9
to 6.



An Effective Branching Strategy for Some Parameterized Edge 561

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i
j

h l

w

u
i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u
i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

i

j

h l

w

u

1 2 3 654

7

71711

72721

8

81 811

82 821
9

91911
92192

Fig. 3. A branching way for Tent (Bold lines denote forbidden edges)

3-Leaf Power Edge Deletion. For an unrooted tree T with leaves one-to-one
labeled by the elements of a set V , the 3-leaf power of T is a graph, denoted by T 3,
with T 3=(V,E), where E = {(u, v)|u, v ∈ V and d(u, v) ≤ 3}, in which d(u, v)
denotes the length of the path between u and v in T . See Fig.4 for a depiction
of the forbidden induced subgraphs of 3-leaf power graphs [5].

(a) Bull (b) Dart (c) Gem (d) Hole

Fig. 4. The (infinite) family of forbidden induced subgraphs of 3-leaf power graphs

3-Leaf Power Edge Deletion (3LPED) is defined as follows:
Input: An undirected graph G = (V,E) and a positive integer k.
Parameter: k
Task: Find a set F ⊆ E of size at most k such that H = (V,E \ F ) is a

T 3-graph for a tree T or answer “No”.
For the 3LPED problem, there exists a polynomial-time algorithm to solve

it on {bull, dart, gem, C4}-free graphs. Based on this observation, Dom et al.
presented an FPT algorithm with running time O(6knm) [5].

We also improve this algorithm with our strategy. Branch on the forbidden
subgraphs bull, dart, gem, C4, and then combine the polynomial procedure. It
remains to derive refined branching rules for the forbidden structures dart and
gem, respectively.

Branching Rule 2. LetD = (V,E) be a dart with V = {i, j, h, l, u} (see Fig.5).
For the 3LPED problem, one can branch it into 6 cases: {−(i, j)}, {−(h, l)},
{−(l, u)}, {−(j, h),−(j, u)}, {−(j, h),−(j, l)}, and {−(j, l),−(j, u)}.

Lemma 2. Branching Rule 2 is safe, and the branching number is 3.8 or better.

Branching Rule 3. Let G = (V,E) be a Gem with V = {i, j, h, l, u}
(see Fig.6). For the 3LPED problem, one can branch it into 6 cases: {−(j, h)},
{−(i, u)}, {−(h, l)}, {−(i, h), −(h, u)}, {−(i, h), −(i, j), −(u, l)}, and {−(i, j),
−(u, l), −(h, u)}.



562 Y. Liu et al.

i

j

h

l

u

l

1 2 3

4 6

41

i

j

h

l

u

i

j

h

l

u

i

j

h

l

u

i

j

l

uh

l

i

j

l

uh

l

i

j

l

uh

i

j

h

l

u

i

j

h

l

u

i

j

h

l

u

i

j

h

l

u

i

j

h

l

u

i

j

h

l

u

542

51 52

61

62

Fig. 5. The branching procedure on Dart

i

j h l

u

i

j h l

u i

j h l

u i

j h l

u

i

j h l

u i

j h l

u

i

j h l

u i

j h l

u

i

j h l

u

i

j h l

u

i

j h l

u

i

j h l

u

i

j h l

u

i

j h l

u

i

j h l

u

i

j h l

u

i

j h l

u

i

j h l

u

i

j h l

u i

j h l

u i

j h l

u i

j h l

ui

j h l

u i

j h l

u

1 2 3

4
5

6 7

41

42

43

421

431

51

52

53

521

531

62 61 71 72 721621

Fig. 6. The branching procedure on Gem

Lemma 3. Branching Rule 3 is safe, and the branching number is 3.5 or better.

Lemma 4. [1] 3-Leaf Power Edge Deletion admits a polynomial kernel, and
the kernelization procedure can be done in linear time.

Employing the interleaving techniques in [12], we can obtain the following the-
orem.

Theorem 3. 3-Leaf Power Edge Deletion can be solved in O(5k +n+m) time.

Threshold Edge Deletion and Co-trivially Perfect Edge Deletion. A
graph G is a threshold graph iff G contains no induced 2K2, C4, and P4, while
a co-trivially perfect graph contains no induced 2K2 and P4 [3]. See Fig.7 for a
depiction of the forbidden induced subgraphs of threshold graphs.

Threshold Edge Deletion(TED) is defined as follows:
Input: An undirected graph G = (V,E) and a positive integer k.
Parameter: k
Task: Find a set F ⊆ E of size at most k such that H = (V,E \ F ) is a

threshold graph or answer “No”.

     (1) C4 (2) P4 (3) 2K2

Fig. 7. The forbidden induced subgraphs of threshold graphs



An Effective Branching Strategy for Some Parameterized Edge 563

For the TED problem, there exists an FPT algorithm with running time
O(4k + kn4) in [8]. We improve this algorithm by deriving refined branching
rules for C4 and P4 respectively.

Branching Rule 4. Let (V,E) be a C4 with V = {i, j, h, l} (see Fig.8). For the
TED problem, one can branch it into 4 cases: {−(i, j),−(i, l)}, {−(i, l),−(l, h)},
{−(l, h),−(j, h)}, and {−(i, j),−(j, h)}.

i

j h

li

j h

l i

j h

l

i

j h

l

i

j h

l
i

j h

l

i

j h

l

i

j h

l

i

j h

l i

j h

l i

j h

l

i

j h

l

i

j h

l

i

j h

l

i

j h

l i

j h

l i

j h

l

1

11 1312

2 3

4

21

22

23

31

32

33

41 42 43

Fig. 8. The branching procedure on C4 (implicitly including P4 )

Lemma 5. Branching Rule 4 is safe, and the branching number is 2.

Branching Rule 5. Let (V,E) be a P4 with V = {i, j, h, l} (see Fig.8 1©). For
the TED problem, one can branch it into 2 cases: {−(i, j)}, and {−(h, l)}.

Lemma 6. Branching Rule 5 is safe, and the branching number is 2.

Theorem 4. Threshold Edge Deletion can be solved in O(2k + kn4) time.

Theorem 5. Co-Trivially Perfect Edge Deletion can be solved in O(2k + kn4)
time.

4.2 Edge Insertion Problems

Proper Interval Edge Insertion. The Proper Interval Edge Insertion (PIEI)
problem is defined as follows:

Input: An undirected graph G = (V,E) and a positive integer k.
Parameter: k
Task: Find a set F of at most k edges such that G+ F = (V,E ∪ F ) is a

proper interval graph or answer “No”.
The study of parameterized algorithms for PIEI was initiated by Kaplan et

al. [9]. Furthermore, Kaplan et al. presented a search tree algorithm of running
time O∗(16k). The main part of this algorithm is dealing with the holes by
triangulation. In fact, destroying holes by triangulation can be done in O∗(4k)
time [4]. We focus here on deriving refined branching rules for Net and Tent.



564 Y. Liu et al.

l

i

j

u w
h

l

i

j

u w
h

l

i

ju w
h

l

j
u w

h

l

i

u w
hl

j

u w
h

l

i

j

u w
h

l

i

j

u w
h

l

i

j

u w
h

l

i

j

u w
h

l

j

u w
h

l

j

u w
h

l

i
j

u w
h

l

i

u w
h

l

ju w
h

l

j

u w
h

l

i

j

u w
h

l

j

u w
h

l

i

j

u w
h

l

i

j

u w
h

l

j

u w
h

l

i

j

u w
h

l

i

j

u w
h

l

i

j

u w
h

l

i

j

u w
h

l

i

u w
h

l

i

ju w
h

l

i

j

u w
h

l

i

j

u w
h

l

i

j

u w
h

l

j

u w
h

l

i

j

u w

l

i

j

u wh

1

2 3

11

12

21 22 23 31 32 33

221 222 223 321 322 323

Fig. 9. Refined branching on the forbidden structure Net (partly)

Destroying one Net N contains 9 trivial cases. However, for PIEI, after in-
serting one edge in N , other forbidden structures such as C4 or claw are chain-
induced. To destroy these forbidden structures, a chain of branchings has to be
performed. Combining these branchings will result in a refined branching rule.

Branching Rule 6. Let N be a Net induced by the vertices i, j, h, l, u, w
(see Fig.9). For the PIEI problem, one can branch it into {+(u, l), +(u, i)},
{+(u, l), +(l, j)}, {+(u,w), +(u, h)}, {+(u,w), +(w, j)}, {+(w, l), +(w, i)},
{+(w, l), +(l, h)}, {+(l, j), +(l, h)}, {+(u, i), +(u, h)}, {+(w, j), +(w, i)}, {+(u,
i), +(w, j), +(l, h)}, {+(l, j), +(u, h), +(w, i)}.

Lemma 7. Branching Rule 6 is safe, and the branching number is 3.11 or better.

To destroy a Tent T , there are six trivial cases of edge insertions (see Fig. 10).
However, for the PIEI problem, we also get an important observation that three
cases suffice and other cases can be omitted safely.

i

j

h l u

w

i

j

h l u

w
i

j

h

l
u

w

i

j

h
l

u

w

i

j

h
l

u

w

i

j

h
l

u

w

1 2 3 4 5 6

Fig. 10. Six trivial cases of edge insertion for Tent (Dashed lines denote forbidden
edges)

Branching rule 7. Let (V,E) be a Tent with V = {i, j, h, l, u, w} (see Fig.10).
For the PIEI problem, one can branch it into 3 cases: {+(i, h)}, {+(i, u)},
and {+(h, u)}.

Lemma 8. Branching Rule 7 is safe, and the branch number is 3.

Lemma 9. [2] Proper Interval Edge Insertion admits a polynomial kernel, and
the kernelization procedure can be done in O(nm(n+m)) time.

Theorem 6. Proper Interval Edge Insertion can be solved in O(4k+nm(m+n))
time.



An Effective Branching Strategy for Some Parameterized Edge 565

3-Leaf Power Edge Insertion. 3-Leaf Power Edge Insertion (3LPEI) is de-
fined as follows:

Input: An undirected graph G = (V,E) and a positive integer k.
Parameter: k
Task: Find a set F of at most k edges such that G+ F = (V,E ∪ F ) is a

T 3-graph for a tree T or answer “No”.
For the 3LPEI problem, Dom. et al. presented a parameterized algorithm with

running time O((k + 3)knm) [5]. Here, we present a search tree algorithm. For
holes, we can deal with it by triangulation in O(4k(n+m)) time [4]. For a dart,
it is trivially branched into 4 cases. And for a gem, it is trivially branched into 3
cases. We mainly focus on bull. Although there are 5 trivial cases, we can derive
a refined branching rule for it.

i u

j l

h

i u

j l

h

i u

j l

h

i u

j l

h

i u

j l

h

i u

j l

h

i u

j l

h

i u

j l

h

i u

j l

h

i u

j l

h

i u

j l

h

i u

j l

h

1 2

3 4

5

31

32

41

42

51 52
i u

j l

h

521
i u

j l

h

511

Fig. 11. The branching procedure on Bull (Dashed lines denote forbidden edges)

Branching Rule 8. Let B = (V,E) be a Bull with V = {i, j, h, l, u}
(see Fig.11). For the 3LPEI problem, one can branch it into 3 cases: {+(i, h)},
{+(u, h)}, and {+(i, l),+(u, j)}.

Lemma 10. Branching Rule 8 is safe, and the branch number is 2.5 or better.

Lemma 11. [1] 3-Leaf Power Edge Insertion admits a polynomial kernel, and
the kernelization procedure can be done in linear time.

Theorem 7. 3-Leaf Power Edge Insertion can be solved in O(4k+n+m)) time.

5 Conclusions

In this paper, we propose a simple strategy to generate refined branching rules
for the edge modification problems, for which the graph properties are defined
by multiple forbidden induced subgraph. Moreover, applying this strategy, we
further improve the search tree sizes for several edge modification problems. We
believe that our strategy can apply to many other edge modification problems.



566 Y. Liu et al.

References

1. Bessy, S., Paul, C., Perez, A.: Polynomial Kernels for 3-Leaf Power Graph Modi-
fication Problems. Discrete Applied Mathematics 158(16), 1732–1744 (2010)

2. Bessy, S., Perez, A.: Polynomial kernels for proper interval completion and related
problems. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 229–239. Springer, Heidelberg (2011)

3. Brandstäda, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications (1999)

4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58(4), 171–196 (1996)

5. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf power
problems. Algorithmica 44(4), 363–381 (2006)

6. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347
(2004)

7. Guo, J., Hüffner, F., Komusiewicz, C., Zhang, Y.: Improved algorithms for bicluster
editing. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 445–456. Springer, Heidelberg (2008)

8. Guo, J.: Problem kernels for NP-complete edge deletion problems: Split and re-
lated graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926.
Springer, Heidelberg (2007)

9. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Com-
put. 28(5), 1906–1922 (1999)

10. Liu, Y., Wang, J., Guo, J., Chen, J.: Cograph editing: Complexity and parameter-
ized algorithms. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp.
110–121. Springer, Heidelberg (2011)

11. Nastos, J., Gao, Y.: A novel branching strategy for parameterized graph modi-
fication problems. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS,
vol. 6509, pp. 332–346. Springer, Heidelberg (2010)

12. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter
tractable algorithms. Information Processing Letters 73, 125–129 (2000)

13. Sharan, R.: Graph modification problems and their applications to genomic re-
search. PhD Thesis, Tel-Aviv University (2002)

14. Villanger, Y.: Proper interval vertex deletion. In: Raman, V., Saurabh, S. (eds.)
IPEC 2010. LNCS, vol. 6478, pp. 228–238. Springer, Heidelberg (2010)

15. Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien im Rn. PhD
thesis, Universität Göttingen (1967)



Parameterized Algorithms for

Maximum Agreement Forest on Multiple Trees�

Feng Shi1, Jianer Chen1,2, Qilong Feng1, and Jianxin Wang1

1 School of Information Science and Engineering, Central South University, China
2 Department of Computer Science and Engineering, Texas A&M University, USA

Abstract. The Maximun Agreement Forest problem (maf) asks for a
largest common subforest of a collection of phylogenetic trees. The maf

problem on two binary phylogenetic trees has been studied extensively in
the literature. In this paper, we present the first group of fixed-parameter
tractable algorithms for the maf problem on multiple (i.e., two or more)
binary phylogenetic trees. Our techniques work fine for the problem for
both rooted trees and unrooted trees. The computational complexity of
our algorithms is comparable with that of the known algorithms for two
trees, and is independent of the number of phylogenetic trees for which
a maximum agreement forest is constructed.

1 Introduction

Phylogenetic trees have been widely used in the study of evolutionary biology
to represent the tree-like evolution of a collection of species. However, different
methods often lead to different trees. In order to facilitate the comparison of
different phylogenetic trees, several distance metrics have been proposed, such
as Robinson-Foulds [11], NNI [10], TBR and SPR [9,13].

A graph theoretical model, the maximum agreement forest (MAF) of two
phylogenetic trees, has been formulated for the TBR distance and the SPR
distance [8] for phylogenetic trees. Define the order of a forest to be the number
of connected components in the forest.1 Allen and Steel [1] proved that the TBR
distance between two unrooted binary phylogenetic trees is equal to the order
of their MAF minus 1, and Bordewich and Semple [3] proved that the rSPR
distance between two rooted binary phylogenetic trees is equal to the order of
their rooted version of MAF minus 1. In terms of computational complexity, it is
known that computing the order of an MAF is NP-hard for two unrooted binary
phylogenetic trees [8], as well as for two rooted binary phylogenetic trees [3].

Thus, the order of an MAF measures the “difference” between the two phy-
logenetic trees constructed from the same collection of species, which can be

� This work is supported by the National Natural Science Foundation of China under
Grants (61103033, 61173051, 70921001), and the Doctoral Discipline Foundation of
Higher Education Institution of China under Grant (20090162110056).

1 The definitions for the study of maximum agreement forests have been kind of con-
fusing. If size denotes the number of edges in a forest, then for a forest, the size is
equal to the number of vertices minus the order. In particular, when the number of
vertices is fixed, a forest of a large size means a small order of the forest.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 567–578, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



568 F. Shi et al.

small in practice. This observation has motivated the study of parameterized
algorithms for the MAF problem, where the problem is parameterized by the
order k of an MAF. A parameterized problem is fixed-parameter tractable [6] if
it is solvable in time f(k)nO(1). In particular, for small values of the parameter
k, such an algorithm may solve the problem more effectively. Allen and Steel [1]
showed that the MAF problem on unrooted binary phylogenetic trees is fixed-
parameter tractable. Hallett and McCartin [7] developed a faster parameterized
algorithm of running time O(4kk5 + nO(1)) for the MAF problem on two un-
rooted binary phylogenetic trees. Whidden and Zeh [15] further improved the
time complexity to O(4kk + n3) or O(4kn). A further faster algorithm has been
announced recently by Chen, Fan, and Sze [5], which runs in time O(3kn) and
is currently the fastest algorithm for the MAF problem on two unrooted binary
phylogenetic trees. For the MAF problem on two rooted binary phylogenetic
trees, Bordewich et al. [2] developed a parameterized algorithm of running time
O(4kk4 + n3). Whidden et al. [14] improved this bound and developed an algo-
rithm of running time O(2.42kk+n3). This is currently the fastest algorithm for
the MAF problem on two rooted binary phylogenetic trees.

On the other hand, the computational complexity for the MAF problem on
more than two phylogenetic trees has not been studied as extensively as that on
two trees. Note that it makes perfect sense to investigate the MAF problem on
more than two phylogenetic trees: we may construct the phylogenetic trees for
the same collection of species using more than two methods. However, it seems
much more difficult to construct an MAF for more than two trees than that for
two trees. For example, while there have been several polynomial-time approx-
imation algorithms of ratio 3 for the MAF problem on two rooted binary phy-
logenetic trees [12,14] (the same ratio even holds true for the MAF problem on
two unrooted multifurcating trees [5]), the best polynomial-time approximation
algorithm [4] for the MAF problem on more than two rooted binary phyloge-
netic trees has a ratio 8. Similarly, while there have been more than half-dozen
fixed-parameter tractable algorithms for the MAF problem on two (rooted or
unrooted) binary phylogenetic trees [1,2,5,7,14,15], to our best knowledge, it is
still unknown whether the MAF problem on more than two (rooted or unrooted)
binary phylogenetic trees is fixed-parameter tractable.

In the current paper, we will be focused on parameterized algorithms for the
MAF problem on multiple (i.e., two or more) binary phylogenetic trees, for both
the version of rooted trees and the version of unrooted trees. Our main contri-
butions include an O(3kn)-time parameterized algorithm for the MAF problem
on multiple rooted binary phylogenetic trees, and an O(4kn)-time parameterized
algorithm for the MAF problem on multiple unrooted binary phylogenetic trees.
Our algorithms show that these problems are fixed-parameter tractable.

Our algorithms are based on the following simple ideas that, however, require
a careful and efficient implementation. Let C = {T1, T2, . . . , Tm} be a collection
of rooted or unrooted binary phylogenetic trees. Note that an MAF of order k
for the trees in C must be an agreement forest for the first two trees T1 and T2,
which although may not be necessarily maximum. Therefore, if we can essentially



Parameterized Algorithms for Maximum Agreement Forest on Multiple Trees 569

examine all agreement forests of order bounded by k for the trees T1 and T2,
then we can easily check if any of them is an MAF for all the trees in C (note that
checking if a forest is a subgraph of a tree in C is easy). In order to implement
this idea, however, we must overcome the following difficulties. First, we must
ensure that no agreement forest in our concern is missing. This in fact requires
new and non-trivial techniques: all MAF algorithms for two trees proposed in
the literature are based on resolving conflicting structures in the two trees, and
do not guarantee examining all agreement forests of order bounded by k. The
conflicting structures help to identify edges in the trees whose removal leads
to the construction of the MAF. Therefore, if the two trees T1 and T2 do not
conflict much (in an extreme case, T1 and T2 are isomorphism), then an MAF
for T1 and T2 may not help much for constructing an MAF for all the trees in C.
Secondly, with the assurance that essentially all concerned agreement forests for
T1 and T2 are examined, we must make sure that our algorithms are sufficiently
efficient. This goal has also been nicely achieved: compared with the algorithms
published in the literature, our O(3kn)-time algorithm for the MAF problem on
multiple rooted binary phylogenetic trees is asymptotically faster than the best
published algorithm for the MAF problem on two rooted binary phylogenetic
trees, which runs in time O(4knO(1)) [3], and our O(4kn)-time algorithm for
the MAF problem on multiple unrooted binary phylogenetic trees matches the
computational complexity of the best published algorithm for the MAF problem
on two unrooted binary phylogenetic trees [7]. Only very recent work on two
rooted trees [14] and on two unrooted trees [5], still in the status of unpublished
manuscripts, has slightly improved these bounds, which, however, do not seem
to be extendable to the problems on more than two trees. On the other hand,
our algorithms work fine for the MAF problems for an arbitrary number of trees.

2 Definitions and Problem Formulations

A tree is a single-vertex tree if it consists of a single vertex, which is the leaf of
the tree. A tree is a single-edge tree if it consists of a single edge. A tree is binary
if either it is a single-vertex tree or each of its vertices has degree either 1 or 3.
The degree-1 vertices are leaves and the degree-3 vertices are non-leaves of the
tree. There are two versions in our discussion, one is on unrooted trees and the
other is on rooted trees. We first give the terminologies on the unrooted version,
then remark on the differences for the rooted version. Let X be a fixed label-set.

Unrooted X-Trees and X-Forests
A binary tree is unrooted if no root is specified in the tree – in this case no
ancestor-descendant relation is defined in the tree. For the label-set X , an un-
rooted binary phylogenetic X-tree, or simply an unrooted X-tree, is an unrooted
binary tree whose leaves are labeled bijectively by the label-set X (all non-
leaves are not labeled). An unrooted X-tree will also be called an (unrooted)
leaf-labeled tree if the label-set X is irrelevant. A subforest of an unrooted X-tree
T is a subgraph of T , and a subtree of T is a connected subgraph of T . An
unrooted X-forest F is a subforest of an unrooted X-tree T that contains all



570 F. Shi et al.

leaves of T such that each connected component of F contains at least one leaf
in T . Thus, an unrooted X-forest F is a collection of leaf-labeled trees whose
label-sets are disjoint such that the union of the label-sets is equal to X . Define
the order of the X-forest F , denoted Ord(F ), to be the number of connected
components in F . For a subset X ′ of the label-set X , the subtree induced by X ′

in an unrooted X-tree T , denoted by T [X ′], is the minimal subtree of T that
contains all leaves with labels in X ′.

A subtree T ′ of an unrooted X-tree may contain unlabeled vertices of degree
less than 3. In this case we apply the forced contraction operation on T ′, which
replaces each degree-2 vertex v and its incident edges with a single edge connect-
ing the two neighbors of v, and removes each unlabeled vertex that has degree
smaller than 2. Note that the forced contraction does not change the order of
an X-forest. An X-forest F is strongly reduced if the forced contraction does
not apply to F . It has been well-known that the forced contraction operation
does not affect the construction of an MAF for X-trees (see, for example, [2,7]).
Therefore, we will assume that the forced contraction is applied immediately
whenever it is applicable. Thus, the X-forests in our discussion are always as-
sumed to be strongly reduced. With this assumption, a unlabeled vertex in an
unrooted X-trees is always of degree 3. If a leaf-labeled forest F ′ is isomorphic to
a subforest of an X-forest F (up to the forced contraction), then we will simply
say that F ′ is a subforest of F .

Rooted X-Trees and X-Forests
A binary tree is rooted if a particular leaf is designated as the root (so it is both
a root and a leaf), which specifies a unique ancestor-descendant relation in the
tree. A rooted X-tree is a rooted binary tree whose leaves are labeled bijectively
by the label-set X . The root of an X-tree will always be labeled by a special
symbol ρ in X . A subtree T ′ of a rooted X-tree T is a connected subgraph
of T which contains at least one leaf in T . In order to preserve the ancestor-
descendant relation in T , we should define the root of the subtree of T . If T ′

contains the leaf ρ, certainly, it is the root of the subtree; if T ′ does not contain
the leaf ρ, the node in T ′ which is the least common ancestor of the leaves in
T ′ is defined to be the root of T ′. A subforest of a rooted X-tree T is defined
to be a subgraph of T . A (rooted) X-forest F is a subforest of a rooted X-tree
T that contains a collection of subtrees whose label-sets are disjoint such that
the union of the label-sets is equal to X . Thus, one of the subtrees in a rooted
X-forest F must have the vertex labeled ρ as its root.

We again assume that the forced contraction is applied immediately whenever
it is applicable. However, if the root r of a subtree T ′ is of degree 2, then the
operation will not be applied on r, in order to preserve the ancestor-descendant
relation in T . Therefore, after the forced contraction, the root of a subtree T ′ of a
rooted X-tree is either an unlabeled vertex of degree-2, or the vertex labeled ρ of
degree-1 , or a labeled vertex of degree-0. All unlabeled vertices in T ′ that is not
the root of T ′ have degree 3. We say that a leaf-labeled forest F ′ is a subforest
of a rooted X-forest F if F ′ is isomorphic to a subforest of the X=forest F (up
to the forced contraction).



Parameterized Algorithms for Maximum Agreement Forest on Multiple Trees 571

Agreement Forests
The following terminologies are used for both rooted and unrooted versions.

An X-forest F is an agreement forest for a collection {F1, F2, . . . , Fm} of
X-forests if F is a subforest of Fi, for all i. A maximum agreement forest
(abbr. MAF) F ∗ for {F1, F2, . . . , Fm} is an agreement forest for {F1, F2, . . . , Fm}
with a minimum Ord(F ∗) over all agreement forests for {F1, F2, . . . , Fm}.

The problems we are focused on are parameterized versions of the Maximum
Agreement Forest Problem for an arbitrary number of X-trees, with a rooted
version and an unrooted version, which are formally given as follows.

rooted maximum agreement forest (rooted-maf)
Input: A set {F1, . . . , Fm} of rooted X-forests, and a parameter k
Output: an agreement forest F ∗ for {F1, . . . , Fm} with Ord(F ∗) ≤ k,

or report that no such an agreement forest exists

unrooted maximum agreement forest (unrooted-maf)
Input: A set {F1, . . . , Fm} of unrooted X-forests, and a parameter k
Output: an agreement forest F ∗ for {F1, . . . , Fm} with Ord(F ∗) ≤ k,

or report that no such an agreement forest exists
When each of the X-forests F1, . . ., Fm is an X-tree, the above problems be-
come the standard Maximum Agreement Forest Problems on multiple binary
phylogenetic trees, for the rooted version and the unrooted version, respectively.

The following concept on two X-forests will be important in our discussion,
which applies to both rooted version and the unrooted version.

Definition 1. Let F1 and F2 be two X-forests (either both rooted or both
unrooted). An agreement forest F for F1 and F2 is a maximal agreement forest
(maximal-AF) for F1 and F2 if there is no agreement forest F ′ for F1 and F2

such that F is a subforest of F ′ and Ord(F ′) < Ord(F ).

By definition, an MAF for two X-forests F1 and F2 is also a maximal-AF for
F1 and F2. Note that every agreement forest for two X-forests F1 and F2 is a
subforest of a maximal-AF F ′ for F1 and F2, but F

′ may not be unique.

3 Maximal-AF for Two X-Forests

Fix a label-set X . Because of the bijection between the leaves in an X-forest F
and the elements in the label-set X , sometimes we will use, without confusion,
a label in X to refer to the corresponding leaf in F , or vice versa.

Let F1 and F2 be two X-forests, either both are rooted or both are unrooted.
In this section, we discuss how we enumerate all maximal-AF for F1 and F2.
The discussion is divided into the case for the rooted version and the case for
the unrooted version.

Rooted Maximal-AF
In this case, both F1 and F2 are rooted X-forests. We proceed by repeatedly
removing edges in F1 and F2 until certain condition is met. Let F ∗ be a fixed
maximal-AF for F1 and F2.

Two labels a and b (and their corresponding leaves) in a forest are siblings if
they have the common parent. We start with the following simple lemma.



572 F. Shi et al.

Lemma 1. Let F1 and F2 be two strongly reduced rooted X-forests. If F2 con-
tains no sibling pairs, then F1 and F2 has a unique maximal-AF that can be
constructed in linear time.

Proof. Let T be a connected component of F2, which is a rooted leaf-labeled
tree. If F2 contains no sibling pairs, then neither does T . Therefore, if T does
not contain the root ρ, then T must be a single-vertex tree whose leaf is a labeled
vertex. If T contains ρ, then T is either a single-vertex tree whose leaf is ρ or
a single-edge tree whose root is ρ with a unique child that is labeled by a label
τ . Thus, all connected components of the X-forest F2 are single-vertex trees,
except at most one that is a single-edge tree whose two leaves are labeled by the
elements ρ and τ in X . Therefore, if the leaves ρ and τ are in the same connected
component in the X-forest F1, then the (unique) maximal-AF for F1 and F2 is
the X-forest F2 itself. On the other hand, if ρ and τ are in different connected
components in F1, then the maximal-AF (again unique) for F1 and F2 consists
of only single-vertex trees, each is labeled by an element in X . ��

By Lemma 1, therefore, in the following discussion, we will assume that the
rooted X-forest F2 has a sibling pair (a, b). By definition, a and b cannot be ρ.
Let p2, which is an unlabeled vertex, be the parent of a and b in F2. If one of
a and b is a single-vertex tree in the X-forest F1, then we can remove the edge
in F2 that is incident to the label, and break up the sibling pair in F2. Thus, in
the following discussion, we assume that none of a and b is a single-vertex tree
in F1. Let p1 and p′1 be the parents of a and b in F1, respectively. We consider
all possible cases for the labels a and b in the X-forest F1.
Case 1. The labels a and b are in different connected components in F1.

In this case, a and b cannot be in the same connected component in the
maximal-AF F ∗. Therefore, one of the edges [a, p2] and [b, p2] in F2 must be
removed, which forces one of the labels a and b to be a single-vertex tree in the
maximal-AF F ∗. Therefore, in this case, we apply the following branching step:

Step 1. (branch-1) remove the edge [a, p1] in F1 and the edge [a, p2] in F2

to make a a single-vertex tree in both F1 and F2;
(branch-2) remove the edge [b, p′1] in F1 and the edge [b, p2] in F2

to make b a single-vertex tree in both F1 and F2.

One of these branches will keep F ∗ a maximal-AF for the new F1 and F2.
Case 2. The labels a and b are also siblings in F1, i.e., p1 = p′1.

Since F ∗ is a maximal-AF, in this case, a and b must be also siblings in
F ∗. Therefore, the structure that consists of a and b and their parent remains
unchanged when we construct F ∗ from F1 and F2 by removing edges in F1 and
F2. Thus, this structure can be regarded as a single leaf labeled by a “combined”
label ab in both F1 and F2. To implement this, we apply the following step:

Step 2. Remove a and b, and make their parent a new leaf labeled ab, in both
F1 and F2.

We call the operation in Step 2 “shrinking a and b into a new label ab”. This
step not only changes the structure of F1 and F2, but also replaces the label-set



Parameterized Algorithms for Maximum Agreement Forest on Multiple Trees 573

X with a new label-set (X \ {a, b})) ∪ {ab}. If we also apply this operation in
the maximal-AF F ∗, then the new F ∗ remains a maximal-AF for F1 and F2.
Case 3. The labels a and b are in the same connected component in F1 but are
not siblings.

Let P = {a, c1, c2, . . . , cr, b} be the unique path in F1 connecting a and b, in
which ch is the least common ancestor of a and b, 1 ≤ h ≤ r. Since a and b are
not siblings, r ≥ 2. See Figure 1(a) for an illustration. There are three subcases.

Subcase 3.1. a is a single-vertex tree in F ∗. Then removing the edge incident
to a in both F1 and F2 keeps F ∗ a maximal-AF for F1 and F2.

Subcase 3.2. b is a single-vertex tree in F ∗. Then removing the edge incident
to b in both F1 and F2 keeps F ∗ a maximal-AF for F1 and F2.

Subcase 3.3. Neither of a and b is a single-vertex tree in F ∗. Then the two
edges that are incident to a and b in F2 must be kept in F ∗. Therefore, a and b
are siblings in F ∗. On the other hand, in order to make a and b siblings in the
X-forest F1, all edges that are not on the path P but are incident to a vertex
cj in P , where j �= h, must be removed (note that this is because the subtrees
in an X-forest must preserve the ancestor-descendant relation). Note that since
r ≥ 2, there is at least one such an edge. Therefore, in this subcase, if we remove
all these edges, then F ∗ remains a maximal-AF for F1 and F2.

Summarizing the above analysis, in Case 3, we apply the following step:

Step 3. (branch-1) remove the edge incident to a in both F1 and F2;
(branch-2) remove the edge incident to b in both F1 and F2;
(branch-3) remove all edges in F1 that are not on the path P connecting

a and b but are incident to a vertex in P , except the one that
is incident to the least common ancestor of a and b.

One of these branches must keep F ∗ a maximal-AF for the new F1 and F2.
Therefore, for two given rooted X-forests F1 and F2, if we iteratively apply

the above process, branching accordingly based on the cases, then the process
will end up with a pair (F1, F2) in which F2 contains no sibling pairs. When this
occurs, the process applies the following step:

Final Step. if F2 has no sibling pairs, then construct the maximal-AF F ∗ for
F1 and F2, and convert F ∗ into an agreement forest for the original F1 and F2.

When F2 contains no sibling pairs, by Lemma 1, we can construct the (unique)
maximal-AF F ∗ for F1 and F2 in linear time. The forest F ∗ may not be a
subforest of the original F1 and F2 because Step 2 shrinks labels. For this, we
should “expand” the shrunk labels, in a straightforward way. Note that this
expanding process may be applied iteratively.

Summarizing the above discussion, we conclude with the following lemma.

Lemma 2. Let F1 and F2 be two rooted X-forests. If we apply Steps 1-3 it-
eratively until F2 contains no sibling pairs, then for every maximal-AF F ∗ for
the original F1 and F2, at least one of the branches in the process produces the
maximal-AF F ∗ in its Final Step.

Proof. Fix a maximal-AF F ∗ for F1 and F2. By the above analysis, for each
of the cases, at least one of the branches in the corresponding step keeps F ∗



574 F. Shi et al.

a maximal-AF for F1 and F2. Moreover, when F2 contains no sibling pairs,
the maximal-AF for F1 and F2 becomes unique. Combining these two facts, we
conclude that at least one of the branches in the process ends up with an pair F1

and F2 whose maximal-AF, after the final step, is F ∗. Since F ∗ is an arbitrary
maximal-AF for F1 and F2, the lemma is proved. ��

�
ch

�
�

�
��

���
����

�

���
����

�c1 �cr
�

��
�
��

���
����

���
�����a �b

F1 �
�
�

��

�
�
�
���

�� ���a �b

F2

�c1
��

��
�����

�a

� cr
��

��
�����

�b
F1

�

��

��

�a

�b

��
�
��

�
�
��F2

(a) (b)

Fig. 1. The path connecting the labels a and b in F1 when F1 is (a) rooted; (b) unrooted

Unrooted Maximal-AF
The analysis for the unrooted version proceeds in a similar manner. However,
since an unrooted tree enforces no ancestor-descendant relation in the tree, sub-
trees in the tree have no requirement of preserving such a relation. This fact
induces certain subtle differences.

Let F1 and F2 be two unrooted X-forests, and let F ∗ be a fixed maximal-AF
for F1 and F2. Recall that we assume F1 and F2 to be strongly reduced.

Two labels a and b in an unrooted X-forest F are siblings if either they are the
two leaves of a single-edge tree in F , or they are adjacent to the same non-leaf
vertex in F , which will be called the “parent” of a and b.

An unrooted X-forest with no sibling pairs has an even simpler structure: all
its connected components are single-vertex trees. Thus, we again have:

Lemma 3. Let F1 and F2 be two unrooted X-forests. If F2 contains no sibling
pairs, then the maximal-AF for F1 and F2 can be constructed in linear time.

Thus, again we will assume that the unrooted X-forest F2 has a sibling pair
(a, b). Also we can assume that none of a and b is a single-vertex tree in F1.
Case 1. The labels a and b are in different connected components in F1.

In this case, again one of the labels a and b must be a single-vertex tree in
the maximal-AF F ∗. Therefore, we apply the following step:

Step 1. (branch-1) remove the edge incident to a in both F1 and F2 to make
a a single-vertex tree in both F1 and F2;

(branch-2) remove the edge incident to b in both F1 and F2 to make
b a single-vertex tree in both F1 and F2.

Case 2. The labels a and b are also siblings in F1.
We have to be a bit more careful for this case since a sibling pair may come

from a single-edge tree. There are three different cases: (1) a and b come from a
single-edge tree in both F1 and F2; (2) a and b come from a single-edge tree in
exact one of F1 and F2; and (3) a and b have a common parent in both F1 and
F2. By a careful analysis and noticing that F ∗ is maximal, we can verify that in



Parameterized Algorithms for Maximum Agreement Forest on Multiple Trees 575

all these subcases it is always safe to shrink a and b into a new label, which is
implemented by the following step:

Step 2. Shrink the labels a and b in both F1 and F2: if a and b have a common
parent, then remove the edges incident to a and b and make their parent a new
leaf labeled ab; if a and b come from a single-edge tree, then combine them into
a single vertex labeled ab.

After this process, the maximal-AF F ∗ for F1 and F2, in which the labels a
and b are also shrunk, remains a maximal-AF forest for the new F1 and F2.
Case 3. a and b are in the same connected component in F1 but are not siblings.

Let P = {a, c1, c2, . . . , cr, b} be the unique path in F1 that connects a and b,
where r ≥ 2. See Figure 1(b) for an illustration. The cases in which either a or
b is a single-vertex tree in F ∗ again cause removing the edge incident to a or b
in F1. However, when a and b are siblings in F ∗, then in F1, at most one of the
edges that are not on the path P but are incident to a vertex in P can be kept.
However, since the subtree in an unrooted forest does not need to preserve any
ancestor-descendant relation, we cannot decide which of these edges should be
kept. On the other hand, since r ≥ 2, we know at least one of the two edges,
which are not on the path P but are incident to c1 and cr, respectively, must be
removed. Therefore, we can branch by removing either the one incident to c1 or
the one incident to cr. In summary, in Case 3, we apply the following step:

Step 3. (branch-1) remove the edge incident to a in both F1 and F2;
(branch-2) remove the edge incident to b in both F1 and F2;
(branch-3) remove the edge incident to c1 but not on the path P in F1;
(branch-4) remove the edge incident to cr but not on the path P in F1.

One of these branches must keep F ∗ a maximal-AF for the new F1 and F2.
Again if the unrooted X-forest F2 contains no sibling pairs, then we apply

Lemma 3 to construct the maximal-AF for F1 and F2 by the following step:

Final Step. If F2 contains no sibling pairs, then construct the maximal-AF F ∗

for F1 and F2, and convert F ∗ into an agreement forest for the original F1, F2.

The above analysis finally gives the following conclusion, whose proof is ex-
actly the same as that of Lemma 2 for the rooted version.

Lemma 4. Let F1 and F2 be two unrooted X-forests. If we apply Steps 1-3
iteratively until F2 contains no sibling pairs, then for every maximal-AF F ∗ for
the original F1 and F2, at least one of the branches in the process produces the
maximal-AF F ∗ in its Final Step.

4 The Parameterized Algorithms

Now we are ready for presenting the parameterized algorithms for the maf prob-
lem, for both the rooted version as well as the unrooted version. Let F1, F2, . . .,
Fm be m X-forests, either all are rooted or all are unrooted. We first give a few
lemmas, which hold true for both rooted and unrooted versions. Assume m ≥ 3.

The first lemma follows directly from the definition.



576 F. Shi et al.

Lemma 5. Let F ′ be an agreement forest for F1 and F2. Then every agreement
forest for {F ′, F3, . . . , Fm} is an agreement forest for {F1, F2, . . . , Fm}. If F ′

contains an MAF for {F1, F2, . . . , Fm}, then an MAF for {F ′, F3, . . . , Fm} is
also an MAF for {F1, F2, . . . , Fm}.

Lemma 6. For every MAF F for {F1, F2, . . . , Fm}, there is a maximal-AF F ∗

for F1 and F2 such that F is also an MAF for {F ∗, F3, . . . , Fm}.

Proof. Let F0 be an MAF for {F1, F2, . . . , Fm}. Then F0 is an agreement for-
est for F1 and F2. Let F ∗ be a maximal-AF for F1 and F2 that has F0 as
a subforest. Then F0 is an agreement forest for {F ∗, F3, . . . , Fm}. Therefore,
the order of an MAF for {F ∗, F3, . . . , Fm} is at most Ord(F0). On the other
hand, since F ∗ is a subforest of both F1 and F2, every agreement forest for
{F ∗, F3, . . . , Fm} is also an agreement forest for {F1, F2, . . . , Fm}. Therefore,
the order of an MAF for {F ∗, F3, . . . , Fm} is at least Ord(F0), thus must be
equal to Ord(F0). Since F0 is an agreement forest for {F ∗, F3, . . . , Fm}, F0 must
be an MAF for {F ∗, F3, . . . , Fm}. ��

Now consider an instance (F1, F2, . . . , Fm; k) of maf, either rooted or unrooted.
For a subforest F ′ of a forest F , we always have Ord(F ) ≤ Ord(F ′). Thus,
no maximal-AF F for F1 and F2 with Ord(F ) > k can contain an MAF F ′ for
(F1, F2, . . . , Fm) with Ord(F ′) ≤ k, so we only need to examine all maximal-AFs
whose order is bounded by k. An outline of our algorithm works as follows:

Main-Algorithm
1. construct a collection C of agreement forests for F1 and F2 that

contains all maximal-AF F ∗ for F1 and F2 with Ord(F ∗) ≤ k;
2. for each agreement forest F for F1 and F2 constructed in step 1 do

recursively work on the instance (F, F3, . . . , Fm; k).

Theorem 1. The Main-Algorithm correctly returns an agreement forest F for
{F1, F2, . . . , Fm} with Ord(F ) ≤ k if such an agreement forest exists.

Proof. For an F ′ in the collection C, by Lemma 5, a solution to (F ′, F3, . . . , Fm; k)
returned by step 2 is also a solution to (F1, F2, . . . , Fm; k). On the other hand,
if (F1, F2, . . . , Fm; k) has a solution, then an MAF F0 for {F1, F2, . . . , Fm} sat-
isfies Ord(F0) ≤ k. For the maximal-AF F ∗ for F1 and F2 that contains F0, by
Lemma 6, F0 is also a solution to (F ∗, F3, . . . , Fm; k), which is an instance exam-
ined in step 2. On this instance, Step 2 will return a solution that, by Lemma 5,
is also a solution to (F1, F2, . . . , Fm; k). ��

In the following, we present the details for the Main-Algorithm for the rooted
version. By Theorem 1,our must carefully check that all maximal-AF’s F for F1

and F2 with Ord(F ) ≤ k be constructed in the collection C. Also, we should
develop algorithms to achieve the desired complexity bounds.

A Parameterized Algorithm for Rooted-maf
The parameterized algorithm for rooted-maf is a combination of the analysis
given in Section 3 and the Main-Algorithm, which is given in Figure 2.



Parameterized Algorithms for Maximum Agreement Forest on Multiple Trees 577

Algorithm. Rt-MAF(F1, F2, . . . , Fm; k)
Input: a collection {F1, F2, . . . , Fm} of rooted X-forests, m ≥ 1, and a parameter k
Output: an agreement forest F ∗ for {F1, F2, . . . , Fm} with Ord(F ∗) ≤ k if F ∗ exists

1. if (m = 1) then if (Ord(F1) ≤ k) then return F1 else return(‘no’);
2. if (Ord(F1) > k) then return(‘no’);
3. if a label a is a single-vertex tree in exactly one of F1 and F2

then make a a single-vertex tree in both F1 and F2;
4. if F2 has no sibling pairs

then let F ′ be the maximal-AF for F1 and F2; return Rt-MAF(F ′, F3, . . . , Fm; k);
5. let (a, b) be a sibling pair in F2;
6. if a and b are in different connected components in F1

then branch:
1. make a a single-vertex tree in both F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);
2. make b a single-vertex tree in both F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);

7. if a and b are also siblings in F1

then shrink a, b into a new leaf ab in F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);
8. let P = {a, c1, . . . , cr, b} be the unique path in F1 connecting a and b, r ≥ 2;

then branch:
1. make a a single-vertex tree in both F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);
2. make b a single-vertex tree in both F1 and F2; return Rt-MAF(F1, F2, . . . , Fm; k);
3. remove all edges in F1 not on P but incident to a vertex in P , except the one
incident to the least common ancestor of a, b; return Rt-MAF(F1, F2, . . . , Fm; k).

Fig. 2. Algorithm for the Rooted-maf problem

The algorithm is a branch-and-search process. Its execution can be depicted
by a search tree T whose leaves correspond to conclusions or solutions generated
by the algorithm based on different branches. Each internal node of the search
tree T corresponds to a branch in the search process at Steps 6 or 8 based on
an instance of the problem. We call a path from the root to a leaf in the search
tree T a computational path in the process. The algorithm returns an agreement
forest for the original input if and only if there is a computational path that
outputs the forest.

The correctness and complexity of the algorithm can be verified based on
the corresponding search tree T . Due to the space limit, here we just give the
concluding theorem, the entire discussion for this case will be given in a complete
version.

Theorem 2. The rooted-maf problem can be solved in time O(3kn).

A Parameterized Algorithm for Unrooted-maf
The parameterized algorithm for unrooted-maf proceeds in a similar way,

based on the corresponding analysis given in Section 3. Due to the space limit,
we only present its main result below, the specific algorithm for unrooted-maf
and the entire discussion for this case will be give in the complete version.

Theorem 3. The unrooted-maf problem can be solved in time O(4kn).



578 F. Shi et al.

5 Conclusion

In this paper, we presented two parameterized algorithms for the Maximum
Agreement Forest problem on multiple binary phylogenetic trees: one for rooted
trees that runs in time O(3kn), and the other for unrooted trees that runs in
time O(4kn). To our best knowledge, these are the first group of fixed-parameter
tractable algorithms for the Maximum Agreement Forest problem on multiple
phylogenetic trees. Further improvements on the algorithm complexity are cer-
tainly desired to make the algorithms more practical in their applications. On
the other hand, such an improvement seems to require new observations and
new algorithmic techniques: the complexity of our algorithms for multiple phy-
logenetic trees is not much worse than that of the known algorithms for two
phylogenetic trees – some of these algorithms were just developed very recently.

References

1. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on evo-
lutionary trees. Annals of Combinatorics 5(1), 1–15 (2001)

2. Bordewich, M., McCartin, C., Semple, C.: A 3-approximation algorithm for the
subtree distance between phylogenies. J. Discrete Algorithms 6(3), 458–471 (2008)

3. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree
prune and regraft distance. Annals of Combinatorics 8(4), 409–423 (2005)

4. Chataigner, F.: Approximating the maximum agreement forest on k trees. Infor-
mation Processing Letters 93, 239–244 (2005)

5. Chen, J., Fan, J.-H., Sze, S.-H.: Improved algoithms for the maximum agreement
forest problem on general trees. In: WG 2013 (submitted, 2013)

6. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
7. Hallett, M., McCartin, C.: A faster FPT algorithm for the maximum agreement

forest problem. Theory of Computing Systems 41(3), 539–550 (2007)
8. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolu-

tionary trees. Discrete Applied Mathematics 71, 153–169 (1996)
9. Hodson, F., Kendall, D., Tauta, P. (eds.): The recovery of trees from measures

of dissimilarity. Mathematics in the Archaeological and Historical Sciences, pp.
387–395. Edinburgh University Press, Edinburgh (1971)

10. Li, M., Tromp, J., Zhang, L.: On the nearest neighbour interchange distance be-
tween evolutionary trees. Journal on Theoretical Biology 182(4), 463–467 (1996)

11. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Mathematical Bio-
sciences 53(1-2), 131–147 (1981)

12. Rodrigues, E., Sagot, M., Wakabayashi, Y.: The maximum agreement forest
problem: approximation algorithms and computational experiments. Theoretical
Computer Science 374(1-3), 91–110 (2007)

13. Swofford, D., Olsen, G., Waddell, P., Hillis, D.: Phylogenetic inference. In: Molec-
ular Systematics, 2nd edn., pp. 407–513. Sinauer Associates (1996)

14. Whidden, C., Beiko, R., Zeh, N.: Fixed-parameter and approximation algorithms
for maximum agreement forests. CoRR. abs/1108.2664 (2011)

15. Whidden, C., Zeh, N.: A unifying view on approximation and FPT of agreement
forests. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp.
390–402. Springer, Heidelberg (2009)



Small H-Coloring Problems for Bounded Degree

Digraphs

Pavol Hell1,� and Aurosish Mishra2,��

1 School of Computing Science, Simon Fraser University, Canada - V5A 1S6
pavol@sfu.ca

2 Department of Computer Science, Cornell University, USA - 14853
aurosish@cs.cornell.edu

Abstract. An NP-complete coloring or homomorphism problem may
become polynomial time solvable when restricted to graphs with de-
grees bounded by a small number, but remain NP-complete if the bound
is higher. For instance, 3-colorability of graphs with degrees bounded
by 3 can be decided by Brooks’ theorem, while for graphs with degrees
bounded by 4, the 3-colorability problem is NP-complete. We investigate
an analogous phenomenon for digraphs, focusing on the three smallest di-
graphs H with NP-complete H-colorability problems. It turns out that in
all three cases the H-coloring problem is polynomial time solvable for di-
graphs with in-degrees at most 1, regardless of the out-degree bound (re-
spectively with out-degrees at most 1, regardless of the in-degree bound).
On the other hand, as soon as both in- and out-degrees are bounded by
constants greater than or equal to 2, all three problems are again NP-
complete. A conjecture proposed for graphs H by Feder, Hell and Huang
states that any variant of the H-coloring problem which is NP-complete
without degree constraints is also NP-complete with degree constraints,
provided the degree bounds are high enough. Thus, our results verify
the conjecture with very precise bounds on both in- and out-degrees
that are needed for NP-completeness; in particular, the bounds under-
score the fact that the sufficiently large bound must apply to both the
in-degrees and the out-degrees.

1 Introduction

Graph coloring problems arise naturally in several contexts of both theoretical
and applied nature. Be it scheduling events, solving pattern matching problems,
or allocating registers to processes, many constraint satisfaction problems can
be easily modeled in the graph coloring setting. A slightly more general problem
is that of H-coloring.

Consider a fixed graph H . A homomorphism f : G → H is a mapping f :
V (G) → V (H) such that f(u)f(v) is an edge of H for each edge uv of G. An

� Partially supported by NSERC (Canada) and by ERCCZ LL 1201 Cores (Czech
Republic).

�� Supported by the MITACS Globalink Internship Program for undergraduate
students.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 579–590, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



580 P. Hell and A. Mishra

A-coloring B-coloring

0 2

1

0 2

1

0 2

1

C-coloring

Fig. 1. The digraphs A,B, and C

H-coloring of G is a homomorphism G → H . The definition is formally the
same for digraphs G,H : since the edges are directed, the homomorphism f is a
mapping that preserves both the edges and their direction.

The H-coloring problem is the decision problem which asks the following ques-
tion:

Given a graph G, is it possible to H-color G ?

The complexity of the H-coloring problem for graphs H has been widely studied
[10]. It is shown in [9] that the H-coloring problem is polynomial time solvable
if H is bipartite or contains a loop, and is NP-complete otherwise. A number
of variants of this basic family of problems have been considered, and in [8] the
authors have set up a framework for these variants. One of the parameters in
this framework is a restriction to graphs with a given upper bound on the vertex
degrees. For graphs with degrees bounded by 3, some H-coloring problems that
are NP-complete in general, become polynomial time solvable. However, these
problems tend to be NP-complete again when the degree bound is 4. Such is,
for instance, the situation with H = K3, i.e. with 3-colorings. The theorem of
Brooks ensures that a connected graph with degrees at most 3, other than K4,
is 3-colorable [3]. Thus 3-colorability of such graphs is decidable in polynomial
time. However, it is known that the 3-colorability of graphs with degrees at most
4 is NP-complete; this follows (via line graphs) from the result of Holyer [11] that
deciding whether the chromatic index of a graph is at most 3 is NP-complete.
(Our results also imply this fact, see Section 4.) Based on this, and additional
evidence of this kind, Feder, Hell and Huang conjectured that any variant of the
H-coloring problem which is NP-complete without degree constraints is also NP-
complete with degree constraints, provided the degree bound is high enough [4].
This has been confirmed for list H-colorings of graphs in [8], and for H-colorings
of graphs in [16].

In contrast, for digraphs H , the boundary between easy and hard H-coloring
problems is not well-understood. Some partial results have been published in
[14,1,7,2] and in several other papers, but it is still not known whether all di-
rected H-coloring problems are polynomial or NP-complete. This statement is
in fact equivalent to the well-known Dichotomy Conjecture of CSP [5]. A re-
fined version of the Dichotomy Conjecture, known as the Dichotomy Classifica-
tion Conjecture has been proposed in [12]: it claims a concrete classification of
H-coloring problems as polynomial versus NP-complete. It has been shown in



Small H-Coloring Problems for Bounded Degree Digraphs 581

[13,15] that the Dichotomy Classification Conjecture implies the conjecture of
Feder, Hell and Huang for H-coloring of digraphs. We focus on obtaining the
precise degree bounds which ensure the NP-completeness, in the case of the three
smallest digraphs H with NP-complete H-coloring problems. In particular, our
results underscore the fact that both the bounds on in- and out-degrees must be
sufficiently large.

Note that K3 can be viewed as a symmetric digraph, namely the digraph C in
Figure 1, and in this context C-coloring of a digraph G is precisely a 3-coloring
of the underlying undirected graph of G. The digraphs A,B, and C, in Figure 1,
are the smallest three digraphs H with NP-complete H-coloring problems. All
other digraphs H with three vertices have polynomial-time solvable H-coloring
problems [1,14]. (All digraphs H with fewer than three vertices have H-coloring
problems that can be solved in polynomial time by 2-SAT [10].) We investigate
these first three interesting cases. We confirm that the H-coloring problems for
these three digraphs,H = A,B, and C, are polynomial time solvable for digraphs
in which at least one of in-degree or out-degree is 1, and become NP-complete
again when both in- and out-degree bounds are at least 2.

Specifically, let Δ+ denote the maximum out-degree and Δ− the maximum
in-degree in a digraph. Consider the class of digraphs with Δ+ ≤ a, Δ− ≤ b.
We show that if min(a, b) = 1, then there are polynomial time A-coloring, B-
coloring, and C-coloring algorithms, but if min(a, b) ≥ 2, then all three problems
are again NP-complete for the class. The NP-completeness of C-coloring will
imply the theorem of Holyer [11] mentioned earlier.

For the polynomial cases, we provide algorithms for the more general problem
of list H-coloring.

2 General Digraphs

In this section, we will present new NP-completeness proofs for theA-coloring,B-
coloring, and C-coloring of general digraphs, i.e. without any degree restrictions.
It is a folklore result that these three problems are NP-complete [1,14]. The
proofs we provide here will facilitate extensions to graphs with bounded degrees.

As is standard in such proofs, we will have a variable gadget for each variable
and a clause gadget for each clause. We will reduce the problem 1-in-3-SAT to
the A- and B-coloring problems, i.e., for each conjunctive normal formula φ with
three literals per clause, we produce a graph Gφ in such a way that φ has a truth
assignment with exactly one true literal in each clause if and only if Gφ has an
H-coloring. For the C-coloring problem, we will show a simialr reduction from
the problem 3-SAT.

We begin with A-coloring. We construct a reduction from 1-in-3-SAT as fol-
lows. Let φ be a given 3-CNF formula. Consider the variable gadget U shown
in Figure 2(a). For each variable X in φ, we have one such gadget, with the two
endpoints of U corresponding to the variable X and its negation X.

Figure 2(b) depicts the clause gadget W , for a generic clause Ci = (� ∨ �′ ∨
�′′) with three literals �, �′, �′′. The vertices �, �′, �′′ are identified with the same



582 P. Hell and A. Mishra

X X̄
0/1 1/0

(a) Variable
gadget U

0

2

1

Ci

�

�′ �′′

(b) Clause gadget
W

X1 X̄1

X̄2

X2 X̄3

X3

10

1

0

0

1

0

2

1

Ci

(c) Combining U and W :
clause Ci = (X1 ∨X2 ∨X3)

Fig. 2. NP-completeness of A-coloring

literals of the corresponding variable gadgets, producing a graph Gφ. Note that
an endpoint of a variable gadget has an outgoing edge for each occurence of the
corresponding variable (or its negation) in a clause of φ.

The graph A has only one digon, with the vertices 0 and 1. Thus, there are
exactly two ways of A-coloring the variable gadget U , with X colored either 0 or
1 and X colored 1 or 0, respectively, as depicted in Figure 2(a). The inner 3-cycle
of the clause gadet W requires three different colors, and in fact the colors must
appear in the cyclic order 0, 2, 1, as depicted in the figure, up to the symmetry
of W . Consider now the possible colors of the vertices �, �′, �′′ (up to symmetry):

– (0,0,0) : as 00 is not an edge, this would not allow a 0 on the inner cycle;
– (1,1,1) : as 11 is not an edge, this would not allow a 1 on the inner cycle;
– (0,1,1) : as 10 is the only edge from 1, this would force two 0’s on the inner

cycle;
– (0,0,1) : Figure 2(c) depicts the unique A-coloring

It follows that in anyA-coloring of Gφ, exactly one literal in each clause is colored
by 1. Thus if we assign the value True to the literals colored 1 and value False to
the literals colored 0, we obtain a satisfying truth assignment for φ. Conversely,
if we start with a truth assignment and color all vertices of the variable gadgets
0 if the literal is False and 1 if the literal is True, there is, in each clause, exactly
one literal that is colored 1, and so the above analysis shows that the colors
can be extended to the inner cycles of all the clause gadgets. In conclusion, φ is
satisfiable if and only if Gφ is A-colorable.

Since the A-coloring problem is clearly in NP, we have the following theorem.

Theorem 1. The A-coloring problem is NP-complete.

A similar analysis applies for B-coloring. The variable gadget V is shown in
Figure 3(a). It is more complex than for A-coloring, but there are still two
vertices corresponding to the variable X and its negation X . It is important to
observe that V can be B-colored so that X,X are colored by 0, 1 or by 1, 0,
but no other pair of colors. To see this, note that the vertex lying in the two



Small H-Coloring Problems for Bounded Degree Digraphs 583

0

2

1

0

2 2
X

X̄

Ci

Cj

0/1

1/0

Ck

(a) Variable gadget V

0

2

1

Ci

�

�′ �′′

01

1

(b) Clause gadget Ŵ

Fig. 3. NP-completeness of B-coloring

adjoining triangles must be colored 1 in any B-coloring of V , thus forcing the
colors of the adjoining triangles of V as depicted in the figure. Therefore, the
color of X is either 0 or 1 (since it has an out-neighbor colored 2). On the other
hand, the color of X cannot be 2, since X has two adjacent out-neighbors. Thus
coloring X by 0 forces X to be colored 1 and vice versa, and no other pair of
colors for X,X is possible.

Figure 3(b) depicts the clause gadget Ŵ for Ci = (� ∨ �′ ∨ �′′) of the 3-CNF
formula. This gadget is similar to the gadget W used for A coloring, except the
edges now point away from the center cycle, into the variable gadgets. In any
B-coloring, the inner cycle requires three different colors. Again, colors in the
order of 0, 2, 1, as depicted, give the only B-coloring for such a cycle (up to
symmetry). The vertices �, �′, �′′ are identified with the corresponding literals.
They can only be colored 0 or 1. This again gives rise to four possibilities for
the colors of �, �′, �′′ (up to symmetry), but here only (0,1,1) is a valid choice:

1. (0,0,0) : as 00 is not an edge, this would not allow a 0 on the inner cycle;
2. (1,1,1) : as 11 is not an edge, this would not allow a 1 on the inner cycle;
3. (0,0,1) : as 20 is not an edge, this would force two 1’s on the inner cycle;
4. (0,1,1) : Figure 3(b) depicts the unique B-coloring.

Now, if we assign a truth value of True to the literals that are colored 0, and
False to the literals that are colored 1, we have a satisfying assignment for the
1-in-3-SAT problem, and vice-versa. Thus, we have the following theorem.

Theorem 2. The B-coloring problem is NP-complete.

Finally, we handle the case of C-coloring.
Recall that a C-coloring of a digraph G is precisely a 3-coloring of the underly-

ing undirected graph ofG. Thus we can use the proof from [6], which constructs a
reduction from 3-SAT using the clause gadget depicted in Figure 4(b). The vari-
able gadget depicted in Figure 4(a), and the identification of the literals �, �′, �′′

with the same literals of the appropriate clause gadgets of Gφ are made as be-
fore. Assuming the top vertex of the clause gadget is colored 1 as depicted, the
three vertices labelled �, �′, �′′ (corresponding to the literals) cannot be colored
by 0, 0, 0, but can be colored by any other combination of 0, 1. Now it is easy



584 P. Hell and A. Mishra

X X̄
0/1 1/0

(a) Variable
gadget T

� �
′

�
′′

1

(b) Clause
gadget W ′

Fig. 4. NP-completeness of C-coloring

to see that an instance φ of 3-SAT is satisfiable if and only if the corresponding
digraph Gφ (i.e., its underlying undirected graph) is 3-colorable cf. [6].

Theorem 3. The C-coloring problem is NP-complete.

3 Bounded Degree Digraphs

We observed in the previous section that the A-, B-, and C-coloring problems
are NP-complete for general digraphs. Now, we investigate the same problems
restricted to the class of digraphs with bounded in- and out-degrees.

Let H be any fixed digraph. We begin by presenting a polynomial-time H-
coloring algorithm for digraphs G with degree bound Δ− ≤ 1, or degree bound
Δ+ ≤ 1. This will imply that there are polynomial-time algorithms for any
restriction to digraphs with degree bounds Δ+ ≤ a, Δ− ≤ 1, or Δ+ ≤ 1,
Δ− ≤ b, where a, b are any positive integers.

A connected digraph G with degree bound Δ− ≤ 1, or degree bound Δ+ ≤ 1
is either a rooted tree or a directed cycle with rooted trees attached at vertices
of the cycle (see Figure 5(c) illustrating the case Δ+ ≤ 2, Δ− ≤ 1). Oriented
cycles and multiple directed cycles in a single component are not possible since
they would violate the degree requirement at some vertex.

As mentioned earlier, we actually solve a more general problem called list
H-coloring. To begin with, let us introduce it formally. Given a fixed digraph H ,
the problem of list H-coloring is the following:

Given an input graph G, and for each v ∈ V (G), a list L(v) ⊆ V (H), is there a
homomorphism f : G→ H such that f(v) ∈ L(v) for all vertices v ∈ V (G) ?

We note that by setting all lists L(v) = V (H), we reduce the H-coloring problem
to the list H-coloring problem. Thus, solving the list H-coloring problem in
polynomial time also solves the H-coloring problem in polynomial time.



Small H-Coloring Problems for Bounded Degree Digraphs 585

(a) Rooted
tree

(b) Directed
cycle

(c) Cycle with
hanging trees

Fig. 5. Bounded digraphs: Δ+ ≤ 2, Δ− ≤ 1

Algorithm. Arc Consistency is a basic technique from artificial intelligence, use-
ful for solving list homomorphism problems [10]. In particular, it consists of
considering an edge uv of the input graph G and reducing the lists L(u), L(v)
so that for each x ∈ L(u) there exists a y ∈ L(v) with xy ∈ E(H), and for each
z ∈ L(v) there exists a w ∈ L(u) with wz ∈ E(H). This kind of constraint prop-
agation will make the entire graph arc consistent by repeating this removal as
long as possible, while the lists in G are changing. Since H is fixed, after linearly
many updates we obtain final lists satisfying all these constraints. It is easy to
observe that if there is at least one empty final list, there is no homomorphism
from G to H satisfying the original lists.

When G is a tree and the final lists are all non-empty, there is a list homo-
morphism G→ H satisfying the original lists - simply choose one element from
the final list of the root vertex and propagate this choice to all other vertices
using the fact that both constraints were satisfied. This is not true, however,
in general. For instance, when H is the 2-cycle with edges 01, 10 and G is a di-
rected cycle of odd length (see Figure 5(b)) with all lists equal to {0, 1}, then the
conditions are satisfied but there is no homomorphism. If we choose one vertex
of the 5-cycle and map it to 0, say, then the constraints will propagate around
the cycle and arrive requiring the choice 1 at the chosen vertex (and vice versa).
However, if at least one vertex of a cycle has a list of size one, the constraint
propagation around the cycle will work properly.

With this knowledge in mind, we propose our list H-coloring algorithm:

1. Run an arc-consistency algorithm over all the edges of G.
2. If some vertex has an empty list after the arc-consistency process, then, there

is no list homomorphism.
3. Else, find an H-coloring for each weak component of G separately.

– If the component is a tree, choose one vertex and map it to one member
of its list and propagate this choice to the entire component.
– If the component is a directed cycle, choose one vertex u, and consider
|L(u)| subproblems, in which the list L(u) is reduced to a single vertex of
H , i.e. for each of the possible L(u) choices. Perform constraint propagation



586 P. Hell and A. Mishra

through the component based on this choice. If at least one choice leads to
a homomorphism, then we have a solution, otherwise there is no solution.
– If the component has a directed cycle with hanging trees, follow the pro-
cedure to find a homomorphism for the directed cycle first. Then, extend it
to find a homomorphism for each of the hanging trees.

Lemma 1. Let H be a fixed digraph, and let a, b be any positive integers. The
list H-coloring problem is polynomial time solvable for digraphs with Δ+ ≤ a,
Δ− ≤ 1, or Δ+ ≤ 1, Δ− ≤ b.

In particular, this applies to H = A,B,C.
We now focus on input digraphs with Δ+ ≤ a, Δ− ≤ b, where both a, b

are at least 2. In order to prove the NP-completeness of this bounded degree
setting, we only need to prove the conclusion for a = b = 2. We shall make
modifications to the gadgets used in the unbounded degree case, as the variable
gadgets used in Section 2 could potentially have very high outdegree or indegree
at the literal vertices. So, to keep the degree constraints satisfied, we need to
construct multiple copies of each literal to join the clause gadgets of various
clauses in which the literal occurs. At the same time, we have to ensure that the
color assigned to the literal vertex remains same in all copies, so that we have a
consistent truth value assignment.

Lemma 2. The A-coloring problem is NP-complete, even when restricted to
digraphs with Δ+ ≤ 2, Δ− ≤ 2.

Consider the variable gadget U used in Figure 2(a). If a literal occurs x times in
φ, then the NP-completeness construction gives the corresponding vertex in U
an out-degree of x + 1. Therefore, we shall consider a modified variable gadget
U ′, see Figure 6(a), which has multiple copies of each literal vertex. If X occurs
x times in φ, and X occurs x′ times in φ, then we construct U ′ using digons
U1, U2, . . . , Uk, where k = max(x, x′).

As before, in any A-coloring each digon must be colored by 0 and 1. Because
of the vertex i1, the first two copies of X must be colored by the same color, 0 or
1. (Indeed, there is no vertex in A that has an edge to both 0 and 1.) Similarly,
the vertex i2 ensures that the second and third copy of X are colored by the same
color. Repeating this argument we conclude that all vertices corresponding to X
have the same color, and similarly for X. This allows us to apply the previous
proof to a new graph Gφ in which each literal vertex in U ′ is adjacent to at
most one clause gadget W (the same clause gadget as before). Thus Gφ has all
in- and out-degrees bounded by 2. It follows from the above remarks that each
A-coloring of Gφ yields a satisfying truth assignment of φ, and it is also easy to
see that any satisfying truth assignment of φ can be extended to an A-coloring
of Gφ.

The analysis is again similar for B-coloring.

Lemma 3. The B-coloring problem is NP-complete, even when restricted to
digraphs with Δ+ ≤ 2, Δ− ≤ 2.



Small H-Coloring Problems for Bounded Degree Digraphs 587

0 1

0

0 1

1

0/2

1

X X̄

X

X

X̄

X̄

Ci

Cj

Ck

U1

U2

U3

i1

i2

(a) Bounded degree
variable gadget U ′

0

2

1

0

2 2
X

X̄

Ci

Cj

0/1

1/0

2
X

X̄

0/1

1/0

1
Ck

V1

V2

j1

2
X

X̄

0/1

1/0

1

V3

j2

(b) Bounded degree variable gad-
get V ′

Fig. 6. A- and B-coloring for Δ+ ≤ 2, Δ− ≤ 2 ∈ NP-complete

In this case, we consider construct Gφ from the modified variable gadget V ′ in

Figure 6(b), and the same clause gadget Ŵ as before. If X occurs x times in φ,
and X occurs x′ times in φ, then we construct V ′ using triangles V1, V2, . . . , Vk,
where k = max(x, x′), allowing for a sufficient number of copies of X and X to
keep the in- and out-degrees bounded by 2. It remains to verify that the repeated
copies of X and X must obtain the same color in any B-coloring of Gφ. As noted
earlier, the third vertex of V1 must be colored 2, and hence the vertex j1 must
be colored 1. This means that the third vertex of V2 is colored 0 or 2; but 0 is
not possible as the vertex has in-degree two and 20 is not an edge of B. Thus
the third vertex of each Vi is 2. It now follows that in any B-coloring of V ′ all
copies of X (and all copies of X) receive the same color, 0 or 1. Therefore, we
can repeat the previous proof of NP-completeness.

Finally, we discuss C-coloring.

Lemma 4. The C-coloring problem is NP-complete, even when restricted to
digraphs with Δ+ ≤ 2, Δ− ≤ 2.

1

0/2

2/0

1 1

(a) 3-coloring of K1,1,3

0/1 0/1 0/1

2

X X̄ X

2 2 2

(b) Bounded degree variable gadget T ′

Fig. 7. C-coloring for Δ+ ≤ 2, Δ− ≤ 2 ∈ NP-complete



588 P. Hell and A. Mishra

C1 C2 C3

0 1

2

Clause Chain

Variable Chain

X1 X1
X1

X2 X2 X2

Fig. 8. The overall NP-completeness construction of Gφ

Here, we use the variable gadget depicted in Figure 7(b). It is an orientation of
a chain of copies of K1,1,3, and K1,1,3 is a graph that takes the same color for
every vertex of degree two. Thus assuming the leftmost vertex is colored 2 as
depicted, all the vertices corresponding to X and X are colored by 0 and 1 or
1 and 0 respectively. The overall construction is depicted in Figure 8. There is
a basis triangle from which the construction emanates, and which is assumed to
be colored by 0, 1, 2 as depicted (by renaming the colors if necessary). There is a
clause chain (of copies ofK1,1,3) providing us with a sufficient number of vertices
colored 1 for each clause Ci of φ. We use the same clause gadget W ′ as in the
unbounded setting. Finally, there is a variable chain (of copies of K1,1,3) yielding
a sufficient number of vertices colored 2 for each variable Xj . The literal vertices
of the clause gadgets are identified with the corresponding literals in the variable
chains as before. It is easy to check that the maximum in- and out-degree is two,
and that φ is satisfiable if and only if Gφ is 3-colorable.

Combining all the results for the restricted setting of bounded degree input
graphs, we have our main theorem.

Theorem 4. Deciding A-, B-, and C-colorability for input digraphs with Δ+ ≤
a,Δ− ≤ b is in P if min(a, b) = 1, and is NP-complete if min(a, b) ≥ 2.

4 Conclusions

There are three smallest digraphs H with NP-complete H-coloring problems,
namely A,B, and C from Figure 1. We have shown that for all three, the H-
coloring problem remains NP-complete if the in- and out-degrees are bounded
from above by any constants larger than or equal to 2, but become polynomial-
time solvable if at least of these degree bounds is lowered to 1. This underscores



Small H-Coloring Problems for Bounded Degree Digraphs 589

the fact that the degree bounds must be high enough for both the in-degree and
the out-degree: no degree bound on in-degrees ensures NP-completeness if the
out-degree bound is 1, and vice versa.

We conclude by noting that our proof implies the following classical result of
Holyer. The proof is exactly the same as for Lemma 4, except the edges of the
gadgets are not oriented.

Theorem 5. [11] The 3-coloring problem is NP-complete even when restricted
to graphs with maximum degree 4.

Acknowledgements. The authors thank the MITACS Globalink Internship
Program for undergraduate students for funding the internship of the second
author which made this collaboration possible. The authors would also like to
acknowledge the hospitality of Simon Fraser Univeristy, and especially of the
IRMACS center, where most of this was research was done, during the research
internship of the second author. Finally, the authors are very grateful to the
referees for excellent suggestions that improved the focus of this paper.

References

1. Bang-Jensen, J., Hell, P., MacGillivray, G.: The complexity of colouring by semi-
complete digraphs. SIAM J. Discret. Math. 1(3), 281–298 (1988)

2. Barto, L., Kozik, M., Niven, T.: Graphs, polymorphisms and the complexity of
homomorphism problems. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, STOC 2008, pp. 789–796. ACM, New York (2008)

3. Brooks, R.L.: On coloring the nodes of a network. In: Mathematical Proceedings
of the Cambridge Philosophical Society, pp. 194–197 (1941)

4. Feder, T., Hell, P., Huang, J.: List homomorphisms of graphs with bounded degrees.
Discrete Mathematics 307(3-5), 386–392 (2007)

5. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp
and constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1999)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

7. Hell, P., Zhu, X.: Duality and polynomial testing of tree homomorphisms. Trans.
Amer. Math. Soc. 348, 1281–1297 (1996)

8. Hell, P., Huang, J.: Counting list homomorphisms and graphs with bounded de-
grees. Discrete Math. (2001)

9. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory Ser.
B 48(1), 92–110 (1990)

10. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press (2004)
11. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720

(1981)
12. Jeavons, P.: On the algebraic structure of combinatorial problems. Theoretical

Computer Science 200, 185–204 (1998)



590 P. Hell and A. Mishra

13. Jonsson, P., Krokhin, A., Kuivinen, F.: Hard constraint satisfaction problems have
hard gaps at location 1. Theoretical Computer Science 410(38-40), 3856–3874
(2009)

14. Maurer, H.A., Sudborough, J.H., Welzl, E.: On the complexity of the general col-
oring problem. Information and Control 51(2), 128–145 (1981)

15. Nešetřil, J., Siggers, M.H., Zádori, L.: A combinatorial constraint satisfaction prob-
lem dichotomy classification conjecture. Eur. J. Comb. 31(1), 280–296 (2010)

16. Siggers, M.H.: Dichotomy for bounded degree H-coloring. Discrete Appl.
Math. 157(2), 201–210 (2009)



Bounded Model Checking for Propositional Projection
Temporal Logic �

Zhenhua Duan1, Cong Tian1,�� Mengfei Yang2, and Jia He1

1 ICTT and ISN Lab, Xidian University, Xi’an, 710071, P.R. China
2 China Academy of Space Technology, Beijing, 100094, P.R. China

Abstract. This paper presents a bounded model checking approach for proposi-
tional projection temporal logic (PPTL). To this end, first PPTL is briefly intro-
duced. Then, bounded semantics of PPTL is defined according to its semantics
in logic theory. Further, a reduction method from BMC to SAT is given in detail.
In addition, an example is presented to illustrate how the approach works. Our
experience shows that BMC approach for PPTL proposed in the paper is useful
and feasible.

1 Introduction

Model checking was firstly proposed by Clarke and Emerson [7] as well as Quielle and
Sifakis [11] independently. As a trusted, strong and automatic verification technique,
model checking has been widely used in many fields such as verification of hardware,
software and communication protocols. Model checking is a procedure used to check
whether a property specified by a temporal logic formula φ is satisfied by a given system
M defined in a transition structure (M |= φ?). With temporal logics, linear-time tempo-
ral logic (LTL)[2] and branching-time temporal logic (CTL)[7] are popular in practice.
In particular, they are usually used as description logics to specify properties of systems
in model checking. SPIN [9] based on LTL and SMV [13] depended on CTL are two
well-known model checkers. However, for a given system, the number of states of the
system increases exponentially with the increasing of the number of components in the
system, leading to state explosion problem. To combat this problem, many optimiza-
tion methods are put forward. Symbolic model checking [12,13] aims at reduction in
memory needed and high efficiency in model checking. Compositional model checking
[17] optimizes model checking by dividing the model under consideration into several
parts and conducts the verification of each part respectively to reduce the complexity of
the checking process. Bounded model checking (BMC) is an important progress in for-
malized verification after symbolic model checking [3]. It proves to be an efficient and
successful approach. The main idea of BMC is to check whether a property is satisfied
by a system with limitation that the searching length is bounded by a given integer k.
If the property is not satisfied, an error is found. Otherwise, we cannot tell whether the

� This research is supported by the NSFC Grant No. 61003078, 61133001, and 61272117, 973
Program Grant No. 2010CB328102 and ISN Lab Grant No. ISN1102001.

�� Corresponding author.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 591–602, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



592 Z. Duan et al.

system satisfies the property or not. In this case, we can consider increasing k, and per-
form the process of BMC again. In the procedure, BMC is reduced into a SAT problem
to find a solution. Although SAT is proved to be an NP-complete problem, however,
SAT solver works well in many practical applications with the DPLL algorithm[14].
BMC applies temporal logics as its underlying logics to specify properties of systems
as the basic model checking does. Theories and supporting tool NuSMV2 [1] based on
LTL is now available. Other tools that can conducts BMC are Bounded Model Checker
of CMU [10], Thunder of Intel [8] and so on.

With model checking and bounded model checking, the mostly used temporal logics
are LTL, CTL and their variations. An LTL formula is assigned along the path. If all
paths from a given state s satisfies an LTL formula f , we say s satisfies f . Thus, LTL im-
plicitly limits all the paths with a universal quantifier. Therefore, assertions that whether
or not there exists a path satisfied the property cannot be specified with LTL. Branching-
time temporal logic solved this problem by allowing the use of path quantifier explicitly.
From this point, we could say CTL is more expressive than LTL. However, CTL cannot
choose a range of paths by means of a formula, which indicates LTL is more expres-
sive than CTL. In addition, there exist two limitations in the grammar of CTL. Boolean
combination of path formulas is not allowed in CTL as well as the nestification of path
modal operators X, F and G. CTL* is a logic which is of the expressiveness of LTL
and CTL. Since LTL lacks the path quantifiers while CTL lacks the ability of LTL to
specify a single path elaborately [15], CTL* is more expressive than both of the logics.
However, the cost of computation for CTL* is quite high.

Since the expressiveness of LTL and CTL is not powerful enough, actually, not full
regular, therefore, there are at least two types of properties in practice which cannot be
specified by LTL and CTL: (1) some time duration related properties such as property
P holds at 100th state or P holds after 100th time unites and before 200th time unites;
(2) some repeated properties (kleen closure)P. Propositional projection temporal logic
(PPTL)[21] is an extension of interval temporal logic (ITL)[16]. The expressiveness
of PPTL is full regular[18] which allows us to verify full regular properties and time
duration related properties of systems in a convenient way. For instance, the above men-
tioned time duration properties can be defined as len100; P and len100; (♦P ∧ len100)
respectively while the closure property can be defined by P∗.

With the community of projection temporal logic (PTL), plenty of logic laws [24]
have been formalized and proved, and a decision procedure for checking satisfiability
of PPTL formulas has also been given [22,23]. Further, a model checker based on SPIN
for PPTL has been developed [5]. Therefore, full regular properties and time duration
properties of systems can be automatically verified with SPIN. However, since the state
explosion problem is a common problem for model checking, the model checker based
on SPIN for PPTL also suffers from this problem. To combat it, we are motivated to
investigate bounded model checking for PPTL in this paper. To do so, the bounded
semantics of PPTL is defined, and some lemmas and theorems for building relationship
between bounded model checking and the basic model checking are proved. Based on
these basic theories, BMC for PPTL is reduced into SAT problem. To illustrate how
our approach can be used to verify full regular properties of systems, an example for
verifying feasibility of rate monotonic scheduling (RMS) algorithm [4] is presented



Bounded Model Checking for Propositional Projection Temporal Logic 593

in details. To realize our bounded model checking approach, a prototype of bounded
model checker based on NuSMV2 has also been developed recently.

The rest of the paper is organized as follows. PPTL is briefly introduced in section
2. In section 3, bounded model checking for PPTL is formalized in detail. Further, an
example for verifying feasibility of RM scheduling algorithm is demonstrated. Some
related work are reviewed in section 4. Finally, the conclusion is drawn in section 5.

2 Propositional Projection Temporal Logic

To study bounded model checking of interval based temporal logic (IBTL), we use
proposition projection temporal logic (PPTL) as the underlying logic. The syntax and
semantics of PPTL is briefly introduced in the following. The details of the logic can
refer to [22].

2.1 Syntax

Let Prop be a countable set of atomic propositions. PPTL formulas can be inductively
defined as below:

1) Every atomic proposition p ∈ Prop is a formula;
2) If P, P1, · · · , Pm are PPTL formulas, so are the following constructs: ¬P, P1 ∨ P2,

©P, and (P1, · · · , Pm) pr j P.
A formula without temporal operators (©, pr j) is called a state formula, otherwise it

is a temporal formula.

2.2 Semantics

States: Following the definition of Kripke’s structure, we define a state s over Prop as
a mapping from Prop to B = {true, f alse}, s : Prop→ B. We use s[p] to represent the
valuation of p at state s.
Intervals: An interval σ is a non-empty sequence of states, which can be finite or
infinite. The length of σ, |σ|, is ω if σ is infinite, and the number of states minus 1 if
σ is finite. To have a uniform notation for both finite and infinite intervals, we will use
extended integers as indices. That is, we consider the set N0 of non-negative integers and
ω, Nω = N0 ∪ {ω} , and extend the comparison operators, =, <,≤ , to Nω by considering
ω = ω, and for all i ∈ N0, i < ω. Moreover, we define � as ≤ −(ω,ω). To simplify
definitions, we will denote σ by < s0, · · · , s|σ| >, where s|σ| is undefined if σ is infinite.
With such a notation, σ(i.. j)(0 ≤ i � j ≤ |σ|) denotes the sub-interval < si, · · · , s j > and
σ(k)(0 ≤ k � |σ|) denotes < sk, · · · , s|σ|>. The concatenation of a finite σ with another
interval (or empty string) σ′ is denoted by σ · σ′.

Let σ =< s0, · · · , s|σ| > be an interval and r1, · · · , rh be integers (h ≥ 1) such that
0 ≤ r1 ≤ r2 ≤ ... ≤ rh � |σ|. The projection of σ onto r1, · · · , rh is the interval (namely
projected interval)σ ↓ (r1, · · · , rh) =< st1 , st2 , · · · , stl >, where t1, · · · , tl is obtained from
r1, · · · , rh by deleting all duplicates. That is, t1, · · · , tl is the longest strictly increas-
ing subsequence of r1, · · · , rh. For instance, < s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =<
s0, s2, s3 >.



594 Z. Duan et al.

Interpretations: An interpretation is a triple I = (σ, i, j), where σ is an interval, i is
an integer, and j an integer or ω such that i � j ≤ |σ|. We use the notation (σ, i, j) |= P
to denote that formula P is interpreted and satisfied over the subinterval < si, · · · , s j >
of σ with the current state being si. The satisfaction relation (|=) is inductively defined
as follows:

I − prop I |= p iff si[p] = true, and p ∈ Prop is an proposition
I − not I |= ¬P iff I �|= P
I − or I |= P ∨ Q iff I |= P or I |= Q
I − next I |= ©P iff i < j and (σ, i + 1, j) |= P
I − pr j I |= (P1, · · · , Pm) pr j P, if there exist integers r0 ≤ r1 ≤ · · · ≤ rm ≤ j such that

(σ, r0, r1) |= P1, (σ, rl−1, rl) |= Pl, 1 < l ≤ m, and (σ′, 0, |σ′|) |= Q for one
of the following σ′ :
(a) rm < j and σ′ = σ ↓ (r0, · · · , rm) · σ(rm+1.. j), or
(b) rm = j and σ′ = σ ↓ (r0, · · · , rh) for some 0 ≤ h ≤ m.

Satisfaction and Validity: A formula P is satisfied by an intervalσ, denoted byσ |= P,
if (σ, 0, |σ|) |= P. A formula P is called satisfiable if σ |= P for some σ. A formula P is
valid, denoted by |= P, if σ |= P for all σ.

2.3 Normal Form

Normal Form (NF) [22] is a useful notation in our methods. We assume Qp is the set of
atomic propositions appearing in the PPTL formula Q. Then, the NF can be defined as
follows:

Definition 1. Normal Form of Q: NF(Q) ≡ ∨n0
j=1(Qe j ∧ empty) ∨ ∨n

i=1(Qci ∧©Q′i).

To simplify the proof and expressiveness, we sometimes use Qe ∧ empty instead of
∨n0

j=1(Qe j∧empty) and apply∨r
i=1(Qi∧©Q′i) to replace∨n

i=1(Qci∧©Q′i). Thus, NF(Q) ≡
Qe ∧ empty ∨ ∨r

i=1(Qi ∧©Q′i), where Qe and Qi are state formulas.

Theorem 1. Any PPTL formula P can be rewritten into its Normal Form.

The proof of this theorem can be found in [22].

3 Bounded Model Checking for PPTL

In this section, we investigate the bounded model checking of PPTL based on the theory
presented in section 2. To do this, we first establish the basic theory, bounded semantics,
of bounded model checking of PPTL. Then we introduce a new approach of bounded
model checking for PPTL. Since each PPTL formula can be transformed into an equiv-
alent formula in NF, unlike LTL and CTL formulas [3,19], we do not need to deal with
all types of PPTL formulas in the bounded semantics. As a result, we need only con-
sider formulas with ∨,¬, and© operators as well as empty and more. In the following,
we define the bounded semantics of PPTL formulas. Let σ be an interval and P a PPTL
formula.



Bounded Model Checking for Propositional Projection Temporal Logic 595

3.1 Bounded Semantics

In this subsection, we first define Kripke structure, then we define bounded semantics
of PPTL formulas.

Definition 2. A Kripke structure M is a quadruple M = (S , I, T, L) where S is the set
of sates, I ⊆ S is the set of initial states, T ⊆ S × S is the transition relation and
L : S → P(A) is the labeling function, where A is the set of atomic propositions and
P(A) denotes the powerset over A.

We use Kripke structure to model systems, and PPTL formulas to define properties of
systems. A path in a Kripke structure can be treated as an interval. Since a path with
a Kripke structure can be finite or infinite so an interval can also be finite or infinite.
Therefore, in the following, we give the definition of k − loop in an interval.

Definition 3. (k-loop) For l, k ∈ N0 and l ≤ k, if there is a translation from sk to sl in
σ and σ = (s0, · · · , sl−1) · (sl, · · · , sk)ω, we call interval σ a (k, l)-loop. If there exist k, l,
k ≥ l ≥ 0 such that σ is a (k, l)-loop, we call σ a k-loop.

Obviously, if σ is an infinite interval with loop, it must be a k − loop for some k ∈ N0.
An interval with k-loop is shown in Fig.1. Now we can define the successor of state si

over an interval σ by succ(i) below:

succ(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i + 1 if i < k
l if i = k and σ is an infinite interval with (k, l) − loop
k + 1 if i = k and σ is a finite interval

To define bounded semantics of PPTL formulas, given a bound k ∈ N0, we define an
interpretation to be a pair I′ = (σ, i), where σ is an interval, i an integer and 0 ≤ i ≤
k ≤ |σ|. We use the notation (σ, i) |=k P to represent that formula P is interpreted and
satisfied over either the whole interval if σ is a k-loop, or subinterval < si, · · · , sk > of σ
otherwise, with the current state being si. In terms of the semantics of PPTL formulas
given in section 2, in general, (σ, i) |=k P is not equal to (σ, i, k) |= P.

The bounded satisfaction relation |=k is inductively defined as follows:

(σ, i) |=k p iff si[p] = true if p ∈ Prop is an atomic proposition
(σ, i) |=k ¬P iff (σ, i) �|=k P
(σ, i) |=k P1 ∨ P2 iff (σ, i) |=k P1 or (σ, i) |=k P2

(σ, i) |=k ©P iff succ(i) ≤ k and (σ, succ(i)) |=k P
(σ, i) |=k empty iff i = k
(σ, i) |=k more iff i < k

A formula P is satisfied with bound k by an interval σ, denoted by σ |=k P, if
(σ, 0) |=k P. It is not difficult to see the following fact:

Fact 1. For a PPTL formula P, if σ is finite, (σ, i) |=k P⇐⇒ (σ, i, k) |= P

As any PPTL formula P can be transformed into its normal form, the above definition
about satisfaction relation in bounded semantics of PPTL is sound.



596 Z. Duan et al.

3.2 Bounded Model Checking

According to the structure of interval σ, two basic lemmas are given below:

Lemma 1. Let k ∈ N0, f be a PPTL formula and σ a k − loop. Then σ |=k f iff σ |= f .

• • •
s0 s1 s2

• • •
sl−1 sl sk

Fig. 1. σ is a k − loop

Note that we do not need to deal with empty and more in the above inductive cases
since empty ≡ ¬ © true and more ≡ ©true.

Lemma 2. Let f be a PPTL formula, and σ a finite interval. Then σ |= f ⇒ ∃k, k ≥
0, σ |=k f .

Theorem 2. Suppose a system is described by a Kripke structure M, and some property
is defined by a PPTL formula f . let M be the set of all intervals generated in M. We
define M |= ∃ f iff ∃σ ∈ M and σ |= f as well as M |=k ∃ f iff ∃σ ∈ M and σ |=k f .
Then we have M |= ∃ f iff ∃k, k ≥ 0,M |=k ∃ f .

Proof: We need prove that ∃σ ∈ M and σ |= f iff ∃σ ∈ M and σ |=k f . To do so, we
consider intervals in M as infinite or finite ones respectively.

1. Suppose σ is infinite, there must be an integer k ≥ 0 that makes σ a k − loop. By
Lemma 1: σ |=k f iff σ |= f . We have, M |= ∃ f iff ∃k, k ≥ 0,M |=k ∃ f .

2. Suppose interval σ is finite, i.e., |σ| = m ∈ N0.

”⇒ ” : M |= ∃ f ⇔ ∃σ ∈ M ∧ σ |= f

⇒ ∃k, k ≥ 0,∃σ ∈ M ∧ σ |=k f

⇔ ∃k, k ≥ 0, Σ |=k ∃ f (Lemma 2)

”⇐ ” : ∃k, k ≥ 0,M |=k ∃ f

⇔ ∃k, k ≥ 0,∃σ ∈ M ∧ σ |=k f

⇔ ∃k, k ≥ 0,∃σ ∈ M ∧ (σ, 0) |=k f

⇔ ∃k, k ≥ 0,∃σ ∈ M ∧ (σ, 0, k) |= f (Fact 1)

Let σ′ =< s0, s1, · · · , sk >, we have (σ′, 0, k) |= f . Since σ′ is a subinterval of σ and
|σ′| = k, hence, ∃σ′ ∈ M and σ′ |= f , leading to M |= ∃ f . As a result, ∃k, k ≥ 0,
M |=k ∃ f ⇒ M |= ∃ f . ��

3.3 Reducing BMC of PPTL to SAT

Given a finite state transition system M (a Kripke structure or NFG ), the property
of the system in terms of a PPTL formula f , and a bound k, then the procedure of
BMC can be described as a process for constructing a proposition formula [M, f ]k. Let
(s0, · · · , sk) be a subinterval of interval σ. The definition of formula [M, f ]k consists



Bounded Model Checking for Propositional Projection Temporal Logic 597

of two components: Mk, the first component, is a propositional formula that constrains
(s0, · · · , sk) to be a valid interval starting from an initial state; Xk, the second compo-
nent, a propositional formula that constrains σ to satisfy f with bound k. To define the
second component, we first give the definition of loop condition, which is a proposi-
tional formula that is evaluated to true only if the interval σ contains a loop; then we
give some translation rules for formulas.

Definition 4. For a Kripke structure M, and k≥0, Mk
def
= I(s0) ∧ ∧k−1

i=0 T (si, si+1).

Loop condition: L(k,l)
def
= T (sk, sl) (0 ≤ l ≤ k) and Lk

def
= ∨k

l=0 L(k,l).
Let p be an atomic proposition, and f , g be PPTL formulas, σ an interval with a

(k, l) − loop, si the current state, and k the bound, where 0 ≤ i, l, k ≤ |σ|, i, l ≤ k. The
translation of a PPTL formula is given below:
k-Loop: Translation f (i, k, l) of a PPTL formula f over an infinite intervalσwith (k, l)−
loop is inductively defined as follows.

p(i,k,l)
def
= p(si) if p ∈ Prop is an atomic proposition, meaning si[p]

(¬ f )(i,k,l)
def
= ¬ f(i,k,l) ( f ∨ g)(i,k,l)

def
= f(i,k,l) ∨ g(i,k,l) (© f )(i,k,l)

def
= f(succ(i),k,l)

empty(i,k,l)
def
=

{
f alse i < k
true i = k

more(i,k,l)
def
=

{
true i < k
f alse i = k

For the translation presented above, a new propositional variable is introduced for each
intermediate formula e(i,k,l), where e is a sub-formula of PPTL formula f and 0 ≤ i ≤ k
and l indicates the existence of (k, l)− loop. If e is an atomic proposition or its negation,
e(i,k,l) is substituted by a boolean variable with the truth-value at state si. Otherwise,
e(i,k,l) indicates a propositional formula whose satisfiability should be considered over
the interval (si, · · · , sk).
No Loop: Translation f (i, k) of a PPTL formula f for a finite interval σ (with no loop).

p(i,k)
def
= p(si) (¬ f )(i,k)

def
= ¬ f(i,k) ( f ∨ g)(i,k)

def
= f(i,k) ∨ g(i,k)

(© f )(i,k)
def
= f(i+1,k) f(k+1,k)

def
= f alse

empty(i,k)
def
=

{
f alse i < k
true i = k

more(i,k)
def
=

{
true i < k
f alse i = k

When the intermediate formula e(i,k) appears in a PPTL formula for a finite interval
(with no loop), the explanations are similar to the ones for a PPTL formula with an
interval with (k, l) − loop and omitted here.
General translation (BMC to SAT):

Xk
def
= (¬Lk ∧ f(0,k)) ∨ ∨k

l=0(L(k,l) ∧ f(0,k,l)) and [M, f ]k
def
= Mk ∧ Xk, i.e.,

[M, f ]k
def
= I(s0) ∧ ∧k−1

i=0 T (si, si+1) ∧ [(¬Lk ∧ f(0,k)) ∨ ∨k
l=0(L(k,l) ∧ f(0,k,l))]

As we can see, the right side of the definition can be divided into two parts: the first part
I(s0)∧∧k−1

i=0 T (si, si+1)∧(¬Lk∧ f(0,k)) indicates an interval with no loop and the translation
without loop is used; the second part I(s0)∧∧k−1

i=0 T (si, si+1)∧(∨k
l=0(L(k,l)∧ f(0,k,l))) presents

that an interval with a k − loop and all possible starting points l of a loop and the
translation for a k − loop is conjoined with the corresponding loop condition L(k,l).



598 Z. Duan et al.

Lemma 3. Let k ∈ N0, f be a PPTL formula and σ an interval. The translation f(i,k,l)
or f(i,k) is defined as above. Then
(1) σ |=k f iff σ |=k f(i,k,l) if σ is infinite with a (k, l) − loop or
(2) σ |=k f iff σ |=k f(i,k) if σ is finite.

Now we come to prove an important conclusion formalized in Theorem 3.

Theorem 3. [M, f ]k is satisfiable iff M|=k ∃ f.

Proof: ” ⇒ ”: Suppose [M, f ]k is satisfiable. That is, ∃k ≥ 0, σ ∈ M, σ |= [M, f ]k ⇔
σ |= Mk ∧ [(¬Lk ∧ f(0,k)) ∨ ∨k

l=0(L(k,l) ∧ f(0,k,l))].

If |σ| = ω with (k, l)-loop and l ≤ k, we have,

σ |= [M, f ]k ⇒ ∨k
l=0(L(k,l) ∧ f(0,k,l)) de f o f [M, f ]k

⇒ σ |= ∃ j 0 ≤ j ≤ k f(0,k, j)
⇒ σ |= f(0,k, j) (0 ≤ j ≤ k)
⇒ σ |=k f(0,k, j) (0 ≤ j ≤ k) Lem1
⇒ σ |=k f Lem3
⇒ ∃k, k ≥ 0, σ ∈ M σ |=k f
⇒ M |=k ∃ f de f

If |σ| ∈ N0 with no loop, we have,

σ |= [M, f ]k ⇒ σ |= f(0,k) de f o f [M, f ]k

⇒ ∃k, k ≥ 0, σ |=k f(0,k) Lem1
⇒ ∃k, k ≥ 0, σ ∈ M σ |=k f Lem3
⇒ M |=k ∃ f de f

“⇐”: Suppose M |=k ∃ f . Since M |=k ∃ f ⇔ ∃σ ∈ M, σ |=k f , so k ≥ 0 is
the bound, and there exists subinterval < s0, ..., sk > of σ ∈ M such that σ |=k Mk ≡
I(s0) ∧ ∧k−1

i=0 T (si, si+1).

If |σ| = ω with (k, l)-loop, there is a l, 0 ≤ l ≤ k and T (sk, sl), so σ |=k T (sk, sl).

σ |=k f ⇒ σ |=k f(0,k,l)) Lem3
⇒ σ |=k Mk ∧ L(k, l) ∧ f(0,k,l)
⇒ σ |=k [M, f ]k de f o f [M, f ]k

If |σ| = ω without loop, σ |=k ¬Lk, leading to σ |=k Mk ∧ ¬Lk. Thus, we have,

σ |=k f ⇒ σ |=k f(0,k)) Lem3
⇒ σ |=k Mk ∧ ¬Lk ∧ f(0,k)

⇒ σ |=k [M, f ]k de f o f [M, f ]k ��

3.4 An Example: BMC for RMS

RMS (rate monotonic scheduling) is a classical algorithm for periodic task scheduling
proposed by Liu and Layland in 1973. As one of the static priority-driven scheduling



Bounded Model Checking for Propositional Projection Temporal Logic 599

approaches, RMS is optimal. Let T = {t1, t2, · · · , tn} be a set composed of n periodic
tasks. A task is defined as a quadruple ti = (Ti,Di, Ei, Pi). Ti is the period of ti, Di is the
deadline of ti, Ei denotes the execution time of ti and Pi indicates priority level of ti. In
general, Di = Ti and Pi > P j if Ti < T j. Thus, the definition can be simplified as a pair
ti = (Ti, Ei). Since the utilization factor of CPU is defined as Ui = Ei/Ti, the utilization
factor of CPU for task set T can be defined as U =

∑n
i=1 Ui. It has been proved by Liu

and Layland that for any task set T , if
∑n

i=1 Ui ≤ n(21/n−1), T is schedulable with RMS
algorithm. However, this is only a unnecessary and sufficient condition.

If a task set T is schedulable with RMS algorithm, any ti ∈ T must be real-time.
This indicates that the remaining execution time of ti is 0 or 1 if ti is being executed
when a new period of ti is coming in the next moment, which means the execution time
of ti in its every period must equals Ei. To explain this property in detail, we give the
following example. Given a task set T = {t1, t2}, where t1 = (4, 1), t2 = (3, 1). Since
1/4+ 1/3 < 2 × (

√
2 − 1), so T is schedulable with RMS algorithm. Since T1 > T2, we

have P1 < P2. The execution of T with RMS algorithm is as shown below in figure 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1

t2

Fig. 2. Execution of T with RMS algorithm

In figure 2, we just simulate 24 time units. From this figure, we can see the task T
is schedulable and the real-time property is satisfied. Alternatively, we alter the task set
as T f = {t1, t2} where t1 = (4, 2), t2 = (3, 2). In this case, t2 is still prior to t1 . The
execution of T f with RMS algorithm is shown in figure 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t1

t2

Fig. 3. Execution of T f with RMS algorithm

Since 2/4 + 2/3 > 2 × (
√

2 − 1), we cannot decide whether T is schedulable with
RMS algorithm. As an application of BMC for PPTL, we will check T f ’s schedulability
with RMS algorithm.To do this, first RMS is described by a Kripke structure M, and
the property to be verifies as a PPTL formula P; then an integer k > 0 is chosen as the
bound; after that, the model checking problem is translated into SAT problem using the
approach as described before; finally, a process checking the SAT problem is employed
to find a counterexample or to confirm the property is satisfied.
Modeling of RMS: To check the schedulability of T f using RMS algorithm by means
of bounded model checking of PPTL, we first make a model for figure 3 as shown in
figure 4, where p indicates in a period of t1, the execution time equals E1 and q denotes



600 Z. Duan et al.

s0 s1 s2 s3 s4 s5 s6 s9s7 s12s10 s11s8

qq ¬p ¬p p, qq

Fig. 4. Kripke structure of T f with RMS algorithm:M

in a period of t2, the execution time equals E2. In Kripke structure M shown in Figure 4,
S = {s0, s1, · · · , s12}, I = {s0} and T = {(s0, s1), (s1, s2), (s2, s3), (s3, s4), (s4, s5), (s5, s6),
(s6, s7), (s7, s8), (s8, s9), (s9, s10), (s10, s11), (s11, s12), (s12, s1)}. The atomic proposition
set is A = p, q, x, y, and labeling function can be defined as: L(s3) = {q}, L(s6) =
{q}, L(s9) = {q} and L(s12) = {p, q}. Note that a state without specified propositions im-
plied that the propositions at the state are negative. For instance, s4 is unspecified, so
L(s4) = φ, implying {¬p, ,¬q} at state s4.To encode the system, we have to add 2 addi-
tional atomic propositions x and y into the set of atomic proposition, since there are 13
states in M and 23 < |S | = 13 < 24. We do not need to specify values for x and y in this
example since we do not use them. We can set a fixed order of atomic propositions as
(p, q, x, y) , then we can represent every state s ∈ S with the boolean vector (p, q, x, y).

Definition of Property: The property we concern can be defined as follows:

p is true at state sn∗T1 and q is true at state sn∗T2 , 1 ≤ n ∈ N.

This is a typical example for showing the limitation of the expressive power of LTL
because this property cannot be described by an LTL formula since the property is full
regular. Certainly, we can specify this property by a PPTL formula as follows:

F ≡ (©T1(p ∧ ε))+ ∧ (©T2(q ∧ ε))+

Let T1 = 4 and T2 = 3, we have, F ≡ (©4(p∧ ε))+∧ (©3(q∧ ε))+. By means of normal
form of PPTL formulas, we can work out NF(F): NF(F) ≡ ©(©3(p ∧ ε); (©4(p ∧
ε))∗) ∧©(©2(q ∧ ε); (©3(q ∧ ε))∗) and NF(¬F) ≡ ε ∨©¬(©3(p ∧ ε); (©4(p ∧ ε))∗) ∨
©¬(©2(q ∧ ε); (©3(q ∧ ε))∗)

Translation of BMC to SAT: With BMC for PPTL, we are trying to find a coun-
terexample of the property F, which means we are looking for a witness for ¬F. The
existence of such a witness indicates that property F is false. On the other hand, it
means the property holds up to the given bound. Assume the bound k = 4. Unfolding
the transition relation, we can get the following formula:

M4 ≡ I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ T (s2, s3) ∧ T (s3, s4)

According to Figure 4, the loop condition L4 ≡ ∨4
l=0L(4,l) ≡ ∨4

l=0T (s4, sl) is false. We
can get the translation for paths with no loops as following:

¬F ≡ [NF(¬F)](0,4) ≡ ¬p(s4) ∨ ¬q(s3)

Putting everything together we can get the following boolean formula:
[M,¬F](0,4) ≡ M4 ∧ [(¬L4 ∧ (¬F)(0,4)) ∨ ∨4

l=0(L(4,l) ∧ (¬F)(0,4,l))]
≡ M4 ∧ [(true ∧ (¬F)(0,4)) ∨ f alse]
≡ M4 ∧ (¬F)(0,4)



Bounded Model Checking for Propositional Projection Temporal Logic 601

≡ I(s0)∧T (s0, s1)∧ T (s1, s2)∧ T (s2, s3)∧ T (s3, s4)∧ (¬p(s4)∨¬q(s3))
Finding a Witness for the SAT Problem: As shown in figure 4, the assignment,

p(s4) = 0 satisfies [M,¬F](0,4). This assignment corresponds to an interval from the
initial state to s4 that violates the property.

With bounded model checking for PPTL, we proved T f is non-schedulable with
RMS algorithm.

4 Related work

Bounded model checking for linear-time and branching-time temporal logics, have been
studied in recent years [3,19]. As typical representatives of two kinds of temporal logics,
LTL and CTL are often used as the logics to specify properties in the bounded model
checking. A useful supporting tool NuSMV2 [1] is based on LTL. Other BMC support-
ing tools including Bounded Model Checker of CMU [10], Thunder of Intel [8] and so
on are also available. Further, researchers also studied the completeness and complex-
ity of bounded model checking for LTL and CTL, which are considered as computa-
tional challenges in bounded model checking [6]. Computing completeness threshold
(CT ) may be an efficient way but it only works for some simple, non-nested proper-
ties [3]. Other methods are checking for convergence which only works for properties
that can be reduced to an invariant one and fixpoint detection. All the above methods
have limitations since the expressiveness of LTL or CTL is not full regular. Compared
with linear-time and branching-time temporal logics, however, interval based temporal
logic such as ITL or PPTL is more powerful since they are both full regular. Therefore,
we use PPTL as our underlying logic to define properties. In addition, a prototype of
bounded model checker based on NuSMV2 for PPTL has been developed. This allows
us to bounded model checking for PPTL in an automatical way. Our experience shows
that the bounded model checking approach presented in this paper for PPTL is feasible
and useful.

5 Conclusion

We proposed some basic theory of BMC for PPTL including bounded semantics and
process of reducing BMC to a SAT problem. We also gave an example to show the
process of BMC for PPTL. Although we established the basic theory on bounded model
checking for PPTL, however, we have not investigated the completeness and complexity
of it. In the future, we will further investigate the completeness and complexity of BMC
for PPTL. Moreover, we will also need to improve the prototype of our model checker
of BMC for PPTL so that automatical verification can be conducted. In addition, some
practical case studies are also indispensable in the future.

References

1. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)



602 Z. Duan et al.

2. Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pp. 46–67. IEEE, New York (1977)

3. Biere, A., Clarke, E., et al.: Bounded Model checking. Advances in Computers, vol. 58, pp.
117–148. Academic Press, London (2003)

4. Liu, C.L., Layland, J.W.: Scheduling algorithm for multiprogramming in a hard real-time
environment. Journal of the ACM 20(1), 46–61 (1973)

5. Tian, C., Duan, Z.: Model Checking Propositional Projection Temporal Logic based on SPIN.
In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789,
pp. 246–265. Springer, Heidelberg (2007)

6. Clarke, E., Kroening, D., et al.: Computational Challenges in Bounded Model Checking.
International Journal on Software Tools for Technology Transfer 7(2), 174–183 (2005)

7. Clark, E., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons using Branch-
ing Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp.
52–71. Springer, Heidelberg (1982)

8. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.Y.: Benefits
of Bounded Model Checking at an Industrial Setting. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453. Springer, Heidelberg (2001)

9. Holzmann, G.J.: SPIN Model Checker: The Primer and Reference Manual (September 4,
2003)

10. http://www.cs.cmu.edu/˜modelcheck/bmc.html
11. Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In:

Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–
351. Springer, Heidelberg (1982)

12. Burch, J.R., Clarke, E., McMillan, K.L., Dill, D.L., Hwang, J.: Symbolic Model Checking:
1020 States and Beyond. Information and Computation 98(2), 142–170 (1992)

13. McMillian, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993) ISBN:
0-7923-9380-5

14. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5, 394–397 (1962)

15. Huth, M., Ryan, M.: Logic in Computer Science: Modeling and Reasoning about Systems,
2nd edn., Part 3. China Machine Press (2007) ISBN:978-7-111-21397-0

16. Moszkowski, B.: Reasoning about digital circuits. Ph.D. Thesis. Stanford University, Stan-
ford (1983)

17. Grumberg, O., Long, D.E.: Model checking and modular verification. Journal ACM Transac-
tions on Programming Languages and Systems TOPLAS Homepage Archive 16(3), 843–871
(1994)

18. Tian, C., Duan, Z.: Propositional projection temporal logic, Büchi automata and ω-regular
expressions. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 47–58. Springer, Heidelberg (2008)

19. Zhang, W.: Bounded Semantics of CTL and SAT-Based Verification. In: Breitman, K., Cav-
alcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 286–305. Springer, Heidelberg (2009)

20. http://www.cs.cmu.edu/˜modelcheck/bmc.html
21. Duan, Z.: An Extended Interval Temporal Logic and a Framing Technique for Temporal

Logic Programming. Ph.D. Thesis, University of Newcastle upon Tyne (May 1996)
22. Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection Temporal

Logic with Infinite Models. Acta Informatica 45(1), 43–78 (2008)
23. Duan, Z., Zhang, L.: A Decision Procedure for Propositional Projection Temporal Logic.

Technical Report No.1, Institute of Computing Theory and Technology, Xidian University,
Xi’an P.R.China (2005)

24. Duan, Z., Yang, X., Kounty, M.: Framed Temporal Logic Programming. Science of Computer
Programming 70(1), 31–61 (2008)

http://www.cs.cmu.edu/~modelcheck/bmc.html
http://www.cs.cmu.edu/~modelcheck/bmc.html


 

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 603–613, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Packing Cubes into a Cube Is NP-Hard  
in the Strong Sense 

Yiping Lu1, Danny Z. Chen2, and Jianzhong Cha1 

1 School of Mechanical / Electronic and Control Engineering, Beijing Jiaotong University, 
Beijing, 100044, China 

{yplu,jzcha}@bjtu.edu.cn 
2 Department of Computer Science and Engineering, University of Notre Dame,  

Notre Dame, IN 46556, USA 
dchen@cse.nd.edu 

Abstract. While the problem of packing two-dimensional squares into a square, 
in which a set of squares is packed into a big square, has been proved to be NP-
complete, the computational complexity of the d-dimensional ( 2d > ) prob-
lems of packing hypercubes into a hypercube remains an open question [5,7]. In 
this paper, we show that the three-dimensional problem version of packing 
cubes into a cube is NP-hard in the strong sense.  

Keywords: Packing Problems, Cube Packing, NP-hardness. 

1 Introduction 

While the problem of packing 2-D squares into a square, in which a set of squares is 
packed into a big square, has been proved to be NP-complete over 20 years ago [9], to 
our best knowledge, the computational complexity of the d-D ( 2d > ) versions of the 
problem, i.e., packing multiple hypercubes into a hypercube, is still unsettled. The 
reason is that, unlike in most other packing situations where the lower dimensional 
problem version constitutes a special case of the higher dimensional problem, there 
seems to be no obvious way to degenerate a cube packing problem to a square pack-
ing problem. (Similarly, there seems to be no obvious way to degenerate the square 
packing problem to the 1-D knapsack problem, and this is why the NP-completeness 
of the problem of packing squares into a square needed a separate proof.)  

The 2-D square packing problem, the 3-D and d-D ( 3d > ) hypercube packing 
problems have been intensely studied (e.g., see [2, 3, 4, 5, 7, 8]). When developing 
approximation algorithms for cube and hypercube packing problems, Correa and Ke-
nyon [4],  and Bansal et al. [1] cited the NP-completeness of the 2-D square packing 
problem [9], but without stating the NP-completeness/NP-hardness status of the cube 
and hypercube packing problems. Epstein and van Stee [5] guess that NP-hardness 
also holds for (hyper) cube packing problems, but at the same time they state that this 
is still an open question.  Harren [7] also states it is still an open question. 



604 Y. Lu, D.Z. Chen, and J. Cha 

 

In this paper, we show that packing multiple cubes into a cube in 3-D is really a 
NP-hard problem in the strong sense. Our proof is based on a reduction from the  
3-partition problem, which is NP-hard in the strong sense [6].  

The rest of this paper is organized as follows. In Section 2, we formally state the 
target problem. In Section 3, we give the NP-hardness proof of the cube packing 
problem in 3-D. Section 4 briefly concludes the paper.  

2 The 3-Partition Problem and the Cube Packing Problems  

2.1 The 3-Partition Problem 

The 3-partition problem is known to be NP-hard in the strong sense [6]. 

 
3-Partition Problem 

INSTANCE: A set of 3m  ( 1m > ) positive integers, 1 2 3{ , ,..., }mS a a a= , 

and a bound B , such that for every i , 1 3i m≤ ≤ , 

/ 4 / 2iB a B< < , and 
3

1

m

ii
a mB

=
= . 

QUESTION: Can S  be partitioned into m  disjoint subsets 1 2, ,..., mS S S , 

such that for each j with 1 j m≤ ≤ , the sum of all elements in 

jS  is exactly B ? Note that the constraints of the problem re-

quire that each subset jS  should have exactly 3 elements of S . 

For 3-partition problem, it can be proved that we can assume that m  is a multiple 
of 3 without losing the problem’s NP-hardness in strong sense (the corresponding 
proof of this claim is in this paper’s full-length version which exceeds length limit but 
the authors will be glad to provide it upon email requesting). In the rest of this paper, 
we will assume that m  is a multiple of 3, and write 3 'm m=  (where 'm  is a 
positive integer) whenever needed. 

2.2 The Problem of Packing Cubes into a Cube 

The problem of packing cubes into a cube in 3-D is formally stated below. 

 

Problem of Packing Cubes into a Cube 

INSTANCE: A big cube C  and a set of small cubes, 1 2{ , ,..., }nL c c c= , 

whose size parameters are all positive integers. 
 



 Packing Cubes into a Cube Is NP-Hard in the Strong Sense 605 

 

QUESTION: Can all cubes of L  be packed into C  orthogonally without any 

intersection of interior points between any two cubes of L ?  

3 NP-Hardness of the Problem of Packing Cubes into a Cube  

Theorem: The problem of packing cubes into a cube is NP-hard in the strong sense. 

Proof: We will construct an instance of the packing-cubes-into-cube problem by a 
reduction from the 3-partition problem whose parameter m  is a multiple of 3. Since 
the later problem is NP-hard in the strong sense, if a reduction from the former to the 
later can be established in polynomial (or even pseudo-polynomial time), then the 
former will be also NP-hard in the strong sense. 

Let 1 2 3{ , ,..., }mS a a a=  and B  be an instance of the 3-partition problem, 

where 3 'm m=  is a multiple of 3. A corresponding instance of the cube packing 
problem is defined as follows. 

I. The parameters: Let ,p ,A ,l ,w ,q ,h and r  be positive integers that we 

choose to satisfy: 2p ≥  and ( 1)p p m+ > , ( 1)A p p B> +  and 

6 ( 1)A p p> + , 3 1.5w A B= + , 3l A B= + , ( 1)q p p l= + , 

( )h m A B= + , and r q h= − . 

II. The cubic packing space C : The size of the cubic packing space C  is 

l pl q+ + . We actually construct the cubic space C  by using 6 packing regions：

α , β , γ , δ , ε , and ζ .  

As shown in Fig. 1(a) and Fig. 1(b), the size of region α  is l w q× × . On top of 

region α , we put a region β  of size ( )l q w q× − × . To the right of regions α  

and β , we put a region γ  of size pl q q× × . To the right of region γ , we put a 

cubic region δ  of size q q q× × . On top of regions  α , β , γ , and δ , we put a 

region ε  of size ( ) ( )l pl q l pl q+ + × + × . To the back of regions α , β , γ , 

δ , and ε , we put a region ζ  of size ( ) ( ) ( )l pl q l pl q l pl+ + × + + × + . 

III. The list L  of cubic items: The set L of packed cubic items consists of the fol-
lowing kinds of cubes (the intuition is to define a set of cubes of different kinds that 
can be packed into C  by packing the α  cubes into region α , packing the β  

cubes into region β , packing the γ  cubes into region γ , packing the δ  cubes 

into region δ , packing the ε  cubes into region ε , and packing the ζ  cubes into 

region ζ ). 



606 Y. Lu, D.Z. Chen, and J. Cha 

 

 

Fig. 1. Packing cubes into a cube 

 The α  cubes: The number of α  cubes is 9N m kα = + , including: 

 Type I cubes: 3m  cubes of sizes iA a+  ( 1,2,...,3i m= ); 

 Type II cubes: 2m  cubes of size A B+  each; 

 Type III cubes: 4m  cubes of size A  each; 

 Type IV cubes: k  cubes of size 1t  each, where /k r l=    , 

1 /t r k= , and 

            

( 1) ( )

( 1) 3 '( )

( 1) '(3 ) 2 '

( 1) ' 2 '

r q h p p l m A B

p p l m A B

p p l m A B m B

p p l m l m B

= − = + − +
= + − +
= + − + −
= + − −

. 

Because ( 1)p p m+ >  and ( 1)A p p B> + , we have  

3 3 2 'l A B mB m B= + > > . 
 
 



 Packing Cubes into a Cube Is NP-Hard in the Strong Sense 607 

 

Thus 

/ ( 1) ' 2 ' /

( 1) ' / 3 2 / 3

k r l p p m m B l

p p m m m m

= = + − −      
= + − > − =

,                     (1) 

and 

       

1

2 '
/

( 1) '

2 '
3

( 1) '

2 '
3 3

3 ' '

m B
t r k l

p p m

m B
A B

p p m

m B
A B A

m m

= = −
+ −

= + −
+ −

> + − =
−

.                                  (2)

       

Because 6 ( 1)A p p> + , we have 

            ( )( )6 ( 1) 2 3 ( 1) / 3 2( 3 )A p p m p p m m k> + = + + − = + .   

 (3) 

 The β  cubes: There are 2 2( 1) ( 1)N p p p pβ = + − +  such cubes of 

size 2 0.5 / ( ( 1) 1)t l B p p= − + −  each. Note that   

2 0.5 / ( ( 1) 1)

3 0.5 / ( ( 1) 1) 3

t l B p p

A B B p p A

= − + −
= + − + − >

.                 (4) 

 The γ  cubes: There are 2( 1)N pγ = +  such cubes of size pl  each. 

 The δ  cube: There is 1Nδ =  such cube of size q . 

 The ε  and ζ  cubes: The number of ε  cubes is ( 1)N p pε = +  and 

the number of ζ  cubes is ( 1)( 1)N p pζ = + + , whose sizes are 

( 1)p l+  each (ε  cubes and ζ  cubes are of the same size).  

The above construction can obviously be done in polynomial time, since the total 
number of cubes thus defined is polynomial in m . Next, we show that the packing 
problem instance thus constructed has a “yes” answer if and only if the instance of the 
3-partition problem has a “yes” answer. 

The “if” Part: If the 3-partition problem instance has a “yes” answer, then we 
show that a packing of the cube C is achievable. If the answer to the 3-partition prob-
lem is “yes”, then we choose to pack the α  cubes into region α , the β  cubes into 

region β , the γ  cubes into region γ , the δ  cube into region δ , the ε  cubes 

into region ε , and the ζ  cubes into region ζ  (as shown in Fig. 1(a)). It can be 



608 Y. Lu, D.Z. Chen, and J. Cha 

 

proved that packing the α  cubes into region α  is achievable (the proof is in this 
paper’s full-length version which exceeds the length limit but the authors will be glad 
to provide it upon email requesting). By observing the size definitions of other cor-
responding cubes and regions, it is easy to check that packing the β  cubes into re-

gion β , the γ  cubes into region γ , the δ  cube into region δ , and the ζ  cubes 

into region ζ  are all achievable. 

The “Only If” Part: From this point to the end of this proof, we will show that if a 
packing of the cube C is achievable, then the answer to the 3-partition problem in-
stance is “yes”.  

First, we assume that the achieved packing of C is in the same style as described 
above, i.e., the realized packing is in the style of packing all α cubes into region α , 
all β  cubes into region β , …, and all ζ  cubes into region ζ  (as shown in  

Fig. 1(a)). We claim that if this packing style is achievable, then the answer to the  
3-partition problem is “yes”. Actually, we can further claim that if the packing style 
that packs all α , β , and γ  cubes into the region α β γ   (i.e., all α , β , 

and γ  cubes are packed together into a packing space of size ( )l pl q q+ × × ), 

then the answer to the 3-partition problem is “yes”.  

Next, we will first prove that if all α , β , and γ  cubes can be packed into the 

region α β γ  , then the answer to the 3-partition problem is “yes”; then, we will 

show that if packing all the cubic items into the packing space C  is achievable, then 

all α , β , and γ  cubes can be packed into the region α β γ  . 

Consider the situation that all α , β , and γ  cubes are packed into the region 

α β γ  . The size of the packing space is ( 1)p l q q+ × × . Because the size of 

each γ  cube is ( 1) / 2pl p l> + , at most one γ  cube can be packed along the y 

direction, and it is not difficult to see that if all α , β , and γ  cubes can be packed 

into the region α β γ  , then it must be the case that all α  and β  cubes can 

also be packed into the region α β  (this is because in any packing of this particu-

lar region α β γ   using the α , β , and γ  cubes, all γ  cubes can always be 

shifted to touch one face of the packing space without affecting the packability of the 
α  and β  cubes, see Fig. 1(b)). Now we focus on the packing style that all α  and 

β  cubes are packed into the region α β  whose size is l q q× ×  (as shown in 

Fig. 1(d)). There are four types of α  cubes: Type I cubes, Type II cubes, Type III 
cubes, and Type IV cubes –– the sizes of the first 3 types of α  cubes are all approx-

imately A , and the size of the 4th type cubes is approximately 3A . Suppose we cut 
(conceptually) each of the Type IV cubes into 27 equal-size cubes. Then these newly 

cut cubes all have a size of 1 / 3t  which is larger than A  (see Equation (2)).  

The β  cubes all have a size 2t , which is approximately 3A ; we can also cut  



 Packing Cubes into a Cube Is NP-Hard in the Strong Sense 609 

 

(conceptually) each β  cube into 27 equal-size cubes whose size is also larger than 

A  (see Equation (4)). After these cutting operations, the Types I, II, and III α  
cubes, plus the two groups of newly cut cubes, constitute a set of cubes whose sizes 
are all approximately A ; we call such cubes the A -cubes. Clearly, if a packing of all 
α  and β  cubes into the region α β  is achievable, then packing all A -cubes 

into the same region is also achievable.  The minimum size of these A -cubes is A , 
which is equal to the size of the Type III cubes. The total number of all A -cubes is: 

2 2

2 2

2 2

9 27 27( ( 1) ( 1))

27 ' 27( ( 1) ') 27( ( 1) ( 1))

27 ( 1) .

m k p p p p

m p p m p p p p

p p

+ + + − +
= + + − + + − +
= +

 

Since  
( 1) ( 1)(3 ) 3 ( 1) ( 1)q p p l p p A B p p A p p B

A A A A

+ + + + + += = = , 

and ( 1)A p p B> + ,  we have / 3 ( 1)q A p p= +   . 

Hence, any line parallel to the x  or z  axis can intersect the interior of at most 

3 ( 1)p p + A -cubes. Also, because any line parallel to the y axis can intersect the inte-

rior of at most / 3l A =    A -cubes, the maximum number of A -cubes that can be 

packed into the region α β  is 2 23 3 ( 1) 3 ( 1) 27 ( 1)p p p p p p⋅ + ⋅ + = + , which 

is exactly the total number of A -cubes we have. Thus, we know that if the set of A -
cubes can be packed into the cubic space l q q× × , then it must be the case that they can 

also be packed in a style of a 3 3 ( ) 3 ( )p p p p p p⋅ + ⋅ +  regular grid. Now we focus 

on the packing space constraint on the y  dimension whose length is l : If the above 

packing is achievable, then the grid style packing means that the 2 227 ( 1)p p +  A -

cubes can be partitioned into 2 29 ( 1)p p +  triplets, each of which contains exactly 3 

A -cubes whose size summation is no larger than 3l A B= + . Since the A -cubes cut 

from Type IV α  cubes or from β  cubes must stay adjacent to each other in an “actual” 

packing, we know that the 9m  Types I, II, and III α  cubes are partitioned into 

3m triplets each of which contains exactly 3 A -cubes whose size summation is no larger 

than 3l A B= + . It is not difficult to know that the total size sum of all the 9m  Types 

I, II, and III α  cubes is 3ml , since 

3

1

( ) 2 ( ) 4 9 3 3
m

i
i

A a m A B mA mA mB ml
=

+ + + + = + = . 

This means that the sum of cube sizes for each of theses 3m  triplet must be equal to 

l exactly. Since 3l A B= + , every Type II cube must be in a triplet with two  



610 Y. Lu, D.Z. Chen, and J. Cha 

 

Type III cubes, and this “forces” the 3m  Type I cubes forming m  triplets among 

themselves.  

For every 1, 2,..,j m= , suppose the j -th triplet of Type I cubes is 

1 2 3, ,j j jA a A a A a+ + + ; then we have  

1 2 3 3j j jA a A a A a l A B+ + + + + = = + , 

implying 1 2 3j j ja a a B+ + = . Therefore, the answer to the 3-partition problem is 

“yes”. 

Now, we will show that if packing all cubic items into the packing space C  is 

achievable, then packing all α , β , and γ  cubes into the region α β γ   is 

also achievable. As shown in Fig. 1(a)-(b), it is easy to see that in any achievable 
packing of C, the δ  cube must touch at least two faces of the packing space C , 

otherwise there will be some ε  or ζ  cubes that cannot be packed (the reason is 

that the summation of the size of the δ  cube and the size of an ε  or ζ  cube is 

equal exactly to the size of C ). Without loss of generality, we assume that the δ  

cube touches the bottom and front faces of C.1 Then, if the δ  cube is not at a corner 
of C, then the packing is like the one in Fig. 1(c), where the subregions of C adjacent 
to the back face or top face of the δ  cube are packed with identical ε  or ζ  cubes 

and the subregions of C adjacent to one of the other two faces of the δ  cube are 

packed with γ  cubes or α  and β  cubes. Further, all α  and β  cubes are 

packed together in a subregion of size l q q× ×  (as shown in Fig. 1(d)); the reason is 

that the size of an γ  cube is at least 2 times larger than the size of any α  or β  

cube, and it is easy to see that α  and β  cubes cannot be packed on both the left 

and right faces of the δ  cube, otherwise there will be at least one γ  cube that can-

not be packed. If the achieved packing is indeed like the one in Fig. 1(c), then one 
achievable packing style variation from this style is to have all γ  cubes and all α  

and β  cubes packed on the same side of the δ  cube. This forms a packing style 

that has the δ  cube packed at a corner of C  (as in Fig. 1(a)). When the δ  cube is 

packed at a corner of C , the packing situation must be that of packing all , ,α β   

 

                                                           
1  A cubic space or box has 6 faces, as shown in Fig. 1(a). In such a figure, we call its visible 

faces that are parallel to the x y×  plane, y z×  plane, or z x× plane the front face, the 

top face, or the left face, respectively, and call its invisible faces that are parallel to 
the x y× plane, y z× plane, or z x× plane the back face, the bottom face, or the right 

face, respectively. 



 Packing Cubes into a Cube Is NP-Hard in the Strong Sense 611 

 

and γ  cubes into a subregion α β γ   of C (for convenience, we call this pack-

ing style an α β γ   packing, as in Fig.2(b)). We will show that any other pack-

ing style either can be transformed to a feasible α β γ   packing or cannot exist.  

 

Fig. 2. The packing situations of the α, β, and γ cubes 

So far, we have shown above that the packing style in which the δ  cube touches 

only 2 faces of C  can be transformed to an α β γ   packing. If the δ  cube is 

packed at a corner of C , then the situation is like that in Fig. 1(a)-(b), where all 

, ,α β  and γ  cubes are packed into the region α β γ  . Since the size of the 

region α β γ   along the y direction is equal to the size of an ε  or ζ  cube, 

without loss of generality, we can assume a situation that on top of the region 
α β γ  , ε  cubes are packed, and to the back of the region α β γ  , ζ  

cubes are packed (as in Fig. 1(b) and Fig. 2). As shown in Fig. 2(a), we call the subre-
gion of C on top of the region α β γ   the region 'ε , and the subregion to the 

back of the region α β γ   the region 'ζ . If the packing style is not an 

α β γ   packing, then one possible situation is that some cubes in region 'ε  are 

packed into the α β γ   region (as shown in Fig. 2(c)-(d)). In such a situation, 

the ε  cubes inside the region α β γ   will have to be contained by a box space 

whose size and orientation are equal exactly to those of region 'ε ; the reason is that 

the packing of ε  cubes inside region 'ε  is tight, and thus it requires that the size 

along the z  direction of the containing box in region α β γ   filled by such ε  

cubes be a multiple of the size of the γ  cubes (otherwise, some γ  cubes will not be 

packable). The smallest of this size is the minimum multiple of the size of ε  cubes 

and that of γ  cubes, i.e., the minimum multiple of ( 1)p l+  and pl , which is 

( 1)p p l q+ =  and is equal exactly to the size of region 'ε  along the z  direction. 

The sizes of this containing box along the x  and y  directions should be equal to 

the size of the ε  cubes. This means that if some ε  cubes in region 'ε  are moved 



612 Y. Lu, D.Z. Chen, and J. Cha 

 

to and packed in the region α β γ  , then all the ε  cubes in region 'ε  must be 

packed inside the region α β γ   and actually be packed as if the whole 'ε  

region is put into the region α β γ  . Hence, it is easy to see that any packing 

situation that has ε  cubes from region 'ε  packed into the region α β γ  , like 

those in Fig. 2(c)-(d), can be transformed to an α β γ   packing by moving (ex-

changing) all ε  cubes inside region α β γ   to region 'ε .  

Now we consider the situation that on the top and the back of the region 
α β γ  , region 'ε  and region 'ζ  are already packed with ε  and ζ  cubes, 

as shown in Fig. 2(b). We will show that if all items inside the region α β γ   

are , ,α β  and γ  cubes, then no ε  or ζ  cube from region 'ε ε−  or 'ζ ζ−  

can be exchanged with and packed into the region α β γ   (i.e., packing some 

ε  or ζ  cubes into the region α β γ  , and moving some , ,α β  or γ  cubes 

to be packed in region 'ε ε−  or 'ζ ζ− ). The reason is that γ  cubes are packed 

tightly inside the region α β γ   along the x and z  dimensions; if any block of  

ε  or ζ  cubes is put into the region α β γ  , then the exchanging packing 

space must be involved with some γ  cubes. This requires that the block sizes (for 

such ε  or ζ  cubes) along both the x and z  dimensions be a common multiple of 

the size of γ  cubes and the size of ε  (or ζ ) cubes; this makes such sizes of the 

block be at least the minimum multiple of those two cube sizes, i.e., ( 1)p p l q+ = , 

which is equal exactly to the sizes of the region α β γ   along the x and z  

dimensions. This means that if any block of ε  or ζ  cubes from region 'ε ε−  or 

'ζ ζ−  is put into the region α β γ  , then the sizes of such a block will be 

equal exactly to the sizes of the region α β γ  , i.e., the whole region of 

α β γ   must be exchanged with a whole subregion of 'ε ε−  or 'ζ ζ− . In 

other words, the , ,α β  and γ  cubes will still be packed into a region whose sizes 

are equal to those of the region α β γ  . This may still be considered as an 

α β γ   packing.  The theorem is thus proved.                                □ 

4 Conclusions 

We have proved that the problem of packing cubes into a cube in 3-D is NP-hard in 
the strong sense. This partially settles the open question raised in [5,7]. For the gener-
al hypercube packing problem in d-D ( 3d > ), authors of this paper also foresee a 
proof, but because of the length limitation, it is not included in this paper. 



 Packing Cubes into a Cube Is NP-Hard in the Strong Sense 613 

 

Acknowledgement. The research of D. Z. Chen was supported in part by NSF under 
Grants CCF-0916606 and CCF-1217906. 

References 

1. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin Packing in Multiple Dimen-
sions: Inapproximability Results and Approximation Schemes. Mathematics of Operations 
Research 31(1), 31–49 (2006) 

2. Caprara, A., Lodi, A., Monaci, M.: Fast Approximation Schemes for Two-stage, Two-
dimensional Bin Packing. Mathematics of Operations Research 30, 136–156 (2005) 

3. Chung, F.R.K., Garey, M.R., Johnson, D.S.: On Packing Two-dimensional Bins. SIAM 
Journal on Algebraic and Discrete Methods 3, 66–76 (1982) 

4. Correa, J.R., Kenyon, C.: Approximation Schemes for Multidimensional Packing. In: Proc. 
15th ACM–SIAM Symposium on Discrete Algorithms, pp. 179–188 (2004) 

5. Epstein, L., van Stee, R.: Online Square and Cube Packing. Acta Informatica 41(9),  
595–606 (2005) 

6. Garey, M., Johnson, D.: Computer and Intractability – A Guide to the Theory of  
NP-Completeness. Freeman, New York (1979) 

7. Harren, R.: Approximation Algorithms for Orthogonal Packing Problems for Hypercubes. 
Theoretical Computer Science 410(44), 4504–4532 (2009) 

8. Kohayakawa, Y., Miyazawa, F.K., Raghavan, P., Wakabayashi, Y.: Multidimensional 
Cube Packing. Algorithmica 40, 173–187 (2004) 

9. Leung, J.Y.-T., Tam, W.T., Wong, C.S., Chin, F.Y.L.: Packing Squares into a Square. 
Journal of Parallel and Distributed Computing 10, 271–275 (1990) 

10. Li, K., Cheng, K.H.: Complexity of Resource Allocation and Job Scheduling Problems in 
Partitionable Mesh Connected Systems. In: Proc. of 1st Annual IEEE Symposium of Paral-
lel and Distributed Processing, Silver Spring, MD, pp. 358–365 (1989) 

 



On the Complexity of Solving or Approximating

Convex Recoloring Problems

Manoel B. Campêlo1,�, Cristiana G. Huiban2,��, Rudini M. Sampaio1,
and Yoshiko Wakabayashi3,� � �

1 Universidade Federal do Ceará, Fortaleza, Brazil
{mcampelo,rudini}@lia.ufc.br

2 Universidade Federal de Pernambuco, Recife, Brazil
cmngh@cin.ufpe.br

3 Universidade de São Paulo, São Paulo, Brazil
yw@ime.usp.br

Abstract. Given a graph with an arbitrary vertex coloring, the Convex
Recoloring Problem (CR) consists of recoloring the minimum number of
vertices so that each color induces a connected subgraph. We focus on
the complexity and inapproximabiliy of this problem on k-colored graphs,
for fixed k ≥ 2. We prove a very strong complexity result showing that
CR is already NP-hard on k-colored grids, and therefore also on planar
graphs with maximum degree 4. For each k ≥ 2, we also prove that,
for a positive constant c, there is no c lnn-approximation algorithm even
for k-colored n-vertex bipartite graphs, unless P = NP. For 2-colored
(q, q − 4)-graphs, a class that includes cographs and P4-sparse graphs,
we present polynomial-time algorithms for fixed q. The same complexity
results are obtained for a relaxation of CR, where only one fixed color is
required to induce a connected subgraph.

Keywords: Convex recoloring, NP-hardness, inapproximability, poly-
nomial algorithm, grid graph, cograph, P4-sparse graph, (q, q−4)-graph.

1 Introduction

Consider a game in which all players receive an n×n chessboard (grid) in which
all the n2 squares are occupied by either a black or a white pebble in an arbitrary
manner. Every pebble has one face colored black and the other one colored white
(as in Reversi or Othello). The initial configuration of the pebbles is the same for
all players. The goal of each player is to reverse (turn to the opposite face) a least
number of pebbles in order to reach a configuration where each color occupies
a unique ‘connected’ region of his board. A winner is a player who makes the
least number of reversals.

� Partially supported by FUNCAP and CNPq, Brazil.
�� Research conducted while the author was supported by FUNCAP and CNPq.

� � � Partially supported by CNPq (Proc. 303987/2010-3 and 477203/2012-4) and USP
MaCLinC/NUMEC Project.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 614–625, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



On the Complexity of Solving or Approximating Convex Recoloring 615

The game we have just described may be seen as the convex recoloring problem
on a 2-colored grid. It is an easy to state combinatorial problem, for which
it is natural to ask whether an optimal solution can be easily found or not.
Surprisingly, it is a hard problem, as we prove in this paper. We shall also prove
that the problem remains hard on k-colored grids, for k ≥ 3.

A k-coloring of graph G is a function C : V (G) → {1, 2, . . . , k}, and C(v)
is the color of v. A graph is k-colored if it is assigned a k-coloring. Note that
the coloring considered here differs from the classical (proper) vertex coloring of
graphs, where C(u) �= C(v) for all uv ∈ E. A coloring C is convex if each color
class (i.e. set of vertices with the same color) induces a connected subgraph. The
convex recoloring problem (CR) consists of recoloring (changing the color of) the
minimum number of vertices so that the resulting coloring is convex. (We note
that, in the recoloring process, some colors may disappear.)

This problem was introduced by Moran and Snir [13,14] in 2005, motivated by
studies on phylogenetic trees. They showed that it is NP-hard even on paths, and
presented the first approximation results. Since then CR and some of its variants
have been intensively investigated. More recently, some applications on routing
problems, transportation networks and protein-protein interaction networks have
also been mentioned in the literature [7,9]. In general, the idea behind these
applications is that, the given colored graph represents some situation, and a
convex coloring of such a graph represents a desirable (perfect) configuration,
which one wants to achieve after a least number of color changes (such a number
is called the recoloring distance). In the case of phylogenetic trees, given a set of
species, a perfect phylogenetic tree on this set is a tree in which the states of each
character induce a convex coloring of the tree, where a character (coloring) is a
biological attribute shared among all the species and a character state (color) is
the state of this character shown by a vertex [14].

Approximation algorithms for CR were first designed for trees [13,14,4], and
more recently generalized to graphs with bounded treewidth [9], for which a
(2+ ε)-ratio has been shown. When each color appears at most twice, the prob-
lem remains NP-hard on paths [10], but admits a 3

2 -approximation [12]. For an
n-vertex arbitrary graph, however, CR cannot be approximated within a factor
of (1 − o(1)) ln lnn in polynomial time, unless NP ⊂ DTIME(nO(log logn)) [9].
On the other hand, some of the approximation algorithms for trees apply to
weighted versions of CR and other variants as well (on partial coloring). These
more general variants can all be treated (as the cardinality case) using a poly-
hedral approach [6]. For results in terms of Fixed Parameter Tractability, the
reader is referred to [5,16,18].

Here we focus on the problem CRk, the convex recoloring problem with k
colors in the initial coloring. Clearly, all approximation algorithms for CR are
approximation algorithms for CRk. Only a few hardness results are known for
this case. Recently, CR2 was proved to be NP-hard on arbitrary graphs [15]. It
is very intriguing that only two colors make the convex recoloring already hard.
This fact motivated us to investigate nontrivial classes of graphs for which CR2
can be solved in polynomial time. While it is easy to see that CR2 on trees (resp.



616 M.B. Campêlo et al.

ladders) can be solved in linear (resp. polynomial) time, for the well-structured
grid graphs, our intuition that the problem would be easy turned out to be
wrong.

The results we present in this paper were motivated by the investigations to
understand the polynomial solvability or approximability threshold of the CR2
problem. We show that for any fixed k ≥ 2, CRk is NP-hard on grids, which
clearly implies NP-hardness on (bipartite) planar graphs with maximum de-
gree 4. This hardness result motivated us to define a relaxed problem, CRkONE,
a variant of CRk in which only one specified color is required to induce a con-
nected subgraph. This problem, if polynomially solvable, could possibly help in
the design of an approximation algorithm for CRk, as it would provide a lower
bound for the optimal value of CRk. However, we could prove the same com-
plexity result for this relaxation. In terms of approximability, we show that, for
each k ≥ 2, if P �= NP, the two problems are not approximable within a factor of
c lnn on n-vertex bipartite graphs (for a constant c > 0). To our knowledge, this
is the strongest inapproximability result for CRk and (and therefore for CR),
under the more natural hypothesis that P �= NP. Finally, we present algorithms
for CR2 and CR2ONE on (q, q − 4)−graphs, which are polynomial for fixed q.
This class of graphs includes the cographs and P4-sparse graphs.

2 NP-hardness on Grids

In this section, we first prove that CRk and CRkONE are NP-hard on grids, for
k = 2. The results are then generalized for any k ≥ 3.

A grid graph, or simply a grid, is a graph with vertex set V = X × Y , where
X and Y are finite subsets of consecutive integers, and edge set {{(i, j), (i′, j′)} :
|i − i′| + |j − j′| = 1, i ∈ X, j ∈ Y }. If m = |X | and n = |Y |, such a grid can
also be denoted as G(m,n), and considered to have m rows (or horizontal lines)
and n columns (or vertical lines). We say that a frame is added to G(m,n) if
two extra rows and two extra columns forming a boundary around G(m,n) are
added so as to get a new grid G(m + 2, n + 2). Note that a grid is a planar
bipartite graph with maximum degree 4.

To obtain the complexity results, we show a reduction from the connected
vertex cover problem. A connected vertex cover of a graph H is a subset of
vertices that induces a connected subgraph and contains at least one endpoint
of each edge of H . Deciding whether a planar graph with maximum degree at
most 4 has a connected vertex cover of size at most a given integer p is an
NP-complete problem [8]. We reduce this problem, denoted as CVC, to the
decision version of CR2ONE on grid graphs. Our reduction is inspired by the
proof presented in [8].

Let H be an input graph for CVC, n = |V (H)| and m = |E(H)|. Consider
a 2-dimensional grid in the oriented plane such that the distance (number of
edges) between two consecutive horizontal or vertical lines is n. Since H is planar
and Δ(H) ≤ 4, it has a representation where each vertex is placed at a point
(nx, n y), for some x, y ∈ Z, and the edges are described solely by (horizontal and



On the Complexity of Solving or Approximating Convex Recoloring 617

vertical) segments of the lines in this grid (see Figure 1). Such a representation
can be constructed in low-order-polynomial time [8].

Let X and Y be the smallest sequences of integers containing the x- and
y-coordinates of the vertices of H , respectively. The instance for CR2ONE is
g(H) = (G,C, 1), where G is the grid graph with vertex set X × Y , C is a
2-coloring (with colors in {1, 2}), and color 1 is required to induce a connected
subgraph. For a vertex v in H , we denote by φ(v) the corresponding vertex in
the grid graph G, and call it a primal vertex. Note that an edge e = uv of H
corresponds to a path Puv in G with at least n + 1 vertices (see Figure 1(c)).
The internal section of this path, Puv \ {φ(u), φ(v)}, is called e-component. The
coloring C assigns color 1 to the e-components and color 2 to the other vertices.

1 2 3

4 5 6

7 8 9

0

(a) H

1 2

4

8

0

3

6

9

5

7

(b) H over a grid

1 2

2 primal vertices

e-component
(n− 1 vertices)

(c) edge (1, 2) in g(H)

Fig. 1. Reduction from CVC to CR2ONE

Lemma 1. [Reduction of CVC to CR2ONE] Let (H, p) be an input to CVC,
where H is a connected planar graph with maximum degree at most 4, and p is
a positive integer. Let g(H) = (G,C, 1) be the corresponding input to CR2ONE.
The graph H has a connected vertex cover with at most p vertices if, and only
if, g(H) has a solution with at most p recolored vertices.

Proof. First, assume that H has a connected vertex cover S with at most p
vertices. Consider a recoloring of G in which we change to 1 only the color of
each primal vertex φ(s), for s ∈ S. This recoloring is clearly a solution to g(H),
as the vertices with color 1 induce a connected subgraph of G.

Conversely, suppose that g(H) has an optimal solution of size at most p that
is defined by a set R of the vertices of G that had their colors switched. Let
n = |V (H)|. Since H clearly has a connected cover with n− 1 vertices, we may
assume that p < n−1. We claim that R has no vertex from an e-component. In-
deed, first note that, since each e-component has at least n− 1 vertices, the set R
cannot contain all vertices of an e-component. Now, if there were an e-component
containing two adjacent vertices u and v such that u ∈ R and v /∈ R, recoloring
only the vertices in R \ {u} would be a better solution. Therefore, R does not
contain any vertex of an e-component. Denote by G1 the connected subgraph
of G induced by the vertices with color 1 in the optimal solution of g(H) under
consideration. We have shown that G1 contains all the e-components. Because



618 M.B. Campêlo et al.

of the minimality of R, it follows that G1 is a smallest connected subgraph of G
containing all e-components. W.l.o.g, we may assume that G1 has the least num-
ber of non-primal vertices. We say that two e-components A and B are neighbors
in G1 if, for all vertices u ∈ A and v ∈ B, there is a path between them in G1

that does not include a vertex from other e-component. So, A and B can only
be neighbors in G1 if the corresponding edges in H are adjacent (otherwise we
would need at least n−1 recolored vertices). Moreover, in this case, A and B can
always be linked by a single primal vertex. It is not difficult to conclude that R
is the smallest subset of primal vertices connecting the e-components, and thus,
the vertices in R define in H a connected vertex cover of size at most p. ��

The reduction from CVC to CR2 follows an analogous strategy as the reduction
from CVC to CR2ONE, but uses a larger initial grid. Owing to space limitation,
we only give a sketch of the proof. First, each vertex of H is placed at a point
((2n+m)x, (2n+m)y), instead of (nx, ny), so that each edge e is now mapped
into a path Pe with at least 2n + m + 1 vertices. The e-component is now
Pe without two vertices in each extremity. So, an e-component has at least
2n + m − 3 (instead of n − 1) vertices, and there are 2 (instead of 1) primal
vertices associated with each endpoint of e. Second, a frame is added to the grid
(as we defined previoulsy). The instance for CR2 is given by this enlarged grid
G′ with a 2-coloring that again assigns color 1 only to the e-components. By
adapting the proof of Lemma 1, we can show that this instance of CR2 has an
optimum solution where the subgraph induced by the vertices with color 1 is
a tree (this holds because of the duplication of the primal vertices). Then, the
boundary (frame) of G′ guarantees the connectedness of the graph induced by
the vertices with color 2.

We note that CRk on grids can be reduced to CR(k + 1). For that, take the
k-colored grid and add a frame colored k + 1. The same works for CRkONE.
Thus, the following holds:

Theorem 1. For every k ≥ 2, CRk and CRkONE are NP-hard on grids.

As a consequence of the above theorem, it follows that CR is also NP-hard on
grids.

3 Approximability Threshold for Bipartite Graphs

We prove in this section an inapproximability result for CRk and CRkONE on
bipartite graphs. We start with k = 2, showing an approximation preserving
reduction from the set cover problem (SC) to CR2. A cover of a set S is a family
of subsets whose union comprises S. Given a set S and a family F of subsets of
S, SC consists of finding a minimum cardinality subfamily of F that is a cover
of S. It has been shown that, if P �= NP, then SC cannot be approximated in
polynomial time within a factor of c ln |S|, where c is a constant [17,1]. This
holds even when |F| ≤ |S|. We use this threshold and the following mapping.



On the Complexity of Solving or Approximating Convex Recoloring 619

Given an instance (S,F) of SC, let f(S,F) be an instance of CR2, consisting
of the 2-colored bipartite graph (G,C), where X = {x1, x2}, V (G) = S∪F ∪X ,
E(G) = {(s, F ) ∈ S × F | s ∈ F} ∪ (X × F), C(v) = 1, ∀v ∈ S ∪ {x1}, and
C(u) = 2, ∀u ∈ F∪{x2}. See Figure 2. We note that this reduction is polynomial
in the size of (S,F).

1

2

5

3

4

{1,2,3}

{2,4}

{3,4}

{4,5}

x1

S

F

x2

X

Fig. 2. Reduction from an instance of SC to an instance of CR2

We can polynomially transform a feasible solution of (S,F) (given as a sub-
family of F covering S) into a feasible solution of f(S,F) (described as subset
of vertices with switched colors), and vice-versa. In what follows, for an element
s ∈ S, we denote by Fs any element of F containing s.

Lemma 2. [Reduction from SC to CR2] Let (S,F) be an instance of SC and
f(S,F) be the corresponding instance of CR2. If Ψ is a feasible solution of (S,F),
then Ψ is also a feasible solution of f(S,F). Conversely, if Ψ is a feasible solution
of f(S,F), then Ψ ′ is a feasible solution of (S,F), where

Ψ ′ =

{
{Fs : s ∈ S}, if Ψ ∩ F = ∅,
(Ψ ∩ F) ∪ {Fs : s ∈ S ∩ Ψ}, otherwise.

Moreover, |Ψ ′| ≤ |Ψ |.
Proof. Let Ψ be a feasible solution of (S,F). Since Ψ ⊆ F is a cover of S, there is
an edge in G of the form (s, F ), for every s ∈ S and some F ∈ Ψ . Moreover, x1 is
universal to Ψ in G. Then, the subgraph of G induced by the vertices colored 1,
that is, S ∪ Ψ ∪ {x1}, is connected. The subgraph of G induced by the vertices
colored 2, that is F \ Ψ ∪ {x2}, is also connected because x2 is universal to
F in G.

Now, let Ψ be a feasible solution of f(S,F). If Ψ ∩F = ∅, then Ψ ′ is clearly a
cover of S. In this case, at most one vertex from S ∪ {x1} can retain its original
color 1, since they are pairwise non-adjacent in G. Therefore, |Ψ | ≥ |S| = |Ψ ′|.
Regarding the case Ψ∩F �= ∅, we have that S∩Ψ is trivially covered by the chosen
Fs’s. So, it suffices to show that Ψ ∩ F covers S \ Ψ . Let G1 be the connected
subgraph of G induced by the vertices of color 1, after the recoloring defined
by Ψ . Let s ∈ S \ Ψ . Since G1 contains s and the vertices of the nonempty set
F∩Ψ , it must also contain an edge (s, F ) ∈ E(G), for some F ∈ F∩Ψ covering s.
Furthermore, |Ψ ′| ≤ |Ψ ∩ F|+ |Ψ ∩ S| ≤ |Ψ \ S|+ |Ψ ∩ S| = |Ψ |. ��



620 M.B. Campêlo et al.

Corollary 1. Let (S,F) be an instance of SC. Optimal solutions of (S,F) and
f(S,F) = (G,C) have the same value.

Proof. By Lemma 2, if Ψ ′ is a feasible solution of (S,F), there is Ψ = Ψ ′ that is
also a feasible solution of f(S,F) = (G,C). Then, the optimal solution |Ψ ′∗| =
|Ψ | ≥ |Ψ∗|. So, |Ψ ′∗| ≥ |Ψ∗|. The same Lemma also proves that, any solution Ψ
of f(S,F) = (G,C) can be mapped into a solution Ψ ′ of (S,F) with |Ψ | ≥ |Ψ ′|.
Thus, |Ψ∗| ≥ |Ψ ′| ≥ |Ψ ′∗|. So, |Ψ∗| ≥ |Ψ ′∗|. ��

For the reduction of SC to CR2ONE, it suffices to consider the graph (G −
{x2}, C, 1). The counterpart of Lemma 2 readily follows. By this lemma, (S,F)
and f(S,F) have the same optimal value, and so an α-approximation for CR2 (or
CR2ONE) yields an α-approximation for SC. The same results hold for k ≥ 3.
It suffices to add to G an isolated vertex xi colored i, for each i = 3, 4, . . . , k.
This leads to an approximation threshold for our problems.

Theorem 2. For k ≥ 2, there is a constant c > 0 such that CRk and CRkONE
are inapproximable in polynomial time within a factor of c lnn even on n-vertex
bipartite graphs, unless P = NP.

Proof. By Lemma 2 and Corollary 1, it follows that if there is an α-approximation
algorithm for CR2 then there is also an α-approximation algorithm for SC. Ac-
cording to [17,1], under the assumption that P �= NP, for a positive constant c,
there is no c ln |S|-approximation algorithm for a Set Cover instance (in which
the family F has size polynomial in |S|). Thus, there is a positive constant c such
that CR2 cannot be approximated within a factor of c lnn on n-vertex bipartite
graphs. ��

4 Polynomial-Time Algorithms for Graphs with few P4’s

In this section we show how to obtain polynomial-time algorithms for CR2 and
CR2ONE on (q, q−4)-graphs, for every fixed q. We recall that P4 denotes a path
on 4 vertices, and that (q, q − 4) is a graph in which every subset of at most q
vertices induces at most q− 4 distinct P4’s. Every n-vertex graph G is (q, q− 4)
for some q = q(G) (this can be determined in O(n7) time [19]). For instance,
q = 4 for cographs and q = 5 for P4-sparse graphs.

These graphs have a nice recursive decomposition based on unions, joins,
spiders and small separable p-components [2], all defined below.

Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex disjoint graphs. The
disjoint union of G1 and G2 is the graph G1 ∪G2 = (V1 ∪V2, E1 ∪E2). The join
is the graph G1 ∨G2 = (V1 ∪ V2, E1 ∪E2 ∪ {uv : u ∈ V1, v ∈ V2}).

A spider is a graph whose vertex set has a partition (R,K, S), where K =
{k1, . . . , kp} and S = {s1, . . . , sp}, for p ≥ 2, are a clique and a stable set,
respectively; si is adjacent to kj if and only if i = j (a thin spider), or si is
adjacent to kj if and only if i �= j (a thick spider); and every vertex of R is
adjacent to each vertex of K and non-adjacent to each vertex of S.



On the Complexity of Solving or Approximating Convex Recoloring 621

We say that a graph is p-connected (path connected) if, for every bipartition
of the vertex set, there is a crossing P4, i.e. a P4 with vertices in both parts.
A separable p-component is a maximal p-connected subgraph with a particular
bipartition (H1, H2) such that every crossing P4 wxyz satisfies x, y ∈ H1 and
w, z ∈ H2.

Theorem 3. [Primeval Decomposition [2]] If G is a (q, q − 4)-graph, then one
of the following holds:

(a) G is the union or the join of two (q, q − 4)-graphs;
(b) G is a spider (R,K, S) and G[R] is a (q, q − 4)-graph;
(c) G contains a separable p-component H, with bipartition (H1, H2) and with
|V (H)| ≤ q, such that G−H is a (q, q− 4)-graph and every vertex of G−H
is adjacent to every vertex of H1 and non-adjacent to every vertex of H2;

(d) G has at most q vertices or V (G) = ∅.

As a consequence, a (q, q − 4)-graph G can be decomposed by successively ap-
plying Theorem 3 as follows: If (a) holds, apply the theorem to each component
of G or G (operations disjoint union and join). If (b) holds, apply the theorem
to G[R]. Finally, if (c) holds, then apply the theorem to G − H . This decom-
position can be obtained in linear time [3,11]. Once we have it, problems CR2
and CR2ONE can be solved by composing the solution of the parts obtained
in each case (a)-(d), as follows. From now on, let C be a 2-coloring with colors
r and r̄, {r, r̄} = {1, 2}, GC,r be the subgraph of G induced by r in C, and
nr(G,C) = |V (GC,r)|. Let ρ2(G,C) and ρ1(G,C, r) denote the optimal value of
CR2 and CR2ONE, respectively.

Lemma 3. Let G be the disjoint union of two disjoint graphs G1 and G2.
Then, ρ1(G,C, r) = min{ρ1(G1, C, r) + nr(G2, C), ρ1(G2, C, r) + nr(G1, C)}.
If G1 or G2 is disconnected, then CR2 is infeasible; otherwise, ρ2(G,C) =
min{n1(G1, C) + n2(G2, C), n2(G1, C) + n1(G2, C)}.

Proof. Let (G,C, r) be an instance of CR2ONE. Clearly, in any solution, color
r can appear only in G1 or G2. If color r appears only in G1, then we have to
solve CR2ONE with instance (G1, C, r) and recolor every vertex colored r in
G2. If color r appears only in G2, then we have to solve CR2ONE with instance
(G2, C, r) and recolor every vertex colored r in G1. This argument leads to
ρ1(G,C, r) = min{ρ1(G1, C, r) + nr(G2, C), ρ1(G2, C, r) + nr(G1, C)}.

Now, let (G,C) be an instance of CR2. If G1 or G2 is disconnected, then it
is easy to see that there is no possible convex recoloring with two colors. If G1

and G2 are both connected, then there is only two possible convex recolorings:
(a) color 1 appears only in G1 and color 2 appears only in G2, or (b) color
1 appears only in G2 and color 2 appears only in G1. This argument leads to
ρ2(G,C) = min{n1(G1, C) + n2(G2, C), n2(G1, C) + n1(G2, C)}.

Lemma 4. Let G be the join of G1 and G2. If GC,r is disconnected, then
ρ1(G,C, r) = 1; otherwise, ρ1(G,C, r) = 0. If V (G1) = {v}, then ρ2(G,C) =
min{ρ1(G2, C, C(v)), ρ1(G2, C, C(v)) + 1}. If G1 and G2 have at least 2 vertices



622 M.B. Campêlo et al.

each, then ρ2(G,C) = d(G,C) := ρ1(G,C, 1) + ρ1(G,C, 2), if d(G,C) �= 2 or
d(G− {v}, C) �= 1 for all v ∈ V (G); and ρ2(G,C) = 1, otherwise.

Proof. Let (G,C, r) be an instance of CR2ONE. If GC,r is disconnected, G1 or
G2 does not contain a vertex colored r. Assume it is the case of G1. Recoloring
one vertex of G1 (to color r) will connect the subgraph induced by color r.

Let (G,C) be an instance of CR2. Suppose that both G1 and G2 have more
than one vertex. The case d(G,C) ≤ 1 is similar to CR2ONE, so that ρ2(G,C) =
d(G,C). Now suppose that d(G,C) = 2. Without loss of generality, we can
assume that color i only appears in Gi, for i = 1, 2. If d(G − {v}, C) = 1 for
some v ∈ V (G), we just need to switch the color of v to get a solution. Otherwise,
one vertex from G1 and one vertex from G2 must be recolored. Finally, suppose
that V (G1) = {v}. Then, a convex recoloring of G that assigns color r to v is
a recoloring of G2 where color r̄ induces a connected subgraph. This leads to
ρ2(G,C) = min{ρ1(G2, C, C(v)), ρ1(G2, C, C(v)) + 1}.
For a thick spider with |K| = 2, which is equivalent to a thin spider, the analysis
is very particular and will be omitted. We focus on |K| ≥ 3. In what follows, for
simplicity, we may say that a color c is connected, meaning that the subgraph
induced by the vertices with color c is connected.

Lemma 5. Let G be a thick spider with |K| ≥ 3. If S is colored r and K is
colored r̄, ρ1(G,C, r) = 2. Otherwise, ρ1(G,C, r) is 0 or 1, depending on whether
GC,r is connected or not. Moreover, ρ2(G,C) = max{ρ1(G,C, 1), ρ1(G,C, 2)}.
Proof. First, note that a color c is connected if nc(K,C) ≥ 2. Then, since |K| ≥ 3
and we have only two possible colors, there is at least one connected color. As-
sume that only one color is disconnected, let us say r; otherwise, both colors
are already connected. Then, ρ2(G,C) ≥ 1 and ρ1(G,C, r) ≥ 1. Moreover,
nr(K,C) ≤ 1. If nr(K,C) = 1, then C(ki) = C(si) = r, for some i (as r is
disconnected). Recoloring si is enough to get a convex coloring. If nr(K,C) = 0,
we consider two subcases. If there is a vertex si colored r̄, we can recolor ki to get
a convex recoloring. Otherwise, every vertex of S is colored r and every vertex
of K is colored r̄. Then, we must recolor at least two vertices to connect the
vertices of color r. Actually, we could recolor si and ki to connect both colors.
These cases show the desired results.

Lemma 6. Let G be a thin spider with |K| ≥ 3, and Sr = {si ∈ S : C(si) =
r, C(ki) = r̄}. Then, ρ1(G,C, r) = |Sr| and ρ2(G,C) = |S1| + |S2| except in
two cases: (i) S ∪ K is colored r̄: ρ1(G,C, r) = 1 if GC,r is disconnected, and
ρ1(G,C, r) = 0, otherwise; ρ2(G,C) = min{2, ρ1(G[R], C, r)}; (ii) K ∪ R is
colored r̄: ρ1(G,C, r) = ρ2(G,C) = max{0, |Sr| − 1}.
Proof. First, suppose that both r and r̄ appear inK. If Sr = ∅,GC,r is connected.
Otherwise, it suffices to recolor the vertices in Sr to connect color r. However,
recoloring less than |Sr| vertices will keep the original color of at least one pair
si, ki, with si ∈ Sr, so that color r is still disconnected. Extending this argumen-
tation to r̄, we can show that all the vertices in Sr and Sr̄ must be recolored to
connect both colors. Therefore, ρ1(G,C, r) = |Sr| and ρ2(G,C) = |S1|+ |S2|.



On the Complexity of Solving or Approximating Convex Recoloring 623

Now, suppose that K is monochromatic. If it is colored r, then ρ1(G,C, r) =
0 = |Sr|. If it is colored r̄, we consider three subcases:

1. S is colored r̄: If disconnected, the subgraph of G induced by color r can be
made connected by switching the color of a vertex ki ∈ K. Thus, we get the
desired value for ρ1(G,C, r).

2. Color r appears in S and R is colored r̄: If |Sr| ≤ 1, then GC,r is conneted.
Otherwise, switching the color of all but one vertex of Sr connects color
r. On the other hand, recoloring less than |Sr| − 1 vertices will keep the
original color of at least two pairs si, ki, with si ∈ Sr, so that color r is still
disconnected. Hence, ρ1(G,C, r) = max{0, |Sr| − 1}.

3. Color r appears in S and R: Besides the vertices recolored in subcase (2),
we need to recolor the vertex in K whose neighbor in Sr has kept its color.
The argumentation is similar, leading to ρ1(G,C, r) = |Sr| = |Sr|+ |Sr̄|.

To determine ρ2(G,C), we can assume that K is colored r̄ so as to consider
subcases (1)-(3). In subcases (2) and (3), note that color r̄ is kept connected, so
that ρ2(G,C) = ρ1(G,C, r). In subcase (2), we can get the two colors connected
by either recoloring ki and si or recoloring ρ1(G[R], C, r) vertices in G[R]. Again,
we obtain the desired expression.

Finally, we deal with case (c) of Theorem 3.

Lemma 7. Let G contain a separable p-component H = H1∪H2 with less than q
vertices such that G\H is complete to H1 and anti-complete to H2. Let Cr(H) be
the set of recolorings Γ of H where HΓ,r is connected or empty, or each connected
component contains a vertex in H1. Let α(Γ ) be the number of recolored vertices
of H in Γ , and βr(Γ ) be equal to ρ1(G−H,C, r), if V (HΓ,r) = ∅; nr(G−H,C),
if ∅ �= V (HΓ,r) ⊆ H2; 1, if HΓ,r is disconnected and nr(G \ H,C) = 0; 0,
otherwise. Then, ρ1(G,C, r) = min{α(Γ ) + βr(Γ ) : Γ ∈ Cr(H)} and ρ2(G,C) =
min{α(Γ ) + max{β1(Γ ), β2(Γ )}} : Γ ∈ C1(H) ∩ C2(H)}.

Proof. For CR2ONE, we have to show that Cr(H) comprises exactly the recolor-
ings of H that can be extended to recoloring of G connecting r, and that βr(H)
is the minimum number of recolorings in G−H to get this extension. First, let Γ
be a recoloring of H not belonging to Cr(H). Then, HΓ,r is disconnected, being
one of its connected components included in H2. Since H2 is anti-complete to
G−H , we cannot connect color r with any recoloring of G−H .

Now, let Γ ∈ Cr(H). We consider four cases. If HΓ,r is empty, we trivially have
that ρ1(G−H,C, r) is the minimum number of recolorings in G−H to extend Γ
to a recoloring of G connecting r. If HΓ,r is nonempty, connected and included
in H2, which is anti-complete to G − H , the only way to connect r in G is by
recoloring every vertex in G−H colored r in C. If HΓ,r is nonempty, connected
and contains a vertex in H1, color r is already connected in G, provided that H1

is complete to G−H . In the remaining case, each of the (at least two) connected
components of HΓ,r has a vertex in H1. We just need a vertex colored r in G−H
to get color r connected. If there is no such a vertex colored r by C, an addtional
recoloring is necessary.



624 M.B. Campêlo et al.

For CR2, we can apply the above argument to both r and r̄. The first part of
the proof shows that C(H) = Cr(C)∩Cr̄(C) comprises exactly the recolorings of
H that can be extended to a convex recoloring of G. Then, for each Γ ∈ C(H),
we can use the second part of the proof to determine β(Γ ) = max{βr(Γ ), βr̄(Γ )}
and see that β(Γ ) is the minimum number of recolorings in G−H to extend Γ
to a convex recoloring of G.

5 Concluding Remarks

The convex recoloring problem, in its simpler form (the unweighted case), as
we have stated here, is an easy to state combinatorial optimization problem,
which seems to be tractable for some simple classes of graphs. It is, thus, rather
unexpected that for grid graphs and only two colors the corresponding problem is
already NP-hard. It would be interesting to design an approximation algorithm
for CR2 on this class of graphs. Another related question is whether CR2 (or
CRk) on graphs with maximum degree 3 can be easily solved or not.

As we showed in this paper, CRk and CRkONE (and CR) cannot be ap-
proximated within a logarithmic factor, unless P=NP. This is a strong inap-
proximability result for arbitrary graphs (even with only 2 colors). It is a chal-
lenging problem to show other inapproximability results for more special classes
of graphs or find larger classes of graphs for which a polynomial or a constant
approximation algorithm for these problems can be designed. To our knowledge,
the largest class for which a constant approximation algorithm (for CR) has been
designed is the class of graphs with bounded treewidth [9].

References

1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-
restrictions. ACM Transactions on Algorithms 2, 153–177 (2006)

2. Babel, L., Olariu, S.: On the structure of graphs with few P4
′s. Discrete Appl.

Math. 84, 1–13 (1998)
3. Baumann, S.: A linear algorithm for the homogeneous decomposition of graphs,

Report No. M-9615, Zentrum für Mathematik, Technische Universität München
(1996)

4. Bar-Yehuda, R., Feldman, I., Rawitz, D.: Improved approximation algorithm for
convex recoloring of trees. Theor. Comp. Sys. 43, 3–18 (2008)

5. Bodlaender, H.L., Fellows, M.R., Langston, M.A., Ragan, M.A., Rosamond, F.A.,
Weyer, M.: Quadratic kernelization for convex recoloring of trees. Algorith-
mica 61(2), 362–388 (2011)

6. Campêlo, M.B., Lima, K.R., Moura, P.F.S., Wakabayashi, Y.: Polyhedral studies on
the convex recoloring problem (2012), accepted to VII Latin-American Algorithms,
Graphs and Optimization Symposium (2013)

7. Chor, B., Fellows, M., Ragan, M.A., Razgon, I., Rosamond, F., Snir, S.: Connected
coloring completion for general graphs: Algorithms and complexity. In: Lin, G. (ed.)
COCOON 2007. LNCS, vol. 4598, pp. 75–85. Springer, Heidelberg (2007)

8. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem in NP-complete.
SIAM Journal of Applied Mathematics 32, 826–834 (1977)



On the Complexity of Solving or Approximating Convex Recoloring 625

9. Kammer, F., Tholey, T.: The complexity of minimum convex coloring. Discrete
Appl. Math. 160, 810–833 (2012)

10. Kanj, I.A., Kratsch, D.: Convex recoloring revisited: Complexity and exact al-
gorithms. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 388–397.
Springer, Heidelberg (2009)

11. Jamison, B., Olariu, S.: A tree representation for P4-sparse graphs. Discrete Appl.
Math. 35, 115–129 (1992)

12. Lima, K.R., Wakabayashi, Y.: Convex recoloring of paths. Electronic Notes in
Discrete Mathematics 37, 165–170 (2011)

13. Moran, S., Snir, S.: Efficient approximation of convex recolorings. J. Comput. Syst.
Sci. 73, 1078–1089 (2007)

14. Moran, S., Snir, S.: Convex recolorings of strings and trees: Definitions, hardness
results and algorithms. J. Comput. Syst. Sci. 74, 850–869 (2008)

15. Moran, S., Snir, S., Sung, W.-K.: Partial convex recolorings of trees and galled
networks: tight upper and lower bounds. ACM Trans. Algorithms 7 (2011)

16. Ponta, O., Hüffner, F., Niedermeier, R.: Speeding up dynamic programming for
some NP-hard graph recoloring problems. In: Agrawal, M., Du, D.-Z., Duan, Z.,
Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 490–501. Springer, Heidelberg
(2008)

17. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proc. of the 29th Annual
ACM Symposium on Theory of Computing, pp. 475–484 (1997)

18. Razgon, I.: A 2O(k)poly(n) algorithm for the parameterized convex recoloring prob-
lem. Inform. Process. Lett. 104(2), 53–58 (2007)

19. Sales, C.L., Maia, A.K., Martins, N., Sampaio, R.M.: Restricted Coloring Problems
on graphs with few P4’s. Annals of Operations Research (to appear)



2-connecting Outerplanar Graphs

without Blowing Up the Pathwidth

Jasine Babu1, Manu Basavaraju2, Sunil Chandran Leela1,
and Deepak Rajendraprasad1

1 Indian Institute of Science, Bangalore 560012, India
2 The Institute of Mathematical Sciences, Chennai 600113, India

{jasine,sunil,deepakr}@csa.iisc.ernet.in, manub@imsc.res.in

Abstract. Given a connected outerplanar graph G with pathwidth p, we
give an algorithm to add edges to G to get a supergraph of G, which is 2-
vertex-connected, outerplanar and of pathwidth O(p). As a consequence,
we get a constant factor approximation algorithm to compute a straight
line planar drawing of any outerplanar graph, with its vertices placed on
a two dimensional grid of minimum height. This settles an open problem
raised by Biedl [3].

Keywords: Pathwidth, Outerplanar Graph, Bi-connected.

1 Introduction

A graph G(V,E) is outerplanar, if it has a planar embedding with all its vertices
lying on the outer face. Computing planar straight line drawings of planar graphs
with vertices placed on a two dimensional grid, is a well known problem in graph
drawing. The height of a grid is defined as the smaller of the two dimensions
of the grid. If G has a planar straight line drawing, with its vertices placed on
a two dimensional grid of height h, then we call it a planar drawing of G of
height h. It is known that any planar graph on n vertices can be drawn on an
(n− 1)× (n− 1) sized grid [11].

We use pw(G) to denote the pathwidth of a graph G. Pathwidth is a structural
parameter of graphs, which is widely used in graph drawing and layout problems
[3,5,13]. The study of pathwidth, in the context of graph drawings, was initiated
by Dujmovic et al. [5]. It is known that any planar graph that has a planar
drawing of height h has pathwidth at most h [13]. However, there exist planar
graphs of constant pathwidth but requiring Ω(n) height in any planar drawing
[2]. In the special case of trees, Suderman [13] showed that any tree T has a planar
drawing of height at most 3 pw(T )−1. Biedl [3] considered the same problem for
the bigger class of outerplanar graphs. For any bi-connected outerplanar graph
G, Biedl [3] obtained an algorithm to compute a planar drawing of G of height at
most 4 pw(G)−3. Since it is known that pathwidth is a lower bound for the height
of the drawing [13], the algorithm given by Biedl [3] is a 4-factor approximation
algorithm for the problem, for any bi-connected outerplanar graph. The method

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 626–637, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2-connecting Outerplanar Graphs without Blowing Up the Pathwidth 627

in Biedl [3] is to add edges to the bi-connected outerplanar graph G to make it a
maximal outerplanar graph H and then draw H on a grid of height 4 pw(G)−3.
The same method would give a constant factor approximation algorithm for
arbitrary outerplanar graphs, if it is possible to add edges to any arbitrary
outerplanar graph G to obtain a bi-connected outerplanar graph G′ such that
pw(G′) = O(pw(G)). This was an open problem in Biedl [3].

In this paper, we give an algorithm to augment a connected outerplanar graph
G of pathwidth p by adding edges so that the resultant graph is a bi-connected
outerplanar graph of pathwidth O(p). Notice that, the non-triviality lies in the
fact that G′ has to be maintained outerplanar. If we relax this condition, the
problem becomes very easy. It is easy to verify that the supergraph G′ of G,
obtained by making any two vertices of G adjacent to each other and to every
other vertex in the graph, is bi-connected and has pathwidth at most pw(G)+2.
The problem of augmenting outerplanar graphs to make them bi-connected,
while maintaining the outerplanarity and optimizing some other properties, like
number of edges added [6,9], have been investigated previously.

2 Background

A tree decomposition of a graph G(V,E) [10] is a pair (T,X ), where T is a tree
and X = (Xt : t ∈ V (T )) is a family of subsets of V (G), such that:
1.

⋃
(Xt : t ∈ V (T )) = V (G).

2. For every edge e of G there exists t ∈ V (T ) such that e has both its end
points in Xt.

3. For t, t′, t′′ ∈ V (T ), if t′ is on the path of T between t and t′′ then,
Xt ∩Xt′′ ⊆ Xt′ .

The width of the tree decomposition is maxt∈V (T ) (|Xt| − 1). Each Xt ∈ X is
referred to as a bag in the tree decomposition. The graph G has treewidth w
if w is the minimum such that G has a tree decomposition of width w. A path
decomposition (P,X ) of a graph G is a tree decomposition of G with the addi-
tional property that the tree P is a path. The width of the path decomposition
is maxt∈V (P ) (|Xt| − 1). The graph G has pathwidth w if w is the minimum such
that G has a path decomposition of width w.

Without loss of generality we can assume that, in any path decomposition
(P ,X ) of G, the vertices of the path P are labeled as 1, 2, . . ., in the order
in which they appear in P . Accordingly, the bags in X also get indexed as
1, 2, . . .. For each vertex v ∈ V (G), define FirstIndexX (v) = min{i | Xi ∈ X
contains v}, LastIndexX (v) = max{i | Xi ∈X contains v} and RangeX (v) =
[FirstIndexX (v), LastIndexX (v)]. By the definition of a path decomposition,
if t ∈ RangeX (v), then v ∈ Xt. If v1 and v2 are two distinct vertices, define
GapX (v1, v2) as follows:
– If RangeX (v1) ∩RangeX (v2) �= ∅, then GapX (v1, v2) = ∅.
– If LastIndexX (v1) < FirstIndexX (v2), then
GapX (v1, v2) = [LastIndexX (v1) + 1, F irstIndexX (v2)].

– If LastIndexX (v2) < FirstIndexX (v1), then
GapX (v1, v2) = [LastIndexX (v2) + 1, F irstIndexX (v1)].



628 J. Babu et al.

The motivation for this definition is the following. Suppose (P,X ) is a path
decomposition of a graph G and v1 and v2 are two non-adjacent vertices of G.
If we add a new edge between v1 and v2, a natural way to modify the path
decomposition to reflect this edge addition is the following. If GapX (v1, v2) = ∅,
there is an Xt ∈ X , which contains v1 and v2 together and hence, we need
not modify the path decomposition. If LastIndexX (v1) < FirstIndexX (v2),
we insert v1 into all Xt ∈ X , such that t ∈ GapX (v1, v2). On the other hand,
if LastIndexX (v2) < FirstIndexX (v1), we insert v2 to all Xt ∈ X , such that
t ∈ GapX (v1, v2). It is clear from the definition of GapX (v1, v2), that this
procedure gives a path decomposition of the new graph. Whenever we add an
edge (v1, v2), we stick to this procedure to update the path decomposition.

A block of a graph G is a maximal connected subgraph of G without a cut
vertex. Every block of a connected graph G is thus either a single edge which is
a bridge in G, or a maximal bi-connected subgraph of G. If a block of G is not a
single edge, we call it as a non-trivial block of G. Given a connected outerplanar
graph G, we define a rooted tree T (hereafter referred to as the rooted block tree
of G) as follows. The vertices of T are the blocks of G and the root of T is an
arbitrary block of G which contains at least one non-cut vertex (it is easy to see
that such a block always exists). Two vertices Bi and Bj of T are adjacent if
the blocks Bi and Bj share a cut vertex in G. It is easy to see that T , as defined
above, is a tree. In our discussions, we restrict ourselves to a fixed rooted block
tree of G. If block Bi is a child block of block Bj in the rooted block tree of G,
and they share a cut vertex x, we say that Bi is a child block of Bj at x.

It is known that every bi-connected outerplanar graph has a unique Hamilto-
nian cycle [14]. Though the Hamiltonian cycle of a bi-connected block of G can
be traversed either clockwise or anticlockwise, let us fix one of these orderings,
so that the successor and predecessor of each vertex in the Hamiltonian cycle of
the block is fixed. We call this order as the clockwise order. Consider a non-root
block Bi of G such that Bi is a child block of its parent, at the cut vertex x.
If Bi is a non-trivial block and yi and y′i respectively be the predecessor and
successor of x in the Hamiltonian cycle of Bi, we call yi as the last vertex of Bi

and y′i as the first vertex of Bi. If Bi is a trivial block, the neighbor of x in Bi

is regarded as both the first vertex and the last vertex of Bi. By the term path
we always mean a simple path, i.e., a path in which no vertex repeats.

3 An Overview of Our Method

Given a connected outerplanar graph G(V,E) of pathwidth p, our algorithm will
produce a bi-connected outerplanar graph G′′(V,E′′) of pathwidth O(p), where
E ⊆ E′′. Our algorithm proceeds in three stages.

(1) We use a modified version of the algorithm proposed by Govindan et al.
[7] to obtain a nice tree decomposition (defined in Section 4) of G. Using this
nice tree decomposition of G, we construct a special path decomposition of G of
width at most 4p+ 3.

(2) For each cut vertex x of G, we define an ordering among the child blocks
attached through x to their parent block. To define this ordering, we use the



2-connecting Outerplanar Graphs without Blowing Up the Pathwidth 629

special path decomposition constructed in the first stage. This ordering helps us
in constructing an outerplanar supergraph G′(V,E′) whose pathwidth is at most
8p+7, and for every cut vertex x in G′, G′ \x has exactly two components. The
properties of the special path decomposition of G obtained in the first stage is
crucially used in our argument to bound the width of the path decomposition of
G′, produced in the second stage.

(3) We bi-connect G′ to construct G′′(V,E′′), using a straightforward algo-
rithm. As a by-product, this algorithm also gives us a surjective mapping from
the cut vertices of G′ to the edges in E′′\E′. We give a counting argument based
on this mapping and some basic properties of path decompositions to show that
the width of the path decomposition of G′′ produced in the third stage is at
most 16p+ 15.

4 Stage 1: Construct a Nice Path Decomposition of G

In this section, we construct a nice tree decomposition of the outerplanar graph
G and then use it to construct a nice path decomposition of G. We begin by
giving the definition of a nice tree decomposition.

Given an outerplanar graph G, Govindan et al. [7, Section 2] gave a linear
time algorithm to construct a width 2 tree decomposition (T,Y ) of G where
Y = (Yt : t ∈ V (T )), with the following special properties:

1. There is a bijective mapping b from V (G) to V (T ) such that v ∈ Yb(v).
(Hereafter, for any v ∈ V (G), while referring to the vertex b(v) of T , we just
call it as vertex v of T .)

2. If Bi is a child block of Bj at a cut vertex x, the induced subgraph T ′ of T
on the vertex set V (Bi \ x) is a spanning tree of Bi \ x and (T ′,Y ′) where
Y ′ = (Yt : t ∈ V (T ′)) gives a tree decomposition of Bi.

Definition 1 (Nice tree decomposition of an outerplanar graph G). A
tree decomposition (T,Y ) of G, where Y = (Yt : t ∈ V (T )) having properties 1
and 2 above, together with the following additional property, is called a nice tree
decomposition of G.

3. If yi and y′i are respectively the last and first vertices of a non-root, non-
trivial block Bi, then the bag Yyi ∈ Y contains both yi and y

′
i.

In the discussion that follows, we will show that any outerplanar graph G has
a nice tree decomposition (T,Y ) of width at most 3. Initialize (T,Y ) to be the
tree decomposition of G, constructed using the method proposed by Govindan
et al. [7], satisfying properties 1 and 2 of nice tree decompositions. We need to
modify (T,Y ) in such a way that, it satisfies property 3 as well.

For every non-root, non-trivial block Bi of G, do the following. If yi and y′i
are respectively the last and first vertices of Bi, then, for each t ∈ V (Bi \ x), we
insert y′i to Yt, if it is not already present in Yt and we call y′i as a propagated
vertex.



630 J. Babu et al.

Claim 1. After the modification, (T,Y ) remains as a tree decomposition of G.

Claim 2. After the modification, (T,Y ) becomes a nice tree decomposition of
G of width at most 3.

The proofs of the claims above are included in the full version [1]. From these
claims, we can conclude the following.

Lemma 1. Every outerplanar graph G has a nice tree decomposition (T,Y ) of
width 3, constructable in polynomial time.

Definition 2 (Nice path decomposition of an outerplanar graph). Let
(P ,X ) be a path decomposition of an outerplanar graph G. If, for every non-root
non-trivial block Bi, there is a bag Xt ∈ X containing both the first and last
vertices of Bi together, then (P ,X ) is called a nice path decomposition of G.

Lemma 2. Let G be outerplanar with pw(G) = p. A nice path decomposition
(P ,X ) of G, of width at most 4p+ 3, is constructable in polynomial time.

Proof. Let (T ,Y ) be a nice tree decomposition of G of width 3, obtained using
Lemma 1. Obtain an optimal path decomposition (PT ,XT ) of the tree T in
polynomial time, using a standard algorithm (See [12]). Since T is a spanning
tree of G, the pathwidth of T is at most that of G. Therefore, the width of the
path decomposition (PT ,XT ) is at most p; i.e. there are at most p+ 1 vertices
of T in each bag XTi ∈ XT .

Let P = PT and for each XTi ∈ XT , we define Xi =
⋃

vT∈XTi
YvT . Clearly,

(P ,X ), with X = (X1, . . . , X|V (PT )|), is a path decomposition of G (See [7]).
The width of this path decomposition is at most 4(p + 1) − 1 = 4p + 3, since
|YvT | ≤ 4, for each bag YvT ∈ Y and |XTi | ≤ p+ 1, for each bag XTi ∈ XT .

Let Bi be a non-root, non-trivial block in G and yi and y′i respectively be
the first and last vertices of Bi. Since yi is a vertex of the tree T , there is
some bag XTj ∈ XT , containing yi. The bag Yyi ∈ Y contains both yi and y

′
i,

since (T ,Y ) is a nice tree decomposition of G. It follows from the definition of
Xj , that Xj ∈ X contains both yi and y′i. Therefore, (P ,X ) is a nice path
decomposition of G. ��

5 Edge Addition without Spoiling the Outerplanarity

In this section, we give two technical lemmas, which will be later used to prove
that the intermediate graph G′ obtained in Stage 2 and the bi-connected graph
G′′ obtained in Stage 3 are outerplanar. These lemmas are easy to visualize (See
Fig 1). The proofs are included in the full version [1].

Lemma 3. Let G(V,E) be a connected outerplanar graph. Let u and v be two
distinct non-adjacent vertices in G and let P = (u = x0, x1, x2, . . . , xk, xk+1 = v)
where k ≥ 1 be a path in G such that:
P shares at most one edge with any block of G.
For 0 ≤ i ≤ k, if the block containing the edge (xi, xi+1) is non-trivial, then
xi+1 is the successor of xi in the Hamiltonian cycle of that block.

Then the graph G′(V,E′), where E′ = E ∪ {(u, v)}, is outerplanar.



2-connecting Outerplanar Graphs without Blowing Up the Pathwidth 631

u

v

u′ v′

a

b

c
d

e

f

g

h

i

j
k

l

Fig. 1. The path between u and v and the path between u′ and v′ (shown in thick
edges) satisfy the conditions stated in Lemma 3. By adding any one of the dotted
edges (u, v) or (u′, v′), the graph remains outerplanar. When the edge (u, v) is added,
u, v, a, b, c, d, e, f, g, h, i, j, k, l, u is the Hamiltonian cycle of the new block formed.

The following lemma explains the effect of the addition of an edge (u, v) as
mentioned in Lemma 3, to the block structure and the Hamiltonian cycle of
each block. Assume that for 0 ≤ i ≤ k, the edge (xi, xi+1) belongs to the
block Bi.

Lemma 4. 1. Other than the blocks B0 to Bk of G merging together to form
a new block B′ of G′, blocks in G and G′ are the same.

2. Vertices in blocks B0 to Bk, except xi, 0 ≤ i ≤ k+1, retains their successor
and predecessor in the Hamiltonian cycle of B′ same as it was in its respective
block’s Hamiltonian cycle in G.

3. Each xi, 0 ≤ i ≤ k, retains its Hamiltonian cycle predecessor in B′ same as
it was in the block Bi of G and each xi, 1 ≤ i ≤ k+1, retains its Hamiltonian
cycle successor in B′ same as in the block Bi−1 of G.

6 Stage 2: Construction of G′ and Its Path Decomposition

For each cut vertex x of G, we define an ordering among the child blocks attached
through x to their parent block, using the nice path decomposition (P ,X ) of
G obtained using Lemma 2. This ordering is then used in defining a supergraph
G′(V,E′) of G such that for every cut vertex x in G′, G′ \ x has exactly two
components. Using repeated applications of Lemma 3, we then show that G′ is
outerplanar. We extend the path decomposition (P ,X ) of G to a path decom-
position (P ′,X ′) of G′, as described in Section 2. By a counting argument using
the properties of the nice path decomposition (P ,X ), we show that the width
of (P ′,X ′) is at most 2p′ + 1, where p′ is the width of (P ,X ).



632 J. Babu et al.

6.1 Defining an Ordering of Child Blocks

If (P ,X ) is a nice path decomposition of G, then, for each non-root block B of
G, at least one bag in X contains both the first and last vertices of B together.

Definition 3 (Sequence number of a non-root block). Let (P ,X ) be the
nice path decomposition of G obtained using Lemma 2. For each non-root block
B of G, we define the sequence number of B as min{i | Xi ∈X simultaneously
contains both the first and last vertices of B}.

For each cut vertex x, there is a unique block Bx such that Bx and its child
blocks are intersecting at x. For each cut vertex x, we define an ordering among
the child blocks attached at x, as follows. If B1, . . . , Bk are the child blocks
attached at x, we order them in the increasing order of their sequence numbers
in (P ,X ). If Bi and Bj are two child blocks with the same sequence number,
their relative ordering is arbitrary.

From the ordering defined, we can make some observations about the ap-
pearance of the first and last vertices of a block Bi in the path decomposition.
These observations are crucially used for bounding the width of the path decom-
position (P ′,X ′) of G′. Let B1, . . . , Bk are the child blocks attached at a cut
vertex x, occurring in that order according to the ordering we defined above. For
1 ≤ i ≤ k, let yi and y′i respectively be the last and first vertices of Bi.

Property 1. For any 1 ≤ i ≤ k−1, if GapX (y′i, yi+1) �= ∅, then GapX (y′i, yi+1) =
[LastIndexX (y′i)+1, F irstIndexX (yi+1)] and x ∈ Xt for all t ∈ GapX (y′i, yi+1).

Property 2. For any 1 ≤ i < j ≤ k − 1, GapX (y′i, yi+1) ∩GapX (y′j , yj+1) = ∅.
The proofs of these properties directly follow from the definitions and are given
in the full version [1].

6.2 Algorithm for Constructing G′ and Its Path Decomposition

We use Algorithm 1 to construct G′(V,E′) and a path decomposition (P ′,X ′) of
G′. The processing of each cut vertex is done in lines 2 to 7 of Algorithm 1. While
processing a cut vertex x, the algorithm adds the edges (y′1, y2), (y

′
2, y3), . . . ,

(y′kx−1, ykx) (as defined in the algorithm) and modifies the path decomposition,
to reflect each edge addition.

Lemma 5. G′ is outerplanar and for each cut vertex x of G′, G′ \x has exactly
two components.

We can prove this by applying Lemma 3, following the addition of each edge in
E′ \ E by Algorithm 1. Refer to the full version [1] for the proof.

Lemma 6. (P ′,X ′) is a path decomposition of G′ of width at most 8p+ 7.

Proof. Algorithm 1 initialized (P ′,X ′) to (P ,X ) and modified it during each
edge addition. By Property 1, we have GapX (y′i, yi+1) = [LastIndexX (y′i) +
1, F irstIndexX (yi+1)]. Hence, by the modification done in lines 7 to 7 while
adding a new edge (y′i, yi+1), (P ′,X ′) becomes a path decomposition of the



2-connecting Outerplanar Graphs without Blowing Up the Pathwidth 633

Algorithm 1. Computing G′ and its path decomposition

Input: An outerplanar graph G(V , E) and a nice path decomposition (P ,X ) of
G, the rooted block tree of G, the Hamiltonian cycle of each non-trivial
block of G and the first and last vertices of each non-root block of G

Output: An outerplanar supergraph G′(V , E′) of G such that, for every cut
vertex x of G′, G′ \ x has exactly two connected components, a path
decomposition (P ′,X ′) of G′

1 E′ = E, (P ′,X ′) = (P ,X )
2 for each cut vertex x ∈ V (G) do
3 Let B1, . . . , Bkx , in that order, be the child blocks attached at x, according

to the ordering defined in Section 6.1
4 for i = 1 to kx − 1 do
5 Let y′

i be the first vertex of Bi and yi+1 be the last vertex of Bi+1

6 E′ = E′ ∪ {(y′
i, yi+1)}

7 if GapX (y′
i, yi+1) �= ∅ then for t ∈ GapX (y′

i, yi+1) do X ′
t = X ′

t ∪{y′
i}

graph containing the edge (y′i, yi+1), by the method explained in Section 2. It
follows that (P ′,X ′) is a path decomposition of G′.

Consider any X ′
t ∈ X ′. While processing the cut vertex x, if Algorithm 1

inserts a new vertex y′i to X ′
t, to reflect the addition of a new edge (y′i, yi+1)

then, t ∈ GapX (y′i, yi+1). Suppose (y′i, yi+1) and (y′j , yj+1) are two new edges
added while processing the cut vertex x, where, 1 ≤ i < j ≤ kx− 1. By property
2, we know that if t ∈ GapX (y′i, yi+1), then, t /∈ GapX (y′j , yj+1). Therefore,
when the algorithm is processing a cut vertex x in lines 2 to 7, at most one
vertex is newly getting inserted to X ′

t. Moreover, if t ∈ GapX (y′i, yi+1) then,
the cut vertex x ∈ Xt, by Property 1. It follows that |X ′

t| ≤ |Xt|+number
of cut vertices in Xt ≤ 2|Xt| ≤ 2(4p + 4). Therefore, the width of the path
decomposition (P ′,X ′) is at most 8p+ 7. ��

7 Construction of G′′ and Its Path Decomposition

In this section, we give an algorithm to add some more edges to G′(V,E′) so
that the resultant graph G′′(V,E′′) is bi-connected. The algorithm also extend
the path decomposition (P ′,X ′) of G′ to a path decomposition (P ′′,X ′′) of G′′.
An analysis of the algorithm shows the existence of a surjective mapping from
the cut vertices of G′ to the edges in E′′ \E′. A counting argument based on the
surjective mapping shows that the width of the path decomposition (P ′′,X ′′) is
at most 16p+ 15. For making our presentation simpler, if a block Bi is just an
edge (u, v), we abuse the definition of a Hamiltonian cycle and say that u and v
are clockwise neighbors of each other in the Hamiltonian cycle of Bi.

Recall that the graph G′ has the property that for every cut vertex x of G′,
G′ \ x has exactly two components. Since any cut vertex belongs to exactly two
blocks of G, based on the rooted block tree structure of G, we call them as the
parent block containing x and the child block containing x. We use childx(B)
to denote the child block of the block B at the cut vertex x and parent(B) to



634 J. Babu et al.

denote the parent block of the block B. For a block B, nextB(v) denotes the
successor of the vertex v in the Hamiltonian cycle of B.

To get an intuition about our algorithm, the reader may consider it as a
traversal of vertices of G′, starting from a non-cut vertex in the root block
of G′ and proceeding to the successor of v on reaching a non-cut vertex v.
On reaching a cut vertex x, the algorithm recursively traverses the child block
containing x and its descendant blocks and comes back to x to continue the
traversal of the remaining graph. However, before starting the recursive traversal
of the child block containing x and its descendant blocks, the algorithm sets
bypass(x) = TRUE. (Note that, since there is only one child block attached
to any cut vertex, each cut vertex is bypassed only once.) In this way, when a
sequence of one or more cut vertices is bypassed, an edge is added from the vertex
preceding the first bypassed vertex in the sequence to the vertex succeeding the
last bypassed vertex in the sequence. The path decomposition is also modified,
to reflect this edge addition. The detailed algorithm to bi-connect G′ is given in
Algorithm 2. The following Lemma summarizes some observations about how
Algorithm 2 works. A proof this lemma can be found in the full version [1].

Algorithm 2. Computing a bi-connected outerplanar supergraph

Input: An outerplanar graph G′(V , E′) such that G′ \ x has exactly two
connected components for every cut vertex x of G′. A path
decomposition (P ′,X ′) of G′. The rooted block tree of G′, the
Hamiltonian cycle of each non-trivial block of G′ and the first and last
vertices of each non-root block of G′

Output: A bi-connected outerplanar supergraph G′′(V , E′′) of G′, a path
decomposition (P ′′,X ′′) of G′′

1 E′′ = E′, (P ′′,X ′′) = (P ′,X ′)
2 for each vertex v ∈ V (G′) do
3 completed(v) = FALSE, if v is a cut vertex then bypass(v) = FALSE
4 Choose v to be some non-cut vertex of the root block
5 B = root block, completed(v) =TRUE, completedCount = 1
6 while completedCount < |V (G′)| do
7 v′ = nextB(v)
8 while v′ is a cut vertex and bypass(v′) is FALSE do
9 bypass(v′) =TRUE, B = childv′(B), v′ = nextB(v

′)
10 if v′ is a cut vertex and bypass(v′) is TRUE then B = parent(B)
11 completed(v′)= TRUE, completedCount = completedCount+ 1
12 if (v, v′) is not an edge in G′ then
13 E′′ = E′′ ∪ {(v, v′)}
14 if GapX ′(v, v′) �= ∅ then
15 if LastIndexX ′(v) < FirstIndexX ′(v′) then for t ∈ GapX ′(v, v′)

do X ′′
t = X ′′

t ∪ {v}
16 else if LastIndexX ′(v′) < FirstIndexX ′(v) then for

t ∈ GapX ′(v, v′) do X ′′
t = X ′′

t ∪ {v′}
17 v = v′



2-connecting Outerplanar Graphs without Blowing Up the Pathwidth 635

Lemma 7. 1. Inside a block, the algorithm traverses vertices in the clockwise
order of the unique Hamiltonian cycle of the block.

2. When the algorithm encounters a non-cut vertex x during the traversal, it
declares that x is completed.

3. The algorithm encounters a cut vertex x for the first time, while travers-
ing the parent block containing x. Then, the algorithm bypasses x (i.e. set
bypass(x) =TRUE) and descends to the child block containing x and start
traversing the child block from the successor of x in the child block’s Hamil-
tonian cycle.

4. When the algorithm encounters a cut vertex x for a second time, the current
block being traversed is the child block containing x. Then the algorithm
traverses x and declare that x is completed and ascends to the parent block
containing x. Then it continues the traversal of the parent block containing
x, by considering the successor of x in the parent block’s Hamiltonian cycle.

5. When the algorithm declares that a cut vertex x is completed, all vertices of
the child block containing x and all its descendant blocks have been completed.

6. Every vertex is encountered at least once. Every vertex is completed and a
vertex which is declared completed is never encountered again. When
completedCount = |V (G′)|, all the vertices of the graph have been completed.

7. When the algorithm is bypassing a sequence of one or more cut vertices,
an edge is added from the vertex preceding the first bypassed vertex in the
sequence to the vertex succeeding the last bypassed vertex in the sequence and
the path decomposition is modified, to reflect this edge addition.

8. Every new edge added has a sequence of bypassed cut vertices associated with
it. If x1, x2, . . . , xk is the sequence of bypassed cut vertices associated with
an edge (u, v) ∈ E′′ \ E′, then u, x1, x2, . . . , xk, v is a path in G′. Each cut
vertex of G′ is bypassed exactly once in our traversal and hence associated
with a unique edge in E′′ \ E′.

Lemma 8. G′′ is bi-connected.

Proof. We show that G′′ does not have any cut vertices. Since G′′ is a supergraph
of G′, if a vertex x is not a cut vertex in G′, it will not be a cut vertex in G′′.
We need to show that the cut vertices in G′ become non-cut vertices in G′′.
Consider a newly added edge (u, v) of G′′. Without loss of generality, assume that
u was completed before v in the traversal, and (x1, x2, . . . , xk) is the sequence
of bypassed cut vertices associated with the edge (u, v). When our algorithm
adds the edge (u, v), it creates the cycle u, x1, x2, . . . , xk, v, u in the resultant
graph. Recall that, for each 1 ≤ i ≤ k, G′ \ xi had exactly two components; one
containing xi−1 and the other containing xi+1. After the addition of the edge,
vertices xi−1, xi and xi+1 lie on a common cycle. Hence, when the edge (u, v)
is added, for 1 ≤ i ≤ k, xi is no longer a cut vertex. Since every cut vertex in
G′ was part of the bypass sequence associated with some edge in E′′ \E′, all of
them become non-cut vertices in G′′. ��

Lemma 9. G′′ is outerplanar.

For a proof of this lemma, refer to the full version [1].



636 J. Babu et al.

Lemma 10. (P ′′,X ′′) is a path decomposition of G′′ of width at most 16p+15.

Proof. It is clear that (P ′′,X ′′) is a path decomposition of G′′, since we con-
structed it using the method explained in Section 2.

For each 1 ≤ i ≤ m, let Si = {x1, . . . , xk} denote the set of cut vertices
that belong to the bypassed cut vertex sequence associated with the edge ei =
(ui, vi) ∈ E′′ \ E′. While adding the edge ei, a vertex was inserted into X ′′

t ∈
X ′′ only if t ∈ GapX ′(ui, vi). We will now show that, if t ∈ GapX ′(ui, vi),
then, X ′

t ∩ Si �= ∅. Without loss of generality, assume that LastIndexX ′(ui) <
FirstIndexX ′(vi). Let x1, . . . , xk be the sequence of cut vertices bypassed while
adding the edge (ui, vi). Since ui is adjacent to x1, both of them are together
present in some bag in X ′

t ∈ X ′, with t ≤ LastIndexX ′(ui). Similarly, since vi
is adjacent to xk, they both are together present in some bag X ′

t ∈ X ′, with
t ≥ FirstIndexX ′(vi). The sequence x1, . . . , xk is a path in G′ between x1 and
xk. Therefore, every bag in X ′

t ∈ X ′ with t ∈ GapX ′(ui, vi) should contain at
least one of the cut vertices from the set Si.

Thus, by the modification done to the path decomposition to reflect the ad-
dition of the edge ei, the size of each bag in X ′′

t ∈ X ′′ with t ∈ GapX ′(ui, vi)
increases by exactly one and in that case, X ′

t ∩ Si �= ∅. The other bags are
unaffected by this modification. Therefore, for any t in the index set, |X ′′

t | =
|X ′

t|+ |{i | 1 ≤ i ≤ m,Si ∩X ′
t �= ∅}|. But, |{i | 1 ≤ i ≤ m,Si ∩X ′

t �= ∅}| ≤ |X ′
t|,

because Si ∩ Sj = ∅, for 1 ≤ i < j ≤ m, by part 8 of Lemma 7. Therefore, for
any t, |X ′′

t | ≤ 2|X ′
t| ≤ 2(8p + 8). Therefore, width of the path decomposition

(P ′′,X ′′) is at most 16p+ 15. ��

8 Efficiency

The preprocessing step of computing a rooted block tree of the given outerplanar
graph G and finding the Hamiltonian cycles of each non-trivial block can be done
in linear time [4,8,14]. The special tree decomposition in Govindan et al.[7] is
also computable in linear time. Using the Hamiltonian cycle of each non-trivial
block, we did only a linear time modification in Section 4, to produce the nice
tree decomposition (T,Y ) of G. An optimal path decomposition of the tree T ,
of total size O(n pw(T )) can be computed in time O(n pw(T ))[12]. The time
taken is O(n log n), since outerplanar graphs have pathwidth at most logn, and
T was a spanning tree of the outerplanar graph G. For computing the nice path
decomposition (P ,X ) of G in Section 4, the time spent is linear in the size of the
path decomposition obtained for T , i.e, O(n log n) and the total size of (P ,X )
is O(n logn). Computing the FirstIndex, LastIndex and Range of vertices and
the sequence number of blocks can be done in time linear in the size of the
path decomposition. Since the resultant graph is outerplanar, Algorithm 1 and
Algorithm 2 adds only a linear number of new edges. Since the size of each
bag in the path decompositions (P ′,X ′) of G′ and (P ′′,X ′′) of G′′ are only a
constant times the size of the corresponding bag in (P ,X ), the time taken for
modifying (P ,X ) to obtain (P ′,X ′) and later modifying it to (P ′′,X ′′) takes



2-connecting Outerplanar Graphs without Blowing Up the Pathwidth 637

only time linear in size of (P ,X ); i.e., O(n log n) time. Hence, the time spent in
constructing G′′ and its path decomposition of width O(pw(G)) is O(n log n).

9 Conclusion

In this paper, we have described a O(n log n) time algorithm to add edges to
a given outerplanar graph G of pathwidth p to get a bi-connected outerplanar
graph G′′ of pathwidth at most 16p + 15. We also get the corresponding path
decomposition of G′′ in O(n log n) time. Our technique is to produce a nice path
decomposition of G and make use of the properties of this decomposition, while
adding the new edges. Our algorithm can be used as a preprocessing step, in the
algorithm proposed by Biedl [3], to produce a planar drawing of G on a grid of
height O(p). As explained by Biedl [3], this is a constant factor approximation
algorithm, to get a planar drawing of G of minimum height.

References

1. Babu, J., Basavaraju, M., Chandran, L.S., Rajendraprasad, D.: 2-connecting out-
erplanar graphs without blowing up the pathwidth. CoRR abs/1212.6382 (2012),
http://arxiv.org/abs/1212.6382

2. Biedl, T.: Small drawings of outerplanar graphs, series-parallel graphs, and other
planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2011)

3. Biedl, T.: A 4-approximation for the height of 2-connected outer-planar graph
drawings. In: WAOA 2012 (2012)

4. Chartrand, G., Harary, F.: Planar permutation graphs. Annales de l’institut Henri
Poincaré (B) Probabilités et Statistiques 3, 433–438 (1967)

5. Dujmovic, V., Morin, P., Wood, D.R.: Path-width and three-dimensional straight-
line grid drawings of graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002.
LNCS, vol. 2528, pp. 42–53. Springer, Heidelberg (2002)

6. Garćıa, A., Hurtado, F., Noy, M., Tejel, J.: Augmenting the connectivity of outer-
planar graphs. Algorithmica 56(2), 160–179 (2010)

7. Govindan, R., Langston, M.A., Yan, X.: Approximating the pathwidth of outer-
planar graphs. Inf. Process. Lett. 68(1), 17–23 (1998)

8. Hopcroft, J., Tarjan, R.: Algorithm 447: Efficient algorithms for graph manipula-
tion. Commun. ACM 16(6), 372–378 (1973)

9. Kant, G.: Augmenting outerplanar graphs. Journal of Algorithms 21(1), 1–25
(1996)

10. Robertson, N., Seymour, P.D.: Graph minors. iii. planar tree-width. J. Comb. The-
ory, Ser. B 36(1), 49–64 (1984)

11. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–148
(1990)

12. Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to
vertex separation in linear time. J. Algorithms 47(1), 40–59 (2003)

13. Suderman, M.: Pathwidth and layered drawings of trees. Int. J. Comput. Geometry
Appl. 14(3), 203–225 (2004)

14. Syslo, M.M.: Characterizations of outerplanar graphs. Discrete Mathematics 26(1),
47–53 (1979)

http://arxiv.org/abs/1212.6382


How to Catch L2-Heavy-Hitters

on Sliding Windows�

Vladimir Braverman1,��, Ran Gelles2, and Rafail Ostrovsky2,3,� � �

1 Department of Computer Science, Johns Hopkins University
vova@cs.jhu.edu

2 Department of Computer Science, University of California, Los Angeles
gelles@cs.ucla.edu

3 Department of Mathematics, University of California, Los Angeles
rafail@cs.ucla.edu

Abstract. Finding heavy-elements (heavy-hitters) in streaming data is
one of the central, and well-understood tasks. Despite the importance
of this problem, when considering the sliding windows model of stream-
ing (where elements eventually expire) the problem of finding L2-heavy
elements has remained completely open despite multiple papers and con-
siderable success in finding L1-heavy elements.

Since the L2-heavy element problem doesn’t satisfy certain condi-
tions, existing methods for sliding windows algorithms, such as smooth
histograms or exponential histograms are not directly applicable to it.
In this paper, we develop the first polylogarithmic-memory algorithm for
finding L2-heavy elements in the sliding window model.

Our technique allows us not only to find L2-heavy elements, but also
heavy elements with respect to any Lp with 0 < p ≤ 2 on sliding windows.
By this we completely “close the gap” and resolve the question of finding
Lp-heavy elements in the sliding window model with polylogarithmic
memory, since it is well known that for p > 2 this task is impossible.

We demonstrate a broader applicability of our method on two addi-
tional examples: we show how to obtain a sliding window approximation
of the similarity of two streams, and of the fraction of elements that ap-
pear exactly a specified number of times within the window (the α-rarity
problem). In these two illustrative examples of our method, we replace
the current expected memory bounds with worst case bounds.

� A preliminary full version of this paper appears online [10].
�� This work was supported in part by DARPA grant N660001-1-2-4014.

� � � Research supported in part by NSF grants CNS-0830803; CCF-0916574;
IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF grant
2008411, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Re-
search Award, and Lockheed-Martin Corporation Research Award. This material
is also based upon work supported by the Defense Advanced Research Projects
Agency through the U.S. Office of Naval Research under Contract N00014-11-1-
0392. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 638–650, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



How to Catch L2-Heavy-Hitters on Sliding Windows 639

1 Introduction

A data stream S is an ordered multiset of elements {a0, a1, a2 . . .} where each
element at ∈ {1, . . . , u} arrives at time t. In the sliding window model we
consider at each time t ≥ N the last N elements of the stream, i.e. the window
W = {at−(N−1), . . . , at}. These elements are called active, whereas elements that
arrived prior to the current window {ai | 0 ≤ i < t − (N − 1)} are expired. For
t < N , the window consists of all the elements received so far, {a0, . . . , at}.

Usually, both u and N are considered to be extremely large so it is not ap-
plicable to save the entire stream (or even one entire window) in memory. The
problem is to be able to calculate various characteristics about the window’s
elements using small amount of memory (usually, polylogarithmic in N and u).
We refer the reader to the books of Muthukrishnan [40] and Aggarwal (ed.) [1]
for extensive surveys on data stream models and algorithms.

One of the main open problems in data streams deals with the relations between
the different streaming models [38], specifically between the unbounded stream
model and the sliding window model. In this paper we provide another important
step in clarifying the connection between these twomodels by showing that finding
Lp-heavy hitters is just as doable on sliding windows as on the entire stream.

We focus on approximation-algorithms for certain statistical characteristics of
the data streams, specifically, finding frequent elements. The problem of finding
frequent elements in a stream is useful for many applications, such as network
monitoring [43] and DoS prevention [24,19,4], and was extensively explored over
the last decade (see [40,18] for a definition of the problem and a survey of existing
solutions, as well as [14,37,27,33,17,3,20,45,28]).

We say that an element is heavy if it appears more times than a constant
fraction of some Lp norm of the stream. Recall that for p > 0, the Lp norm of
the frequency vector1 is defined by Lp = (

∑
i n

p
i )

1/p, where ni is the frequency
of element i ∈ [u], i.e., the number of times i appears in the window. Since dif-
ferent Lp can be considered, we obtain several different ways to define a “heavy”
element. Generally speaking (as mentioned in [31]), when considering frequent
elements (heavy-hitters) with respect to Lp, the higher p is, the better. Specifi-
cally, identifying frequent elements with respect to L2 is better than L1 since an
L1 algorithm can always be replaced with an L2 algorithm, with less or equal
memory consumption (but not vice versa).

Naturally, finding frequent elements with respect to the L2 norm is a more
difficult task (memory-wise) than the equivalent L1 problem. To demonstrate
this fact let us regard the following example: let S be a stream of size N , in which
the element a1 appears

√
N times, while the rest of the elements a2, . . . , aN−

√
N

appear exactly once in S. Say we wish to identify a1 as an heavy element. Note
that n1 = 1√

N
L1 while n1 = cL2, where c is a constant, lower bounded by

1√
2
. Therefore, as N grows, n1/L1 → 0 goes to zero, while n1/L2 is bounded

1 Throughout the paper we use the term “Lp norm” to indicate the Lp norm of the
frequency vector, i.e., the pth root of the pth frequency moment Fp =

∑
i n

p
i [2],

rather than the norm of the data itself.



640 V. Braverman, R. Gelles, and R. Ostrovsky

by a constant. If an algorithm finds elements which are heavier than γLp with
memory poly(γ−1, logN, log u), then for p = 2 we get a polylogarithmic memory,
while for p = 1 the memory consumption is super-logarithmic.

We focus on solving the following L2-heaviness problem:

Definition 1.1 ((γ, ε)-approximation of L2-frequent elements). For 0 <
ε, γ < 1, output any element i ∈ [u] such that ni > γL2 and no element such
that ni < (1− ε)γL2.

The L2 norm is the most powerful norm for which we can expect a polylogarith-
mic solution, for the frequent-elements problem. This is due to the known lower
bound of Ω(u1−2/p) for calculating Lp over a stream [42,6].

There has been a lot of progress on the question of finding L1-frequent ele-
ments, in the sliding window model [3,45,28], however those algorithms cannot
be used to find L2-frequent elements with an efficient memory. In 2002, Charikar,
Chen and Farach-Colton [14] developed the CountSketch algorithm that can
approximate the “top k” frequent-elements on an unbounded stream, where k
is given as an input. Formally, their algorithm outputs only elements with fre-
quency larger than (1− ε)φk, where φk is the frequency of the kth most frequent
element in the stream, using memory proportional to L2

2/(εφk)
2. Since the “heav-

iness” in this case is relative to φk, and the memory is bounded by the fraction
L2
2/(εφk)

2, Charikar et al.’s algorithm finds in fact heaviness in terms of the L2

norm. A natural question is whether one can develop an algorithm for finding
frequent-elements that appear at least γL2 times in the sliding window model,
using poly(γ−1, logN, log u) memory.

Our Results. We give the first polylogarithmic algorithm for finding an ε-
approximation of the L2-frequent elements in the sliding window model. Our
algorithm is able to identify elements that appear within the window a number
of times which is at least a γ-fraction of the L2 norm of the window, up to a
multiplicative factor of (1 − ε). In addition, the algorithm guarantees to output
all the elements with frequency at least (1 + ε)γL2.

Theorem 1.2. There exists an efficient sliding window algorithm that outputs
a (γ, ε)-approximation of the L2-frequent-elements, with probability at least 1− δ
and memory poly(ε−1, γ−1, logN, log δ−1).

We note that the CountSketch algorithm works in the unbounded model and
does not apply directly on sliding windows. Moreover, CountSketch solves a
slightly different (yet related) problem, namely, the top-k problem, rather than
the L2 heaviness. To achieve our result on L2 heavy hitters, we combine in a non-
trivial way the scheme of Charikar et al. with a sliding-window approximation
for L2 as given by Braverman and Ostrovsky [9]. Variants of these techniques
sufficient to derive similar results were known since 2002,2 however no algorithm
for L2 heavy hitters was reported despite several papers on L1 heavy hitters.

2 Indeed, we use the algorithm of Charikar et al. [14] that is known since 2002. Also,
it is possible to replace (with some non-trivial effort) our smooth histogram method
for L2 computation with the algorithm of Datar, Gionis, Indyk and Motwani [22] for
L2 approximation.



How to Catch L2-Heavy-Hitters on Sliding Windows 641

Our solution gives another step in the direction of making a connection be-
tween the unbounded and sliding window models, as it provides an answer for
the very important question of heavy hitters in the sliding window model. The
result joins the various solutions of finding L1-heavy hitters in sliding win-
dows [27,3,41,4,45,28,29], and can be used in various algorithms that require
identifying L2 heavy hitters, such as [32,8] and others. More generally, our pa-
per resolves the question of finding Lp-heavy elements on sliding windows for all
values of p that allows small memory one-pass solutions (i.e. for 0 < p ≤ 2). By
this we completely close the gap between the case of p ≤ 1, solved by previous
works, and the impossibility result for the case of p > 2.

A Broader Perspective. In fact, one can consider the tools we develop for the
frequent elements problem as a general method that allows obtaining a sliding
window solution out of an algorithm for the unbounded model, for a wide range
of functions. We introduce a new concept which uses a smooth-histogram in order
to perform sliding window approximation of non-smooth properties. Informally
speaking, the main idea is to relate the non-smooth property f with some other,
smooth3, property g, such that changes in f are bounded by the changes in g.
By maintaining a smooth-histogram for the smooth function g, we partition the
stream into sets of sub-streams (buckets). Due to the properties of the smooth-
histogram we can bound the error (of approximating g) for every sub-stream,
and thus get an approximation of f . We use the term semi-smooth to describe
these kinds of algorithms.

We demonstrate the above idea by showing a concrete efficient sliding window
algorithm for the properties of rarity and similarity [21]; we stress that neither
is smooth (see Section 4 for definitions of these problems). In addition to the
properties of rarity and similarity, we believe that the tools we develop here can
be used to build efficient sliding window approximations for many other (non-
smooth) properties and provide a general new method for computing on sliding
windows. Indeed, in a subsequent work Tirthapura and Woodruff [44] use our
methods to compute various correlated aggregations. It is important to note that
trying to build a smooth-histogram (or any other known sketch) directly to f
will not preserve the required invariants, and the memory consumption might
not be efficient.

Previous Works. Frequent Element Problem. Finding elements that appear
many times in the stream (“heavy hitters”) is a very central question and thus
has been extensively studied both for the unbounded model [23,35,17,39] and
for the sliding window model [3,41,45,28] as well as other variants such as the
offline stream model [37], insertion and deletion model [20,33], finding heavy-
distinct-hitter [4], etc. Reducing the processing time was done by [36] into O(1ε )
and by [29] into O(1).

Another problem which is related to finding the heavy hitters, is the top-k
problem, namely, finding the k most frequent elements. As mentioned above,
Charikar, Chen and Farach-Colton [14] provide an algorithm that finds the k

3 Of course, other kinds of aggregations can be used, however our focus is on smooth
histograms.



642 V. Braverman, R. Gelles, and R. Ostrovsky

most frequent elements in the unbounded model (up to a precision of 1 ± ε).
Golab, DeHaan, Demaine, López-Ortiz and Munro [27] solve this problem in the
jumping window model.

Similarity and α-Rarity Problem. The similarity problem was defined in order
to give a rough estimation of closeness between files over the web [12] (and
independently in [15]). Later, it was shown how to use min-hash functions [30]
in order to sample from the stream, and estimate the similarity of two streams.

The notion of α-rarity, introduced by Datar and Muthukrishnan [21], is that of
finding the fraction of elements that appear exactly α times within the stream.
This quantity can be seen as finding the fraction of elements with frequency
within certain bounds.

The questions of rarity and similarity were analyzed, both for the unbounded
stream and the sliding window models, by Datar and Muthukrishnan [21], achiev-
ing an expected memory bound of O(logN + log u) words of space for constant
ε, α, δ. At the bit level, their algorithm requires O(α · ε−3 log δ−1 logN(logN +
log u)) bits for α-rarity and O(ε−3 log δ−1 logN(logN+log u)) bits for similarity,
with 1−δ being the probability of success4. Our techniques improve these results
and obtain a worst case memory consumption of essentially the same magnitude
(up to a factor of log logN).

2 Preliminaries

Notations. We say that an algorithm Af is an (ε, δ)-approximation of a func-
tion f , if for any input S, (1 − ε)f(S) ≤ Af (S) ≤ (1 + ε)f(S), except with
probability δ over Af ’s coin tosses. We denote this relation as Af ∈ (1± ε)f for
short. We denote an output of an approximation algorithm with a hat symbol,
e.g., the estimator of f is denoted f̂ .

The set {1, 2, . . . , n} is usually denoted by [n]. If a stream B is a suffix
of A, we denote B ⊆r A. For instance, let A = {q1, q2, . . . , qn} then B =
{qn1 , qn1+1, . . . , qn} ⊆r A, for 1 ≤ n1 ≤ n. The notation A ∪ C denotes the
concatenation of the stream C = {c1, c2, . . . , cm} to the end of stream A, i.e.,
A ∪ C = {q1, q2, . . . , qn, c1, c2, . . . cm}. The notation |A| denotes the number of
different elements in the stream A, that is the cardinality of the set induced by
the multiset A. The size of the stream (i.e. of the multiset) A will be denoted as
‖A‖, e.g., for the example above ‖A‖ = n.

We use the notation Õ(·) to indicate an asymptotic bound which suppresses
terms of magnitude poly(log 1

ε , log log
1
δ , log logN, log log u).

Due to a strict page limit, we defer all proofs to the full version [10].

Smooth Histograms. Recently, Braverman and Ostrovsky [9] showed that a func-
tion f can be ε-approximated in the sliding window model, if f is a smooth
function, and if it can be calculated (or approximated) in the unbounded stream
model. Formally,

4 These bounds are not explicitly stated in [21], but follow from the analysis (see
Lemma 1 and Lemma 2 in [21]).



How to Catch L2-Heavy-Hitters on Sliding Windows 643

Definition 2.1. A polynomial function f is (α, β)-smooth if it satisfies the fol-
lowing properties: (i) f(A) ≥ 0; (ii) f(A) ≥ f(B) for B ⊆r A; and (iii) there
exist 0 < β ≤ α < 1 such that if (1 − β)f(A) ≤ f(B) for B ⊆r A, then
(1− α)f(A ∪ C) ≤ f(B ∪ C) for any C.

If an (α, β)-smooth f can be calculated (or (ε, δ)-approximated) on an un-
bounded stream with memory g(ε, δ), then there exists an (α + ε, δ)-estimation
of f in the sliding window model using O( 1β logN(g(ε, δβ

logN ) + logN)) bits [9].
The key idea is to construct a “smooth-histogram”, a structure that contains

estimations on O( 1β logN)-suffixes of the stream, A1 ⊇r A2 ⊇r . . . ⊇r Ac 1
β log(n).

Each suffix Ai is called a Bucket. Each new element in the stream initiates a
new bucket, however adjacent buckets with a close estimation value are removed
(keeping only one representative). Since the function is “smooth”, i.e., mono-
tonic and slowly-changing, it is enough to save O( 1β logN) buckets in order to
maintain a reasonable approximation of the window. At any given time, the cur-
rent window W is between buckets A1 and A2, i.e. A1 ⊇r W ⊇r A2. Once the
window “slides” and the first element of A2 expires, we delete the bucket A1

and renumber the indices so that A2 becomes the new A1, A3 becomes the new
A2, etc. We use the estimated value of bucket A1 to estimate the value of the
current window. The relation between the value of f on the window and on the
first bucket is given by (1− α)f(A1) ≤ f(A2) ≤ f(W ) ≤ f(A1) .

3 A Semi-smooth Estimation of Frequent Elements

In this section we develop an efficient semi-smooth algorithm for finding el-
ements that occur frequently within the window. Let ni be the frequency of
element i ∈ {1, . . . , u}, i.e., the number of times i appears in the window.
The first frequency norm and the second frequency norm of the window are

defined by L1 =
∑u

i=1 ni = N and L2 =
(∑u

i=1 n
2
i

) 1
2 . In many previous works,

(e.g., [17,3,40,45,28]) the task of finding heavy-elements is defined using the L1

norm as follows,

Definition 3.1 ((γ, ε)-approximation of L1-heavy hitters). Output any el-
ement i ∈ [u] such that ni ≥ γL1 and no element such that ni ≤ (1− ε)γL1.

Our notion of approximating frequent elements is given by Definition 1.1. An
equivalent definition which we use in our proof is the following:

Definition 3.2. For 0 < ε, γ < 1, output all elements i ∈ [u] with frequency
higher than (1 + ε)γL2, and do not output any element with frequency lower
than (1− ε)γL2.

Observe that the L2 approximation is stronger than the above L1 definition. If
an element is heavy in terms of L1 norm, it is also heavy in terms of the L2

norm, ni ≥ γL1 = γ
∑

j nj =⇒ n2i ≥ γ2
(∑

j nj

)2

≥ γ2
∑

j n
2
j = (γL2)

2 ,

while the opposite direction does not apply in general.



644 V. Braverman, R. Gelles, and R. Ostrovsky

In order to identify the frequent elements in the current window, use a variant
of the CountSketch algorithm of Charikar et al. [14], which provides an ε-
approximation (in the unbounded stream model) for the following top-frequent
approximation problem.

Definition 3.3 ((k, ε)-top frequent approximation). Output a list of k el-
ements such that every element i in the output has a frequency ni > (1 − ε)φk,
where φk is the frequency of the k-th most frequent element in the stream.

The CountSketch algorithm guarantees that any element that satisfies ni >
(1 + ε)φk, appears in the output. This algorithm runs on a stream of size
n and succeeds with probability at least 1 − δ, and memory complexity of

O
((
k + 1

(εγ)2

)
log n

δ

)
, for every δ > 0, given that φk ≥ γL2.

Definition 3.3 and Definition 1.1 do not describe the same problem, yet they
are strongly connected. In fact, our method allows solving the frequent elements
problem under both definitions, however in this paper we focus on solving the
L2-frequent-elements problem, as defined by Definition 3.2. In order to do so, we
use a variant of the CountSketch algorithm with specific parameters tailored
for our problem (See Appendix A). This variant outputs a list of elements, and
is guaranteed to output every element with frequency at least (1 + ε′)γL2 and
no element of frequency less than (1− ε′)γL2, for an input parameter ε′.

We stress that CountSketch is not sufficient on its own to prove Theo-
rem 1.2. The main reason is that this algorithm works in the unbounded stream
model, rather than in the sliding window model. Another reason is that it must
be tweaked in order not to output false positives. Our solution below makes a
use of smooth-histograms to overcome these issues.

3.1 Semi-smooth Algorithm for Frequent Elements Approximation

We construct a smooth-histogram for the L2 norm, and partition the stream

into buckets accordingly. It is known that the L2 property is a (ε, ε
2

2 )-smooth
function [9]. Using the method of Charikar et al. [14], separately on each bucket,
with a careful choice of parameters, we are able to approximate the (γ, ε)-frequent
elements problem on a sliding window (Fig. 1).

ApproxFreqElements(γ, ε, δ)

1. Maintain an ( ε
2 ,

δ
2 )-estimation of the L2 norm of the window, using a smooth-histogram.

2. For each bucket of the smooth-histogram, A1, A2, . . . maintain an approximated list of
the k = 1

γ2 + 1 most frequent elements, by running (γ, ε
4 ,

δ
2 )−CountSketchb.

(see CountSketchb’s description in Appendix A).

3. Let L̂2 be the approximated value of the L2 norm of the current window W , as given by the
the smooth-histogram. Let q1, . . . , qk ∈ {1, . . . , u} be the list of the k most heavy elements
in A1, along with n̂1, . . . , n̂k their estimated frequencies, as outputted by CountSketchb.

4. Output any element qi that satisfies n̂i > 1
1+εγL̂2.

Fig. 1. A semi-smooth algorithm for the frequent elements problem



How to Catch L2-Heavy-Hitters on Sliding Windows 645

Theorem 3.4. The semi-smooth algorithm ApproxFreqElements (Fig. 1)
is a (γ,O(ε))-approximation of the L2-frequent elements problem, with success

probability at least 1−δ. The scheme takes O
(

1
γ2ε4 logN log N

δ + 1
ε4 logN log 1

ε

)
memory.

3.2 Extensions to Any Lp with p < 2

It is easy to see that the same method can be used in order to approximate
Lp-heavy elements for any 0 < p < 2, up to a 1 ± ε precision. The algorithms
and analysis remain the same, except for using a smooth-histogram for the Lp

norm, and changing the parameters by constants.

Theorem 3.5. For any p ∈ (0, 2], there exists a sliding window algorithm that
outputs all the elements with frequency at least (1 + ε)γLp, and no element with
frequency less then (1 − ε)γLp. The algorithm succeeds with probability at least
1− δ and takes poly(ε−1, γ−1, logN, log δ−1) memory.

4 Semi-smooth Schemes for α-Rarity and Similarity

In this section we extend the method shown above and apply it to other non-
smooth functions. In contrast to the smooth L2 used above, in this section we use
a different smooth function to partition the stream, namely the distinct elements
count problem. This allows us to obtain efficient semi-smooth approximations
for the (non-smooth) similarity and α-rarity tasks.

We begin by stating that counting the number of distinct elements in a stream
is smooth. This allows us to partition the stream into a smooth-histogram struc-
ture, where each two adjacent buckets have approximately the same number of
distinct elements.

Proposition 4.1. Define DEC(A) as the number of distinct elements in the
stream A, i.e., DEC(A) = |A|. The function DEC is an (ε, ε)-smooth-function,
for every 0 ≤ ε ≤ 1.

Another tool we use is min-wise hash functions [13,11], used in various algo-
rithms in order to estimate different characteristics of data streams, especially
the similarity of two streams [13]. Informally speaking, these functions have a
meaning of uniformly sampling an element from the stream, which makes them
a very useful tool.

Definition 4.2 (min-hash). Let Π = {πi} be a family of permutations over
[u] = {1, . . . , u}. For a subset A ⊆ [u] define hi to be the minimal permuted
value of πi over A, hi = mina∈A πi(a). The family {hi} is called ε-approximated
min-wise independent hash functions (or ε-min-hash) if for any subset A ⊆ [u]
and a ∈ A, Pri [hi(A) = πi(a)] ∈ 1

|A| (1± ε).
Min-hash functions can be used in order to estimate the similarity of two sets,
by using the following lemma,

Lemma 4.3. ([11]. See also [21].) For any two sets A and W and an ε′-min-hash

function hi, it holds that Pri [hi(A) = hi(W )] = |A∩W |
|A∪W | ± ε′.



646 V. Braverman, R. Gelles, and R. Ostrovsky

4.1 A Semi-smooth Estimation of α-Rarity

In the following section we present an algorithm that estimates the α-rarity of
a stream (in the sliding window model), i.e., the ratio of elements that appear
exactly α times in the window. The rarity property is known not to be smooth,
yet by using a smooth-histogram for distinct elements count, we are able to
partition the stream into O(1ε logN) buckets, and estimate the α-rarity in each
bucket.

Definition 4.4. An element x is α-rare if it appears exactly α times in the
stream. The α-rarity measure, ρα, denotes the ratio of α-rare elements in the

entire stream S, i.e., ρα =
|{x | x is α-rare in S}|

DEC(S) .

Our algorithm follows the method used by [21] to estimate α-rarity in the un-
bounded model. The estimation is based on the fact that the α-rarity is equal to
the portion of min-hash functions that their min-value appears exactly α times
in the stream.

However, in order to estimate rarity over sliding windows, one needs to es-
timate the ratio of min-hash functions of which the min-value appears exactly
α times within the window. Our algorithm builds a smooth-histogram for DEC
in order to partition the stream into buckets, such that each two consecutive
buckets have approximately the same number of distinct elements. In addition,
we sample the bucket using a min-wise hash, and count the α + 1 last occur-
rences of the sampled element xi in the bucket. We estimate the α-rarity of the
window by calculating the fraction of min-hash functions of which the appropri-
ate min-value xi appears exactly α times within the window. Due to feasibility
reasons we use approximated min-wise hashes, and prove that this estimation is
an ε-approximation of the α-rarity of the current window (up to a pre-specified
additive precision). The semi-smooth algorithm ApproxRarity for α-rarity is
defined in Fig. 2.

ApproxRarity(ε, δ)

1. Randomly choose k ε
2 -min-hash functions h1, h2, . . ., hk.

2. Maintain an (ε, δ
2 )-estimation of the number of distinct elements by building a smooth

histogram.
3. For every bucket instance Aj of the smooth-histogram and for each one of the hash func-

tions hi, i ∈ [k]
(a) maintain the value of the min-hash function hi over the bucket, hi(Aj)
(b) maintain a list Li(Aj) of the most recent α + 1 occurrences of hi(Aj) in Aj

(c) whenever the value hi(Aj) changes, re-initialize the list Li(Aj), and continue main-
taining the occurrences of the new value hi(Aj).

4. Output ρ̂α, the ratio of the min-hash functions hi, which has exactly α active elements
in Li(A1), i.e. the ratio

ρ̂α = |{i s.t. Li(A1) consists exactly α active elements}|/k .

Fig. 2. Semi-smooth algorithm for α-rarity



How to Catch L2-Heavy-Hitters on Sliding Windows 647

Theorem 4.5. The semi-smooth algorithm (Fig. 2) is an (ε, δ)-approximation
for the α-rarity problem, up to an additive precision. The space complexity is
Õ
(
k
εα log2N

)
.

4.2 A Semi-smooth Estimation of Streams Similarity

In this section we present an algorithm for calculating the similarity of two
streams X and Y . As in the case of the rarity, the similarity property is known
not to be smooth, however we are able to design a semi-smooth algorithm that
estimates it. We maintain a smooth-histogram of the distinct elements count in
order to partition each of the streams, and sample each bucket of this partition
using a min-hash function. We compare the ratio of sample agreements in order
to estimate the similarity of the two streams.

Definition 4.6. The (Jaccard) similarity of two streams, X and Y is given by

S(X,Y ) = |X∩Y |
|X∪Y | .

Recall that for two streams X and Y , a reasonable estimation of S(X,Y ) is
given by the number of min-hash values they agree on [21]. In other words, let
h1, h2, . . . , hk be a family of ε-min hash functions and let

Ŝ(X,Y ) = |{i ∈ [k] s.t. hi(X) = hi(Y )}| /k ,
then Ŝ(X,Y ) ∈ (1± ε)S(X,Y )+ ε(1+p), with success probability at least 1− δ,
where p and δ are determined by k. The semi-smooth algorithm ApproxSimi-
larity is rather straightforward and is given in Fig. 3.

ApproxSimilarity(ε, δ)

1. Randomly choose k ε′-min-hash functions, h1, . . . , hk. The constant ε′ will be specified
later, as a function of the desired precision ε.

2. For each stream (X and Y ) maintain an (ε′, δ
2 )-estimation of the number of distinct

elements by building a smooth histogram.
3. For each stream and for each bucket instance A1, A2, . . . , separately calculate the values

of each of the min-hash functions hi, i = 1 . . . k.
4. Let AX (AY ) be the first smooth-histogram bucket that includes the current window WX

(WY ) of the stream X (Y ). Output the ratio of hash-functions hi which agree on the
minimal value, i.e.,

σ̂(WX ,WY ) = |{i ∈ [k] s.t. hi(AX ) = hi(AY )}| /k .

Fig. 3. A semi-smooth algorithm for estimating similarity

Theorem 4.7. The semi-smooth algorithm for estimating similarity (Fig. 3), is
an (ε, δ)-approximation for the similarity problem, up to an additive precision.
The space complexity is Õ

(
k 1

ε log
2N

)
.



648 V. Braverman, R. Gelles, and R. Ostrovsky

References

1. Aggarwal, C.C.: Data streams: models and algorithms. Springer, New York (2007)
2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the

frequency moments. Journal of Computer and System Sciences 58(1), 137–147
(1999)

3. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows.
In: PODS 2004, pp. 286–296 (2004)

4. Bandi, N., Agrawal, D., Abbadi, A.E.: Fast algorithms for heavy distinct hitters
using associative memories. In: ICDSC 2007, p. 6 (2007)

5. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting
distinct elements in a data stream. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RAN-
DOM 2002. LNCS, vol. 2483, pp. 1–10. Springer, Heidelberg (2002)

6. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. In: FOCS 2002, pp. 209–
218 (2002)

7. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: SODA 2002, pp. 623–632
(2002)

8. Bhuvanagiri, L., Ganguly, S., Kesh, D., Saha, C.: Simpler algorithm for estimating
frequency moments of data streams. In: SODA 2006, pp. 708–713 (2006)

9. Braverman, V., Ostrovsky, R.: Smooth histograms for sliding windows. In: FOCS
2007, pp. 283–293 (2007)

10. Braverman, V., Gelles, R., Ostrovsky, R.: How to catch L2-heavy-hitters on sliding
windows (2010), http://arxiv.org/abs/1012.3130

11. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. Journal of Computer and System Sciences 60(3), 630–659 (2000)

12. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. Computer Networks and ISDN Systems 29(8-13), 1157–1166 (1997)

13. Broder, A.: On the resemblance and containment of documents. In: Proceedings of
the Compression and Complexity of Sequences 1997, pp. 21–29 (1997)

14. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002)

15. Cohen, E.: Size-estimation framework with applications to transitive closure and
reachability. Journal of Computer and System Sciences 55(3), 441–453 (1997)

16. Cohen, E., Strauss, M.J.: Maintaining time-decaying stream aggregates. Journal
of Algorithms 59(1), 19–36 (2006)

17. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-
min sketch and its applications. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS,
vol. 2976, pp. 29–38. Springer, Heidelberg (2004)

18. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. Proc.
VLDB Endow. 1(2), 1530–1541 (2008)

19. Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Finding hierarchical
heavy hitters in data streams. In: VLDB 2003, pp. 464–475 (2003)

20. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

21. Datar, M., Muthukrishnan, S.: Estimating rarity and similarity over data stream
windows. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp.
323–334. Springer, Heidelberg (2002)



How to Catch L2-Heavy-Hitters on Sliding Windows 649

22. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows (extended abstract). In: SODA 2002, pp. 635–644 (2002)

23. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg (2002)

24. Estan, C., Varghese, G.: New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst. 21(3),
270–313 (2003)

25. Flajolet, P., Martin, G.N.: Probabilistic counting. In: FOCS 1983, pp. 76–82 (1983)

26. Gibbons, P.B., Tirthapura, S.: Estimating simple functions on the union of data
streams. In: SPAA 2001, pp. 281–291 (2001)

27. Golab, L., DeHaan, D., Demaine, E.D., López-Ortiz, A., Munro, J.I.: Identifying
frequent items in sliding windows over on-line packet streams. In: IMC 2003, pp.
173–178 (2003)

28. Hung, R.Y.S., Ting, H.F.: Finding heavy hitters over the sliding window of a
weighted data stream. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L.
(eds.) LATIN 2008. LNCS, vol. 4957, pp. 699–710. Springer, Heidelberg (2008)

29. Hung, R.Y., Lee, L.K., Ting, H.: Finding frequent items over sliding windows with
constant update time. Information Processing Letters 110(7), 257–260 (2010)

30. Indyk, P.: A small approximately min-wise independent family of hash functions.
In: SODA 1999, pp. 454–456 (1999)

31. Indyk, P.: Heavy hitters and sparse approximations, lecture notes (2009),
http://people.csail.mit.edu/indyk/Rice/lec4.pdf

32. Indyk, P., Woodruff, D.: Optimal approximations of the frequency moments of data
streams. In: STOC 2005, pp. 202–208 (2005)

33. Jin, C., Qian, W., Sha, C., Yu, J.X., Zhou, A.: Dynamically maintaining frequent
items over a data stream. In: CIKM 2003, pp. 287–294 (2003)

34. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct
elements problem. In: PODS 2010, pp. 41–52 (2010)

35. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Trans. Database Syst. 28, 51–55 (2003)

36. Lee, L.K., Ting, H.F.: A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows. In: PODS 2006, pp. 290–297 (2006)

37. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
VLDB 2002, pp. 346–357 (2002)

38. Open problems in data streams and related topics. IITK Workshop on Algrithms
for Data Streams 2006 (2006), compiled and edited by McGregor, A.

39. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and
top-k elements in data streams. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 398–412. Springer, Heidelberg (2005)

40. Muthukrishnan, S.: Data streams: Algorithms and applications. Now Publishers
Inc. (2005)

41. Nie, G., Lu, Z.: Approximate frequency counts in sliding window over data stream.
In: Canadian Conference on Electrical and Computer Engineering, pp. 2232–2236
(2005)

42. Saks, M., Sun, X.: Space lower bounds for distance approximation in the data
stream model. In: STOC 2002, pp. 360–369 (2002)

43. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: IMW
2002, pp. 137–150. ACM (2002)



650 V. Braverman, R. Gelles, and R. Ostrovsky

44. Tirthapura, S., Woodruff, D.P.: A general method for estimating correlated aggre-
gates over a data stream. In: International Conference on Data Engineering, pp.
162–173 (2012)

45. Zhang, L., Guan, Y.: Frequency estimation over sliding windows. In: International
Conference on Data Engineering, pp. 1385–1387 (2008)

A The CountSketchb Algorithm

In this section we describe the CountSketchb algorithm and several of its
properties. Let us sketch the details of the CountSketch algorithm as defined
in [14]. CountSketch is defined by three parameters (t, b, k) such that the
algorithm takes space O(tb + k), and if t = O(log n

δ ) and b ≥ max(8k, 256 L2

ε2φ2
k
)

then the algorithm outputs any element with frequency at least (1+ε)φk, except
with probability δ. φk is the frequency of the kth-heavy element, and L2 is the
L2-frequency norm of the entire (n-element) stream. The algorithm works by
computing, for each element i, an approximation n̂i of its frequency. The scheme

guarantees that with high probability, for every element i, |n̂i − ni| < 8L2(S)√
b

(see Lemma 4 in [14]).
For 0 < ε′, γ, δ ≤ 1 define (γ, ε′, δ)-CountSketchb by setting k = 1

γ2 +1 and

b = 256
γ2ε′2 in CountSketch (the parameter t remains as in the original scheme).

The choice of k follows from the following known fact.

Lemma A.1. There are at most 1
γ2 elements with frequency higher than γL2.

Setting k = 1
γ2 + 1 ensures that the output list is large enough to contain

all the elements with frequency γL2 or more. However, CountSketchb does
not guarantee anymore to output all the elements with frequency higher than
(1 + ε′)φk and no element of frequency less than (1 − ε′)φk (Lemma 5 of [14]),
since the value of b might not satisfy the conditions of that lemma.

We can still follow the analysis of [14] and claim that the frequency approxi-
mation of each element is still bounded (Lemma 4 of [14]),

Lemma A.2. With probability at least 1 − δ, for all elements i ∈ [u] in the

stream S, |n̂i−ni| < 8L2(S)√
b
< 1

2γε
′L2(S) where n̂i is the approximated frequency

of i calculated by CountSketchb, and ni is the real frequency of the element i.

Proposition A.3. The (γ, ε′, δ)−CountSketchb algorithm outputs all the el-
ements whose frequency is at least (1 + ε′)γL2(S).



Time/Memory/Data Tradeoffs

for Variants of the RSA Problem

Pierre-Alain Fouque1, Damien Vergnaud2, and Jean-Christophe Zapalowicz3

1 University of Rennes 1
pierre-alain.fouque@ens.fr

2 École normale supérieure, Paris, France�
3 INRIA Rennes

jean-christophe.zapalowicz@inria.fr

Abstract. In this paper, we study the security of the Micali-Schnorr
pseudorandom number generator. The security of this cryptographic
scheme is based on two computational problems which are variants of
the RSA problem. The RSA problem essentially aims at recovering the
plaintext from a random ciphertext. In the analysis of the Micali-Schnorr
pseudorandom generator, we are interested in instances of this problem
where the plaintext is small and where the ciphertext is not entirely
known. We will describe time / memory tradeoff techniques to solve
these hard problems which provides the first analysis of this pseudoran-
dom generator 25 years after its publication.

Keywords: Micali-Schnorr generator, Time/Memory/Data tradeoff.

1 Introduction

In this paper we study two cryptographic computational problems related to the
RSA problem. Given a modulus N , product of two large prime numbers, and
an odd exponent e, coprime to ϕ(N) the order of the multiplicative group Z∗

N ,
the RSA problem consists in recovering the plaintext m ∈ Z∗

N from a random
ciphertext c = me mod N . The variants we look at consider particular instances
of this problem where the plaintext is small or where the plaintext is small and
only a part of the ciphertext is known. These two problems appear to be related
to the security of a pseudorandom generator proposed by Micali and Schnorr [21].

A pseudorandom generator is a deterministic polynomial time algorithm that
expands short seeds (made of truly random bits) into longer bit sequences, whose
distribution cannot be distinguished from uniformly random bits by a compu-
tationally bounded algorithm. Pseudorandom number generators are probably
the most basic cryptographic primitive: they are widely used for block ciphers,
public-key encryption, digital signatures, keystream generation and as passwords
sources. It is well-known that pseudorandom generators exist if and only if one-
way functions exist [17] (though this generic construction is highly inefficient).

� ENS, CNRS & INRIA – UMR 8548.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 651–662, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



652 P.-A. Fouque, D. Vergnaud, and J.-C. Zapalowicz

The first practical generator with proven security was proposed by Blum and
Micali [6]. The Blum-Micali generator outputs only one bit per iteration – which
costs one exponentiation modulo a large prime p – and its security is based on
the intractability of the discrete logarithm problem in Z∗

p. It has been shown
(e.g. [18]) that the generator remains secure if one outputs O(log log p) bits per
iteration. Another line of pseudorandom generators is based on factoring-like
assumptions (e.g. [5,21,24]). The BBS generator was introduced by Blum, Blum
and Shub in [5] and proven secure under the assumption that deciding quadratic
residuosity modulo a composite Blum1 integer N is hard. The generator works
by repeatedly squaring modulo N a random seed in Z∗

N and outputs (at each
iteration) the least significant bit of the current value. Similarly, the RSA gen-
erator works by iterating the RSA encryption mapping v �→ ve mod N (for a
public RSA modulus N and a public exponent e coprime to ϕ(N)) on a secret
random initial seed value v0 ∈ Z∗

N to compute the intermediate state values
vi+1 = vei mod N (for i ∈ N) and outputting the least significant bit of the
state value at each iteration. In [1] Alexi et al. showed that one can output up to
O(log logN) bits per iteration of the BBS generator and the RSA generator. The
actual number of bits that can be output depends on the concrete parameters
adopted but the generators are considered too slow for most applications.

Another line of number-theoretic pseudorandom generators sacrifices prov-
able security for efficiency. Gennaro [15] suggested a discrete-logarithm based
generator that outputs O(log p) bits per modular exponentiation in Z∗

p but its
security is based on a strong and not so well-studied “discrete logarithm with
short exponents” assumption. Steinfeld, Pieprzyk and Wang [24] showed, that
assuming the hardness of a strong variant of the RSA inversion problem mod-
ulo the integer N , one can securely output as much as (1/2− 1/e) logN bits in
the RSA generator. On the other hand, Herrmann and May [20] showed heuristi-
cally (using Coppersmith methods [10,11]) that an output of (1−1/e) logN most
significant bits per iteration allows for efficient recovery of the whole sequence.

Micali and Schnorr [21] proposed a variant of the RSA generator that on
a secret random initial seed value x0 ∈ Z∗

N computes the intermediate values
vi = xei mod N and outputs, for some k ∈ N, the k least significant bits of vi. But
the successor xi+1 of xi is formed from a separate part of vi, the remaining most
significant bits (contrary to the incestuous RSA generator where xi+1 = vi).
The security of Micali-Schnorr pseudorandom generator relies on the (strong)
assumption that the distribution of xe mod N for random k-bit integers is indis-
tinguishable from the uniform distribution on Z∗

N . The generator is insecure if
(1−1/e) logN least significant bits are output per iteration but no better attack
was proposed since its proposal 25 years ago. It remains open to know what is
the maximum quantity of information that can be output per iteration allowing
the generator to be efficient but still secure against potential attackers.

Our Techniques. As dynamic programming, time / memory tradeoffs is a
well-known technique to reduce the time complexity of a problem using mem-
ory. Shamir and Schroeppel in [23] have described such algorithms for specific

1 N is a Blum integer if N = pq with p and q primes and p, q ≡ 3 mod 4.



Time/Memory/Data Tradeoffs for Variants of the RSA Problem 653

NP-complete problems such as knapsack problems. In cryptography, this tech-
nique has been used many times to analyze the security of symmetric primitives
such as block ciphers or stream ciphers and some computational problems such
as the baby-step giant-step algorithm to compute discrete logarithms. Basically,
some computations can be done independently of other resources. For instance,
using the public key the adversary can precompute some values and store a
small fraction of these values in the offline phase. Then, the adversary gets some
ciphertexts and his goal can be to recover the secret key.

In [19] Hellman described a technique to invert random looking functions.
This technique has been rigorously studied in [13] by Fiat and Naor to work
for any functions and rigorous lower bounds have been given in [3] by Barkan,
Biham and Shamir. Oeschlin in [22] described a variant of Hellman tradeoff, but
this variant has been show equivalent to Hellman tradeoff by Barkan et al. since
many heuristics can be applied to Hellman technique. Finally, Babbage [2] and
Golic [16], then Biryukov and Shamir [4] presented tradeoff for stream cipher
by using more or less data. This resource is a crucial parameter in cryptanalysis
and it is important to present attacks using as low data complexity as possible.

Our Contributions. In this paper, we use time/memory/data tradeoff tech-
niques to propose algorithms for two computational problems related to the
security of the Micali-Schnorr pseudorandom generator. The algorithms are de-
composed into two phases: the preprocessing one where the attacker constructs
large hash tables using the structure of the focused cryptosystem, and the real-
time phase where it uses the data produced by the cryptosystem and the hash
tables to retrieve the secrets. The three tradeoffs algorithms we describe are
similar to the tradeoffs for stream ciphers. However, in order to construct such
algorithms, we need to specify the function f we used. For stream ciphers, the
main idea is to execute from a hidden state the generator in order to have at
least logS bits of output if the state is of size S. Here, we decide to truncate the
output value. It is a bit weird to define f in such a way since the iteration of
such functions is no more related to the iteration of the generator. However, the
only things we need is to cover the space in such a way that the inversion will be
possible. This choice of function f is suitable for Micali-Schnorr generator but
does not work for the BBS or the RSA generator. Moreover, in order to prove
that the many Hellman tables algorithm works (our third algorithm), we need
to prove that each table uses an independent function. We provide such claim
in the analysis of the third algorithm. Indeed, this independence assumption is
in fact the tricky part of the analysis and Hellman paper relies on heuristic in
order to provide lower bounds on the time complexity of his scheme. Using a
computational argument we prove that the considered functions are independent.

Our algorithms do not contradict the strong assumption used for the Micali-
Schnorr pseudorandom generator. They can be applied even though only a small
part of the generator is output at each iteration. Moreover, we will show that
once one value is recovered using the algorithms we describe for the first problem,
then we are also able to retrieve the seed by using another time/memory tradeoff.
Finally, even if our algorithms beating the bound remain exponential, we achieve



654 P.-A. Fouque, D. Vergnaud, and J.-C. Zapalowicz

to decrease the constant and that can be very interesting in cryptography (for
example, in the case of the factorization).

Organization of the Paper. In Section 2, we present the first problem we look
at and basics about the Micali-Schnorr pseudorandom generator.We explain why
the problem is easy for some small parameters. In Section 3, we describe three
time/memory algorithms for solving the first problem using different tradeoffs.
In Section 4, we show other tradeoffs to recover the seed of the generator.

2 Micali-Schnorr Pseudorandom Generator

The Micali-Schnorr pseudorandom generator is defined by the recursive sequence
(vi = xei−1 mod N) for i ≥ 1, with (e,N) the RSA public key, x0 ∈ [0, 2r[ the
secret seed of size2 r and vi = 2kxi+wi. At each iteration, this generator outputs
the k least significant bits of vi, denoted by wi. In addition, denoting n the size
of the modulus N , only xi of size r = n − k, unknown, is reused for the next
iteration. Since the generator outputs O(k/ log e) bits per multiplication, one
wants k to be as large as possible and e to be as small as possible.
This pseudorandom generator is proven secure under the following assumption:

Assumption 1. The distribution of xe mod N for random r-bit integers is in-
distinguishable by all polynomial-time statistical tests from the uniform distribu-
tion of elements of Z∗

N .

Description of the Problem. Let (e,N) the RSA public key with N of size
n. Using the equality vi = 2kxi+wi where vi ∈ ZN , wi ∈ [0, 2k) and xi ∈ [0, 2r),
we consider the recurrence sequence

∀i ≥ 1, vi = xei−1 mod N (1)

Given (e,N, r), {w1, · · · , wj} with j ∈ N, the problem consists in retrieving one
value xc with c ∈ {0, · · · , j − 1}.

For an attacker, finding one of the values xi using some iterations of the
Micali-Schnorr pseudorandom generator will lead to infer its next outputs. The
difficulty of the above problem depends highly on the value of r. Figure 1 sums
up this hardness, with a transition value equal to n/e. We first explain why it is
easy to solve the problem when the size of r is less than n/e.

r
n/e

easy hard

polynomial-time exponential search

Fig. 1. Difficulty of the problem depending of the value r

2 Throughout the paper, the size of an integer is (an upper-bound of) its bit-size.



Time/Memory/Data Tradeoffs for Variants of the RSA Problem 655

Theorem 1. Suppose that the value x0 of size r is odd. If r ≤ n/e, given (e,N)
and w1, there exists a polynomial-time algorithm which retrieves the value x0.

Proof. If r ≤ n/e, the modular reduction is not performed in Equation 1, so
v1 = xe0 over the integers and using v1 = 2kx1 + w1, one has the following
modular equation:

xe0 = w1 mod 2k

where all the values except x0 are known. We now use the well-known Hensel’s
lifting lemma to retrieve this secret value.

Lemma 1 (Hensel’s lifting lemma). Let p be a prime and c be a positive
integer. One denotes f a polynomial having a root x modulo pc which satisfies:

f(x) = 0 mod pc and f ′(x) �= 0 mod p

Then, one can lift x to obtain an unique nontrivial root x∗ ∈ [0, pc+1) verifying:

f(x∗) = 0 mod pc+1 and x∗ = x mod pc

With Lemma 1, by using f(x) = xe − w1, one can reconstruct bit per bit x0
looking at the powers of 2. The value x∗ can be efficiently computed by x∗ =

x+ λ · 2c where λ = − f(x)
2c · (f ′(x))−1 mod 2. ��

Note that if the value x0 is even, one loses the uniqueness of the lift. However,
computing xe −w1 mod 2k for each candidate x of size r can suffice to retrieve
this value; else one tests another output wi of the generator.
Another possibility to retrieve the seed consists in raising w1 to the power
e−1 mod 2k−1 (notice that e is odd). However the complexity of Hensel lift-
ing is linear in the size of the root, contrary to this exponentiation.
To avoid this simple algorithm but to remain efficient, i.e to output a maximum
of bits per iteration, the parameter k has to be smaller than n(1− 1

e )�. Finally,
it seems hard to find a polynomial-time algorithm if r > n/e, for example by
using Coppersmith techniques, which are techniques bases on lattice reduction
to find small modular roots.

3 Solving the Problem Using Time/Memory/Data
Tradeoffs

For now, we consider the problem in the case where r is larger than n/e and we
will present three similar algorithms that use different tradeoffs in order to solve
the problem. These algorithms use the fact that only the hidden information, i.e
the value xi of a relatively small size r, is recycled for the next iteration contrary
to some other pseudorandom generators as the BBS or the RSA ones. We denote
the five key parameters as follows:

– 2r represents the cardinality of the search space.
– P represents the time required by the preprocessing phase of the algorithm.
– M represents the quantity of access memory required for the algorithm.
– T represents the time required by the online phase of the algorithm.
– D represents the quantity of data required for the algorithm.



656 P.-A. Fouque, D. Vergnaud, and J.-C. Zapalowicz

3.1 First Algorithm

The first algorithm is quite simple to explain and to implement but not really
efficient. The preprocessing phase consists in storing the couples (x, LSBk(x

e

mod N)) for some different values of x in a hash table. During the online phase,
one tests for each value wi if it appears in the hash table. For example, it will
work by taking M = 2r/3 and D = T = 22r/3 or even M = T = D = 2r/2. The
proof is given in the full version of this paper.

Theorem 2. Given (e,N) and D consecutive values w1, · · · , wD, there exists
an algorithm which retrieves one of the values x0, · · · , xD−1 in time T , by using
M random access memory such that TM = O(2r) with D = O(T ).

3.2 Second Algorithm Using one Hellman’s Table

The two next algorithms are based on [19,4]. Hellman then Biryukov and Shamir
have proposed different attacks using tradeoffs for breaking block ciphers and
stream ciphers. We define a special function in order to apply these attacks for
solving our problem, and thus for the Micali-Schnorr pseudorandom generator.
This second algorithm gives the same tradeoff as the first one, but need less
data: for M = 2r/3 and T = 22r/3, it just requires a bit more than 2r/3 data.

Theorem 3. Given (e,N) and D consecutive values w1, · · · , wD, there exists
an algorithm which retrieves one of the values x0, · · · , xD−1 in time T , by using
M random access memory such that TM = O(2r) with T ≤ D2.

Proof. Algorithm. Let f be the function defined by f(x) = LSBr(x
e mod N)

where LSBr(x) represents the r least significant bits of x. The preprocessing
phase consists in computing for m random different values x10, · · · , xm0 the values
f t(x10), · · · , f t(xm0 ) with m, t ∈ N and where f t means that the function f is
iterated t times. The construction of a hash table containing the f t(xi0) as keys
and the xi0 as associated values, for i ∈ {1, · · · ,m}, concludes this phase.
The algorithm in online phase works as follows:

1. One selects a known value wj for j > 0.

2. One considers only the r least significant bits of wj , denoted by zj.
3. For i ∈ {0, · · · , t}, one tests if f i(zj) is a key of the hash function. If the
t+ 1 tests fail, one selects the next known value and restarts the algorithm.

4. If a test succeeds, denoting the associated value xc0, one has:

f t−i(xc0) = zj = f(f t−i−1(xc0)︸ ︷︷ ︸
X

)

X is a value of size r that corresponds with high probability to the hidden
part of the generator at the previous iteration. A simple verification consists
of the computation of the value Xe mod N .



Time/Memory/Data Tradeoffs for Variants of the RSA Problem 657

Table 1. Computation of our algorithm using a hash table

Value Hellman’s Matrix for our algorithm Key

x1
0

f−→ f(x10)
f−→ · · · f−→ f t−1(x10)

f−→ f t(x1
0)

...
...

xc
0

f−→ · · · f−→ X︸ ︷︷ ︸
step 4

f−→ zj
f−→ · · · f−→︸ ︷︷ ︸
step 3

f i(zj)

...
...

xm
0

f−→ f(xm0 )
f−→ · · · f−→ f t−1(xm0 )

f−→ f t(xm
0 )

Table 1 gives an overview of the algorithm by manipulating the hash table and
using the function f .

Complexity. The number of different values in this table can be estimated as
follows (the end value of each chain is not counted):

E(#{f j(xi0), 1 ≤ i ≤ m, 0 ≤ j < m}) =
m∑
i=1

t−1∑
j=0

Pr[Ai,j ]

where Ai,j the event [f j(xi0) /∈ {f j
′
(xi

′

0 ), i
′ < i or j′ < j}]. Note that Ai,j ⊆

Ai,j−1 (since f j(xi0) = f j−1(xi0)). Moreover, we have the following property:

Pr[Ai,j |Ai,j−1] ≥ 1− it

2r
⇒ Pr[Ai,j ] ≥

(
1− it

2r
)j+1

Hence, the probability p that the value we search is in the Hellman’s table is
greater than 2−r

∑m
i=1

∑t−1
j=0(1− it

2r )
j+1.

By denoting D the number of known values of the recurrence, the time re-
quired by the preprocessing phase of the algorithm P is equal to O(mt), the
memory M and the time of the algorithm T are defined by M = O(m) and
T = O(Dt). For each known value of the recurrence, one has a probability p
depending on the size of the table to success, and thus we need Dp = O(1). If
mt2 0 2r then p ≈ 2−rmt. Consequently we obtain the tradeoff Dt ·m = O(2r),
i.e TM = 2r with T ≤ D2 (due to mt2 0 2r).

As the table gets larger, some chains will eventually collide and merge due to
the birthday paradox. So it may be preferable to use many small tables, that is
the next attack. Finally note that, at step 4, each value f i(zj) may have multiple
predecessors, hence there is a small probability that f t−i(xc0) will not be equal
to zj . In this case, one tries an other output but it is clear that these “false
alarms” will increase the complexity by only a small constant factor. ��



658 P.-A. Fouque, D. Vergnaud, and J.-C. Zapalowicz

3.3 Third Algorithm Using Many Hellman Tables

This last algorithm which uses more tables, proposes then another repartition be-
tween the memory, the time and the data. For example, for M = 25r/8, T = 2r/2

and D = 2r/8, this tradeoff is preferable compared to the first two algorithms.
This set of tables covers a larger fraction of the possible output values and

consequently, the online phase need less data. Each table requires a specific
function and, in order to cover different independent output values, the functions
need to be independent. In [19], Hellman rigorously calculated a lower bound on
the expected coverage of images by a single table which is essentially the same
analysis we did in the previous algorithm. However, the analysis for the full
scheme (with many tables) is highly heuristic and is based on the unjustifiable
assumption that many simple variants of f are independent of each other. Fiat
and Naor in [13] propose to use k-wise independent functions in order to propose
an algorithm to invert any function, while Hellman assumes that the function is
random. In order to replace the heuristic, one could think of using independent
functions for each table by computing gi = hi ◦ f , where {hi}i is a family of
k-wise independent functions. The main drawback is that the number of such
functions we need is exponential and it is not easy to construct such functions.
Here, we want to avoid Hellman heuristic while similar heuristic could be made.
For instance, we could define many functions by considering any r bits among
the n−r output bits which will give us

(
n−r
r

)
different functions. However, many

functions will have the same subset of bits and we cannot assume independence
between them. The analysis of the algorithm is based on the following hypothesis:

Assumption 2. Denoting f(x) = LSBr(x
e mod N), the distribution of f(x)

for random r′′-bit integers (r′′ ≥ r) x is indistinguishable by all polynomial-time
statistical tests from the uniform distribution of integers in [0, 2r).

Theorem 4. Given (e,N) and D consecutive values w1, · · · , wD, there exists
an algorithm which retrieves one of the values x0, · · · , xD−1 in time T , by using
M random access memory such that TM2D2 = O(22r) with D2 ≤ T ≤ 2r.

Proof. Algorithm. The third algorithm is similar to the second one but, instead
of using a single table, one uses � = t/D hash tables of size mt (assuming that
t > D). First, one has to find which table covers the output value. Then one
applies the second algorithm. Consequently, the search of the table requires to
look for each value in all tables in parallel.

Complexity. Using the same analysis as for the second algorithm, we know
that we cover a fraction mt/2r of the output values with one table. Now, using
� tables, we want to prove that the number of output values we cover is mt�. To
prove such result, we have to solve the independence problem, namely that to
describe independent functions for each table so that we are still able to invert f .
First of all, the whole output of the n− r least significant bits of xe mod N can
be used. But this only allows us to construct a constant number of functions. Our
second idea is to use the fact that f is a random function or that its outputs
are indistinguishable from the uniform distribution (Assumption 2). By using



Time/Memory/Data Tradeoffs for Variants of the RSA Problem 659

� random and independent values zi ∈ [0, 2r
′
), we can define � functions as

gi(x) = f(x + zi · 2r) for i ∈ {1, · · · , �}. We claim that this set of functions is
independent, otherwise assumption 2 will be wrong for r′′ = r + r′.
Using the same notations as in the previous proof, the probability p that the
value we search is in one of the � Hellman’s tables is greater than 1 −

(
1 −

2−r
∑m

i=1

∑t−1
j=0(1 − it

2r )
j+1

)�
and p ≈ 2−rmt� if mt2 0 2r. We clearly have

M = O(m�), T = O(Dt�) and P = O(mt�). For � = t/D, we obtain the tradeoff
TM2D2 = O(22r) with D2 ≤ T ≤ 2r. ��

Remark 1. This tradeoff is less constraining than Hellman tradeoff: we only need
that one value is in one table and not that a particular value.

4 Inverting RSA for Small Plaintext Problem

By using one of the previous algorithms, one knows the value of a hidden part of
the generator denoted xi for i ≥ 0. We now present two different ways to invert
the Micali-Schnorr generator, i.e to retrieve the secret seed x0.

Description of the Problem. Let (e,N) be an RSA public key with N of size
n and an integer r ≤ n. Given (N, e, r) and y = xe mod N for x ∈ [0, 2r), the
problem consists in recovering x.

Remark 2. This problem is well-known to be solvable in polynomial time when
r ≤ n/e since as before the equality holds over the integers.

4.1 Multipoint Evaluation of Univariate Polynomials

Let P (x) ∈ ZN [x] be a polynomial of degree less than n = 2k. The multipoint
evaluation problem is the task of evaluating P at n distinct points α0, . . . , αn−1 ∈
ZN . Using Horner’s rule, it is easy to propose a solution that uses O(n2) addition
and multiplication in ZN but it is well-known that one can propose an algorithm
with quasi-linear complexity Õ(n) operations in ZN using a divide-and-conquer
approach [8,14].

Let P0 =
∏n/2−1

�=0 (x − α�) and P1 =
∏n−1

�=n/2(x − α�) and let us define R0 =

P mod P0 and R1 = P mod P1. We have R0(αi) = P (αi) for all i ∈ {0, . . . , n/2−
1} and R1(αi) = P (αi) for all i ∈ {n/2, . . . , n− 1} and this gives immediately a
recursive algorithm (i.e. compute P0, P1, R0, R1 and reduce the problem to the
multipoint evaluation of R0 and R1 of degree n/2 = 2k−1).

Let Ai(x) = (x−αi) for i ∈ {0, . . . , n−1} and Pi,j = Aj2iAj2i+1 . . . Aj2i+2i−1

for i ∈ {0, . . . , k} and 0 ≤ j < 2k−i. We have P0,j = Aj and Pi+1,j = Pi,2jPi,2j+1

so for i ∈ {0, . . . , k} we can compute recursively all polynomials Pi,j and 0 ≤ j <
2k−i in 2k−i−1O(M(2i)) = O(M(n)) operations in ZN where M(i) denotes the
arithmetic complexity to compute the product of two polynomials of degree i in
ZN [x]. Overall, the computation of all polynomials Pi,j requires O(M(n) log n)
operations in ZN using a tree.



660 P.-A. Fouque, D. Vergnaud, and J.-C. Zapalowicz

The polynomialsR0 and R1 can be computed using O(M(n)) operations in ZN

(using a Newton inversion), hence the complexity T (n) of the recursive algorithm
satisfies T (n) = 2T (n/2) +O(M(n)) and therefore T (n) = O(M(n) log n).

The multipoint evaluation of univariate polynomials has found numerous ap-
plication in cryptanalysis (e.g. [12,9]). In our case, it is clear that using this
technique will lead to retrieve the seed. For example, using the same notations
as in preliminaries, suppose that we know the value of vi and want to retrieve
the value of xi−1 of the generator. That can be done by multipoint evaluating
the polynomial of degree e(2r/2 + 1):

P (X) = (Xe − vi)((X + 1)e − vi)((X + 2)e − vi)...((X + 2r/2)e − vi) mod N

on the points k · 2r/2 for k = 0, · · · , 2r/2 in order to find kc such that P (kc ·
2r/2) = 0 mod N . Then, one searches the value of xi−1 on the form kc · 2r/2 + �
for � = 0, · · · , 2r/2. This technique requires Õ(e · 2r/2) operations in ZN . Its
complexity is linear in e but, as mentioned above, e is chosen as small as possible
in practice. Moreover, one has to store the first tree, i.e 2r/2 polynomials.

Remark 3. This algorithm can be applied to attack the RSA encryption system
when used to encrypt a short secret key of a symmetric cipher. Our algorithm is
slightly less efficient than the one in [7] but it always succeeds (whereas recovering
a 40-bit plaintext for instance is successful only with probability 0.39 in [7]).

4.2 Coppersmith’s Method

Another technique is based on the well-known Coppersmith’s method for the case
of a modular univariate polynomial. In 1996, Coppersmith introduced lattice-
based techniques for finding small roots on univariate and bivariate polynomial
equations in polynomial time [11,10]. Some recalls are done in the full version.
In our case, starting from the equation xei−1 = vi mod N , we can define the
following modular univariate polynomial f as f(x) = xe−vi mod N . The value
xi−1 represents a small modular root of this polynomial. However, our root of
size r is not enough small for this technique which requires the root to be less
than N1/e, i.e r < n/e (see [11]). To circumvent this problem, one can guess j
bits of x in order to have r− j < n/e and then apply Coppersmith’s method for
each guess. Instead of f , one uses the polynomial g of degree e:

g(x) = (λ+ x)e − vi mod N

with λ the guessed value of j bits. The truncated value of xi−1 denoted by xtri−1

is a small modular root of g. Its degree being the same, the asymptotic condition
on the size of the root remains the same. The followng theorem, proved in the
full version, establishes the condition on the bound:

Theorem 5. Using the set of polynomials {xjgi|j ≤ e − 1 ∧ i ≤ p − 1} ∪ {gp}
with p ∈ N, Coppersmith’s method will return xtri−1 as long as xtri−1 < N δ with:

δ =

∑p
i=1(e− 1)(i− 1) + i∑ep

i=1 i
=
ep− e+ 2

e2p+ 2



Time/Memory/Data Tradeoffs for Variants of the RSA Problem 661

Starting from a basis (b1, · · · , bw) of a lattice of Zm, this technique works in
complexity O(w4m logB(w + logB)) with B = max1≤i≤w ‖bi‖, and we have to

store the lattice of size w + m. By denoting xtri−1 < N
1
e ·(1−ε) with 0 < ε < 1,

one can determine the minimal value for p in order to retrieve the root, i.e
p = e−1−ε

eε = O(1/ε). The number of polynomials w being equal to e(p−1)+1 =
O( eε ), those of monomials m being equal to ep+ 1 = O( eε ) and logB = n, this

technique will require O(2r−
n
e ·(1+ε)( e

6n
ε6 + e5n2

ε5 )) in time and O( eε )
2 in memory.

5 Conclusion

In this paper, for the first time, we have shown that, for all recommended
parameters, we are able to predict the Micali-Schnorr pseudorandom gener-
ator faster than by an exhaustive search by using time/memory tradeoff or
time/memory/data tradeoff attacks. These attacks are feasible only because of
the specificity of this generator that uses only a small number to iterate and
it remains a open problem to design a time/memory tradeoff algorithm able to
infer sequences produced by the BBS or the RSA generator (in the range of
parameters not covered by Herrmann and May techniques [20]).

We have also proposed three techniques (the last one is explained in the full
version) to reverse the generator and retrieve the generator seed. An interesting
open question is to decrease the memory requirement of our algorithms. The
ρ or λ methods for factoring and discrete logarithms (which were invented by
Pollard) use pseudorandom walks and require polynomial (or even constant)
memory rather than exponential as in our time/memory tradeoffs. They can
be applied to attack Gennaro’s efficient pseudorandom generator based on the
discrete logarithm [15] but it remains open to adapt this approach to predict the
Micali-Schnorr pseudorandom generator.

Acknowledgements. This work was supported in part by the French ANR-12-
JS02-0004 ROMAnTIC Project.

References

1. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.-P.: RSA and Rabin functions:
Certain parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988)

2. Babbage, S.: A space/time tradeoff in exhaustive search attacks on stream ciphers.
IEE Conference Publication - European Convention on Security and Detection,
vol. 408 (1995)

3. Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on cryptanalytic
time/Memory tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 1–21. Springer, Heidelberg (2006)

4. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

5. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)



662 P.-A. Fouque, D. Vergnaud, and J.-C. Zapalowicz

6. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

7. Boneh, D., Joux, A., Nguyên, P.Q.: Why textbook ElGamal and RSA encryption
are insecure. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 30–43.
Springer, Heidelberg (2000)

8. Bostan, A., Gaudry, P., Schost, É.: Linear recurrences with polynomial coefficients
and application to integer factorization and Cartier-Manin operator. SIAM J. Com-
put. 36(6), 1777–1806 (2007)

9. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divi-
sors: Breaking fully-homomorphic-encryption challenges over the integers. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
502–519. Springer, Heidelberg (2012)

10. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996)

11. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Hei-
delberg (1996)

12. Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis
of the RSA subgroup assumption from TCC 2005. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 147–155. Springer,
Heidelberg (2011)

13. Fiat, A., Naor, M.: Rigorous time/space trade-offs for inverting functions. SIAM
J. Comput. 29(3), 790–803 (1999)

14. Fiduccia, C.: Polynomial evaluation via the division algorithm: The Fast Fourier
Transform revisited. In: Fischer, P., Zeiger, H.P., Ullman, J., Rosenberg, A. (eds.)
4th Annual ACM Symposium on Theory of Computing, pp. 88–93. ACM (1972)

15. Gennaro, R.: An improved pseudo-random generator based on the discrete loga-
rithm problem. Journal of Cryptology 18(2), 91–110 (2005)

16. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

17. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

18. H̊astad, J., Näslund, M.: The security of all RSA and discrete log bits. J.
ACM 51(2), 187–230 (2004)

19. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Transactions on In-
formation Theory 26(4), 401–406 (1980)

20. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
When do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 487–504. Springer, Heidelberg (2009)

21. Micali, S., Schnorr, C.-P.: Efficient, perfect polynomial random number generators.
Journal of Cryptology 3(3), 157–172 (1991)

22. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)

23. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

24. Steinfeld, R., Pieprzyk, J., Wang, H.: On the provable security of an efficient RSA-
based pseudorandom generator. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 194–209. Springer, Heidelberg (2006)



 

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 663–671, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

An Improved Algorithm for Extraction of Exact 
Boundaries and Boundaries Inclusion Relationship 

Tao Hu1,2, Xianyi Ren1,2, and Jihong Zhang1,2 

1 Institute of Information Technology, Shenzhen Institute of Information Technology, 518171, 
Shenzhen, China 

happy.hut@163.com 
2 Shenzhen Key Laboratory of Visual Media Processing and Transmission, 518171, Shenzhen, 

China 

Abstract. Boundary extraction algorithm proposed by Capson can get the same 
or even better performance as the commercial software such as VisionPro and 
Halcon. Unfortunately, the algorithm cannot extract the inclusion relationship 
between boundaries, which greatly reduce its attractiveness. Two improvements 
is proposed to improve the original algorithm in this paper, one is to improve 
the precision of boundaries by splitting points and merging points, another one 
is to design new data-structure and  rules to implement acquiring deep inclu-
sion relationship between external and internal boundaries. Experimental results 
show that the improvements increase a little consuming time but make the  
original algorithm more attractive. 

Keywords: boundary extraction, inclusion relationship, run-length, splitting 
point, merging point, pattern recognition. 

1 Introduction 

Boundary extraction is a basic and important topic in image processing[1,2], many 
researchers have devoted to it and many algorithms have been present. The conven-
tional boundary extraction algorithms can be classified into three categories. 1) The 
first one is border following method proposed systematically by Rosenfeld in 
1970[3], this algorithm is popular for its simplicity, and is improved by many re-
searchers [4-9], but it has many drawbacks, foremost is the requirement to store the 
whole image data which obviously increases the memory requirement. Furthermore, it 
involves the neighborhood operation which increases the complexity of memory 
management and the amount of computation. 2) The second category of algorithms 
uses a window sliding the image data in a raster scanning fashion, by observing the 
sequence of patterns in the window, boundaries are extracted [10,11]. This category 
of algorithms avoids storing the whole image data for its sequential visiting way, 
instead storing no more than two lines data at a time. But it still has the drawbacks of 
neighborhood operation caused by the sliding window. 3) The third category of algo-
rithms firstly implements run-length encoding through the raster scanning, and extract 



664 T. Hu, X. Ren, and J. Zhang 

 

boundary by analyzing the connectivity between the run-lengths of two adjacent lines 
[12-15]. This category of algorithms decreases the complexity further by avoiding the 
neighborhood operation in the above two categories of algorithms, but there are limi-
tations more or less to the existing algorithms of this category. The algorithms  
proposed by Pavlidis, Kim and Quek all needs two-pass processing to finish the 
boundary extraction, which causes them fail to extract the boundary “on the fly”, so 
they does not satisfy the requirement of real-time extraction. The algorithm proposed 
by Capson can perform the boundary extraction “on the fly”, but distortion occurs at 
the concave portion of the boundaries, it does not satisfy the requirement of precision. 
Furthermore, the extraction of the deep inclusion relationship between external boun-
daries and internal boundaries is necessary, but most of the existing algorithms do not 
realize it.  

“Defects cannot belittle virtues”, Capson’s boundary extraction algorithm can get 
the same or even better performance as the commercial software such as Halcon and 
VisionPro, which will be shown in the following “experiments and result” section. 
This paper is presented to address how to improve Capson’s algorithm to extract the 
exact boundaries with deep inclusion relationship. 

2 Imrpoved Boundary Extraction Algorithm 

2.1 Outline of Capson’s Algorithm 

 

Capson’s algorithm operates directly on segments which are defined by each pair 
of successive transition points yielded from RLE data. A part of corresponding edge 
points of segments held in the line_buffer structure as Fig.1 (a) shows turn into vertex 
points and are added to the vertex_list data structure as Fig.1 (b) shows, and the con-
nectivity of segments in consecutive lines decides the connection of these vertex 
points and the creation, split, merging and termination of objects which are organized 
by the active_list and the complete_list. All boundaries are extracted with a single-
pass of the image data in raster-scanned way. Each object in the complete_list indi-
cates an external boundary and holds the pointer to the starting vertex point of the 
external boundary; each hole in the complete_list indicates an internal boundary and 
holds the pointer to the starting vertex point of the internal boundary. External boun-
daries are represented by counterclockwise linked vertex points and internal bounda-
ries by clockwise linked vertex points.  

 

Fig. 1. (a) line_buffer data structure; (b)Vertex_list data structure (Reproduced from [9]) 



 An Improved Algorithm for Extraction of Exact Boundaries 665 

 

2.2 Unsettled Questions in Capson’s Algorithm and the Corresponding 
Solutions 

There are two unsettled questions in Capson’s algorithm, one is the distortion that 
occurs in concave portion, and another is that it does not address how to extract the 
deep inclusion relationship between external and internal boundaries in his paper. 

2.2.1   Solution to the Improvement of Boundaries Precision 
The first problem lies in the splitting and merging of segments, which can be solved 
by introducing the splitting points and merging points as Fig.2 shows, and the new 
connection way can be concluded as follows:  

1) When segment splits, two splitting points s1 and s2 are added to the data struc-
ture. And connect e to s1, s1 to s2, and s2 to f, instead of e to f directly. 

2) When segments merge, two merging points m1 and m2 are added to the data 
structure, and connect c to m2, m2 to m1, and m1 to c, instead of c to b directly. 

 

 

A simple figure pattern but containing all the connection situations is used to show 
the difference between the origin algorithm and the improved one, as Fig.3 shows. 

 

Fig. 3. (a) Boundaries extracted by the origin algorithm; (b) Boundaries extracted by the im-
prove algorithm 

2.2.2   Solutions to Building the Deep Inclusion Relationship of Holes  
and Objects 

Two fields are added to active_list data structure: 
parent_hole  is a pointer used to indicate the inclusion relationship be-

tween an object and a hole when the object is included by 
the hole. Furthermore, this field of a hole is null generally. 

 
 

 

Fig. 2. (a) The old connection way (b) The new connection way with the generating of splitting 
points and mergint points 



666 T. Hu, X. Ren, and J. Zhang 

 

son_object_list is a pointer list, when an object is included by a hole, the 
pointer to the object would be inserted to this list of the 
hole. Furthermore, this list of an object is null generally. 

Moreover, the four operations on the active_list all should be modified to build the 
deep inclusion relationship of holes and objects. 

1. Updating for Creation of an Object Node 
There are two cases to be considered in addition, suppose the object which pre-

vious_object_ptr currently points to is pre_obj, 
CASE 1 When pre_obj has split, the new object to be created would be the 

son object of the object which pre_obj.forward points to. 
CASE 2 When pre_obj owns a hole parent, which means 

pre_obj.parent_hole does not point to null, the new object to be created would be the 
son object of the object which pre_obj.parent points to. 

 

 

2. Updating for Termination of a Node 
There are three cases to be considered: 
CASE 1 When both the forward and back fields do not point to null, the son 

objects will transferred to the son_object_list of the node which forward points to. 
CASE 2 When the back field does not point to null, but the forward field 

does, the son objects will turn to be the son objects of the node which parent_hole 
points to.  

 

Fig. 4. (a) example objects; (b) active_list update for (a) after line #l and before line #m; (c) 
active_list update for (a) in line #m, C is created(CASE 1); (d) active_list update for (a) in line 
#n, D is created(CASE 2) 



 An Improved Algorithm for Extraction of Exact Boundaries 667 

 

CASE 3 When the forward field does not point to null, but the back field 
does, the son objects owned by the node which forward points to will turn to be the 
son objects of the node which parent_hole points to. 

 

 

3. Updating for Split 
When an object region splits, a node is inserted into the active_list immediately to 

the right of the current node, besides, parent_hole will points to the same parent with 
the current node, which makes the possible following new object inherit the same 
parent. It is worth noting that the new inserted node needs not be added to its parent’s 
son_object_list. 

 

 

Fig. 5. (a)(b)(c) example objects; (d) active_list update for (a)(CASE 1); (e) active_list update 
for (b)(CASE 2); (f) active_list update for (c)(CASE 3) 

Fig. 6. (a) example object; (b) active_list in line #l 



668 T. Hu, X. Ren, and J. Zhang 

 

4. Updating for Merge 
 
 

 

Fig. 7. (a) example objects; (b) active_list update from before line#l and after line# l 

When a node and its immediate right neighbor in the active_list are found merging, 
the immediate right neighbor’s parent_hole does not point to null, it will be deleted 
from the active_list, the corresponding pointer will be removed from its parent’s 
son_object_list. 

Need to mention that there are some cases for merge not considered by original 
Capson’s algorithm, which will result in failing to extract all boundaries of images 
with complex patterns[16]. These cases should be considered here by referring to 
[16], and the corresponding rules should be extended similarly to build the inclusion 
relationship.  

3 Experiments and Results 

The improved algorithm is implemented with C++ programming language and tested 
in the Window XP on a PC with AMD Sempron™ 2600+ 1.60GHz and 512MB 
memory.  Three sets of experiments are designed to show the performance of the 
improved algorithm in different aspects. 

1) The first experiment: an example image containing huts and a scarecrow is used 
to test the improvement in the extraction of boundaries deep inclusion relationship, as 
Fig. 8 shows. And table 1 shows the performance comparison result between the im-
proved algorithm and the original one. (The consuming-time is the total of 1000 times 
repeated operations.) 

Table 1. Performance comparison between the origin algorithm and the improved algorithm 

Consuming-time t (ms/1000times) 

Original algorithm 
(without deep inclusion relationship) 

0.845 

Improved algorithm 
(with deep inclusion relationship) 

0.856 

 



 An Improved Algorithm for Extraction of Exact Boundaries 669 

 

 

2) The second experiment: six images shown in Fig.9 are used to test the perfor-
mance difference between classical boundary extraction algorithms and the improved 
one, the comparison result is shown in Table 2. 

Table 2. Performance comparison between the improved algorithm and classical algorithms 

Image name Image size Ren[7] Chang[8] Choy[11] The improved 
pepper 512×512 3.2ms 3.9ms 4.6ms 4.4ms 
Lenna 512×512 2.8ms 3.3ms 3.8ms 3.4ms 
rice 256×256 0.69ms 0.67ms 0.93ms 0.82ms 

coins 300×246 0.38ms 0.45ms 0.62ms 0.29ms 
saturn 1200×1500 6.3ms 10.3ms 13.6ms 3.7ms 
PCB 4096×8192 135.5ms 204.7ms 227.6ms 83.1ms 

Can extract deep inclusion relationship? No No Yes Yes 
 

 

Fig. 8. Extraction of boundaries and deep inclusion relationship between external and internal
boundaries, with red and blue color to distinguish them respectively 



670 T. Hu, X. Ren, and J. Zhang 

 

 

 

3) The third experiment: the PCB image shown in Fig. 9.(e) with the size of 
4096×8192 is used to test the performance difference between the improved algorithm 
and commercial software such as Vision Pro and Halcon, and the comparison result is 
shown in Table 3. (The improved algorithm is optimized by MMX/SSE instructions, 
so do Vision Pro and Halcon.) 

Table 3. Performance comparison between the improved algorithm and commercial software 

 Consuming-time(unit: ms) 
 1 2 3 4 5 average 
Vision Pro 79.3 83.6 85.9 83.2 84.2 83.24 

Halcon 
Step1 85.9 94.0 84.1 90.7 85.9 87.94 
Step2 32.4 31.5 30.5 30.5 31.3 31.24 
Total 118.3 125.5 114.6 121.2 117.2 119.18 

The improved 83.1 84.6 82.8 82.7 84.8 83.60 

4 Conclusions 

From the results shown in table 1~3, we can find that the improved algorithm 1) can 
extract exact boundaries and deep boundaries inclusion relationship; 2) can get the 
same or even better performance as the commercial software such as VisionPro and 
Halcon; 3) costs a little more than the original one, but make it more attractive. 

Acknowledgement. This work is supported by the National Natural Science Founda-
tion of China (61271420), the Natural Science Foundation of Guangdong Province, 
China (S2011040000662, S2011010006115), and Natural Science Foundation of  
Shenzhen Institute of Information Technology, China(YB201001). 

(a) pepper        (b) rice       (c) coins       (d) saturn 

 

(e) PCB 

Fig. 9. Boundaries extraction with the improved algorithm for several images 



 An Improved Algorithm for Extraction of Exact Boundaries 671 

 

References 

1. Mitrpanont, J.L., Limkonglap, U.: Using Contour Analysis to Improve Feature Extraction 
in Thai Handwritten Character Recognition Systems. In: 7th IEEE International Confe-
rence on Computer and Information Technology, pp. 668–673. IEEE Computer Society, 
USA (2007) 

2. Kruatrachue, B., Moongfangklang, N., Siriboon, K.: Fast Document Segmentation Using 
Contour and X-Y Cut Technique. In: Proceedings of World Academy of Science, Engi-
neering and Technology, vol. 5, pp. 27–29. World Enformatika Society, Turkey (2005) 

3. Rosenfeld, A.: Connectivity in Digital Pictures. J. ACM 17(1), 146–160 (1970) 
4. Pavlidis, T.: Algorithms for Graphics and Image Processing, pp. 142–148. Computer 

Science Press, Rockville(America) (1982) 
5. Wu, L.-D., Lin, Y.-Q.: Grack Based Contour Tracing and Tree Structure of Contours. Chi-

nese J. Computers 19(6), 457–465 (1996) (Chinese) 
6. Liu, X.-B., Xiang, J.-C., Xie, L.-H.: An Improved Contour Tracing Algorithm. Computer 

Engineering and Application 29(1), 61–63 (2005) (Chinese) 
7. Ren, M.W., Yang, J.Y., Sun, H.: Tracing Boundary Contours in a Binary Image. Image 

and Vision Computing 20(2), 125–131 (2002) 
8. Chang, F., Chen, C.J., Lu, C.J.: A Linear-Time Component-Labeling Algorithm Using 

Contour Tracing Technique. Computer Vision and Image Understanding, 206-220 (2004) 
9. Wagenknecht, G.: A Contour Tracing and Coding Algorithm for Generating 2D Contour 

Codes from 3D Classified Objects. Pattern Recognition 40(4), 1294–1306 (2007) 
10. Lunscher, W.H.H.J., Beddoes, M.P.: Fast Binary-Image Boundary Extraction. Computer 

Vision, Graphics, and Image Processing 38(3), 229–257 (1987) 
11. Choy, C.T., Siu, W.C.: Single Pass Algorithm for the Generation of Chain-Coded Con-

tours and Contours Inclusion Relationship. In: IEEE Pacific Rim Conference on Commu-
nications, Computers and Signal Processing, pp. 256–259 (1993) 

12. Pavlidis, T.: A Minimum Storage Boundary Tracing Algorithm and Its Application to Au-
tomatic Inspection. Systems, Man and Cybernetics 8(1), 66–69 (1978) 

13. Kim, S.-D., Lee, J.-H., Kim, J.-K.: A New Chain-Coding Algorithm for Binary Images Us-
ing Run-Length Codes. Computer Vision, Graphics, and Image Processing 41(1), 114–128 
(1988) 

14. Quek, F.K.H.: An Algorithm for the Rapid Computation of Boundaries of Run-Length En-
coded Regions. Pattern Recognition 33(10), 1637–1649 (2000) 

15. Capson, D.W.: An Improved Algorithm for the Sequential Extraction of Boundaries from a 
Raster Scan. Computer Vision, Graphics, and Image Processing 28(1), 109–125 (1984) 

16. Hu, T., Guo, B.-P., Guo, X.: An Improved Run-Based Boundary Extraction Algorithm. 
Journal of Shenzhen University Science and Engineering 26(4), 405–410 (2009) 

 



Straight-Line Monotone Grid Drawings

of Series-Parallel Graphs

Md. Iqbal Hossain and Md. Saidur Rahman

Graph Drawing and Information Visualization Laboratory,
Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology
{mdiqbalhossain,saidurrahman}@cse.buet.ac.bd

Abstract. A monotone drawing of a graph G is a straight line drawing
of G where a monotone path exists between every pair of vertices of G
in some direction. Recently monotone drawings of graphs have been dis-
covered as a new standard for visualizing graphs. In this paper we study
monotone drawings of series-parallel graphs in a variable embedding set-
ting. We show that a series-parallel graph of n vertices has a straight-line
planar monotone drawing on a grid of size O(n) ×O(n2).

1 Introduction

A path P in a straight-line drawing of a graph is monotone if there exists a line
l such that the orthogonal projections of the vertices of P on l appear along l
in the order induced by P . A straight-line drawing of a graph is monotone if it
contains at least one monotone path for each pair of vertices.

Upward drawings [4,8] are related to monotone drawings where every directed
path is monotone with respect to vertical lines, while in a monotone drawing each
monotone path, in general, is monotone with respect to a different line. Arkin
et al. [3] showed that any strictly convex drawing of a planar graph is monotone
and they gave an O(n log n) time algorithm for finding such a path from s to t.
The authors in [1] showed that every biconnected planar graph has a straight-
line monotone drawing in real coordinate space. Angelini et al. [1] showed that
every tree admits a straight-line planar monotone drawing in O(n) × O(n2) or
O(n1.6) × O(n1.6) area. Every connected plane graph admits a monotone grid
drawing on an O(n) × O(n2) grid using at most two bends per edges and an
outerplane graph of n vertices admits a straight-line monotone drawing on a
grid of area O(n)×O(n2) [2]. It is also known that not every plane graph (with
fixed embedding) admits a straight-line monotone drawing [1].

So the natural question is whether every connected planar graph has a straight-
line monotone drawing and what is the minimum area requirement for such a
drawing on a grid. In this paper, we investigate this problem for a non-trivial
subclass of planar graphs called “series-parallel graphs”. We show that every
series-parallel graph admits a straight-line monotone drawing on an O(n)×O(n2)
grid which can be computed in O(n log n) time.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 672–679, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Straight-Line Monotone Grid Drawings of Series-Parallel Graphs 673

We now give an outline of our algorithm for constructing a monotone drawing
of a series-parallel graph G. We construct an ordered “SPQ-tree” of G. We then
assign a slope to each node of the SPQ-tree. We finally draw G on a grid taking
into consideration the slope assigned to each node of the SPQ-tree.

The rest of the paper is organized as follows. Section 2 describes some of the
definitions that we have used in our paper. Section 3 deals with straight-line
monotone drawings of series-parallel graphs. Finally, Section 4 concludes our
paper with discussions.

2 Preliminaries

Let G = (V,E) be a connected graph with vertex set V and edge set E. A graph
is planar if it can be embedded in the plane without edge crossings except at the
vertices where the edges are incident. A plane graph is a planar graph with a fixed
planar embedding. A plane graph divides the plane into some connected regions
called faces. The unbounded region is called outer face and all the other faces
are called inner faces. The vertices on the outer face are called outer vertices and
all the other vertices are called inner vertices. A cut vertex is any vertex whose
removal disconnects G. A biconnected component G′ is a maximal biconnected
subgraph of G.

A graph G = (V,E) is called a series-parallel graph (with source s and sink
t) if either G consists of a pair of vertices connected by a single edge or there
exist two series-parallel graphs Gi = (Vi, Ei), i = 1, 2, with source si and sink
ti such that V = V1 ∪ V2, E = E1 ∪ E2, and either s = s1, t1 = s2 and t = t2
or s = s1 = s2 and t = t1 = t2 [7]. A biconnected component of a series-parallel
graph is also a series-parallel graph. By definition, a series-parallel graph G is a
connected planar graph and G has exactly one source s and exactly one sink t.

Fact 1. Let G = (V,E) be a series-parallel graph with the source vertex s and
the sink vertex t. Assume that (s, t) /∈ E(G). Then G′ = (V,E∪(s, t)) is a planar
graph.

A pair u, v of vertices of a connected graph G is a split pair if there exist two
subgraphs G1 = (V1, E1) and G2 = (V2, E2) satisfying the following two condi-
tions: 1. V = V1 ∪ V2, V1 ∩ V2 = {u, v}; and 2. E = E1 ∪E2, E1 ∩E2 = ∅, |E1| ≥
1, |E2| ≥ 1. Thus every pair of adjacent vertices is a split pair. A split component
of a split pair u, v is either an edge (u, v) or a maximal connected subgraph H
of G such that u, v is not a split pair of H .

Let G be a biconnected series-parallel graph. Let (u, v) be an outer edge of G.
The SPQ-tree [6,5] T of G with respect to a reference edge e = (u, v) describes
a recursive decomposition of G induced by its split pairs. Tree T is a rooted
ordered tree whose nodes are of three types: S, P and Q. Each node x of T
corresponds to a subgraph of G, called its pertinent graph G(x). Each node x of
T has an associated biconnected multigraph, called the skeleton of x and denoted
by skeleton(x). Tree T is recursively defined as follows.



674 M.I. Hossain and M.S. Rahman

Fig. 1. (a) A series-parallel graph G, (b) an SPQ-tree T of G, and (c) an illustration
for slope assignment in T ′ where subtrees are sorted on the number of vertices in each
subtree, and number of vertices, node type and assigned slope of each node are written
inside the node

Trivial Case: In this case, G consists of exactly two parallel edges e and e′

joining s and t. T consists of a single Q-node x, and the skeleton of x is G itself.
The pertinent graph G(x) consists of only the edge e′.

Parallel Case: In this case, the split pair u, v has three or more split compo-
nents G0, G1, . . . , Gk, k ≥ 2, and G0 consists of only a reference edge e = (u, v).
The root of T is a P -node x. The skeleton(x) consists of k + 1 parallel edges
e0, e1, . . . , ek joining s and t, where e0 = e = (u, v) and ei, 1 ≤ i ≤ k, corre-
sponds to Gi. The pertinent graph G(x) = G1 ∪ G2 ∪ . . . ∪ Gk is the union of
G1, G2, . . . , Gk.

Series Case: In this case the split pair u, v has exactly two split components,
and one of them consists of the reference edge e. One may assume that the
other split component has cut-vertices c1, c2, . . . , ck−1, k ≥ 2, that partition
the component into its blocks G1, G2, . . . , Gk in this order from t to s. Then
the root of T is an S-node x. The skeleton of x is a cycle e0, e1, . . . , ek where
e0 = e, c0 = u, ck = v, and ei joins ci−1 and ci, 1 ≤ i ≤ k. The pertinent graph
G(x) of node x is the union of G1, G2, . . . , Gk. Figure 1 shows a series-parallel
graph and its SPQ-tree decomposition.

Let T be the SPQ-tree of a series-parallel graph G and let x be a node of T .
The pertinent graph of x is denoted by pert(x). For an S-node x, we denote by
n(x) the number of vertices in pert(x) excluding s and t. For a P -node x, we
denote by n(x) the number of vertices in pert(x) including s and t. According to
the SPQ-tree decomposition, a P -node can not be the parent of another P -node



Straight-Line Monotone Grid Drawings of Series-Parallel Graphs 675

and an S-node can not be the parent of another S-node. Throughout the paper,
by drawing of a node x in T we mean the drawing of pert(x) of G.

Monotone Drawings
Let p be a point in the plane and l be a half-line starting at p. The slope

of l, denoted by slope(l), is the angle spanned by a counter-clockwise rotation
that brings a horizontal half-line starting at p and directed towards increasing
x- coordinates to coincide with l.

Let Γ be a drawing of a graph G and let (u, v) be an edge of G. The half-line
starting at u and passing through v, denoted by d(u, v), is the direction of (u, v).
The direction of an edge e is denoted by d(e) and slope of e is denoted by slope(e).

Let P (u1, uq) = (u1, u2, . . . , uq) be a path in a straight-line drawing of a graph.
Let ei be the edge from ui to ui+1 ( 1 ≤ i ≤ q − 1). Let ej and ek be two edges
of the path P (u1, uq) such that slope(ej) ≥ slope(ei) and slope(ek) ≤ slope(ei)
for i = 1, . . . , q− 1. We call ej and ek extremal edges of the path P (u1, uq). The
path P (u1, uq) is a monotone path with respect to a direction d if the orthogonal
projections of vertices u1, . . . , uq on a line along the direction d appear in the
same order as the vertices appear in the path.

Let P (u1, uq) = (u1, u2, . . . , uq) be a monotone path. Let e1 and e2 be the
extremal edges of P (u1, uq). If we draw ei at the origin of the axes, e1 and e2
create a closed wedge at the origin of the axes. The closed wedge delimited by
d(e1) and d(e2) and containing all the half-lines d(ui, ui+1), for i = 1, . . . , q − 1,
is the range of P (u1, uq) and is denoted by range(P (u1, uq)), while the closed
wedge delimited by d(e1)−π and d(e2)−π, and not containing d(e1) and d(e2),
is the opposite range of P (u1, uq) and is denoted by opp(P (u1, uq)).

We now recall some important properties of monotone paths from [1] as in
the following two lemmas.

Lemma 1. A path P (u1, uq) = (u1, u2, . . . , uq) is monotone if and only if it
contains two edges e1 and e2 such that the closed wedge centered at the origin
of the axes, delimited by the two half-lines d(e1) and d(e2), and has an angle
smaller than π, contains all the half-lines d(ui, ui+1), for i = 1, . . . , q − 1.

Lemma 2. Let P (u1, uq) = (u1, . . . , uq) and P(uq, uq+k) = (uq, ..., uq+k) be
monotone paths. Then, path P (u1, uq+k) = (u1, . . . , uq, uq+1, . . . , uq+k) is
monotone if and only if range(P (u1, uq)) ∩ opp(P (uq, uq+k)) = ∅. Further,
if P (u1, uq+k) is monotone, then range(P (u1, uq)) ∪ range( P (uq, uq+k)) ⊆
range(P (u1, uq+k)).

3 Monotone Grid Drawing

In this section we give an O(n logn) time algorithm to find a straight-line planar
monotone grid drawing of a series-parallel graph on an O(n) × O(n2) grid. To
get a such drawing we first construct an ordered SPQ-tree. We then assign a
slope to each node. We finally draw the graph on a grid taking into consideration
the slopes assigned to each node of the tree. The details of our algorithm are as
follows.



676 M.I. Hossain and M.S. Rahman

We assume that an edge exists between the source s and the sink t of the
input series-parallel graph G otherwise we add a dummy edge between s and t
of G. (Note that the graph remains planar after adding the dummy edge (s, t)
by Fact 1.) Later we will show that the drawing of G obtained by our algorithm
remains monotone even after removing the dummy edge (s, t) form the drawing.
Clearly, G is a biconnected series-parallel graph (with the edge (s, t)). Let T be
the SPQ-tree of G with respect to edge (s, t). Then the root of T is a Q-node r
and the only child of r is a P -node x. We now re-root T at x.

Let T ′ be an ordered SPQ-tree obtained from T as follows. We traverse each
P -node of T ; if any Q-node exists as a child of a P -node we put the Q-node
as the leftmost child of the P -node. The rest of the children of the P -node are
S-nodes and we draw them from left to right according to increasing order of
the number of vertices in the subtree rooted at the respective S-node. We now
assign a slope to each node of T ′. Let 1/1, 2/1, . . . , (n − 1)/1 be n − 1 slopes
in increasing order. Initially we assign the slope 1/1 to the root of T ′. We then
traverse T ′ to assign a slope to each node x of T ′. We first consider the case
where x is a P -node. Let the slope assigned to x be μ/1, and let x1, x2, . . . , xk
(k < n) be the children of x in left to right order. We assign the slope μ/1 to the
leftmost child x1. We next assign the slope (μimax+1)/1 to xi+1 where μimax/1 is
the largest slope assigned in the subtree rooted at xi. We now consider the case
where x is an S-node. Let the slope assigned to x be μ/1, and let x1, x2, . . . , xk
(k < n) be the children of x in left to right order. We assign the same slope
μ/1 to xi (i ≤ k). Thus the largest slope assigned to a vertex can be at most
(n− 1)/1.

We are now ready to draw G on a grid using the slope assigned to each node
of T ′. Figure 1(c) illustrates the slope assignment to the nodes of the SPQ-tree
for the graph G shown in Figure 1(a). Our algorithm uses a post-order traversal
on the ordered SPQ-tree.

��

�

�

�

� �

�
�

B

C

s” t=t”

s t

s

�

�

�

�

�

�

�

�

�

�

�

�

�

ab
c

t

s

h

j
k

l

q

f
g

e

(c)

elo
ng

ati
on

of
l 1

lin
e

P -node closing edge

�

�

�

�

� �
�

�

� �

�
�

�

s

t
a

b
c

e f g

h j
k

l q

(b)(a)

Fig. 2. (a) An example of a P -node for Cases 1 and 2, (b) a P -node x, and (c) a
drawing of x on a grid

We first give a drawing algorithm for a P -node. Let x be a P -node with slope
μ/1 assigned to it and let s and t be the source and the sink of x, respectively. Let
x1, x2, . . . , xk be the children of x in left to right order. Let μ1/1, μ2/1, . . . , μk/1
be the slopes assigned to x1, x2, . . . , xk, respectively.



Straight-Line Monotone Grid Drawings of Series-Parallel Graphs 677

If x is not the root of T ′, let x′ be the parent node of x, and let x′′ be the
parent node of x′. Clearly x′ is an S-node and x′′ is a P -node. Let μ/1 and μ′/1
be the slope assigned to x′ and x′′, respectively. Let s′′ and t′′ be the source and
the sink of x′′, respectively.

We denote the position of a vertex u by p(u); p(u) is expressed by its x- and
y-coordinates as (px(u), py(u)) on a grid. Let p(x) be a point on the grid. We
place the source vertex of the P -node x on p(x). Let Ax be a set of points where
the neighbors of t in pert(x) are to be drawn.

We now have the following two cases to consider.
Case 1: t �= t′′. In this case (see the node labeled C in the Figure 2), we place

s on p(x). If x1 is a Q-node we leave it for now, and we draw the respective edge
after placing the sink t of x. We add p(x) to Ax. Otherwise all xi are S-nodes
and we follow the drawing algorithm of S-node to draw each xi.

After drawing all xi, we elongate the l1 (the equation of l1 is y = μ1×x+px(x))
line up to the point p(xend) = (px(x) + n(x), py(x) + μ1 × n(x)) and place the
sink t of x on p(xend). Since n(x1) ≤ n(x2) ≤ n(x3) . . . ≤ n(xk) and the slope
μ1/1 < μ2/1 < . . . < μk/1, p(xiend

) is visible from p(xend). We connect t to
all points in Ax using straight line segments and we call each of these edges
P -node closing edge. Note that the slope of edge (p(xiend

), p(xend)) satisfies
π/2 > slope(p(xiend

), p(xend)) > −π/2.
Case 2: t = t′′. Figure 2 illustrates an example of this case (see node B).
Let px(Y

′′) be the largest x-coordinate used in the drawing of x′′. If px(x) <

px(Y
′′), we set p(x) = (px(Y

′′), px(Y
′′)−px(x

′′)
μ ). We then place the s on p(x). We

now draw all the S-nodes according to the S-node drawing algorithm described
later. Since the sink vertex of x and x′′ are same, we do not draw t in this step.
All the end vertices of xi will be connected at the drawing of the sink of x′′. If
x1 is a Q-node, we add p(x) in Ax.

We now describe an algorithm for drawing an S-node. Let x be an S-node
of T ′ with assigned slope μ/1. Let x′ be the parent node of x and let s′ be the
source vertex of x′. Let p(x′) be the point where s′ has already been placed.
Clearly, x′ is a P -node. Let l be a straight-line such that the equation of l is
y = μ/1× x+ px(x

′).
Assume first that all the children of x are Q-nodes. Then the pert(x) is a path.

In this case we place the vertices of pert(x) on the line l sequentially on integer
points. The last vertex of pert(xi) lies on the point pend(x) = ((px(x) + n(x),
py(x) + μ/1× n(x)) (slope(l) = μ/1). Then we add the pend(x) in Ax′ . Assume
now that some of the children of x are P -nodes. We traverse left to right subtrees
of x. If xi is a Q-node, we place corresponding vertices on the line l. If xi is a
P -node, we set p(xi) = ((px(x) + i, py(x) + μ/1 × i) when the source vertex
of xi is not s′, otherwise p(xi) = p(x′). We then use the drawing algorithm for
P -nodes.

We now describe how we fix the coordinates for the drawing of a Q-node. Let
x be a Q-node. The pertinent graph of x is an edge (u, v). Note that u is already
placed on the grid, since our drawing algorithm follows post-order traversal on
the SPQ-tree. Let (α, β) be the coordinate of u. If v is a sink of any P -node,



678 M.I. Hossain and M.S. Rahman

we handle this in the drawing of P -node closing edges. We thus assume that v
is not a sink of any P -node. In this case we place vertex v at (α + 1, β + μ) on
the line y = μx+ β − αμ, where μ/1 is the slope assigned to x.

We call the algorithm described above Algorithm Monotone-Draw. We now
have the following theorem.

Theorem 1. Algorithm Monotone-Draw finds a monotone drawing of a series-
parallel graph on a grid of size O(n) ×O(n2) in O(n log n) time.

Proof. Let Γ be the drawing of G constructed by Algorithm Monotone-Draw.
We now show that Γ is a monotone drawing of G. To prove the claim, we show
that, a monotone path exists between every pair of vertices of G in Γ .

Let s and t be the source and the sink of G. In fact we will prove that
a monotone path exists between every pair of vertices of G in the drawing of
G\(s, t) in Γ . Let v be a vertex in G such that v /∈ {s, t}. We first show that there
exist a monotone path between v and s, and between v and t. One can easily
observe that a path P (s, v) exists such that no P -node closing edge is contained
in P (s, v) and for each edge e ∈ P (v, s), π/2 > slope(e) ≥ π/4 holds. Then
the path P (s, v) is monotone since the range(P (s, v)) is smaller than π. On the
other hand a path P (v, t) exists such that s /∈ P (v, t), (s, t) /∈ P (v, t) and P (v, t)
may contain some P -node closing edges. The path P (v, t) is monotone since for
each edge e ∈ P (v, t) π/2 < slope(e) < −π/2 holds. Similarly, any path P (s, t)
in Γ \ (s, t) is monotone since for each edge e ∈ P (s, t) π/2 < slope(e) < −π/2
holds.

We now show that for every pair of vertices u, v ∈ G (v /∈ {s, t}, u /∈ {s, t})
there is a monotone path between u and v in Γ . Let P (u, s) and P (v, s) be two
paths such that none of them contains a P -node closing edge and assume that
e1 = (u, u′) lies on P (u, s) and e2 = (v, v′) lies on P (v, s).

Let M and N be the two Q-nodes in T ′ such that (u, u′) ∈ pert(M) and
(v, v′) ∈ pert(N), and let W be the lowest common ancestor of M and N in T ′.
Let U and V be the children of W and ancestors of M and N , respectively. Let
μW , μU , μV , μM , μN be the slopes assigned to the nodes W , U , V , M and N ,
respectively. Since e1 and e2 are not P -node closing edges, the slopes of d(e1)
and d(e2) are −μM and −μN , respectively.

We now have the following two cases to consider.
Case 1: W is a P -node. Without loss of generality we may consider μM >

μN . So according to the slope assignment μM ≥ μU > μV ≥ μN . Let w and w′

be the source and sink vertices of W in Γ . The path P (u, v) (w′ /∈ P (u, v)) is
composed of path P (u,w) and of path P (w, v). Clearly, for each edge e ∈ P (u,w),
and e′ ∈ P (w, v) it holds μM ≥ slope(e) ≥ μU and μN ≥ slope(e′) ≥ μV ,
respectively. So we have range(P (u,w)) ∩ opp(P (w, v)) = ∅. Then by Lemma 2,
P (u, v) is a monotone path.

Case 2: W is an S-node. If M and N are children of the same S-node then
the case is straight-forward, the path P (u, v) lies on a straight-line. Otherwise
the path P (u, v) could have some P -node closing edge. let W ′ be the parent of
W . Clearly W ′ is a P -node. Let w′ be the source vertex of W ′ in Γ . Then the
path P (u, v)(w′ /∈ P (u, v)) is monotone with respect to a horizontal half-line.



Straight-Line Monotone Grid Drawings of Series-Parallel Graphs 679

Thus we have proved that Γ is a monotone drawing of G.
We are placing the sink of each P -node on the x = n(x) line. The drawings

of all child nodes are inside the drawing of its parent P -node. So the largest
x-coordinate of the drawing can be at most n. On the other hand we might get
B type nodes (see Figure 2) recursively, and hence the y-coordinate can be up
to O(n2). Thus the total grid size is O(n)×O(n2).

We now analyze the required time for our algorithm. We construct SPQ-
tree in linear-time, and O(n log n) time is required to sort. We assign slopes
to T ′ in linear time. Thus the overall time complexity of the algorithm is
O(n log n). ��

4 Conclusion

In this paper we have studied monotone grid drawings of series-parallel graphs.
We have shown that a series-parallel graph of n vertices has a straight-line planar
monotone drawing on an O(n)×O(n2) grid and such a drawing can be found in
O(n log n) time. Finding straight-line monotone grid drawings of larger classes
of planar graphs is remained as our future work.

Acknowledgment. We thank CodeCrafters International and Investortools,
Inc. for supporting this research under the grant “CodeCrafters-Investortools
Research Grant for CSE BUET”.

References

1. Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone
drawings of graphs. Journal of Graph Algorithms and Applications 16(1), 5–35
(2012)

2. Angelini, P., Didimo, W., Kobourov, S., Mchedlidze, T., Roselli, V., Symvonis, A.,
Wismath, S.: Monotone drawings of graphs with fixed embedding. In: Speckmann,
B. (ed.) GD 2011. LNCS, vol. 7034, pp. 379–390. Springer, Heidelberg (2011)

3. Arkin, E.M., Connelly, R., Mitchell, J.S.: On monotone paths among obstacles with
applications to planning assemblies. In: Proceedings of the Fifth Annual Symposium
on Computational Geometry, SCG 1989, pp. 334–343. ACM, New York (1989)

4. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic di-
graphs. Theoretical Computer Science 61(2-3), 175–198 (1988)

5. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with
spqr-trees. Algorithmica 15(4), 302–318 (1996)

6. Di Battista, G., Tamassia, R., Vismara, L.: Output-sensitive reporting of disjoint
paths. Algorithmica 23, 302–340 (1999)

7. Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of series-parallel
graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 409–420.
Springer, Heidelberg (2006)

8. Samee, M.A.H., Rahman, M.S.: Upward planar drawings of series-parallel digraphs
with maximum degree three. In: WALCOM 2007, pp. 28–45 (2007)



Combination of Two-Machine Flow Shop

Scheduling and Shortest Path Problems

Kameng Nip and Zhenbo Wang�

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China
zwang@math.tsinghua.edu.cn

Abstract. This paper studies a combinatorial optimization problem
which is obtained by combining the two-machine flow shop scheduling
problem and the shortest path problem. The objective of the obtained
problem is to select a subset of jobs constitutes a feasible solution to the
shortest path problem, and to execute the selected jobs on two-machine
flow shop to minimize the makespan. We argue that this problem is NP-
hard, and propose two approximation algorithms with constant factor
guarantee.

Keywords: two-machine flow shop scheduling, shortest path, combina-
tion of optimization problems, approximation algorithm.

1 Introduction

With the rapid development of science and technology, manufacturing, service
and management are often integrated, and decision-makers have to deal with
systems involve several characteristics from more than one well-known combina-
torial optimization problems. To the best of our knowledge, few research have
been done about the combination of optimization problems in literature.

Wang and Cui [10] first studied a combination of the parallel machine schedul-
ing problem and the vertex cover problem. The goal is to select a subset of jobs
that forms a vertex cover of a given graph and to execute these jobs on m iden-
tical parallel machines. They proposed an (3− 2

m+1 ) - approximation algorithm
for that problem. Wang et al. [11] have investigated a generalization of the above
problem that combines the uniformly related parallel machine scheduling prob-
lem and a generalized covering problem. They proposed several approximation
algorithms and mentioned as future research other combination of well-known
combinatorial optimization problems. This is the core motivation for this work.

Let us consider the following scenario. We aim at building a railway between
two specific cities. The railway needs to cross several adjacent cities, which is
determined by a map (a graph). The processing time of manufacturing the rail
track for each pair of cites is various. Manufacturing a rail track between two
cities in the graph is associated with a job. The decision-maker needs to make two
main decisions: (1) choosing a path to connect the two cities, and (2) deciding the

� Corresponding author.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 680–687, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Combination of F2 and Shortest Path 681

schedule of manufacturing the rail tracks on this path in the factory. In addition,
the manufacturing of rail tracks follows several working stages, each stage must
start after the completion of the preceding stages, and we assume that there
is only one machine for each stage. We wish to accomplish the manufacturing
as early as possible, i.e. minimize the completion time of the schedule. It is a
standard flow shop scheduling problem. In this paper, we assume that there are
only two stages, leading to the two-machine flow shop scheduling problem. How
can a decision maker choose a feasible path such that the corresponding jobs can
be manufactured as early as possible? This problem combines the structure of
the two-machine flow shop scheduling problem and the shortest path problem.

Following the framework introduced by Wang et al. [11], we can see our
problem as a combination of two optimization problems, two-machine flow shop
scheduling and some shortest path problem. The former problem can be solved in
O(n log n) using Johnson’s rule [6,8], and the classical shortest problem with non-
negative edge weights can be solved in O(|V |2) using Dijkstra’s algorithm [1,5].

The contributions of this paper include: (1) the argument that the considered
problem is NP-hard, and (2) two constant factor approximation algorithms.

The rest of the paper is organized as follows. In section 2, we give a formal
definition of our problem, and then briefly review the two-machine flow shop
scheduling problem and some shortest path problems. In section 3, we study the
computational complexity of our problem. Section 4 provides two approximation
algorithms for this problem and we conclude in section 5.

2 Preliminaries

2.1 Problem Description

We first introduce the following generalized shortest path problem.

Definition 1. Given a directed graph G = (V,A,w1, w2) and two distinguished
vertices s, t ∈ V with |A| = n. Each arc aj ∈ A, j = 1, · · · , n is associated with
two weights w1

j , w
2
j , and we define the vector wk = (wk

1 , w
k
2 , · · · , wk

n) for k = 1, 2.
The goal of our shortest path problem is to find a directed path P from s to t
to minimize f(w1, w2;x), in which f is certain specific objective function and
x ∈ {0, 1}n is the decision variables such that xj = 1 if and only if aj ∈ P .

We denote SP instead of SP (G, s, t, f) to the problem described in definition
1. Notice that SP is a generalization of various shortest path problems. For
instance, if we consider w2 = 0 and f = w1 · x, where · is the dot product, this
problem is the classical shortest path problem. If f = min{w1 · x : w2 · x ≤ K},
where K is a given number, this problem is the shortest weight-constrained
path problem [7], and the decision version is known as ND30 in [7]. If f =
max{w1 · x,w2 · x}, the problem is the min-max shortest path problem [2,9,12]
in literature.

We now give a formal definition of our problem, which is a combination of the
two-machine flow shop problem and the shortest path problem.



682 K. Nip and Z. Wang

Definition 2. Given any instance I of the shortest path problem SP with G =
(V,A,w1, w2), and each arc aj ∈ A of I corresponds to a job Jj ∈ J with
processing times p1j, p2j on the two machines respectively. Define Px be a set
of jobs such that Jj ∈ Px if and only if xj = 1. The F2|shortest path|Cmax

problem is to find a feasible solution x of SP , that corresponds to a directed path
connecting the vertices s and t in G, and assign the jobs of Px on two-machine
flow shop to minimize the makespan.

2.2 Johnson’s Rule for Two-Machine Flow Shop Scheduling

In flow shop scheduling, a schedule is called a permutation schedule if all jobs
are processed in the same order on each machine [4]. Johnson [8] proposed a
sequencing rule for F2||Cmax, which is referred as Johnson’s rule in literature.

Algorithm 1. Johnson’s rule

1: Set S1 = {Jj ∈ J |p1j ≤ p2j} and S2 = {Jj ∈ J |p1j > p2j}.
2: Process the jobs in S1 first with a non-decreasing order of p1j , and then schedule

the jobs in S2 with a non-increasing order of p2j , and ties may be broken arbitrarily.

In Johnson’s rule, jobs are scheduled as early as possible. This rule produces a
permutation schedule, and Johnson showed that it is an optimal schedule. Notice
that this schedule is delivered in O(n log n) time.

We now introduce some well-known lower bounds for F2||Cmax, that are used
later to derive approximation algorithms to our problem. Let us denote by Cmax

the makespan in an arbitrary flow shop schedule with job set J , we have

Cmax ≥ max

⎧⎨⎩∑
Jj∈J

p1j,
∑
Jj∈J

p2j

⎫⎬⎭ , (1)

and

Cmax ≤
∑
Jj∈J

(p1j + p2j). (2)

For each job, we have

Cmax ≥ p1j + p2j , ∀Jj ∈ J. (3)

Suppose Jv is the critical job of the flow shop, we have

Cmax = max
Ju∈J

⎧⎨⎩
u∑

j=1

p1j +

n∑
j=u

p2j

⎫⎬⎭ =

v∑
j=1

p1j +

n∑
j=v

p2j. (4)



Combination of F2 and Shortest Path 683

2.3 Algorithms for Shortest Path Problems

In this paper, we use two following results of the shortest path problem.
The first one is the well-known Dijkstra’s algorithm, which solves the classical

shortest path problem with nonnegative edge weights in O(|V |2) time [5].
The second one is an FPTAS result for min-max shortest path problem, which

is presented by Aissi, Bazgan and Vanderpooten [2]. Their algorithm, denoted
as the ABV algorithm, is based on dynamic programming and scaling technique,
and we have the following result.

Theorem 1 ( [2]). Given an arbitrary positive value ε > 0, in a given directed
graph with two nonnegative weights associated with each arc, a direct path P
between two specific vertices can be found by the ABV algorithm with the property

max

⎧⎨⎩∑
aj∈P

w1
j ,

∑
aj∈P

w2
j

⎫⎬⎭ ≤ (1 + ε)max

⎧⎨⎩ ∑
aj∈P ′

w1
j ,

∑
aj∈P ′

w2
j

⎫⎬⎭
for any other path P ′, and the running time is O(|A||V |3/ε2).

3 Computational Complexity of F2|shortest path|Cmax

We argue that the decision version of our problem is NP-complete, by a reduction
from a NP-complete problem partition [7]. The proof is similar to the well-
known NP-hardness proof of ND30 in [7], one could refer to the literature, such
as the reduction presented in [3].

Theorem 2. The decision problem of F2|shortest path|Cmax is NP-complete.

Nevertheless, we emphasize that ND30 is neither a special case nor simple ap-
plication of our problem. Since idles may occur on machine 2 in the flow shop
scheduling, it is not straightforward that the path found in our problem is rel-
evant to a shortest weight-constrained path found in ND30, which has total
weight and total length bounded by two given numbers.

4 Approximation Algorithms

4.1 A Natural Approximation Algorithm

The main idea of the first algorithm is, we first set w1
j = p1j+p2j and w

2
j = 0 for

each arc and find the shortest path with respect to w1 by Dijkstra’s algorithm.
Then we schedule the corresponding jobs in the flow shop by Johnson’s rule.

It is straightforward that the total running time of the JD algorithm is
O(|V |2). Then we study the performance. First, we introduce some notations.
Let J∗ be set of jobs in an optimal solution, and C∗

max be the corresponding
makespan. Jx and Cmax are those returned by the JD algorithm.



684 K. Nip and Z. Wang

Algorithm 2. The JD algorithm

1: Find the shortest path in G with weight (w1
j , w

2
j ) := (p1j + p2j , 0) by Dijkstra’s

algorithm. For the returned solution x, construct the job set Px.
2: Schedule the jobs of Px by Johnson’s rule. Let σ be the returned job schedule and

Cmax the returned makespan, and denote the job set Px by Jx.
3: return Jx, σ and Cmax

Theorem 3. The JD algorithm is 2-approximate.

Proof. By the lower bound (1) introduced in section 2.2, we have

2C∗
max ≥

∑
Jj∈J∗

p1j +
∑

Jj∈J∗

p2j =
∑

Jj∈J∗

(p1j + p2j). (5)

Since the returned path is shortest with respect to w1 , we have

Cmax ≤
∑

Jj∈Jx

(p1j + p2j) =
∑

Jj∈Jx

w1
j ≤

∑
Jj∈J∗

w1
j =

∑
Jj∈J∗

(p1j + p2j), (6)

Combining with (5) and (6), it follows that Cmax ≤ 2C∗
max.

Consider the following instance. A directed graph G includes three vertices,
which are referred to v1, v2, v3. There are three jobs (arcs): (v1, v2), (v2, v3),
(v1, v3), with processing times (1, 0), (0, 1), (2 − ε, 0) respectively in which ε is
small enough. We wish to find a path from vertex v1 to v3. The makespan
of job schedule returned by the JD algorithm is Cmax = 2 − ε with the arc
(v1, v3), whereas the makespan of optimal job schedule is C∗

max = 1 with the
arcs (v1, v2), (v2, v3). The bound is tight as Cmax

C∗
max
→ 2 when ε→ 0. ��

4.2 An Improved Approximation Algorithm

Instead of finding a shortest path from s to t optimally with respect to certain
weight, we could adopt the FPTAS result mentioned in section 2.3, that will
return a (1 + ε)-approximated solution for the min-max shortest path problem.
Then we also implement Johnson’s rule. In other words, by setting the objective
function f = max{w1 · x,w2 · x} in SP .

We initially set (w1
j , w

2
j ) := (p1j , p2j). The algorithm iteratively runs the above

executions for the min-max shortest path problem and F2||Cmax by adopting
the following revision policy: in a current schedule, if there exists some job is big
enough with respect to the current makespan, we will revise the weights of arcs
corresponding to big jobs to (M,M), where M is a sufficient large number, and
then mark these jobs. The algorithm terminates if no such a job exists. Another
terminating condition is that when a marked job appears in a current schedule.
We return the schedule with minimum makespan among all current schedules as
the solution of the algorithm. We denote this algorithm as the JAR algorithm.



Combination of F2 and Shortest Path 685

Algorithm 3. The JAR algorithm

1: Initially, (w1
j , w

2
j ) := (p1j , p2j), for each arc aj ∈ A corresponding to Jj ∈ J .

2: Given ε > 0, implement the ABV algorithm to obtain a feasible solution x of SP ,
and construct the corresponding job set as Px.

3: Schedule the jobs of Px by Johnson’s rule, denote the returned makespan as C′
max,

and the job schedule as σ′.
4: Jx := Px, σ := σ′, Cmax := C′

max, D := ∅, M := (1 + ε)
∑

Jj∈J (|p1j |+ |p2j |) + 1.

5: while Px∩D = ∅ and there exists a job Jj in Px such that p1j +p2j > 2
3
C′

max do
6: for all jobs with p1j + p2j > 2

3
C′

max in J\D do
7: (w1

j , w
2
j ) := (M,M), D := D ∪ {Jj}.

8: end for
9: Implement the ABV algorithm to obtain a feasible solution x of SP , and con-

struct the corresponding job set as Px.
10: Schedule the jobs of Px by Johnson’s rule, denote the returned makespan as

C′
max, and the job schedule as σ′.

11: if C′
max < Cmax then

12: Jx := Px, σ := σ′, Cmax := C′
max.

13: end if
14: end while
15: return Jx, σ and Cmax.

Now, we discuss the computational complexity of the JAR algorithm. Let
the total number of jobs be |A| = n. First, we need to revise the weights of
at most n arcs, hence lines 6 - 8 execute at most O(n) times in the whole
execution of our algorithm. And at least one job is added to D in each iteration,
the iterations in lines 5 - 14 execute at most n times. In each iteration, the
running time of obtaining a path by the ABV algorithm and a job schedule
by Johnson’s rule is O(n|V |3/ε2) and O(n logn) respectively. And O(n) time is
enough to other operations. Hence, the total running time of the JAR algorithm
is O(n2(|V |3/ε2 + logn)).

The following theorem shows the performance of the JAR algorithm.

Theorem 4. Given ε > 0, the JAR algorithm is 3
2 (1 + ε)-approximate.

Proof. Case 1. J∗ ∩D �= ∅
It implies that there is at least one job in the optimal solution, say Jj , such

that (p1j + p2j) >
2
3C

′
max holds for a current schedule with makespan C′

max

during the execution. Notice that the schedule returned by the JAR algorithm
is the schedule with minimum makespan among all current schedules, and we
have Cmax ≤ C′

max. It follows from (3) that

Cmax ≤ C′
max <

3

2
(p1j + p2j) ≤

3

2
C∗

max. (7)

Case 2. J∗ ∩D = ∅
Consider the last current schedule during the execution of the algorithm. We

denote the corresponding job set and the makespan as J ′ and C′
max respectively.



686 K. Nip and Z. Wang

In this case, we first argue that J ′∩D = ∅. Suppose not, since J∗∩D = ∅, the
weights of arcs corresponding to the jobs in J∗ have not been revised. Hence we

have (1 + ε)max
{∑

Jj∈J∗ w1
j ,
∑

Jj∈J∗ w2
j

}
< M . Moreover, by the assumption

J ′ ∩ D �= ∅, we have max
{∑

Jj∈J′ w1
j ,
∑

Jj∈J′ w2
j

}
≥ M . By Theorem 1, the

solution returned by the ABV algorithm satisfies

M ≤ max

⎧⎨⎩ ∑
Jj∈J′

w1
j ,

∑
Jj∈J′

w2
j

⎫⎬⎭ ≤ (1 + ε)max

⎧⎨⎩ ∑
Jj∈J∗

w1
j ,

∑
Jj∈J∗

w2
j

⎫⎬⎭ < M,

that leads to a contradiction.
Let Jv be a critical job in the last current schedule, and suppose that p1v ≥

p2v. It follows from p1j ≥ p2j for j = v + 1, · · · , n in the schedule returned
by Johnson’s rule and (4) that C′

max ≤
∑

Jj∈J′ p1j + p2v. Since J
′ ∩ D = ∅,

we have p1j + p2j ≤ 2
3C

′
max for all jobs Jj ∈ J ′, as otherwise the algorithm will

continue. Thus, it follows from (1), (3), Theorem 1 and the fact that the schedule
returned by the JAR algorithm is the schedule with minimum makespan among
all current schedules, we have

Cmax ≤ C′
max ≤

∑
Jj∈J′

p1j + p2v ≤
∑
Jj∈J′

w1
j +

1

2
(p1v + p2v)

≤ (1 + ε)max

⎧⎨⎩ ∑
Jj∈J∗

w1
j ,

∑
Jj∈J∗

w2
j

⎫⎬⎭+
1

3
C′

max

= (1 + ε)max

⎧⎨⎩ ∑
Jj∈J∗

p1j,
∑

Jj∈J∗

p2j

⎫⎬⎭+
1

3
C′

max

≤ (1 + ε)C∗
max +

1

3
C′

max.

It suffices to show that Cmax ≤ C′
max ≤ 3

2 (1 + ε)C∗
max.

For the case that the last current schedule with critical job p1v < p2v, an
analogous argument will yield the same result. Therefore, the JAR algorithm is
3
2 (1 + ε)-approximate for F2|shortest path|Cmax.

The following instance shows that the worst case ratio of the JAR algorithm
can not less than 3

2 . A directed graph G has four vertices, which are referred to
v1, v2, v3, v4. Given ε > 0, there are four jobs (arcs): (v1, v2), (v1, v3), (v3, v2),
and (v2, v4), with processing times (1, 1), ((1 + 4ε), 0), (0, (1 + 4ε)) and (1, 1)
respectively. We wish to find a path from v1 to v4. Notice that the ABV algo-
rithm returns the path with the arcs (v1, v2) and (v2, v4), and the correspond-
ing makespan C′

max by Johnson’s rule is 3. All the corresponding jobs satisfy
p1j + p2j = 2 ≤ 2

3C
′
max, and thus the algorithm terminates. Therefore, the

makespan of the returned job schedule by the JAR algorithm is Cmax = 3. On
the other hand, the optimal makespan is C∗

max = 2+4ε, with the corresponding



Combination of F2 and Shortest Path 687

arcs (v1, v3), (v3, v2), and (v2, v4). The worst case ratio of the JAR algorithm
can not less than 3

2 as Cmax

C∗
max
→ 3/2 when ε→ 0 for this instance. ��

5 Conclusions

This paper studies a combination problem of two-machine flow shop scheduling
and shortest path problems. It is interesting to find an approximation algorithm
with a better performance ratio for this problem. On the other hand, one can
consider the combination problem of more generalized forms, such as combining
with m-machine flow shop scheduling problem, or covering problem presented
in [11]. All these questions motivate us to further investigate.

Acknowledgments. This work has been supported by Bilateral Scientific Co-
operation Project between Tsinghua University and K.U. Leuven. We would like
to thank Fabrice Talla Nobibon for helpful comments and suggestions.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, New Jersey (1993)

2. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximating min-max (Regret) versions
of some polynomial problems. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006.
LNCS, vol. 4112, pp. 428–438. Springer, Heidelberg (2006)

3. Batagelj, V., Brandenburg, F.J., Mendez, P., Sen, A.: The generalized shortest
path problem. CiteSeer Archives (2000)

4. Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: Complex-
ity, algorithms and approximability. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook
of Combinatorial Optimization, vol. 3, pp. 21–169. Kluwer (1998)

5. Dijkstra, E.W.: A note on two problems in connexion with graph. Numerische
Mathematik 1, 269–271 (1959)

6. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1, 117–129 (1976)

7. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1979)

8. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly 1, 61–68 (1954)

9. Kouvelis, P., Yu, G.: Robust discrete optimization and its applications. Kluwer
Academic Publishers, Boston (1997)

10. Wang, Z., Cui, Z.: Combination of parallel machine scheduling and vertex cover.
Theoretical Computer Science 460, 10–15 (2012)

11. Wang, Z., Hong, W., He, D.: Combination of parallel machine scheduling and
covering problem. Working paper. Tsinghua University (2012)

12. Yu, G.: Min-max optimization of several classical discrete optimization problems.
Journal of Optimization Theory and Applications 98, 221–242 (1998)



The Program Download Problem:

Complexity and Algorithms

Chao Peng1,�, Jie Zhou1, Binhai Zhu2, and Hong Zhu1

1 Software Engineering Institute, East China Normal University,
3663 Zhongshan North Rd., Shanghai, 200062, China

{cpeng@sei.ecnu.edu.cn,jiezhou@shnu.edu.cn,hzhu@fudan.edu.cn}
2 Department of Computer Science, Montana State University,

Bozeman, MT 59717-3880, USA
{bhz@cs.montana.edu}

Abstract. In this paper, we consider the Program Download Problem
(PDP) which is to download a set of desired programs from multiple
channels. When the problem is to decide whether the download can
be done by a given deadline d and each program appears in each of
the n channels at most once, denoted as PDP (n, 1, d), we prove that
PDP (n, 1, d) is NP-Complete by a reduction from 3-SAT(3). We can
extend the NP-hardness proof to PDP (2, 2, d) where there are only two
channels but each program could appear in each channel at most twice.
We show that the aligned version of the problem (APDP) is polynomi-
ally solvable by reducing it to a maximum flow problem. For a different
version of the problem, MPDP, where the objective is to maximize the
number of program downloaded before a given deadline d, we prove that
it is fixed-parameter tractable.

Keywords: Program Download Problem, NP-Complete, FPT
Algorithm, Approximation Algorithm.

1 Introduction

The last decades has witnessed several information technology trends, such as
cloud computing, Internet applications, big data, as well as the integration of
telecommunications networks, cable TV networks and the Internet. However, the
client-server approach is still prevalent for information service. In this paper we
will study how a client can quickly download his/her required contents from a
server which broadcasts contents through multiple wireless or wired channels. We

� This research is partially supported by the Innovation Program of Shanghai Munic-
ipal Education Commission, the Natural Science Foundation of China under Grant
No.91118008 and Grant No.61232006, the national high-tech research and develop-
ment plan of China under grant No.2011AA010101, the Shanghai Knowledge Service
Platform Project (No.ZF1213) and ECNU Project ′′Heterogenous Network Conver-
gence Technologies for CPS′′. We are grateful to Dr. Jian Li for helpful discussions
on the Aligned Program Download Problem.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 688–696, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



The Program Download Problem: Complexity and Algorithms 689

encounter this problem very often in many important applications such as Video-
on-Demand (VoD), distance learning, digital libraries, electronic commerce, etc.

Take VoD for example, usually it is implemented by a client-server architecture
supported by certain transport networks such as CATV or Internet[1,2]. In a VoD
system, the server simply broadcasts segments of a popular video periodically
on several channels. A large number of clients can be served simultaneously by
downloading their requested programs from these channels [3]. By this fashion,
the bandwidth savings can be considerable since a few (10 or 20) very popular
videos are likely to account for nearly 80% of demands [4].

Lots of researchers have designed algorithms to compute the broadcast sched-
ule in the server side, so that a user will be guaranteed to get the next segment
while playing the current one, thus the whole video can be played out contin-
uously [5,6]. But little consideration has been paid on the client side, for they
usually assume that a user can download from all channels simultaneously.

However, this assumption is not true for most cases in a wireless communi-
cation system [7]. For example, future vehicular networking aims to build an
Internet of Vehicles by enabling a vehicle to be connected with other vehicles
or the Road Side Unit (RSU) such as 802.11b/p access point [8]. In such cyber-
physical systems, an RSU can act as not only an access point but also a data
server between vehicles. It can keep broadcasting data such as value-added ad-
vertisement, local news, real-time traffic and digital map etc, vehicles passing by
will tune in these channels to seek what they are interested in.

When a vehicle is downloading programs from multiple channels, it needs to
switch between different channels which contain its requested contents. Such a
decision is not easy to make for there might be conflicts and tradeoffs, thus we
need efficient algorithms to schedule the download process. There are some ex-
isting works on similar topics, during the time when we were conducting research
on this paper, Lu et al. [9,10] independently designed data retrieval scheduling
methods for multi-Channel wireless data broadcast environments.

In this paper, we formulate the data retrieving issue into a Program Down-
load Problem, which studies from a more general perspective. The rest of this
paper is organized as follows: Section 2 presents the Program Download Problem
(PDP), proves the NP-Completeness of PDP and a special case where there are
only two channels but a specific program could appear at most twice in each
channel. Section 3 describes the Aligned Program Download Problem (APDP)
and proposes a polynomial time algorithm to solve it. In section 4, we study
the Maximum Program Download Problem (MPDP) and we prove that it is
fixed-parameter tractable. Finally, we conclude the paper in Section 5.

2 Complexity of the Program Download Problem

We first define the general problem we will investigate in this paper.

Problem: Program Download Problem (PDP).



690 C. Peng et al.

Instance: In a broadcasting scheme, there are |C| = n channels broadcasting
contents in a finite program set U , each program in U has a unit time interval
length, two consecutive programs could be separated by some arbitrary time
interval (or junk program). S ⊆ U is a target set of programs to be downloaded
and d is a positive number representing a deadline. For any channel ci ∈ C, there
are at most m programs, possible separated by junk programs. Each program
broadcasted in a channel has a starting time and a finishing time, a user can
download any program from its beginning and can switch between different
channels at the end of a program without additional time, but he/she can only
download from one channel at one time.

Question: Given such an instance (C,U, S, n,m, d), is there a schedule that can
collect all programs in S before time d?

To make our presentation easier, we consider an extra parameter, i.e., the num-
ber of times p a program can repeat in a channel. Together with the number of
channels n and the deadline d, we can denote the PDP problem as PDP (n, p, d).

Theorem 1. Even when each program appears in each of the n channels at most
once, the Program Download Problem is NP-Complete.

Proof. The theorem really states that PDP (n, 1, d) is NP-complete. PDP
(n, 1, d) is obviously in NP, since given an instance PDP (n, 1, d) and a cor-
responding download schedule as the certificate, we need only to check whether
i) all programs in S are in the schedule, ii) no program in the schedule overlap
with another one, and iii) all programs in the schedule finish before d. All three
steps can be done in polynomial time with respect to n and m.

Next we focus on reducing a known NP-Complete problem to PDP (n, 1, d).
We choose 3-SAT(3), which is a special 3-SAT instance where each clause con-
tains at most three literals and each variable appears in the input clauses 3
times, twice positively and once negatively (or vice versa) [11,12] . Let the input
formula φ contain N variables xi, 1 ≤ i ≤ N and M clauses C1, C2, ..., CM .

For each variable xi, we construct two channels ci, c̄i corresponding to xi, x̄i
respectively. WLOG, assume that xi appears in φ twice (say in Ci1,Ci2) and x̄i
appears in φ once (say in Ci3). The clause programs to be downloaded correspond
to the clauses containing xi and x̄i. Specifically, for xi we construct two programs
Ci1,Ci2 each with length one and starts at 4(i−1)+0.5 and 4(i−1)+1.5, followed
with a unit-length peg program Pi, starting at time 4(i−1)+3. Starting at time
4n we put a list of unit-length programs, containing all the clause programs
except Ci1,Ci2 and all peg programs except Pi.

For x̄i, we construct a unit-length program Ci3 in channel c̄i which starts
at time 4(i − 1) + 1, followed with a unit-length program Pi, starting at time
4(i− 1) + 3. At both channels ci and c̄i, in the time intervals [0, 4(i− 1) + 0.5],
[4(i− 1) + 2.5, 4(i− 1) + 3], and in the time interval [4i, 4n] we can insert some
arbitrary junk programs which are not in U . The programs to be downloaded
include all clause programs and peg programs. It is easily seen that each program
can appear in each channel exactly once.



The Program Download Problem: Complexity and Algorithms 691

Note that when xi appears once and x̄i appears twice, then the above con-
struction is symmetric. Moreover, one cannot download {Ci1, Ci2} and {Ci3}
at the same time. Finally, as for the peg program Pi, it appears in every other
channel, except ci and c̄i, after time 4n. Therefore, to download all the required
Pi’s before time 4n, one must download it through channel ci or c̄i.

We next show that φ is satisfiable iff all the required programs (clause and
peg programs) can be downloaded by time d = 4n.

(→) If φ is satisfiable with some truth assignment, then for xi = True which
appears in Ci1 and Ci2 we download Ci1 and Ci2 in channel ci; for xi = False
which appears in Ci3 we download Ci3 from channel c̄i. (If xi appears once in φ
and x̄i appears twice in φ, the details are similar.) Pi can be downloaded from
either ci or c̄i. It is clear that by time 4n we have got all required programs.

(←) If by time 4n all clause and peg programs have been downloaded, the
first argument is that we cannot download clause programs in channel ci and c̄i,
before time 4n, at the same time. This naturally gives us the truth assignment:
if we download some clause program in ci (the corresponding clause contains xi)
, then xi will be assigned True; if we download some clause program in c̄i (the
corresponding clause contains x̄i) , then xi will be assigned False. (If no clause
program in ci and c̄i is downloaded, then assign xi either True or False.)

The above reduction takes O(mn) time. Hence the theorem is proven. �
If there is no restriction on the length of a continuous sequence of ”junk”

programs (i.e., those programs not in U), then we can put any continuous se-
quence of such programs (say, with a total length of X) starting at time 4n in all
the channels. Then if φ is satisfiable, we can download all required programs by
time 4n; if φ is unsatisfiable, we can download all the required program by time
4n+X + 1 the earliest. The approximation factor is at least (4n+X + 1)/4n,
which could be arbitrarily large if X is unbounded. As for the time interval be-
tween two consecutive programs, we can also limit it to be less than one unit
without change the NP-Completeness of PDP (n, 1, d).

Corollary 1. The optimization version of PDP (n, 1, d) does not admit any fac-
tor 1+ X

4n approximation unless P = NP , where X is the length of the maximum
continuous sequence of junk programs.

If there are two channels and each program to be downloaded appears at most
once in each channel, we can use dynamic programming to solve the problem
PDP (2, 1, d) in polynomial time. However, the above theorem implies that we
can prove the NP-completeness of PDP (2, 2, d), i.e., when the number of chan-
nels is limited to be 2 and the number of times a program can appear in a channel
is at most 2.

Corollary 2. PDP (2, 2, d) is NP-Complete.

Proof. It is easy to check that PDP (2, 2, d) is in NP. So we will focus on reducing
3-SAT(3) to PDP (2, 2, d).

The process of reduction is almost the same as the above theorem, except that
we will have only two channels now, one channel c+ for the positive occurrences



692 C. Peng et al.

of variables and another channel c− for the negative occurrences of variables. We
will construct a corresponding unit-length program for each clause in a 3-SAT(3)
instance.

For each variable xi, we can assume that xi appears in φ twice (say in Ci1,Ci2)
and x̄i appears in φ once (say in Ci3). Now we put the two unit-length programs
corresponding to Ci1,Ci2 on channel c+ at 4(i − 1) + 0.5 and 4(i − 1) + 1.5
respectively, followed with a unit-length peg program Pi begin at time 4(i−1)+3.
On channel c− , we construct a unit-length program corresponding to Ci3 which
starts at time 4(i − 1) + 1, followed with a unit-length program Pi, starting at
time 4(i− 1) + 3. On the other hand, if xi has one positive occurrence and two
negative occurrences, we will similarly put one corresponding program on c+

and the other two programs on c−.
On both channels, starting at time 4n we put a list of unit-length programs

corresponding to all clauses. Similarly, we can show that φ is satisfiable iff all the
required programs can be downloaded by time 4n (the deadline d is still equal
to 4n).

Notice that each (clause) program appears in c+ (resp. c−) at most three
times, as a clause could contain three positive (resp. negative) literals. However,
we could easily show that Not-All-Equal 3-SAT(3), i.e., each clause must contain
at least one positive literal and one negative literal, is still NP-complete. In that
case, each program could appear in c+ (or c−) at most twice. Finally, the above
reduction takes O(MN) time. Hence the corollary is proven. �

3 The Aligned Program Download Problem

In PDP, the junk programs (or idle time intervals) could be of any length. If
we restrict that the length of the junk programs must be a unit as well, then
if two programs have a conflict then their corresponding time intervals must be
identical. We hence have the following variation of the problem.

Problem: Aligned Program Download Problem (APDP).

Instance: In a broadcasting scheme, there are |C| = n channels each broadcast-
ing m programs in a finite set U , each program (including those junk programs
not in U) has a unit time interval length and can appear in a channel multiple
times. S ⊆ U is a target set of programs to be downloaded.

Question: Given such an instance (C,U, S, n,m, d), can one collect all programs
in S from channels in C at the end of all channels, i.e., by time d?

We show that APDP can be solved in polynomial time by reducing it to a
maximum flow problem [13].

Theorem 2. APDP is in P.

Proof. We can solve APDP by transforming it into a maximum flow problem.
Given an instance (C,U, S, n,m, d) of APDP, we first remove all programs later
than d, then create a node si(1 ≤ i ≤ |S|) for each program in S, a node
rt(1 ≤ t ≤ m) for each time unit t and a node cjt(1 ≤ j ≤ n, 1 ≤ t ≤ m) for



The Program Download Problem: Complexity and Algorithms 693

each program broadcasted in channel cj at time unit t. Then we draw a directed
edge from node si to cjt iff their corresponding programs are the same. We also
draw a directed edge from node cjt to rt for each program broadcasted at time
unit t. Next we create a source node a and connect it to all the si nodes. Finally
we create sink node b and connect all nodes rt(1 ≤ t ≤ m) to b.

We assign a unit capacity to each edge, next we show that (C,U, S, n,m, d) is
a yes instance of APDP iff we can find an |S| flow from a to b in the graph.

(→) If we can download all programs in S before d, suppose some si is located
on channel j at time t in the solution schedule, then we can send a unit flow
from a to node si, node cjt, node rt and finally to node b. All such flows will
not meet each other at a si node or a cjt node, and neither will they meet at a
rt node, since no two programs will be downloaded at the same time. Thus the
paths for each flow will be disjoint with others, which means there is no conflict
between these flows and they add up to |S| units in total [14] .

(←) If there is a |S| flow from a to b in the constructed graph, it is not
difficult to find that this flow can be decomposed into |S| disjoint unit flows
since each edge in this graph has a unit capacity. Now we pick out all programs
corresponding to some cjt node in each unit flow, combine them together and
we will get S that can be collected before d.

The whole process takes polynomial time in n+m and we can easily turn the
above description into an algorithm. Hence the theorem is proven. �

4 The Maximum Program Download Problem

As we know, under the assumption that P �= NP , it is unlikely to find effi-
cient, exact, and deterministic algorithms for NP-complete problems [15]. So if
the complexity is measured in terms of the input size only, an exact algorithm
for an NP-complete problem requires super-polynomial running time. However,
some NP-complete problems admit efficient FPT (fixed-parameter tractable) al-
gorithms, i.e., with some parameter k the algorithm runs in f(k)nO(1) steps,
where f(−) is any function on the parameter k [16].

In this section we design an FPT algorithm for PDP. To distinguish from the
previous versions of the problem, when the instance is general but the objective
is to maximize the number of programs downloaded, we call the corresponding
problem Maximum Program Download Problem, abbreviated as MPDP. (It is
easy to see that Theorem 1 holds for MPDP as well since we really have S = U
in the proof. So MPDP is also NP-complete.) In the parameterized version of
MPDP, the parameter to be considered is the size of the target set S, which
will be denoted as k. We adopt a dynamic programming approach to design
the algorithm. A table Z with 2k records will be used to memorize the partial
solutions. Given a subset X ⊆ S, we can denote it by a binary sequence of
length k in which a bit i is set to 1 iff the program si is in X . Thus all subsets
of S can be denoted by a sequence of 2k numbers, from 0 to 2k − 1. In table
Z, Z[X ] will record the earliest time (Z[X ][0]) to download all programs in
the subset denoted by X and the corresponding channel (Z[X ][1]) for the last



694 C. Peng et al.

program to be downloaded in this subset. Starting from Z[0], we can fill the table
in the following way: when Z[X ] is computed, we check every program which is
broadcasted after Z[X ][0] and is not in the subset X yet, then we choose the first
appearance of each program i and update Z[X+2i]. When Z[2k−1] is computed,
we can trace back the whole schedule and return it as the solution. Since every
step is strictly computed to ensure there is no conflict for downloading, we are
sure that each computed Z[X ] records a corresponding schedule to download
the subset denoted by X .

The above statement directly establishes the correctness of the following al-
gorithm for finding the target set S with a limited size k in MPDP.

Algorithm 1. MPDP-FPTalgo(C,U, S, n,m, d)
1 if there is a program si ∈ S that is not included in any channel before d,
2 then return ”No such schedule!” ;
3 Initialize Z[0]← {0, 0}, α← 0, k ← |S|, remove all programs after d;
4 Initialize L as an empty list and Q to be a queue with one element Z[0];
5 for all i from 1 to 2k − 1 do Z[0]← {∞, 0} ;
6 while Q is not empty
7 Take a node Z[i] from Q;
8 for all sj that is later than Z[i][0] and the j-th bit of i’s binary code is 0
9 Find the first sj, let it be on channel u and finish at time t;
10 if t < Z[i+ 2j][0] then update Z[i+ 2j ]← {t, u} ;
11 if Q is empty
12 then α← α+ 1, add to Q all updated Z[i+] with α ”1” bits in i+;
13 if Z[2k − 1] = {∞, 0} then return ”No such schedule!” ;
14 i← 2k − 1; /* trace back the download schedule */
15 while i! = 0
16 Take sy located on channel Z[i][1] from time Z[i][0]− 1 to Z[i][1];
17 Add {sy, Z[i][1], Z[i][0]− 1} to L;
18 i← i− 2y;
19 return (L) ;

Theorem 3. MPDP is fixed-parameter tractable.

Proof. The above algorithm MPDP-FPTalgo first finds partial solutions for
subsets of S with size 1 first, then based on these partial solutions it deals
with subsets of S with size 2 and 3 ... until k, which is the final solution to be
computed. When a new element is added to Q, let it be Z[i] with α ”1” bits in
i’s binary code, then 1) all subsets of S with fewer than α elements have been
checked and, 2) it is added together with all other Z[j] with α ”1” bits in j. By
1), we make sure that Z[i] has been correctly computed. By 2), we make sure
all possibilities will be taken into consideration. Thus when there is a schedule
for MPDP, the algorithm will find it out and update Z[2k − 1]. And when the
algorithm has updated Z[2k−1], it can trace the corresponding solution schedule
for PDP and return it back.



The Program Download Problem: Complexity and Algorithms 695

Now let us check the complexity of this algorithm. The size of table Z and
queue Q are both no more than 2k, while the space used for all channels will be
O(mn). The cycle from line 6 to line 12 contributes a main part of time com-
plexity, which might check through at most 2k items in Q and each item might
take O(mn) time to compute its successors (subsets with one more program). On
the other hand, we might need O(mn log(mn)) time to sort all programs in the
channels. Thus the whole time complexity of this algorithm is O(2kmn log(mn)),
which is of the form f(k) · (mn)O(1) and we can conclude that MPDP is fixed-
parameter tractable. �

5 Conclusion

In this paper we prove that the Program Download Problem, aiming at minimiz-
ing the finishing time, is NP-Complete by reducing 3-SAT(3) to it. We further
prove the NP-Completeness of a special case where there are only two channels
but a specific program could appear at most twice in each channel. We find that
the Aligned Program Download Problem (APDP) is in P and we proposed a
polynomial time algorithm to solve it. For Maximum Program Download Prob-
lem (MPDP) aiming at maximizing the number of programs downloaded, we
prove that it is fixed-parameter tractable by designing an FPT algorithm for it.

References

1. Almeroth, K.C., Ammar, M.H.: The use of multicast delivery to provide a scal-
able and interactive Video-on-Demand service. IEEE Journal on Selected Areas in
Communications 14(5), 1110–1122 (1996)

2. Viswanathan, S., Imielinski, T.: Metropolitan area Video-on-Demand service using
pyramid broadcasting. Multimedia Systems 4(4), 197–208 (1996)

3. Peng, C., Tan, Y., Xiong, N.X., Yang, L.T., Park, J.H., Kim, S.S.: Adaptive Video-
on-Demand Broadcasting in Ubiquitous Computing Environment. Journal of Per-
sonal and Ubiquitous Computing 13(7), 479–488 (2009)

4. Aggarwal, C.C., Wolf, J.L., Yu, P.S.: A permutation-based pyramid broadcast-
ing scheme for Video-on-Demand systems. In: Proc. International Conference on
Multimedia Computing and Systems, pp. 118–126 (June 1996)

5. Hua, K.A., Sheu, S.: Skyscraper broadcasting: a new broadcasting scheme for
metropolitan Video-on-Demand systems. In: Proc. ACM SIGCOMM 1997 Con-
ference, Cannes, France, pp. 89–100 (September 1997)

6. Juhn, L., Tseng, L.: Harmonic broadcasting for Video-on-Demand service. IEEE
Trans. on Broadcasting 43(3), 268–271 (1997)

7. Inoue, M., Ohnishi, M., Peng, C., Li, R., Morino, H.: NerveNet: A Future Regional
Platform Network for Various Context-Aware Services with Sensors and Actuators.
IEICE Trans. on Communications E94-B(3), 618–629 (2011)

8. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., Weil,
T.: Vehicular Networking: A Survey and Tutorial on Requirements, Architectures,
Challenges, Standards and Solutions. IEEE Communications Surveys & Tutori-
als 13(4), 584–616 (2011)



696 C. Peng et al.

9. Lu, Z.X., Shi, Y., Wu, W.L., Fu, B.: Efficient Data Retrieval Scheduling for Multi-
Channel Wireless Data Broadcast. In: Proceedings of the 31st IEEE International
Conference on Computer Communications (INFOCOM), pp. 891–899 (2012)

10. Lu, Z.X., Wu, W.L., Fu, B.: Optimal Data Retrieval Scheduling in the Multi-
Channel Data Broadcast Environments. IEEE Trans. on Computers (2012)

11. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics 8(1), 85–89 (1984)

12. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York
(1994)

13. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Networks Flows. Prentice-Hall, NJ (1993)
14. Peng, C., Shen, H.: A New Approximation Algorithm For Computing 2-Restricted

Disjoint Paths. IEICE Transactions on Information and Systems E90-D(2), 465–
472 (2007)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)



Finding Theorems in NBG Set Theory

by Automated Forward Deduction
Based on Strong Relevant Logic

Hongbiao Gao, Kai Shi, Yuichi Goto, and Jingde Cheng

Department of Information and Computer Sciences,
Saitama University, Saitama 338-8570, Japan

{gaohongbiao,shikai,gotoh,cheng}@aise.ics.saitama-u.ac.jp

Abstract. Automated theorem finding is one of 33 basic research prob-
lems in automated reasoning which was originally proposed by Wos in
1988, and it is still an open problem. For the problem, Cheng has pro-
posed a forward deduction approach based on strong relevant logic. To
verify the effectiveness of the approach, we tried to rediscover already
known theorems in NBG set theory by using the approach, and suc-
ceeded in rediscovery of several known theorems. However, the method
of the rediscovery is ad hoc, but not systematic. This paper gives an
analysis and discussion for our experiment method and results from the
viewpoint of the systematic method. The paper also presents some is-
sues and future research directions for a systematic method of automated
theorem finding based on Cheng’s approach.

Keywords: Automated theorem finding, forward deduction, strong
relevant logic, NBG set theory.

1 Introduction

The problem of automated theorem finding (ATF for short) is one of 33 basic
research problems in automated reasoning which was originally proposed by Wos
in 1988 [10,11], and it is still an open problem until now.

The most important and difficult requirement of the problem is that, in con-
trast to proving conjectured theorems supplied by the user, it asks for criteria
that an automated reasoning program can use to find some theorems in a field
that must be evaluated by theorists of the field as new and interesting theo-
rems. The significance of solving the problem is obvious because an automated
reasoning program satisfying the requirement can provide great assistance for
scientists in various fields [3].

ATF cannot be solved by the current automated theorem proving approach,
and the reasoning is the only way to fit for ATF [3]. Reasoning is the process
of drawing new conclusions from some premises which are known facts and/or
assumed hypotheses. In contrast, proving is the process of finding a justifica-
tion for an explicitly specified statement from given premises, which are already

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 697–704, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



698 H. Gao et al.

known facts or previously assumed hypotheses. Discovery is the process to find
out or bring to light of that which was previously unknown. For any discovery,
the discovered thing and its truth must be unknown before the completion of
discovery process. Because reasoning is the only way to draw new, previously
unknown conclusions from given premises, there is no discovery process that
does not invoke reasoning [4].

However, not all logics can serve well as the fundamental logic underlying
ATF. As a well-known fact, the classical mathematical logic (CML for short)
and its various extensions are not suitable for ATF because they have the well-
known “implicational paradoxes. [4]” In order to avoid the “implicational para-
doxes”, relevant logics T, E, and R were constructed [1,2]. However, there are
still some logical theorems in the relevant logics which are not natural in the
sense of entailment. Cheng named them “conjunction-implicational paradoxes”
and “disjunction-implicational paradoxes [4].”

Cheng proposed strong relevant logics, named Tc, Ec, and Rc, for conditional
relation representation and reasoning. As a modification of T, E, and R, Tc, Ec
and Rc reject all conjunction-implicational and disjunction-implicational para-
doxes in T, E and R, respectively, and therefore, by using strong relevant logics
as the fundamental logic to underlie ATF, one can avoid those problems in using
CML, various extensions of CML, and relevant logics T, E and R. Cheng also
proposed predicate strong relevant logics, named TcQ, EcQ, and RcQ [4].

To solve the ATF problem, a forward deduction approach based on the strong
relevant logics was proposed by Cheng [3]. To verify the effectiveness of the
approach, we presented a case study of ATF in von Neumann-Bernays-Godel
(NBG) set theory by automated forward deduction based on the strong rele-
vant logics [7]. NBG set theory was chosen for the case study, because it is the
foundation of mathematics and other nature science fields, and the approach we
used can be also hopeful for other mathematics and natural science fields. In the
case study, by using Cheng’s approach, we rediscovered some known theorems
of NBG set theory. The ultimate goal of ATF is to find new and interesting the-
orems. From the viewpoint of the mechanism and process of deducing theorems,
“rediscovery” is as same as “discovery”. Therefore, if we have found known theo-
rems by using Cheng’s approach, it is hopeful that we can also use the approach
to find new and interesting theorems.

However, we used some ad hoc methods in our experiment. First, we chose
some known theorems as target theorems. Besides, we used several necessary ax-
ioms of strong relevant logic and NBG set theory as premises to deduce them, but
not use all of axioms. Second, we prepared some necessary theorems to deduce
target known theorems by using substitution but not forward deduction. There-
fore, our experiment method was not a systematic method based on Cheng’s
approach for ATF.

This paper gives an analysis of our experiment results and discussion for our
experiment method from a viewpoint of systematic method. The paper also
presents some issues and future research directions of systematic method based
on Cheng’s approach. The rest of the paper is organized as follows: Section 2



Finding Theorems in NBG Set Theory 699

explains the logic-based reasoning and ATF terminology used in the case study.
Section 3 presents how we made this case study, and shows our experiment
results. Section 4 gives an analysis and discussion about the case study. Section
5 gives some ideas of the future research directions from the systematic method
view for ATF. Finally, some concluding remarks are given in Section 6.

2 Automated Forward Deduction Based on Strong
Relevant Logic

A formal logic system L is an ordered pair (F (L),1L) where F (L) is the set of
well formed formulas of L, and 1L is the consequence relation of L such that for
a set P of formulas and a formula C, P 1L C means that within the framework
of L taking P as premises we can obtain C as a valid conclusion. Th(L) is the set
of logical theorems of L such that ϕ 1L T holds for any T ∈ Th(L). According
to the representation of the consequence relation of a logic, the logic can be
represented as a Hilbert style system, a Gentzen sequent calculus system, or a
Gentzen natural deduction system [4].

Let (F (L),1L) be a formal logic system and P be a non-empty set of sen-
tences. A formal theory with premises P based on L, called a L-theory with
premises P and denoted by TL(P ), is defined as TL(P ) =df Th(L) ∪ TheL(P )
where TheL(P ) =df {A|P 1L A and A /∈ Th(L)}, Th(L) and T e

L(P ) are called
the logical part and the empirical part of the formal theory, respectively, and
any element of TheL(P ) is called an empirical theorem of the formal theory [4].

Based on the definition above, the problem of ATF can be said as “for any
given premises P, how to construct a meaningful formal theory TL(P ) and then
find new and interesting theorem in TheL(P ) automatically?”[3]

The notion of degree [5] is defined as follows: Let θ be an arbitrary n-ary
(1 ≤ n) connective of logic L and A be a formula of L, the degree of θ in A,
denoted by Dθ(A), is defined as follows: (1) Dθ(A) = 0 if and only if there is no
occurrence of θ in A, (2) if A is in the form θ(a1, a2, ..., an) where a1, a2, ..., an are
formulas, then Dθ(A) = max{Dθ(a1), Dθ(a2), ..., Dθ(an)} + 1, (3) if A is in the
form σ(a1, a2, ..., an) where σ is a connective different from θ and a1, a2, ..., an
are formulas, then Dθ(A) = max{Dθ(a1), Dθ(a2), ..., Dθ(an)}, and (4) if A is
in the form QB where B is a formula and Q is the quantifier prefix of B, then
Dθ(A) = Dθ(B).

The degree of logic fragment [5] is defined as follows: Let θ1, θ2, ..., θn be con-
nectives of logic L and k1, k2, ..., kn be natural numbers, the fragment of L about
θ1, θ2, ..., θn and their degrees k1, k2, ..., kn, denoted by Th(θ1,k1,θ2,k2,...,θn,kn)(L),
is a set of logical theorems of L which is inductively defined as follows (in
the terms of Hilbert style axiomatic system): (1) if A is an axiom of L and
Dθ1(A) ≤ k1, Dθ2(A) ≤ k2, ..., Dθn(A) ≤ kn, then A ∈ Th(θ1,k1,θ2,k2,...,θn,kn)(L),
(2) if A is the result of applying an inference rule of L to some members of
Th(θ1,k1,θ2,k2,...,θn,kn)(L) and Dθ1(A) ≤ k1, Dθ2(A) ≤ k2, ..., Dθn(A) ≤ kn, then
A ∈ Th(θ1,k1,θ2,k2,...,θn,kn)(L), (3) Nothing else are in Th(θ1,k1,θ2,k2,...,θn,kn)(L).
Similarly, the notion of degree of formal theory about conditional can also be



700 H. Gao et al.

generally extended to other logic connectives, and the degree of the fragment of
a formal theory with premises P based on the fragment Th(θ1,k1,θ2,k2,...,θn,kn)(L)
of a logic system L is also similarly defined as the notion of degree of the logic
fragment.

The deduction distance of a theorem in a forward deduction is the length
of the longest deductive path from a premise node to the theorem node in the
deduction tree of the theorem. The deduction tree of a certain theorem is recur-
sively constructed as follows: (1) See the certain theorem as the root node of the
tree. (2) See the premises which deduce the root node by using inference rules
as the parent nodes of the root node. (3) See each premise node as a new root
node.

Automated forward deduction is a process of deducing new and unknown
conclusions automatically by applying inference rules to premises and previ-
ously deduced conclusions repeatedly until some previously specified condition
is satisfied.

FreeEnCal [5] is a forward reasoning engine for general purpose, and is hopeful
candidate to do forward deduction based on strong relevant logic automatically,
because it can provide an easy way to customize reasoning task by providing
different axioms, inference rules and facts. Users can set the degree of logical op-
erators to make FreeEnCal to reason out in principle all logical theorem schemata
of the fragment Th(θ1,k1,θ2,k2,...,θn,kn)(L). Based on the logical theorem schemata
of the fragment Th(θ1,k1,θ2,k2,...,θn,kn)(L), FreeEnCal can also reason out in prin-
ciple all empirical theorems satisfying the conditions about degrees from given
empirical premises.

3 The Case Study of Automated Theorem Finding
in NBG Set Theory

The purpose of the experiment [7] is to verify whether or not the forward deduc-
tion approach based on strong relevant logics is hopeful for ATF. The experiment
process is divided into four steps. At the first step, we investigated which logical
theorems and axioms of NBG set theory were necessary to deduce target known
theorems chosen from Quaife’s book [8]. At the second step, by using FreeEnCal,
we deduced several logic fragments which contained those necessary logical the-
orems. At the third step, we chose several necessary axioms of NBG set theory
as empirical premises, and based on those logic fragments to deduce empirical
theorems. Finally, we investigated whether or not the target theorems could be
found in the empirical theorems deduced by FreeEnCal.

As a result, we rediscovered eight known theorems of NBG set theory which
were proved by Quaife (in Quaife’s book, the following “V ” means the set)
[8]: (1) theorem PO1: ∀x(x ⊆ x). (2) theorem EQ1: ∀x(x = x). (3) theo-
rem I2: ∀x∀y(x ∩ y = y ∩ x). (4) theorem I6: ∀x(x ∩ x = x). (5) theorem
CP2: ∀x∀y∀u∀v(((< u, v >∈ (x × y)) ⇒ (< v, u >∈ (y × x))). (6) theorem
UP1: ∀x∀y({x, y} = {y, x}). (7) theorem SS1: ∀x({x} ∈ V ). (8) theorem OP1 :



Finding Theorems in NBG Set Theory 701

∀x∀y(< x, y >∈ V ). Our experiment results show that Cheng’s approach is
hopeful for ATF.

4 Discussion for the Case Study

There are three issues in the case study from the viewpoint of systematic method:
(1) How can we make the logic fragments we used concise to deduce interesting
empirical theorems as many as possible in the acceptable time and memory
space? (2) How can we choose those empirical theorems whose terms should be
substituted, and substitute their terms automatically? (3) How can we present
some criteria by which computer programs can find interesting theorems from
deduced empirical theorems automatically?

The first issue is how to make the logic fragments concise. It is not practical to
use all the logic theorems of whole logic fragments to deduce empirical theorems,
because it will spend too much time and huge memory space. To find interesting
empirical theorems as many as possible in the acceptable time and memory
space, we have to present a method to find those logical theorems which are
not useful for deducing empirical theorems or interesting empirical theorems
and remove them from the deduced logical fragments. In our case study, we only
inputted several necessary axioms of strong relevant logic to deduce several little
logic fragments and based on them rediscovered those target theorems, which
implies us to find one interesting theorems, it is not necessary to use all the
logic theorems in one logic fragment Th(θ1,k1,θ2,k2,...,θn,kn)(EcQ), and we can
find interesting empirical theorems based on the concise logic fragments.

The second issue is how to choose those empirical theorems whose terms
should be substituted, and how to substitute their terms automatically. FreeEn-
Cal as a general forward deduction engine can not make substitutions of terms
by functions automatically, and if we only use forward deduction approach for
ATF, lots of interesting theorems cannot be found. We have to use the substi-
tution method combined with forward deduction approach. However, it is not
practical to substitute each term of each empirical theorem with all of functions
and/or individual constants, because it will spend huge time and memory space.
We have to present a method to choose those empirical theorems whose terms
should be substituted. In our case study, we substituted some terms with func-
tions, for example, to rediscover theorem EQ1, we did not input axioms of NBG
set theory: ∀x∀y((x ⊆ y)∧ (y ⊆ x))⇒ (x = y)), but inputted the instance of the
axiom: ∀x((x ⊆ x) ∧ (x ⊆ x)) ⇒ (x = x)). However, it is sure that the ad hoc
method help us succeed in rediscovery of the known theorems, which implies the
substitutions of terms are necessary for ATF, and we have to solve the limitation
problem of FreeEnCal and/or the forward deduction approach.

The third issue is how to present some criteria for “new and interesting theo-
rems”. For the discovery of unknown theorems, we have to present some criteria
for “interesting theorems” so that we can find them automatically by computer
from lots of deduced empirical theorems. In our case study, as rediscovery of
known theorems, it is not necessary for us to present some criteria such that



702 H. Gao et al.

automated reasoning program can find interesting theorems automatically, be-
cause it is not difficult to search them from deduced empirical theorems sets.

5 Discussion for the Research Directions of Systematic
Method

Based on the discussion for the issues of our case study, we presented some
primitive ideas for the future research directions of the systematic methods.

For the first issue, we have found a primitive idea to make the logic fragment
concise. By analyzing deduced logic fragments in our case study, we found that
not all of the logical theorems can be used when we deduce empirical theorems.
Logical theorems of the logic fragments we used are classified into three kinds of
style theorems: L1 ⇒ L2 style logical theorems, L1 ∧ L2 style logical theorems,
and L1 style logical theorems. For example, ∀x∀y∀z(A ⇒ B) ⇒ ∀x∀y∀z((C ⇒
A) ⇒ (C ⇒ B)) is a L1 ⇒ L2 style logical theorem. ∀x∀y(∀z(A ⇒ B) ⇒
∀z((C ⇒ A) ⇒ (C ⇒ B)) is a L1 style logical theorem. When a formula is
deduced by modus ponens from a logic theorem A and other formula, only
L1 ⇒ L2 style logic theorem is used for the logic theorem A. In other words,
the logic theorem A must not be L1 ∧ L2 style logical theorems, and L1 style
logical theorems. When we choose strong relevant logic as our logic basic tool
to do forward deduction, besides the generalization of axioms, modus ponens is
the only one inference rule [4]. Therefore, we can remove those L1 ∧ L2 style
and/or L1 style logical theorems from our logic fragments so that we can deduce
empirical theorems based on concise logical fragments.

As for the second issue, we can make an environment which can provide an
interactive method between computers and scientists so that scientists can make
use of their specific knowledge in specific field to do substitution with functions
and/or individual constants in time, because even if scientific discovery processes
can be simulated by computer programs automatically, the specific knowledge
of scientists is the power of the programs [4]. Besides, the environment should
search those empirical theorems which can deduce new empirical theorems by
substitution and indicate to scientists, For example, if the following empirical
theorems ∀x∀y((x = y) ⇒ (x ⊆ y)) and ∀x((x = (x ∩ x)) exist in empirical
theorems deduced by FreeEnCal, the environment should automatically search
them and indicate to scientists that if term “y” is substituted by function “x∩x”,
a new empirical theorem “x ⊆ (x ∩ x)” will be found.

As for the third issue, we present filtering methods by which we can remove
uninteresting theorems from deduced empirical theorems step by step and pro-
vide the rest theorems as candidates of interesting theorems for scientists.

First, lots of empirical theorems with quantifiers can be classified into same
group. For example: (1)∀x∀y∀u∀v((< u, v >∈ (x × y)) ⇒ (< v, u >∈ (y × x))).
(2)∀x∀y∀u(∀v(< u, v >∈ (x × y)) ⇒ ∀v(< v, u >∈ (y × x))). (3)∀x∀y(∀u∀v(<
u, v >∈ (x×y))⇒ ∀u∀v(< v, u >∈ (y×x))). (4)∀x(∀y∀u∀v(< u, v >∈ (x×y))⇒
∀y∀u∀v(< v, u >∈ (y × x))). (5)∀x∀y∀u∀v(< u, v >∈ (x × y)) ⇒ ∀x∀y∀u∀v(<
v, u >∈ (y × x)). The theorem ((< u, v >∈ (x× y))⇒ (< v, u >∈ (y × x))) is a



Finding Theorems in NBG Set Theory 703

representation of the above theorems. Therefore, to conveniently analyze empiri-
cal theorems, we removed the quantifiers of all the empirical theorems and called
those theorems “core empirical theorems” of deduced empirical theorems. It is
enough to analyze “core empirical theorems”. If the core empirical theorem is
an interesting theorem, then we can see the primitive theorems as candidates of
interesting theorems. The filtering method is hopeful for removing those uninter-
esting empirical theorems, because we have analyzed about 400 known theorems
in NBG set theory and we found the most of interesting theorems are “interest-
ing” in the predicates part but not in their quantifiers domain.

The second filtering method is to check whether a formula includes a tautolog-
ical sub-formula or not. We translated each core empirical theorem into patterns
according to different predicates and different terms, for example, the theorem
((x = x)⇒ (x = x))⇒ ((x ⊆ x) can be translated by (A⇒ A)⇒ B. We conjec-
ture if one theorem contains a tautology part, this empirical theorem must not be
an interesting empirical theorem. For example, ((x = x)⇒ (x = x))⇒ ((x ⊆ x)
cannot be called an interesting theorem, because it is like (A⇒ A)⇒ B which
contains a tautology A⇒ A.

Besides the filtering methods proposed by us, those theorems needing longer
deduction distance are more likely to be interesting theorems, because interesting
theorems are always holding complex functions and predicates, which need longer
deduction distance to be deduced.

By using the filtering methods to analyze empirical theorems deduced in our
case study, besides those known theorems, we have also found the following
interesting theorems. (1) ∀x∀y((y ∈ x) ⇒ (y ∈ (x ∩ x)). (2) ∀x∀y∀z(¬(z ∈
{x, y})⇒ (¬(z = x)∧¬(z = y))). (3) ∀x(x ⊆ (x∩x)). (4) ∀x∀y((x∩y) ⊆ (y∩x)).
(5) ∀x∀y∀z(z ∈ (x ∩ y)⇒ z ∈ (y ∩ x)). (6) ∀x∀y(x = y ⇒ y = x).

Epistemic programming [4] and its environment EPLAS [6,9] are hopeful to
combine proposed solutions for the issues and forward deduction process with
FreeEnCal. On one hand, by using EPLAS, scientists can make programming
to make logic fragments concise and find new and interesting theorems from the
empirical theorem sets as an ordered epistemic processes, i.e., to find new and
interesting theorems step by step. On the other hand, EPLAS can provide an
interactive method between computers and scientists, by which scientists can
make use of specific knowledge in specific fields for ATF, like the substitution of
terms.

6 Concluding Remarks

We have given an analysis and discussion about our case study in which we have
rediscovered several theorems of NBG set theory by Cheng’s approach. We have
presented the filtering methods to remove uninteresting theorems step by step,
and by our filtering methods, besides those rediscovered known theorems, some
other interesting theorems were also found by Cheng’s approach. We also showed
some future research directions for the systematic method of ATF.

There are many interesting and challenging research problems in our future
works. First, in this case study, to make the experiment can be finished in short



704 H. Gao et al.

time, we only used several axioms of NBG set theory, we should use more axioms
of NBG set theory as premises to deduced theorems in future works. Second, we
can also try to find some interesting or known theorems by using Cheng’s ap-
proach in other theory or other fields like Peano’s Arithmetic, graph theory,
and combinatorics. Finally, we will combine Cheng’s epistemic programming ap-
proach with automated forward deduction approach to find new and interesting
theorems in the next step work.

References

1. Anderson, A.R., Belnap Jr., N.D.: Entailment: The Logic of Relevance and Neces-
sity, vol. 1. Princeton University Press (1975)

2. Anderson, A.R., Belnap Jr., N.D., Dunn, J.M.: Entailment: The Logic of Relevance
and Necessity, vol. 2. Princeton University Press (1992)

3. Cheng, J.: Entailment Calculus as the Logical Basis of Automated Theorem Find-
ing in Scientific Discovery. In: Systematic Methods of Scientific Discovery: Papers
from the 1995 Spring Symposium, pp. 105–110. AAAI Press - American Associa-
tion for Artificial Intelligence (1995)

4. Cheng, J.: A Strong Relevant Logic Model of Epistemic Processes in Scientific Dis-
covery. In: Information Modelling and Knowledge Bases XI, Frontiers in Artificial
Intelligence and Applications, vol. 61, pp. 136–159 (2000)

5. Cheng, J., Nara, S., Goto, Y.: FreeEnCal: A Forward Reasoning Engine with
General-Purpose. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part
II. LNCS (LNAI), vol. 4693, pp. 444–452. Springer, Heidelberg (2007)

6. Fang, W., Takahashi, I., Goto, Y., Cheng, J.: Practical Implementation of EPLAS:
An Epistemic Programming Language for All Scientists. In: Proc. 10th Interna-
tional Conference on Machine Learning and Cybernetics. The IEEE Systems, Man,
and Cybernetics Society, pp. 608–616 (2011)

7. Gao, H., Shi, K., Goto, Y., Cheng, J.: Automated Theorem Finding by Forward
Deduction Based on Strong Relevant Logic: A Case Study in NBG Set Theory. In:
Proc. 11th International Conference on Machine Learning and Cybernetics. The
IEEE Systems, Man, and Cybernetics Society, pp. 1859–1865 (2012)

8. Quaife, A.: Automated Development of Fundamental Mathematical Theories.
Kluwer Academic (1992)

9. Takahashi, I., Nara, S., Goto, Y., Cheng, J.: EPLAS: An Epistemic Programming
Language for All Scientists. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487, pp. 406–413. Springer, Heidel-
berg (2007)

10. Wos, L.: Automated Reasoning: 33 Basic Research Problem. Prentice-Hall (1988)
11. Wos, L.: The Problem of Automated Theorem Finding. Journal of Automated

Reasoning 10(1), 137–138 (1993)



Perturbation Analysis of Maximum-Weighted

Bipartite Matchings with Low Rank Data

Xingwu Liu1,� and Shang-Hua Teng2,��

1 Institute of Computing Technology, Chinese Academy of Sciences
2 Department of Computer Science, Viterbi School of Engineering, USC

Abstract. In this paper, we partially address a question raised by David
Karger [5] regarding the structure of maximum-weighted bipartite match-
ings when the affinity data is of low rank. The affinity data of a weighted
bipartite graph G over the vertex sets U = V = {1, ..., n} means the n×n
matrix W whose entry Wij is the weight of the edge (i, j) of G, 1 ≤ i, j ≤
n. W has rank at most r if there are 2r vector u1, ...,ur,v1, ...vr ∈ Rn

such that

W =

r∑
i=1

uiv
T
i .

In particular, we study the following locality property of the match-
ings: For an integer k > 0, we say the locality of G is at most k if for
every matching π of G, either π has the maximum weight, or its weight is
smaller than that of another matching σ with |π \σ| ≤ k and |σ \π| ≤ k.

We prove the following theorem: For every W ∈ [0, 1]n×n of rank r
and ε ∈ [0, 1], there exists W̃ ∈ [0, 1]n×n such that (i) W̃ has rank at

most r+ 1, (ii) maxi,j

∣∣∣Wi,j − W̃i,j

∣∣∣ ≤ ε, and (iii) the weighted bipartite

graph with affinity data W̃ has locality at most �r/ε�r.

1 Introduction

The maximum-weighted bipartite matching problem is a fundamental problem
at the intersection of graph theory, geometric design, and combinatorial op-
timization [7,4]. Its input instance is a bipartite graph G = (U, V,W ) where
U = V = {1, 2, ...n} and each entry Wij of the matrix W defines the weight of
the edge (i, j), and its objective is to find a perfect matching of the maximum
weight. This is equivalent to the following problem: given a matrix W ∈ Rn×n,
find a permutation π ∈ Sn – where Sn stands for the symmetric group of n
elements – such that the value of π relative to W , which is defined to be

vW (π) =

n∑
i=1

Wi,π(i),

is maximized.
� The work was done when the author was visiting USC. The work was partially
supported by National Natural Science Foundation of China (61173009).

�� Supported in part by the NSF grants 1111270 and 0964481.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 705–712, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



706 X. Liu and S.-H. Teng

It is well known that when π is not maximum relative to W , there exists a
sequence of indices S = i0i1...it−1 such that the permutation

(S ◦ π)(i) =
{
π(i) if i �∈ S
π(i(j+1) mod t) if i = ij

,

improves π. We sometimes refer to the sequence S as an augmenting sequence
of π relative to W . Note that if S is an augmenting sequence of π relative to W ,
so is the sequence ij ...it−1i0i1...ij−1 for any 1 ≤ j ≤ t− 1.

In 2009, in a personal conversation with the second author, David Karger
[5] asked to characterize the structure of matchings when the affinity data of a
weighted bipartite graph is of low rank. The present paper tries the first step
to study this problem. For an integer r, W has rank at most r if there exist 2r
vectors u1, ...,ur,v1, ...vr ∈ Rn such that

W =

r∑
i=1

uiv
T
i .

To warm up, consider the case when r = 1, i.e., there exist real vectors
u = (u1, ..., un)

T and v = (v1, ..., vn)
T such that W = uvT . We say that a

permutation σ sorts the entries of u in descending order if

uσ(1) ≥ uσ(2) ≥ · · · ≥ uσ(n).

Then, it is relatively standard to show that π is a maximum permutation if
and only if the following is true: Suppose σ is the permutation that sorts the
entries of u in descending order, then π◦σ also sorts the entries of v in descending
order. Thus, the augmenting structure of the permutations relative to a rank-one
affinity matrix has the following property: For any non-optimum permutation π,
there exists a sequence S = i0i1 which improves π.

Definition 1 (Locality of a matrix). The locality L(W ) of a matrix W ∈
Rn×n is defined to be the minimum k such that every non-optimum permutation
relative to W has an augmenting sequence of length at most k.

The above example means that a rank-1 matrix has locality at most two, in-
dependent of its size! We make the following conjecture, which arises naturally
from the rank-1 example. The study of this conjecture has eventually led us to
the main theorem of this paper.

Conjecture 1 (Low Rank Bipartite Matchings). There exists a function h : Z+ →
Z+ such that for all n, every matrixW ∈ Rn×n has locality at most h(rank (W )).

In this paper, we show that although Conjecture 1 is false, it is nearly true
from the perspective of perturbations. More specifically, we prove the following
theorem regarding the locality of low-rank matrices.



Perturbation Analysis of Maximum-Weighted Bipartite Matchings 707

Theorem 1 (Main). For every W ∈ [0, 1]n×n and ε ∈ [0, 1], there exists W̃ ∈
[0, 1]n×n such that rank

(
W̃
)
≤ rank (W ) + 1,

max
i,j

∣∣∣Wi,j − W̃i,j

∣∣∣ ≤ ε,
and the locality of W̃ is at most

⌈
rank(W )

ε

⌉rank(W )

.

As a byproduct, it is shown that the conjecture is true for matrices defined over a
finite set D, in particular, the locality of everyW ∈ Dn×n is at most |D|rank(W ).

We hope that our work may lead to an alternative approach to fast approxima-
tion of maximum weighted bipartite matchings [3] by approximating the affinity
data with low-rank data. A low-rank based approach could also be useful for
geometrically defined matching problems [9,10,8,1,6]. For example, in our next
step of research, we hope to have a better understanding of graph decomposition
– i.e., approximating a weighted graph as the sum of a ’low-rank’ graph and a
graph whose structure is easy for matching augmentation.

The rest of this paper is organized as follows: In Section 2, we present a
counter-example to Conjecture 1. We show that for any integer n ≥ 2, there is a
matrix W ∈ [0, 1]n×n of rank 2 which has a permutation that can be augmented
only by a sequence of length n. In Section 3, we prove Theorem 1 by showing
that every r-rank matrix, up to an ε-perturbation, has locality at most �r/ε�r.
Section 4 concludes this paper.

2 A Counter-Example to Conjecture 1

In this section, we show a counter-example to the Conjecture 1. The objective is
to construct, for each positive integer n, a rank-2 matrixW ∈ [0, 1]n×n such that
there is a non-optimum permutation all of whose augmenting sequences relative
to W have length n.

Our counter-example matrix takes the form W = u · uT + Hλ, where u =
(1, (n− 1)/n, ...1/n)T ∈ [0, 1]n×1 and Hλ ∈ [0, 1]n×n has all entries equal to zero
except that the entry at the first row and the nth column is equal to a parameter
λ. The value λ will be determined later in this section.

Specifically,

Wij =

{
1/n+ λ if i = 1, j = n
(n− i+ 1)(n− j + 1)/n2 otherwise

(1)

Note that rank(W ) = 2 if λ �= 0, and otherwise rank(W ) = 1. We now show
that if λ is properly chosen, then there is a non-optimal permutation all of whose
augmenting sequences relative to W have length n.

We first review a structural property of the permutations for rank-one
matrices.



708 X. Liu and S.-H. Teng

Proposition 1. For any positive integer k, assume A = u · vT , where u,v ∈
Dk×1 with D ⊆ R. Assume further that ui ≥ ui+1 + δ, vi ≥ vi+1 + δ, for 1 ≤
i ≤ k − 1, δ > 0. Then, (i) the identity permutation I is the unique optimum
permutation of A, and (ii) any non-optimum permutation π satisfies vA(π) ≤
vA(I)− δ2.

Proof. As entries of u and v are distinct, the optimum permutation ofA is unique
and is equal the identity permutation. To prove (ii), note that for arbitrary real
numbers x, y, u, v satisfying x−y ≥ δ, u−v ≥ δ, we have xu+yv ≥ xv+yu+δ2,
from which part (ii) of the proposition follows. ��

We now establish a basic property of matrix W .

Lemma 1. Let W be the matrix defined by Equation (1) and In be the identity
permutation in Sn. Then, for any π ∈ Sn such that π �= In and π(1) �= n, we
have vW (π) ≤ vW (In)− 1

n2 .

Proof. : Recall thatW = u·uT+Hλ, where u = (1, (n−1)/n, ...1/n)T ∈ [0, 1]n×1.
Let B = u · uT . Then, the optimum permutation of B is πB = In. Since π(1) �=
n, we have vW (π) = vB(π). By Proposition 1, vB(π) ≤ vB(πB) − 1

n2 . Thus,
vW (π) = vB(π) ≤ vB(πB)− 1

n2 = vB(In)− 1
n2 = vW (In)− 1

n2 . ��

We now know that Conjecture 1 is not true.

Theorem 2. Let W be the matrix defined by Equation (1). There exists λ ∈
[0, 1− 1/n] such that W has a non-optimal permutation that has no augmenting
sequence of length l, for any l < n.

Proof. For any π ∈ Sn with π(1) = n, we have vW (π) = vB(π) + λ, where
B = u · uT . Let

π0 = argmaxπ∈Sn,π(1)=n{vB(π)}.

One can verify that

π0(i) =

{
n if i = 1
i− 1 otherwise

(2)

We now choose λ such that vW (π0) = vW (In) − 1/(2n2). By Proposition 1, we
know λ ∈ [0, 1− 1/n], implying that W ∈ [0, 1]n×n.

For any π ∈ Sn with π �= In, if π(1) = n, then vW (π0) ≥ vW (π) by the
definition of π0. If π(1) �= n, then by Lemma 1, we have vW (π) ≤ vW (In)−1/n2 <
vW (In) − 1/(2n2) = vW (π0); the last equality holds due to the definition of λ.
Thus, In is the unique optimum permutation of W , and vW (π0) ≥ vW (π) for
any non-optimum π ∈ Sn.

Therefore, π0 is the desired permutation, since it is the second-best permu-
tation of W and can be improved only by an augmenting sequence of length n.
An example of its augmenting sequence is S = 12 · · ·n. ��



Perturbation Analysis of Maximum-Weighted Bipartite Matchings 709

3 The Perturbation Theorem

While Theorem 2 means that Conjecture 1 is false, we show in this section that
every low-rank matrix can be approximated by another low-rank matrix whose
locality only depends on the rank of the original matrix and the magnitude of
the perturbation.

We start with a few lemmas that will be useful for the analysis in this section.

Lemma 2. For any set D of real numbers where d = |D| <∞ and any positive
integer n, any matrix W ∈ Dn×n of rank r has at most dr distinct rows.

Proof. Since rank(W ) = r, there is a submatrix M ∈ Dr×r that has full rank.
Without loss of generality, assume that M is located at the upper-left cor-
ner of W , that is, M is the principle sub-matrix W [1 : r, 1 : r]. Let αi =
(Wi1,Wi2, ...Win) ∈ D1×n, the ith row of W , and βi = (Wi1,Wi2, ...Wir), for
1 ≤ i ≤ n.

By the property of M , we know that for each 1 ≤ j ≤ n, there is a unique
real vector λj ∈ R1×r such that

αj = λj

⎛⎜⎜⎝
α1

α2

...
αr

⎞⎟⎟⎠ ,

implying that βj = λjM , so λj = βjM
−1. Hence, for any 1 ≤ i, j ≤ n, if βi = βj ,

we have λi = λj , which means that αi = αj . Consequently, the number of distinct
rows of W is exactly that of distinct β’s. The lemma follows immediately from
the fact that there are at most dr distinct β’s. ��

Lemma 3. If W ∈ Rn×n has at most s distinct rows, its locality is at most s.

Proof. For an arbitrary non-optimum matching π ∈ Sn of W , let P = i0i1...ik−1

be one of the shortest augmenting sequence of π. We will prove that k ≤ s.
Without loss of generality, we assume that π−1(ij) = j for all 0 ≤ j ≤ k − 1.

Then,

vW (π) < vW (P ◦ π) = vW (π) +

k−1∑
m=0

(Wm,im+1 mod k
−Wm,im),

implying that
∑k−1

m=0(Wm,im+1 mod k
−Wm,im) > 0.

Borrowing the notation used in the proof of Lemma 2, we now show that the
k rows α0, ...αk−1 are pairwise different.

For contradiction, assume that αj = αl for some 0 ≤ j < l ≤ k − 1. Again
without loss of generality, we further assume that 0 = j < l < k − 1: otherwise
an alternative augmenting sequence of length k can be used so that j and l meet
this requirement.

Now we show that the augmenting sequence P can be divided into two sub-
sequences, so that at least one subsequence also augments π.



710 X. Liu and S.-H. Teng

Specifically, define two sequences P1 = i0il+1il+2...ik−1 and P2 = i1i2...il.

vW (P1 ◦ π) + vW (P2 ◦ π) = 2vW (π) +
∑

m∈{0,...k−1}\{0,l}(Wm,im+1 mod k −Wm,im)

+W0,il+1 −W0,i0 +Wl,i1 −Wl,il

= 2vW (π) +
∑

m∈{0,...k−1}\{0,l}(Wm,im+1 mod k −Wm,im)

+Wl,il+1
−W0,i0 +W0,i1 −Wl,il

(This equality holds because α0 = αl)

= 2vW (π) +
∑k−1

m=0(Wm,im+1 mod k −Wm,im)
> 2vW (π)

Therefore, either vW (P1 ◦ π) > vW (π) or vW (P2 ◦ π) > vW (π), which means
that either P1 or P2 augments π. We reach a contradiction since P is assumed
to be a shortest augmenting sequence of π. As a result, the k rows α0, ...αk−1

are pairwise different. Because W has at most s distinct rows, k ≤ s. The lemma
holds. ��

Corollary 1. For any positive integers n and 1 ≤ r ≤ n, any matrix W = AB
with A ∈ Dn×r and B ∈ Rr×n has locality at most |D|r, where D ⊆ R is a finite
set.

Proof. The matrix A has at most |D|r distinct rows, meaning that so does W .
The corollary follows immediately from Lemma 3. ��

Lemma 4. For any n and any matrix W ∈ [0, 1]n×n of rank r, there are ma-
trices U ∈ [0, 1]n×r and V ∈ [−1, 1]r×n such that W = UV .

Proof. Consider the linear subspaceH spanned by all the column vectors α1, ...αn

of W , i.e. H = span(α1, ...αn). Define H+ = H
⋂
(R+)n, where R+ stands for

the set of non-negative real numbers.
The Euclidean distance in (R+)n naturally induces a distance dH in the sub-

space H . Hence, for a finite polyhedron P ⊆ H , we have a natural definition of
the volume of P in H , denoted by volH(P ). Furthermore, for a vector v ∈ H+

and an (r− 1)-dimensional linear subspace F ⊂ H , there is a natural concept of
the distance from v to F , which is the Euclidean distance from the end point of
v to F , denoted by dH(v, F ).

In fact, there is a vector u ∈ H , denoted by uH(F ), with 2-norm ‖u‖2 = 1
and u ⊥ F , which is unique up to a scalar ±1. The distance dH(v, F ) is actually
equal to |〈uH(F ), v〉|, the absolute value of the standard Euclidean inner product
of uH(F ) and v.

Given a set B = {x1, ...xr} ⊆ H+ of independent vectors, define the simplicial
cone C(B) generated byB to be C(B) = {

∑r
i=1 λixi|0 ≤ λi for each i,

∑r
i=1 λi ≤

1}. C(B) is a finite polyhedron in H , so its volume volH(C(B)) is well defined.
Consider, in the sense of infinity norm, the unit diskD∞ = {v ∈ Rn : ‖v‖∞ ≤ 1}.

Arbitrarily choose an independent set A ⊆ D∞
⋂
H+ with the volume of

its simplicial cone maximized, i.e. A = argmaxB⊆(D∞
⋂

H+),|B|=rvolH(C(B)).

For each 1 ≤ i ≤ r, let Hi = span(A \ {xi}) and H+
i = Hi

⋂
(R+)n. Then

C(A \ {xi}) is a simplicial cone in H+
i . It is widely known in convex geometry



Perturbation Analysis of Maximum-Weighted Bipartite Matchings 711

[2] that for the r−dimensional simplicial cone C(A), the volume volH(C(A)) =
1
r volHi(C(A \ {xi}))dH(xi, Hi), for each 1 ≤ i ≤ r.

Now, for an arbitrary vector y ∈ D∞
⋂
H+ and an arbitrary 1 ≤ i ≤ r, we

must have dH(xi, Hi) ≥ dH(y,Hi). This follows from the three aspects:

– volH(C(A)) = 1
r volHi(C(A \ {xi}))dH(xi, Hi).

– volH(C(A \ {xi}
⋃
{y})) = 1

r volHi(C(A \ {xi}))dH(y,Hi).
– volH(C(A)) ≥ volH(C(A \ {xi}

⋃
{y})) by the definition of A.

Now let ui = uH(Hi), and assume that y = λxi + β with a unique λ ∈ R and
β ∈ Hi. Considering that

dH(y,Hi) = |〈ui, y〉| = |〈ui, λxi + β〉|
= |λ〈ui, xi〉+ 〈ui, β〉| = |λ〈ui, xi〉| = |λ|dH(xi, Hi),

then we have |λ| = dH(y,Hi)
dH(xi,Hi)

≤ 1. As a result, there exist λi ∈ [−1, 1], 1 ≤ i ≤ r,
such that y =

∑r
i=1 λixi.

Since W ∈ [0, 1]n×n, each column vector αj , 1 ≤ j ≤ n, satisfies αj ∈
D∞

⋂
H+, implying that there is a vector μj = (μ1j , μ2j , ...μrj)

T ∈ [−1, 1]r×1

such that αj =
∑r

i=1 xiμij . As a result, W = (x1, ...xr)(μ1, μ2, ...μn) with each
xi ∈ [0, 1]n×1 and each μj ∈ [−1, 1]r×1. The lemma thus holds. ��

Theorem 3. For every integer n > 0, every W ∈ [0, 1]n×n, and every ε ∈ [0, 1],

there exists W̃ ∈ [0, 1]n×n such that rank
(
W̃
)
≤ rank (W ) + 1, the locality of

W̃ is at most
⌈
rank(W )

ε

⌉rank(W )

, and max1≤i,j≤n

∣∣∣Wi,j − W̃i,j

∣∣∣ ≤ ε.
Proof. Arbitrarily choose n > 0, ε ∈ [0, 1], andW ∈ [0, 1]n×n with rank(W ) = r.
By Lemma 4, there are matrices U ∈ [0, 1]n×r and V ∈ [−1, 1]r×n such that
W = UV .

Choose U ′ ∈ {(12 +k)
ε
r |k ∈ Z+, 0 ≤ k < � rε �}n×r be such that |U ′

ij−Uij| ≤ ε
2r

for all 1 ≤ i ≤ n and 1 ≤ j ≤ r, where Z+ stands for the set of non-negative
integers. Consider W ′ = U ′V . W ′ has the following three properties:

1. rank (W ′) ≤ r.
2. U ′ is defined on a finite domain of size � rε �, so the locality of W ′ is at most
� rε �r by Corollary 1.

3. For any 1 ≤ i, j ≤ n, |W ′
ij − Wij | = |

∑r
k=1 U

′
ikVkj −

∑r
k=1 UikVkj | ≤∑r

k=1 |U ′
ik − Uik| ≤ ε

2 .

However, the domain ofW ′ is [− ε
2 , 1+

ε
2 ] rather than [0, 1], by the third property.

As a result, let W̃ = 1
1+ε (W

′ + ε
21), where 1 is the n-by-n all-one matrix. Now

we show that W̃ meets all the requirements of this lemma:

– One can immediately see that rank
(
W̃
)
≤ rank (W ′) + 1 ≤ r + 1.

– Since the domain of W ′ is [− ε
2 , 1 +

ε
2 ], that of W̃ is [0, 1].



712 X. Liu and S.-H. Teng

– The locality of W̃ is exactly that of W ′, so it is at most � rε �r.
– For any 1 ≤ i, j ≤ n, since Wij +

ε
2 ≥W ′

ij , we have Wij + ε ≥W ′
ij +

ε
2 . Then

Wij + ε ≥ 1
1+ε(Wij + ε) ≥ 1

1+ε (W
′
ij +

ε
2 ) = W̃ij . Likewise, one can show that

W̃ij ≥Wij − ε.

Altogether, we have proven this theorem. ��

4 Conclusion

This paper addresses the structure of perfect matchings of a weighted bipartite
graph. It partially answers a 3-year question raised by David Karger. It shows
that in general, the locality of a weighted bipartite graph can’t be bounded by
a universal function of the rank of the affiliated data. However, for any ε > 0,
there is an ε-perturbation of the affiliated data such that the resulting locality is
upper bounded by �r/ε�r, where r is the rank of the original data. This means
that an arbitrary small perturbation can result in desired locality.

Furthermore, we show that if the weights are over a finite domain D, the
locality of a weighted bipartite graph is indeed upper bounded by |D|r, where
r is the rank of the affiliated data. Though the bound is exponential of r, it is
independent of the size of the graph.

For future work, we conjecture that in the finite domain case, the upper bound
is polynomial of both |D| and r. And we will try smoothed analysis of the locality
for general case.

References

1. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM 45(5), 753–782 (1998)

2. Ball, K.: An elementary introduction to modern convex geometry. In: Flavors of
Geometry, pp. 1–58. Univ. Press (1997)

3. Duan, R., Pettie, S.: Approximating maximum weight matching in near-linear time.
In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Com-
puter Science, pp. 673–682 (2010)

4. Gröetschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer (1988)

5. Karger, D.: Personal communication (2009)
6. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A

simple polynomial-time approximation scheme for geometric tsp, k-mst, and related
problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

7. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and
complexity. Prentice-Hall, Inc. (1982)

8. Sharathkumar, R., Agarwal, P.K.: A near-linear time &#949;-approximation al-
gorithm for geometric bipartite matching. In: Proceedings of the 44th Symposium
on Theory of Computing, pp. 385–394 (2012)

9. Vaidya, P.: Geometry helps in matching. In: Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, pp. 422–425 (1988)

10. Vaidya, P.M.: Approximate minimum weight matching on points in k-dimensional
space. Algorithmica 4(4), 569–583 (1989)



Sublinear Time Approximate Sum

via Uniform Random Sampling

Bin Fu1, Wenfeng Li2, and Zhiyong Peng2

1 Department of Computer Science
University of Texas-Pan American, Edinburg, TX 78539, USA

bfu@utpa.edu
2 Computer School

Wuhan University, Wuhan, P.R. China
eyestar 2008@126.com, peng@whu.edu.cn

Abstract. We investigate the approximation for computing the sum
a1 + · · ·+ an with an input of a list of nonnegative elements a1, · · · , an.
If all elements are in the range [0, 1], there is a randomized algorithm
that can compute an (1+ ε)-approximation for the sum problem in time

O(n(log logn)∑n
i=1

ai
), where ε is a constant in (0, 1). Our randomized algorithm

is based on the uniform random sampling, which selects one element
with equal probability from the input list each time. We also prove a
lower bound Ω( n∑n

i=1
ai
), which almost matches the upper bound, for

this problem.

Keywords: Randomization, Approximate Sum, Sublinear Time.

1 Introduction

Computing the sum of a list of elements has many applications. This problem
can be found in the high school textbooks. In the textbook of calculus, we often
see how to compute the sum of a list of elements, and decide if it converges when
the number of items is infinite. Let ε be a real number which is at least 0. A
real number s is an (1 + ε)-approximation for the sum problem a1, a2, · · · , an
if

∑n
i=1 ai

1+ε ≤ s ≤ (1 + ε)
∑n

i=1 ai. When we have a huge number of data items
and need to compute their sum, an efficient approximation algorithm becomes
essential. Due to the fundamental importance of this problem, looking for a
sublinear time solution for it is an interesting topic of research.

A similar problem is to compute the mean of a list of items a1, a2, · · · , an,
whose mean is defined by a1+a2+···+an

n . Using O( 1
ε2 log

1
δ ) random samples, one

can compute the (1 + ε)-approximation for the mean, or decides if it is at most
δ [6]. In [3], Canetti, Even, and Goldreich showed that the sample size is tight.
Dagum, Karp, Luby, and Ross [4] showed an algorithm to approximate the mean
of a random variable in a time O(ρ/μ2), where ρ = max{σ2, μ} with variance
σ and mean μ. In [7], Motwani, Panigrahy, and Xu showed an O(

√
n) time

approximation scheme for computing the sum of n nonnegative elements. A

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 713–720, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



714 B. Fu, W. Li, and Z. Peng

priority sampling approach for estimating subsets were studied in [1,5,2]. Using
different cost and application models, they tried to build a sketch so that the
sum of any subset can be computed approximately via the sketch.

We feel the uniform sampling is more justifiable than the weighted sampling.
In this paper, we study the approximation for the sum problem under both
deterministic model and randomized model. In the randomized model, we still

use the uniform random samplings, and show how the time is O(n(log logn)∑n
i=1 ai

). We

also prove a lower bound that matches this time bound. An algorithm of time

complexity O(n(log log n)∑n
i=1 ai

) for computing a list of nonnegative elements a1, · · · , an
in [0, 1] can be extended to a general list of nonnegative elements. It implies an
algorithm of time complexity O(Mn log logn∑

n
i=1 ai

) for computing a list of nonnegative

elements of size at mostM by converting each ai into
ai

M , which is always in the
range [0, 1]. Our randomized method, which is based on an interval partition of
[0, 1], is different from that used in [4].

2 Randomized Algorithm for the Sum Problem

In this section, we present a randomized algorithm for computing the approxi-
mate sum of a list of numbers in [0, 1].

2.1 Chernoff Bounds

The analysis of our randomized algorithm often use the well known Chernoff
bounds, which are described below. All proofs of this paper are self-contained
except the following famous theorems in probability theory.

Theorem 1 ([8]). Let X1, . . . , Xn be n independent random 0-1 variables, where
Xi takes 1 with probability pi. Let X =

∑n
i=1Xi, and μ = E[X ]. Then for any

θ > 0,

1. Pr(X < (1 − θ)μ) < e−
1
2μθ

2

, and

2. Pr(X > (1 + θ)μ) <
[

eθ

(1+θ)(1+θ)

]μ
.

We follow the proof of Theorem 1 to make the following versions (Theorem 3,
and Theorem 2) of Chernoff bound for our algorithm analysis.

Theorem 2. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability at least p for i = 1, . . . , n. Let X =
∑n

i=1Xi, and

μ = E[X ]. Then for any θ > 0, Pr(X < (1 − θ)pn) < e−
1
2 θ

2pn.

Theorem 3. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability at most p for i = 1, . . . , n. Let X =
∑n

i=1Xi. Then for

any θ > 0, Pr(X > (1 + θ)pn) <
[

eθ

(1+θ)(1+θ)

]pn
.



Sublinear Time Approximate Sum via Uniform Random Sampling 715

Define g1(θ) = e−
1
2 θ

2

and g2(θ) = eθ

(1+θ)(1+θ) . Define g(θ) = max(g1(θ), g2(θ)).

We note that g1(θ) and g2(θ) are always strictly less than 1 for all θ > 0. It
is trivial for g1(θ). For g2(θ), this can be verified by checking that the function
f(x) = x− (1 + x) ln(1 + x) is decreasing and f(0) = 0. This is because f ′(x) =
− ln(1+x) which is strictly less than 0 for all x > 0. Thus, g2(θ) is also decreasing,
and less than 1 for all θ > 0.

2.2 A Sublinear Time Algorithm

In this section, we show an algorithm to compute the approximate sum in sub-
linear time in the cases that

∑n
i=1 ai is at least (log logn)1+ε for any constant

ε > 0. This is a randomized algorithm with uniform random sampling.

Theorem 4. Let ε be a positive constant in (0, 1). There is a sublinear time
algorithm such that given a list of items a1, a2, · · · , an in [0, 1], it gives a (1+ ε)-

approximation in time O(n(log logn)∑
n
i=1 ai

).

Definition 1.

– For each interval I and a list of items L, define A(I, L) to be the number of
items of L in I.

– For δ, and γ in (0, 1), a (δ, γ)-partition for [0, 1] divides the interval [0, 1]
into intervals I1 = [π1, π0], I2 = [π2, π1), I3 = [π3, π2), . . . , Ik = [0, πk−1)
such that π0 = 1, πi = πi−1(1 − δ) for i = 1, 2, . . . , k − 1, and πk−1 is the
first element πk−1 ≤ γ

n2 .
– For a set A, |A| is the number of elements in A. For a list L of items, |L|

is the number of items in L.

A brief description of the idea is presented before the formal algorithm and its
proof. In order to get an (1+ ε)-approximation for the sum of n input numbers in
the list L, a parameter δ is selected with 1 − ε

2 ≤ (1 − δ)3. For a (δ, δ)-partition
I1 ∪ I2 . . . ∪ Ik for [0, 1], Algorithm Approximate-Sum(.) below gives the estima-
tion for the number of items in each Ij if interval Ij has a sufficient number of
items. Otherwise, those items in Ij can be ignored without affecting much of the
approximation ratio. We have an adaptive way to do random samplings in a se-
ries of phases. Let st denote the number of random samples in phase t. Phase t+1
doubles the number of random samples of phase t (st+1 = 2st). Let L be the input
list of items in the range [0, 1]. Let dj be the number items in Ij from the samples.
For each phase, if an interval Ij shows sufficient number of items from the random
samples, the number of items A(Ij , L) in Ij can be sufficiently approximated by

Â(Ij , L) = dj · n
st
. Thus, Â(Ij , L)πj also gives an approximation for the sum of

the sizes of items in Ij . The sum apx sum =
∑

Ij
Â(Ij , L)πj for those intervals Ij

with a large number of samples gives an approximation for the total sum
∑n

i=1 ai
of the input list. In the early stages, apx sum is much smaller than n

st
. Eventually,

apx sum will surpass n
st
. This happens when st is more than n∑

n
i=1 ai

and apx sum

is close to the sum
∑n

i=1 ai of all items from the input list. This indicates that



716 B. Fu, W. Li, and Z. Peng

the number of random samples is sufficient for our approximation algorithm. For
those intervals with small number of samples, their items only form a small frac-
tion of the total sum. This process is terminated when ignoring all those intervals
with none or small number of samples does not affect much of the accuracy of
approximation. The algorithm gives up the process of random sampling when st
surpasses n, and switches to a deterministic way to access the input list, which
happens when the total sum of the sizes of input items is O(1).

The computation time at each phase i is O(si). If phase t is the last phase,
the total time is O(st+

st
2 + st

22 + · · ·) = O(st), which is close to O( n∑n
i=1 ai

). Our

final complexity upper bound is O(n(log log n)∑
n
i=1 ai

), where log logn factor is caused

by the probability amplification of O(log n) stages and O(log n) intervals of the
(δ, δ) partition in the randomized algorithm.

Algorithm Approximate-Sum(ε, α, n, L)
Input: a parameter, a small parameter ε ∈ (0, 1), a failure probability upper

bound α, an integer n, a list L of n items a1, . . . , an in [0, 1].
Steps:

1. Phase 0:
2. Select δ = ε

6 that satisfies 1− ε
2 ≤ (1− δ)3.

3. Let P be a (δ, δ)-partition I1 ∪ I2 . . . ∪ Ik for [0, 1].
4. Let ξ0 be a parameter such that 8(k+1)(log n)g(δ)(ξ0 log logn)/2 < α for

all large n.
5. Let z := ξ0 log logn.

6. Let parameters c1 := δ2

2(1+δ) , and c2 := 12ξ0
(1−δ)c1

.

7. Let s0 := z.
8. End of Phase 0.
9. Phase t:
10. Let st := 2st−1.
11. Sample st random items ai1 , . . . , aist from the input list L.
12. Let dj := |{h : aih ∈ Ij and 1 ≤ h ≤ st}| for j = 1, 2, . . . , k.
13. For each Ij ,
14. if dj ≥ z,
15. then let Â(Ij , L) :=

n
st
dj to approximate A(Ij , L).

16. else let Â(Ij , L) := 0.

17. Let apx sum :=
∑

dj≥z Â(Ij , L)πj to approximate
∑n

i=1 an.

18. If apx sum ≤ 2c2n log logn
st

and st < n then enter Phase t+ 1.
19. else
20. If st < n
21. then let apx sum :=

∑
dj≥z Â(Ij , L)πj to approximate

∑
1≤i≤n ai.

22. else let apx sum :=
∑n

i=1 ai.
23. Output apx sum and terminate the algorithm.
24. End of Phase t.

End of Algorithm



Sublinear Time Approximate Sum via Uniform Random Sampling 717

Several lemmas will be proved in order to show the performance of the algo-
rithm. Let δ, ξ0, c1, and c2 be parameters defined as those in the Phase 0 of the
algorithm Approximate-Sum(.).

Lemma 1.

1. For parameter δ in (0, 1), a (δ, δ)-partition for [0, 1] has the number of in-

tervals k = O(
log n+log 1

δ

δ ).

2. g(x) ≤ e− x2

4 when 0 < x ≤ 1
2 .

3. The parameter ξ0 can be set to be O(
log 1

αδ

log 1
g(δ)

) = O(
log 1

αδ

δ2 ) for line 4 in the

algorithm Approximate-Sum(.).
4. Function g(x) is decreasing and g(x) < 1 for every x > 0.

Proof. Statement 1: The number of intervals k is the least integer with (1−δ)k ≤
δ
n2 . We have k = O(

log n+log 1
δ

δ ).

Statement 2: By definition g(x) = max(g1(x), g2(x)), where g1(x) = e−
1
2x

2

and g2(x) =
ex

(1+x)(1+x) . We just need to prove that g2(x) ≤ e−
x2

4 when x ≤ 1
2 .

By Taylor theorem ln(1 + x) ≥ x− x2

2 . Assume 0 < x ≤ 1
2 . We have

ln g2(x) = x− (1 + x) ln(1 + x) ≤ x− (1 + x)(x − x2

2
) = −x

2

2
(1− x) ≤ −x

2

4
.

Statement 3: We need to set up ξ0 to satisfy the condition in line line 4 in the
algorithm. It follows from statement 1 and statement 2.

Statement 4: It follows from the fact that g2(x) is decreasing, and less than 1
for each x > 0. We already explained in section 2.1.

We use the uniform random sampling to approximate the number of items in
each interval Ij in the (δ, δ)-partition. Due to the technical reason, we estimate
the failure probability instead of the success probability.

Lemma 2. Let Q1 be the probability that the following statement is false at the
end of each phase:

(i) For each interval Ij with dj ≥ z, (1 − δ)A(Ij , L) ≤ Â(Ij , L) ≤ (1 +
δ)A(Ij , L).

Then for each phase in the algorithm, Q1 ≤ (k + 1) · g(δ) z
2 .

Proof. An element of L in Ij is sampled (by an uniform sampling) with prob-

ability pj =
A(Ij ,L)

n . Let p′ = z
2st

. For each interval Ij with dj ≥ z, we discuss
two cases.

– Case 1. p′ ≥ pj .
In this case, dj ≥ z ≥ 2p′st ≥ 2pjst. Note that dj is the number of ele-
ments in interval Ij among st random samples ai1 , . . . , aist from L. By The-

orem 3 (with θ = 1), with probability at most P1 = g2(1)
pjmt ≤ g2(1)p

′st ≤
g2(1)

z/2 ≤ g(1)z/2, there are at least 2pjst samples are from interval Ij .
Thus, the probability is at most P1 for the condition of Case 1 to be true.



718 B. Fu, W. Li, and Z. Peng

– Case 2. p′ < pj .

By Theorem 3, we have Pr[dj > (1 + δ)pjmt] ≤ g2(δ)
pjmt ≤ g2(δ)

p′st ≤
g2(δ)

z
2 ≤ g(δ) z

2 .
By Theorem 2, we have Pr[dj ≤ (1 − δ)pjmt] ≤ g1(δ)

pjmt ≤ g1(δ)
p′st =

g1(δ)
z
2 ≤ g(δ) z

2 .
For each interval Ij with dj ≥ z and (1 − δ)pjmt ≤ dj ≤ (1 + δ)pjmt, we

have (1− δ)A(Ij , L) ≤ Â(Ij , L) ≤ (1+ δ)A(Ij , L) by line 15 in Approximate-
Sum(.).
There are k intervals I1, . . . , Ik. Therefore, with probability at most P2 = k ·
g(δ)

z
2 , the following is false: For each interval Ij with dj ≥ z, (1−δ)A(Ij , L) ≤

Â(Ij , L) ≤ (1 + δ)A(Ij , L).

By the analysis of Case 1 and Case 2, we have Q1 ≤ P1 + P2 ≤ (k + 1) · g(δ) z
2

(see statement 4 of Lemma 1). Thus, the lemma has been proven.

Lemma 3. Assume that st ≥ c2n log logn∑n
i=1 ai

. Then right after executing Phase t in

Approximate-Sum(.), with probability at most Q2 = 2kg(δ)ξ0 log logn, the follow-
ing statement is false:

(ii) For each interval Ij with A(Ij , L) ≥ c1
∑n

i=1 ai, A). (1 − δ)A(Ij , L) ≤
Â(Ij , L) ≤ (1 + δ)A(Ij , L); and B). dj ≥ z.

Proof. Assume that st ≥ c2n log logn∑
n
i=1 ai

. Consider each interval Ij with A(Ij , L) ≥
c1
∑n

i=1 ai. We have that pj =
A(Ij ,L)

n ≥ c1
∑n

i=1 ai

n . An element of L in Ij
is sampled with probability pj . By Theorem 3, Theorem 2, and Phase 0 of
Approximate-Sum(.), we have

Pr[dj < (1 − δ)pjmt] ≤ g1(δ)pjmt ≤ g1(δ)c1c2 log logn ≤ g(δ)ξ0 log logn. (1)

Pr[dj > (1 + δ)pjmt] ≤ g2(δ)pjmt ≤ g2(δ)c1c2 log logn ≤ g(δ)ξ0 log logn. (2)

Therefore, with probability at most 2kg(δ)ξ0 log log n, the following statement is
false:

For each interval Ij with A(Ij , L) ≥ c1
∑n

i=1 ai, (1− δ)A(Ij , L) ≤ Â(Ij , L) ≤
(1 + δ)A(Ij , L).

If dj ≥ (1 − δ)pjst, then we have

dj ≥ (1− δ)A(Ij , L)
n

st ≥ (1− δ) (c1
∑n

i=1 ai)

n
· c2n log logn∑n

i=1 ai
= (1 − δ)c1c2 log logn

≥ ξ0 log logn = z. (by Phase 0 of Approximate-Sum(.))

Lemma 4. The total sum of the sizes of items in those Ijs with A(Ij , L) <
c1
∑n

i=1 ai is at most δ
2 (
∑n

i=1 ai) +
δ
n .

Proof. By Definition 1, we have πj = (1− δ)j for j = 1, . . . , k− 1. We have that

– the sum of sizes of items in Ik is at most n · δ
n2 = δ

n ,
– for each interval Ij with A(Ij , L) < c1

∑n
i=1 ai, the sum of sizes of items in

Ij is at most (c1
∑n

i=1 ai)πj−1 ≤ (c1
∑n

i=1 ai)(1− δ)j−1 for j ∈ [1, k − 1].



Sublinear Time Approximate Sum via Uniform Random Sampling 719

The total sum of the sizes of items in those Ijs with A(Ij , L) < c1
∑n

i=1 ai is at
most

k−1∑
j=1

(c1

n∑
i=1

ai)πj−1) +
∑
ai∈Ik

ak ≤
k−1∑
j=1

(c1

n∑
i=1

ai)(1 − δ)j−1) + n · r
n2

≤ c1
δ
(

n∑
i=1

ai) +
δ

n
≤ δ

2
(

n∑
i=1

ai) +
δ

n
. (by Phase 0 of Approximate-Sum(.))

Lemma 5. Assume that at the end of phase t, for each Ij with Â(Ij , L) >

0, A(Ij , L)(1− δ) ≤ Â(Ij , L) ≤ A(Ij , L)(1 + δ); and dj ≥ z if A(Ij , L) ≥
c1
∑n

i=1 ai. Then (1 − ε
2 )(

∑n
i=1 ai − 4δ

n ) ≤ apx sum ≤ (1 + δ)(
∑n

i=1 ai) at the
end of phase t.

Lemma 6. With probability at most Q5 = (k+ 1) · (logn)g(δ) z
2 , at least one of

the following statements is false:

A. For each phase t with st <
c2n log logn∑n

i=1 ai
, the condition apx sum ≤ 2c2n log logn

st

in line 18 of the algorithm is true.

B. If
∑n

i=1 ai ≥ 4, then the algorithm stops some phase t with st ≤ 16c2n log logn∑n
i=1 ai

.

C. If
∑n

i=1 ai < 4, then it stops at a phase t in which the condition st ≥ n first
becomes true, and outputs apx sum =

∑n
i=1 ai.

Lemma 7. The complexity of the algorithm is O(
log 1

αδ

δ4 min( n∑
n
i=1 ai

, n) log logn).

In particular, the complexity is O(min( n∑n
i=1 ai

, n) log logn) if α is fixed in (0, 1).

Lemma 8. With probability at most α, at least one of the following statements
is false after executing the algorithm Approximate-Sum(ε, α, n, L):

1. If
∑n

i=1 ai ≥ 4, then (1− ε)(
∑n

i=1 ai) ≤ apx sum ≤ (1 + ε
2 )(

∑n
i=1 ai);

2. If
∑n

i=1 ai < 4, then apx sum =
∑n

i=1 ai; and

3. It runs in O(
log 1

αδ

δ4 min( n∑
n
i=1 ai

, n) log log n) time. In particular, the complex-

ity of the algorithm is O(min( n∑
n
i=1 ai

, n) log logn) if α is fixed in (0, 1).

Now we give the proof for our main theorem.

Proof (for Theorem 4). Let α = 1
4 and ε ∈ (0, 1). It follows from Lemma 8 via a

proper setting for those parameters in the algorithm Approximate-Sum(.).

The (δ, δ)-partition P : I1∪I2 . . .∪Ik for [0, 1] can be generated inO(
log n+log 1

δ

δ )
time by Lemma 1. Let L be a list of n numbers in [0, 1]. Pass δ, α, P, n, and L
to Approximate-Sum(.), which returns an approximate sum apx sum.

By statement 1 and statement 2 of Lemma 8, we have an (1+ε)-approximation
for the sum problem with failure probability at most α. The computational time

is bounded by O(
log 1

αδ

δ4 min( n∑
n
i=1 ai

, n) log logn) by statement 3 of Lemma 8.



720 B. Fu, W. Li, and Z. Peng

Definition 2. Let f(n) be a function from N to (0,+∞) with f(n) ≤ n and a
parameter c > 1. Define

∑
(c, f(n)) be the class of sum problem with an input

of nonnegative numbers a1, · · · , an in [0, a] with
∑n

i=1 ai ∈ [ f(n)c , cf(n)].

Corollary 1. Assume that f(n) is a function from N to (0,+∞) with f(n) ≤ n,
and c is a given constant c greater than 1. There is a O(n(log logn)

f(n) ) time algorithm

such that given a list of nonnegative numbers a1, a2, · · · , an in
∑

(c, f(n)), it gives
a (1− ε)-approximation.

3 Lower Bound

We show a lower bound for those sum problems with bounded sum of sizes∑n
i=1 ai. The lower bound almost matches the upper bound.

Theorem 5. Assume f(n) is an nondecreasing unbounded function from N
to (0,+∞) with f(n) ≤ n and f(n) = o(n). Every randomized (

√
c − ε)-

approximation algorithm for the sum problem in
∑

(c, f(n)) (see Definition 2)
needs Ω( n

f(n) ) time, where c is a constant greater than 1, and ε is an arbitrary

small constant in (0,
√
c− 1).

Acknowledgments. The authors are also grateful to anonymous referees for
providing comments to help us improve the presentation of this paper, and point-
ing the reference [4], which is related to our work.

References

1. Alon, N., Duffield, N., Lund, C., Thorup, M.: Estimating arbitrary subset sums with
few probes. In: Proc. PODS, pp. 317–325 (2005)

2. Broder, A., Fontura, M., Josifovski, V., Kumar, R., Motwani, R., Nabar, S., Pani-
grahy, R., Tomkins, A., Xu, Y.: Estimating corpus size via queries. In: Proceedings
of the 15th ACM International Conference on Information and Knowledge Manage-
ment (CIKM 2006), pp. 594–603 (2006)

3. Canetti, R., Even, G., Goldreich, O.: Lower bounds for sampling algorithms for
estimating the average. Information Processing Letters 53, 17–25 (1995)

4. Dagum, P., Karp, R., Luby, M., Ross, S.: An optimal algorithm for monte carlo
estimation. SIAM J. Comput. 29(5), 1484–1496 (2000)

5. Duffield, N., Lund, C., Thorup, M.: Learn more, sample less: control of volume
and variance in network measurements. IEEE Trans. on Information Theory 51,
1756–1775 (2005)

6. Hoefding, W.: Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association 58, 13–30 (1963)

7. Motwani, R., Panigrahy, R., Xu, Y.: Estimating sum by weighted sampling. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
53–64. Springer, Heidelberg (2007)

8. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(2000)



Tractable Connected Domination for Restricted

Bipartite Graphs (Extended Abstract)�

Zhao Lu1, Tian Liu1, and Ke Xu2

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Peking University, Beijing 100871, China

lt@pku.edu.cn
2 National Lab of Software Development Environment,

Beihang University, Beijing 100191, China
kexu@nlsde.buaa.edu.cn

Abstract. Finding a minimum connected dominating set (connected
domination) is known NP-complete for chordal bipartite graphs, but
tractable for convex bipartite graphs. In this paper, connected domina-
tion is shown tractable for circular- and triad-convex bipartite graphs,
by efficient reductions from these graphs to convex bipartite graphs.

Keywords: Connected domination, polynomial-time, circular-convex
bipartite graph, triad-convex bipartite graph, convex bipartite graph.

1 Introduction

A connected dominating set in a graph is a subset of vertices, which induces a
connected subgraph and every vertex outside it has a neighbor in it. The problem
of finding a minimum connected dominating set, called connected domination
[10], are known NP-complete for general graphs [2], bipartite graphs [9], chordal
bipartite graphs [8], and tractable for convex bipartite graphs [1].

In a convex bipartite [3] (circular-convex bipartite [7], tree-convex bipartite
[4,5], respectively) graph, there is a linear ordering (circular ordering, tree, re-
spectively) defined on one class of the vertices, such that for every vertex in
another class, the neighborhood of this vertex is an interval (a circular arc, a
subtree, respectively). When the tree is a triad, i.e. three paths with a common
end, the graph is called triad-convex bipartite [6,11,5].

An interesting theoretical problem is

– What is the boundary between tractability and intractability of connected
domination for bipartite graphs?

In this paper, we make partial progress on this problem by showing that con-
nected domination is tractable for circular- and triad-convex bipartite graphs.
Our results extend the known tractability of connected domination from convex
bipartite graphs to circular- and triad-convex bipartite graphs.

� Partially supported by National 973 Program of China (Grant No. 2010CB328103).

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 721–728, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



722 Z. Lu, T. Liu, and K. Xu

Before our work, the complexity results for circular- and triad-convex bipartite
graphs are scarce [7,6,11,5]. We make polynomial time Turing reductions (i.e.
Cook reductions [2]) of connected domination from circular- and triad-convex
bipartite graphs to convex bipartite graphs. This method may be of use to show
more problems tractable for circular- and triad-convex bipartite graphs.

This paper is structured as follows. In next section, necessary definitions and
properties are given. In last two sections, the reductions from circular- and triad-
convex bipartite graphs to convex bipartite graphs are given, respectively.

2 Preliminaries

In a graph G = (V,E), the neighborhood of a vertex x ∈ V is N(x) = {v | v is
adjacent to x}, and the closed neighborhood of x is N [x] = N(x) ∪ {x}. For a
subsetD ⊆ V ,N(D) is the union of all N(x) with x ∈ D, andN [D] = N(D)∪D.
A set X is said to be dominated by D, if X ⊆ N [D]. If X = {x}, then vertex
x is dominated by D. If V is dominated by D, D is called a dominating set.
A dominating set D is called connected if D induces a connected subgraph. In
general, if the induced subgraph of a vertex set is connected, we say that the
vertex set is connected. The problem of finding a minimum connected dominating
set in a graph is called connected domination. In this paper, D will denote a
(minimum) connected dominating set ofG. The following properties of connected
dominating set is useful. If D is a connected dominating set in graph G, then
for every vertex x in G, we have N(x) ∩D �= ∅.

For a bipartite graph G = (A,B,E) and two vertex subset A′ ⊆ A and
B′ ⊆ B, we use G[A′, B′] to denote the subgraph induced by A′ and B′.

3 Reduction for Circular-Convex Bipartite Graphs

For circular-convex bipartite graph G = (A,B,E), we always assume a circular
ordering < on A; for every vertex in B, its neighborhood is a circular arc on A.

Lemma 1. Assume that G = (A,B,E) is a circular-convex bipartite graph, with
a circular ordering on A, and D is a minimum connected dominating set of G.
Then for every vertex a in D ∩ A, it holds that |D ∩N(a)| ≤ 2.

Proof. Since G is circular-convex bipartite, N(N(a)) is a circular arc in A. Let
the two ends of this arc be ap and aq, respectively. Then there is two vertices
b1 and b2 in N(a), such that ap ∈ N(b1) and aq ∈ N(b2). Then, N(N(a)) =
{x | ap ≤ x ≤ aq}, see Figure 1 (left). Since ap, . . . , a ∈ N(b1) and a, . . . , aq ∈
N(b2), we have that N(b1)∪N(b2) = N(N(a)). Thus {a, b1, b2} is connected and
dominates N(N(a))∪N(a). For any connected dominating set D′ which contains
a, D′ \N(a)∪ {b1, b2} is still a connected dominating set. So if |D′ ∩N(a)| > 2,
then D′ is not minimum. ��

For a minimum connected dominating set D of G, we consider the following two
cases.



Tractable Connected Domination for Restricted Bipartite Graphs 723

Fig. 1. Graph G (left) and graph Ga (right)

Case 1. There is a circle ai1bi1 · · · aitbitai1 in D such that ai1 < · · · < ait . By
Lemma 1, N(aij )∩D = {bij−1 , bij} for 1 ≤ j ≤ t, where bi0 = bit . Thus, for any
aij , D \ {aij} is still connected. Then, for any a ∈ A, we define a graph Ga as
follows. Let b1, b2, bp, bq be as in proof of Lemma 1. The graph Ga is defined by
removing vertices in N(a)\{b1, b2}, restricting b1, b2 adjacent to only one side of
a respectively by splitting vertex a into a′, a′′, and adding two vertex p′, p′′ with
p′ only adjacent to a′ and p′′ only adjacent to a′′. That is, Ga = (Aa, Ba, Ea),
where Aa = A\{a}∪{a′, a′′}, Ba = B \N(a)∪{b1, b2, p′, p′′}, and Ea = E \{e ∈
E | e is incident to a vertex in N [a]} ∪ {(a′, b1), (a′, p′), (a′′, p′′), (a′′, b2)} ∪
{(ax, b1) ∈ E | ap ≤ ax < a} ∪ {(ay, b2) ∈ E | a < ay ≤ aq}. See Figure 1.

Remark 1. In definition of Ga, we assume that |D∩N(a)| = 2 and a �∈ {ap, aq}.
If |D ∩ N(a)| = 1 and a �∈ {ap, aq}, then just thinking b1 and b2 is resulted by
splitting the unique b ∈ D ∩ N(a). If a ∈ {ap, aq}, then G is convex bipartite.
Adding p′, p′′ is to force a′, a′′ into every connected dominating set of Ga.

Fig. 2. Graph G (left) and graph Gb′,b′′

a′,a′′ (right)

Case 2. Otherwise, there are a′, a′′ ∈ D, such that D ∩ N(a′) ∩ N(a′′) = ∅
and D ∩ {a ∈ A | a′ < a < a′′} = ∅. See Figure 2 (left). Then, there are
b′ ∈ D ∩ (N(a′) \N(a′′)) and b′′ ∈ D ∩ (N(a′′) \N(a′)), such that {a ∈ A|a′ <
a < a′′} ⊆ N(b′) ∪ N(b′′). For any a′, a′′ ∈ A, if there are b′ ∈ N(a′) \ N(a′′)
and b′′ ∈ N(a′′) \ N(a′), such that {a ∈ A|a′ < a < a′′} ⊆ N(b′) ∪ N(b′′),
then call such a quadruple (a′, a′′, b′, b′′) good, and the associated dominating set
as above is also called good. For any good quadruple (a′, a′′, b′, b′′), we define a



724 Z. Lu, T. Liu, and K. Xu

graph Gb′,b′′

a′,a′′ by removing vertices in N(a′) ∩ N(a′′) and {a ∈ A|a′ < a < a′′},
adding four vertices d′, d′′, p′, p′′ such that d′ only adjacent to b′, d′′ only adjacent
to b′′, p′ only adjacent to a′, and p′′ only adjacent to a′′, respectively. That is,

Gb′,b′′

a′,a′′ = (Ab′,b′′

a′,a′′ , B
b′,b′′

a′,a′′ , E
b′,b′′

a′,a′′), where A
b′,b′′

a′,a′′ = A \ {a ∈ A|a′ < a < a′′} ∪
{d′, d′′}, Bb′,b′′

a′,a′′ = B \(N(a′)∩N(a′′)) ∪ {p′, p′′}, and Eb′,b′′

a′,a′′ = E \{e ∈ E | e has
one end in Ab′,b′′

a′,a′′ and other end in Bb′,b′′

a′,a′′} ∪ {(a′, p′), (a′′, p′′), (d′, b′), (d′′, b′′)}.
See Figure 2.

Remark 2. In definition of Gb′,b′′

a′,a′′ , adding b′, b′′, p′, p′′ is to force a′, a′′, b′, b′′

into every connected dominating set of Gb′,b′′

a′,a′′ . Note that for a good quadru-

ple (a′, a′′, b′, b′′), every connected dominating set of Gb′,b′′

a′,a′′ is also a connected
dominating set of G.

Due to space limitation, we omit detail in proofs about properties on Gb′,b′′

a′,a′′ .

Lemma 2. For any a ∈ A, Ga is convex bipartite. Moreover, for any good

quadruple (a′, a′′, b′, b′′), Gb′,b′′

a′,a′′ is convex bipartite.

Proof. Since all vertices in N(a) \ {b1, b2} are removed, and b1 is only adjacent
to ap, . . . , a

′ and b2 is only adjacent to a′′, . . . , aq, no vertex in Ba is adjacent to
both a′ and a′′, and for each vertex in Ba, its neighborhood is an interval under
the linear ordering a′′ < · · · < aq < · · · < ap · · · < a′, see Figure 1 (right). Thus

Ga is convex bipartite. Similarly, Gb′,b′′

a′,a′′ is convex bipartite. ��

Lemma 3. For any a ∈ A and a connected dominating set D of G containing
a, b1, b2, if D \ {a} is connected, D \ {a} is a connected dominating set of Ga.
Moreover, for any good quadruple (a′, a′′, b′, b′′) and a good connected dominat-

ing set D̂ of G, then D̂ is a connected dominating set of Gb′,b′′

a′,a′′ .

Proof. We only need to show that D \ {a} is a dominating set of Ga. Note
that in Ga, a

′ and a′′ are dominated by b1 and b2 respectively, all vertices in
N(a) \ {b1, b2} are removed, and each vertex in Ba is dominated by D \ {a}
exactly as in G. Thus D \ {a} is a connected dominating set of Ga. Similarly, D̂

is a connected dominating set of Gb′,b′′

a′,a′′ . ��

Lemma 4. For each a ∈ A, if D′ is a connected dominating set of Ga, then
D′ ∪ {a} is a connected dominating set of G. Moreover, for each good quadru-

ple (a′, a′′, b′, b′′), if D̂′ is a connected dominating set of Gb′,b′′

a′,a′′ , then D̂′ is a
connected dominating set of G.

Proof. Note that in Ga, the only neighbor of a′ and a′′ is b1 and b2 respectively,
so both b1 and b2 should be in D′ and D′ ∪ {a} is connected. Then in graph
G, each vertex in N(a) \ {b1, b2} is dominated by a, and each vertex in Ba is
dominated by D′, thus D′ ∪ {a} is a connected dominating set of G. Similarly,
D̂′ is a connected dominating set of G. ��



Tractable Connected Domination for Restricted Bipartite Graphs 725

Now, we define a set S = S1 ∪ S2, where S1 = {Da ∪ {a}|a ∈ A and Da is a

minimum connected dominating set in Ga}, and S2 = {Db′,b′′

a′,a′′ |(a′, a′′, b′, b′′) is

good and Db′,b′′

a′,a′′ is a minimum connected dominating set in Gb′,b′′

a′,a′′}.

Remark 3. For each Ga and Gb′,b′′

a′,a′′ , Da and Db′,b′′

a′,a′′ may not be unique. For our
purpose, however, for each a, we only need one such Da in S1, and for each good

quadruple (a′, a′′, b′, b′′), we only need one such Db′,b′′

a′,a′′ in S2, see proof of Lemma
6 below.

Lemma 5. S contains a minimum connected dominating set of G.

Proof. Let D be a minimum independent dominating set of G. We consider the
following two cases.

Case 1. There is a circle ai1bi1 · · · aitbitai1 in D such that ai1 < · · · < ait .
Then for any aij , D \ {aij} is still connected. Assume that a ∈ D ∩ A and
b1, b2 ∈ D ∩ N(a) as in Lemma 1. For any minimum connected set Da of Ga,
by Lemma 3, |Da| ≤ |D| − 1, and by Lemma 4, |D| ≤ |Da| + 1, thus |D| =
|Da|+ 1 = |Da ∪ {a}|. By Lemma 4 and the minimality of D in G, Da ∪ {a} is
a minimum connected dominating set of G, which is in S1.

Case 2. Otherwise, there is a good quadruple (a′, a′′, b′, b′′). Similarly, Db′,b′′

a′,a′′

is a minimum connected dominating set of G, which is in S2. ��

Lemma 6. S is computable in O
(
|A|2|B|2(|A|+ |B|)4

)
time.

Proof. By Lemmm 2, for each a ∈ A,Ga is convex bipartite, thus we can compute
a minimum connected dominating set Da of Ga by the known O

(
(|A|+ |B|)4

)
time algorithm in [1]. As remarked in Remark 3, for each a, we only need
one such Da in S. Thus, by an enumeration of all |A| vertices in A, we
can compute S1 in O

(
|A|(|A| + |B|)4

)
time. Similarly, we can compute S2 in

O
(
|A|2|B|2(|A|+ |B|)4

)
time by an enumeration of all possible |A|2|B|2 good

quadruple (a′, a′′, b′, b′′). Thus, we can compute S in O
(
|A|2|B|2(|A|+ |B|)4

)
time. ��

Theorem 1. Connected domination for circular-convex bipartite graphs G =
(A,B,E) with circular ordering on A is solvable in O(|A|2|B|2(|A|+ |B|)4) time.

Proof. By Lemmas 6, we can compute the set S in O
(
|A|2|B|2(|A|+ |B|)4

)
time.

Then we pick out a minimum size set in S which is a connected dominating set
of G. By Lemmas 5, this set is a minimum connected dominating set of G. ��

4 Reduction for Triad-Convex Bipartite Graphs

For a triad-convex bipartite graph G = (A,B,E), we always assume a triad on
A, so for each vertex in B, its neighborhood is a subtree in the triad. The triad
is three paths with a common end, we assume that A = {a0} ∪ A1 ∪ A2 ∪ A3,



726 Z. Lu, T. Liu, and K. Xu

Fig. 3. A triad-convex bipartite graph, center a0 and a1,i, a2,j , a3,k

where for 1 ≤ i ≤ 3, Ai = {ai,1, ai,2, ..., ai,ni} and a0ai,1ai,2 · · · ai,ni is a path,
respectively. Note that for every b ∈ B \N(a0), we have N(b) ⊆ Ai for some i.

Let D be a minimum connected dominating set of G, and a1,p, a2,q, a3,r are
the vertices nearest to a0 in D ∩Ai for i = 1, 2, 3 respectively. See Figure 3.

Especially, if a0 ∈ D, then we define that p = q = r = 0, and a1,0 = a2,0 =
a3,0 = a0. (Some of the p, q, r may not exist, but that will only simplify our
tasks. The details are in below.)

Lemma 7. {a1,p, a2,q, a3,r} dominates N(a0) and {a1,p, a2,q, a3,r} ⊆ N(N(a0)).

Proof. If {a1,p, a2,q, a3,r} does not dominate N(a0), then there exists a vertex
x ∈ N(a0), such that {a1,p, a2,q, a3,r} ∩ N(x) = ∅. By property of triad-convex
bipartite graphs, we then have D ∩N(x) = ∅, which is a paradox.

If {a1,p, a2,q, a3,r} is not contained in N(N(a0)), without loss of generality,
we assume that a1,p �∈ N(N(a0)). Define A1,p+ = {a1,x ∈ D|a1,x ∈ A1, x ≥
p}. Divide D into two parts: D1,p+ = A1,p+ ∪ N(A1,p+) and D1,p− = D −
D1,p+. If there exists an edge between D1,p+ and D1,p−, there must exist a
vertex x to dominate a0 and a1,p, which means that a1,p ∈ N(N(a0)). This is a
contradiction, since we assume that a1,p /∈ N(N(a0)). If there is no edge between
D1,i+ and D1,i−, this also contradicts the fact that D is connected. ��

Lemma 7 sets constraints on selection of a1,p, a2,q, a3,r. Now we add vertices
from N(a0) into D. Because we need to find the connected dominating set, we
must make a1,p, a2,q, a3,r connected with help of some vertices in N(a0). If a
vertex in N(a0) only dominates one of a1,p, a2,q, a3,r, then it does not make
any contribution to the connection. We divide N(a0) into the following four
parts. B0 = N({a1,p, a2,q, a3,r}) \ B1 \ B2 \ B3. B1 = N(a1,p) \ N({a2,q, a3,r}).
B2 = N(a2,q) \ N({a1,p, a3,r}). B3 = N(a3,r) \ N({a1,p, a2,q}). If a1,p does not
exist, then B1 = ∅. The situations for a2,q and a3,r are similar. By Lemma
7, B0 ∪ B1 ∪ B2 ∪ B3 = N(a0). Especially, if a1,p = a2,q = a3,r = a0, then
B0 = N(a0) and B1 = B2 = B3 = ∅

Then, we need to select vertices from B0 to make a1,p, a2,q, a3,r connected.



Tractable Connected Domination for Restricted Bipartite Graphs 727

Lemma 8. For D and B0 defined as above, we have |D ∩B0| ≤ 3.

Proof. We find three vertices b1, b2, b3 ∈ B, such that N(bi) ∩ Ai = N(B0) ∩ Ai

for i = 1, 2, 3. If C′ = D ∩ B0, |C′| ≥ 4, we can first add {b1, b2, b3} into D.
Then if we delete the vertices in C′, then D is still connected . And all the
vertices dominated by C′ can be dominated by {b1, b2, b3}. Thus we can get a
new set D′ = (D−C′)∪ {b1, b2, b3}. D′ is also a connected dominating set, and
|D′| < |D|. This contradicts the minimality of D. ��

Let D be a minimum connected dominating set of G. By lemma 8, define C =
D ∩ B0 = {b1, b2, b3}, N(bi) ∩ Ai = N(C) ∩ Ai for i = 1, 2, 3 respectively. Note
that the situation b1 = b2 maybe happen but it has no harm to the result.

Lemma 9. The induced graph of {a1,p, a2,q, a3,r, b1, b2, b3} is connected.

Proof. If not, D is not connected. ��

Define G1 = {A1,p, B1,p, E1} where A1,p = {a1,x ∈ A1,p | x ≥ p}, B1,p =
{b | N(b) ⊆ A1} ∪B1 ∪ {b1}, and E1 = {e ∈ E | e is incident to a vertex in A1,p

and a vertex in B1,p}. The definitions of G2, G3 are similar.

Lemma 10. G1, G2, G3 are all convex bipartite.

Proof. Similar to the proof of Lemma 2. ��

Lemma 11. IfD is anminimum connected dominating set ofGwith the condition
that a1,p, a2,q, a3,r are the first vertices of each path in D and b1, b2, b3 ∈ D, then
D ∩ (A1,p ∪B1,p) is a connected dominating set of G1. Similarly for G2 and G3.

Proof. We prove by definition of connected dominating set. Because b1 ∈ B1,p,
and N(b1) ∩ A1,p = N({b1, b2, b3}) ∩ A1,p, then every vertex in A1,p can be
dominated by D ∩ B1,p. Every vertex in B1 ∪ {b1} is dominated by a1,p,, and
a1,p, so every vertex in B1,p can be dominated by D ∩ A1,p. The connection of
the set is obviously. So D∩ (A1,p∪B1,p) is a connected dominating set. Similarly
for G2 and G3. ��

Lemma 12. Let Di be a dominating set of Gi with bi ∈ Di for i = 1, 2, 3,
respectively. Then D1 ∪D2 ∪D3 ∪{a1,p, a2,q, a3,r} is a connected dominating set
of G.

Proof. First, every vertex in G1 ∪G2 ∪G3 is dominated by D1, D2, D3. The the
rest of vertices in G can be dominated by {a1,p, a2,q, a3,r, b1, b2, b3}. So D1 ∪
D2 ∪D3 ∪ {a1,p, a2,q, a3,r} is a dominating set of G. Second, D1, D2, D3 are all
connected. b1 ∈ D1, b2 ∈ D2, b3 ∈ D3, and by Lemma 9 the induced subgraph
of {b1, b2, b3, a1,p, a2,q, a3,r} is connected. So D1 ∪ D2 ∪D3 ∪ {a1,p, a2,q, a3,r} is
a connected subgraph of G. ��

Define set S = {D(p, q, r, b1, b2, b3) | a1,p ∈ A1, aq,j ∈ A2, a3,r ∈ A3, b1, b2, b3 ∈
N(a0)}, where D(p, q, r, b1, b2, b3) = D1 ∪D2 ∪D3 ∪ {a1,p, a2,q, a3,r}.



728 Z. Lu, T. Liu, and K. Xu

Lemma 13. S contains a minimum connected dominating set of G.

Proof. Because of Lemma 11 and Lemma 12, S contain all the minimum con-
nected dominating set D with condition {a1,p, a2,q, a3,r, b1, b2, b3} ⊆ D. So the
minimum connected dominating set of G must be include by S. ��
Theorem 2. Connected Domination for triad-convex bipartite is solvable in
O
(
|A|3|B|3(|A|+ |B|)4

)
time.

Proof. Enumerating all the possible a1,i, a2,j, a3,k cost O(|A|3). Enumerating

suitable b1, b2, b3 cost O(|B|3) The algorithm for convex bipartite graphs runs
in O

(
(|A|+ |B|)4

)
time, which is the time cost of getting D1, D2 and D3. So

our algorithm for triad-convex bipartite graph runs in O
(
|A|3|B|3(|A|+ |B|)4

)
time. ��

Acknowledgments. We thank Professor Kaile Su for his encouragements and
supports to this work. We also thank Professor Francis Y.L. Chin for bringing our
attention to thenotionof circular convexbipartite graphsduringFAW-AAIM2011.

References

1. Damaschke, P., Müller, H., Kratsch, D.: Domination in Convex and Chordal Bi-
partite Graphs. Inf. Process. Lett. 36(5), 231–236 (1990)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

3. Grover, F.: Maximum matching in a convex bipartite graph. Nav. Res. Logist.
Q. 14, 313–316 (1967)

4. Jiang, W., Liu, T., Ren, T., Xu, K.: Two Hardness Results on Feedback Vertex
Sets. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681,
pp. 233–243. Springer, Heidelberg (2011)

5. Jiang, W., Liu, T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite
graphs. Theor. Comput. Sci. (in press, 2013), doi:10.1016/j.tcs.2012.12.021

6. Jiang, W., Liu, T., Xu, K.: Tractable Feedback Vertex Sets in Restricted Bipartite
Graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831,
pp. 424–434. Springer, Heidelberg (2011)

7. Liang, Y.D., Blum, N.: Circular convex bipartite graphs: Maximum matching and
Hamiltonian circuits. Inf. Process. Lett. 56, 215–219 (1995)

8. Müller, H., Brandstät, A.: The NP-completeness of steiner tree and dominating set
for chordal bipartite graphs. Theor. Comput. Sci. 53(2-3), 257–265 (1987)

9. Pfaff, J., Laskar, R., Hedetniemi, S.T.: NP-completeness of total and connected
domination, and irredundance for bipartite graphs. Technical Report 428, Dept.
Mathematical Sciences, Clemenson Univ. (1983)

10. Sampathkumar, E., Walikar, H.B.: The connected domination number of a graph.
Math. Phys. Sci. 13(6), 607–613 (1979)

11. Song, Y., Liu, T., Xu, K.: Independent Domination on Tree Convex Bipartite
Graphs. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-AAIM 2012. LNCS,
vol. 7285, pp. 129–138. Springer, Heidelberg (2012)

12. Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback vertex sets on tree convex bipartite
graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer,
Heidelberg (2012)



On the Minimum Caterpillar Problem

in Digraphs�

Taku Okada, Akira Suzuki, Takehiro Ito, and Xiao Zhou

Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan

{okada,a.suzuki,takehiro,zhou}@ecei.tohoku.ac.jp

Abstract. Suppose that each arc in a digraph D = (V,A) has two costs
of non-negative integers, called a spine cost and a leaf cost. A caterpillar
is a directed tree consisting of a single directed path (of spine arcs) and
leaf vertices each of which is incident to the directed path by exactly one
incoming arc (leaf arc). For a given terminal set K ⊆ V , we study the
problem of finding a caterpillar in D such that it contains all terminals
in K and its total cost is minimized, where the cost of each arc in the
caterpillar depends on whether it is used as a spine arc or a leaf arc.
In this paper, we first study the complexity status of the problem with
respect to the number of terminals: the problem is solvable in polynomial
time for any digraph with two terminals, while it is NP-hard for three
terminals. We then give a linear-time algorithm to solve the problem for
digraphs with bounded treewidth, where the treewidth for a digraph D
is defined as the one for the underlying graph of D. Our algorithm runs
in linear time even if |K| = O(|V |).

1 Introduction

Let D = (V,A) be a digraph whose vertex set is V and arc set is A; we sometimes
denote by V (D) the vertex set of D and by A(D) the arc set of D. A digraph F
with a subset S ⊆ V (F ) is called a caterpillar, denoted by 〈F, S〉, if S induces
a directed path in F and every vertex in V (F ) \ S has no outgoing arc and has
exactly one incoming arc; the directed path induced by S is called the spine of
〈F, S〉. We denote by AS(F, S) the set of all arcs on the spine of 〈F, S〉; each arc
in AS(F, S) is called a spine arc, and each arc in AL(F, S) = A(F ) \AS(F, S) is
called a leaf arc. Figure 1(b) illustrates a caterpillar 〈F, S〉, where each vertex in
S is depicted by a square, each spine arc by a thick arrow, and each leaf arc by
a dotted arrow.

Suppose that we are given a digraph D = (V,A) together with two cost
functions cS : A→ Z+ and cL : A→ Z+, where Z+ is the set of all non-negative

� This work is partially supported by JSPS Grant-in-Aid for Scientific Research, Grant
Numbers 24.3660(A. Suzuki), 22700001(T. Ito) and 23500001(X. Zhou).

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 729–736, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



730 T. Okada et al.

(5,6)
(2,3)

(5,3)

(5,1)

(3,3)

(2,2)
(6,1) (2,5)

(1,5)

(2,1)

(1,2)

(4,3)

(5,8)

(5,2)

(5, 1 )

(3, 3 )

( 2 ,2)
( 2 ,5)

( 1 ,5)

(5, 2 )

(a) D = (V,A) (b) 〈F, S〉

Fig. 1. (a) An instance of the minimum caterpillar problem, and (b) its optimal solution

integers. Then, for a caterpillar 〈F, S〉 as a subgraph of D, the cost c(F, S) of
〈F, S〉 is defined as follows:

c(F, S) =
∑

e∈AS(F,S)

cS(e) +
∑

e∈AL(F,S)

cL(e).

Let K ⊆ V be a given set of vertices, called terminals. Then, a caterpillar 〈F, S〉
is called aK-caterpillar ifK ⊆ V (F ). Theminimum caterpillar problem is to find
a K-caterpillar 〈F, S〉 as a subgraph of D whose cost c(F, S) is minimized. Note
that a digraph does not always have a K-caterpillar for a given set K ⊆ V (D).
In the instance of Fig. 1(a), there are five terminals, each of which is shaded,
and the two costs for each arc e ∈ A are depicted by a pair (cS(e), cL(e)). Then,
the K-caterpillar 〈F, S〉 of Fig. 1(b) is an optimal solution for the instance in
Fig. 1(a), whose cost is c(F, S) = (1 + 2 + 2) + (2 + 1 + 3) = 11.

The minimum caterpillar problem in digraphs is a generalization of the mini-
mum spanning caterpillar problem in undirected graphs, defined as follows [3,4,9]:
the minimum spanning caterpillar problem is the minimum caterpillar problem
in which all vertices in a given digraph D are terminals, that is, K = V (D), and
there always exists an arc (u, v) if there is an arc (v, u) such that cS((u, v)) =
cS((v, u)) and cL((u, v)) = cL((v, u)). The minimum spanning caterpillar prob-
lem (and hence the minimum caterpillar problem) has some applications to the
network design problem, the facility transportation problem, etc [4,9]. However,
the minimum spanning caterpillar problem is known to be NP-hard [4], and
hence the minimum caterpillar problem is also NP-hard in general. For the min-
imum spanning caterpillar problem on general graphs, Simonetti et al. [9] gave a
non-polynomial-time exact algorithm, and Dinneen and Khosravani [4] studied
the problem from the viewpoint of approximation. Dinneen and Khosravani [3]
also gave a linear-time (exact) algorithm for (undirected) graphs with bounded
treewidth.

In this paper, we give two results for the minimum caterpillar problem. We
first study the complexity status of the problem with respect to the number of
terminals: the problem is solvable in polynomial time for any digraph with two
terminals, while it is NP-hard for digraphs with three terminals. Note that the
known result of [4] does not imply the NP-hardness for a constant number of
terminals. We then give a linear-time algorithm to solve the problem for digraphs
with bounded treewidth. Note that, in this paper, the treewidth of a digraph



On the Minimum Caterpillar Problem in Digraphs 731

D is defined simply as the one of the “underlying graph” of D, and hence it is
different from [6]. (The formal definition will be given in Section 3.1.) We remark
that our algorithm runs in linear time even if |K| = O(n), where n is the number
of vertices in a digraph. Therefore, our algorithm improves the known one [3]
in the sense that our algorithm also solves the minimum spanning caterpillar
problem in linear time for (undirected) graphs with bounded treewidth.

It is known that any optimization problem that can be expressed by Extended
Monadic Second Order Logic (EMSOL) can be solved in linear time for graphs
with bounded treewidth [2]. However, the algorithm obtained by this method
is hard to implement, and is very slow since the hidden constant factor of the
running time is a tower of exponentials of unbounded height with respect to
the treewidth [7]. On the other hand, our algorithm is simple, and the hidden
constant factor is just a single exponential of the treewidth.

2 Complexity Status

In this section, we study the complexity status of the minimum caterpillar prob-
lem with respect to the number of terminals. We omit the proofs due to the page
limitation.

Theorem 1. The minimum caterpillar problem is solvable in polynomial time
for digraphs with two terminals.

On the other hand, the NP-hardness can be shown by a polynomial-time re-
duction from the directed vertex-disjoint paths problem [5] to the minimum
caterpillar problem for digraphs with three terminals.

Theorem 2. The minimum caterpillar problem is NP-hard even for digraphs
with three terminals.

3 Algorithm for Digraphs with Bounded Treewidth

The main result of this section is the following theorem.

Theorem 3. The minimum caterpillar problem can be solved in linear time for
digraphs with bounded treewidth.

In this section, we give such an algorithm as a proof of Theorem 3. Indeed, for
a given digraph D and a given terminal set K, we give a linear-time algorithm
which computes the minimum cost of a K-caterpillar in D; it is easy to modify
our algorithm so that it actually finds a K-caterpillar with the minimum cost.

3.1 Treewidth for Digraphs

We first define the notion of treewidth for an undirected graph, together with
its (nice) tree-decomposition. In this paper, the treewidth for a digraph D is
defined as the one for the underlying graph of D, where the underlying graph



732 T. Okada et al.

U(D) of a digraph D is an undirected graph whose vertex set is V (D) and edge
set is {{x, y} | (x, y) ∈ A(D) or (y, x) ∈ A(D)}.

Let G be an undirected graph with n vertices. We denote by V (G) and E(G)
the vertex set and edge set of G, respectively. A tree-decomposition of G is a pair
〈{Xi | i ∈ VT }, T 〉, where T = (VT , ET ) is a rooted tree, such that the following
four conditions (1)–(4) hold [8]:

(1) each Xi is a subset of V (G);
(2)

⋃
i∈VT

Xi = V (G);
(3) for each edge {u, v} ∈ E(G), there is at least one node i ∈ VT such that

u, v ∈ Xi; and
(4) for any three nodes p, q, r ∈ VT , if node q lies on the path between p and

r in T , then Xp ∩Xr ⊆ Xq.

In particular, a tree-decomposition 〈{Xi | i ∈ VT }, T 〉 of G is called a nice
tree-decomposition if the following four conditions (5)–(8) hold [1]:

(5) |VT | = O(n);
(6) every node in VT has at most two children in T ;
(7) if a node i ∈ VT has two children l and r, then Xi = Xl = Xr; and
(8) if a node i ∈ VT has only one child j, then one of the following two

conditions (a) and (b) holds:
(a) |Xi| = |Xj | + 1 and Xi ⊃ Xj (such a node i is called an introduce

node); and
(b) |Xi| = |Xj | − 1 and Xi ⊂ Xj (such a node i is called a forget node.)

The width of 〈{Xi | i ∈ VT }, T 〉 is defined as max{|Xi| − 1 : i ∈ VT }, and the
treewidth of G is the minimum k such that G has a tree-decomposition of width k.

In this paper, we say that a digraph D = (V,A) has treewidth k if its under-
lying graph U(D) is of treewidth k. Since a nice tree-decomposition 〈{Xi | i ∈
VT }, T 〉 of an undirected graph U(D) with bounded treewidth can be found in
linear time [1], we may assume without loss of generality that a digraph D and
the nice tree-decomposition 〈{Xi | i ∈ VT }, T 〉 of U(D) are both given.

Let D be a digraph, and let 〈{Xi | i ∈ VT }, T 〉 be a nice tree-decomposition of
U(D). Each node i ∈ VT corresponds to a (directed) subgraph Di = (Vi, Ai) of
D which is induced by the vertices that are contained in Xi and all descendants
of i in T . Therefore, if a node i ∈ VT has two children l and r in T , then Di is
the union of Dl and Dr which are the subgraphs corresponding to nodes l and
r, respectively. Clearly, D = D0 for the root 0 of T .

3.2 Main Ideas and Definitions

We first introduce some terms. Let 〈F, S〉 be a caterpillar. Then, each vertex in
S is called a spine vertex, while each vertex in VL(F, S) = V (F ) \ S is called a
leaf vertex. Therefore, each spine arc in AS(F, S) joins two spine vertices, and
each leaf arc (v, w) in AL(F, S) joins a spine vertex v ∈ S and a leaf vertex
w ∈ VL(F, S); we say that the leaf vertex w is covered by the spine vertex v. A
spine vertex v ∈ S is called the tail of 〈F, S〉 if the spine of 〈F, S〉 starts from v,



On the Minimum Caterpillar Problem in Digraphs 733

Xi

F

D

Xi

Fi = F Di

(a) (b)

Fig. 2. (a) A K-caterpillar 〈F, S〉 in D for the case where S ⊆ V (Di) \Xi, and (b) a
caterpillar (∅,S)-forest of Di, where S = (1)

Xi

F

D

LoutXi

no terminal in V(Di) \ Xi Di

(a) (b)

Fig. 3. (a) A K-caterpillar 〈F, S〉 in D for the case where S ⊆ V (D) \ V (Di), and (b)
a caterpillar (Lout,S)-forest of Di, where Lout = K ∩ V (Di) and S = (0)

while a spine vertex w ∈ S is called the head of 〈F, S〉 if the spine of 〈F, S〉 ends
in w. The head and tail of 〈F, S〉 are also called the end-vertices of 〈F, S〉.

We now give our main ideas. Let D be a digraph, and let 〈{Xi | i ∈ VT }, T 〉 be
a nice tree-decomposition of U(D). Since we wish to find a K-caterpillar with the
minimum cost, it suffices to consider K-caterpillars such that all leaf vertices are
terminals in K. Consider a K-caterpillar 〈F, S〉 as a subgraph of D, and consider
the subgraph Fi of F which is induced by the vertices in V (F ) ∩ V (Di) for a
node i ∈ VT . Then, there are the following three cases to consider, as illustrated
in Figs. 2–4 where each terminal is shaded and each spine vertex is depicted by
a square.

Case (a): S ⊆ V (Di) \Xi. (See Fig. 2.)
In this case, we claim that Di contains the whole K-caterpillar 〈F, S〉, that

is, Fi = F , as follows. By the definition (4) of tree-decomposition, there is no
arc joining a vertex in V (Di) \Xi and a vertex in V (D) \V (Di). Then, no spine
vertex in S ⊆ V (Di) \Xi has an arc to a vertex in V (D) \ V (Di). We thus have
VL(F, S) ⊆ V (Di), and hence V (F ) ⊆ V (Di). Therefore, Di contains the whole
K-caterpillar 〈F, S〉, as we claimed.



734 T. Okada et al.

Xi v1 v2 v3 v4
v5 v6

F
D

Lout
Xi v1 v2 v3 v4

v5 v6

Fi
Di

(a) (b)

Fig. 4. (a) A K-caterpillar 〈F, S〉 in D for the case where S ∩ Xi �= ∅, and (b) a
caterpillar (Lout,S)-forest of Di, where S = (1, v1, 0, v2, 1, v3, 1, v4, 0, v5, 0, v6, 0)

Case (b): S ⊆ V (D) \ V (Di). (See Fig. 3.)
In this case, Di contains no spine vertex in S, but may contain leaf vertices

(terminals) in VL(F, S) which will be covered by spine vertices in S ⊆ V (D) \
V (Di). Since no spine vertex in S ⊆ V (D) \ V (Di) has an arc to a vertex in
V (Di) \Xi, such terminals must be in Xi. (See the three terminals surrounded
by the oval Lout in Fig. 3(b).)

Case (c): S ∩Xi �= ∅. (See Fig. 4.)
In this case, bothDi andD\Di may contain spine vertices, and hence Fi is not

always a (single) caterpillar. However, Fi forms a caterpillar forest 〈Fi, Si〉, where
Si = S ∩ V (Di); each (weakly) connected component in it is either a caterpillar
or a single vertex that was a leaf vertex in 〈F, S〉. (Note that a single spine vertex
is regarded as a caterpillar.) Consider any single leaf vertex in VL(F, S)∩V (Di).
Then, similarly as in Case (b) above, it will be covered by some spine vertex in
S\V (Di) and hence it must be in Xi. On the other hand, consider all caterpillars
in 〈Fi, Si〉. Then, we can naturally order the spine vertices in Si = S ∩ V (Di)
according to the order of the spine vertices of 〈F, S〉. It is easy to observe that
every end-vertex of caterpillars in 〈Fi, Si〉 must be in Xi unless it is the end-
vertex of 〈F, S〉. (See the end-vertices v1, v2, v4, v5, v6 in Fig. 4(b).)

Motivated by the three Cases (a)–(c) above, we classify caterpillar forests
〈F ′, S′〉 in Di into “caterpillar (Lout,S)-forests” with respect to the vertices in
Xi. A terminal subset Lout ⊆ K ∩ Xi represents the terminals that are nei-
ther spine vertices in S′ nor leaf vertices covered by spine vertices in S′ ⊆
V (Di); and hence every vertex in Lout will be a leaf vertex which is covered
by some spine vertex outside Di. A “spine vector” S for Xi represents the
spine vertices in S′ ∩ Xi together with their order and connectivity: a vec-
tor S = (a0, v1, a1, v2, a2, . . . , vt, at), t ≥ 0, is called a spine vector for Xi if
ax ∈ {0, 1} for each index x, 0 ≤ x ≤ t, and vx ∈ Xi for each index x, 1 ≤ x ≤ t.
We sometimes denote by V (S) the set of all vertices in S; note that V (S) = ∅ if
t = 0. Then, a caterpillar forest 〈F ′, S′〉 as a subgraph of Di is called a caterpillar
(Lout,S)-forest of Di if the following three conditions (a)–(c) hold:



On the Minimum Caterpillar Problem in Digraphs 735

(a) if S = (1), then 〈F ′, S′〉 is a K-caterpillar such that S′ ∩Xi = ∅;
(b) if S = (0), then V (F ′) = Lout and F

′ forms an independent set; and
(c) if t ≥ 1, then the following six conditions (i)–(vi) hold:

(i) all terminals in K ∩ V (Di) are contained in V (F ′);
(ii) Lout forms an independent set in F ′;
(iii) if we remove all vertices in Lout from F ′ and add to F ′ a (dummy)

arc from vx to vx+1 for every two vertices vx, vx+1 ∈ V (S) such that
ax = 0, 1 ≤ x ≤ t − 1, then the resulting digraph F ′′ is a (single)
caterpillar 〈F ′′, S′〉;

(iv) S′ ∩ Xi = V (S), and v1, v2, . . . , vt appear on the spine of 〈F ′′, S′〉
in this order;

(v) if a0 = 0, then v1 is the tail of 〈F ′′, S′〉, otherwise the tail of 〈F ′′, S′〉
is in V (Di) \Xi; and

(vi) if at = 0, then vt is the head of 〈F ′′, S′〉, otherwise the head of
〈F ′′, S′〉 is in V (Di) \Xi.

For example, the caterpillar forest in Fig. 4(b) is a caterpillar (Lout,S)-forest of
Di for S = (1, v1, 0, v2, 1, v3, 1, v4, 0, v5, 0, v6, 0). We call the head (or the tail) of
〈F ′′, S′〉 the head (resp., tail) of the caterpillar forest 〈F ′, S′〉.

Let 〈F ′, S′〉 be a caterpillar (Lout,S)-forest of Di for some pair (Lout,S). If
S = (1), then the spine vertices of 〈F ′, S′〉 are in V (Di)\Xi and hence the spine
of 〈F ′, S′〉 cannot be extended to the outside of Di; we thus know that Lout must
be the empty set and Di must contain all terminals in K. On the other hand, if
S = (0), then 〈F ′, S′〉 has no spine vertex and hence we know that all terminals
in Di must be covered by spine vertices outside Di. Therefore, we say that a pair
(Lout,S) is feasible for Xi if it satisfies the following three conditions (a)–(c):
(a) if S = (1), then Lout = ∅ and K ⊆ V (Di);
(b) if S = (0), then Lout = K ∩ V (Di); and
(c) Lout ∩ V (S) = ∅, and each vertex in V (S) appears exactly once in S.

Then, it suffices to consider caterpillar (Lout,S)-forests of Di only for feasible
pairs (Lout,S) for Xi.

We finally define a value f(i;Lout,S) for a node i ∈ VT and a pair (Lout,S),
which will be computed by our algorithm, as follows:

f(i;Lout,S) = min{c(F ′, S′) | 〈F ′, S′〉 is a caterpillar (Lout,S)-forest of Di},

where c(F ′, S′) is the cost of a caterpillar (Lout,S)-forest 〈F ′, S′〉, that is, the
total cost of all caterpillars in 〈F ′, S′〉. Let f(i;Lout,S) = +∞ if Di has no
caterpillar (Lout,S)-forest or (Lout,S) is not feasible for Xi.

Our algorithm computes f(i;Lout,S) for each node i ∈ VT and all feasible
pairs (Lout,S) for Xi, from the leaves of T to the root of T , by means of dynamic
programming. (However, we omit how to compute f(i;Lout,S) due to the page
limitation.) Then, since D0 = D for the root 0 of T , one can compute the
minimum cost c(D,K) of a K-caterpillar in a given digraph D, as follows:

c(D,K) = min f(0; ∅,S), (1)



736 T. Okada et al.

where the minimum above is taken over all spine vectors S = (a0, v1, a1, . . . , vt,
at), 0 ≤ t ≤ |X0|, for X0 such that ax = 1 for all x, 1 ≤ x ≤ t − 1. Note that
c(D,K) = +∞ if D has no K-caterpillar.

We now show that the number of all feasible pairs (Lout,S) for Xi can be
bounded by a constant; this implies that our algorithm runs in linear time.
Remember that |Xi| ≤ k + 1 for each node i ∈ VT , where k is the treewidth of
D. Then, there are at most

(
k+1
t

)
·t! ·2t+1 spine vectors S = (a0, v1, a1, . . . , vt, at)

for each t ≥ 0. Thus, the number of all feasible pairs (Lout,S) for Xi can be
bounded by

k+1∑
t=0

(
k + 1

t

)
· t! · 2t+1 · 2k+1−t ≤ (k + 2)(k + 1)k+1 · 2k+2 = O(1).

4 Conclusion

In this paper, we first analyzed the complexity status of the minimum caterpillar
problem with respect to the number of terminals. More precisely, the problem
is solvable in polynomial time for any digraph with two terminals, while it is
NP-hard even for digraphs with three terminals. We then gave a linear-time
algorithm to solve the problem for digraphs with bounded treewidth.

References

1. Betzler, N., Niedermeier, R., Uhlmann, J.: Tree decompositions of graphs: saving
memory in dynamic programming. Discrete Optimization 3, 220–229 (2006)

2. Courcelle, B.: Handbook of Theoretical Computer Science. Graph rewriting: an
algebraic and logic approach, vol. B, pp. 193–242. MIT Press (1990)

3. Dinneen, M.J., Khosravani, M.: A linear time algorithm for the minimum spanning
caterpillar problem for bounded treewidth graphs. In: Patt-Shamir, B., Ekim, T.
(eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 237–246. Springer, Heidelberg (2010)

4. Dinneen, M.J., Khosravani, M.: Hardness of approximation and integer program-
ming frameworks for searching for caterpillar trees. In: Proc. of CATS 2011, pp.
145–150 (2011)

5. Forutne, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoretical Computer Science 10, 111–121 (1980)

6. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Jour-
nal of Combinatorial Theory, Series B 82, 138–154 (2001)

7. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorith-
mica 64, 19–37 (2012)

8. Robertson, N., Seymour, P.D.: Graph Minors III. Planar tree-width. Journal of
Combinatorial Theory, Series B 36, 49–63 (1984)

9. Simonetti, L., Frota, Y., de Souza, C.C.: An exact method for the minimum cater-
pillar spanning problem. In: Proc. of CTW 2009, pp. 48–51 (2009)



A New Model for Product Adoption

over Social Networks

Lidan Fan1, Zaixin Lu1, Weili Wu1, Yuanjun Bi1, and Ailian Wang2

1 University of Texas at Dallas, Department of Computer Science,
Richardson, Texas, USA 75080

2 Taiyuan Institute of technology
{lidan.fan,zaixinlu,weiliwu,yuanjunbi}@utdallas.edu,

{ym4008cn}@yahoo.com.cn

Abstract. Building upon the observation that individuals’ decisions to
purchase a product are influenced by recommendations from their friends
as well as their own preferences, in our work, we propose a new model that
factors in people’s preferences for a product and the number of his/her
neighbors that have adopted this product. In our model, as in related
ones, beginning with an “active” seed set (adopters), an adoption action
diffuses in a cascade fashion based on a stochastic rule. We demonstrate
that under this model, maximizing individuals’ adoption of a product,
called the product adoption maximization (PAM) problem, is NP-hard,
and the objective function for product adoption is sub-modular for time
T (T = 1, 2) when the function for estimating the influence coming from
neighbors is sub-linear. Hence, a natural greedy algorithm guarantees
an approximation. Furthermore, we show that it is hard to approximate
the PAM problem when the function for estimating the influence coming
from neighbors is not sub-linear.

Keywords: Influence Diffusion, Product Adoption, Personal Preference,
Viral Marketing, Social Networks.

1 Introduction

Suppose that we are trying to promote a product among a population of indi-
viduals. In order to market the product effectively with limited budget such as
free samples, we strive to target a few key individuals or potential consumers
who can in turn trigger out a large product adoption within their relation cy-
cles. That is, their purchasing behaviors have an impact on their friends, who,
when adopt the product, in turn affect others, and so forth, creating a cascade
of decisions. This phenomenon is the “world-of-mouth” effects, coming from a
multitude of relations and interactions between individuals. By virtual of these
effects, as observed, people influence each other’s decision to purchase a product.
In this way, decisions can spread through the network from a small set of initial
adopters to a potentially much larger group to an expected sense. Research in
the area of viral marketing [1,2,3,4,5] takes advantage of these social network
effects.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 737–746, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



738 L. Fan et al.

In viral marketing, one of the fundamental problems is to find a small set of
users in a social network as the promotion targets, such that the adoption of
a product by these users leads a large number of individuals to buy this prod-
uct, that is to maximize product adoption. Our paper investigates this problem.
Most previous papers study this as the Influence Maximization (IM) problem:
determine a set S of k users yielding the largest expected cascade. Domingos
and Richardson in [4,5] proposed and studied the IM problem under a very
general descriptive model of influence propagation, merely giving heuristics for
the problem. Later, Kempe completed a seminal work in [6], which obtained
provable performance guarantees for approximation algorithms under the In-
dependent Cascade (IC) and the Linear Threshold (LT) model. In subsequent
works, on one hand, a large volume of algorithms [10,11,12,14] were explored
to efficiently compute the expected influence for the IM problem. On the other
hand, various influence diffusion models [7,8,13,16,20] were proposed to approach
real-world scenarios on a network.

Among the literatures for the IM problem, two probabilistic propagation mod-
els [5,6], the IC and LT models are well studied. Both of them do not consider
individuals’ preferences for a product. For instance, in the IC model, a person
buys a product if and only if at least one of his or her friends has bought it; and
in the LT model, a person buys a product if and only if a certain number of his
or her friends have bought it. However, in real world, individuals in a social net-
work make decisions not only based on what others have done but also on their
own preferences. That is, they may make decisions to purchase a product even
none of his or her friends bought it. In realistic situations, two major drawbacks
of the two models come out: one is that people may buy a product at any time,
and the other is that people may buy a product even if no one in his or her
social cycle has bought the product. To overcome the two drawbacks, we study
the problem inherent in the question of how to maximize product adoption over
time, considering both costumers’ preferences and the “world-of-mouth” effect
(friends’ influence), as well as approaches to seed selection.

As for the work in product adoption, in other traditional domains, Bohlen et
al. [18] introduced five stages of product adoption. Kalish et al. [19] indicated
that the adoption of a new product actually depends on factors such as price,
individual’s valuation of the product and so forth. Recently, observing these
phenomena, Bhagat et al. [15] proposed the Product Adoption Maximization
(PAM) problem, a variant of the influence maximization problem, in which they
distinguished between influence and adoption. While in our paper, instead of
focusing on analyzing differences between the two behaviors, we pay attention
to factors that have impact on users decision-making: personal preference to a
product and the number of friends having adopted it. Here, personal preference
to a product is independent of influence from friends, making the possibility that
individuals buy a product even if none of their friends buys it.

Our Contributions. We present a new model for the PAM problem. To the
best of our knowledge, this is the first work that incorporates personal preference
in product adoption procedure. In this model, when estimate a user’s purchase



A New Model for Product Adoption over Social Networks 739

decision on a product, besides considering the influence coming from individuals’
friends, we also include their own preferences to a product, which has not been
considered in previous models. Through extensive analysis, we show that the
PAM problem is NP-hard in this model. Moreover, We demonstrate that the
objective function, i.e., the expected number of final product adopters (deadline
T = 1, 2), is sub-modular when the function of influence coming from friends is
sub-linear. However, when the function of influence coming from friends is not
sub-linear, we show that the objective function is not sub-modular any more and
it is hard to find an approximation algorithm for T ≥ 2.

Organization. The remainder of this paper is organized as follows: In section
2, we introduce the details about the new influence diffusion model. In section 3,
we describe the PAM problem in our model, then we analyze the submodularity
and non-submodularity of the objective function under distinct cases, and prove
the NP-hardness of the PAM problem. we conclude this paper and show several
directions for future work in section 4.

2 New Influence Diffusion Model

In this section, we introduce our new model and provide influence diffusion mech-
anisms under this model. Firstly, we show several models in influence diffusion
and product adoption problems.

2.1 Several Models

The most far-reaching influence diffusion models in social networks are the IC
and the LT models.

Independent Cascade model (IC) [5,6]. The IC model uses a sender-centered
mechanism, in which each information sender independently influences its neigh-
bors with some probability (information push style). When the the influence of
several senders reach a receiver at the same time, their influence is scheduled
arbitrarily. The influence probability is determined by the sender (active indi-
vidual) and has no relation with the receiver (inactive individual).

Linear Threshold model (LT) [5,6]. The LT model uses a receiver-centered
mechanism, in which each information receiver adopts the information if and
only if the number of its neighbors that have adopted the information exceeds
certain threshold, where the threshold is treated as a random variable or fixed
value (information pull style).

Being widely applied in many research works, however, both of the two models
do not fully capture the dynamics of a cascade over self-interested agents, where
individuals may make decisions to buy a product out of their own preference to
it. As for particular models for product adoption, we introduce one among the
most recent ones.

Linear Threshold with Colors (LT-C) [15]. This model distinguishes product
adoption from influence. It assumes that in a network, there exist information



740 L. Fan et al.

bridges, or tattlers who propagate the influence without adopting the product
themselves. Furthermore, influence propagation depends on the extent to which
a user likes the product. In addition to the influence weights among users, and
the probability of liking a product is different for different users.

Though users in a network, under this model, is regarded as the agents having
personal preferences, they are different from the ones in our model. In this model,
the preferences of users for a product are still based on the experiences of their
friends, in other words, their preferences are formed from the information pro-
vided by their friends, they make decisions by communicating with their friends.
Nevertheless, in our model, even no friends have knowledge about a product or
no one purchases this product, a user may buy it out of his/her own interest,
which is completely independent of the experiences of his/her friends (know or
adopt).

2.2 Our New Model

In the following, we provide a concrete description of our new model. Let G =
(V,E, P (V )) be an arbitrary undirected graph, representing an underlying social
network. In this setting, the nodes in V denote a group of individuals (called
agents or consumers). The edges between pairs of individuals represent the re-
lations (friends, families, co-workers and so forth). P (V ) = {p(v1), p(v2), · · · ,
p(v|V |)} is a set of personal preferences to a product. Throughout this paper, we
regard “purchase”, “adopt” and “buy” as the same term, and call individuals
active if they have the product, and inactive otherwise.

Assume we want to promote a new product P . Initially, there is no consumer
purchases (uses) it, and individuals make their decisions to buy the product
according to their own preferences. After the first round, some individuals have
product P, and we say that these agents have become active, and those that do
not inactive. At the second time, these active consumers will impose an impact
on their friends (direct neighbors in the graph). Right now, the tendency that
each individual decides to purchase the product not only has relation with their
own favors, but also depends on the influence coming from their friends. This is
actually the novel observation that we pick up from economic researches.

In our model, the cascade propagation unfolds in discrete time. Let N be the
direct active neighbors of consumer v in the social network. At time t+ 1, each
inactive individual adopts a product with probability

In(v) +Out(v,N).

Here 0 ≤ In(v) + Out(v,N) ≤ 1. The preference function In(v) for consumer v
has relation with v’s age, interest, education and so forth. Out(v,N) is a function
based on the v′s neighbors who have already adopted the product before t+ 1.
It can be a linear function, sub-linear function of |N |, such as γ(v)×|N |β, where
0 < β ≤ 1, and γ(v) is a coefficient related to v’s social relation, such as the
total number of his/her friends.

Now, suppose that consumers make purchasing decisions along with time,
starting from k seeds: S = {s1, s2, · · · , sk} , then the probability that a consumer



A New Model for Product Adoption over Social Networks 741

v ∈ V \ S purchases a product is In(v) + Out(v,Neig(v) ∩ S), where Neig(v)
are the neighbors of v. Let St be a set including all the individuals that are
active before t + 1. Then, at t + 1, the probability that v buys the product is
In(v) +Out(v,Neig(v) ∩ St).

Two phenomena are ignored in previous models: First, a consumer may
purchase a product out of his/her preference although no friend has this prod-
uct. Second, at each time, each individual may purchase this product with a
probability.

3 Problem Formulation and Analysis

In this section, we define the Product Adoption Maximization (PAM) problem
under our new model, and demonstrate that the PAM problem is NP-hard.
Furthermore, we show several results corresponding to different expressions of
Out(v,N). We find that when Out(v,N) is sub-linear, objective influence func-
tion is sub-modular for time constraint T = 1, 2, thus, a greedy algorithm is
applied to guarantee an approximation factor of 1− 1/e [17] for the PAM prob-
lem. However, when Out(v,N) is not sub-linear, the objective influence function
is not sub-modular any more.

Product Adoption Maximization (PAM). Given an undirected arbi-
trary graph G = (V,E, P (V )), a non-negative integer k, the problem of product
adoption maximization is to select a seed set S of k vertices such that by initially
activating those k individuals, the number of final users purchasing this product
is maximized under our model, where P (V ) = {p(v1), p(v2), · · · , p(v|V |)} is a set
of personal preference to a product. Let fT (S) be the number of buyers in the
time duration T , then our goal is to maximize fT (S).

3.1 Analysis

In the IC and LT models, influence process terminates at a time when there is no
newly activated node. Since our model aims at maximizing the product adoption,
we define a promotion duration T and only consider the influence process before
deadline time T . Our first result is that

Lemma 1. When Out(v,N) is sub-linear, f1(S) is monotone increasing and
sub-modular.

Proof. It is easy to see that fT (S) is monotone increasing for any T . To prove
f1(S) is sub-modular, we compare f1(A) + f1(B) and f1(A∪B) + f1(A∩B) for
any two subsets A and B of V . Define pT,v(S) to be the probability that v will
adopt the product at time T when S is the seed set and S∗(v) = Neig(v) ∩ S.
Then f1(S) =

∑
v∈V p1,v(S), in which{
p1,v(S) = In(v) +Out(v, |S∗(v)|), for v ∈ V \S
p1,v(S) = 1, for v ∈ S



742 L. Fan et al.

Thus, to prove f1(A) + f1(B) ≥ f1(A ∪B) + f1(A ∩B), it suffices to prove

p1,v(A) + p1,v(B) ≥ p1,v(A ∪B) + p1,v(A ∩B), (v ∈ V \S) (1)

Since (A ∪ B)∗(v) = A∗(v) ∪ B∗(v) and (A ∩ B)∗(v) = A∗(v) ∩ B∗(v), and
Out(v, |S∗(v)|) is a sub-linear function of |S∗(v)| for any v ∈ V (i.e., the highest
degree of |S∗(v)| is no more than 1), it is easy to verify that

Out(v, |A∗(v)|)+Out(v, |B∗(v)|) ≥ Out(v, |(A∪B)∗(v)|)+Out(v, |(A∩B)∗(v)|).
(2)

Therefore, f1(S) is sub-modular. �

Theorem 1. When Out(v,N) is sub-linear, fT (S) is monotone increasing and
sub-modular, where T = 1, 2.

Proof. By Lemma 1, we know that f1(S) is monotone increasing and sub-
modular, and from its proof, we can get that, for any node v ∈ V \S, p1,v(S) is
sub-modular where p1,v(S) denotes the probability that v will adopt the product
at time 1 with S the seed set. Since the events that v will buy the product at
time 1 and v will buy the product at time 2 are mutually exclusive, for any
v ∈ V , we have

p2,v(S) = p1,v(S) + (1− p1,v(S)) · (In(v) +Out(v,
∑

v′∈Neig(v)

P (v′|S, v, 1)))(3)

= 1− (1− p1,v(S)) · (1− (In(v) +Out(v,
∑

v′∈Neig(v)

P (v′|S, v, 1))))

= 1− (1− p1,v(S)) · (1− (In(v) +Out(v,
∑

v′∈Neig(v)

p1,v′(S)))),

Out(v,
∑

v′∈Neig(v) P (v
′|S, v, 1)) in the second part of Eq.3 is the function

of influence coming from the neighbors who bought the product at time 1, and
P (v′|S, v, 1) denotes the event that consumer v′ decides to buy a product at time
1 with S the active seed set and consumer v did not buy the product before time
1. Therefore,

∑
v′∈Neig(v) P (v

′|S, v, 1) is the same as
∑

v′∈Neig(v) p1,v′(S), and
from Lemma 1, it is sub-modular for any v ∈ V because the class of sub-modular
functions is closed under non-negative linear combination of sub-modular func-
tions. In addition, since Out(v,N) = γ(v)×|N |β, where 0 < β ≤ 1, Out(v,N) is
concave for any N > 0. Thus Out(v,

∑
v′∈Neig(v) p1,v′(S)) is still sub-modular.

To show p2,v(S) is sub-modular, we claim that

η(S) = (1− p1,v(S)) · (1− (In(v) +Out(v,
∑

v′∈Neig(v)

p1,v′(S)))) (4)

is super-modular. It has been shown that both Out(v,
∑

v′∈Neig(v) p1,v′(S))

and p1,v(S) are monotone increasing and sub-modular, thus we have η1(S) =



A New Model for Product Adoption over Social Networks 743

(1−p1,v(S)) and η2(S) = (1− (In(v)+Out(v,
∑

v′∈Neig(v) p1,v′(S)))) are mono-
tone decreasing and super-modular. Therefore, our claim holds because for any
subsets A and B of V , we have

η(A ∩B) + η(A ∪B)− η(A) − η(B) (5)

= η1(A)(η2(A ∩B)− η2(A)) + η2(A ∩B)(η1(A ∩B)− η1(A))
+ η1(A ∪B)(η2(A ∪B)− η2(B)) + η2(B)(η1(A ∪B)− η1(B))

≥ η1(A ∪B)(η2(A ∩B)− η2(A) + η2(A ∪B)− η2(B))

+ η2(B)(η1(A ∩B)− η1(A) + η1(A ∪B)− η1(B))

≥ 0,

in which the first inequality holds because: first η1(A) > η1(A ∪B) and η2(A ∩
B) − η2(A) ≥ 0), and second η2(A ∩ B) > η2(B) and η1(A ∩ B) − η1(A) > 0).
Therefore, η(S) is super-modular and p2,v(S) = 1 − η(S) is sub-modular. By a
similar argument used in the proof of Lemma 1, it can be shown that f2(S) is
monotone increasing and sub-modular. �

According to Theorem 1, with limited budget, we can apply the greedy algorithm
to maximize fT (S) (T = 1, 2) which has a provable approximation ratio. The
pseudo-code is given in Algorithm 1.

Algorithm 1. Greedy Based Seeding (GBS)

0: Input: a graph G and two parameters K and T (T = 1, 2), in which each node
v is characterized a constant In(v) > 0 and a sub-linear function Out(v, N) (0 ≤
In(v) +Out(v,N) ≤ 1).

1: Let S ← ∅ (S is the seed set);
2: while |S| < K do
3: Find a node v with the maximum fT (S ∪ {v});
4: end while
4: Output: S.

Theorem 2. [17] If there is a value oracle for f : Given a set S ∈ V the oracle
returns the value f(S), the greedy gives a (1− 1

e )-approximation for the problem
of max|S|≤k fT (S).

Theorem 3. It is NP-hard to maximize fT (S) for |S| = k even if T = 1.

Proof. We prove the theorem by doing a polynomial time reduction from the
3 Dimensional Matching problem. For 3 disjoint sets A1, A2 and A3, let A be a
subset of A1 ×A2×A3. M ⊆ A is a 3 Dimensional Matching if any two distinct
elements ((a1i , a2i , a3i) ∈M and (a1j , a2j , a3j ) ∈M) are disjoint. Given a set A
and an integer m, deciding whether there exists a 3 Dimensional Matching with



744 L. Fan et al.

|M | ≥ m is NP-hard. Given an instance of 3 Dimensional Matching with inputs
A1, A2, A3 and A, we can construct a graph as follows.

1) For each triple in A, create a t−type node; and for each item in A1∪A2∪A3,
create a i− type node.

2) For each triple t = (a1, a2, a3), create three edges (t, a1), (t, a2) and (t, a3).
3) Let Δ be the maximum degree in the graph. In order to make sure the

adoption probability of each node is no more than 1, for each i− type node, set
its own preference In(v) = 1

2Δ and its affected factor Out(v,N) = 1
2Δ × N

1
2 .

For each t − type node, simply set their In(v) = 0 and Out(v,N) = 0 so that
they will never buy the product.

4) Set the budget k = m.
It is clear that the reduction can be done in polynomial time. If the 3 Di-

mensional Matching is a “yes” instance, i.e., there are m disjoint elements in A.
Consider the seed set which includes the m t− type nodes. The expected

f1(S) = m+ 3m(
1

2Δ
+

1

2Δ
× 1

1
2 ) = m+

3m

Δ
. (6)

If the 3 Dimensional Matching is a “no” instance, since x > x
1
2 for any x ≥ 1,

it can be shown that

f1(S) < m+
3m

Δ
, (∀v ∈ V ). (7)

In sum, Theorem 3 is proved. �

According to Theorem 3, there is no polynomial time optimal solution for the
seed selection problem even if the cycle length T = 1.

u1

…...

u2

v1 v2 v3 vm-1 vm

Fig. 1. An illustration example

Theorem 4. When Out(v,N) is not sub-linear, fT (S) is not sub-modular for
any T .

Proof. We prove Theorem 3 by giving a counterexample. As shown in Fig. 1, we
construct a complete bipartite graph, in which nodes u1 and u2 belong to the
upper side and other nodes belong to the lower side.

1) For nodes belong to the lower side, set In(v) = α and Out(v,N) =
β|S∗(v)|γ .

2) For nodes belong to the upper side, simply set In(v) = 0 andOut(v,N) = 0.



A New Model for Product Adoption over Social Networks 745

Let A = {u1}, B = {u2} andm be the number of nodes in the lower side. Then
fT (A) = fT (B) = 1+m(1−(1−α−β)T ), fT (A∪B) = 1+m(1−(1−α−β2γ)T )
and fT (A ∩B) = 1 +m(1− (1 − α)T ). Let δ = 1− α− β, then

fT (A) + fT (B)− (fT (A ∪B) + fT (A ∩B)) (8)

= 2m(1− δT )−m(1 − (δ + β)T )−m(1− (δ − β(2γ − 1))T )

= m((δ + β)T + (δ − β(2γ − 1))T − 2δT ).

It is flexible to set γ according to δ, T and β to make Eq.8 less than zero, and

when γ > log2(
δ−(2δT +(δ+β)T )

β + 1), then fT (S) is not sub-modular. Therefore,

fT (S) is not sub-modular when Out(v,N) is an arbitrary function of N . �

According to Theorem 4, it can be shown that to approximate fT (S) for |S| = k
when T ≥ 2 is computational hard.

4 Conclusion

With respect to individual’s decision to adopt a product, previous models such
as the IC and LT do not consider personal preference to the product. However,
our observations on real-world data show that personal preference plays a vital
role in decision-making process. In this paper, we propose a novel propagation
model that accounts for our observations. Under this model, we formalize the
problem of Product Adoption Maximization (PAM). We demonstrate that the
expected adoption spread function under this model is sub-modular within T
time (T = 1, 2) when the function of influence coming from neighbors is sub-
linear over the number of active neighbors, therefore, the classic greedy algorithm
is adopted. We also show that the problem is NP-hard, and when the object
function of the influence imposed by neighbors is not sub-linear over the number
of active neighbors, thus the objective function is not sub-modular.

Although various models have been presented for influence diffusion or prod-
uct promotion, it is still a long way for us to construct realistic models. Some sit-
uations should be considered in future works: 1) personal preference may change
along with time, 2) other factors exist in influence propagation among individu-
als. Another research direction is to validate this new model against many real
data sets from diverse domains. Last but not the least, scalable algorithms are
expected for our model to target the seeds efficiently in very large networks.

Acknowledgments. This work was supported in part by the US National
Science Foundation (NSF) under Grant no. CNS-1016320 and CCF-0829993.

References

1. Brown, J., Reinegen, P.: Social ties and word-of-mouth referral behavior. Journal
of Consumer Research 14, 350–362 (1987)



746 L. Fan et al.

2. Goldenberg, J., Libai, B.,Muller, E.: Using complex systems analysis to advancemar-
keting theory development: Modeling heterogeneity effects on new product growth
through stochastic cellular automata. Academy of Marketing Science Review (2001)

3. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look
at the underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)

4. Richardson, M., Domingos, V.: Mining knowledge-sharing sites for viral marketing.
In: KDD, pp. 61–70 (2002)

5. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD,
pp. 57–66 (2001)

6. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence
through a social network. In: Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD, pp. 137–146 (2003)

7. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model
for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg
(2005)

8. Kimura, M., Saito, K.: Tractable models for information diffusion in social net-
works. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 259–271. Springer, Heidelberg (2006)

9. Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information
diffusion on a social network. In: AAAI, pp. 1371–1376 (2007)

10. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD (2009)

11. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks
under the linear threshold model. In: Proceedings of the 10th IEEE International
Conference on Data Mining, ICDM 2010, pp. 88–97 (2010)

12. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD, pp.
1029–1038 (2010)

13. Lu, Z., Zhang, W., Wu,W., Fu, B., Du, D.: Approximation and inapproximation for
the influence maximization problem in social networks under deterministic linear
threshold model. In: ICDCSW, pp. 160–165 (2011)

14. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance,
N.: Coste effective outbreak detection in networks. In: Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD 2007), pp. 420–429 (2007)

15. Bhagat, S., Goyal, A., Lakshmanan, L.V.S.: Maximizing product adoption in social
networks. In: Web Search and Data Mining, WSDM (2012)

16. Kimura, M., Saito, K., Motoda, H.: Efficient estimation of influence functions for
SIS model on social networks. In: Proc. of the 21st International Joint Conference
on Artificial Intelligence, pp. 2046–2051 (2009)

17. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for maxi-
mizing submodular set functions. Mathematical Programming 14, 265–294 (1978)

18. Bohlen, J.M., Beal, G.M.: The diffusion process. Spl. Report No. 18, Agri. Extn.
Serv., Iowa State College (1957)

19. Kalish, S.: A new product adoption model with price, advertising, and uncertainty.
Management Science 31(12) (1985)

20. Fan, L., Lu, Z., Wu, W., Thuraisingham, B., Ma, H., Bi, Y.: Least cost rumor
blocking in social networks. In: Proceedings of the 33rd International Conference
on Distributed Computing Systems, ICDCS (2013)



Generating Uncertain Networks

Based on Historical Network Snapshots

Meng Han1, Mingyuan Yan1, Jinbao Li2, Shouling Ji1, and Yingshu Li1,2

1 Department of Computer Science, Georgia State University
2 School of Computer Science and Technology, Heilongjiang University

{mhan7,myan2}@student.gsu.edu, jbli@hlju.edu.cn,

sji@cs.gsu.edu, yili@gsu.edu

Abstract. Imprecision, incompleteness and dynamic exist in wide range
of network applications. It is difficult to decide the uncertainty rela-
tionship among nodes since traditional models do not make sense on
uncertain networks, and the inherent computational complexity of prob-
lems with uncertainty is always intractable. In this paper, we study how
to capture the uncertainty in networks by modeling a series snapshots
of networks to an uncertain graph. Since the large number of possible
instantiations of an uncertain network, a novel sampling scheme is pro-
posed which enables the development of efficient algorithm to measure
in uncertain networks; considering the practical of neighborhood rela-
tionship in real networks, a framework is introduced to transform the
uncertain networks into deterministic weight networks where the weights
on edges can be measured as Jaccard-like index. The comprehensive ex-
perimental evaluation on real data demonstrates the effectiveness and
efficiency of our algorithms.

Keywords: Data mining, Snapshot, Uncertain graph, Social networks.

1 Introduction

Networks such as the Internet, social networks, wireless networks, biological
networks etc. are now indispensable in our daily life. Most networks are uncertain
on the aspects of network settings, traffic patterns, user information etc. In the
recent years, there has been tremendous interests in mining and discovering
implicit knowledge from various networks.

In real life, uncertainty exists in all kinds of networks. The uncertainty may
result from network components themselves or from external factors. On the
one hand, most networks whose structures and features are changing all the
time are dynamic. For example, in a social network, a group of colleagues form
a community when they are in the same company. In due time, such a colleague
relationship may be broken as some of them begin to work in another company
while some of them start graduate studies. On the other hand, uncertainty is
caused by the data generation process, and the variety of networks. Different data
acquisition techniques and data description methods may result in incomplete

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 747–758, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



748 M. Han et al.

and inaccurate data which aggregates network uncertainty. Therefore, how to
identify relationships in networks considering uncertainty is very stringent.

However, in practice, a clear relationship among pairs of nodes is hard to
detect in huge uncertain complicated networks. Due to the increase of complexity
in modern networks especially social networks (Facebook, Twitter and LinkedIn,
etc.), it becomes more and more difficult to efficiently identify relationship in
networks. Following are the emerging challenges.

First, even today how to model and define uncertainty in real life is still an
open problem. To conduct experiments on uncertain networks, almost all the
existing works are evaluated based on the PPI (Protein-protein interaction) net-
work, which is a very famous uncertain graph database representing protein
interactions for different organisms obtained from the STRING database [1].
Furthermore, although uncertainty exists, there is no representative uncertain
data set can be used for applications such as social networks and wireless net-
works, because there is no convincing model or method to generate it. Second,
uncertain graphs represented in terms of structural data is much harder to ma-
nipulate than deterministic graphs. Even if we have a reasonable uncertainty
model, the cost of managing and mining such uncertainty in networks is still
very expensive. To estimate an expected relationship in uncertain graph usually
incurs high computation cost, and sometimes even impossible for huge networks
with millions of nodes and edges. Hence, computation overhead becomes a big
challenge. Third, besides uncertainty, deciding relationships among nodes itself
is a challenging problem. Since different applications have various demands, the
relationships among nodes are affected by many factors, which are quite hard
to identify relevance among nodes. In real applications, especially in social net-
works, a relationship is not only reflected by the link between a pair of nodes but
also effected by a node’s neighbors. If two nodes have many common neighbors,
there might be a more strong relationship between them even if there is no direct
link exists between them. Therefore, we should take the common neighbors into
consideration.

Facing the aforementioned challenges, this paper has the following contri-
butions. First, one effective way for modeling uncertainty is to approximate
the dynamic feature of a network by a static model endowed with some addi-
tional features. Therefore, we propose two basic models to describe uncertainty
in dynamic networks for different applications. In these two models, historical
information is utilized to predict future relationships. Second, considering the
expensive cost of managing and mining uncertainty, we employ the sampling
technique to take care of uncertain possible worlds. Furthermore, the Chernoff
bound and the Hoeffding inequality are used to guarantee the accuracy of the
obtained results. Last but not the least, we design a method for relationship de-
tection in uncertain networks. The entities in a same community or group with
relationship usually interact frequently, share similar properties and generate
common features. In our solution, two-hop expectation distance are adopted to
approximate the expected number of common neighbors. This method can also
serve as a framework for measuring the expected number of common neighbors in



Generating Uncertain Networks Based on Historical Network Snapshots 749

uncertain graphs. Some existing community detection, networks clustering and
other algorithms designed for certain graphs can then be employed in uncertain
graphs based on our framework.

The rest of this paper is organized as follows. Section 2 reviews the related
works. Section 3 presents the preliminaries and problem definition. Section 4
illustrates the sampling scheme and theoretical analysis. Evaluation results based
on real and synthetic data sets are shown in Section 5. Section 6 concludes our
paper.

2 Related Work

To the best of our knowledge, this work is the first one to study the uncertainty
generation problem in uncertain networks. However, there do exist some works in
community detection or network clustering based on relationships in traditional
certain networks, and some models for uncertain data mining. Two surveys [2]
and [16] present these works.

Following are the works mining and detecting relationships in certain net-
works, such as mining communities in YouTube [8], and mining interest groups
in mobile social networks [4]. The work in [3] develops an algorithm that can
identify the nodes which bridge clusters and nodes marginally connected to out-
liers. Since this technique needs a parameter to control the minimum similarity
in a graph, the algorithms in [7] overcome the difficulty by finding only the best
cluster boundaries to cluster a network. However, all the above mentioned works
do not consider uncertainty in networks.

The inherent uncertainty in networks have to be considered for conducting ac-
curate analysis and mining. The model in [6] is established for uncertain graphs
(also named as probabilistic graphs) [5], in which every edge is associated with
an existence probability. The following works study different issues considering
uncertainty in networks. Jin et al. [9] introduced a sampling scheme which dis-
covers highly reliable subgraphs with high probability. Since the shortest path
in an uncertain graph is different from the ones in a deterministic graph, two
new kinds of queries appear which are threshold-based shortest path queries [10]
and distance-constraint teachability queries[11]. Considering the uncertainty in
networks, the work in [12] introduces a framework for processing k nearest neigh-
bor (k-NN) queries. After proposing some novel distance functions in uncertain
graphs, the authors designed a sampling algorithm which can prune the search
space efficiently. Unfortunately, these works and models cannot deal with com-
munity detection in uncertain networks. Moreover, all the above works do not
considering the common neighbor factor, which has critical impact on identify
clear relationships in uncertain graphs.

3 Data Model and Problem Definition

In this section, we formally present the data models considered in this paper.
Similar to deterministic graphs, uncertain graphs may be undirected or directed



750 M. Han et al.

Gi

fj(G
i)

f1(G
i) = 1

f2(G
i) = x

Fig. 1. Weight assignment functions for snapshot Gi

and carry additional labels on edges. For simplicity and clarity, we consider
undirected simple uncertain graphs. However, our discussion can be extended to
directed graphs straightforwardly. We assume the edges in a graph are indepen-
dent, which is common in real applications.

Definition 1: A dynamic network isG = (G0, G1, . . . , Gt) whereG0, G1, . . . , Gt

are the network snapshots obtained at time 0, 1, . . . , t. We use ei (0 ≤ i ≤ t) to
indicate whether edge e appears in snapshot Gi. ei = 1 if ei ∈ Gi, otherwise,
ei = 0.

Changes in topology mainly result in uncertainty in a network. We propose
the following two different basic uncertainty models to reflect topology changes.
In those two models, a weight is assigned to each snapshot Gi (0 ≤ i ≤ t), and
different weight assignment scenarios are applied to different models.

(M1) Constant Model. This model is used for the case where all the snap-
shots have the same impact on network uncertainty. Therefore, we assign the
same weight to each snapshot. As shown in Fig.1, f1(G

i) is a function which
assigns constant weight 1 to each snapshot.

(M2) Linear Model. This model is used for the case where the snapshots
have a linear changing pattern with time. Therefore, we employ a linear weight
assignment scheme for this model. As shown in Fig.1, f2(G

i) is a linear function.
For M1 or M2, the existence probability assigned to edge e is calculated as

following:

Pr(e) =

∑t
i=0 e

ifj(G
i)∑t

i=0 fj(G
i)

(1)

Definition 2: An uncertain graph is represented by G = (V , E, p), where V is
the vertices set, E ⊆ V × V is the set of edges, V (G) and V (G) denote vertices
set and edges set of G, p : E → (0, 1] is the function assigning each edge e ∈ E
a probability p(e) = Pr(e) obtained from Equation (1).



Generating Uncertain Networks Based on Historical Network Snapshots 751

p( =>I
2
)=0.096 p( =>I

3
)=0.036 p( =>I

4
)=0.336

p( =>I
6
)=0.084 p( =>I

7
)=0.024 p( =>I

8
)=0.056p( =>I

5
)=0.224

Uncertain Graph

p( =>I
1
)=0.144

Fig. 2. Derivation of possible worlds Ii for uncertain graph G

Let I be a possible world instance which is a deterministic graph. As shown
below, G ⇒ I denotes that I can be generated from G, and the probability of
such a derivation is P (G ⇒ I).

P (G ⇒ I) =
∏

e∈E(I)

p(e)
∏

e∈E(G))\E(I)

(1− p(e)) (2)

Example 1: Fig. 2 shows an example uncertain graph G. The number marked on
each edge e denotes p(e). For G, there are 2|E| possible worlds Ii(1 ≤ i ≤ 2|E|).
In this example, there are 2|3| = 8 possible worlds. Each deterministic graph
can be viewed as a special uncertain graph in which the existence probability of
every edge is 1.

The relationship between a pair of nodes , to a considerable degree, can be
determined by the number of their common neighbors. Therefore, a reasonable
model for describing common neighbors in uncertain graphs is expected. Let
N(v) be the neighbor set of vertex v, where neighbors mean that the existence
probability between v and nodes in N(v) need to be larger than 0. As one of the
most important measures in deterministic graphs, the Jaccard index is defined

as
N(vi)∩N(vj)
N(vi)∪N(vj)

ranging from 0 (no overlap in the neighborhoods of vi and vj) to

1 (the neighborhoods of vi and vj are identical). However, for uncertain graphs,
it is almost impossible to derive such an index, since the relationship between
every pair of nodes is imprecise.

Definition 3: To measure the distance between two vertices vi and vj in an
uncertain graph, an Expected neighbor distance, Endistance(vi, vj) is defined
as the expectation of the Jaccard index.

Endistance(vi, vj) = Exp(
N(vi) ∩N(vj)

N(vi) ∪N(vj)
) (3)

where the function Exp(X) is the expectation of variable X .
Definition 4: A weight graph Gw = (V , E, w), where w = Endistance(u, v)

denotes the relationship between each pair of nodes u ∈ V (Gw) and v ∈ V (Gw).



752 M. Han et al.

From the above definition, our investigated problem is defined as follows.
Input: A dynamic graph G = (G0, G1, . . . , Gt), weight assignment model type

j, sampling parameters ε and δ which guarantee the accuracy.
Output: A weighted graph Gw.

4 Algorithm Framework and Theoretical Analysis

In this section, we present the framework of our algorithm. The first step is
to construct an uncertain network based on dynamic snapshots; then, consider-
ing common neighbors we introduce a method to measure relationships among
nodes; third, an effective sampling scheme is introduced with some optimiza-
tion strategies, and a complete theoretical analysis is presented to guarantee our
sampling scheme’s correctness and efficiency.

4.1 Construct an Uncertain Network

The existing uncertain models, it is generally assumed that uncertainty exists
in networks. The way they used to present uncertainty is to associate a random
number between 0 to 1 to each node and/or each edge. However, except the un-
certain network PPI whose probability is determined by bioexperiment, there is
still no any other more reasonable model or method to present uncertainty in net-
works. Since the dynamic feature is one of the most important reasons resulting
in uncertainty, we model uncertainty through several network snapshots coming
from a dynamic network. Algorithm 1 presents the process of constructing an
uncertain network.

Algorithm 1. Constructing an Uncertain Graph

input : a set of snapshots in dynamic graph G = (G0, G1, . . . , Gt) , the model
type j

output: uncertain graph G
According to model type j, use weight assignment function fj(G

i) to assign1

weight to each (G0, G1, . . . , Gt) ∈ G, Ek ∈ E(G)
for i = 0; i ≤ t− 1; i++ do2

for each edge ek do3

if eik ∈ Gi then4

Numeratork += (fj(e
i
k));5

Denominatork += (fj(e
i
k));6

Pr(Ek) = Numeratork/Denominatork;7

Since the required data source to construct an uncertain network is a set
of snapshots of a dynamic network, the topology may change over time due
to nodes’ disappear or appear. We suppose that the node set includes all the



Generating Uncertain Networks Based on Historical Network Snapshots 753

v

i

v

j

v

k1

v

k2

v

k3

v

k4

Fig. 3. Common neighbors in a community

nodes ever appeared in a network. If node i disappears in one snapshot, we
set the weights of all the edges connected to i to 0. The computational cost of
Algorithm 1 is O(t ∗ n) where n is the number of the nodes in one snapshot and
t is the number of snapshots.

4.2 Measuring Relationships Among Nodes in an Uncertain
Network

The number of common neighbors is one of the most important measurements
for relationships among nodes. On one hand, common neighbors stand for direct
relationships among nodes, since if an edge connects node i and node j, they are
also common neighbors of each other (each node’s neighbor set includes itself).
On the other hand, the number of common neighbors also describes indirect
relationships within a community. However, in an uncertain network, the concept
of common neighbor is difficult to define since the direct relationship between a
pair of nodes is not clear. Researchers use the expectation of an edge or path to
measure a direct connection. Similarly, we use the expected number of common
neighbors to represent the relationship.

In an uncertain graph G, the expected number of common neighbors between
node vi and node vj can be calculated by the expectation of the number of
distinct 2-hop paths between them.

In a deterministic graph, for node vi and node vj , the number of common
neighbors equals to the number of distinct 2-hop paths (distinct means any two
paths do not have common intermediate node) between them. As shown in Fig.
3, there are four nodes (vk1, vk2, vk3, vk4) between vi and vj . Obviously, there
are also four distinct 2-hop paths between them correspondingly. Apparently
the number of distinct 2-hop paths and the number of common neighbors is a
one-one correspondence. Then we can have a deterministic graph. For vi and vj ,
a new distinct 2-hop path means adding a new node vk as a connector between
them, and vk belongs to both N(vi) and N(vj), where vk1, . . . , vk4 are the
common neighbors of vi and vj .

Obviously, in a deterministic graph, the number of common neighbors between
two nodes corresponds to the number of 2-hop distinct paths between them. Since
the expected number of common neighbors cannot be calculated directly, we use
the number of 2-hop distinct paths to represent it. In an uncertain graph G, a
2-hop path is a one existing in some of the possible worlds generated from G.



754 M. Han et al.

We cannot derive whether there is a 2-hop path or not; however, we can obtain
the expected existence possibility of a path according to its existence situation
in each possible world.

Lemma 1. In uncertain graph G, the expected size of the union set of two neigh-
bor sets belong to node vi and node vj can be calculated as follows.

Exp(|N(vi)∪N(vj)|) = Exp(|N(vi)|)+Exp(|N(vi)|)−Exp(|N(vi)∩N(vj)|) (4)

Proof. This is a simple application of the set theory.

Theorem 1. In uncertain graph G, the expectation of the Jaccard index
|N(vi)∩N(vj)|
|N(vi)∪N(vj)| can be calculated by

ExpDCountPath2(vi,vj)
Exp(|N(vi)∪N(vj)|) , where the numerator part

ExpDCountPath2(vi, vj) is the expected number of distinct 2-hop paths between
node vi and node vj, and the fraction denominator part Exp(|N(vi)∪N(vj)|) is
the expected size of the union set of the two neighbor sets.

Proof. Theorem 1 is obviously true according to and Lemma 1.

4.3 Sampling Possible Worlds

As mentioned, to derive Endistance(u, v) in an uncertain graph, we need to
enumerate all the possible worlds to calculate the expected number of 2-hop
distinct paths, then calculate the expected number of common neighbors and
the expected size of the union set of the two neighbor sets.

To enumerate all the possible worlds generated from an uncertain graph G is
a #P-complete problem [6]. According to this fact, we cannot enumerate all the
possible worlds to calculate Endistance(u, v) in an uncertain graph. We need to
adopt some other more effective techniques. In this paper, we apply a sampling
method to estimate Endistance(u, v).

Now we introduce how to perform sampling of the possible worlds which
follow a bernoulli distribution. Each edge in an uncertain graph either exists in
a possible world with probability 1 or not shows up at all. Consider G = (V ,
E, p) with n nodes. ε and δ are accuracy parameters where ε (0 ≤ ε ≤ 1) and
δ (0 ≤ δ ≤ 1) denote the upper bound of relative error and failure probability
respectively. The parameter r denotes the number of possible worlds. Let Ii,
1 ≤ i ≤ r, be a set of sampled graphs under distribution P where all {Ii}p ∈
Imp(G), where Imp(G) is a generated implication subspace.

The Chernoff bound gives exponentially decreasing bounds on tail distribu-
tions of sums of independent random variables [13]. We employ the Chernoff
bound to reduce the number of the sampled possible worlds while guaranteeing
the required accuracy.

Lemma 2. Given a pair of vertices (u, v), set Xi to be equal to 1 if there
exists at least one 2-hop path from u to v in graph Ii, and 0 otherwise. Ac-
cording to the Chernoff bound, we get P (1r |

∑r
i=1Xi−Exp(Xi)| ≥ εExp(Xi)) ≤



Generating Uncertain Networks Based on Historical Network Snapshots 755

2exp( r·Exp(Xi)ε
2

3 ). If the number of sampled possible worlds r ≥ 3
ε2Exp(Xi))

ln (2δ ),

we have

(
1

r
|

r∑
i=1

Xi − Exp(Xi)| ≥ εExp(Xi)) ≤ δ (5)

The Hoeffding’s inequality provides a method to bound the upper bound of the
probability of the sum of random variables deviating from its expected value
[14]. We employ the Hoeffding’s inequality to further reduce the number of the
sampled possible worlds while guaranteeing accuracy.

Lemma 3. Let di denote the existence probability of the 2-hop path between u
and v in a possible world Ii. Exp(di) is the estimated expectation value accord-

ing to the sampling subspace. Based on Hoeffding’s inequality, P (1r |
∑i=r

i=1 di −
Exp(di)| ≥ ε) ≤ 2exp( 2ε2

r(n−1)2 ). If r ≥
(n−1)2

2ε2 ln (2δ ), we have

P (
1

r
|
i=r∑
i=1

di − Exp(di)| ≥ ε) ≤ δ (6)

Theorem 2. Consider p(u, v) as the probability distribution function respond to

the distance of path between u and v in uncertain graph G, set p̂(u, v) which is
independent bernoulli distribution random variables as the estimator of p(u, v)

come from sampling subspace in {Gi}p. It is easily to prove p̂(u, v) is a unbiased

estimator of p(u, v) [15]. If we sample at least r = max( (n−1)2

2ε2 , 6
ε2 ) ln (

2
δ ) possible

worlds, we can guarantee that:

P (
1

r
|

r∑
i=1

p̂(u, v)− p(u, v)| ≥ εp(u, v)) ≤ δ (7)

P (
1

r
|

∑
{Gi}p∈Imp(G)

p̂(u, v)− p(u, v)| ≥ ε) ≤ δ (8)

Proof. Theorem 2 is the simple application of Lemma 2 and Lemma 3. And we
change the bound from r ≥ 3

ε2p(u,v) ln (
2
δ ) to r ≥

6
ε2 ln (

2
δ ) since the only attention

we need to pay to is the exist probability larger than 1
2 .

We employ matrix techniques to identify 2-hop path between each pair of nodes,
where a matrix is used to represent the connectivity information for a network.
Consequently, we can get the 2-hop path existence by multiplying the matrix
with itself, where each 1 in the result matrix M ′ means at least one 2-hop path
exists between the corresponding pair of nodes. Based on the result matrix, our
sampling algorithm can be applied to derive a weighted graph.

The computational cost of Algorithm 2 is O(r ∗ n2), where n is the size of
network’s node set n = V (Gw) and r is the number of possible worlds which are
enumerated.



756 M. Han et al.

Algorithm 2. Sampling Algorithm

input : Sampling parameters ε and δ, uncertain graph G
output: Weighted graph Gw

According to ε and δ, calculate r;1

i = 1 while i ≤ r do2

i++;3

for j = 0; j! = n− 1; j ++ do4

for k = 0; k! = n− 1; k ++ do5

if M ′
jk! = 0 then6

Calculate Endistance(j, k) ∈ G to construct Gw;7

5 Experimental Evaluation

In this section, we evaluate our algorithms on the aspects of quality and ef-
ficiency. All the experiments were performed on a desktop computer with In-
ter(R) Core(TM)2 Quad CPU 2.83GHz and 4GB RAM. We implement all the
algorithms based on BGL which is a sub library of Standard Template Library
(STL)[18]. One typical dataset from SNAP (Stanford Large Network Dataset
Collection)[19] was used to evaluate our algorithm. Table 1 shows the basic in-
formation of that dataset, where each row represents a network snapshot.

Table 1. Amazon Dataset

Data Nodes Edges Diameter

Amazon0302 (A02) 262111 1234877 29
Amazon0312 (A12) 400727 3200440 18
Amazon0505 (A05) 410236 3356824 21
Amazon0601 (A01) 403394 3387388 21

0

3

6

9

12

15

18

A
ve

ra
ge

 E
xp

ec
te

d 
D

eg
re

e

Graph

 A01  EAD(M1)   EAD(M2) 

Fig. 4. Effectiveness Evaluation



Generating Uncertain Networks Based on Historical Network Snapshots 757

We first evaluate how our proposed models can depict the dynamic evolvement
of a network based on historical network information. We use the first three net-
work snapshots in Table 1 are used as historical information, and employ our M1
and M2 models to generate corresponding uncertain networks. Fig. 4 shows the
average degrees of the 4th network snapshot in Table 1, the expected average de-
gree of uncertain networks generated by M1 and M2. Apparently, the generated
uncertain networks by M1 and M2 are almost in accordance with the 4th network
snapshot. Because the 1st input network snapshot A02 is very different from the
other two, there is a little difference between the generated uncertain networks
and the 4th network snapshot. M1 focuses on the overall history, while M2 con-
siders more about the most recent situations. This is why the uncertain network
generated by M2 is more proximate to the 4th network snapshot.

Fig. 5. Effectiveness Evaluation

Secondly, we evaluate the quality of our sampling algorithm in terms of cor-
rectness and the size of the sampling space. Base on Theorem 2, ε reflects the
upper bound of the difference between the sampling result and the expected
result, and δ denotes the relative error of our sampling result. Fig. 5 illustrates
the different settings of ε and δ, and the resultant sampling number. In possible
worlds model, the whole sampling space is 25000 which even cannot be accepted
directly by a typical computer. However, even if the user has an extremely strict
requirement of correctness, for example ε = 0.005 and δ = 0.005, the sampling
number is 5.98 ∗ 1012. Evenly if the sampling number is only 1.4 ∗ 1010, it still
can be guaranteed that δ is less than 0.08 and ε is less than 0.05.

6 Conclusion

The importance of uncertainty in networks has been recognized in many ap-
plication areas, such as social networks, wireless networks and PPI networks.
In this paper, we present a framework for generating uncertain networks based
on historical network snapshots. Two uncertainty construction models are pre-
sented to capture uncertainty from dynamic snapshots, and sampling techniques
are also employed to improve the efficiency of the algorithm. To describe the



758 M. Han et al.

relationship in uncertain networks in a more practical way, 2-hop expectation
distance are adopted to approximate the expected number of common neighbors.
Both the theoretical analysis and our experiments demonstrate the effectiveness
and efficiency of our proposed methods.

References

1. http://string-db.org/
2. Lancichinetti, A., Fortunato, S.: Community detection algorithms: A comparative

analysis. Phys. Rev. E 80, 56–117 (2009)
3. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering al-

gorithm for networks. In: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)

4. Xu, K., Zhang, X.: Mining Community in Mobile Social Network. Procedia Engi-
neering 29, 3080–3084 (2012)

5. Hintsanen, P., Toivonen, H.: Finding reliable subgraphs from large probabilistic
graphs. Data Min. Knowl. Disc. 17(1), 3–23 (2008)

6. Zou, Z., Li, J., Gao, H., Zhang, S.: Mining Frequent Subgraph Patterns from Un-
certain Graph Data. IEEE Trans. on Knowl. and Data Eng. 22(9), 1203–1218
(2010)

7. Bortner, D., Han, J.: Progressive clustering of networks using structure-connected
order of traversal. In: IEEE The International Conference on Data Engineering
ICDE, pp. 653–656 (2010)

8. Burton, S., Morris, R., Dimond, M., Hansen, J., Giraud-Carrier, C., West, J., Han-
son, C., Barnes, M.: Public health community mining in YouTube. In: Proceedings
of the 2nd ACM SIGHIT Symposium on International Health Informatics, pp.
81–90 (2012)

9. Jin, R., Liu, L., Aggarwal, C.C.: Discovering highly reliable subgraphs in uncertain
graphs. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 2011, pp. 992–1000 (2011)

10. Yuan, Y., Chen, L., Wang, G.: Efficiently answering probability threshold-based
shortest path queries over uncertain graphs. In: Kitagawa, H., Ishikawa, Y., Li,
Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 155–170. Springer,
Heidelberg (2010)

11. Jin, R., Liu, L., Ding, B., Wang, H.: Distance-constraint reachability computation
in uncertain graphs. Proceedings of the VLDB Endowment 4(9), 551–562 (2011)

12. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: K-nearest neighbors in uncertain
graphs. Proceedings of the VLDB Endowment 3(1-2), 997–1008 (2010)

13. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. The Annals of Mathematical Statistics 23(4), 493–507
(1952)

14. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

15. Ross, S.M.: Introduction to probability models. Academic Press (2009)
16. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications.

IEEE Transactions on Knowledge and Data Engineering 21(5), 609–623 (2009)
17. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356

(1969)
18. http://www.boost.org
19. http://snap.stanford.edu/data/

http://string-db.org/
http://www.boost.org
http://snap.stanford.edu/data/


 

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 759–769, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

A Short-Term Prediction Model of Topic Popularity  
on Microblogs 

Juanjuan Zhao1, Weili Wu2, Xiaolong Zhang3, Yan Qiang1, 
Tao Liu1,*, and Lidong Wu2 

1 College of Computer Science and Technology Taiyuan University of Technology, China 
{zhaojuanjuan,qiangyan,lt0157}@tyut.edu.cn 

2 Department of Computer Science, University of Texas at Dallas, Richardson, USA 
{weiliwu,Lidong.wu}@utdallas.edu 

3 College of Information Sciences and Technology Pennsylvania State University, USA 
xiaolong.zhang@gmail.com 

Abstract. Online social networks can be used as networks of human sensors to 
detect important events. It is important to detect important events as early as 
possible. Microblogs provide a new communication and information sharing 
platform for people to report daily-life events, and express their views on vari-
ous issues. Because of the quickness of microblogs, microblog data can be used 
to predict popular topics. In this paper, we propose a short-term prediction 
model of topic popularity. With data from Sina Weibo, the most popular micro-
blog service in China, we test our algorithm and our data shows that the  
proposed model could give a short-term prediction on topic popularity. 

Keywords: Social network, Microblog, Analysis of Weibo properties,  
Prediction model. 

1 Introduction 

Microblog[1] has become a popular social networking service in the recent years 
because of its ease of use and its quickness. Based on user's social relationship, mi-
croblog services offer a nearly real-time tool for people to follow the current events 
and comment on them. Studies have shown that people have high requirements of 
real-time when they browse social network websites. They are more inclined to con-
cern with what is happening. As a result, it will be very useful to speed up the analysis 
of Weibo processing speed. Meanwhile, it may also bring about commercial impact 
on microblogging itself. Currently, Twitter’s active user number per month has 
reached 200 million. In China, Sina Weibo, the most influential social network ser-
vice, enjoys more than 300 million users.  

Identifying potentially hot topics in microblogs is important. Knowing hot topics, 
users can better monitor microblogging opinions. Also, the information of hot topics 
                                                           
* Corresponding author. 



760 J. Zhao et al. 

 

can provide guidance for the site maintenance, such as better coping with unexpected 
events.  

In this paper, we propose a short-term prediction model of topic popularity based 
on Sina Weibo data. We first build a topic spreading model, and analyze which Wei-
bo data features can have influence on the spreading of topics. Then, we develop the 
model of short-term prediction on topic popularity. Under this model, we examine the 
influences of individual Weibo data feature and test the performance of our prediction 
model on a real Sina Weibo dataset. 

The rest of this paper is structured as follows: Section 2 presents the related work. 
Section 3 presents our model of short-term prediction on topic popularity. Section 4 
shows the results obtained and finally, Section 5 exposes our conclusions and future 
work. 

2 Previous works 

In recent years, much research has been done on microblog topic prediction, mostly 
based on the research on hot topic finding. Chen et al. [2] used an “Aging Theory” to 
build a model to find and track topics by analyzing the temporal characteristics of 
topics. Some research relied on data features, such as user’s interest degree on the 
topic [3], the number of comments, and the number of participants [4-6], to analyze 
the spreading of topic. Jamali et al. [7] also used the comment data and social network 
derived features to predict the popularity of online contents with a classification and 
regression framework. Gomez et al. [8] proposed a model to predict short-term and 
long-term user behaviors by analyzing the temporal features of user comment activi-
ties on Slashdot. Cheng et al. [9] used the BPNN model to predict changes of network 
topics. Liu et al. [10] used data-mining techniques to extract keyword-based user 
interests from microblog contents. Nikolov and Shah [13] developed a new algorithm 
that can predict which Twitter topics will trend, with an accuracy as high as 95%  
and a speed as fast as in average one and a half hours earlier than Twitter’s own  
algorithm.  

Although research above has made some achievements in the field of topics predic-
tion, there are still many unsolved problems. One of these problems is that existing 
research has a scale limitation of their datasets. When the dataset is big enough, noisy 
data would be significant. Removing such noisy data requires heavy computation 
costs. Another problem is how to keep a high accuracy of topic prediction. Mean-
while, most research is on Twitter data, and little research has been done on Sina 
Weibo data, which has shown some different features from that in Twitter [15].  

3 Method 

In this section, we first introduce a topic spreading model, and then present the  
analysis of data features of Sina Weibo. Finally, we propose our model of short-term  
prediction on topic popularity. 



 A Short-Term Prediction Model of Topic Popularity on Microblogs 761 

 

3.1 Analysis of Topic Spreading Model 

In this paper, we build a social network by setting a user in Weibo as a node and a 
user relationship as an edge. Weibo messages are propagated along the edges. Zhang 
et al. [15] argued that nodes in a microblog social network can be divided into three 
categories: communication nodes, uninfected nodes and immune nodes.  

The propagation rules are: If a communication node contacts an uninfected node, 
uninfected node becomes a retweet node with a probability p1. If a communication 
node contacts an immune node, then the communication node become an immune 
node with a probability p2. A communication node does not spread endlessly; it 
would stop spreading with a certain speed v, and becomes an immune node without 
contacting other nodes. 

Assume a node j is not infected at time t,  refers to the probability of node j 

being uninfected during time , ∆ ], and  refers to the probability of node 
j becoming a communication node during time , ∆ ]. 

 1 ∆  (1) 

g=g(t) represents the number of communication nodes in the neighborhood 
of node j at the time t. 

Suppose node j has k edges, g is a random variable with binomial distri-
bution as follows: 

 ∏ , , 1 ,  (2) 

Where ,  refers to the probability of an uninfected node with k edges 
connecting a communication node at time t. 

 , ∑ | ,  (3) 

Where the correlation function with the  |  degree is the probability of the node 
with k degree being adjacent to a node with the  degree; ,  is the density of 
communication nodes with the  degrees at time t. Thereby obtained , , the 
average transition probability of the node with k degree being uninfected during time , ∆ ], as follows: 

 , 1 ∆ ∑ | ,  (4) 

   ,  , the average transition probability of the node with k degree being in-
fected during time , ∆ ] is as follows: 

 , 1 ∆ ∑ | , 1 ∆  (5) 

The transition probability of a communication node becoming immune node is , 1 , . 



762 J. Zhao et al. 

 

Assuming ,  is the total number of nodes with k degree in network at time 
t, , , , , ,  respectively refers to the number of uninfected nodes, com-
munication nodes and immune nodes with k degree in network at time t, 

 , , , ,  (6) 

The change of the number of uninfected nodes with k degree in network during 
time , ∆ ] is as follows: 

 , ∆ , , 1 ,  (7) 

Similarly, the change of the number of communication nodes and immune nodes with 
k degree in network during time , ∆ ] are as follows: 

 , ∆ , , 1 , , 1 ,  (8) 

 , ∆ , , 1 ,  (9) 

From ,  and , ∆ , we can obtain: 

 , ∆ , / , ∆ , / , · ∆ 1 ,  (10) 

When ∆ 0, using Taylor expansion on the right of equation (10), we then can 
obtain: 

 , / , ∑ | ,  (11) 

Similarly, 

 , /, ∑ | , , ∑ | , ,  (12) 

 , / , ∑ | , ,  (13) 

The simultaneous equations set obtained by equation (11), (12), (13) refer to the rela-
tionship when the density of uninfected nodes, communication nodes and immune 
nodes varying with time. 

3.2 Analysis Method of Weibo Properties 

Sina Weibo is different from Twitter. Fan et al. [15] investigated topological characte-
ristics and user behavior patterns in Sina Weibo, more details can be found in their 
paper. To analyze the influence of each topic’s attributes, we introduce a main com-
ponent analysis method: combining some attributes as a complex one. The combina-
tion attribute is called the main component. 

The specific step of the proposed method is as the following: 
Firstly, we standardize data collection of original attribute value, n samples , , … , , 1,2, … , from p-dimensional random vector 



 A Short-Term Prediction Model of Topic Popularity on Microblogs 763 

 

, , … , . Then we construct sample matrix and standardized transform 
sample matrix elements as follows: 

 / , 1,2, … , . 1,2, … ,       (14) 

Value  is observational data after center standardization. Value  is the sample 
mean of variable  .Value  is the Sample standard deviation of 
ble .Transformed  become matrix . 

Secondly, according to formula  , we compute correlation matrix of 

standardized matrix . Elements in matrix  are: 

 ∑ / ∑ ∑       (15) 

When 1, relationship between variable  and variable  is positive linear 
correlation; when 0, they are irrelevant; and when 1, they are negative 
linear correlation. 

Thirdly, we compute the characteristic equation of sample correlation matrix R, 0. We can get characteristic root, and then determine the main compo-
nent. According to inequality ∑ / ∑ 0.60 , value m can be determined, 

and the utilization of information is more than 60%. For each ，1，2，…， , we can get unit eigenvectors  from equation  . 
Then, we transform the standardized indicator variables into main component: , 1,2, … . 
Finally, we evaluate each main component comprehensively and compute weighted 

sum. Then the final evaluation value can be computed. Weighted value equals the 
contribution rate of each main component. 

After these step described above, we can analyze which properties will 
have an impact on spreading of the topics. We introduce “User influence 
function”  , which equals value of step (5), to describe user  
influence. 

3.3 Model of Short-Term Prediction on Topic Popularity 

Weibo topics are triggered by a number of reasons and conditions. It can happen at 
any specific time and place, and will cause some other results. On the one hand, Wei-
bo topics have strong timelines and lifespan [2]. On the other hand, besides the time 
feature, there are some other features, for instance, space feature which reflects the 
spread process of Weibo topics on the Internet. All of these will draw the spreading 
route of the new topic. 

The spreading of each topic has a “growth factor”. The spreading speed of topics 
will grow along with the growth factor’s increase. There is a maximum spreading 
speed of each topic. The spreading speed will slow down when it reaches its limit 
value. The spreading of each topic has an “attenuation factor”. People’s interest on a 
topic will gradually decay and shift to other topics. 



764 J. Zhao et al. 

 

According to the analysis above, we build a model to describe the spread-
ing speed of Weibo topic in pace of time. Set  represents topic’s 
spreading speed in time ;  represents topic’s growth factor in time ; 
and M the maximum spreading speed, i.e. the upper limit. Parameter  is 
the “attenuation factor” of topic, 0. Function  is the net growth 
rate of topic’s spreading speed.  is “User influence function” 
that describes in Section 3.2. This function indicates the influence of growth 
factor  to spreading speed . 

 · 1 /       (16) 

Then, we can build a differential equation model: 

 /  · ·        (17) 

Among the equation, / ,  is the sum of the browse num-
ber and reply number up to time .  means the change of  from 1 to . 

When the growth factor  equals 0 and spreading speed reaches its 
upper limit value M ( ), topic’s spreading speed is a decreasing 
function along with time. From the formula above, we can see that:  

 / ·        (18) 

When the growth factor  does not equal 0 and belongs to constant, set · / , · , we can put these parameter into the diffe-
rential equation model and get the equation of spreading speed v t � 

 / · 1 0 ·       (19) 

When the growth factor  belongs to variable,  will increase first 
and then reduce. The form of Function  is� 

 
2 , 00,       (20) 

In this formula, value  represents the time when  reaches its  
maximum. 

4 Experiments 

4.1 Dataset 

To study and analyze Sina microblogs, we use a microblog dataset from Sina Weibo. 
We focuse on the analysis of the user attributes and examine the performance of topic 
popularity prediction. This dataset has 434,512 microblogs sent by 234,512 users  
 



 A Short-Term Prediction Model of Topic Popularity on Microblogs 765 

 

from May. 2010 to Jan. 2011. It includes two types of data: 1) user basic properties, 
such as ID, Name, Gender, user verification flag, fans, followings, and topics; 2) topic 
content properties, such as number of “@”, the number of retweets, the number of 
comments, image or video, as shown in Table 1: 

Table 1. Relevant properties of Weibo topic  

Property Description 
#Fan Number of fan 
#Following Number of following  
#Topic Number of topic 
#@ Number of mentioned user 
VFlag Whether is authenticated user 
Gender Gender 
Image Whether include images  
Video Whether include videos 
Time Tweet or retweet time  

4.2 Influence Factors to Topics Spreading 

According to the method and computing step of the main component, eigenvalues and 
the contribution rate of each main component of the topic popularity can be calculated 
as shown in Table 2. From the table, we can find out that the sum of contribution rate 
of the first four main components has reached 76.26%. We only need to compute the 
first four main components, represented as m1, m2, m3 and m4. Then, we calculate 
corresponding eigenvectors according to each eigenvalue, and compute the load 
which influences factors to each main component. We can get the load matrix of main 
component, as is shown in Table 3. 

Table 2. Contribution rate of each factor 

Factor Eigenvalue Variance (%) Accumulation variance (%) 
1 3.98 24.60 24.60 
2 3.17 19.59 44.19 
3 2.89 17.86 62.05 
4 2.30 14.21 76.26 
5 1.23 7.61 83.87 
6 1.02 6.30 90.17 
7 0.82 5.07 95.24 
8 0.77 4.76 100.00 

Table 3 describes the load size of influencing factors to the first four main compo-
nents. The first Main component focuses on user properties and celebrity, such as 
“#Fan”, “#Following” and “#Topic”. These properties have large load size. Their 
values are “0.60”, “0.28”, and “0.23”. The result shows that the topic popularity is  
 



766 J. Zhao et al. 

 

associated with the tweets by celebrities. The second one focuses on user properties 
and ordinary user. The third one focuses the text content of topics, for instance, 
whether there is Image or video. Their values are “0.50”, and “0.41”. The last main 
component also focuses on topic, but with an emphasis on the number of mentioned 
people. Its load is “0.50”. To sum up, all of these situations imply that the number of 
fans, whether there is Image or video and the number of mentioned people may play 
an important role in spreading a topic. 

Table 3. Load of influencing factors to each main component 

Property Factor 1 Factor 2 Factor 3 Factor 4 
#Fan 0.60 0.48 0.53 0.50 

#Following 0.28 0.35 0.11 0.20 
#Topic 0.23 0.13 0.26 0.23 

#@ 0.35 0.30 0.32 0.50 
VFlag 0.70 0.11 0.18 0.50 
Gender 0.05 0.10 -0.03 -0.03 
Image -0.12 0.31 0.50 0.28 
Video -0.14 0.27 0.41 -0.31 

From the analysis above, we can conclude that the number of fans, the number of 
followings, the number of mentioned people, whether is authenticated user and 
whether there is Image or video play an important role in spreading a topic. Now,  
we can set the “User Influence function” which is mentioned in Section 3.2 as the 
following: # # #@

       (21) 

The values of VFlag and Image can be set to 0 or 1. 
Using real dataset as training samples and a multiple linear regression 

method, we compute the values of coefficient : 0.68, 0.13,3.21, 15.03, 7.54 . Putting these coefficients into the formula 
above, we can get the user influence value. 

4.3 Short-Term Prediction on Topic Popularity 

To exam the performance of the proposed popularity prediction model based on user 
properties, we select three representative topics. The time span is one month. 

In Topic 1, we chose an entertainment star “Yao Chen” as the topic. Yao 
Chen has the most followers in Sina Weibo. The feature of this topic changes 
every day with a high growth rate and high decay rate. The initial conditions are 0.7, 8000. Figure 1 (a) shows the changes of growth factor  of 
this topic in one month.  



 A Short-Term Prediction Model of Topic Popularity on Microblogs 767 

 

For Topic 2, we chose “Spring Festival travel season”. This topic becomes 
very hot at a specific time period. It will change relatively smooth. The initial 
conditions are 0.5, 15000. Figure 1 (b) shows the change of growth 
factor  of topic 2 in one month. 

For Topic 3, we chose “earthquake”. This topic belongs to unexpected 
events. It will suddenly appear and disappear. The initial conditions are 0.9, 35000. Figure 1 (c) shows the changes of growth factor  of topic 
3 in one month. 

   
      (a)     (b)               (c) 

Fig. 1. Curve of growth factor  of topic 1 (a), topic 2 (b), and topic3 (c) 

The steps of predicted topic’s spreading speed are: Compute the spreading speed 
 of topic by actual data; Compute the growth factor  by the spreading 

speed ; 

 / ·  / · 1 /       (22) 

Put this  into the differential equation model mentioned in Section 4.3, formula 
(17). Then, we can get the prediction topic spreading speed . 

 describes the development process of topic’s spreading speed. We 
can use the proposed model to give short-term forecasts on the topic of the 
spreading speed. 

Here, we compare between the actual speed curve and the prediction speed curve of 
each topic in Figure 2 (a), (b) and (c). From the figures we can conclude that the pre-
diction speed curve nicely reflects the real speed. We can use the prediction curve to 
give short-term predictions of topic popularity. 

 

 
   (a)                (b)                       (c) 

Fig. 2. Comparison between actual speed curve and prediction speed curve of Topic 1 (a), 
Topic 2 (b), Topic 3 (c), 



768 J. Zhao et al. 

 

5 Conclusions and Future Work 

In this paper, we presented and evaluated a short-term prediction model of topic 
popularity for Sina Weibo. We introduced a topic spreading model and analyzed 
which Weibo properties have influence to the spreading of topics. Additionally, a 
model of short-term prediction on topic popularity was proposed. After testing our 
method on real Sina Weibo dataset, we concluded that this method could give a short-
term prediction on topic popularity.  

There are still some limitations in this proposed model. For example, when facing 
some frequently small ups and downs, the result of this model is not very accurate. 
Our future work is to further improve this method by increasing its prediction accura-
cy on these types of contents. 

Acknowledgements. This study was supported by the National Natural Science 
Foundation of China (Grant No. 61202163, 61240035); Natural Science Foundation 
of Shanxi Province (Grant No. 2012011015-1) and Programs for Science and Tech-
nology Development of Shanxi Province (Grant No. 20120313032-3). This work was 
also supported in part by the US National Science Foundation (NSF) under Grant no. 
CNS-1016320 and CCF-0829993. 

References 

1. Zhang, C., Sun, J.: Large Scale Microblog Mining Using Distributed MB-LDA. In: WWW 
2012 Companion, pp. 1035–1042 (2002) 

2. Chen, C.C., Chen, Y.T., Chen, M.C.: An aging theory for event life-cycle modeling. IEEE 
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 37(2), 237–
248 (2007) 

3. Pon, R.K., Cardenas, A.F., Buttler, D.J., Critchlow, T.J.: Measuring the interestingness of 
articles in a limited user environment. Information Processing & Management 47(t),  
97–116 (2011) 

4. Lu, D., Li, Q.: Exploiting semantic hierarchies for flickr group. In: An, A., Lingras, P., 
Petty, S., Huang, R. (eds.) AMT 2010. LNCS, vol. 6335, pp. 74–85. Springer, Heidelberg 
(2010) 

5. Negoescu, R.A., Gatica-Perez, D.: Modeling flickr communities through probabilistic top-
ic-based analysis. IEEE Transactions on Multimedia 12(5), 399–416 (2010) 

6. Zhou, Y., Guan, X., Zheng, Q., Sun, Q., Zhao, J.: Group dynamics in discussing incidental 
topics over online social networks. IEEE Network 24(6), 42–47 (2010) 

7. Jamali, S., Rangwala, H.: Digging Digg: Comment mining, popularity prediction, and so-
cial network analysis. In: International Conference on Web Information Systems and Min-
ing, Shanghai, pp. 32–38 (2009) 

8. Gomez, V., Kaltenbrunner, A., Lopez, V.: Statistical analysis of the social network and 
discussion threads in Slashdot. In: Proceedings of the 17th International Conference on 
World Wide Web, Beijing, China, pp. 645–654 (2008) 

9. Cheng, J.J., Liu, Y., Cheng, H., Zhang, Y.C., Si, X.M., Zhang, C.L.: Growth trends predic-
tion of online forum topics based on artificial neural networks. Journal of Convergence In-
formation Technology 6(10), 87–95 (2011) 



 A Short-Term Prediction Model of Topic Popularity on Microblogs 769 

 

10. Liu, Z., Chen, X., Sun, M.: Mining the interests of Chinese microbloggers via keyword ex-
traction. Frontiers of Computer Science in China 6(1), 76–87 (2012) 

11. Kooti, F., Mason, W.A., Gummadi, K.P., Cha, M.: Predicting emerging social conventions 
in online social networks. In: CIKM, pp. 445–454 (2012) 

12. Pennacchiotti, M., Popescu, A.-M.: Democrats, Republicans and Starbucks Afficionados: 
User Classificationin Twitter. In: Proc. of the ACM SIGKDD Conference on Knowledge 
Discovery and Data Mining (2011) 

13. Nikolov, S., Shahy, D.: A Nonparametric Method for Early Detection of Trending Topics. 
In: WIDS (2012) 

14. Mathioudakis, M., Koudas, N.T.: Trend detection over the twitter stream. In: Proceedings 
of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD 
2010, pp. 1155–1158. ACM, New York (2010) 

15. Pengyi, F., Hui, W., Zhihong, J., Pei, L.: Measurement of Microblogging Network. Journal 
of Computer Research and Development 49(4), 691–699 (2012) 

 



 

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 770–779, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Social Network Path Analysis Based on HBase 

Yan Qiang1, Junzuo Lu1, Weili Wu2, Juanjuan Zhao1,  
Xiaolong Zhang3,1,*, Yue Li1, and Lidong Wu2 

1 College of Computer Science and Technology Taiyuan University of Technology, China 
{qiangyan,ljz0445,zhaojuanjuan,ly0158}@tyut.edu.cn 

2 Department of Computer Science, University of Texas at Dallas, USA 
{weiliwu,Lidong.wu}@utdallas.edu 

3 College of Information Sciences and Technology Pennsylvania State University, USA 
xiaolong.zhang@gmail.com 

Abstract. Online social network services have become indispensable in 
people’s daily life. The analysis of data in social network services often in-
volves data mining techniques. However, the quick increase of users in such 
services posts challenges to develop effective data mining algorithms to deal 
with large social network data. In this paper, we propose a data-mining algo-
rithm to get the shortest path between nodes in a social network. Based on 
HBase[1], this algorithm analyzes the social network model, and uses the in-
termediary degrees and degree central algorithm to optimize the output from 
cloud platform. With a simulated social network, we validate the efficiency of 
the algorithm.  

Keywords: HBase, Parallel BFS, The k-shortest paths, Intermediary degrees. 

1 Introduction 

Social network services (SNS) have influenced our lives by allowing us to interact 
with each other through virtual connections. However, the analysis of SNS data is not 
an easy task. In particular, as the number of SNS users increases, the data scale of 
popular SNS, such as Facebook, posts challenges for effective data analysis. Tradi-
tional calculation methods, which are usually designed for small-scale datasets, some-
times cannot handle the computation of large SNS data. For example, in a social net-
work, we often need to compute the shortest path of any two nodes to understand how 
these two nodes are connected and how close they are. Tradition methods based the 
relational database model do not work for large social networks, because of complex 
internal dependency of network nodes. Researchers have proposed some new methods 
to address this problem; including those using is increasing in data. In order to solve 
this problem we promote the NOSQL[2] and graph databases. These methods can 
store the topological structure of a network, which is used to compute the shortest 
path. Recently, cloud database techniques draw attentions of researchers. Apache 

                                                           
* Corresponding author. 



 Social Network Path Analysis Based on HBase 771 

 

HBase and Google’s Bigtable[3] are the representative of cloud databases. HBase is a 
distributed, open source column-oriented databases and is built on hadoop[4] hdfs 
distributed storage system. Google’s Bigtable is also a structured distributed data 
storage system, and is based on the Google File System. They both can handle large 
datasets.  

This paper proposes a technique based on HBase. Our algorithm combines data 
clustering and ranking methods. We first construct a set of paths between any two 
nodes in a social network, and then rank the paths based on the importance of nodes 
and user requirements.   

2 Previous Works 

Small world network is also called six degree space theory [5], which argues that 
although most of nodes in a network are not connected directly, almost all nodes can 
be reached after a small number of hops. If we see one node in the small world net-
work as a person and the connection represents that people know each other, then the 
small world network can reflect the small world phenomenon that strangers can be 
connected by those they mutually know. Small world network was first introduced by 
Watts and Strogatz[6], who argued small world networks mathematically follow the 
power law distribution. Barabr asi and Albert [7] showed that the power law can be 
used to simulate small world networks.  

Computing the shortest path in social networks often requires effective ways to 
store network data, such as network-oriented database. Unlike in relational databases 
in which data is organized as tables, in network-oriented databases data is stored in 
the network and this storage style allowes more agile data query. Neo4j[8] is an ex-
ample of such databases. With the Neo4j network storage model, algorithms like that 
by Dijkstra[9] can be used to solve the shortest path problem. However, this kind of 
approaches strongly depends on hardware, and cannot easily be scaled up for large 
networks.  

NoSQL is also used to deal with social network data. NoSQL is a class of database 
management system identified by its non-adherence to relational database model. 
NoSQL database systems have been used by major internet companies, such 
as Google, Amazon, and Facebook, to deal with huge quantities of data that cannot be 
handled by traditional relational database systems. To manage large volumes of data, 
NoSQL do not necessarily follow a fixed schema. Apach HBase and Google Bigtable 
are examples of NoSQL. While Bigtable is a more proprietary technology, HBase is 
an open-source, distributed database based on the Hadoop platform. Different from 
general relational databases, HBase is more suitable to unstructured data.  

As the development of cloud computing technology, there appears a variety of cor-
responding formulations based on cloud platform. Lin et al. [12] have done some 
research based on the MapReduce framework. They improved the breath-first search 
(BSF) algorithm in order to let it run in MapReduce distributed formation; it is called 
the parallel breath-first search. The algorithm can make full use of distributed compu-
ting power of the platform for a particular point in the network to get the shortest path 



772 Y. Qiang et al. 

 

distance to other all points. McCubbin and his colleagues [13] proposed a K-shortest 
path algorithm to compute the shortest K path by using the sort phase of MapReduce 
framework. 

3 Path Algorithm Based on HBase 

Our work focuses on transferring traditional shortest path algorithm into a MapRe-
duce format that can be run in the Hadoop cloud platform. Different from the parallel 
BFS algorithm developed by Lin et al. [12], which cannot make full use of the  
efficient distributed storage architecture of the Hadoop, our algorithm uses the  
HBase database and coprocessor in the HBase to improve the operation efficiency of 
parallel BFS. 

3.1  HBase 

HBase is a column-oriented database management system that runs on top of Hadoop 
Distributed File Systems (HDFS). As a non-relational database, HBase does not sup-
port a structured query language like SQL.  

An HBase system has a set of tables, each of which contains rows and columns. 
These tables all have a primary key, which is used to access HBase data. In HBase, 
multiple attributes can be combined together to form column families, and data ele-
ments of a column family are then stored together. Thus, when column families are 
involved in HBase, the table schema and the column families must be predefined and 
specified.  

Social network data can be treated as graph data and stored in HBase. Every edge is 
associated with a weight. The weight of a path shall be defined to be the sum of the 
weights of the selected edges. This database stores entries using a 3-tuple of a row, 
column family, and column qualifier as a key to index values. Graphs are represented 
as adjacency lists, using the following schema:  

row := node name 
column family := name of the edge type 
column qualifier := name of the incident node 
value := edge weight (floating point) 
This graph representation is both straightforward and expressive. It allows the sto-

rage of hypergraphs, by simply using different column family identifiers. To indicate 
which particular graph elements should be considered, we provide our algorithms 
with a list of edge types as one of their parameter. 

To store a shortest path tree for any particular source, we add a column to the 
HBase table that stores the shortest path tree: 

row := node name 
column family := the string "pointer" 
column qualifier := the shortest path source 
value := a pointer string 



 Social Network Path Analysis Based on HBase 773 

 

Here, the pointer string contains two comma-separated values: a total cost of this 
shortest path from the node to the source, which we refer to as cost(src; n), and the 
next hop in the shortest path to the source. 

3.2 Parallel BFS to Strike a Single-Source Shortest Path Tree 

Based on the HBase method, we implemented our parallel BFS algorithm, and its 
pseudo-code is as the following: 

Class Mapper 
   Method Map(nid n, node N) 
 seen←{} 
 For all celli in N do 
 Cost = celli•value•cost 
 Pointer= celli•value•pointer 
 Neighbor= celli•neighbornode 
 Seen[pointer]=(neighbor,cost) 
 If seen.has(src) and seen.has(dst) then 
  totalCost= seen[src].cost+seen[dst].cost 
 emit(totalCost, N.key) 
 Class Reducer 
 visited←{} 
 pathList←[] 
  Method Reduce(cost,cells) 
  For all celli in cells do 
     If emittedPaths<=K then 
         If not visited.has(celli) then 
            Path=ReassemblePath(celli) 
            visited.addAll(path) 
            pathList.append(celli) 
 For all pathi in pathList do 
   Emit(pathi) 

As with Dijkstra's algorithm, we assume a connected, directed graph is stored as 
adjacency lists. The distance to each node is directly stored alongside the adjacency 
list of that node, and initialized to 1 for all nodes except for the source node. In the 
pseudo-code, we use n to represent the node id (an integer) and N to denote the node's 
corresponding data structure (adjacency list and current distance). The algorithm 
works by mapping all nodes and emitting the key-value pair for each neighbor on the 
node's adjacency list. The key contains the node id of the neighbor, and the value 
saves the current distance to the node plus one. If we can reach node n with distance 
d, then we must be able to reach all the nodes that are connected to n with distance d 
+ 1. After shuffling and sorting, the reducer stage will receive keys corresponding to 
the destination node ids and distances corresponding to all paths leading to that node. 
The reducer will select the shortest value of these distances and then update the dis-
tance in the node data structure. 



774 Y. Qiang et al. 

 

It is apparent that parallel BFS is an iterative algorithm, where each iteration cor-
responds to a MapReduce job. At the first time to run the algorithm, those nodes that 
are connected to the source can be identified. In the second iteration, nodes that are 
connected to those nodes identified in the first run can be discovered. As iteration 
keeps going on, the algorithm expands the search frontier, and eventually all nodes 
can be discovered with their shortest distances. 

The BFS method requires both map and reduce processes, as well as the ampreduce 
process to pass graph structure. These processes becomes a burden to computational 
efficiency, so we offer improvements to BFS by leveraging HBase coprocessors. 

Coprocessors can be loaded globally on all tables and regions hosted by the region 
server, and these are known as system coprocessors. The administrator can also speci-
fy which coprocessors should be loaded on all regions for a table on a per-table basis, 
and these are known as table coprocessors. 

We use the coprocessor to improve the BFS method. The map phase is responsible 
for the value of the transmission path and the network structure in the traditional BFS 
method, but Coprocessor component architecture allows us to complete the update of 
the value of the node shortest path d in the map phase. This method has two advan-
tages. First, it only needs the map phase, so a lot of the time consumed in the process 
of sort-shuffle can be saved. Second, the data storage mode of HBase can help to 
reduce the consumption of the data transfer process. By doing so, updates to the poin-
ter tree are made to some nodes before the mappers read their data. We refer to this 
property as pointer cascading. This leads to one iteration of the algorithm that can 
extend the effective frontier of the shortest paths by more than one hop. We can force 
HBase to updates the data after map to reduce the number of iterations. 

3.3 K-Shortest Paths 

For our application, we hope to find paths that are cycle free and also meet the addi-
tional requirement: each path in the set of k-shortest paths contains a node not pre-
sented on any other path in the set. In this way, we can find new nodes. This property 
is called node uniqueness. After the single-source shortest path tree that is stored in 
the HBase database got from our algorithm in Section 3.2, we can determine the k-
shortest paths in the graph with one additional pass. In our Map function, we check 
each node to see if it has a shortest path pointer to both the source and destination. If 
the answer is yes, the path from the source through the node to the destination formed 
by pasting the two shortest paths together is a candidate for a k-shortest path from the 
source to destination. To inform the reducer of this fact, we emit a key/value pair in 
which the key is the sum of both pointers’ costs and the value is the node’s identifier. 
We can reverse one of the two shortest paths, because we assume that the graph is 
undirected. Courtesy of the sort-shuffle phase, our reducer receives the candidate 
shortest paths in cost order. Ties are broken by the node numbering; the lowest num-
bered paths are discovered first. The reducer must, however, do more than simply 
choosing the first resultant k candidates. We are interested in unique shortest paths - 
paths that have at least one “interesting node”. Therefore our reducer keeps a set  
of nodes that have seen on previous paths it accepts, and rejects the shortest path  



 Social Network Path Analysis Based on HBase 775 

 

suggestions that are just composed of the nodes it has seen before. The reducer must 
also guard against cycles that may be produced by the shortest path pointer algorithm. 
In the omitted function ReassemblePath, we reconstruct each proposed path from 
HBase and check it for cycles before accepting it. 

The pseudo-code of this process is as the following: 

Class Mapper 
  Method Map(nid n, node N) 
 seen←{} 
 For all celli in N do 
 Cost = celli•value•cost 
 Pointer= celli•value•pointer 
 Neighbor= celli•neighbornode 
 Seen[pointer]=(neighbor,cost) 
 If seen.has(src) and seen.has(dst) then 
  totalCost=seen[src].cost+seen[dst].cost 
 emit(totalCost, N.key) 
Class Reducer 
 visited←{} 
 pathList←[] 
  Method Reduce(cost,cells) 
  For all celli in cells do 
     If emittedPaths<=K then 
         If not visited.has(celli) then 
            Path=ReassemblePath(celli) 
            visited.addAll(path) 
            pathList.append(celli) 
 For all pathi in pathList do 
   Emit(pathi) 

3.4 Optimization Sorting 

We get the K source node to the destination node of the shortest path set in the pre-
vious step from the cloud platform. A user can get paths through the cloud platform to 
look at how she is connected with others. However, can the user easily read path cen-
tralized information? 

The answer is no, because the path ordering set is just according to the path value 
size, and no other information is available. When calculating the path, if the value of 
K is too small, many important paths may be missed; if K is too big, there might be 
too many paths. Thus, it is important to choose an optimal value for K so that an ap-
propriate number of paths can be identified. 

There are many methods to optimize network diagram path. According to the needs 
of users, we can use different combination algorithm. Here we choose intermediary 
degree and degree of central algorithm to optimize cloud platform output results. 



776 Y. Qiang et al. 

 

In the real case, the user not only expects to know who is in the path, but also needs 
to know if someone in the relationship chain plays a key role, because the key role of 
people may be the one who is known by both parties. So we choose intermediary 
degrees (betweenness) to optimize the path set. 

Betweenness Centrality, betweenness for short [14], is an important concept in so-
cial network analysis. The betweenness of one node represents the number of the 
shortest path of all the nodes. Betweenness is a good description of the contribution of 
those nodes in every path to the connection between two nodes. The larger between-
ness of a node is, the more paths go through the node and the more probable the node 
connects other nodes.  

Consider a weighted directed (multi)-graph G = (V, E) with n = |V |, m = |E|. Let 
SPst denote the set of shortest paths between source s and target t and SPst(v) the 
ubset of SPst consisting of paths that have v in their interior. Then, the betweenness 
centrality for node v is 

 C ∑ /  (1) 

Where |Sp |  |Sp |. 
In addition we choose degree centricity (degree centrality) as another optimization 

index. The degree centrality of a node is defined as the number of edges that connect 
to this node [15]. Usually, the higher the centrality of a node is, the more popular  
or well-connected the node is. In our algorithm, the degree centrality for node v is 
written as: 

 C deg / 1  (2) 

Where deg(v) is the degree of v and n is the number of v. The algorithm has low 
computing complexity and computing resources consumption.  

4 The Analysis of the Experiment  

We conducted an experiment to evaluate the performance of our algorithm.  

4.1 Hardware Configuration 

In order to verify the correctness of the algorithm, we used Hadoop for cloud platform 
configuration. There are 10 notes in this cloud cluster for testing, and each node was 
configured to use a 2.6-GHz CPU, 8GB of RAM, and 1TB of hard disk. We have 128 
mapper and 64 reduce in default. After large number of tests, we set the rate between 
the quantity of mapper, reduce and the running speed of image algorithm to 2:1. 

4.2 Network Model 

It is hard to get the real social network data to test. Thus, we used mathematic model-
ing to simulate a social network based on the model proposed by Holme[15].  



 

 

The network follows a sma
tion. We used Networkx, 
network data. Figure 1 (a) 
Figure 1 (b) illustrates the d

(a

Fig. 1. (a) one example “sma
work node 

5 Results and Disc

5.1 Time Complexity 

In theory, for each netw1 , its time complexit
receive a new message
amount of all the messa
HBase table structure is 

Figure 2 (a) compares th
shown, our algorithm outpe

(a) 

Fig. 2. (a) Efficiency Compari
rithm of different nodes 

 

Social Network Path Analysis Based on HBase 

all-world network model and obeys the power-law distri
a software package written with Python, to generate 
shows the network pattern of the simulated network, 

distribution of node degree of the simulated network. 

  
a)                            (b) 

all world” network. (b) probability distribution of simulated 

cussion 

work diagram which complexity of node degree
y is | log | | | . This is because that each line w

e in the process of iterative formulation, and 
ge is . Then, the complexity of storing datalog | | .  
he efficiency of our algorithm with the parallel BFS. 

erforms the traditional parallel BFS.  

  
                                (b)  

ison of two algorithms. (b) Running time of k-shortest paths a

777 

ibu-
the 
and 

net-

e is 
will 
the 

a to 

As 

algo-



778 Y. Qiang et al. 

 

The time complexity of K-shortest path algorithm and BFS algorithm are the same. 
It is | log | | | , and the time complexity in shuffle-sort phase of mapreduce is | log | | | . Figure 2 (b) shows the running time of k-shortest paths as the function 
of node number. 

5.2 Discussion 

Figure 5 compares the number of BFS iteration with different numbers of nodes. As 
shown, the impact of cascade phenomenon on the number of iteration is significant, in 
particular when data is forced to be written into HBase immediately after map. 

 

Fig. 3. iterations for breadth first search 

Finally we tested our program on a huge network, which contains one hundred 
million nodes and six hundred million edges. The running time to get the shortest 
paths with our method is 6 hours and 30 minutes, which is acceptable. Half of the 
total time was used for parallel BFS algorithm, and the other half was for running K-
shortest path algorithm. We set K to be 20, but the running time of the optimization 
algorithm was neglected, compared with parallel BFS and K-shortest algorithms.  

6 Conclusion 

In this paper, we proposed a parallel BFS algorithm to compute the shortest path of a 
social network based on the HBase. This algorithm analyzes the social network mod-
el, and uses the intermediary degrees and degree central algorithm to optimize the 
output from cloud platform. With a simulated social network, we validate the effi-
ciency of the algorithm. The experiment results indicate that our algorithm can im-
prove the efficiency of parallel BSF. 

Acknowledgements. This study was supported by the National Natural Science 
Foundation of China (Grant No. 61202163, 61240035); Natural Science Foundation 
of Shanxi Province (Grant No. 2012011015-1) and Programs for Science and Tech-
nology Development of Shanxi Province (Grant No. 20120313032-3). This work was 
also supported in part by the US National Science Foundation (NSF) under Grant no. 
CNS-1016320 and CCF-0829993. 



 Social Network Path Analysis Based on HBase 779 

 

References 

1. HBase Homepage, http://hbase.apache.org 
2. Lakshman, A., Malik, P.: Cassandra: A Decentralized Structured Storage System. SIGOPS 

(2010) 
3. Chang, F., et al.: Bigtable: A Distributed Storage System for Structured Data. In: OSDI 

(2006) 
4. Hadoop, http://hadoop.apache.org 
5. Missen, M.M.S.: The small world of web network graphs. In: International Multi Topic 

Conference on Wireless Networks, Information Processing and Systems, IMTIC (2008) 
6. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 

440 (1998) 
7. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 

(1999); Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random 
networks. Physica A 272, 173 (1999) 

8. Hoque, I., Gupta, I.: Disk Layout Techniques for Online Social Network Data. In: IEEE 
Internet Computing (2012) 

9. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathema-
tik, 269–271 (1959) 

10. The Apache Software Foundation. The Hadoop Distributed File System: Architecture and 
Design, http://hadoop.apache.org/ 

11. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Com-
mun. ACM 51(1), 107–113 (2008) 

12. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Synthesis Lectures on 
Human Language Technologies. Morgan & Claypool Publishers (2010) 

13. McCubbin, C., Perozzi, B.: Finding the ‘Needle’: Locating Interesting Nodes Using the K-
Shortest Paths Algorithm in MapReduce. In: 2011 11th IEEE International Conference on 
Data Mining Workshops (2011) 

14. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Soci-
ology 25(2), 163–177 (2001) 

15. Qin, L., Li, H.: Centrality analysis of BBS reply networks. In: 2011 International Confe-
rence on Information Technology, Computer Engineering and Management Sciences, ICM 
2011, September 24-25 (2011) 

16. Holme, P., Kim, B.J.: Growing scale free networks with tunable clustering. Physical  
Review E 65 (2002) 

 



Community Expansion Model

Based on Charged System Theory

Yuanjun Bi1, Weili Wu1,2, Ailian Wang2, and Lidan Fan1

1 Department of Computer Science, University of Texas at Dallas
Richardson, TX 75080, USA

2 College of Computer Science and Technology, TaiYuan University of Technology
Taiyuan, Shanxi 030024, China

{yuanjun.bi,weiliwu,lidan.fan}@utdallas.edu, ym4008cn@yahoo.com.cn

Abstract. Recently, the phenomenon of influence propagation becomes
a hot topic in social networks. However, few existing influence models
study the influence from communities, which has a large range of ap-
plications. In this paper, we use the charged system model to represent
the social influence. This model provides a natural description about
the behaviors of influence and explains why the influence makes commu-
nities expand. Based on this physical model, we propose two objective
functions for choosing proper candidates to enlarge a community, consid-
ering of the cost and benefit issue. Then a linear programming approach
is given to maximize those two objective functions. We validate our ideas
and algorithm using two real-world networks. The results demonstrate
that our model can choose excellent propagation candidates for a specific
community, comparing to other two algorithms.

Keywords: community expansion, physical model, social influence,
linear programming.

1 Introduction

Social influence has many sources such as an individual, organizations and society
in general [1]. They changed the behaviors of people around them. For example,
they influence the customers’ attitude towards products or electors’ decision
towards political candidates. In macroscopic view, the results of influence lead
to the community evolution including expansion, contraction and no change [2].

Due to the popular using of online social media such as Facebook and Twit-
ter, more and more researchers are interested in the influence through“word of
mouth”. They build several models to represent the progress of influence spread-
ing and aim to find algorithms to maximize or minimize the influence [3,4,5,6].
Some researchers study the laws of community diffusion and try to find ap-
proaches to fit changed community model over time [2,7]. However, few work
study on the influence coming from a community which can provide a proper

� This work was supported in part by the the US National Science Foundation (NSF)
under Grant no. CNS-1016320 and CCF-0829993.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 780–790, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Community Expansion Model Based on Charged System Theory 781

strategy to maximize the community size. In fact, the problem of community
expansion has a large range of applications: Every company is looking for more
customers to increase new sales. How to find potential customers is important
especially when the marketing budget is limited. For political candidates, en-
larging alliance is a good approach to spread their influence towards decision
making process. Modeling such influence based on community structure offers
valuable insight in choices during campaign activities. Trade shows and exhibi-
tions organizers also want to choose excellent participators, such that the fame
of exhibition can be improved. All these real world issues need to model the
influence from a group and provide a strategy to enlarge the group.

In this paper, we build a model based on charged system, a physical model
to represent the phenomena that how the influence power makes communities
evolve. In the marketing scenario, each company holds its clients because of
the influence from that company. However, some clients will change to accept
another company’s service if they received considerable promotion. In another
word, an individual will join another community if the influence comes from that
community is big enough. While in charged system, an electric charge will move
if the electric force from a specific electric field breaks the stable status. Since
there exists similarities between social phenomena and physical phenomena, we
want to utilize the charged system to describe the progress that a community
provides promotion to attract new members.

The challenged parts are how to describe the features in social network using
characters in charged system. And which electric charge should be chosen so
that there are more electric charges will be attracted but with less additional
force. What we should notice here is, once a single electric object is attracted
to move, the global stable status will be broken and other electric charges will
move as well. That is similar as the influence result of ”word of mouth”. People
change their behavior because of their friends. In this paper we employ Coulomb
law to simulate the attraction force and propose objective functions which try
to minimize expansion cost and maximize the size of new community members.

The main contributions of this paper include: i)Employ charged system to
build model for describing features in social network and the progress of com-
munity expansion. ii)Use Coulomb law to build objective functions for expanding
the community. iii)Use linear programming to maximize two objective functions
and do the experiments to validate the idea base on two real world datasets.

The rest of this paper is organized as follows. In the next section, a brief
overview of related work is introduced. Section 3 model the community expansion
progress using charged system theory. A linear programming approach based on
the models is proposed in section 4. The simulation results and conclusions are
showed in section 5 and 6 respectively.

2 Related Work

There is much research on community evolution [2,8,9]. Aggarwal and Yu [2]
named three transitions of a community: expansion, contraction and no change.



782 Y. Bi et al.

They put a weighting scheme on edges according to interaction changes for de-
tecting the community evolution. Nguyen et al. [8] analysis four basic events
occur in dynamic network: adding or removing nodes and edges. They pro-
pose adaptive algorithms separately to update the network community structure.
Chakrabarti et al. build objective function to monitor clustering over time. Their
optimization methods based on the idea that the cost of capturing snapshot and
temporal clustering stream should be minimized.

An abundance of work focuses on influence maximization problem [3,4,5,10].
Kempe [3] gave the definition of that problem which is to find a set of initial
set of users in a social network such that from this set the spread of influence
in the network can be maximized. Linear Threshold (LT ) Model and Indepen-
dent Cascade(IC) Model are two main approaches to formalize the influence
maximization problem. Chen, et al. [4] propose a MIA model and its heuristic
algorithm to address the scalability and efficiency issue in large scale networks.
Direct marketing is an important application of social influence [11,12,13,14].
The influence from friends usually changes people’s behavior. Domingos et al.
[11] compute the customer’s probability of buying based on Markov random
fields. They value the customer’s benefit according to their trade history com-
bined with the discount cost of offering to them. Hartline et al. [15] propose the
influence-and-exploit strategy to trying to find optimal marketing strategy. In
influence step the sellers offer free products while in exploit step the sellers fix
the price at a optimal price. Tao et al. [6] proposed TABI, a heuristic algorithm
to solve the participation maximization problem. This algorithm calculates par-
ticipants’ influence and allocate thread according to influence ranking. Their
method accounts in weights between the individual and its neighbors. However,
TABI only considers people who have participated in the forum, which means
the algorithm only chooses candidates from people who have connections with
the community.

3 Problem Formulation

In this section, we will introduce the physical charged system firstly. Then we will
transfrom the features in social network into the characters in charged system.
Coulomb law is used for formulating the progress of attracting new members.
Finally objective functions will be proposed to give an optimal strategy for com-
munity expansion.

3.1 Electric Field and Charged System

In physics, a single charge point can create an electric field which exerts force
on other charged objects around without touching. This electric force makes a
charge particle move closer or further to another. Coulomb gave experiments
which showed that the electric force between two charged points i, j is propor-
tional to the product of quantity on the two electric particles qi, qj and inversely



Community Expansion Model Based on Charged System Theory 783

proportional to the square of separation distance between them[16]. Function 1
shows the computing of electric force between two charges.

Fij = h
qiqj
r2ij

(1)

where h is the Coulomb constant and rij is the distance between charges i and
j. Fij is a vector quantity. It appears attractive if the charges are of opposite
sign and repulsive otherwise.

3.2 Presentation of Social Influence

In this part, we want to transform features in social influence into variables in
electric field theory. Electric field theory is chosen because electric force among
charges causes the moving of these particles, which is similar as the phenomena in
social network that social influence from different communities change people’s
behaviors.

Electric Charges. We see an individual in social network as a charged parti-
cle. The individual may do not belong to any community, or belong to several
communities in social network, which means communities are overlapping. The
quantity of a particle q refers to the attractiveness to a community C when C
wants to choose “seeds” to expand itself. Since in real world, people known by
more people are more likely to be celebrities who have much more influence to-
wards others, we define the degree of the node as its charged quantity property
in Function 2.

qi = ni (2)

where ni is the degree of the node i.
For a specific community which we want to expand its size, we call it Target
Community(TC). TC can be seen as a large electric particle which contains all
the nodes that in TC. To compute the electrical quantity of TC, we should not
only consider the number of nodes in TC but also the connection density inside
the TC. A community which has more members and tighter density connection
seems more powerful to nodes outside TC.

QTC = NTC ∗DenTC (3)

Function 3 gives the formula about TC’s electrical quantity, where NTC is the
number of the nodes inside TC. DenTC is the connection density inside TC. We
set the electrical polarity of an TC as positive. For the particle i outside TC,
we set its electrical polarity as negative. As a result, TC has attractive force
towards particles outside TC.

Distance. An important variable in Function 1 is the distance r. The distance
rij between two particles i and j refers to the shortest path length between them.
However, the distance between a particle i and the community C, riC , should



784 Y. Bi et al.

consider other features in addition to the shortest path length between i and
any vertex in C. Function 4 gives the definition.

riC =
disi

log(mi + 1) + 1
(4)

where dis means the shortest path length from i to all vertexes in C, mi is
the the number of i’s neighbors who are already in the specified community C.
In the study of [17], the experiments show that the main feature to affect an
individual to join a community is the the number of friends in a community.
However, the relation between the probability of joining a community and the
number of friends in that community is under the “law of diminishing returns”.
We use log(m + 1) to indicate that individual who is more likely to join in C
appears more closer to C. m+1 makes the function keep physical meaning when
m = 0. Another 1 guarantees the distance is bigger than 0.

Attractive Force. Recall that particles which do not belong to TC are seen
as negative. From Function 1, we can compute the attractive force from TC to
a certain particle i by Function 5,

FTC→i = h ∗ QTC ∗ ni
r2iTC

(5)

where h is the Coulomb constant, QTC is the electrical quantity of TC, ni is the
i’s electrical quantity, riTC is the distance between i and TC.

3.3 Expansion Progress and Objective Function

In this section we use electric field theory to explain the progress of community
expansion. Objective functions will be built based on the goals of maximizing the
benefit while minimizing the cost. We will illustrate the community expansion
step by step.

Initial State. We can see the snapshot of social network at a given time point
as the initial state. For a vertex i, as shown in Figure 1, it receives the electric
force exerted by TC, FTC→i, and the resultant force exerted by other commu-
nities except TC, F ′. From the view of TC, F ′ has the opposite direction with
FTC→i. i will not belong to TC if FTC→i is smaller than a threshold. Recall
that communities are allowed to be overlapped, so that i can belong to different
communities.

Promotion State. In order to attract new members to join in TC, TC should
add additional force towards vertexes outside TC to make them move. This
additional force can be seen as promotion discount to new members. As illus-
trated in Figure 1, Fcost should be minimized when the promotion budget is
limited. Suppose the discount cost on every vertex is the same. Then we should
choose vertexes to which TC appears more attractive such that the less Fcost will
make those vertexes move. Suppose the promotion budget allows TC to select K



Community Expansion Model Based on Charged System Theory 785

Fig. 1. Force analysis Fig. 2. Influence to neighbors

vertexes to obtain discount, the vertexes set of the whole network is V , then we
should select proper vertex set S in ζ to make the value of Function 6 maximum.

f1(S) =
∑
i∈S

FTC→i =
∑
i∈S

h
qi ∗QTC

r2iTC

(6)

where S ∈ ζ. ζ contains all possible combination sets which have K vertexes
outside TC. That is

ζ = {S | S ⊂ V \ VTC , |S| = K}

qi can be obtained by Function 2 and riTC can be computed by Function 4. The
electrical quantity QTC keeps the same during the promotion state. Function 7
gives the first objective function for choosing vertexes which can reduce the cost.

max f1(S) = max
S∈ζ

∑
i∈S

qi
r2iTC

(7)

Expansion State. After promotion activity, some vertexes will move to TC and
their behaviors will affect their neighbors. To maximize the benefit, the vertexes
which have more influence to neighbors are better choice. Suppose once a vertex
outside TC decides to join in TC, its polarity becomes positive. Then it will
exert attractive force to its neighbors who are not in TC. Figure 2 shows that
vertex 1 has attractive force to vertex 2 and 3 when it decided to join in TC.
These attractive force will increase the probabilities of 2 and 3 moving to TC.
We hope the coming of vertex 1 can make its neighbors obtain more attractive
force from TC. The benefit function is given as Function 8,

f2(S) =
∑
i∈S

∑
j∈Wi

F ∗
TC→j − FTC→j (8)

where S ∈ ζ.Wi contain i’s neighbors who are not in TC. F
∗
TC→j is the attractive

force from TC to j after j’s neighbor i came to TC. From Function 3 we can
compute F ∗

TC→j . Since qj keeps the same value. Function 8 equals to Function
9, which aims to choose individuals who have bigger influence to others.

max f2(S) = max
S∈ζ

∑
i∈S

∑
j∈Wi

(
Q∗

TC

(r∗jTC)
2
− QTC

r2jTC

) (9)



786 Y. Bi et al.

Algorithm 1. TCE Algorithm

Input: G = (V,E),TC,K,α;
Output: promotion seed set S;
S = ∅;1

Compute QTC = NTC ∗DenTC ;2

For each xi ∈ V \ VTC , compute FTC→i = h qi∗QTC

r2
TC

= hni∗QTC∗(log(mi+1)+1)2

dis2
i

;3

Compute the sum force of xi’s neighbors,
∑

j∈Wi
FTC→j ;4

Assume xi was in TC, recompute the electrical quantity of TC Q∗
TC and the5

sum force of xi’s neighbors,
∑

j∈Wi
F ∗
TC→j ;

Compute ci = αFTC→i + (1− α)(
∑

j∈Wi
F ∗
TC→j −

∑
j∈Wi

FTC→j) for each xi;6

Call linear programming using Function 11 to obtain S;7

Q∗
TC and r∗jTC is the updated value when i joined into TC. Our goal is to choose

proper S such that Functions 7 and 9 can be satisfied at the same time.

4 A Linear Programming Approach

Two objective functions, Function 7 and Function 9 reflect two aspects of strat-
egy for expanding community TC: cost and benefit. To find proper strategy
under different requirements, a parameter α are used to adjust the weight of
each objective functions.

f(S) = αf1(S) + (1− α)f2(S) (10)

The parameter α expresses the importance of cost requirement in the expanding
strategy. It ranges between zero and one, hence Function 10 can be tuned to cost
model(α is close to one) or benefit model(α is close to zero).

LetG = (V,E) be an undirected graph andG is departed to several overlapped
communities. One of these communities is TC. We define binary variable xi = 1 if
vertex xi is selected in optimal solution for expanding TC, otherwise xi = 0. Note
that the selected xi must be nodes outside TC. Let ci be the value of Function
10 when S = {i}. Then the Target Community Expansion problem(TCE) can
be formulated as:

Maximize
∑

i∈V \VTC

cixi (11)

subject to
∑

i∈V \VTC

xi = K (12)

xi ∈ {0, 1}, ∀xi ∈ V \ VTC (13)

The objective Function 11 combines Function 7 and Function 9. Constrains 12
enforces that the promotion cost is under the budget limitation, which means
only K nodes are chosen to accept promotion. K is an input parameter. Con-
straints 13 enforces binary restrictions on the x-variables. The TCE algorithm
represents the whole progress of TC expanding progress.



Community Expansion Model Based on Charged System Theory 787

5 Experiment

In this section, we conduct experiments on TCE algorithm as well as other two
algorithms on two real-world networks. There are two aspects to measure our
experiments’ performance: (1) Its capacity of attracting new members; (2) The
effect to TC after these selected nodes joining TC.

5.1 Experiment Setup

Datasets. We use two realistic data sets: American College Football and Arenas
Email. American College Football(ACF ), which has 115 nodes and 1226 edges,
is a representation of the schedule of Division I games for the 2000 season, in
which vertices represent teams(identified by their college names) and edges are
regular-season games between the two teams they connect. Arenas/email comes
from email interchange network, Univ. of Rovira i Virgili, Tarragona. The nodes
are the members in this university and the edges represent email interchanges
between members. It has 1133 nodes and 10903 edges.

Algorithms. To find TC and other communities, we first partition the social
network graph into several communities using the methods in [18]. The commu-
nity with the maximum size is chosen as the Target Community TC. Our TCE
algorithm uses Matlab linear optimization function to obtain those K nodes. We
compare TCE with other two algorithms. (1)Random: As a baseline comparison,
simply select K nodes from communities other than TC randomly. (2)MaxDe-
gree: A greedy algorithm which select K nodes outside TC which have the max-
imum node degree. We run the simulation 1000 times and take the average of
results.

5.2 Experimental Results

Capacity of Attracting New Customers. We measure the capacity of at-
tracting new customers by counting the number of newcomers(NC) under a
certain threshold. For the selected K nodes from above three algorithms, we
compute the attractive force from TC to that node using Function 5. If the
attractive force is greater than the threshold we consider that node will join in
TC. NC is the number of nodes that accepted the promotion from TC(NC�K).
We do the experiments under different K value and α value. In Function 10,
α(0 � α � 1) adjusts the weight between objective Function 7 and objective
Function 9.

Figure 3 and Figure 4 show the number of newcomers on ACF/Team dataset
under different K value and α value. First we tune the K value. TCE always
works better than other two algorithm. For a specific α value 0.5 , TCE is
40%, 50% better than RANDOM, MaxDegree respectively when K = 25. While
for tuning α value, TCE is 80%, 60% better than RANDOM, MaxDegree respec-
tively when α = 0.7. For the moderate sized graph Arenas Email, as showed in
Figure 6 and Figure 7, our TCE performs best on different K and α value. When



788 Y. Bi et al.

10 15 20 25
0

2

4

6

8

10

12

14

N
C

k

TCE
Random
MaxDegree

ACF
=0.5

Threshold=1600

Fig. 3. NC/ACF/K

0 0.2 0.5 0.7 1
0

5

10

15

20

N
C

TCE
Random
MaxDegree

ACF
k=15
Threshold=1600

Fig. 4. NC/ACF/α

10 15 20 25
0

0.1

0.2

0.3

C
R

k

TCE
Random
MaxDegree

ACF
=0.5

Threshold=1600

Fig. 5. CR/ACF/K

10 15 20 25
0

5

10

15

20

N
C

k

TCE
Random
MaxDegree

Email
=0.5

Threshold=20000

Fig. 6. NC/Email/K

0 0.2 0.5 0.7 1
0

5

10

15

20
N

C
TCE
Random
MaxDegree

Email
k=15
Threshold=20000

Fig. 7. NC/Email/α

10 15 20 25
0

0.1

0.2

C
R

k

TCE
Random
MaxDegree

Email
=0.5

Threshold=20000

Fig. 8. CR/Email/K

0 0.2 0.5 0.7 1
0

0.1

0.2

0.3

0.4

C
R

TCE
Random
MaxDegree

ACF
k=15
Threshold=1600

Fig. 9. CR/ACF/α

0 0.2 0.5 0.7 1
0

0.1

0.2

C
R

TCE
Random
MaxDegree

Email
k=15
Threshold=20000

Fig. 10. CR/Email/α

K = 20, for a specific α = 0.5, TCE is 87.5%, 6.25% better, while for a specific
K = 15, TCE is 93.3%, 13.3% better when α = 0.7, comparing to RANDOM
and MaxDegree respectively. Generally, TCE has better capacity of attracting
newcomers no matter how K or α changes. Specially, TCE’s performance be-
comes better when the α value arises, which means the first objective function
can attract more newcomers. RANDOM works worse in Arenas Email than in
ACF, because Arenas Email has much more nodes, which makes RANDOM has
higher probability to choose bad nodes.

Effect to TC Structure. The effect of newcomers to TC is another important
evaluation criterion, especially when the community considers doing expansion
activities next time. We hope those newcomers can make TC has greater ability
to attract new members. Here we define Cut Ratio as the measurement of at-
tracting newcomers ability. CR = Cut/Pout, where Cut is the number of edges
which has one node in TC and another node outside TC. Pout is the number of



Community Expansion Model Based on Charged System Theory 789

edges that totally outside TC. CR represents the ratio between “open links” of
TC and links that are not in TC. If the coming of selected nodes can increase
CR value, we say that they have good effect to TC structure. In Figure 5 and
Figure 8-10, we record the difference value of CR after the selected nodes from
three algorithms joining TC. we can see that our TCE algorithm has higher
CR difference value than RANDOM and MaxDegree under different K and α
on both two datasets. That means the nodes chosen from our algorithm have
higher ability to help TC attract new members in the future.

6 Conclusions

In this paper, we used physical charged system model to represent the influence
from communities in social network. Two objective functions were proposed
considering of cost and benefit issue in the community expanding progress. Then
a linear programming was given to choose proper nodes for a Target Community.
Experiment results based on two real world datasets show that our algorithms
can attract more high value newcomers for a specific community.

References

1. Aggarwal, C.C.: Social Network Data Analytics. Springer (2011)
2. Aggarwal, C.C., Yu, P.S.: Online analysis of community evolution in data streams.

In: SDM (2005)
3. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through

a social network. In: KDD (2003)
4. Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent

cascade model in large-scale soical networks. In: Data Mining and Knowledge Dis-
covery (2012)

5. Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities
for independent cascade model. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES
2008, Part III. LNCS (LNAI), vol. 5179, pp. 67–75. Springer, Heidelberg (2008)

6. Sun, T., Chen, W., Liu, Z., Wang, Y., Sun, X., Zhang, M., Lin, C.: Participation
maximization based on social influence in online discussion forums. In: ICWSM
(2011)

7. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of
social networks. In: KDD (2008)

8. Nguyen, N.P., Dinh, T.N., Xuan, Y., Thai, M.T.: Adaptive algorithms for detecting
community structure in dynamic social networks. In: INFOCOM (2011)

9. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: KDD (2006)
10. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in

social networks. In: WSDM (2010)
11. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD

(2001)
12. Leskovec, J., Adamic, L., Huberman, B.: The dynamics of viral marketing. ACM

Transactions on the Web (2007)
13. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing.

In: KDD (2002)



790 Y. Bi et al.

14. Shimp, T.A.: Advertising promotion: Supplemental aspects of integrated marketing
communications. South-Western College Pub. (2002)

15. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over
social networks. In: WWW (2008)

16. Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, 8th edn. Wiley
(2007)

17. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: KDD (2006)

18. Hu, Y., Chen, H., Zhang, P., Di, Z., Li, M., Fan, Y.: Comparative definition of
community and corresponding identifying algorithm. Phys. Rev. (2008)



Centrality and Spectral Radius

in Dynamic Communication Networks

Danica Vukadinović Greetham, Zhivko Stoyanov, and Peter Grindrod

Centre for the Mathematics of Human Behaviour
Department of Mathematics and Statistics

University of Reading, UK
{d.v.greetham,z.v.stoyanov,p.grindrod}@reading.ac.uk

Abstract. We explore the influence of the choice of attenuation fac-
tor on Katz centrality indices for evolving communication networks. For
given snapshots of a network observed over a period of time, recently
developed communicability indices aim to identify best broadcasters and
listeners in the network. In this article, we looked into the sensitivity of
communicability indices on the attenuation factor constraint, in relation
to spectral radius (the largest eigenvalue) of the network at any point
in time and its computation in the case of large networks. We proposed
relaxed communicability measures where the spectral radius bound on
attenuation factor is relaxed and the adjacency matrix is normalised in
order to maintain the convergence of the measure. Using a vitality based
measure of both standard and relaxed communicability indices we looked
at the ways of establishing the most important individuals for broadcast-
ing and receiving of messages related to community bridging roles. We
illustrated our findings with two examples of real-life networks, MIT re-
ality mining data set of daily communications between 106 individuals
during one year and UK Twitter mentions network, direct messages on
Twitter between 12.4k individuals during one week.

Keywords: evolving networks, spectral radius, centrality ranking.

1 Introduction

Today’s interconnected world with millions of users of mobile devices, computers
and sensors leaving digital traces provides social scientists with previously unseen
opportunities to create and validate their theories on a large scale. These social
networks, captured in digital world, present us with research challenges: they
are large, multi-layered and dynamic, i.e. they evolve from moment to moment.
Thus, there is a need for the methods developed for regular and arbitrary static
networks to be extended and adapted to dynamic, evolving networks.

One of the very important and well researched characteristics of an individual
(a node) in a social network is its centrality score. Centrality measures the rela-
tive importance of a node and determines its involvement in a network. Although
different centrality measures were proposed, tested and compared on undirected,

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 791–800, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



792 D.V. Greetham, Z. Stoyanov, and P. Grindrod

directed and weighted networks (for reviews see [3,16]), only relatively recently
research focused on centrality in evolving networks [9,13].

For static networks, Katz centrality [15] computes the relative influence of a
node within a network by measuring the number of the immediate neighbors
and all the other nodes in the network that connect to the node under con-
sideration through the immediate neighbors. Walks made to distant neighbors
are penalised by an attenuation factor α. This concept was recently revisited
in [9,13]. Communicability across time-steps is based on the extension of Katz
centrality to evolving networks. The concept is already successfully implemented
on a small scale mobile phone and email communication networks [13,12] and C.
Elegans brain networks [6], however scaling it up to very large data-sets involves
handling large matrices.

Another measure of centrality in static networks, Bonacich centrality [1], [2]
introduces another parameter, similar to Katz centrality, but penalising direct
and indirect links. Recently, this measure was revisited in [11] where the authors
investigated whether the measure converges, and proposed a normalised variant.
Although their motivation came from the claim that computing a spectral ra-
dius ρA (the largest eigenvalue of an adjacency matrix of a graph) is difficult,
“especially for large networks” (see pp. 2 of [11]), we note that in social network
analysis settings where networks are mostly sparse, power iteration or similar
methods could be used, that efficiently compute an approximated value of ρ even
for very large sparse matrices, or else Perron-Frobenius theorem (see e.g. [10])
provides simple but useful bounds. However, we argue that a constraint such
as α < 1

ρ(A) is limiting and should be relaxed for different reasons, particularly

as it might penalise too heavily not-so-long paths, and thus lower significantly
the centrality ranking of nodes that connect different communities which might
have implications in large social network analysis. The “structural holes” theory
[4] refers to the absence of links between two parts of a network. Brokerage ex-
ploits structural holes – an individual is connected to two other individuals or
communities not mutually connected. This position could be beneficial for such
an individual (a broker) as she/he could control a flow of information between
two communities, profit from two different sources of information and mediate
trade between them. Also bridges between different communities in a social net-
work are important when trying to identify communities in the large unknown
network and to run a network-based intervention which depends on community
structure to change behaviour of individuals in the network [17].

In the empirical analysis of several real-world and artificial generic models of
networks, Jamaković et al. [14] looked at the different upper bounds of spectral
radius from the simple bound given by the graph’s maximal degree to more com-
plex bounds featuring local information (average neighbours degree) or global
information such as diameter. They found that for three real-world networks
they investigated, a bound given by [7] was the closest to the observed values,
while for the Internet autonomous systems topology the same bound was over-
estimating the real value significantly. When using artificial generic networks
(random, small-world, preferential attachment networks) with the same number



Centrality and Spectral Radius in Dynamic Communication Networks 793

of nodes and edges as in the real-world networks, the spectral radii of all three
types of networks were much smaller then the real-world one in the Internet AS
topology case. This is important because the spectral radius is also found to be
connected to epidemic spreading in networks (see [18,5]).

In the following section we discuss how communicability indices are related to
spectral radius and propose a new centrality measure which relaxes convergence
constraints previously imposed by the spectral radius. We then create vitality
measure based on centrality indices and show how to detect the individuals whose
lack of existence would result in the biggest changes in centrality in evolving
networks. We apply our findings to two real-life networks, and conclude with the
discussion.

2 Relaxed Communicability

An evolving network is a family of graphs Gi = (V,Ei), where the vertex set
V is given in advance and is fixed throughout time, and an edge set Ei is a set
of edges on V in the time i. We assume that the time is discrete and finite, i.e.
i = 1, · · · , n. The corresponding adjacency matrices are denoted with Ai.

2.1 Communicability

For a static matrix A, the Estrada-Hatano communicability indices for a matrix
A can be obtained from a communicability matrix as the row/column sums,
given by

Q = eA (1)

where the matrix exponential of a matrix A is defined as

eA =
∞∑
k=0

1

k!
Ak (2)

This can be extended to evolving networks by Q =
∏n

i=0 e
Ai , which can be com-

puted directly for small-scale networks. Another version of a communicability
matrix, closer to the Katz definition, from [13] is given by:

Q =

n∏
i=0

(I − αAi)
−1 (3)

where I is identity matrix, α < 1
max(ρ(Ai))

, i = 0, . . . , n denotes consecutive time-

steps and ρ(Ai) is the spectral radius of Ai. Henceforth, we refer to (3) as the
“standard communicability”. Broadcast and receive indices are equal to the row,
resp. column sums of Q.



794 D.V. Greetham, Z. Stoyanov, and P. Grindrod

2.2 Spectral Radius Bound

In the case where existing communicability indices are used (3), Katz centrality
for each Ai can be written as

(I − αAi)
−1 =

∞∑
k=0

αkAk
i (4)

and in order that (4) converges in standard matrix norm, one has that the atten-
uation factor α < 1

ρ(Ai)
and similarly α < 1

max(ρ(Ai))
, i = 0, . . . ,M for (3). On

the other hand, looking at each individual Ai, if α is interpreted as a probability
that, once sent, a message will be successfully transmitted by any receiving node
to any of its contacts, then the expected length of a single transmission sent
from nodes in the network corresponding to Ai is

∞∑
k=0

kαk(1− α) = α

(1− α) (5)

This implies for matrices with a spectral radius of more than 3, we must choose
α < 1

max(ρ(Ai))
, the expected value of transmission length will be less than 1

2 ,

and if a spectral radius is greater than 2, the expected transmission length is
less than 1.

As it was shown in [14] some of real-world networks have radius greater than
2, resulting in expected path lengths between 1 and 2, which means that es-
pecially paths between two communities are too heavily penalised. In order to
mitigate the attenuation, we propose to normalise A and relax the condition on
the attenuation which allows for longer paths and so rewards individuals that
act as bridges between different communities appropriately.

2.3 Relaxed Communicability

For a large data-set where the size of the matrix Q is prohibitive, and computing
inverse of such a large matrix represents a challenge, an approximation of Q
can be computed using a Taylor series approximation ignoring summands of
order higher than some n, depending on the application. In order to compute
(I − αA)−11 without storing Q, the following method can be used where b is
initialised to the all ones vector of length n.

(I − αA)−1b = b+ αAb+ α2A2b+ · · · (6)

We will use this representation to define new relaxed communicability indices.
Instead of having α = 1

2max(ρ(Ai))
, for the expression to converge, it is enough

for α to be less than 1, and that A is normalised. From the expression for the
expected path length (5), ensuring that

α <
l

1 + l
(7)



Centrality and Spectral Radius in Dynamic Communication Networks 795

where l ∈ N is the expected path length, we have that α will always be less
than 1 and we can set parameter l on a desired path length depending on a
context, i.e. what kind of centrality we are interested in. Thus, to obtain relaxed
communicability indices, one should choose a length of path l depending on the
application, calculate α from (7) for given l, initialise b to be all-ones vector
and multiply it with α and matrix Ai normalised with 2-norm of Ai iteratively.
Summing up all iterative factors up to the order n, which depends on how small
one’s approximation error needs to be, gives the result for Ai. Results need to
be multiplied for all consecutive Ais. In the case of a small graph, Q can be
obtained directly from (3) using computed α and replacing A with A

‖A‖ .

2.4 Vitality Measure

In order to rank the nodes by importance during a time period we formulated
vitality-based measure by computing the corresponding centrality indices in the
absence of one node at time. For a series of adjacency matrices Ai1 , · · · , Ai2

we compute communicability indices using both standard and relaxed commu-
nicability indices. Furthermore, for each vertex k, we compute Qk,which is ob-
tained deleting exactly the kth row and the kth column from Ai1 , · · · , Ai2 , and
then calculating both versions of communicability. Then we calculate the differ-
ence between Qk indices and Q for each k, as a sum of least squares to check
which nodes are responsible for the biggest changes in indices’ values. We give a
pseudo-code for vitality measure on Fig 1, which is independent of the version of
communicability used (standard or relaxed). We will discuss in the next section
how results depend on the type of communicability used.

3 Applications

We used two real-world data sets. The first one is the mutual mobile phone
communications over a year for 106 individuals which was captured as a part of
the MIT reality mining data set [8]. The second is the data-set obtained from
Twitter UK mentions network collected on our behalf by Datasift, Twitters cer-
tified partner. The network was created from public messages that users located
in UK sent to each other on Twitter using @ sign during 1 week in Dec 2011.In
both cases we aggregated data on daily basis.

3.1 Case-Study 1: MIT Reality Mining Data

Data is aggregated on a daily basis, and contains 365 binary adjacency matrices,
from the 20th July 2004 onwards, denoted with A1 to A365. An entry (i,j) of Ak

is equal to 1 if there was at least one phone call between i and j on day k. On
Fig 2 given are the spectral radii of all 365 matrices. One can observe how the
communication structure changes through the year.

On Fig 3 we show an example of a daily communication network. The vertices
with labels 10, 45, 59 and 71 (highlighted on Fig 3) have relatively small degree,



796 D.V. Greetham, Z. Stoyanov, and P. Grindrod

Vitality measure

compute indices (column and row sums of Q for A_i_1..A_i_2)

ls=0

for j=1:N

remove A_k(j, .) and A_k(., j) for k=i_1,..,i_2

compute indices_j (column and row sums of Q_j)

end

for i =1:j-1

ls(j,1)=ls(j,1)+(indices_j(i,1)-indices(i,1))^2;

ls(j,2)=ls(j,2)+(indices_j(i,2)-indices(i,2))^2;

end;

for i=(j+1):n

ls(j,1)=ls(j,1)+(indices_j(i-1,1)-indices(i,1))^2;

ls(j,2)=ls(j,2)+(indices_j(i-1,2)-indices(i,2))^2;

end;

ls=sqrt(ls)

Fig. 1. Computing vitality measure. Indices are 2xn array - the first column is Q’s
column sum, and the second is Q’s row sum. Qj is obtained from all Ais removing j-th
column and j-th row from each adjacency matrix, and indicesj are then column and
row sum of Qj .

but they connect different communities and therefore are important. We picked
a sample of seven daily networks on the days 32, 55, 96, 135, 158, 220 and 315,
looking at the different values of spectral radii. We computed communicability
indices using the standard and relaxed versions. The Table 1 presents results of
rankings in descending order (1 top to 106 bottom) in both cases, showing much
higher rankings when the relaxed version with the length of path 3 was used.
On Fig 4 we show scatter plot of standard vs. relaxed broadcast indidces (left
panel) and standard vs. Estrada-Hatano communicability indices on the right
panel. The upper left diagonal of the figure represent nodes that have higher
rankings in relaxed than in standard indices. Note that in both standard and
relaxed indices more weight for broadcast indices lies on the first matrix in the
sequence, while for receive indices it is the last matrix that carries most of weight.
While Estrada-Hatano indices do not correlate with standard or relaxed indices,
they still rank higher most of community bridges. Thus Estrada-Hatano indices
could be used when the expected transmission length is not known, but if the
length of transmission is important, our parametric approach will highlight more
relevant nodes.

3.2 Case-Study 2: Twitter Mentions Network Data-Set

The data-set comprised of around a million of tweets between UK users that
contained mention of another UK user (sign @). The nodes represented the



Centrality and Spectral Radius in Dynamic Communication Networks 797

Fig. 2. MIT data:Spectral radii of A1 to A365 matrices

Fig. 3. MIT data: An example of a daily network (its largest connected component),
on the day 32

Table 1. Ranking (in descending order, top 1 to bottom 106) of broadcast vs. relaxed
broadcast

Vertex Rank (broadcast) Rank (relaxed broadcast)

10 71 21

45 35 25

59 85 28

71 71 21



798 D.V. Greetham, Z. Stoyanov, and P. Grindrod

Fig. 4. Standard vs. relaxed broadcast indices, left, and standard vs. exponential broad-
cast indices, right

users, and if user A’s tweet contained ”@B”, an edge between A and B was cre-
ated. Only reciprocated edges were kept and multi-edges were ignored. All daily
tweets were aggregated into a daily network, so we finished with 7 daily undi-
rected graphs with 12408 nodes and around 2.7k edges in average. We computed
both communicability and relaxed communicability indices, both using rank ob-
tained from communicability, and rank obtained from vitality based measure
(deleting each node and computing the sum of differences for all the other nodes
as described earlier).

3.3 Results

Fig. 5. Top 50 vertices according to the ranking based on standard (left) and relaxed
(right) broadcast

Although the computation of vitality measure is quite demanding (one needs
to recompute communicability matrices for each node once) this is feasible as
the daily networks are quite sparse. At 12408 vertices and 7 time-steps, this col-
lection contains relatively big, but not large networks. Their broadcast indices
decrease quickly so we ranked the indices from largest to smallest with respect



Centrality and Spectral Radius in Dynamic Communication Networks 799

Fig. 6. Top 50 vertices according to the ranking based on standard (left) and relaxed
(right) vitality

to broadcast and looked into more details at the first fifty indices. On Fig 6 one
can see the difference in ranking between the two methods. Several vertices that
are ranked much higher in relaxed than in standard broadcast index correspond
again to vertices with relatively small degrees and were picked up as they con-
nect different communities (e.g. vertex ranked 39 in relaxed is ranked 278 in
normalised and has a degrees equal to (2, 0, 0, 3, 1, 0, 0) respectively in 7 daily
networks.)

4 Conclusions

We used communicability indices to rank the nodes in evolving communica-
tion networks. While the computation of communicability for small-data sets
is relatively simple and fast, for the large data-sets it means handling of large
matrices, so one can use a Taylor approximation. We introduced a parameter
(transmission length) that allows for targeting specifically brokers or bridges
between communities. We have applied this approach on two real-life evolving
networks obtained from mobile phone communications and Twitter. Using the
vitality based measure, we proposed a way to rank vertices depending on the
amount of change their communication abstinence would bring to the rest of the
evolving network. We hope that a parametric approach that can be optimised
according to a particular application will be a useful addition to a standard
evolving social network analysis toolbox, especially when the expected length
of message/communication transmission plays an important role, i.e. it is either
given or can be approximated.

Acknowledgments. This work is funded by the RCUK Digital Economy pro-
gramme via EPSRC grant EP/G065802/1 ’The Horizon Hub’ and EPSRC
MOLTEN EP/I016031/1. We would like to thank Datasift for providing us with
the Twitter dataset.



800 D.V. Greetham, Z. Stoyanov, and P. Grindrod

References

1. Bonacich, P.: Power and centrality: A family of measures. American Journal of
Sociology 92, 1170–1182 (1987)

2. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric
relations. Social Networks 23(3), 191–201 (2001)

3. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Social
Networks 28(4), 466–484 (2006)

4. Burt, R.S.: Brokerage and closure: An introduction to social capital. Eur. Sociol.
Rev. 23(5), 666–667 (2007)

5. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks.
Physical Review Letters 105, 218701 (2010)

6. Crofts, J.J., Higham, D.J.: Googling the brain: Discovering hierarchical and asym-
metric network structures, with applications in neuroscience. Internet Mathematics
(Special Issue on Biological Networks) (2011)

7. Das, K.C., Kumar, P.: Some new bounds on the spectral radius of graphs. Discrete
Mathematics 281(1-3), 149–161 (2004)

8. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by
using mobile phone data. Proceedings of the National Academy of Sciences 106,
15274–15278 (2009)

9. Estrada, E., Hatano, N.: Communicability in complex networks. Physical Review
E 77 (2008)

10. Gantmacher, F.: The Theory of Matrices, vol. 2. AMS Chelsea Publishing (2000)
11. Ghosh, R., Lerman, K.: Parameterized centrality metric for network analysis. Phys-

ical Review E 83(6), 066118+ (2011)
12. Grindrod, P., Higham, D.J.: Models for evolving networks: with applications in

telecommunication and online activities. IMA Journal of Management Mathemat-
ics (2011)

13. Grindrod, P., Higham, D.J., Parsons, M.C., Estrada, E.: Communicability across
evolving networks. Physical Review E 83 (2011)

14. Jamaković, A., Kooij, R.E., Van Mieghem, P., van Dam, E.R.: Robustness of net-
works against viruses: the role of the spectral radius. In: Symposium on Commu-
nications and Vehicular Technology, pp. 35–38 (November 2006)

15. Katz, L.: A new index derived from sociometric data analysis. Psychometrika 18,
39–43 (1953)

16. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks:
Generalizing degree and shortest paths. Social Networks 32(3), 245 (2010)

17. Valente, T.: Network interventions. Science 337(6090) (2012)
18. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real

networks: An eigenvalue viewpoint. In: SRDS, pp. 25–34 (2003)



Finding Network Communities Using Random

Walkers with Improved Accuracy

You Li1, Jie Wang1, Benyuan Liu1, and Qilian Liang2

1 Department of Computer Science, University of Massachusetts, Lowell, MA 01854
2 Department of Electrical Engineering, University of Texas at Arlington, TX 76019

Abstract. Finding communities in structural networks (online social
networks included) with sufficient accuracy is an important issue. We
present a new method to identify communities that are in the same order
of time complexity as the existing algorithms. In particular, we present
an efficient algorithm using random walkers which, on a given network,
generates a new network to better reveal the structures of the original
network. We then use existing hierarchical clustering algorithms on the
new network to find communities. We carry out simulations on both
computer-generated data and the widely-used karate club data [10], and
show that our algorithm can identify communities with much improved
accuracy.

Keywords: Accuracy of Community Identification, Random Walkers.

1 Introduction

Given a structural network represented as a graph, weighted or unweighted, direc-
tional or nondirectional, network communities are clusters of nodes within which
the connecting edges are dense, while the connecting edges between communities
are sparse. We assume that each node may belong to only one community.

Early algorithms for finding communities can be divided roughly into two
categories: graph partitioning [9] and hierarchical clustering [6]. There are two
challenges in devising community identification algorithms. One is the accuracy;
we want to identify communities with sufficient accuracy. The other is the ef-
ficiency; we want to identify communities efficiently, hopefully in linear time,
which is much more desirable for very large networks consisting of millions of
nodes such as online social networks such as Facebook and Twitter. This paper
is focused on the issue of improving accuracy of existing algorithms, while keep-
ing the time complexity at the same level of the existing algorithms. Our idea
is to first convert a given network into a new network that can better reveal the
structure of the original network. We then apply an existing algorithm on the
new network to identify communities. Thus, we must ensure that the conversion
can be done efficiently, and should now incur higher time complexity than the
existing algorithms. We devise an efficient algorithm using random walkers to
achieve this goal. This algorithm, called Random Walker Conversion (RWC),
can be run in quasi-linear time (or even linear time) for small-world networks.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 801–810, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



802 Y. Li et al.

We carry out simulations on both computer-generated data and the widely-
used karate club data [10], and show that our algorithm can identify communities
with much improved accuracy, which can reach 100% accuracy for these datasets
with an appropriate number of iterations for RWC.

The paper is organized as follows. We provide a brief review in Section 2 on
early approaches for finding communities. We then describe in Section 3 our
RWC algorithm and provide theoretical analysis. In Section 4 we describe our
simulations and present simulation results. We conclude the paper in Section 5.

2 Review of Existing Methods

We first describe an early algorithm based on graph partitioning, proposed by
Kernighan and Lin [7]. We then describe two widely accepted algorithms based
on hierarchical clustering.

2.1 Graph Partitioning

On a given (weighted) graph G = (V,E) and a positive integer k, the graph
partitioning problem divides G into k components such that the size difference
of any two components is at most 1 and the number of edges (or the summation
of edge weights) between different components is minimized. This problem has
important applications in task scheduling under multi-processor systems, sparse
matrix reordering, parallelization of neural net simulations, particle calculation,
and VLSI design, to name just a few, and it is NP-hard. The Kernighan-lin
algorithm is a heuristic algorithm widely in VLSI design, and it be used to
obtain rough network communities.

2.2 The Kernighan-Lin Algorithm

Let G = (V,E) be a weighted graph with weight function w : E → R of real
values. Let C1 and C2 be two different communities. Define the weight between
these communities, denoted by PC1,C2 , as the summation of the weights of all
edges between C1, C2. That is,

PC1,C2 =
∑

u∈C1,v∈C2

w(u, v). (1)

The Kernighan-Lin algorithm divides the graph G into two subgraphs C1 and
C2 such that the size difference is at most one, and in a sequence of iterations
swaps a node u ∈ C1 with a node v ∈ C2 to form two new communities C′

1

and C′
2 such that PC1,C2 − PC′

1,C
′
2
is maximized. This algorithm incurs a time

complexity of O(|V |3).



Finding Network Communities Using Random Walkers 803

2.3 Hierarchical Clustering

Hierarchical clustering is a widely used method in finding communities in a
network. The basic idea of this method is to find relations among nodes in
the network, and then extract communities from the network by either adding
edges or deleting edges. Hierarchical clustering can be represented in a tree data
structure known as dendrogram. It can be further divided into divisive clustering
and agglomerative clustering.

Divisive Clustering. Divisive clustering is a top-down approach. It deletes a
critical connected edge and performs splits recursively as the algorithm moves
down the hierarchy. The most popular algorithm of this kind was devised by
Girvan and Newman [8], who defined the “edge betweenness” of an edge as
the number of shortest paths between pairs of nodes that run along it. Thus,
the edges connecting communities will have higher edge betweenness (at least
one of them). By removing these edges, the groups are separated to reveal the
underlying community structure. In this process a dendrogram is created from
the root to the leaves. Each time an edge is removed, the algorithm has to
recalculate the betweeness for all the remaining edges.

The time complexity of Girvan and Newman algorithm is high. For each it-
eration, computing the betweenness of all existing edges in the network incurs
a time complexity of O(|V ||E|). A total of |E| edges will finally be removed.
Hence, the worst-case running time is O(|V ||E|2).

Agglomerative Clustering. Agglomerative clustering is a bottom-up
approach. It uses a weight function on edges to determine how the network
should be divided. Weight functions are either based on the metrics of similarity
or the strength of connection among nodes. A widely used weight function for
an edge depends on the neighbors of the two nodes connected by the edge: If
the nodes i and j have similar sets of neighbors, then they are considered struc-
turally similar and so they belong to the same cluster [8]. An example of such a
similarity measure is given below [4]:

Si,j =
√∑

k �=i,j

(Ai,k −Aj,k)2 (2)

where Aij is the element of adjacency matrix of the graph corresponding to the
nodes i and j. We can see that when (S)i,j = 0, nodes i and j have exactly the
same set of neighbors.

Agglomerative clustering starts with an empty network. It runs in a number
of iterations. In each iteration, an edge is added based on the weight function.
As more edges are added, connected subsets begin to form, which represent
communities. In this process a dendrogram is created from the leaves to the root.
Running the agglomerative method requires a pre-determination of how large
each community should be. This is a drawback for finding natural communities.



804 Y. Li et al.

Also, the structural similarity is limited since the nodes in the same community
may not necessary share even one neighbor. In general, agglomerative clustering
is faster than divisive clustering, which incurs a complexity of O(|V |2).

3 Randomized Algorithm with Random Walkers

Fang and Wang [5] showed how to use random walkers to effectively identify
structural similarities between different networks in linear time. We observe that
using random walkers we may also convert a given network into a new network
that better reveals the structures of the original network, and we may do so in
quasi-linear time or even in linear time.

The basic idea is as follows: We generate for each node in the network a
number of walkers and let them walk at random from one node to another. We
have the following two observations: (1) A random walker is highly likely to stay
in the same community in a random walk. That is, if a walker starts from node
i and ends at node j, then node i and node j would have a high probability to
be in the same community. (2) The sets of walkers on any two nodes in the same
community are likely to have certain similarities. For instance, in a few random
walk steps, node i and node j in the same community may both have walkers
from node k.

Our algorithm, called Random Walker Conversion (RWC), consists of three
phases. In the first phase, RWC generates an appropriate set of walkers on each
node and label the walkers with the node index. The exact number of walkers
to be generated will be determined later. In the second phase, RWC proceeds
in a predefined number of iterations. In each iteration, each walker chooses a
destination node following a defined set of rules and moves to the node. In the
third phase, RWC computes the corresponding sets of walkers for any two nodes
and generates a new network, which better reveals the structures of the original
network.

3.1 Phase I and Phase II

We refer to the node for which the walker is generated as the owner node of the
walker and the node on which the walker is currently on as the current node of
the walker. In Phase II we define a set of rules for walkers to choose destination
nodes in each iteration.

Each walker chooses from two possible actions. With probability p, the walker
moves back to its owner node. With probability 1 − p, the walker selects a
neighbor node of the current node as the destination and moves to it. In this
case, the neighbor node is selected based on the weight of the connecting edge.
The walker must select a node that is different from the one it travels from in
the previous iteration. If the current node has only one neighbor, i.e., the current
node is a leaf node, then the walker will never move again; namely, it stays on
the current node until the end of all iterations. Such a walker is referred to as a
stationary walker. Let wi,j denote the edge weight between node i and node j.



Finding Network Communities Using Random Walkers 805

Let Ri denote the neighbor set of node i. The probability γij that a walker on
node i chooses neighbor node j is defined by

γij =
wij∑

k∈Ri
wik − wiv

, j �= v, (3)

where v is the node where the walker came from in the previous iteration.

Proposition 1. Given a tree with depth H, if we generate S walkers on root
node i and let them each walk t steps, then the expected number nh of walkers
on the nodes at level h at the end of phase II is given by

1. If t < H, then

nh =

{
Sp(1− p)h, if h < t,
S(1− p)h, if h = t.

2. If t ≥ H, then

nh =

{
S(1 − (1− p)H)p(1− p)h, if h < H,
S(1 − p)H , if h = H.

Proof. We compute the probability a walker arrives at each level of the tree.

1. If t < H , then it is not possible for the walker to walk to a leaf node. If h < t,
no matter how walkers move in previous iterations, in the last h+1 iterations,
it must have moved back to its owner node and then walk h iterations to a
node at level h. The probability for this to happen is equal to p(1 − p)h. If
h = t, it means that the walker never moves back and reaches level h. The
probability for this to happen is equal to (1− p)h.

2. If t ≥ H and the walker reaches the deepest level H , then the walker will
be trapped there until the end. The probability for this to happen is equal
to (1 − p)H . If h < H , then the walker must have not reached level H . The
probability for this to happen is equal to (1− (1− p)H)p(1 − p)h.

This completes the proof.

We will let walkers walk one step in each iteration. Proposition 1 indicates that
on node j, the expected number of walkers coming from node i at the end of t
steps decreases according to the distance from node j to node i. The analysis
does not directly apply to graphs with circles. However, since circles only prevent
walkers from traveling farther, the argument still holds; that is, the farther the
node is from node i, the lesser expected number of the walkers from node i it will
have at the end of the iterations. Thus, this argument conforms to the intuition
that the farther the node is from node i, the lesser possible it is in the same
community as node i.

We now determine how many walkers should be generated on each node in
Phase I. As for node i, the nodes that are most likely in the same community as i
are node i’s neighbor nodes. Thus, we generate walkers on node i such that after
the iterations, the neighbor nodes of i are expected to have at least one walker



806 Y. Li et al.

from i. Also, the edge weight is converted to the expected number of walkers. It
follows from Proposition 1 that it is sufficient to generate the following number
of walkers on node i:

Si =
∑

k∈Ri
wik

p(1− p) . (4)

Together with the probability discussed in Section 3, we note that if node i and
j are neighbor nodes, then it is expected that node j will have wij walkers from
node i at the end of random walk iterations.

Details of Phase I and Phase II are given in Algorithm 1.

Algorithm 1. Phase I and Phase II of RWC on an unweighted network

1: Let dv denote the degree of node v in the graph
2: for all node v in V do
3: generate dv/pu walkers
4: set owner node of walkers as v
5: end for
6: for all generated walker w that is not stationary do
7: with probability pu, w moves back to its owner node, set w’s current node to

the owner node, and set its previous node null.
8: if w does not move back to its owner node then
9: if current node of w has degree 1 then
10: set w to stationary
11: else
12: randomly choose a neighbor node y of w’s current node x following

Equation (3)
13: walk to y, set w’s current node to y, and w’s previous node to x.
14: end if
15: end if
16: end for

3.2 Phase III

After the iterations of random walks are finished, each node will have a certain
number of walkers on it. We generate a directed weighted network as follows:
First, remove all existing edges from the original network. Second, add an di-
rected edge from node i to node j if node j has wij neighbors from node i, and
assign a weight w′

ij to this edge defined by

w′
ij =

wij

Wi
, (5)

whereWi =
∑

k∈Ri
wik is the sum of weights of all connecting edges to node i in

the original network. Note that normalization is used to help better reveal the
structures of the original network. Intuitively, the more walkers node j has from



Finding Network Communities Using Random Walkers 807

node i, the more possible the two nodes are in the same community. However,
if node i generates only two walkers and they move to node k while node j
generates 100 walkers and two of them move to node k. Without normalization
node i and node j may have been wrongly considered similar.

The time complexity of RWC is O(t(|V |d), where t is the number of iterations
and d an average node degree. For structural networks such as social networks
(online or offline) that are small world [1,3,2], the average length between any
two nodes is proportional to log |V |/ log d, and so we may choose t < log |V | or
even a constant. Moreover, in small-world networks it is common that d is much
smaller than |V |. Thus, the time complexity of RWC is close to quasi-linear for
such networks or even linear time if we set t to be a constant.

4 Simulations

We evaluate the accuracy of finding network communities using RWC and ex-
isting clustering algorithms via numerical experiments. We consider two sce-
narios. In the first scenario, we generate at random a number of unweighted
networks with 1, 000 nodes, where in each graph, 5 communities of equal size
are formed so that we know the true communities. In particular, the nodes in
the same community are connected with probability 0.75 while the nodes in
the different communities are connected with probability 0.1. In the second sce-
nario, we used the widely-used “karate club” network [7], which is a weighted
social network with nodes representing members of a karate club observed by
Zachary for roughly two years in the 1970’s, and edges indicating social inter-
action between the connecting members. During the two year period, the ad-
minister and the coach of the club had a fight, and the coach finally left the
club along with his customers. In this network, there are 34 nodes and after the
departure of the coach, the network is split into two communities. One consists
of 16 nodes: {1,2,3,4,5,6,7,8,11,12,13,14,17,18,20,22}, and the other consists of
18 nodes: {8,9,14,15,18,20,22,23,24, 25,26,27,28,29,30,31,32,33}. The figure 1 [6]
shows the structure of the community with the core node 1 and 34 represent the
coach and administer respectively.

In each scenario, we run agglomerative clustering on the original network and
the networks generated by RWC. The clustering algorithm runs in iterations.
Initially, each node itself forms a cluster. In each iteration, two clusters with
the most similarity are merged. We use the Pearson correlation coefficient to
evaluate similarity between any two nodes [8]). The Pearson correlation of node
i and j, denoted by x(i, j), is given by

xi,j =
1
n

∑
k(ei,k − μi)(ej,k − μj)

σiσj
, (6)



808 Y. Li et al.

Fig. 1. The Karate Club Community Graph

where

μi =
1

|V |
∑
k

wi,k,

σi =
1

|V |
∑
k

(wi,k − μi)2

are the mean and variance of node i. When the value of xi,j is larger, nodes
i and j are more likely in the same community. The similarity between two
clusters is computed using the mean similarity between elements of each cluster.
In particular, the similarity between two cluster C1 and C2 is computed by

1

|C1||C2|
∑
i∈C1

∑
j∈C2

x(i, j),

where |C| denotes the size of cluster C. The process continues until the number
of remaining clusters is equal to a predefined threshold U .

4.1 Scenario I

In this scenario, we run 100 simulations on 100 randomly generated networks
consisting of 1,000 nodes. For each network we generate a new network using
RWC with t = 5 which is much smaller than log 1, 000. The average accuracy of
finding the communities over 100 runs is computed as follows:

Avg. Accuracy =
1

Nr

Nr∑
i=1

Nc∑
i=1

f i

si
,



Finding Network Communities Using Random Walkers 809

where Nr is the total number of simulation runs, i.e., Nr = 100, Nc the number
of communities, i.e., Nc = 5, f i the number of members that were correctly
found for community i, and si the size of the community i.

We find that using RWC greatly improves the accuracy. In all simulation runs,
the agglomerative clustering on the network generated by RWC results in 100%
accurate community division while the average accuracy of the agglomerative
clustering on the original network is about 92%.

4.2 Scenario II

In this scenario, we let walkers walk at random with different random seed values.
The agglomerative clustering on the original network results in the following
community division: {12} and {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34}, which
bear no correlation with the true communities. We run RWC 100 times with
t = 3 < log 34 and generate 100 different networks. We found that agglomerative
clustering on these RWC networks returns the same division: {1, 2, 4, 5, 6, 7,
8, 10, 11, 13, 14, 17, 18, 20, 31} and {3, 9, 12, 15, 16, 19, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 32, 33, 34}, which is about 70% accurate compared to the true
communities (see Figure 2).

Fig. 2. The hierarchical tree generated by the random walker method

We note that in both scenarios, using RWC to generate new networks only
incurred a very small amount of extra time, which was negligible compared to
the running time of the community identification algorithms.



810 Y. Li et al.

5 Conclusion

We presented a new algorithm using random walkers to improve the accuracy
of network community identifications. Our algorithm first generates a new net-
work from the original network using random walkers, which can better reveal
the structures of the original network. It then uses an existing clustering al-
gorithm on the new network to find communities. The time complexity of our
algorithm is at the same level of the existing clustering algorithm. We show that,
using numerical simulations, our algorithm can greatly improve the accuracy of
community identifications over the existing clustering algorithms.

Acknowledgement. Y. Li and J. Wang were supported in part by the NSF
under grant CNS-1018422. J. Wang was also supported in part by the NSF under
grant CNS-1247875. B. Liu was supported in part by the NSF under grant CNS-
1018303 and grant CNS-0953620. Q. Liang was supported in part by the NSF
under grant CNS-1247848. The authors thank Zheng Fang and Weibo Gong for
constructive discussions in the early stage of this work.

References

1. —. Six degrees of separation’s theory tested on facebook. Telegraph (August 17,
2011)

2. —. Six degrees of separation, Twitter style. Sysomos (April 30, 2010)
3. Barnett, E.: Facebook cuts six degrees of separation to four. Telegraph (November

22, 2011)
4. Burt, R.S.: Positions in networks. Social Forces 55(1), 93–122 (1976)
5. Fang, Z., Wang, J.: Efficient identifications of structural similarities for graphs.

Journal of Combinatorial Optimization (May 2012), http://link.springer.com
6. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-

works. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)
7. Kernighan, B.W., Lin, S.: An eflicient heuristic procedure for partitioning graphs.

Bell System Technical Journal (1970)
8. Newman, M.E.J.: Detecting community structure in networks. The European Phys-

ical Journal B-Condensed Matter and Complex Systems 38(2), 321–330 (2004)
9. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-

works. Physical Review E 69(2), 026113 (2004)
10. Zachary, W.W.: An information flow model for conflict and fission in small groups.

Journal of Anthropological Research, 452–473 (1977)

http://springerlink.bibliotecabuap.elogim.com


Homophilies and Communities Detection

among a Subset of Blogfa Persian Weblogs:
Computer and Internet Category

Adib Rastegarnia1, Meysam Mohajer1, and Vahid Solouk2

1 University of Tehran
Dept of Information Technology Engineering

adib.rastegarnia@ieee.org,
meysammohajer@ieee.org

2 Urmia University of Technology
Dept of Information Technology Engineering

vsolouk@ieee.org

Abstract. The investigation of relationships between various social ac-
tors has been the main focus of social network analysis in explaining
the structure of social relations, measuring the relationships between the
actors and etc. Blogfa is among the popular web service providers for
building Persian weblogs in Iran. To the best of our knowledge, there
is no social network analysis for the Computer and Internet Category
of Blogfa Persian weblogs. The current paper presents a social network
analysis for the Computer and Internet category of Blogfa. Each weblog
in the target category contains a list of friends to which, it establishes a
connection called links or links of friends. These links lead to the forma-
tion of a relationship network between weblogs. The current study has
particularly focused on the relationship analysis of the network of weblogs
based on the friend links. We report on our analyses and measurements
of different centrality parameters such as in-degree, out degree, cluster-
ing coefficient, modularity for the group of weblogs. Furthermore, the
degree of collaborations between these weblogs are analyzed and some
homophilies are detected among them. It was found through the anal-
yses that the majority of the bloggers tend to link the weblogs which
provide the contents with subjects of common interests among the blog-
gers, and that the common interests are merely general subjects rather
than professional ones.

Keywords: Social network analysis, Blogfa Persian weblogs, Clustering
coefficient, Modularity, Relationships Network, Community Detection,
Homophily detection.

1 Introduction

The term Social Network (SN) is used for a social structure that provides maps
of dyadic ties between individuals and organizations such as friendship, kinship,
common interest, financial exchange, etc [1,2]. SNs can operate in different levels

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 811–820, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



812 A. Rastegarnia, M. Mohajer, and V. Solouk

from the families up to the nations and thereby, play critical roles in determining
the way problems are solved, organizations run, markets evolve and the degree
in which individuals succeed in achieving their goals [3]. Hence, the analyses
of SN with focus on studying of relationships between various social actors has
been used by researchers to explain the structure of social relations, measure the
relationships between the actors, etc [4,5]. It is also believed that SN analysis
can be used to evaluate the performance of individuals, groups or the entire the
social network.

Blogfa is one of the popular service providers for building Persian weblogs in
Iran. It contains above 300,000 Persian Weblogs in different categories such as
computer, sport, culture, business, entertainment, personal and etc [6].

Several studies on analyzing relationships in SN have been conducted on we-
blogs as briefly reported in Section 2. To the best of our knowledge, there is
no SN analysis for the Computer and Internet Category of the Blogfa Persian
weblogs. In this paper, a social network analysis for the Computer and Internet
category of Blogfa is presented. Each weblog includes a list of friends to establish
connection, called links or links of friends. These links play role in establishing a
network of relationships among weblogs. The current study has mainly focused
on the network of relationships of weblogs based on their friends’ links. We have
analyzed different centrality parameters such as in-degree, out degree, clustering
coefficient, modularity for the group of the weblogs under investigation. Fur-
thermore, the degree of collaborations between these webglos are analyzed and
number of hemophilies are detected among them. The rest of the paper is or-
ganized as follows: the following section provides a brief overview of the related
works on SN analysis of real world scenarios. Data gathering process is de-
scribed in section 3. Section 4 presents some of the basic social network analyses
based on centrality parameters such as degree distribution, clustering coefficient,
connected components, modularity and K-core. The relationships between the
number of incoming friends’ links and content of the weblogs are explained in
Section 5. Section 6 presents an analysis of global relationship network. Visu-
alization and Analysis of the relationships between the Computer and Internet
Category Weblogs are presented in Section 7, and Section 8 concludes the work.

2 Related Works

Social network analysis of real world scenarios has been the concern of several
studies. In [5] an analysis of top50 political weblogs in people’s daily web, based
on centrality has been presented. Data mining and centrality analysis have been
used to find the network links between the top50 political weblogs. In addition,
in order to achieve better understanding of political blogs community, the au-
thors have been tried to find some of the main political blogs groups such as core
group members, members with special characteristics, and the important group
members. A social network analysis has been presented in [7] for FIT community
server (FITCS) which is a popular way for communication between FIT students.
Some of the main social network characteristics such as density, closeness, degree



Homophilies and Communities Detection 813

and betweenness have been measured for the mentioned social network. In ad-
dition, the analysis shows that FITCS can be considered as a small-world scale
free network, with several hubs. Furthermore, a large scale study on Persian we-
blogs has been presented in [8]. Commenting behaviors of Persian bloggers are
investigated and a simple model for distribution of comments is introduced by
the authors. Social network analysis and data mining methods was used in [9]
to investigate the network relationships in on-line forum of university. To solve
some of the most important problems such as improving the communication in
the university on-line forum, make the students more positive and learn more
knowledge, some advices are proposed. In addition, in [10] structural features
of the Sina’s VIP Blogsphere and the behavior patterns of its members have
been investigated by using social network analysis. The authors concluded the
behavior patterns of Sinas VIP Blogsphere is consistent with real life behaviors
of bloggers.

3 Data Collection Process

In this paper, two kinds of relationships between the weblogs are defined which
are described as the follows:

– Local Relationships Network (LRN): denotes the existing links of friends
among the Computer and Internet category of Blogfa Persian weblogs.

– Global Relationships Network (GRN): denotes the existing links among the
Computer and Internet category and the other categories of Blogfa Persian
weblogs such as Entertainment, sports, business, religious, etc.

We have used Win Web Crawler [11] in order to collect the list of weblogs
and to extract their in-between relationships. In this study, a number of 16429
webblogs from the Computer and Internet category are crawled and a list of
64000 webblogs from other categories are extracted and categorized.

4 Basic Social Network Analysis

In this section, some basic analysis on the basis of degree, modularity, clustering
coefficient and connected components parameters are examined on the LRN of
weblogs. The Gephi software is used to visualize and analyze the relationships
network of weblogs. Gephi platform is an open-source interactive visualization
and exploration tool for all kinds of networks and complex systems [12].

4.1 Degree Analysis

The degree of a node (a node refer to the each of the weblogs) denotes the
number of links to a node. In the directional graph like the case in the current
study, in-degree and out-degree has been applied to the number of links pointing
in and out of a node, respectively [10]. In-degree and out-degree distributions of



814 A. Rastegarnia, M. Mohajer, and V. Solouk

LRN of weblogs are illustrated in Figure 1. As shown in Figure 1, only few of
nodes have numerous incoming links when compared with the rest with only few
incoming links. The nodes with many incoming links act as hubs or connectors
in the LRN. On the basis of calculation, the value of in-degrees are between 0
and 3 for more than 95% of the nodes. In addition, only 0.004% of the nodes
are linked with more than 10 incoming links. Because of applicability of the
80-20 rule or Pareto law in our case, the LRN of the Computer and Internet
category is a scale-free network, which is referred to the network with the degree
distribution following a power law. In addition, the out-degree distribution of
the local relationships is illustrated in Figure 1, pinpointing that only a small
number of the weblogs in the Computer and Internet category are linked to the
weblogs of the same group. The calculated results showed that 98% of weblogs
in the Computer and Internet category link to the 0 to 3 blogs of the same
group. Furthermore, only 0.0029% of the weblogs in this category have been
linked to more than 10 weblogs of the same group. Hence, the results evidence
weak relationships between the Computer and Internet category weblogs.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
ou

nt
 

Out-degree 

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
ou

n
t 

In-degree 

Fig. 1. In-degree and Out-degree Distributions of Computer and Internet Category
weblogs

4.2 Clustering Coefficient

The term Clustering Coefficient (CC) is generally referred to as the probability
that two randomly selected friends of the set A (in our case a weblog) are friends
with each other [2]. In other words, it can be measured by dividing the number
of actual links between one’s friends by the number of possible links in full
friendship case. Full friendship is the case in which everyone is friend with one
another. The value of clustering coefficient is assumed to be between 0 and 1.
It is believed that the friends of a person (in our case a weblog) are considered
good friends with each other once the CC is close to 1. In other words, if the
CC is close to 1, strong relationships between the weblogs can be expected. The
calculated average CC for the LRN is as small as 0.006, which is the evidence of
no strong relationships between these weblogs.



Homophilies and Communities Detection 815

4.3 Connected Components

On the basis of the algorithm proposed in [13], the number of weakly and strongly
connected components has been calculated in the LRN as 8215 and 15861 com-
ponents, respectively. Most of the detected components include less than 1% of
the nodes and only one giant component existed, that include 43% of the nodes.
This giant component is illustrated in Figure 2 using red color. The most re-
markable result is the existence of a connected component as shown in green
color in Figure 2. This connected component contains 20 weblogs. The princi-
ple of homophily indicates that contact between similar individuals occurs more
often than among dissimilar individuals [14]. After investigating the content of
these weblogs, a content based homophily is detected in the discussed compo-
nent. That is, the contents provided by these weblogs are related to the mobile
technology and general computer learning issues. It can be concluded that the
existence of strong relationships among the weblogs of this community originated
due to the existence of this content based homophily.

Fig. 2. Connected Components in Local relationships

4.4 Community Detection by Using Modularity

In order to measure the strength of a network separation into clusters or com-
munities, modularity parameter is proposed in [15]. The number of communities
calculated by the modularity is 13083, with the largest one including only 1.55%
of the nodes as illustrated in Figure 3 using violet color and the second one
including only 1.42% the nodes. Less than 1% of the nodes existed in each of
the rest of the communities. It can be inferred from the modularity results that
the communications between the Computer and Internet category weblogs are
limited to a small number of weblogs which proves our observations reported in
previous sections.



816 A. Rastegarnia, M. Mohajer, and V. Solouk

Fig. 3. Detected Communities in Local Relationship Network network by using Mod-
ularity Parameter

4.5 Community Detection by Using K-Core Method

K-core refers to a maximal connected subgraph in which each node is adjacent
to at least a minimum number, K, of the other nodes in the subgraph. In social
network analysis, K-core method can be used for community detection. LRN of
The Computer and Internet category is drawn based on different values of K
as shown in Figure 4. By increasing the K value to 4, most of the nodes are
discarded from the subgraph and only a small subset of the blogs were found
to have relationships with more than 4 nodes. As illustrated in Figure 4, by
increasing the value of K to 7, only 2 communities were remained in K-core
subgraph, with one community, equal to the 1 as described in Section 4.3. This
community were disappeared by increasing the K value to 22.

5 Number of Incoming Links of the Weblogs and Their
Contents

Previous studies have shown that the web pages with the highest in-degree are
those providing contents in a vast range of subjects. We investigated this phe-
nomena in blogs of the Computer and Internet category. For instance, the weblog
with the address http://www.biya2it.blogfa.com has the highest incoming links
from the other weblogs. After investigating the contents of the weblog, 37 cat-
egories of subjects such as mobile games, web design, movie, health, software,
learning computer, etc are detected.

6 Analysis of Global Relationship Network (GRN)

In order to analyze the relationships between the Computer and Internet cate-
gory and the other categories, number of 64000 Blogfa weblogs are crawled and



Homophilies and Communities Detection 817

1-Core Subgraph 2-Core Subgraph

4-Core Subgraph 7-Core Subgraph

Fig. 4. 1-2-4-7 Core Subgraphs

categorized in 15 categories and 43 subcategories. Then, the number of friends
links of the Computer and Internet Category are extracted. Due to the difference
in number of weblogs in each category and in order to make fair analysis, the
ratio of the Number of Weblogs (NB) to the Number of Friends’ links (NF) are
investigated. As listed in Table 1, an approximate rate of 88% of the weblogs
in the Weblog Themes category together with 18% of the weblogs in the Writ-
ing Weblog Issues category are linked by the Computer and Internet category
weblogs. Hence, it can be interpreted that there is a common interest between
the bloggers to link to the weblogs that provide the contents about installation,
maintenance, and configuration of the weblogs. This observation is originated
from the fact that the bloggers tends to select a beautiful theme for their we-
blogs, customize their weblogs and install some applications on them, etc when
they create their weblogs for the first time. Consequently, with a high probabil-
ity, the bloggers visit the weblogs that provide the contents about the mentioned
issues and make link to them. In other words, some general subjects are common
interests among the most of the bloggers and cause making link to the weblogs
that provide contents related to common subjects.

7 Visualization and Analysis of the Relationship

The LRN and GRN networks of relationships are illustrated in Figure 5. The
number of connected components is equal to 5609 as determined by the Gephi



818 A. Rastegarnia, M. Mohajer, and V. Solouk

Table 1. The ratio of the Number of Weblogs (NB) to the Number of Friends’ links
(NF)

Category Sub-Category NB NF NB/NF

News and Media
News 796 36 0.045
Newspapers and Medias 796 41 0.051
News writers 796 55 0.069

Ideology
philosophy 1587 44 0.027
Islam 1899 108 0.056
Quran 1309 36 0.027
Christianity 215 3 0.013
Zarathustra 225 10 0.044
Jewish 96 5 0.052

Science and Technology
Health 1770 68 0.038
Medicine 1669 40 0.023
Nature and Environment 1277 38 0.029
Foreign Languages 1081 75 0.069
Agriculture and Biotechnology 1381 36 0.026
Electrical and Electronic 1880 127 0.067
Architecture and Civil Engineering 1859 55 0.029
Stars 960 72 0.075
librarian-ship 392 24 0.061
Basic Science 1860 88 0.047
Nurses 325 7 0.021

Culture and History Culture and History 1880 90 0.047

Persian Speakers in other Countries Persian Speakers in other countries 1052 42 0.039

Fotoblog Fotoblog 1900 163 0.085

Art and Literature
Literature and Poem 1860 95 0.051
Book 896 88 0.098
theater and Movie 1940 97 0.05
Music 1902 87 0.046
Imagining 639 45 0.070
Artists 1902 77 0.040

Society and Politics
Politics 1960 39 0.019
Women 400 17 0.012
Society 1327 30 0.022

Family and Life Family and Life 1820 81 0.044

Tourism and Travel Tourism and Travel 1296 48 0.037

Personal Personal 1835 83 0.045

Entertainment Entertainment 1879 192 0.10

Business and Economic
Articles 1371 43 0.031
Companies and Organizations 1880 34 0.018
Electronics Commerce 1140 32 0.028
Earn Money by Internet 1231 41 0.033

Sports Sports 1880 103 0.054

Weblog Utilites
Politics 1960 39 0.019
Weblog Themes 377 332 0.88
Writing Weblogs Issues 237 45 0.18



Homophilies and Communities Detection 819

software. It can be seen that there is a strong connected component at the center
of the graph and all nodes in this component have strong relationships with each
other. This giant component includes 75% of the nodes. The relationships in the
other components are weak. Moreover, the second giant component as shown in
Figure 5 using brown color includes only 8% of the nodes.

Fig. 5. The LRN and GRN relationships network

8 Conclusion

The current paper, presented an analysis of relationships network of weblogs
based on their friends’ links for the Computer and Internet category of Blogfa
Persian weblogs. Some basic analysis based on in-degree, out degree, clustering
coefficient, and modularity centrality parameters has been performed and re-
ported. The results from the basis analysis evidenced weak relationships between
the weblogs of this group. In addition, the relationship between the number of
incoming links of the weblogs and their contents were investigated. The results
proved that the weblogs with the highest in-degree are those providing contents
in a vast range of subjects. Finally, an analysis on the relationships of the Com-
puter and Internet category of weblogs with other categories has been carried
out. This analysis shown that the most of the bloggers tend to link the weblogs
that provide the contents about the subjects of common interests among the
most of the blogger.

References

1. Ding, L., Shi, P.: Social network analysis application in bulletin board systems. In:
2011 International Conference on Intelligence Science and Information Engineering
(ISIE), pp. 317–320 (August 2011)

2. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press (2010)

3. Abbasi, A., Altmann, J., Hossain, L.: Identifying the effects of co-authorship net-
works on the performance of scholars: A correlation and regression analysis of
performance measures and social network analysis measures. J. Informetrics 5(4),
594–607 (2011)



820 A. Rastegarnia, M. Mohajer, and V. Solouk

4. Wasserman, S., Faust, K., Iacobucci, D.: Social Network Analysis: Methods and
Applications (Structural Analysis in the Social Sciences). Cambridge University
Press (November 1994)

5. Ya-ting, L., Jing-min, C.: The social network analysis of political blogs in people:
Based on centrality. In: 2011 International Conference on Consumer Electronics,
Communications and Networks (CECNet), pp. 5441–5444 (April 2011)

6. Blogfa: Blogfa weblog service provider (2012), http://www.blogfa.com
7. Hamulic, I., Bijedic, N.: Social network analysis in virtual learning community at

faculty of information technologies (fit), mostar. Procedia - Social and Behavioral
Sciences 1(1), 2269–2273 (2009)

8. Qazvinian, V., Rassoulian, A., Shafiei, M., Adibi, J.: A large-scale study on persian
weblogs. In: The Proceedings of 12th International Joint Conference on Artificial
Intelligence, Workshop of TextLink 2007 (2007)

9. Huiqing, N.: Social network analysis of university online forum. In: 2010 Inter-
national Conference on Computational Aspects of Social Networks (CASoN), pp.
422–429 (2010)

10. Wen-jun, S., Hang-ming, Q.: A social network analysis on blogospheres. In: 15th
Annual Conference Proceedings of the International Conference on Management
Science and Engineering, ICMSE 2008, pp. 1769–1773 (September 2008)

11. winwebcrawler: Win web crawler (2012), http://www.winwebcrawler.com/
12. Gephi: An open-source graph visualization and maniuplation software (2012),

http://www.gephi.org

13. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Com-
put. 1(2), 146–160 (1972)

14. McPherson, M., Lovin, L., Cook, J.: Birds of a feather: Homophily in social net-
works. Annual Review of Sociology 27(1), 415–444 (2001)

15. Newman, M.E.J.: Modularity and community structure in networks. Proceedings
of the National Academy of Sciences 103(23), 8577–8582 (2006)

http://www.blogfa.com
http://www.winwebcrawler.com/
http://www.gephi.org


 

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 821–830, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Neighborhood-Based Dynamic Community Detection 
with Graph Transform for 0-1 Observed Networks* 

Li Wang1,3, Yuanjun Bi 2,Weili Wu2,1, Biao Lian1, and Wen Xu2 

1 College of computer science and tech., Taiyuan University of tech., Shanxi ,030024, China 
2 Erik Jonsson School of Engi. and Comp. Science, Univ. of Texas, Dallas, 800 W., U. S. 

3 Institute of Computing Tech., Chinese Academy of Sciences, Beijing, 100190, China 
l_lwang@126.com 

Abstract. Dynamic complex social network is always mixed with noisy data. 
It is important to discover and model community structure for understanding 
real social network and predicting its evolution. In this paper, we propose a 
novel algorithm NDCD (Neighborhood-based Dynamic Community Detection 
with graph transform for 0-1 observed networks) to discover dynamic commu-
nity structure in unweighted networks. It first calculates nodes’ shared neigh-
borhood relationship in a snapshot network and deduces the weighted directed 
graph; then computes both historic information and current information and de-
duces updated weighted undirected graphs. A greedy algorithm is designed to 
find the community structure snapshot at each time step. One evaluation formu-
la is proposed to measure the community similarity. Based on this evaluation, 
the latent communities can be found. Experiments on both synthetic and real 
datasets demonstrate that our algorithm not only discovers the real community 
structure but also eliminates the influence of noisy data for better understanding 
of real network structure and its evolution.  

Keywords: dynamic community detection, multi-graph transform, 0-1 observed 
network, nodes’ neighborhood relationship. 

1 Introduction 

We can observe the common principles in nature and human society that individuals 
are always inclined to those similar one. Based on this principle, some sub groups can 
be formed. If represented by graph model, those sub graphs are called communities by 
Newman[1] , where nodes are connected tightly within each community and the con-
nection is loose outside the community. Finding community is very important for 
understanding the characteristics of complex network, discovering latent topology, 
predicting network evolution and so on. Then, Many novel models are proposed and 
new applications are exploited. However, most current work focuses on finding static 
                                                           
* Supported by the Major State Basic Research Development Program of China (973) No. 

2013CB329602, the science research foundation for the returned overseas Chinese Scholars, 
NO. 2010-31, International Collaborative project of Shanxi Province, NO.2011081034, US 
National Science Foundation (NSF) under Grant no. CNS-1016320 and CCF-0829993. 



822 L. Wang et al. 

 

communities. They ignore the change of observed data over time and the models they 
discovered always do not obtain the topology changing process and lose some latent 
information. Some works about dynamic community also proposed recent years. But 
most of them only calculate snapshot data and compare adjacent snapshot topologies. 
When there are noisy data in observed dataset, the discovered community structure 
sometimes maybe wrong.  

It is necessary to delve into the dynamic aspects of network behavior, yet it would 
not be feasible without the data to support such explicitly dynamic analysis. With the 
development of computer networks and wide applications of social network software, 
the human society and computer networks fuse much more than before. Many appli-
cations on network, such as email, blog, facebook, instant communication, mobile 
network, sensor networks and so on, supply facile abundant source of dynamic data-
sets for studying and finding more detailed dynamic topology information in comput-
er network-based social networks. 

2 Related Work 

Recently, some work on identifying dynamic community is published. Most methods 
focus on evolution clustering and optimization models. Chakrabarti et al.[2] brought 
forward evolutionary clustering method and its optimization model. They considered 
that there is relationship between time t and t+1 and its changing should be smooth. 
Chi et al.[3] put forward evolutionary spectral clustering algorithm. He extended simi-
larity computing methods and utilized graph cut to measure community structure and 
community evolution. YU-RU Lin[4] et al. made use of nonnegative matrix factoriza-
tion, based on Markov probability model and dirichlet distribution to build dynamic 
community framework Facenet. Chayant et al. [5] enumerated the different situations 
of community dynamic change and set up different cost evaluation methods that in-
clude individual cost, group cost, color cost and built optimization model for dynamic 
community detecting. Lei Tang et al. [6] proposed a spectral algorithm to model dy-
namic community evolution. 

There are some graph evolutionary algorithms related with dynamic community 
detection. Kumar et al.[7] researched blog community evolution and burst law based 
on the change of in-degree, out-degree, strongly connected components and so on. 
Leskovec et al.[8] analyzed graph evolution models in various fields and proposed 
generators that produce graphs exhibiting the discovered patterns. 

Except evolutionary clustering, graph evolution and optimization models, some 
methods are put forward recently. Q-k Zhao et al. [9] built vector-based heterogenic 
networks, extracted the characteristics of network snapshots and network sequence to 
predict community member. Palla et al [10] analyzed a co-authorship network and a 
mobile network using the clique percolation method (CPM). Spiliopoulou et al.[11]  
proposed a framework MONIC to monitor cluster transitions over time. Asur et 
al.[12] defined a set of events on both  individual and community to model commu-
nity evolution. They defined a set of metrics to calculate the individual and communi-
ty stability, sociability, influence, popularity and so on. Sun et al.[13] put forward a 
parameter-free algorithm GraphScope that extracts community and detect community 
change by Minimum Description Length principle. M. G-R [14] developed an on-line 



 Neighborhood-Based Dynamic Community Detection with Graph Transform 823 

 

algorithm for dynamic network inference that relies on stochastic convex optimization. Kumar 
et al.[15]  divided social network into three classes and studied their evolution cha-
racteristics. Li [17] built self-organization communities for network management. 

There is a common disadvantage for most of above mentioned studies except 
CPM, that is, they have analyzed direct interaction among individuals and failed to 
consider the relationship of individual’s shared neighbors. In contrast, the CPM con-
siders nodes’ neighbor relationship and defines that two k-cliques are adjacent if they 
share k-1 nodes. However this definition is too rigid such that many small communi-
ties cannot be uncovered.  In addition, some works took historic information and 
time dependence into account, but they did not consider the time difference of historic 
information. Actually the different time that former interaction happened has different 
influence on current relationships.   

In this paper, we put forward a novel algorithm NDCD (Neighbors-based Dynamic 
Community Detection with graph transform for 0-1 observed network) to identify 
dynamic communities. The main characteristics are threefold: 

1. We discover dynamic communities based on the nodes’ relationship of common 
shared neighbors.  

2. When detecting communities at each time, we value the historic and current infor-
mation. When colligating the two elements, we consider the interval of historic in-
formation and calculate the fade away rate of historic information. 

3. We define an optimization model for qualifying community at each time step and 
build a new algorithm for measuring the similarity of community topology. All of 
these help to find stable communities in suitable granularity. 

3 Preliminaries and Basic Definitions 

3.1 Preliminaries 

According to social experiences, some assumptions and preliminaries are built as the 
following. 

1.  When we observe the dynamic evolution process, we can see that some context 
information will show more detailed information of nodes’ relationship than just 
the observed immediate relationship. The relationship of common shared neighbors 
stays more stable and noisy data has less influence on it than on immediate rela-
tionship for identifying topology  based on group.  

2. In weighted networks, a good community topology is that the weight sum of edges 
inside all communities is larger than that of edges inter communities.  

3.  For an active node with many neighbors, each single neighbor’s influence is little 
when deciding the node’s community relationship and vice versa.  

4. If one relationship between two nodes exists during nonstop time sequence, it im-
plies this close relationship is stable. If one relationship is not observed in conti-
nuous times, it means that it is less stable than that in continuous steps.  

5. Both historical information and observed snapshot information are important for 
discovering communities. But their importance is different and the historical in-
formation effect will decrease with time.  



824 L. Wang et al. 

 

According to the above five preliminaries, we proposed NDCD algorithm for 0-1 
observed graphs. There are three graphs in this algorithm: observed 0-1graph, 
weighted directed dynamic graph and synthesized undirected weighted graph.  

3.2 Basic Expressions and Definitions 

Firstly we explain the three different graphs in NDCD. 

• Observed graph OGt ={Vt, Et}.Vt is the node set that can be observed at time t and 
Et  is the edge set that records the interaction or relationship status happening at 
time t and Et∈{0,1}.  

• Weighted directed dynamic graph DGt is a weighted and directed graph that 
comes from OGt.  It records the integrated information of social network at time-
stamp t. DGt={Vt,Et,Rt}, in which Vt, Et , Rt are node set, edge set and edge weight 
set that collect all observed graphs from the first time to time t; Rt is a vec-
tor{node,neighbor node,synthetic neighbor effectiveness degree}. 

•  Synthesized undirected weighted graph DG’t is deduced from DGt and the trans-
fer rule will be presented in def. 5.  
Then we introduce some important basic definitions. 
Def.1: path（i,j）is the min path length between nodes i and j. Because the ob-
served snapshot graph is unweighted, the path(i,j) is the minimum number of nodes 
in the path that connects i and j. If there is an edge e(i,j) then path(i,j)=1. 
Def.2：iα-neighbour={k|path(k,i)<= α ,k∈V}. It shows the node’s neighbor area, in 
which α is a positive integer. The neighbor relationship is symmetric. In this paper 
we set α as 1.  
Def.3：If the observed 1-neighbor area of node j is {i1,i2,i3,… ,im}, the observed 
neighbor effectiveness at time t of node ik（1<=k<=m）to j is 1/m, we write it as 

mbt
jik

1, =
, m=|jα-neighbor|.  

Def.4：If node j’s α-neighbor area is { i1,i2,i3,… ,im }, the integrated neighbor ef-
fectiveness at time t of ik（1<=k<=m）to j is  

 
1

1
,

1
,,

1
,, ,,)1(

=
−

− ∈=+−×=
q

t
neighborkjiji

t
ji

t
ji

t
ji

q

kkkkk
jibsbss αγ  (1) 

γ  is the information lapsing factor that shows the invalidated percentage of history 
information with time.  

Def.5：Transfer rules from DGt to DG’t ------Tran0-1
： 

  
tt

ji

tt
ji

t
ij

t
ji

t
ij

t
ji

ttt

t
ij

t
ji

t
ij

t
ji

t
ij

t
ji

tt

ttt

t
ttt

t

EsEe

sseeisthatRRR

eeandeethenssif

VV

REVDGREVDG

∈∈

+==+=

=∧∃∨∃
=



⊥

,
'

,

,,,,
'

,,,,,,

'

''''

,

,,,)3(

,)2(

,.)1(

:),,(),,(

 



 Neighborhood-Based Dynamic Community Detection with Graph Transform 825 

 

Def. 6：CC (Community Clustering) shows the tightness of intra nodes in com-
munity. 

    )1|(|||
||2

−= VV
ECC

                  (2) 
|E| is the edge number and |V| is the node number of this community.  

4 Neighborhood-Based Dynamic Community Detection  

Because our community definition is based on shared neighborhood relationship and 
we focus on community dynamic changing process, we build the community evalua-
tion methods for social network snapshot and social network sequence. 

For community snapshot, we set two optimization goals: 

• If the weight difference between the sum of intra communities and that of inter 
communities is the maximum, the community topology is best.  

• If one community clustering coefficient CC is larger than given threshold value, 
we consider this community is good and the community partition should be fi-
nished.  

For community sequence, we calculate the community difference between adjacent 
timestamps to decide whether the community structure is stable or not. 

NDCD includes six steps as the following. 

1. We utilize definition 3 to calculate OGt and get a new matrix Neight that records 

nodes’ observed neighbors effectiveness 
t

jib ,  at time t. 
2. Based on Neight  and definition 4, calculate the nodes’ integrated neighbor effec-

tiveness at time t and get the weighted directed dynamic graph DGt. Then utilize 
definition 5 to get the synthetic undirected weighted updated graph DG’t .  

3. Partition DG’t using greedy method and obtain the t-th time community structure. 
4. Transfer the obtained community snapshot from weighted graph to unweighted 

graph. The transfer rule is: there is one beforehand value r and if edge weight is 
larger than r, the edge weight is recorded as 1, otherwise as 0.  

5. Calculate each community’s CC. If one community’s CC is less than given thre-
sholdα , then go to step 3 and partition it further. Repeat this procedure until all 
communities’ CC is larger than α  and get the community structure at time t.  

6. Measure the structure similarity of t-th community topology and (t-1)-th communi-

ty topology. If the similarity is larger than threshold β , then the community to-
pology is stable during this period. 

 

Fig. 1. The graph transfer procedure in NDCD 



826 L. Wang et al. 

 

Fig. 1 shows the procedure in NDCD. The detailed is the following: 

1. Update rules for dynamic graphs DGt 

If we observe new nodes, add them to DGt. If one node disappears, do not delete it 
from DGt immediately. If we observe new interactions ,update it by def. 4 and 5.  

2. Algorithm of partition community at one time t 

In NDCD, the observed social network is 0-1 graph and it is transferred to a 
weighted graph. So finding community snapshot at one time is based on weighted 
graphs. Santo Fortunato[16] put forward a weighted modularity formula for evaluat-
ing the community quality in weighed graphs. 

 
 

∈= ∈==

=−=
||

,1

||

,11

2 ,])
2

([
C

Cii

C

Cjj
ijc

n

c

cc sSwhichin
W

S

W

W
Q

c  (3) 

cW
 is the sum of edge weights in module C; W is the edge weight sum in the net-

work; ijs  is the edge weight that connects i and j. Sc  is the strength sum of vertices 

in C. cn  is the number of communities. One optimization goal for community snap-
shot is to maximize the weighed modularity. According to this goal, we design greedy 
method to uncover community structure. The basic idea is to remove edges gradually 
on descent till CC satisfies given threshold.  

3. Algorithm for measuring the similarity of community structures 

In NDCD, the similarity degree of two communities’ c1 and c2 is calculated by Jac-
card index method as the following. 

 21

21
21 ),(

cc

cc
ccJac

∪
∩

=
 (4) 

Just as introduced before, the matching couples of Ct and Ct-1 that satisfies 

≤≤

≤≤

−

−

t

t

Cj

Ci

t
j

t
i ccJac

1

1

1

1

),(max

are discovered, then the similarity of community topology at dif-
ferent times is computed using the following formula.  

  3,2,1,,),(
11

,

1 ====Δ
−−− tCcCcccJac

t

h

t
j

t

k

t
i

hk

t
j

t
i

t
c hkhk

 (5) 

5 Experiments and Evaluations 

Although some related work is proposed, dynamic community detection is still in its 
infancy [16] and standard evaluation method is lacked. One popular evaluation way is 
to compare the identified community structure with real structure; especially it is very 
useful to analyze the match between identified structure and its semantic content. So 



 Neighborhood-Based Dynamic Community Detection with Graph Transform 827 

 

we make experiments on synthetic datasets and real datasets to evaluate NDCD. With 
synthetic datasets we compare the discovered result with human’s knowledge. Based 
on real datasets we compare the result with its semantic content in real world. 

5.1 Experiments on Synthetic Datasets 

We design a synthetic dynamic network which consists of 6 nodes and give its  
dynamic changing states in three different time steps. The first line in fig. 2 is the 
observed networks at different times.  The second line is the calculated DG’t and 
community topology at t=1 and t=2. The third line is the DGt and DG’t and its hierar-

chical community snapshot. In this procedure the information lapsing factor =1/4. 
 

 

Fig. 2. The process of NDCD                  Fig. 3. Demo of NDCD dealing with noisy data 

By NDCD, the community structure at time t=1 is {1,2,4}{3,5,6}. But by observa-
tion, the communities should be {1,2,3}{5,6}{4}. And the modularity of the later is 
higher than that of the former. The main difference between them is about the node 3 
and 4. For node 4 it will be in the same community with its unique neighbor node 1 in 
great probability. Node 3 has many neighbors and then these neighbors all have little 
influence for its topology. But node 3 may affect its neighbors’ community attribution 
greatly. So {5,6} and it belongs to one community. Moreover from the undirected 
weighted synthetic graph DG’1, we can see the weight sum of {3,5,6} is bigger than 
that of {1,3,2,4}. All of this means that our algorithm accords with the practical expe-
rience.  

By community similarity function (5),the community similarity between time 1 
and 2 is 1/2 and that between time 2 and 3 is 2/3. We can see that the community 
topology is going to be stable during these time steps. 

For observing the quality of our algorithm dealing with noisy data, we added two 
more observed datasets that are respectively at time 4 and 5(Fig.3). At time 4, node 2 
is not observed and so it is a noisy data. But by our algorithm we still can compute it 
and get its community structure as the left in Fig2. The reason is that our algorithm 
calculates both the historic information and current information. Even there is some 
wrong data, noisy data, unobserved data in observed snapshot network, its influence 
could be limited in some scope and we still can get more truthful result.  

γ



828 L. Wang et al. 

 

5.2 Experiments on Real Dataset 

We do experiments on real coauthor networks with two different size (Table 1) .We 
extracted datasets from DBLP and C-DBLP (http://www.cdblp.cn). The experiment on 
little size aims to show NDCD is noise-tolerant and it can discover communities. The 
one on large size is to show NDCD can discover latent community evolution process.  

1. Noise-Tolerant Experiment for NDCD 
In this test, we extract dataset from C-DBLP. For clearly observing and valuing the 
discovered community quality, we choose 10 authors and gathered their published 
papers information from 2005 to 2008. By cleaning and filtering unusable data, we 
got 31 papers as test dataset. Moreover because we only care about whether there is 
coauthor relationship between authors, we did not record the number of coauthor 
papers and hence our observed graph is 0-1 graph. In Fig. 4, the left part shows the 
observed coauthor relationship and the right part shows the community topology in 
different years by NDCD. Nodes with circle are authors. In the left part, edge shows 
that two author nodes collaborated and published papers. In the right part, the dark 
circled nodes are those authors who are not observed at one time. Square means 
community. If authors belong to one community, then they connect the same square. 

By computing we get the community topology is{{1,2,3,5,7}{6,8}{4,9,10}}. We 
analyzed the original datasets and found that the affiliations of 1, 2,3,5,7 are same and 
it is A ( for privacy protection), the affiliation of 6 and 8 is B, the affiliation of 4 is C, 
the affiliation of  9 and 10 is D. The former two communities accord with our  
experience. Because in China authors in same organizations have more chance to 
collaborate and publish papers. But why 4、9、10 belongs to one community and the 
affiliation of 4 is different with that of 9 and 10? We researched the original data and 
found in dataset of 2006 there is one paper whose author is 4 and 1, but the affiliation 
of node 4 is C. According to our collected other papers by node 4, her affiliation is D. 
The two authors may be different but with same name or same author but different 
organizations for short time study or job change. But whether or not, under such situa-
tion with part wrong or confused information, NDCD finally discovered the real sta-
ble coauthor groups. This shows that dynamic community detecting would eliminate 
the influence of noisy data well and help to uncover the latent network structure.  
 

 

Fig. 4. Dynamic community of C-DBLP 



 Neighborhood-Based Dynamic Community Detection with Graph Transform 829 

 

Analyzing the dynamic community evolution over time, by formula 5 we conclude 
that the adjacent community topology similarity degrees are 1.68, 2.68 and 3. We can 
see that the adjacent community topology similarity degrees increase gradually with 
time and during this observed periods the coauthor community topology tends to be 
stable.  

2. Experiment on Community Evolution Discovery 
We selected 500 academicians from the four traditional areas: database, network 
communication, data mining, semantic web and knowledge engineering. From DBLP, 
We extracted their co-author papers from 2006 to 2012.And we get 43502 coauthor 
papers. Using NDCD and CPM [10] algorithms respectively, we got communities in 
each year. For little size communities meaningless, we just analysis the communities 
with size larger than 20. Fig5 is the comparison between NDCD and CPM. 

From NDCD result We can see there are great changes in 2009, 2010 and 2011. 
We looked into the communities and abstract their papers topic. In 2009, 2010, some 
old communities were divided and some new communities with little size appeared. 
From their papers’ topic, we found some social network, machine learning related 
research papers emerged. I think some researchers may turn their interest in social 
computing and formed new collaboration relationship. In 2011, some communities 
overlapped and merged. We found more sophisticated topics mixed, such as social 
influence, machine learning, social media, network analysis. A lot of researchers from 
different background paid more attention to collaborate and one researcher may have 
many different research interests. So coauthor communities became bigger. 

From CPM, we see the community evolution is slow and nearly stable. That is be-
cause they integrated all historical information and snapshot information to update the 
edge weight. Although they took the decay factor of historical information, but it still 
influence the result. It makes the evolution stable even if the evolution is dynamic. Our 
algorithm also takes the decay factor of historical information, but we just integrated 
the previous one with decay factor.  That is consistence with the short period smooth-
ness hypothesis. So our algorithm can help get more reasonable result than CPM . 

      Table 1. Co-author datasets            

  

                                    Fig. 5. Evolution of community number with year 

6 Conclusions  

In this paper, we proposed a novel algorithm NDCD to identify dynamic communities 
in observed 0-1 social networks. Differentiated from other algorithms, it leverages the 



830 L. Wang et al. 

 

node relationship of common shared neighbors in observed network snapshots, un-
covers community snapshots based on historic information and current observed net-
work and discovers the community evolution process based on graph transfer and 
evaluation of the adjacent community structures. Experiments on both synthetic and 
real datasets show that NDCD not only discovers the real community structure but 
also eliminates the influence of noisy data, thus helps to better understanding of real 
network structure and its evolution.  

References 

1. Newman, M.E.J.: Detecting community structure in networks. Eur. Phy. J. B 38 (2004) 
2. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: ACM SIGKDD 

(2006) 
3. Chi, Y., Song, X., et al.: Evolutionary spectral clustering by incorporating temporal 

smoothness. In: Proc. of the 13th ACM SIGKDD Conference (2007) 
4. Lin, Y.-R., Chi, Y., Zhu, S., et al.: Facetnet: a framework for analyzing communities and 

their evolutions in dynamic networks. In: WWW 2008, pp. 685–694 (2008) 
5. Chayant, T., Tanya, B.-W., David, K.: A Framework For Community Identification in Dy-

namic Social Networks. In: KDD 2007, pp. 717–726 (2007) 
6. Tang, L., Liu, H., et al.: Community evolution in dynamic multi-mode networks. In: KDD 

(2008) 
7. Kumar, R., Novak, J., Raghavan, P., et al.: On the bursty evolution of blogspace. In: 

WWW (2003) 
8. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking 

diameters and possible explanations. In: KDD (2005) 
9. Zhao, Q., Bhowmick, S.S., et al.: Characterizing and predicting community members from 

evolutionary and heterogeneous networks. In: CIKM 2008, pp. 309–318 (2008) 
10. Palla, G., Barabasi, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446 

(2007) 
11. Spiliopoulou, M., Ntoutsi, I., et al.: Monic: modeling and monitoring cluster transitions. 

In: SIGKDD (2006) 
12. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the 

evolutionary behavior of interaction graphs. In: Proc.of the 13th ACM SIGKDD Conf. 
(2007) 

13. Sun, J., et al.: GraphScope: parameter-free mining of large time-evolving graphs. In: KDD 
(2007) 

14. Gomez-Rodriguez, M., Leskovec, J.: Structure and Dynamics of Info. Pathways in Online 
Media. In: WSDM (2013) 

15. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: 
SIGKDD (2006) 

16. Fortunato, S.: Community detection in graphs. Phy. Reports 486, 75–174 (2010) 
17. Wang, L.: SoFA: An expert-driven, self-organization peer-to-peer semantic communities 

for network resource management. Expert Systems and Applications (January 2011) 



Effects of Inoculation Based on Structural

Centrality on Rumor Dynamics in Social
Networks

Anurag Singh, Rahul Kumar, and Yatindra Nath Singh

Electrical Engineering department, IIT Kanpur-208016, India
{anuragsg,rahulkmr,ynsingh}@iitk.ac.in

Abstract. In social networks, the mechanism to suppress harmful ru-
mors is of great importance. A rumor spreading model has been defined
using the susceptible-infected-refractory (SIR) model to characterize ru-
mor propagation in social networks. In this paper a new inoculation
strategy based on structural centrality has been applied on rumor spread-
ing model for heterogeneous networks. It is compared with the targeted
and random inoculations. The structural centrality of each nodes has
been ranked in the topology of social networks which is modeled as scale
free network. The nodes with higher structural centrality are chosen for
inoculation in the proposed strategy. The structural centrality based in-
oculation strategy is more efficient in comparison with the random and
targeted inoculation strategies. One of the bottlenecks is the high com-
plexity to calculate the structural centrality of the nodes for very large
number of nodes in the complex networks. The proposed hypothesis has
been verified using simulation results for email network data and the
generated scale free networks.

Keywords: Complex networks, graph spectra, rumor spreading model,
inoculation strategies.

In today’s world, Internet has become the most powerful medium to circulate
information. We use online social network sites to express our altitude, emotions
and to communicate with friends, almost on daily basis. Twitter and Facebook
have become the most important mechanisms for information broadcasting. A
large number of users share information on them. Consequently, lot of research
has been carried out to provide valuable insights in the information diffusion
in social networks. If any information is circulated without officially publicized
confirmation, it is called a rumor. In other words, rumors are unreliable infor-
mation.

The rumor spread phenomenon is similar to epidemic spread, in which all the
informed nodes spread rumor by informing their neighboring nodes [1,2]. Recent
research in complex network theory has given a new direction to the epidemic
spreading model [3,4]. It has been found that the topologies of many real world
networks have three main properties: small world, scale free and high clustering.
The susceptible-infected-refractory (SIR) model for dynamic process of epidemic

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 831–840, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



832 A. Singh, R. Kumar, and Y.N. Singh

spread is used to model the rumor spread in this paper. A susceptible node can
be infected by an infected neighbor with some spreading rate and introduces
a new refractory state in which nodes cannot be infected. The SIR model for
rumor spreading, was first introduced by Daley and Kendal [5] and its variants
by Maki-Thomsan [6]. In Daley-Kendal (DK) model, homogeneous population is
subdivided into three groups viz., ignorants, spreaders and stifler. The rumor is
propagated throughout the population by pairwise contacts between spreaders
and other individuals in the population. Any spreader involved in a pairwise
meeting attempts to infect other individual with the rumor. In Maki Thomsan
(MK) model when a spreader contacts another spreader, only initiating spreader
becomes a stifler. DK and MK models have an important shortcoming that these
models do not take into account the topology of the underlying social intercon-
nection networks along which the rumors spread. To consider the topology of
network, the rumor spreading models on small world network and scale free (SF)
networks [7,8] have been defined. Only few studies have been reported on how
to stop the rumor spread [9,10,11,12] in small world and SF networks. These
studies are more important since false and fatal rumors have negative impacts
on the society during disasters.

In this paper, a new inoculation strategy based on structural centrality is
applied. Using this method we can find the most influential node in the context
of centrality measures in the graph. The structural centrality based inoculation
will not be useful for a complex network with very large number of nodes in the
complex networks because the complexity will be high in finding the structural
centrality of the nodes. In this work, for all the simulations of the complex
networks, the scale free property has been considered with power law degree
distribution. In real world networks, the scale free properties are found e.g., in
email networks, Internet networks, telephone call graphs etc. [4].

1 Rumor Spreading Model

In this work, we have used rumor spreading model proposed by us in [8]. We
used mean field equations for complex networks while considering non linearly
varying number of informed neighbor nodes by a spreader in each time step
(not all neighbors of the node). P (k) ∝ k−γ is the degree distribution of SF
network and Φ(k) = kα is the nonlinear rumor spreading function with 0 ≤
α ≤ 1. P (l|k) is the degree-degree correlation function that a randomly chosen
edge emanating from a node of degree k leads to a node of degree l, P (l|k) =
lP (l)/〈k〉, for uncorrelated networks, where 〈k〉 is the average degree of the
network. Let I(k, t), S(k, t), R(k, t) be the density of ignorants, spreaders and
stifler, respectively belonging to connectivity class k at time t. The rate equations
for rumor diffusion model are,

dI(k, t)

dt
= −kλI(k, t)〈k〉

∑
l

lαP (l)S(l, t); (1)



Effects of Inoculation Based on Structural Centrality on Rumor Dynamics 833

dS(k, t)

dt
=
kλI(k, t)

〈k〉
∑
l

lαP (l)S(l, t)− kσS(k, t)

〈k〉
∑
l

[S(l, t) +

R(l, t)]lαP (l)− δS(k, t); (2)

dR(k, t)

dt
=
kσS(k, t)

〈k〉
∑
l

[S(l, t) +R(l, t)]lαP (l) + δS(k, t). (3)

Where, λ, σ and δ are the rumor spreading, stifling and forgetting rates respec-
tively. After solving equations Eqs. (1)-(3) for δ = 1, the rumor threshold (below

this spreading rate rumor will not spread in the network) is λc =
〈k〉

〈kα+1〉

2 Complex Network Topology Using Graph Spectra

The complex network topology can be understood by the graph structure [13,14].
A graph is defined by G = (V,E), where V is the set of vertices or nodes and
E is the set of edges or links. A = [aij ] is an adjacency matrix of |n × n| size,
where n = |V |, aij will be 1 if edge exists between i and j vertices otherwise 0
and aij = aji for undirected (symmetric) graphs. The degree of the ith vertex,
di =

∑
j aij and D = [di] is the degree matrix which is a diagonal matrix.

Spectral graph theory using eigenvalues and eigenvectors can be applied in the
graphs to find out the structural centrality of the graphs. If a matrix is square,
symmetric and positive semidefinite [15] then eigenvectors and eigenvalues will
exist for the matrix. Eigenvectors and eigenvalues exist for A, since the adjacency
matrix A of a graph is symmetric, and it is positive semidefinite.

The Laplace matrix, L of the adjacency matrix A for graph G is given by L =
D−A. The Laplace matrix of the graph is a positive semidefinite and symmetric,
therefore it has all eigenvalue values, i.e. λi ≥ 0, ∀i. Hence these eigenvalues (λi)
ordered as λ1 ≥ λ2 ≥ ... ≥ λn = 02, have eigenvectors zi respectively such that
||zi||2 = zi

T zi =1. The set of eigenvectors of L, Z = [z1, ...zi..., zn], will be
orthonormal i.e., ZTZ = I. If Λ is a diagonal matrix, Λ = [λii] of eigenvalues
then L follows the eigen decomposition as L = ZΛZT .

3 Structural Centrality

From Laplace matrix L, Moore-Penrose pseudo inverse matrix L+ can be de-
fined, that follows all the properties (square, symmetric, doubly-centered, posi-
tive semidefinite) of L. The eigen decomposition of L+ will be ZTΛ−1Z. Z is
an orthonormal matrix made of the eigenvectors of L+, If Λ has an eigenvalue
value, λi = 0 then corresponding eigenvalue λ−1 in Λ−1 will also be 0. As L+ has
the doubly centered (all rows and columns sum will be zero) property therefore
centroid of the nodes (having position vectors) lies on the origin of the space
[15]. The graph matrix maps into the new euclidean space. We can represent
each node by a unit vector v as,



834 A. Singh, R. Kumar, and Y.N. Singh

vi = [0−−− 1−−− 0]T

i

vj = [0−−− 1−−− 0]T

j

Now we can calculate the distance between node i and j in terms of number of
hops required to reach j from i (m(j|i)) and vice versa. Average commute hop
distance measure is,

n(i, j) = m(j|i) +m(i|j) (4)

n(i, j) will follow the distance measure for any nodes i, j and k,

1. n(i, j) ≥ 0
2. n(i, j) = 0 iff i = j
3. n(i, j) = n(j, i)
4. n(i, j) ≤ n(i, k) + n(k, j)

Therefore, using L+ matrix and graph volume, VG (=
∑n

k=1 dkk), n(i, j) can be
expressed as [15],

n(i, j) = VG(l
+
ii + l+jj − 2l+ij) (5)

Now the node vector vi can be mapped into the new euclidean space by using
the following transformations,

vi = Zyi, (6)

yi
′ = Λi

1/2yi (7)

Where, yi is the transformation node vector. Now Eq. (5) can be decomposed
as,

n̄(i, j) = VG(yi
′ − yj

′)T (yi
′ − yj

′) (8)

Hence, in the new euclidean space the node vector yi and yj are separated by
average commute euclidean distance measure (n̄(i, j)).

Therefore euclidean distance measure for the node i from the origin can be
found as the diagonal entry of the L+,

||y′
i||

2
2 = l+ii (9)

Definition 1. If Le be the Laplacian of the graph on n vertices consisting of
just the edge e and w ∈ 
n then,

wTLw =
∑
e∈E

wTLew =
∑

(i,j)∈E

(wi −wj)
2 (10)

Definition 2. Structural centrality is able to make the hierarchy from the most
influential nodes to least influential nodes.



Effects of Inoculation Based on Structural Centrality on Rumor Dynamics 835

The structural centrality of node i for graph G is

SC(i) =
1

l+ii
. (11)

From Eq. (11), for the lower value of l+ii the structural centrality (SC) will be
high and vice versa . Therefore the value of l+ii is determines the influential nodes.

If a node i is closer to origin in n- dimensional space then it will have lower
value of l+ii , i.e., more centrally located in the network. Therefore, the value of
l+ii in pseudo inverse matrix L+ can be defined as,

l+ii =

n−1∑
k=1

z2
ki

λk
(12)

It has been observed from Eq. (12) that structural centrality of a node is defined
by the eigenvectors and eigenvalues of the Laplace matrix, L of the graph.

1

6

4

2 3

7

5

1

3

3

4

2

3

3 1

6

4

2 3

7

5

14

2

3

3

5

1

(a) (b)

Fig. 1. The node ranks in graph with (a) degree centralities (b) structural centralities
mentioned inside the nodes

The concept of the structural centrality can be understood with the help of an
example given in Fig. 1. There are seven nodes in the graph and the hierarchy of
their degrees given in the center of the nodes. Hence node 5 is the most influential
in the case of targeted inoculation based on nodal degree as shown in Fig. 1(a).
After defining the adjacency matrix A and degree matrix D of the given graph,
we can calculate the Laplace matrix L = D −A, as

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 3 −1 −1 0 0.
0 0 −1 2 −1 0 0
0 0 −1 −1 4 −1 −1
0 0 0 0 −1 2 −1
0 0 0 0 −1 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Laplace matrix, L holds following desirable properties to calculate the structural
centrality,



836 A. Singh, R. Kumar, and Y.N. Singh

1. Symmetric: aij = aji, in L
2. Square matrix : L is 7× 7
3. Doubly centered: Summation of all rows and columns in L is 0

4. Positive semidefinite: Let w be any vector, i.e., w =

[
−0.8507
−0.5257

]
, then wT =[

−0.8507 −0.5257
]
, for edge between node 1 and 2, L12 =

[
1 −1
−1 2

]
, and

wTL12w = 0.3820. (13)

Therefore, L will be positive semidefinite.
Using the L, pseudo inverse matrix L+ can be generated as,

L+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.4626 0.6054 −0.1088 −0.3469 −0.4422 −0.5850 −0.5850
0.6054 0.7483 0.0340 −0.2041 −0.2993 −0.4422 −0.4422
−0.1088 0.0340 0.3197 0.0816 −0.0136 −0.1565 −0.1565
−0.3469 −0.2041 0.0816 0.5102 0.0816 −0.0612 −0.0612
−0.4422 −0.2993 −0.0136 0.0816 0.3197 0.1769 0.1769
−0.5850 −0.4422 −0.1565 −0.0612 0.1769 0.7007 0.3673
−0.5850 −0.4422 −0.1565 −0.0612 0.1769 0.3673 0.7007

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
From the above matrix diagonal values, l+ii is defined for ith node respectively.
Thus vector for l+ii ∀i is

l+ii =
[
1.462 0.7483 0.3197 0.5102 0.3197 0.7007 0.7007.

]
After observing the above values of l+ii , it has been found that nodes 3 and 5
have the most structural centrality in the network. Therefore, node 3 can also
be most influential like node 5 (i.e. most influential in degree centrality).

4 Structural Centrality Inoculations

The diagonal elements, l+ii can be sorted from low to high with their node num-
bers. Now, we will be able to get the list of the nodes sorted according to their
degree centralities from high to low from Eq. (11). Then, we can select fraction, g
of inoculated nodes from the sorted array. Therefore, we will be able to inoculate
most structurally central nodes first.

5 Random Inoculations

In random inoculation strategy, randomly selected node will be inoculated. This
approach inoculates a fraction of nodes randomly, without any information about
the network. Here, variable g (0 ≤ g ≤ 1) defines the fraction of inoculated nodes.
In the presence of random inoculation, rumor spreading rate λ is reduced by a
factor (1− g).



Effects of Inoculation Based on Structural Centrality on Rumor Dynamics 837

10
0

10
1

10
−3

10
−2

10
−1

k

P
(k

)

10
0

10
1

10
2

10
−3

10
−2

10
−1

k

P
(k

)

(a) (b)

Fig. 2. The degree distributions of (a) generated SF network (b) Email network

6 Targeted Inoculations

Scale free networks permit efficient strategies which depend upon the hierarchy of
the degrees of nodes (degree centrality). The SF networks are strongly affected
by targeted inoculation of nodes [8]. In targeted inoculation, the high degree
nodes have been inoculated as they are more likely to spread the information.
In SF networks, the robustness of the network decreases with a tiny fraction of
inoculated individuals.

Let us assume that fraction gk of nodes with degree k are successfully inocu-
lated. An upper threshold of degree is kt , so that all nodes with degree k > kt
get inoculated (gk = 1). Fraction gk of nodes with the degree k are successfully
inoculated.

7 Simulations and Results

The numerical simulations have been done to observe the complete dynamical
process with inoculation strategies with spreading (λ = 0.5), stifling (σ = 0.2)
and spontaneous forgetting (δ = 1) rates. Nodes interact with each other for
rumor passing in each time step. After N nodes update their states according to
the proposed rumor model, time step is incremented. To reduce the complexity,
α = 1 is considered. The SF networks are generated according to the power
law, P (k) = k−γ , where 2 < γ ≤ 3 for N = 5000 and γ = 2.3 (Fig. 2 (a)).
Email network has also been considered for the verification as real world complex
network (Fig. 2 (b)).The random inoculation is implemented by selecting gN
nodes randomly in the network. The targeted inoculation can be done after
selection of the fraction of higher degree of nodes. The structural centrality
inoculation can be done by getting the diagonal values, l+ii of the pseudo inverse
matrix L+, for the corresponding node i. Using l+ii , we can sort the values in an
array from low to high and inoculate fraction of the sorted nodes in the array.

The structures of the email and generated SF network are constructed for some
nodes along with the structural centrality (Fig. 3). In the degree distribution of
email network more number of very high degree nodes are found as compared



838 A. Singh, R. Kumar, and Y.N. Singh

(a) (b)

Fig. 3. The structure of (a) Email network (b) generated SF network with the different
ranking of structural centralities (red → blue → brown → green nodes show higher to
low ranking)

with the generated SF network, as shown in Fig. 2. Therefore, Fig. 3 (a) shows
lot of edges around more number of higher degree nodes as compared to the
generated SF networks shown in Fig. 3 (b). The most structurally central node
represented by red and least by green can be verified from Fig. 3. For high
structurally central node, less number of hops are required to reach the other
nodes, even at less degree. The most structurally centered node provides the well
connected path between the two dense nodes shown as a sub-graph.

In Fig. 4 (a) degree centrality has been mentioned for all the nodes in the
decreasing order of degrees and corresponding node’s structural centrality has
been shown as in Fig. 4 (b) for email networks. It is observed that even with
the less degree of nodes, the structural centrality is high, and can affect the
network in the case of rumor spreading in comparison with the high degree nodes.
Therefore, we observe influential nodes in the structural centrality. Hence, it is
required to inoculate these nodes to suppress the rumor in the network.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

Node Id

D
eg

re
e 

C
en

tr
al

ity
 (k

)

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

Node Id

S
tr

uc
tu

ra
l C

en
tr

al
ity

 (1
/l ii+ )

(a) (b)

Fig. 4. Distributions of (a) degree centralities (b) structural centralities with the node
ids in email network



Effects of Inoculation Based on Structural Centrality on Rumor Dynamics 839

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

t

R
(t

)

 

 

structural centrality
targeted
random

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

t

R
(t

)

 

 

structural centrality
targeted
random

(a) (b)

Fig. 5. Rumor evolution with the time for (a) 10 % inoculations (b) 30 % inoculations
for Email network

Using the rumor model from Eqs. (1)-(3), rumor dynamics is studied for ran-
dom inoculation, and targeted inoculation on the basis of nodal degree and
structural centrality. In Fig. 5, evolution of size of rumor is plotted against time
for email network. Final size of rumor is less in the structural centrality then the
targeted inoculation for 10 % inoculation of nodes (Fig. 5 (a)). Similar pattern
for rumor evolution with time has been found for 30 % inoculations (Fig. 5), but
rumor is almost suppressed in this case. Thus, the structural centrality based
inoculation suppresses the rumor in the networks more effectively. Random in-
oculation is not much effective in both cases i.e., in email network and generated
SF network to suppress the rumor . In the case of generated SF networks, for
very small fraction of time, rumor size has been found to be higher in structural
centrality based inoculations initially for 10 % as well as 30 % of inoculations of
node, as shown in Fig. 6. But later rumor size decreases in the structural cen-
trality based inoculation in comparison with targeted inoculations (the reason
is, highest degree is very less in the network but number of high degree nodes
are more). Therefore, degree centrality plays important role initially but later
structural centrality plays its role.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

t

R
(t

)

 

 

structural centrality
targeted
random

0 10 20 30 40 50
0

0.002

0.004

0.006

0.008

0.01

0.012

t

R
(t

)

 

 

structural centrality
targeted
random

(a) (b)

Fig. 6. Rumor evolution during with the time for (a) 10 % inoculations (b) 30 %
inoculations for generated SF network



840 A. Singh, R. Kumar, and Y.N. Singh

8 Conclusions

In SF network we have derived the structural centralities of nodes in the complex
networks and ranked it with the help of l+ii values. A node with the high structural
centrality needs less number of hops to reach the other node, even at less degree.
We have inoculated nodes according to the rank of structural centrality. After
this we observed less rumor spreading then the degree centrality based targeted
and random inoculations. It is also observed that there are lot of nodes, having
low degrees but high structural centralities and vice versa.

References

1. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex
heterogeneous networks. Euro. Phy, J. B 26(4), 521–529 (2002)

2. Zhou, J., Xiao, G., Cheong, S.A., Fu, X., Wong, L., Ma, S., Cheng, T.H.: Epidemic
reemergence in adaptive complex networks. Phys. Rev. E 85, 036107 (2012)

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

4. Newman, M.: The structure and function of complex networks. Siam Review 45(2),
167–256 (2003)

5. Daley, D., Gani, J., Gani, J.: Epidemic Modelling: An Introduction. Cambridge
University Press, Cambridge (2001)

6. Maki, D., Thompson, M.: Mathematical models and applications: with emphasis
on the social, life, and management sciences. Prentice-Hall, NJ (1973)

7. Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M.: Theory of rumor spreading in
complex social networks. Phy. A 374(1), 457–470 (2007)

8. Singh, A., Singh, Y.N.: Nonlinear spread of rumor and inoculation strategies in
the nodes with degree dependent tie stregth in complex networks. Acta Physica
Polonica B 44(1), 5–28 (2013)

9. Singh, A., Singh, Y.N.: Rumor spreading and inoculation of nodes in complex net-
works. In: Proceedings of the 21st International Conference Companion on World
Wide Web, WWW 2012 Companion, pp. 675–678. ACM (2012)

10. Singh, A., Kumar, R., Singh, Y.N.: Rumor dynamics with acceptability factor and
inoculation of nodes in scale free networks. In: 2012 Eighth International Confer-
ence on Signal Image Technology and Internet Based Systems (SITIS), pp. 798–804
(November 2012)

11. Singh, A., Singh, Y.N.: Rumor dynamics with inoculations for correlated scale free
networks. In: 2013 National Conference on Communications (NCC), pp. 1–5 (2013)

12. Pastor-Satorras, R., Vespignani, A.: Epidemics and immunization in scale-free net-
works. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of Graphs and Networks:
From the Genome to the Internet, pp. 113–132. Wiley-VCH, Berlin (2002)

13. Spielman, D.: Spectral graph theory and its applications. In: 48th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2007, pp. 29–38 (October
2007)

14. Freeman, L.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215–239 (1979)

15. Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of
similarities between nodes of a graph with application to collaborative recommen-
dation. IEEE Transactions on Knowledge and Data Engineering 19(3), 355–369
(2007)



A Dominating Set Based Approach to Identify

Effective Leader Group of Social Network�

Donghyun Kim1, Deying Li2, Omid Asgari1, Yingshu Li3,
and Alade O. Tokuta1

1 Dept. of Mathematics and Computer Science, North Carolina Central University,
Durham, NC 27707, USA

{donghyun.kim,atokuta}@nccu.edu, oaliasga@eagles.nccu.edu
2 Key Laboratory of Data Engineering and Knowledge Engineering, MOE

School of Information, Renmin University of China, China, 100872
deyingli@ruc.edu.cn

3 Dept. of Computer Science, Georgia State University, Atlanta, GA 30303, USA
yli@cs.gsu.edu

Abstract. Very recently, the study of social networks has received a
huge attention since we can learn and understand many hidden prop-
erties of our society. This paper investigates the potential of social net-
work analysis to select an effective leadership group of a society. Based
on our real life observation, we establish three essential requirements for
an effective leadership group, namely Influenceability, Partisanship, and
Bipartisanship. Then, we formulate the problem of finding a minimum
size leader group satisfying the three requirements as the minimum con-
nected k-core dominating set problem (MCkCDSP), and show its NP-
hardness. In addition, we introduce an extension of MCkCDSP, namely
MCkCDSP-C, which assumes the society has a number of communities
and requires at least one representative from each community should be
in the leadership. At last, we propose an approximation algorithm for a
subclass of MCkCDSP with k = 2, and show an α-approximation algo-
rithm of MCkCDSP can be used to obtain an α-approximation algorithm
of MCkCDSP-C.

1 Introduction

In our lives, the way we think and behave is continuously affected by the opinions
and behaviors of our family and friends. Therefore, by studying the relationship
among individuals in our society, we can extract information which is potentially
very useful for various social decision making processes. Due to the reason, the
study of social networks has been received intensive attentions recently.

� This work was supported in part by US National Science Foundation (NSF) CREST
No. HRD-0833184 and by US Army Research Office (ARO) No. W911NF-0810510.
This research was also jointly supported by National Natural Science Foundation of
China under grants 61070191 and 91124001, the National Research Foundation for
the Doctoral Program of Higher Education of China under grant 20100004110001.

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 841–848, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



842 D. Kim et al.

Given a graph, a dominating set (DS) is a subset of the nodes in the graph
such that all other nodes are adjacent to at least one node in the subset. Recently,
several variations of the minimum DS problem, i.e. the problem of computing a
minimum size DS, have been appeared in the field of social network analysis. For
instance, Feng et al. [1] and Wang et al. [2] are separated studied the problem of
computing minimum cardinality DS of a given social network graph such that

each node u outside the subset has at least �deg(u)2 � neighboring nodes in the
subset, where deg(u) is the degree of u in the graph (fast information propagation
problem [1] and minimum positive influence dominating set (PIDS) problem [2],
respectively). This problem is important since with the subset, we can efficiently
spread ideas and information within a group (i.e. advertisement). In [3], Dinh et
al. introduced the concept of total positive influence dominating set (TPIDS),
which is a more generalized version of PIDS. Over years, most of DS related
researches have focused on the relationship between the DS and the rest of the
nodes. Consequently, there is largely a lack of attempt to utilize the relationship
among the DS nodes to challenge issues in social networking. To the best of
our knowledge, only [4] considers a minimum PIDS computation problem with
connectivity requirement.

The human history has shown that it has been always difficult to find a good
leadership due to many reasons. As we see on TV everyday, it has been always
tough for the political leaders to make a consensus among them, adhere to what
they believe in, and make the people to follow the decisions they agreed in. More
formally, those qualities can be summarized as follows.

(a) Bipartisanship: for any two members in the group, there always has to be
a mediator between them if they are not direct collaborators.

(b) Partisanship: each leader should have a sufficient number of collaborators
in the group. By being together with political collaborators, a leader will
certainly maintain its belief than by being alone.

(c) Influenceability: the leader group should have a good influence over the
rest of the members of the society. This property has been considered as the
most important quality of a leader in many leadership quality studies.

In this paper, we study a possibility of using social network structure to select
an effective leadership of a given society, which is represented as a directed social
network graph, in which there is a directed edge from a node u to another node
v if u has an influence over v. While there are many qualities required for an
efficient leader group, we focus on the three given above since they are non-
debatably essential qualities. Furthermore, we will also try to minimize the size
of the group since a smaller one will be more efficient.

Contributions.We model the problem of selecting a minimum size leader group
from a given social network graph as the minimum connected k-core dominating
set problem (MCkCDSP). We would like to emphasize that this is one of the
few attempts to study a variation of the minimum DS problem with constraints
on the relationship among the dominating nodes. We prove the problem is NP-
hard and propose an approximation algorithm for a subclass of MCkCDSP with



A Dominating Set Based Approach to Identify Effective Leader Group 843

k = 2. In addition, we introduce an extension of MCkCDSP, namely MCkCDSP-
C, which assumes the society has a number of communities and at least one
representative from each community should be in the leader group. Finally, we
show an α-approximation algorithm of MCkCDSP can be used to obtain an
α-approximation algorithm of MCkCDSP-C.

Organizations. The rest of this paper is organized as follows. Section 2 intro-
duces several important notations and definitions. We introduce our approxima-
tion algorithm for MCkCDSP in Section 3. A variation of MCkCDSP, namely
MCkCDSP-C, and our strategy to obtain an approximation of MCkCDSP-C is
in Section 4. Finally, we conclude this paper in Section 5.

2 Notations and Definitions

In this paper, G = (V,E) represents a social network graph with node set V
and directional edge set E. For any subset D ⊆ V , G[D] is a subgraph of G
induced by D. Now, let us introduce several important definitions: Given a graph
G = (V,E) and a positive integer k, a subset D ⊆ V is a k-core if for each node
u ∈ D, u is bidirectionally neighboring with at least k other nodes in D \ {u}.
Suppose D is a k-core in a graph G. Then, a subgraph of G induced by D is
not necessarily bidirectionally connected and can be even disconnected. Given a
graph G = (V,E) and a positive integer k, a subset D ⊆ V is a connected k-
core if (a) D is a k-core and (b) G[D] is connected via bidirectional edges. Given
a graph G = (V,E) and a positive integer k, a subset D ⊆ V is a connected-
k-core dominating set (CkCDS) of G if (a) D is a DS of G, and (b) D is a
connected-k-core.

Definition 1 (MCkCDSP). Given a graph G = (V,E) and a positive integer
k, the minimum CkCDS problem (MCkCDSP) is to find a CkCDS of G with
minimum cardinality.

Lemma 1. Consider a graph G = (V,E) with bidirectional edges only. Then, a
subset D ⊆ V is a connected-1-core if and only if G[D] is connected.

Proof. First, if G[D] is connected, then for each u ∈ D, ∃v ∈ D \ {v} such
that there is a link between u and v. Therefore, D is a 1-core. Reversely, by the
definition of the connected k-core presented above, the subgraph of G induced
by a connected-1-core in G is connected. As a result, this lemma is true.

Theorem 1. MkCDSP is NP-hard.

Proof. We show MCkCDSP is NP-hard by showing its special case, in which
k = 1 and all edges in G are bidirectional, is NP-hard. In this special case, given
a graph G = (V,E), a subset D ⊆ V is a feasible solution of MCkCDSP if
(a) D is a DS of G, and (b) D is a connected-1-core. By Lemma 1, the second
condition is equivalent to require D to be connected. As a result, in this special
case, MCkCDSP is equivalent to the famous minimum connected dominating set
(CDS) problem in general graphs, which is a well-known NP-hard problem [5].
As a result, MCkCDSP is NP-hard and this theorem is correct.



844 D. Kim et al.

Algorithm 1. MC2CDSA (G = (V,E), k = 2)

1: /* Phase 1 starts here. */
2: Build G′ = (V ′, E′) such that V ′ ← V and E′ has only bidirectional edges in E.
3: Apply Guha and Khuller’s 2 stage greedy algorithm [6] to G′ and obtain a CDS D.
4: Color all nodes in D in white.
5: For each white node u ∈ D, color u in black if ∃v, w ∈ D \ {u} such that u is

connected to v and w via bidirectional edges, respectively.
6: while there is a white node u ∈ D do
7: Find a path P ⊂ V ′ \ D with length at most 3 hops from u to another node

v ∈ D \ {u}. Set D ← D
⋃

P , and color u, v and all nodes in P in black.
8: end while
9: /* Phase 2 starts here. */
10: Construct a bipartite graph B = (VL, VR, EB) such that VL ← V ′\D, VR ← V \V ′,

and for each pair of u ∈ VL and v ∈ VR, EB ← (u, v), a directional edge from u to
v only if (u, v) ∈ E.

11: Apply a set-cover greedy algorithm on B and obtain a subset L ⊆ VL.
12: for each node in w ∈ L do
13: if w is connected to only one node in D in G′ then
14: Find a node in u ∈ L, which is neighboring to w in G′.
15: Add u and w to D.
16: end if
17: end for
18: Output D

⋃
L.

3 A New Approximation Algorithm for MC2CDSP

In this section, we propose the minimum connected 2-core dominating set algo-
rithm (MC2CDSA), an approximation algorithm for MC2CDSP, a special case
of MCkCDSP with k = 2. We assume that G contains a feasible solution of the
problem. Given a graph G = (V,E), suppose G′ = (V ′, E′) is a subgraph of G
that we can obtain after we remove all directional edges from G. Note that if G
includes a feasible solution of MC2CDSP, (a) there exists only one G′, and (b)
for each node u ∈ V \ V ′, there exists v ∈ V ′ such that (v, u) ∈ E, i.e. there
exists a directional edge from v to u. Largely, MC2CDSP consists of two phases.
In the first phase, MC2CDSP adopts Guha and Khuller’s 2 stage (3 + lnΔ)-
approximation algorithm [6] for the minimum connected dominating set (CDS)
problem to G′ and obtain a CDS D of G′. Next, we initially color all the nodes
in D in white, but we color those nodes having at least two neighbors in D in
black. Then, until no white node left in D, we repeatedly (a) pick a white node
u ∈ D, and find a path P in G′ with length at most 3 hops from u to another
node v ∈ D \ {u} such that P

⋂
D = ∅, and (b) add the nodes in P to D. Color

u, v, and all nodes in P in black.
Once the first phase is done, D becomes a connected-2-core. However, it is

possible that there exist some nodes in V \ V ′ not dominated by D. To make
D to be a DS of G, we need to add more nodes from V ′ to D such that D is
still a connected-2-core and all nodes in V \ V ′ are dominated by some nodes



A Dominating Set Based Approach to Identify Effective Leader Group 845

in D. For this purpose, we first construct a bipartite graph B = (VL, VR, EB)
such that VL is the set of nodes in V ′ \D, VR is the set of nodes in V \ V ′. At
last, establish an edge from each node u ∈ VL to another node v ∈ VR in EB

only if there exists a directional edge from u to v in G. Then, we apply a well-
known set-cover greedy approximation algorithm with performance ratio H(Δ)
on B, where H is a harmonic function. Once a subset L of VL is selected by the
algorithm, for each node in w ∈ L, we check if w is bidirectionally connected to
another node w′ ∈ L in G. Otherwise, we select another node in VL \L such that
D
⋃
L remains to be a connected-2-core. As a result, D

⋃
L is a feasible solution

of the MC2CDSP instance.

Theorem 2. The output of MC2CDSA is a feasible solution of MC2CDSP.

Proof. From Line 2-3, we obtain a CDS D of G′. Then, each node u ∈ D has to
have at least one or more neighbors in D since G′[D] is connected. Suppose u
has only one neighbor in G′[D]. Then, there has to be another node v ∈ V ′ \D
connected to u in G′. Otherwise, u has no neighbor in G′, which implies that
G has no feasible solution. Also, notice that v has to be adjacent at least one
neighbor in G′[D]. Therefore, if we add u and v to D, then each of u and v has
at least two neighbors in D. By repeating this process for all nodes like u in D,
D will eventually become a connected 2-core. Clearly, each node u ∈ V ′ \D has
to be adjacent to at least one node v ∈ D, otherwise, D is not a dominating
set of G′. However, there exist some nodes in V \ V ′ which are not dominated
by D. To dominate them, we need to add more nodes from V ′ \ D to D. The
minimum number of the nodes can be approximated by solving the set-cover
problem over the biaprtite graph B induced in Line 10. Unfortunately, once the
set L is constructed by the algorithm, D ∪ L is not necessarily a 2-core even
though it is a connected 1-core dominating set of G. To ensure the 2-core-ness
of D ∪ L, we need to add more nodes for those in L. (Line 13-17). In detail, for
each node u ∈ L, if it has only neighbor in D, find another node v ∈ V ′ \(L

⋃
D)

connected to u. We can prove such a v does exists all the time as long as there is
a feasible solution of the problem in G using the similar argument given above.
As a result, L

⋃
D is a connected 2-core dominating set of G, and this theorem

is true.

Theorem 3. The performance ratio of MC2CDSA for MC2CDSP is 3 · (1 +
2Δ) · (3 + lnΔ).

Proof. Suppose OPT is an optimal solution of MC2CDSP. In the first phase,
we adopt a Guha and Khuller’s 2 stage (3 + lnΔ)-approximation algorithm [6]
to obtain a CDS D of G′. As we proved in Theorem 1, a CDS of G′ is also a
connected 1-core, we have |D| ≤ (3+ lnΔ)|OPT |. Next, to make D a connected
2-core, we add a series of paths with length at most three. Therefore, for each
node in D, we add at most 2 more nodes. As a result, we have

|D| ≤ (3 + lnΔ)|OPT |+ 2 · (3 + lnΔ)|OPT | = 3 · (3 + lnΔ)|OPT |.

In the second phase, we add more nodes D so that D can dominate the nodes
in V \ V ′. Note that the size of L is bounded by the size of D constructed



846 D. Kim et al.

Fig. 1. These figures illustrate an graph conversion example from MCkCDSP-C prob-
lem instance (Fig.(a)) to MCkCDSP problem instance (Fig.(b))

so far multiplied by the maximum degree of G′, Δ, and thus we have, |L| ≤
Δ · 3 · (3 + lnΔ)|OPT |. Furthermore, for each node in L, we may need to add
one more nodes to make L ∪D a 2-core. Therefore, we have

|D∪L| ≤ 3·(3+lnΔ)|OPT |+(1+1)Δ·3·(3+lnΔ)|OPT | = 3·(1+2Δ)·(3+lnΔ)|OPT |,

and thus this theorem is true.

4 MCkCDSP under Sub Community Structures

Previously, we introduced MCkCDSP whose goal is to find a connected k-core
dominating set of a given social network. In the real application domain, the
objective of this problem is to elect a representative group which can effectively
operate. However, the formulation ignores one important aspect of our social
situation that there are various underlying community structures in our society.
Suppose we want to solve MCkCDSP in a way that at least one representative
from each community is included in the representative group, which is likely to
happen in real world situation. Then, any algorithm for MCkCDSA is not useful
anymore. Therefore, in this section, we introduce a variation of MCkCDSP, to
deal with this new challenge. We first introduce a variation of MCkCDSP to
formulate this problem and show how it can be solved using our result so far.

Definition 2 (MCkCDSP-C). Given a directional social network graph G =
(V,E), a collection C = {C1, C2, · · · , Cl} of the subsets of V , and a positive
integer k, the minimum CkCDS problem with communities (MCkCDSP-C) is
to find a CkCDS D of G with minimum cardinality such that for each subset
Ci ∈ C, Ci

⋃
D �= ∅.

Corollary 1. MCkCDSP-C is NP-hard.

Proof. The proof of this corollary naturally follows from Theorem 1 since
MCkCDSP-C with C = ∅ is equivalent to MCkCDSP.



A Dominating Set Based Approach to Identify Effective Leader Group 847

Given an MCkCDSP-C instance 〈G = (V,E), C, k〉, we first induce a graph
G′ = (V ′, E′) from a given MCkCDSP instance 〈G = (V,E), C, k〉 as follow.

(a) Copy G to G′, i.e. V ′ ← V and E′ ← E.
(b) For each subset Ci ∈ C, add a node ci to V ′, and add an edge from each

node u ∈ Ci to ci to E
′.

One example of this graph induction is shown in Fig. 1, e.g. G is in Fig. 1(a)
and G′ is in Fig. 1(b). Then, we have the following lemma.

Theorem 4. There exists a feasible solution of an MCkCDSP-C instance
〈G, C, k〉 if and only if there exists a feasible solution of an MCkCDSP instance
〈G′, k〉.

Proof. We first show that a feasible solution of an MCkCDSP-C instance
〈G, C, k〉 is a feasible solution of an MCkCDSP instance 〈G′, k〉. Suppose D
is a feasible solution of the MCkCDSP-C instance 〈G, C, k〉. Then, D is clearly a
connected k-core and dominating all nodes in V in G, which implies that D is a
connected k-core and dominating all nodes in V ′ \{c1, · · · , cl}. By the definition
of MCkCDSP-C, for each Ci ∈ C, at least one node in Ci is included in D. In
addition, by the construction of G′, each ci is dominated by all nodes in Ci ⊂ V ′.
Therefore, for each ci, there exists at least one node in D dominating ci in G

′.
Next, we show that a feasible solution of an MCkCDSP instance 〈G′, k〉 is a
feasible solution of an MCkCDSP-C instance 〈G, C, k〉. Suppose Suppose D′ is
a feasible solution of the MCkCDSP instance 〈G′, k〉. Then, for each ci, there
exists a node u ∈ D′ dominating ci by the definition of MCkCDSP. This means
that for each Ci ∈ C, there exists a node from Ci in D

′ in G by the construction
of G′. Furthermore, D′ is a connected k-core and dominating all nodes in V ′,
which means that D′ is dominating all nodes in V . As a result, this theorem is
true.

Theorem 5. There exists an α-approximation algorithm for MCkCDSP-C in
G if and only if there is an α-approximation algorithm for MCkCDSP in G′.

Proof. Clearly, the cost of a feasible solution D of an MCkCDSP-C instance
〈G, C, k〉 is equivalent to the cost of D for an MCkCDSP instance 〈G′, k〉 since
in both problems, the cost ofD is its size, i.e. the cardinality ofD. By Theorem 4,
an optimal solution O of MCkCDSP-C in G is a feasible solution of MCkCDSP
in G′. Now, suppose O is not an optimal solution of MCkCDSP in G′, and there
exists another optimal solution O′. Then, by Theorem 4, O′ is also a feasible
solution of MCkCDSP-C in G. Since this contradicts to our initial assumption
that O is an optimal solution of MCkCDSP-C in G, such a O′ cannot exist.
Therefore, an optimal solution O of MCkCDSP-C in G is an optimal solution of
MCkCDSP in G′. Now, suppose we have an α-approximation algorithm A for
MCkCDSP-C in G. Then, an output o of A satisfies |o| ≤ α|OPT | = α|OPT1|,
where OPT is an optimal solution of MCkCDSP-C in G and OPT1 is an optimal
solution of MCkCDSP in G′. As a result, A is also an α-approximation algorithm
for MCkCDSP in G′. Using similar argument, we can prove an output o of an



848 D. Kim et al.

α-approximation algorithm for MCkCDSP in G′ is also an α-approximation
algorithm for MCkCDSP-C in G. As a result, this theorem is true.

5 Concluding Remarks and Future Work

In this paper, we study MCkCDSP, a new interesting optimization problem in
social networks, and its variationMCkCDSP-C. After we showMCkCDSP is NP-
hard, we introduced an approximation algorithm of MCkCDSP with k = 2. Fur-
thermore, we also prove MCkCDSP-C is NP-hard and show an α-approximation
algorithm of MCkCDSP can be used to have an α-approximation algorithm of
MCkCDSP-C. Meanwhile, in this paper, we were only able to α = O(Δ lnΔ)
with k = 2, where Δ is the maximum node degree of G′, a subgraph of an input
social network G with only bidirectional edges left. Since it is not difficult to
show that a special case of MCkCDSP is equivalent to the set-cover problem
(as appeared in Algorithm 1), the performance ratio achievable would be at best
O(lnΔ). Therefore, there is a significant gap between the lower bound of the
performance ratio and what we achieved. As a future work, we plan to further
study to reduce this gap and will investigate approximation algorithm for general
k > 2.

References

1. Zou, F., Zhang, Z., Wu, W.: Latency-bounded Minimum Influential Node Selection
in Social Networks. In: Proc. of Workshop on Social Networks, Applications, and
Systems (2009)

2. Wang, F., Camacho, E., Xu, K.: Positive Influence Dominating Set in Online So-
cial Networks. In: Du, D.-Z., Hu, X., Pardalos, P.M. (eds.) COCOA 2009. LNCS,
vol. 5573, pp. 313–321. Springer, Heidelberg (2009)

3. Dinh, T.N., Shen, Y., Nguyen, D.T., Thai, M.T.: On the Approximability of Positive
Influence Dominating Set in Social Networks. Journal of Combinatorial Optimiza-
tion (JOCO) (2012)

4. Zhu, X., Yu, J., Lee, W., Kim, D., Shan, S., Du, D.-Z.: New Dominating Sets in
Social Networks. Journal of Global Optimization (JOGO) 48(4), 633–642 (2010)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1978)

6. Guha, S., Khuller, S.: Approximation Algorithms for Connected Dominating Sets.
Algorithmica 20, 374–387 (1996)



Using Network Sciences

to Evaluate the Brazilian Airline Network

Douglas Oliveira1, Marco Carvalho1, and Ronaldo Menezes2

1 Florida Institute of Technology
Department of Computer Sciences

Melbourne, Florida, USA
doliveira2011@my.fit.edu, mcarvalho@cs.fit.edu

2 Florida Institute of Technology
Department of Computer Sciences

BioComplex Laboratory
Melbourne, Florida, USA
rmenezes@cs.fit.edu

Abstract. In the next few years, Brazil will host international events
such as the 2014 FIFA World Cup and the 2016 Olympics Games. Given
the worldwide appeal of these events, local authorities in Brazil expect
the country will have around 1.6 million visitors arriving at its airports
(1 million for the Olympics and 600 thousand for the World Cup). There-
fore, these events will put to test the robustness of the Brazilian airline
transportation system. As of today, Brazil concentrates most of its flights
in and out a single hub city: São Paulo Airport in Guarulhos (GRU). Is
this concentration a problem? Aiming to analyze the hub choices of this
network we collected data from the five biggest companies that operate in
Brazil with domestic and international flights; together these companies
are responsible for more than 94% of the total flight traffic in Brazil. In
this paper analyzed the impact of moving today’s main hub, Guarulhos
Airport in São Paulo (GRU), to other airports around the country—the
idea is to understand what is the best configuration for single-hub model
in Brazil. We also investigated the robustness of the network having a
single hub by analyzing the impact of the removal of this hub from the
network. We believe this work may help us understand how the airport
infrastructure in Brazil has to be developed in the near future.

1 Introduction

Air transportation has become vital to tourism and business because, despite
its inconveniences, it is still the best and most secure means of travelling long
distances. Moreover, air transportation has become cheaper over the years while
the security has increased [1]. Unlike some other means of transportation, air
transportation is quite organized and it involves many specific institutions, like
airline companies, regulatory agencies, and airports that behave accordingly to
the market conditions [2]. The analysis of flight routes is important to under-
stand the social, economic, and political causes that led to the formation of the

D.-Z. Du and G. Zhang (Eds.): COCOON 2013, LNCS 7936, pp. 849–858, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



850 D. Oliveira, M. Carvalho, and R. Menezes

network. The analysis may also allow for better planning of current and future
airline routes helping airlines to be better positioned in the market [3].

Until 1999, the Empresa Brasileira de Infraestrutura Aeroportuária (Infraero),
a Brazilian Governmental Corporation responsible for operating the main Brazil-
ian commercial airports, was managed by people with military backgrounds from
the Brazilian Air Force. In 1999 the Brazilian government named a manager
from the Brazilian National Economic and Social Development Bank (BNDES)
as president of Infraero [4]. The manager had large experience in privatization
in many sectors of the economy. His nomination represented a paradigm shift in
the way the corporation was managed and an indication of the intent to privatize
public airports [5]. The new administration was structured to prepare Infraero
to attract private interest through securing greater efficiency and thus a higher
market value.

The breakdown of barriers for new airlines to enter into the market and dereg-
ulation of the Brazilian aviation industry started in the 90s, leading to an increase
of competitiveness. This new market behavior induced the companies to have a
business orientation rather than a purely operational one [6]. Hence the actual
flight network might not have optimal topology if we consider flights features
like the minimum flight time.

If one looks at the airline network in Brazil we can easily notice that it is
not organized around hubs as in other large countries such as the United States
and China(see Figure 1 for the location of the hubs in the USA and Brazil).
This is quite unique given the continental size of the country. In Brazil, most
international routes fly to and from to São Paulo Airport (GRU); a single hub
system. In this paper we evaluate this one-hub model by moving the hub to other
parts of the country and as well as the impact the network after the removal
of hubs from the system—one should expect that the more distributed is the
system the less susceptible it is to failures.

2 Related Work

There have been many works published analyzing flights routes; Burghouwt
et al. [7] show the evolution of flight routes in Europe and North America. In
contrast to the flight network in the USA, the European network is characterized
by a trend for spatial decentralization. A more general picture of the airports
network is given by Guimera et al. [8] who models the world-wide airport network
and claims that the network is small-world (as expected) and the most connected
cities are not the central ones, this happens due to the multi-community structure
of the network [9].

In the work of Costa et al. [4], they try to analyze the Brazilian network us-
ing an US Federal Aviation Administration measure, which was not well suited
because the Brazilian network is quite different from the American one. The
Brazilian airport network was also analyzed by Pinheiro and Mello [10] to rank
Brazilian airports using optimization methods which take into consideration pas-
sengers’ movement, the amount of cargo and the number of airplanes. Many



Using Network Sciences to Evaluate the Brazilian Airline Network 851

Fig. 1. Major airport hubs in the USA (left). Note how well distributed the hubs are
around the country. On the other hand we have Brazil (right), a country that shows a
concentration of large airports in the south of Brazil. This “centralization” may lead
to longer travel times for people who want to travel to the north or northeast of the
country.

works analyze the efficiency of the hubs of Brazilian network; one example is the
work of Pacheco and Fernandes [11] that focus on airport’s ability to generate
financial returns. These works only evaluate a small part of the entire network
of flights in Brazil, that is the dataset of flights they use is far from the total
number of flights available in the country.

Similar works have analyzed the flight network in a country scale, like Guida
and Maria [12] who analyze the topological properties of the Italian airport
network. Their findings corroborate with the idea that an airport network is
small world and also follows a power law degree distribution. Another work
that evaluates an airport network of a country was done by Bagler [13] in the
context of the Indian network. His findings are quite similar with the last one,
but they also claim that the Indian network is hierarchical and has disassortative
properties (i.e. small airports tend to connect to big ones and vice-versa). The
Chinese airport network is investigated by Zhang et al. [14] with a focus on the
evolution of the traffic flow of both passengers and cargos. Correlated with the
annual growth of the country, the traffic continues to grow (in an exponential
form) and has evident seasonal fluctuations. A comparative analysis can be found
in [15], which tries to identify the most beneficial airport passengers should chose
in China, Europe and US to improve their travel time.

Even if we find an optimal airport that could be a hub, papers in the literature
as the one of Endres [16] show the consequences of overloading an airport. The
work discusses the two worst air-transportation accidents in Brazil (with 354
fatalities) and how their repercussion to Brazilian tourism lasted to the next
years. In that period the Brazilian flight system faced problems like lack of
confidence not only to safety but also to quality (punctuality). What lead us
evaluate the impact of a removal of certain hubs in the Brazilian airline network



852 D. Oliveira, M. Carvalho, and R. Menezes

(as if an accident happened) is our belief that a network with a few hubs can be
very risky for the entire air transportation system.

3 Data Collection and Network Analysis

The data used in this paper was manually collected from websites of the air-
lines companies in the period between September and December 2012. The data
available on the websites specifies if there is a regular route between two given
airports, giving no details about the number of flights in a specific route or
the number of passagers. We concentrated on the five largest airline companies
that operate in Brazil (TAM, Gol/Webjet, Azul/Trip, Avianca and Passaredo),
where largest is defined by the the number of passengers per kilometer flown.
Together these five companies are responsible for more than 94% of the traffic of
domestic and international flights. These flights take off and arrive in a total of
117 airports, out of which 22 are located outside Brazil and hence not used in the
analysis. We have not collected the reminder 6% of flights because the smaller
companies do not give us a way to extract the information from their websites,
and the other international companies such as Delta and Lufthansa, would all
have to be visited for us to collect just a handful of flights to the dataset.

In this work each airport is represented as a node in a network and there is an
edge connecting these two nodes if there is a direct flight between the airports.
We totalled 569 direct flights, out of which 31 are international. The network is
weighted by the number of routes between the airports; e.g. if two airlines fly the
route the weight of the connection is two. The network is also undirected due
to the symmetry of direct flights—if there is a flight between airports A and B
provided by company X then there is also a flight from airport B to A provided
by the same company.

In our first analysis we decided to look at the betweenness of the nodes.
Betweenness centrality is a measure of the extent to which a vertex is in the
middle of the shortest path between two nodes [17]. In the case of airports we
would like hubs to be the nodes with the highest betweenness as this may lead to
shorter travel times. Figure 2 shows the betweenness of each node where nodes
are sized based on their betweenness.

In the Figure 2 we can see that the nodes with highest betweenness are Man-
aus Airport (MAO), Brasilia Airport (BSB), Belo Horizonte Airport (CNF),
Campinas Airport (VCP) and Guarulhos Airport (GRU). The airports MAO,
CNF and VCP have high betweenness because they connect small airports inside
of their own regions, instead of GRU and BSB that connect almost the entire
country. Overall, GRU is not the airport with the highest betweenness although
it is the largest airport in Brazil. One can also see that airports in the northeast
part of the country have small betweenness which should translate in longer
travel time to those locations. An improvement to this situation could be the
creation of a local hub in the northeastern linking all the cities around the area
and the major cities across the country.

We also performed a community detection in the network as proposed by
Blondel et al. [18], which is a heuristic method based on modularity optimization



Using Network Sciences to Evaluate the Brazilian Airline Network 853

Fig. 2. Air transportation network for Brazil. The node size represent the betweenness
of each airport (number of shortest paths going through that node). The colors rep-
resent the community analysis of the airports (airports that forms densely connected
groups).

[19]. Each color in the Figure 2 represents a community. The north region of
the country forms a community because of the large number of airports that are
inter-connected. The same occurs in the central and south regions of the country.
An interesting phenomenon occurs in the northeast region of the country, which
has the second highest population in the country and the third highest GDP
(Gross Domestic Product). Most of the airports in this region are in the same
community of the hubs of the southeast region, Guarulhos Airport (GRU) and
Rio de Janeiro Airport (GIG). This aspect indicates that the northeast airports
are “dependent” of two aforementioned airports which may lead to delays in the
entire northeast if a problem takes place in GRU or GIG.

In general terms the network has small-world characteristics. It has short
average path length. For a network to be considered small world the average
path length should be 3 log n, where n is the number of nodes of the network,
and the network also needs to be clustered [20]. In the network of Brazilian
flights the average path length is 2.68 and the average clustering coefficient is
0.64 (very high clustering). This characteristic is not surprising since the network
is designed to provide a minimum number of hops between any two nodes.

The network also presents aspects of a scale-free network. To be a scale-free
network the degree distribution of the nodes in the network must follow a power-
law distribution with a negative exponent as in p(k) = k−λ. This distribution
represents the fact that very few nodes have high degree and the majority of
nodes have a small degree (a long tail). Figure 3 clearly shows a long tail plus



854 D. Oliveira, M. Carvalho, and R. Menezes

Fig. 3. Degree distribution of airports in Brazil. The inset shows the distribution in a
log-log plot.

just a few airport having high connectivity. To be considered a power-law distri-
bution not only the long tail behavior is necessary, but also the exponent of the
distribution should be 2 � λ � 4 [21]. When we do a fitting in the log-log plot
(inset of Figure 3) we find that λ = 3.34. Hence we can say that the data follow
a power-law distribution.

4 Analysis of the Geolocation of Airport Hubs

The definition the best location to establish an airport hub depends on many
factors including economic issues. However, setting the economic issues aside, it
is possible to investigate for a particular country where the hub should be and
the impact of that hub to the efficiency of the network.

First, we measured the average time of a flight that pass through the current
main hub, Guarulhos Airport (GRU), in São Paulo, so we can compare it against
the cases if others airports were the hub. For calculating the average time with
GRU as the main hub, we chose an airport randomly and checked if it has a direct
flight to GRU, if the link exist, we picked a random destination from GRU. One
hundred flights with this configuration were chosen and for each one of them
we estimated the flight time based on the direct distance between the airports.
The average time of flights that have one connection in Guarulhos Airport is
3:15±0:26hs for domestic flights while the average time for international flights
that have one connection in Guarulhos Airport is 20:03±0:39hs.

We estimated average flight time through the other airports in the same way
we done it for GRU (above). The heat map constructed based on the average
flights time can be seen in Figure 4. As we can see in the heat map of domestic



Using Network Sciences to Evaluate the Brazilian Airline Network 855

flights, Figure 4(left), the actual location of Guarulhos Airport (GRU) is not
best average travel time, the best location tends to be where the density of
airports in the country is higher, in the case of Brazil, nearer the center of
the country where the airports of Belo Horizonte Airport (CNF) and Braśılia
(BSB) are located. Therefore in a single-hub model, and assuming the current
configuration of airports in Brazil, the main hub should be around the two
aforementioned airports.

Fig. 4. Heat map of average flight time of domestic (left) and international (right)
flights. The closer to red is the color the best is the location as a hub.

In the heat map of international flights, Figure 4 (right), we can observe a
behavior distinct from the heat map of domestic flights. This time one have the
airports in the outer part of the country with worse average flight time than
the central ones. The reason for the center to be the best location relates to
the geographical location of Brazil. For flights in South America the eastern
part of Brazil is in a disadvantage because the other countries in South America
are located to the west and north of Brazil. For flights coming from Europe,
the airports in the West of Brazil are in disadvantage and for flights coming
form North America, the south of brazil are in a disadvantage, the result is that
Braśılia (BSB) located in the center of the country appears with the best average
time for international flights.

As we mention before, having only one hub may cause many problems, so in
order to measure the impact of unavailability of a particular airport in Brazil,
we calculated the number of direct flights, the number of flights with one stop
and the number of flights with more than one stop in scenarios with the hub and
without it. This approach also allow us to measure the importance of a given
airport in the network.

In the actual scenario, with the hub at Guarulhos Airport (GRU), the number
of possible direct flights is 346, the number of flights with one stop is 2,368 and
the number of flights with more than one stop is 4,072. By removing this node of



856 D. Oliveira, M. Carvalho, and R. Menezes

the network we expect that the number of direct flights and the number of flights
with one stop de-crease leading to an increase in the number of flights with more
than one stop. So when we removed the Guarulhos airport of the network the
number of direct flights decreased 17.6%, the number of flights with one stop
decreased 37.5% leading to an increase of 23.3% in the number of flights with
more than one stop.

We also estimated the impact of the removal of other nodes to measure com-
paratively its importance related to Guarulhos Airport. The removal of Fortaleza
Airport (FOR) caused a decrease of 12.1% of direct flights, a decrease of 35.9%
of flights with one stop and an increase of 22.5% of flights with more than one
stop, which are better numbers than the removal of Guarulhos Airports. Similar
results were found when we removed the Braśılia Airport (BSB) and Manaus
Airport (MAO), the hubs of the center and north regions respectively. Table 1
presents the number of flights under different scenarios.

Table 1. Number of flights per stop in scenarios that assume some airports do not
exist

Airport Removed # Flights with more than one stop # Flights with one stop # Direct flights

(none) 4,072 2,368 346
GRU 5,022 1,479 285
FOR 4,990 1,492 304
BSB 5,179 1,326 281
MAO 5,146 1,343 297

Table 1 demonstrates that the Braśılia Airport (BSB) may lead to more dis-
ruption in the network than any other airports tested. Given that Braśılia is the
political capital of Brazil, there are many direct flights from and to it. Hence its
removal lead to a smaller number of direct flights and a large increase of flights
with two or more stops.

5 Conclusions and Future Work

In this work we evaluated some aspects of the Brazilian airline network. The
network has small-world characteristics and the degree distribution follows a
power law. We also identified communities in the network; these communities
strongly correlate to the five regions in Brazil. However, some regions, such as the
northeast, demonstrated high dependency of the main hubs of the network, not
having a well defined community. We also calculated the betweenness centrality
of each node in order to identify the most important nodes—those who the
biggest number of shortest paths that pass through it. We found out that many
nodes have high betweenness centrality because they are “local” hubs connecting
a larger city to smaller airports in the region. We also found that the Brazil
Braśılia Airport (BSB) has a high betweenness because it has direct flights to
most other major cities in Brazil.



Using Network Sciences to Evaluate the Brazilian Airline Network 857

In order to evaluate the dependency of the entire air transportation system
of a particular airport we estimated the impact of removing strategic airports
from the network by measuring the decrease in direct flights in the network and
the increase in multiple-hop flights. The results shown that among the airports
evaluated the BSB was the one that has the highest impact on the entire air
transportation traffic if it becomes inoperative.

In this work we did not considered the number of daily flights between air-
ports. We plan to collect the data related to the number of flights to perform a
better analysis. Another way to make the evaluation more realistic is to include
data about the amount of passengers who fly in each flight, because flights with
more passengers contribute more to the air traffic. However, we are unaware of
a way to get this data; we will work to estimate the number based on something
proportional to the population of the location where the airport is located.

References

1. Oliveira, A.V.M., Salgado, L.H.: Reforma regulatória e bem-estar no transporte
aéreo brasileiro: e se a flexibilização dos anos 1990 não tivesse ocorrido? Documento
de Trabalho N. 013–Acervo Cient́ıfico do Núcleo de Estudos em Competição e
Regulação do Transporte Aéreo, NECTAR (2006)

2. Lopes, F.S.: Estudo da evolução da estrutura de rotas das empresas aéreas no
Brasil. Trabalho de Conclusão de Curso de Graduação-Instituto Tecnológico de
Aeronáutica, São José dos Campos (2005)

3. Bergiante, N.C.R., Soares de Mello, J.C.C.B., Nunes, M.V.R., Paschoalino, F.F.,
et al.: Aplicação de uma proposta de medida de centralidade para avaliação de
malha aérea de uma empresa do setor de transporte aéreo brasileiro. Journal of
Transport Literature 5(4), 119–135 (2011)

4. Costa, T.F.G., Lohmann, G., Oliveira, A.V.M.: A model to identify airport
hubs and their importance to tourism in brazil. Research in Transportation Eco-
nomics 26(1), 3–11 (2010)

5. Coelho, R.: O futuro da privatização no Brasil. A Privatização no Brasil—O Caso
dos Serviços de Utilidade Pública, BNDES, Rio de Janeiro (2000)

6. Correia, T., Soares de Mello, J.: Avaliação da eficiência das companhias aéreas
brasileiras com modelo dea nebuloso. In: Transporte em Transformação XIII, pp.
199–215. Gráfica Positiva, Braśılia (2009)

7. Burghouwt, G., Hakfoort, J., van Eck, J.R.: The spatial configuration of airline
networks in europe. Journal of Air Transport Management 9(5), 309–323 (2003)

8. Guimera, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: The worldwide air trans-
portation network: Anomalous centrality, community structure, and cities’ global
roles. Proceedings of the National Academy of Sciences 102(22), 7794–7799 (2005)

9. Guimera, R., Amaral, L.A.N.: Modeling the world-wide airport network. The Euro-
pean Physical Journal B-Condensed Matter and Complex Systems 38(2), 381–385
(2004)

10. Pinheiro, M.C., Soares de Mello, J.: Ordenação dos aeroportos do Brasil através
do apoio de análises multicritério. In: Anais do XXXVII Simpósio Brasileiro de
Pesquisa Operacional (2005)

11. Pacheco, R.R., Fernandes, E.: Managerial efficiency of brazilian airports. Trans-
portation Research Part A: Policy and Practice 37(8), 667–680 (2003)



858 D. Oliveira, M. Carvalho, and R. Menezes

12. Guida, M., Maria, F.: Topology of the italian airport network: A scale-free small-
world network with a fractal structure? Chaos, Solitons & Fractals 31(3), 527–536
(2007)

13. Bagler, G.: Analysis of the airport network of india as a complex weighted network.
Physica A: Statistical Mechanics and its Applications 387(12), 2972–2980 (2008)

14. Zhang, J., Cao, X.-B., Du, W.-B., Cai, K.-Q.: Evolution of chinese airport network.
Physica A: Statistical Mechanics and its Applications 389(18), 3922–3931 (2010)

15. Paleari, S., Redondi, R., Malighetti, P.: A comparative study of airport connec-
tivity in china, europe and us: which network provides the best service to passen-
gers? Transportation Research Part E: Logistics and Transportation Review 46(2),
198–210 (2010)

16. Endres, G.: Crisis control: troubled year highlights problems in brazils air trans-
portation market. Flight International (2007)

17. Newman, M.E.J.: A measure of betweenness centrality based on random walks.
Social Networks 27(1), 39–54 (2005)

18. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008(10), P10008 (2008)

19. Newman, M.E.J.: Modularity and community structure in networks.
PNAS 103(23), 8577–8582 (2006)

20. Watts, D., Strogatz, S.: The small world problem. Collective Dynamics of Small-
World Networks 393, 440–442 (1998)

21. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74(1), 47 (2002)



Author Index

Ahmed, Syed Ali 421
Albers, Susanne 1
Angel, Eric 316
Angelucci, Anna 17
Asgari, Omid 841
Ashok, Pradeesha 221

Babu, Jasine 626
Bampis, Evripidis 134
Banik, Aritra 197
Baron, Joshua 169
Basavaraju, Manu 626
Baumbach, Jan 373
Bazgan, Cristina 543
Ben-Ameur, Walid 337
Bi, Yuanjun 737, 780, 821
Bianchi, Maria Paola 53
Bilò, Davide 5
Bilò, Vittorio 5, 17
Böckenhauer, Hans-Joachim 53, 493
Braverman, Vladimir 638

Campêlo, Manoel B. 614
Cao, Zhigang 122
Carvalho, Marco 849
Cha, Jianzhong 603
Chandran Leela, Sunil 626
Chen, Danny Z. 603
Chen, Jianer 89, 555, 567
Chen, Kun-Tze 409
Chen, Xujin 122
Cheng, Jingde 697
Cheong, Otfried 77
Chin, Francis Y.L. 506
Chiplunkar, Ashish 481
Chleb́ık, Miroslav 280
Chleb́ıková, Janka 280
Chopin, Morgan 543
Crespelle, Christophe 469
Crowston, Robert 434
Cui, Wenjuan 385

Damaschke, Peter 446
Das, Sandip 197
da Silva, Maise Dantas 531

Du, Donglei 292, 304
Duan, Zhenhua 158, 591

Elbassioni, Khaled 65
Elmasry, Amr 147
El Shawi, Radwa 77

Fan, Lidan 737, 780
Fekete, Sándor P. 208
Feng, Qilong 89, 567
Flammini, Michele 17
Fouque, Pierre-Alain 651
Friedrichs, Stephan 208
Fu, Bin 713
Fujiwara, Hiroshi 518

Gao, Hongbiao 697
Gelles, Ran 638
Georgiou, Konstantinos 29
Goebel, Randy 257
Goto, Yuichi 697
Govindarajan, Sathish 221
Greenbaum, Nancy L. 421
Grindrod, Peter 791
Gudmundsson, Joachim 77
Guo, Jiong 373, 555
Guo, Longkun 325
Gutin, Gregory 434

Han, Meng 747
Han, Xin 506
He, Jia 591
Hell, Pavol 579
Hossain, Md. Iqbal 672
Hromkovič, Juraj 53, 493
Hu, Tao 663
Huiban, Cristiana G. 614

Ibragimov, Rashid 373
Ishai, Yuval 169
Ito, Takehiro 729

Ji, Shouling 747
Jiang, Haitao 397
Jones, Mark 434
Juhl, Daniel Dahl 147



860 Author Index

Karakostas, George 29
Katajainen, Jyrki 147
Kern, Walter 41
Khopkar, Abhijit 221
Kim, Donghyun 841
Kisielewicz, Andrzej 182
Kleinberg, Robert 4
Kobayashi, Koji 518
Kobayashi, Yasuaki 458
Komm, Dennis 493
Könemann, Jochen 29
Kononov, Alexander 134
Kowalski, Jakub 182
Kröller, Alexander 208
Krug, Sacha 53, 493
Kumar, Rahul 831

Lambert, Thomas 469
Letsios, Dimitrios 134
Li, Chih-Hsuan 268
Li, Chi-Long 409
Li, Deying 841
Li, Jinbao 747
Li, Minming 101
Li, Shaohua 89
Li, Weidong 385
Li, Wenfeng 713
Li, Yingshu 747, 841
Li, You 801
Li, Yu 292
Li, Yue 770
Lian, Biao 821
Liang, Qilian 801
Liao, Kewen 325
Lin, Guohui 257
Lin, Yu-An 361
Liu, Benyuan 801
Liu, Nan 397
Liu, Peihai 114
Liu, Tao 759
Liu, Tian 721
Liu, Xingwu 705
Liu, Yunlong 555
Lu, Chin Lung 409
Lu, Junzuo 770
Lu, Xiwen 114
Lu, Yiping 603
Lu, Zaixin 737
Lu, Zhao 721
Lucarelli, Giorgio 134

Maheshwari, Anil 197
Makino, Kazuhisa 65
Mans, Bernard 349
Maruta, Hirokazu 458
Mathieson, Luke 349
Mehlhorn, Kurt 65
Menezes, Ronaldo 849
Mishra, Aurosish 579
Misra, Neeldhara 221
Mneimneh, Saad 421
Mohajer, Meysam 811
Mohamed-Sidi, Mohamed-Ahmed 337
Morishita, Shiho 245
Moscardelli, Luca 17
Mu, Zongxu 101
Muciaccia, Gabriele 434
Muhammad, Azam Sheikh 446

Nakae, Yusuke 458
Nemparis, Ioannis 134
Neto, José 337
Nichterlein, André 543
Nip, Kameng 680
Nishizeki, Takao 245

Okada, Taku 729
Oliveira, Douglas 849
Ostrovsky, Rafail 169, 638

Peng, Chao 688
Peng, Zhiyong 713
Poon, Chung Keung 506
Poon, Sheung-Hung 361
Protti, Fábio 531

Qiang, Yan 759, 770
Qiu, Xian 41

Rahman, Md. Saidur 672
Rajendraprasad, Deepak 626
Rajgopal, Ninad 221
Ramezani, Fahimeh 65
Rastegarnia, Adib 811
Regnault, Damien 316
Ren, Xianyi 663

Sampaio, Rudini M. 614
Satti, Srinivasa Rao 147
Schmidt, Christiane 208
Shen, Hong 325
Sherette, Jessica 233
Shi, Feng 567



Author Index 861

Shi, Kai 697
Sikora, Florian 543
Singh, Anurag 831
Singh, Yatindra Nath 831
Smid, Michiel 197
Smula, Jasmin 493
Solouk, Vahid 811
Souza, Uéverton dos Santos 531
Sprock, Andreas 493
Stamirowska, Zuzanna 29
Steffen, Björn 53
Stoyanov, Zhivko 791
Suzuki, Akira 729
Szyku�la, Marek 182

Tamaki, Hisao 458
Teng, Shang-Hua 705
Thang, Nguyen Kim 316
Thierry, Eric 469
Tian, Cong 158, 591
Ting, Hing-Fung 506
Tokuta, Alade O. 841
Tong, Weitian 257
Tsin, Yung H. 506

Vergnaud, Damien 651
Vishwanathan, Sundar 481
Vukadinović Greetham, Danica 791

Wakabayashi, Yoshiko 614
Wang, Ailian 737, 780
Wang, Biing-Feng 268
Wang, Changjun 122

Wang, Jianxin 89, 555, 567
Wang, Jie 801
Wang, Li 821
Wang, Lusheng 385
Wang, Zhenbo 680
Wu, Chenchen 304
Wu, Lidong 759, 770
Wu, Weili 737, 759, 770, 780, 821

Xiu, Naihua 292
Xu, Chao 555
Xu, Dachuan 292, 304
Xu, Ke 721
Xu, Wen 821

Yan, Mingyuan 747
Yang, Chung-Han 409
Yang, Mengfei 158, 591
Ye, Deshi 506
Ye, Jhih-Hong 268
Yoon, Sang Duk 233

Zapalowicz, Jean-Christophe 651
Zhang, Jihong 663
Zhang, Xiaolong 759, 770
Zhang, Yong 506
Zhao, Juanjuan 759, 770
Zhou, Jie 688
Zhou, Xiao 729
Zhu, Binhai 397, 688
Zhu, Daming 397
Zhu, Hong 688


	Preface
	Organization
	Table of Contents
	Keynote
	Recent Results for Online Makespan Minimization  (Extended Abstract)
	Optimal Stopping Meets Combinatorial Optimization

	Game Theory
	New Bounds for the Balloon Popping Problem
	1 Introduction
	2 Definitions, Notation
	3 The Offline Blowing Strategy Group5
	4 n Algorithm for Computing ONn
	5 Conclusions and Open Problems
	References

	On the Sequential Price of Anarchy of Isolation Games
	1 Introduction
	2 Definitions and Notation
	3 Nearest-Neighbor Sequential Isolation Games
	4 Total-Distance Sequential Isolation Games
	5 Conclusions
	References

	Social Exchange Networks with Distant Bargaining
	1 Introduction
	1.1 Generalized Network Bargaining
	1.2 Our Results

	2 Computing Balanced Outcomes
	3 Characterizing the Core
	3.1 The Core via Linear Programming
	3.2 Implicitly Given Contracts

	4 Conclusion
	References

	The 1/4-Core of the Uniform Bin Packing Game Is Nonempty
	1 Intorduction
	2 Preliminaries
	3 Proof of Non-emptiness of the 1/4-Core
	4 Remarks and Open Problems
	References


	Randomized Algorithms
	On the Advice Complexity of the Online L(2,1)-Coloring Problem on Paths and Cycles 
	1 Introduction
	2 Preliminaries
	3 Online Algorithms without Advice
	4 Online Algorithms with Advice
	4.1 Lower and Upper Bounds for Optimality
	4.2 Lower and Upper Bounds for 54-Competitiveness

	5 Randomized Online Algorithms
	6 Conclusion
	References

	On Randomized Fictitious Play for Approximating Saddle Points over Convex Sets
	1 Introduction
	2 Our Result
	3 Relation to Previous Work
	4 The Algorithm
	6 Analysis
	6.1 Bounding the Potential Increase
	6.2 Bounding the Number of Iterations
	6.3 Using Approximate Distributions

	7 Conclusion and Acknowledgment
	References

	A Fast Algorithm for Data Collection along a Fixed Track
	1 Introduction
	2 A Polynomial-Time Algorithm for the DCFT Problem
	2.1 Basic Properties and Notations
	2.2 Generating Event Points for Case 1
	2.3 Generating Event Points for Case 2
	2.4 Maintaining the Spanning Tree

	3 Angle-Restricted Voronoi Diagrams
	3.1 Definition and Properties
	3.2 Defining Bisecting Curves
	3.3 Computing the Diagram

	References

	Random Methods for Parameterized Problems
	1 Introduction
	2 Randomized Algorithm for Parameterized P2-Packing
	3 Randomized Algorithm for Parameterized Co-path Packing Problem
	3.1 Kernelizaiton Algorithm for DBPCP
	3.2 Randomized Algorithm for DBPCP

	4 Randomized Algorithm for the PCPP Problem
	5 Conclusion
	References


	Scheduling Algorithms
	DVS Scheduling in a Line or a Star Network of Processors
	1 Introduction
	2 Problem Formulation
	3 Line Networks
	3.1 Line Network of 2 Processors with 2 Jobs
	3.2 Line Network of 2 Processors with n Jobs�
	3.3 Optimal Sequencing for Jobs with the Same Workload on the Second Processor

	4 Star Network
	4.1 Optimal Sequencing for Jobs with the Same Workload on the Second Processor
	4.2 Optimal Sequencing for Equal-Workload Jobs

	5 Conclusion
	References

	Online Algorithms for Batch Machines Scheduling with Delivery Times*
	1 Introduction
	2 A Lower Bound
	3 An Restrict Case
	4 The General Case
	References

	How to Schedule the Marketing of Products with Negative Externalities
	1 Introduction
	2 Maximization
	2.1 When Y Is More Profitable
	2.2 When N Is More Profitable

	3 Regret-Proof Schedules
	References

	From Preemptive to Non-preemptive Speed-Scaling Scheduling�
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Notation and Preliminaries
	3 Single-Processor
	3.1 Properties of the Optimal Preemptive Schedule
	3.2 An Approximation Algorithm

	4 Parallel Processors
	4.1 Agreeable Instances
	4.2 General Instances

	References


	Computational Theory
	Selection from Read-Only Memory with Limited Workspace
	1 Introduction
	2 Basic Tools: Bit Vectors with rank and select Support
	3 Expanding the Toolkit: Wavelet Stacks
	4 Selection with O(N) Bits
	5 General Solution with O(S) Bits
	6 Conclusions
	References

	Deternimization of Büchi Automata as Partitioned Automata 
	1 Introduction
	2 Preliminaries
	3 Partitioned Automata
	4 Determinization of Büchi Automata
	5 Properties of Partitioned Automaton
	6 Conclusions
	References

	On Linear-Size Pseudorandom Generators and Hardcore Functions
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Definitions and Preliminaries

	2 Linear-Size Hardcore Functions
	3 PRGs Computable by Linear-Size Circuits
	3.1 PRGs for One-Way Functions with Lower-Bounded Min-Entropy

	References

	A Fast Algorithm Finding the Shortest Reset Words
	1 Introduction
	2 Algorithm
	2.1 General Ideas
	2.2 Radix Tries
	2.3 Description
	2.4 Finding a Reset Word

	3 Heuristics and Optimizations
	3.1 Estimation of Expected Step Time
	3.2 Adding the IDFS Phase
	3.3 Reduction of the Automaton
	3.4 Reordering of the States
	3.5 Using Heuristic Algorithms and IDFS Shortcut

	4 Complexity
	5 Experiments
	5.1 Computations
	5.2 Results

	References


	Computational Geometry
	The Discrete Voronoi Game in a Simple Polygon
	1 Introduction
	2 Computing an Optimal Placement for P2
	3 Computing an Optimal Placement for P1
	3.1 The Boundary Case
	3.2 The Interior Case

	4 Conclusion
	References

	 Facets for Art Gallery Problems
	1 Introduction
	2 Mathematical Programming Formulation and LP-Based Solution Procedure
	3 Set Cover Facets
	3.1 A Family of Facets
	3.2 Geometric Properties of Alpha S
	3.3 All Art Gallery Facets with Coefficients 0, 1, 2

	4 Edge Cover Facets
	5 Computational Experience
	6 Conclusion
	References

	Hitting and Piercing Rectangles Induced by a Point Set
	1 Introduction
	2 First Selection Lemma for Axis-Parallel Rectangles
	2.1 Strong Variant
	2.2 Weak Variant

	3 Second Selection Lemma for Axis-Parallel Rectangles in R2
	4 Hitting all Induced Rectangles
	4.1 Hitting Induced Skyline Rectangles
	4.2 Axis-Parallel Slabs

	5 Hitting All the Induced Lines Is NP-Complete
	References

	Realistic Roofs over a Rectilinear Polygon Revisited 
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminary
	3 Valleys of a Realistic Roof 
	4 Realistic Roofs with Half-Open Valleys
	5 The Number of Realistic Roofs
	6 Algorithm
	References


	Graph Algorithms I
	Parametric Power Supply Networks
	1 Introduction
	2 Maximum Supply Rate Problem 
	3 Parametric Networks
	3.1 Definitions
	3.2 Algorithm
	3.3 Computation Time
	3.4 Bounds on P

	4 Conclusions
	References

	Approximating the minimum independent dominating set in perturbed graphs
	1 Introduction
	2 A.a.s. Bounds on the Independent Domination Number
	2.1 An a.a.s. Lower Bound
	2.2 An a.a.s. Upper Bound

	3 A Tail Bound on the Independent Domination Number
	4 Approximating the Independent Domination Number
	5 Conclusions
	References

	A Linear-Time Algorithm for the Minimum Degree Hypergraph Problem with the Consecutive Ones Property
	1 Introduction
	2 Notation and Preliminaries
	3 A Two-Phase Algorithm
	3.1 The Framework
	3.2 Algorithm for Phase 1

	4 An O(n(n))-Time Algorithm
	5 A Linear-Time Algorithm
	References

	On the Conjunctive Capacity of Graphs
	1 Introduction
	2 The Conjunctive Capacity
	3 Strong Crown Decomposition
	4 Binding Number and Binding Set of a Graph
	5 Minimum Capacitary Vertex Cover and Its Properties
	6 The Structure of Minimum Capacitary Vertex Covers
	References


	Approximation Algorithms
	Improved Approximation Algorithms for the Facility Location Problems with Linear/submodular Penalty 
	1 Introduction
	2 Algorithmic Scheme for Problems with Submodular Penalty 
	2.1 An LP-Rounding Approximation Algorithm for the FLPSP
	2.2 General Rounding Framework

	3 Improved 2-Approximation Algorithm for the FLPSP
	4 Improved 1.5148-Approximation Algorithm for the FLPLP
	References

	An Improved Semidefinite Programming Hierarchies Rounding Approximation Algorithm for Maximum Graph Bisection Problems 
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Analysis
	5 Discussions
	References

	Improved Local Search for Universal Facility Location
	1 Introduction
	2 Algorithm and Analysis
	2.1 Operations
	2.2 The Local Search Algorithm
	2.3 The Analysis

	References

	Improved Approximation Algorithms for Computing k Disjoint Paths Subject to Two Constraints 
	1 Introduction
	1.1 Related Work
	1.2 Our Techniques and Results

	2 An Improved Approximation Algorithm for Computing k Disjoint Bi-constraint Paths
	2.1 A Basic Approximation Algorithm
	2.2 The Improving Phase

	3 Computing Cycle Oj with Minimum d(Oj)c(Oj)
	3.1 Construction of Auxiliary Graph H(v)
	3.2 Computing the Cycle O with Minimum d(O)c(O)

	4 Conclusion
	References


	Graph Algorithms II
	The k-Separator Problem
	1 Introduction
	2 Notation
	3 Polynomial Cases
	3.1 Trees and Cycles
	3.2 Further Polynomiality Results from Connections with the Stable Set Problem

	4 Approximation Algorithms
	References

	On the Treewidth of Dynamic Graphs
	1 Introduction
	2 Preliminaries
	3 Dynamic Graphs as Logical Structures
	3.1 Local Treewidth Preserving Structure
	3.2 Treewidth Preserving Structure
	3.3 Structures for Totally Ordered Time

	4 Applications to Dynamic Graph Problems
	4.1 Adapting the Metatheorems to the Dynamic Context
	4.2 Transferring Static Results

	5 Dynamic Graph Classes with Bounded (Local) Treewidth
	6 Conclusion
	References

	Square-Orthogonal Drawing with Few Bends per Edge
	1 Introduction
	2 Preliminaries
	3 Drawing 5-Graphs and 6-Graphs
	3.1 Drawing 5-Graphs
	3.2 Drawing 6-Graphs

	4 Drawing 8-Graphs
	5 Hardness Result
	References

	Covering Tree with Stars
	1 Introduction
	2 NP-Completeness Results
	3 CTS with Bounded Distinct Stars
	4 Conclusion
	References


	Computational Biology
	A Polynomial Time Approximation Scheme for the Closest Shared Center Problem
	1 Introduction
	2 Preliminaries
	3 Approximation Scheme for D
	3.1 Approximate |Qi1,i2,…,ir
	3.2 Approximate hli by Using the Random Sampling Approach
	3.3 Approximate |P by Using the Randomized Rounding Approach
	3.4 Derandomization

	4 An Ultimate PTAS
	References

	An Improved Approximation Algorithm for Scaffold Filling to Maximize the Common Adjacencies
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithm for One-Sided SF-MNSA
	3.1 Searching the 1-Type-1 Strings
	3.2 Searching the 2-Type-1 Strings
	3.3 Searching the 3-Type-1 Strings
	3.4 Inserting the Remaining Genes

	4 Analysis of the Approximation Algorithm
	4.1 A Lower Bound
	4.2 Description of the Main Algorithm
	4.3 Proof of the Approximation Factor

	5 Concluding Remarks
	References

	An Efficient Algorithm for One-Sided Block Ordering Problem with Block-Interchange Distance
	1 Introduction
	2 Preliminaries
	3 Algorithmic Result
	4 Conclusion
	References

	A Combinatorial Approach for Multiple RNA Interaction: Formulations, Approximations, and Heuristics
	1 Introduction
	2 Pegs and Rubber Bands: A Formulation
	2.1 Multiple RNA Interaction as Pegs and Rubber Bands
	2.2 Complexity of the Problem and Approximations

	3 Windows and Gaps: A Better Formulation for RNA Interaction
	4 Interaction Pattern and Permutations: A Heuristic
	5 Experimental Results
	5.1 Fishing for Pairs
	5.2 Structure Prediction
	5.3 Structural Separation
	5.4 Making Improvements

	6 Conclusion
	References


	Graph Algorithms III
	Maximum Balanced Subgraph Problem Parameterized above Lower Bound
	1 Introduction
	2 Terminology, Notation and Preliminaries
	3 Fixed-Parameter Tractability
	4 Kernelization
	5 Extensions and Open Questions
	References

	A Toolbox for Provably Optimal Multistage Strict Group Testing Strategies
	1 Introduction
	2 Notation
	3 Lower-Bound Tools
	4 Upper-Bound Tools (Sub-Strategies)
	5 Optimal Strategies for Small Instances
	6 The Case of Two Defectives and Two Stages
	7 Conclusions
	References

	A Linear Edge Kernel for Two-Layer Crossing Minimization
	1 Introduction
	2 Preliminaries
	3 A Kernel with O(k2) Edges for TLCM
	4 A Kernel with O(k) Edges for LEW-TLCM
	5 Concluding Remarks
	References

	A Linear-Time Algorithm for Computing the Prime Decomposition of a Directed Graph with Regard to the Cartesian Product
	1 Preliminaries
	2 Our Approach
	3 Algorithm
	References


	Online Algorithms
	Metrical Service Systems with Multiple Servers
	1 Introduction
	2 Uniform Metric Spaces: The Hitting Set Algorithm
	3 Uniform Metric Spaces: Randomized Bounds
	4 The Offline Problem
	4.1 ILP Formulation and Pseudo-approximation Algorithm
	4.2 Hardness of Pseudo-approximation

	5 Open Problems
	References

	The String Guessing Problem as a Method to Prove Lower Bounds on the Advice Complexity
	1 Introduction
	1.1 Our Contribution and Related Work

	2 The String Guessing Problem
	2.1 Lower Bounds
	2.2 Upper Bounds

	3 The Online Set Cover Problem
	4 The Online Maximum Clique Problem
	References

	Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing and Square Packing
	1 Introduction
	2 1-Space Bounded 2-Dimensional Bin Packing
	2.1 Upper Bound
	2.2 Lower Bound

	3 1-Space Bounded Square Packing
	3.1 Upper Bound
	3.2 Lower Bound

	References

	Improved Lower Bounds for the Online Bin Packing Problem with Cardinality Constraints
	1 Introduction
	2 A Lower Bound for k = 2
	3 Lower Bounds for k 4
	References


	Parameterized Algorithms
	Parameterized Complexity of Flood-Filling Games on Trees
	1 Introduction
	2 Flood-It on Trees
	2.1 Multi-Flood-It on Trees

	3 Free-Flood-It on Trees
	References

	Parameterized Approximability of Maximizing the Spread of Influence in Networks
	1 Introduction
	2 Preliminaries and Basic Observations
	3 Parameterized Inapproximability
	4 Unanimity Thresholds
	4.1 General Graphs
	4.2 Bounded Degree Graphs and Regular Graphs

	5 Conclusions
	References

	An Effective Branching Strategy for Some Parameterized Edge Modification Problems with Multiple Forbidden Induced Subgraphs
	1 Introduction
	2 Terminology and Notations
	3 The General Technique
	4 Applications and Results
	4.1 Edge Deletion Problems
	4.2 Edge Insertion Problems

	5 Conclusions
	References

	Parameterized Algorithms forMaximum Agreement Forest on Multiple Trees
	1 Introduction
	2 Definitions and Problem Formulations
	3 Maximal-AF for Two X-Forests
	4 The Parameterized Algorithms
	5 Conclusion
	References


	Computational Complexity
	Small H-Coloring Problems for Bounded Degree Digraphs
	1 Introduction
	2 General Digraphs
	3 Bounded Degree Digraphs
	4 Conclusions
	References

	Bounded Model Checking for Propositional Projection Temporal Logic  
	1 Introduction
	2 Propositional Projection Temporal Logic
	2.1 Syntax
	2.2 Semantics
	2.3 Normal Form

	3 Bounded Model Checking for PPTL
	3.1 Bounded Semantics
	3.2 Bounded Model Checking�
	3.3 Reducing BMC of PPTL to SAT
	3.4 An Example: BMC for RMS

	4 Related work
	5 Conclusion
	References

	Packing Cubes into a Cube Is NP-Hard in the Strong Sense
	1 Introduction
	2 The 3-Partition Problem and the Cube Packing Problems
	2.1 The 3-Partition Problem
	2.2 The Problem of Packing Cubes into a Cube

	3 NP-Hardness of the Problem of Packing Cubes into a Cube
	4 Conclusions
	References

	On the Complexity of Solving or Approximating Convex Recoloring Problems
	1 Introduction
	2 NP-hardness on Grids
	3 Approximability Threshold for Bipartite Graphs
	4 Polynomial-Time Algorithms for Graphs with few P4's
	5 Concluding Remarks
	References


	Algorithms
	2-connecting Outerplanar Graphs without Blowing Up the Pathwidth
	1 Introduction
	2 Background
	3 An Overview of Our Method
	4 Stage 1: Construct a Nice Path Decomposition of G
	5 Edge Addition without Spoiling the Outerplanarity
	6 Stage 2: Construction of G' and Its Path Decomposition
	6.1 Defining an Ordering of Child Blocks
	6.2 Algorithm for Constructing G' and Its Path Decomposition

	7 Construction of G'' and Its Path Decomposition
	8 Efficiency
	9 Conclusion
	References

	How to Catch L2-Heavy-Hitters on Sliding Windows*
	1 Introduction
	2 Preliminaries
	3 A Semi-smooth Estimation of Frequent Elements
	3.1 Semi-smooth Algorithm for Frequent Elements Approximation
	3.2 Extensions to Any Lp with p < 2

	4 Semi-smooth Schemes for α-Rarity and Similarity
	4.1 A Semi-smooth Estimation of α-Rarity
	4.2 A Semi-smooth Estimation of Streams Similarity

	References

	Time/Memory/Data Tradeoffs for Variants of the RSA Problem
	1 Introduction
	2 Micali-Schnorr Pseudorandom Generator
	3 Solving the Problem Using Time/Memory/Data Tradeoffs
	3.1 First Algorithm
	3.2 Second Algorithm Using one Hellman's Table
	3.3 Third Algorithm Using Many Hellman Tables

	4 Inverting RSA for Small Plaintext Problem
	4.1 Multipoint Evaluation of Univariate Polynomials
	4.2 Coppersmith's Method

	5 Conclusion
	References

	An Improved Algorithm for Extraction of Exact Boundaries and Boundaries Inclusion Relationship
	1 Introduction
	2 Imrpoved Boundary Extraction Algorithm
	2.1 Outline of Capson’s Algorithm
	2.2 Unsettled Questions in Capson’s Algorithm and the Corresponding Solutions

	3 Experiments and Results
	4 Conclusions
	References


	Workshop I
	Straight-Line Monotone Grid Drawings of Series-Parallel Graphs
	1 Introduction
	2 Preliminaries
	3 Monotone Grid Drawing
	4 Conclusion
	References

	Combination of Two-Machine Flow Shop Scheduling and Shortest Path Problems
	1 Introduction
	2 Preliminaries
	2.1 Problem Description
	2.2 Johnson's Rule for Two-Machine Flow Shop Scheduling
	2.3 Algorithms for Shortest Path Problems

	3 Computational Complexity of F2|shortest path|Cmax
	4 Approximation Algorithms
	4.1 A Natural Approximation Algorithm
	4.2 An Improved Approximation Algorithm

	5 Conclusions
	References

	The Program Download Problem: Complexity and Algorithms
	1 Introduction
	2 Complexity of the Program Download Problem
	3 The Aligned Program Download Problem
	4 The Maximum Program Download Problem
	5 Conclusion
	References

	Finding Theorems in NBG Set Theory by Automated Forward Deduction Based on Strong Relevant Logic
	1 Introduction
	2 Automated Forward Deduction Based on Strong Relevant Logic
	3 The Case Study of Automated Theorem Finding in NBG Set Theory
	4 Discussion for the Case Study
	5 Discussion for the Research Directions of Systematic Method
	6 Concluding Remarks
	References


	Workshop II
	Perturbation Analysis of Maximum-Weighted Bipartite Matchings with Low Rank Data
	1 Introduction
	2 A Counter-Example to Conjecture 1
	3 The Perturbation Theorem
	4 Conclusion
	References

	Sublinear Time Approximate Sum via Uniform Random Sampling
	1 Introduction
	2 Randomized Algorithm for the Sum Problem
	2.1 Chernoff Bounds
	2.2 A Sublinear Time Algorithm

	3 Lower Bound 
	References

	Tractable Connected Domination for Restricted Bipartite Graphs (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Reduction for Circular-Convex Bipartite Graphs
	4 Reduction for Triad-Convex Bipartite Graphs
	References

	On the Minimum Caterpillar Problem in Digraphs
	1 Introduction
	2 Complexity Status
	3 Algorithm for Digraphs with Bounded Treewidth
	3.1 Treewidth for Digraphs
	3.2 Main Ideas and Definitions

	4 Conclusion
	References


	CSoNet I
	A new model for product adoption over social networks
	1 Introduction
	2 New Influence Diffusion Model
	2.1 Several Models
	2.2 Our New Model

	3 Problem Formulation and Analysis
	3.1 Analysis

	4 Conclusion
	References

	Generating Uncertain Networks Based on Historical Network Snapshots
	1 Introduction
	2 Related Work
	3 Data Model and Problem Definition
	4 Algorithm Framework and Theoretical Analysis
	4.1 Construct an Uncertain Network
	4.2 Measuring Relationships Among Nodes in an Uncertain Network
	4.3 Sampling Possible Worlds

	5 Experimental Evaluation
	6 Conclusion
	References

	A Short-Term Prediction Model of Topic Popularity on Microblogs
	1 Introduction
	2 Previous works
	3 Method
	3.1 Analysis of Topic Spreading Model
	3.2 Analysis Method of Weibo Properties
	3.3 Model of Short-Term Prediction on Topic Popularity

	4 Experiments
	4.1 Dataset
	4.2 Influence Factors to Topics Spreading
	4.3 Short-Term Prediction on Topic Popularity

	5 Conclusions and Future Work
	References

	Social Network Path Analysis Based on HBase
	1 Introduction
	2 Previous Works
	3 Path Algorithm Based on HBase
	3.1 HBase
	3.2 Parallel BFS to Strike a Single-Source Shortest Path Tree
	3.3 K-Shortest Paths
	3.4 Optimization Sorting

	4 The Analysis of the Experiment
	4.1 Hardware Configuration
	4.2 Network Model

	5 Results and Discussion
	5.1 Time Complexity
	5.2 Discussion

	6 Conclusion
	References


	CSoNet II
	Community Expansion Model Based on Charged System Theory
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Electric Field and Charged System
	3.2 Presentation of Social Influence
	3.3 Expansion Progress and Objective Function

	4 A Linear Programming Approach
	5 Experiment
	5.1 Experiment Setup
	5.2 Experimental Results

	6 Conclusions
	References

	Centrality and Spectral Radius in Dynamic Communication Networks
	1 Introduction
	2 Relaxed Communicability
	2.1 Communicability
	2.2 Spectral Radius Bound
	2.3 Relaxed Communicability
	2.4 Vitality Measure

	3 Applications
	3.1 Case-Study 1: MIT Reality Mining Data
	3.2 Case-Study 2: Twitter Mentions Network Data-Set
	3.3 Results

	4 Conclusions
	References

	Finding Network Communities Using Random Walkers with Improved Accuracy
	1 Introduction
	2 Review of Existing Methods
	2.1 Graph Partitioning
	2.2 The Kernighan-Lin Algorithm
	2.3 Hierarchical  Clustering

	3 Randomized Algorithm  with Random Walkers
	3.1 Phase I and Phase  II
	3.2 Phase III 

	4 Simulations 
	4.1 Scenario I 
	4.2 Scenario II 

	5 Conclusion 
	References

	Homophilies and Communities Detection among a Subset of Blogfa Persian Weblogs: Computer and Internet Category
	1 Introduction
	2 Related Works
	3 Data Collection Process
	4 Basic Social Network Analysis
	4.1 Degree Analysis
	4.2 Clustering Coefficient
	4.3 Connected Components
	4.4 Community Detection by Using Modularity
	4.5 Community Detection by Using K-Core Method

	5 Number of Incoming Links of the Weblogs and Their Contents
	6 Analysis of Global Relationship Network (GRN)
	7 Visualization and Analysis of the Relationship
	8 Conclusion
	References


	CSoNet III
	Neighborhood-Based Dynamic Community Detection with Graph Transform for 0-1 Observed Networks*
	1 Introduction
	2 Related Work
	3 Preliminaries and Basic Definitions
	3.1 Preliminaries
	3.2 Basic Expressions and Definitions

	4 Neighborhood-Based Dynamic Community Detection
	5 Experiments and Evaluations
	5.1 Experiments on Synthetic Datasets
	5.2 Experiments on Real Dataset

	6 Conclusions
	References

	Effects of Structural Centrality Inoculation for Rumor dynamics on Social Networks
	1 Rumor Spreading Model
	2 Complex Network Topology Using Graph Spectra
	3 Structural Centrality
	4 Structural Centrality Inoculations
	5 Random Inoculations
	6 Targeted Inoculations
	7 Simulations and Results
	8 Conclusions
	References

	A Dominating Set Based Approach to Identify Effective Leader Group of Social Network
	1 Introduction
	2 Notations and Definitions
	3 A New Approximation Algorithm for MC2CDSP
	4 MCkCDSP under Sub Community Structures
	5 Concluding Remarks and Future Work
	References

	Using Network Sciences to Evaluate the Brazilian Airline Network
	1 Introduction
	2 Related Work
	3 Data Collection and Network Analysis
	4 Analysis of the Geolocation of Airport Hubs
	5 Conclusions and Future Work
	References


	Author Index



