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Preface

Advanced Computing

The opening statement of this book, one of the key conclusions of the 2005 PITAC
report, labels Advanced Computing and computational science applications as fields
of research with high scientific and economic relevance. Today, computational
science and engineering (CSE) has become a highly interdisciplinary, challenging,
and thriving scientific domain of increasing importance and visibility in research,
development, and education. Its essence involves modelling and computations – in
particular (numerical) simulations – on computer systems ranging from standard
PC to supercomputers. Thus, CSE applications have always been a driving force of
computing technologies, especially progressing the field of supercomputing.

However, regarding advanced computing technologies, an increasing gap is
observed between what should be possible in theory – due to recent advancements
in algorithms, hardware, and networks – and what can really be achieved in practice.
While increase of hardware performance (Moore’s law) and considerations on
complexity and accuracy of algorithms were driving this field over the last decades,
new limiting factors are now encountered: hardware awareness and ubiquitous
parallelism due to many-core systems (to name only two such issues) transform
computing into a multifaceted process spawning modelling, algorithmics, parallel
programming, and even hardware design; simulation data are produced to an extent
and resolution which makes their mere handling, their analysis and, thus, the extrac-
tion and representation of relevant information a serious challenge – especially
if to be done interactively; the development of software for high-performance
computing (HPC), ranging from specialised single-application codes to general
problem-solving environments, has thus become an increasingly complex process,
comparable to what we have known for decades from other fields, and it needs
sophisticated language and tool support as well as a substantial professionalisation.

Hence, to be able to exploit future (super)computers at their full potential and
to expand the research frontiers mentioned above, a concerted effort is necessary in
Advanced Computing – which is thus defined as HPC together with all its enabling
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viii Preface

technologies crucial to tackle the old and new bottlenecks. Such an endeavour
must combine computing technologies and applications and bring together the
HPC community as well as application specialists with experts from the enabling
technologies.

The Munich Centre of Advanced Computing

Starting from these considerations, in 2008, the Munich Centre of Advanced
Computing (MAC) has been established as an independent research consortium
and common roof for computing-related activities of research groups at Technische
Universität München (TUM) – together with several partner institutions, such
as the Leibniz Supercomputing Centre, the Max-Planck Institute for Astrophysics,
or the Department of Geophysics of Ludwig-Maximilians-Universität München. On
the funding side, MAC started on two pillars: eight projects cofinanced by the State
of Bavaria and by TUM and two projects established in the framework of a strategic
partnership between TUM and KAUST, the King Abdullah University of Science
and Technology, in Jeddah, Saudi Arabia. Fostering a structured programme for PhD
studies, MAC is participating in TUM’s International Graduate School of Science
and Engineering (IGSSE). All MAC PhD students thus engaged in IGSSE’s research
training programme – one of the cornerstones being a 3-month research visit at an
international partner institute.

Articles in These Proceedings

The present proceedings volume combines 11 articles that review research work and
results from the MAC project teams. The first two articles, by Schillinger et al. and
Benk et al. focus on the Finite Cell Method and on Immersed Boundary Methods,
respectively, and thus on the question how to efficiently and accurately discretise
problems with complicated domain boundaries on structured (adaptive) Cartesian
grids, in order to simplify mesh generation and improve computational performance.
Cai et al. discuss how micro- and macroscale modelling can be combined for
accurate simulation of porous media flow, with CO2-sequestration as the intended
application. Simon and Ulbrich present their work on optimal control problems for
this application area.

As an example for the development of novel mathematical algorithms, Böhm
and Ulbrich present a Newton-CG method for full-waveform seismic inversion.
Roderus et al. demonstrate how advancing both mathematical and computational
algorithms can lead to substantial improvement of the performance of established
computational science codes on HPC platforms – their focus being on density
functional theory as application. Kraja et al. in their article, put the HPC platforms
first in the development chain and discuss how to design HPC architectures for
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given applications; here, on-board processing for SAR image reconstruction on
spacecrafts is considered. As simulation tasks and codes, respectively, become more
and more complex, systematic software engineering has become imperative – Li
et al. address this question via a requirements engineering approach for a software
package in computational seismology.

The following two articles both address interactive simulations: while by
Knežević et al. present an interactive computing framework for engineering
applications, in particular, Benzina et al. introduce a framework that uses surrogate
models based on sparse grids to allow interactive handling of high-dimensional
simulation data. Both projects used the FRAVE – a flexible, reconfigurable
visualisation environment installed at MAC – for their studies. Tönnis et al. as
our last article in these proceedings, focus on the developers and users of such
interactive simulation and visualisation environments: they present experiences and
findings regarding ergonomic aspects of setting up and working with the FRAVE.

Taken altogether, the articles thus provide an overview of research in MAC from
2008 to 2012 and cover (nearly) the entire simulation pipeline.

Munich, Germany Michael Bader
May 2013 Hans-Joachim Bungartz

Tobias Weinzierl
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A Review of the Finite Cell Method
for Nonlinear Structural Analysis of Complex
CAD and Image-Based Geometric Models

Dominik Schillinger, Quanji Cai, Ralf-Peter Mundani, and Ernst Rank

Abstract The finite cell method (FCM) belongs to the class of immersed boundary
methods, and combines the fictitious domain approach with high-order approxi-
mation, adaptive integration and weak imposition of unfitted Dirichlet boundary
conditions. For the analysis of complex geometries, it circumvents expensive and
potentially error-prone meshing procedures, while maintaining high rates of conver-
gence. The present contribution provides an overview of recent accomplishments
in the FCM with applications in structural mechanics. First, we review the basic
components of the technology using the p- and B-spline versions of the FCM.
Second, we illustrate the typical solution behavior for linear elasticity in 1D. Third,
we show that it is straightforward to extend the FCM to nonlinear elasticity. We also
outline that the FCM can be extended to applications beyond structural mechanics,
such as transport processes in porous media. Finally, we demonstrate the benefits
of the FCM with two application examples, i.e. the vibration analysis of a ship
propeller described by T-spline CAD surfaces and the nonlinear compression test of
a CT-based metal foam.

Keywords Embedded/fictitious domain methods • finite cell method • large
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1 Introduction

Structural analysis with standard finite elements requires the discretization of the
domain of interest into a finite element mesh, whose boundaries conform to the
physical boundaries of the structure [3, 20]. While this constraint can be easily
achieved for many applications in structural mechanics, it constitutes a severe
bottleneck when highly complex geometries are concerned. An alternative pathway
that avoids time-consuming mesh generation is provided by embedded domain
methods, also known as immersed boundary methods [24–26, 29]. Their main
idea consists of the extension of the physical domain of interest ˝phys beyond its
potentially complex boundaries into a larger embedding domain of simple geometry
˝ , which can be meshed easily by a structured grid (see Fig. 1). The finite cell
method (FCM) [12, 27, 39] is an embedded domain method, which combines the
fictitious domain approach [6, 16, 31] with higher-order basis functions [45, 49],
adaptive integration and weak imposition of unfitted Dirichlet boundary conditions
[15, 37, 52]. To preserve consistency with the original problem, the influence of
the fictitious domain extension ˝fict is extinguished by penalizing its material
parameters. For smooth problems of linear elasticity, the FCM has been shown
to maintain exponential rates of convergence in the energy norm and thus allows
for accurate structural analysis irrespective of the geometric complexity involved
[32]. Moreover, it can be well combined with image-based geometric models
typical for applications from biomechanics and material science [12,36,44]. Within
the framework of the FCM for structural analysis, the following aspects have
been examined so far: Topology optimization [28], thin-walled structures [33],
local refinement strategies [40, 41, 43, 44], weak boundary conditions [36, 45],
homogenization of porous and cellular materials [13], geometrically nonlinear
problems [42, 45], and computational steering [22, 23, 50, 51].

The present contribution provides an overview of recent accomplishments in
the finite cell method for structural mechanics. It is organized as follows: Sect. 2
provides a short introduction to the basic components of the finite cell method.
Section 3 outlines the typical solution behavior for linear elastic problems and high-
lights important numerical properties. Section 4 shows the extension of the finite
cell method to nonlinear elasticity. Section 5 outlines that FCM can be extended
to problems beyond structural mechanics by the example of transport processes in
porous media. Section 6 presents two application oriented numerical examples in
three-dimensions, based on CAD and image-based geometric models. In Sect. 7, we
conclude our presentation by a short summary and an outlook to future research.

2 A Brief Review of the Finite Cell Method

The following review provides a brief introduction to the main components, i.e. the
fictitious domain concept, a higher-order approximation basis, adaptive integration
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O1
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O1+O2
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a2

Fig. 1 The fictitious domain concept: The physical domain ˝phys is extended by the fictitious
domain ˝fict into an embedding domain ˝ to allow easy meshing of complex geometries. The
influence of ˝fict is penalized by ˛

and unfitted Dirichlet boundary conditions. We follow the presentation given in [45],
focusing on the p- and the B-spline versions of the FCM.

2.1 The Fictitious Domain Concept

In the finite cell method, the domain to be analyzed is called the embedding domain
˝ , which consists of the physical domain of interest˝phys and the fictitious domain
extension ˝fict as shown in Fig. 1. Analogous to standard finite element methods
(FEM), the finite cell method for linear elastic problems is derived from the principle
of virtual work

ıW .u; ıu/ D
Z
˝

� W .rsym ıu/ dV �
Z
˝phys

ıu � b dV �
Z
�N

ıu � t dA D 0

(1)

where � , b, u, ıu and rsym denote the Cauchy stress tensor, body forces, displace-
ment vector, test function and the symmetric part of the gradient, respectively [3,20].
Neumann boundary conditions are specified over the boundary of the embedding
domain @˝ , where tractions are zero by definition, and over �N of the physical
domain by traction vector t (see Fig. 1). The elasticity tensor C [3, 20] relating
stresses and strains

� D ˛C W " (2)

is complemented by a scalar factor ˛, which reads

˛ .x/ D
(
1:0 8x 2 ˝phys

10�q 8x 2 ˝fict

(3)

penalizing the contribution of the fictitious domain. In ˝fict, ˛ must be chosen
as small as possible, but large enough to prevent extreme ill-conditioning of the
stiffness matrix [12, 27]. Typical values of ˛ range between 10�4 and 10�15.

Using a structured grid of high-order elements (see Fig. 1), which will be called
finite cells in the following, kinematic quantities are discretized as
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Fig. 2 Linear nodal modes Nj , j D 1; 2 and the first 4 integrated Legendre basis functions �j ,
j D 2; : : : ; 5 of the 1D p-version basis in the parameter space �

u D
nX

aD1
Naua (4)

ıu D
nX

aD1
Naıua (5)

The sum ofNa denotes a finite set of n higher-order shape functions, and ua and ıua
the corresponding vectors of unknown coefficients. Following the standard Galerkin
approach [3, 20], inserting (4) and (5) into the weak form (1) produces a discrete
finite cell representation

Ku D f (6)

with stiffness matrix K and load vector f . Due to the similarity to standard FEM,
the implementation of FCM can make use of existing techniques.

2.2 Higher-Order Approximation of Solution Fields

The high-order basis originally applied in the FCM [12, 27] uses a regular mesh of
elements of the p-version of the FEM, whose formulation is based on C0 integrated
Legendre polynomials [48, 49]. Corresponding basis functions in 1D are plotted
in Fig. 2. The basis is hierarchical, so that an increase of the polynomial degree
p by 1 is achieved by the addition of another function �j . Corresponding higher-
dimensional bases can be constructed by tensor products of the 1D case. To limit
the number of additional unknowns in 2D and 3D, the so-called trunk space is used
instead of the full tensor product basis [48, 49].

The B-spline version of the FCM has been recently established as a suitable
alternative [40, 41, 43, 45]. Its formulation is based on higher-order and smooth
B-spline basis functions [30, 35], whose numerical advantages have been recently
demonstrated in the context of isogeometric analysis [9,21]. We use a single uniform
B-spline patch, whose basis functions consist of uniform B-splines constructed
from equidistant knots [30, 35] and can be interpreted as translated copies of each
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Fig. 3 Knot span cells in the parameter space f�; �g (left) and corresponding bi-variate cubic
B-spline (right)
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Fig. 4 2D sub-cell structure (thin blue lines) for adaptive integration of finite cells (bold black
lines) that are cut by the geometric boundary (dashed line)

other [19]. Corresponding multivariate B-spline basis functions are obtained by
taking the tensor product of the univariate components in each parametric direction.
An example of a two-dimensional knot span structure and a corresponding bi-cubic
uniform B-spline are shown in Fig. 3. Each knot span can be identified as a
quadrilateral or hexahedral finite cell, respectively, with full Gaussian integration
[40, 41]. The physical coordinates of the FCM grid can be generated from a simple
linear transformation of the parametric space [45].

2.3 Adaptive Integration

The accuracy of numerical integration by Gauss quadrature [3, 20] is considerably
influenced by discontinuities within cells introduced by the penalization parameter ˛
of (3) [12,27]. Therefore, the FCM uses composed Gauss quadrature in cells cut by
geometric boundaries, based on a hierarchical decomposition of the original cells
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[12,44,45]. In two dimensions, the sub-cell structure can be built up in the sense of
a quadtree (see Fig. 4) [38]. Starting from the original finite cell of level k D 0, each
sub-cell of level k D i is first checked whether it is cut by a geometric boundary.
If true, it is replaced by 4 equally spaced cells of level k D i C 1, each of which is
equipped with .pC1/�.pC1/Gauss points. Partitioning is repeated for all cells of
current level k, until a predefined maximum depth k D m is reached. The quadtree
approach can be easily adjusted to 1D or 3D by binary trees or octrees, respectively.
It is easy to implement and keeps the regular grid structure of the FCM. To clearly
distinguish between finite cell and sub-cell meshes, finite cells are plotted in black
and integration sub-cells are plotted in blue lines throughout this paper (see Fig. 4).

2.4 Imposition of Unfitted Boundary Conditions

For complex domains, boundary conditions are defined along geometric boundaries
cutting arbitrarily through finite cells. Neumann boundary conditions can be incor-
porated by simple integration over the Neumann boundary �N (see (1)). Dirichlet
boundary conditions require an imposition in a weak sense by variational techniques
such as the penalty method [1, 52], the Lagrange multiplier method [15, 16, 53] or
Nitsche’s method [4, 14, 17]. In the FCM, Nitsche’s method is usually preferred
[36, 37, 45], since it does not introduce additional unknowns, leads to a symmetric,
positive definite stiffness matrix and satisfies variational consistency in the sense
that solutions of the weak form can be shown to be solutions of the original boundary
value problem.

From a practical point of view, the integration over unfitted boundaries is accom-
plished by introducing a triangular mesh of the boundary surfaces. Generating a
triangulation of a 3D surface is a standard task, for which a variety of efficient
algorithms and tools are available. In particular, it is orders of magnitude less
complex and less expensive than the generation of a full volumetric discretization of
a complex 3D object. Corresponding mesh generation in the framework of the FCM
for a boundary representation of solids and for voxel-based data obtained from CT
scans is addressed in detail in [12].

3 Basic Numerical Properties of the FCM

For the illustration of the typical solution behavior, a linear elastic uni-axial rod
is examined, for which geometry, material and boundary conditions are specified in
Fig. 5. Its middle part represents the fictitious domain˝fict, whose Young’s modulus
E is penalized with parameter ˛ D 10�8. The example approximates the situation of
two separate rods. The right one undergoes a rigid body movement�u and the left
one is subjected to a sine load fsin. The FCM discretizations considered consist of 2
p-version finite cells and 11 knot span cells as shown in Fig. 5. Due to the different
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Fig. 6 Smooth extension of the FCM solutions (pD 15) vs. discontinuous analytical solution
(˛D 10�8) for the linear elastic strains of the 1D example

construction of the bases, the B-spline version requires a denser knot span grid than
the p-version in order to achieve a comparable amount of degrees of freedom (dofs).
For all computations of this section, adaptive sub-cells of depth k D 20 are used to
minimize the integration error in cells cut by geometric boundaries.

3.1 Smooth Extension of Solution Fields

The p- and B-spline versions of the FCM produce solution fields, which extend
smoothly into the fictitious domain despite the discontinuities of the analytical
solution. This is illustrated in Fig. 6, which compares the analytical strains to the
numerical strains of the p- and B-spline versions. The importance of the smooth
extension of the FCM solution for the overall convergence behavior of the finite cell
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method can be explained with the help of the penalty parameter ˛ in conjunction
with the best approximation property to the total strain energy [47] (see for example
[43, 45] for details). It should be noted that the large difference between analytical
and FCM solution fields in the fictitious domain (see Fig. 6) is completely irrelevant,
since we are only interested in the physical solution.

3.2 Exponential Rates of Convergence

Figure 7 shows the convergence behavior of the presented FCM schemes, if the
polynomial degree of the discretizations given in Fig. 5 is increased from p D 1 to
15. Both the p-version and the B-spline version of the FCM converge exponentially.
The penalization parameter ˛ D 10�8 as well as the integration error in cut cells
lead to a flattening of the convergence curves. The present example shows that the
p- and B-spline bases exhibit an equivalent solution behavior within the FCM and
achieve a comparable performance in terms of error level, rates of convergence
and flattening of the convergence curve, although their high-order approximation
bases are very different. Further numerical benchmarks in higher dimensions can
be found in [43, 45] that show optimal rates of convergence under h-refinement,
the stability and accuracy of weak boundary conditions and the competitive quality
of the solution and its derivatives along the geometric boundaries in cut cells with
respect to standard body-fitted finite element methods.

4 Extension to Nonlinear Elasticity

The finite cell method can be extended to geometrically nonlinear elasticity on the
basis of the logarithmic strain measure [7] and the Hencky hyperelastic material
model [10]. An extensive review of the mathematical model and the pertinent
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continuum mechanics in the framework of the FCM can be found in [45]. In
the present scope, we focus on our 1D rod example of Fig. 5, for which the
corresponding geometrically nonlinear formulation simplifies to

� D ˛
E

2
.ln�/2 (7)

	 D ˛
E

J
ln� (8)

c D ˛
E

J
� 2	 (9)

with axial stretch �, the determinant of the deformation gradient J D �1�2
 and
the strain energy function � [7]. To illustrate the influence of large deformations
within the fictitious domain, the sine load fsin of Fig. 5 is neglected for now and
the prescribed displacement is set to a large value of �u D 1:0. The physical
stresses should be zero, since a rigid body movement of the right part of the
rod is approximated. The exact stress solution, which can be derived analytically
according to [40], is plotted in Fig. 8a for 10 displacement load increments between
0 and �u and ˛ D 10�5. In the following, all numerical examples are computed
with the B-spline version of the FCM, but equivalent results can be derived for the
p-version (see [45]).

4.1 The Standard FCM Formulation

The standard FCM is based on the application of the same geometrically nonlinear
formulation over the complete embedding domain ˝ . However, numerical exper-
iments reveal that for ˛ smaller than 10�5, the determinant of the deformation
gradient falls below zero at some integration point within ˝fict, which inevitably
terminates the computation. With ˛ as large as 10�5, the penalization of (3) is unable
to sufficiently eliminate the influence of ˝fict, so that a considerable modeling error
is introduced. In addition, nonlinear strains increasingly outweigh the penalization
by ˛, since they are able to grow without bounds [45]. The corresponding stress
solution obtained with 16 knot span cells in the sense of Fig. 5 is plotted in Fig. 8b. It
exhibits large oscillations throughout the discontinuous cells and the corresponding
convergence deteriorates to a low algebraic rate (see Fig. 9). The standard FCM
formulation thus suffers from a conflict of interest between stable analysis (increase
of ˛) on the one hand and a reduction of the contribution of ˝fict (decrease of ˛) on
the other.
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Fig. 8 The stress solution of the geometrically nonlinear rod is obtained without and with
deformation resetting (16 knot span elements of pD 15). Note that deformation resetting reduces
the stress oscillations by three orders of magnitude. (a) Analytical stress solution. (b) Computed
with the standard B-spline version of the FCM. (c) Computed with the B-spline version of the
FCM and deformation resetting
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4.2 A Modified Formulation Based on Deformation Resetting

Numerical experiments reveal that problems with the uniqueness of the deformation
map occur at the location of maximum deformation within the fictitious domain
˝fict. This motivates the following simple manipulation after each Newton iteration i

'i .X/ D

8̂
<̂
ˆ̂:

xi deformed configuration 8X 2 ˝phys

X
reset to reference
configuration 8X 2 ˝fict

(10)

where 'i and xi denote the deformation map and the deformed configuration after
the i th Newton step. According to (10), the deformation is repeatedly reset to
the initial undeformed state to erase the complete deformation history within the
fictitious domain ˝fict. This does not affect the physical consistency and accuracy
of the solution in the physical domain ˝phys, provided that the influence of ˝fict is
mitigated by a sufficiently strong penalization. Furthermore, the assumption of (10)
supersedes the calculation of the deformation gradient [45], so that any stability
issues resulting from the numerical computation of the deformation gradient are
automatically avoided. The corresponding stress solution is plotted in Fig. 8c, where
the oscillatory behavior of Fig. 8b is considerably reduced by several orders of
magnitude. Moreover, the deformation resetting can be efficiently implemented by
exploiting the coincidence of linear and geometrically nonlinear elasticity at the
deformation and stress-free reference configuration [45].

To test convergence in an energy measure, the uni-axial rod of Fig. 5 is considered
with sine-load fsin and �u D 1:0. The convergence under p-refinement is plotted
in Fig. 9 for the p- and B-spline versions. For the standard FCM formulation,
it illustrates the convergence decay to a low algebraic rate as a consequence of
the insufficient penalization in conjunction with oscillatory stresses. The modified
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geometrically nonlinear formulation allows for a decrease of the penalty parameter
to ˛ D 10�15, which restores the ability of the FCM schemes to achieve exponential
convergence.

5 Extension to Transport Processes in Porous Media

The concept of the finite cell method has also been applied to other types of
partial differential equations, e.g. to transport problems within the MAC project B5
Transport and Reaction Processes in Porous Media. From a geometric point of view,
simulation of transport processes in porous media may be similarly challenging
as the structural problems described in the previous sections. The domain of
computation is often very complex, and the generation of a mesh that conforms
to the porous structure may be highly involved.

We start from the weak formulation of the transport equation that reads

Z
˝

Œqc � rw C .�
/rc � rw�d˝ D
Z
˝

wfd˝ (11)

where c is the concentration, w is a test function and f is a source term. The
quantities q and .�
/ denote the Darcy’s velocity and the effective diffusion
coefficient, respectively [18]. In the sense of Fig. 1, the porous flow domain˝phys is
embedded in a larger domain, which is meshed by a simple Cartesian grid. The
bilinear form associated to the weak form of (11) is extended to the fictitious
domain, and the quantities q and .�
/ are multiplied by a penalty factor ˛ in the
sense of (3):

�
qe D ˛ � q
.�
/e D ˛ � �
 (12)

Quadtree-based numerical integration is performed for cells cut by the boundary of
the flow domain (see Sect. 2.3) and a Bubnov-Galerkin Ansatz is made with high-
order basis functions.1

Figure 10 shows results of a test case for the simulation of transport through
porous media, where for simplicity the velocity q of the transporting fluid was
assumed to be constant along the x-axis throughout the domain. Although this can
only be assumed for a limited range of physical problems, it does not impose a
restriction with respect to the validation of the approach, as long as the transport
velocity q is taken as an upper bound of the expected true flow velocity. The square
domain is discretized by 8 � 8 finite cells of polynomial degree p D 8. Figure 10b
illustrates the profile of concentration c along the diagonal cut line. A reference

1It is worthwhile to note that high-order basis functions are significantly more stable than low-order
functions for flow problems moderately dominated by convection [8].
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Fig. 10 FCM analysis of porous media: The test case consists of a square domain with imperme-
able spheres. Dirichlet constraints of c D 0 and c D 1 are imposed on the left and right boundaries,
respectively, and no flow conditions on the upper and lower boundaries. (a) Concentration profile
for a Péclet number of Pe D 1 [11]. (b) Finite cell solution along the diagonal cut line as compared
to a body-fitted p-FEM reference solution

solution obtained by a refined computation of a boundary fitted mesh is compared
to the FCM solution for a Péclet number of Pe D 1 [11, 18]. Similar to structural
problems, the FCM solution shows very good quality, even in areas, where only
“narrow” flow bridges between obstacles are present.

6 Application Oriented Examples: Structural Analysis
of CAD and Image-Based Geometric Models

In the following, we illustrate the benefits of the finite cell method in terms of simple
mesh generation for very complex geometries by two application oriented examples,
which are described by a CAD (computer aided design) based T-spline surface and
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a CT (computed tomography) based voxel model, respectively. A more detailed
description and further computations for the example structures can be found
in [43–45].

6.1 Modal Analysis of a Ship Propeller

The geometry of the propeller is given by a smooth, watertight T-spline surface (i.e.,
there are no gaps or overlaps). It is exported from the CAD package Rhino [34] in
conjunction with the T-spline plug-in in the form of Bézier elements as shown in
Fig. 11a. Its maximum diameter and height is 0.695 m and 0.334 m, respectively,
and it is made out of steel with Young’s modulus 2:1 � 1011 N/m2, Poisson’s
ratio 0.28 and density 7,850 kg/m3. The structure can neither be characterized
as a typical shell nor as a true solid. Configurations like this usually require
specialized and time consuming meshing procedures to produce good quality
discretizations.

The finite cell method circumvents the meshing challenge completely, which
we demonstrate in the following with the B-spline version of the FCM. First,
the complete structure is embedded in a regular grid of axis-aligned B-splines
of polynomial degree p D 3 (see Fig. 11b). Second, all knot span cells without
support in the propeller domain are eliminated from the discretization (see Fig. 12a).
The decision whether an element is to be kept or not is based on a simple
point location query, which checks if at least one integration point is located in
˝phys. It can be efficiently implemented for example by search algorithms based
on special space-partitioning data structures such as k-d trees [5, 38]. An axis-
aligned discretization with elements of the same size does not account for the
inhomogeneous thickness of the different regions of the structure. In a third step, we
therefore apply two levels of hierarchical refinement to the propeller blades, while
we leave the discretization of the central hub as it is, to achieve a homogeneous
resolution of the two different thicknesses [43]. In a fourth step, we equip each
element cut by the geometric boundary by additional sub-cells, which are organized
in an octree of depth two (see Fig. 13). Each sub-cell contains 4�4�4Gauss points,
leading to an aggregation of integration points in cut elements to accurately take
into account the geometric boundary during numerical integration. The contribution
to stiffness and mass matrices that result from integration points located outside the
propeller domain˝phys are penalized by factor ˛ D 10�3. The hierarchically refined
mesh of Fig. 12b is analysis suitable and is used in combination with the sub-cells
of Fig. 13 to conduct a modal analysis of the structure, where the mass matrix is
lumped according to the row sum method [20]. Figure 14 illustrates the first mode
shapes.
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Fig. 11 Ship propeller example: CAD based geometry description and finite cell discretization.
(a) Bézier elements of a T-spline surface (Output from CAD package Rhino with T-spline plug-
in). (b) The complete structure is immersed in a bounding box of 16 � 16 � 4 axis-aligned cubic
B-spline elements

6.2 Large Deformation Analysis of an Open-Cell Aluminium
Foam

Metal foams provide high stiffness at reduced weights, and are therefore frequently
used for lightweight structures in automotive and aerospace applications [2]. The
p-version of the FCM is applied to simulate a compression test for an aluminium
foam sample of size 20 � 20 � 20mm, discretized by a structured grid of 5 � 5 � 5
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Fig. 12 Ship propeller example: The role of hierarchical refinement. (a) Deletion of elements
without support in the propeller domain creates a reduced set of elements, which homogeneously
resolve the structure irrespective of the local thickness. (b) Hierarchical refinement of the propeller
blades achieves a homogeneous through-the-thickness resolution

high-order finite cells. Its internal geometry is provided by voxels with a resolution
of 1; 024 in each Cartesian direction, each of which encodes ˛. Figure 15a, b
show the complete voxel model of the sample cube and the physical voxels of
material index 1 associated with aluminium, respectively, in a coarsened resolution
of 1283. The foam sample is assumed as part of a larger specimen, which is
uniformly compressed along the vertical axis. Corresponding boundary conditions
are specified as follows [46]: Displacements normal to the top surface are gradually
increased to 1.6 mm (8 % compressive deformation), modelling the influence of
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Fig. 13 Sub-cell partitioning
of elements cut by the
geometric boundary. The
adaptive decomposition
scheme shown in Fig. 4 is
carried out up to level k D 2

Fig. 14 The first, second and
third mode shapes exhibit a
rotational symmetry around
the center, corresponding to
the three pairs of opposing
propeller blades. We display
mode 2

a testing machine, whereas the displacements normal to all other surfaces are
fixed due to the bottom support and the influence of the surrounding material of
the specimen. The aluminium foam is characterized by Young’s modulus E D
70:000N/mm2, penalized by ˛ D 10�12 at all integration points in ˝fict, and
Poisson’s ratio 
 D 0:35.

The finite cell method is able to directly operate on the voxel model, which
provides a basis for a simple point location query (see [45]). In particular, we avoid
the costly transformation of the voxel model into a surface model by image-based
software, which is required as a basis for mesh generation by standard body-fitted



18 D. Schillinger et al.

Fig. 15 CT-based voxel
model of an aluminium foam
sample. For better visibility,
the original resolution of
1,0243 voxels is reduced to
1283 . (a) Voxelized sample
cube. (b) Voxels with
bvox D 1

simulation methods. For the present p-version mesh of polynomial degree p D 7

with 3 levels of sub-cells (21,492 dofs; 24,947 sub-cells; approx. 12.75 million
Gauss points), analysis of the foam could be accomplished by our in-house FCM
code in about 4 h.2 Since the major cost of FCM results from the large number
of sub-cells with full Gauss integration, a major performance gain is achieved
by the shared memory parallelization of the loop that computes local stiffness

2Using eight threads on two interconnected Intel(R) Xeon(R) W5590 @ 3.33 GHz.
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Fig. 16 Von Mises stress of
the metal foam sample
plotted on the deformed
configuration. The results
are obtained from a
discretizations with 5� 5� 5

finite cells of polynomial
degree p D 7

matrices for cells and sub-cells with subsequent assembly into the global system
matrix. A parallel for construct creates a team of n threads to execute the main
loop over sub-cells in parallel, where n is the number of threads available. With
n D 8, we achieved a strong speed up of the loop of around 5. In addition, we
would like to mention here that a very fast variant of the FCM has been developed
(see [22, 23, 50, 51]), relying on pre-integration of sub-element matrices. This
implementation is up to three orders of magnitude faster than the FCM based on
standard quadrature described herein, and thus allows even for real-time simulations
of complex 3D structures.

The resulting von Mises stresses shown in Fig. 16 exhibit accurate localization
of stress concentrations at the convex sides of the foam members, which agrees well
with engineering experience. Figure 17 plots the equivalent force obtained from
integration of the normal stress over the top surface vs. the prescribed displacement
of the top surface for different polynomial degrees p. It can be observed that the
increase of p improves the reproduction of the geometrically nonlinear behavior of
the foam.

7 Summary and Outlook

The present contribution provided a review of recent developments of the finite
cell method (FCM) for the analysis of complex structures. We briefly summarized
the basic components of the FCM technology, i.e. the fictitious domain concept,
high-order basis functions, adaptive integration and weak boundary conditions,
and outlined its basic numerical properties for linear elasticity, i.e. the smooth
extension of solution fields beyond the physical domain as well as exponential rates
of convergence in energy norm. We then summarized the concept of deformation
resetting, which enables the extension of the FCM to nonlinear elasticity. Finally,
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we illustrated with two application examples, i.e. a ship propeller and a metal foam
sample, that the benefits of the finite cell method in terms of almost no mesh
generation for complex structures can be achieved for both CAD based and explicit
image-based geometric models.

Based on these results, we believe that the finite cell method has great potential
for the accurate analysis of very complex structures, and a plethora of very
promising aspects are still open, such as the analysis of topology changes and
moving boundaries, for which embedded domain methods such as the FCM offer
significant advantages over ALE-type approaches, or the introduction of FCM
suitable coupling schemes for multiphysics problems, which stand at the forefront
of today’s challenges in computational science.
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10. de Souza Neto, E., Perić, D., Owen, D.: Computational Methods for Plasticity: Theory and
Applications. Wiley, Chichester (2008)

11. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, Chichester/Hoboken
(2003)

12. Düster, A., Parvizian, J., Yang, Z., Rank, E.: The finite cell method for threedimensional
problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197, 3768–3782 (2010)

13. Düster, A., Sehlhorst, H.G., Rank, E.: Numerical homogenization of heterogeneous and
cellular materials utilizing the finite cell method. Comput. Mech. 50, 413–431 (2012)

14. Embar, A., Dolbow, J., Harari, I.: Imposing dirichlet boundary conditions with Nitsche’s
method and spline-based finite elements. Int. J. Numer. Methods Eng. 83, 877–898 (2010)

15. Fernández-Méndez, S., Huerta, A.: Imposing essential boundary conditions in mesh-free
methods. Comput. Methods Appl. Mech. Eng. 193, 1257–1275 (2004)

16. Glowinski, R., Kuznetsov, Y.: Distributed lagrange multipliers based on fictitious domain
method for second order elliptic problems. Comput. Methods Appl. Mech. Eng. 196, 1498–
1506 (2007)

17. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for
elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 537–552 (2002)

18. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the
Modeling of Hydrosystems. Springer, Berlin/New York (1997)

19. Höllig, K.: Finite Element Methods with B-Splines. Society for Industrial and Applied
Mathematics, Philadelphia (2003)

20. Hughes, T.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
Dover Publications, Mineola (2000)

21. Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195
(2005)
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Immersed Boundary Methods
for Fluid-Structure Interaction and Shape
Optimization within an FEM-Based
PDE Toolbox
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Abstract One of the main challenges in a classical mesh-based FEM-approach
is the representation of complex geometries. This challenge is often tackled by
a computationally costly mesh generation process, where the resulting mesh’s
facets represent the boundary. An alternative approach, that we employ here, is
the immersed boundary (IB) approach. This uses instead a computationally cheaper
structured adaptive Cartesian mesh and an explicit boundary representation, where
the challenge mainly lies in the boundary condition (BC) imposition on the mesh
cells intersected by the geometry’s boundary. One IB method is Nitsche’s method
that we employ here for fluid-structure interaction (FSI) and shape optimization
problems. The simulation of such complex physical systems modeled by PDEs
requires a combination of sophisticated numerical methods. Implementing a FEM-
based simulation software that computes a particular PDE’s solution often requires
the reusage of existing methods. In order to make our approach public and also to
prove the modularity of it, we integrated our IB methods in an existing FEM-based
PDE toolbox of the Trilinos project, called Sundance.
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1 Introduction

The idea behind the development of a finite element PDE toolbox suitable not only
for simulation but also optimization algorithms is to provide a software allowing
for the reuse of mesh functionality, data processing, matrix assembly, linear and
non-linear solvers for various kinds of PDE based applications. To establish a
new application code, the user only has to provide a suitable formulation of the
continuous equations and of the finite element basis. Sundance [26, 27] has been
developed with exactly that task. The user implements the particular application in
a weak form formulation. This makes also the implementation of dual equations for
optimization very convenient. In addition to the problem formulation, the type of
finite element basis to be used has to be prescribed – of course in close connection
with the computational grid and, therewith, the element type. Element quadrature,
matrix assembly, and (non-)linear solvers are given by Sundance or Trilinos [20],
respectively.

The focus of this paper is on the numerical simulation of fluid-structure
interaction processes and related optimization problems. These problems require the
flexible handling of complex and moving geometries including large geometrical or
even topological changes. In particular for optimization, a high computational and
memory efficiency is additionally required. Based on these requirements, we added
a further grid type to the Sundance toolbox: structured adaptively refined Cartesian
grids. Due to its strict structuredness, this grid type makes the storage of any explicit
structure information such as relations between vertices, edges, faces, and elements
or between elements and their neighbours obsolete and, thus, reduces the storage
requirements to a minimum.

However, a major drawback of Cartesian grids is their inherently poor approxi-
mation accuracy for complex geometries. Thus, sophisticated methods to improve
this accuracy are required. Here, immersed boundary methods such as Nitsche’s
method are a promising approach. In this paper, we present a Cartesian grid
implementation in Sundance including an extension of Nitsche’s method to flow
simulations on moving geometries, in particular fluid-structure interaction and shape
optimization problems.

In the following section, we show the underlying equations of our fluid-structure
scenarios and recall some basic methods for PDE constraint optimization. Section 3
gives a an overview of immersed boundary methods and the related terminology.
In Sect. 4, we shortly introduce the Sundance toolbox with its basic functionality,
user interface, and implementational concept. We explain the Cartesian grid imple-
mentation in Sect. 5 and introduce Nitsche’s method for fluid dynamics in moving
geometries (Sect. 6). Section 7 presents details on the implementation in Sundance,
whereas numerical examples for fluid-structure interactions using Nitsche’s method
and their results are shown in Sect. 8. For shape optimization, we present first simple
scenarios with results in Sect. 9. Finally, we summarize results and give an outlook
on future work in the conclusion (Sect. 10).
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2 The Fluid-Structure Interaction Model and Optimization
Methods

The Fluid-Structure Interaction Model. For the simulation of fluid-structure
interactions on Cartesian grids, we use the incompressible laminar Navier-Stokes
equations

@v
@t

D 
�v � .v � r/v � rp C ff (momentum equation); (1)

r � v D 0 (continuity equation) (2)

to model the fluid flow in connection with the structural dynamics equations

s
@2u
@t2

C r � 	s C fs D 0; (structural dynamics) (3)

where v denotes the flow velocities, p the fluid pressure, ff external forces acting on
the fluid such as gravity forces, and 
 the viscosity of the considered fluid. Further,
u is the structure displacement vector, S the structure density, 	s the stress tensor,
and fs denotes external traction forces exerted on the structure.

The interaction between fluid and structure is given by the continuity of velocities
and the balance of forces

v D @u
@t
; (4)

	f nf D 	sns; (5)

where 	f and 	s are the stress tensors of fluid and structure and nf and ns denote
the normal vectors of the fluid and structure domain boundaries.

The structure is usually simulated in a Lagrangian framework, i.e., the grid
deforms with the structure movement, such that the surface of the structure is always
represented accurately. For the fluid domain, we, however, use an Eulerian fixed grid
setting to allow also for large geometry or even topology changes.

Shape Optimization Methods. In our example applications, we consider design-
ing the shape of a body B exposed to Navier-Stokes flow such that a given cost
functional is minimized. We denote this functional with J.y;˝/ (e.g., the drag)
under the constraints E˝.y/ D 0 (Navier-Stokes equations including boundary
conditions), where y D .v; p/ denotes the flow variables and ˝ is the fluid
domain surrounding the body to be optimized. Additional constraints such as
constant volume of the body shape or smoothness of the body’s boundary ensure
the existence of an optimal design. A particular challenge of shape optimization
is the fact that during the iterative process of optimization a sequence of different



28 J. Benk et al.

domains ˝k is generated and the PDE has to be solved on each of these changing
domains. This is closely related to boundary movement due to structure deformation
in the fluid-structure interaction applications described above.

For gradient-based optimization, the derivative of j.˝/ WD J.y.˝/;˝/ with
respect to domain variations ˝ 7! .Id C V /.˝/ is required, where V is a
displacement field and Id the identity operator.

A classical approach, the method of mappings [6,18,32], works with a reference
domain˝ref and bi-Lipschitz transformations T W Rn ! R

n to represent the current
domain via T as ˝ D T .˝ref/. Using this transformation, the problem can be
transported to the fixed domain ˝ref. This results in a nonlinear PDE constrained
optimal control problem with T serving as the control (design parameterization).
If preferred, it can be arranged that the k-th optimization iteration performs its
computations on the current domain ˝k by viewing it as the reference domain.
For conventional FEM, this requires moving the computational mesh as well as
remeshing if the moved mesh deteriorates.

A closely related alternative to the method of mappings is provided by shape
differential calculus [42,47]. It offers a rich machinery for computing the directional
derivative dj.˝/ŒV � WD d

dtj..IdC tV /.˝//ˇ̌
tD0, called shape derivative if it exists in

the Gâteaux sense, in the displacement direction V . The Hadamard-Zolesio struc-
ture theorem [42, 47] states that under suitable conditions there exists a distribution
g on the boundary of ˝ such that dj.˝/ŒV � D hg; V � ni@˝ . The distribution g
represents the sensitivity of j.˝/ with respect to normal boundary variations. It can
be used to develop shape optimization algorithms that move the boundary of ˝ to
achieve a descent method.

The shape gradient g or a discrete version of it can be obtained by the adjoint
approach [21]. In contrast to the sensitivity method, the computational complexity
of the adjoint approach is independent of the dimension of the considered space of
boundary displacement directions V . It requires to compute the adjoint state. If we
denote by u the state and abbreviate the PDE as E.u;˝/ D 0, then the adjoint state
w solves the adjoint PDE

.Eu.u;˝/v;w/ D �.Ju.u;˝/; v/ 8 v 2 U0; (6)

whereU0 is the space of state variations and the subscript denotes the partial Fréchet
derivative of the respective operator or function.

3 Immersed Boundary Methods: A Short Overview

The term immersed boundary methods summarizes a class of methods aiming at the
accurate description of complex and moving geometries in a fixed Cartesian grid.
It was developed already in the 1970s by Peskin [36] for the simulation of blood
flow in the human heart. The basic idea is to embed a moving structure in a fluid
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flow simulated on a fixed (Eulerian) Cartesian grid. The influence of the structure
on the flow is taken into account by a force function (which is zero away from the
structure). A good overview on immersed boundary methods is given in [29].

In literature, there exists a variety of methods and a lot of names besides
immersed boundaries that are related to the same topic: handling complex and
moving geometries in fixed and mostly Cartesian grids. We shortly mention and
classify the most important ones:

Marker-and-Cell. Early marker-and-cell methods, introduced by Harlow and
Welch already in the 1960s [19] use cell-markes to defined fluid and non-fluid cells
in a free surface flow. This approach obviously can easily be extended to complex
flow geometries with obstacles [16] and to fluid-structure interaction [12]. However,
the accuracy is restricted by the character of the grid, i.e., for Cartesian grids toO.h/
if h is the mesh width.

Volume-of-Fluid. To increase accuracy, volume-of-fluid methods have been intro-
duced by Noh and Woodward in 1976 [34]. Instead of simply assigning cells the
values zero for an empty cell and one for a cell completely filled with fluid, the
volume-of-fluid method introduces a fractial function giving the fraction (in terms
of volume) of a grid cell which is filled with fluid. This method has the advantage
to allow a fulfillment of mass conservation. The accuracy of the actual geometry
representation is only first order for the original method, but can be enhanced to
second order (see, e.g., [37]).

Level-Set. To overcome the drawbacks of the volume-of-fluid method, another
12 years later, Osher and Sethian introduced the level-set method that tracks the
fluid surface using a function that is zero at the domain boundary (and positive
inside the flow domain) [35]. This allows even for topology changes in a natural
way, conserves mass if applied correctly, and allows for high order of accuracy. The
transient computation of the level-set function requires the solution of a Hamilton-
Jacobi equation, which is neither trivial nor computationally cheap. The fractial
function of the volume-of-fluid method can be interpreted as a volume integral over
the level-set function.

Cut Cell. In contrast to the aforementioned approaches, cut cell methods [25]
work with an explicit representation of the domain boundary by, e.g., polygons
in 2D, triangulations in 3D, or higher-order surface representation with splines,
for example. Classical cut cell methods use a finite volume discretization on
the resulting geometry consisting of ‘standard volumes’ and ‘cut cell volumes’.
Accordingly, the roots of cut cell methods come from flow simulation. The accuracy
depends on the accuracy of the boundary representation. A drawbacks of the cut cell
method in particular in 3D is the large variety of possible types of cuts through a
cell, and, therewith, the large number of different cut cell types. The advantage is
the easy geometry representation with straightforward possibilities to interface with
CAD (Computer Aided Design), e.g.
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Fictitious Domain. Also fictitious domain methods [10] have been developed
originally for fluid dynamics but are applied as well for structural dynamics [38].
The complex geometry is embedded in a simpler domain such as a square in 2D
or a cube in 3D, and the original equation is replaced by an equation on this
simpler domain by introducing jumping coefficients. These jumping coefficients
can be interpreted as an extremely high or low stiffness outside the actual domain
if the domain is surrounded by a rigid body or vacuum, e.g. The resulting system
can be discretized either by finite differences, finite volumes, or finite elements.
The drawback of the fictitious domain method in this simple form is that it allows
only the modeling of rather simple boundary conditions such as homogeneous
Dirichlet or Neumann boundary conditions. As soon as other boundary conditions
such as those originating from a constant movement of a rigid body in a fluid have
to be applied, additional efforts are required such as adding a Lagrange multiplier
to enforce the boundary condition (see, e.g., [15]). The accuracy is limited by the
accuracy of the discrete representation of the location of coefficient jumps as well
as the influence of averaging effects when discretizing the underlying PDE at such
a jump.

Penalty Methods. The penalty method proposed by Babuška in the late 1960s and
early 1970s [1, 2] for the Poisson equation with homogeneous boundary conditions
allows to weakly enforce boundary conditions with a finite element basis that is not
conforming with these boundary conditions. It enhances the energy functional to be
minimized by the finite element solution by a boundary penalty term h�s R

@˝
vsdS.

In case of a partial differential equation L.u/ D f with a differential operator L,
this gives:

F.v/ D
Z
˝

L.v/v � 2f vd˝ C h�s
Z
@˝

vsdS: (7)

This methods performs well in practice. One can be shown to be sensitive with
respect to the choice of s and to deteriorate the order of convergence of the original
discretization in theory.

Nitsche’s Method. Nitsche developed a closely related method [33], that also
enhances the energy functional in a finite element setting by a boundary penalty
term, but adds further terms ensuring the symmetry of the resulting discrete
equations and, therewith ensures full consistency. Nitsche’s method has been
applied to computational fluid dynamics in [4] and [3]. In the latter, the method
is called weakly enforced boundary conditions.

Extended Finite Elements. In contrast to penalty and Nitsche’s methods, extended
finite element methods [30] enhance the finite element basis (enriched basis
functions) at sharp internal boundaries, where discontinuities in material properties
or cracks cause discontinuities in the numerical solution of a partial differential
equation.
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In this paper, we describe an extension of Nitsche’s method for transient prob-
lems with moving boundaries (Sect. 6). This is new and requires some additional
techniques to ensure the numerical stability of the time-stepping scheme.

4 The Sundance Toolbox in a Nutshell

The Sundance toolbox is a convenient software providing the user with a vast
functionality for several pieces of the so-called simulation pipeline: problem
formulation, i.e., mesh generation and weak form formulation of the required partial
differential equations, discretization including assembling of a finite element matrix,
computation of element matrices and stiffness matrix assembly, and, finally, solvers
for the resulting systems of linear or nonlinear discrete equations. Figure 1 shows the
steps of the simulation pipeline and outlines the contributions from users, Sundance
components and external software components are linked to Sundance via well-
defined interfaces.

A computational grid in Sundance is considered as a collection of mesh entities
(elements, faces, edges, vertices) and their relations. A mesh compatible with the
Sundance interface has to provide the following functionalities:

1. Return the unique identification number and dimensionality (0 for vertices, 1 for
edges, 2 for faces, 3 for 3D elements) of a mesh entity,

2. Return the position, i.e., the spatial coordinates of a given vertex,
3. Return all lower-dimensional components of a mesh entity, e.g., all faces, edges,

and vertices of a three- dimensional element,
4. Return the indices of all mesh elements that contain a given mesh entity together

with its indices within the respective elements.

The grid can either be generated by an external mesh generator and read
via a Sundance compatible parser from an input file or be generated internally
within Sundance given the characteristic parameters of the mesh. Whereas the first
approach is very well suited for unstructured grids and assures a high flexibility with
respect to geometry and mesh generation with existing user-trusted tools, the latter
is more suited for grids with a fixed structure such as our Cartesian grids. The mesh
functionality described above can be either implemented by getting the required
information from stored data (as for unstructured grids) or deriving information
from the given structure of the grid.

For parallel simulations, the mesh interface is enhanced by functions tracing the
assignment of mesh entities to processes:

1. Return the ID of the owner process of a mesh entity,
2. Transform the local ID of a mesh entity to the local ID on the respective process

(and vice versa).

The domain partitioning itself can again be done via an interface to external
established mesh partitioners or be implemented in Sundance itself.
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Fig. 1 Steps of the simulation pipeline in Sundance. Functionalities provided by Sundance are
marked light blue, functionalities provided both by Sundance and by interfaces to external tools are
green, and functionalities provided exclusively by interfaces to external software are marked red

As mentioned above, the equations describing the application are formulated by
the user in a weak-form syntax. We give an example from [7] to demonstrate how
easy a new application can be implemented in Sundance:

• We want to solve the two-dimensional Poisson equation, which is given by the
weak form

Z
˝

.rurv � fv/ d˝ D 0 for all v in V:

• We start with reading a mesh that has been generated and written to a file by an
external mesh generator:

MeshType meshType = new BasicSimplicialMeshType();
MeshSource meshReader =

new TriangleMeshReader("meshInputFile.1", meshType);
Mesh meshExternal = meshReader.getMesh();

• Subsequently, we formulate the equations to be solved:

CellFilter Omega = new MaximalCellFilter();
CellFilter Boundary = new BoundaryCellFilter();

Expr unknBase = new Lagrange(1);
Expr testBase = new Lagrange(1);
Expr u = new UnknownFunction( unknBase , "u");
Expr v = new TestFunction( testBase , "v");
Expr dx = new Derivative(0);
Expr dy = new Derivative(1);
Expr grad = List(dx, dy);
QuadratureFamily quad = new GaussianQuadrature(2);
Expr weakForm =

Integral( Omega , (grad*u)*(grad*v) - f*v, quad);
Expr bc = EssentialBC( Boundary , v*(u-1.0), quad);
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• Finally, we setup the discrete problem and solve it with a suitable solver, which
we choose from Trilinos [20]:

LinearProblem prob(mesh, weakForm, bc, v, u, vecType);

ParameterXMLFileReader reader("bicgstab.xml");
ParameterList solverParams = reader.getParameters();
LinearSolver<double> solver =

LinearSolverBuilder::createSolver(solverParams);

Expr up = prob.solve(solver);

The example above shows a simple stationary linear example. For time-
dependent applications, the time-stepping has to be defined by the user, in addition.
Similarly, optimization problems require the formulation of the dual equations
and the optimization algorithm by the user. Sundance does not implement an
own visualization functionality but offers output functions writing the results in
several standard formats suitable for different standard softwares such as VTK [41],
ExodusII [40], and Matlab [28].

5 Cartesian Grids and Their Implementation in Sundance

Introduction of and General Remarks on Cartesian Grids. In contrast to
unstructured grids, tree-structured adaptive Cartesian grids have the advantage of
being highly efficient in terms of storage requirements. Whereas for an unstructured
grid all elements, faces, edges, nodes, and, in particular, their relations have to be
stored explicitly, our Cartesian grids are defined by the chosen tree-structure such
that the only information that has to be stored is whether a grid cell is further refined
or not. The grid on the left in Fig. 2 is for example given by the bit sequence

1 0 1 0000 0 0;

where the first ‘1’ denotes the root, i.e., the whole square domain, the subsequent
‘0’ stands for the non-refined lower left cell at refinement level one, the ‘1’ for
the refined lower right cell, followed by four ‘0’s for its children and two ‘0’s
for the non-refined upper left and upper right level one cells. Thus, in this example,
the bitsequence is ordered in a depth-first manner with Morton order of the cells
at each level. It shows that an arbitrary tree-structured adaptive Cartesian grid can
be stored with a memory requirement of only one bit per grid cell (over all levels)
if three important parameters defining the type of grid and the traversal order are
given:

1. The refinement factor (in our example two per coordinate direction),
2. The type of tree-traversal (depth-first or breadth-first),
3. The traversal order of cells at the same level (in our example Morton order).
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Fig. 2 Simple examples for tree-structured adaptive Cartesian grids represented either by a single
cell-tree (left) or a forest of trees such as in p4est [13] and our parallel implementation of adaptive
Cartesian grids in Sundance (Pictures taken from [7])

Fig. 3 Quadtree grid generation for a fluid domain around a spherical obstacle. Grid cells are
further refined in this example if they are either cut by the geometry boundary or inside the
fluid domain. This results in a regular refinement in the fluid domain. For visualization purposes,
we show only every second refinement step. The whole grid generation corresponds to only one
traversal of the final grid or its corresponding cell tree, respectively

Similar efficiency arguments hold for the generation of an adaptive Cartesian
grid in an arbitrary domain: Starting from a square or cube containing the whole
computational domain, the grid is locally further refined wherever a refinement
is required for an accurate discretization of the partial differential equation to be
solved or for a good approximation of the domain boundary. Figure 3 shows an
adaptively refined grid representing a fluid domain around a spherical obstacle.
This example also shows the straight-forward adaptivity process that can follow
geometry information, i.e., intersection of cells by the domain boundary, adaptivity
criteria, or a priori user information on domains of particular interest. If the grid is
implemented using sophisticated data algorithms, adaptivity can even be done in a
way that does not destroy data locality [45].

An additional advantage of adaptive Cartesian grids for application scenarios
with moving geometries has already been mentioned in the introduction: a high
flexibility for large geometry or even topology changes in an Eulerian, i.e., fixed
grid setting. For these cases, we use immersed boundary methods to approximate
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Table 1 Storage requirements of a three-dimensional Poisson solver using our implementation of
a tree-structured Cartesian grid and an unstructured grid with a resolution of 531; 441 (81�81�81)
quad elements (results from [7])

Mesh Mesh storage (MB) Total memory (MB)

Cartesian mesh 783 1;600

Unstructured mesh 2;700 3;200

the geometry, the imposed boundary conditions and the differential operators in
grid cells intersected by the domain boundary with suitable accuracy. Our immersed
boundary approach is described in Sect. 6 in more detail. For the parallelization or
domain partitioning of tree-structured adaptive Cartesian grids, space-filling curves
have been shown to be a very cheap tool still providing quasi-minimal domain
surfaces and, thus, communication costs [11, 17].

Mesh Generation and Storage in Sundance. A tree-structured Cartesian mesh
can be stored in a highly efficient way as illustrated above. However, the Sundance
mesh interface allows in principle for random access to mesh entities according
to their IDs. A memory-saving tree-storage of the grid can not efficiently answer
such arbitrary queries as each query would require a whole tree-traversal in the
worst case. As a compromise, we linearize the tree and store all information of
faces, edges, and vertices of all grid entities. As we can still use constant (up to
scaling) element matrices and need only few interpolation matrices for elements
with hanging nodes, we still save a considerable amount of memory if compared to
unstructured grids. Table 1 compares the memory requirements of a Poisson solver
with linear elements on tree-structured Cartesian and unstructured simplex meshes.

Table 1 shows that fitting a structured mesh into an arbitrary access context of
a PDE framework usually deteriorates the theoretical memory saving potential.
In a tree-traversal oriented implementation such as in Peano [45], the memory
requirements are 50–100 times lower. However, grid generation is still done in a very
simple and efficient way for our structured grids in a recursive refinement process,
where the grid generator only needs to be given the information whether to locally
refine further or not. This information can be derived from the geometry (refine
only cells intersected by the domain boundary, e.g.), from error estimators, or from
a priori given user input. The saving factor in terms of runtime strongly depends on
the unstructured mesh generator and the scenario, but is obviously expected to be
tremendously high for complex examples. Just remember that generating a Cartesian
tree-structured grid corresponds to only a single grid traversal.

Introducing Rectangular Elements in Sundance. Sundance originally provided
only simplex meshes. Thus, the first step towards adaptive Cartesian grids was the
implementation of an additional, rectangular element including degrees of freedom
located at the cell’s vertices, edges, and faces. As finite element basis functions, we
use the classical Lagrangian polynomial. The definition of a new basis only requires
to implement the Sundance interface for basis function evaluation returning the basis
function value for any given point on the reference element: In addition, the spatial
derivatives are computed by automated differentiation.
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Fig. 4 Pre-fill transformation for a hanging node in a two-dimensional grid. Left: simple two-
dimensional grid with hanging nodes (blue) and hanging faces (red); right: pre-fill transformation
for element matrix lines associated to non-hanging element nodes interpolating the value at the
hanging node from non-hanging father nodes. The resulting entries to be accumulated to the global
system matrix are marked with blue rectangles

Hanging Nodes and Pre-Fill Transformation. In contrast to unstructured meshes,
adaptive Cartesian meshes contain lower-dimensional mesh components (nodes,
edges, faces), that are not a node, edge, or face for all neighbouring elements.
Figure 4 shows a two-dimensional example with hanging nodes and edges. To
ensure continuity of the approximate solution, hanging nodes, edges, or faces may
not possess degrees of freedom and, accordingly, do not have associated entries
in the vector of unknowns approximating the solution of our PDE. However, for
efficiency reasons, we use the same element matrices (up to suitable scaling with
the mesh width) in all cells. Thus, element matrices using a value at a hanging node,
e.g., have to be modified as illustrated in Fig. 4 using an interpolation corresponding
to the used finite element basis of the hanging node value from neighbouring non-
hanging father nodes. The interpolation information is stored in a square matrix
Me;B describing the interpolation of global (non-hanging) degrees of freedom to
local (including hanging) values. In the example of Fig. 4, matrixMe;B for the upper
left cell would be

Me;B D

0
BB@
1 0 0 0

0 1
3
0 2
3

0 0 1 0

0 0 0 1

1
CCA (8)

for bilinear basis functions and a lexicographic ordering of cell vertices: the first
line indicates that the value of the local degree of freedom at the lower left vertex
of the cell is the same as the value of the corresponding global degree of freedom
(this node is not hanging). The same holds for the two upper vertices (line 3 and 4
of Me;B ). From line 2 of Me;B , we see that we get the local value (at the hanging
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node in the lower right corner of the cell) as an averaged mean of the corresponding
global value (lower right corner of the father cell) and the value at the upper right
corner of the cell itself.

Independent from the actual grid, only a constant and rather small number of
different interpolation matrices exists. Thus, we store them in a set of matrices
and add only the index of the respective matrix Me;B (see Eq. (8)) to an element
e in the mesh that contains hanging nodes, edges, or faces. Mathematically, the
transformation of the element matrix Ae reads

Anew
e D MT

e;BT
AeMe;BU ; (9)

where BT denotes the basis of the test space and BU the basis of the ansatz
space. This can be seen as an additional step of the matrix assembly process to
be executed before accumulating element matrix contributions to the global system
matrix. Therefore, we call this step the pre-fill transformation, which can be done
very fast and efficiently due to the low number of cases and the purely local and
small transformation matrices.1 For the realization of the pre-fill transformation,
the Sundance mesh interface sketched shortly in Sect. 4 has been extended by the
following functionalities:

1. Return the information, if a face, edge, or vertex is hanging,
2. Return the required face, edge, or vertex of the father cell for interpolation,
3. Return the index of the cell within the parent cell.

The index of a cell within its father cell is required to determine the correct
interpolation weights and indices of father cell entities.

Parallel Implementation of Cartesian Grids. The parallel implementation of a
Cartesian grid has to provide two main ingredients: (1) a load balanced domain
partitioning and (2) ghost layers for communication reduction. Once having these
two ingredients, all other aspects such as the technical realization of data communi-
cation is taken care of by Sundance. For (1), we use the simple Z- or Morton-curve
for grid partitioning. To further speed up the computations, we do the partitioning
on a coarse grid level ignoring further refinement levels. This of course can lead
to severe imbalances for grids with highly localized refinement and, in these cases,
has to be substituted by a partitioning taking into account all grid levels. Figure 5
shows a very simple two-dimensional example for the partitioning of a grid into two
subdomains.

Due to our pre-fill transformation algorithm, the second step, the determination
of ghost cells, is a little more involved. We have to include also cells that do not
have a face, edge, or vertex on the subdomain boundary for the reason illustrated
in Fig. 5: grid elements at the subdomain boundary might have hanging facets and

1Note that we restrict our grids to 1-irregular tree-structured grids, which ensures that, if a face,
edge, or vertex is hanging, the corresponding face, edge, or vertex of the father cell is not hanging.
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Fig. 5 Left: grid partitioning of a part of a very simple two-dimensional adaptive Cartesian grid
into two subdomains using the Z-curve (Morton order) on a coarse grid level. Right: One of the
two partitions (light green) with its required ghost cells (pink). Due to the pre-fill transformation,
not only cells with a face on the subdomain boundary are required as ghost cells (Illustration taken
from [7])

Table 2 Strong scaling results for a parallel three-dimensional solver of the Stokes-Brinkmann
equation for porous media flow with varying porosity in a complex geometry with spherical low-
porosity obstacles. The computations were performed on an adaptively refined Cartesian grid with
433; 126 cells andQ1Q1 elements (see right subfigure for a cut through the geometry and the grid)
on the MPP cluster of the Leibniz Supercomputing Center (LRZ) in Garching (Opteron 2.6 GHz
AMD processors). As a system solver, we used the TSF-BiCGStab solver from the Trilinos [20]
library

Number of proc. 1 2 4 8 16 32 64 128

Assembly (s) 682 356 183 98 52 28 18 10
Par. eff. (%) 100 96 93 87 82 76 59 53
Solver (s) 875 497 238 136 91 49 36 21
Par. eff. (%) 100 88 92 80 60 56 38 33

therefore contribute to the system matrix entries of neighbouring cells on a coarser
level together with other child cells of the same father cell, which then might need
information of a face of an additional coarser level neighbouring cell and so forth.
However, the determination of ghost cells can still be done in a straightforward
way by following such dependencies. In the current implementation, we still store
the whole grid information in every process, which obviously causes a too high
memory overhead and has to be improved (currently work in progress). Table 2
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shows strong scaling results for a porous media flow in a complex domain. It shows
the scalability of the matrix assembly process for our Cartesian grid and the solver
runtime, where matrix assembly scales better than the solver (TSF-BiCGStab solver
from the Trilinos [20] library), which proves the adequacy of our implementation.

After having the technical basis of Cartesian grids in the Sundance toolbox,
we proceed with the description of the Nitsche method, which is the decisive
step making the Cartesian grid implementation useful for accurate and efficient
simulations.

6 Nitsche’s Method for Fluid Dynamics in Moving
Geometries

The general idea of Nitsche’s method is the following: Let �d be the Dirich-
let boundary of ˝ 2 R

n with boundary values g. This usually implies the
state space Ug D fu 2 U I uj�d D gg and the space of test functions is
W0 D fw 2 W I wjd D 0g with appropriate function spaces U and W . In this case,
Dirichlet conditions are built into the function space Ug . The weak form is obtained
by testing the strong equation with the test function and performing integration
by parts where appropriate. The resulting boundary integrals usually vanish on �d
since wj�d D 0.

The Nitsche method works differently: The spaces U and W are used as state
space and test function space and are oblivious of the boundary values g. Now,
doing integration by parts, the boundary integral over �d does no longer drop out.
These integrals over �d are symmetrized, i.e., if we have a summand

Z
�d

l .@nu;w/ dS.x/

with a bilinear functional l , we replace it by
Z
�d

l .@nu;w/ dS.x/C
Z
�d

l .@nw; u/ dS.x/ �
Z
�d

l .@nw; g/ dS.x/: (10)

Note that for the exact solution u of our partial differential equation with Dirichlet
boundary values g, the added terms cancel.2 Furthermore, we add regularizations,
also called penalty terms

�

h

Z
�d

uwdS.x/ � �

h

Z
�d

gwdS.x/ (11)

2The symmetrization is required to show that the error of the finite element solution minimizes a
quadratic energy functional, which is used to prove the consistency order of the method (compare
[33]).
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and possibly

�2

h

Z
�d

.u � n/.w � n/dS.x/ � �2

h

Z
�d

.g � n/.w � n/dS.x/ (12)

to coercify the problem and to enforce the Dirichlet conditions.

Nitsche’s Method for the Incompressible Navier-Stokes Equations. For the
formulation of Nitsche’s method for the incompressible Navier-Stokes equations,
we use the notation of Becker [4]. Let ˝ � R

2 (or ˝ � R
3) and u D .v; p/ 2

H1.˝/2 �L20.˝/ (orH1.˝/3 �L20.˝/) be the state space (velocity and pressure).
Further, let � D @˝; g 2 H1=2.� /, and f 2 L2.˝/2 (or L2.˝/3). We consider the
stationary Navier-Stokes equations in a first step:

� 
�v C .v � r/v C rp D f in ˝; (13)

r � v D 0 in ˝; (14)

v D g at �: (15)

In the following, we restrict to 2D for simplicity, although all methods are applicable
also in 3D. For deriving a weak formulation, we test the PDE with ˚ D .�; �/ 2
H1.˝/2 � L20.˝/ and, as usual, integrate two terms by parts:

.�
�v; �/ D 


Z
˝

� Œr � .rv/� � �dx D 


Z
˝

rv W r�dx � 

Z
�
@nv � �dS.x/

D 
 .rv;r�/ � 
 h@nv; � i ; (16)

.rp; �/ D �
Z
˝
p.r � �/dx C

Z
�
pn � �dS.x/ D � .p;r � �/C hpn; � i; (17)

where .�; �/ denotes the scalar product introduced by the domain integral, h�; �i the
scalar product introduced by the boundary integral. Summing up (16), (17), and the
weak form of the convective term in (13), we thus get the usual distributed terms

a.u; ˚/ D 
.rv;r�/C ..v � r/v; �/� .p;r � �/� .r � v; �/; (18)

the right hand side term .f; �/, and the new left hand side boundary terms

c.u; �/ D �
h@nv; � i C hpn; � i: (19)

For symmetrization, we add c.˚; v/ on the left and compensate this by adding
c.˚; g/ on the right (analogue to (10)). For stabilization and for enforcing the
Dirichlet conditions (compare (11) and (12)), we add



�1

h
hv; � i C �2

h
hv � n; � � ni
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on the left and compensate this by adding



�1

h
hg; � i C �2

h
hg � n; � � ni

on the right. Becker [4] uses a further stabilizing term �h.vn/�v; � i, where .vn/�
equals vn if vn < 0 and zero else. Taking all together, we have

a.u; ˚/C c.u; �/C c.˚; v/C 

�1
h

hv; � i C �2
h

hv � n; � � ni � h.vn/�v; � i
D .f; �/C c.˚; g/C 


�1
h

hg; � i C �2
h

hg � n; � � ni � h.gn/�g; � i for all ˚: (20)

If we consider the instationary Navier-Stokes equations

@v
@t

D 
�v � .v � r/v � rp C f in ˝; (21)

r � v D 0 in ˝; (22)

v D g at �; (23)

we have to add the time-derivative to the weak-form formulation. Doing this in the
classical way, i.e., not using a space-time finite element approach, yields

�
@v
@t
; �
�

C a.u; ˚/C c.u; �/C c.˚; v/C 

�1
h

hv; � i C �2
h

hv � n; � � ni � h.vn/�v; � i
D .f; �/C c.˚; g/C 


�1
h

hg; � i C �2
h

hg � n; � � ni � h.gn/�g; � i for all ˚: (24)

For time-discretization, we can use any finite difference scheme such as Euler or
Runge-Kutta.

Issues with Moving Geometries. Whereas the generalization of Nitsche’s method
to transient problems is straight-forward, the treatment of problems with moving or
changing geometries is more involved in our fixed grid setting. To demonstrate the
principle problem, we consider an explicit Euler time-stepping scheme applied to
the Nitsche formulation (24):

�
v.kC1/; �

� D �
v.k/; �

�C dt � ��Qa.u.k/;u.kC1/; ˚/ � c.u.k/; �/� c.˚; v.k//

�
 �1
h

hv.k/; � i � �2

h
hv.k/ � n; � � ni C h.v.k/n/�v.k/; � i

C.f.k/; �/C c.˚; g.k//C 

�1

h
hg.k/; � i C �2

h
hg.k/ � n; � � ni

�h.g.k/n/�g.k/; � i� for all ˚; (25)

where

Qa.u.k/; u.kC1/; ˚/ D 
.rv.k/;r�/C ..v.k/ � r/v.k/; �/� .p;r � �/C .rv.kC1/; �/:
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Evaluating (25) for the basis functions ˚i D .�i ; 0/ and ˚NCi D .0; �i /; i D
1; : : : ; N leads to the system of equations for time step t .k/ ! t .kC1/. We get
the explicit Euler with Chorin’s projection method for the pressure by replacing
v.kC1/ in the last N equations (discrete continuity equation) by the formula given
in the first N equations (discrete momentum equations). As we compute a solution
at time step t .kC1/, we have to integrate expressions involving v.k/ over ˝.kC1/.
However, v.k/ does not provide physically meaningful values in ˝.kC1/ n ˝.k/. To
achieve a consistent formulation, one possibility would be to apply space-time finite
element formulations [5, 43]. This, however, would require four-dimensional cut-
cell quadrature functionality for spatially three-dimensional problems. Thus, we
solve the moving geometry problem with a simpler approach in a first step: We
restrict ourselves to fully implicit time-stepping schemes and, thus, minimize the
impact of values of v.k/ in ˝.kC1/ n ˝.k/. In addition, we prevent v.k/ from taking
extreme values outside ˝.k/ by solving a Poisson equation with a small weighting
factor in the fictitious domain (compare [7]). The results presented in Sects. 8 and 9
show the usability of this simple approach for a suite of fluid-structure interaction
benchmarks from [22, 23] and for shape optimization.

7 Implementation in Sundance

To implement Nitsche’s method for flow equations on complex and moving
domains, we first need some technical ingredients, i.e., volume integrals over cut
cells integrating only over the part of a grid element that is inside the fluid domain
and boundary integrals over the domain boundary. Both require an explicit repre-
sentation of the domain boundary. As we work with second-order discretizations,
we can use simple polygons (in 2D)3 or surface triangulations (in 3D). Figure 6
illustrates the representation of domains and cut cell volumes. In 2D, we allow a
cell to be intersected by an arbitrary polygon. In this case, we can always find a
suitable decomposition of the remaining fluid part of a cell into simple trapezoidals
and triangles. In 3D, the analogue process with arbitrary surface triangulations
intersecting a cubic grid element would lead to a too large amount of different cases
and, thus, is not feasible. Therefore, we restrict to cases, where all cell edges are
intersected at most once by the surface triangulation. Connecting these intersection
points by straight lines leads to a new, approximate, but still second-order accurate
surface triangulation and only a small number of cases as displayed in Fig. 6. In both
cases, 2D and 3D, we end up with a decomposition of the fluid part of the cut cell
into simple elements Ei; i 2 IE of given type that can be integrated up to machine
precision with suitable quadrature rules. The same holds for the surface integrals.

3For 2D geometries, there is also an implementation in Sundance that can deal with analytical
geometry representations (such as a circle) that are then automatically approximated by a suitable
polygon internally [7].
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Fig. 6 Illustration of the decomposition of the geometry boundary and the fluid parts of a cut
cell in two-dimensional and three-dimensional cases. This method allows for the computation
of the finite element integrals in cut cells and on boundaries described by polygons in 2D and
triangulations in 3D with only a small set of quadrature rules for simple geometric elements
(Illustrations taken from [7])

For the volume integrals over cut cells, we thus have

Z
E\˝

f .x/dx D
X
i2IE

Z
Ei

f .x/dx D
X
i2IE

NiX
jD1

!i;j f .xi;j /dx; (26)

where Ei ; i 2 IE; are the simple subcells into which we decompose of the fluid
part of the cell and xi;j ; j D 1; : : : ; Ni ; are the quadrature points used in subcell i .
With this formula, we can compute all cut cell integrals up to machine precision.
However, this method can lead to a large number of quadrature points xi;j in
particular in 3D and for higher order basis functions. Therefore, we reduce the
number of quadrature points by using precomputed weights

!k D
X
i2IE

NiX
jD1

!i;j lk.xi;j /; k D 1; : : : ; K (27)
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where lk denotes the Lagrangian polynomial associated to the point xk , i.e.,
lk.xk/ D 1; lk.xm/ D 0 for all m 2 f1; : : : ; Kg n fkg. The quadrature rule in
(27) and, thus, Ni ; i 2 IE , have to be chosen such that all Langrange polynomials
lk are integrated exactly. Since our function f is a product of basis functions and
their derivatives, we have for a suitable K by

f .x/ D
KX
kD1

f .xk/lk.x/:

Thus, we can replace (26) by a quadrature rule with the precomputed weights !k :

Z
E\˝

f .x/dx D
X
i2IE

NiX
jD1

!i;j f .xk/lk.xi;j /dx D
KX
kD1

!kf .xk/: (28)

Here, the number of new quadrature points K only depends on the approximation
order of the finite element basis and the considered PDE but not on the function
f .x/. This fits well with the technical restriction given by Sundance that a constant
number of quadrature points is to be used throughout the whole computational grid.
Whenever the domain ˝ changes, the weights !k have to be recomputed in a loop
over all cut cells computing the local quadrature points xi;j for each subcell on
the fly.

Line or surface boundary integrals are computed analogously. However, we do
not use precomputed weights here as (1) some boundary integrals involve normal
vectors that are different for each subpart of the boundary inside a given cell, (2)
boundary integrals are cheaper such that we can afford storing all quadrature points,
(3) three-dimensional cases require the usage of data points in the vicinity but not
directly on the boundary due to the approximation of the original triangulation
within each cut cell.

Technically, the implementation of Nitsche’s method in Sundance requires new
user interfaces for

• Description of the geometry by a polygon/triangulation
• Cell filters selecting intersected cells,
• Integrals over cut cells, and
• Boundary integrals.

To realize moving boundaries in Sundance, several data have to be updated after
changing of the geometry:

• The positions of the surface polygon or triangulation,
• Internal information such as IDs of cells cut by components of the surface object,
• Precomputed quadrature weights for the finite element integration during matrix

assembly,
• Entries of the system matrix/matrices.
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Fig. 7 Left: Eulerian (fluid) and Lagrangian (structure) view of a simple two-dimensional moving
structure. The green circles mark the nodes of the polygonal geometry description in the fluid
solver, whereas the light grey circles are the boundary vertices of the Lagrangian reference domain
on the structure side. Right: Schematic view of the staggered coupling approach for partitioned
fluid-structure interaction simulations. After executing a time step of the flow solver, forces at
(29) are transfered to the structure solver, which subsequently executes its time step and produces
displacements and velocities at the wet surface as an output, which serve as a boundary condition
at (29) for the next fluid step and so forth. This process is repeated until the residual of the fix-point
equation for the displacements falls below a given threshold (Illustrations taken from [7])

To move surface nodes, we use the local surface velocity (given by the bound-
ary conditions) at the respective position. The update of all internal geometry
information is hidden from the user in the function .update(). The function
.reAssembleProblem() recomputes quadrature weights and assembles the new
system matrix/matrices.

8 Fluid-Structure Simulations Using Nitsche’s Method

The suitability and accuracy of our method using Cartesian grids in combination
with Nitsche’s method for simple model problems and pure flow simulation in static
and moving domains has been shown in [7, 8]. In this paper, we focus on results
obtained for a multiphysics application class, i.e., fluid-structure interactions.

Our Partitioned Approach for Coupled Fluid-Structure Simulation in
Sundance. We use the incompressible Navier-Stokes equations (1) and (2) and
combine them with the structural equation (3) and the coupling conditions (4) and
(5) to a full fluid-structure simulation environment.

As we use an Eulerian fixed grid approach as described in the previous sections
for the fluid part, but the common Lagrangian approach with a classical enforcement
of boundary conditions for the structure part, we have to couple the interface
displacements in addition:

�F D fx C usjx 2 �Lg; (29)

where �F is the internal moving geometry description (polygon or surface trian-
gulation) of the fluid solver and �L the Lagrangian structure surface description
(constant throughout the simulation). See Fig. 7 for an illustration. Technically, this
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Fig. 8 Simulation of a rigid body motion of a sphere in a fluid flow using a very coarse Cartesian
mesh. Left: absolute velocities in a plane of the fluid domain; middle: force vectors acting on the
sphere; right: total forces in flow direction acting on the sphere plotted over time. The forces decay
to zero as the sphere accelerates (Illustrations taken from [7])

is realized in Sundance using twin polygons or twin triangulations. The nodes
of these two polygons or triangulations are connected via a bijective mapping
from the node set of the first polygon/triangulation to the node set of the second
polygon/triangulation as illustrated in Fig. 7 by the dashed lines. Whenever a value
of an unknown function is changed on a node of one polygon/triangulation, it is
automatically also changed on the respective node of the twin polygon/triangulation.

As a time discretization, we use implicit Euler for the fluid and structure
equations. To perform a time step of the whole coupled problem, the partitioned
approach requires an iterative execution of fluid and structure solver steps involving
an exchange of boundary values. We use the widespread staggered coupling
approach as shown in Fig. 7. For incompressible fluids, this coupling in general leads
to unstable time stepping if used in an explicit manner (only one fluid and structure
step per time step). Thus, we have to iteratively repeat the fluid and structure steps
until the residual of the associated fixed point equation for the displacements at the
wet surface falls below a certain threshold. To achieve convergence of the fluid-
structure iterations, we use Aitken underrelaxation when transferring displacements
from the structure solver to the flow solver. Aitken underrelaxation determines an
adaptive scalar underrelaxation factor in each iteration [24]. More sophisticated
coupling methods such as interface quasi-Newton schemes [14] or multilevel [9,46]
approaches yield an even faster convergence. However, for our purpose of showing
the potential of Nitsche’s method for the simulation of fluid-structure interaction on
structured Cartesian grids, Aitken underrelaxation suffices.

In the following, we present some of our numerical results for fluid-structure
interaction scenarios in 2D and 3D. Further results can be found in [7].

Rigid Body Motion in 3D. Our first scenario is the three-dimensional rigid body
motion of a spherical object in a flow channel as shown in Fig. 8. In a channel
of dimensionless size 8 � 4 � 4, a sphere with dimensionless radius one and a
dimensionless mass of one moves according to Newton’s law of motion and the
sum of forces exerted on it by the fluid flow. The fluid has the dimensionless density
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Fig. 9 Two-dimensional fluid-structure interaction benchmark scenario from [22, 23]. The sce-
nario shows a fixed and rigid spherical object with an attached super-elastic compressible flap
structure embedded in a channel flow. Left: Scenario geometry with a slight offset of the structure
from the channel axis. Right: domain decomposition of the structure and the fluid part for a parallel
simulation with four processors (Illustrations taken from [7])

one and the inflow speed is set to 2:25. We keep the sphere fixed until dimensionless
time T D 0:2. After that initial period, the sphere is released and accelerated by the
surrounding fluid flow. The fluid flow is simulated on a very coarse regular Cartesian
mesh with only 13 � 9 � 9 elements, whereas the sphere’s surface is approximated
by 500 triangles with 252 nodes. Due to the relatively large structure density and
the rather small radius of the sphere, this example allowed for explicit coupling,
i.e., we performed only one fluid and structure step in each time step. Figure 8
shows the good solution quality in spite of the very coarse fluid mesh resolution.
The sphere exhibits a smooth movement in flow direction as expected for a correct
solution. The forces in x-direction show some unphysical peaks due to the time
integration issues for moving geometries mentioned above. Depending on the state
of the simulation, these peaks can even result in negative forces slowing down the
motion of the sphere in x-direction. However, each of these peaks decays very fast
and, thus, does not influence the overall solution significantly. The height of the
peaks obviously depends on the time step size and the spatial resolution.

Two-Dimensional Benchmarks. To verify our implementation by more reli-
able data than heuristic observations as in the 3D example above, we simu-
lated 2D benchmark scenarios for fluid-structure interaction proposed in [22, 23].
The scenario consists of a channel flow with an embedded spherical obstacle and an
attached flexible bar structure. The spherical obstacle itself remains fixed, but the
bar bends in a steady state (FSI1) or oscillating (FSI3) manner depending on the
Reynolds number of the channel flow. Due to a slight offset in vertical direction,
the structure is exposed to both horizontal and vertical forces. Figure 9 shows the
geometric setup of the benchmark. The structure is a super-elastic compressible
material with s D 103

kg
m3 and Young’s modulusE D 1:4 � 106 kg

m3 . We discretize the
Navier-Stokes equations using Q2Q1 and the structure using Q1 elements. For this
scenario, an implicit coupling with several fluid-structure iterations is mandatory to
achieve stable results. We use � D 10�6 as a stopping criterion for our staggered
fluid-structure iterations with a constant underrelaxation factor ! D 0:3.

The FSI1 scenario is a stationary case with a steady state flow and a slight
constant bending of the elastic bar structure in y-direction. The inflow velocity is
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Table 3 Simulation results for two different mesh resolutions and the benchmark scenario FSI1
from [22, 23]. The displacement of the tip of the bar in x- and y-direction, the total drag, and the
total lift force are compared with the benchmark reference values in [23]. Numbers in parentheses
denote the absolute value of the relative error

Cellsfluid Cellsstruct Linespoly Displ. x Displ. y Drag Lift

2;610 3;380 136 1:86 � 10�5.18%/ 1:230 � 10�3.50%/ 14:078.1:5%/ 0:8202.7:4%/
36;666 13;370 1;093 2:21 � 10�5.2:6%/ 0:703 � 10�3.14%/ 14:198.0:7%/ 0:8101.6:1%/
54;104 13;370 1;093 2:18 � 10�5.3:5%/ 0:846 � 10�3.5:2%/ 14:224.0:5%/ 0:7930.3:8%/
Reference values 2:27 � 10�5 0:821 � 10�3 14:295 0:7638

set to vf D 0:2m
s . Convergence within a time step was achieved after 20 iterations

on average. Table 3 shows the computed values for the displacements of the tip of
the bar in x- and y-direction as well as the total drag and lift forces exerted on
the structure by the fluid. The total forces have been calculated by curve integrals
on the polygon. The table shows already a good agreement with the benchmark
values for the coarsest mesh resolution and a convergence towards the correct values
with increasing resolution. The simulations for this scenario have been performed in
parallel using four processors for each, fluid and structure solver, and two processors
for the surface polygon. The associated domain decomposition of the fluid and
structure domain is shown in Fig. 9. As a solver, we used the SuperLU-DIST
linear solver within an outer non-linear NOX solver.4 This combination resulted
in an acceptable but not yet optimal parallel efficiency of 54% [7]. Note that the
simple load balancing strategy, a quasi-serial phase for the surface polygon, and
further optimization potential in the storage of grid partitiones currently limits the
scalability, a fact that shall be improved in further development steps.

The FSI3 is a transient case with a higher inflow velocity of 2m
s that leads to an

oscillatory movement of the flexible bar and also requires a strong, i.e., implicit
coupling of fluid and structure. We used Aitken underrelaxation resulting in 11
iterations per time step on average. Figure 10 and Table 4 show the resulting
movement of the bar and the respective tip displacements, total drag, and total
lift with their mean value, the amplitude of their oscillation, and their frequency.
The comparison with the benchmark reference values from [23] shows a good
agreement. However, for more reliable convergence statements, additional mesh
resolutions have to be examined in addition in future work.

Three-Dimensional Bending Tower. As a three-dimensional example for the
coupled simulation of fluid-structure interactions with a moving flexible structure,
we consider a channel flow with a bending tower (see Fig. 11). The fluid has a
again density of 103 kg

m3 and a parabolic inflow profile with maximal velocity 0:45m
s .

The bending tower is modeled by a super-elastic material with Young’s modulus
E D 0:4 � 106 kg

ms2
. The tower has a size of 0:05 � 0:25 � 0:1m. We use an adaptive

Cartesian grid for the flow solver with adaptive refinement in a rectangular domain

4trilinos.sandia.gov/packages/nox/
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Fig. 10 Simulation results for the transient FSI3 benchmark from [22, 23]. Left: two snapshots of
the solution with colours representing the absolute fluid velocities and the structural displacement.
Arrows show the forces acting on the structure; middle: time variant total drag; right: time variant
total lift (Plots taken from [7])

Table 4 Simulation results for two different mesh resolutions and the benchmark scenario FSI3
from [22,23]. For all measured values, i.e., displacement of the tip of the bar in x- and y-direction,
total drag, and total lift force, offset, amplitude, and frequency (in Œ��) are measured and compared
with the benchmark reference values in [23]

Cellsfluid Cellsstruct Linespoly Displ. x Displ. y Drag Lift

2;507 864 136 �0:02866
˙0:02857Œ11:1�

�0:00111
˙0:03301Œ5:5�

524:5

˙23:5Œ11:1�
56:50

˙214:50Œ5:5�
5;133 864 136 �0:00288

˙0:00282Œ11:4�
0:00166

˙0:03452Œ5:7�
532

˙25Œ11:4�
�1:5
˙229:50Œ5:7�

Reference values �0:00269
˙0:00253Œ10:9�

0:00148

˙0:03438Œ5:3�
457:3

˙22:66Œ10:9�
2:2

˙149:78Œ5:3�

around the tower. The resolution of the coarse background mesh is 27� 7� 7 cells.
We discretized the Navier-Stokes equations with stabilized Q1Q1 and the structure
equation with Q1 elements. The stabilized Q1Q1 are known to work well in three-
dimensional fluid benchmarks, e.g., in [39]. The coupling iterations are performed
with an underrelaxation factor ! D 0:3 up to an error tolerance � D 10�6. Figure 11
shows the resulting bending of the tower, which can not be verified by benchmark
values but gives reasonable results [7].
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Fig. 11 Three-dimensional simulation of a bending tower in a channel flow. The upper picture
shows the tower and the surrounding computational grid with an adaptive refinement in a block
around the tower. Left: flow field and fluid pressure; right: bending of the tower (Illustrations taken
from [7])

9 Shape Optimization with the Immersed Boundary
Approach

We now demonstrate the application of our immersed boundary approach to shape
optimization problems. To this end, we consider the Stokes equations

�
�v C rp D 0; div v D 0; vj@˝n� D d; vj� D 0: (30)

Here, ˝ D ˝C n B , where ˝C is a rectangular channel and B is a body with
boundary � . The goal is to find a design for B such that the cost functional

J.v;˝/ D 


Z
˝

krvk2 dx; (31)

which is related to the drag of the body, is minimized. Here, B shall have a
prescribed volume and (except possibly at the front and rear tip points) a sufficiently
smooth boundary. The latter condition is required to ensure existence of optimal
shapes.



Immersed Boundary Methods for Fluid-Structure Interaction and Shape. . . 51

Denoting by .v.˝/; p.˝// the solution of the Stokes equations on the domain
˝ , the shape derivative of j.˝/ WD J.v.˝/;˝/ can be shown to satisfy

dj.˝/ŒV � D �

Z
�

k@nv.˝/k2 V � n dS.x/; (32)

see [31, pp. 29/30]. A similar result holds for the more general case of the Navier-
Stokes equations, but it then involves the adjoint state [31, pp. 31/32]. The Stokes
equations in combination with the cost function (31) allow to express all occurrences
of the adjoint state in terms of v, thus making the adjoint state superfluous.

The shape of the body B is described by a closed polygon with nodes
.x0; y0/, : : :, .x2m�1; y2m�1/. Here, the next point .x2m; y2m/ would correspond
to .x0; y0/. We only consider shapes that are symmetric with respect to a horizontal
center line (parallel to the x-axis):

y0 D ym; xi D x2m�i ; y0 � yi D y2m�i � y0 .1 � i < m/:

We do not work directly with this representation, but use polar coordinates with
respect to .a; b/ D ..x0 C xm/=2; y0/. For i D 0; : : : ; m, the i -th point is allowed
to move along the radial ray .a; b/ C R.xi � a; yi � b/. The transformed point is
parameterized by the radial scaling ri : .xi .ri /; yi .ri // D .a; b/C ri .xi �a; yi � b/.
Due to our symmetry assumptions, specifying r D .r0; : : : ; rm/

T uniquely charac-
terizes the shape of the polygonal boundary of the deformed body.

In the function space setting, the existence of optimal shapes requires coercivity
of the cost function in a sufficiently strong shape space. In the discrete setting, we
enforce some amount of smoothness by adding an H1-like regularization for r to
the cost function (31). Also, we work with an H1-like inner product by switching
to the parameterization z 2 R

mC1 with ri D Pi
jD0 zj . We then have z0 D r0

and zi D ri � ri�1, i > 0. In our computations, we work with the body B.z/
parameterized by z. We then can use an l2-norm for the regularization:

�m

mX
iD1

z2i : (33)

The factor m stems from the fact that if we view the ri as evaluations of a function
r.�/ on an equidistant grid �0; : : : ; �m with �i D iı, ı D 1=m, then mzi D .ri �
ri�1/=ı approximates r 0.�i � ı=2/. Hence,

Z 1

0

r 0.�/2 d� � ı

mX
iD1

r 0.�i � ı=2/2 � m

mX
iD1

z2i : (34)

For evaluating the discrete version jh.z/ of the cost function (31) and its gradient
rjh.z/ at a point z in parameter space, we solve the Stokes equation, discretized by
Nitsche’s method, on ˝.z/ D ˝C n B.z/ to obtain the discrete velocity field vh.



52 J. Benk et al.

Then

J.vh;˝.z// D 


Z
˝.z/

krvhk2 dx (35)

is computed and the regularization (33) is added. For evaluating the gradient rjh.z/
at a point z we use that the map z 7! .xi .z/; yi .z// � .a; b/ is linear. Thus, the
direction of variation ei D .ıik/0�k�m of z is linearly mapped to the direction of
variation .xp.ei /; yp.ei //� .a; b/ of the p-th polygon node .xp.z/; yp.z//.

Therefore, for the z-variation direction ei , the value of the corresponding
displacement field direction V D V p at the polygon’spth node is .xp.ei /; yp.ei //�
.a; b/. To compute rzi jh.z/ we thus evaluate

� 

Z
� .z/

k@nvhk2 V p � n dS.x/: (36)

The required methods, in particular the conversion of nodal values along the polygon
into expressions that can appear in line integrands over the polygon curve have all
been implemented by us for general use in Sundance.

We stress that the formula (36) for rzi jh.z/ is not fully exact since (32) requires
the exact solution v of the PDE, whereas vh is only a numerical approximation that,
in addition, depends not only on the shape of ˝.z/ but also on the underlying FEM
mesh.

In the numerical test presented here we require also symmetry with respect to the
vertical center line passing through .a; b/. To this end, we choosem D 2l and only
prescribe the lower left quarter of the profile, which is described by z0; : : : ; zl , where
we require xl D a. Thus, .x0; y0/ lies on the horizontal center line and .xl ; yl / lies
on the vertical center line. The rest of the profile is obtained by symmetry and the
center of mass is then automatically fixed to .a; b/.

We impose a constant volume constraint vol.˝.z// D cvol, with cvol denoting
the volume of the initial shape. The volume and its derivative can be obtained
conveniently by, e.g., the Leibniz sector formula. We also pose inequality constraints
on the maximum radial elongation/contraction: 1=2 � ri .z/ � 2 for all i .
The bounds are chosen such that the constraints do not become active, but they
can help avoiding too strong initial design changes during optimization.

We choose˝C D .0; 2:5/�.0; 1/, .a; b/ D .0:75; 0:5/, the tip point of the initial
shape is at .0:67; 0:5/ and the initial volume is 0:0163672. We impose Dirichlet
conditions v D .0:2; 0/ on the boundary of ˝C and v D 0 on @B.z/. The boundary
conditions on @B.z/ are enforced by Nitsche’s method. Figure 12 shows the initial
shape on the left. The boundary of the body is described by 2 m D 4 l D 80 points,
i.e., we have m D 40, l D 20. We use a Taylor-Hood discretization (biquadratic
for the velocity, bilinear for the pressure) on a Cartesian mesh with hanging nodes.
The grid consists of a 145 � 101 mesh, where the 23 � 41 subgrid centered around
.a; b/ D .0:75; 0:5/ is refined by cellwise trisection in both space dimensions to a
obtain a 69�123 grid on this subregion. The regularization parameter is � D 0:006.
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Fig. 12 Two-dimensional shape-optimization example for a flow around a rigid body. Left: initial
shape; right: optimal shape

We implemented a general purpose C++ interface that couples our Sundance
simulation, which solves the Stokes equation and evaluates jh, rjh, etc., to the
interior point optimization software IPOPT [44]. We use the limited memory BFGS
approximation of the Lagrange function’s Hessian matrix that is built into IPOPT.

As mentioned, due to the fact that the shape derivative formula is only exact
in the continuous setting, the computed derivatives are not exact derivatives of the
discretized cost function. Thus, we can achieve only a moderate (but sufficient)
accuracy in satisfying the stopping criteria of the NLP solver IPOPT.

Starting with the initial shape shown on the left in Fig. 12, we obtain a solution
(with the achievable accuracy due to inexact discrete shape gradient) after 10 IPOPT

iterations. The objective function is reduced by 6.9 %. The optimal shape is shown
on the right in Fig. 12. Note that the result depends on the chosen regularization.

10 Conclusion

We proposed an implementation of adaptive Cartesian grids in combination with
Nitsche’s method for an accurate enforcement of boundary conditions on complex
and moving domains. Adaptive Cartesian meshes have severe advantages for an
efficient implementation of solvers for partial differential equations and PDE
constraint optimization problems. These advantages reach from minimal memory
requirements over efficient data access algorithms, easy load balanced domain
decomposition using space-filling curves to a very efficient mesh generation and
adaptive refinement process. In this paper, we implemented Cartesian grids in the
Sundance toolbox designed for the fast, weak-form formulation based realization of
PDE solvers and PDE constraint optimization algorithms. Sundance minimizes the
user-effort for setting up a new application. In addition, it offers numerous solvers,
e.g., by an interface to the Trilinos solver library. Thus, it is an ideal platform for
the development and testing of finite element based methods for a higher-order
representation of boundary conditions for Cartesian grids that inherently are not
able to represent arbitrary complex and moving geometries with more than first
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order accuracy without further efforts. We used an old method known introduced
by Nitsche in the 1970s that allows for a consistent weak enforcement of Dirichlet
boundary conditions on boundaries cutting the Cartesian grid cells in an arbitrary
way. We enhanced this method to flow simulations in moving geometries based
on the incompressible Navier-Stokes equation and showed their accuracy even for
cases of fluid-structure interactions, where the accuracy at the boundary between
fluid and structure is particularly crucial, and for a shape-optimization example.

Fitting Cartesian grids to the software requirements of Sundance destroys some
of their advantages. However, our implementation allows for a fast development and
enhancement of methods such as the Nitsche method and, thus, lays the basis for a
high-performance computing implementation. Future work is the investigation of
methods limiting the condition number of system matrices resulting from Nitsche’s
method for very small cut cell fluid parts, the development of improved methods for
moving geometries avoiding peaks in pressure or forces due to the extrapolation of
previous time step solutions to the current time step’s domain, and the examination
of additional time-step restrictions induced by Nitsche’s method.
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Abstract This paper deals with simulation of flow and transport in porous media
such as transport of groundwater contaminants. We first discuss how macro scale
equations are derived and which terms have to be closed by models. The transport
of tracers is strongly influenced by pore scale velocity structure and large scale
inhomogeneities in the permeability field. The velocity structure on the pore
scale is investigated by direct numerical simulations of the 3D velocity field in
a random sphere pack. The velocity probability density functions are strongly
skewed, including some negative velocities. The large probability for very small
velocities might be the reason for non-Fickian dispersion in the initial phase of
contaminant transport. We present a method to determine large scale distributions
of the permeability field from point-wise velocity measurements. The adjoint-
based optimisation algorithm delivers fully satisfying agreement between input and
estimated permeability fields. Finally numerical methods for convection dominated
tracer transports are investigated from a theoretical point of view. It is shown that
high order Finite Element Methods can reduce or even eliminate non-physical
oscillations in the solution without introducing additional numerical diffusivity.
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1 Introduction

For a correct description of reactive flow in porous media, the transport of the
reactive species needs to be described correctly. As reaction takes place only in
contact zones of the species involved, effective reaction rates are dependent on the
microscopic concentration fields which can be strongly heterogeneous. The main
problem in predicting concentration fields during tracer transport in a natural porous
medium, such as soil, arises from the large range of scales involved. They span from
the pore (micro) scale to the field (macro) scale, thus reaching from the range of or
smaller than a �m to the km range. Thus different techniques are used to simulate
tracer transport on different scales.

Transport in porous media is governed by three processes, the advective transport
by the macroscopic flow field, the molecular diffusion and the mechanical dispersion
due to the randomness of the individual streamlines through the pore space.
Modelling dispersion on the macro scale has often been done by assuming an
effective diffusivity for the tracer [1, 4]. The resulting advection-diffusion equation
can be solved by standard discretisation methods (e.g. FE, FV and FD) or by
stochastic (random walk) methods [9, 31]. Classical (FE, FV and FD) methods
lack stability in advection dominated problems of tracer transport in porous media.
Due to sharp gradients and front evolving in the solution, classical non-diffusive
tend to produce non-physical oscillations. A way to get rid those oscillations is the
introduction of numerical diffusion by upwinding. Another way is to stabilise the FE
method by a variational multi-scale formulation [19, 38].

Modelling the mechanical dispersion by an effective diffusivity needs to regard
two aspects, the non-Fickian regime in the initial phase and the dependence of the
effective diffusivity on the randomness and structure of the porous matrix (e.g. soil).
Special methods have been proposed to model non-Fickian dispersion in the initial
phase by [9, 14, 20]. Such methods require knowledge of multi-point/multi-time
statistics of the tracer and are therefore difficult to handle. On the other hand, the
formulation of effective diffusion coefficients in the Fickian regime also requires
knowledge on the randomness of the porous matrix. Preferential paths strongly
amplify mechanical dispersion because in relatively slow regions, tracers can
stay for a long time. Many studies therefore deal with the description of the
permeability fields and their impact on tracer transport (e.g. [9]). In many cases,
the parameters are subject to large uncertainties and can, if at all, only be described
stochastically.

Recently, interest has grown in methods relying on velocity probability density
functions (PDF). Meyer et al. have proposed a joint velocity-concentration PDF
equation which accounts for advective transport and pore-scale dispersion in porous
media and is solved by a particle method which is able to deal with non-Gaussian
distributions of the velocity field [24, 25]; Jenny et al. introduce a new PDF
method for obtaining information about tracer and phase transport by assuming that
the multi-point velocity statistics is known [18]. Nowak et al. show the dependence
of hydraulic heads and velocities on the variance of log-conductivity using Monte
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Carlo simulations. They offer insight into the credibility of first-order second
moment methods for evaluating moments of hydraulic heads. They observe a large
deviation of the discharge components from Gaussian distribution and suggest using
more accurate methods such as Monte Carlo if no assumptions on the shape of
distributions are justified [26]. Deurer et al. [10] measured velocity PDFs in sphere
packs by magnetic resonance imaging in various sample volumes to investigate
longitudinal and transverse dispersion. They observed a strong dependence of
the PDFs from sample volume.

In a research initiative on reactive flows in porous media, three different
directions have been followed to improve prediction of concentration fields during
the simulation of species transport through a porous medium. Our contributions
are in the following fields: (i) proper resolution of the gradients of tracers without
numerical diffusion on the macro scale (Sect. 5) (ii) description of subfilter fluctu-
ations on micro-scale (Sect. 3) description of subfilter fluctuations on macro scale
(Sect. 4).

The paper is organised as follows. In the next section, the equations describing
flow in porous media, both on micro- as on macro-scale are discussed. After that,
examples are presented that attack some of the problems in solving these equations
by numerical methods. First, pore scale simulations using full solution of the
Navier-Stokes equations are presented. Then, a method for parameter identification
of an inhomogeneous permeability field is presented. Finally, a high order numerical
method for transport on the macro-scale (Darcy-scale) is presented and discussed.

2 Description of Flow in Porous Media from Micro
to Macro Scale

In this section some basic quantities on flow in porous media are defined. We start
from a definition of the flow quantities on micro- and macro-scale as well as a
discussion of the relevant equations of flow and tracer transport. The macro-scale
equations are obtained by consequent homogenisation of the micro-scale equa-
tions over a representative elementary volume (REV). From this homogenisation,
unclosed terms arise that have to be modelled adequately. Some problems of
modelling and numerical solution of the respective equations are discussed.

We are considering incompressible flow of a Newtonian fluid and tracer transport
through a porous medium. On the micro-scale, i.e. on volumes as large as the indi-
vidual pores, the flow is governed by the Navier-Stokes equations, the conservation
of mass

r � u D 0 (1)

and the conservation of momentum

@tu C u � ru D �rp C �r2u (2)
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Here, u, p,  and � denote the velocity, pressure, density and dynamic viscosity,
respectively. The transport of a tracer in the pore space is described by the
convection diffusion equation for the concentration c of the tracer

@t c C u � rc D � r2c : (3)

Here, � is the molecular diffusivity.
The formalism of volume averaging [36] establishes a rigorous way of deriving

macroscopic equations from the microscopic ones. If the total control volume,
including fluid and solid phase, is denoted by V , then a superficial average of a
quantity  can be defined the following way

h i D 1

V

Z
V

 dx : (4)

The porosity � D Vp=V is defined to be the ratio of fluid filled volume (pore
space Vp) divided by the total volume V . By volume-averaging the momentum
equation (2) the well-known Darcy equation can be obtained

hui D �Krhpi ; (5)

in which K denotes the permeability tensor. However, when applying the averaging
procedure on a larger scale, the definition of an effective permeability tensor poses
problems as it is not a mere averaging of the permeability tensor at smaller scales.
This can be seen by integrating equation (5) over a larger volume which gives

hhuii D � hKrhpii ¤ �hKirhpi : (6)

In measurements, often only large scale permeabilities are accessible, treated as
effective permeabilities Keff. If small scale variability of the permeability was
accessible, the effective permeability can be obtained by up-scaling methods [12]

� hKrhpii D �Keffrhpi : (7)

The dispersion on a macro-scale is dependent on the distribution of the permeabil-
ities on the scale of an REV as this determines whether e.g. preferential flow paths
can establish.

When homogenising the convection diffusion equation (3), a similar problem
arises. Averaging over an REV gives

@t hci C hu � rci D � hr2ci : (8)

In here, we have to realise that the second term on the left hand side causes problems,
as hu � rci ¤ hui � rhci. The underlying phenomenon is called dispersion. In most
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cases, it can be modelled by an additional diffusion using an effective dispersion
coefficient [1]

hu � rci D hui � rhci C � dispr2hci : (9)

An effective dispersion is a good and valuable approach for late phases of tracer
transport which are characterised by Gaussian tracer plumes [9]. Using � eff D � C
� disp, Eq. (9) is then formulated as

@t hci C hui � rhci D � effr2hci : (10)

These late stages are characterised by Fickian dispersion [9]. For early phases,
strongly non-Gaussian tracer plumes and break-through curves are observed. These
stages are characterised by non-Fickian dispersion and need special methods for
description.

When flow and transport problems on a macro-scale are addressed the
corresponding macroscopic parameters have to be modelled adequately, namely
the effective permeability Keff and the effective dispersion coefficient � eff. Both
can not be directly determined from basic principles. Either empirical correlations,
experiments or numerical simulations on the micro-scale have to be used to estimate
those macro-scale parameters.

In the following, we present some numerical efforts to improve our understanding
of macro-scale parameters and processes. The first one addresses the description
of dispersion by knowledge of the micro-scale velocity field, the second one
deals with the estimation of the effective permeability distributions by macro-scale
measurements and the third effort deals with the solution of the convection diffusion
equation in convection dominated transport.

3 Pore Scale Simulations of the Flow Through a Random
Sphere Pack

The variability of flow paths and velocities in porous media results in a dispersion of
a tracer during its transport through a porous medium. Understanding the variability
in the flow field is the key to understand and model dispersion in a rigorous way.
The late phases of dispersion can be modelled by Fickian diffusion with an effective
dispersion coefficient, see Eq. (10). Early phases, i.e. non-Fickian transport, need
special attention as Eq. (10) can not represent non-Fickian behaviour which is often
characterised by strongly skew break-through curves. In the following we present
an attempt to understand flow variability in the pore space of a random sphere pack
by describing the velocity distribution within the pore space.

We investigate the flow field on the pore scale of regular and random sphere
packs by direct numerical simulation. The full Navier-Stokes equations (1) and (2)
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for an incompressible, Newtonian fluid are solved by a Finite Volume method on
a Cartesian grid [23]. The irregular pore space is represented by an Immersed
Boundary Method (IBM) to interpolate the no-slip boundary condition on the
spheres to the Cartesian mesh [27, 28]. The spheres are represented by a triangular
surface grid of triangle size smaller than the grid spacing of the Cartesian grid.
The time advancement is done by a low-storage third order Runge-Kutta method
[37]. This basic solver is well validated in various flow configurations including
laminar and turbulent flows (e.g. [7,17,27]). It has been shown that for viscous flow
problems a second order convergence with grid refinement is achieved [27, 28].
The sphere pack is generated by a special algorithm that distributes the spheres
randomly in space. To achieve a periodic placement of the spheres, we first arranged
the spheres on the faces of the domain. The inner part of the domain is then packed
with as many spheres as possible. This method unfortunately results in a rather more
porous area between the faces of the domain and the inner region that has to be taken
into account in the post-processing.

We apply periodic boundary conditions in all three space dimensions. The flow
is driven by a constant pressure gradient that is applied as a source term in the
momentum equation. The simulation is advanced from rest until convergence has
been reached. As the Reynolds numbers are extremely small, the time to reach
convergence is mainly determined by the diffusion time scale within the pore space.

3.1 Grid Study

We checked the accuracy of the method by a convergence study of the flow through
a regular sphere pack. In order to obtain the porous geometry we placed 23 spheres
in a hexagonal packing arrangement and took out the smallest sized box that would
fit into this arrangement and would be periodic in all three directions as our domain.
We simulated low Reynolds number flow through this domain which was of size
.Lx; Ly; Lz/ D .4; 2

p
3; 2

p
3/mm. The flow was driven by a pressure gradient of

0:002 Pa=m in the x-direction. The Reynolds number of this setup was in the order
of Re D UiD=
 D 1 � 10�5. Here, D is a characteristic length scale such as pore
size or sphere diameter, and 
 is the kinematic viscosity. Ui is the intrinsic velocity,
which is defined as the mean pore velocity in the porous domain

Ui D 1

Vp

Z
Vp

u.x/ dv; (11)

with Vp being the volume of the pore space. The intrinsic velocity is related to
the superficial or Darcy velocity hui by Ui D hui=�, where � is the porosity.

We investigated the number of cells needed per sphere diameter for the bulk
velocity to converge. Figure 1a shows the intrinsic velocity versus the number of
grid cells per diameter of the grains and Fig. 1b shows the logarithm of the error (")
in the computed intrinsic velocity as a function of the logarithm of grid cells per
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diameter, taking the intrinsic velocity calculated using 70 grid cells per diameter as
reference,

" D Ui � Ui;ref

Ui;ref
: (12)

The intrinsic velocity converges monotonically with more than 35 cells per
diameter and the error is limited to less than 5%. There is no constant convergence
rate due to the IBM method. However, on average, the convergence rate is at least
of second order (Fig. 1b).

We inspect as well the probability density function (PDF) of the local velocity
in pore space at different grid resolutions (Fig. 2). With more than 30 grid cells per
diameter, the PDFs show only little variation. We concluded that with 40 grid cells
per sphere diameter it will be possible to get a sufficiently accurate velocity field
and chose such a mesh for the simulations presented in this work.
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Fig. 3 (a) Random sphere pack: one realisation; (b) Comparison of computed permeabilites in
the inner domain of random sphere pack domains of different sizes with the Blake-Kozeny and
Carman-Kozeny relations

3.2 Flow Through a Random Sphere Pack

We did further validation by comparing our results to the empirical correlations
on Carman-Kozeny and Blake-Kozeny, respectively. Those relations make use
of dimensional analysis to determine the overall form of the dependence of the
permeability from porosity and grain diameter in a sphere pack, Eq. (13). The factor
˛ in this relation is related to the ratio of the mean length of the passages a flow
has to go through and the thickness of the layer that it goes through and is fitted
to experimental measurements. Carman-Kozeny is connected to ˛ D 180 while
Blake-Kozeny is connected to ˛ D 150,

K D D2�3

˛.1 � �/2
: (13)

A series of simulations through a random sphere pack with periodic boundary
conditions in all three directions was conducted to find the minimum size of the
REV. The grid resolution was 40 cells per diameter. The size of the domain increased
from 0:8 cm D 4D to 2 cm D 10D. For each domain size, we simulated 15
different realisations of random sphere distributions, such as displayed in Fig. 3a,
to obtain a reasonable sample size. By this series, we can check which domain size
can be regarded as REV. We found that close to the domain boundaries our porosity
was little larger than in the inner domain where it was distributed homogeneously.
Therefore, we take only the values from the inner domain for comparison with the
Blake-Kozeny relation. This inspection revealed that a domain size of 10D was
sufficient to obtain in the inner region permeability values fully consistent with
Blake-Kozeny’s relation, see Fig. 3b.

For every domain size we calculated the probability distribution function (PDF)
of velocities in the range of �2:6 � 10�7 m=s and 8 � 10�7 m=s using 1,325
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Fig. 4 Velocity PDF in a random sphere pack at various domain sizes. (a) inner domain only;
(b) total domain

bins of size 8 � 10�10 m=s for each realisation, and then averaged the PDF over
all 15 realisations. Because of the varying porosity in our domains due to the
special sphere packing procedure mentioned before, we first calculated the PDF
of velocities of points residing in the ‘inner region’ of the domain only. That is to
say, in each direction we omitted the points closer than 1.5 sphere diameters to the
edge and then proceeded to calculate the PDF of the velocities as mentioned before.
In the next step we calculated these PDFs for the complete domain too. The PDFs
of the stream-wise velocity in random sphere packs is plotted in Fig. 4a for the inner
domain and Fig. 4b for the total domain. These plots demonstrate the convergence of
the PDF with domain size. Here, the curves for the inner domain converge faster than
the ones for the total domain which can be explained by the inhomogeneous porosity
distribution close to the boundaries. The velocity in these plots is normalised by the
intrinsic velocityUi which is the average velocity in the pore space. The distribution
is highly skew. Maximum velocities of four times the averaged one can be observed,
however with very small likelihood.

Comparing our PDFs with those measured by magnetic resonance imaging [10],
we observe large differences. Those were measured on various sample volumes, the
smallest being in the range of sphere diameter. They represent velocities filtered
on that scale. The maxima are at the order of magnitude of the pore velocity. Our
PDFs have been evaluated at a sample size comparable to the grid spacing of the
simulation which is much smaller than the sphere diameter. They can be regarded
as unfiltered velocities and their maximum probability lies at values much smaller
than the average pore velocity.

A striking feature of the PDFs are the negative velocities. Such negative
velocities would not be expected in PDFs of the superficial velocities. They can
be explained by the irregularity of the random sphere pack. This irregularity forces
stagnation points at the front and back faces of the sphere to be off-centre. As a
consequence, streamlines that travel to and from the stagnation points along the
surfaces of the spheres have to point in negative x-direction in some regions and
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therefore generate negative stream-wise velocities. We conclude that those negative
velocities can not be associated with flow separation in the traditional sense.
Furthermore, we conclude that these negative velocities are not able to transport
mass upstream over a long distance. However, they might increase the time a tracer
needs to travel downstream and thus contribute to long tails of break-through curves.

4 Parameter Identification of an Inhomogeneous
Permeability Field

In this section we focus on modeling flows in porous media on the macro-scale
by the Darcy equation (5). One key problem is to determine the averaged material
properties, here in particular the permeability tensors of the considered medium.
Our approach is to determine them based on reference flow measurements taken
from either experiments or direct numerical simulation resolving the micro-scale
behaviour of the media. Then the permeability tensors are chosen such that the
resulting flow given by the Darcy equation for the experiment configuration matches
the measurements optimally in a least-squares sense. Previous work on parameter
estimation in similar settings includes [22, 30] and [35].

We outline an adjoint-based optimisation algorithm that performs the parameter
fit for a suitable discretisation of the Darcy model. Special emphasis is on a
discretisation for the problem which on the one hand satisfies the necessary stability
properties and on the other hand works well in the optimisation context. Tests on
some model configurations show the viability of the proposed method.

Our model for describing a fluid moving through a porous domain ˝ � R
d

consists of the Darcy equation (5) together with a volume integrated version of the
mass balance equation (1). After rearranging the Darcy equation, it reads

K�1
eff hui C rhpi D 0; (14a)

r � hui D fp: (14b)

The right hand side term fp is used to model sources and sinks within the domain.
By the position-dependent permeability tensor KeffW˝ ! R

d�d we describe the
effective permeability of the media at any given point in the domain. We use a
tensor instead of a scalar quantity since not only isotropic but also anisotropic
materials should be modelled. According to [21], the tensor Keff is symmetric
positive definite at any given point in ˝ . For our test configurations we assume
homogeneous Neumann boundary conditions and the condition

R
˝
fp dx D 0

which ensures existence and uniqueness of solutions for suitably chosen spaces for
velocity, pressure and the permeability tensor.

Due to the saddle point structure of (14a), a finite element approximation has
to be inf-sup stable. Since in the optimal control context we have to deal not only
with the finite element spaces for the state variables but also with the corresponding
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dual spaces, using different Ansatz spaces for pressure and velocity would add
considerable complexity. Therefore we want to use the same discrete spaces
for both, pressure and velocity. Hence the inf-sup condition has to be enforced
by a suitable stabilisation. Here we use the local projection stabilisation (LPS)
approach (see [6]) since compared to most other methods the resulting stabilisation
terms are symmetric. Therefore the two approaches “discretise-then-optimise” and
“optimise-then-discretise” lead to the same set of discrete equations. In addition the
systematic a posteriori error estimation approach developed in [2] can be applied
immediately. For a detailed discussion of LPS stabilisation for optimal control,
see [5]. A LPS stabilised discretisation of the Darcy-Brinkman has been analysed
in [6]. Their results include the Darcy equation with homogeneous isotropic media
as a special case and can be extended in a straight-forward fashion towards
non-homogeneous anisotropic media. We use bi-linear rectangular finite elements
on a conforming grid which possesses a patch structure, that is, the grid can
be obtained by uniform refinement of a coarser grid Mh. Then the stabilised
discretisation of (14a) reads in weak form: find the discrete velocity and pressure
.huih; hpih/ which satisfy

Z
˝

˚
K�1

eff huih'v � hpihr � 'v C 'pr � huih
	

dx

C
X

M2Mh

Z
M

˚
h2M�M.rhuih/�M .r'v/C �M .rhpih/�M .r'p/

	
dx

D
Z
˝

fp'p dx

for all discrete test functions .'v; 'p/. The fluctuation operator �M is defined locally
on each cell M 2 Mh of the coarser grid as �M D Id �˘M with Id denoting the
identity and ˘M the L2 projection onto the space of constant functions on M . The
diameter of M is denoted by hM . Stability and first order convergence in the L2

norm with respect to the discretisation parameter h are shown in [15].
For the parameter estimation problem we assume that we have a priori infor-

mation about the distribution of different materials within the domain, furthermore
that the domain can be divided into finitely many sharply bounded regions with
different materials and that within each region the effective permeability tensor stays
constant. In order to avoid enforcing the positive definiteness of the permeability
tensor by additional constraints, we parametrise K�1

eff in a suitable way by a finite
number of parameters qi 2 R. If we restrict our considerations to materials with
diagonal permeability tensor, then a possible parametrisation consists of the d
diagonal entries of K�1

eff on each region. To ensure positive definiteness, the vector
of parameters q is bounded away from zero by algebraic constraints.

Computing hui and hpi given K�1
eff .q/ is a well-posed problem, however the

inverse problem of determining q from given measurements of hui and hpi can be
ill-posed, that is, small variations in the measurement data can lead to big variations
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in the recovered q. Therefore we apply a Tychonoff regularisation with parameter
˛ 	 0 such that the parameter identification problem can be stated as: Minimise

J.q; u/ D kCu � zk2 C ˛

2
jqj2 (15)

subject to u D .hui; hpi/ solving the Darcy equation (14a) for K�1
eff WD K�1

eff .q/ and
q 2 Qad � Q D R

N where N is the number of parameters in the parametrisation
of the permeability tensor. The linear operator C models some measurements done
on the computed solution, this could be for example evaluation of the velocity
field at certain points within the domain. The value z represents the corresponding
reference data for that measurement obtained from a micro-scale model or from
an experiment. Since from a micro-scale simulation in principle we can obtain
a complete reference state, it makes sense to chose the identity as observation
operator C in that case. The parameter identification problem can be interpreted as
an optimal control problem where the control variable q should be chosen in such a
way that the state variable u matches a desired state described by the measurements
as good as possible. We enforce positive definiteness of the permeability tensor by
an appropriate choice of the closed set Qad � Q.

The existence of a solution to the optimal control problem can be shown by
standard arguments, see for example the textbook [34]. Since the problem is in
general non-convex, uniqueness of the solution cannot be guaranteed without further
assumptions.

As noted before, for any control q there is a unique state u satisfying (14a).
Therefore we can define the control-to-state mapping

S W q 7! u

with u D .hui; hpi/ solving the Darcy equation (14a) for K�1
eff WD K�1

eff .q/. We
introduce the reduced cost functional j.q/ WD J.q; S.q// and state the reduced
optimisation problem

min j.q/ subject to q 2 Qad.

To solve this reduced problem we use a primal-dual-active-set strategy (PDAS)
(see, e. g., [16]) to treat the algebraic constraints on q resulting from the choice
of Qad. In each step of the PDAS, an unconstrained optimisation problem has to
be solved. For that purpose a globalised Newton-CG method is used. Gradient and
Hessian information are computed via an adjoint approach, for further details on the
algorithm see, e. g. [3] or [35]. To ensure fast convergence of the Newton method,
exact derivatives that are consistent with the discrete stabilised state equation are
essential. Therefore in particular the derivatives of the stabilisation terms with
respect to q have to be taken into account when deriving the auxiliary equations
used for Hessian evaluation.
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Considering the computational complexity of the outlined algorithm, we note that
the number of Newton steps does not depend on the fineness of the discretisation.
The inner CG solver takes in the worst case O.N / iterations and for each iteration
we have to solve two auxiliary PDEs, which each take O.L/ operations with a multi-
grid solver, where L is the dimension of the finite element space. So in total we
expect our algorithm to have the complexity O.N � L/.

For the numerical tests we consider the Darcy problem on the two-dimensional
unit square ˝ D .0; 1/2. We subdivide ˝ into 16 equally sized squares ˝i , i D
1; : : : ; 16 and assume that on each square the permeability tensor is constant and
can be represented by a diagonal matrix. Therefore we choose the control space
Q D R

32 and define the parametrisation of the permeability tensor by

K�1
eff .q/j˝i D



q2i�1 0

0 q2i

�
for i D 1; : : : ; 16.

For convenience we denote the vector collecting all the entries in the first component
of K�1

eff by qA 2 R
16 and the one collecting the entries in the second component by

qB The source term is chosen as

fp.x; y/ D 2 cos.�x/ cos.�y/;

and the set of admissible controls is defined as

Qad D ˚
q 2 R

32
ˇ̌
q 	 1

	
:

Since the problem is reasonably well conditioned, we can omit the regularisation
term by setting ˛ D 0. For the discretisation of pressure and velocity, a grid
with 4,096 cells is used. The measurement data z are generated synthetically
by performing a forward simulation with a reference parameter vector qref. We
investigate two choices for the observation operator C , first the identity and second
an operator modelling 32 point measurements of pressure and velocity within
the domain. A visual comparison of the reference permeability tensor and the
permeability tensors computed by the parameter identification algorithm can be
seen in Fig. 5. For both choices of the observation operator C , good qualitative
agreement between the reference and the computed permeability values is observed.
However, for the caseC D Id, the estimated parameters are better than for the point-
wise measurements since more data enters the computation. These observations

are confirmed when looking at the relative errors kqA�qArefk2
kqArefk2 and kqB�qBrefk2

kqBrefk2 listed in

Table 1. A qualitative comparison of the resulting velocity fields to the reference
velocity field is shown in Fig. 6.
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Fig. 5 Values of K�1
eff over the domain ˝ for C D Id and for 32 point measurements

Table 1 Relative errors of the two tensor components for both
choices of C

C D Id Point measurements
kqA�qArefk2

kqArefk2
0.0655 0.181

kqB�qBrefk2

kqBrefk2
0.00565 0.0634

Reference values Computed solution for
pointwise measurement

Computed solution
for C = Id

Fig. 6 Comparison of exact velocity field and velocity fields resulting from estimated q

5 High Order Finite Element Method for the Advection
Diffusion Equation

One of the main numerical problems for simulations of tracer transport on the
macro-scale are strong gradients within the tracer fields developing in situa-
tions were convection dominates over diffusion. Standard Bubnov-Galerkin finite
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elements are known to deliver oscillating solutions for convection dominated
problems for meshes which are not fine enough. It has not yet been proved whether
raising the polynomial degree of the shape functions will increase or decrease
numerical oscillations. This paper will show that an increase of the polynomial
degree (p-FEM) stabilises the numerical oscillations in Bubnov-Galerkin type finite
elements naturally without adding any additional stabilisation term.

We will demonstrate the improvement of the numerical accuracy with polyno-
mial order using a one-dimensional stationary convection-diffusion problem (10).
Given a constant convection velocity ux , a steady and constant effective diffusion
coefficient � eff and a source term f , the problem is to find c W ˝ ! R, such that
with Dirichlet boundary conditions

8̂
ˆ̂̂<
ˆ̂̂̂
:

ux
dc

dx
� � eff d

2c

dx2
D f on ˝ D fxj0 < x < 1g

c D 0 at x D 0

c D 0 at x D 1

(16)

We contrast the numerical errors of p-FEM [33] to the standard h-FEM [32] in
which linear shape functions are used and follow the analysis scheme presented in
[11]. Herein, the truncation error of a Bubnov-Galerkin discretisation is quantified
in order to specify the additional diffusion term used in Petrov-Galerkin methods.
For a h-FEM, this results in a discretised equation which includes the numerical
diffusion N� eff

ux
�cjC1 � cj�1

2h

�
� .� eff C N� eff/



cjC1 � 2cj C cj�1

h2

�
D 1 : (17)

The extra term N� eff can be interpreted either as the truncation error of the
Bubnov-Galerkin method of first order or as an additional diffusivity required to
provide nodally exact results. This term is a function of the mesh PKeclet number
and reads

N� eff D



coth Pe � 1

Pe

�
� effPe : (18)

The mesh PKeclet number is defined as

Pe D uxh

2� eff
: (19)

where h is the mesh or grid size.
The value of N� eff increases with the mesh PKeclet number. In fact, Eq. (18)

forms the basic motivation behind using the Petrov-Galerkin method. In many
stabilisation approaches, one tries to control the artificial numerical oscillations in
convection dominated problems by compensating for the truncation error by means
of adding additional diffusivity. However, it will be shown in the next section that
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the truncation error of the Bubnov-Galerkin method is decreased by a mere increase
of the polynomial order of the spatial discretisation.

It is important to mention here that the truncation error study shown in next
sections is also performed in more details in [8]. In the paper [8], the stabilization
capability of the p-FEM for convection-dominated transport problems is explained
mathematically by analyzing stiffness matrices. Numerical examples show that
using sufficiently high order polynomial degrees for shape functions can eliminate
the nodal oscillations in numerical solutions for convection-dominated problems,
where the mesh PKeclet number is greater than one. This approach will be introduced
in following sections again in order to explain, why the high order FEM is suitable
for solving convection-dominated problems of tracer transport on the macro-scale.

5.1 Truncation Error of the Bubnov-Galerkin Discretisation
in the p-FEM

In this section, the truncation error of p-FEM for the same example as presented
above is considered, where hierarchic shape functions of second order derived from
the set of integrated Legendre polynomials are applied and the polynomial orders
up to 5 are investigated. Compared to Lagrange shape functions, hierarchic shape
functions are easy to construct since lower order shape functions are subsets of
higher order ones. We refer to [32], where the complete hierarchy of spaces is
introduced.

In general, the system equation using polynomial degrees higher than 2 can be
also condensed analogously as in Eq. (17), using N� eff

p instead of N� eff as all higher
modes are purely internal to the element.

Analogous to the previous analysis, one can get the following diffusion using
second to fifth order polynomials for shape functions, respectively.

N� eff
2 D 1

3
Pe2� eff

N� eff
3 D 5Pe2� eff

Pe2 C 15

N� eff
4 D � eff.Pe4 C 35Pe2/

10Pe2 C 105

N� eff
5 D 14� eff.4Pe4 C 90Pe2/

4Pe4 C 420Pe2 C 3780

(20)

The truncation error of p-FEM is defined as

�� eff
p D N� eff � N� eff

p (21)

and depicted in dependence of Pe in Fig. 7, where the ordinate displays�� eff
p .
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Fig. 7 Truncation error with different polynomial degrees

In general, the curves have different tendencies which correspond to the parity of
the polynomial degree. Odd degrees generate curves which increase monotonically
as Pe increases while the even ones decrease. Although the sign of truncation error
depends on the parity of the order, the absolute value of truncation error decreases
when the order of shape functions grows. Accordingly, the numerical solution at
nodes approaches the exact solution.
On the other hand, using odd polynomial degrees, the numerical diffusivity of the
high order approach is less than N� eff. This lack of diffusivity is the reason of
the oscillatory behaviour of the numerical solution at high Pe. By contrast, the
numerical diffusivity is always greater than N� eff using even polynomial degrees.
Consequently, nodal solutions exhibit an over-diffusive behaviour and never show
nodal oscillations. This result is further analysed from a mathematical perspective
in the next section.

5.2 Connection of the Stability and the Structure
of the System Matrix

Stability, i.e. oscillations or not, is determined by the structure of the system matrix.
The numerical simulation will start to oscillate if the discrete maximum principle is
violated [29]. Considering a system matrix structure such as given in Eq. (22), it can
be proved that no oscillations occur for ˛ < 1 [13].

A .˛/ D tridiag.�1 � ˛; 2;�1C ˛/ (22)
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Fig. 8 ˛p behaves differently for odd and even polynomial degrees

The system matrix resulting from the condensed equation (17) can be written as

Ap D .� eff C N� eff
p/

h2
tridiag.�1 � ˛p; 2;�1C ˛p/ ;

˛p D uxh

2.� eff C N� eff
p/
:

(23)

Consequently, the stability of nodal solutions is determined by the value of ˛p .
Further, the value of ˛p can be quantified for higher order polynomial degrees based
on Eq. (20):

The corresponding values are plotted in Fig. 8. It can be observed that for odd
polynomial degrees ˛p increases as Pe. For even polynomial degrees, ˛p first
increases and then decreases while the value is always smaller than 1. This in turn
means that for even polynomial degrees, the numerical solution at nodal degrees of
freedom never oscillates. This result also coincides with the conclusion from the
truncation error analysis in the previous section. To further clarify this point, we
plot the solution of the 1D example with Pe D 20 shown in Fig. 9.
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Fig. 9 Comparison of numerical, exact and nodal solutions with different Ansatz degree, Pe D 20

Here, the exact solution denotes the analytical solution of the differential equa-
tion (16). Figure 9 illustrates that when the polynomial degree is even, numerical
oscillations only stem from internal modes and numerical solutions at each node do
not oscillate. For odd polynomial degrees, numerical oscillations are reflected by
both internal and nodal degrees of freedom.

By setting ˛p D 1 in Eq. (23), we can compute the maximum allowed Pe which
guarantees nodally stable solutions for the given polynomial degree of the shape
functions. In other words, for a given mesh PKeclet number, the corresponding p
stated in Eq. (24) is the minimum required polynomial degree and their relationship
is depicted in Fig. 10. It turns out to be almost linear for polynomial orders p � 11.

p D 3 Pe D 2:322185

p D 5 Pe D 3:646738

p D 7 Pe D 4:971786

p D 9 Pe D 6:297019

p D 11 Pe D 7:622340

� � �

(24)
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Fig. 10 The relation between a given mesh PKeclet number and the minimum required polynomial
degree

Different from other up-winding methods, where the additional efforts for
modelling the necessary artificial diffusivity for more complicated problems, the
high order FEM generates the additional numerical diffusion naturally by purely
increasing the polynomial degrees. In the following example, numerical results of
the one-dimensional convection-diffusion transport problem are compared to the
exact solution. The given differential equation (25)

8̂
ˆ̂̂<
ˆ̂̂̂
:

a
dc

dx
� � effd

2c

dx2
D 0 on ˝ D fxj0 < x < 1g

c D 0 at x D 0

c D 1 at x D 1

(25)

has the analytical solution

y D eax=�
eff � 1

ea=�
eff � 1 : (26)

When the mesh is fixed, the ratio between a velocity and a diffusivity determines
the mesh PKeclet number and characterises the convergence of the numerical
solution. When the mesh PKeclet number increases, the standard Bubnov-Galerkin
method based on linear elements exhibits oscillations in the numerical solution.
We choose the parameters a D 2m=h, � eff D 0:02m2=h, and compute the
corresponding numerical solutions with 10 elements of the same length h D 0:1.
Figure 11 shows numerical solutions with different polynomial degrees. The dashed
line denotes the exact solution while the solid line represents the numerical solution.
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Fig. 11 Numerical solution with different polynomial degrees, Pe D 5

As expected, when mesh PKeclet number Pe D ah

2� eff
D 5 is larger than 1,

the numerical solution with linear Bubnov-Galerkin discretisation introduces
non-physical oscillations. The p-FEM can eliminate these oscillations by simply
raising the polynomial degree p. It is observed in Fig. 11 that with p D 7, the
oscillation is drastically suppressed and the numerical solution is in good agreement
with the analytical one.

6 Conclusions

In this paper we presented some efforts to improve understanding and simulation
of flow and transport in porous media. Using consistent volume averaging, it can
be shown that traditional closures, such as effective permeability and diffusivity are
not applicable in all situations. Those situations arise for dispersion in the initial
phase of tracer transport, for strongly inhomogeneous permeability fields and for
convection dominated transport.

The initial phase of tracer transport is characterised by non-Gaussian tracer
plumes, the so-called non-Fickian regime. The transition from non-Fickian to
Fickian dispersion is dependent on how long tracer patches stay in low-speed
regions. To understand this phenomenon, we investigated the PDF of the stream-
wise velocity by detailed simulations of the flow in the pore space of random sphere



78 Q. Cai et al.

packs. These PDF show strongly skewed distributions with tails up to four times the
average pore velocity. Negative velocities are more likely to delay tracer transport
than to contribute to upstream transport of tracer.

The determination of the inhomogeneous permeability field can contribute to
understand and predict the large-scale tracer dispersion. We presented an adjoint-
based optimisation algorithm to estimate permeability distributions from point
measurements of the velocity in a porous medium. The results show a satisfying
agreement between input and estimated permeability fields. As expected, they also
reveal a dependency on the observation operator.

Tracer transport on a large scale is often convection dominated. In these
situations, upstream discretisations are used which introduce additional numerical
diffusivity to reduce oscillations in the solution. However, this numerical diffusivity
is not always a viable solution as it strongly smears out the sharp gradients in the
tracer field. In this paper, we presented a numerical analysis of the p-FEM method
to determine under which conditions unphysical oscillations can be damped by the
use of higher order methods without introducing unwanted numerical diffusion.
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Optimal Control of Partially Miscible
Two-Phase Flow with Applications
to Subsurface CO2 Sequestration

Moritz Simon and Michael Ulbrich

Abstract Motivated by applications in subsurface CO2 sequestration, we investi-
gate constrained optimal control problems with partially miscible two-phase flow
in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in
an underground reservoir after a fixed period of CO2 injection, where the time-
dependent injection rates in multiple wells are used as control parameters. We
describe the governing two-phase two-component Darcy flow PDE system and
formulate the optimal control problem. For the discretization we use a variant of
the BOX method, a locally conservative control-volume FE method. The timestep-
wise Lagrangian of the control problem is implemented as a functional in the
PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting
MPI parallelized Sundance state and adjoint solvers are linked to the interior
point optimization package IPOPT. Finally, we present some numerical results in
a heterogeneous model reservoir.

Keywords Partially miscible two-phase flow • Optimal control • Adjoint
approach • Complementarity condition • Control-volume FE method • Varia-
tional formulation • CO2 sequestration

1 Introduction

In this paper, we present an adjoint based [24] approach for optimal control
problems that are governed by multiphase multicomponent flow in porous media.
The concrete application motivating our work is optimal CO2 sequestration in
underground reservoirs: The goal is to maximize the amount of trapped CO2 after a
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fixed time interval of injection into a 2D reservoir˝ . To this end, we use a partially
miscible two-phase two-component flow model [7]. The discretization (currently
in 2D) is done with the aid of the PDE toolbox Sundance [30], which is part of
the Trilinos framework [22]. We extended Sundance by the finite volume (FV) and
upwinding capabilities required to implement the BOX method [3] and developed
an interface between Sundance and the interior point optimization package IPOPT
[42]. Extensions to 3D and more complex flows are possible.

For the discretization of the state system PDEs we apply a variant of the
BOX method [3], a locally conservative control-volume FE method. For further
information on this method see [21, 25]. Other possible numerical methods include
streamline diffusion techniques [45] and conservative mixed FE methods [35]. For
a survey of suitable FE/FV methods for multiphase multicomponent flows in porous
media we refer to [14] and references therein.

Concerning related work on PDE-constrained optimization in reservoir model-
ing, the main focus has so far not been on CO2 trapping mechanisms, but rather
on inverse history matching, i.e., parameter estimation in petroleum reservoirs (see
[34] for an overview), or on the economic aspect to maximize oil production. To
this end, optimal control of mixed CO2–water injection was first considered in [32],
using IMPES (implicit-pressure–explicit-saturation) simulation of a modified black
oil model and gradient methods for optimization. For recent approaches to optimal
control of enhanced oil recovery (EOR) via water-flooding we refer to the surveys
[11, 26] and to the original articles [2, 12, 15, 36, 38, 39, 41, 43].

The optimal control problem we consider here is the optimal sequestration
of CO2 in underground reservoirs. To obtain a suitable two-phase model, we
restrict our attention to the phases CO2 and water/brine, neglecting oil and further
substances. This leads to a partially miscible two-phase flow model. Note that the
mentioned control approaches to optimal water-flooding usually apply immiscible
two-phase or black oil type three-phase flow models. Thus, in our context, the misci-
bility of CO2 in brine introduces a further degree of complexity in the state system.
We model the switching between saturation and undersaturation of the wetting phase
with CO2 by a complementarity condition, as also suggested in [4, 27].

Concerning our software choices, we intended to stay as flexible as possible. We
work with Sundance, which among other advantages allows for a direct variational
problem formulation [31] that, in particular, supports the direct derivation of the
exact discrete adjoint. To achieve this, the timestep-wise Lagrangian of the control
problem is formulated as a Sundance functional. We have implemented an interface
to the interior point software IPOPT [42], a state-of-the-art nonlinear optimization
code that can handle general constraints and provides L-BFGS [46] approximations
for the Hessian of the Lagrangian. In [18] several test problems are considered
to show that limited-memory BFGS techniques are superior to other comparable
algorithms when it comes to EOR history matching with multiphase flow.

The paper is organized as follows: Sect. 2 introduces the state equations for Darcy
based partially miscible two-phase flow, together with primary state variables and
control objectives. Section 3 presents the adjoint based optimal control framework,
while the applied numerical methods for the state equation are sketched in Sect. 4.
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Implementation strategies for the adjoint based framework within the PDE toolbox
Sundance will be discussed in Sect. 5. Finally, Sect. 6 contains a discussion of
optimization results, and some conclusions are presented in Sect. 7.

2 State Equations, Variables and Control Objectives

The CO2 injection takes place at wells in a subregion ˝c � ˝ of the underground
reservoir ˝ , being purely saturated with saline water (called “brine”) at the
beginning. The thermodynamical reservoir conditions are chosen such that the
injected CO2 is in supercritical state, so we consider a continuous underground flow
model with two phases ˛ 2 fw; ng and two components i 2 f1; 2g. This two-phase
flow is assumed partially miscible in the following sense: On the one hand, the CO2

component i D 2 can (partially or fully) dissolve in the water-rich wetting phase
˛ D w. On the other hand, the “evaporation” of the water component i D 1 into the
CO2-rich nonwetting phase ˛ D n is neglected.

The reservoir medium is assumed rigid with time-invariant functions � D �.x/

and K D K.x/ for porosity and absolute permeability. Moreover, we neglect
temporal and spatial variations of the reservoir temperature and assume chemical
equilibrium. The most important physical agreement that determines the flow
model’s nature is the application of Darcy’s law in the PDE system. The mass
conservation equations for the components i 2 f1; 2g (1 D water, 2 D CO2) within
the phases ˛ 2 fw; ng (wetting and nonwetting) [7] are then given by

�@t
X
˛

˛X
i
˛S˛�

X
˛

div
h
�˛˛X

i
˛K
�rp˛C˛ge2

�i�div
�
DiwrXi

w

� D qi : (1)

Here ˛ , S˛ and p˛ denote the phase densities, saturations and pressures, while
Xi
˛ stands for the mass fraction of component i in phase ˛. Especially, we

haveX1
n D 0 andX2

n D 1 in the partially miscible setting, while we setX WD X2
w so

thatX1
w D 1�X . The first divergence term in (1) expresses advection and buoyancy

(here g denotes gravitational acceleration) via Darcy’s law with phase mobilities �˛
and absolute permeability matrix K, whereas the second divergence term models
the slow diffusion in the wetting phase. The source terms qi are discussed below.
Next, we explain some modeling agreements.

For phase mobilities �˛ and capillary pressure pc we use Brooks-Corey models
[10]; the phase viscosities are assumed constant. The brine phase is incompressible,
but a linear density increase with the CO2 mass fraction X is taken into account.
Slight compressibility of the CO2 phase is expressed in a linearized density n.pn/.
The nonlinear diffusion coefficient D2 D D2.�; Sw/ is taken from [7, Sect. 2.5],
while water–brine diffusion is neglected via D1 D 0. For further details on these
models we refer to [37].

As we do not consider thermodynamical heat exchange, the governing PDE
system is given by (1) for the components water and CO2. However, the CO2
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component is allowed to dissolve in the wetting phase ˛ D w to some extent. Hence
we need three primary state variables y WD .pn; Sw; X/ in the flow model:

1. CO2 pressure: pn D pn.x; t/ �! pw D pn � pc with pc D pc.Sw/;

2. Brine saturation: Sw D Sw.x; t/ �! Sn D 1 � Sw (natural constraint);
3. CO2 mass fraction: X D X.x; t/ �! X D '.pn/ when Sw.x; t/ < 1:

As an initial condition we state Sw.�; 0/ D 1 (no CO2 injected); in such single-phase
regimes the pressure pn D pw exists as a mutual parameter. Any value X < '.pn/

corresponds to Sw D 1, while the nonwetting phase ˛ D n can only appear (that
means Sw < 1) if X reaches the threshold '.pn/. In the presence of the nonwetting
phase we have the relation X D '.pn/. Thus an adaptive switching between the
variablesX and Sw is required; we model this by a complementarity condition:

a WD 1 � Sw 	 0; b WD '.pn/� X 	 0 and ab D 0:

This can equivalently be written as Qg.a; b/ D 0, where Qg is a complementarity
function, e.g., the Fischer-Burmeister [17] function Qg.a; b/ D aCb�p

a2 C b2. To
maintain differentiability, we smooth this nonsmooth equation in our implementa-
tion to obtain an algebraic equation g.pn; Sw; X/ D 0 that holds pointwise in space
and time (see [37] for details). The use of complementarity conditions to model
phase transitions in miscible multiphase flow has also been suggested in [4, 27].

With the above state variables y D .pn; Sw; X/, connected through the comple-
mentarity condition g.y/ D 0, the flow system (1) can be recast in a more compact
form: Introducing the scalar and vector valued abbreviations

b1 WD w.1 �X/Sw; b2 WD n.1 � Sw/C wXSw;

B1 WD �ww.1 � X/K
�r.pn � pc/C wge2

� �D1wrX;

B2 WD �wwXK
�r.pn � pc/C wge2

�C �nnK
�rpn C nge2

�CD2wrX;

we obtain an algebro-differential system of the form

�@tb
i .y/� divBi.y;ry; x/ D qi .u/ (i D 1; 2) and g.y/ D 0 (2)

in the space-time interior domain ˝ � .0; T /. The spatial boundary @˝ D
�n [ �d is decomposed into Neumann and Dirichlet parts: A no-flux condition
nT Bi.y;ry; x/ D 0 for i D 1; 2 is considered on �n (impermeable cap rock). The
conditions y D yd on �d impose standard values without CO2 injection, also taken
as initial values inside the brine-saturated reservoir at time t D 0.

The control parameters u D u.t/ only appear in the source terms qi D qi .u/:

q1 D 0 and q2 D
NX
nD1

qn.t/!.x � xn/:
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This means no water is injected, while q2 models the injection of supercritical CO2

at N 	 1 injection wells with locations xn in a certain control area ˝c � ˝;
! models the injection distribution, given, e.g., by a narrow Gaussian normal
distribution. In the following, the N injection rates qn.t/ are used as control
parameters:

u.t/ D �
q1.t/; : : : ; qN .t/

�
; t 2 Œ0; T �: (3)

We impose box constraints on the above rates and make sure that the total amount of
injected CO2 does not exceed a certain threshold. This leads to control constraints

0 � qn.t/ � a; t 2 Œ0; T �; 1 � n � N and
1

T

NX
nD1

Z T

0

qn.t/ dt � b (4)

for fixed numbers a; b > 0 with b < Na (otherwise the latter constraint is
redundant). For future investigation, it will be promising to also include additional
state constraints, such as an upper bound on the pressure pn to preserve caprock
integrity. State constraints are known to be challenging from a theoretical point-
of-view, see, e.g., [24, Sect. 2.7.2] and [40]. A suitable approach to tackle such
constraints is by regularization (e.g., of Moreau-Yosida type) [24, 33, 40] and our
optimization interface is capable of handling state constraints by a regularization
approach. In this paper, however, we only consider control constraints.

Our objective is to maximize the amount of trapped CO2 after a finite time T > 0
of injection. Here we consider the following types of “trapping”: CO2 can be

1. Immobilized below a certain residual saturation Srn (residual trapping),
2. Dissolved in the brine and thereby trapped for the moment (solubility trapping).

The residual saturation Srn D Srn.�/ depends on the porosity. Below this threshold,
i.e., for saturations Sn � Srn , the nonwetting phase mobility �n drops to zero. For a
discussion of further trapping objectives we refer to [37].

A general optimization objective concerns the final amount of trapped CO2 in
either of the above variants, weighted by coefficients ˇ1;2 2 Œ0; 1�, which results in
an objective functional of the form

J.y; u/ D
Z
˝

�
ˇ1�nSn1fSn�Srng C ˇ2�wXSw

�ˇ̌
tDT dx � �R.u/; (5)

where an additional control-dependent penalty term R.u/ allows for regularization
of the control, where � 	 0 is a regularization parameter. It is chosen in a weighted
H1-type manner to penalize strong fluctuations in the wells’ rates with an additional
weighted L2-type regularization. Explicitly, this strictly convex regularization is
given by
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R.u/ WD q2�
T

NX
nD1

Z T

0

h
T 2q0

n.t/
2 C �.t/qn.t/

2
i

dt; (6)

including a factor q� (q� D 200 in SI units) and a time-dependent weighting
function � W Œ0; T � ! Œ0;1/.

We finally remark that many concrete choices made in this section could be
replaced by a wide range of other choices without leaving our overall framework.

3 Adjoint Based Optimal Control Framework

Provided that the weak state equation E.y; u/ D 0 has a unique solution y D
y.u/ for every control u and, moreover, that the operatorE.y; u/ and the functional
J.y; u/ are sufficiently smooth, the adjoint approach [24] can be used for efficient
computation of the derivative of the reduced functional j.u/ WD J

�
y.u/; u

�
:

j 0.u/ D Eu.y; u/
��C Ju.y; u/;

where the adjoint state � solves the adjoint equation

Ey.y; u/
��C Jy.y; u/ D 0:

Here the subscripts u and y denote partial (Fréchet-)derivatives with respect to the
variables u and y, e.g.,Ey.y; u/ D @

@y
E.y; u/, andEy.y; u/� is the adjoint operator

of the linear operatorEy.y; u/.
In order to calculate j.u/ and j 0.u/, discretizations of both state and adjoint equa-

tion must be set up (see [37] for the derivation of the continuous adjoint equation).
The numerical methods we apply are implemented such that the discretized adjoint
system coincides with the exact discrete adjoint of the discretized state equation
(“discretize–then–optimize”).

The time horizon t 2 Œ0; T � is discretized into nt equidistant time points tk with
time step size �t WD tk � tk�1. The corresponding vector

u 2 R
Nnt with u.n�1/ntCk WD q�qn.tk/; 1 � k � nt ; 1 � n � N; (7)

discretizes the control variables (3) with the mentioned scaling factor q�.
Currently, we do not use adaptive time stepping, but this could be integrated: In

fact, whereas the spatial discretization and the computation of adjoints in space
are obtained automatically from the capabilities of Sundance, time stepping for
forward and adjoint solves is implemented manually as a for-loop and can be
adjusted accordingly. It is known that adaptive time stepping requires care in order
to ensure sufficient accuracy of the adjoint based gradient. In our context, a local
(in terms of the control) freezing of the time grid during adjoint based derivative
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computations should be an appropriate way to include adaptivity in time [19,23,28].
For a selection of work on adjoint based optimal control with adaptive time stepping,
we refer to [1, 16, 19, 23, 28].

The control constraints (4) in discrete form read

0 � uj � q�a; 1 � j � Nnt and c.u/ WD 1

nt

NntX
jD1

uj � q�b;

while the penalty term (6) can be discretized as

R.u/ �
NX
nD1

(
nt

nt�1X
kD1

�
u.n�1/ntCkC1 � u.n�1/ntCk

�2 C 1

nt

ntX
kD1

�ku2.n�1/ntCk

)
: (8)

Here we set �k WD �.tk/ for the user-defined weighting coefficients.
To solve the resulting constrained nonconvex optimization problem, the interior

point based software package IPOPT [42] was chosen. We developed a C++
interface that calls the Sundance state and adjoint solvers to compute the cost
function j.u/ and its derivative j 0.u/. The interior point algorithm in IPOPT
is configured to use limited-memory BFGS updates [46] for approximating the
Hessian matrix of the Lagrange function.

4 Numerical Methods for the State Equation

Denoting by yk the time-discretized state variables at time t D tk and applying
an implicit Euler scheme to the state system (2), we obtain the following semi-
discretized state equation in strong form:

�
bi
�
yk
� � bi �yk�1�
�t

� divBi
�
yk;ryk; x� � qi

ˇ̌
tDtk D 0 (i D 1; 2) (9)

together with the algebraic complementarity g
�
yk
� D 0 and the boundary

conditions for 1 � k � nt ; the initial condition y0 D yd reproduces the Dirichlet
values.

Concerning the space discretization, we use the BOX method [3], a control-
volume FE method. It has two main advantages: On the one hand it is locally
conservative due to its control-volume nature, on the other hand it possesses
sufficient stability due to full upwinding [20] and mass lumping [25]. Both the
control-volume and upwinding features were integrated into the PDE toolbox
Sundance [30] within the Trilinos framework to make it accessible for such
stabilized locally conservative methods.
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vertex

box

Fig. 1 Construction of a box
in the dual mesh

The BOX method uses piecewise linear continuous finite elements on a primal
(in our case triangular) mesh for the discretization of the state yk . Similar to finite
volume methods, constant functions on the vertex-centered cells (“boxes”) of the
dual mesh are used as test functions; see Fig. 1 for the construction of a box in the
dual mesh of control volumes.

Given a primal triangulation of the domain ˝ � R
2, we denote the collection

of boxes in the dual mesh by Bj (j D 1; : : : ; m) and their respective box volumes
by !j . To derive the space discretization, the semi-discrete state equation (9) is
integrated over each boxBj – note that the indicator functions 1Bj are a basis of our
test space – and the Gauß divergence theorem is applied to obtain

Z
Bj

"
�
bi
�
yk
� � bi �yk�1�
�t

� divBi
�
yk;ryk; x� � qi

ˇ̌
tDtk

#
dx

D
Z
Bj

"
�
bi
�
yk
� � bi

�
yk�1�

�t
� qi ˇ̌

tDtk

#
dx �

Z
@Bj

nT Bi
�
yk;ryk; x� dS D 0:

(10)

Inserting piecewise linear Lagrange finite elements for the state and applying
upwinding to the term nT Bi in the boxwise weak form (10), we then arrive at

Z
Bj

"
�
bi
�
yk
� � bi �yk�1�
�t

� qi
ˇ̌
tDtk

#
dx �

Z
@Bj

nT Bi
up dS D 0 (i D 1; 2):

(11)

The upwinding procedure for the modified terms Bi
up in the boundary integrals of

(11) will be explained below. Quadrature rules for the boxes are chosen as follows:
Volume integrals are evaluated vertex-centered, i.e.,

Z
Bj

f .x/ dx � !j f .vj /; 1 � j � m;
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where vj denotes the unique primal vertex inside the box Bj (see Fig. 1). For the
underlying control-volume FE method this yields a mass lumping, where the entries
of the FE mass matrix are assigned to its main diagonal [25]. The use of the lumped
mass matrix counteracts the appearance of non-physical oscillations [13].

The boundary integrals
R
@Bj

nT Bi
up dS are evaluated via a midpoint rule on each

line segment of the polygonal curve @Bj in triangular 2D grids. The fully implicit
upwinding procedure is based on the decomposition

Bi D �
X
˛

C i
˛V˛CDiwX

i
w with C i

˛ WD �˛˛X
i
˛; V˛ WD �K

�rp˛C˛ge2
�
:

Upon implicit evaluation of the Darcy velocities V˛ at the discretized state yk , the
above advective coefficients C i

˛ are implicitly evaluated

• At the vertex vj of the box Bj for outflow nT V˛ 	 0,
• At the vertex of the opposite box for inflow nT V˛ < 0.

Here n denotes the outer dual cell normal of the box Bj and “opposite” in 2D
is subject to the respective line segment of the polygonal curve @Bj (see Fig. 1).
The evaluation of the upwinded flux terms Bi

up is based on this strategy. For further
details see [3, Chap. 3] for two-phase flow or [7, Sect. 4.2] for miscible flow.

5 Implementation Strategies in Trilinos/Sundance

As a software platform for state and adjoint simulations, the choice was made for
the FE library package Sundance [30], based on the scientific computing framework
Trilinos [22]. Within the MAC-TUM project B7, Sandia National Labs, Texas
Tech University and Technische Universität München (TUM) have joined forces
to further develop and improve this toolbox, especially in view of PDE-constrained
optimization and multiphysics problems [5, 6, 31]. The mentioned C++ interface
of the Sundance simulation code to IPOPT is based on earlier work on shape
optimization with Navier-Stokes flow [8, 9, 29].

Sundance provides a wide range of benefits, such as efficient treatment of
nonlinearities, automatic generation of linearized equations and thereby support
for implementing adjoints within efficient gradient based optimization algorithms
[31]. In our context, we represent the whole optimal control problem by its
Lagrange function L .y; u; �/ as a timestep-wise functional in Sundance. Here
� denotes the adjoint state, i.e., the Lagrange multiplier of the state equation.
Sundance conveniently provides routines that automatically derive nonlinear and
linear variational problems from this corresponding to L�k D 0, which is the state
equation, and Lyk D 0, which is the adjoint equation. Furthermore, Sundance is
MPI based and provides parallel system assembly as well as interfaces to a whole
library of direct and iterative parallel solvers (e.g., NOX, Amesos, AztecOO).
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In order to make these convenient features available for our purposes, we had
to implement several additional class structures and quadrature rules within the
PDE toolbox, since Sundance so far had not directly supported control volumes and
upwinding, as explained in Sect. 4. Since those two issues are essential ingredients
of the BOX method, we integrated a 2D implementation of these features into the
object oriented C++ framework of Sundance.

An extension to 3D can be achieved with manageable effort. Before we proceed
in describing our 2D implementation, we briefly discuss the question of extendibility
to 3D: As illustrated below, our top-level coding of the problem is very flexible and
thus, for 3D, would mainly require to adjust the Lagrange function of the optimal
control problem to this setting. The structure of the code for state and adjoint
computations and the interface to the optimization method is essentially independent
of the space dimension. Of course, the problem dimension increases significantly
in 3D and an efficient preconditioning of the Krylov subspace solvers would be
necessary. The main work for extending our implementation to 3D would have to
be spent on extending several geometric low-level subroutines (dual elements etc.)
from 2D to 3D. For 3D quad grids this is possible with reasonable efforts, whereas
unstructured tetrahedral meshes in 3D require more low-level implementation work.
An alternative for extending our code to 3D would be to stack copies of the 2D
grid to extrude it along the third dimension. This approach would shift the required
implementation work from the low-level routines to the top-level problem coding.

In the following, we illustrate the mentioned advantages for the implementation
of state and adjoint equation systems: The state equation for yk and its adjoint for
�k at time step tk can be written in terms of the time-discretized Lagrangian:

L�k .y; u; �/ D 0 (time-discretized state equation);

Lyk .y; u; �/ D 0 (corresponding adjoint equation);

where y WD �
y1; : : : ; ynt

�
; � WD �

�1; : : : ; �nt
�
:

This Lagrangian L contains the stepwise weak state equation functionals
˝
�k;Ek

˛
and the stepwise evaluations of the objective functional (5) as follows:

L .y; u; �/ D
ntX
kD1

Lk
�
yk; yk�1; u; �k

�
with timestep-wise Lagrangian

Lk WD �t
˝
�k;Ek

�
yk; yk�1; u

�˛C ıknt

Z
˝

f
�
ynt
�

dx � �rk.u/;

where f abbreviates the final-time density in the integral of (5) and the terms rk
denote the stepwise components of the time-discretized penalty term (8).
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Since �k only appears in the functional Lk , whereas yk appears both in Lk and
LkC1 for 1 � k < nt and only in Lnt for k D nt , this means that, defining two
further functionals F and G at a respective fixed time step tk via

F WD Lk and G WD Lk C .1 � ıknt /LkC1;

one can write the weak time-discretized state and adjoint equations as F�k D 0 and
Gyk D 0. This provides the basis for our flexible implementation of the discrete
state system on the one hand and its exact discrete adjoint system on the other hand.

Sundance allows to implement functionals in a very concise way. For example,
the Sundance expression

Expr auv = Integral(Omega, (grad*u)*(grad*v), quad);

generates the bilinear form corresponding to a.u; v/ D R
˝

ru � rv dx, using the
quadrature rule quad. Here, u and v are FE functions, e.g., given by

Expr u = new UnknownFunction(new Lagrange(1), "u");

as piecewise linear Lagrange elements. Forms representing Dirichlet boundary
conditions can be defined with the method EssentialBC instead of Integral. The
command

Functional L(mesh, intform, bcform, vecType);

combines the Integral form intform and the EssentialBC form bcform to construct
a functional L. Here mesh describes the computational grid and vecType is the
Trilinos vector type. Along these lines the functionals F andG can be implemented
in Sundance as Functional F and G, respectively. For efficiency reasons we include
only those parts of LkC1 in G that depend on the current state yk . The methods

NonlinearProblem

F.nonlinearVariationalProb(mu,mus,y,ys,. . . );

LinearProblem

G.linearVariationalProb(y,ys,mu,. . . );

generate a nonlinear problem for the state time step equation F�k
�
yk
� D 0 and a

respective linear problem for the adjoint time step equationGyk
�
�k
� D 0. Here y is

the unknown vector of the state variables yk (with several additional components to
facilitate upwinding) and mu denotes a corresponding adjoint variable vector. The
FE functions ys and mus provide storage for y and mu, while the dots hide further
fixed parameters, for instance ykC1 and �kC1 in Gyk

�
�k
� D 0.
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The order of parameters in nonlinearVariationalProb is: variable w.r.t. which
the functional shall be linearized (here: mu); value of the linearization point
(here: mus); unknown variable for which the resulting equation shall be solved
(here: y); storage for previous variable (here: ys); fixed variables (here: not written
out); values of the fixed variables (here: not written out). The order of parameters
for linearVariationalProb applies accordingly, but no storage is provided for the
unknown variable.

For runtime acceleration, we implemented an IMPES-like strategy (here IMPES
stands for implicit-pressure–explicit-saturation) to generate good initial iterates for
implicit time steps that turn out to require too many NOX iterations (see [37] for
details). Furthermore, the state and adjoint simulation was parallelized by domain
decomposition. The parallelization uses in-built features of Sundance with MPI
based communication between processors.

6 Discussion of Optimization Results

SI units are suppressed during the discussion. The following case study was
performed in a rectangular reservoir ˝ D .0; a1/ � .0; a2/ of height a2 D 100 and
width a1 D 4a2, having the Neumann boundary�n D .0; a1/�f0; a2g on the top and
bottom and the Dirichlet boundary�d D f0; a1g�.0; a2/ on the side strips. Dirichlet
conditions are chosen as Sw D 1, pn D 8 � 106 on top (otherwise hydrostatic) and
X � 10�4, so that complementarity g.y/ D 0 holds on this boundary.

Moreover, we restrict our attention to a reservoir with constant porosity � D 0:2

and impose constant residual saturations Srw D Srn D 0:1 for both water and CO2.
The Sundance simulation is done on a triangular grid with n1�n2 uniform rectangles
in ˝ (two triangles per rectangle). However, we mention that our implementation
supports unstructured grids. In what follows, a horizontal domain decomposition
with np D 16 parallel processes is applied on a mesh with n1 D 128 and n2 D 32.

The rectangular model reservoir is supplied with a heterogeneous isotropic
absolute permeability distribution K.x/ D k0.x/id and with N D 5 injection wells.
The function k0.x/ is illustrated in Fig. 2: The permeability increases from left to
right and has a horizontal layer of significantly lowered permeability. The five wells
are ordered in a trapezoidal pattern. Notice that the two upper wells are located
within the blue layer of low permeability.

The optimization was run for T D 4 months with nt D 200 time steps and
has converged up to an IPOPT tolerance of 2 � 10�5, in our case corresponding to
a dual infeasibility norm (see [42] for precise definitions); the objective function
was scaled by �10�3 in the interface, since IPOPT minimizes and expects problem-
adjusted scaling. We set ˇ1 D ˇ2 D 1 in (5) for a combination of residual and
solubility trapping in the objective, while the regularization parameter is � D 5�10�4
and the weight function �.t/ D 4 � 103�1C 4t

T

�
in (6) penalizes late injection. Given

a scaling of q� D 200 in (7), the control constraints
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Fig. 2 Permeability distribution k0 and injection well locations

Fig. 3 Final saturation Sw for optimal control

0 � uj � 9 and c.u/ D 1

nt

NntX
jD1

uj � 18

make sure that at least two wells must be active for maximal injection c.u/ D 18.
Figures 3–5 illustrate the final saturation profiles for the computed optimal

injection strategy in comparison to an early bang-bang strategy – i.e., inject the
maximal amount in all wells for the first 80 time steps, then switch injection off –
and to uniform injection with c.u/ D 18. In contrast to other results in [37], the
optimal control has c.u/ � 17:856 < 18, so the upper bound is not active in
this situation. This behavior shows that one must not inject too much CO2 into the
reservoir. The objective functional values are:

• Optimal control: J D 2:465 � 105; J
ˇ̌
�D0 D 2:471 � 105;

• Early bang-bang strategy: J
ˇ̌
�D0 D 2:429 � 105;

• Uniform injection (uj D 3:6): J
ˇ̌
�D0 D 1:965 � 105:
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Fig. 4 Final saturation Sw for early bang-bang

Fig. 5 Final saturation Sw with uniform uj D 3:6

This shows that the early bang-bang strategy comes quite close to the optimal
solution and is significantly superior to uniform injection. Accordingly, Figs. 3 and 4
look very similar, except for the red brine hole below the upper CO2 plume in Fig. 3.
Note that, in contrast to the uniform strategy in Fig. 5, the three lower “pillars” of
nonwetting supercritical CO2 in Figs. 3 and 4 are cut off from the upper portion of
the supercritical plume, being immobilized below residual saturation Srn D 0:1.

We remark that in the optimal control scenario 27:91% of the total amount of
CO2 are trapped at the final time. Among this trapped CO2, the relative amount of
residually trapped nonwetting CO2 is 17:99%.

The optimal injection rates in the upper and lower wells are shown in the
respective Figs. 6 and 7. We recognize the following tendencies: The rates come
rather close to “on–off” bang-bang strategies, while the upper wells switch back to
maximal injection shortly before the end. This can be attributed to the fact that they
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Fig. 6 Optimal rates in the upper two wells

Fig. 7 Optimal rates in the lower three wells

are located in a layer of low permeability, so parts of the final portion of injected
CO2 can remain below residual saturation, due to a slower CO2 plume evolution.

The mostly bang-bang like structure – i.e., either maximal or minimal injection
in every well at all times (“on–off”) – of the optimal strategies (with moderate
deviation for the lower middle well) is supported by the recent article [44]: There
it is shown that, given optimal control of EOR water-flooding with immiscible two-
phase flow, such bang-bang solutions may occur if the control constraints on the
injection rates are linear. Further optimization results for miscible two-phase flow
in [37] agree with this observation.

7 Conclusions

In this paper, we investigated the optimal control of partially miscible multiphase
flow in porous media. This setting is motivated by optimal CO2 trapping in
underground reservoirs. We introduced the multiphase flow model and described the
BOX method that we use for discretization. The switching between the CO2 mass
fraction in the wetting phase and the saturation was formulated implicitly using a
(for differentiability purposes smoothed) complementarity function.
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For the optimal control objective function we considered the maximization
of a functional that measures the trapped CO2 at the final time plus a control
regularization. The controls are chosen as the time-dependent CO2 injection rates at
multiple wells and subject to linear constraints. The derivative computation uses the
discrete adjoint approach. The discretization was done based on the FEM software
Sundance, which is part of Trilinos. For the BOX method we had to add support for
dual cells, upwinding, etc., to the Sundance software package.

Our implementation wraps up the problem in the timestep-wise Lagrange
functional, which consists of the objective functional and the state equation in weak
form, tested by the corresponding Lagrange multiplier (the adjoint state). By taking
the derivative with respect to the adjoint state, state, or control, for which Sundance
provides automized support, operators for the (nonlinear) state time step equation,
the (linear) adjoint time step equation and the (nonlinear) gradient of the reduced
objective function are obtained. We linked the Sundance state and adjoint simulation
code via a C++ interface to the optimization software IPOPT. The approach is
quite flexible and makes changes in the state equation or the objective function
comparably easy.

Our implementation is currently in 2D. We discussed which steps would be
required to extend it to 3D. The presented numerical results show the viability of the
proposed approach. Future directions of research are manifold and include extension
to 3D, additional state constraints, adaptive time stepping, improved preconditioning
of the linear systems, as well as extension of the flow model.
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A Newton-CG Method for Full-Waveform
Inversion in a Coupled Solid-Fluid System

Christian Boehm and Michael Ulbrich

Abstract We present a Newton-CG method for full-waveform seismic inversion.
Our method comprises the adjoint-based computation of the gradient and Hessian-
vector products of the reduced problem and a preconditioned conjugate gradient
method to solve the Newton system in matrix-free fashion. A trust-region globaliza-
tion strategy and a multi-frequency inversion approach are applied. The governing
equations are given by a coupled system of the acoustic and the elastic wave
equation for the numerical simulation of wave propagation in solid and fluid media.
We show numerical results for the application of our method to marine geophysical
exploration.

Keywords Seismic tomography • Full-waveform inversion • Elastic-acoustic
coupling • Newton-CG • Trust-region globalization • Goal-oriented adaptivity

1 Introduction

Earthquakes excite seismic waves that propagate through the Earth and can be
recorded as seismograms at remote receiver locations. Seismic tomography means
to infer the Earth’s structure based on these observations. An accurate knowledge
of the Earth’s interior does not only enhance scientific progress in explaining
the geodynamics and subsurface processes but can also help to improve reliable
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Tsunami warning systems and support the search for natural resources. In this article
we focus on the application of marine geophysical exploration, where seismic waves
are emitted by a research vessel that is equipped with an air gun and cruises on
the sea. This requires to model a medium consisting of a solid and a fluid layer
as well as the interaction at the interface. The governing equations are given by a
coupled system of the elastic wave equation in the solid domain and the acoustic
wave equation in the fluid domain.

Seismic tomography can be stated as an optimization problem with PDE con-
straints. Here, the spatially heterogeneous, unknown material parameters enter the
PDE as coefficients. We refer to [34] for a general overview on seismic tomography.
With the availability of high-performance computing clusters, 3D full-waveform
inversion has become possible and iterative inversion methods have been applied
to datasets on both, regional and continental scale [12, 14, 15, 37, 38]. Alternative
approaches work in the frequency domain and involve the Helmholtz equation
[31, 41]. The majority of the presented inversion algorithms relies on gradient-
based methods but extensions that incorporate second-order information have been
made [8, 12, 32].

Here, we present a Newton-type method for full-waveform inversion. We apply
a trust-region globalization and iteratively solve the resulting subproblems by the
Steihaug-CG method [36]. The gradient and Hessian-vector products of the reduced
problem are efficiently computed using adjoint-based techniques [21]. A smooth
cutoff function ensures that the parameters remain within reasonable bounds without
explicitly imposing additional constraints. We invert sequentially for increasing
source frequencies and adaptively refine the parameter grid using goal-oriented
error estimates [4]. The coupled system is spatially discretized by a high-order
continuous Galerkin method and solved with an explicit Newmark time-stepping
scheme [28, 30]. The parallel implementation works matrix-free and utilizes MPI
communication to tackle large-scale seismic inverse problems.

This article is organized as follows. In Sect. 2 we describe the governing
equations and formulate the seismic inverse problem. In Sect. 3 we present our
optimization method and conclude with some remarks on the implementation and a
numerical example in Sect. 4.

2 The Seismic Inverse Problem

2.1 Wave Propagation at a Solid-Fluid Interface

We consider a domain that consists of a solid and a fluid layer. We denote the solid
and fluid regions by ˝S and ˝F and set ˝ D ˝S [˝F � R

d with d D 2; 3. We
assume that ˝S and ˝F are bounded domains with sufficiently regular boundaries
and interface �int. The remaining parts of the boundaries are denoted by �F D
@˝F n �int and �S D @˝S n �int. The time interval is denoted by I WD .0; T /

with T > 0.
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Fig. 1 Sketch of a solid-fluid interface. Parts of the incoming waves are reflected to the acoustic
medium while other parts are transmitted to the elastic medium

The propagation of waves in the solid medium is governed by the elastic wave
equation and, respectively, by the acoustic wave equation in the fluid domain. At the
interface, continuity of traction and continuity of the normal displacement have to
be ensured, cf. [9,28]. Figure 1 shows the geometry of the domain with both layers.

In the fluid domain, we consider an inviscid fluid medium with a homogeneous
density F > 0. � denotes the displacement potential and c 2 R is the speed of
compressional waves. In the solid medium, we assume a heterogeneous and positive
density S.x/ and a linear elastic rheology. Let u denote the displacement field,
".u/ D 1

2

�ru C ruT
�

the strain tensor of u and � D .�ijkl/ is a fourth order elastic
tensor. To cover the general case, we place seismic source functions fF and fS into
both media. The coupled system is then given by:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

F �tt.x; t/ � F c
2��.x; t/ D fF .x; t/ .x; t/ 2 ˝F � I;

�.x; 0/ D 0; �t .x; 0/ D 0 x 2 ˝F ;

�.x; t/ D 0 .x; t/ 2 �F � I;

S .x/utt.x; t/ � r � .�.x/ W ".u/.x; t// D fS.x; t/ .x; t/ 2 ˝S � I;
u.x; 0/ D 0; ut .x; 0/ D 0 x 2 ˝S;

.�.x/ W ".u/.x; t// � nS D 0 .x; t/ 2 �S � I;

.�.x/ W ".u/.x; t// � nS D �F �tt.x; t/ nF .x; t/ 2 �int � I;
�nF � r�.x; t/ D nS � u.x; t/ .x; t/ 2 �int � I:

(1)

Remark 1. The tensor � of elastic moduli has the symmetry properties �ijkl D
�jikl D �klij and has to be uniformly coercive. In this general form we can handle
anisotropic material. However, in a perfectly elastic, isotropic medium the tensor
simplifies to

�ijkl D �ıijıkl C �.ıikıjl C ıilıkj/ (2)
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with the Lamé parameters �.x/ and �.x/. In this case we have the relation

vp D
s
�C 2�

S
; vs D

r
�

S
; (3)

where vp and vs denote the speed of compressional and shear waves [29]. In what
follows, we will consider an isotropic material but stick to the tensor notation and
use the parameterization described in (2).

2.2 Seismic Tomography as PDE-Constrained Optimization
Problem

Depending on the parameterization of the governing equations, the unknown
material parameters can be the Lamé parameters, the velocity of compressional
and/or shear waves or further elasticity parameters. In either case, the unknown
parameter field is heterogeneous in space and does not depend on the time. Due
to the interdependencies of S and � , we keep the density fixed and invert for
� only. Since the material structure can be quite irregular in general, we want to
work with mild assumptions on the function space and prefer to use L1.˝/d4 .
On the other hand, we require a higher regularity for the regularization term
to treat the ill-posedness of the problem. In order to overcome this tradeoff,
we split the material properties into a reference model � 2 L1.˝S/

d4 that is
based on a-priori knowledge and the material variablem that parameterizes smooth
variations from the reference model. Let n denote the number of components in the
unknown parameter field, M �� L1.˝S/

n a Hilbert space and ˚ W Rn ! R
d4 a

linear function. The complete parameterization is then given by

�.m/ D � C ˚.m/: (4)

Remark 2. In all applications that we are concerned with, the existence of a
suitable reference model based on a-priori knowledge is guaranteed. Often, those
reference models only vary in depth and assume a homogeneous parameter field
in the horizontal plane. For instance, the most popular choice for global seismic
tomography is the Preliminary Reference Earth Model (PREM) [11].

In the next step, we turn to the weak formulation of (1). To shorten the notation, we
define the following forms:

aS.m/.v;w/ D .�.m/ W ".v/; ".w//L2.˝S /d�d 8 v;w 2 VS; 8 m 2 M;
aF .v;w/ D F c

2 .rv;rw/L2.˝F /d 8 v;w 2 VF ;

aint.v;w/ D F

Z
�int

w v � ns dS 8 v 2 L2.˝S/
d ; 8 w 2 L2.˝F /:
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Here, VS D H1.˝S/
d and VF D H1

0 .�F ;˝F / denotes the space of all
H1-functions that vanish on �F . The normal vector nS in the definition of aint is
pointing outwards of the solid and into the fluid domain. The variational form of (1)
is given by: 8 v 2 VF ;8 w 2 VS and a.a. t 2 I :

F h�tt.t/; viV �

F ;VF
C aF .�.t/; v/C c2 aint.u.t/; v/ D hfF .t/; viV �

F ;VF
;

hS utt.t/;wiV �

S ;VS
C aS.m/.u.t/;w/� aint.w; �tt.t// D hfS.t/;wiV �

S ;VS
:

(5)

The dual spaces of VS and VF are denoted by V �
S and V �

F , respectively. In [5]
we discuss existence and uniqueness of solutions in appropriate function spaces.
This analysis, however, is beyond the scope of this article, so we just state the
following concepts for fixed m 2 M :

• For the acoustic wave equation with homogeneous Dirichlet boundary conditions

and a source fF 2 L2.I; V �
F / there exists a unique very weak solution � 2 X defD

C. NI IL2.˝F //\ C1. NI IV �
F /.

• For the elastic wave equation with homogeneous Neumann boundary conditions

and a source fS 2 L2.I; V �
S / there exists a unique very weak solution u 2 U defD

C. NI IL2.˝S/
d / \ C1. NI IV �

S /.

Differentiability of u with respect to m can be established by exploiting higher time
regularity of the seismic source function.

Remark 3. Note that a higher time regularity is a valid assumption for the seismic
source function as wavelets are commonly used. Since we can admit V �

F or V �
S in

space, Dirac measures require only a slight smoothing.

We set Y D U � X and let y D .u; �/ denote the state that consists of the
displacement field in the solid domain and the displacement potential in the fluid
domain. With f D .fF ; fS /

T the weak form of the coupled system (1) can be
written as:

E.y;m/ D f W, .y;m/satisfies (5) a.e. in I : (6)

Additionally, the initial conditions y.0/ D 0 and yt .0/ D 0 have to be satisfied.
In the application of marine geophysical exploration, data is taken from several

seismic events, which means that we have to solve a wave equation with a different
right hand side for every event independently. We denote the number of events by
ns and the corresponding state variables by yi , i D 1; : : : ; ns . For every i , we
are given a seismic source fi D .fF /i with support only in the fluid domain.
Furthermore, we assume to have measurements yıi of the displacement field in form
of seismograms on ˝i � I with ˝i � ˝S . Typically, only sparse observations
of the displacement field are available which contributes to the ill-posedness of
the problem and necessitates proper regularization. The seismic inverse problem
is given as follows
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min
y2Y; m2M J.y; m/ s.t. E.yi ;m/ D

 
fi

0

!
1 � i � ns;

 
y.0/
yt .0/

!
D 0: (7)

Here, y D .yi /1�i�ns denotes a vector of states for different seismic events.
Note that the state yi only enters into the i -th component ofE , while the parameters
m are the same for all components. We consider cost functions J W Y �M ! R of
the form:

J.y; m/ D
nsX
iD1

Jfit.yi ; y
ı
i /C ˛Jreg.m/; (8)

with a misfit term Jfit, a regularization term Jreg and the regularization parameter
˛ > 0. In what follows, we will always assume that Jfit is twice continuously
F-differentiable with respect to yi , and Jreg is twice continuously F-differentiable
with respect tom, convex and lower semicontinuous. A possible choice for J would
be, for instance,

Jfit.yi ; y
ı
i / D 1

2
kyi � yıi k2L2.˝i�I /; Jreg.m/ D 1

2
kmk2M : (9)

Furthermore, we introduce the reduced problem

min
m2M j.m/

defD J.y.m/;m/; (10)

where y.m/ denotes the solution of the state equation for givenm 2 M .
A significant extension to the problem formulation (7) can be made if addi-

tional box constraints on the material parameters are imposed. This can also be
found in [5].

Remark 4. In this paper, we consider the inverse problem to determine the spatially
heterogeneous material parameters and assume that the location and time evolution
of the seismic source f is known. However, our optimization method that is outlined
in Sect. 3 could conceptually be extended to invert for the seismic source as well
(either simultaneously or in an alternating manner).

2.3 Adjoint Equation

As pointed out above, the state variables for different seismic events completely
decouple in (7). Hence, we restrict the analysis of the adjoint equation to a single
seismic event and drop the index i . Derivatives of the multi-source problem can be
computed by adding up the individual contributions. In order to derive the adjoint
equation, we introduce the Lagrange function L.y;m; z/ W Y � M � Y ! R with
the adjoint variable z D .z1; z2/:
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L.y;m; z/
defD J.y;m/C

TR
0

hS utt.t/; z1.t/iV �

S ;VS
dt C

TR
0

aS .m/.u.t/; z1.t// dt

C
TR
0

F h�tt.t/; z2.t/iV �

F ;VF
dt C

TR
0

aF .�.t/; z2.t// dt

�
TR
0

aint.z1; �tt.t// dt C
TR
0

c2 aint.u.t/; z2.t// dt

�
TR
0

hfS.t/; z1.t/iV �

S ;VS
dt �

TR
0

hfF .t/; z2.t/iV �

F ;VF
dt

�.S u.0/; z1t .0//L2.˝S/d C .S ut .0/; z1.0//L2.˝S /d
�F .�.0/; z2t .0//L2.˝F / C F .�t .0/; z2.0//L2.˝F /:

(11)

The adjoint equation is given by

Ly.y;m; z/ D 0: (12)

By considering the variational form of (12) and carefully integrating by parts with
respect to time, we obtain the adjoint equation for givenm and y.m/ as

Ead.z; m/ D �Jy.y.m/;m/; z.T / D 0; zt .T / D 0: (13)

With the assumption of sufficient regularity, the adjoint equationEad in strong form
can be interpreted as a coupled system like (1) backwards in time with final time
instead of initial conditions, interchanged interface conditions and a different right-
hand-side. Further details of deriving the continuous adjoint can be found in [5].

In the next step, we turn to the adjoint-based representation of first and second
derivatives. Using the parameterization defined in (4) we obtain

� 0.m/ D ˚.:/ 2 L
�
M;L1.˝S/

d4
�

8 m 2 M: (14)

We introduce the formD W Y � Y ! L .M;R/ defined by

D.v;w/.m/ D
TZ

0

Z

˝S

�
".v1/.x; t/˝ ".w1/.x; t/

� WW .˚.m/.x// dx dt (15)

for allm 2 M . Here, v D .v1; v2/;w D .w1;w2/ 2 U �X and we use the notations
.a ˝ b/ijkl D aijbkl and A WW B D P

ijkl AijklBijkl. For given m 2 M we denote the
corresponding state by y.m/ and the adjoint state by z.m/. The first derivatives can
then be expressed as

j 0.m/ D ˛J 0
reg.m/CD.y.m/; z.m//: (16)
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Following the derivation in [21], the second derivative of the reduced cost functional
can be represented in a similar fashion. This requires the second derivatives of the
Lagrange function with respect to the state and the parameters. Since the state
equation is linear in both, y and m, a couple of terms vanish. While the operator
j 00.m/ would be prohibitively expensive to compute, operator-vector products
j 00.m/s for a given perturbation s 2 M can be computed at the cost of two
additional simulations by performing the following steps:

1. Compute a perturbed forward wavefield ısy by solving

E.ısy;m/ D �Em.y.m/;m/s; ısy.0/ D 0; ısyt .0/ D 0: (17)

2. Compute a perturbed adjoint wavefield ısz by solving

Ead.ısz; m/ D �Jyyısy�Em.z.m/;m/s; ısz.T / D 0; ıszt .T / D 0: (18)

Here,Em denotes the linearization ofE with respect tom. j 00.m/s is then given by:

j 00.m/s D ˛J 00
reg.m/s CD.ısy; z.m//CD.y.m/; ısz/: (19)

With the adjoint-based representation of the first derivatives and operator-vector
products representing the second derivatives applied to a search direction, we have
everything at hand to apply a Newton-type optimization method.

3 Optimization Method

3.1 Trust-Region Newton-CG

In order to solve the seismic inverse problem (10), the algorithm iteratively
computes approximate solutions to the trust-region subproblem

min
s2M qi .s/

defD j.mi /C ˝
j 0.mi/; s

˛
M�;M

C 1
2

˝
j 00.mi/s; s

˛
M�;M

s.t. kskM � �i:
(20)

Here mi denotes the current iterate and �i the trust-region radius in iteration i . qi
is a quadratic model function that approximates j.mi C s/. The first derivatives
j 0.mi/ and operator-vector products j 00.mi /s are computed using adjoint-based
techniques as outlined in the previous section. Note that we use the exact second
derivatives in (20), however, approximations of the Hessian, e.g. by a Quasi-Newton
method, would also be possible. We compute an approximate solution to (20) by
the Steihaug conjugate gradient method [36]. Here, the inner product induced by
the norm of M is used as preconditioner. The CG iterations are terminated early,



A Newton-CG Method for Full-Waveform Inversion in a Coupled Solid-Fluid System 107

if negative curvature is encountered or the trust region radius is exceeded by the
current iterate. Additionally, we solve the Newton system inexactly and stop with a
relative tolerance of 0.01. A crucial ingredient of the trust-region method is the ratio
of actual and predicted reduction,

j.mi /� j.mi C si /

qi .0/� qi .si /
; (21)

based on which is determined, whether the step is accepted and how the trust-region
radius is updated. For further details, we refer to [5], see also [40] for trust-region
methods in function space and [10] for a comprehensive study.
The problem formulation (7) does not include any constraints on the material
parameters. However, from a physical, as well as from a theoretical point of
view, there exist bounds on m, for instance, to ensure nonnegative wave velocities
or coercivity of the elastic tensor. In [5] we extend the problem formulation
by imposing additional pointwise box constraints on the material parameters.
The trust-region algorithm presented above is then applied to a series of problems
with an additional penalty term in the objective function that is weighted with
a monotonically increasing penalty parameter. For the simplified unconstrained
case that is discussed in this article, we apply a smooth cutoff function to ensure
that the parameters remain within a certain range. Let ml

� ; ml ;mu; mu
C 2 R

n,
ml

� < ml < mu < mu
C , denote pointwise bounds on the material parameters.

We then choose a smooth function ' W M ! M and replace m by '.m/ in the
weak form (5). Hereby, ' has to satisfy the following properties: ' is monotonically
increasing, ' 
 id on Œml ;mu� and '.M/ D Œ'.ml

�/; '.mu
C/�. The bounds should

be chosen such that Œ'.ml
�/; '.mu

C/� covers the domain of all physically feasible
models and the optimal parameter model should be within Œml ;mu�. Thus, it is
guaranteed that only reasonable values for m enter into the weak form. Moreover,
the cutoff ensures that parameter models that exceed the bounds yield the same
misfit while the regularization term Jreg penalizes large deviations. Hence, the
optimization algorithm will eventually favor parameter models within the bounds.
Figure 2 shows an example of this cutoff function '.

3.2 Discretization

We follow a discretize-then-optimize strategy. This involves the temporal and spatial
discretization of the state and adjoint equation as well as the spatial discretization
of the parameters. We use different meshes for the state and the parameter
space. This is motivated by the fact that the information on the material
properties is limited, thus, a coarser mesh in the parameter space prevents an
over-parameterization. This regularization-by-discretization strategy is enhanced
with an adaptive grid refinement of the parameter space in combination with a
multi-frequency inversion approach which is explained in the next section.
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Fig. 2 Smooth cutoff function to ensure that the parameters remain within physically reasonable
bounds. A fourth order polynomial ensures the smooth transition in Œml

� ; ml � and Œmu; mu
C �

We apply a continuous high-order finite element method for the spatial
discretization of the state space and an explicit Newmark time-stepping.
We use fourth-order Lagrange polynomials and approximate the integrals by the
Legendre-Gauss-Lobatto quadrature rule which results in a diagonal mass matrix.
This approach is commonly used in seismic applications, cf. [13,39,42]. Moreover,
by following an update scheme for the Newmark time-stepping as outlined in [28],
we can carry out the time-stepping fully explicit.

The seismic inverse problem is computationally very expensive. The costs are
vastly dominated by solving the discrete version of the coupled system (1) for
several right-hand-sides. 2ns simulations (one forward, one adjoint per seismic
event) are required to evaluate the cost function and to compute the first derivatives
for a given parameter model m. Every inner CG iteration requires additional
2ns simulations to compute the second derivatives applied to a search direction.
In order to limit the computational costs of a Newton-step in comparison to a
limited-memory BFGS approximation, we restrict the number of CG steps per outer
iteration to 20, in addition to the stopping criterion based on the relative reduction
of the residual.

In order to further reduce the number of simulations per iteration, randomized
data reduction techniques are an interesting field of research, cf. [1, 24]. Here, the
independent seismic events are replaced by simultaneous “super-shots”.

3.3 Multi-frequency Approach

A reconstruction of the material properties with a high resolution requires high
frequency information in the observed data. However, the high-frequency data is
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more prone to errors induced by noisy measurements. Moreover, since only sparse
observations are available, there usually exist several models that explain the data
equally well. This necessitates the regularization term in the objective function.
Additionally, we follow a regularization-by-discretization strategy and combine
a multi-frequency inversion approach with an adaptive grid refinement based
on goal-oriented error estimates. The multi-frequency approach (sometimes also
called multi-scale) means to sequentially invert for increasing source frequencies
[7, 16], see also [12]. A bandpass filter can be used to down-sample the observed
measurements to lower frequencies. The adaptively refined grid allows to reduce the
number of optimization variables without a loss of resolution in the reconstruction.
The algorithm works as follows:

0. Choose an initial parameter mesh.

For a sequence of increasing source frequencies !1 � !2 � : : :

1. Choose the state mesh based on the dominant frequency !i of the seismic source
and the wave velocities.

2. Solve the discretized problem and obtain a stationary point.
3. Adaptively refine the parameter mesh using goal-oriented error estimators.

The paradigm for goal-oriented a-posteriori error estimation and dual weighted
residuals was established in [4]. We briefly outline the key idea. Let m� 2 M be a
stationary point of the Lagrange function L for the continuous problem and mh 2
Mh � M a stationary point of L on the discretized subspace Mh. Then the error in
the cost function can be represented by

j.m�/� j.mh/ D 1

2
hLm.y.mh/;mh; z.mh//;m

� � vhiM�;M CR; (22)

with a cubic remainder term R and an arbitrary vh 2 Mh. In order to compute
error estimates, the derivative of the Lagrange function with respect to m has to
be computed which requires a state and an adjoint equation solve. A remaining
difficulty is to estimate the differencem� � vh, since the continuous solution m� is
unknown. Here, we use higher-order local interpolation in a post-processing step.
We refer to [3, 25, 27] for goal-oriented error estimation in general and to [5] for a
detailed description of its application in the context of seismic tomography.

4 Numerical Example

4.1 Implementation

Efficient inversion methods rely on a scalable code for the simulation of the
elastic-acoustic wave equation. We have implemented the wave propagation code
in C++, following a similar approach like SPECFEM3D [30]. Parallelization is
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Table 1 Strong parallel scaling statistic. The table indicates the speedup compared to the run
on four processors for a forward simulation with one seismic source. np denotes the number of
processors. The problem size is given by 128,000 elements in space and 1,000 time steps

np 4 8 16 32 64 128

Speedup 1.0 2.06 3.41 4.98 8.76 10.42

carried out in two stages. Trivially, different seismic events can be simulated in
parallel and communication is only required during a post-processing step to add
up the individual contributions to the cost functional and its derivatives. Hence,
including several seismic events scales almost perfectly. Moreover, our parallel
implementation allows to solve a single event on multiple cores using a spatial
partitioning of the computational domain and communication with MPI. The
algorithm works matrix-free and does not require to solve a linear system during
the simulation. We use the Epetra package of Trilinos [20] to handle the distributed
data structures.

Table 1 shows the strong scaling statistics for a forward simulation of a single
seismic event. In near future, we plan to increase the parallel efficiency by exploiting
non-blocking MPI communication.

The adaptive refinement of the parameter mesh is implemented using the deal.ii
library [2]. The parameter mesh is then interpolated onto the state mesh before every
simulation.

The computation of the first derivatives requires the forward displacement field
at all time-steps. Moreover, the two wave equations (17) and (18), that have to be
solved for the Hessian-vector product, additionally require the adjoint state at all
time-steps. In the current setup, we store both wavefields, however, if memory poses
a bottleneck, checkpointing techniques [18] could be applied. Note that we do not
have to store the perturbed wavefields ısy and ısz, because the contributions to the
derivatives can be computed on the fly.

4.2 Acoustic-Elastic Data Set

This example shows the application of our method to a synthetic data set in marine
geophysical exploration. The geometry and problem setup (Fig. 3) is inspired by the
Valhall oil field in the North Sea. Prior work on this field can be found in [6,33,35].
The geometry is given by a rectangular domain of 8 � 8 � 4 km.

There is a thin water layer (400 m) on top of the solid domain. We use 36 seismic
sources that are triggered simultaneously in the fluid region at 200 m water depth.
The source time function for all sources is a Ricker wavelet with dominant frequency
of 2.5 Hz. There are 441 seismic receivers buried into the seafloor at 50 m depth
that form a dense array of 16 km2 in the center of the domain. In the fluid domain,
we set F D 1,000 kg/m3 and c D 1,500 m/s. In the solid domain, we assume a
constant density of 2,300 kg/m3 and a constant Poisson’s ratio of 0.25, i.e. we have
the relation vp D p

3vs for the velocity of compressional and shear waves and only
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Fig. 3 (a) Data acquisition in marine geophysical exploration. A research vessel equipped with an
air gun cruises over the field of interest and emits pressure waves into the sea (green). An array of
geophones is buried in the shallow sea floor (red lines) to record seismic waves that are reflected
from the subsurface. Based on these measurements, the material structure in the solid domain
(gray) shall be reconstructed. (b) shows the P-wave velocity of the target model for a vertical cross
section through the domain

one parameter field to invert for. The synthetic target model has P-wave velocities
that range from 1,400 to 3,400 m/s. The data is generated by running a simulation
with the target model. In order to deal with the difficulties in using synthetic data
and their potential for committing inverse crimes [22], we use a finer mesh for both,
the parameter and the state space and add 2 % Gaussian noise to the seismograms.
The reference model varies only vertically and for every fixed depth, we use the
average value of the target model in the horizontal plane as the reference value.

Since the computational domain is artificially truncated, we have to impose
absorbing boundary conditions to reduce reflections from non-physical boundaries.
We follow ideas from [23] and apply dampers that relate the traction to the velocity
in the solid domain and a Sommerfeld-like condition in the fluid domain:

r� � n D �c�1�t on � abs
F � I; (23)

.� W ".u// � n D vpS .ut � n/ n C vsS .ut � .ut � n/ n/ on � abs
S � I: (24)

Furthermore, we enforce˚.m/ D 0 on � abs
S , i.e. the parameter model is not updated

on the artificial boundaries, in order to avoid artifacts in the reconstruction.
We solve the seismic inverse problem by sequentially inverting for source

frequencies of 0.625, 1.25 and 2.5 Hz. On the finest level, we obtain a parameter
mesh with approx. 100k degrees of freedom. The state mesh has approx. 300k
spatial grid points and 1,000 time steps.

Figure 4 shows histograms for the misfit at all receiver locations before and
after the optimization. The accumulated misfit has been reduced by more than
83 %, i.e. there is a good match between observed and reconstructed data. Figure 5
compares the initial, target and reconstructed parameter model at a vertical cross
section through the domain. The inversion output looks reasonable, especially near
the surface. As expected the reconstruction becomes less accurate at greater depths.
Figure 6 shows horizontal snapshots of the P-wave velocity for the reconstructed and
the target model. The adaptively refined parameter meshes are illustrated in Fig. 7.
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Fig. 4 (a) Histogram of the misfit at all receiver locations using the initial model. (b) shows the
histogram obtained with the reconstructed model. Note the different scaling of the x-axis. The
misfit has been reduced by more than 83 %. All three components of the seismograms are used to
compute the misfit

a b

Fig. 5 (a) P-wave velocity for a vertical cross section through the domain at the center of the
x-y-plane. (b) Relative error between the reconstruction and the target model
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Fig. 6 Horizontal snapshots of the reconstructed (left) and target (right) vP at (a) 150 m,
(b) 800 m and (c) 1,500 m depth. The images show the deviation from the reference model that
is homogeneous for every fixed depth

Table 2 summarizes the optimization process on the different frequency levels. The
stopping criterion was a relative reduction of the norm of the gradient by three
orders of magnitude. The computations were carried out on a Linux cluster using 32
processors.
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ba

dc

Fig. 7 Adaptively refined parameter meshes after (a) the first and (b) the second refinement.
(c) and (d) show vertical snapshots of the mesh in the center of the domain

Table 2 Summary of the optimization process. The second column lists the
degrees of freedom of the parameter mesh. On every frequency level, the
algorithm was terminated, after the norm of the gradient has been reduced by
three orders of magnitude

Frequency (Hz) dof Newton iterations Total PDE solves

0.625 4,851 22 886
1.25 15,949 15 550
2.5 101,015 13 384

A more sophisticated strategy for steering the interplay of the adaptive grid
refinement for multiple frequencies, the update strategy for the regularization
parameter and the convergence tolerance is under investigation.

5 Conclusion

We have presented a Newton-CG method for full-waveform seismic tomography in
a coupled solid-fluid system. The optimization framework consists of a trust-region
globalization, a smooth cutoff function and a multi-frequency inversion approach.
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Derivatives are efficiently computed using adjoint techniques. Numerical results
show the applicability of our method to problems in marine geophysical exploration.
A couple of major extensions in both, theoretical and practical aspects, will appear
in [5].

The fast local convergence of the proposed method is superior over approaches
that do not incorporate second order information. Furthermore, in the context of
statistical inverse problems, the Hessian of the cost functional can be used to
approximate the a-posteriori density of the parameter model [17, 26]. On the other
hand, the Newton-type method requires a high number of simulations per iteration
in comparison to purely gradient-based or limited-memory BFGS methods. In our
implementation, we limit this extra effort by terminating the CG iterations early.
Additionally, the multi-frequency inversion approach allows to perform several
iterations on a coarser mesh at significantly lower costs and the starting model on
the finest grid can be expected to be already in the vicinity of the minimizer and to
require fewer Newton iterations.

Future work will incorporate randomized data reduction techniques and a sample
average approximation [19]. We will also improve the parallel efficiency of the
simulation code.
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Advances in the Parallelisation of Software
for Quantum Chemistry Applications

Martin Roderus, Alexei Matveev, Hans-Joachim Bungartz, and Notker Rösch

Abstract Density functional theory (DFT) provides some of the most important
methods used in computational theory today. They allow one to determine the
electronic structure of finite chemical systems, be they molecules or clusters, using
a quantum-mechanical model, and exposes, thus, the great majority of the systems’
properties relevant to chemical applications. However, the numerical treatment of
large chemical systems proves to be expensive, requiring elaborate parallelisation
strategies.

This paper presents two recent developments which aim at improving the
parallel scalability of the quantum chemistry code ParaGauss. First, we introduce
a new Fortran interface to parallel matrix algebra and its library implementation.
This interface specifies a set of distributed data objects, combined with a set of
linear algebra operators. Thus, complicated algebraic expressions can be expressed
efficiently in pseudo-mathematical notation, while the numerical computations are
carried out by back-end parallel routines. This technique is evaluated on relativistic
transformations, as implemented in ParaGauss.

The second development addresses the solution of the generalized matrix eigen-
value problem—an inherent step in electronic structure calculations. In the case the
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symmetry of a molecule is exploited, pertinent matrices expose a block-diagonal
structure which makes the efficient use of existing parallel eigenvalue solvers
difficult. We discuss a technique that uses a malleable parallel task scheduling
(MPTS) algorithm for scheduling instances of parallel ScaLAPACK-routines on
the available processor resources. This technique significantly improves the parallel
performance of this numerical step, reducing the corresponding execution time to
below 1 s in most applications considered.

Keywords High performance computing • Parallel numerical algebra • Density
functional theory • Relativistic quantum chemistry • Scheduling algorithms

1 Introduction

Many current implementations of first-principles electronic structure methods for
molecules, clusters, and local models of surfaces and solids are limited in their
parallel scalability due to the intrinsic diversity of structures and algorithms involved
in various subtasks. We refer here to methods that aim at exploiting advantages of
expansion techniques based on localized (Gaussian-type) functions. The inherent
structure of the iterative self-consistent field (SCF) problem does not admit a
homogeneous parallelisation strategy, a fact that severely limits current oppor-
tunities in modelling complex chemical systems like catalysts, nano-structured
materials as well as large complexes in solution. This paper discusses two recent
developments, which address this problem, and provide parallelisation strategies
for numerical problems that appear specifically in electronic structure codes. The
presented approaches are accompanied by library implementations that are invoked
by the Gaussian-based density-functional code ParaGauss [4].

Scientific codes often contain linear algebra expressions, systems of linear
equations, and eigenvalue problems. An example is the relativistic transformations
and solving the block-diagonal eigenvalue problem for the resulting Hamiltonian
as implemented in the quantum chemistry program package ParaGauss [4]. An
abstraction for linear algebra operations facilitates a separation of concerns, where
mathematics is separated from details of the technical implementation. This allows
a quick implementation of matrix and vector transformations, thus contributing
to the productivity of developing numerical routines. Furthermore, as these trans-
formations may have the appearance of mathematical expressions, the application
semantics is easily comprehensible, hence improving the readability of the code.

A number of languages or library extensions exist which provide such a
functionality: Matlab and Octave are high-level scripting languages which operate
only with mathematical objects, but are usually not suitable for high-performance
codes and large software projects. The C++ libraries Armadillo [27], uBLAS (as
part of BOOST [19]) and MTL [13], among others, offer template-based matrix
classes with comprehensive functionality, and partially also advanced linear algebra
operations, such as factorisations or eigenvalue problems. Fortran provides an
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intrinsic programming model, which allows to formulate basic matrix algebra in the
source code, using variables and one- and two-dimensional arrays as representations
for scalars, vectors and matrices, respectively. The Matran [29] library yields further
matrix functionality for Fortran, together with advanced operations. However,
except for a commercial version of the MTL (Supercomputing Edition), software or
literature about abstractions supporting parallelism and data distribution, especially
for Fortran, is scarce.

In data-intensive applications, it is often desired to distribute the underlying
arrays over compute nodes, to avoid memory bottlenecks. Furthermore, expensive
operations, especially BLAS Level 3 and eigenvalue computations, are often exe-
cuted by parallel routines. However, common available parallelisation techniques,
such as MPI or Co-Arrays in Fortran 2008, provide a rather low-level interface to
express data distribution, and available parallel numerical routines, such as PBLAS
and ScaLAPACK [5], work with specific distributed data types and do not allow
to express parallel matrix algebra in mathematical notation, as described above.
The PLAPACK package [31] addresses this issue and defines more object-style
distributed data types along with automatic distribution routines, allowing thus a
more modern programming style. However, even though the APIs of those linear
algebra libraries are carefully designed, the routine signatures are still complicated,
making elaborate algebraic code tedious to write. Hence, separation of concerns is
difficult to comply with, which can easily lead to poor code quality.

In Sect. 2 we review a Fortran interface to linear algebra routines and its imple-
mentation, as introduced in Ref. [25]. The interface specifies distributed data types,
representing matrix operands, and overloads the existing operators fC;�;�;��g
to accept them. We show how this combination makes it is possible to express
matrix algebra in clear mathematical notation directly in the code, while operating
with distributed data and parallel routines at its back-end. We demonstrate how
the newly established interface can be used to parallelise an existing sequential
implementation of relativistic transformations in a quantum chemistry code and
include a few benchmarks.

Furthermore, in Sect. 3 we present an approach to solve the generalized matrix
eigenvalue problem

HC D SCE (1)

with symmetric block-diagonal matrices H and S > 0. The matrix E is diagonal,
and contains the eigenvalues, and the columns of C the corresponding eigenvectors.
Equation (1) for dense symmetric matrices can be solved by existing parallel
solvers, provided e.g. by the libraries ScaLAPACK [5], PLAPACK [31] or ELPA
[2]. However, a more complicated situation arises when the spatial symmetry of a
molecule or cluster is exploited to reduce the dense eigenvalue problem to a few
subproblems of smaller dimensions [24].

While the majority of current quantum chemistry problems are solved without
invoking spatial symmetry constraints, exploiting point group symmetry can offer
significant advantages in the field of nanoparticles [16, 26]. Clusters of various
materials in the size range of nanoparticles (1–10 nm diameter) typically contain
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about 50 to several thousand atoms. Molecules with more than 100 heavy atoms
still represent a challenge to accurate quantum chemistry methods and symmetry
thus yields a convenient way of applying these methods to nano-sized model species
in the relevant size range. Such nanoparticles represent prototypical applications,
where a generalized matrix eigenvalue problem, decomposed into several sub-
matrices (typically 4–10) of different sizes, has to be solved. This simplification
significantly reduces the computational effort; however the implied block-diagonal
matrix structure cannot be handled efficiently by existing (parallel) eigenvalue
solvers. An approach to solving this problem is discussed in Sect. 3.

2 A Fortran Interface to Parallel Matrix Algebra

This section presents the specification and implementation of a set of high-level
Fortran data types, functions, subroutines, and operator interfaces, which facilitate
the handling of distributed data objects as a representation of matrix operands, as
well as parallel arithmetic operations on them. Basic linear algebra can be expressed
directly in common mathematical notation, more advanced operations, such as
eigenvalue computations and domain specific operations, by subroutine calls. We
have targeted and achieved a programming model which allows a separation of
concerns: mathematical expressions are stated as simple as possible in the source
code, while the library takes care of the low-level parallelisation, reliability and
performance. As Sect. 2.3 shows, the library has been tested, and integrated into the
quantum chemistry software ParaGauss [4].

In addition, the following requirements were considered in the interface design:
(i) easy data object management (creation, disposal of, etc.) with technical details,
such as physical data distribution, being hidden from the user, and (ii) an interface
implementable with Fortran, MPI, and performance-optimized external libraries.

The interface realizes a single instruction multiple data (SIMD) programming
model, in contrast to the single program multiple data (SPMD) style, often applied
in pure MPI codes. Here, each library call represents a collective operation,
encouraging synchronous control flow. The resulting source code looks like a
sequential program, parallelism is achieved by operations on distributed objects by
library routines. The internals of the opaque distributed objects, including the actual
numeric data, are not exposed. These design features entail the advantage of good
readability. Furthermore, adoption of serial code basically requires a change of the
affected data types, as well as invocation of the library with a USE-statement.

The user is given the opportunity to choose the processes, involved in the data
distribution and computation, via a communication context. This allows combining
different paradigms and parallelisation technologies—the user is not restricted to a
single paradigm for the overall application.

We defined two data types representing distributed dense and diagonal matrices:
rmatrix and rdmatrix. The generic constructor MATRIX converts a 1- or 2-
dimensional array into the distributed matrix object [25]. The complementary
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Fig. 1 Demonstration of the API usage. Line 1 declares arrays whereas lines 2–3 declare two
types of distributed matrices. In lines 5–6, distributed data objects for the diagonal and the dense
matrix, respectively, are created. Line 8 shows a simple arithmetic operation. Finally, in line 10 the
computed dense matrix is stored in a plain array. In this particular case the current implementation
requires communication only in line 10

generic function ARRAY converts a matrix object back into a plain array. Further-
more, we overload some of Fortran intrinsic unary and binary arithmetic operators
to express parallel operations between the distributed data types. These operators
include: binary addition, binary subtraction, unary negation, binary (matrix) multi-
plication, exponentiation. Matrix transposition is implemented as a unary function
tr(). The generic constructors MATRIX and ARRAY are sufficient to implement
arbitrary matrix functions. For example, a reference implementation for the function
tr() is a composition of Fortran intrinsic function, array and matrix constructors:
tr(A) = matrix(transpose(array(A))). Figure 1 shows a simple code example,
which demonstrates the general usage of the API presented here.

2.1 Interface Implementation

The API has been implemented as a library with Fortran bindings. The imple-
mentation language is Fortran 95 with the enhanced data type facilities (EDF),
documented in the technical report TR15581 [11]. For our purposes, allocatable
components, documented in this report, provide automatic deallocation upon object
destruction and the “move semantics” similar to that of “rvalues” formalized in the
C++11 standard. Additionally, we rely on MPI for communication primitives, and
external, parallel library routines for expensive operations: PDGEMM from the
PBLAS library for the dense matrix multiplication, PDSYGVX and PDTRAN
from the ScaLAPACK library for the dense generalized eigenvalue problem, and
the matrix transposition, respectively [5].

The matrix operands are represented by data types, containing a (distributed)
allocatable array, and meta data, necessary for MPI, PBLAS, and ScaLAPACK
usage, see Fig. 2. The arrays representing dense matrices are distributed in a block-
cyclic manner, a native distribution scheme of PBLAS and ScaLAPACK (see
the ScaLAPACK user’s guide [5]). With this data distribution scheme, the array
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Fig. 2 Declaration of the opaque rmatrix and rdmatrix data types, in Fortran notation. An integer
array of length 9 is used by ScaLAPACK for a matrix descriptor and holds, among other data,
matrix dimensions and a BLACS communicator

Fig. 3 Multiplication Fortran operator interface. The expression A * B * C for dense matrices
A and B and diagonal matrix C will resolve to mult_r_d(mult_r_r(A, B), C)

constructor instance array_r of the generic ARRAY function, assembling a full
2D array on each process, is the only operation that requires communication [25].

For arithmetic operations between these data types, we overload the existing
intrinsic operators with the interface construct. Figure 3 demonstrates this for the
multiplication operator *. Here, the compiler does a static type check and resolves
an operation to a specific function call, see Fig. 3. The storage for the function
result is explicitly allocated in the function body. For the automatic deallocation
of intermediate results, we rely on the allocatable semantics of the EDF, as
explained at the beginning of this subsection. This important feature facilitates
arithmetic expressions without introducing memory leaks and, together with the
move semantics, allows an optimizing Fortran compiler to avoid unnecessary
copying of data from the right-hand side of a matrix-valued expression in an
assignment statement.

The diagonal matrix, represented by the data type rdmatrix, is stored in
the 1D array d(:), see Fig. 2. As the storage requirement for a diagonal matrix
is far less demanding than that for a dense matrix, we replicate the data on
every process. This significantly simplifies implementation of operations involving
diagonal matrices, and saves communication overhead at the cost of slightly higher
memory consumption.
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2.2 The Test Case: Background

We evaluated the approach to matrix algebra just described with a test case in the
context of the quantum-chemistry code ParaGauss [4], which inspired us to develop
this library abstraction. The test case covers dense matrix algebra, multiplications
of dense and diagonal matrices, generalized eigenvalue problem and some domain
specific operations on matrices. This section describes the background of the test
case in abstract mathematical notation. In the next section we will show how this
formalism translates into source code, and present some benchmarks.

Relativistic quantum chemistry covers a variety of approximations that account
for the fact that the velocities of (core) electrons in heavy atoms is sufficiently
close to the speed of light. A popular relativistic approximation is derived from
the Douglas–Kroll approach [10] enabled by a practical scheme of building matrix
representations of integro-differential operators [8]. The transformation starts with
the four dense matrices, T , S , V , and O , comprising matrix representations of
kinetic energy T , overlap S of basis functions, and matrix representations of two
potential terms, V andO [8,10]. The output consists of the relativistic counterparts
of the kinetic energy Trel and potential matrix Vrel. The first subproblem to address is
a generalized eigenvalue problem for the matrices T and S which amounts to finding
a matrix U and a diagonal matrix t such that UT TU D t and UT SU D 1 [8].
The kinetic energy eigenvalues, t , are further used to compute relativistic factors,
formally diagonal matrices of the same dimension: trel; e; a; b; r D factors.2t/.

The next step of the second-order DKH transformation is to transform the input
matrices V and O : QV D UTVU, and QO D UTOU. The central piece of the
transformation is the matrix equation for the relativistic potential:

QVrel D a QV a C b QOb CRT er�2RC .eRT r�2R CRT r�2Re/=2 (2)

where we introduce the intermediate matrix R D rpt.e; r2a QV a � b QOb/ using
the matrix valued function, rpt.e; X/, defined as rpt W .e; X/ 7! Y , Ymn D
Xmn=.em C en/. Finally, a back-transformation follows: Trel D U�T trelU

�1, Vrel D
U�T QVrelU

�1.

2.3 Evaluation

Translated into Fortran, the central part of the DKH transformation, Eq. (2), is
shown in Fig. 4. The code initiates two dense matrix multiplications, five dense
matrix additions and a few multiplications of dense and diagonal matrices. Note
that declarations of distributed matrices do not reserve space for actual data. It is
the responsibility of the primitive operations that return an rmatrix or an rdmatrix
to reserve space, initialize and finally fill those structures with data. Upon return
from the subroutine, all intermediate data structures, declared in the scope of
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Fig. 4 Fortran code for the popular form of relativistic transformation, Eq. (2), illustrating the use
of the matrix algebra API. A function returning more than one matrix, here the diagonal matrix
trel and the dense matrix Vrel, is commonly implemented as a subroutine with multiple output
arguments. Declarations of distributed matrices do not lead to memory reservation for actual data.
This is carried out by functions implementing primitive matrix operations. For local variables, such
as e or aVa, these resources are freed on return from the function

the subroutine, will be automatically freed by a standard TR15581 conforming
compiler. Apart from the module name in the USE statement, no other modifications
were necessary to parallelise the serial version of this code. Imperative coding style
with destructive matrix updates (not shown here) is supported as well [25].

Run time performance has been evaluated at the facilities provided by Leibniz
Rechenzentrum, Munich, on the migration system SuperMIG, built by IBM [23].
The machine comprises 205 nodes, each hosting four 10-core Intel Xeon Westmere-
EX processors. The nodes are equipped with 256 GB of memory and interconnected
by an Infiniband QDR network. With this topology calculations involving, for
example, 36, 64 and 81 processor cores were scheduled on 1, 2, or 3 nodes,
respectively. For the benchmarks, we employed the default vendor-supplied MPI
library implementation, IBM MPI v5.2, and BLACS/ScaLAPACK v1.8, linking to
the highly optimized BLAS library distributed with Intel’s MKL v10.3.

In Fig. 5 we show the scaling behaviour of a dense matrix multiplication as one
of the primitive linear algebra operations (black circles). The parallel efficiency
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Fig. 5 Log-log plot of the wall-clock time required for a matrix multiplication using PBLAS
procedure PDGEMM for matrix dimensions 4,000 (left pane) and 2,000 (right pane) as a function
of the number of cores involved (black circles) in comparison to the time required to convert
a distributed matrix to a plain array (gray squares). Linear regression suggests a power law,
T � P�˛ , 0:8 < ˛ < 0:9 for the dependence of matrix multiplication time, T , on core number,
P . Ideal scaling, T � P�1, is shown for comparison (dashed line). The times required for matrix
multiplication and building a replicated array scale with the matrix dimension N as N3 and N2,
respectively

is limited by the underlying PBLAS implementation [5]. For a typical matrix
dimension of 2,000–4,000, the implementation provided by the local computing
centre shows an efficiency above 50 % for a core number below 100. In this example,
a linear regression of the data displayed in Fig. 5 suggests a scaling behaviour of the
time, T , required by the operation with the number of cores, P , as a power law,
T � P�˛ with ˛ D 0:8 : : : 0:9. Note that for these matrix dimensions, the cost of
a conversion of a distributed (resulting) matrix to a plain two-dimensional array,
replicated on all processes requires an overhead that becomes comparable with
the costs of a single matrix multiplication at about 40 cores (gray squares, Fig. 5).
For higher matrix dimensions, the crossover happens at higher core numbers. Of
course, this overhead is amortized when processing more involved linear algebra
expressions before, if at all, the results will have to be converted to native arrays.

This is the case for the core of the second-order DKH transformation, see the
source code in Fig. 4 implementing Eq. (2), for which both the input and output are
distributed matrices. Figure 6 shows how the wall-clock time required for a DKH
transformation for two matrix dimensions, N D 4;000 and N D 2;000, depends
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Fig. 6 Log-log plot of the
wall-clock time required for
the central piece of the
second-order DKH
transformation for matrix
dimensions 4,000 (black
circles) and 2,000 (gray
squares) as a function of
number of cores. Linear
regression suggests that the
wall-clock time, T , scales
with the number of cores, P ,
as a power law, T � P�˛ ,
with 0:8 < ˛ < 0:9. Ideal
scaling, T � P�1, is shown
for comparison (dashed lines)

on the number of cores used. A linear regression of the data on the log-log scale
suggests a power law for the timespan, T � P�0:9. The parallelisation efficiency is
limited primarily by the PBLAS library implementation, cf. Fig. 5. This efficiency
approaches 50 % as the number of cores is increased along the horizontal axis. Note
that in practical applications, end users very often consider the total timespan as a
more relevant metric of the parallelisation efficiency.

3 MPTS-Scheduling of Parallel Eigenvalue Computations

This section discusses a solution to the symmetric, block-diagonal, generalized
eigenvalue problem HC D SCE , as introduced in Sect. 1. The specific block-
diagonal structure of the matrices H and S have the important property that the
distinct blocks can be treated as independent subproblems. This property already
implies a possibility to introduce parallelism to the diagonalisation step [3]: the sub-
matrices are sorted by their size in descending order; whenever a processor becomes
available, it is employed to carry out a sequential diagonalisation of the first sub-
matrix in the list. However, this approach, also known as LPT algorithm [15] as a
special form of list scheduling [14], shows very limited scalability: the sequential
execution time for the largest matrix is a lower bound on the overall execution time,
and the number of matrices is an upper bound on the number of processors which
can be used. See Fig. 7a.
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Fig. 7 Example of a scheduling of nine tasks on eight processors. The grey boxes represent single
tasks. Their widths indicate the execution time and their heights the number of processors they are
executed on. (a) LPT scheduling. (b) Malleable task scheduling

For a typical application, the dimension N of the basis set, which corresponds
to the size of H , ranges from 500 up to several thousand. The corresponding
generalized eigenvalue problem represents a fraction of the cost of the electronic
structure calculation, but it is a fraction growing with O.N 3/ and is intrinsically
difficult to parallelise efficiently. Thus, it becomes more important with increasing
problem size and CPU count. Moreover, the solution of Eq. (1) is usually part of
an iterative scheme with 103 � 105 diagonalisations necessary in a single typical
application. Thus, an efficient parallel algorithm is required to avoid bottlenecks in
large-scale applications.

There exist previous approaches to employ ScaLAPACK [5] as parallel eigen-
solver in electronic structure calculations, see Refs. [17, 32]. However, in these
calculations, the molecular symmetry was not exploited, so H was a single dense,
symmetric matrix, which can be treated by standard parallel eigensolvers, such as
PDSYEVX or PDSYGVX from ScaLAPACK [5]. In our case, the diagonalisation
of H 2 IRN�N can be divided into several smaller sub-problems. Thus, to benefit
from these computational advantages, a different parallelisation strategy is required.

Here we describe an approach to tackle this problem, originally reported
in Ref. [24]: the sequential and parallel routines DSYGV and PDSYGV from
LAPACK [1] and ScaLAPACK [5], respectively, are employed to diagonalise
independently the set of sub-matrices. A malleable task scheduling algorithm allots
to each matrix a processor count and schedules the instances of the eigensolvers to
achieve good load balancing. Thus, the existing parallel eigensolvers can be used
efficiently, to reduce the overall execution time.
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3.1 Problem Discussion

The objective is to find all eigenvalues and eigenvectors of a set of symmetric
matrices of different size. The term “task” will be used as synonym for a single
matrix diagonalisation which is processed by an eigensolver.

Hence, the problem can be formulated as follows: given is a set of n tasks
T D fT1; : : : ; Tng and a set of m identical processors. Each task is assigned a
matrix of defined size, so there is a set of sizes S D fS1; : : : Sng with the relation
Ti 7! Si . The matrix sizes in S can vary arbitrarily. The tasks are independent and
nonpreemptable. Furthermore they are malleable, i.e., a task may be executed by an
arbitrary number of processors p � m, resulting in different execution times. As
the employed routine—the eigensolver—is identical for each task, there is only one
cost function denoted as

t W .Si ; p/ 7! ti;p; (3)

which predicts the execution time of task Ti with size Si when executed on p
processors.

Furthermore, there is a set of processor counts P , where its elementsP represent
a possible number of processors on which a task can be executed. The makespan is
the overall time required to process all tasks from T . The goal is to find a scheduling
with a minimal makespan. As the problem arises in many practical applications, it is
well studied and known as malleable parallel task scheduling (MPTS). An example
is depicted in Fig. 7b.

Hence, our approach to a solution is as follows: as a first step, we generate an
offline scheduling from the task set T and the process count m, using an MPTS
algorithm, see Sect. 3.2. This algorithm requires a cost function, which predicts
the time required by a task—here the execution time of the employed eigensolver.
Its practical implementation is discussed in Sect. 3.3. This established scheduling
is then used in ParaGauss for the efficient parallel computation of the eigenvalue
problems.

3.2 Malleable Parallel Task Scheduling

3.2.1 Related Work

The MPTS problem introduced in Sect. 3.1 is a common scheduling problem and
was frequently discussed over the last decades, see Refs. [6, 7, 21]. MPTS is a
generalisation of a sequential scheduling problem which is NP-complete in the
strong sense [12]. Therefore, a variety of approximation algorithms with polynomial
runtime exist. A common approach is based on a two-phase strategy, first introduced
by Turek et al. [30]. The idea is to find a processor allotment for each task in a
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first step and to solve the resulting nonmalleable parallel task scheduling (NPTS)
problem in a second step. Ludwig and Tiwari [20] suggested such an algorithm
with approximation factor 2, which shall be the basis of the strategy proposed
here. Mounié et al. [22] followed a different approach by formulating a Knapsack
problem as core component. They provide the currently best practical algorithm
with approximation factor 3

2
C � for any fixed � > 0. When the tasks have to be

executed on processors with successive indices, Steinberg [28] proposed an adapted
strip-packing algorithm with approximation factor 2. Furthermore, Jansen [18] gave
an approximation scheme with makespan at most 1 C � for any fixed � > 0. For
special cases of the MPTS, algorithms exist with approximation factors close to one
(e.g. Ref. [9] for identical malleable tasks), but those do not apply in our case.

The problem described above is a standard MPTS problem, so the algorithms
mentioned could in principle be applied. However, as we will see, the number of
sub-matrices to be processed is small due to fundamental symmetry rules. This
allows us to modify the algorithm from Ref. [20] by introducing a combinatorial
approach in order to find the optimal solution of the NPTS problem.

3.2.2 The Employed Algorithm

As in the approximate algorithm by Ludwig and Tiwari [20], we also follow a two-
phase approach. The first phase determines a number of allotted processors for each
task using an approximate algorithm where the processor allotment is generated in
O.mn/ operations. Thus, the original MPTS problem is transformed into an NPTS
problem. In the second phase, a scheduling for the resulting nonmalleable tasks is
generated. This can be achieved by applying any (optimal or approximate) NPTS
algorithm. An important characteristic of this approach is that the approximation
factor of the MPTS problem is equal to the approximation factor of the NPTS
algorithm applied in the second phase. Ludwig and Tiwari proposed an algorithm
that provides an approximation factor of 2.

In our specific case, the number of tasks is bounded above by 10. This allows
an alternative strategy for solving the NPTS problem exactly by employing a
combinatorial algorithm, different from the algorithm by Ludwig and Tiwari [20].
In our combinatorial approach, the maximum number of possible permutations is
10Š � 3:6 � 106. However, we also introduced optimisations, which make this worst
case very rare. For the detailed algorithm, please refer to Ref. [24].

3.3 Cost Function

The scheduling algorithm described requires a cost function which estimates the
execution time of the employed eigensolver routines—in our case DSYGV and
PDSYGV from the (Sca)LAPACK library. It is difficult to determine upfront how
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Fig. 8 Execution time measurements of the routine PDSYGV diagonalizing randomly generated
matrices. The curve labelled “fitted data” represents a polynomial of degree 3 which was generated
by the method of least squares from the empiric data

accurate the estimates have to be. However, the validation of the algorithm will show
whether the error bounds are tight enough for the algorithm to work in practice.

There exist analytic models for the performance prediction of parallel routines,
see for example the ScaLAPACK User’s Guide [5]. However, validation of the
models showed that the prediction error usually lies between 10 and 30 %. Further-
more, it does not provide a solution for the practical use in a scheduling algorithm:
basically, each routine needs its own model. Therefore, if the routine changes (e.g.
due to a revision or the use of a different library), the model has to be adapted as
well, which requires in-depth knowledge of the employed routine.

Here we follow a different approach: the routine is handled as a “black box”.
Predictions of its execution time are based on empirical data which are generated
ahead of time on a given computing resource by test runs with a set of randomly
generated matrices on a set of possible processor allotments P . Then, with a one-
dimensional curve-fitting algorithm, a continuous cost function t is generated for
each element of P , Fig. 8. Thus, each P 2 P has a related cost function tP W S 7!
tP;S , not to be confused with Eq. (3).

Finally, we combine the emerging set of P -related cost functions to form the
general cost function, Eq. (3). However, in practice, when a certain number of
allotted processors is exceeded, parallel routines no longer feature a speedup or even
slow down [32]. This behaviour does not comply with the assumption of a general
monotonic cost function. To satisfy this constraint, we define the cost function,
Eq. (3), as follows:

ti;p D min
P

ftP;Si W P 2 P ^ P � pg: (4)

All possible processor counts P 2 P are considered which are smaller than or
equal to p. The P which results in the smallest execution time for the given S
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Fig. 9 Log-log time diagrams of the complete eigensolver step of the test systems Pd489 and
Pd670. Considered is the wall-clock time of the diagonalisation module during one SCF iteration.
The curves labelled “predicted” show the makespan of the scheduling algorithm, predicted by the
cost function. The curves labelled “computed” provide the real execution time of the scheduled
eigensolvers. The lines labelled “LPT” indicate the execution time of the sequential LAPACK
routine that computes the largest matrix and yield, thus, the best possible performance of the
previously used LPT scheduler. (a) Pd489. (b) Pd670

also determines the P -related cost function and thus the result t of the general cost
function, Eq. (4).

3.4 Evaluation

We evaluated the scheduler just described for two molecular systems as example
applications: the palladium clusters Pd489 and Pd670 in symmetry Oh. Both test
systems entail 10 matrices, resulting from the applied point group symmetry, with
dimensions ranging from 305 to 2,105. On average, the matrix dimensions of the
test system Pd670 are about 40 % larger than those of the system Pd489.

For the test runs, the migration system SuperMIG, built by IBM and installed at
Leibniz Rechenzentrum, was used; see Sect. 2.3 for more details.

We measured the execution times of the complete eigensolver step in a sin-
gle SCF iteration, see Fig. 9. Recall that typical quantum chemical applications
require between 103 and 105 eigenvalue computations. This should be taken into
consideration when examining the real-time savings achieved by this parallelisation
technique.
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Figure 9 shows that the cost function works accurate in most cases, with an
error well below 10 %. Interestingly, this does not apply to small processor numbers
(m � 2), where the error is quite significant (up to �40 % in the Pd670 test runs).
Fortunately, these cases still provide good scheduling results, even with poorly
predicted execution times. For higher processor numbersm, the cost function works
sufficiently accurate to facilitate the practical use of the scheduling algorithm.

The figure also shows a lower bound on the execution time of the previously used
sequential scheduler (“LPT”-line). As one can see, this performance bound is now
broken and the execution time is improved below this limit by our new algorithm.
The diagonalisation step of the test system Pd489 was sped up by a factor of up to
11:1, compared to LPT, and by a factor of 31:6 compared to a sequential run. For the
system Pd670 we achieved maximum speed-up factors of 10:5 and 40, compared to
LPT and a sequential runs, respectively. For both test systems, the overall execution
time of the eigensolver step in one SCF iteration now lies well below 1 s. Thus, we
have shown that the execution time of this important step can be reduced down to a
minor fraction of the overall electronic structure calculation.

4 Conclusions

We presented a parallel programming interface, which facilitates easy data man-
agement and the expression of matrix operations in almost mathematical notation.
The evaluation shows that this technique is suitable for real-world problems—in
our case relativistic transformations in quantum chemistry software. The resulting
code has indeed the appearance of the original abstract mathematical formulation,
while tedious, distracting low-level tasks, such as data organisation, are reduced to
a few function calls before and after the matrix operations. We furthermore showed
that with our implementation, which partly relies on the performance-optimized
parallel libraries PBLAS and ScaLAPACK, the relativistic transformations scale up
to 81 cores for input matrices of dimension 4,000, requiring less than 1 s for the
overall relativistic transformation. This states a major improvement compared to the
previous, sequential, implementation. Consequently, this work brings together pro-
gramming productivity, code quality and parallel performance, which we consider
a useful contribution to software engineering in high-performance computing.

Furthermore, a parallel bottleneck of the eigensolver step in ParaGauss, imposed
by the previous LPT-based parallelisation approach, could be eliminated. This was
achieved by employing a more sophisticated MPTS scheduler, together with parallel
eigensolver routines from ScaLAPACK. The overall scalability of the eigensolver
step was significantly improved, being now able to use processor core numbers up
to 120 efficiently in large-scale chemical applications. The time spent in this step
was reduced to a minor fraction of what was necessary for the previous solution,
requiring less than 1 s in one SCF iteration for the test cases considered. This
approach also goes beyond the use of parallel eigensolvers in other Gaussian-based
DFT codes [2,17]: to our knowledge, it is the first technique that allows an efficient
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parallel treatment of Hamilton matrices with a block-diagonal structure. Thus,
DFT-based methods which achieve computational benefits by exploiting molecular
symmetries have now been augmented with a specific, efficient parallelisation
technique.
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Designing Spacecraft High Performance
Computing Architectures

Fisnik Kraja, Georg Acher, and Arndt Bode

Abstract Recent developments in space applications have indicated that future
spacecraft computing platforms will demand for high performance computing
(HPC) capabilities. In order to face this challenge, HPC technologies have to be
introduced in the design process of such platforms. This paper summarizes some
efforts taken to achieve this. A theoretical design for future spacecraft computing
platforms is proposed. This design combines traditional reliability techniques and
novel HPC solutions for efficient high performance. System components are not
specified in terms of type and quantity, but only a logical representation of the
system is given. Benchmarking results are obtained on different parallel computing
systems to help platform designers in further system specifications. A real space
application that reconstructs a synthetic aperture radar (SAR) image is used to
benchmark shared memory, distributed memory, and heterogeneous CPU/GPU sys-
tems. It turns out that distributed memory systems are a necessity for performance
improvements, whereas heterogeneous CPU/GPU systems offer much more effi-
ciency in terms of performance per power consumption, size, and heat dissipation.

Keywords HPC • SAR • Spacecraft computing platform • Heterogeneous
CPU/GPU systems • OpenMP • MPI • CUDA

1 Introduction

Space applications are very important in many aspects of our daily life, especially
for earth observation and monitoring. Most spacecrafts download collected sensor
data to ground centers for further processing. For most applications, raw data size
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is much larger than the one of processed data. Taking into consideration that the
downlink to earth has a limited bandwidth capacity, it is obvious that downloading
raw data takes longer than downloading resulting processed data. Some additional
processing time is needed if raw data is downloaded to earth centers for final
processing.

The only way to deal with this problem is to improve the on-board processing
power so that raw sensor data gets processed on spacecrafts and resulting processed
data is then downloaded to earth. With the current technology being used for on-
board processing it will be impossible to fulfill computational requirements of
future space applications that will demand HPC capabilities. Such applications will
have to process more sensor data to produce higher quality results. Most typical
applications falling into this category are SAR image reconstruction ones that will
have to process huge amounts of data to produce high resolution images and to offer
full coverage over time and space [18].

Introducing modern processing technologies for on-board processing in space
can be considered not an easy task when thinking of reliability challenges that
the radiation environment presents. Other than reliable, these future processing
platforms should be portable and scalable to different missions, modular to allow
component upgrades and reusability, easily programmable and highly efficient
within feasible costs. The only way to achieve these features is to integrate
commercial off-the-shelf (COTS) components on a redundant hardware platform
and to supplement the system with software implemented fault-tolerance techniques
that will offer the required level of reliability.

This paper summarizes the following contributions:

1. The proposal of a high performance computing architecture for future space
applications.

2. The implementation of a benchmarking application that uses a spatial frequency
interpolation algorithm for SAR image reconstruction.

3. Benchmarking results obtained on novel shared-memory, distributed-memory,
and heterogeneous CPU/GPU computing platforms.

2 Multi-core and Many-Core Processors for Space
Applications

The fact that commercial processors integrate many cores on a single die can be seen
as an opportunity for high performance space computing. Besides, the use of such
processors in space can be also seen as a challenge, taking into consideration the
radiation environment. The next generation of multi-core processors will increase
the number of cores, building so many-core processors. Such processors are the
64-core TILE64 from Tilera [3] and the 80-core tera-scale processor from Intel [10].
By using similar designs for critical applications and on-board science computing,
high performance can be obtained by reducing mass and volume. Another novel and
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interesting architecture is the Plural Architecture [6], which is defined as a shared
memory many-core with hardware scheduling. It consists of many small processor
cores, each containing a small private memory. A fast network on chip interconnects
cores with shared memory, while another network on chip is used to connect them
to the scheduler. A 64-core chip with 16 FPUs operating at 400 MHz consumes
only 1 W. The Plural many-core is an accelerator single-chip module that runs a
single parallel program at a time. This makes it suitable only for solving a specific
given problem, but also suitable for space applications, taking into consideration the
low-power consumption.

NASA is considering the Maestro many-core processor [19] for reliable space
applications. Maestro is a radiation-hardened by-design processor based on the
TILE64 processor by Tilera with additional FPUs on each core. Redundancy and
fault-recovery techniques have been applied for error detection and permanent
recovery. Maestro integrates a grid of 7-by-7 general purpose processing cores
(executing at 300 MHz), each composed of a multilevel cache hierarchy with an
8 KB L1 cache and a 64 KB L2 cache. The virtual L3 cache consists of the L2
cache of each tile. This means that it is distributed over all of 49 tiles of Maestro.
A 2-dimensional mesh network known as the iMesh [21] interconnects the cores
within Maestro. iMesh is responsible for inter-core communication and also for
routing data from main memory to individual tiles and I/O interfaces.

Authors in [20] propose new fault-tolerance strategies for the Maestro many-
core space-enabled processor because it is still possible to have software and
hardware failures, despite the fact that Maestro is radiation-hardened by-design. To
minimize the number of such failures, common fault-tolerance strategies used in
high performance computing and embedded systems have been applied to Maestro.
The available cores and memory controllers offer enough resources for replication,
checkpoint and rollback recovery and for application specific fault-tolerance on top
of existing radiation-tolerance of Maestro. The purpose of such techniques is to
allow the developer to detect and recover from faults within the processor and not
to prevent them from occurring. In this way, the computation can continue even in
presence of failures, if they do not propagate to the application-level.

Maestro’s architecture is very flexible concerning programming models that can
be implemented [4]. This flexibility is inherited from the TILE64 processor. Maestro
can run an SMP Linux Kernel and supports process- and thread-parallelism. It also
supports the iLib [21] task-based parallel programming model from Tilera. Shared
memory programming paradigms such as Pthreads and OpenMP can be used for
parallelization in Linux. MPI and Tilera’s iLib provide message passing abstractions
for the distributed memory environment. Commercial Tilera programming models
and tools had to be modified mainly to add support for the floating point module
included in each of Maestro cores. Even though Maestro is a customized many-
core processor based on the commercial TILE64 processor from Tilera, it cannot
be considered as a pure COTS product since it was modified in hardware to provide
a radiation-hardened by-design processor. There is not yet a final product because
Maestro is still in development as part of NASA’s OPERA program.
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3 The Proposed On-Board HPC Architecture

In order to build a high performance computing platform, multi-core and many-core
processor and accelerator technologies have to be introduced in the design process
of spacecraft computing platforms. Symmetric and distributed shared memory
processor architectures combine a wide range of features to deliver, in a cost
effective way, high processing power and reduced bandwidth demands on memories
[9]. GPUs have increased their peak performance and bandwidth capacity faster than
similarly priced CPUs. Furthermore, GPUs can deliver higher peak computational
throughput than CPUs for workloads with abundant parallelism [5]. Using general
purpose GPUs and CPUs increases architecture portability and modularity at
minimal costs. It also enables flexible platform programming with available parallel
programming models like OpenMP [14], MPI [11], and CUDA [13].

To address architecture scalability, a distributed multi-board design is selected.
As shown in Fig. 1, a cluster of parallel processing nodes (PPN) that is responsible
only for data processing is under the supervision of the radiation hardened man-
agement module (RHMU), which takes care of control and management procedures
required to improve system reliability. Dataflow in the architecture is from data
collecting instruments to PPNs. From there to the backplane and finally to ground
via the satellite communication subsystem.

The internal design of each PPN is shown in Fig. 2. I/O digitizer modules
are needed to collect data from instruments and to convert it from analog to
digital. A high-bandwidth local bus should be used to connect these I/O modules
to processing components. The GPU card can be considered as an optional
processing component as PPNs can either be implemented only with one or more
multi/many-core processors (MCP). The GPU accelerator card is suitable for com-
putationally intensive and memory bound applications. Such applications should
also exhibit fine-grain parallelism in order to exploit GPU computational resources.
Other applications can profit from sequential and parallel computing features of
multi/many-core processors that nowadays integrate also vector processing units for
single instruction multiple data (SIMD) execution. Multiple MCPs can be used.
However, it is better to use processors with integrated memory controllers that
enable non-uniform memory access (NUMA) multiprocessor designs. Such designs
tend to improve application scalability in distributed shared memory systems by
improving memory hierarchy performance.

With a similar design to PPNs, the RHMU must integrate a radiation hardened
processor or FPGA [2, 15]. Memory modules have to be configured in a triple
modular redundancy (TMR) fashion to increase data integrity. Additional reliability
techniques should be implemented on software. One of the best ways to achieve this
is to integrate a fault-tolerant middleware between operating system and software
application [16] and to provide redundancy at the execution process or thread level
[7, 12].
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Fig. 1 HPC architecture for future space applications

Fig. 2 The parallel processing node

4 Expected Problems in the Proposed Architecture

The proposal in this paper combines various technologies to provide a solution for
future space applications. Nevertheless, it is not possible to address all probable
issues in the same solution. Being very flexible in design, the architecture can
be configured according to various requirement levels in terms of performance
and reliability. Main problems that might arise are related to power consumption,
dissipated heat, and size.

The integration of many high performance computing components in the same
system increases power consumption. Other solutions should be found on how
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to obtain that amount of power on-board of the spacecraft. If the system is used
efficiently without wasting resources, the trade of between performance and power
consumption might be acceptable. Applications have to be tailored to specific
architectural features to increase efficiency.

Probably new technologies have to be developed for heat dissipation in the lack
of air. Emerging hot and cold water cooling systems being implemented on Earth
might have to be considered for spacecrafts too. The distribution of processing
elements helps in reducing thermal issues, but increases interconnect latencies and
complicates communication patterns if many such elements have to be integrated.

It might be hard to apply all proposed solutions in a real system architecture as
new problems might arise when trying to implement it. Combining different tech-
nologies might add some additional question marks that are difficult or impossible
to predict at the moment. However, a few questions regarding the implementation of
the cluster of PPNs can be answered by benchmarking HPC systems on earth. Such
questions are:

1. How many PPNs should be used?
2. Do we need to integrate accelerators on each PPN?
3. Should the cluster of PPNs be implemented as a shared memory or as a

distributed memory system?
4. What kind of system provides the highest efficiency in term of performance per

power consumption and size?

In order to answer those questions a benchmarking application is implemented and
optimized for efficient parallel execution on HPC systems.

5 The 2DSSAR Benchmarking Application

Benchmarking is needed to further define components in the proposed architecture
and to find out which computing technologies suit the best for space applications.
Being focused on SAR processing, this section describes the application that
is used to benchmark shared memory, distributed memory, and heterogeneous
CPU/GPU platforms. The 2-dimensional spotlight SAR (2DSSAR) application is
implemented based on formulations given in [17] and uses the structure applied in
SSCA benchmarks [1]. It is composed of two stages called synthetic data generator
(SDG) and SAR sensor processing (SSP). SDG is used to generate synthetic SAR
returns from a uniform grid of point reflectors, which are similar to what would
be obtained from a real SAR system. SSP retrieves generated data and reconstructs
the resulting SAR image using a spotlight SAR reconstruction method known as
spatial frequency interpolation (SFI). This method involves FFT transforms (22 %),
compression and decompression loops (7 %), transposition and FFT-shift operations
(2 %), and a 2-dimensional interpolation loop (69 %) that converts data from polar
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Fig. 3 Image reconstruction from SAR returns

Table 1 SAR sensor data and reconstructed image sizes in
each dimension

SAR sensor data Reconstructed image

SCALE Range Cross-range Range Cross-range

10 3,290 1,600 3,808 2,474
30 9,630 4,800 11,422 7,380
60 19,140 9,600 22,844 14,738

to rectangular coordinates. Figure 3 illustrates visual transformations applied by
the reconstruction method. Synthetically generated SDG SAR returns are shown
on the left hand side in polar coordinates, whereas the SSP reconstructed image is
shown on the right hand side in rectangular coordinates. Swath size in the direction
the radar is looking into is represented by the range dimension. Cross-range is the
dimension perpendicular to range in flight direction.

2DSSAR can be easily configured to reconstruct images of different sizes, from
small to large scale ones. Table 1 shows SAR sensor data and reconstructed image
sizes for small, medium, and large scale. We are mainly focused in benchmarking
with large scale image reconstruction. However, other scales are used for compari-
son reasons.
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6 Benchmarking Shared Memory Systems

Shared memory systems consist of multiple processor cores that share main
memory and use it for communication. They are usually implemented either with
a single globally shared memory or with a physically distributed one. The first
implementation provides uniform memory access (UMA) for all the cores in the
system, whereas in the second one access to memory is non-uniform (NUMA).
This means that different cores might have different latencies when accessing
main memory, especially when they reside in separate sockets or when they access
remote memory that is directly connected to another socket. Cache coherent shared
memory systems can further accelerate communication, as data does not have to be
exchanged through main memory, but can be exchanged through shared caches at
much lower latencies.

6.1 Optimizations for Shared Memory Multiprocessing

The basic computation construct in shared memory systems is the thread. All
threads in each process share the same address space and communicate with each
other by writing and reading shared variables to and from this shared memory
region. OpenMP is used to create, manage, synchronize, and destroy threads in
2DSSAR. For most processing steps in SDG and SSP a parallel region is created to
distribute work (loop iterations) over multiple threads. As soon as a parallel region
is entered, new threads are forked and joined again in the end of the region. To avoid
memory bottlenecks in UMA systems, cache pre-fetching is used to hide memory
latencies for application parts that have regular access patterns. For large scale image
reconstruction the complete data set does not fit in cache. Blocking technique is
used to divide data into smaller parts that fit in cache. Memory accesses in NUMA
systems are scattered to avoid memory latencies. Furthermore, data partitioning
schemes that make sure that most frequent accesses take place in local memory are
used to reduce remote memory accesses. Main techniques used in these schemes
are thread pinning and first touch policy. Thread pinning technique binds threads
to specific cores in order to reduce possible thread migrations that might bring
additional remote memory accesses. First touch policy assures that each thread
initializing a data object gets the page associated with that data item in the local
memory of the processor it is executing on. Hybrid programming is also considered
to help in keeping most frequently accessed data in local memory. This is achieved
by combining MPI and OpenMP to assure that each multi-core processor accesses
local memory the whole time. Threads in each core share only local memory and
not memory that is associated with another multi-core processor on another socket
of the system.
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Fig. 4 SAR image reconstruction on ccNUMA platform

6.2 Obtained Results

The platform used for benchmarking purposes is a dual-socket cache coherent
NUMA system integrating two Intel Nehalem chip-multi processors operating at
2.93 GHz. Each processor has 6 cores that access directly 18 GB of main memory
through an integrated memory controller. This results in a total of 36 GB shared
memory. This is a very important feature for 2DSSAR that uses large data sets when
reconstructing large scale images. This platform uses special purpose hardware and
cache coherency protocols to provide cache coherency across shared memory.

The optimizations discussed in Sect. 6.1 are applied to 2DSSAR, which is first
multithreaded using OpenMP pragmas and then parallelized using message passing
paradigm with MPI. As shown in Fig. 4, 2DSSAR performs a bit faster when using
MPI because distributed memory programming reduces remote memory accesses
by having each process sending and receiving only the required amount of data.
The only drawback of distributed memory programming is that it requires a lot of
programming efforts to achieve desired level of scalability. Hybrid programming
combines the efficiency of MPI with the flexibility of OpenMP. MPI is used in
2DSSAR to create and synchronize processes for each socket in the platform (two in
this case) and OpenMP is used to manage a number of threads equal to the number
of cores in each socket (six in this case). This is much easier to be programmed
and it provides comparable performance to other approaches. Indeed, results show
that the hybrid version of 2DSSAR performs the best when using all 12 cores in
the platform. Results also show that this application can be easily programmed and
scaled for shared memory multiprocessing.
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7 Benchmarking Distributed Memory Systems

In distributed memory systems, memory is distributed among computing nodes
to fulfill bandwidth requirements of many processor cores with acceptable access
latency times. Since memory is distributed, the address space is separated in
many private address spaces that can be accessed only by one specific node.
Hence, communication between nodes takes place by exchanging messages over
the network that interconnects them. Communication inside each node takes place
over memory that is shared among processor cores.

7.1 Optimizations for Distributed Memory Multiprocessing

The MPI version of 2DSSAR used to benchmark the ccNUMA platform is further
optimized for execution on distributed memory systems. The 2-dimensional SAR
data set is initially distributed along various processes by chunks of rows. Then,
some processing steps of 2DSSAR are optimized so that they can be executed
in processes without having to exchange data. This allows concurrent execution
of those steps. Nevertheless, there are also some steps that require inter-process
communication. Such steps involve FFT-shift, transpose, and reduction operations.

The FFT-shift operation swaps first and third quadrants, but also second and
fourth quadrants of the 2-dimensional data. In a peer-to-peer communication
pattern, processes that have data from first and second quadrants exchange data
with processes that have data from third and fourth quadrants. This communication
pattern is implemented using non-blocking send and receive MPI functions that
enable overlapping of communications and computations among various processes.
The only drawback of such an approach is that additional buffering memory is
needed to store data being exchanged. Figure 5 depicts the new communication
pattern of the distributed FFT-shift.

Communications are overlapped with computations in transpose operations too.
In this case an all-to-all communication pattern and a horizontal and vertical data
tiling is needed. Diagonal tiles do not have to be moved, they are simply transposed
by the respective process. Other tiles are sent, received, and buffered in a non-
blocking way and then finally transposed by the destination process. Figure 6
illustrates the overlapping of the transposition operation with the communication.
As shown in Fig. 7, the communication pattern is now an all-to-all one.

After the interpolation loop, overlapped regions between neighbor chunks of
rows have to be reduced. A collective reduction operation is very expensive in
this case because the amount of overlapped regions is quite small compared to the
complete data. A local reduction between neighbor processes is implemented to
reduce only overlapped rows and not the whole 2-dimensional data. The reduction
is scheduled in an ordered way so that the first process sends data to the second
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Fig. 5 Inter-process communication and swapping in the FFT-shift operation

process, which accumulates new values with old ones and sends results back to the
first process (Fig. 8).

7.2 Obtained Results

Benchmarking results are obtained on the Nehalem Cluster at HLRS Stuttgart.
This cluster is composed of 700 NEC HPC-144 Rb-1 Server compute nodes that
are interconnected via 24 leaf and 6 backbone voltaire grid director (VGD 4036)
switches in a double data rate Infiniband network. In this fat-tree topology, each
leaf switch interconnects 30 nodes with each backbone switch through bidirectional
links. Each switch provides 36 quad-data rate ports with 40 GB/s throughput.
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Each compute node is a ccNUMA system composed of two quad-core Intel Xeon
X5560 CPUs that support 8 threads in simultaneous multithreading and have an
8 MB L3 shared cache. The integrated memory controller communicates with
memory at 1,333 MHz offering an aggregate bandwidth of 32 GB/s. Each core
normally operates at 2.8 GHz, but in Turbo mode it goes up to 3.2 GHz.

The optimizations discussed in Sect. 7.1 are implemented in all three versions of
2DSSAR that are used to benchmark distributed memory systems. Obtained results
are shown for each of them in Fig. 9. With the pure MPI version of 2DSSAR the
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most efficient speedup factor of 23.7 is obtained when using 8 cluster nodes. With
this speedup factor that represents 37 % of the theoretical linear speedup the time
needed for large scale image reconstruction is reduced from 10 min and 39 to 26 s.
This time is reduced to 20 s when using 16 nodes, but the speedup factor of 32 now
represents only 25 % of the theoretical linear speedup. This shows that even though
higher speedup values are obtained, the scalability of the application when using
more than eight nodes is getting lower. The reason for this is the amount of inter-
process communications that keeps rising as the number of processes increases.

Unfortunately this is also true for the Hybrid (MPI C OpenMP) version. Even
though it performs a little better than the MPI version, the application scalability
is not at the desired levels. Elapsed time on 8 nodes is reduced to 21.5 s giving the
most efficient speedup factor of 27, which represents 42 % of the theoretical linear
speedup. On 16 nodes, elapsed time is further reduced to 18 s, but the speedup factor
of 32.3 represents only 25.2 % of the theoretical linear speedup.

In order to use the distributed memory Nehalem Cluster in a more efficient way,
a pipelined version of 2DSSAR is implemented. This pipelined version exploits a
specific feature of the iterative image reconstruction scenario, in which multiple
images get processed in the long run. It is named “Pipelining” because different
image reconstructions are pipelined along different cluster nodes. This technique
is suitable to be used in distributed memory environments with multiple nodes
that have enough memory resources to accommodate the complete required data
set. Multiple processes communicating via message passing are distributed along
different nodes, but the parallel execution inside each node is selected to be done by
OpenMP threads, since the hybrid implementation showed a slightly better parallel
performance than the pure MPI one.



150 F. Kraja et al.

Fig. 9 SAR image reconstruction on Nehalem Cluster HLRS

By having each node processing a single image, the time spent for inter-node
communication is reduced. It might take some time to output the first image in
pipelined 2DSSAR, but then other images are generated much faster. The number of
images processed in one round depends on the number of nodes used in the cluster.
As shown in Fig. 9, the profit of using pipelining starts to become visible when
using more than four nodes. As the number of images that have to be reconstructed
increases, the number of processes and the number of nodes being used increases
too. More important is that obtained parallel performance increases too. For the
pipelined 2DSSAR, the most efficient speedup factor is also the highest one, which
is obtained when using 16 nodes. To summarize, a speedup factor of 60 is obtained
by using 128 cores in 16 nodes of Nehalem Cluster and the average elapsed time per
image reconstruction is reduced to 10.7 s. This means that the distributed memory
system is used with an efficiency of 47 %.

8 Benchmarking Heterogeneous CPU/GPU Systems

Heterogeneous CPU/GPU systems are taken into consideration because GPUs
offer higher computational power and bandwidth capacity for specific applications
that can profit from their architectural features. Performance of data-intensive
applications never scales linearly on many-core CPUs due to constraints in memory
bandwidth. On the other side, GPUs are considered data throughput processors with
much more favorable computational power to bandwidth ratio. GPUs can deliver
higher computational power for parallel workloads. One of the main drawbacks
of heterogeneous CPU/GPU computing is the throughput bottleneck in the PCI
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Express (PCIe) interconnection between host (CPU) and device (GPU). Frequent
and unnecessary data movements between host and devices should be minimal, but
if data does not fit into GPU memory such movements cannot be avoided. It is
sometimes necessary to create optimal communication patterns that overlap with
computations on both CPU and GPU.

The most interesting feature that makes heterogeneous systems suitable for high
performance computing is that it combines two different computing technologies
that differ in design philosophy. CPUs integrate sophisticated control logic and
large cache memories to increase instructions throughput and hide memory access
latencies. On the other side, GPUs are designed to have more chip area for floating-
point calculations and very high memory bandwidth. Therefore, CPUs are suitable
for optimized sequential and coarse grained parallel code, whereas GPUs for fine
grained parallel code.

8.1 Optimizations for Heterogeneous CPU/GPU Processing

Heterogeneous computing is very beneficial to SAR processing and especially to
2DSSAR. However, some additional optimizations are needed to efficiently use
these features to improve application performance. A deep understanding of CPU
and GPU computing is needed. Moreover, the system layout should be analyzed as
a first step towards efficient resource usage. Recent heterogeneous systems combine
in a single platform one ccNUMA CPU subsystem and one GPU accelerator
module. In general, the number of CPUs in the ccNUMA system is equal to the
number of GPUs in the accelerator module, so that each CPU is interfaced directly
to one GPU. The detailed architecture of the benchmarked platform in shown in
Fig. 10. The ccNUMA subsystem integrates two quad-core Intel Nehalem CPUs
running at 2.13 GHz. Each CPU has direct access to 6 GB of memory, building
12 GB of main memory, which is shared by 8 cores in the ccNUMA subsystem. The
accelerator module is composed of 2 GPU boards, each containing an NVIDIA Tesla
GPU, which accesses 6 GB of GPU global memory with a memory bandwidth of
144 GB/s (4.5 times higher than CPU memory bandwidth). Most limiting parameter
in the whole platform is the GPU PCIe bandwidth that can reach only up to 8 GB/s.

Optimizations are initially applied to 2DSSAR to improve communication and
memory access patterns in the heterogeneous platform. Remote memory accesses
should be reduced in the ccNUMA subsystem and transfers between GPU memory
and remote CPU memory (red line) should be avoided because they take longer
than local transfers (green line). This problem can be partially solved by pinning
threads that manage GPU contexts on different CPUs, so that they can use separate
CPU memories. If only one GPU is used, remote accesses might occur only when
CPU threads initialize data on remote memory and same data has to be copied
to GPU memory. If both GPUs are used, additional remote accesses might occur
when data has to be copied from one device to the other. Furthermore, the limiting
PCIe bandwidth becomes a bottleneck especially when the data set does not fit
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Fig. 10 Heterogeneous CPU/GPU architecture

into GPU memory. That is actually the case for large scale image reconstruction
in 2DSSAR. Specific communication patterns have to be implemented to avoid
additional latencies in this case.

In order to be able to run 2DSSAR on the accelerator module, it is first ported
to CUDA C programming language. A 2-dimensional tiling technique is used for
workload distribution. Each tile is addressed by block-id and each thread in each
tile is addresses by thread-id. Indeed, this tiling technique is easily implemented
for most processing steps of 2DSSAR. Other steps that involve FFT transforms
make use of cuFFT [8] library functions. cuFFT implements batch execution for
doing multiple one-dimensional transforms in parallel and hides underlying details
of implementation to the programmer.

CUDA C lacks some operations on complex data that we have implemented using
basic operations on float data. Some specific atomic operations on complex data are
implemented by using atomic compare and swap operations on float data, which
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means that a preliminary extraction of real and imaginary parts of the complex value
is needed. Atomic operations are used to avoid race conditions in the interpolation
loop. They are mostly used to prevent race conditions between different threads
within the same thread block in shared memory and just in a few cases in global
memory. Performance is not impacted so much because shared memory is quite fast
and private to each block. This means that atomic operations on different blocks do
not interfere with each other and are executed in parallel.

Transcendental instructions such as sine, cosine, and square root are used for
better performance since they execute on Special Function Units (SFUs). Each
streaming multiprocessor contains four SFUs with separated pipeline from dispatch
unit. This improves performance since dispatch unit issues instructions to other
execution units while SFUs are occupied.

8.2 Obtained Results

Different incremental versions are implemented, beginning with small and large
scale image reconstruction, going to a version that uses both CPU and GPU for SAR
processing, and concluding with the version that uses multiple GPU devices. For
small scale image reconstruction, data is copied initially to GPU memory and copied
back to main memory after it has finished being processed by the GPU device. Since
the data set fits into GPU memory all processing steps are executed consecutively
with no communications in between. However, for large scale image reconstruction
the data set does not fit into GPU memory, especially in the interpolation loop. The
iterations of this loop are divided in three parts that are executed as separate kernels
on the GPU. Each kernel now needs only one third of data on GPU memory. Only
the first data movement from the CPU to the GPU is expensive. Other movements
do not impact performance since they are overlapped with computations.

Figure 11 shows results obtained on the benchmarked heterogeneous platform.
Speedups are calculated by referencing the best sequential execution on a single
CPU core. The best sequential code is also vectorized for optimal execution on
CPU SIMD units. First group of results shows the CPU Sequential reference
speedup. Different image scales are analyzed for each version of 2DSSAR. Second
group (column) shows speedups obtained on the ccNUMA subsystem with eight
threads on eight cores. These speedup values are lower than the ones shown in
Fig. 4 due to the impact of vectorization and other sequential optimizations on the
parallelism of the application. Third group shows speedups obtained with 16 threads
in simultaneous multithreading, which improves performance just a bit. Memory
bandwidth constraints in the ccNUMA subsystem give the difference in obtained
speedups for small scale and large scale image reconstruction.

Results on the complete heterogeneous platform start from the fourth group
(marked GPU) that shows speedups obtained when using only one GPU for SAR
processing. In this case the CPU is used only for managerial purposes. There is again
a higher speedup for small scales, but now the difference is quite small. All results
on the GPU show higher speedups than the CPU ones. They become even higher
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Fig. 11 SAR image reconstruction on the heterogeneous CPU/GPU platform

when using also the CPU for SAR processing (group GPU C CPU). However, the
resulting speedup values are not near the sum of individual CPU and GPU speedups
due to communications needed between host and device.

Last two groups of results show speedups obtained when using both GPUs on
the platform. The group of results marked 2 GPUs depicts speedups obtained when
distributing the workload of a single image reconstruction on two devices. Due to
high communication overheads 2DSSAR does not scale very well in this case. In
some processing steps, it is necessary to exchange data between GPU memories.
Such exchanges give additional overhead as they take place through main memory.
This overhead impacts performance quite a lot, especially for small scale image
reconstruction that does not present too much computations. The group marked
2 GPUs Pipelined depicts speedups obtained when reconstructing one image in
each device. The latter case offers the best performance of all, especially for large
scale image reconstruction. Better performance is obtained because there is no
data exchange between devices and each device processes independently a separate
image. Each of them receives SAR sensor data from the CPU and returns a separate
reconstructed SAR image.

9 Conclusions

Obtained benchmarking results form a helping asset for spacecraft computing
platform designers, especially for those who deal with designs of future space
applications that will need high performance computing for on-board process-



Designing Spacecraft High Performance Computing Architectures 155

ing. Each benchmarked platform gives an improved parallel performance within
expected values. Small and mid-sized shared memory platforms are sometimes
insufficient to provide the required performance level. Large scale distributed
memory platforms can be considered as an alternative solution for the required
performance, but the efficiency rate in terms of power consumption, size and heat
dissipation goes down. Moreover, additional efforts are needed to parallelize the
application so that expected performance objectives can be achieved. Last but not
least an important alternative is the heterogeneous CPU/GPU platform that offers
much better performance than shared memory one without wasting resources and
compromising system efficiency. The final recommendation for space applications
with similar processing steps to 2DSSAR would be to use heterogeneous CPU/GPU
systems for on-board processing. Future CPUs with wide SIMD units or even
integrated GPUs would also be interesting for such applications.
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Requirements Engineering for Computational
Seismology Software
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Abstract Many seismological software applications are developed to support for
instance studies of earthquake scenarios, seismic exploration surveys or hazard
analysis. Most of these applications were developed in isolation with focus on
algorithmic performance, and less emphasized on software’s comprehensibility
and maintainability. However, requirements engineering practices, which help to
describe the applications from a high level point of view, are mostly ignored. As a
result, trying to reuse these algorithms in larger systems, developers face difficulties
in comprehending, modifying, adapting and integrating the applications. This paper
presents our work of introducing the concepts of requirements engineering to
seismological research projects. Requirements describe what a software system is
expected to do and to be. They are used to communicate between scientists from
different domains (e.g. seismology and computer science) to achieve a common
understanding for developing the software. Requirements also provide a basis for
other development activities, such as software comprehension, software design,
implementation and maintenance. We present a model-based requirements engi-
neering approach that incorporates abstractions and notations from the seismology
domain. We describe two requirements patterns, which facilitate the identification
and specification of requirements in seismological software development. We use a
dynamic rupture example to illustrate how seismologists can apply our approach.
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1 Introduction

Software applications are developed for different areas of computational seismology
such as earthquake scenarios, volcanic processes, or seismic exploration surveys.
Moreover, they are widely developed and used for hazard analysis and risk
management. High performance computing (HPC) is also incorporated into many
seismological applications, to efficiently handle huge data volumes and intensive
computations.

In the past, such software has usually been developed ad hoc, often in the context
of implementing novel numerical methods and improving their performance. Since
the focus is on answering scientific or numerical questions, little effort is put into
software’s comprehensibility, modularity, or changeability. For example, software
does not have clear or complete documentation. It is difficult to comprehend the
software [14]. Moreover, the functional modules are highly coupled and modules
cannot be understood easily in isolation. As a result, changes or extensions to
functionality are difficult to perform. Finally, source code has been recycled (cloned,
modified and reused) repeatedly over decades, often exceeding their original scope
and potentially leading to a plethora of error-prone code. This software devel-
opment style has served the seismological community for many years. However,
with the increasing sophistication of programming languages, algorithmic libraries
and high-performance computing, the quality demands on software are increas-
ing tremendously. On the other hand, large-scale interdisciplinary collaborations
between seismological software projects and high performance computing projects,
along with other scientific projects, emerge rapidly. This requires well-established
common understanding of the software to better support collaborative development.

Seismological software has many requirements such as a particular numerical
method to be developed and required precision of calculation. The requirements
also cover expected functionalities of computation control and user interaction.
We claim that these requirements need to be clearly elicited and well managed.
Requirements correspond to sophisticated code representing physical theories. Also
they provide a baseline for designing, implementing, validating and maintaining
software. Clearly defined requirements are analyzed to help decompose the system
based on functionalities and choose suitable APIs and platforms. Furthermore,
specified requirements refine the ideas from project partners and need to be agreed
upon.

However, during seismological software development, traditional requirements
engineering practices are mostly ignored. Requirements are often specified implic-
itly or unclearly without taking much account of future usage. Due to lack of time
and good understanding of requirements engineering concepts [8], state-of-the-art
requirements engineering techniques and tools are difficult to be applied without
proper adjustments [15]. Methodologies are required to provide the flexibility to
document requirements with the possibility of refinement and extensibility [1].
Documented requirements are also needed to cope with requirements evolution
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over time and traceability links between requirements and other artifacts involved
in software development, such as source code and test cases.

To meet these needs, we introduce a model-based requirements engineering
approach targeted at the computational seismology domain. This work is built on
our existing research work about requirements engineering for scientific computing
projects [15, 16]. The approach is based on a meta-model that defines domain-
specific abstractions, which are systematically extracted by semi-automatically
analyzing literature from the seismology domain. To further facilitate capturing
requirements productively, we also identify requirements patterns that reuse existing
knowledge of seismology software.

The methodology presents two main advantages for seismologists. First, it can
be easily understood and applied in computational seismology projects. Second,
it draws attention to requirements engineering, which has historically attracted
little interest in seismological projects but in fact is crucial to seismology software
development. Finally, it is applicable and practical in seismology projects.

The paper is structured as follows: In Sect. 2, we present our model-based
approach and describe how to create a requirements meta-model tailored for
computational seismology. The meta-model, and two patterns for requirements
elicitation and specification are presented in Sect. 3. In Sect. 4 we use a dynamic
rupture example illustrate the applicability and practicability of the approach. We
briefly compare our approach to other techniques in Sect. 5. Section 6 presents
conclusions and future work.

2 Approach

To facilitate requirements engineering for computational seismology, we extend the
meta-model proposed in our previous research work of requirements engineering for
scientific computing projects. In this section, we present the basic idea of a model-
based requirements engineering approach and how the meta-model is extended
using domain knowledge.

2.1 Model-Based

A model describes a subject in a simpler and more accessible way to support human
understanding and reasoning [10]. It is also used to communicate understanding. In
software engineering, we construct models to describe the system under construc-
tion. Various modeling languages and notations are used to describe a system from
different perspectives, such as describing the functions of the system, the interaction
between users and the system and the underlying structure of the system. A meta-
model defines the syntax of how to create a model.
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In requirements modeling, requirements are expressed in terms of models. A
requirements model is at a higher level of abstraction than a textual requirements
specification. A model matches more closely the entities, relationships, behavior and
constraints of the problem to solve [3]. It can better deal with the high complexity
and frequent change in scientific projects. Models can support reusability and exten-
sibility. For example, a project-specific requirements model is created by reusing
common parts of an existing model and specializing generic model elements.

We define a meta-model (introduced in [15, 16]) describing artifact types and
their relations for modeling requirements in scientific computing projects. This
makes modeling less complicated and reduces the learning effort for scientists.
It also facilitates the communication across the domain boundary between multi-
disciplines, such as the scientific computing domain and the software engineering
domain. Aligning to standard modeling languages, it promotes model-driven devel-
opment in scientific computing projects.

2.2 Domain Knowledge

Domain knowledge plays an important role in eliciting requirements of high quality
[12]. We use domain literature and ontology to extend the defined meta-model to
a sub-domain of science. In computer science, ontologies are frequently used to
describe an application/problem domain. Ontology consists of concepts specific
to a particular domain and relations between these concepts. Ontologies are usually
organized in taxonomies [7]. They provide a commonly agreed understanding of
a domain, which may be reused and shared across applications and groups [2, 6].
Meta-models are closely related to ontologies. Both are often used to describe and
analyze the relations between concepts. To reuse the large body of existing domain
knowledge presents as text, we perform text analysis on domain literature to extract
ontologies, in a semi-automatic fashion utilizing natural language processing. Later
the extracted ontology is transformed to a requirements meta-model for a particular
sub-domain.

Figure 1 shows the steps of performing text analysis to extend the meta-model
for computational seismology.

• To prepare the corpus for text analysis, we select literature of the SPECFEM3D
software [4], the VERCE project [21], the SeisSol software [11] and other
seismology software projects. In particular, we focus on collecting user manuals
and project reports as the input corpus, since they both contain information about
the software’s functions and properties.

• A top-level ontology is created based on defined classes from the introduced
meta-model (model elements) and their associations. The top-level ontology will
be populated by analyzing the given corpus of the computational seismology
literature.
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Fig. 2 Visualization of a part of the populated ontology

• We apply natural language processing to extract knowledge from the corpus.
The concepts within the corpus are extracted by linguistic pre-processing
(tokenization, POS tagging etc.), followed by named entity recognition [18].
Named entity recognition identifies the key terms in the text and relates to the top-
level ontology. This is carried out using rule-based grammar or machine learning
techniques. For instance, “partition meshes” in the text is an extracted concept,
which is a required process of a seismology software system. Relations between
concepts are also detected.

• A populated ontology is generated by natural language processing, which con-
sists of extracted concepts from the corpus and detected relations (see Fig. 2). The
populated ontology is transformed to an extended meta-model for computational
seismology. The individuals in the ontology are generalized at an appropriate
level of abstraction and added in the meta-model. Domain experts review the
populated ontology and the extended meta-model to assure its correctness.

• Occasionally, similar contexts in the corpus are identified. We summarize
information about the concepts and relations in those contexts. We analyze and
structure such information into requirements patterns [17]. Therefore, they can
be used to perform requirements engineering tasks in similar contexts across
seismology projects. The patterns are compliant with the extended meta-model.
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We also interview developers of seismology software. They validate the patterns’
understandability, and whether the patterns are suggestive in their requirements
engineering practices. They also suggest what might be missing in the proposed
pattern.

3 Customization for Computational Seismology

We tailor the requirements modeling approach to meet needs in the computational
seismology domain. Therefore, requirements engineering can be practiced in the
domain with greater cognitive effectiveness. Common domain knowledge stimu-
lates eliciting hidden issues that are actually important to software development.
This section presents the resulting extended meta-model by applying natural
language processing. We also introduce the identified requirements patterns that
capture existing knowledge of requirements eliciting for seismological software.

In order to help the readers to easily understand the (meta-) models and patterns,
we first introduce how they are presented.

Model Presentation In the remaining parts of this paper, we use Unified Modeling
Language (UML) class diagrams to illustrate the essence of requirements models
and patterns, i.e. involved requirements (nodes) and how they are related (lines).
In UML, a hollow diamond shape graphically represents a “has a” relationship.
A hollow triangle shape represents a generalization relationship (“is a”). Each
requirement in the class diagrams can have a textual description attribute to
indicate detailed information of each requirement.

Pattern Presentation Each pattern is organized in parts, namely, what is the name
of the pattern, the pattern can be used in what kind of activities, who are the
stakeholders1 of the requirements, what is the typical problem faced by the
stakeholders, what are the forces behind the emergency of the pattern, what is
the solution to solve the mentioned problem and balance the forces, and finally
how to apply the solution.

3.1 Extended Meta-model

The extended meta-model consists of scientific knowledge modeling and require-
ments modeling. We detail each part and describe how elements from each part
correlate with each other.

1A person with an interest or concern in a requirement
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3.1.1 Scientific Knowledge Modeling

Typically in computational seismology, a seismology-related ScientificProblem is
first defined (see Fig. 3). Then Mathematical/GeophysicalModels are created to
represent the scientific problem in geophysical models and mathematical terms.
In the mathematical modeling process, governing principles and physical laws are
determined and factors, which influence the scientific problem, are identified. In
order to obtain computational solutions, NumericalMethods for a mathematical/-
geophysical model are applied to solve the problem. Mathematical/geophysical
models and numerical methods are created on Assumptions.

As an example, we want to solve the scientific problem, simulating seismic
wave propagation at the local or regional scale. The problem can be represented
by a mathematical/geophysical model, a three-dimensional elastic material volume
model. This problem can be solved by the spectral element method (SEM) with
explicit time integration.

3.1.2 Requirements Modeling

Figure 4 depicts the requirements modeling part. Features describe desirable
properties, qualities or characteristics that are end-user visible and represent an
abstract view of the expected solution. We model features to perform a preliminary
acquisition step for requirements engineering [9]. For instance, a feature is “a
fast and accurate simulation of seismic wave propagation on clusters of GPU
graphics cards”. A feature can be further refined and be detailed into the realizing
Requirements.

An influential factor in scientific computing software development is Hardware.
To better utilize the computation power, scientific computing software applications
are often hardware dependent. This is especially true for supercomputing applica-
tions. Another key element associated with feature is Interface. An interface can
either be a software interface or a user interface. The former provides an interface
for external libraries and the latter supports end-user interaction with the software
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itself. Besides the above mentioned limitations, any other Constraints that will limit
the developer’s design choices, such as the implementation language, have to be
identified explicitly as well.

Subclasses of requirement are shown in Fig. 5. Requirement has subclasses
of process and performance. Processes specify the functions of processing data,
including the algorithm or mathematical expression of each process. A process
can be parallel, to perform high performance computing tasks, in contrast to a
sequential process. A process can precede or succeed another process. Typical
processes involved in computational seismology software are InputDataReading,
ResultOutput, MeshCreation, Solver, Misfit Calculation, ModelUpdate, Pre-
and Post-processing.

DataDefinition defines the data to be processed. It contains information about
for example data type, format, range and accuracy. Data such as SeismicSource,
SyntheticSeismogram, StationLocation, Mesh and ControlParameter often
need to be defined. This information is used by the process to better manage the data
flow. Furthermore, it is also beneficial for data distribution in parallel computing.
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There are also subclasses of process to satisfy the needs for scientific computing
projects.

Referring back to the example, we can identify the data flow as “input the
station location, computational mesh and the parameters describing the seismic
source and earth, output the synthetic seismograms”. The data definition for a given
station location is specified as “station latitude and longitude should be provided
in geographical coordinates. The width of the station label should be no more
than 32 characters, and the network label should be no more than 8 characters”.
Other involved data are also specified accordingly. We define a requirement of
the type process as “given seismic waves should be simulated numerically by the
spectral element method”. This requirement can be further refined to steps of the
computation process, e.g. mesh creation and solving the wave equation.

3.1.3 Integration

So far, we have already presented the two parts of the proposed model, the scientific
knowledge part and the requirements part, respectively. In this section, we discuss
how these two parts are integrated. Figure 6 shows links between the two parts.
A Feature is influenced by a ScientificProblem. Desired qualities of the problem
solving procedure are defined in features. To detail the features, Requirements
are created to realize suitable NumericalMethods for the corresponding Mathe-
matical/GeophysicalModel, which is described by DataDefinition. Links within
each part and links between the two parts establish the traceability support of this
meta-model.

3.2 Identified Patterns

Requirements patterns are used to productively capture desired functionalities and
properties of a system by reusing knowledge and can be refined with design and
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implementation details [13, 22]. We identify requirements patterns targeted at the
seismology domain through the mentioned text analysis process and manual review.
Existing knowledge of eliciting and managing requirements for seismological
software is reused. Patterns stimulate the awareness of issues, which might be
hidden but are actually critical to seismological software development. Therefore,
requirements can be easily established and they tend to be complete. The patterns are
subjected to the needs of seismological software by providing generic abstractions
for specialization as per requirements need and pattern-based extension of existing
requirements.

In the following, we present two commonly used requirements patterns for
seismology software applications, namely, the forward simulation pattern and the
data access pattern. It is a revised version of the patterns we described in [17].

3.2.1 Forward Simulation Pattern

Forward simulation (forward modeling) in seismology is a numerical computation
process of theoretical or synthetic seismograms, for a given geological model of the
subsurface. Forward simulation is frequently applied in computational seismology
systems. Although many forward simulation techniques are based on different
numerical methods, their structures are similar to organize into a pattern.

Name: Forward Simulation Pattern
Activity: The pattern can be used during requirements elicitation and specifica-

tion, when forward simulation needs to be developed in a system. For example:

• During requirements elicitation, stakeholders need a starting point to elaborate
their requirements.

• Requirements specification of forward simulation needs to be logically struc-
tured, to better help stakeholders comprehend the requirements.

Stakeholders: Seismologists, high performance computing experts, software
engineers and risk management organizations.

Problem: How to specify various required elements for a forward simulation
process. A forward simulation process has many requirements and some might be
forgotten at an initial project stage or lead to misunderstanding between various
stakeholders. Stakeholders need to be able to easily communicate and exchange
their expertise, to achieve a common agreement on the requirements.

Forces:

• Various types of data, which describe seismic waves and earth properties, should
be given as input data for the forward simulation. Data types are application-
specific, as well as how data is represented.

• The complexity of numerical calculation vs. easy-to-control: Numerical calcu-
lations in seismology are often complex and involve sophisticated numerical
operations. Numerical methods that are used in forward simulation influence
calculation and its results greatly. A calculation procedure often needs to be
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adjusted by users to achieve specific numerical requirements based on the
seismological problem to solve and the required numerical precision. Users also
expect to easily control the calculation to output required types of data.

• Representation of output data must be well defined, for example output according
to a data format standard.

Solution: An aggregate of input data should be given to a forward simulation
solver. The pattern provides generic types of data that are commonly required in
forward simulation input. Special types of data for intended applications can be
specialized or extended based on the pattern. Computation parameters should be
specified to control the numerical calculation. For example, the time step of the
simulation and the order of accuracy of the numerical method should be set. The
pattern also indicates that stakeholders should agree on the requirements of output
data.

Figure 7 shows elements and their relations of the forward simulation pattern
in a Unified Modeling Language (UML) class diagram. The InputData for a
forward simulation Solver usually consists of StationLocation, SeismicSource,
GeophysicalModel, and ComputationalMesh. To perform parallel computing,
the computational mesh needs to be partitioned. AttenuationModel and Velocity-
Model are two common types of geophysical models used in a forward simulation
process. A Solver does main calculation for the forward simulation based on a
specific numerical method and outputs calculation results. ComputationParam-
eter controls the solver. The most common output data is SyntheticSeismogram.
Meanwhile, the Metadata, for instance about the synthetic seismogram format or
about the location information, is also generated.



168 Y. Li et al.

Referring to the extended meta-model (Sect. 3.1), the elements of the pattern
are of defined types in the meta-model. We use  stereotype � to indicate a
type of a specialized element. It is worth noting that the geophysical model in
the pattern is of the type data definition. It denotes the data that describe the
mathematical/geophysical model based on the scientific knowledge.

Application: This pattern is applied by starting with eliciting and specifying
desired data to input. Stakeholders select a geophysical model and specify types of
computational meshes they need. Requirements about seismic source and seismic
station locations also need to be specified. Other types of input data can be added
to the data aggregate. Subtypes of data can be specialized based on the generic
types. Stakeholders need to decide which numerical method to use, and what
functionalities of the solver need to be controlled by users. In the end, stakeholders
agree on what output data needs to be produced, for example, whether an animation
of seismic wave propagation is desired. By applying this pattern, a requirements
model or a requirements specification for forward simulation is created.

3.2.2 Data Access Pattern

Data access, data mining, data transfer and data storage are important issues in
seismology software projects. Seismology related data are stored in different media
and in multiple locations. Sets of compatible data from worldwide stations and
networks over time are collected in data facilities (e.g. IRIS and ORFEUS). These
data are crucial to providing reliable results in seismology applications.

Name: Data Access Pattern
Activity: The pattern can be used during requirements elicitation and specifica-

tion activities, when data needs to be accessed, especially to be accessed externally.
Stakeholders: Seismologists, high performance computing experts, software

engineers, database experts and risk management organizations.

Problem: How to access different types of data in a seismology software
application. Sometimes, developers face implementation difficulties that some data
cannot be accessed easily. Therefore, they might need to redesign the software
architecture to incorporate such issues. This problem should be mitigated by
considering constraints of access data during requirements elicitation.

Forces:

• Stakeholders might want to integrate data access into a system. However,
different types of data have different interfaces and regulations for access.

• Users should be able to interactively explore the observed and synthetic seismo-
grams.

• Data should be able to be transferred between HPC facilities to enable simulation
and post-process the calculated results.

• Data formats, storage and exchange standards are not yet fully established or not
well applied in the seismology community.
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Solution: For each type of data object to access, interfaces to the data access
should be specified explicitly and individually. Figure 8 shows the UML class
diagram for the data access pattern. DataObject can be required from interfaces
of Facilities. On the other hand, DataObject can also provide interfaces for
access. For instance, an external visualization tool can visualize output data of a
system by means of the provided data access. Facilities such as MeshTool, Pre-
processingTool, Post-processingTool and HPCFacility often provide or require
access to data objects. Sometimes, it is necessary to interact with data through a
UserInterface. For example, a user needs to select a certain region of earth via a
user interface, in order to generate a computational mesh. Data can be stored or
retrieved from different types of Data Store.

Application: Users apply the pattern to specify a type of data object that requires
external access from facilities outside or provides access to the outside. For example,
computational meshes of required types might need to be generated by certain
external meshing tools. Stakeholders also need to decide whether a user interface is
required or data needs to be stored and in what form. Constraints of access need to
be specified clearly. For instance, licensing issues of external tools, access protocols
to HPC systems need to be defined.

3.3 Implementation

We have implemented a prototypical tool of requirements modeling tailored for
seismological software development. The tool is developed as a set of Eclipse plug-
ins. It is based on the extended meta-model. Users can create a requirements model
instance for a seismology project. This instance contains model elements of various
types that are predefined in the meta-model. The contained model elements can
be linked according to the predefined relationships between types. The tool also
supports utilizing the identified patterns.
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Fig. 9 Modeling requirements for the SEM solver in the editor

Figure 9 illustrates modeling requirements for SEM solver in the editor of our
tool. A requirement of the solver type, “the solver should simulate wave propagation
with specified source and geometry by realizing SEM”, is created. Developers
specify its realized numerical method, predecessor and successor. A user interface
should be provided to allow users easily use the SEM solver. Handling data as well
as control parameters for the SEM solver are specified. Developers jump into the
editing page of the hyperlinked elements and detail them.

4 Example Scenario

This section presents an example scenario to illustrate how the extended meta-
model, as well as the identified patterns are applied in a system of dynamic rupture
simulation. Dynamic rupture is a source type of particular interest for earthquake
engineering and seismic hazard assessment [19]. Based on the meta-model, seis-
mologists first quickly brainstorm and organize their scientific knowledge about
dynamic rupture simulation. The scientific problem is combining earthquake rupture
and wave propagation in complex fault geometries. Tetrahedra are used to better
represent the geometrical constrains of a fault2 and a friction law is used to model
initial rupture. The medium is assumed to be isotropic. A high-order discontinuous
Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER)

2A surface along an earthquake rupture is propagating
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time integration method is employed to solve the three-dimensional elastodynamic
equations.

To computationally solve this problem, seismologists want to develop a feature of
simulating dynamic rupture using ADER-DG scheme. They specify the hardware,
on which the simulation runs. They further detail requirements for this feature,
where the two identified patterns are applied to help them specify required elements
productively.

Figure 10 is a simplified class diagram of the requirements for the dynamic
rupture simulation application. The gray elements in the diagram indicate that they
are specified or newly added requirements based on the forward simulation pattern.
The seismic source is now specialized to be a dynamic rupture source type. In
addition to attenuation models and velocity models, the application should also
support background stress models. Furthermore, the geophysical models should
include frictional parameters to represent the status of the earthquake fault. It
should use tetrahedral elements as computational meshes and the given station
locations should be converted to UTM coordinates.3 The simulation of dynamic
rupture prefers a particular solver namely the ADER-DG method in combination
with Upwind Schemes. As for the output, it should generate fault specific output
besides synthetic seismograms. The application should also output metadata that
consists of information about the solver, the input mesh, the seismic source and the
geophysical model.

3Universal Transverse Mercator (UTM) is a geographic coordinate system, which uses a
2-dimensional Cartesian coordinate system to give locations on the surface of the Earth.
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Fig. 11 Graphically creating a requirements model of dynamic rupture in the prototypical tool

The black elements are created employing the data access pattern. The back-
ground stress model needs to be pre-processed via a user interface. The solver
should be able to access an HPC facility to transfer calculation data, where valid
user accounts on the HPC with suitable privilege should be organized. An external
mesh generator should be used to generate the required two- and three-dimensional
meshes. The output data should be stored in HDF 5 files.

Using the tool prototype we introduced in Sect. 3.3, we can also create the
requirements model graphically (see Fig. 11). Each model element (a node) can be
elaborated into details. It takes about 10 min for a developer to create such an initial
model. The model can be further refined based on group review and discussion.
Through the mentioned requirements engineering practice, seismologists have
clearer ideas about what they want for the feature. They are able to create and
specify requirements in an efficient way without much pre-knowledge/training in
requirements engineering. In particular, the requirements elicitation process is more
structured based on the meta-model and patterns. Discussion about issues such as
how to access certain data is carried out to support decision-making on the software
design.

5 Related Work

There are many requirements modeling techniques that help specify and analyze
requirements, such as use case and goal-oriented techniques. These techniques need
to be properly selected to use in the context of the project for different needs. Use
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Case is commonly used to describe a flow of events and the interaction between
the system and the user [5]. However, it is not suitable to capture self-contained
requirements that are not user-interaction based (e.g. a required mathematical
calculation algorithm) and non-functional requirements (e.g. the desired computing
performance and efficiency), which are the majority of the requirements in a seis-
mological software project. Goal-oriented approaches support heuristic, qualitative
or formal reasoning schemes during requirements engineering [20]. Goals provide
the rationale, which provides a high-level view of the system to support decision-
making and help derive low-level details. However, using goal-oriented approaches
requires extensive learning effort, which is less likely to achieve in a seismological
research project, due to time and expertise limitation.

The approach we proposed utilizes domain knowledge to provide a more easy-
acceptable and applicable environment for requirements modeling. In terms of
visual modeling, the requirements can be represented in an UML class diagram.
Therefore, it can be easily implemented using existing technologies. It can also be
transformed to the object model during software design.

6 Conclusion and Future Work

This paper discussed the importance of requirements in seismology software
development and what requirements engineering practices are needed. To address
the problem of missing or incomplete requirements, we introduced a model-
based approach to easily capture and manage requirements. The approach is based
on a customizable meta-model and a semi-automated domain literature analysis
process, to reuse domain and software development knowledge in the computational
seismology domain. We identified two requirements patterns in order to define
requirements in a more efficient and effective manner, by providing structured
knowledge from successful software projects. We have implemented a prototypical
tool to support requirements engineering for computational seismology, based on
the customized meta-model and identified patterns.

We are already working on evaluating the approach in various seismological
projects, to further measure how efficient the approach is in requirements engineer-
ing practices and investigate the quality of created requirements. On the other hand,
we are still improving automation of text analysis by employing more advanced
computational linguistic algorithms and creating more training data. In the future,
we will identify other requirements patterns for different seismological software
applications such as probabilistic seismic hazard assessment tools commonly used
to support earthquake risk management. Another interesting extension of this work
is to provide a catalog that consists of identified patterns of the domain. We will also
adapt the approach in a different scientific domain such as computational physics
and examine its applicability.
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A High-Performance Interactive Computing
Framework for Engineering Applications
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Abstract To harness the potential of advanced computing technologies, efficient
(real time) analysis of large amounts of data is as essential as are front-line
simulations. In order to optimise this process, experts need to be supported by
appropriate tools that allow to interactively guide both the computation and data
exploration of the underlying simulation code. The main challenge is to seamlessly
feed the user requirements back into the simulation. State-of-the-art attempts to
achieve this, have resulted in the insertion of so-called check- and break-points
at fixed places in the code. Depending on the size of the problem, this can still
compromise the benefits of such an attempt, thus, preventing the experience of real
interactive computing. To leverage the concept for a broader scope of applications,
it is essential that a user receives an immediate response from the simulation to
his or her changes. Our generic integration framework, targeted to the needs of
the computational engineering domain, supports distributed computations as well
as on-the-fly visualisation in order to reduce latency and enable a high degree of
interactivity with only minor code modifications. Namely, the regular course of
the simulation coupled to our framework is interrupted in small, cyclic intervals
followed by a check for updates. When new data is received, the simulation restarts
automatically with the updated settings (boundary conditions, simulation parame-
ters, etc.). To obtain rapid, albeit approximate feedback from the simulation in case
of perpetual user interaction, a multi-hierarchical approach is advantageous. Within
several different engineering test cases, we will demonstrate the flexibility and the
effectiveness of our approach.
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Fig. 1 A user guides an often time and memory consuming simulation in order to build a solution
to his/her problem via a graphical user interface

1 Introduction

Simulation of very complex physical phenomena becomes a realistic endeavour with
the latest advances in hardware technologies, sophisticated (numerical) algorithms,
and efficient parallelisation strategies. It consists of modelling a domain of a
physical problem, applying appropriate boundary conditions, and doing numerical
approximation for the governing equations, often with a linear or non-linear system
as outcome. When the system is solved, the result is validated and visualised for
more intuitive interpretations.

All the aforementioned cycles – pre-processing, computation, and post-
processing – can be very time consuming, depending on the discretisation
parameters, e.g., and moreover, are traditionally carried out as a sequence of
steps. The ever-increasing range of specialists in developing engineering fields
has necessitated an interactive approach with the computational model. This
requires real-time feedback from the simulation during program runtime, while
experimenting with different simulation setups. For example, the geometry of the
simulated scene can be modified interactively altogether with boundary conditions
or a distinct feature of the application, thus, the user can gain “insight concerning
parameters, algorithmic behaviour, and optimisation potentials” [23].

Interactive computing frameworks, libraries, and Problem Solving Environments
(PSEs) are used by specialists to interact with complex models, while not requiring
deep knowledge in algorithms, numerics, or visualisation techniques. These are
user-friendly facilities for guiding the numerically approximated problem solution.
The commonly agreed features are: a sophisticated user interface for the visuali-
sation of results on demand and a separated steerable, often time- and memory-
consuming simulation running on a high-performance computer (see Fig. 1).

The concept has been present in the scientific and engineering community
already for more than two decades. Meanwhile, numerous powerful tools serving
this purpose have been developed. A brief overview of some state-of-the-art
tools – steering environments and systems such as CSE [33], Magellan [35],
SCIRun [26], Uintah [4], G-HLAM [29] and EPSN [25] , libraries such as
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CUMULVS [9], or RealityGrid [3, 27], or frameworks such as Steereo [12] – is
provided in the next section. Those tools differ in the way they provide interactive
access to the underlying simulation codes, using check- and breakpoints, satellites
connected to a data manager, or data flow concepts, e.g., hence they cannot always
fully exploit interactive computing and are usually of limited scope concerning
different application domains.

2 Computational Steering: State of the Art

CSE [33] is a computational steering environment consisting of a very simple,
flexible, minimalistic kernel and modular components, so-called satellites, where all
the higher level functionality is pushed. It is based on the idea of a central process,
i.e. a data manager to which all the satellites can be connected. Satellites can create
and read/write variables, and they can subscribe to events such as notification of
mutations of a particular variable [22]. The data manager informs all the satellites
of changes made in the data and an interactive graphics editing tool allows users to
bind data variables to user interface elements.

CUMULVS [9] is a library that provides steering functionality so that a pro-
grammer can extract data from a running (possibly parallel) simulation and send
those data to the visualisation package. It encloses the connection and data protocols
needed to attach multiple visualisation and steering components to a running
application during execution. The user has to declare in the application which
parameters are allowed to be modified or steered, or the rules for the decomposition
of the parallel data, etc. Using check-pointing, the simulation can be restarted
according to the new settings.

In the steering system called Magellan [35], steering objects are exported from
an application. A collection of instrumentation points, such as so-called actuators,
know how to change an object without disrupting application execution. Pending
update requests are stored in a shared buffer until an application thread polls for
them [35].

EPSN [25] API is a distributed computational steering environment, where an
XML description of simulation scripts is introduced to handle data and concurrency
at instrumentation points. There is a simple connection between the steering servers,
i.e. simulation back ends, and clients, i.e. user interfaces. When receiving requests,
the server determines their date, thus, the request is executed as soon as it fulfills a
condition. Reacting on a request means releasing the defined blocking points.

Steereo [12] is a light-weight steering framework, where the client can send
requests and the simulation will respond to them. However, the requests are not
processed immediately, but rather stored in a queue and executed at predefined
points in the simulation code. Hence, users have to define when and how often this
queue should be processed.

The RealityGrid [3, 27] project has provided a highly flexible and robust
computing infrastructure for supporting the modelling of complex systems [10].
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An application is structured into a client, a simulation, and a visualisation unit
communicating via calls to the steering library functions. Also this infrastructure
involves the insertion of check- and break-points at fixed places in the code where
changed parameters are obtained and the simulation is to be restarted.

In the SCIRun [26] problem solving environment (PSE) for modelling, sim-
ulation, and visualisation of scientific problems, a user may smoothly construct
a network of required modules via a visual programming interface. Computer
simulations can then be executed, controlled, and tuned interactively, triggering
the re-execution only of the necessary modules, due to the underlying dataflow
model. It allows for extension to provide real-time feedback even for large scale,
long-running, data-intensive problems. This PSE has typically been adopted to
support pure thread-based parallel simulations so far. Uintah [4] is a component-
based visual PSE that builds upon the best features of the SCIRun PSE, specifically
addressing the massively parallel computations on petascale computing platforms.

In the G-HLAM [29] PSE, the focus is more on fault tolerance, i.e. monitoring
and migration of the distributed federates. The group of main G-HLAM services
consists of one which coordinates management of the simulation, one which decides
when performance of a federate is not satisfactory and migration is required,
the other which stores information about the location of local services. It uses
distributed federations on the Grid for the communication among simulation and
visualisation components.

All of those powerful tools have, however, either limited scope of application, or
are involving major simulation code changes in order to be effective. This was the
motivation for us to design a new framework that incorporates the strong aspects
of the aforementioned tools, nevertheless overcomes their weak aspects in order
to provide a generic concept for a plenitude of different applications with minimal
codes changes and a maximum of interactivity.

Within the Chair for Computation in Engineering at Technische Universität
München, a series of successful Computational Steering research projects took
place in the previous decade. It has also involved collaboration with industry
partners. Performance analysis has been done for several interactive applications, in
regard to responsiveness to steering, and the factors limiting performance have
been identified. The focus at this time was on interactive computational fluid
dynamics (CFD), based on the Lattice-Boltzmann method, including a Heating
Ventilation Air-Conditioning (HVAC) system simulator [2], online-CFD simulation
of turbulent indoor flows in CAD-generated virtual rooms [37], interactive thermal
comfort assessment [34], and also on structure mechanics – computational methods
in orthopaedics. Over time, valuable observations and experience have resulted in
significant reduction of the work required to extend an existing application code for
steering.

Again, the developed concepts have been primarily adapted to this limited
number of application scenarios, thus, they allow for further investigations so as to
become more efficient, generic, and easy to implement. This is where our framework
comes into play.
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3 The Idea of the Framework

For widening the scope of the steerable applications, an immediate response of any
simulation back end to the changes made by the user is required. Hence, the regular
course of the simulation has to be interrupted as soon as a user interacts. Within our
framework, we achieve this using the software equivalent of hardware interrupts,
i.e. signals. The check for updates is consequently done in small, user-defined, cyclic
intervals, i.e., within a function handling the Unix ALARM signal.

If the check does not indicate any update from the user side, the simulation gets
the control back and continues from the state saved at the previous interrupt-point.
Otherwise, the new data is received, matched to the simulation data (which is
the responsibility of the user himself), and simulation state variables (for instance
loop delimiters) are manipulated in order to make the computation stop and then
automatically start anew according to the user modifications. Taking the pseudo
code of an iteratively executed function (within several nested loops) as an example,
the redundant computation is skipped as soon as the end of the current, most-
inner loop iteration is reached. This is, namely, the earliest opportunity to compare
the values of the simulation state variables, and, if the result of the comparison
indicates so, exit all the loops (i.e. starting with most-inner one and finishing with
the most-outer one) [13–15]. This would exactly mean starting computation over
again, as illustrated in the pseudocode:

% X_end, Y_end declared global

begin function Signal_Handler()
% manipulate X_end, Y_end so that the redundant
% computation is skipped and started anew
X_end = Y_end = -1

end

% set time interval for periodically occurrence of
% ALARM signal to stop execution and call handler
Set_Alarm()

% user function to be interrupted
begin function Compute()

for t = T_start to T_end do
for i = X_start to X_end do
for j = Y_start to Y_end do

Process(data[i][j])
% potential update is recognised next

od
od

od
end
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As elaborated in [13], to guarantee the correct execution of a program, one should
use certain type qualifiers (provided by ANSI C, e.g.) for the variables which are
subject to sudden change or objects to interrupts. One should ensure that certain
types of objects which are being modified both in the signal handler and the main
computation are updated in an atomic way. Furthermore, if the value in the signal
handler has changed, the outdated value in the register should not be used again.
Instead, the new value should be loaded from memory. This may occur due to the
custom compiler optimisations. In addition to this, sufficient steps have to be taken
to prevent potentially introduced severe memory leaks before the new computation
is started. This is due to the interrupts and their possible occurrence before the
memory allocated at a certain point has been released.

Finally, with either one or several number of iterations being finished without
an interrupt, new results are handed on to the user process for visualisation. One
more time it is the user’s responsibility to prescribe to the front end process how to
interpret the received data so that it can be coherently visualised [13–16, 18].

In Fortran, similar to C/C++, support for signal handling can be enabled at user
level with minimal efforts involved. Some vendor supplied Fortran implementations,
including for example Digital, IBM, Sun, and Intel, have the extension that allows
the user to do signal handling as in C [1]. Here, a C wrapper function for overriding
the default signal behaviour has to be implemented. However, the behaviour of the
Fortran extension of the aforementioned function is implementation dependent, and
if the application is compiled using an Intel Fortran compiler, when the program is
interrupted, it will terminate unless one “clears” the previously defined action first.

Due to the accuracy requirements and the increasing amount of data which has
to be handled in numerical simulations of complex physical phenomena nowadays,
there is an urge to fully exploit the general availability and increasing CPU power of
high-performance computers. For this, in addition to efficient algorithms and data
structures, sophisticated parallel programming methods are a constraint. The design
of our framework, therefore, takes into consideration and supports different parallel
paradigms, which results in an extra effort to ensure correct program execution and
avoid synchronisation problems when using threads, as explained in the following
subsection.

3.1 Multithreading Parallelisation Scenario

We consider the scenario when pure multithreading (with, e.g., OpenMP/POSIX
threads) is employed in the computations on the simulation side. Since a random
thread is interrupted via signal at the expiration of the user-specified interval,
that thread probes, via the functionality of the Message Passing Interface (MPI),
if any information regarding the user activity is available. If the aforesaid checking
for a user’s message indicates that an update has been sent, the receiving thread
instantly obtains all the information and applies necessary manipulations in order
to re-start the computation with the changed setting. Hence, all other threads also
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Fig. 2 In the case of a hybrid parallel scenario, each process is doing its own checks for updates;
one random thread per process is interrupted in small, fixed time intervals

become instantly aware that their computations should be started over again and
must now proceed in a way in which clean termination of the parallel region is
guaranteed.

3.2 “Hybrid” Parallelisation Scenario

In a “hybrid” parallel scenario (i.e. MPI and OpenMP – see Fig. 2), a random
thread in each active process is being interrupted, hence, fetches an opportunity
to check for the updates. The rest of the procedure is similar as described for the
pure multithreading, except that now all the processes have to be explicitly notified
about the changes performed by a user. This may involve additional communication
overheads. Moreover, if one master process, which is the direct interface of the
user’s process to the computing-nodes, i.e. slaves, is supposed to inform all of them
about the user updates, it may become a bottleneck. Therefore, a hierarchical non-
blocking broadcast algorithm for transferring the signal to all computing nodes has
been proposed in [14, 15].

4 Applications

In the following, a few application scenarios are presented, where the implemented
framework has been successfully integrated. First, a simple 2D simulation of
a temperature conduction, used only for testing purposes, where heat sources,
boundaries of the domain, etc. can be interactively modified. Then, a neutron
transport simulation developed at the Nuclear Engineering Program, University of
Utah, which has been the first Fortran test case for the framework. The next one is
the sophisticated Problem Solving Environment SCIRun developed at the Scientific
Computing and Imaging (SCI) Institute, University of Utah. The final one is a tool
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for pre-operative planning of hip-joint surgeries, done as a collaborative project of
the Chair for Computation in Engineering and Computer Graphics and Visualization
at Technische Universität München. A summary of necessary modifications of the
original codes in order to integrate the framework is discussed in Sect. 5.2.

4.1 Test Case 1: A Simple Heat Conduction Simulation

Simulation: For proof of concept, we consider as a first, very simple example a
2D simulation of heat conduction in a given region over time. It is described by
the Laplace equation, whose solutions are characterised by a gradual smoothing of
the starting temperature distribution by the heat flow from warmer to colder areas
of a domain. Thus, different states and initial conditions will tend toward a stable
equilibrium. After numerical treatment of the PDE via a Finite Difference scheme,
we come up with a five-point stencil. The Gauss-Seidel iteration method is used to
solve the resulting linear system of equations.

GUI/Visualisation: For interacting with the running simulation, a graphical user
interface is provided using the wxWidgets library [11]. The variations of the height
along the z-axes, pointing upward, are representing the variations of the temperature
in the corresponding 2D domain. Both the simulation and the visualisation are
implemented in C++ and are separate MPI processes.

User interaction: When it comes to the interplay with the program during the
simulation, there are a few possibilities available – one can interactively add, delete,
or move heat sources, add, delete, or move boundary points of the domain, or change
the termination condition (maximal number of iterations or error tolerance) of the
solver. As soon as a user interacts, the simulation becomes immediately aware
of it and consequently the computation is restarted. An instant estimation of the
equilibrium state for points of the domain far away from the heat sources is
unfortunately not always feasible on the finest grid used (300�300). This may be
the case due to the short intervals between two restarts in case of too frequent user
interaction, as shown in Fig. 3. Here we profit from a hierarchical approach.

The hierarchical approach is based on switching between several grids of
different resolutions depending on the frequency of the user interaction. At the
beginning, the finest desired grid is used for the computation. When the simulation
process is interrupted by an update, it restarts the computation with the new settings,
but on a coarser grid for faster feedback, i.e. to provide new results as soon as
possible. As long as the user is frequently interacting, all computations are carried
out on the coarser grids only. If the user halts, i.e. stops interacting, the computation
switches back to the finest grid in order to provide more accurate values. In this
particular test case, three different grids were used – an initial 300�300 grid, the
four times smaller, intermediate one (150�150, in case of lower pace of interactions,
i.e. adding/deleting heat sources or boundary points, e.g.) and, finally, the coarsest
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Fig. 3 Left: an initial scenario; right: moving heat sources/boundaries leads to the restart of the
computation, but in-between two too frequent restarts a user is unable to estimate the equilibrium
temperature in the region farther away from the heat sources (here, further iterations of the solver
would be necessary)

Fig. 4 Switching to a coarser grid in case of moving heat sources or boundaries, switching back
to the finer one once the user stops interacting

one (75�75) for very high frequency moving of boundary points or heat sources
over the domain (Fig. 4). The coarser grids are not meant for obtaining quantitative
solutions, just for a fast qualitative idea how the solution might look like. If a
user interactively found an interesting setup, he just has to stop and an accurate
solution for this setup will be computed. Nevertheless, measurements concerning
the different grids showed that the variation of the solution on the finest grid
compared to the intermediate one is around 4.5 %, and compared to the coarsest one
around 14.6 %. The described approach, on the other hand, leads to an improvement
in convergence by a factor of 2.

Additionally, we employ a multi-level algorithm – the results of the computation
on the coarsest grid are not discarded when switching to the finer one. Our concept,
namely, already involves a hierarchy of discretisations, as is the case in multigrid
algorithms, thus, we can profit from the analogous idea. Our scheme is somewhat
simpler – it only starts with the solution on the coarsest grid and uses the result
we gain as an initial guess of the result on a finer one. A set of examples has been
tested (with grids 300�300, 150�150, and 75�75) where the number of necessary
operations on the intermediate and fine grid could be halved. What seems to be a
somehow obvious approach, at least for this simple test scenario, can be efficiently
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exploited in our forth test case where we use hierarchical Ansatz functions for an
interactive finite-element computation of a biomedical problem.

In order to enable the framework functionality for interrupting the above
simulation, takes an experienced user a couple of hours at most. Implementing the
hierarchical approach (which is not a part of the framework) is more time consuming
(a few working days), since an optimal automatic detection when to switch from one
hierarchy to another has to be found—which requires numerous experiments.

4.2 Test Case 2: A Neutron Transport Simulation

We present as second test case the integration of the framework into a
computationally efficient, high accuracy, geometry independent neutron transport
simulation. It makes researchers’ and educators’ interaction with virtual models of
nuclear reactors or their parts possible.

Simulation: AGENT (Arbitrary GEometry Neutron Transport) solves the
Boltzmann transport equation, both in 2D and 3D, using the Method of
Characteristics (MOC) [21]. The motivation for steering such a simulation during
runtime comes mostly from the geometric limitation of this method, which requires
fine spatial discretisation in order to provide an accurate solution to the problem.
On the other hand, a good initial solution guess would help tremendously to speed-
up the convergence, and this property is used to profit from our framework. The 3D
discretisation basis for the Boltzmann equation consists of the discrete number of
plains, for each of which both a regular geometry mesh and a number of parallel
rays in a discrete number of directions are generated. The approximation results in
a system of equations to be iteratively solved for discrete fluxes.

GUI/Visualisation: The result in terms of the scalar fluxes is simultaneously
calculated and periodically visualised. The simulation server maintains a list of
available simulation states, and clients connect using the ImageVis3D volume
rendering tool [8] to visualise the results in real time. Users can interfere with the
running simulation via a simple console interface, providing the new values of the
desired parameters.

User interaction: Instant response of the simulation to the changes made by the
user is again achieved via signals. Using the technique described as our general
concept, the most outer iteration instantly starts anew, as soon as its overall state is
reset within the main computational steering loop, according to the updated settings
and necessary re-initialisation of the data. By manipulating only two simulation
parameters in the signal handler, it is achieved that the iteration restarts almost
within a second in all the cases – e.g. 20 planes in z-direction, each discretised
by a 300�300 grid and 36 azimuthal angles (where only one, the most outer
iteration lasts approximately 500 s). The effort to integrate our framework into this
application depends on whether the re-allocation of the memory and re-initialisation



A High-Performance Interactive Computing Framework for Engineering Applications 187

Fig. 5 Experimenting with different numbers of azimuthal angles, small values are given to
simplify the picture

of the data is required, and if one wants to re-use the values from the previous
iterations [17, 20].

Hierarchical and multilevel approach: It is likely, similar to the heat conduction
scenario, that the user wants to accelerate the convergence by starting calculations
with lower accuracy (i.e. number of azimuthal angles, see Fig. 5), preserve and
re-use some of the values from the previous calculation as an initial guess for
the higher accuracy solution. For a conceptually similar algorithm, such as the
previously described multilevel approach in the 2D heat conduction simulation,
we have seen that our framework has given promising results. The re-initialisation
of the data for this, most challenging, scenario is a part of imminent research.

To briefly conclude on this application scenario, the integration of the framework
has been straightforward and also not very time consuming. After examining the
initial code, deciding which variables to register within the framework, and writing
reinitialisation routines, it has taken a few hours to couple the components together
and enable visualisation after each iteration. The major effort refers actually to the
re-initialisation of variables at the beginning of each “new” computation, i.e. after a
user interaction, which is also not a responsibility of the framework itself.

4.3 Test Case 3: Extension of a Problem Solving Environment

Simulation: As mentioned before, SCIRun is a PSE intended for interactive
construction, debugging, and steering of large-scale, typically parallel, scientific
computations [30]. SCIRun simulations are designed as networks of computa-
tional components, i.e. modules connected via input/output ports. This makes
it very easy for a programmer to modify a module without affecting others.
As SCIRun is already a mature, sophisticated environment for computational
steering, nevertheless, our goal is to improve it in a way that real time feedback
for extensive time- and memory-consuming simulations becomes possible. Here,
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SCIRun needs to finish an update first before new results are shown, which easily
can lead to long latencies between cause and effect.

GUI/Visualisation: For the user, it is possible to view intermediate results after
a pre-defined number of iterations, while the calculations continue to progress.
At some point, he may require to influence the current simulation setup. Different
options such as parameter modification for each module are available via corre-
sponding interfaces. Both the modified module and modules whose input data is
dependent on that module’s output are stored in a queue for execution. Our intention
is to interrupt the module currently being executed and skip the redundant cycles,
as well as to remove any module previously scheduled for execution from the actual
queue.

User Interaction: The concept has been tested on several examples to evaluate
the simulation response to the modifications during runtime. These scenarios
are: a simulation that facilitates early detection of acute heart ischemia and two
defibrillation-like simulations – one on a homogeneous cube and the other on a
human torso domain. The challenges of getting an immediate feedback/response
of the simulation depend on a few factors – the size of the problem, the choice
of the modified parameters within the simulation, etc. The earlier in the execution
pipeline the parameter appears, the more modules have to be re-executed, thus, the
more challenging it is to provide the real-time response to the user changes. A user
can define different discretisation parameters for a FEM computation such as the
mesh resolution for all spatial directions. For solving the resulting linear system
of equations, different iterative solvers as well as pre-conditioners can be used; one
may change tolerances, the maximal number of iterations, levels of accuracy, as well
as other numerical or some more simulation-specific parameters. In the created
network of modules, typically the most laborious step is the SolveLinearSystem
module. Thus, the first challenge is how to interrupt it as soon as any change is
made by the user – in particular, the changes done via UI to this module. To achieve
this in the algorithm of the linear equation solver, the maximal number of iterations
(a user interface variable) is manipulated in the signal handler, so as to be set to some
value outside of the domain of the iterator index which interrupts the simulation as
described before. The execute function of this module also has to be re-scheduled
afterward with the new user-applied settings. However, one has to take care that the
previous interrupted execution of the same module is finished in a clean way and
that the execute function has to be called anew (in order to trigger re-computation
instantly). If one chooses to emit the partial solution after each iteration, executions
of several visualisation modules are scheduled after each iteration, which would
take additional few seconds after each iteration. This is because after an interrupted
iteration the preview of old results has to be cancelled. The execution of all modules,
which would happen after SolveLinearSystem, has to be aborted. The scheduler
cancels the execution of all the scheduled modules that have not begun yet by
making sure an exception is employed. Changing any input field of a module via
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Fig. 6 Illustrated user interfaces for the tested simulation scenario

its UI automatically triggers the re-execution of all the modules following it in the
pipeline.

4.3.1 Tool for Early Detection of Heart Ischemia

Myocardial ischemia is characterised by reduced blood supply of the heart muscle,
usually due to coronary artery disease. It is the most common cause of death in
most Western countries, and a major cause of hospital admissions [28]. By early
detection further complications might be prevented. The aim of this application is
the generation of a quasi-static volume conductor model of an ischemic heart, based
on data from actual experiments [32]. The generation of models of the myocardium
is based on MR images/scans of a dog heart. The known values are extracellular
cardiac potentials as measured by electrodes on an isolated heart or with inserted
needles. The potential difference between the intracellular and extracellular space
which is being calculated is not the same for ischemic and healthy cells. A network
of modules is constructed within SCIRun to simulate and then render a model of the
transmembrane potential of a dog’s myocardium in experiments (Fig. 6).

4.3.2 Defibrillation

Defibrillation therapy consists of delivering a dose of electrical energy to the heart
with a device that terminates the arrhythmia and allows normal sinus rhythm
to be re-established by the body’s natural pacemaker. Implantable Cardioverter
Defibrillators (ICDs) are relatively common, patient specific, implantable devices
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that provide an electric shock to treat fatal arrhythmias in cardiac patients [31].
By building a computational model of a patient’s body with ICDs and mapping
conductivity values over the entire domain, we can accurately compute how activity
generated in one region would be remotely measured in another region [36], which
is exactly what doctors would be interested in. First, we consider a simulation of the
electrical conduction on a homogeneous cube domain (Fig. 6) with two electrodes
placed within. Each of the electrodes is assigned a conductivity value. The effect of
changing those values is explored for both of the electrodes. The second example
helps to determine optimal energy discharge and placement of the ICD in the
human torso (Fig. 6). A model of the torso into which ICD geometry is interactively
placed is based on patient MRI or CT data. Different solver-related parameters for
the resulting system of the linear equations, conductivity values, as well as mesh
resolutions for a FEM computation can be applied during runtime. This allows for
previewing the solution on a coarser grid and switching to finer ones, once the user
is satisfied with the current setting.

For a user to integrate the framework, the major effort has been related to
re-triggering the execution of all the needed modules when the user makes a change.
This has required good understanding of a used Model-View-Controller pattern.
On the other hand, registering the variables which need to be manipulated within
the framework to interrupt the execution of the modules of interest, has required
negligible amount of time.

4.4 Test Case 4: A Biomedical Application

Another test case is an analysis tool which assists an orthopaedic surgeon to do
optimal implant selection and positioning based on prediction of response of a
patient-specific bone (femur) to a load that is applied. The tool consists of two
coupled components.

Simulation: The first one is a simulation core, where the generated models of
femur geometry are based on CT/MRI-data and the computation is done using the
Finite Cell Method (FCM). FCM is a variant of high order p-FEM, i.e. convergence
is achieved by increasing the polynomial degree p of the Ansatz functions on
a fixed mesh instead of decreasing the mesh sizes h as in case of classical
h-FEM, with a fictitious domain approach, as proposed in [7]. With this method,
models with complicated geometries or multiple material interfaces can be easily
handled without an explicit 3D mesh generation. This is especially advantageous
for interactive computational steering, where this typically user-interaction intensive
step would have to be re-executed for each new configuration.

GUI/Visualisation: The second component is a sophisticated visualisation and
user interface platform that allows the intuitive exploration of the bone geometry
and its mechanical response to applied loads in the physiological and the post-
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operative state of an implant-bone in terms of stresses and strains [5, 6]. Thus, after
updating the settings – either after insertion/moving an implant, or testing a new
position/magnitude of the forces applied to the bone – for each unknown a scalar
value, i.e. the so-called von Mises stress norm, can be calculated and the overall
result sent to the front end to be visualised.

Some of the challenges in developing such an analysis tool are described in more
detail in [5,6,38]. We conveniently had the described simulation and a sophisticated
user interface with visualisation module as a starting point. Due to the initial
rigid communication pattern between the two components, however, a new setting
could be recognised within the simulation only after the results for the previous,
outdated, one have been completely calculated and sent to the user. Consequently,
the higher polynomial degrees p were used, the dramatically longer became the total
time until one could finally perceive the effect of his last change. The integration
of our framework then comes into play not only to make the way the data is
communicated more suitable for this purpose, but also to enable interrupting the
simulation immediately and getting instant feedback ensued by any user interaction.

For the best performance, on the front end, the main thread (in charge of fetching
user interaction data and continuous rendering), the second thread (in charge of
collecting and sending updates in timely fashion, via non-blocking MPI routines),
and the third thread (dedicated for waiting to receive results as soon as these are
available), are not synchronised with one another. This way, we tackle the problem
of long delays that would occur if one thread is responsible for everything and
communication is blocked as long as the thread is busy, which would hinder the
user in (smoothly) exploring the effects of his interaction.

On the simulation side, as mentioned before, a variant of FEM is used. Main-
stream approaches are

• h-FEM: convergence due to smaller diameters h of elements,
• p-FEM: convergence due to higher polynomial degrees p,
• hp-FEM: combining the aformentioned ones by alternating h and p refinements,
• rp-FEM: a combination of mesh repositioning and p refinements,
• : : :

In our case, for the algebraic equations gained by the p-version Finite Element
Method describing the behaviour of the femur, iterative solvers such as CG or multi
grid could not be efficiently deployed due to the poor condition number of the
system. To make most out of the simulation performance potential, a hierarchical
concept based on an octree-decomposition of the domain in combination with a
nested dissection solver is used [24]. It allows for both the design of sophisticated
steerable solvers as well as for advanced parallelisation strategies, both of which are
indispensable within interactive applications.

User interaction: By applying a nested dissection solver, the most time consuming
step is the recursive assembly of the stiffness matrices, each corresponding to one
tree node, traversing the octree bottom up. Again, cyclically-repeating signals are
used for frequent checks for updates. If there is an indicator of an upcoming message
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Fig. 7 Direct transition from p D 6 to p D 1 as soon as the user changes the force’s magnitude
and direction, inserts an implant or moves it, while gradually increasing from p D 1 ! p D 2 !
p D 4 ! : : : as soon as the user diminishes or finally stops his interaction. Hence, a qualitative
feedback about stress distribution for p D 1 or p D 2 is received instantly, finer result for p � 4

on demand

from the user side, this is recognised while processing one of the tree nodes and
the simulation variables are set in a way which ensures skipping the rest of them.
All the recursive assembly function calls return immediately, and the new data is
received in the next step of the interactive computing loop (updating one or more of
the leaf nodes). Here, precious time has been saved by skipping all the redundant
calculations and, thus, calculating results only for an actual setting. As soon as
the whole assembly has been completed without an user interrupt, the result in
terms of stresses is sent back to the front end process for visual display. However,
there is an unavoidable delay of any visual feedback especially for higher p values,
i.e. p > 4, in case of the used hardware and the complexity of the geometric model.
Namely, the time needed for a (full) new computation is dramatically increasing in
case of increasing p. Thus, we profit from a hierarchical approach one more time.
The hierarchy exploited in this approach refers to the usage of several different
polynomial degrees chosen by the user (Fig. 7). While the user’s interplay with the
simulation is very intensive, he retrieves immediate feedback concerning the effects
of his changes for lower p, being able to see more accurate results (for higher p) as
soon as he stops interacting and let one iteration finish. In this case, the computation
is gradually switched to higher levels of hierarchy, i.e. from p D 1 to p D 2 to
p D 4 and so on. The number of MPI program instances, being executed in parallel
for different p can be chosen by the user. A detailed communication schemes can be
found in [16, 18].

To get several updates per second even for higher p values, one has to
employ sophisticated parallelisation strategies. Custom decomposition techniques
(i.e. recursive bisection) in this scenario, as in case of long structures such as
a femur, typically hinder the efficient exploitation of the underlying computing
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power as this leads to improper load distributions due to large separators within the
nested dissection approach. Thus, our next goal has been the development of an
efficient load balancing strategy for the existing structural simulation of the bone
stresses.

Task scheduling strategies typically involve a trade-off between the uniform work
load distribution among all processors, as well as keeping both the communication
and optimisation costs minimal. For hierarchically organised tasks with bottom-up
dependencies, such as in our generated octree structure, the number of processors
participating in the computation decreases by a factor of eight in each level, similar
to the problem posed by Minsky for the parallel summation of 2N numbers with N
processors in a binary tree [19].

In interactive applications which assume the aforementioned frequent updates
from user’s side, those rapid changes within the simulation and tasks’ state favour
static in comparison to dynamic load balancing strategies. It would also have to be
taken into consideration that certain modifications performed by a user may involve
major changes of the computational model. In this case, for repeatedly achieving
the optimal amount of work being assigned to each process for each new user
update, the overhead-prone scheduling step has to be executed each time. Therefore,
an efficient, nevertheless simple to compute scheduling optimisation approach is
needed.

Since the scheduling problem can be solved by polynomial-depth backtrack
search, thus, is NP complete for most of its variants, efficient heuristics have to
be devised. In our case, the sizes of the tasks, as well as the dependencies among
them (given by the octree structure responsible for the order of the nested dissection
advance) have to be considered. By making decisions, we consider (1) the level of
the task dependency in the tree hierarchy where children nodes have to be processed
before their parent nodes; (2) among equal tasks (i.e. of the same dependency level)
we distinguish between different levels in the tree hierarchy, calling this property the
processing order. If the depth of the tree is H, tasks from level M in the tree hierarchy
have the processing order ofH �M � 1. Then we form lists of priorities, based on
these two criteria, since tasks inside very long branches of the tree with an estimated
bigger load should be given a higher priority. Additionally, we resort to a so-called
max-min order, making sure that big tasks, in terms of their estimated number of
floating-point operations, are the first ones assigned to the processors. We also split
a single task among several processors when mapping tasks to processors, based on
the comparison of a task’s estimated work with a pre-defined ‘unit’ task. This way,
arrays of tasks, so-called ‘phases’, are formed, each phase consisting of as many
generated tasks as there are computing resources. Namely, taken from the priority
lists, tasks are assigned to phases in round-robin manner. The results are illustrated
in Fig. 8.

Those phases refer to the mapping which will be done during runtime of the
simulation. When the tasks are statically assigned to the processors, all of them
execute the required computations, communicating the data when needed and also
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Fig. 8 Vertical axes describe the so-called “phases” and the horizontal axes the number of
processors involved in the particular phase. One “phase” involves actually the processors to which
a task is assigned at that point. Having the capacity of each phase as full as possible is achieved,
i.e. all processors are busy with the approximately equal amount of work throughout the solver
execution

taking care that the communication delays due to the MPI internal decisions are
avoided, as elaborated more in [19].

Satisfactory speedup is achieved for different polynomial degrees p within the
FCM computation, where higher polynomial degrees correspond to more unknowns.
Tests are being done currently for a larger number of distributed memory computa-
tional resources. According to the tendency observed for up to seven processors so
far, engagement of larger numbers of processes would result in the desired rate of at
least several updates per second (i.e. 1–10 Hz) for the calculated bone stresses even
for p D 4 or p D 6.

Referring back to the existing environment, without the integration of the
developed distributed parallel solver, the major effort that has been invested in
creating the new communication pattern to support the described hierarchical
approach was in the order of several working day. Anyhow, the functionality for
interrupting the computation to do checks for updates, thus, start a computation
anew if needed has been quick and straightforward.

5 Results and Conclusions

Finally, after discussing the achievements concerning interaction for each appli-
cation scenario in the previous section, here results in terms of execution time
overhead after integrating the framework in different scenarios are to be presented,
as well as the coding effort to be invested when integrating the framework into
an existing application code. Furthermore, conclusions concerning the proposed
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Fig. 9 Performance measurements: overhead of the framework (expressed in terms of additional
execution time) for alarm set to 1 ms – heat conduction simulation (300 � 300 grid), executed
on 1, 2, and 4 cores (left to right); SCIRun PSE, heart ischemia example using CG, BCG, and
MINRES solver (left to right); biomedical application (p D 4), executed on 1, 2, and 4 cores
(left to right)

hierarchical approaches are made and possible ideas for further extension of the
framework are discussed.

5.1 Overhead of the Framework

For the heat conduction application scenario, the integration of our framework
resulted in not more than 5–10 % overhead in the execution time. Tests have been
done also for the same problem with a message-passing-based parallel Jacobi solver.
Not even in case when user interaction was invoked in 5-ms intervals (which is
far more frequent than it typically occurs in practice) any significant effect of the
interrupts on the overall execution time (less than 10 %) was to be observed.

Performance evaluation of the biomedical test scenario, where the simulation is
executed on a multi-core architecture and connected to a visualisation front end
via a network, still proved that the overhead caused by the framework itself is not
significant (up to 11.7 %).

We have also tested the different simulation scenarios from SCIRun. The
measurements have been made for different update intervals, namely, 5, 2, or 1 ms
for different solvers of linear systems of equations. In one of the test case scenarios,
for the shortest interval (i.e. 1 ms), the overhead caused by the framework was up to
15 %. However, by making the intervals longer (2 or 5 ms, e.g.), the overhead was
reduced to 5 and 3 %, resp. When increasing the interval up to 5 ms (and beyond),
an end-user does not observe the difference in terms of simulation response. Hence,
it is always recommendable to experiment with different intervals for a specific
simulation.

Some of the measurements are illustrated in Fig. 9 for comparison.
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5.2 User Effort for Integrating the Framework

A few modifications within any application code have to be made by the user in
order to integrate our framework. These modifications are – as intended – only
minor, hence, we list all of them. All variables which will be affected by the interrupt
handler in order to force the restart of the computation have to be declared global
(to become visible in a signal handler). It is typically enough to have only few
of them, such as loop delimiters, in order to skip all the redundant computations.
If these variables shall be used also in the rest of the code, a user can rename those
he wants to manipulate within the signal handler and declare only those as global.
Atomicity of data updates and prevention of compiler optimisations – which would
lead to incorrect value references – have to be ensured. The integrity of each user-
defined ‘atomic’ sequence of instructions in the simulation code has to be provided.
The calls to the appropriate send and receive functions which are interface to our
framework have to be included in the appropriate places in the code. The user
himself should provide the correct interpretation of the data (in the receive buffers
of both simulation and visualisation components). Finally, he has to enable the
regular checks for updates by including appropriate functions which will examine
and change the default signal (interrupt) action, specifying the time interval in which
the checks of the simulation process(es) are made, as shown in the following pseudo
code example.

% Function to override the default signal action
begin func My_sig_action ()

if update_available then
receive update
manipulate simulation specific variables

fi
end

% Declare simulation specific variables to be
% global, atomic, and volatile
begin func main ()

Set_sig_action (My_sig_action)
Set_interrupt_interval (time_slot)

end

5.3 Hierarchical Approaches

As one may also conclude, no matter how generic our basic idea is, when applying
it to the wide diversity of applications, the user himself has to be involved in making
certain decisions. For example, in our first test case, he has to specify the number of
grids which he would like to use together with their resolutions. This information
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might be based on his previous experience, i.e. at which resolution the problem
can be solved within less than a second (for choosing the coarsest grid), etc. The
hierarchical approaches used so far should not be the limitation for future test
cases. In addition to recursively coarsening the grid, or increasing the resolution
of other simulation-specific discretisations such as the number of azimuthal angles
in AGENT, or increasing the polynomial degree p in the biomedical example,
one may analogously profit from his or her own simulation-specific hierarchical
structures. Any user of the framework can, if needed, easily adopt it to his individual
requirements.

5.4 Outlook

In the future, we would like to tackle the computational expensive scenarios with
massively parallel simulations. In efforts to interrupt one thread per process, a trade-
off between ensuring a minimal number of checks per process and allowing for
receiving the data promptly is to be faced. Thus, an optimal interval between
the interrupts on different levels of the communication hierarchy is going to be
estimated. In addition, a possibility of distributing the tasks among several user
processes, each in charge of a certain group of simulation processes will be
examined to avoid typical master-slave bottlenecks. Furthermore, we would like
to explore techniques for the fast transfer of (distributed) simulation results between
front and back end, especially in case of huge data sets, needed for an interactive
visualisation.

Acknowledgements The overall work has been financially supported by the Munich Centre of
Advanced Computing (MAC) and the International Graduate School of Science and Engineering
(IGSSE) at Technische Universität München and we would like to gratefully acknowledge that.
The work related to SCIRun PSE was made possible in part by software from the NIH/NIGMS
Center for Integrative Biomedical Computing, 2P41 RR0112553-12. It was accomplished in winter
2011/12 during a 3-month research visit of Jovana Knežević to the Scientific Computing and
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A Framework for the Interactive Handling
of High-Dimensional Simulation Data
in Complex Geometries
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Vasco Varduhn, and Ralf-Peter Mundani

Abstract Flow simulations around building infrastructure models involve large
scale complex geometries, which when discretized in adequate detail entail high
computational cost. Moreover, tasks such as simulation insight by steering or
optimization require many such costly simulations. In this paper, we illustrate the
whole pipeline of an integrated solution for interactive computational steering,
developed for complex flow simulation scenarios that depend on a moderate
number of both geometric and physical parameters. A mesh generator takes
building information model input data and outputs a valid cartesian discretization.
A sparse-grids-based surrogate model—a less costly substitute for the param-
eterized simulation—uses precomputed data to deliver approximated simulation
results at interactive rates. Furthermore, a distributed multi-display visualization
environment shows building infrastructure together with flow data. The focus is set
on scalability and intuitive user interaction.

Keywords Building infrastructure models • Computational steering • Surrogate
models • Multi-display visualization • 3D gesture-based interaction

1 Introduction

Today, the need for energy efficient buildings and optimized constructions is high
and will increase dramatically in the future, a trend forced by ongoing shortage of
fossil resources and increasing environmental awareness of society. This also has
a share in making numerical simulations an indispensable tool in various fields
when physical phenomena or other complex processes need to be analyzed and

A. Benzina (�) � G. Buse � D. Butnaru � A. Murarasu � M. Treib � V. Varduhn � R.-P. Mundani
Technische Universität München, Munich, Germany
e-mail: benzina@in.tum.de

M. Bader et al. (eds.), Advanced Computing, Lecture Notes in Computational Science
and Engineering 93, DOI 10.1007/978-3-642-38762-3__10,
© Springer-Verlag Berlin Heidelberg 2013

201

mailto:benzina@in.tum.de


202 A. Benzina et al.

Fig. 1 The image sketches our integrated computational steering solution which features interac-
tive and intuitive visual exploration of parametrized geometries and simulations. An optimized
surrogate model is used in conjunction with the actual simulation to ensure fast delivery of
approximated simulation results to the multi-display visualization component

understood. Often it is even necessary to run simulations repeatedly with slightly
adjusted boundary conditions, initial conditions, or even geometry.

While in fields such as automotive and aerospace engineering the consistent
application of numerical simulations in the development process has been state of
the art for a long time already, this is not the case yet for civil engineering. Reasons
for this situation range from engineers still sticking to paper-based construction
plans to the simple fact that the integration of simulation technology into the process
still lacks support.

Yet, the advance of building information model (BIM) data during the last decade
now motivates a building performance analysis framework for construction and
built infrastructure. BIMs provide a fully-detailed product model for constructions,
including exact geometric representation and auxiliary information such as material
parameters or measured information. Parameter adjustment is also supported in
BIMs, which is crucial to performance evaluation of buildings, such as an indoor
temperature analysis on a hot summer day depending on different window and door
opening angles and the intensity of the air conditioning system. The consideration
of all such factors leads to a large design space which can be explored by means of
numerical simulations. However, the size of this space and the computational cost
of computational fluid dynamics (CFD) simulations call for an elaborate approach
to interactive steering.

In this work, an integrated solution for computational steering of parameterized
flow simulations in complex, large-scale geometries is presented. Figure 1 gives
an overview of the system components and their interaction. The starting point
in the pipeline is the component described in Sect. 2 capable of maintaining high-
detail product model data. It also supports several data pre-processing steps for the
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actual simulation (described in detail in Sect. 3), such as mesh generation, domain
decomposition and the application of boundary conditions.

Next, our implementation of a surrogate model as a substitute for simulations
is introduced and analyzed for performance. The surrogate model is based on the
Sparse Grid Technique and described in detail in Sect. 4. At the core of the model,
simple vector operations need to be optimized to ensure the performance needed in
interactive settings. Various platform-related considerations and benchmark results
for modern NUMA, i.e. Non-Uniform Memory Access, platforms are found in
Sect. 5.

Finally, Sects. 6 and 7 focus on a semi-immersive visualization with integrated
support for 3D interaction with the data. The investigated environment consists of
eight 3D monitors with various interaction devices such as motion sensing input
devices and depth cameras. Special focus is set to the challenges of fast interaction
with multi-dimensional data and of an intuitive user interface that enhances the
exploration process.

2 Data

Dealing with data from constructions and built infrastructure, we implement
Industry Foundation Classes (IFC) [6]. On the one hand, this involves the complete
product model description for construction data, i.e. the fully detailed geometry
specification together with auxiliary data such as material parameters and mea-
sured information. On the other hand, IFC are the de-facto industry standard for
exchanging construction data and therefore open the door for incorporating data
from almost all engineering sources.

This functionality is integrated into a framework for fast access to large sets of
construction and built infrastructure data, which meets the requirements imposed by
CFD simulations targeting high accuracy.

Several level-of-detail metaphors have been developed, based on stepwise coars-
ening of the fully-detailed data. Approximating complex geometric entities with
simpler primitives and sorting out irrelevant information thus allows for efficient
data delivery at various resolutions.

In order to exclude unimportant details from further processing, an algorithm
has been developed to recognize those parts of a construction that are visible from
the outside. In a pre-processing step, each triangle is rendered to an image using a
unique color code. Then, all triangles visible from the respective point of view are
identified by means of their color code appearing in the image. Figure 2 shows the
color coding applied to the TUM building.

By rotating around the z and y axes and combining the visibility information
from all steps, the set of triangles forming the outer hull is identified. Typically,
a reduction of over 90 % in the number of triangles can be achieved, as the outer hull
usually consists of less than 10 % of the whole construction’s triangles (see Fig. 3).
For a detailed description of the algorithm, the reader is referred to [16].
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Fig. 2 The triangle color coding applied to the TUM building. The ID of each triangle is
represented as a 24 bit RGB color, therefore up to 16 million triangles can be identified

Fig. 3 In the left picture, the full product model is visualized, whereas in the right picture
the visualization is reduced to the triangles identified by the outer hull algorithm, which are
approximately 10 %

Fig. 4 In the left picture, the quadtree is sketched, which is built up on the locations of the product
models and only points to their storage information. The right picture indicates the embedding of
the stored construction and terrain data into the hierarchical data structure

As it has already been pointed out, fast access to the underlying data is mandatory
for performing the analysis presented in this work. To this end, a two-layer access
strategy incorporating hierarchical data structures has been developed. As shown
in Fig. 4, a static octree representation of all constructions in the computational
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Fig. 5 Orchestration of the different process types with the flow of data, i.e. communication, in
the parallel organization of the framework

domain is built up, giving global access to all buildings’ bounding boxes and
storage meta-data. This first-level octree thus ensures global location awareness and
orchestrates a set of second-level octrees, each of which holds the data for a single
construction. The constructions themselves are only processed on demand whenever
local operations are to be performed on the data. For a detailed description, the
reader is referred to [15].

Based on the above data access concept, an optimized toolbox for further tasks
such as voxel data generation (e.g. for numerical simulations) or visualization has
been compiled as illustrated in Fig. 5. The first-level octree offers convenient access
to the full set of meta-data and thus simplifies the task of implementing a global
domain decomposition strategy. The hierarchical nature of the model further helps
splitting the data into large parts that are independent with respect to the task at
hand. For further reading please refer to [16].

3 Simulation

Computational fluid dynamics (CFD) simulations are especially challenging and
costly, which makes them a perfect fit to try and apply our computational steering
approach. The goal in the scenario of our choice is to examine the flow around and
through the main building of Technische Universität München (TUM) with a special
focus set on the influence of several varying parameters. The building’s highly
detailed model (more than 130k triangles) is obtained by applying the tools from
Sect. 2 in order to extract the geometric specification from an Industry Foundation
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Fig. 6 As a complex geometry we consider the main building of TUM. Within the building we
select two doors (highlighted in red) whose opening angles are geometric parameters that can be
varied independently. Each angle is a dimension in the simulation space

Classes (IFC) [6] product model. The three parameters in the setting are the opening
angles of two large doors, and the inlet velocity of the fluid modeled as domain
boundary condition. Figure 6 provides a visual clue about the location of the doors,
the flow is directed towards the front of the building.

Both doors are independently adjusted with opening angles in the range Œ0ıI 90ı�,
and the incoming flow assumes values in Œ5I 15m=s� at the boundary. The computa-
tional domain has a physical size of 48 � 12 � 12m and is discretized by a regular,
equidistant mesh of 1;024 � 256 � 256 grid points.

As further explained in Sect. 4, the total number of simulation runs per-
formed amounts to 111, where each run is configured with a different parameter
combination.

Instead of implementing our own CFD solver, we conceived the pre-processing
toolkit presented in Sect. 2 such that a binding to existing simulation software
would be possible. In the simulation step of the pipeline we therefore take
advantage of the capabilities of the potentialFoam solver of the open source
library OpenFOAM v. 2.1.1 [11]. At the beginning of each simulation run it
provides mass conserving initial values and is configured to solve the pressure
equation once, before proceeding with the solution of the incompressible 3D
Navier-Stokes equations. In order to complete this task in a manageable amount
of time, the software has been ported to the Shaheen supercomputer at KAUST [7]
(BlueGene/P architecture), which is equipped with approximately 65k cores and
1 GB main memory per core. While load distribution has been achieved through
a blocked, checkerboard-like domain decomposition scheme, every simulation run
still consumed approximately 230–300 core hours for the initialization of the flow
field.
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Fig. 7 Left: phases of a surrogate model construction and use. Right: The sparse grid sampling
is given by the sparse grid discretization (black circles). Approximated snapshots for a requested
parameter combination (red triangle) are constructed as a linear combination of affected bases
(small cubes)

4 Computational Steering by Means of High-Dimensional
Interpolation

The design of efficient buildings and optimized constructions is the result of an
interplay between various criteria ranging from material constraints and regulations
to thermal efficiency or acoustic comfort. Many of these criteria can be mapped
to parameters in a numerical simulation tool, which can then be used to identify
optimal values or to obtain insight regarding the connection between parameters and
simulation outcome. Both tasks, optimization and simulation insight, require run-
ning a potentially large number of simulations. However, an increasing number of
parameters combined with high computational cost of single simulations (cf. Sect. 3)
make direct simulation techniques unfeasible and raise questions about alternatives.

4.1 Surrogate Models for Computational Steering

As detailed in [3], a parameterized simulation can be considered as a high-
dimensional function u W ˝ � P ! � , which maps the spatial domain ˝ and the
parameter space P onto the space of simulation results � (e.g. the cartesian product
of the simulation’s primary quantities). Surrogate models substitute the function u
for a simplified form Qu W ˝ �P ! � , from which approximated simulation results
can be retrieved in much shorter time.

Figure 7a illustrates the main parts of the surrogate model approach. The
construction of the model is done offline and starts by choosing the parameters
and their ranges of interest. The (normalized) resulting parameter space P is then
sampled, and with each sample corresponding to one parameter combination, a full
simulation needs to be computed per sample. We will denote the set of sampling
points Ps � P .
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The offline phase ends with a surrogate-model-specific model reduction step,
in which the initial high-dimensional problem u is mapped onto the reduced form Qu.
Interactive exploration takes place in the online phase, where the user can freely
adjust parameters, and, guided by an interactive visualization, study the behavior of
the original simulation.

4.2 Sparse Grid Surrogate Models

Our surrogate model implementation employs the Sparse Grid Technique, taking
advantage of its extremely good cost-benefit ratio regarding numerical approxima-
tion in higher dimensions. For smooth functions, sparse grids manage to maintain
a good approximation quality while keeping the set of sampling points Ps small
(see [1]). The smoothness of our simulation function is not a priori known, but
adaptive sparse grids can relax the smoothness requirements (see [12]) by investing
sampling points based on the local gradient information. In the context of surrogate
models this means that during the offline phase only few simulations need to be
performed, one for each �j 2 Ps; j 2 f1; : : : ;M g. In the following we will refer
to the results of a single simulation as snapshot, i.e. the component function

u.x; �/ D u�.x/; x 2 ˝ (1)

is a snapshot defined by parameter combination � 2 P .
The reduced form Qu is obtained by building a multi-dimensional sparse grid

interpolant from a particular set of snapshots. When evaluated at position � 2
P , Qu returns a data vector for the approximated snapshot Qu�.x/ resulting from
interpolation between the precomputed snapshots u�j .x/; �j 2 Ps . Technically,
the evaluation step is a linear combination

Qu� D
MX
jD1

Ouj �j .�/ (2)

where the �j ; j 2 f1; : : : ;M g denote the hierarchical sparse grid basis functions.
The Ouj are the same as the snapshots u�j , only with respect to the hierarchical sparse
grid basis. For more information regarding sparse grid interpolation we refer to [1].
Equation 2 is the main motivation for employing sparse grids in our setting as it can
be mapped quite efficiently onto modern hardware (see Sect. 5).

4.3 Surrogate Model for Building Infrastructure Simulations

CFD simulations around building infrastructure are particularly computationally
expensive due to the high resolution required to capture adequate detail, but also
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Fig. 8 (a) Interpolated flow (zoom in close to the doors) with door angles 32:88ı and 83:28ı and
inflow velocity 12.5 m/s. (b) Reference solution from the full simulation at the same parameter
combination

because of the large computational domain (up to kilometers). The setting described
in Sect. 3 does not bear such large spatial expansion, yet interactive computational
steering is still only possible by means of surrogate models.

As initial grid for the surrogate model, we chose a sparse grid of level l D 3 to
sample the normalized three-dimensional parameter space P . This entails running
31 simulations in the offline phase, each computing a data block of size [Nx �Ny �
Nz � NDOF� D Œ1;024 � 256 � 256 � 4�, where NDOF is the number of degrees
of freedom per simulation vertex (here: 4 components from velocity field U and
pressure P ). For the base grid the total output thus amounts to 31 (simulations) �
1GB D 31GB.

The sparse grid surrogate has been shown to provide reasonable accuracy (1 %
relative L2 error) for various simulation codes (see [4]). We discuss next the
observed accuracy for the BIM simulation. From a visual point of view, Fig. 8 shows
interpolated results for a parameter combinations which match the expected flow
behavior. We consider Pt as a set of test points where the interpolation error is to
be measured and construct it by sampling 125 points in a uniform 5�5�5 grid from
the parameter interval Œ0:12; 0:92� � Œ0:12; 0:92� � Œ0:12; 0:92� (normed parameter
ranges). The surrogate with jPsj D 31 delivers over Pt a maximum absolute error
of 2e � 04 and an average error of 1e � 04 (see Fig. 9).

The approximation Qu can be improved by investing more computational time
in the offline phase and thus extending the sparse grid in an adaptive manner.
We perform two such extensions by first refining the jPsj D 31 model which leads
to a surrogate model with jPsj D 87. A second refinement increases the model size
to jPsj D 111. As expected, we observe an increase in accuracy of the two models
over the initial jPsj D 31 (see Fig. 9).
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Fig. 9 Accuracy of sparse grid surrogates for the BIM problem for surrogate sizes: 31, 87,
and 111. For reference, the maximum velocity values are in the range 5–15 m/s

Listing 1 Serial version of spvm (no optimizations)

For our defined simulation scenario, the sparse grid surrogate can fulfill its main
purpose of being a cheap exploration indicator by capturing the main features of the
simulation. It delivers a good approximation to the original simulation and does
so in an almost interactive manner. The current implementation delivers a new
interpolated snapshot in �200 ms.

5 Optimization

5.1 Sparse Vector Matrix Multiplication (spvm)

We will now look at the linear combination of snapshots as described in Sect. 4
from the implementation side. Expressed as a linear algebra problem, the task is to
compute the inner product of an M -vector x containing m scalar weights (m 
M , i.e. x is sparse) and an M -vector a, whose components contain the snapshots
u�j ; j 2 f1; : : : ;M g being vectors of length p themselves.

In the following, we will conveniently refer to this task as Sparse Vector-Matrix
Multiplication, short spvm. Listing 1 captures the naïve algorithm for spvm. Therein
ix denotes the compressed vector x of length m.
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Listing 2 spvm version exposing the tunable parameters bs (loop tiling) and uf (loop unroll)

spvm is memory-bound, having low computational intensity. The unoptimized
algorithm fully loads every contributing snapshot from a, scales it and adds it to y.
This involves one multiplication and addition per two memory accesses, i.e. we have
1 flop/memory reference. The optimized version uses tiling of a and y as shown in
Listing 2, thus caching the output y which theoretically doubles performance with
2 flop/memory reference. In practice, this performance gain heavily depends on the
parameters bs and uf .

In our interactive setting, we apply the memory-bound spvm to large amounts of
simulation data, hence our target platform should provide (1) a significant amount
of memory (tens of GBs) and (2) high memory bandwidth. Non-Uniform Memory
Access (NUMA) systems meet these two requirements as the memory bandwidth
scales with the number of NUMA nodes, provided that memory accesses are kept
local within each of these nodes. Note that with up to 200 GB/s, GPUs may offer
memory bandwidth several times higher than the 50–100 GB/s obtained on a state-
of-the-art �86 CPU-based (NUMA) system; however, the memory limit of �6 GB
on current GPUs is too low for our purposes. For information and benchmarks for
GPUs employed in a similar setting see [3].

5.2 Empirical spvm Optimizations on NUMA Systems

spvm is at the core of our whole application and therefore its performance is critical.
We speed it up by applying two main optimizations: a NUMA-specific one, and
one that is generally applicable. The latter uses tiling on the snapshots in a and
the output vector y, such that for sufficiently small tile size the repeated access to
y during the reduction operation is done in cache. The nominal flop to memory
reference ratio thus increases to 2. The actual performance however is unlikely to
double. This is because a so far unremarkable effect is emphasized through tiling
and diminishes performance: Jumping from one contributing snapshot (stored in a
“row” of linear memory) to the next is unpredictable in a, causing overhead due to
indirection. For larger snapshots (and thus larger p), processing the rows of a takes
longer and hides this cost. Subdividing one spvm into multiple smaller spvms of the
same shape, however, introduces more unpredictable jumps, resulting in a trade-off
which is difficult to address using theoretical methods.
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In order to make use of the increased memory bandwidth of a NUMA system,
a multi-threaded implementation of spvm must be NUMA-aware. In the k-threaded
case we therefore slice the data in a into k equal parts (similar to the tiling above),
assigning each part to one thread for further processing. A combination of thread
pinning and local memory allocation then ensures that in the following every thread
only accesses data placed in the memory of its own respective NUMA node. This
behavior is achieved by preparing and executing spvm in three steps:

1. Use first touch policy to store slices of a on each NUMA node,
2. Enforce NUMA locality by pinning threads to CPU cores,
3. Execute the multi-threaded, NUMA-aware version of spvm.

Note that the one-time overhead caused by the data layout changes in the first step
is amortized by multiple invocations of a NUMA-aware spvm in the interactive part
of the application.

As indicated in Listing 2, we have several tunable parameters in our application:
the loop tiling factor bs, the loop unroll factor uf, and also the number of threads nt.
The latter is included in the set based on the fact that the optimal value for nt does
not necessarily equal the number of CPU cores, but can be lower. This is influenced
by several factors such as resource contention among the threads sharing the same
CPU or trashing the last level cache.

In order to find the optimal combination of these parameters, we employ an
empirical optimization method (also called auto-tuning) [13]. Alternatives are given,
e.g., by a theoretical, model-based approach, but in our setting we have conflicting
objectives, which often renders analytical solution of such a problem impractical.
We want to maximize cache reuse while minimizing the impact of the jumps
between rows, however, it is difficult to build an appropriate perfomance model
that captures the tradeoff between the two.

We therefore use an orthogonal search method [13], in order to maximize our
performance metric, the GFlops rate of spvm is given by: GFlops D .2 � m �
p=109/=time. Orthogonal search always determines the best value for one parameter
at a time, setting all the other parameters to fixed values. This approach is also
used in the ATLAS library [17], a dense linear algebra library optimized by means
of auto-tuning. For instance, the best value for bs is searched for while uf and nt
are fixed; afterwards, the range of uf is searched while bs and nt are fixed; and
finally, the best nt is determined for bs and uf fixed. Such a traversal assumes a weak
dependence among the tunable parameters confirmed in our experiments. Its benefit
is a significant reduction of the cardinality of the search space, e.g., 3t instead of t3

for a full search, assuming t possible values for bs, uf, and nt, respectively.

5.3 Performance Results

Our hardware consists of a dual-socket NUMA machine with 6 Intel Xeon X5690
cores per socket clocked at 3:47GHz. The memory bandwidth as determined by
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Fig. 10 GFlops as function
of bs. uf and nt are fixed

Fig. 11 GFlops as function
of uf. bs and nt are fixed

measuring streaming memory access times [9] approaches 24.5 GB/s which limits
the GFlops rate of our spvm routine to 24:5 � .1;024=1;000/3=4(sizeof(float)) �
2(flop/float) D 13:2 GFlops per socket and 26.4 GFlops for 2 sockets. Our input
data is in the range of tens of GBs. We use the Intel icc compiler with the flags “-O3
-xHost -openmp”. spvm operates on single-precision floating point numbers.

The graph in Fig. 10 depicts the performance of spvm for different values of bs. uf
and nt both have value 1. The reference version (Listing 1) performs almost 2 times
slower than the auto-tuned version based on empirical optimizations (Listing 2). The
best value for bs is at 8,192 (number of floating point values). This value matches
to some extent the size of the L1 cache.

In Fig. 11 we can see the dependence of the GFlops rate on the unroll factor uf.
The best value for uf is 16. A notable observation is that the automatic unroll
performed by the compiler provides slightly worse performance as shown in the
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Fig. 12 GFlops as function
of nt. bs and uf are fixed

graph. More precisely, by empirically determining the best uf we get 7 % better
performance.

The graph in Fig. 12 shows the performance obtained using different numbers
of threads. The threads are bound to cores using a scatter strategy (“export
KMP_AFFINITY D scatter”) in which consecutive threads are pinned to different
NUMA nodes or sockets. Interesting here is that the best performance is obtained
when using the maximum number of threads. This is in contrast with tests performed
on other systems: on a dual-socket Nehalem-EP (6 cores per socket, 24 hardware
threads) the best nt is 8 (4 threads per socket) while on a single-socket Sandy Bridge
(4 cores, 8 hardware threads) the best nt is 3. Consequently, it is important for
performance portability to keep nt a tunable parameter. The multithreaded version of
optimized spvm reaches 70 % of the theoretical peak of 26.4 GFlops. However, on a
single-socket Intel Sandy Bridge system, our spvm reaches the peak performance of
10.6 GFlops.

6 Visualization

Visualization is an indispensable tool to gain insight into the results of numerical
simulations. Especially with large-scale and parameter-dependent simulations as
it is the case here, an interactive exploration is the only feasible way to analyze
the simulation results: Any change in the simulation parameters, triggered by the
user, causes the data that is being visualized to change, and thus the visualization
has to be recomputed. Additionally, the very high level of detail in the building
infrastructure and the flow around it calls for high-resolution visualization systems
such as powerwalls or tiled displays.
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Fig. 13 The building and flow data are visualized on a multi-display visualization system. Probes
(boxes) serve as seeding locations for streamlines and can be freely positioned

For vector-valued volumetric data, the most common visualization approaches
are based on integral curves [2, 8] (called streamlines in the case of steady flow),
often augmented by direct volume rendering. Our system supports both these
options, in combination with displaying the building models themselves to serve
as context information. We employ the Equalizer parallel rendering framework [5]
to support any visualization system, ranging from a single desktop PC to the largest
powerwall and CAVE installations. The visualization system used in our tests is
a semi-immersive installation consisting of eight 3D monitors, and can be seen in
Fig. 13.

6.1 Streamlines

A streamline s.t/ in a vector field v.x/ starts at a user-defined seed point x0 and is
tangent to v over its parameter interval Œt0; t1�. It is given by the ordinary differential
equation

Ps.t/ D v.s.t// and s.t0/ D x0 for t 2 Œt0; t1�.

In practice, streamlines are approximated by using numerical integration
methods. To achieve a good balance between integration quality and computation
time, we use a fourth-order Runge-Kutta integrator in our work, i.e.

s.t C ıt/ D s.t/C ıt � . 1
6
v0 C 2

6
v1 C 2

6
v2 C 1

6
v3/, where

v0 D v.s.t//,
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v1 D v.s.t/C 1
2
ıt � v0/,

v2 D v.s.t/C 1
2
ıt � v1/,

v3 D v.s.t/C ıt � v2/.

During runtime, the user specifies the number of streamlines to generate and a
seed region (also called probe) inside which seed points are placed either regularly
or randomly. To gain a quick overview of a data set, the seed region can be set to
encompass the whole domain. For a more detailed analysis, a small seed region can
be placed near an area of interest. By using the extremely high computational power
and memory bandwith of a GPU for streamline computation, we can generate and
render thousands of streamlines in real time.

For display, the streamlines are extruded to tubes by a geometry shader.
To increase the amount of information in the visualizations, our rendering system
also allows the mapping of scalar quantities derived from the flow field to a tube’s
color and radius. Quantities of interest can either be derived from the velocity field,
such as velocity magnitude or vorticity magnitude, or can come from additional
scalar fields, e.g. pressure. In the visualizations in this paper, the inverse of the
velocity magnitude is mapped to the tube radius, so that the tube gets thicker in
slow areas. This allows for an intuitive interpretation of speed even in static images.
Some example visualizations showcasing the streamtubes can be seen in Fig. 8.

6.2 Volume Rendering

In order to provide additional context information, our system also provides
volume rendering capabilities. Iso-surfaces of scalar quantities (velocity magnitude,
pressure, . . . ), i.e. all points in the volume where the chosen scalar quantity is equal
to a user-defined iso-value, can be extracted and displayed. To find an iso-surface,
a ray is traced through the volume for each visible pixel on the screen. At regular
intervals along the ray, the quantity under consideration is evaluated. A change in
the sign of .quantity � isovalue/ indicates an intersection in the previous interval.
We then employ a binary search to find the exact intersection location. The gradient
at the intersection point is used as the surface normal for illumination. Figure 14
shows a rendering of an iso-surface of velocity magnitude in front of the TUM
building.

7 Interaction

An issue that has not been addressed so far is the interaction of the user with our
system, e.g. to move the probes from which particles are seeded. With an immersive
visualization system, the traditional “keyboard C mouse” interface is not applicable
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Fig. 14 Iso-surface of flow velocity magnitude for an iso-value of 16 m/s in the region of the
parametrized doors. Two-sided shading is employed to distinguish the “outer” side (values <
iso-value, blue), where the velocity magnitude is below the iso-value, from the “inner” side
(values > iso-value, orange)

(or at the least, very inconvenient), and as such, alternative interaction mechanisms
are required. In the following, we describe the user interactions implemented in our
system and analyze their efficiency in a user study. The goal is to allow an easy and
intuitive navigation in order to avoid putting any additional cognitive burden on the
user. To achieve this, we have implemented an interaction solution based on hand
gesture detection using Microsoft’s Kinect sensor. As hand gestures are used for
interaction in the real world, they offer great promise for an intuitive user interface.

Tang [14] also uses the Kinect camera for hand gesture recognition based on
RGB and depth images. He is able to recognize “grasp” and “drop” gestures.
Xu et al. [18] use depth information from the Kinect sensor to improve tracking
stability and accuracy. Rather than further improving the tracking performance,
we investigate the different hand gestures that users perform for different tasks.
Moreover, we aim to determine whether or not there is a common mapping among
the users between the performed hand gesture and the desired task. In our tests,
we use the OpenNI Framework [10] which allows the rapid development and
evaluation of virtual reality applications. We integrate the hand gesture detection
(wave, push, swipe, circle, and steady) with the skeleton detection to improve the
robustness of the hand gesture recognition. For example, if a user performs a circle
gesture with the right hand, it is expected and checked that the user also performs a
circle gesture with the right shoulder.
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7.1 User Study

To investigate the mapping between a hand gesture and the desired task in the
virtual environment, we perform the following user study. We explained to the
10 participants (6 males and 4 females between 23 and 31 years old) the desired
tasks they were supposed to perform . They could use one hand or both hands and
perform gestures like horizontal and vertical swipes, push, steady, circular or any
combination thereof under the condition that the gestures have to be unique per
task. The participants first had to observe a prerecorded animation of the desired
tasks, and then perform the gestures they thought would match the task. While the
participants were performing the gestures, the task animation was running again to
give the participants a feeling of control.

We determine the following set of tasks to be necessary for the exploration of our
simulation results:

1. Translation of a probe: Horizontal and vertical movement of a probe (i.e. seed-
ing region) to explore different areas of interest.

2. Rotation of the domain: Rotation around the X/Y/Z axes to explore the domain
from different perspectives.

3. Scaling of the probes: Scaling to control the size of the seeding region.
4. Introducing and removing probes: Exploration of multiple areas of interest.

Both the performed hand gestures and the skeleton movements were recorded
using the Kinect sensor for post-analysis. For illustration, Fig. 15 below show the
3D hand paths and skeleton movements for a gesture performed by two participants
for the task of scaling down.

7.2 Results and Discussion

For the horizontal translation of the probe as an example, we notice that two
participants used a circular movement of the right hand around the z-axis, while
four participants swiped the left hand in the x-axis for the same task. The other
participants used the same gestures but with a different hand (left or right), or with
both hands. Even though the majority of the participants used the same gesture,
we can not determine a common hand gesture for this task. However, for the
task of scaling the probe down or up (see Fig. 15), all participants used the same
hand gesture: a hand pinch (bringing the hands closer together or further apart,
respectively). This gesture is the most performed gesture in the user study.

The user study shows that the users did not use the same hand gestures for the
same tasks, indicating that there is no unique or common mental mapping between
the hand gestures and the tasks for most of the tasks. However, the users explained
that they used hand pinching for scaling by the fact that they could map this task
to the familiar task of zooming on their multi-touch handheld devices. Therefore,
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Fig. 15 Scaling down of the probe by two participants

they simply replace finger pinching by hand pinching. We can then conclude that
it is more likely that we could reach a unique and common mapping between the
hand gestures and the tasks if the users could map the simulation tasks to some
familiar tasks they are used to. Exploration of simulation results is unfamiliar to
the users, so there is no preconception of the matching hand gesture for a task.
We are therefore planning to repeat the user study with a more targeted group of
people who are familiar with numerical simulations and their visualization. We also
notice that the users mostly performed simple swipe and circular movements using
different or both hands to make the mapping gesture-task unique. Therefore, in the
next user study, we will choose a set of gestures to perform the different tasks, and
ask the users to perform the specific explained gestures. The objective will be then
to investigate the robustness of the gesture recognition software for inconsistent and
non-expected gestures as well as the users’ acceptance of the proposed gestures.

8 Conclusion and Future Work

This work introduced an integrated solution for computational steering of
parameterized flow simulations in complex, large-scale geometries. A hierarchical
data structure concept was used to efficiently access and generate parametrized
simulation geometries from BIM databases. For simulation steering we employed
the sparse-grids-based surrogate model as a substitute for the costly simulation.
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By investing computational effort in an offline phase, we were able to deliver
approximated simulation results in the online steering phase and display them on
a multi-display scalable visualization system even for high resolution simulations
and with good accuracy.

As test scenario a flow around a building geometry has been parametrized with
a combination of geometrical parameters (door angles) and physical parameters
(inflow conditions). The surrogate model was examined and the core vector oper-
ations were optimized for the target platform. We thus achieved the performance
needed to display new simulation results for non-simulated parameter combination
at interactive rates.

Furthermore, we proposed as steering environment a semi-immersive visualiza-
tion with integrated support for 3D interaction with the data. Additional features
described were efficient flow visualization via particle tracing, volume rendering,
and flexible probing.

Future work will deal with the efficiency of reloading and distributing very
large simulation snapshots when triggered by user interaction. Also, designing an
intuitive and usable user interface which incorporates domain knowledge is needed
to enhance the exploration process.
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Experiences with a Flexibly Reconfigurable
Visualization System on Software Development
and Workplace Ergonomics
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Abstract Physically reconfigurable visualization systems bear the potential to
provide more flexibility for content presentation w.r.t. different types of users.
Screen setups with alterable layouts allow switching between power-wall and
CAVE-like systems, and allow any other setup no matter if display components
are totally decoupled or arranged in proprietary setups.

At Technische Universität München we set up such a flexible system built of
consumer market 3D displays and state-of-the-art computer hardware providing
means for such physical flexibility.

With such a system at operation for a longer time by now, we are investigating
the question whether the grade of flexibility has an influence on how software
developers adapt to this flexibility. We especially investigate ergonomic aspects of
workplace setup of the developers themselves.

Experiences and findings lead towards relationships between display flexibility
and developer-related effects, such as the number of concurrent developers and
postural deficits developers are willing to endure. This article reports on the
flexible visualization system, the determined relationships between its flexibility
and postural effects on developers, and discusses attempts to avoid an unbalanced
level of flexibility that leads to non-ergonomic states.
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1 Motivation

Visualization environments gain an increasing importance. The larger the amount
of data, the higher might be the need for a suitable visualization. While
physical simulations often bear the inherent demand for spatial visualization,
other disciplines strive for multi-dimensional data aggregation to gain suitable
information visualization properties.

For many types of visualization one-screen desktop systems suffice, for others,
large scale and large field-of-view visualization systems are required to provide
additional props for visualizing larger portions of data. Spatial data and volumetric
simulations define the very end of a field-of-view scale as they integrate virtual
worlds which often demand a certain minimum level of immersion.

To set up a visualization system providing the most suitable level of fidelity
for the desired area of application requires several trade-offs between building
infrastructure (i.e. room size, power, AC, options for darkening), available funding
and available facilities for maintenance and operation. One aspect, however, often
is neglected. The major focus usually lies on the end-users and their demands – the
developers and their circumstances are often disregarded. In contrast to conventional
one-screen desktop systems that can be arranged according to ergonomic work
guidelines, large scale systems usually require the developer to cope with the
physical setup of the system components. At least during the testing and deployment
phases, the developer has to work at the visualization system directly. This can cause
developers to work in non-ergonomic postures.

We built a visualization system called FRAVE to bridge the gap between
flexibility of screen placement and the field of view into the virtual world. After
almost 2 years in operation, we started looking back to investigate how developers
are working with the system. This is the focus of this work: to explore, how
our level of flexibility behaves w.r.t. software development in general and with
ergonomic aspects in detail, and what we can learn from the findings to provide
future users with ergonomically supportive systems. We investigate the question
how developers use the system in a physical and postural context, and how the usage
affects properties of ergonomic workplace setup. Feedback of users covering their
workplace setup is analyzed and discussed w.r.t. risks for potential development of
negative postural habits (i.e. musculoskeletal disorders, MSD).

The following sections therefore first introduce the fundamental concept for
flexible visualization and then introduce the our visualization system, the FRAVE.
In the succeeding part, implications of the physical structure of the visualization
system on approaches of software developers and their organization of their
workplaces are investigated. The main focus lies on the analysis of a questionnaire
collecting data about workplace setups. Observations, among other things, show that
the flexibility of the setup pipes through to the developers in general. The analysis
of the collected data shows that special care must be taken to ensure ergonomically
health-preserving system use.
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2 Flexible Visualization Environments

Virtual reality for its own purpose and the demand for visualization of simulation
data generate an increasing importance for various and varying types of visual-
ization environments. While many virtual environments require fully immersive
visualization systems with necessarily high levels of fidelity for sufficient presence,
others require to satisfy fewer requirements. Simulation systems of spatial and phys-
ical properties, for instance, often require lower levels of immersion. Researchers
in such fields yet require a wide field of view and high resolution to investigate
spatially distributed properties of the simulation. Besides knowing about the spatial
context and having met the demand for interfaces to travel to the specific location,
visualizing the according portion of the simulated space might be sufficient to such
users. The focus is not to get into the virtual world mentally, it rather is to understand
the occurrences and effects of the simulation.

As such an understanding might be strongly based on spatial relationships, it
thus does appear important to not let the researcher deal with spatial transformations
in a larger extent than necessary. When traveling through a virtual world or when
examining a point of interest from different perspectives, the user in fact has to
maintain the viewpoint location and orientation based on virtual cues rather than on
physical cues. The user simultaneously has to maintain his physical motion and the
mapping of the virtual world w.r.t. the physical world. Physical cues indeed might
be supported in the walkable restricted space of a CAVE, but orientation changes
when the virtual world is rotated with a user interface. Bowman et al. [5] states that
each 60ı rotation requires 1 s to mentally execute. To the end, two different worlds
require spatial maintenance the same point in time. Mounting the virtual world to
the real world – at least in those situations where examination tasks of simulated
data are conducted – bears the potential to let users reduce, or even neglect, such
transformational issues.

We were searching for an option to let users of visualization systems have a
more flexible approach to deal with their position and orientation in a virtual world
(as said, at least for the part in which they are examining a specific occurrence of
a simulation). Creating a partially rigid connection between the physical and the
virtual world stated a suitable support. Such a connection actually already exists.
The head-tracking dependent frustum computation w.r.t. the displays lets the screens
become spatially fixed windows into the virtual world. We yet emphasize this fact
and extend the way a user can make use of it.

This rigid connection and its usage shall be explained on a generic example.
A CAVE might be used to visualize a virtual environment generated through a
simulation. The simulation computes and visualizes its data, bearing an effect
requiring further investigation. A guidance system might show a path to this location
and the user employs some interface to travel there and eventually reaches the point
of interest. Here, the virtual world moves w.r.t. the physical world. The world stays
in place as soon as the travel interface is released. A general CAVE yet provides
another interface to maneuver spatially: the beforehand mentioned head-tracking
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facilities – even if this facility restricts to the limited area of the CAVE. Both, the
user interface and the head-tacking facilities affect the position and orientation of
the user’s viewpoint in the virtual world, but only the head-tracking system maps
physical motion and thus enables truly physical cues. The tracking system, in case
of head-tracking, does establish the direct connection between physical and virtual
world. Assuming that the CAVE does provide four side walls and that the area
of interest is smaller than the accessible space inside the CAVE, the user will be
able to walk around the interesting region and thus will be able to investigate the
simulation result from all directions. All physical motions are then directly mapped
to the virtual world.

This example could inherently define the demand for visualization systems to
provide a walkable space larger than what a common CAVE does provide today.
But why should such a system be a CAVE at all? Would a set of flexible display
components that can be arranged according to user preference be sufficient as long
as the screens provide the view in whatever direction is required?

As described in more detail in a technical note [13] we combine panel displays
with portability features to yield such a flexible visualization system. Although they
do have bezels reducing immersion, they are easier to handle than projector-wall
systems. Especially the physical dimensions of panel displays enhance mobility, and
their depth is significantly shorter than any arrangement of a projector and projection
wall setup.

The next section investigates different approaches for visualization systems. This
is followed by an illustration of our concept. Subsequent to the general concept
is a detailed discussion of hardware specific trade-offs we had to deal with when
installing our FRAVE system.

2.1 Related Work for Visualization Systems

While most of the traditional larger-scale visualization systems employ projectors
and projection walls, using panel displays for visualization systems is not a new
strategy at all. The NexCAVE [6] showed that panel displays can be used to build
CAVEs. The setup uses tight and rigidly mounted displays. All screen-normals
are oriented towards a common center point, the spot from which the generated
picture is perceived best with minimal bezel obstruction. Using projection systems,
but providing some flexibility, the RAVE from Hindus [9] allows the side walls
to be turnable around the inner joints of a three-sided setup. The tiltable wall by
Doulis et al. [7] enables the user to adjust the screen setup according to personal
preferences. This can be compared to the approach of Bimber et al. [3] who foresaw
a seamless integration of VR systems into habitual office workspaces.

Rekimoto [12] uses several independent displays, defining each display as
another window into the virtual world. Rather than changing orientation and posi-
tion with interface devices, users locate the display screens so that they are facing
in the required directions. The virtual world itself can be moved for larger travel
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tasks, but remains fixed w.r.t. the physical world when smaller, physical movements
are performed. This approach essentially establishes the paradigm of Augmented
Reality, maintaining the requirements defined by Azuma [2], registration in 3D and
interactivity, and all in real-time.

2.2 FRAVE Concept

We loosen the tight, rigid connection between displays such as in the NexCAVE,
making the display setup reconfigurable while keeping the opportunity of a CAVE-
like setup available. More generally and following Azuma [2], we integrate the
virtual world into our physical world when moving physically. This allows users
to perform near field maneuvering without having to translate the virtual world
iteratively. Users thus do not have to memorize positions and alignments of spatial
relationships in the virtual world to keep track of their path and position – they
rather can rely on physical cues. All spatial dependencies can be tracked according
to physical steps, the motoric memory and physical awareness. Users yield different
views by moving displays and looking through these onto the virtual scenery. The
displays themselves become the input and steering devices for viewpoint control.
Such a visualization system requires tracking capabilities to track the displays and
the head position to compute a correctly aligned field of view for each display. The
displays become portable windows into the virtual world.

Our proposed system, the FRAVE, a Flexibly Reconfigurable CAVE was intended
to be such a flexible system. The system is based on the vision of a physical
environment where users set up their visualization displays according to personal
preferences and demands. Multiple displays can be combined to a user-enclosing
3D environment similar to a CAVE. Display elements can be arranged freely, only
depending on the available space. Examinations of sceneries in any direction are
facilitated, even “inside” facing displays are possible. The user does not have to
reposition the virtual within the physical world (when the virtual area of interest is
smaller than the available physical space).

With the focus on visualization of simulation data in combination with terrain
data, we developed a set of display components that can serve these demands.
Figure 1 shows two possible configurations. To some extent these components
correspond to the RAVE approach of Hindus [9] where the two side walls of a
three-sided panel architecture can be turned around their common joints with the
center wall. The complete FRAVE system consists of ten displays in different partial
arrangements and with different capabilities. A ground floor facilitates two displays
and is covered with glass to be capable of carrying two users. Three wall segments
are equipped with two displays each. The walls have rolling bases and can be moved
around freely, for instance, into an open position similar to a power-wall (Fig. 1a) or
independently to a custom setup (Fig. 1b).

Two other displays provide the highest flexibility. Each is mounted on its own
rolling base and is adjustable in height and tilt. Such as with the tiltable wall by
Doulis et al. [7], but with more degrees of freedom, these elements can be adjusted
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Fig. 1 The FRAVE concept shown in sketches. (a) A power-wall like setup. (b) A setup of
independently placed components, i.e., for two teams

Fig. 2 Adjustable screen in tilted and lowered position

to personal preferences of the users. Figure 2 illustrates a possible configuration.
An upright position enables users to stand while perhaps discussing simulation
effects. A tilted setup enables users to look downwards. Lowered positioning allows
users sitting down for longer sessions.

2.3 Balancing Hardware-Specific Trade-Offs

The original FRAVE concept foresaw comparably large panel displays. To draw
a final decision concerning display size and the overall size of the FRAVE some
more influencing parameters were necessary to consider. While a more detailed
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description of all factors on the FRAVE is given elsewhere [13], we here summarize
the factors that later require to be discussed w.r.t. effects on software development
and ergonomic effects.

Mainly for visualization components a choice in the display size was required.
Our aim was to provide a large field of view with as few visual obstruction as
agreeable. Generally, smaller displays have smaller bezels. However, the absolute
number of bezels of a four panel display array substituting an equally large single
display quadrupels. Another influencing factor for the visualization system in
general is that an average height user (180 cm) should be able to see some portion of
the image above the straight forward horizontal line of sight. As also a ground floor
with displays was to be installed, the lowest line of the lowest display should reside
directly adjacent to the floor display. These requirements yielded the following
differentiation. If the displays are larger than 60 in., two displays, one above the
other, are sufficient to cover the necessary height. Between 40 and 60 in., three
display are required and below 40 in., four displays are necessary to reach the
required height in display space.

Usually smaller and mid size displays are cheaper than the largest available ones.
Working with smaller displays yields a higher resolution. However, the calculation
of the number of displays has to factor in the cost of computers and graphics
cards. As most displays used active shutter technology at the time of construction,
the graphics cards driving the system were required to provide functionality
for hardware-based synchronization (i.e. G-Sync). Our choice therefore went to
displays of at least 60 in. in the diagonal, keeping costs for computers and graphics
hardware comparably low. To the end, the choice went to the Panasonic VT20 series
with 65 in. diagonal as their displays yielded best quality estimates concerning
picture quality, energy consumption, and IR shutter signal transmission angles.
A pixel has a diameter of 0:75mm yielding an angular resolution comparable to
current upper end visualization systems. Each wall thus employs two displays.

Each building block (floor, 3 walls, two adjustable single displays) is driven by a
separate computer equipped with an NVidia QuadroPlex 7000. Both, the computer
and the graphics card are mounted to the backside of the respective frame. Each
computer for convenience is equipped with mouse and keyboard. The respective
USB cables are equipped with extension cords.

2.4 Dimensions of the FRAVE

The final construction had a ground floor at a height of 30 cm and an overall height
of 220 cm. Each of the three walls is 160 cm wide. The ground floor, due to the
encapsulating frame, is 200 cm wide and has a length (depth) of 230 cm. The glass
plates of the ground floor are 39mm thick and weigh approx. 150 kg each. The
lower wall display screens start at a lower height of 40 cm and have the upper end
at 120 cm. The upper wall display screens start at a lower height of 135 cm and
have the upper end at 215 cm. Each wall is rollable and has an approximate weight
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Fig. 3 General FRAVE setup: three walls in bended power-wall setup with adjacent tiltable
display and remote desktop computers in front of FRAVE

of 200 kg including the two displays, the computer, the external graphics card and
the mounting frame. The most often used configuration has the two sidewalls tilted
inwards by approximately 30ı, see Fig. 1a.

The two adjustable screens are manually tiltable to any angle between vertical
and horizontal and are adjustable in height between 145 and 190 cm (upper edge
of screen; lower edge from 65 to 110 cm) with an electronic actuator. The also
rollable one-screen systems each have an approximate weight of 100 kg including
the display, the computer, the external graphics card and the mounting frame.

We installed another three computers for remote desktop access on a bench of
three tables in front of the FRAVE. Figure 3 shows the common setup with two of the
three remote desktop computers visible in front. These workplaces were preinstalled
according to ergonomic guidelines. The intention behind the setup in front of the
FRAVE was to enable developers to gain a straight line of sight on the FRAVE
when directly executing applications on the large displays (when the system is set
up in the general 30ı configuration or totally opened). The tracking system of the
FRAVE covers almost the full extent of the desks. Developers thus do not have to
stand up for testing.

Ubuntu 10.4 (later, 10.10) and Windows 7 were installed on all computers of the
FRAVE (both, visualization nodes and remote desktop computers).

3 Implications on Software Development

With this setup in operation, we started observing how the development infrastruc-
ture was used and how developers worked in that environment. This section covers
observations concerning the flexibility of the visualization system and how it bears
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potential to support concurrent development with multiple users in the first part.
This is followed by investigating the main question of this work, how the flexibility
to dynamically position visualization components and the comparably large scale of
the screens affect ergonomic habits of people working with the system.

3.1 Flexible Support for Multiple Developers

While a central intention of the FRAVE was providing flexibility to the end user,
we can extend this aim to application developers. Main elements of applications
are surely developed on standalone computers, but when it comes to deployment
and especially to testing systems and user interfaces, the target platform needs to be
entered.

Let us illustrate a development process by taking a look at the highest-fidelity
form of visualization systems, a CAVE. Most such systems are equipped with one
master control computer standing at a desk outside the CAVE. The developer sits
down in front of a desk with a monitor, and may be able to look into the CAVE,
perhaps with an inclined glance. All development work has to be conducted from
this one computer because the computers of the CAVE are usually not accessible
directly. Further computers of course can be set up – at least as long as there is
space available from where the developer can look into the CAVE. However, to test
the system, one eventually needs to enter the CAVE. Only there, the user can see if
the system runs correctly on all nodes and screens and only there one can test if any
user interface requiring tracking operates as planned. The operator’s desk could be
placed in the tracking volume indeed but that would possibly narrow the entrance to
the CAVE. To the end, only one developer is able to at least get a good view from
the outside as only the opposing wall is visible to a larger extent.

Power-wall setups as a counterpart to a CAVE define a totally different devel-
opment environment. Multiple users can operate in parallel by splitting the screens
in agreement. Yet, to test different branches of the same software in parallel, the
system needs to be extended to be able to concurrently deal with different spatial
transformations for the used input devices.

With a repositionable system such as the FRAVE, developers are able to work on
the same software system at the same time, even if views into different directions
are required. They basically place the visualization components w.r.t. their desk
(or input devices) so that they can perceive the desired view immediately after
startup. Different, but concurrent views are possible this way. This is further
supported by the visualization nodes being equipped with their own set of keyboard
and mouse, which usually can not be achieved with rigidly coupled visualization
components, no matter if it is a CAVE or a power-wall. The only constraints are
the number of screens available and the fact that display panels might conceal the
field of view of the tracking system. The standard setup of the FRAVE, however,
provides a tracking volume ranging up to the default setup of the remote desktop
computers.



232 M. Tönnis et al.

Fig. 4 Workplace ergonomic guidelines (Courtesy of IBB GmbH, Germany)

3.2 Ergonomic Aspects of Health

Flexible visualization systems provide a higher grade of flexibility for developers to
establish their working setup. That raises the questions whether the grade of system
flexibility relates to the grade of ergonomically healthy software development.

To speak of ergonomically healthy software development requires to briefly
discuss the relationship of ergonomic factors in the field of software development
or, more general, in the field of computer supported work. Germany and many other
countries define sets of guidelines w.r.t. ergonomically correct setup of computer
desktop workplaces. Such guidelines are mainly based on the ISO Standard
9241-5 [10]. Further on, the ISO Standard 11064-4 [11] defines ergonomic design
of control centers. Figure 4 summarizes the common core guidelines in a sketch. Of
major interest in the following discussion are the requirements to have a horizontal
line of sight towards the upper edge of the screen and the mostly rectangular (knees,
pelvis) or straight (spine) body posture. These factors ensure a health-maintaining
working environment and reduce the risk for the development of MSDs.

The design of the FRAVE for the end-user generally ensures these guidelines at
least for the upper displays in a standing posture. Our aim is to investigate how the
situation evolves for the developers rather than for the end-users. As the incidence
of computer-related MSD has been estimated to be around 20% [8], specialized
workplace setups such as in the case of software development in a larger scale
visualization environment require investigation of possible influencing factors.

We therefore designed the following questionnaire, also including the collection
of common demographic data (age, gender, position at university).
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• What is your usual average time per working session at the FRAVE remotely
from your work place?

• How many such working sessions are you doing per week in average?
• If you are working from your personal desk, did you adjust the setup (chair

height, desk height, screen height, distances, . . . ) according to computer work-
place ergonomic guidelines?

• —
• What is your usual average time per working session at the FRAVE locally in the

ITüpferl?
• How many such working sessions are you doing per week in average?
• How many people were present at the FRAVE in average during such a session?
• On which computer do you work? Please note: E.g., logging into frave0 from

fraveui0 would yield frave0.
• What is your preferred seating (i.e. chair, wooden stool, bar chair, floor, standing,

on the glass floor of the FRAVE, . . . )?
• Where is your seating location (i.e. in front of the FRAVE in the middle, left

corner of FRAVE floor, . . . )?
• On which screen (display device) do you actually conduct your work (i.e. upper

screen of frave0, . . . )?
• Where do you place mouse and keyboard (i.e. both on desk in front of me, mouse

on wooden stool, keyboard on lap, . . . )?
• Can you tell, why you did choose this setup (seating, screen, keyboard, . . . ) (i.e.

other computers blocked, did not know about remote desktop login option, . . . )?
• Did you feel any kind of back pain or neck stress or other symptoms of non-

ergonomic working poses after such sessions? If fine with you, please indicate
your problems, otherwise just state yes or no.

• —
• If you have changed your working and seating setup, please indicate why (i.e.

other computers blocked, did learn about remote desktop option, changed work
focus i.e. from developing to testing, . . . ) and how your new setup looks like
(Note: To answer how, please answer the questions of the marked block again)?
Please continue for each setup used for a longer time.

We handed this questionnaire to all users of the FRAVE and received answers
from eight users, all except one developing software for the FRAVE. Six users were
developers of 3D user interfaces, a domain area which usually requires frequent
physical access to the system. To gain further insight into workplace setups and
how user seat themselves, we also employed our personal observations from another
11 individuals, all developing either user interfaces, rendering components for
the FRAVE or administrating the system. Understandably, no feedback about the
second groups’ physical exertion could be collected. No statistical analysis of the
collected data has been calculated because the feedback contained a too wide variety
of different setups to yield meaningful data. We moreover stand in for the fact
that already a sole occurrence of non-ergonomic workplace setup requires to be
addressed as it bears the potential to evolve into a habit and thus can lead to postural
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Fig. 5 Four types of working setups at the FRAVE. (a) Sitting on a work-desk. (b) Standing in
front of an adjustable screen. (c) Sitting centered in front of the FRAVE. (d) Sitting on the ground
floor

deficits and MSDs for this one user over time. Any questionable workplace setup is
therefore illustrated and discussed to avoid such health-critical usage.

3.2.1 Types of Workplace Setup

An iterative categorization lead to four general types of workplace setups among
the developers. The categorization was mainly driven through the physical
location where the developers executed their work. Variations of interaction device
placement were fed into subcategories. Figure 5 shows the four types: sitting on a
work-desk, standing in front of an adjustable screen, sitting centered in front of the
FRAVE, and sitting on the ground floor. We discuss these four types in ascending
order of negative influence on body posture.

Sitting on a Work-Desk

Users are sitting at a desk with conventional monitor, keyboard and mouse.
Figure 5a shows that the FRAVE screens are mainly visible above and besides the
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monitor on the desk. The users mostly have the display of a visualization node
exported to the desktop computer. Sometimes they are running the development
environment on one of the FRAVE screens directly. In fewer cases users were sitting
at their personal desks elsewhere in their offices.

Developers used this setup mainly for longer coding sessions. Testing and
parameter tweaking activities such as with spatial user interfaces were also
conducted to a larger degree with this setup. It seems that providing the possibility
to use tracked hardware from a seated position proved beneficial for maintaining a
harm-free posture.

This setup suits best to an ergonomic workplace setup. The operational setup
more or less, but commonly to a larger degree, followed setup guidelines for
workplace environments.

Standing in Front of an Adjustable Screen

Figure 5b shows another setup being used especially when working on the tiltable
and height-adjustable screens. The developer is standing in front of the screen, using
input devices placed on bar chairs. Bar chairs were available as there was a kiosk
environment nearby.

Here, the risk for developing a bad postural habit is still comparably low as the
users constantly change position because they are standing. The neck is straight
when looking at the screen and the input devices can be reached almost comfortably,
even if too low.

To be noticed is the usage of bar chairs and the fact that the screens are tiltable,
height-adjustable and can be moved around. Almost never has any capability to
adjust the screens and the base location been used. Only two exceptions were
observed. First, when the screen has completely tilted to a table or when one of
the two screens was taken to another office for some time. The new users took the
advantage to adjust the configuration to their preference.

It might come from the need to execute physical work that the screen was tilted
so seldom, even if adjusting the screen in height just required pressing a cable-
bound remote control for lifting. If the lifting and tilting features were used, the
adjustable screen could be brought down and tilted in a way that a user could operate
in an ergonomically better posture. Then, either an easily transportable elevated desk
could be brought to the system or the system could be moved to a location in front
of an exiting desk equipped with a remote computer. To enable higher usage rates
of these features, we assume that the tilting facility needs electronic support and
that the controls need to be prominently placed to reach higher noticing rates by the
users.

Concerning the rolling capabilities we noticed a drawback of the construction.
The rubber rolls have a comparably low diameter and width. With the one-screen
system having a weight of almost 100 kg moving around is indeed not troublesome
but requires some effort. This finding might appear of lower influence but the ability
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to move something easily (through larger and harder rubber rolls) would increase
its usage in consequence.

A further handicap for relocating visualization components is cabling. The
number of cables were reduced to the necessary minimum. Still a power and a
network cord limited position flexibility by blocking the way and partly by being
stuck elsewhere, thus not being able to be pulled as required. Ceiling mounted
cable conduits at swivel arms surely would eliminate this issue. Yet, installing such
facilities for multiple independent components requires additional efforts that are
usually beyond the scope of computer scientists.

Another approach could be to mount a drawable desk panel for keyboards and
mouse to the screen. Then, however, the user would be sitting too near w.r.t. the size
of the screen.

Sitting Centered in Front of the FRAVE

The third often used setup was mostly used by developers who had to repeatedly
access the FRAVE directly. Such users took a chair, put the keyboard on their lap
and the mouse either on a wooden stool besides or just on the ground floor in front.
Figure 5c shows such a typical setup.

Several reasons exist letting users take this setup. The joy working on an
unusually large system with screens one would like to have at home was a strong
factor letting people sit like this enjoying what is currently their system. Other
people took that pose because they just did not know about possibilities to remotely
log in to other computers. Sitting in front of the FRAVE, all keyboards and mice
of all FRAVE computers could be accessed quickly. Some few people also did not
know that the tracking volume also covers the desk space of the remote desktop
computers.

Especially as comparable setups were used for quite long durations, we could
see an elevated risk for postural deficits. Having the mouse in front on the floor
of the FRAVE requires users to lean forward. The users had to change position
at least sometimes. Having the mouse on a low platform besides the body bears the
potential for long unchanged postures. As observed, users either bend sidewards into
a pose where the spine is unevenly balanced laterally or slipped down on the chair
into a crooked posture to reach the mouse. Concerning neck bending, we observed
that users mostly worked on a lower FRAVE screen having a straight neck and a
horizontal line of sight onto the upper edge of the screen, both as recommended in
ergonomic guidelines. However, some developers used to work on the upper screens
sometimes, then bending their neck comparably wide backwards.

Sitting on the Ground Floor

Figure 5d shows the most concerning posture found among the analysis of the usage.
Surprisingly, this setup was used quite frequently. The user is sitting on the FRAVE
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floor directly in front of the wall screens. The keyboard is either on the user’s lap or
on a wooden stool. The mouse is either on a second wooden stool or besides the user
on the floor of the FRAVE. Usually the lower screen was used, but in rare occasions
we observed usage of the upper screen.

The computer of the left FRAVE wall by convenience is the head node for
applications running on the FRAVE. That might be the main reason why many
users took a seat on the left side, but other users worked on the other walls in
similar setups. All types of work had been executed in this setup. Besides system
administration, long coding sessions were held, and integration tests, debugging and
parametrization of user interfaces was performed.

At the very beginning of the physical deployment of the visualization infrastruc-
ture, no extension cords for the USB cables of mouse and keyboard were installed.
For a couple of days administrators had to use such a posture to install the operating
systems and to configure the system. Usage of this type of seating yet continued even
after the extension cords had been installed and after the remote desktop computers
were set up. Our main explanation is that new people coming into the room saw how
users were seated and continued with this habit.

Such a posture comes with several concerns. The spine is crooked in this
crouched stance. The spine is twisted to let the user look on the screen or to reach
the mouse besides. The neck is tilted backwards as seating height is too low w.r.t.
the screen. The screen is too near, enforcing the user to focus to short distances and
to turn the head extensively to gain sight on the left and right areas of the screen. All
these factors bear an additional risk for neck stress as it is already bent back. It thus
is not surprising that neck strain and back pain were reported.

3.2.2 Discussion

The findings from the questionnaire and the observations imply some major
reasons for the use of non-ergonomic workplace setups. First, lacking knowledge
of developers about software tools for remote login. Second, potentially missing
awareness about the need for ergonomically correct workplace setups. Dependent on
the awareness is the physical presence of suitable, flexible setups of the equipment
and for desks. These aspects and the interventions proposed earlier, correlate with
the most frequent approaches from the survey by Boocock et al. [4]. We discuss all
aspects and options to emphasize the demand for maintaining ergonomic postures
for future health.

Software Tools

Remote login tools exist for any operating system. Users can log on to other
computers, can export the display and even graphics contexts. The knowledge about
the availability of such features and their usage needs to be shared among users,
especially to new users. This a demand for system operators and project leaders.
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Starting a new development project usually comes with lots of new matters for
the new developer. Any additional information thus might be forgotten quickly,
especially if it is not of direct concern to the actual development task. Two
approaches should bear potential to ensure sustainable use of remote login tools.

First, the introduction phase to the visualization environment should be used to
set up the working environment already in a way that ensures the use of remote
desktop tools. Small workarounds such as “Uh – let me just do this one thing directly
there” should be avoided. Getting into a non-ergonomic pose once may often lead
to the effect that the user continues with it.

Second, emphasis should also be invested on options preventing the demand
to log on to a system physically. Standard settings with logon screens require a
user to be physically logged in to a system to run graphical applications on the
corresponding screens. If the system can not be configured to not require a login at
all, maybe due to demands of access restriction, settings should be enabled to allow
running graphical applications on top of the login screen. This of course should be
explained to developers, too.

Awareness about Potential Health Issues

At university, developers are usually younger and might not yet think of potentially
unhealthy seating and workplace setups. Non-ergonomic workplaces however can
already lead to habits of unhealthy postures. This fact should be taken as a
motivation to argue why it might in many cases be valuable to use remote login
features instead of getting into arguably unhealthy poses. Giving such an additional
rationale bears the potential to strengthen the willingness of users to use facilities
that might not appear straight forward. Especially, if the facilities to log in remotely
are provided, such an argument bears the potential to weigh towards health-
maintaining postures.

Flexibility in all Contexts

Any intended flexibility needs to address any context, not just visualization.
This starts with the flexibility of the visualization system. Providing, for instance,

the option to roll displays around must be enabled in a way that it is easily executable
by users. Two facts delimit this with the FRAVE in general, the rolls being too
small and the cabling. A third fact w.r.t. the tilting option of the two extra screens
is the required manual work. The efforts to address such issues should not be
underestimated. While it is comparably easy to construct mobile mounting frames
for displays, the complexity to provide an easy to handle flexible setup requires
careful handling of different trade-offs between all components.

A second context of flexibility is the actual executive working environment of
the user. While much work can be ported to remote desktop systems, other work
requires the developer to leave the remote desk to enter the visualization system.
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Then, facilities must be provided to enable the user to easily set up a desktop
environment to work from the currently required position. Providing suitable desk
setups with the same flexibility as the visualization components is a necessary
demand. This correlates to the findings of Akanbi and Nkechi [1], the workplace
setup needs to face the demands for accurate postures in both, desk and chair
adaptivity.

4 Summary

Flexibly configurable visualization systems bear the potential to let researchers
better maintain spatial relationships as they provide physical means to cognitively
relate a computer generated virtual world to the physical world. The FRAVE repre-
sents such a system, providing several dynamically and independently positionable
display components. To test whether such a system does enhance such factors,
dedicated software systems need to be developed. The development process lead
to the question whether the flexibility of the system enhances flexibility for the
developer, too. Dependent on the flexibility, the central question of this work was
to investigate if this flexibility leads to developers still maintaining ergonomically
correct workplace setups.

Our investigation showed that developers not necessarily tend to explicitly
care about their postural habits. The flexibility of the system has only been used
partly. Our investigation showed four differentiable types of workplace setup in the
FRAVE environment bearing different levels of non-ergonomically postural habits.
Investigating the underlying reasons for such behavior, we addressed three main
factors requiring care to be taken. It has to be a responsibility of the system operators
to (repeatedly) inform the users, especially new users, about both, software and
(mechanical) hardware related capabilities. Besides getting informed by others,
developers need to develop a level of awareness about the risk of postural deficits.

The last conclusion is that hardware setups for flexible systems require a
comparably equal amount of engineering work as is usually put in the software
infrastructure. The attempt providing a flexible visualization system does not only
require physical decoupling of screens. Besides providing flexibility for screen
setups, more flexible setups for work-desks, such as adjustable standing desks, must
be provided. Also physical constructions of the visualization system itself require
to meet high demands on flexibility and handy usage. Facilities such as electrical
cable conduits for multiple mobile devices are necessary to install, but are usually
beyond the scope of researchers in the field of computer science. It does require
profound knowledge in mechanical engineering to get to a system that is not just to
be called flexible but that really is flexible and still let’s users execute their work in
health-maintaining workplace settings.
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