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Abstract. Let k be a positive integer and let G be a graph of order n ≥ 3k + 1,
X be a set of any k distinct vertices of G. It is proved that if d (x) + d (y) ≥
n+2k− 2 for any pair of nonadjacent vertices x, y ∈ V (G), then G contains k
disjoint cycles T1, · · · , Tk such that each cycle contains exactly one vertex in X ,
and |Ti| = 3 for each 1 ≤ i ≤ k or |Tk| = 4 and the rest are all triangles. We
also obtained two results about disjoint 6-cycles in a bipartite graph.
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1 Introduction

In this paper, we only consider finite undirected graphs without loops or multiple edges
and we use Bondy and Murty [1] for terminology and notation not defined here. Let
G = (V,E) be a graph, the order of G is |G| = |V | and its size is E (G) = |E|. A
set of subgraphs is said to be vertex-disjoint or independent if no two of them have any
common vertex in G, and we use disjoint or independent to stand for vertex-disjoint
throughout this paper. Let G1 and G2 be two subgraphs of G or a subsets of V (G). If
G1 and G2 have no any common vertex in G, we define E(G1, G2) to be the set of
edges of G between G1 and G2, and let E(G1, G2) = |E(G1, G2)|. Let H be a sub-
graph of G and u ∈ V (G) a vertex of G, N(u,H) is the set of neighbors of u contained
in H . We let d(u,H) = |N(u,H)|. Clearly, d(u,G) is the degree of u in G, we often
write d(x) to replace d(x,G). The minimum degree of G will be denoted by δ(G). If
there is no fear of confusion, we often identify a subgraph H of G with its vertex set
V (H), for a vertex x ∈ V (G) − V (H), we also denote NH (x) = NG (x) ∩ V (H)
and dH (x) = |NH (x)|. For a subset U of V (G), G [U ] denotes the subgraph of G
induced by U . If H is a subgraph in G, we define dH (U) =

∑
x∈UdH (x). Let C and

P be a cycle and a path, respectively, we use l (C) and l (P ) to denote the length of C
and P , respectively. That is, l (C) = |C| and l (P ) = |P | − 1. A Hamiltonian cycle
of G is a cycle which contains all vertices of G, and a Hamiltonian path of G is a path
of G which contains every vertex in G. Let v1, . . . , vk be k distinct vertices in G, and
let C1, . . . , Ck be k disjoint cycles passing through v1, . . . vk, respectively, in G. Then
we say that G has k disjoint cycles C1, . . . , Ck with respect to {v1, . . . vk}. A cycle of
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length 3 is called a triangle and a cycle of length 4 is called a quadrilateral. For a cycle
C with l (C) = k, we call that C be a k-cycle. Let v be a vertex and H is a subgraph
of G, we say H is a v-subgraph if v ∈ V (H). In particular, a v-cycle or a v-path is a
cycle or path passing through v, respectively. For a graph G, we define

σ2 (G) = min {d (x) + d (y) |xy /∈ E (G)}

When G is a complete graph, we define σ2 (G) = ∞.In 1963, Corrádi and Hajnal
[2] proved Erdös’s conjecture in the early 1960s which concerns independent cycles
in a graph. They proved that if G is a graph of order n ≥ 3k with δ (G) ≥ 2k, then
G contains k disjoint cycles. In particular, when the order of G is exactly 3k, then G
contains k disjoint triangles. In the same year, Dirac [3] obtained the following result.

Theorem 1. (Dirac [3]) Let k, n be two positive integers and let G be a graph of order
n ≥ 3k. If δ (G) ≥ (n+ k)/2, then G contains k independent triangles.

Many people have studied the problems of cyclability, which concerns that for a given
subset S of vertices, whether there exists a cycle or several independent cycles that cov-
ering S.Which motivated us to be interested in the following problem, for any k inde-
pendent vertices v1, . . . , vk, what ensures that there exist k disjoint trianglesC1, . . . , Ck

with respect to {v1, . . . , vk}, such that each Ci (i ∈ {1, 2, . . . , k}) contains exactly one
vertex of vi (i ∈ {1, 2, . . . , k}). For the disjoint triangles covering, Li et al. [6] have
obtained the following result.

Theorem 2. (H.Li [6]) Let k, n be two positive integers and let G be a graph of or-
der n ≥ 3k, X a set of any k distinct vertices of G. If the minimum degree δ (G) ≥
(n+ 2k)/2, then G contains k disjoint triangles such that each triangle contains ex-
actly one vertex of X .

In this paper, we obtain the following result.

Theorem 3. Let k be a positive integer and let G be a graph of order n ≥ 3k + 1, X
a set of any k distinct vertices of G. If σ2 (G) ≥ n+2k− 2, then G contains k disjoint
cycles T1, . . . Tk such that each cycle contains exactly one vertex in X , and |Ti| = 3
for each 1 ≤ i ≤ k or |Tk| = 4 and the rest are all triangles.

Remark 1. The condition n ≥ 3k + 1 in Theorem 1.3 is necessary since there exists a
graph G with |V (G)| ≥ 4k and σ2 (G) = |V (G)|+ k − 1 such that G does not even
contain k vertex disjoint triangles (see [5]).

The remainder of this paper is organized as follows. In Section 2, we list several lemmas
which will be used to prove Theorem 1.3 in Section 3. In Section 4, we obtain two
results about disjoint 6-cycles in a bipartite graph and conclude this paper in Section 5
by proposing two related problems.
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2 Lemmas

Lemma 1. [4] Let P = u1u2 . . . us (s ≥ 2) be a path in G, u ∈ V (G) − V (P ),
when uu1 /∈ E (G), if d (u, P ) + d (us, P ) ≥ s, then G has a path P ′ with vertex
set V (P ′) = V (P ) ∪ {u} whose end vertices are u and u1. When uu1 ∈ E (G), if
d (u, P )+d (us, P ) ≥ s+1, then G has a pathP ′ with vertex set V (P ′) = V (P )∪{u}
whose end vertices are u and u1.

Lemma 2. [4] Let P = u1u2 . . . us be a path with s ≥ 3 in G. If d (us, P ) +
d (u1, P ) ≥ s, then G has a cycle C with V (C) = V (P ).

3 Proof of Theorem 1.3

Proof. Suppose that G does not contain k disjoint cycles T1, . . . , Tk such that each
cycle contains exactly one vertex in X and |Tk| = 4 and the rest are triangles. We prove
that G contains k disjoint triangles T1, . . . Tk such that each cycle contains exactly one
vertex in X . Suppose this is false, let G be an edge-maximal counterexample. Since
a complete graph of order n ≥ 3k + 1 contains k disjoint triangles such that each
triangle contains exactly one vertex of X , thus, G is not a complete graph. Let u and
v be nonadjacent vertices of G and define G′ = G + uv, the graph obtained from G
by adding the edge uv. Then G′ is not a counterexample by the maximality of G, that
is, for any X = {v1, . . . , vk} ⊆ V (G), G′ contains k disjoint triangles T1, . . . Tk with
respect to {v1, . . . , vk}.

Claim. k ≥ 2

Proof. Otherwise, suppose k = 1. By the classical result of Ore, G contains a
Hamiltonian cycle C = y1y2 · · · yny1. We may assume that v1 = y1, otherwise, we
can relabel the index of C.

We consider the path P = y1y2y3y4. Then y1y3 /∈ E (G), y2y4 /∈ E (G),
N (y1, C − V (P )) ∩ N (y3, C − V (P )) = φ and N (y2, C − V (P )) ∩
N (y4, C − V (P )) = φ. Then it follows that 2n ≤ Σx∈V (P )d (x,G) ≤
6 + 2 (n− 4) = 2n− 2, a contradiction.

By the choice of G, there exists v ∈ {v1, v2 . . . , vk} such that G contains k−1 triangles
T1, . . . Tk−1 with respect to {v1, v2 . . . , vk} − {v}, v /∈ V

(⋃ k−1
i=1 Ti

)
. Subject to this,

we choose v ∈ {v1, v2 . . . , vk} and k − 1 triangles T1, . . . , Tk−1 with respect to
{v1, v2 . . . , vk} − {v} such that

The length of the longest v-path in G− V

(
k−1⋃

i=1

Ti

)

. (1)

Let P = u1 . . . us be a longest v-path in G − V
(⋃ k−1

i=1 Ti

)
. Subject to (1), we choose

v ∈ {v1, v2 . . . , vk}, k − 1 vertex disjoint triangles T1, . . . , Tk−1 with respect to
{v1, v2 . . . , vk} − {v} and P such that

λ (v, P ). (2)
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Without loss of generality, suppose that v = vk and vi ∈ V (Ti) for each i ∈
{1, 2, . . . , k − 1}. Let H =

⋃ k−1
i=1 Ti, D = G − H and |D| = d. Clearly, d ≥ 4 as

n ≥ 3k + 1. Furthermore, by the choice of G, s ≥ 3.

Claim. P is a Hamiltonian path of D.

Proof. Suppose s ≤ d. We choose an arbitrary vertex x0 ∈ D−V (P ). Clearly, x0u1 /∈
E (G) and x0us /∈ E (G). Note s ≥ 3, by (1) and Lemma 2.1, d (x0, P ) + d (u1, P ) ≤
s− 1. Since d (x0, D − V (P )) ≤ d− s− 1 and d (u1, D − V (P )) = 0, it follows that
d (x0, D) + d (u1, D) ≤ d − 2. By the assumption on the degree condition of G, we
have

d (x0, H) + d (u1, H) ≥ (n+ 2k − 2)− (d− 2) = 5 (k − 1) + 2

This implies that there exists Ti ∈ H , say T1, such that d (x0, T1)+ d (u1, T1) = 6. Let
T1 = v1w1w2v1. If we replace T1 with x0w2v1x0, we obtain a path P ′ = w1u1 . . . us

with |P ′| = |P |+ 1, contradicting (1).

Claim. If λ (vk, P ) = 0 or 1, then D is Hamiltonian.

Proof. By Claim 3.2, D contains a Hamiltonian path P = u1 . . . ud passing through
vk. If u1ud ∈ E (G), then we have nothing to prove. So, u1ud /∈ E (G). By symmetry,
if λ (vk, P ) = 0, we may assume that vk = u1. If λ (vk, P ) = 1, we assume that
vk = u2.

If there exists Ti ∈ HT such that d (u1, Ti) + d (ud, Ti) = 6, then there exists
w ∈ V (Ti) with u1w ∈ E (G) such that Ti − w + ud contains a triangle Ti

′ passing
through vi. If we replace Ti with Ti

′, we see that D contains a vk-path P ′ = P − ud +
w. However, λ (vk, P ′) = λ (vk, P ) + 1, contradicting (2) while (1) still maintains.
Hence,d (u1, Ti) + d (ud, Ti) ≤ 5 for each Ti ∈ H and so d (u1, H) + d (ud, H) ≤
5 (k − 1). It follows that

d (u1, D) + d (ud, D) ≥ n+ 2k − 2− 5 (k − 1) = d.

By Lemma 2.2, D contains a Hamiltonian cycle. This proves the claim.

Case 1. d = 4.

By Claim 3.3, D contains a Hamiltonian cycle C. Then G contains k− 1 disjoint trian-
gles T1, T2, . . . , Tk−1 and a quadrilateral C with respect to {v1, v2, . . . , vk}, a contra-
diction.

Case 2. d ≥ 5.

By Claims 3.2 and 3.3, for each vk-path P ′ of length 4 in D, we may assume that
λ (vk, P

′) = 2. Let P ′ = y1y2y3y4y5 be an arbitrary vk-path of length 4, then vk =
y3. Since D does not contain a triangle passing through y3 = vk, hence, y1y3 /∈
E (G) and y2y4 /∈ E (G). Let P ′′ = P ′ − y5. Since D contains no quadrilateral
passing through vk = y3, then N (y1, D − V (P ′′)) ∩ N (y3, D − V (P ′′)) = φ and
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N (y2, D − V (P ′′))∩N (y4, D − V (P ′′)) = φ. So,
∑

x∈V (P ′′)d (x,D) ≤ 2 (d− 4)+
6 = 2d− 2. This gives that

∑

x∈V (P ′′)

d (x,H) ≥ 2 (n+ 2k − 2)− (2d− 2) = 10 (k − 1) + 2

This implies that there exists Ti ∈ H , say T1, such that E (P ′′, T1) ≥ 11. That is, there
is at most one edge absent between P ′′ and T1. Let T1 = v1w1w2v1.

We claim that d (y3, T1) = 2. Otherwise, say d (y3, T1) = 3. If G [{y1, y2, v1}] con-
tains a triangle, denoted by T1

′, then G contains k disjoint triangles T1
′, T2, . . . Tk−1,

y3w1w2y3 with respect to {v1, v2, . . . , vk}, a contradiction. Hence, E (v1, y1y2) ≤ 1
and E (P ′′, T1) ≤ 11, which yields to d (y4, T1) = 3 and y2w2 ∈ E (G). Conse-
quently,G contains k disjoint triangles y4w1v1y4, T2, . . . , Tk−1, y2y3w2y2 with respect
to {v1, v2, . . . , vk}, a contradiction.

Since d (y3, T1) = 2, without loss of generality, say y3w2 ∈ E (G). Furthermore,
we have d (yi, T1) = 3 for each i ∈ {1, 2, 4}. Then G contains k disjoint triangles
y1y2v1y1, T2, . . . Tk−1 and y3y4w2y3 with respect to {v1, v2, . . . , vk}, a contradiction.
This completes the proof of Case 2 and the proof of Theorem 3.

4 Bipartite Graph

In this section, we consider the disjoint 6-cycles in a bipartite graph. We list several
useful lemmas.

Lemma 3. Let C be a 6-cycle of G. Let x ∈ V1 and y ∈ V2 be two distinct vertices not
on C. If d (x,C) + d (y, C) ≥ 5, then there exists z ∈ V (C) such that C − z + x is a
6-cycle and yz ∈ E (G).

Proof. Without loss of generality, let C = x1x2 . . . x6x1 with x1 ∈ V1. If d (x,C) = 3,
since d (y, C) ≥ 2, take any neighbor of N (y, C) as z, the lemma is obvious. Hence,
we may assume that d (x,C) = 2 and d (y, C) = 3. If N (x,C) = {x2, x4}, then C −
x3+x is a 6-cycle with yx3 ∈ E (G), we are done. By symmetry, we have N (x,C) =
{x2, x6}. Then C − x1 + x is a 6-cycle with yx1 ∈ E (G). This proves the lemma.

Lemma 4. [7] Let C be a 6-cycle, P1, P2 and P3 be three paths in G with
l (P1) = l (P2) = l (P3) = 1. Suppose that C, P1, P2 and P3 are disjoint and
E (C,P1 ∪ P2 ∪ P3) ≥ 13, then G [V (C ∪ P1 ∪ P2 ∪ P3)] contains a 6-cycle C′ and
a path P of order 6 such that C′ and P are disjoint.

Lemma 5. [7] Let P1 and P2 be two disjoint paths in G with l (P1) = l (P2) = 5. If
E (P1, P2) ≥ 7, then G [V (P1 ∪ P2)] contains a 6-cycle.

Lemma 6. [7] Let C be a 6-cycle, P1 and P2 be two paths in G with l (P1) =
l (P2) = 5. Suppose that C, P1 and P2 are disjoint and E (C,P1 ∪ P2) ≥ 25, then
G [V (C ∪ P1 ∪ P2)] contains two disjoint 6-cycles.

Theorem 4. Let k be a positive integer and G = (V1, V2;E) a bipartite graph with
|V1| = |V2| = 3k. Suppose δ (G) ≥ 2k, then G contains k − 1 disjoint 6-cycles and a
path of order 6 such that all of them are disjoint.
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Proof. Suppose on the contrary, G does not contain k disjoint 6-cycles and a path of
order 6. Let G be an edge-maximal counterexample. Since a complete bipartite graph
with |V1| = |V2| = 3k contains k disjoint 6-cycles and a path of order 6 such that all of
them are disjoint. Thus, G is not a complete bipartite graph. Take any nonadjacent pair
u ∈ V1 and v ∈ V2, G+xy contains k disjoint 6-cycles and a path of order 6 such that all
of them are disjoint. This implies G contains k − 2 disjoint 6-cycle Q1, Q2, . . . , Qk−1

and a subgraph D. We divide the proof into two cases:

Case 1. D contains a 6-cycle, denoted by Qk.

Let H = ∪k
i=1Qi and D = G − V (H). We may assume that D contains at least one

edge. Otherwise, take any pair of u ∈ V1 ∩D and v ∈ V2 ∩D. Then uv /∈ E (G) and
d (u,D) + d (v,D) = 0. Consequently, d (u,H) + d (v,H) ≥ 4 (k − 1) + 4, which
implies that there exists Qi ∈ H such that d (u,Qi) + d (v,Qi) ≥ 5. By Lemma 3,
G [V (Qi) ∪ {u, v}] contains a 6-cycle Qi

′ and edge e such that Qi
′ and e are disjoint.

Replace Qi with Qi
′, we see D contains an edge.

Let uv be an edge in D with u ∈ V1 ∩ D. An argument analogous to the process
of above can lead to D contains three disjoint edges. Denoted by uv, xy and ab with
{u, x, a} ⊆ V1. Now we will prove that D contains a path of order 6. Otherwise,
E (D) ≤ 5 and so we have

∑

x∈V (D)

d (x,H) ≥ 12k − 10 = 12 (k − 1) + 2

This implies that there exists Qi ∈ H such that
∑

x∈V (D)d (x,Qi) ≥ 13. By Lemma 4,

G [V (Qi ∪D)] contains a 6-cycle Qi
′ and a path P of order 6 such that C′ and P are

disjoint. Replace Qi with Qi
′, we see that D contains a path of order 6, a contradiction.

Case 2. D contains two disjoint paths of order 6, denoted by P1 and P2.

In this case, G contains k − 2 disjoint 6-cycles Q1, Q2,...Qk−2. Let H ′ = ∪k−2
i=1 Qi. By

Case 1, we may assume thatG [V (P1 ∪ P2)] contains no 6-cycle. This leads toE (P1) ≤
7 and E (P2) ≤ 7 and E (P1, P2) ≤ 6 by Lemma 5. Consequently, we obtain

∑

x∈V (P1∪P2)

d (x,H) ≥ 24k − 40 = 24 (k − 2) + 8

This implies that there exists Qi ∈ H ′ such that
∑

x∈V (P1∪P2)
d (x,Qi) ≥ 25. By

Lemma 6, G [V (Qi ∪ P1 ∪ P2)] contains two disjoint 6-cycles. By Case 1, we obtain
a contradiction. This completes the proof of Theorem 4.

Theorem 5. Let k be a positive integer and G = (V1, V2;E) a bipartite graph with
|V1| = |V2| = 3k. Suppose δ (G) ≥ 2k, then G contains k disjoint 6-cycles or k − 1
disjoint 6-cycles and a quadrilateral such that all of them are disjoint.

Proof. Suppose that G does not contain k− 1 disjoint 6-cycles and a quadrilateral such
that all of them are disjoint, we will show that G contains k disjoint 6-cycles. Suppose
that this is not true. Let G be a edge-maximal counterexample. That is, for any pair
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of nonadjacent vertices u ∈ V1 and v ∈ V2, G + uv contains k disjoint 6-cycles. This
implies G contains k−1 disjoint 6-cycles Q1, . . .Qk−1 and a path P of order 6. Denote
H = ∪k

i=1Qi.
Since G [V (P )] does not contain a quadrilateral or a 6-cycle, we see that E (P ) = 5.

Therefore,
∑

x∈V (P )d (x,H) ≥ 12k − 10 = 12 (k − 1) + 2. This implies that there
exists Qi ∈ H such that

∑
x∈V (P )d (x,Qi) ≥ 13. By our assumption, G [V (Qi ∪ P )]

contains two disjoint 6-cycles or two disjoint cycles with one quadrilateral and the other
6-cycle.

Without loss of generality, say Qi = a1a2 . . . a6a1 and P = x1x2 . . . x6x1

with {a1, x1} ⊆ V1. Set d (a1, P ) = max {d (ai, P ) |i ∈ {1, 2, 3, 4, 5, 6}}. Clearly,
d (a1, P ) ≥ ⌈

13
6

⌉
= 3, which means N (x1, P ) = {x2, x4, x6}. Furthermore, we ob-

serve that d (xj , Qi) ≤ 1 for each j ∈ {1, 3, 5}. Otherwise, without loss of generality,
say d (x1, Qi) ≥ 2. If {a4, a6} ⊆ N (x1, Qi), then G [V (Qi ∪ P )] contains a 6-cycle
P−x1+a1, which disjoint from a quadrilateral x1a4a5a6x1, a contradiction. Hence, by
symmetry, we may assume that {a2, a6} ⊆ N (x1, Qi). Then G [V (Qi ∪ P )] contains
two disjoint 6-cycles P−x1+a1 and C−a1+x1, a contradiction. Consequently, it fol-
lows that E (Qi, P ) ≤ 3+ 3+6 = 12, which contradicts the fact that E (Qi, P ) ≥ 13,
a final contradiction.

Remark 2. The degree condition in Theorem 4 is sharp in general. To see this, we con-
struct bipartite graph G for positive integer as follows. Let G1 = (A,B;E1) and G2 =
(X,Y ;E2) be two independent complete bipartite graph with |A| = |Y | = 2 (k − 1)
and |B| = |X | = k + 2. Then G consists of G1, G1 and a set of k + 2 indepen-
dent edges between B and X , and finally, join every vertex in A to every vertex in Y .
Clearly, (A ∪X,B ∪ Y ) is a bipartition of G. It is easy to see that G does not contain
k − 1 disjoint 6-cycles and a path of order 6 such that all of them are disjoint. We see
that the minimum degree of G is 2k − 1.

5 Conjectures

To conclude this paper, we propose the following two conjectures for readers to discuss.

Conjecture 1. Let k ≥ 2, n be two positive integers and let G be a graph of order
n ≥ 3k+1, X a set of any k distinct vertices of G. If σ2 (G) ≥ n+2k− 1, G contains
k disjoint triangles T1, . . . Tk such that each triangle contains exactly one vertex in X .

Conjecture 2. Let k be a positive integer and G = (V1, V2;E) a bipartite graph with
|V1| = |V2| = 3k. Suppose δ (G) ≥ 2k, G contains k disjoint 6-cycles.

If Conjecture 2 is true, the degree condition is also sharp by Remark 2.
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