
On the Complexity

of Approximate Sum of Sorted List�

Bin Fu

Department of Computer Science
University of Texas-Pan American, Edinburg, TX 78539, USA

bfu@utpa.edu

Abstract. We consider the complexity for computing the approximate
sum a1+a2+ · · ·+an of a sorted list of numbers a1 ≤ a2 ≤ · · · ≤ an. We
show an algorithm that computes an (1 + ε)-approximation for the sum
of a sorted list of nonnegative numbers in an O(1

ε
min(log n, log(xmax

xmin
))·

(log 1
ε
+ log log n)) time, where xmax and xmin are the largest and the

least positive elements of the input list, respectively. We prove a lower
bound Ω(min(log n, log(xmax

xmin
)) time for every O(1)-approximation algo-

rithm for the sum of a sorted list of nonnegative elements. We also show
that there is no sublinear time approximation algorithm for the sum of
a sorted list that contains at least one negative number.

1 Introduction

Computing the sum of a list of numbers is a classical problem that is often
found inside the high school textbooks. There is a famous story about Karl
Friedrich Gauss who computed 1+2+ · · ·+100 via rearranging these terms into
(1 + 100) + (2 + 99) + ... + (50 + 51) = 50× 101, when he was seven years old,
attending elementary school. Such a method is considered an efficient algorithm
for computing a class of lists of increasing numbers. Computing the sum of a
list of elements has many applications, and is ubiquitous in software design. In
the classical mathematics, many functions can be approximated by the sum of
simple functions via Taylor expansion. This kind of approximation theories is in
the core area of mathematical analysis. In this article we consider if there is an
efficient way to compute the sum of a general list of nonnegative numbers with
nondecreasing order.

Let ε be a real number at least 0. Real number s is an (1 + ε)-approximation

for the sum problem a1, a2, · · · , an if
∑n

i=1 ai

1+ε ≤ s ≤ (1+ ε)
∑n

i=1 ai. Approximate
sum problem was studied in the randomized computation model. Every O(1)-
approximation algorithm with uniform random sampling requires Ω(n) time in
the worst case if the list of numbers in [0, 1] is not sorted. Using O(1

ε2 log
1
δ) ran-

dom samples, one can compute the (1+ε)-approximation for the mean, or decide

� This research is supported in part by NSF HRD-1137764 and NSF Early Career
Award 0845376.

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 284–293, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Complexity of Approximate Sum of Sorted List 285

if it is at most δ for a list numbers in [0, 1] [9]. Canetti, Even, and Goldreich [3]
showed that the sample size is tight. Motwani, Panigrahy, and Xu [14] showed
an O(

√
n) time approximation scheme for computing the sum of n nonnegative

elements. There is a long history of research for the accuracy of summation of
floating point numbers (for examples, see [10, 2, 1, 4–6, 8, 11–13, 15, 16]). The
efforts were mainly spent on finding algorithms with small rounding errors.

We investigate the complexity for computing the approximate sum of a sorted
list. When we have a large number of data items and need to compute the sum,
an efficient approximation algorithm becomes important. Har-Peled developed
an coreset approach for a more general problem. The method used in his paper
implies an O(log n

ε) time approximation algorithm for the approximate sum of
sorted nonnegative numbers [7]. The coreset is a subset of numbers selected from
a sorted input list, and their positions only depends on the size n of the list,
and independent of the numbers. The coreset of a list of n sorted nonnegative
numbers has a size Ω(log n). This requires the algorithm time to be also Ω(log n)
under all cases.

We show an algorithm that gives an (1 + ε)-approximation for the sum of
a list of sorted nonnegative elements in O(1ε min(logn, log(xmax

xmin
)) · (log 1

ε +
log logn)) time, where xmax and xmin are the largest and the least positive
elements of the input list, respectively. This algorithm has an incomparable
complexity with Har-Peled’s algorithm. Our algorithm is of sub-logarithm com-

plexity when xmax

xmin
≤ n

1

(log log n)1+a for any fixed a > 0. The algorithm is based
on a different method, which is a quadratic region search algorithm, from the
coreset construction used in [7].

We also prove a lower bound Ω(min(logn, log(xmax

xmin
)) for this problem. We

first derive an O(log logn) time approximation algorithm that finds an approx-
imate region of the list for holding the items of size at least a threshold b. Our
approximate sum algorithm is derived with it as a submodule. We also show
an Ω(log logn) lower bound for approximate region algorithms for the sum of a
sorted list with only nonnegative elements.

In Section 2, we present an algorithm that computes (1 + ε)-approximation
for the sum of a sorted list of nonnegative numbers In Section 3, we present

lower bounds related to the sum of sorted list. In Section ?? , we show the
experimental results for the implementation of our algorithm in Section 2.

2 Algorithm for Approximate Sum of Sorted List

In this section, we show a deterministic algorithm for the sorted elements. We
first show an approximation to find an approximate region of a sorted list with
elements of size at least threshold b.

A crucial part of our approximate algorithm for the sum of sorted list is to find
an approximate region with elements of size at least a threshold b. We develop a
method that is much faster than binary search and it takes O(log 1

δ + log logn)
time to find the approximate region. We first apply the square function to expand
the region and use the square root function to narrow down to a region that only

286 B. Fu

has (1 + δ) factor difference with the exact region. The parameter δ determines
the accuracy of approximation.

Definition 1. For i ≤ j, let |[i, j]| be the number of integers in the interval [i, j].

If both i and j are integers with i ≤ j, we have |[i, j]| = j − i+ 1.

Definition 2. A list X of n numbers is represented by an array X [1, n], which
has n numbers X [1], X [2], · · · , X [n]. For integers i ≤ j, let X [i, j] be the sublist
that contains elements X [i], X [i+1], · · · , X [j]. For an interval R = [i, j], denote
X [R] to be X [i, j].

Definition 3. For a sorted list X [1, n] with nonnegative elements by nonde-
creasing order and a threshold b, the b-region is an interval [n′, n] such that
X [n′, n] are the numbers at least b in X [1, n]. An (1 + δ)-approximation for the

b-region is a region R = [s, n] such that at least |R|
1+δ numbers in X [s, n] are at

least b, and [s, n] contains all every position j with X [j] ≥ b.

2.1 Approximate Region

The approximation algorithm for finding an approximate b-region to contain the
elements at least a threshold b has two loops. The first loop searches the region
by increasing the parameterm via the square function. When the region is larger
than the exact region, the second loop is entered. It converges to the approximate
region with a factor that goes down by a square root each cycle. Using the
combination of the square and square root functions makes our algorithm much
faster than the binary search.

In order to simplify the description of the algorithm Approximate-Region(.),
we assume X [i] = −∞ for every i ≤ 0. It can save the space for the boundary
checking when accessing the list X . The description of the algorithm is mainly
based on the consideration for its proof of correctness. For a real number a,
denote �a� to be the largest integer at most a, and �a	 to be the least integer at
least a.

Algorithm Approximate-Region(X, b, δ, n)
Input: X [1, n] is a sorted list of n numbers by nondecreasing order; n is the

size of X [1, n]; b is a threshold in (0,+∞); and δ is a parameter in (0,+∞).

1. if (X [n] < b), return ∅;
2. if (X [n− 1] < b), return [n, n];
3. if (X [1] ≥ b), return [1, n];
4. let m := 2;
5. while (X [n−m2 + 1] ≥ b) {
6. let m := m2;
7. };
8. let i := 1;
9. let m1 := m;

On the Complexity of Approximate Sum of Sorted List 287

10. let r1 := m;
11. while (mi ≥ 1 + δ) {
12. let mi+1 :=

√
mi;

13. if (X [n− �mi+1ri�+ 1] ≥ b), then let ri+1 := mi+1ri;
14. else ri+1 := ri;
15. let i := i+ 1;
16. };
17. return [n− �miri�+ 1, n];

End of Algorithm

Lemma 1. Let δ be a parameter in (0, 1). Given an element b, and a list A of
sorted n elements, Algorithm Approximate-Region(.) finds an (1+δ)-approximate
b-region in O((log 1

δ) + (log logn)) time.

Proof. After the first phase (lines 1 to 7) of the algorithm, we obtain number m
such that

X [n−m+ 1] ≥ b, and (1)

X [n−m2 + 1] < b. (2)

As we already assume X [i] = −∞ for every i ≤ 0, there is no boundary problem
for assessing the input list. The variable m is an integer in the first phase. Thus,
the boundary point for the region with numbers at least the threshold b is in

[n−m2+1, n−m+1]. The variable m can be expressed as 22
k

for some integer
k ≥ 0 after executing k cycles in the first phase. Thus, the first phase takes
O(log logn) time because m is increased to m2 at each cycle of the first while

loop, and 22
k ≥ n for k ≥ log log n.

In the second phase (lines 8 to 17) of the algorithm, we can prove that X [n−
�ri� + 1] ≥ b and X [n − �miri� + 1] < b at the end of every cycle (right after
executing the statement at line 15) of the second loop (lines 11 to 16). Thus,
the boundary point for the region with elements at the threshold b is in [n −
�miri� + 1, n− �ri�+ 1]. The variable mi is not an integer after mi < 2 in the
algorithm. It can be verified via a simple induction. It is true before entering the
second loop (lines 11 to 16) by inequalities (1) and (2). Assume that at the end
of cycle i,

X [n− �ri�+ 1] ≥ b; and (3)

X [n− �miri�+ 1] < b. (4)

Let us consider cycle i+ 1 at the second loop. Let mi+1 =
√
mi.

1. Case 1:X [n−�mi+1ri�+1] ≥ b. Let ri+1 = mi+1ri according to line 13 in the
algorithm. Then X [n−�ri+1�+1] = X [n−�mi+1ri�+1] ≥ b. By inequality
(4) in the hypothesis, X [n− �mi+1ri+1�+ 1] = X [n− ⌊√

mi
√
miri

⌋
+ 1] =

X [n− �miri�+ 1] < b.

288 B. Fu

2. Case 2: X [n − �mi+1ri� + 1] < b. Let ri+1 = ri according to line 14 the
algorithm. We haveX [n−�ri+1�+1] = X [n−�ri�+1] ≥ b by inequality (3) in
the hypothesis. By inequality (4) in the hypothesis, X [n−�mi+1ri+1�+1] =
X [n− �mi+1ri�+ 1] < b by the condition of this case.

Therefore, X [n− �ri+1� + 1] ≥ b and X [n− �mi+1ri+1� + 1] < b at the end of
cycle i+ 1 of the second while loop.

Every number in X [n − ri + 1, n], which has ri entries, is at least b, and
X [n−miri + 1, n] has miri entries and mi ≤ 1 + δ at the end of the algorithm.
Thus, the interval [n − miri + 1, n] returned by the algorithm is an (1 + δ)-
approximation for the b-region.

It takes O(log logn) steps for converting m to be at most 2, and additional
log 1

δ steps to make m to be at most 1 + δ. When mi < 1 + δ, we stop the loop,
and output an (1+δ)-approximation. This step takes at most O(log 1

δ +log logn)
time since mi is assigned to

√
mi at each cycle of the second loop. This proves

Lemma 1.

After the first loop of the algorithm Approximate-Region(.), the number m is

always of the format 22
k

for some integer k. In the second loop of the algorithm

Approximate-Region(.), the number m is always of the format 22
k

when m is

at least 2. Computing its square root is to convert 22
k

to 22
k−1

, where k is an
integer. Since (1+ 1

2i) · (1+ 1
2i) > (1+ 1

2i−1), we have that (1+
1
2i) is larger than

the square root of (1 + 1
2i−1). We may let variable mi go down by following the

sequence {(1 + 1
2i)}∞i=1 after mi ≤ 2. In other words, let g(.) be an approximate

square root function such that g(1 + 1
2i) = 1 + 1

2i+1 for computing the square
root after m ≤ 2 in the algorithm. It has the property g(m) · g(m) ≥ m. The
assignment mi+1 =

√
mi can be replaced by mi+1 = g(mi) in the algorithm. It

can simplify the algorithm by removing the computation of square root while
the computational complexity is of the same order.

2.2 Approximate Sum

We present an algorithm to compute the approximate sum of a list of sorted
nonnegative elements. It calls the module for the approximate region, which is
described in Section 2.1.

The algorithm for the approximate sum of a sorted list X of n nonnegative
numbers generates a series of disjoint intervals R1 = [r1, r

′
1], · · · , Rt = [rt, r

′
t],

and a series of thresholds b1, · · · , bt such that each Ri is an (1 + δ)-approximate
bi-region in X [1, r′i], r

′
1 = n, r′i+1 = ri − 1, and bi+1 ≤ bi

1+δ , where δ = 3ε
4

and 1 + ε is the accuracy for approximation. The sum of numbers in X [Ri] is
approximated by |Ri|bi. As the list b1 > b2 > · · · > bt decreases exponentially,
we can show that t = O(1ε logn). The approximate sum for the input list is
∑t

i=1 |Ri|bi. We give a formal description of the algorithm and its proof below.

On the Complexity of Approximate Sum of Sorted List 289

Algorithm Approximate-Sum(X, ε, n)
Input: X [1, n] is a sorted list of nonnegative numbers (by nondecreasing order)

and n is the size of X [1, n], and ε is a parameter in (0, 1) for the accuracy of
approximation.

1. if (X(n) = 0), return 0;
2. let δ := 3ε

4 ;
3. let r′1 := n;
4. let s := 0;
5. let i := 1;

6. let b1 := X[n]
1+δ ;

7. while (bi ≥ δX[n]
3n) {

8. let Ri :=Approximate-Region(X, bi, δ, r
′
i);

9. let r′i+1 := ri − 1 for Ri = [ri, r
′
i];

10. let bi+1 :=
X[r′i+1]

1+δ ;
11. let si := |[ri, r′i]| · bi;
12. let s := s+ si;
13. let i := i+ 1;
14. };
15. return s;

End of Algorithm

Theorem 1. Let ε be a positive parameter. Then there is an
O(1ε min(logn, log(xmax

xmin
)) · (log 1

ε + log logn)) time algorithm to compute
(1 + ε)-approximation for the sum of sorted list of nonnegative numbers, where
xmax and xmin are the largest and the least positive elements of the input list,
respectively.

Proof. Assume that there are t cycles executed in the while loop of the algorithm
Approximate-Sum(.). Let regions R1, R2, · · · , Rt be generated. In the first cycle
of the loop, the algorithm finds a region R1 = [r1, n] of the elements of size

at least X[n]
1+δ . In the second cycle of the loop, the algorithm finds region R2 =

[r2, r1 − 1] for the elements of size at least X[r1−1]
1+δ . In the i-th cycle of the loop,

it finds a region Ri = [ri, ri−1 − 1] of elements of size at least X[ri−1−1]
1+δ . By the

algorithm, we have

j ∈ R1 ∪R2 ∪ · · · ∪Rt for every j with X [j] ≥ δX [n]

3n
. (5)

Since each Ri is an (1 + δ)-approximation of X[ri−1−1]
1+δ -region in X [1, ri−1 − 1],

X [Ri] contains at least
|Ri|
1+δ entries of size at least X[ri−1−1]

1+δ in X [1, ri−1− 1], Ri

also contains every entry of size at least X[ri−1−1]
1+δ in X [1, ri−1 − 1]. Thus,

si
1 + δ

=
|Ri|
1 + δ

· X [ri−1 − 1]

1 + δ
≤

∑

j∈Ri

X [j] ≤ |Ri|X [ri−1 − 1] = (1 + δ)si.

290 B. Fu

Thus,
si

1 + δ
≤

∑

j∈Ri

X [j] ≤ (1 + δ)si.

We have

1

1 + δ

∑

j∈Ri

X [j] ≤ si ≤ (1 + δ)
∑

j∈Ri

X [j]. (6)

Thus, si is an (1 + δ)-approximation for
∑

j∈Ri
X [j]. We also have

∑
X[i]< δX[n]

3n
X [i] < δX[n]

3 since X [1, n] has only n numbers in total. Therefore,

we have the following inequalities:

∑

X[i]≥ δX[n]
3n

X [i] =

n∑

i=1

X [i]−
∑

X[i]< δX[n]
3n

X [i] (7)

≥
n∑

i=1

X [i]− δ

3

n∑

i=1

X [i] (8)

= (1− δ

3
)

n∑

i=1

X [i]. (9)

We have the inequalities:

s =

t∑

i=1

si (10)

≥ 1

1 + δ

∑

X[i]≥ δX[n]
3n

X [i] (by inequality (6))) (11)

≥ (1− δ
3)

1 + δ

n∑

i=1

X [i] (by inequality (9)) (12)

=
1

1+δ
1− δ

3

n∑

i=1

X [i] (13)

=
1

1 +
4δ
3

1− δ
3

n∑

i=1

X [i] (14)

≥ 1

1 + 4δ
3

n∑

i=1

X [i] (15)

=
1

1 + ε

n∑

i=1

X [i]. (16)

As R1, R2, · · · are disjoint each other, we also have the following inequalities:

s =

t∑

i=1

si (17)

On the Complexity of Approximate Sum of Sorted List 291

≤
t∑

i=1

(1 + δ)
∑

j∈Ri

X [j] (by inequality (6)) (18)

≤ (1 + δ)
n∑

j=1

X [j] (19)

≤ (1 + ε)

n∑

j=1

X [j]. (20)

Therefore, the output s returned by the algorithm is an (1+ε)-approximation for
the sum

∑n
i=1 X [i]. By Lemma 1, each cycle in the while loop of the algorithm

takes O((log 1
δ +log log n)) time for generating Ri. For the descending chain r′1 >

r′2 > · · · > r′t with X [r′i] ≤ X[r′i+1]

1+δ and bi = X [r′i] ≥ δX[n]
3n for each i, we have that

the number of cycles t is at most O(1δ logn). This is because X [r′t] ≤ xmax

(1+δ)t ≤
δX[n]
3n for some t = O(1δ logn). Similarly, the number of cycles t is at most

O(1δ log(
xmax

xmin
)) because X [r′t] ≤ xmax

(1+δ)t ≤ xmin for some t = O(1δ log(
xmax

xmin
)).

Therefore, there are most t = O(1δ min(log n, log xmax

xmin
)) cycles in the while

loop of the algorithm. Therefore, the total time isO(1δ min(logn, log(xmax

xmin
))(log 1

δ+

log logn)) = O(1ε min(logn, log(xmax

xmin
))(log 1

ε + log logn)). This proves Theo-
rem 1.

3 Lower Bounds

In this section, we show several lower bounds about approximation for the sum
of sorted list. The Ω(min(logn, log(xmax

xmin
)) lower bound is based on the general

computation model for the sum problem. The lower bound Ω(log logn)) for
finding an approximate b-region shows that upper bound is optimal if using the
method developed in Section 2. We also show that there is no sublinear time
algorithm if the input list contains one negative element.

3.1 Lower Bound for Computing Approximate Sum

In this section, we show a lower bound for the general computation model, which
almost matches the upper bound of our algorithm. This indicates the algorithm
in Section 2 can be improved by at most O(log logn) factor.

The lower bound is proved by a contradiction method. In the proof of the
lower bound, two lists L1 and L2 are constructed. For an algorithm with o(log n)
queries, the two lists will have the same answers to all queries. Thus, the ap-
proximation outputs for the two inputs L1 and L2 are the same. We let the gap
of the sums from the two lists be large enough to make them impossible to share
the same constant factor approximation.

Theorem 2. For every positive constant d > 1, every d-approximation algo-
rithm for the sum of a sorted list of nonnegative numbers needs at least

292 B. Fu

Ω(min(logn, log xmax

xmin
)) (adaptive) queries to the list, where γ is an arbitrary

small constant in (0, 1), where xmax and xmin are the largest and the least pos-
itive elements of the input list, respectively..

3.2 Lower Bound for Computing Approximate Region

We give an Ω(log logn) lower bound for the deterministic approximation scheme
for a b-region in a sorted input list of nonnegative numbers. The method is that
if there is an algorithm with o(log log n) queries, two sorted lists L1 and L2 of 0, 1
numbers are constructed. They reply the same answer the each the query from
the algorithm, but their sums have large difference. This lower bound shows
that it is impossible to use the method of Section 2, which iteratively finds
approximate regions via a top down approach, to get a better upper bound for
the approximate sum problem.

Definition 4. For a sorted list X [1, n] with 0, 1 numbers by nondecreasing order,
an d-approximate 1-region is a region R = [s, n], which contains the last position

n of X [1, n], such that at least |R|
d numbers in X [s, n] are 1, and X [s, n] contains

all the positions j with X [j] = 1, where |R| is the number of integers i in R.

Theorem 3. For any parameter d > 1, every deterministic algorithm must
make at least log logn − log log(d + 1) adaptive queries to a sorted input list
for the d-approximate 1-region problem.

Corollary 1. For any constant ε ∈ (0, 1), every deterministic O(1)-
approximation algorithm for 1-region problem must make at least (1− ε) log logn
adaptive queries.

3.3 Lower Bound for Sorted List with Negative Elements

We derive a theorem that shows there is not any factor approximation sublinear
time algorithm for the sum of a list of elements that contains both positive and
negative elements.

Theorem 4. Let ε be an arbitrary positive constant. There is no algorithm that
makes at most n− 1 queries to give (1 + ε)-approximation for the sum of a list
of n sorted elements that contains at least one negative element.

Proof. Consider a list of element −m(m+ 1), 2, · · · , 2m. This list contains n =
m+ 1 elements. If there is an algorithm that gives (1 + ε)-approximation, then
there is an element, say 2k, that is not queried by the algorithm.

We construct another list that is identical to the last list except 2k being
replaced by 2k + 1.

The sum of the first list is zero, but the sum of the second list is 1. The
algorithm gives the same result as the element 2k in the first list and the element
2k+1 in the second list are not queried (all the other queries are the of the same
answers). This brings a contradiction.

Similarly, in the case that −m(m+ 1) is not queried, we can bring a contra-
diction after replacing it with −m(m+ 1) + 1.

On the Complexity of Approximate Sum of Sorted List 293

4 Conclusions and Open Problems

We studied the approximate sum in a sorted list with nonnegative elements.
For a fixed ε, there is a log logn factor gap between the upper bound of our
algorithm, and our lower bound. An interesting problem of further research is to
close this gap. Another interesting problem is the computational complexity of
approximate sum in the randomized computational model, which is not discussed
in this paper.

Acknowledgments. The author would like to thank Cynthia Fu for her proof-
reading and comments for an earlier version of this paper, and anonymous ref-
erees for providing comments to improve the presentation of this paper.

References

1. Anderson, I.J.: A distillation algorithm for floating-point summation. SIAM J. Sci.
Comput. 20, 1797–1806 (1999)

2. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Systems
Journal 4(1), 25 (1965)

3. Canetti, R., Even, G., Goldreich, O.: Lower bounds for sampling algorithms for
estimating the average. Information Processing Letters 53, 17–25 (1995)

4. Demmel, J., Hida, Y.: Accurate and efficient floating point summation. SIAM J.
Sci. Comput. 25, 1214–1248 (2003)

5. Espelid, T.O.: On floating-point summation. SIAM Rev. 37, 603–607 (1995)
6. Gregory, J.: A comparison of floating point summation methods. Commun.

ACM 15, 838 (1972)
7. Har-Peled, S.: Coresets for discrete integration and clustering. In: Arun-Kumar, S.,

Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 33–44. Springer, Heidelberg
(2006)

8. Higham, N.J.: The accuracy of floating point summation. SIAM J. Sci. Comput. 14,
783–799 (1993)

9. Hoefding, W.: Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association 58, 13–30 (1963)

10. Kahan, W.: Further remarks on reducing truncation errors. Communications of
the ACM 8(1), 40 (1965)

11. Knuth, D.E.: The art of computer programming, 3rd edn. Seminumerical Algo-
rithms, vol. 2. Addison-Wesley, Reading (1998)

12. Linz, P.: Accurate floating-point summation. Commun. ACM 13, 361–362 (1970)
13. Malcolm, M.A.: On accurate floating-point summation. Commun. ACM 14, 731–736

(1971)
14. Motwani, R., Panigrahy, R., Xu, Y.: Estimating sum by weighted sampling. In:

Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 53–64. Springer, Heidelberg (2007)

15. Priest, D.M.: On Properties of Floating Point Arithmetics: Numerical Stability
and the Cost of Accurate Computations, Ph.D. thesis. PhD thesis, Mathematics
Department, University of California, Berkeley, CA (1992)

16. Zhu, Y.K., Yong, J.H., Zheng, G.Q.: A new distillation algorithm for floating-point
summation. SIAM Journal on Scientific Computing 26, 2066–2078 (2005)

	On the Complexityof Approximate Sum of Sorted List
	1 Introduction
	2 Algorithm for Approximate Sum of Sorted List
	2.1 Approximate Region
	2.2 Approximate Sum

	3 Lower Bounds
	3.1 Lower Bound for Computing Approximate Sum
	3.2 Lower Bound for Computing Approximate Region
	3.3 Lower Bound for Sorted List with Negative Elements

	4 Conclusions and Open Problems
	References

