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Abstract. We examine the zero-visibility cops and robber graph search-
ing model, which differs from the classical cops & robber game in one
way: the robber is invisible. We show that this model is not monotonic.
We also provide bounds on both the zero-visibility copnumber and mono-
tonic zero-visibility copnumber in terms of the pathwidth.

1 Introduction

Using mobile agents to find and capture a mobile intruder is a well-studied graph
theory problem. Depending on the restrictions placed on the agents and the
intruder, the resulting pursuit can vary wildly. One common restriction placed
on both the agents and the intruder is a speed limit; in some versions of this
game, while the agents may only move along edges one at a time, the intruder
may move from any position on the graph to any other along a connected path
that does not contain any agents. In other versions, the agents may “jump” from
a vertex to any other vertex. In still other games, one or both of the agents and
the intruder have limited information about the other party’s position; that is,
one party or the other may only see the opposition if they are near one another,
or alternatively, may never see each other until they stumble upon each other at
the same vertex.

The cop and robber model was introduced independently by Winkler and
Nowakowski [14] and Quilliot [15]. In this model, a slow, visible intruder (the
robber) moves from vertex to adjacent vertex in a graph, while pursued by one
slow, visible agent (the cop), who also moves from vertex to adjacent vertex.
In these first papers, copwin graphs were characterised; that is, graphs where
exactly one cop was sufficient to capture. Many questions have grown out of
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these papers. Recently, a characterisation of the k-copwin graphs has been dis-
covered [3].

A variation of a less-studied version of this problem dates back to Tošić in
1985 [18]. This corresponds to the cop and robber model with one exception: the
robber is invisible. This zero-visibility cops and robber model may also be taken
as a particular instance of a k-visibility cops and robber problem, where both
cops and robber move as in the standard Winkler-Nowakowski-Quilliot model,
but the robber only becomes visible to the cops when he is at distance at most
k from some cop. In these models, the analog of copnumber can be defined in
different ways. Following [17] and [18], we define the zero-visibility copnumber
of a graph G to be the minimum number of cops needed to guarantee capture
of an invisible robber in a finite time. (Other authors [11] do not necessarily
include the restriction to finite time, which works well with their application of
the probabilistic method.)

The zero-visibility copnumber for paths, cycles, complete graphs and complete
bipartite graphs were characterised in [18], as were graphs that are zero-visibility
copwin. There are several constructions in [10] for graphs which require at most
2 cops to perform a zero-visibility search, but a characterisation remains open.
An algorithm for determining the zero-visibility copnumber of a tree was given
in [17,5], but the problem for general graphs is NP-complete [5]. Most recent
work on these topics has been on limited (but not zero) visibility [8,9], and on the
expected capture time of the robber in the zero or limited visibility case [1,9,11].

One topic that has been a mainstay of edge searching problems is monotonic-
ity. Basically, a search is monotonic if, once a region has been guaranteed to be
free of the robber, the cops may not move in such a way to allow the robber to
re-enter that region. It is well known that edge searching is monotonic [2,13],
but that connected edge searching is not [20,21]. In the original cops and rob-
ber game, it was hard to motivate a definition of monotonicity, as the robber
was visible. In the zero-visibility version this becomes a natural question again.
We will show that the zero-visibility copnumber is different from its monotonic
equivalent, and we will discuss bounds on both of these numbers based on the
pathwidth of the graph.

2 Zero-Visibility Cops and Robber

We consider a pursuit game on a graph we refer to as zero-visibility cops & robber.
The game is played on a simple connected graph G between two opponents,
referred to as the cop and the robber. The cop controls the movements of a
fixed number of cop pieces and the robber player controls the movement of a
single robber piece (we refer to both the players and their pieces as cops and
robber). The cop player begins by placing the cops on some collection of vertices
of G (more than one cop may occupy a vertex) and his opponent then places
the robber on a vertex, unknown to the cop. The players then alternate turns,
beginning with the cop; on each player’s turn, he may move one or more of his
pieces from its current vertex to an adjacent vertex (either player may leave
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any or even all of his pieces where they are). The game ends with a victory for
the cop player if, at any point, the robber piece and a cop piece occupy the
same vertex. The robber wins if this situation never occurs. It is important to
emphasise that, until he has won, the cop player has no information regarding
the robber’s position or moves – he cannot see the robber piece until it and a
cop occupy the same vertex. On the other hand, the cop may, due to his past
moves, gain some knowledge on the possible locations of the robber.

All graphs are assumed to be simple; any two vertices are joined by at most
one edge and there are no loops (edges from a vertex to itself). We introduce
the following terminology regarding this game.

For a graph G, VG and EG are the vertex and edge sets of G. We use the
symbol x ∼ y to represent the fact that x and y are distinct vertices joined by
the edge xy ∈ EG and the symbol x � y to represent that x ∼ y or x = y.
For each X ⊆ VG, the set N [X ] = {x ∈ V : ∃y ∈ X such that x � y} is the
closed neighbourhood of X . If X = {x} is a singleton, we use N [x] rather than
N [{x}] to represent the closed neighbourhood of x. For X ⊆ VG, the boundary
of X is the set of vertices adjacent to members of X but not contained in X :
δ(X) = {y /∈ X : ∃x ∈ X such that x ∼ y} = N [X ] \X .

We will make extensive use of the concept of a walk in a graph; however,
we give walks additional structure normally not present in their definition. We
define a walk in a graph to be a (possibly infinite) sequence of vertices α =
(α(0), α(1), . . .) such that for all t ≥ 0, α(t+1) � α(t). We use walks to describe
cops’ and robber’s movements; if a walk α corresponds to the positions of a single
piece within the game – the vertex α(0) is the starting position of the piece and
the vertex α(t) is the location of the piece after its controller has taken t turns.

A strategy on G for k cops is a finite set of walks L = {li}ki=1, all of the same
length T (possibly T = ∞). A strategy L corresponds to a potential sequence
of turns by the cop player; each walk li ∈ L corresponds to the moves of one of
the cop pieces. The order of a strategy is the number of cop pieces required to
execute it. If a strategy has length T < ∞, we might imagine that the cop player
forfeits if he hasn’t won after T moves. We say that a strategy is successful if
it guarantees a win by the cop player – a successful strategy results in a win
for the cops regardless of the moves made by the robber. Evidently, a strategy
L = {li}ki=1 of length T is successful if and only if for every walk α of length T
in G, there are li ∈ L and t < T such that α(t) = li(t) or α(t) = li(t+ 1). (The
robber must be caught at some point, either by moving onto a cop or having a
cop move onto it.)

The zero-visibility copnumber of a connected graph G is the minimum order
c0 = c0(G) among successful strategies on G; it is the smallest number of cops
required to guarantee capture of the robber.

Typically, in pursuit games of this sort, only finite strategies are considered
successful – the robber must be caught in a bounded number of turns. How-
ever, the following theorem shows that if we allow infinite strategies in the zero-
visibility cops & robber game, any successful strategy (as defined above) will
succeed in a bounded amount of time, whether or not the strategy itself is finite.
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Theorem 1. Let G be a graph. Any infinite successful strategy on G may be
truncated to obtain a finite successful strategy.

In light of Theorem 1, we will only consider finite strategies. Moreover, we can
recast this game as a node-search style problem. Rather than imagine an oppo-
nent, we simply keep track of all possible vertices on which the robber piece might
be found, via the following construction: (1) Initially, every vertex is marked as
dirty; (2) a dirty vertex is cleaned if a cop piece occupies it; and (3) in between
each of the cop’s turns, every clean vertex that is unoccupied and adjacent to a
dirty vertex becomes dirty.

The dirty vertices are the set of all possible locations of the robber. We refer
to the step in between the cop’s turns where unoccupied vertices may become
dirty as recontamination.

Let G be a graph and let L be a strategy of length T . For each nonnegative
integer t ≤ T , let Lt be the set of vertices occupied by cops after t turns by the
cop player; let Rt be the set of vertices that are dirty immediately before the
cop’s t-th turn; and let St be the set of vertices that are dirty immediately after
the cop’s t-th turn.

In other words, at the beginning of a t-th turn, t ≥ 1, the cops occupy the
vertices in Lt−1 and Rt are the dirty vertices (possible locations of the robber).
Then, the cops move and Lt becomes the vertex set they occupy, and St becomes
the set of vertices that are dirty. After the following robber’s move Rt is the set
of dirty vertices.

We define, somewhat arbitrarily, R0 = V . For t ≥ 0, the relevant rules of the
game imply that St = Rt \ Lt, Rt+1 = N [St] \ Lt, and Lt+1 ⊆ N [Lt].

A strategy of finite length T is successful if and only if ST is empty.
In a pursuit game of this sort, a topic of general interest is that of the mono-

tonicity of strategies. Typically, a strategy is monotonic if recontamination never
occurs. In this case, such a strategy would have

R0 ⊇ S0 ⊇ R1 ⊇ S1 ⊇ . . . ⊇ RT ⊇ ST ,

where T is the length of the strategy.
However, consider the following possible activity of a single cop piece. Let xy

be an edge and suppose we are attempting to construct a strategy that cleans
the graph G. If a single cop moves back and forth between x and y (that is,
moves from one to the other every turn), the two vertices x and y are guarded
from the robber – if the robber moves onto either while this is occurring he will
be caught either immediately or on the next turn.

Considering this activity under the node-search model, although the vertices
x and y are possibly being recontaminated over and over, the contamination
can never “spread” through them, as they are cleaned before they can possibly
recontaminate any further vertices.

We will refer to the above activity as vibrating on the edge xy. Further, if E is
a set of edges, we say that a set of cops is vibrating on E if each is vibrating on a
member of E and every member of E is thus protected. We will also occasionally
refer to a set of cops vibrating on a set of vertices X ; this simply means that X



Zero-Visibility Cops and Robber Game on a Graph 179

is covered by some set of edges E and the cops are vibrating on E. Typically,
we want a set of cops to vibrate on a matching (a set of edges that do not share
any endpoints), in order to most efficiently utilise this tool.

We wish to take advantage of the above strategic element while still exploring
the topic of monotonicity. Thus, we define a strategy of length T to be weakly
monotonic if for all t ≤ T − 1, we have St+1 ⊆ St. In a weakly monotonic
strategy, every time a clean vertex is recontaminated, it is cleaned on the very
next move by the cop.

The monotonic zero-visibility copnumber of a connected graph G is the min-
imum order mc0 = mc0(G) among successful weakly monotonic strategies on
G; it is the smallest number of cops required to capture the robber utilising a
weakly monotonic strategy. We are exclusively interested in weakly monotonic
strategies as opposed to the stronger variant, and so we will simply use the term
monotonic, with the understanding that this means weakly monotonic as defined
above. Clearly, we have c0(G) ≤ mc0(G) for all graphs G.

A matching in a graph is a set of edges such that no two are incident (share
an endpoint). The matching number, ν(G), is the maximum size of a matching in
the graph G. It is well-known that a maximum matching, and thus the matching
number, can be found in polynomial time [6].

Theorem 2. Let G be a connected graph; then, mc0(G) ≤ ν(G)+1, with equality
if and only if G is a complete graph on an odd number of vertices.

A clique in a graph is a set of vertices that are all adjacent to each other. The
clique number of the graph G, denoted as ω(G), is the maximum of size of a
clique in G. A complete graph with n vertices, denoted as Kn, is a graph whose
clique number is n. Theorem 3 appears in [17,18].

Theorem 3. If G is a connected graph, then c0(G) ≥ 1
2ω(G). Moreover, c0(Kn) =

mc0(Kn) =
⌈
n
2

⌉
.

3 Pathwidth and the Zero-Visibility Copnumber

Let G be a graph with vertex set VG. A path decomposition of G is a finite
sequence B = (B1,B2, . . . ,Bn) of sets Bi ⊆ VG such that

1.
n⋃

i=1

Bi = VG;

2. if x ∼ y, then there is i ∈ {1, . . . , n} such that {x, y} ⊆ Bi; and
3. if 1 ≤ i < j < k ≤ n, then Bi ∩ Bk ⊆ Bj.

We refer to the sets Bi as bags. An alternate, but equivalent, formulation of
the third requirement is that for each vertex x, the bags that contain x form a
consecutive subsequence, (Bi,Bi+1, . . . ,Bj), for some i and j with 1 ≤ i ≤ j ≤ n.

Let G be a graph and let B = (Bi) be a path decomposition ofG. We define the
width of B to be one less than the maximum size of a bag,
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pw(B) = max {|Bi| − 1}, and the pathwidth of G to be the minimum width
of a path decomposition of G,

pw(G) = min{pw(B) : B is a path decomposition of G}.
The pathwidth of a graph has been introduced in [16].

Lemma 1. Let G be a connected graph with pw(G) ≤ |VG| − 2. Then, there is
a path decomposition B of G containing n ≥ 2 bags such that pw(B) = pw(G)
and, for each i = 1, . . . , n − 1, each of Bi \ Bi+1 , Bi+1 \ Bi and Bi ∩ Bi+1 is
nonempty.

The pathwidth of a graph can be characterised via a pursuit game on a graph.
Rather than describe the cop and robber dynamics of the game, we will simply
examine it as an exercise in cleaning a graph. In this game, the cops do not move
along the edges of the graph. Each cop has two moves available to it (although
at any point in time only one is possible): (1) if a cop is currently on a vertex
in the graph, it may be “lifted” off the graph; and (2) if a cop is currently not
in the graph, it may be “placed” on any vertex in the graph. On each of the
cop’s turns, each of his pieces may make only one move – moving a cop from
one vertex to another requires two turns. Initially, every edge is marked as dirty
(as opposed to the zero-visibility game, where the vertices are the objects being
cleaned). An edge is cleaned when both of its endpoints are occupied by a cop.
After each move by the cop player, a clean edge is recontaminated if there is a
path joining it to a dirty edge which contains no cops – in this game, the robber
moves arbitrarily fast.

This pursuit game is often referred to as node-searching; it can be shown that
pw(G) ≤ k if and only if there is a successful node-search strategy on G utilising
k + 1 cops [7,12].

We introduce this second pursuit game as it is utilised in the proof of Lemma 5;
the remainder of this work deals exclusively with the zero-visibility game previ-
ously defined.

We produce the following series of inequalities relating the zero-visibility cop-
number, the monotonic zero-visibility copnumber and the pathwidth of a graph.
In [19], a pursuit game referred to as strong mixed search is introduced. It is pos-
sible to prove the results in this section utilising the relationships shown therein
between strong mixed search and the pathwidth of a graph.

Theorem 4. Let G be a connected graph containing two or more vertices. Then,
c0(G) ≤ pw(G).

Theorem 5. Let G be a connected graph; then, mc0(G) ≤ 2pw(G) + 1.

Theorem 6. Let G be a connected graph; then, pw(G) ≤ 2mc0(G)− 1.

Corollary 1. Let G be a connected graph on two or more vertices. Then,

c0(G) ≤ pw(G) ≤ 2mc0(G) − 1 ≤ 4pw(G) + 1.
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In Section 4 we provide constructions that in particular prove that the bound in
Theorem 4 is tight and the bound in Theorem 5 is tight up to a small additive
constant. Moreover, we also use Theorem 3 to argue that the bound in Theorem 6
is tight as well. The formal analysis of these facts is postponed till Section 5.

4 Constructions

We present two constructions of graphs that elicit very interesting relationships
between their pathwidth and their zero-visibility copnumbers.

Let G be a graph; the distance between any two vertices x and y is the
minimum length of a path joining x and y and is denoted dG(x, y). So, if
dG(x, y) = k ≥ 1, then there is a path joining x and y of length k and there are
no shorter such paths. If there are no paths joining x and y, the convention is
that dG(x, y) = ∞. If H is a subgraph of G, we have dH(x, y) ≥ dG(x, y) when-
ever x and y are both present in H . We say that H is an isometric subgraph
of G if dH(x, y) = dG(x, y) whenever x and y are both present in H . Lemma 2
appears in [17].

Lemma 2. Let G be a graph. If H is an isometric subgraph of G, then c0(H) ≤
c0(G).

Let G be a graph; we refer to an edge e = xy as a cut edge if the graph G \
e obtained by deleting e (without deleting either of the endpoints x or y) is
disconnected. Clearly, if e is a cut edge, then G\e has two connected components.
Not every graph contains cut edges.

Lemma 3. Let G be a graph that contains a cut edge e. If H is one of the
connected components of G \ e, then

c0(H) ≤ c0(G) and mc0(H) ≤ mc0(G).

Moreover, let L be a successful strategy on G. Then, at some point in the strategy
at least c0(H) cops are simultaneously present in H; if L is a monotonic strategy,
at some point at least mc0(H) cops are simultaneously present in H.

Corollary 2. Let G be a tree. If H is a subtree of G, then mc0(H) ≤ mc0(G).

Example 1. We produce an interesting example of a graph G with an isometric
subgraph H such that mc0(G) < mc0(H). This illustrates that Lemmas 2 and 3
and Corollary 2 are limited in how they might be extended.

The graph G in question (see Figure 1) contains a large number of vertices
with degree 2; to simplify the depiction, some of them are omitted. Specifically,
the two dashed lines are paths of length 8 – they each contain 7 internal degree-2
vertices which are not shown. The subgraph H is obtained by deleting the two
paths of length 8 (drawn with dashed lines) and all 7 of their internal vertices.

First, we claim that 2 cops can clean the entire graph in a monotonic fashion.
One of them is initially placed on y and stays idle during the entire strategy.
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Fig. 1. The subgraph obtained by deleting the two paths of length 8 has strictly higher
monotonic zero-visibility copnumber than the supergraph

The other cop is initially placed on x and moves around the remainder of the
graph ending on z and cleaning every other vertex. This cop moving around
the perimeter cleans the other three vertices adjacent to y – when it reaches a
degree-3 vertex it moves onto the neighbour of y and then back.

However, if we delete the two paths drawn as dashed lines, we cannot clean
the subgraph monotonically with only two cops – this can be shown in a manner
very similar to the proof of Lemma 4.

A rooted tree is a tree G where a single vertex has been marked as the root. In
a rooted tree with root r every vertex x �= r has a unique parent. The parent
of x is identified in the following manner: every vertex x �= r is joined to r by
a unique path – the parent of x is the sole neighbour of x in this path. If y is
the parent of x, then x is a child of y; we also use the similarly defined terms
grandparent and grandchild when discussing rooted trees.

Example 2. The following family of trees illustrates the distinction between the
pathwidth of a tree and its monotonic zero-visibility copnumber. Let Tk be ob-
tained by beginning with the full rooted binary tree of height k and subdividing
every edge exactly once. We draw the root of each Tk with a circle – see Figure 2
for the first three such trees. By Lemmas 4 and 5, we have

mc0(Tk) = k and pw(Tk) = c0(Tk) =

⌊
k

2

⌋
+ 1.

The recursive Algorithm 1 cleans Tk with a monotonic strategy (this can be
shown simply via induction) that utilises k + 1 cops and begins with every cop
placed on the root. However, this is not an optimal strategy – if k ≥ 1, there is
a successful monotonic strategy on Tk using k cops. We obtain this strategy by
using Algorithm 1 as follows. We first express Tk as two copies of Tk−1 joined
by a path of length 4:
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Algorithm 1. CLEAN(Tk)

Require: There are k + 1 cops on the root of the graph Tk.
if k = 0 then

return
end if
1. Let x be the root of Tk and let y and z be the two grandchildren of x. Let T y and
T z be the two copies of Tk−1 rooted at y and z, respectively.
2. In two moves, move k−1 of the cops from the root of Tk to y, leaving the remaining
cop on x.
3. CLEAN(T y).
4. Move all k − 1 cops from T y to z (each cop does not move any further into T z).
5. CLEAN(T z).
return

Tk =

◦
���
� ���

�

• •
Tk−1 Tk−1

We clean one copy of Tk−1 by using Algorithm 1 in such a way that one cop
remains on the root of this subtree during the entire strategy. All k cops then
move to the root of the other copy of Tk−1 and clean that subtree in a similar
fashion. Thus, mc0(Tk) ≤ k, if k ≥ 1. In Lemma 4, we show that this strategy
is, in fact, optimal.

T0 = ◦

T1 =

◦
�� 		

• •
• •

T2 =

◦
�� 		

•
��

•
		

•
�� 		

•
�� 		

• • • •
• • • •

Fig. 2. The first three subdivided binary trees

Lemma 4. For k ≥ 1, mc0(Tk) = k.

Theorem 4 and Lemma 4 together imply that pw(Tk) ≤ 2k − 1. However, we in
fact have pw(Tk) =

⌊
k
2

⌋
+ 1.

Lemma 5. For k ≥ 1, pw(Tk) = c0(Tk) =
⌊
k
2

⌋
+ 1.

We produce a construction of graphs with c0 < pw and c0 < mc0 with the
unbounded ratios in both inequalities.
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A universal vertex in a graph G is a vertex adjacent to every other vertex.
Given a graph G, we form the graph G∗ by adding a universal vertex to G –
that is, a single new vertex is added together with edges joining this new vertex
and every other vertex already present in G.

A subdivision of a graph G is a graph H formed by replacing one or more
edges in G with paths of length greater than or equal to 2; a subdivision is
formed by dividing an edge into two or more new edges. If the vertices of G are
labeled and H is a subdivision of G, we preserve the labeling of the vertices,
adding new labels to the new vertices.

Lemma 6. If G is a tree containing two or more vertices, then there is a sub-
division H of G such that c0(H

∗) = 2.

5 Comparisons between the Zero-Visibility Copnumbers
and the Pathwidth of a Graph

We examine in detail the inequality presented in Corollary 1:

c0(G) ≤ pw(G) ≤ 2mc0(G) − 1 ≤ 4pw(G) + 1.

A caterpillar is a tree such that deleting all vertices of degree 1 results in a path
or an empty graph. The proof of Theorem 7 is a straightforward exercise and is
omitted.

Theorem 7. Let G be a graph. The following are equivalent:

1. We have c0(G) = 1, mc0(G) = 1 or pw(G) = 1.
2. We have c0(G) = mc0(G) = pw(G) = 1.
3. We have c0(G) = pw(G) = 2mc0(G)− 1.
4. The graph G is a caterpillar.

The class of graphs that minimizes the zero-visibility copnumbers is identical to
the class that minimises pathwidth. However, if c0(G) = 2, this gives us abso-
lutely no information concerning mc0(G) or pw(G), as we will see in Theorem 8.

Remark 1. The bound c0(G) ≤ pw(G) in Theorem 4 is the best possible.

The class of graphs {Tk}, described in the previous section, satisfy c0(Tk) =
pw(Tk) < mc0(Tk) (by Lemmas 4 and 5). Thus, the bound c0(G) ≤ pw(G) is
tight on an infinite family of graphs and we cannot sandwich mc0 between c0
and pw, in general.

Remark 2. The boundmc0(G) ≤ 2pw(G)+1 in Theorem 5 can only be improved
by a small constant, if it can be improved at all.

The subdivided binary trees Tk described in Example 2 have mc0(Tk) = k and
pw(Tk) =

⌊
k
2

⌋
+ 1. So,
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mc0(Tk) =

{
2pw(Tk)− 1 if k is odd, or
2pw(Tk)− 2 if k is even.

The coefficient of 2 cannot be reduced; only the additive constant can be changed,
possibly by reducing it by one or two. In a roundabout manner, this shows that
the result in [4] is close to optimal.

Remark 3. The bound pw(G) ≤ 2mc0(G)− 1 in Theorem 6 is the best possible.

The complete graph on an even number of vertices has

pw(K2m) = 2mc0(K2m)− 1 = 2m− 1.

As well, Theorem 8 shows that we cannot replace Theorem 6 with the stronger
statement “pw(G) ≤ 2c0(G) − 1”. In fact, pathwidth cannot be bounded above
by any function of the zero-visibility copnumber.

Theorem 8. For any positive integer k, there is a graph G with c0(G) = 2 and
pw(G) ≥ k.

6 Conclusion

There remains a considerable amount of further work concerning the zero-visibility
model to be accomplished. Characterisations of c0 and mc0 over well-known
families of graphs (such as trees, unicyclic graphs, planar graphs, series parallel
graphs, etc.) are of interest. An analysis of the algorithmic complexity of accom-
plishing a successful zero-visibility search would cement this model’s position in
the overall area of pursuit games and width parameters. It would be very interest-
ing to construct some sort of relationship between the value mc0(G)− c0(G) (or
possibly mc0(G)/c0(G)) and combinatoric or connective properties of the graph
– that is, to answer the question, given some known property of the graph, can
we bound the amount by which c0 and mc0 differ?

The fact that the monotonic zero-visibility copnumber can be bounded both
above and below by positive multiples of the pathwidth suggests that, in a sense,
node-search and the monotonic zero-visibility search are variations of the same
game – each number is an approximation of the other, suggesting that efficient
strategies in one game can usually be translated to efficient strategies in the other.

However, Theorem 8 shows that the zero-visibility copnumber can be entirely
unrelated to the pathwidth and the monotonic zero-visibility copnumber. The
general zero-visibility search can be carried out using methods that will not
work in a node-search – the zero-visibility search is genuinely distinct from other
pursuit games and informs us of different structural properties of a graph.
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sur des graphes, des ensembles ordonnés et des hypergraphes. PhD thesis, Univer-
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