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Abstract. An independent dominating set in a graph is a subset of
vertices, such that no edge has both ends in the subset, and each vertex
either itself is in the subset or has a neighbor in the subset. In a convex
bipartite (circular convex bipartite, triad convex bipartite, respectively)
graph, there is a linear ordering (a circular ordering, a triad, respectively)
defined on one class of vertices, such that for every vertex in the other
class, the neighborhood of this vertex is an interval (a circular arc, a
subtree, respectively), where a triad is three paths with a common end.
The problem of finding a minimum independent dominating set, called
independent domination, is known NP-complete for bipartite graphs and
tractable for convex bipartite graphs. In this paper, we make polynomial
time reductions for independent domination from triad- and circular-
convex bipartite graphs to convex bipartite graphs.

Keywords: Independent domination, circular convex bipartite graph,
triad convex bipartite graph, polynomial time reduction.

1 Introduction

An independent dominating set in a graph is a subset of vertices, such that the
subset is an independent set, and every vertex in the graph either itself is in
the subset or has a neighbor in the subset. The problem of finding a minimum
independent dominating set, called independent domination, is NP-complete for
chordal bipartite graphs, but polynomial time solvable for convex bipartite graphs
[3]. In a convex bipartite graph [7,3,2], there is a linear ordering defined on one
class of vertices, such that for every vertex in another class, the neighborhood of
this vertex is an interval. In a chordal bipartite graph [6], every cycle of length
at least six has a chord, where a chord of a cycle on a graph is an edge between
two vertices of the cycle but the edge itself is not a part of the cycle.
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Beside convex bipartite graphs and chordal bipartite graphs, there are other
interesting bipartite graph classes, such as circular convex bipartite graphs [11]
and triad convex bipartite [10,9] graphs, etc, see Figure 1.

Fig. 1. Various bipartite graph classes and their inclusions

In a circular convex bipartite graph [11], there is a circular ordering defined on
one class of vertices, such that for every vertex in another class, the neighborhood
of this vertex is a circular arc. Circular convex bipartite graphs are natural
models for scheduling problems. For example, the available working hours of a
worker is usually a consecutive period of hours. A group of workers and their
available hours can be modeled by a circular convex bipartite graph [11]. For
a long time, complexity results for circular convex bipartite graphs are scarce.
Maximum matching and Hamiltonian cycle and path are known linear time
solvable for circular-convex bipartite graphs [11]. The complexity of independent
domination for circular-convex bipartite graphs is unknown before. In this paper,
we show that independent domination is polynomial time solvable for circular
convex bipartite graphs.

In a tree convex bipartite graph [8,9], there is a tree defined on one class of
vertices, such that for every vertex in another class, the neighborhood of this
vertex is a subtree. When the tree is a star (a triad, respectively), the graph
is called star convex bipartite [8,9] (triad convex bipartite [10,9], respectively),
where a triad is three pathes with a common end. It is known that independent
domination is NP-complete for star convex bipartite graphs, but tractable for
triad convex bipartite graphs in [14]. In this paper, we simplify the tractability
proof in [14].

Our main contributions are making two explicit reductions for independent
domination from circular- and triad-convex bipartite graphs respectively to con-
vex bipartite graphs, instead of running modified algorithms such as in [14]. In
fact, the second reduction can be viewed as a detailed proof for the correctness of
the algorithm in [14], easier to understand with a better modularity. Moreover,
our reductions are Cook reductions (i.e. polynomial time Turing reductions) [5],
which call the known polynomial time algorithms of independent domination for
convex bipartite graphs [3] many times, and also work for weighted circular- and
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triad-convex bipartite graphs, though the original algorithm in [3] only works
for unweighted bipartite graphs. Before our works, only Karp reduction (i.e.
polynomial many-one reduction) [5] from circular convex bipartite graphs to
circular-arc graphs is used [11]. Thus, our methods may be of use to show more
problems tractable for circular- and triad-convex bipartite graphs.

This paper is structured as follows. After introducing necessary definitions and
notations mainly from graph theory (Section 2), polynomial time reductions for
independent domination from circular-convex bipartite graphs (Section 3) and
triad-convex bipartite graphs (Section 4) to convex bipartite graphs are shown
respectively. Concluding remarks are at the last section (Section 5).

2 Preliminaries

A graph G = (V,E) consists of a vertex set V and an edge set E. Each edge e in E
is incident to two vertices, called its ends, and these two ends are called adjacent
to each other. For each vertex v, its neighborhood N(v) = {u|v is adjacent to u},
its closed neighborhood N [v] = N(v)∪ {v}. For a subset V ′ of vertices, N(V ′) =⋃

v∈V ′ N(v). A path in a graph is a sequence of different vertices vi1 , vi2 , . . . , vik ,
such that each two consecutive vertices are adjacent to each other. A cycle is a
path where vi1 and vik are also adjacent to each other. A graph is connected if
every two vertices are connected by a path. A tree is a connected graph without
any cycle. For a subset V ′ of vertices, the induced subgraph G[V ′] = (V ′, E′),
where V ′ ⊆ V and E′ = {e ∈ E|e has both ends in V ′}. An independent set is
a subset of vertices whose induced subgraph has no edge.

In a weighted graph G = (V,E,w), there is a function w defined on V , such
that each vertex v has a weight w(v). The weight of a vertex subset V ′ is w(V ′) =∑

v∈V ′ w(v). When w(v) = 1 for all vertices v, the graph is called unweighted.
In a finite graph, both V and E are finite sets. A simple graph has no loop and
no parallel edges, where a loop has the same one vertex as its ends, and two
parallel edges are incident to the same two ends. In a bipartite graph, denoted
by G = (A,B,E), the vertex set V is divided into two classes A and B, such
that each edge is incident to a vertex in A and a vertex in B respectively. In this
paper, we only consider finite simple bipartite graphs.

The cardinality of a set X , i.e. the number of elements in X , is denoted by |X |.
The difference of two setsX and Y is denoted byX\Y = {x | x ∈ X and x �∈ Y }.
The empty set is denoted by ∅. An arbitrary ordering on a set is denoted by ≺.

Definition 1. ( Independent Dominating Set) In a graph G = (V,E), an inde-
pendent dominating set D is a subset of V , such that D is an independent set,
and for each vertex v in V , either v ∈ D or N(v) ∩D �= ∅.
Definition 2. (Triad) A G = (V,E) is called a triad, if the vertex set V can
be partitioned into four parts, V1, V2, V3, {v0}, such that for i = 1, 2, 3, Vi ∪ {v0}
induces a path. The vertex v0 is called center.

Definition 3. (Circular Convex Bipartite Graphs [11]) A bipartite graph G =
(A,B,E) is called circular convex bipartite, if there is a circular ordering ≺
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defined on A = {a1, . . . , an}, a1 ≺ a2 ≺ · · · ≺ an ≺ a1, such that for each vertex
b in B, its neighborhood N(b) is a circular arc under this circular ordering, that
is, there are two (possibly equal) vertices ai and aj, where 1 ≤ i ≤ j ≤ n, such
that N(b) = {ai, ai+1, . . . , aj} or N(b) = {aj , aj+1, . . . , an, a1, . . . , ai}.
Definition 4. (Triad Convex Bipartite Graphs [8,9]) A bipartite graph G =
(A,B,E) is called triad convex bipartite, if these is a triad T = (A,F ) defined
on A, such that for each vertex b in B, its neighborhood N(b) is a subtree of T .

Remark 1. The adjacent matrices of circular convex (convex, respectively) bipar-
tite graphs have the so-called circular (consecutive, respectively) ones property,
which are recognizable in linear time [4]. Tree convex bipartite graphs are also
recognizable in linear time [1]. The associated circular orderings (trees, respec-
tively) are all constructible in linear time, thus can safely be assumed as part of
the inputs. Chordal bipartite graphs are recognizable in square time.

We refer to [5] for the notions of polynomial time, reductions, andNP-completeness.

3 Reduction from Circular-Convex Bipartite Graphs

In this section, we show that independent domination is polynomial time solvable
for circular-convex bipartite graphs, by a polynomial time reduction for this
problem from circular-convex bipartite graphs to convex bipartite graphs.

Theorem 1. For circular convex bipartite graphs G = (A,B,E) with a circular
ordering on A, independent domination is O

(|A|(|A| + |B|)3) time solvable.

Proof. Without loss of generality, we assume that G contains no isolated vertex,
since isolated vertices are trivially in every independent dominating set.

Fig. 2. Removing vertices in N [a] from graph G results in graph Ga

First, for each vertex a in A, we define a graph Ga as follows, see Figure 2.

Ga = (Aa, Ba, Ea), where Aa = A \ {a}, Ba = B \N(a), and

Ea = {e ∈ E | e is not incident to any vertex in N [a]}.
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Lemma 1. For each a ∈ A, Ga is convex bipartite.

Proof. We prove by definition of convex bipartite graphs. After removing {a} ∪
N(a) and the incident edges from G, no vertex in Ba = B \N(a) is adjacent to
vertex a. Since G is circular convex bipartite, for each vertex in Ba, its neigh-
borhood is a circular arc contained in Aa = A \ {a}. Thus, we can restrict the
circular ordering on A to a linear ordering on Aa, such that for each vertex in
Ba, its neighborhood is an interval under this linear ordering. 
�
Lemma 2. For each a ∈ A, if D is an independent dominating set of G con-
taining a, then D \ {a} is an independent dominating set of Ga.

Proof. We prove by definition of independent dominating sets. Since a ∈ D,
N(a) ∩ D = ∅. For each vertex a′ ∈ Aa, either a′ ∈ D or N(a′) ∩ D �= ∅.
Since a �∈ N [a′], either a′ ∈ D \ {a} or N(a′) ∩ (D \ {a}) �= ∅. For each vertex
b′ ∈ Ba, either b

′ ∈ D or N(b′) ∩D �= ∅. Since a �∈ N [b′], either b′ ∈ D \ {a} or
N(b′) ∩ (D \ {a}) �= ∅. 
�
Lemma 3. For each a ∈ A, if D′ is an independent dominating set of Ga, then
D′ ∪ {a} is an independent dominating set of G.

Proof. We prove again by definition. Since Ga is resulted by removing N [a] from
G, a is not adjacent to any vertex in G′, D′ ∪ {a} is an independent set. Since
D′ is an independent dominating set of Ga and each vertex in N(a) is adjacent
to a, D′ ∪ {a} is an independent dominating set of G. 
�
Next, we define a set S as follows.

S = {B} ∪ {Da ∪ {a} | a ∈ A and Da is a minimum independent

dominating set in Ga}.
Remark 2. For each a, Ga is unique, but for each Ga, Da may not be unique.
For our purpose, however, for each a, we only need one such Da in S, see proof
of Lemma 5 below.

Lemma 4. S contains a minimum independent dominating set of G.

Proof. Let D be a minimum independent dominating set of G. We consider the
following two cases.

Case 1: D ∩ A = ∅.
Since D is an independent dominating set, for each vertex b in B, either

b ∈ D or N(b) ∩D �= ∅. Since D ∩A = ∅, G is bipartite and N(b) ⊆ A, we have
N(b) ∩D = ∅ and thus b ∈ D. So in Case 1 we have D = B and thus D ∈ S.
Case 2: D ∩ A �= ∅.

Assume that a ∈ D ∩ A. For any minimum independent dominating set Da

of Ga, by Lemma 2, |Da| ≤ |D| − 1, and by Lemma 3, |D| ≤ |Da| + 1, thus
|D| = |Da| + 1 = |Da ∪ {a}|. By Lemma 3 and the minimality of D in G,
Da ∪ {a} is a minimum independent dominating set of G. 
�
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Lemma 5. S is computable in O
(|A|(|A| + |B|)3) time.

Proof. By Lemmm 1, for each a ∈ A,Ga is convex bipartite, thus we can compute
a minimum independent dominating set Da of Ga by the known O

(
(|A|+ |B|)3)

time algorithm in [3]. As remarked in Remark 2, for each a, we only need one
such Da in S. Thus, by an enumeration of all |A| vertices a in A, we can compute
S in O

(|A|(|A| + |B|)3) time. 
�

Finally, by Lemmas 4 and 5, we can find a minimum independent dominating
set of G in O

(|A|(|A| + |B|)3) time.
This finishes the proof of Theorem 1. 
�

Remark 3. The above reduction also works for weighted independent domina-
tion. The only change is in replacing |D| = |Da| + 1 by w(D) = w(Da) + w(a)
in proof of Lemma 4. However, the known polynomial time algorithm in [3] only
works for unweighted independent domination.

4 Reduction from Triad-Convex Bipartite Graphs

In this section, we show that independent domination is polynomial time solv-
able for triad-convex bipartite graphs, by a polynomial time reduction for this
problem from triad-convex bipartite graphs to convex bipartite graphs. Due to
space limitation, we omit some details in this section.

Theorem 2. For triad convex bipartite graphs G = (A,B,E) with a triad T
defined on A, independent domination is O

(|A|3(|A|+ |B|)3) time solvable.

Proof. Without loss of generality, we assume that G contains no isolated vertex,
since isolated vertices are trivially in every independent dominating set.

We assume that A is divided into four parts, A1, A2, A3, {a0}, such that for
i = 1, 2, 3, Ai ∪ {a0} induces a path of T . To be specific, we assume that Ai =

{ai,1, ai,2, . . . , ai,ni}, where
∑3

i=1 ni = |A| − 1 and a0ai,1ai,2 · · ·ai,ni are three
paths of T with a common end a0.

Fig. 3. Removing vertices in N [a0] from graph G results in three graphs G1,G2,G3
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Fig. 4. Removing vertices in
⋃3

i=1({ai} ∪N(ai)) from graph G results in four graphs
Ga1 ,Ga2 ,Ga3 and G(a1,a2,a3)

First, we define three graphs G1, G2, G3 as follows, see Figure 3.

Gi = (Ai, N(Ai) \N(a0), Ei), for i = 1, 2, 3, where

Ei = {e ∈ E | e is incident to a vertex in Ai

but not incident to a vertex in N(a0)},
For i = 1, 2, 3, for each vertex ai = ai,ji in Ai, we define four graphs Ga1 , Ga2 ,
Ga3 , G(a1,a2,a3) as follows, see Figure 4.

Gai = (Aai , Bai , Eai), where

Aai = {ai,ji+1, . . . , ai,ni}, Bai = N(Aai) \N(ai),

Eai = {e ∈ E | e is incident to a vertex in Bai}, and

G(a1,a2,a3) = (A(a1,a2,a3), B(a1,a2,a3), E(a1,a2,a3)), where

A(a1,a2,a3) = A \
3⋃

i=1

(Aai ∪ {ai}), B(a1,a2,a3) = B \
3⋃

i=1

(Bai ∪ {N(ai)}), and

E(a1,a2,a3) = {e ∈ E | e is incident to a vertex in B(a1,a2,a3)}.
We define graphs G(a1,a2,∗) as follows, G(∗,a2,a3), G(a1,∗,a3) are similar.

G(a1,a2,∗) = (A(a1,a2,∗), B(a1,a2,∗), E(a1,a2,∗)), where

A(a1,a2,∗) = A \
⋃

i∈{1,2}
(Aai ∪ {ai}), B(a1,a2,∗) = B \

⎛

⎝N(ai)
⋃

i∈{1,2}
Bai

⎞

⎠ , and

E(a1,a2,∗) = {e ∈ E | e is incident to a vertex in A(a1,a2,∗)
and a vertex in B(a1,a2,∗)}.

We define graphs G(a1,∗,∗) as follows, G(∗,a2,∗), G(∗,∗,a3) are similar.

G(a1,∗,∗) = (A(a1,∗,∗), B(a1,∗,∗), E(a1,∗,∗)), where
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A(a1,∗,∗) = A \ (Aa1 ∪ {a1}), B(a1,∗,∗) = B \ (N(a1) ∩Ba1), and

E(a1,∗,∗) = {e ∈ E | e is incident to a vertex in A(a1,∗,∗)
and a vertex in B(a1,∗,∗)}.

Definition 5. For i = 1, 2, 3 and for each ai ∈ Ai, a triple (a1, a2, a3) is called
good, if B(a1,a2,a3) is an independent dominating set of G(a1,a2,a3).

Similarly for (a1, a2, ∗), (a1, ∗, a3),(∗, a2, a3),(a1, ∗, ∗),(∗, a2, ∗),(∗, ∗, a3).
Remark 4. A triple (a1, a2, a3) is good, if and only if there is an independent
dominating set D of G, such that D contains {a1, a2, a3} and ai is the first
vertex of D on the path a0ai,1 · · ·ai,ni of the triad T for i = 1, 2, 3. Similarly
for (a1, a2, ∗), (a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗), (∗, a2, ∗), (∗, ∗, a3). A star ∗ on the
i-th place of a triple means that no vertex in {a0} ∪ Ai is in D for i = 1, 2, 3.

Lemma 6. For i = 1, 2, 3 and for each ai ∈ Ai, Gi and Gai are convex bipartite.

Proof. We prove by definition of convex bipartite graphs for Gai , the proof for
Gi is similar and thus omitted. After removing N(ai) and the incident edges
from G, no vertex in Bai = N(Aai) \N(ai) is adjacent to vertex ai. Since G is
triad convex bipartite, for each vertex in Bai , its neighborhood is a path of T
on Aai = {ai,ji+1, . . . , ai,jn}. Thus, we can define a linear ordering ≺i on Aai ,
ai,ji+1 ≺i · · · ≺i ai,jn , such that for each vertex in Bai , its neighborhood is an
interval under this linear ordering ≺i. 
�
Lemma 7. For each triple (a1, a2, a3), if D is an independent dominating set of
G containing ai for i = 1, 2, 3, then D∩(Aai∪Bai) is an independent dominating
set of Gai for i = 1, 2, 3. Similarly for (a1, a2, ∗), (a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗),
(∗, a2, ∗), (∗, ∗, a3).
Proof. We prove by definition of independent dominating sets. Since ai ∈ D,
N(ai) ∩ D = ∅. For each vertex a′ ∈ Aai , either a′ ∈ D or N(a′) ∩ D �= ∅.
Since ai �∈ {a′} ∪ N(a′), either a′ ∈ D ∩ Aai or N(a′) ∩ (D ∩ Bai) �= ∅. For
each vertex b′ ∈ Bai , either b′ ∈ D or N(b′) ∩ D �= ∅. Since ai �∈ {b′} ∪ N(b′),
either b′ ∈ D ∩Bai or N(b′) ∩ (D ∩Aai) �= ∅. Similarly for (a1, a2, ∗), (a1, ∗, a3),
(∗, a2, a3), (a1, ∗, ∗), (∗, a2, ∗), (∗, ∗, a3). 
�
Lemma 8. For each good triple (a1, a2, a3), if Dai is an independent dominating

set of Gai for i = 1, 2, 3, then B(a1,a2,a3) ∪
⋃3

i=1(Dai ∪ {ai}) is an independent
dominating set of G. Similarly for (a1, a2, ∗), (a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗),
(∗, a2, ∗), (∗, ∗, a3).
Proof. We prove by definition. Since for i = 1, 2, 3, Gai is resulted by removing
{ai} ∪ N(ai) from G, ai is not adjacent to any vertex in Gai and G(a1,a2,a3),

B(a1,a2,a3) ∪
⋃3

i=1(Dai ∪ {ai}) is an independent set. Since the triple (a1, a2, a3)
is good, Ba1,a2,a3 is an independent dominating set of G(a1,a2,a3). Since Dai is an
independent dominating set of Gai and each vertex in N(ai) is adjacent to ai,

B(a1,a2,a3) ∪
⋃3

i=1(Dai ∪ {ai}) is an independent dominating set of G. Similarly
for (a1, a2, ∗), (a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗), (∗, a2, ∗), (∗, ∗, a3). 
�
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Next, we define a set S = {B, {a0} ∪D1 ∪D2 ∪D3} ∪ S1 ∪ S2 ∪ S3 as follows.

S1 = {B(a1,∗,∗) ∪Da1 ∪ {a1}, B(∗,a2,∗) ∪Da2 ∪ {a2}, B(∗,∗,a3) ∪Da3 ∪ {a3} |
ai ∈ Ai and Dai is a minimum independent dominating set in Gai

for i = 1, 2, 3},
S2 = {B(a1,a2,∗) ∪

⋃

i∈{1,2}
(Dai ∪ {ai}), B(∗,a2,a3) ∪

⋃

i∈{2,3}
(Dai ∪ {ai}),

B(a1,∗,a3) ∪
⋃

i∈{1,3}
(Dai ∪ {ai}) | ai ∈ Ai and Dai is a minimum

independent dominating set in Gai for i = 1, 2, 3},
S3 = {B(a1,a2,a3) ∪

⋃

i∈{1,2,3}
(Dai ∪ {ai}) | (a1, a2, a3) is good and Dai is a

minimum independent dominating set in Gai for i = 1, 2, 3},
where for i = 1, 2, 3, Di is a minimum dominating set of Gi and Gi is resulted
by removing N [a0] from G.

Remark 5. For each triple (a1, a2, a3), Gai is unique, but for each Gai , Dai may
not be unique. For our purpose, however, for each (a1, a2, a3), we only need one
triple (Da1 , Da2 , Da3) in S, see proof of Lemma 10 below. Similarly for (a1, a2, ∗),
(a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗), (∗, a2, ∗), (∗, ∗, a3).
Lemma 9. S contains a minimum independent dominating set of G.

Proof. Let D be a minimum independent dominating set of G. We consider the
following five cases.

Case 1: D ∩ A = ∅. In this case we have D = B, which is in S.
Case 2: a0 ∈ D. In this case, similar to the reasoning process in Case 5 below,

we have |D| = |{a0} ∪ ⋃
i∈{1,2,3} Di|, thus {a0} ∪ ⋃

i∈{1,2,3} Di is a minimum
independent dominating set of G, which is in S.

Case 3: D ∩ Ai �= ∅ for some i ∈ {1, 2, 3} but D ∩ ({a0} ∪ Aj) = ∅ for j �= i.
In this case, similar to Case 5 below, a minimum dominating set of G is in S1.

Case 4: D ∩ ({a0} ∪ Ai) = ∅ for some i ∈ {1, 2, 3} but D ∩ Aj �= ∅ for j �= i.
In this case, similar to Case 5 below, a minimum dominating set of G is in S2.

Case 5: D ∩ Ai �= ∅ for i = 1, 2, 3. Assume that ai ∈ D ∩ Ai for i = 1, 2, 3
and the triple (a1, a2, a3) is good. For any minimum independent dominating

sets Dai of Gai for i = 1, 2, 3, by Lemma 7,
∑3

i=1 |Dai | ≤ |D| − |B(a1,a2,a3)| − 3,

and by Lemma 8, |D| ≤ ∑3
i=1 |Dai |+ |B(a1,a2,a3)|+ 3, thus |D| = ∑3

i=1 |Dai |+
|B(a1,a2,a3)| + 3 = |B(a1,a2,a3) ∪

⋃3
i=1(Dai ∪ {ai})|. By Lemma 8 and the mini-

mality of D in G, B(a1,a2,a3) ∪
⋃

i∈{1,2,3}(Dai ∪{ai}) is a minimum independent
dominating set of G, which is in S3. 
�
Lemma 10. S is computable in O

(|A|3(|A|+ |B|)3) time.

Proof. By Lemmm 6, for i = 1, 2, 3 and for each ai ∈ Ai, Gai is convex bipartite,
thus we can compute a minimum independent dominating set Dai of Gai by the
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known O
(
(|A|+ |B|)3) time algorithm in [3]. As remarked in Remark 5, for each

good triple (a1, a2, a3), we only need one such triple (Da1 , Da2 , Da3) in S. Thus,
by an enumeration of all |A1||A2||A3| triples (a1, a2, a3), we can compute S3 in
O
(|A|3(|A|+ |B|)3) time. Similarly for S1 and S2. 
�

Finally, by Lemmas 9 and 10, we can find a minimum independent dominating
set of G in O

(|A|3(|A|+ |B|)3) time.
This finishes the proof of Theorem 2. 
�

Remark 6. The above reduction also works for weighted independent domina-
tion. The only changes are in replacing |D| = ∑3

i=1 |Dai | + |B(a1,a2,a3)| + 3 by

w(D) =
∑3

i=1(w(Dai ) +w(ai)) +w(B(a1,a2,a3)) and so on in proof of Lemma 9.

5 Concluding Remarks

We have shown that independent domination is polynomial time reducible from
circular- and triad-convex bipartite graphs to convex bipartite graphs. As in
[12], we make Cook reductions from circular convex bipartite graphs to convex
bipartite graphs. Our methods may be of use to show more problems tractable
for circular- and triad-convex bipartite graphs. It would be interesting to find
real applications of these results.

Recently, maximum non-crossing matching for convex bipartite graphs is stud-
ied [2]. Whether the results in [2] carry over for circular- and triad-convex bi-
partite graphs is still unknown.
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