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Preface

The papers in this volume were presented at the 7th International Frontiers
in Algorithmics Workshop and the 9th International Conference on Algorithmic
Aspects in Information and Management (FAW-AAIM 2013), jointly held during
June 26-28, 2013, in Dalian, China. The topics cover most areas in algorithms,
combinatorial optimization and their applications.

Submissions to the conference this year were conducted electronically. A total
of 60 papers were submitted, of which 33 were accepted. The papers were eval-
uated by an international Program Committee overseen by the Program Com-
mittee Co-chairs: Michael Fellows, Xuehou Tan, and Binhai Zhu. The Program
Committee consisted of Heep-Kap Ahn, Rong Chen, Ovidiu Daescu, Gregory
Gutin, Xin, Han Tomio Hirata, Wing-Kai Hon, Hiro Ito, Kazuo Iwama, Naoki
Katoh, Tian Liu, Jun Luo, Joseph S.B. Mitchell, Brendan Mumey, Hirotaka
Ono, Frances Rosamond, Toshinori Sakai, Jens Stoye, Wing-King Sung, Hing-
Fung Ting, Jorge Urrutia, Carola Wenk, Ge Xia, Mingyu Xiao, Yinfeng Xu,
Boting Yang, Liping Yuan, Weishi Zhang, and Daming Zhu. It is expected that
most of the accepted papers will appear in a more complete form in scientific
journals.

The submitted papers were from 20 countries/regions: Australia, Brazil,
Canada, China, France, Germany, Hong Kong, India, Israel, Japan, Korea, Mex-
ico, The Netherlands, Pakistan, Poland, Romania, Singapore, Taiwan, UK, and
USA. On average, each paper was evaluated by three Program Committee mem-
bers, assisted in some cases by sub-reviewers. In addition to the selected pa-
pers, the conference also included two invited presentations by Jin Akiyama and
Daniel Marx.

We thank all the people who made this meeting possible: the authors for
submitting papers, the Program Committee members and external reviewers
(listed in the proceedings) for their excellent work, and the two invited speakers.
Finally, we thank NSF of China, Dalian Maritime University, and SIAM for their
support and the local organizers and colleagues for their assistance.

June 2013 Michael Fellows
Xuehou Tan
Binhai Zhu
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Robert Bredereck, André Nichterlein, and Rolf Niedermeier

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363



The Square Root Phenomenon in Planar Graphs

Dániel Marx�

Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary
dmarx@cs.bme.hu

Most of the classical NP-hard problems remain NP-hard when restricted to pla-
nar graphs, and only exponential-time algorithms are known for the exact so-
lution of these planar problems. However, in many cases, the exponential-time
algorithms on planar graphs are significantly faster than the algorithms for gen-
eral graphs: for example, 3-Coloring can be solved in time 2O(

√
n) in an n-

vertex planar graph, whereas only 2O(n)-time algorithms are known for general
graphs. For various planar problems, we often see a square root appearing in
the running time of the best algorithms, e.g., the running time is often of the
form 2O(

√
n), nO(

√
k), or 2O(

√
k) · n. By now, we have a good understanding of

why this square root appears. On the algorithmic side, most of these algorithms
rely on the notion of treewidth and its relation to grid minors in planar graphs
(but sometimes this connection is not obvious and takes some work to exploit).
On the lower bound side, under a complexity assumption called Exponential
Time Hypothesis (ETH), we can show that these algorithms are essentially best
possible, and therefore the square root has to appear in the running time.

� Research supported by the European Research Council (ERC) grant 280152.

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, p. 1, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



An Algorithm for Determining

Whether a Pair of Polygons Is Reversible

Jin Akiyama1 and Hyunwoo Seong2

1 Research Center for Math Education, Tokyo University of Science,
1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

ja@jin-akiyama.com
2 Department of Mathematics, The University of Tokyo,

3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
hwseong@hotmail.com

Background of our talk is tessellabilities, reversibilities, and decomposabilities of
polygons, polyhedra, and polytopes, where by the word “tessellability”, we mean
the capability of the polytope to tessellate. Although these three concepts seem
quite different, but there is a strong connection linking them. These connections
will be shown when we consider the lattices of tilings in R2 and tessellations in
R3. In this talk, we mainly discuss reversibilties of polygons from the standpoint
of algorithm. We give an algorithm to check whether a given pair of polygons α
and β with the same area is reversible or not. Many old and new results together
with various research problems relating this topic will be presented.

A given pair of polygons α and β is said to be reversible if α has a dissection
along the edges of a dissection tree into a finite number of pieces which can be
rearranged to form β under the following conditions:

(i) the entire perimeter of α gets into the interior of β,
(ii) the dissection tree of α does not include any vertex of α, and
(iii) the same dissection requirements are also imposed on β.

A polygon α is said to be reversible if there is a convex polygon β such that
the pair α and β is reversible.

Let a pair A and B be reversible and T (A,B) be a superimposition of
tilings T (A) and T (B) made by repeating reversions between A and B.

We define a reversion trunk R(A) as the convex hull of the terminal points
of a dissection tree T (B) ∩ A of A. Note that a reversible polygon A can have
various kinds of reversion trunks, depending on the superimposition T (A,B).
We denote by R(A) the set of all reversion trunks R(A). Reversion trunk R(B)
and the set R(B) of all reversion trunks R(B) are defined analogously.

Let {î, ĵ} be an orthonormal basis for the plane R2 and set a orthonormal
coordinate system by {î, ĵ}.

Let f : R2 → PU ′′
2 (the set of all parallelograms with unit area) be the function

which transforms u = ux î+ uy ĵ ∈ R2 to the parallelogram with unit area which

is similar to the parallelogram whose sides are determined by î and u.
Let P ≡ R2

I \ ({0}× [0, 1)) ⊂ R2, where R2
I means the first quadrant including

axes.

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 2–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Algorithm for Determining Whether a Pair of Polygons Is Reversible 3

Denote by D(A) the inverse image (f |P )−1(R(A)) on the plane R2.
For polygons A,B ∈ QP (the set of all quasi-parallelogons), a relation A ∼ B

means that the pair A and B is reversible.

Proposition 1. For given reversible polygons A and B,
A ∼ B ⇐⇒ R(A) ∩R(B) 
= ∅ ⇐⇒ D(A) ∩D(B) 
= ∅.

Theorem 1. A decision algorithm to check whether a pair of polygons is re-
versible or not is as follows:

1. For given two polygons A and B, first we check whether both polygons are
reversible (i.e., quasi-parallelogon) and have the same area. Otherwise, the pair
A and B can never be reversible.

2. Let the area of A and B be 1. Compute the sets D∗(A) and D∗(B) which
are sets of points and horizontal open line segments on the plane R2.

3. Reflect the points of D∗(A) and D∗(B) on the second and third quadrants
R2

II ∪R2
III through the origin and then reflect the resultant points on the fourth

quadrant R2
IV or the interval {0} × [0, 1) across the y-axis to obtain D(A) =

(f |P )−1(R(A)) and D(B) = (f |P )−1(R(B)), respectively.

4. If D(A) and D(B) has any intersection, the pair A and B is reversible.
Otherwise, the pair can never be reversible.

References
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Disjoint Small Cycles in Graphs and Bipartite Graphs�

Ding Ma and Yunshu Gao

School of Mathematics and Computer Science, Ningxia University, Yinchuan,750021, China
gysh2004@gmail.com

Abstract. Let k be a positive integer and let G be a graph of order n ≥ 3k + 1,
X be a set of any k distinct vertices of G. It is proved that if d (x) + d (y) ≥
n+2k− 2 for any pair of nonadjacent vertices x, y ∈ V (G), then G contains k
disjoint cycles T1, · · · , Tk such that each cycle contains exactly one vertex in X ,
and |Ti| = 3 for each 1 ≤ i ≤ k or |Tk| = 4 and the rest are all triangles. We
also obtained two results about disjoint 6-cycles in a bipartite graph.

Keywords: Degree condition, Vertex-disjoint, Triangles.

1 Introduction

In this paper, we only consider finite undirected graphs without loops or multiple edges
and we use Bondy and Murty [1] for terminology and notation not defined here. Let
G = (V,E) be a graph, the order of G is |G| = |V | and its size is E (G) = |E|. A
set of subgraphs is said to be vertex-disjoint or independent if no two of them have any
common vertex in G, and we use disjoint or independent to stand for vertex-disjoint
throughout this paper. Let G1 and G2 be two subgraphs of G or a subsets of V (G). If
G1 and G2 have no any common vertex in G, we define E(G1, G2) to be the set of
edges of G between G1 and G2, and let E(G1, G2) = |E(G1, G2)|. Let H be a sub-
graph of G and u ∈ V (G) a vertex of G, N(u,H) is the set of neighbors of u contained
in H . We let d(u,H) = |N(u,H)|. Clearly, d(u,G) is the degree of u in G, we often
write d(x) to replace d(x,G). The minimum degree of G will be denoted by δ(G). If
there is no fear of confusion, we often identify a subgraph H of G with its vertex set
V (H), for a vertex x ∈ V (G) − V (H), we also denote NH (x) = NG (x) ∩ V (H)
and dH (x) = |NH (x)|. For a subset U of V (G), G [U ] denotes the subgraph of G
induced by U . If H is a subgraph in G, we define dH (U) =

∑
x∈UdH (x). Let C and

P be a cycle and a path, respectively, we use l (C) and l (P ) to denote the length of C
and P , respectively. That is, l (C) = |C| and l (P ) = |P | − 1. A Hamiltonian cycle
of G is a cycle which contains all vertices of G, and a Hamiltonian path of G is a path
of G which contains every vertex in G. Let v1, . . . , vk be k distinct vertices in G, and
let C1, . . . , Ck be k disjoint cycles passing through v1, . . . vk, respectively, in G. Then
we say that G has k disjoint cycles C1, . . . , Ck with respect to {v1, . . . vk}. A cycle of

� Supported by the National Natural Science Foundation of China (Grant No. 11161035),
Ningxia Ziran (Grant No. NZ1153) and research grant from Ningxia University (Grant No.
ndzr10-19).

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 4–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Disjoint Small Cycles in Graphs and Bipartite Graphs 5

length 3 is called a triangle and a cycle of length 4 is called a quadrilateral. For a cycle
C with l (C) = k, we call that C be a k-cycle. Let v be a vertex and H is a subgraph
of G, we say H is a v-subgraph if v ∈ V (H). In particular, a v-cycle or a v-path is a
cycle or path passing through v, respectively. For a graph G, we define

σ2 (G) = min {d (x) + d (y) |xy /∈ E (G)}

When G is a complete graph, we define σ2 (G) = ∞.In 1963, Corrádi and Hajnal
[2] proved Erdös’s conjecture in the early 1960s which concerns independent cycles
in a graph. They proved that if G is a graph of order n ≥ 3k with δ (G) ≥ 2k, then
G contains k disjoint cycles. In particular, when the order of G is exactly 3k, then G
contains k disjoint triangles. In the same year, Dirac [3] obtained the following result.

Theorem 1. (Dirac [3]) Let k, n be two positive integers and let G be a graph of order
n ≥ 3k. If δ (G) ≥ (n+ k)/2, then G contains k independent triangles.

Many people have studied the problems of cyclability, which concerns that for a given
subset S of vertices, whether there exists a cycle or several independent cycles that cov-
ering S.Which motivated us to be interested in the following problem, for any k inde-
pendent vertices v1, . . . , vk, what ensures that there exist k disjoint trianglesC1, . . . , Ck

with respect to {v1, . . . , vk}, such that each Ci (i ∈ {1, 2, . . . , k}) contains exactly one
vertex of vi (i ∈ {1, 2, . . . , k}). For the disjoint triangles covering, Li et al. [6] have
obtained the following result.

Theorem 2. (H.Li [6]) Let k, n be two positive integers and let G be a graph of or-
der n ≥ 3k, X a set of any k distinct vertices of G. If the minimum degree δ (G) ≥
(n+ 2k)/2, then G contains k disjoint triangles such that each triangle contains ex-
actly one vertex of X .

In this paper, we obtain the following result.

Theorem 3. Let k be a positive integer and let G be a graph of order n ≥ 3k + 1, X
a set of any k distinct vertices of G. If σ2 (G) ≥ n+2k− 2, then G contains k disjoint
cycles T1, . . . Tk such that each cycle contains exactly one vertex in X , and |Ti| = 3
for each 1 ≤ i ≤ k or |Tk| = 4 and the rest are all triangles.

Remark 1. The condition n ≥ 3k + 1 in Theorem 1.3 is necessary since there exists a
graph G with |V (G)| ≥ 4k and σ2 (G) = |V (G)|+ k − 1 such that G does not even
contain k vertex disjoint triangles (see [5]).

The remainder of this paper is organized as follows. In Section 2, we list several lemmas
which will be used to prove Theorem 1.3 in Section 3. In Section 4, we obtain two
results about disjoint 6-cycles in a bipartite graph and conclude this paper in Section 5
by proposing two related problems.
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2 Lemmas

Lemma 1. [4] Let P = u1u2 . . . us (s ≥ 2) be a path in G, u ∈ V (G) − V (P ),
when uu1 /∈ E (G), if d (u, P ) + d (us, P ) ≥ s, then G has a path P ′ with vertex
set V (P ′) = V (P ) ∪ {u} whose end vertices are u and u1. When uu1 ∈ E (G), if
d (u, P )+d (us, P ) ≥ s+1, then G has a pathP ′ with vertex set V (P ′) = V (P )∪{u}
whose end vertices are u and u1.

Lemma 2. [4] Let P = u1u2 . . . us be a path with s ≥ 3 in G. If d (us, P ) +
d (u1, P ) ≥ s, then G has a cycle C with V (C) = V (P ).

3 Proof of Theorem 1.3

Proof. Suppose that G does not contain k disjoint cycles T1, . . . , Tk such that each
cycle contains exactly one vertex in X and |Tk| = 4 and the rest are triangles. We prove
that G contains k disjoint triangles T1, . . . Tk such that each cycle contains exactly one
vertex in X . Suppose this is false, let G be an edge-maximal counterexample. Since
a complete graph of order n ≥ 3k + 1 contains k disjoint triangles such that each
triangle contains exactly one vertex of X , thus, G is not a complete graph. Let u and
v be nonadjacent vertices of G and define G′ = G + uv, the graph obtained from G
by adding the edge uv. Then G′ is not a counterexample by the maximality of G, that
is, for any X = {v1, . . . , vk} ⊆ V (G), G′ contains k disjoint triangles T1, . . . Tk with
respect to {v1, . . . , vk}.

Claim. k ≥ 2

Proof. Otherwise, suppose k = 1. By the classical result of Ore, G contains a
Hamiltonian cycle C = y1y2 · · · yny1. We may assume that v1 = y1, otherwise, we
can relabel the index of C.

We consider the path P = y1y2y3y4. Then y1y3 /∈ E (G), y2y4 /∈ E (G),
N (y1, C − V (P )) ∩ N (y3, C − V (P )) = φ and N (y2, C − V (P )) ∩
N (y4, C − V (P )) = φ. Then it follows that 2n ≤ Σx∈V (P )d (x,G) ≤
6 + 2 (n− 4) = 2n− 2, a contradiction.

By the choice of G, there exists v ∈ {v1, v2 . . . , vk} such that G contains k−1 triangles
T1, . . . Tk−1 with respect to {v1, v2 . . . , vk} − {v}, v /∈ V

(⋃ k−1
i=1 Ti

)
. Subject to this,

we choose v ∈ {v1, v2 . . . , vk} and k − 1 triangles T1, . . . , Tk−1 with respect to
{v1, v2 . . . , vk} − {v} such that

The length of the longest v-path in G− V

(
k−1⋃
i=1

Ti

)
. (1)

Let P = u1 . . . us be a longest v-path in G − V
(⋃ k−1

i=1 Ti

)
. Subject to (1), we choose

v ∈ {v1, v2 . . . , vk}, k − 1 vertex disjoint triangles T1, . . . , Tk−1 with respect to
{v1, v2 . . . , vk} − {v} and P such that

λ (v, P ). (2)
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Without loss of generality, suppose that v = vk and vi ∈ V (Ti) for each i ∈
{1, 2, . . . , k − 1}. Let H =

⋃ k−1
i=1 Ti, D = G − H and |D| = d. Clearly, d ≥ 4 as

n ≥ 3k + 1. Furthermore, by the choice of G, s ≥ 3.

Claim. P is a Hamiltonian path of D.

Proof. Suppose s ≤ d. We choose an arbitrary vertex x0 ∈ D−V (P ). Clearly, x0u1 /∈
E (G) and x0us /∈ E (G). Note s ≥ 3, by (1) and Lemma 2.1, d (x0, P ) + d (u1, P ) ≤
s− 1. Since d (x0, D − V (P )) ≤ d− s− 1 and d (u1, D − V (P )) = 0, it follows that
d (x0, D) + d (u1, D) ≤ d − 2. By the assumption on the degree condition of G, we
have

d (x0, H) + d (u1, H) ≥ (n+ 2k − 2)− (d− 2) = 5 (k − 1) + 2

This implies that there exists Ti ∈ H , say T1, such that d (x0, T1)+ d (u1, T1) = 6. Let
T1 = v1w1w2v1. If we replace T1 with x0w2v1x0, we obtain a path P ′ = w1u1 . . . us

with |P ′| = |P |+ 1, contradicting (1).

Claim. If λ (vk, P ) = 0 or 1, then D is Hamiltonian.

Proof. By Claim 3.2, D contains a Hamiltonian path P = u1 . . . ud passing through
vk. If u1ud ∈ E (G), then we have nothing to prove. So, u1ud /∈ E (G). By symmetry,
if λ (vk, P ) = 0, we may assume that vk = u1. If λ (vk, P ) = 1, we assume that
vk = u2.

If there exists Ti ∈ HT such that d (u1, Ti) + d (ud, Ti) = 6, then there exists
w ∈ V (Ti) with u1w ∈ E (G) such that Ti − w + ud contains a triangle Ti

′ passing
through vi. If we replace Ti with Ti

′, we see that D contains a vk-path P ′ = P − ud +
w. However, λ (vk, P ′) = λ (vk, P ) + 1, contradicting (2) while (1) still maintains.
Hence,d (u1, Ti) + d (ud, Ti) ≤ 5 for each Ti ∈ H and so d (u1, H) + d (ud, H) ≤
5 (k − 1). It follows that

d (u1, D) + d (ud, D) ≥ n+ 2k − 2− 5 (k − 1) = d.

By Lemma 2.2, D contains a Hamiltonian cycle. This proves the claim.

Case 1. d = 4.

By Claim 3.3, D contains a Hamiltonian cycle C. Then G contains k− 1 disjoint trian-
gles T1, T2, . . . , Tk−1 and a quadrilateral C with respect to {v1, v2, . . . , vk}, a contra-
diction.

Case 2. d ≥ 5.

By Claims 3.2 and 3.3, for each vk-path P ′ of length 4 in D, we may assume that
λ (vk, P

′) = 2. Let P ′ = y1y2y3y4y5 be an arbitrary vk-path of length 4, then vk =
y3. Since D does not contain a triangle passing through y3 = vk, hence, y1y3 /∈
E (G) and y2y4 /∈ E (G). Let P ′′ = P ′ − y5. Since D contains no quadrilateral
passing through vk = y3, then N (y1, D − V (P ′′)) ∩ N (y3, D − V (P ′′)) = φ and
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N (y2, D − V (P ′′))∩N (y4, D − V (P ′′)) = φ. So,
∑

x∈V (P ′′)d (x,D) ≤ 2 (d− 4)+
6 = 2d− 2. This gives that∑

x∈V (P ′′)

d (x,H) ≥ 2 (n+ 2k − 2)− (2d− 2) = 10 (k − 1) + 2

This implies that there exists Ti ∈ H , say T1, such that E (P ′′, T1) ≥ 11. That is, there
is at most one edge absent between P ′′ and T1. Let T1 = v1w1w2v1.

We claim that d (y3, T1) = 2. Otherwise, say d (y3, T1) = 3. If G [{y1, y2, v1}] con-
tains a triangle, denoted by T1

′, then G contains k disjoint triangles T1
′, T2, . . . Tk−1,

y3w1w2y3 with respect to {v1, v2, . . . , vk}, a contradiction. Hence, E (v1, y1y2) ≤ 1
and E (P ′′, T1) ≤ 11, which yields to d (y4, T1) = 3 and y2w2 ∈ E (G). Conse-
quently,G contains k disjoint triangles y4w1v1y4, T2, . . . , Tk−1, y2y3w2y2 with respect
to {v1, v2, . . . , vk}, a contradiction.

Since d (y3, T1) = 2, without loss of generality, say y3w2 ∈ E (G). Furthermore,
we have d (yi, T1) = 3 for each i ∈ {1, 2, 4}. Then G contains k disjoint triangles
y1y2v1y1, T2, . . . Tk−1 and y3y4w2y3 with respect to {v1, v2, . . . , vk}, a contradiction.
This completes the proof of Case 2 and the proof of Theorem 3.

4 Bipartite Graph

In this section, we consider the disjoint 6-cycles in a bipartite graph. We list several
useful lemmas.

Lemma 3. Let C be a 6-cycle of G. Let x ∈ V1 and y ∈ V2 be two distinct vertices not
on C. If d (x,C) + d (y, C) ≥ 5, then there exists z ∈ V (C) such that C − z + x is a
6-cycle and yz ∈ E (G).

Proof. Without loss of generality, let C = x1x2 . . . x6x1 with x1 ∈ V1. If d (x,C) = 3,
since d (y, C) ≥ 2, take any neighbor of N (y, C) as z, the lemma is obvious. Hence,
we may assume that d (x,C) = 2 and d (y, C) = 3. If N (x,C) = {x2, x4}, then C −
x3+x is a 6-cycle with yx3 ∈ E (G), we are done. By symmetry, we have N (x,C) =
{x2, x6}. Then C − x1 + x is a 6-cycle with yx1 ∈ E (G). This proves the lemma.

Lemma 4. [7] Let C be a 6-cycle, P1, P2 and P3 be three paths in G with
l (P1) = l (P2) = l (P3) = 1. Suppose that C, P1, P2 and P3 are disjoint and
E (C,P1 ∪ P2 ∪ P3) ≥ 13, then G [V (C ∪ P1 ∪ P2 ∪ P3)] contains a 6-cycle C′ and
a path P of order 6 such that C′ and P are disjoint.

Lemma 5. [7] Let P1 and P2 be two disjoint paths in G with l (P1) = l (P2) = 5. If
E (P1, P2) ≥ 7, then G [V (P1 ∪ P2)] contains a 6-cycle.

Lemma 6. [7] Let C be a 6-cycle, P1 and P2 be two paths in G with l (P1) =
l (P2) = 5. Suppose that C, P1 and P2 are disjoint and E (C,P1 ∪ P2) ≥ 25, then
G [V (C ∪ P1 ∪ P2)] contains two disjoint 6-cycles.

Theorem 4. Let k be a positive integer and G = (V1, V2;E) a bipartite graph with
|V1| = |V2| = 3k. Suppose δ (G) ≥ 2k, then G contains k − 1 disjoint 6-cycles and a
path of order 6 such that all of them are disjoint.
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Proof. Suppose on the contrary, G does not contain k disjoint 6-cycles and a path of
order 6. Let G be an edge-maximal counterexample. Since a complete bipartite graph
with |V1| = |V2| = 3k contains k disjoint 6-cycles and a path of order 6 such that all of
them are disjoint. Thus, G is not a complete bipartite graph. Take any nonadjacent pair
u ∈ V1 and v ∈ V2, G+xy contains k disjoint 6-cycles and a path of order 6 such that all
of them are disjoint. This implies G contains k − 2 disjoint 6-cycle Q1, Q2, . . . , Qk−1

and a subgraph D. We divide the proof into two cases:

Case 1. D contains a 6-cycle, denoted by Qk.

Let H = ∪k
i=1Qi and D = G − V (H). We may assume that D contains at least one

edge. Otherwise, take any pair of u ∈ V1 ∩D and v ∈ V2 ∩D. Then uv /∈ E (G) and
d (u,D) + d (v,D) = 0. Consequently, d (u,H) + d (v,H) ≥ 4 (k − 1) + 4, which
implies that there exists Qi ∈ H such that d (u,Qi) + d (v,Qi) ≥ 5. By Lemma 3,
G [V (Qi) ∪ {u, v}] contains a 6-cycle Qi

′ and edge e such that Qi
′ and e are disjoint.

Replace Qi with Qi
′, we see D contains an edge.

Let uv be an edge in D with u ∈ V1 ∩ D. An argument analogous to the process
of above can lead to D contains three disjoint edges. Denoted by uv, xy and ab with
{u, x, a} ⊆ V1. Now we will prove that D contains a path of order 6. Otherwise,
E (D) ≤ 5 and so we have∑

x∈V (D)

d (x,H) ≥ 12k − 10 = 12 (k − 1) + 2

This implies that there exists Qi ∈ H such that
∑

x∈V (D)d (x,Qi) ≥ 13. By Lemma 4,

G [V (Qi ∪D)] contains a 6-cycle Qi
′ and a path P of order 6 such that C′ and P are

disjoint. Replace Qi with Qi
′, we see that D contains a path of order 6, a contradiction.

Case 2. D contains two disjoint paths of order 6, denoted by P1 and P2.

In this case, G contains k − 2 disjoint 6-cycles Q1, Q2,...Qk−2. Let H ′ = ∪k−2
i=1 Qi. By

Case 1, we may assume thatG [V (P1 ∪ P2)] contains no 6-cycle. This leads toE (P1) ≤
7 and E (P2) ≤ 7 and E (P1, P2) ≤ 6 by Lemma 5. Consequently, we obtain∑

x∈V (P1∪P2)

d (x,H) ≥ 24k − 40 = 24 (k − 2) + 8

This implies that there exists Qi ∈ H ′ such that
∑

x∈V (P1∪P2)
d (x,Qi) ≥ 25. By

Lemma 6, G [V (Qi ∪ P1 ∪ P2)] contains two disjoint 6-cycles. By Case 1, we obtain
a contradiction. This completes the proof of Theorem 4.

Theorem 5. Let k be a positive integer and G = (V1, V2;E) a bipartite graph with
|V1| = |V2| = 3k. Suppose δ (G) ≥ 2k, then G contains k disjoint 6-cycles or k − 1
disjoint 6-cycles and a quadrilateral such that all of them are disjoint.

Proof. Suppose that G does not contain k− 1 disjoint 6-cycles and a quadrilateral such
that all of them are disjoint, we will show that G contains k disjoint 6-cycles. Suppose
that this is not true. Let G be a edge-maximal counterexample. That is, for any pair
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of nonadjacent vertices u ∈ V1 and v ∈ V2, G + uv contains k disjoint 6-cycles. This
implies G contains k−1 disjoint 6-cycles Q1, . . .Qk−1 and a path P of order 6. Denote
H = ∪k

i=1Qi.
Since G [V (P )] does not contain a quadrilateral or a 6-cycle, we see that E (P ) = 5.

Therefore,
∑

x∈V (P )d (x,H) ≥ 12k − 10 = 12 (k − 1) + 2. This implies that there
exists Qi ∈ H such that

∑
x∈V (P )d (x,Qi) ≥ 13. By our assumption, G [V (Qi ∪ P )]

contains two disjoint 6-cycles or two disjoint cycles with one quadrilateral and the other
6-cycle.

Without loss of generality, say Qi = a1a2 . . . a6a1 and P = x1x2 . . . x6x1

with {a1, x1} ⊆ V1. Set d (a1, P ) = max {d (ai, P ) |i ∈ {1, 2, 3, 4, 5, 6}}. Clearly,
d (a1, P ) ≥

⌈
13
6

⌉
= 3, which means N (x1, P ) = {x2, x4, x6}. Furthermore, we ob-

serve that d (xj , Qi) ≤ 1 for each j ∈ {1, 3, 5}. Otherwise, without loss of generality,
say d (x1, Qi) ≥ 2. If {a4, a6} ⊆ N (x1, Qi), then G [V (Qi ∪ P )] contains a 6-cycle
P−x1+a1, which disjoint from a quadrilateral x1a4a5a6x1, a contradiction. Hence, by
symmetry, we may assume that {a2, a6} ⊆ N (x1, Qi). Then G [V (Qi ∪ P )] contains
two disjoint 6-cycles P−x1+a1 and C−a1+x1, a contradiction. Consequently, it fol-
lows that E (Qi, P ) ≤ 3+ 3+6 = 12, which contradicts the fact that E (Qi, P ) ≥ 13,
a final contradiction.

Remark 2. The degree condition in Theorem 4 is sharp in general. To see this, we con-
struct bipartite graph G for positive integer as follows. Let G1 = (A,B;E1) and G2 =
(X,Y ;E2) be two independent complete bipartite graph with |A| = |Y | = 2 (k − 1)
and |B| = |X | = k + 2. Then G consists of G1, G1 and a set of k + 2 indepen-
dent edges between B and X , and finally, join every vertex in A to every vertex in Y .
Clearly, (A ∪X,B ∪ Y ) is a bipartition of G. It is easy to see that G does not contain
k − 1 disjoint 6-cycles and a path of order 6 such that all of them are disjoint. We see
that the minimum degree of G is 2k − 1.

5 Conjectures

To conclude this paper, we propose the following two conjectures for readers to discuss.

Conjecture 1. Let k ≥ 2, n be two positive integers and let G be a graph of order
n ≥ 3k+1, X a set of any k distinct vertices of G. If σ2 (G) ≥ n+2k− 1, G contains
k disjoint triangles T1, . . . Tk such that each triangle contains exactly one vertex in X .

Conjecture 2. Let k be a positive integer and G = (V1, V2;E) a bipartite graph with
|V1| = |V2| = 3k. Suppose δ (G) ≥ 2k, G contains k disjoint 6-cycles.

If Conjecture 2 is true, the degree condition is also sharp by Remark 2.
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Abstract. We provide an algorithm for listing all minimal 2-dominating
sets of a tree of order n in time O(1.3248n). This implies that every tree
has at most 1.3248n minimal 2-dominating sets. We also show that this
bound is tight.

Keywords: domination, 2-domination, minimal 2-dominating set, tree,
combinatorial bound, exponential algorithm, listing algorithm.

1 Introduction

Let G = (V,E) be a graph. The order of a graph is the number of its ver-
tices. By the neighborhood of a vertex v of G we mean the set NG(v) = {u
∈ V (G):uv ∈ E(G)}. The degree of a vertex v, denoted by dG(v), is the car-
dinality of its neighborhood. By a leaf we mean a vertex of degree one, while
a support vertex is a vertex adjacent to a leaf. The distance between two ver-
tices of a graph is the number of edges in a shortest path connecting them. The
eccentricity of a vertex is the greatest distance between it and any other vertex.
The diameter of a graph G, denoted by diam(G), is the maximum eccentricity
among all vertices of G. Denote by Pn a path on n vertices. By a star we mean
a connected graph in which exactly one vertex has degree greater than one.

A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \ D has
a neighbor in D, while it is a 2-dominating set of G if every vertex of V (G) \D
has at least two neighbors in D. A dominating (2-dominating, respectively) set D
is minimal if no proper subset of D is a dominating (2-dominating, respectively)
set of G. A minimal 2-dominating set is abbreviated as m2ds. Note that 2-
domination is a type of multiple domination in which each vertex, which is not
in the dominating set, is dominated at least k times for a fixed positive integer k.
Multiple domination was introduced by Fink and Jacobson [7], and further stud-
ied for example in [2,10,18]. For a comprehensive survey of domination in graphs,
see [11,12].
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Observation 1. Every leaf of a graph G is in every 2-dominating set of G.

One of the typical questions in graph theory is how many subgraphs of a given
property can a graph on n vertices have. For example, the famous Moon and
Moser theorem [17] says that every graph on n vertices has at most 3n/3 maximal
independent sets.

Combinatorial bounds are of interest not only on their own, but also because
they are used for algorithm design as well. Lawler [16] used the Moon-Moser
bound on the number of maximal independent sets to construct an (1 + 3

√
3)n

·nO(1) time graph coloring algorithm, which was the fastest one known for
twenty-five years. In 2003 Eppstein [6] reduced the running time of a graph
coloring to O(2.4151n). In 2006 the running time was reduced [1,14] to O(2n).
For an overview of the field, see [9].

Fomin et al. [8] constructed an algorithm for listing all minimal dominating
sets of a graph on n vertices in time O(1.7159n). There were also given graphs
(n/6 disjoint copies of the octahedron) having 15n/6 ≈ 1.5704n minimal domi-
nating sets. This establishes a lower bound on the running time of an algorithm
for listing all minimal dominating sets of a given graph.

The number of maximal independent sets in trees was investigated in [19].
Couturier et al. [5] considered minimal dominating sets in various classes of
graphs. The authors of [13] investigated the enumeration of minimal dominating
sets in graphs.

Bród and Skupień [3] gave bounds on the number of dominating sets of a tree.
They also characterized the extremal trees. The authors of [4] investigated the
number of minimal dominating sets in trees containing all leaves.

In [15] an algorithm was given for listing all minimal dominating sets of a tree
of order n in time O(1.4656n), implying that every tree has at most 1.4656n

minimal dominating sets. An infinite family of trees for which the number of
minimal dominating sets exceeds 1.4167n was also given. This established a lower
bound on the running time of an algorithm for listing all minimal dominating
sets of a given tree.

We provide an algorithm for listing all minimal 2-dominating sets of a tree
of order n in time O(1.3248n). This implies that every tree has at most 1.3248n

minimal 2-dominating sets. We also show that this bound is tight.

2 Results

We describe an algorithm for listing all minimal 2-dominating sets of a given
input tree. We prove that the running time of the algorithm is O(1.3248n),
implying that every tree has at most 1.3248n minimal 2-dominating sets.

Theorem 2. Every tree T of order n has at most αn minimal 2-dominating
sets, where α ≈ 1.32472 is the positive solution of the equation x3 − x− 1 = 0.

Proof. In our algorithm, the iterator of the solutions for a tree T is denoted
by F(T ). To obtain the upper bound on the number of minimal 2-dominating
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sets of a tree, we prove that the algorithm lists these sets in time O(1.3248n).
Notice that the diameter of a tree can easily be determined in polynomial time.
If diam(T ) = 0, then T = P1 = v1. Let F(T ) = {{v1}}. Obviously, {v1} is the
only m2ds of the path P1. We have n = 1 and |F(T )| = 1. We also have 1 < α.
If diam(T ) = 1, then T = P2 = v1v2. Let F(T ) = {{v1, v2}}. It is easy to observe
that {v1, v2} is the only m2ds of the path P2. We have n = 2 and |F(T )| = 1.
Obviously, 1 < α2. If diam(T ) = 2, then T is a star. Denote by x the support
vertex of T . Let F(T ) = {V (T ) \ {x}}. It is easy to observe that V (T ) \ {x} is
the only m2ds of the tree T . We have n ≥ 3 and |F(T )| = 1. Obviously, 1 < αn.

Now consider trees T with diam(T ) ≥ 3. The results we obtain by the in-
duction on the number n. Assume that they are true for every tree T ′ of order
n′ < n. The tree T can easily be rooted at a vertex r of maximum eccentricity
diam(T ) in polynomial time. A leaf, say t, at maximum distance from r, can
also be easily computed in polynomial time. Let v denote the parent of t and let
u denote the parent of v in the rooted tree. If diam(T ) ≥ 4, then let w denote
the parent of u. By Tx we denote the subtree induced by a vertex x and its
descendants in the rooted tree T .

If dT (v) ≥ 3, then let T ′ = T − Tv and let T ′′ differ from T ′ only in that it
has the vertex v. Let F(T ) be as follows,

{D′ ∪ V (Tv) \ {v}:D′ ∈ F(T ′)}
∪ {D′′ ∪ V (Tv) \ {v}:D′′ ∈ F(T ′′) and D′′ \ {v} /∈ F(T ′)}.

Let us observe that all elements of F(T ) are minimal 2-dominating sets of the
tree T . Now let D be any m2ds of T . Observation 1 implies that V (Tv)\{v} ⊆ D.
If v /∈ D, then observe that D∩V (T ′) is an m2ds of the tree T ′. By the inductive
hypothesis we have D ∩ V (T ′) ∈ F(T ′). Now assume that v ∈ D. It is easy to
observe that D ∩ V (T ′′) is an m2ds of the tree T ′′. By the inductive hypothesis
we have D ∩ V (T ′′) ∈ F(T ′′). The set D ∩ V (T ′) is not an m2ds of the tree T ′,
otherwise D \ {v} is a 2-dominating set of the tree T , a contradiction to the
minimality of D. By the inductive hypothesis we have D ∩ V (T ′) /∈ F(T ′).
Therefore F(T ) contains all minimal 2-dominating sets of the tree T . Now we
get |F(T )| = |F(T ′)| + |{D′′ ∈ F(T ′′):D′′ \ {v} /∈ F(T ′)}| ≤ |F(T ′)| + |F(T ′′)|
≤ αn−3 + αn−2 = αn−3(α + 1) = αn−3 · α3 = αn.

If dT (v) = 2 and dT (u) ≥ 3, then let T ′ = T − Tv, T
′′ = T − Tu, and

F(T ) = {D′ ∪ {t}:u ∈ D′ ∈ F(T ′)} ∪ {D′′ ∪ V (Tu) \ {u}:D′′ ∈ F(T ′′)}.
Let us observe that all elements of F(T ) are minimal 2-dominating sets of the
tree T . Now let D be any m2ds of T . By Observation 1 we have t ∈ D. If v /∈ D,
then u ∈ D as the vertex v has to be dominated twice. Observe that D \ {t} is
an m2ds of the tree T ′. By the inductive hypothesis we have D \ {t} ∈ F(T ′).
Now assume that v ∈ D. We have u /∈ D, otherwise D\{v} is a 2-dominating set
of the tree T , a contradiction to the minimality of D. Observe that D∩V (T ′′) is
an m2ds of the tree T ′′. By the inductive hypothesis we haveD∩V (T ′′) ∈ F(T ′′).
Therefore F(T ) contains all minimal 2-dominating sets of the tree T . Now we get
|F(T )| = |{D′ ∈ F(T ′):u ∈ D′}|+ |F(T ′′)| ≤ |F(T ′)|+ |F(T ′′)| ≤ αn−2 + αn−3

= αn−3(α+ 1) = αn−3 · α3 = αn.
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If dT (v) = dT (u) = 2, then let T ′ = T − Tv, T
′′ = T − Tu, and

F(T ) = {D′ ∪ {t}:D′ ∈ F(T ′)} ∪ {D′′ ∪ {v, t}:w ∈ D′′ ∈ F(T ′′)}.

Let us observe that all elements of F(T ) are minimal 2-dominating sets of the
tree T . Now let D be any m2ds of T . By Observation 1 we have t ∈ D. If v /∈ D,
then observe that D \ {t} is an m2ds of the tree T ′. By the inductive hypothesis
we have D \ {t} ∈ F(T ′). Now assume that v ∈ D. We have u /∈ D, otherwise
D \ {v} is a 2-dominating set of the tree T , a contradiction to the minimality
of D. Moreover, we have w ∈ D as the vertex u has to be dominated twice.
Observe that D \ {v, t} is an m2ds of the tree T ′′. By the inductive hypothesis
we have D \ {v, t} ∈ F(T ′′). Therefore F(T ) contains all minimal 2-dominating
sets of the tree T . Now we get |F(T )| = |F(T ′)| + |{D′′ ∈ F(T ′′):w ∈ D′′}|
≤ |F(T ′)|+ |F(T ′′)| ≤ αn−2 + αn−3 = αn−3(α+ 1) = αn−3 · α3 = αn.

We now show that paths attain the bound from the previous theorem.

Proposition 3. For positive integers n, let an denote the number of minimal
2-dominating sets of the path Pn. We have

an =

{
1 if n ≤ 3;
an−3 + an−2 if n ≥ 4.

Proof. It is easy to see that a path on at most three vertices has exactly one
minimal 2-dominating set. Now assume that n ≥ 4. Let T ′ = T − vn− vn−1 and
T ′′ = T ′ − vn−2. It follows from the last paragraph of the proof of Theorem 2
that an = an−3 + an−2.

Solving the recurrence an = an−3 + an−2, we get limn→∞ n
√
an = α, where

α ≈ 1.3247 is the positive solution of the equation x3 − x− 1 = 0. This implies
that the bound from Theorem 2 is tight.

It is an open problem to prove the tightness of an upper bound on the number
of minimal dominating sets of a tree. In [15] it has been proved that any tree
of order n has less than 1.4656n minimal dominating sets. A family of trees
having more than 1.4167n minimal dominating sets has also been given.
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Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 202–213. Springer, Heidelberg (2012)

6. Eppstein, D.: Small maximal independent sets and faster exact graph coloring.
Journal of Graph Algorithms and Applications 7, 131–140 (2003)

7. Fink, J., Jacobson, M.: n-domination in graphs. In: Graph Theory with Applica-
tions to Algorithms and Computer Science, pp. 282–300. Wiley, New York (1985)

8. Fomin, F., Grandoni, F., Pyatkin, A., Stepanov, A.: Combinatorial bounds via
measure and conquer: bounding minimal dominating sets and applications. ACM
Transactions on Algorithms 5, article 9, 17 (2009)

9. Fomin, F., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)
10. Fujisawa, J., Hansberg, A., Kubo, T., Saito, A., Sugita, M., Volkmann, L.: Inde-

pendence and 2-domination in bipartite graphs. Australasian Journal of Combina-
torics 40, 265–268 (2008)

11. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
Marcel Dekker, New York (1998)

12. Haynes, T., Hedetniemi, S., Slater, P. (eds.): Domination in Graphs: Advanced
Topics. Marcel Dekker, New York (1998)
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Abstract. We present new θ(n) time algorithms for testing pattern in-
volvement for all length 4 permutations. For most of these permutations
the previous best algorithms require O(n log n) time.
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1 Introduction

Pattern containment (also called pattern involvement) is a well studied problem
in both Computer Science and Combinatorics [1] (see [7] for a survey of results).

Two permutations P = p1p2...pk and P ′ = p′1p
′
2...p

′
k are said to be order

isomorphic if their letters are in the same relative order, i.e., pi < pj , if and only
if, p′i < p′j . For example permutation 1, 3, 2, 4 is order isomorphic to 7, 19, 15,
23.

A permutation P = p1p2...pk is said to be present in (or is involved in) another
permutation P ′ = p′1p

′
2...p

′
n if P ′ has a subsequence which is order isomorphic

to P . The pi’s need not be consecutive in P ′.
The general problem of testing presence of one permutation in another per-

mutation is NP-complete [4]. However polynomial time algorithms are known
when

1. P = 1, 2, ..., k. This becomes largest increasing subsequence problem [5].
2. P ′ is separable [4]. A permutation is separable if it contains pattern 2, 4, 1, 3
or its reverse 3, 1, 4, 2.
3. k is a constant. Brute force algorithm will take O(nk) time.

In the case when k = 3, linear time algorithms are possible [1]. And for the case
k = 4, [1] have shown that O(n log n) time is possible. Further, a linear time
algorithm exists to test whether a pattern 2, 4, 1, 3 (or its reverse 3, 1, 4, 2)
is present; this is basically a test to check whether a pattern is separable [4].
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Linear time algorithms are also known for monotone patterns 1, 2, 3, 4 and (its
reverse) 4, 3, 2, 1 [5].

Albert et.al. [1] studied the general problem of permutation involvement and
proposed O(n log n) time algorithms for patterns of length 4. Their algorithms
use orthogonal range queries of the kind:

Find the smallest number larger than a query item x between positions p and q.
As general orthogonal range queries take O(log n) query time after O(n log n)

preprocessing time [8] (Theorem 2.12), O(n logn) time algorithms appear to be
the best possible using this approach.

Our improvement comes firstly from use of the “usual” range maxima (min-
ima) queries (instead of orthogonal range queries) of the kind:

Find the largest (smallest) number between positions p and q.
And for the case 1,3,2,4 we use a particular kind of analysis to achieve θ(n)

time.
In this paper, we describe new linear time algorithms for all patterns of length 4.
Some useful “tools” are described in Section 2. Most cases of length 4 patterns

are covered in Section 3. In Section 4 we describe the case 1,3,2,4.

2 Preliminaries

We give the definition for range minima and nearest largers problems. We will
use routines for range minima and for nearest largers as black boxes.

For the range minima problem, we are given an array A[1 : n], which we
preprocess to answer queries of the form:

Given two integers i, j with 1 ≤ i ≤ j ≤ n the smallest item in sub-array
A[i : j].

Range minima queries take O(1) time after O(n) preprocessing cost [2,3]. Range
maxima can also be solved in this way.

In the right nearest largers problem[3],

for each item i of array A[1 : n], we are to find j > i, closest to i, such
that A[j] > A[i] (thus items, A[i + 1], A[i + 2], ..., A[j − 2], A[j − 1] are
all smaller than A[i]). Or, j = min{k|A[k] > A[i] and k > i}.

The right nearest larger also take O(1) time after O(n) preprocessing cost [2,3].
All nearest largers can be found in O(n) time [2,3]. The left nearest larger, the
left nearest smaller, the right nearest smaller can also be solved in this way.

Let us assume that the permutation is given in array P [1 : n]. Thus, if the
ith item of the pattern is k, then P [i] = k. As P is a permutation, all items of
P are distinct. Hence, if P [i] = k then we can define the inverse mapping

Position[k] = i
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Thus, item Y = P (y) will be to the right of item X = P (x) in array P , if
and only if, y > x or equivalently Position(Y ) > Position(X). And item
Z = P (z) will be between X and Z if Position(Z) is between (in value)
Position(X) and Position(Y ), i.e., Position(X) < Position(Z) < Position(Y ),
or Position(Y ) < Position(Z) < Position(X)

Let r be the nearest right larger of k in Position array.

P -value k k + 1 k + 2 . . . r r + 1
Position *

Then, as items with P -value k+1, ..., r−1 are smaller, r is the first (smallest)
P -value item larger than k and to its right. Moreover, the nearest smaller of k
in the Position array to the right is the first (smallest) P -value item larger than
k and to its left.

Similarly, s the nearest larger of k in the Position array on the left, is the
first (largest) P -value item smaller than k and to its right. And nearest smaller
of k in Position array to its left, is the first (largest) P -value item smaller than
k and to its left.

Thus,

Theorem 1. If we know P [i] = k, then we can find items closest in values (both
larger and smaller than k) on either side of position i using nearest smallers or
largers on the Position array.

We have:

Corollary 1. After preprocessing, if P [i] = k, then we can find items closest in
values (both larger and smaller than k) on either side of position i in O(1) time.
The preprocessing time is O(n) time.

Let us assume that P [i] = k and P [j] = l with k < l.

P -value k k + 1 k + 2 . . . l l + 1
Position i j

If x is the RangeMinimaPosition(k, l) on Position-array, then x is the small-
est (or the left most) Position-value between Position(k) and Position(l) of
items with P -value between k and l.

Similarly, if y is the RangeMaximaPosition(k, l) on Position-array, then
y is the largest (or the right most) Position-value between Position(k) and
Position(l) of items with P -value between k and l. Thus,

Theorem 2. Given any P [i] = k and P [j] = l, we can find the left most and
the right most items with P -values between P [i] and P [j] using range maxima
or range minima queries.

We have the following result:

Corollary 2. If P [i] = k, and P [j] = l, then we can find the left most and the
right most items with P -values between k and l in O(1) time after preprocessing.
The preprocessing time is O(n).
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3 Length Four Permutations Except 1324

For length 4 sequences, there will be 24 permutations, but 12 of these will be
reverse (i.e., P0[i] = P [n− i+1]) of some other. Further, 4 out of these 12 will be
“complement” (i.e., P [i] = n−P [i]+1), thus in all 8 permutations will be left [1]:

1234, 2134, 2341, 2314, 3412, 2413, 1342, 1324

2413 (and its reverse 3142) is the case for separable permutation and linear time
algorithm for only these are known [5]. In the next section we will give a linear
time algorithm for the case 1324 (and its reverse 4231). Here we sketch how to
deal with other permutations. As techniques for these permutations are similar,
the description will be a bit brief.

Depending on the case, we try to see if i can be chosen as a “2” or a “3”.
We will abbreviate this to just “fix 2” (i.e, i = i2) or “fix 3” (i.e., i = i3). We
finally get a witness for tuple (i1, i2, i3, i4), if P [i1] < P [i2] < P [i3] < P [i4] and
i1, i2, i3, i4 occur in the same order as 1, 2, 3, 4. Again, a flag can be set if we
have a witness and reset otherwise. Finally a logical “or” will give the answer.

In some of the cases, we have to search for an item (usually 3) which has a
still larger item (which can be then chosen as 4). For this to be done efficiently,
we define a new array R[1 : n]. The element

R[i] =

{
P [i] if i has a larger item to its right
0 otherwise

By using right nearest largers, we can easily identify items which have a larger
item to their right. Note that in R each nonzero element has a larger element to
its right in P . Let us preprocess array R for range maxima queries.

The technique for various patterns is:

1234 Fix 2. 1 the smallest item to its left is i1 = RangeMinimaP (1, i). Item 3
can be obtained by range maxima on arrayR, i3 = RangeMaximaR(i, n).
Finally, i4 = RangeMaximaP (i3, n).

2134 Fix 2. Index i1 of 1, the first item less than 2, can be found from right near-
est smaller of i2. And again 3 can be obtained by range maxima on array
R, i3 = RangeMaximaR(i1, n). Finally, i4 = RangeMaximaP (i3, n).

2341 Fix 3. Index i4 of 4, the first item more than 3, can be found from right
nearest larger of i3. i1 = RangeMinimaP (i4, n) will choose 1 as the
smallest item on the right of 4. And we use Corollary 1, to find i2, the
index of 2 as the item on left of i, just smaller than P [i3].

2314 Fix 3. Again we use Corollary 1, to find i2, the index of 2 as the item
on left of i3, just smaller than P [i3]. We use Corollary 2, to find i4,
the index of 4 as the rightmost item larger than P [i3]. Finally, i1 =
RangeMinimaP (i3, i4).

3412 Fix 4. 3 can be found as the largest element smaller than 4 on the left
side of 4 using Corollary 1. We create an array of right near larger. For
each element e in P that does not have another element f pointing to it
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(f ’s right near larger be e) we will change the value of e to max and we
will call this array R1. We then use RangeMinimaR1(i4, n) to find 2. 1
would be the closest element on the left of 2 that use 2 as its right near
larger.

2413 This is reverse of pattern 3142. This is the test of separability of the text.
Linear time algorithm is known for this case [5].

1342 Fix 3. 4 is right nearest larger. 1 can be found by RangeMinimaP (1, i3).
Now in the Position array use RangeMaximaPosition(P [i1], P [i3]) to
find the position, i.e. i2 (i.e. use Corollary 2).

Theorem 3. Given any length 4 permutation (other than 1324 and its reverse
4231), we can test whether it is present (involved) in another permutation of
length n in θ(n) time.

4 Permutation 1324

In array P we use right nearest larger to build a forest. Within each tree of the
forest we define the chain of the tree consisting of the root r of the tree, the
largest child c1 of r, the largest child c2 of c1, ..., the largest child ci+1 of ci, ...,
etc. This is illustrated in Fig. 1.

Fig. 1. Forest of right nearest larger. Chains are shown in boldface.

Our intension is to let roots of trees serve as 4 and nodes on the chains to
serve as 3. 1 will be found using range minima and 2 will be served by non-chain
nodes.

We traverse a tree this way: when we are at node d, we visit the subtrees of
d in the order from the subtree rooted at the smallest child of d to the subtree
rooted at the largest child of d. After that we visit d. We start at root of the
tree. This traversal will label the nodes of the tree.

We start from the rightmost tree and visiting nodes in this tree in the or-
der of the above traversal. Let d be a non-chain node we are visiting and
let d, d1, d2, ..., dt be the path in the tree from d to the nearest ancestor dt
where dt has another child c larger than d. In this case c will be larger than
d, d1, d2, ..., dt−1 and c will be on the left side of d, d1, ..., dt−1, dt in array P .
Thus we can let dt−1 serve as 2, c serve as 3 and dt serve as 4. 1 will be found
using RangeMinimaP (1, i3). If RangeMinimaP (1, i3) is larger than 2, then we
label d, d1, ..., dt−1 as they cannot serve as 2. They cannot serve as 1 or 3 because
of our traversal order (i.e. they may have tried to serve as 1 or 3 before in the
traversal).
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Thus after we examined all non-chain nodes they cannot serve as 1, nor 2,
nor 3. They need not serve as 4 because the root of the tree can serve as 4. Thus
these non-chain nodes can be removed.

The chain nodes may later serve as 2 but they cannot serve as 1 or 3 because
there are no qualifying 2 for them. All of them except the root need not serve
as 4 because the root can serve 4 for them.

Next we examine the second rightmost tree. After we did the same examina-
tion for the tree as we did for the rightmost tree only the chain nodes remains
to be tested as 2’s. However, we have to test the chain nodes in the first tree as
2’s using nodes in the second tree as 3’s.

In order to do this we have the two lists of nodes each sorted in ascending
order. One is the list L1 of the chain nodes of the first tree and the second list
L2 is the one containing all the tree nodes of the second tree. Let r1 be the root
of the first tree and r2 be the root of the second tree. We visit these two lists
from smallest nodes.

Let a be the current smallest node in L1 and b be the current smallest node
in L2. If b < a then we remove b from further comparison and get next smallest
node from L2. In this case b is less than all remaining nodes in L1 and therefore
cannot serve as 3 for the remaining nodes in L1 to serve as 2’s. If r1 > b > a then
we let r1 serve as 4, b serve as 3 and a serve as 2 and use RangeMinimaP (1, i3)
to find 1. If RangeMinimaP (1, i3) > 2 then if a’s chain parent p is less than b
then p can replace a to serve as 2 and a can be deleted. If p > b then b can be
removed. In either case we remove one node. If r1 < b then we can stop because
the remaining nodes cannot serve as 3 because there is no 4 for them.

Thus we visit nodes in the second tree at most twice. In the remaining we
have the chain for the second tree left and some nodes on the chain for the
first tree left. We can merge these nodes from two chains together and form an
ascending list. The merging is not done by examining all nodes of the two chains
as doing this way will be too costly. We maintain the above two ascending lists
in linked lists. Thus once we find r1 < b for b as a chain node then we insert the
remaining nodes in L1 between b and b’s chain child (here insert into the chain
of the second tree and not inserting into L2). Thus the merge takes constant
time. Note now all b’s chain descendants are smaller than the remaining nodes
in L1.

Then we view the merged chain node as one chain and we continue working
on the third tree from right.

What we have described is the linear time algorithm for pattern 1324.

Theorem 4. Pattern 1324 can be tested whether it is present (involved) in
another permutation of length n in θ(n) time.

5 Concluding Remarks

We have described θ(n) time algorithms for testing involvement of all length 4
patterns. Previously most of these patterns have only O(n log n) time algorithms.
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Abstract. Given a graph G = (V,E) and a non-negative integer cu for
each u ∈ V . Partial Degree Bounded Edge Packing (PDBEP) problem
is to find a subgraph G′ = (V,E′) with maximum |E′| such that for each
edge (u, v) ∈ E′, either degG′(u) ≤ cu or degG′(v) ≤ cv. The problem has
been shown to be NP-hard even for uniform degree constraint (i.e., all cu
being equal). Approximation algorithms for uniform degree cases with
cu equal to 1 and 2 with approximation ratio of 2 and 32/11 respectively
are known. In this work we study general degree constraint case (arbi-
trary degree constraint for each vertex) and present two combinatorial
approximation algorithms with approximation factors 4 and 2. We also
study a related integer program for which we present an iterative round-
ing algorithm with approximation factor 1.5/(1 − ε) for any positive ε.
This also leads to a 3/(1 − ε)2 factor approximation algorithm for the
general PDBEP problem. For special cases (large values of cv/degG(v)’s)
the factor improves up to 1.5/(1 − ε). Next we study the same problem
with weighted edges. In this case we present a 2 + log2 n approximation
algorithm. In the literature exact O(n2) complexity algorithm for trees
is known in case of uniform degree constraint. We improve this result by
giving an O(n · log n) complexity exact algorithm for trees with general
degree constraint.

Keywords: Edge-Packing Problems, Iterative Rounding, Lagrangian
Relaxation.

1 Introduction

The partial degree bounded edge packing problem (PDBEP) is described as fol-
lows: Given a graph G = (V,E) and degree-bound function c : V → Z∗ (Z∗ is the
set of non-negative integers), compute a maximum cardinality set E′ ⊆ E which
satisfies the degree condition: (d′u ≤ cu) ∨ (d′v ≤ cv) for each e = (u, v) ∈ E′.
Here d′x denotes the degree of vertex x in the graph G′ = (V,E′). Without loss
of generality, we will assume that cv ≤ dv for all v ∈ V where dv denotes the
degree of v in G.

In the weighted version of the problem edges are assigned non-negative weights
and we want to compute a set of edges E′ with maximum cumulative weight
subject to the degree condition described above.

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 24–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In [4], the PDBEP problem was motivated by an application in binary string
representation. It was shown there that the maximum expressible independent
subset (MEIS) problem on 2-regular set can be reduced to PDBEP problem
with uniform constraint c = 2. The PDBEP problem finds another interesting
application in resource allocation. Given n types of resources and m jobs, each
job needs two types of resources. A job j, which requires resources u and v, can
be accomplished if u is not shared by more than cu jobs or v is not shared by
more than cv jobs. Interpreting the resources as the vertices of the input graph
and the jobs as edges, the PDBEP problem is to compute the maximum number
of jobs that can be accomplished.

1.1 Related Work

The decision problem of edge packing when there is a uniform degree constraint
of 1 is a parametric dual of the Dominating Set (DS) problem. It was studied
in [3]. It was also studied under the framework of parameterized complexity by
Dehne, Fellows, Fernau, Prieto and Rosamond in [1].

Recently Peng Zhang [4] showed that the PDBEP problem with uniform de-
gree constraint (cv = k for all v) is NP-hard even for k = 1 for general graphs.
They gave approximation algorithms for the PDBEP problem under uniform
degree constraints of k = 1 and k = 2 with approximation factors 2 and 32/11
respectively. They showed that PDBEP on trees with uniform degree constraint
can be solved exactly in O(n2) time.

1.2 Our Contribution

We propose three different approximation algorithms for the problem with gen-
eral degree constraints (i.e., for arbitrary non-negative function c). Two of these
algorithms are combinatorial in nature and their approximation ratios are 4 and
2. The third algorithm is a consequence of studying a related integer program
(IP) for which we present a 1.5/(1 − ε) approximation iterative rounding [2]
algorithm. It turns out that any α approximation of this IP is a 2α/(1− ε) ap-
proximation of the PDBEP problem for any ε > 0. That gives us a 3/(1 − ε)2

factor approximation to the PDBEP problem. However for large degree con-
straint with respect to the degree, the approximation factor can improve up to
1.5/(1− ε). The results detailed above are for general graphs with arbitrary de-
gree constraint and the approximation factor is also improved for cv = 2 (uniform
constraint) case in [4].

Next we consider the PDBEP problem with arbitrary degree constraint for
edge-weighted graphs. In this case we present a combinatorial approximation al-
gorithm with approximation factor of 2+log2 n. Edge-weighted PDBEP problem
is not addressed in the literature, to the best of our knowledge.

Finally we present an exact algorithm for unweighted trees with arbitrary
degree constraint function. The time complexity of this algorithm is O(n log n).
This is an improvement over the O(n2) algorithm in [4] which is applicable to
only the uniform degree constraint case.
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2 Approximation Algorithms for the Unweighted Case

The optimum solution of a PDBEP problem can be bounded as follows.

Lemma 1. Let G = (V,E) be a graph with degree-bound function c : V → Z∗.
Then the optimal solution of PDBEP can have at most

∑
v∈V cv edges.

Proof. Let E′ ⊂ E be a solution of PDBEP. Let U = {v ∈ V |d′v ≤ cv}. Then
from the degree condition we see that U is a vertex cover in the graph (V,E′).
Hence |E′| ≤

∑
u∈U cu ≤

∑
v∈V cv. �

2.1 Edge Addition Based Algorithm

Compute a maximal solution Y by iteratively adding edges, i.e., in each iteration
select a new edge and add it to Y if it does not result into degree violation on
both end-vertices. Let dY (x) denote the degree of a vertex x in the graph (V, Y ).
Partition the vertex set into sets: A = {v|dY (v) < cv}, B = {v|dY (v) = cv}, and
C = {v|dY (v) > cv}. Observe that every edge of the set E \ Y which is incident
on a vertex in A, has its other vertex in B. Hence for any a1, a2 ∈ A the E \E′

edges incident on a1 are all distinct from those incident on a2. Construct another
edge set Z containing any cv − dY (v) edges from E \ Y , incident on v for each
v ∈ A. Observe that Z also satisfies the degree constraints. Output the larger of
Y and Z. See Algorithm 1. We have the following result about the correctness
of the algorithm.

Lemma 2. The algorithm outputs a set which satisfies the degree constraint.

Consider the set Y ∪ Z. In this set the degree of each vertex is not less than its
degree-bound. Hence the cardinality of the output of the algorithm is at least∑

v cv/4. From Lemma 1 the approximation ratio is bounded by 4.

Theorem 1. The Algorithm 1 has approximation factor 4.

2.2 Edge Deletion Based Algorithm

The second algorithm for PDBEP is based on elimination of edges from the
edge set. Starting with the input edge set E, iteratively we delete the edges in
violation, i.e., in each iteration one edge (u, v) is deleted if the current degree of
u is greater than cu and that of v is greater than cv. The surviving edge set Y
is the result of the algorithm. See Algorithm 2.

Clearly Y satisfies the degree condition. Also observe that dY (v) ≥ cv for
all v ∈ V . Hence |Y | ≥

∑
v cv/2. From Lemma 1, |Y | ≥ OPT/2 where OPT

denotes the optimum solution.

Theorem 2. The Algorithm 2 has approximation ratio 2.
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Data: A connected graph G = (V,E) and a function c : V → Z∗ such that
cv ≤ d(v) for each vertex v.

Result: Approximation for the largest subset of E which satisfies the
degree-condition.

Y := ∅;
for e ∈ E do

if Y ∪ {e} satisfies the degree-condition then
Y := Y ∪ {e};

end

end
Compute A := {v ∈ V |dY (v) < cv};
Z := ∅;
for v ∈ A do

Select arbitrary cv − dY (v) edges incident on v in E \ Y and insert into Z;
end
if |Y | ≥ |Z| then

return Y ;
else

return Z;
end

Algorithm 1. Edge Addition Based Algorithm

2.3 LP Based Algorithm

In this section we explore a linear programming based approach to design an
approximation algorithm for PDBEP.

The Integer Program. The natural IP formulation of the problem is as fol-
lows.

IP1: max ψ =
∑
e∈E

ye, subject to

ye ≤ xu + xv ∀e = (u, v) ∈ E,∑
e∈δ(v)

ye ≤ cvxv + dv(1− xv) ∀v ∈ V,

where δ(v) denotes the set of edges incident on v,

xv ∈ {0, 1} ∀v ∈ V, ye ∈ {0, 1} ∀e ∈ E

The solution computed by the program is E′ = {e|ye = 1}. The linear program-
ming relaxation of the above integer program will be referred to as LP1.

Lemma 3. The integrality gap of LP1 is Ω(n) where n is the number of vertices
in the graph.

Proof. Consider the following instance of the problem. LetG be a complete graph
on n vertices {v0, v1, . . . , vn−1} and the degree constraint be cv = 1 ∀v ∈ V . We
now construct a feasible fractional solution of LP1 as follows. Let xv = 0.5 for all
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Data: A connected graph G = (V,E) and a function c : V → Z∗ such that cv is
the degree bound for vertex v.

Result: Approximation for the largest subset of E which satisfies the
degree-condition.

Y := E;
for e = (u, v) ∈ Y do

if dY (u) > cu and dY (v) > cv then
Y ← Y \ {e};

end

end
return Y ;

Algorithm 2. Edge Deletion Based Algorithm

v and ye = 1 for all e = (vi, vj) where j is in the interval ((i−�n/4�)(mod n), (i+
�n/4�)(mod n)). The value of the objective function for this solution is at least
(n− 1)2/4. On the other hand, from Lemma 1, the optimal solution for the IP1
cannot be more than n. Hence the integrality gap is Ω(n). �

High integrality gap necessitates an alternative approach.

Approximate Integer Program. We propose an alternative integer program
IP2, for any ε > 0, which is a form of Lagrangian relaxation of IP1. We will show
that its maximal solutions are also solutions of IP1 and any α approximation
of IP2 is a 2α/(1 − ε) approximation of IP1. A maximal solution of IP2 is a
solution in which changing the value of any ye or any zv either renders the
solution infeasible or does not improve its objective function value. It is easy to
show that in a maximal solution zv = max{0,

∑
e∈δ(v) ye − cv} for all v.

IP2: max φ = 2
∑
e∈E

ye − (1 + ε)
∑
v∈V

zv, subject to∑
e∈δ(v)

ye ≤ cv + zv ∀v ∈ V,

zv ∈ {0, 1, 2, . . .} ∀v ∈ V, ye ∈ {0, 1} ∀e ∈ E

Note that any subset of edges E′ is a feasible solution of IP2 if we choose zv =
max{0,

∑
e∈δ(v) ye − cv} for all v. Besides, these values of z will give maximum

value of the objective function over other consistent values of z. Hence z values
are not required to be specified in the solutions of IP2. We will denote

∑
v zv by

Z.

Lemma 4. Every maximal solution of the integer program IP2 is also a feasible
solution of PDBEP.

Proof. Consider any maximal solution E′ of IP2. In a maximal solution zv =
max{0,

∑
e∈δ(v) ye − cv} for all v. Assume that it is not a feasible solution of

PDBEP. Then there must exist an edge e = (u, v) ∈ E′ such that zu ≥ 1 and
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zv ≥ 1. Define an alternative solution E′′ = E′ \ {e} and decrement zu and zv
by 1 each. Observe that the objective function of the new solution increases by
2ε. This contradicts that E′ is a maximal solution. �

In a maximal solution E′ of IP2, Z is the count of excess edges incident on
violating vertices. Hence Z ≤ |E′|. In this case it is easy to see that Z/|E′| ≤
maxv{(dv − cv)/dv}.

Lemma 5. Any α approximate solution of IP2, which is also maximal, is a
2α/(1− ε) approximation of PDBEP problem.

Proof. Let E′
1 be an α-approximation maximal solution of IP2 and E′

2 be an
optimum solution of PDBEP. Then E′

2 is also a solution of IP2 with y2e = 1 for
e ∈ E′

2 and z2v = max{0,
∑

e∈δ(v) y2e− cv}. Then φ(E′
1) = 2|E′

1|− (1+ ε)Z1 and

φ(E′
2) = 2|E′

2| − (1 + ε)Z2. Let OPT denote the optimum value of IP2. Then
φ(E′

2) ≤ OPT and OPT/α ≤ φ(E′
1). So 2|E′

2|−(1+ε)Z2 ≤ α(2|E′
1|−(1+ε)Z1).

Suppose Z2 ≤ β|E′
2|. Then |E′

2|/|E′
1| ≤ 2α/(2 − (1 + ε)β). Since β ≤ 1, we get

the desired approximation factor. �

Corollary 1. If cv ≥ (1 − β)dv ∀v, then any α approximate solution of IP2,
which is also maximal, is a 2α/(2− (1 + ε)β) approximation of PDBEP.

In this case Z2 ≤ β|E′
2|. Now the result follows from the previous proof.

2.4 Algorithm for IP2

We propose Algorithm 3 which approximates the IP2 problem within a constant
factor of approximation. LP2 is the linear program relaxation of IP2. Here we
assume that an additional constraint is imposed, namely, {zv = 0|v ∈ C} where
we require a solution in which every v ∈ C must necessarily satisfy the degree
constraint. The input to the problem is (H = (V,E), C). Algorithm starts with
E′ = ∅ and builds it up one edge at a time by iterative rounding. In each iteration
we discard at least one edge from further consideration. Hence it requires at
most |E| iterations (actually it requires at most |V |+1 iterations, see the remark
below.) To simplify the analysis Algorithm 3 is presented in the recursive format.

LP2: max φ = 2
∑
e∈E

ye − (1 + ε)
∑
v∈V

zv, subject to∑
e∈δ(v)

ye ≤ cv + zv ∀v ∈ V \ C,

∑
e∈δ(v)

ye ≤ cv ∀v ∈ C,

zv ≥ 0 ∀v ∈ V, ye ≥ 0 ∀e ∈ E, −ye ≥ −1 ∀e ∈ E

In the following analysis we will focus on two problems: (H,C) of some i-th
nested recursive call and (H1, C1) of the next call in Algorithm 3. For simplicity
we will refer to them as the problems of graphs H and H1 respectively.
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Lemma 6. In a corner solution of LP2 on a non-empty graph there is at least
one edge e with ye = 0 or ye ≥ 1/2.

Proof. Assume the contrary that in an extreme point solution of LP2 all ye are
in the open interval (0, 1/2). Let us partition the vertices as follows. Let n1

vertices have cv > 0 and zv > 0, n2 vertices have cv > 0 and zv = 0 and n3

vertices have cv = 0 and zv > 0. Note that the case of cv = 0 and zv = 0 cannot
arise because ye > 0 for all e. In each case let n′

i vertices have the condition∑
e∈δ(v) ye ≤ cv + zv tight (an equality) and n′′

i vertices have the condition a
strict inequality. Let the number of edges be m.

The total number of variables is n1+n2+n3+m. In n′
1+n′

2 cases
∑

e∈δ(v) ye =
cv+zv where cv ≥ 1 and each ye < 0.5 so there must be at least 3 edges incident
on such vertices. Since the graph has no isolated vertices, every vertex has at
least one incident edge. Hence m ≥ (3n′

1+3n′
2+n′′

1 +n′′
2 +n3)/2. So the number

of variables is at least n′
1 + n′

2 + (1.5)(n1 + n2 + n3).
Now we find the number of tight conditions. None of the ye touches their

bounds. The number of zv which are equal to zero is n2, and the number of
instances when

∑
e∈δ(v) ye = cv + zv is n′

1 + n′
2 + n′

3. Hence the total number

of conditions which are tight is n2 + n′
1 + n′

2 + n′
3. Since the solution is an

extreme point, the number of tight conditions must not be less than the number
of variables. So n2 + n′

1 + n′
2 + n′

3 ≥ n′
1 + n′

2 + (1.5)(n1 + n2 + n3). This implies
that n1 = n2 = n3 = 0, which is absurd since the input graph is not empty. �

Remark: The program LP2 has |E|+ |V | variables and 2|E|+2|V | constraints.
Hence in the first iteration the optimal solution must have at least |E| − |V |
tight edge-constraints (i.e., ye = 0 or ye = 1.) All these can be processed simul-
taneously so in the second round at most |V | edges will remain in the residual
graph. Thus the total number of iterations cannot exceed |V |+ 1.

Lemma 7. If ye ≥ 1/2 in the solution of LP2 where e = (u, v), then (cu >
0, zu = 0) or (cv > 0, zv = 0).

Proof. Assume that zv > 0 and zu > 0 in the solution. Let the minimum of zv,
zu, and ye be β. Subtracting β from these variables results in a feasible solution
with objective function value greater than the optimum by 2β ·ε. This is absurd.
Hence zu and zv both cannot be positive.

Next assume that cu = 0 and zu = 0. Then ye must be zero, contradicting
the fact that ye ≥ 1/2. Similarly cv = 0 and zv = 0 is also not possible.

Therefore at least one of (cu > 0, zu = 0) and (cv > 0, zv = 0) holds. �

Lemma 8. The Algorithm 3 returns a feasible solution of PDBEP.

Proof. The claim is trivially true when the graph is empty. We will use induction.
In the case of ye = 0, the solution ofH1 is also a solution ofH . From induction

hypothesis it is feasible for PDBEP for H1 hence it is also feasible for PDBEP
for H .

Consider the second case, i.e., ye ≥ 1/2. Let e = (u, v). From Lemma 7
fv = a > 0 and zv = 0. Since z1v = 0 and f1v = a− 1, in the solution of H1 at
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most a− 1 edges can be incident on v. So in the solution of H , there are at most
a edges incident on v and fv = a. Thus e is valid in the solution of H .

Now consider vertex u in this case. If fu > 0, then it is similar to v. But if fu = 0,
then f1u is also 0. If z1u > 0, i.e., the solution of H1 has u violating, then edges
incident on umust have their other ends on non-violating vertices. Replacing ewill
not affect any other edges. Next if z1u = 0 then solution of H1 will have no edge
incident on u. Now putting back e, we find e is incident on u and fu = 0 so u turns
into a violating vertex (zu = 1). But e is the only edge incident on u and its other
end v is not violating. Other edges are valid due to induction hypothesis. Hence
the solution ofH is a feasible solution of PDBEP. �
Now we analyze the performance of the algorithm.

Data: A connected graph G = (V,E) and a function c : V → Z∗

Result: A solution of PDBEP problem.
for v ∈ V do

fv := cv ;
end
C := ∅;
E′ := SolveIP2(G,C, f); /* see the function SolveIP2 */

return E′;

Algorithm 3. Iterative Rounding based Algorithm in Recursive Format

Lemma 9. Algorithm 3 gives a 1.5/(1− ε) approximation of IP2.

Proof. Let c denote 1.5/(1− ε). We will denote the optimal LP2 solutions of H
and H1 by F and F1 respectively. Similarly I and I1 will denote the solutions
computed by the algorithm for H and H1 respectively. f1∗ and z1∗ denote the
parameters associated with H1. We will assume that zx = max{0,

∑
e∈δ(x) ye −

fx} for integral solutions to compute their φ-values. Again we will prove the
claim by induction. The base case is trivially true. From induction hypothesis
φ(F1)/φ(I1) ≤ c and our goal is to show the same bound holds for φ(F )/φ(I).

In the event of ye = 0 in F , φ(F ) = φ(F1) and φ(I) = φ(I1). Hence
φ(F )/φ(I) = φ(F1)/φ(I1).

In case ye = α ≥ 1/2 we will consider two cases: (i) fu > 0 and (ii) fu = 0 in
F . In the first case I differs from I1 in three aspects: ye = 1 in I, fv = f1v + 1
and fu = f1u + 1. So zv and zu remain unchanged, i.e., zv = z1v and zu = z1u.
Thus φ(I) = φ(I1) + 2. In the second case also ye increases by 1 and zv remains
unchanged but zu increases by 1 because in this case fu = f1u = 0. Hence
φ(I) = φ(I1) + 1− ε.

In the remaining part of the proof we will construct a solution of LP2 for H1

from F , the optimal solution of LP2 for H .
Again we will consider the two cases separately. First the case of fu > 0.

Set ye = 0. If
∑

e′∈δ(v)\{e} ye′ ≥ 1 − α then subtract the values of ye′ for

e′ ∈ δ(v) \ {e} in arbitrary manner so that the sum
∑

e′∈δ(v)\{e} ye′ decreases

by 1−α. If
∑

e′∈δ(v)\{e} ye′ < 1−α, then set ye′ to zero for all edges incident on v.
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Function: SolveIP2(H = (VH , EH), C, f)
if EH := ∅ then

return ∅;
end
Delete all isolated vertices from VH ;
(y, z) = LPSolver(H,C);
/* solve LP2 with degree-bounds f(x) for all x ∈ VH */

if ∃e ∈ EH with ye = 0 then
H1 := (VH , EH \ {e});
C1 := C;
E′ := SolveIP2(H1, C1, f);

else
From Lemma 6 there exists an edge e := (u, v) with ye ≥ 1/2;
From Lemma 7 without loss of generality we assume (fv > 0, zv = 0);
fv := fv − 1;
C1 := C ∪ {v};
fu := max{fu − 1, 0};
H1 := (VH , EH \ {e});
E′ := SolveIP2(H1, C1, f) ∪ {e};
/* Including e in E′ means ye is rounded up to 1. In case fu = 0,

zu is implicitly raised to ensure that
∑

e′∈δ(u) ye′ ≤ fu + zu
continues to hold. We do not explicitly increase zu value

since it is not output as a part of the solution. */

end
return E′;

Repeat this step for edges incident on u. Retain values of all other variables as in
F (in particular, the values of zu and zv). Observe that these values constitute a
solution of LP2 for H1. Call this solution F ′

1. From induction hypothesis φ(F1) ≤
cφ(I1). Hence we have φ(F ′

1) ≤ cφ(I1). Then φ(F ′
1) ≥ φ(F ) − 2(1 + 1 − α) ≥

φ(F )− 3. We have φ(F ) ≤ φ(F ′
1) + 3 ≤ cφ(I1) + 3 = c(φ(I) − 2) + 3 ≤ cφ(I).

In the second case fu = 0. Once again repeat the step described for edges
incident on v and set ye to zero. In this case zu ≥ α so subtract α from it. It is
easy to see that again the resulting variable values form an LP2 solution of H1,
call it F ′

1. So φ(F ′
1) = φ(F )− (2− (1+ ε)α). So φ(F ) = φ(F ′

1) + (2− (1+ ε)α) ≤
cφ(I1) + (2 − (1 + ε)α). Plugging φ(I) − 1 + ε for φ(I1) and simplifying the
expression gives φ(F ) ≤ cφ(I). This completes the proof. �

Combining lemmas 5 and 9 we have the following result.

Theorem 3. Algorithm 3 approximates PDBEP with approximation factor
3/(1− ε)2.

From Corollary 1 we have the following result.

Corollary 2. If cv ≥ (1−β)dv for all v, then Algorithm 3 approximates PDBEP
with approximation factor 3/((2− (1 + ε)β)(1− ε)).
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3 Approximation Algorithm for the Weighted Case

Let H(v) denote the heaviest cv edges incident on vertex v, called heavy set
of vertex v. Then from a generalization of Lemma 1 the optimum solution of
PDBEP in weighted-edge case is bounded by

∑
v∈V

∑
e∈H(v) w(e) where w(e)

denotes the weight of edge e. We will describe a method to construct upto
1 + log2 |V | solutions, which cover ∪v∈V H(v). Then the heaviest solution gives
a 2 + log2 |V | approximation of the problem.

3.1 The Algorithm

Input: A graph (V,E) with non-negative edge-weight function w(). Let |V | = n.

Step 0: Add infinitesimally small weights to ensure that all weights are dis-
tinct, without affecting heavy sets.

Step 1: E1 = E \ {e = (u, v) ∈ E|e /∈ H(u) and e /∈ H(v)}.
Step 2: T = {e = (u, v) ∈ E|e ∈ H(u) and e ∈ H(v)}.
Step 3: E2 = E1 \ T . Clearly each edge of E2 is in the heavy set of only one

of its end-vertices. Suppose e = (u, v) ∈ E2 with e /∈ H(u) and e ∈ H(v). Then
we will think of e as directed from u to v.

Step 4: Label the vertices from 0 to n− 1 such that if edge (u, v) is directed
from u to v, then Label(u) < Label(v). Define subsets of E2-edges, A0, . . . , Ak−1,
where k = log2 n, as follows. Ar consists of edges (u, v) directed from u to v,
such that the most significant r − 1 bits of binary expansion of the labels of u
and v are same and r-th bit differs. Note that this bit will be 0 for u.

Step 5: Output that set among the log2 n+1 sets, T,A0, . . . , Ak−1, which has
maximum cumulative edge weight.

Theorem 4. The algorithm gives a feasible solution with approximation factor
2 + log2 n.

Proof. Set T constitutes a feasible solution since both ends of each edge in it
satisfy the degree constraint. The directed E2 edges define an acyclic graph,
hence the labeling can be performed by topological sorting. Clearly E2 = ∪rAr.
In Ar all arrows are pointed from u with r-th most significant bit zero to v with
r-th most significant bit one. Hence it is a bipartite graph where all arrows have
heads in one set and the tails in the other. All vertices on the head side satisfy
the degree conditions because all their incident edges are in their heavy sets.
Therefore Ar are feasible solutions. We have T ∪ (∪rAr) = E1. Observe that
∪vH(v) = E1. Only T -edges have both ends in heavy sets. Using the fact that
OPT ≤

∑
v w(H(v)), we deduce that OPT ≤ 2w(T )+

∑
r w(Ar). So the weight

of the set output in step 5 is at least OPT/(2 + log2 n). �

4 Exact Algorithm for Trees

In this section we give a polynomial time exact algorithm for the unweighted
PDBEP problem for the special case when the input graph is a tree. We will
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denote the degree of a vertex v in the input graph by d(v) and its degree in a
solution under consideration by d′(v).

Let T be a rooted tree with root R. For any vertex v we denote the subtree
rooted at v by T (v). Consider all feasible solutions of PDBEP of graph T (v)
in which degree of v is at most cv − 1, call them H-solutions (white). Let h(v)
be the number of edges in the largest such solution. Similarly let g(v) be the
optimal G-solution (grey) in which the degree of v is restricted to be equal to
cv. Lastly b(v) will denote the optimal B-solution (black) which are solutions of
T (v) under the restriction that degree of v be at least cv and every neighbor of v
in the solution satisfies the degree condition. It may be observed that one class
of solutions of T (v) are included in G-solutions as well as in B-solutions. These
are the solutions in which d′(v) = cv and every neighbor u of v in the solution
has d′(u) ≤ cu. If in any of these cases there are no feasible solutions, then the
corresponding optimal value is assumed to be zero. Hence the optimum solution
of PDBEP for T is the maximum of h(R), g(R), and b(R) and all three values
are zero for leaf nodes.

Let Ch(v) denote the set of child-nodes of v in T (v). We partition Ch(v) into
H(v) = {u ∈ Ch(v)|h(u) ≥ max{g(u), b(u)}}, G(v) = {u ∈ Ch(v)|g(u) >
max{h(u), b(u)}}, B(v) = Ch(V ) \ (G(v) ∪ H(v)). While constructing a G-
solution of T (v) from the solutions of the children of v we can include the edge
(v, u) for any vertex u in H(v) ∪ B(v) along with the optimal solution of T (u)
without disturbing the degree conditions of the edges in this solution. But we can
add edge (v, u) to the solution, for any u ∈ G(v), only by selecting a B-solution
or an H-solution of T (u) because if we use a G-solution for T (u), then vertex u
which was earlier satisfying the degree condition, will now have degree cu + 1.

Next, while constructing a B-solution of T (v) we can connect v to any number
of H(v) vertices and use their optimal H-solutions. In the same case, in order
to connect v with u ∈ B(v) ∪G(v) we must use the optimal H-solution of T (u)
(which is not the best solution of T (u)).

Suppose we want to build the optimum G-solution of v. If |H(v)| + |B(v)|
is less than cv, then we must pick additional cv − |H(v)| − |B(v)| vertices from
G(v) to connect with v. If k = cv − |H(v)| − |B(v)| > 0, then we define S′(v) to
be the set of k members of G(v) having least g(u)−max{h(u), b(u)}. Otherwise
S′(v) = ∅. S′(v) are those vertices which we will like to connect v with.

Suppose we want to build the best B-solution for T (v) and |H(v)| < cv. Then
we will connect v with exactly cv children because connecting with any additional
child will either keep the value same or make it worse because for connecting
with a G(v) or B(v) node we will be forced to use their H-solution which is not
their best solution. If k = cv − |H(v)| > 0, then we define S′′(v) to be the set
of k members of G(v) ∪B(v) with smallest key values where key is g(u)− h(u)
for u ∈ G(v) and b(u)− h(u) for u ∈ B(v). Otherwise S′′(v) = ∅. Now we have
following lemma which leads to a simple dynamic program for PDBEP.
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Lemma 10. For any internal vertex v of T ,

(i) h(v) =
∑

u∈B(v) b(u)+
∑

u∈H(v) h(u)+
∑

u∈G(v) g(u)+min{cv−1, |H(v)|+
|B(v)|}.
If d(v) = cv and v 
= R, then set b(v) = g(v) = 0 otherwise

(ii) g(v) =
∑

u∈B(v) b(u) +
∑

u∈H(v) h(u) +
∑

u∈G(v)\S′(v) g(u) +∑
u∈S′(v) max{h(u), b(u)}+ cv.

(iii) b(v) =
∑

u∈H(v)∪S′′(v) h(u) +
∑

u∈B(v)\S′′(v) b(u) +
∑

u∈G(v)\S′′(v) g(u) +

max{cv, |H(v)|}.

Observe that if h(u) is equal to b(u) or g(u), then u is categorized as an H(v)
vertex and if b(u) = g(u) > h(u), then u is assigned to B(v) set. Hence the last
term is maximum in each of the cases in the lemma.

The algorithm initializes h(v), b(v), and g(v) to zero for the leaf vertices and
computes these values for the internal vertices bottom up. Finally it outputs
the maximum of the three values of the root R. In order to compute S′() and
S′′() sets for each vertex, we need to sort the child nodes with respect to the key
values. Thus at each vertex we incur O(|Ch| log |Ch|) cost, where Ch denotes the
set of children of that vertex. Besides, ordering the vertices so that child occurs
before the parent (topological sort) takes O(n) time. Hence the time complexity
is O(n log n).

Acknowledgement. We thank the referees of the paper for detailed feedback
and suggestions which improved the analysis of the weighted case and also the
overall presentation of the paper.
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Abstract. Due to hybridization events in evolution, studying two dif-
ferent genes of a set of species may yield two related but different phy-
logenetic trees for the set of species. In this case, we want to measure
the dissimilarity of the two trees. The rooted subtree prune and regraft
(rSPR) distance of the two trees has been used for this purpose, and
many algorithms and software tools have been developed for computing
the rSPR distance of two given phylogenetic trees. The previously fastest
exact algorithm for this problem runs in O

(
2.415dn

)
time, where n and

d are the number of leaves and the rSPR distance of the input trees,
respectively. In this paper, we present a faster exact algorithm which
runs in O

(
2.344dn

)
time. Our experiments show that the new algorithm

can be significantly faster than the newest version (namely, v1.1.1) of
the previously best software (namely, Whidden et al.’s RSPR) for rSPR
distance.

Keywords: Phylogenetic tree, rSPR distance, fixed-parameter algorithm.

1 Introduction

When studying the evolutionary history of a set of existing species, one can
obtain a phylogenetic tree of the set of species with high confidence by looking
at a segment of sequences or a set of genes. When looking at another segment
of sequences, a different phylogenetic tree can be obtained with high confidence,
too. In this case, we want to measure the dissimilarity of the two trees. The
rooted subtree prune and regraft (rSPR) distance of the two trees has been used
for this purpose [8].

Unfortunately, it is NP-hard to compute the rSPR distance of two given phy-
logenetic trees [4,8]. So, it is challenging to develop programs that can compute
the rSPR distance of two given trees of large rSPR distance. Indeed, this has
motivated researchers to design approximation algorithms [2,3,8,11] or exact al-
gorithms [4,13,15,14], as well as heuristic algorithms [1,7,9,10,12], for computing
the rSPR distance of two given trees. The previously fastest exact algorithm is
due to Whidden et al. [14] and runs in O

(
2.415dn

)
time, where n and d are
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the number of leaves and the rSPR distance of the input trees, respectively. Re-
cently, we have shown that a fast exact algorithm for rSPR distance can be used
to speed up the computation of hybridization number and the construction of
minimum hybridization networks [5].

In this paper, we present a faster exact algorithm which runs in O
(
2.344dn

)
time. Our algorithm builds on Whidden et al.’s but requires a number of new
ideas. The main idea is to repeatedly find a pair of sibling leaves in one of the
input trees more carefully. We have implemented the algorithm and also applied
it to other related problems such as the problem of computing the hybridization
number of two or more phylogenetic trees. The experimental results are pre-
sented in [6], where a bug in the version v1.1.0 of Whidden et al.’s RSPR is also
pointed out. Subsequently, Whidden et al. fixed the bug and released the newest
version (namely, v1.1.1) of RSPR very recently. In the release of the buggy ver-
sion v1.1.0, they also conjecture that their algorithm runs in O

(
2dn

)
time. Un-

fortunately, the corrected version v1.1.1 is slower than v1.1.0 and we doubt that
their conjecture is true. Indeed, the running time of the previously fastest algo-
rithm for rSPR distance remained to be O

(
2.415dn

)
. Although the running time

O
(
2.344dn

)
of our new algorithm may look marginally better than O

(
2.415dn

)
,

our experimental results show that the new algorithm is significantly faster than
the newest version of Whidden et al.’s RSPR.

The remainder of this paper is organized as follows. In Section 2, we give
the basic definitions that will be used throughout the paper. In Section 3, we
sketch Whidden et al.’s algorithm for rSPR distance, because our new algorithm
will build on theirs. In Section 4, we outline our algorithm. In Section 5, we
detail the main step of our algorithm for an illustrative case. Due to page limit,
the remainder of our algorithm is omitted and so is the analysis of its time
complexity. Finally, we compare the performance of our new algorithm with
that of Whidden et al.’s RSPR in Section 7.

2 Preliminaries

Throughout this paper, a rooted forest always means a directed acyclic graph in
which every node has in-degree at most 1 and out-degree at most 2.

Let F be a rooted forest. The roots (respectively, leaves) of F are those nodes
whose in-degrees (respectively, out-degrees) are 0. The size of F , denoted by |F |,
is the number of roots in F minus 1. A node v of F is unifurcate if it has only
one child in F . If a root v of F is unifurcate, then contracting v in F is the
operation that modifies F by deleting v. If a non-root node v of F is unifurcate,
then contracting v in F is the operation that modifies F by first adding an edge
from the parent of v to the child of v and then deleting v.

For convenience, we view each node u of F as an ancestor and descendant
of itself. For a node v of F , the subtree Fv of F rooted at v is the subgraph of
F whose nodes are the descendants of v in F and whose edges are those edges
connecting two descendants of v in F . If v is a non-root node of F , then Fv is
called a pendant subtree of F . On the other hand, if v is a root of F , then Fv is a
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component tree of F . F is a rooted tree if it has only one root. If u and v are two
leaves in the same component tree of F , then the pendant subtrees of F between
u and v are the pendant subtrees whose roots w satisfy that the (undirected)
path between u and v in F does not contain w but contains the parent of w. If
U is a set of leaves in a component tree of F , then LCAFU denotes the lowest
common ancestor (LCA) of the leaves in U .

A rooted binary forest is a rooted forest in which the out-degree of every non-
leaf node is 2. Let F be a rooted binary forest. F is a rooted binary tree if it has
only one root. If v is a non-root node of F with parent p and sibling u, then
detaching the pendant subtree with root v is the operation that modifies F by
first deleting the edge (p, v) and then contracting p. A detaching operation on
F is the operation of detaching a pendant subtree of F . If v is a root leaf of F ,
then eliminating v from F is the operation that modifies F by simply deleting
v. On the other hand, if v is a non-root leaf of F , then eliminating v from F
is the operation that modifies F by first detaching the subtree rooted at v and
then deleting v.

A phylogenetic tree on a set X of species is a rooted binary tree whose leaf
set is X . Let T1 and T2 be two phylogenetic trees on the same set X of species.
If we can apply a sequence of detaching operations on each of T1 and T2 so that
they become the same forest F , then we refer to F as an agreement forest (AF)
of T1 and T2. A maximum agreement forest (MAF) of T1 and T2 is an agreement
forest of T1 and T2 whose size is minimized over all agreement forests of T1 and
T2. The size of an MAF of T1 and T2 is called the rSPR distance between T1

and T2.

3 Sketch of Whidden et al.’s Algorithm for rSPR
Distance

In this section, we sketch the previously fastest algorithm (due to Whidden et al.
[14]) for computing the rSPR distance of two given phylogenetic trees. Whidden
et al.’s algorithm indeed solves the following problem (denoted by rSPRDC, for
convenience):

Input: (k, T1, F2), where k is a nonnegative integer, T1 is a phylogenetic tree on
a set X of species, and F2 is a rooted forest obtained from some phylogenetic
tree T2 on X by performing zero or more detaching operations.

Output: “Yes” if performing k more detaching operations on F2 leads to an AF
of T1 and T2; “no” otherwise.

Obviously, to compute the rSPR distance between two given phylogenetic
trees T1 and T2, it suffices to solve rSPRDC on input (k, T1, T2) for k = 0, 1, 2,
. . . (in this order), until a “yes” is outputted.

Note that the input integer k to rSPRDC must be nonnegative. So, every time
before we call an algorithm A for rSPRDC on an input (k, T1, F2), we need to
check if k ≥ 0. If k > 0, we proceed to call A on input (k, T1, F2); otherwise, we
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Fig. 1. The best case in Whidden et al.’s algorithm: (1) The subtree of T1 rooted at
the parent of u and v, (2) The subtree of F2 rooted at the LCA z of u and v, where
each black triangle indicates a pendant subtree of F2

do not make the call. However, in order to keep the description of A simpler, we
do not explicitly mention this checking process when we describe A.

Whidden et al.’s algorithm for rSPRDC is recursive and proceeds as follows.
In the base case, k = 0 and it suffices to check if each component tree of F2 is
a pendant subtree of T1. If each component tree of F2 is a pendant subtree of
T1, then we output “yes” and stop. Otherwise, we output “no” and return. So,
suppose that k > 0. Then, whenever T1 has two sibling leaves u and v such that
u and v are also sibling leaves in F2, we modify T1 and F2 by merging u and v
into a single leaf (say, u). Moreover, whenever F2 has a root u that is also a leaf,
we modify T1 and F2 by eliminating u from them. We repeat these two types
of modifications of T1 and F2 until none of them is possible. After that, if F2

becomes empty, then we can output “yes” and stop. Otherwise, we select two
arbitrary sibling leaves u and v in T1 and use them to distinguish three cases as
follows.

Case 1: u and v are in different component trees of F2. In this case, in order
to transform T1 and F2 into identical forests, it suffices to try two choices to
modify them, namely, by either eliminating u or eliminating v. For each choice,
we further recursively solve rSPRDC on input (k − 1, T1, F2). So, we make two
recursive calls here.

Case 2: u and v are in the same component tree of F2 and either (I) u and the
parent of v are siblings in F2 or (II) v and the parent of u are siblings in F2. See
Figure 1. In this case, if (I) (respectively, (II)) holds, then in order to transform T1

and F2 into identical forests with the minimum number of detaching operations,
it suffices to modify F2 by detaching the subtree rooted at the sibling w of v
(respectively, u), and further recursively solve rSPRDC on input (k − 1, T1, F2)
[14]. So, we make only one recursive call here.

Case 3: u and v are in the same component tree of F2 and neither (I) nor (II)
in Case 2 holds. In this case, in order to transform T1 and F2 into identical
forests, it suffices to try three choices to modify them. The first two choices
are the same as those in Case 1. In the third choice, we count the number b of
pendant subtrees of F2 between u and v, modify F2 by detaching the pendant
subtrees between u and v, and recursively solve rSPRDC on input (k− b, T1, F2)
if k − b ≥ 0. Note that b ≥ 2 and we make at most three recursive calls here.

Let t(k) denote the time needed byWhidden et al.’s algorithm to solve rSPRDCon
input (k, T1, F2). Whidden et al. [14] show that t(k) = xkn, where n is the number
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Fig. 2. The worst case in Whidden et al.’s algorithm, where each black triangle indi-
cates a pendant subtree of F2
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Fig. 3. The best case in our algorithm

of leaves in T1 and x is the smallest real number satisfying the inequality x2 ≥
2x + 1. Intuitively speaking, this inequality originates from Case 3 above where
b = 2 (see Figure 2). Since x = 1 +

√
2, their algorithm runs in O

(
2.415kn

)
time.

4 Ideas for Improving Whidden et al.’s Algorithm

To improve Whidden et al.’s algorithm, our idea is to find two sibling leaves u
and v in T1 more carefully as follows.

Step 1. Case 2 in Section 3 is the best case in Whidden et al.’s algorithm because
we make only one recursive call in this case. So, we first try to find two sibling
leaves u and v (in T1) satisfying the condition in the best case (cf. Figure 1). If
such two sibling leaves u and v exist in T1, then we use them to modify F2 and
further recursively solve rSPRDC as in Case 2 of Whidden et al.’s algorithm.
So, we hereafter assume that such two sibling leaves u and v do not exist in T1.

Step 2.We then try to find two sibling leaves u and v (in T1) such that the sibling
q of the parent of u and v in T1 is also a leaf of T1 and either (1) u and q are sib-
ling leaves in F2 or (2) v and q are sibling leaves in F2 (see Figure 3). If such two
sibling leaves u and v exist in T1, then we say that the best case in our algorithm
occurs because this case is essentially symmetric to the best case in Whidden et
al.’s algorithm 1. So, if such two sibling leaves u and v exist in T1 and (1) (respec-
tively, (2)) holds, then we can modify T1 and F2 by eliminating v (respectively, u)
from them, and further recursively solve rSPRDC on input (k− 1, T1, F2). So, we
hereafter assume that the best case in our algorithm does not occur.

Step 3. We try to find two sibling leaves u and v (in T1) satisfying the condition
in Case 1 of Whidden et al.’s algorithm. If such two sibling leaves u and v exist in
T1, then we use them to modify T1 and F2 and further recursively solve rSPRDC

1 In other words, we can use a similar argument of [14] to prove the correctness of the
processing of T1 and F2 in this case.
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Fig. 4. The two possible cases for two sibling leaves u and v farthest from the root
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Fig. 5. The subtrees of F2 rooted at LCAF2{u, v} and q in Case 1.1, where each black
triangle indicates a pendant subtree

as in Case 1 of Whidden et al.’s algorithm. So, we hereafter assume that such
two sibling leaves u and v do not exist in T1.

Step 4. We try to find two sibling leaves u and v (in T1) such that there are at
least three pendant subtrees of F2 between u and v. If such two sibling leaves u
and v exist in T1, then we use them to modify F2 and further recursively solve
rSPRDC as in Case 3 of Whidden et al.’s algorithm. So, we hereafter assume
that such two sibling leaves u and v do not exist in T1.

Step 5. We select two sibling leaves u and v (in T1) whose distance from the
root of T1 is maximized. Let p be the parent of u and v in T1, and q be the
sibling of p in T1. By our choice of u and v, it follows that either q is a leaf or
both children u′ and v′ of q in T1 are leaves (see Figure 4). So, we have two cases
to consider, depending on whether q is a leaf or not. Section 5 details the case
where q is a leaf, while Section 6 details the worst case in our algorithm. The
other cases are omitted due to page limit.

5 Details of Step 5 in Section 4 When q Is a Leaf

Throughout this section, we assume that q is a leaf. Since u and v are sibling
leaves in T1, the assumptions in Steps 1 through 4 in Section 4 imply that
(1) there are exactly two pendant subtrees of F2 between u and v and (2) u and q
are not sibling leaves in F2 and neither are v and q in F2. Since u (respectively, v)
and q are not sibling leaves in F2, the (undirected) path between u (respectively,
v) and q contains at least three edges if q belongs to the component tree of F2

that contains u and v. We can also assume that the distance from z to u is not
shorter than the distance from z to v, where z = LCAF2{u, v}. So, one of the
following cases occurs.

Case 1.1: q does not belong to the same component tree of F2 as u and v (see
Figure 5). In this case, our idea for speeding up Whidden et al.’s algorithm is
as follows. Basically, we emulate Whidden et al.’s algorithm by using the sibling



42 Z.-Z. Chen and L. Wang

u

F2

v

q

u

F2

v

or

q

Fig. 6. A portion of F2 in Case 1.2, where each zig-zag line indicates a path containing
at least one edge and each black triangle indicates a pendant subtree

pair (u, v) to try three different choices of modifying T1 and F2. The first choice
is to eliminate u from T1 and F2. A crucial point is that after the elimination
of u, we know that v and q become a new sibling pair of T1 and they belong
to different component trees of F2, implying that we need to use the pair (v, q)
to further try two different choices of modifying T1 and F2 (namely, eliminating
either v or q from T1 and F2). So, the first choice leads to two ways of modifying
T1 and F2 one of which is to eliminate u and v from T1 and F2 and the other is
to eliminate u and q from T1 and F2. Similarly, the second choice is to eliminate
v from T1 and F2 and it leads to two ways of modifying T1 and F2 one of which
is to eliminate v and u from T1 and F2 and the other is to eliminate v and q
from T1 and F2. Note that the first and the second choices lead to four ways of
modifying T1 and F2 and hence lead to four recursive calls. The really crucial
point here is that the four recursive calls can be reduced to three, because two
of them are identical. Finally, the third choice is to modify F2 by detaching the
pendant subtrees between u and v. In summary, in order to transform T1 and
F2 into identical forests, it suffices to try the following four different choices to
modify them and further make recursive calls:

1. We eliminate u and v from T1 and F2, and then recursively solve rSPRDC
on input (k − 2, T1, F2).

2. We eliminate u and q from T1 and F2, and then recursively solve rSPRDC
on input (k − 2, T1, F2).

3. We eliminate v and q from T1 and F2, and then recursively solve rSPRDC
on input (k − 2, T1, F2).

4. We detach the two pendant subtrees of F2 between u and v, and then recur-
sively solve rSPRDC on input (k − 2, T1, F2).

Case 1.2: u, v, and q belong to the same component tree of F2 and LCAF2{u, v}
is not an ancestor of q in F2 (see Figure 6). In this case, in order to transform
T1 and F2 into identical forests, it suffices to try four different choices to modify
them and further make recursive calls:

1. We eliminate u from T1 and F2, and then recursively solve rSPRDC on input
(k − 1, T1, F2).

2. We eliminate v and q from T1 and F2, and then recursively solve rSPRDC
on input (k − 2, T1, F2).

3. We first eliminate v from T1 and F2. Let b be the number of pendant subtrees
of F2 between u and q. Note that b ≥ 2. We then detach the b pendant
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Fig. 7. (1) The subtree of F2 rooted at LCAF2{u, v} in Case 1.3, (2) the situation in
Case 1.3 immediately after eliminating u from F2, and (3) the situation in Case 1.3
immediately after eliminating v from F2, where each black triangle indicates a pendant
subtree
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Fig. 8. A portion of F2 in Case 1.4, where each zig-zag line indicates a path containing
at least one edge and each black triangle indicates a pendant subtree

subtrees of F2 between u and q. After that, we recursively solve rSPRDC on
input (k − 1− b, T1, F2).

4. We detach the two pendant subtrees of F2 between u and v, and then recur-
sively solve rSPRDC on input (k − 2, T1, F2).

Case 1.3: u, v, and q belong to the same component tree of F2, LCAF2{u, v} is
an ancestor of q in F2, the (undirected) path between u and q in F2 contains
exactly three edges and so does the (undirected) path between v and q in F2 (see
Figure 7(1)). In order to transform T1 and F2 into identical forests, it suffices to
try three difference choices to modify them and further make recursive calls:

1. We first eliminate u from T1 and F2 (see Figure 7(2)). Then, the best case
in Whidden et al.’s algorithm occurs. More precisely, we can further detach
the subtree of F2 rooted at the sibling of q. After that, we recursively solve
rSPRDC on input (k − 2, T1, F2).

2. We first eliminate v from T1 and F2 (see Figure 7(3)). Then, the best case
in Whidden et al.’s algorithm occurs. More precisely, we can further detach
the subtree of F2 rooted at the sibling of u. After that, we recursively solve
rSPRDC on input (k − 2, T1, F2).

3. We detach the two pendant subtrees of F2 between u and v, and further
recursively solve rSPRDC on input (k − 2, T1, F2).

Case 1.4: u, v, and q belong to the same component tree of F2, LCAF2{u, v} is
an ancestor of q in F2, and the (undirected) path between u and q in F2 contains
at least four edges and is not shorter than the (undirected) path between v and
q in F2 (see Figure 8). In this case, we proceed as in Case 1.2.



44 Z.-Z. Chen and L. Wang

u

F2

vq

or u

F2

v

q

Fig. 9. A portion of F2 in Case 1.5, where each zig-zag line indicates a path containing
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Fig. 10. The worst configuration of u, v, u′, and v′ in our algorithm

Case 1.5: u, v, and q belong to the same component tree of F2, LCAF2{u, v}
is an ancestor of q in F2, and the (undirected) path between u and q in F2 is
shorter than the (undirected) path between v and q in F2 (see Figure 9). In this
case, in order to transform T1 and F2 into identical forests, it suffices to try four
different choices to modify them and further make recursive calls:

1. We eliminate v from T1 and F2, and then recursively solve rSPRDC on input
(k − 1, T1, F2).

2. We eliminate u and q from T1 and F2, and then recursively solve rSPRDC
on input (k − 2, T1, F2).

3. We first eliminate u from T1 and F2. Let b be the number of pendant subtrees
of F2 between v and q. Note that b ≥ 2. We then detach the b pendant
subtrees of F2 between v and q. After that, we recursively solve rSPRDC on
input (k − 1− b, T1, F2).

4. We detach the two pendant subtrees of F2 between u and v, and then recur-
sively solving rSPRDC on input (k − 2, T1, F2).

6 The Worst Case in Our Algorithm

The worst case in our algorithm occurs when u, v, u′ and v′ are located in T1

and F2 as shown in Figure 10.
In this case, in order to transform T1 and F2 into identical forests, it suffices to

try fifteen different choices to modify them and make recursive calls as follows.

1. We modify T1 and F2 as follows. First, we eliminate u and u′ from T1 and
F2. Then, v and v′ become two sibling leaves in T1. Let b be the number of
pendant subtrees of F2 between v and v′. The crucial point is that b = 3.
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We proceed to further modify T1 and F2 in three different ways and accord-
ingly make three recursive calls as in Case 3 in Whidden et al.’s algorithm. In
more detail, the three recursive calls solve rSPRDC on input (k− 3, T1, F2),
(k − 3, T1, F2), and (k − 5, T1, F2), respectively. Intuitively speaking, we are
able to avoid the worst case in Whidden et al.’s algorithm when processing
the sibling leaves v and v′.

2. We modify T1 and F2 similarly as in Item 1. The only difference is that
we first eliminate u and v′ from T1 and F2 and then proceed to use the
sibling leaves v and u′ to further modify T1 and F2 in three different ways
and accordingly make three recursive calls as in Case 3 in Whidden et al.’s
algorithm.

3. We modify T1 and F2 as follows. First, we eliminate u from T1 and F2. Then,
we modify F2 by detaching the pendant subtrees between u′ and v′. After
these modifications, we recursively solve rSPRDC on input (k − 3, T1, F2).

4. We modify T1 and F2 as follows. First, we eliminate v and u′ from T1 and
F2. Then, u and v′ become two sibling leaves in T1. Let b be the number of
pendant subtrees of F2 between u and v′. The crucial point is that b = 4. We
proceed to further modify T1 and F2 in three different ways and accordingly
make three recursive calls as in Case 3 in Whidden et al.’s algorithm. In
more detail, the three recursive calls solve rSPRDC on input (k− 3, T1, F2),
(k − 3, T1, F2), and (k − 6, T1, F2), respectively. Intuitively speaking, we are
able to avoid the worst case in Whidden et al.’s algorithm when processing
the sibling leaves u and v′.

5. We modify T1 and F2 similarly as in Item 4. The only difference is that
we first eliminate v and v′ from T1 and F2 and then proceed to use the
sibling leaves u and u′ to further modify T1 and F2 in three different ways
and accordingly make three recursive calls as in Case 3 in Whidden et al.’s
algorithm.

6. We modify T1 and F2 as follows. First, we eliminate v from T1 and F2. Then,
we modify F2 by detaching the pendant subtrees between u′ and v′. After
these modifications, we recursively solve rSPRDC on input (k − 3, T1, F2).

7. We modify F2 by detaching the pendant subtrees between u and v. After
these modifications, we recursively solve rSPRDC on input (k − 2, T1, F2).

The execution of our algorithm on input (k, T1, F2) can be modeled by a tree Γ
in which the root corresponds to (k, T1, F2), each other node corresponds to a
recursive call, and a recursive call A is a child of another call B if and only if B
calls A directly. We call Γ the search tree on input (k, T1, F2). For convenience,
we define the size of Γ to be the number of its nodes.

Let s(k) denote the maximum size of a search tree on input (k, T1, F2), where
the maximum is taken over all T1 and F2. Clearly, s(0) = 1. Let k be an arbitrary
positive integer. In the above worst case, we have s(k) ≤ s(k− 2)+ 10s(k− 3)+
2s(k−5)+2s(k−6)+1. By induction on k, we can show that s(k) ≤ 2.344k+1−1.

Theorem 1. Given two phylogenetic trees T1 and T2 with the same leaf set, we
can compute the rSPR distance of T1 and T2 in O

(
2.344kn

)
time, where n is

the number of leaves in the input trees.
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7 Performance Comparison

We have implemented our algorithm to obtain a program for computing the
rSPR distance of two given phylogenetic trees. To compare the efficiency of our
program with that of the previous best (namely, Whidden et al.’s program), we
have run them on simulated datasets. The experiments have been performed on
a Windows-7 (x64) laptop PC with i7-M640 2.8GHz CPU and 4GB RAM.

To generate simulated datasets, we use a program due to Beiko and Hamil-
ton [1]. To obtain a pair (T, T ′) of trees each with n (say, 100) leaves, their
program first generates T randomly and then obtains T ′ from T by performing
a specified number r (say, 50) of random rSPR operations on T . Recall that an
rSPR operation on a tree T first removes an edge (p, c) from T , then contracts p
(the vertex of out-degree 1 resulting from the removal of edge (p, c)), and further
re-attaches the subtree rooted at c to an edge (p′, c′) of T (by introducing a new
vertex m′, splitting edge (p′, c′) into two edges (p′,m′) and (m′, c′), and adding
a new edge (m′, c)). So, the actual rSPR distance of T and T ′ is at most r.

We use Beiko and Hamilton’s program to generate 120 pairs of trees by setting
n = 100 and r = 502. It turns out that among the 120 generated tree-pairs, 4
(respectively, 10, 23, 17, 30, 17, 9, 5, 2, or 2) tree-pairs have rSPR distance 39
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Fig. 11. Comparing our program against Whidden et al.’s on 120 randomly generated
tree-pairs, where each tree has 100 leaves

2 For smaller r (say, r = 40), there is no much difference in speed between our algo-
rithm and Whidden et al.’s.
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(respectively, 40, 41, 42, 43, 44, 45, 46, 47, or 48). Moreover, there is exactly
one tree-pair with rSPR distance 49. Figure 11 summarizes the average running
times of our program and Whidden et al.’s for computing the rSPR distances
of the generated tree-pairs, where each average is taken over those tree-pairs
with the same rSPR distance. As can be seen from the figure, our program is
significantly faster than Whidden et al.’s. This difference in speed becomes more
significant as the rSPR distance becomes larger.
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Abstract. In this paper, we first summarize the attacks on the existing
arbitrated quantum signature (AQS) schemes and then present a valid
forgery attack. Also, we discuss the effectiveness of these attacks and an-
alyze the reasons for these schemes suffered attacks. Moreover, we pro-
pose an AQS scheme which can resist all existent attacks. The proposed
AQS scheme can preserve all merits in the previous AQS schemes such
as it can sign the known and unknown quantum messages. To achieve
higher security of AQS, we also construct a strong quantum one-time
pads encryption which is applied to improve the AQS schemes.

Keywords: Quantum cryptography, digital signature, arbitrated quan-
tum signature, security, attacks.

1 Introduction

Digital signatures can be divided into two categories: direct digital signatures and
arbitrated digital signatures. With the help of an arbitrator, an arbitrated digital
signature scheme is able to complete some impossible tasks of a direct digital
signature scheme. For example, Barnum et al. [2] pointed out that digitally
signing quantum states by non-interactive protocol is impossible. However, Zeng
and Keitel [30] suggested an arbitrated quantum signature (AQS) scheme which
can sign the known and unknown quantum messages. Because this AQS scheme
can sign quantum messages, it was further discussed [12, 23, 29, 31]. Note that,
the authors [31] pointed out that the existing AQS schemes [23, 30] can be
repudiated by the receiver Bob, and improved AQS schemes to conquer this
shortcoming.

Very recently, some attacks [11, 17, 28] on the AQS schemes [23, 30, 31] was
proposed. Gao et al. [17] showed that in the AQS protocols [23, 31] the receiver
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Bob can realize existential forgery of the sender’s signature under known message
attacks and the sender Alice can successfully disavow any of her signatures by a
simple attack. Choi et al. [11] pointed out that there exists a simple existential
forgery attack on the AQS scheme [30] to validly modify the transmitted pair
of message and signature. Sun et al. [28] showed that in all the presented AQS
protocols [23, 30, 31] Alice can always successfully acquire the receiver Bob’s
secret key and disavow any of her signatures.

Because there are so many attacks [11, 17, 28] on AQS protocols, some im-
provements on these AQS protocols are urgently needed. Though these liter-
atures [11, 17, 28] discussed about the potential improvements of AQS and
suggested some improved AQS protocols, the improvements can not resist all
existent attacks [11, 17, 28]. In this paper, we will first analyze the effectiveness
of these attacks and the reasons why the AQS protocols are susceptible to at-
tacks. Then, we will propose an AQS scheme which is secure against all existent
attacks [11, 17, 28].

2 Quantum One-Time Pads Encryption

To discuss and improve the security of AQS, we recall the quantum one-time pads
encryption and construct a strong quantum one-time pads encryption which is
applied to improve the AQS schemes.

The quantum one-time pads (QOTP) encryption was proposed by Boykin
and Roychowdhury [7]. For convenience, the symbol EK denotes the QOTP
encryption according to some key K ∈ {0, 1}∗ satisfying |K| ≥ 2n as follows:

EK(|P 〉) =
n⊗

i=1

σK2i−1
x σK2i

z |Pi〉, (1)

where Kj denotes the j-th bit of K, |P 〉 a quantum message as |P 〉 = |P1〉 ⊗

|P2〉 ⊗ · · · ⊗ |Pn〉 with |Pi〉 = αi|0〉+ βi|1〉, σx=

(
0 1
1 0

)
and σz=

(
1 0
0 −1

)
Pauli

matrices.
In this paper, we use EK to denote a new QOTP encryption according to

some key K ∈ {0, 1}∗ satisfying |K| ≥ 3n as follows:

EK(|P 〉) =
n⊗

i=1

θK3i−2σK3i−1
x σK3i

z |Pi〉, (2)

where θ=
1

2

( √
2
√
2

1+� −1−�

)
, � and −� the square roots of −1. For convenience, we

call the new QOTP strong quantum one-time pads (SQOTP).
By direct verifying, the SQOTP encryption satisfies the necessary and suffi-

cient condition for security, Lemma 5.1 in Ref. [7], i.e.,

1

8

(111)2∑
K=(000)2

UKσα
xσ

β
zU

†
K = δα,0δβ,0I, (3)
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where α, β ∈ {0, 1}, I the second-order identity matrix, UK = θK1σK2
x σK3

z ,
K ∈ {0, 1}3 and (· · · )2 binary number.

Let U be a second-order matrix. We can obtain the following property of
SQOTP encryption by simple computation.

Proposition 1. If the following equations

EK(U |P 〉) = λKUEK(|P 〉), K ∈ {0, 1}3 (4)

hold for any quantum state |P 〉 = α|0〉 + β|1〉, then U must be c

(
1 0
0 1

)
where

c is any complex number, and λK = 1 for any K ∈ {0, 1}3.
Note that, the QOTP encryption [7, 23, 31] does not satisfy Proposition 1.

To satisfy Proposition 1, the SQOTP encryption needs 3n bits key to encrypt
an n-bit message.

3 Attacks on Arbitrated Quantum Signature

In this section, we will recall and reappraise the attacks on AQS schemes.

3.1 Bob’s Forgery Attacks

A secure arbitrated quantum signature scheme should satisfy that the signature
should not be forged by the attacker (including the malicious receiver) [23, 30,
31]. Gao et al. [17] showed that in the AQS protocols [23, 31] the receiver Bob can
realize existential forgery. By Gao’s attacks [17], Bob can forge Alice’s signature
by tampering a existing Alice’s signature according to a new message after he
received a valid message-signature pair. Similarly, Choi et al. [11] pointed out
that there exists an existential forgery attack on the AQS scheme [30]. The both
attacks [11, 17] are that Bob chooses an appropriate unitary matrix U =

⊗n
i=i Ui

such that
UiEK2i−1K2i(|Pi〉) = cEK2i−1K2i(Ui|Pi〉) (5)

for i = 1, 2, . . . , n, where c is a complex number with |c| = 1. Then, he can use
USA as the Alice’s signature for the new message U |P 〉.

Indeed, there exists another forgery attack in our former AQS schemes [31]
for the receiver Bob. Bob chooses any 2n number r′ and gets

|PB〉 = E−1
r′ (Er(|P 〉)). (6)

Then, Bob can use (|SA〉, r′) as the signature of the message |PB〉.

3.2 Alice’s Disavowal Attacks

A secure arbitrated quantum signature scheme should satisfy the impossibility
of disavowal by the signatory [23, 30, 31]. Gao et al. [17] showed that, in the
AQS protocols [23, 31], the sender Alice can successfully disavow her signature
by tampering the signature when Trent sends it back to Bob. It is easy to know
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that this disavowal attack can be used successfully to the AQS scheme using
GHZ states [30]. In addition, Sun et al. [28] show that in all the presented AQS
protocols [23, 30, 31] Alice can always successfully acquire the receiver Bob’s
secret key and disavow any of her signatures. Hwang et al. [19] proposed an
invisible photon eavesdropping (IPE) Trojan horse attack such that Alice can
acquire the receiver Bob’s secret key and disavow her signatures.

3.3 The Reasons for AQS Scheme Suffered Attacks

From the discussion above, all existing AQS schemes [23, 30, 31] are susceptible
to known message attacks and Alice’s disavowal attacks. By the principles of the
attacks and the discussion in Ref. [17], the following three facts are the main
reasons why the AQS protocols are susceptible to the attacks.

(1) The arbitrator Trent does not know the content of the signed message
because it is encoded with quantum states. This fact gives the chance for Bob to
tamper the message and its signature synchronously without being discovered.

(2) Pauli operations are commute or anticommute with each other. This fact
makes that the message and the signature still can pass Trent’s verification after
the attacker using same Pauli operations on them. Therefore, Bob can give many
existential forgeries based on one legal signed message.

(3) When Trent sends Alice’s signature back to Bob, it is totally unreadable for
Bob and its integrity cannot be verified. This gives Alice a chance to intercept and
modify her signature without being discovered, and then successfully disavow her
signature.

3.4 Other Attacks

We [31] found that the integrity of the signature in Refs. [23, 30] can be repu-
diated by the receiver Bob. For convenience, we call it deny-integrity attack. To
conquer the deny-integrity attack, we [31] proposed two improved AQS schemes.

Hwang et al. [19] thought that in our previous AQS schemes [31] Bob can also
repudiate the integrity of the signature by a special case of DoS attack, and the
signer can reveal the verifier’s secret key by Trojan horse attacks.

First, we point out that the “deny-integrity attack” proposed by Hwang et
al. [19] is not a real deny-integrity attack. The deny-integrity attack must be
performed after Bob receives integrated Alice’s message-signature pair, while
Hwang’s “deny-integrity attack” is performed before Bob receives integrated
Alice’s message-signature pair.

Secondly, we clarify that the “DoS attack” proposed by Hwang et al. [19] is
not a real DoS attack. The DoS attack is characterized by an explicit attempt by
some attackers to prevent legitimate users from using resources [22]. However, it
is not a DoS attack that legitimate users do not perform their duties. Therefore,
Bob initiatively gives up receiving Alice signed message in Ref. [19] is not a real
deny-integrity attack.
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Finally, we consider the Trojan horse attack. The first Trojan horse attack on
quantum cryptography was introduced by Gisin et al. [18]. Also, they pointed out
that there is no doubt that Trojan horse attacks can be prevented by technical
measures. The second Trojan horse attack is the IPE attack proposed by Cai [10].
Note that, Cai [10] also proposed a method against the second Trojan horse at-
tack, i.e., Alice adds a wavelength filter on each signal before she deals with it
(i.e., codes or measures it). The third one is the delay-photon Trojan horse attack
presented by Deng et al. [14]. To resist delay-photon Trojan horse attack, Alice
should use a photon number splitter (PNS) to divide each sample signal into two
pieces and measure them with two measuring bases. The Trojan horse attacks
mentioned in Ref. [19] are not new ones. They are just the IPE attack and the
delay-photon attack. To resist the Trojan horse attacks, the AQS schemes need
not do any theoretic modification. We only need to pay attention to their prac-
tical implementation, i.e., the entries need to use a wavelength filter and a PNS
before they deal with the photons when the AQS schemes are realized by photons.

4 An AQS Scheme

Because there are so many attacks [11, 17, 28] on AQS protocols, some improve-
ments on these AQS protocols are urgently needed. Though these literatures
[11, 17, 28] discussed about the potential improvements of AQS and suggested
some improved AQS protocols, the improvements can not resist all existent at-
tacks [11, 17, 28]. Based on these suggestions [11, 17, 28] and the previous dis-
cussion about attacks, we proposed an AQS scheme which is secure against all
existent attacks [11, 17, 28].

Note that QKD schemes [3, 4, 16] and semiquantum key distribution protocols
[5, 6, 32] utilize a public board or a classical public communication channel that
are assumed to be susceptible to eavesdropping but not to be the injection or
alteration of messages [3–6, 16, 32]. Also, we use a public board (or a classical
public communication channel) that can not be blocked to recall the security of
AQS schemes.

The proposed AQS scheme also involve three participants: the signatory Alice,
the receiver Bob, and the arbitrator Trent, and three phases: the initializing
phase, the signing phase, and the verifying phase. Suppose Alice need to sign
the quantum message |P 〉 = |P1〉⊗ |P2〉⊗ · · ·⊗ |Pn〉 with |Pi〉 = αi|0〉+βi|1〉 and
has at least three copies of |P 〉. For obtaining a low enough error probability in
the verifying phase, we can use |P 〉⊗m instead of |P 〉 where m is a large enough
integer. The AQS scheme using Bell states is specified in the following.

Initializing Phase

Step I1. Alice shares a 3n bits secret key KAT with the arbitrator Trent by the
quantum key distribution protocols [3, 4, 16] that were proved to be uncondi-
tionally secure [18, 20, 24, 25, 27]. Similarly, Bob shares a 3n bits secret key
KBT with Trent.
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Step I2. Alice generates n Bell states |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 with |ψi〉 =
1√
2
(|00〉AB+ |11〉AB), where the subscriptsA and B correspond to Alice and Bob,

respectively. Then, Alice distributes one particle of each Bell state to Bob by em-
ploying a secure and authenticatedmethod [2, 13]. Using quantum repeaters [8, 15]
and fault-tolerant quantum computation [1, 26], Alice and Bob can share n Bell
states of almost perfect fidelity even if they are far away from each other [24].

Signing Phase

Step S1. Alice randomly chooses a number R ∈ {0, 1}3n and transforms |P 〉 into
an secret qubit string |P ′〉 = ER(|P 〉) by the SQOTP encryption as follows:

ER(|P 〉) =
n⊗

i=1

θR3i−2σR3i−1
x σR3i

z |Pi〉, (7)

where θ =
1

2

(
�
√
2
√
2

1+� −1−�

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
, � and −� the square

roots of −1.
Step S2. Similarly, Alice generates |SA〉 = EKAT (|P ′〉) by the SQOTP encryp-
tion.

Step S3. Alice combines each secret message state |P ′
i 〉 and the Bell state |ψi〉,

and obtains the three-particle entangled state,

|φi〉 = |P ′
i 〉 ⊗ |ψi〉 (8)

=
1

2
[|Ψ+

12〉A(α′
i|0〉B + β′

i|1〉B) + |Ψ−
12〉A(α′

i|0〉B − β′
i|1〉B)

+|Φ+
12〉A(β′

i|0〉B + α′
i|1〉B) + |Φ−

12〉A(β′
i|0〉B − α′

i|1〉B)], (9)

where |Ψ+
12〉A, |Ψ−

12〉A, |Φ+
12〉A, and |Φ+

12〉A are the four Bell states [21], and |P ′〉 =
α′
i|0〉B + β′

i|1〉B.
Step S4. Alice implements Bell measurement on her two particles of each three-
particle entangled state |φi〉 and obtains |MA〉 = (|M1

A〉, |M2
A〉, . . . , |Mn

A〉),
where |Mi

A〉 represents one of the four Bell states.

Step S5. Alice sends |S〉 = (|P ′〉, |SA〉, |MA〉) to Bob.

Verifying Phase

Step V1. Bob sends |YB〉 = (|P ′〉, |SA〉) to Trent after he receives |S〉.
Step V2. Trent encrypts |P ′〉 with KAT by the SQOTP encryption and obtains
|ST 〉 which should be consistent with |SA〉. If |ST 〉 = |SA〉, the arbitrator con-
tinues the next step; Otherwise, he informs Alice and Bob by public board that
the scheme aborts.
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This step includes quantum state comparison. The technique of comparing
two unknown quantum states was first presented in Ref. [9] and discussed in
Refs. [23, 31].

Step V3. Trent gets back |P ′〉 from one of |SA〉 (i.e., |ST 〉). Then, he encrypts
|P ′〉 with KBT and obtains |SB〉 = EKBT (|P ′〉). Subsequently, he gets |YT 〉 by
reordering randomly the qubits in |SA〉 and |SB〉, and sends |YT 〉 to Bob. Trent
does not publish the encoding order of |YT 〉 by the public board until Bob receives
|YT 〉.
Step V4. Bob obtains |SA〉 and |SB〉 by reordering |YT 〉, and gets |P ′〉 by de-
crypting |SB〉 with the key KBT .

Step V5. According to Alice’s measurement outcomes |MA〉 and the principle of
teleportation, Bob obtains |P ′

B〉. Then he makes comparisons between |P ′
B〉 and

|P ′〉. Here the way of comparing |P ′
B〉 and |P ′〉 is the same as that of comparing

|ST 〉 and |SA〉 in Step V2. If |P ′
B〉 
= |P ′〉, Bob rejects the signature; Otherwise, he

informs Alice by the public board to publish the random number R.

Step V6. Alice publishes R by the public board.

Step V7. Bob gets back |P 〉 = E−1
R (|P ′〉) from |P ′〉 with R and holds (|SA〉, R)

as Alice’s signature for the quantum message |P 〉. The arbitrator Trent records
the signature key KAT and the random number R to prevent dissensions.

If the improved AQS scheme states ends normally, its communications are
described in Fig. 1.

The public board

Bob

TrentAlice

S BY

TY

A notice

R The order

Fig. 1. The communications of the AQS scheme using Bell states

5 Security Analyses

A secure quantum signature scheme should satisfy two requirements [23, 29–31]:
(1) The signature should not be forged by the attacker (including the malicious
receiver); (2) The signature should not be disavowed by the signatory and the
receiver. In this section, we will show that the proposed AQS scheme satisfy the
two requirements above. In particular, we will show that it is secure against all
existing attacks [11, 17, 28].
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5.1 The Method to Resolve Disputes

To better understand the proposed AQS scheme, we clarify the ways for the
arbitrator Trent to resolve disputes between the signer Alice and the receiver
Bob. To resolve disputes, Trent may require Bob to provide the message |P 〉 and
the corresponding Alice’s signature (|SA〉, R). First, Trent checks R is equal to
the the random number he saved or not. If R is equal to the the random number
he saved, he makes further validation; Otherwise, he concludes the signature is
forged by Bob. Trent further verifies whether

|SA〉 = EKAT (ER(|P 〉)). (10)

If Eq. (10) holds, Trent concludes that |P 〉 is indeed Alice’s singed message and
Alice is disavowing her signature; Otherwise, he believes the signature is forged
by Bob.

5.2 Impossibility of Disavowal by the Signatory and the Receiver

First, we consider the signatory’s disavowal in the proposed AQS scheme. If
Alice wants to disavow her signature, she must make that Eq. (10) does not
hold. However, by Step V2 and Step V7 in the proposed AQS scheme, there are
|SA〉 = EKAT (|P ′〉) and |P 〉 = E−1

R (|P ′〉). Therefore, Eq. (10) must hold if Bob
receives the quantum message |YT 〉 from Trent with no error. Can Alice change
|YT 〉 when Trent sends it to Bob without being found by Bob?

Due to the unconditionally security of quantum key distribution [18, 20, 24, 25,
27], Alice can not get the keyKBT in the initializing phases of the proposed AQS
scheme. By Bell states measurement having only four different measurement
results, the disavowal attack proposed by Sun et al. [28] can only be applied
to the AQS schemes [23, 30, 31] which use the QOTP encryption including
only four kinds of unitary transformations. Because the SQOTP encryption uses
eight kinds of unitary transformations, Alice can not successfully to get KBT

by applying the disavowal attack proposed by Sun et al. [28] on the proposed
AQS scheme. Similarly, the Trojan horse attacks [19] becomes ineffective on the
proposed AQS scheme. Furthermore, Trent has reordered all quantum states in
|SA〉 and |SB〉 before he sends them to Bob. So, Alice does not know the exact
locations of |SA〉 in |YT 〉. This is another reason that Alice can not successfully
to apply the disavowal attacks proposed by Sun and Hwang et al. [19, 28] on the
proposed AQS scheme. In addition, Alice can not tamper |SA〉 without disturbing
|SB〉 because she does not know the exact locations of |SA〉 in |YT 〉. This means
that the disavowal attack proposed by Gao et al. [17] is invalid on the proposed
AQS scheme.

From the above discussion, Alice can not successfully change |YT 〉 without
being found when Trent sends it to Bob. Therefore, Trent can confirm that
Alice has signed the message |P 〉 since Alice’s secret key KAT is involved in
|SA〉 and |SA〉 = EKAT (ER(|P 〉)). Hence Alice cannot deny having signed the
message.
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Now, we show the signature can not be disavowed by the receiver in the
proposed AQS scheme. If Bob informs Alice by the public board to publish the
random number R in Step V5, this means |P ′

B〉 = |P ′〉 and Bob has obtained
|P ′

B〉 and |P ′〉 from |MA〉 and |YT 〉. Note that, some one who gets |P ′〉 from
|MA〉 must share the Bell states with Alice; and, some one who gets |P ′

B〉 from
|YT 〉 must share the key KBT with Trent. In addition, Bob can get R by Step
V6 because the public board can not be blocked and is assumed not to be the
injection or alteration of messages. From the analysis above, Bob can not deny
his involving the scheme, or disavow the receipt of |S〉 = (|P ′〉, |SA〉, |MA〉) or
the random number R. Therefore, if Bob wants to disavow the signature he
must construct a new message |PB〉 and a new random number RB such that
|SA〉 = EKAT (ERB (|PB〉)). However, we will show that Bob can not forge Alice’s
signature in the following subsection. This means that Bob can not disavow the
signature.

Especially, Bob could not claim |P ′
B〉 
= |P ′〉 when |P ′

B〉 = |P ′〉 if he wants
to recover the message |P 〉. If Bob claims |P ′

B〉 
= |P ′〉, he will not receive the
random number R. This means that he will not recover the message |P 〉. As
we pointed out in Section 3, it is neither a real deny-integrity attack nor a real
DoS attack that Bob refuses to receive the message-signature pair by claiming
|P ′

B〉 
= |P ′〉.

5.3 Impossibility of Forgery

First, we discuss the forgery attack of the receiver Bob. It is easy to know
that Bob can not learn the signature key KAT in the initializing phases of the
proposed AQS scheme by unconditionally security of quantum key distribution
[18, 20, 24, 25, 27]. Furthermore, he can not obtain the signature key KAT in the
signing phase and the verifying phase because the SQOTP encryption betrays
nothing about the secret keys KAT . Therefore, Bob’s the most likely attack is
the known message attacks as that in Refs. [11, 17]. However, by Proposition
1, Bob can not find any unitary matrix U 
=

⊗n
i=1 ciI (I is the second-order

identity matrix and ci a complex number with |ci| = 1) such that EKAT (U |P 〉) =
UEKAT (|P 〉) when he does not know the key KAT . This means that the known
message attacks proposed by Gao and Choi et al. [11, 17] are ineffective on the
proposed AQS scheme. In addition, the forge attack presented by us in Section
3 is also failed on the proposed AQS scheme because Trent has recorded the
random number R. Therefore, Bob can not forge Alice’s signature.

Now, we consider the forgery attack of outside opponent Eve. Due to the
unconditionally security of quantum key distribution [18, 20, 24, 25, 27], she
can not get the signature key in the initializing phases of the proposed AQS
scheme. In addition, Eve can not acquire the keys KAT , KAB and KBT from
the sent quantum messages because the proposed AQS scheme use the SQOTP
encryption. This can be proved as the discussion about that Alice can not get
the key KBT in the previous subsection. By Proposition 1, Eve can not find any
unitary matrix U 
=

⊗n
i=1 ciI (I is the second-order identity matrix and ci a

complex number with |c| = 1) such that EKAT (U |P 〉) = UEKAT (|P 〉) when she



Arbitrated Quantum Signature Schemes 57

does not know the key KAT . Furthermore, she does not know the locations of
|SA〉 in |YT 〉 because Trent has reordered |SA〉 and |SB〉. Therefore, Eve can not
forge Alice’s signature.

5.4 Other Discussion

It is necessary that Alice only sends |P ′〉 in the proposed AQS scheme. Bob can
get the message |P 〉 and confirm |SA〉 being Alice’s signature in Step V5 if we use
the message |P 〉 instead of |P ′〉. Thereby, Bob does not need the random number
R. This means that Bob has a chance to disavow the integrality of the signature
as the AQS schemes in Refs. [23, 30]. If Bob deliberately declares |P ′

B〉 
= |P ′〉 in
Step V5 of the proposed AQS scheme, he can not obtain the message |P 〉 and
its signature because he does not know the the random number R. This only
shows that Bob can refuse to receive Alice’s message-signature pair, but Bob
can not apply the deny-integrity attack. In addition, as we pointed out before,
it is not a DoS attack that Bob refuses to receive Alice’s message-signature pair
by declaring |P ′

B〉 
= |P ′〉 in Step V5 of the proposed AQS scheme.
Note that, even though Bob and Trent do not use any wavelength filter and

PNS, the Trojan horse attacks mentioned in Ref. [19] are invalid on the proposed
AQS scheme because it uses the SQOTP encryption. However, we would like to
point out that it is important to pay attention to the practical implementation
of the AQS schemes.

Finally, we want to point out that the arbitrator can not forge Alice’s signa-
ture. In the proposed AQS scheme, Alice needs to publish the random number
R by the public board. If Trent wants to tamper Alice’s signature for some new
message, he will not be successful because he does not know the random number
R. If Trent impersonates Alice to send a forged message-signature pair |S〉 to
Bob, Alice will found out Trent’s impersonation attack in Step V5 because Bob
needs Alice announcing her random number.

6 Conclusions

In this paper, we first summarized the existing attacks [11, 17, 28] on AQS
schemes, and then presented a valid forgery attack as well as analyzed the reasons
why the AQS protocols are susceptible to attacks. In addition, we pointed out
that the “deny-integrity attack” in Ref. [19] is not a real deny-integrity attack.
Similarly, the “DoS Attack” in Ref. [19] is not a real DoS Attack. To recall
the security of the AQS schemes, we constructed an SQOTP encryption. Based
on the suggestions in Refs. [11, 17, 28] and our analyses, we proposed an AQS
scheme using SQOTP encryption which are secure against all existent attacks
[11, 17, 28]. Finally, we showed the security of the proposed AQS scheme. In
particular, we showed that the proposed AQS scheme is secure against all existing
attacks [11, 17, 28]. The proposed AQS scheme can preserve all merits in the
previous AQS schemes [23, 30, 31] such as they can sign the known and unknown
quantum messages. Also, they can avoid being disavowed by the receiver. In
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addition, the arbitrator can not forge Alice’s signature in the proposed AQS
scheme. Moreover, they provide higher security than the previous AQS schemes
[23, 30, 31] because they can resist all existent attacks [11, 17, 28]. Note that,
to achieve the higher security, the proposed AQS scheme need use the SQOTP
encryption. This makes the proposed AQS scheme need a longer signature key
which is 50% longer than ever.
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Abstract. In this paper, we study removable online knapsack problem.
The input is a sequence of items e1, e2, . . . , en, each of which has a weight
and a value. Given the ith item ei, we either put ei into the knapsack or
reject it. When ei is put into the knapsack, some items in the knapsack
are removed with no cost if the sum of the weight of ei and the total
weight in the current knapsack exceeds the capacity of the knapsack. Our
goal is to maximize the profit, i.e., the sum of the values of items in the
last knapsack. We show a randomized 2-competitive algorithm despite
there is no constant competitive deterministic algorithm. We also give a
lower bound 1 + 1/e ≈ 1.368. For the unweighted case, i.e., the value of
each item is equal to the weight, we propose a 10/7-competitive algorithm
and give a lower bound 1.25.

1 Introduction

The knapsack problem is one of the most classical problems in combinatorial
optimization and has a lot of applications in the real world [13]. The knapsack
problem is that: given a set of items with values and weights, we are asked to
maximize the total value of selected items in the knapsack satisfying the capacity
constraint. We assume in this paper, the capacity of knapsack is 1.

In this paper, we study the online version of the knapsack problem with
removal condition. Here, “online” means i) the information of the input (i.e., the
items) is given gradually, i.e., after a decision is made on the current item, the
next item is given; ii) the decisions we have made are irrevocable, i.e., once a
decision has been made, it cannot be changed. Given the ith item ei, which has a
value v(ei) and a weight w(ei), we either accept ei (i.e., put ei into the knapsack)
or reject it. When ei is put into the knapsack, some items in the knapsack are
removed with no cost if the sum of the weight of ei and the total weight in the
current knapsack exceeds 1, i.e., the capacity of the knapsack. Our goal is to
maximize the profit, i.e., the sum of the values of items in the last knapsack.

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 60–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Related Works

It is well known that offline knapsack problem is NP-hard but has an FPTAS as
well as a simple 2-approximation. Kellerer et al. [12] gave a 5/4-approximation
linear time algorithm for unweighted case, i.e., the value of each item is equal
to the weight. Ito et al. [9] gave a constant-time approximation algorithm using
weighted sampling.

An online knapsack problem was first studied on average case analysis by
Marchetti-Spaccamela and Vercellis [15]. They proposed a linear time approxi-
mation algorithm such that the expected difference between the optimal profit
and the one obtained by the algorithm is O(log3/2 n) under the condition that
the capacity of the knapsack grows proportionally to the number of items n.
Lueker [14] improved the expected difference to O(log n) under a fairly general
condition on the distribution.

On worst case analysis, Buchbinder and Naor [4,5] gave an O(log(U/L))-
competitive algorithm based on a general online primal-dual framework when
the density (value to weight ratio) of every element is in a known range [L,U ],
and that each weight is much smaller than the capacity of the knapsack. They
also showed an Ω(log(U/L)) lower bound on the competitive ratio for the case.

Iwama and Taketomi [10] studied removable online knapsack problem. They
obtained a (1 +

√
5)/2 ≈ 1.618-competitive algorithm for the online knapsack

when (i) the removable condition is allowed and (ii) the value of each item is equal
to the weight (unweighted), and showed that this is best possible by providing
a lower bound 1.618 for the case. We remark that the problem has unbounded
competitive ratio, if at least one of the conditions (i) and (ii) is not satisfied
[10,11]. For randomized case, Babaioff et al. [3] showed a lower bound 5/4 for
the weighted case.

Removable online knapsack problem with cancellation cost is studied in [2,3,6].
When the cancellation cost is f times the total value of removed items, Babaioff
et al. [2,3] showed that if the largest element is of size at most γ, where 0 <
γ < 1/2, then the competitive ratio is 1 + 2f + 2

√
f(1 + f) with respect to

the optimum solution for the knapsack problem with capacity (1 − 2γ). They
also showed randomized 3(1 + 2f + 2

√
f(1 + f))-competitive algorithm for this

problem. Han et al. [6] studied the problem of unweighted case. They proved the

problem is max{2, 1+f+
√

f2+2f+5

2 } competitive.
For other models such as knapsack secretary problem and online minimization

knapsack problem, refer to papers in [1,7,8].

Our Results

In this paper, we study the worst case analysis of randomized removable online
knapsack problem (against an oblivious adversary). For unweighted case, we give
a randomized 10/7-competitive algorithm. The main ideas of our algorithm are
below: we divide all the items into three groups, small, median and large. If
there is a large item, we just select and cancel all we have selected, otherwise we
first handle median items, then apply a greedy algorithm for the small items.
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For median items, we have two subroutines and run each of them with probability
0.5, respectively. We also show there is no randomized online algorithm with
competitive ratio less than 5/4 for the unweighted case.

For weighted case, we give a randomized 2-competitive algorithm. This is an
extension of 2-approximation greedy algorithm for offline knapsack problem. We
also show there is no randomized online algorithm with competitive ratio less
than 1 + 1/e for the online removable weighted knapsack problem.

We summarize competitive ratios for removable knapsack problems in Table
1, where our results are written in bold letters.

The rest of paper is organized as follows. In Section 2, we consider the un-
weighted case, and in Section 3, we consider the weighted case.

Table 1. Competitive ratios for removable knapsack problems, where our results are
written in bold letters

unweighted weighted

upper bound lower bound upper bound lower bound

deterministic 1+
√

5
2

(≈1.618) [10] 1+
√

5
2

[10] ∞ [11] ∞ [11]

randomized 10/7 (≈1.429) 5/4 (=1.25) 2 1+ 1
e
(≈1.368)

2 Unweighted Knapsack Problem

In this section, we consider removable knapsack problem when the value of each
item is equal to the weight.

2.1 Upper Bound

In this subsection, we propose a randomized 10/7-competitive online algorithm
for unweighted removable knapsack problem.

We divide all the items into three groups, small, median and large, for short,
say S, M , L. Given an item with size x, if x ≤ 0.3, we call the item small,
if 0.3 < x < 0.7, we call it median, otherwise (i.e., x ≥ 0.7) we call it large.
Further, we divide median items into four subgroups, Mi for 1 ≤ i ≤ 4. Given
an item of size x, if x ∈ (0.3, 0.4], then it belongs to M1; if x ∈ (0.4, 0.5], then it
belongs to M2; if x ∈ (0.5, 0.6), then it belongs to M3; if x ∈ [0.6, 0.7), then it
belongs to M4 (see Fig. 1).

Fig. 1. Groups of items
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The main ideas of our algorithm are below: if there is a large item, we just
select it and cancel all we have selected, otherwise we first handle median items,
then apply a greedy algorithm for the small items. For median items, we have
two subroutines and run each of them with probability 0.5, respectively.

In our algorithm, greedy algorithm G1 means that we select items by a way
from the large to the small; greedy algorithm G2 means that we select items by a
way from the small to the large. For example, assume that the input sequence is
(0.42, 0.3, 0.2, 0.11, 0.09, 0.6). Then at each round, the solution by G1 is (0.42),
(0.42, 0.3), (0.42, 0.3, 0.2), (0.42, 0.3, 0.2), (0.42, 0.3, 0.2) and (0.6, 0.3), respec-
tively. And at each round, the solution by G2 is (0.42), (0.3, 0.42), (0.2, 0.3, 0.42),
(0.11, 0.2, 0.3), (0.09, 0.11, 0.2, 0.3) and (0.09, 0.11, 0.2, 0.3), respectively. There is
a flag called f in our algorithm, where f = 1 means there is an item with size in
[0.6, 0.7), otherwise f = 0. Let ei be the item given in the ith round. Define by Bi

the set of selected items at the end of the ith round by Algorithm A. For r = 1, 2,
define by Br

i the set of selected items at the end of the ith round by Algorithm
Ar.

Algorithm A

1: B0, B1
0 , B2

0 ← ∅, f ← 0
2: choose r at random from {1, 2}
3: for all items ei, in order of arrival, do
4: if ei ≥ 0.7 then select it, cancel all the items selected in the knapsack
5: else if f = 0 and ei ∈ [0.6, 0.7) then f ← 1
6: simulate two algorithms A1(f, ei) and A2(f, ei);
7: if r = 1 then Bi ← B1

i

8: if r = 2 then Bi ← B2
i

9: if the expected profit by our algorithm (B1
i + B2

i )/2 is at least 0.7, then stop
handling the future items.

10: end for

The main ideas of the following subroutine A1 are if there are M4 items,
we select the minimum item of them; else if there are M3 items, we select the
minimum item of them; finally we run G1 algorithm for selecting items from the
large to the small.

Subroutine A1

1: if f = 0 then select the minimum item in (0.5, 0.6) from B1
i−1 ∪ {ei};

2: else f = 1: select the minimum item in [0.6, 0.7) from B1
i−1 ∪ {ei}.

3: run G1 on the other items from B1
i−1 ∪ {ei}.

The main ideas of the following subroutine A2 are: in all the items we are
holding (including the new item), if there is a feasible solution with profit at
least 0.9 then we select that feasible solution; else if there is an M4 item and
a feasible solution with profit at least 0.8 then we select that feasible solution;
else we select the minimum M2 and the minimum M1 first if possible, then run
algorithm G2 for selecting all the other median items from the small to the large,
finally run G1 algorithm for selecting small items from the large to the small.
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Subroutine A2

1: if f = 0 and there is a feasible solution with profit at least 0.9 in B2
i−1 ∪ {ei}

2: then get that solution.
3: else if f = 1 and there is a feasible solution with profit at least 0.8 in B2

i−1 ∪{ei}
4: then get that solution.
5: else
6: select the minimum item in (0.4, 0.5] from B2

i−1 ∪ {ei} first;
7: then select the minimum item in (0.3, 0.4] from B2

i−1 ∪ {ei};
8: then run G2 for all the other median items in B2

i−1 ∪ {ei},
9: i.e, the smaller one has a higher priority;
10: finally run G1 for the small items.

Let T be an input sequence, and let mi be the minimum Mi-item in T . We
denote by A1(T ), A2(T ), and E[A(T )], the profit by A1, A2, and the expected
profit by A for the input sequence T .

Observation 1. Given an input T , if one of the following conditions holds, then
E[A(T )] ≥ 0.7: i) there is a large item in T ; ii) f = 1 and A2(T ) ≥ 0.8; iii)
f = 0 and A2(T ) ≥ 0.9; iv) A1(T ) ≥ 0.7 and A2(T ) ≥ 0.7.

Observation 2. If E[A(T )] < 0.7 then items m1 and m2 must be selected by
algorithm A2 if they exist.

Lemma 1. If E[A(T )] < 0.7, then an M3-item and an M1-item cannot co-exist
in T .

Proof. Since E[A(T )] < 0.7, all the items in T are at most 0.7. Assume there are
some M1-items and M3-items in T . By the definitions of M1 and M3, any pair
of an M1-item and an M3-item can be put together in the knapsack. Let item
fi be the first Mi item in T . Next we prove that E[A(T )] > 0.7, if items f1 and
f3 exists in T . There are two cases.

Case 1: the first M3-item f3 arrives earlier than the first M1-item f1.

Case 1.1: item f4 arrives earlier than item f1. Before item f1 arrives, a smallest
M4-item m4 must be selected by A1. After item f1 is given, algorithm A2 will
select item f1 and an M2-item, or item f1 and an M3-item, i.e., A2(T ) > 0.4+f1.
When item f1 is given, if f1 +m4 ≤ 1, then items m4 and f1 will be selected by

A1, i.e., A1(T ) > 0.6 + 0.3 = 0.9. We are done since E[A(T )] = A1(T )+A2(T )
2 >

0.9+0.4+0.3
2 > 0.8. Otherwise item m4 rejects item f1, i.e., f1 +m4 > 1. Thus we

have E[A(T )] = A1(T )+A2(T )
2 > f1+m4+0.4

2 > 0.7, where f1 +m4 > 1.

Case 1.2: there is no M4-item before item f1. Then just after item f1, algorithm
A1 will select an M3-item, and item f1 or an M2-item, i.e., A1(T ) > 0.5+ 0.3 =
0.8. Algorithm A2 will select item f1, and an M2 or M3-item, i.e., A2(T ) >

0.4 + 0.3 = 0.7, thus we have E[A(T )] = A1(T )+A2(T )
2 > 0.8+0.7

2 = 0.75.

Case 2: the first M1-item f1 arrives earlier than the first M3-item f3.

Case 2.1: item f4 arrives earlier than item f3. After item f3 arrives, item f4
must be selected by A1, and an M1-item must be selected by A2. Since item f3
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and an M1-item forms a feasible solution with profit at least 0.8 and f = 1, we

have E[A(T )] = A1(T )+A2(T )
2 > 0.6+0.8

2 = 0.7.

Case 2.2: there is noM4-item before item f3. Just before item f3 arrives, if there
are twoM2-items accepted by algorithm A1, then E[A(T )] > (0.8+0.7)/2 = 0.75
since an M1-item and an M2-item will be selected by A2. Thus, just before item
f3 arrives, there is at most oneM2-item in T , and at least oneM1-item is selected
by A1. Just after item f3 arrives, algorithm A1 will select item f3, and an M2-
item or an M1-item, i.e., A1(T ) > 0.5 + 0.3 = 0.8. Algorithm A2 will select an
M1-item, and an M2-item or item f3, i.e., A2(T ) > 0.3 + 0.4 = 0.7. Thus we

have E[A(T )] = A1(T )+A2(T )
2 > 0.8+0.7

2 = 0.75.
In both cases, we have E[A(T )] > 0.7, which causes a contradiction with

E[A(T )] < 0.7. Hence this lemma holds. ��
Lemma 2. If E[A(T )] < 0.7 and there are some M1-items and M4-items in T ,
then we have m1 +m4 > 1.

Proof. Assume m1 +m4 ≤ 1. Next we prove that after handling two items m1

and m4, the expected profit by A would be larger than 0.7. There are two cases.

Case 1: item m1 arrives earlier than item m4. After item m4 is given, it must
be selected by algorithm A1, and we have f = 1. We also know that m1 must
be selected in the knapsack by A2. Since f = 1 and items m1 and m4 form a

feasible solution with profit larger than 0.9, we have E[A(T )] = A1(T )+A2(T )
2 >

0.6+0.9
2 = 0.75.

Case 2: item m4 arrives earlier than item m1. After item m1 is given, A1 must
select m4 and an M1-item, i.e., A1(T ) > 0.9. Observe that by Lemma 1, there is
no M3-item before m1. If there is an M1 or M2-item before item m1, then two
items in (0.3, 0.5] must be selected by A2 after m1, otherwise items m4 and m1

will be selected. Thus A2 must select two median items after m1. Then we have
E[A(T )] = A1(T )+A2(T )

2 > 0.9+0.6
2 = 0.75. Hence the assumption is wrong, we

have m1 +m4 > 1. ��
Lemma 3. If E[A(T )] < 0.7 and f = 1, and there are some M2-items and
M3-items in T , then we have m2 +m3 > 1.

Proof. Assume m2 +m3 ≤ 1. By Lemma 1 there is no M1-item in T . Next we
prove that after handling two items m2 and m3, the expected profit by A would
be larger than 0.7. Let item f4 be the first M4 item in T . If item f4 arrives later
than items m2 and m3, then algorithm A1 selects f4. Algorithm A2 selects item
m2, and another M2-item or item m3 just after item f4 arrives. Thus we have
E[A(T )] > (0.6 + 2 · 0.4)/2 = 0.7. Next we consider the case: item f4 arrives
earlier than items m2 or m3. There are two cases.

Case 1: items m2 and f4 arrive earlier than item m3. After item m3 arrives,
algorithm A1 selects at least one item f4. Since there is no M1-item in T , and
items m2 and m3 or two M2-items form a feasible solution with profit larger
than 0.8, algorithm A2 selects item m2, and another M2-item or item m3. thus
we have E[A(T )] > (0.6 + 0.8)/2 = 0.7.
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Case 2: items m3 and f4 arrive earlier than item m2. After item m2 arrives,
algorithm A1 selects at least one item f4. Since there is no M1-item in T , and
items m2 and m3 or two M2-items form a feasible solution with profit larger
than 0.8, algorithm A2 selects at least two items larger than 0.4. Thus we have
E[A(T )] > (0.6 + 0.8)/2 = 0.7.

Hence the assumption is wrong, we have m2 +m3 > 1. ��

Lemma 4. If E[A(T )] < 0.7, there is at most one M2-item in T .

Proof. Assume there are two M2-items in T , say item a and b. Without loss of
generality, assume item a arrives earlier than item b. Let fi be the first Mi-item
in T . There are three cases.

Case 1: item b arrives earlier than items f3 and f4. After item b arrives, algo-
rithm A1 selects two M2-items and algorithm A2 selects two M2-items, or an
M1-item and an M2-item. Thus we have E[A(T )] > (2 ·0.4+0.3+0.4)/2 = 0.75.

Case 2: item b arrives later than f4. After item b arrives, algorithm A1 selects
at least one item f4. Since f = 1 and two M2-items form a feasible solution with
profit larger than 0.8, A2(T ) > 0.8. Thus we have E[A(T )] > (0.6+0.8)/2 = 0.7.

Case 3: item b arrives later than f3. After item b arrives, algorithm A1 selects
at least one item f3. Algorithm A2 selects two M2-items since by Lemma 1
there is no M1-item in T . By Lemma 3, we have f3 + m2 > 1, thus we have
E[A(T )] > (f3 +m2 + 0.4)/2 > 0.7.

Hence the assumption is wrong, there is at most one M2-item in T . ��

Let OPT (T ) be an optimal offline value for T .

Lemma 5. If there is no small item in T , then OPT (T )/E[A(T )] ≤ 10/7.

Proof. Assume that online algorithm A does not stop handling a future item,
i.e., we have E[A(T )] < 0.7 for an input T . By Observation 1, if A2(T ) ≥ 0.9,
we have E[A(T )] ≥ 0.7. Hence we assume A2(T ) < 0.9.

Let |OPT | be the number of M -items in an optimal solution. We first claim
that |OPT | ≤ 2. Since every item has size at least 0.3, we have |OPT | ≤ 3. If
|OPT | = 3, then the three items must be M1-items. If there were no M2-item
in T , then algorithm A2 would have selected three items, i.e., A2(T ) > 0.9, and
E[A(T )] > 0.7. Hence algorithm A2 selects two items and one of them must be

M2-item, i.e., A2(T ) = m1+m2. If f = 1 then we haveE[A(T )] = A1(T )+A2(T )
2 ≥

m4+m1+m2

2 > 1+m2

2 ≥ 0.7, where m1 + m4 > 1 holds by Lemma 2. Otherwise
f = 0. By Lemma 1, there is no M3-item in T . According to algorithm A1, the
largest two items in T must be selected by A1, then A1(T ) ≥ m1 + m2. Hence

E[A(T )] = A1(T )+A2(T )
2 ≥ m1 +m2 > 0.7. In each case, we have E[A(T )] > 0.7,

which causes a contradiction with the assumption E[A(T )] < 0.7. Thus we have
|OPT | ≤ 2.

Case 1: |OPT | = 1, i.e., OPT (T ) < 0.7. If 0.5 < OPT (T ), i.e., there is an
M3 or M4-item in T , then item m3 or m4 must be selected by algorithm A1.
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And A2 at least selects one item a. We claim that a +m3 > 1 or a +m4 > 1,

otherwiseOPT (T ) > 0.7. Hence we haveE[A(T )] = A1(T )+A2(T )
2 > 1

2 ≥
OPT (T )

1.4 .
Otherwise OPT (T ) ≤ 0.5, i.e., there is only one item in T , otherwise OPT (T )
would be larger than 0.5. Then we have A1(T ) = A2(T ) = OPT (T ), hence
E[A(T )] = (A1(T ) +A2(T ))/2 = OPT (T ).

Case 2: |OPT | = 2. let items a and b are the two items, where a ≥ b. We claim
that a ≤ 0.5. If item a is an M4-item, by Lemma 2, we have a + b > 1. If item
a is an M3-item, by Lemma 3, item b must be an M1-item since a + b ≤ 1.
On the other hand, if item a is an M3-item, by Lemma 1, item b cannot be an
M1-item. Thus we have a ≤ 0.5 and items a and b are the largest two items in T .
According to algorithm A1, items a and b must be selected by A1, i.e., A1(T ) =
OPT (T ). On the other hand, algorithm A2 must select at least two items, i.e.,

A2(T ) > 0.6. Hence E[A(T )] = A2(T )+A1(T )
2 = OPT(T )+0.6

2 ≥ 0.8 · OPT (T ),
where OPT (T ) ≤ 1.

Hence OPT (T )/E[A(T )] < 10/7. ��

Lemma 6. Even if there are some small items in T , we have OPT (T )/E[A(T )]
≤ 10/7.

Proof. Assume E[A(T )] < 0.7, otherwise we have OPT (T )/E[A(T )] ≤ 10/7. If
algorithms A1 and A2 accept all the small items in T , we have OPT (T )/E[A(T )]
≤ 10/7 by Lemma 5. Assume item a is the first small item which is rejected
by A1 or A2 algorithm. If both algorithms reject a small item, then we have
min{A1(T ), A2(T )} ≥ 0.7, then E[A(T )] ≥ 0.7. And, if there is no median item
in T , we have OPT (T )/E[A(T )] ≤ 10/7.

Let Tm be the sub-sequence of T after removing all the small items. If
min{A1(T

m), A2(T
m)} ≥ 0.4, we have A1(T ) + A2(T ) ≥ 1.4. The reason is

that: for i, i′ ∈ {1, 2} (i 
= i′), item a was rejected by Ai, i.e., a + Ai(T ) > 1,
item a was accepted by Ai′ , i.e., Ai′ (T ) ≥ a + Ai′ (T

m) ≥ a + 0.4. Therefore
A1(T ) +A2(T ) ≥ a+ 0.4 +Ai(T ) > 1.4. Otherwise there are two cases.

Case 1: 0 < A1(T
m) < 0.4, i.e., there is only one median item in T . Two

algorithms A1 and A2 will perform exactly the same operations, which causes a
contradiction with the fact one rejects a small item and the other one does not.

Case 2: 0 < A2(T
m) < 0.4, i.e., there is one M1-item in T , and no M2 or M3-

item. We claim that there is an M4-item in T , otherwise two algorithms A1 and
A2 will perform exactly the same operations. Thus we have A1(T

m) ≥ 0.6. We
also know algorithm A1 rejects item a. Since A1(T

m) < 0.7, A1 accepts at least
one small item b, which is not smaller than item a by the greedy algorithm used
by A1, i.e., b ≥ a. By Lemma 2, m1 +m4 > 1. The total of small items accepted
by A1 is at least min{0.3− a, b} ≥ min{0.3− a, a} ≥ 0.15 and the total of small
items accepted by A2 is min{a + b, 0.3} ≥ min{0.3, 2a} ≥ 0.3. Then we have

E[A(T )] ≥ A1(T )+A2(T )
2 ≥ m4+0.15+m1+0.3

2 = 0.725 ≥ 0.725 ·OPT (T ). Hence we
have this lemma. ��

By Lemmas 5 and 6, we have the following theorem.
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Theorem 1. The algorithm A is 10/7-competitive for the online removable un-
weighted knapsack problem.

Before concluding this subsection, we remark that the condition in the first and
third line of Subroutine A2 can be checked efficiently.

Proposition 1. The conditions in the first and third lines of Subroutine A2 can
be checked in linear time.

Proof. LetB be B2
i−1∪{ei}, where B2

i−1 is the set of items selected by Subroutine
A2 and ei is the item arrived at the ith round. Our goal is to decide whether
there is B′ ⊆ B such that t ≤ B

′ ≤ 1 for t = 0.8 or 0.9 in O(|B|) time.
Let B = {b1, b2, . . . , bm} satisfy b1 ≥ · · · ≥ bk > 1− t ≥ bk+1 ≥ · · · ≥ bm. It is

not difficult to see that k ≤ 10, since the total size of items in B2
i−1 is at most 1

and bi > 0.1 for 1 ≤ i ≤ k. Let Bl be {b1, b2, . . . , bk}. Let Bs be {bk+1, . . . , bm}.
We check whether there is a feasible solution in B with profit at least t by the
following way: for each subset B′ of items in Bl, we add items in Bs to B′ one
by one in an arbitrary order. Observe if there is some item left in Bs, then the
total size of B′ is at least t. If we find a set of items B′ with profit at least t, then
we are done, otherwise there is not such feasible solution. The total number of
subsets B′ is at most 2k ≤ 1024. Thus the conditions in the first and third lines
can be check in linear time. ��

2.2 Lower Bound

Babaioff et al. [3] showed a lower bound 5/4 for the weighted case, however, we
show it for the unweighted case. The proof is based on Yao’s Principle [16]. We
consider the following input distribution:{

2/3 + ε, 1/3, 2/3 (with probability 1/2),

2/3 + ε, 1/3, (with probability 1/2)
(1)

where ε is a sufficiently small positive number.

Theorem 2. There is no randomized online algorithm with competitive ratio
less than 5/4 for the online removable unweighted knapsack problem.

Proof. We consider the input distribution (1). Then, the optimal expected profit
is 1 · 12 + 2

3 ·
1
2 = 5

6 .
Let A be an online deterministic algorithm chosen arbitrarily. If A rejects the

second item, the expected profit is at most 2/3+ε. Otherwise, A takes the second
item (and removes the first item), the expected profit is at most 1 · 12 +

1
3 ·

1
2 = 2

3 .
Therefore, the competitive ratio is at least (5/6)/(2/3+ ε) which approaches

to 5/4 as ε→ 0.
��

3 Weighted Knapsack Problem

In this section, we consider removable knapsack problem in general case.
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3.1 Upper Bound

Nevertheless there is no deterministic online algorithm with constant competi-
tive ratio [11], we propose a 2-competitive randomized algorithm. We use two
algorithms MAX and GREEDY , as an extension of 2-approximation algorithm
for offline knapsack problem.

Let ei be the item given in the ith round. Define by Bi the set of selected
items at the end of the ith round, and by w(Bi), v(Bi) the total weight and
value in Bi, respectively.

Algorithm MAX

1: B0 ← ∅
2: for all items ei, in order of arrival, do
3: Bi ← argmax{v(B) : B ⊆ Bi−1 ∪ {ei}, w(B) ≤ 1}
4: end for

Algorithm GREEDY

1: B0 ← ∅
2: for all items ei, in order of arrival, do
3: Let Bi−1 ∪ {ei} = {b1, . . . , bk} s.t. v(b1)

w(b1)
≥ v(b2)

w(b2)
≥ · · · ≥ v(bk)

w(bk)

4: Bi ← ∅
5: for j = 1 to k do
6: if w(Bi) + w(bj) ≤ 1 then Bi ← Bi ∪ {bj}
7: end for
8: end for

Let T = {e1, e2, . . . , en} be an input sequence, OPT (T ) be the optimal offline
solution for T .

Theorem 3. Running Algorithms MAX and GREEDY uniformly at random
is 2-competitive.

Proof. For the input sequence T , we denote by MAX (T ), GREEDY (T ), the
profit by algorithms MAX , GREEDY , respectively. By the definitions of Algo-
rithms MAX and GREEDY , we have OPT (T ) ≤ MAX (T ) + GREEDY (T ),
since the optimal fractional value of Knapsack problem is not smaller than
the optimal integral value of the problem and the fractional solution is above
bounded by GREEDY (T ) + MAX (T ). Therefore, the competitive ratio is at

most 2OPT(T )
MAX (T )+GREEDY (T ) ≤ 2. ��

3.2 Lower Bound

We first show, the competitive ratio 2 is tight for MAX and GREEDY at the
same time.

Proposition 2. For any positive number ε, there is an input sequence such that
both Algorithms MAX and GREEDY are at least (2 − ε)-competitive simulta-
neously.
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Proof. Let (w, v) denote an item whose weight and value are w and v, respec-
tively. Consider the sequence of items

(1, 1),

(
1

2
+

1

2n
, 1− 1

2n

)
,

(
1

2n
,
1

n

)
,

(
1

2n
,
1

n

)
, . . . ,

(
1

2n
,
1

n

)
︸ ︷︷ ︸

n items

where n is a natural number greater than 3/ε. Then the optimal offline algorithm
gets a value of (2 − 3/n) by picking the second item and n − 1 of items with
( 1
2n ,

1
n ). The profit of Algorithm MAX is 1 by picking the first item. The profit of

Algorithm GREEDY is also 1 by picking the all of items with ( 1
2n ,

1
n ). Therefore,

the competitive ratio is at least 2−3/n
1 ≥ 2− ε for both algorithms. ��

Next we prove the lower bound 1+1/e on the competitive ratio of weighted case
using Yao’s Principle [16]. We give a family of input distributions parametrized
by a natural number n. Let (w, v) denote an item whose weight and value are w
and v, respectively. For a given n, the input sequence is

(1, 1), (1/n2, 1/n), (1/n2, 1/n), . . . , (1/n2, 1/n)︸ ︷︷ ︸
k items

(2)

with probability pk = 1−e−1/n

1−e−n · e−(k−1)/n for k = 1, 2, . . . , n2.

Theorem 4. There is no randomized online algorithm with competitive ratio
less than 1 + 1/e for the online removable weighted knapsack problem.

Proof. We consider the input distribution (2). Then, the optimal expected profit
is

n∑
i=1

1 · pi +
n2∑

i=n+1

i

n
· pi =

1− e−1/n

1− e−n

⎛⎝ n∑
i=1

e−(i−1)/n +
1

n

n2∑
i=n+1

i · e−(i−1)/n

⎞⎠
→

∫ 1

0

e−t dt+

∫ ∞

1

t · e−t dt = 1 +
1

e
(n→∞).

For an online deterministic algorithm A chosen arbitrarily, let l = n · x be the
number of input items that A rejects. Then, the expected profit of the algorithm
A is at most

l∑
i=1

pi +

n2∑
i=l+1

i− l

n
· pi =

1− e−1/n

1− e−n

⎛⎝ l∑
i=1

e−(i−1)/n +
1

n

n2∑
i=l+1

(i− l) · e−(i−1)/n

⎞⎠
→

∫ x

0

e−t dt+

∫ ∞

x

(t− x) · e−t dt = 1 (n→∞).

Therefore the competitive ratio for the unweighted case is at least 1 + 1/e for
any online algorithm. ��
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Abstract. The maximum independent set problem is a basic NP-hard
problem and has been extensively studied in exact algorithms. The max-
imum independent set problems in low-degree graphs are also important
and may be bottlenecks of the problem in general graphs. In this paper,
we present an O∗(1.1737n)-time exact algorithm for the maximum in-
dependent set problem in an n-vertex graph with degree bounded by 5,
improving the previous running time bound of O∗(1.1895n). In our al-
gorithm, we introduce an effective divide-and-conquer procedure to deal
with vertex cuts of size at most two in graphs, and design branching
rules on some special structures of triconnected graphs of maximum de-
gree 5. These result in an improved algorithm without introducing a large
number of branching rules.

1 Introduction

In the line of research on worst-case analysis of exact algorithms for NP-hard
problems, the maximum independent set problem (MIS) is one of the most im-
portant problems. It asks us to find a maximum set of vertices in a graph such
that no pair of vertices in the set are adjacent to each other. The method of
trivially checking all possible vertex subsets results in an O∗(2n)-time algo-
rithm. In the last half a century, great progresses have been made on exact
exponential algorithms and their worst-case analysis for MIS. In 1977, Tarjan
and Trojanowski [12] published the first nontrivial O∗(2n/3)-time algorithm. The
bound of the running time to exactly solve the problem has been further im-
proved for many times [8,11,4,9,1]. Currently, the fastest algorithms are Rob-
son’s O∗(1.2109n)-time exponential-space algorithm [11] and Bourgeois et al.’s
O∗(1.2114n)-time polynomial-space algorithm [1].

Most polynomial-space algorithms for MIS use the following simple idea to
search a solution: branch on a vertex of maximum degree by either excluding it
from the solution set or including it to the solution set. In the first branch we
will delete the vertex from the graph and in the second branch we will delete
the vertex together with all its neighbors from the graph. When the vertex to
be branched on is of degree at least 8, the simple branch is almost good enough
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to get the running time bound of all published polynomial-space algorithms for
MIS. Then MIS in graphs with degree bounded by i ∈ {3, 4, 5, 6, 7} may be the
bottleneck cases of MIS. For most cases the running time bound for MIS-i (the
maximum independent set problem in graphs with maximum degree i) is one of
the bottlenecks to improve the running time bound for MIS-(i + 1), especially
for small i. This holds in many algorithms for MIS [1,2,4,9,17]. We look at the
most recent two algorithms for MIS in general graphs. Kneis et al. [9] used a
fast algorithm for MIS-3 by Razgon [10] and used a computer-aided method to
check a huge number of cases for MIS-4, and then these two special cases will
not be the bottleneck cases in their algorithm for MIS in general graphs. In
Bourgeois et al.’s paper [1], more than half is discussing algorithms for MIS-3
and MIS-4, and based on improved running time bounds for MIS-3 and MIS-4
they can improve the running time bounds for MIS-5, MIS-6 and then MIS in
general graphs. We can see that MIS in low-degree graphs are important. In the
literature, we can find a long list of contributions to fast exact algorithms for
MIS in low-degree graphs [16,15,10,14,7,5,17]. Currently, MIS-3 can be solved
in O∗(1.0836n) time [16], MIS-4 can be solved in O∗(1.1376n) time [17], MIS-
5 can be solved in O∗(1.1895n) time and MIS-6 can be solved in O∗(1.2050n)
time [1], where all these use polynomial space. In this paper, we will design an
O∗(1.1737n)-time polynomial-space algorithm for MIS-5, improving all previous
running time bounds for this problem.

To avoid some bad branches in the algorithm, we may need to reduce some
special local structures of the graph. First, we apply our reduction rules to find
a part of the solution when the graph has certain structures. Second, we design
effective divide-and-conquer algorithms based on small cuts of the graph. By
reducing the local structures in the above two steps, we can apply our branching
rules on the graph to search a solution. In our algorithm, the divide-and-conquer
methods are newly introduced and they can effectively reduce some bottleneck
cases, and we design effective branching rules based on careful check on the struc-
tures of the graph and analysis of their properties. These are crucial techniques
used in the paper to get the significant improvement on this problem. Due to the
limited space, some proofs of lemmas are not included in the extended abstract.
Readers are referred to [18] for a full version of this paper.

2 Notation System

Let G = (V,E) stand for a simple undirected graph with a set V of vertices and
a set E of edges. Let n = |V |. We will use ni to denote the number vertices of
degree i in G, and α(G) to denote the size of a maximum independent set of
G. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. For simplicity, we may denote a singleton set {v} by v and the
union X ∪ {v} of a subset X and an element by X + v.

For a subset X ⊆ V , let X denote the complement set V \X ,N(X) denote the
set of all vertices in X that are adjacent to a vertex in X , and N [X ] = X∪N(X).
Let δ(v) = |N(v)| denote the degree of a vertex v. For a subset X ⊆ V , δ(X)
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denote the sum of degree of vertices in X and δ≥3(X) denote the sum of degree
of vertices of degree ≥ 3 in X . We use N2(v) to denote the set of vertices with
distance exactly 2 from v, and let N2[v] = N2(v) ∪ N [v]. Let G − X be the
graph obtained from G by removing the vertices in X together with any edges
incident to a vertex in X , G[X ] = G− (V \X) be the graph induced from G by
the vertices in X , and G/X denote the graph obtained from G by contracting
X into a single vertex (removing self-loops and parallel edges). For a vertex v,
let fv denote the number of edges between N [v] and N2(v). In a graph with
maximum degree 5, we define the gain gv of v to be

gv =
∑

t∈N2(v)

(5 − δ(t)) + (fv − |N2(v)|),

where the second term means the number of times two edges leaving N [v] meet
at a same vertex in N2(v). We denote (fv, gv) ≥ (a, b) when fv ≥ a and gv ≥ b
hold.

A partition (V1, Z, V2) of the vertex set V (G) of a graphG is called a separation
if V (G) is a disjoint union of nonempty subsets V1, Z and V2 and there is no edge
between V1 and V2, where Z is called a vertex cut. In this paper, a vertex cut
is always assumed to be a minimal vertex cut, i.e., no proper subset of a vertex
cut is still a vertex cut. The line graph of a graph G is the graph whose vertices
correspond to the edges of G, and two vertices are adjacent iff the corresponding
two edges share a same endpoint in G. Throughout the paper we use a modified
O notation that suppresses all polynomially bounded factors. For two functions
f and g, we write f(n) = O∗(g(n)) if f(n) = g(n)poly(n) holds for a polynomial
poly(n) in n.

3 Reduction Rules

First of all, we introduce the reduction rules, which can be applied in polyno-
mial time and reduce the graph by finding a part of the solution. There are
many reduction rules for MIS and the related vertex cover problem [2], from
the simplest ones to deal with degree-1 and degree-2 vertices to the somewhat
complicated unconfined vertices and crown reductions. They can be found in
almost all exact algorithms and most of approximation and heuristic algorithms
for MIS. We introduce some reduction rules that will be used our algorithm.

Reduction by Eliminating Easy Instances

For a disconnected graph G with a component H , we see that α(G) = α(H) +
α(G−V (H)), and solve instances H and G−V (H) independently. We will solve
two kinds of components H directly:
(1) H has at most ρ = 28 vertices; and
(2) H is the line graph of a bipartite graph H ′ between the set of degree-3
vertices and the set of degree-4 vertices, which are call a (3, 4)-bipartite graph.

Case (1) can be solved in constant time since the size of the graph is constant.
Case (2) is based on the following observation: if graph G is the line graph of a
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graph G′, then we obtain a maximum independent set of G directly by finding
a maximum matching M in G′ and taking the corresponding vertex set VM in
G as a solution. There are several methods to check whether a graph is a line
graph or not [13]. To identify a line graph L(G′) of a (3, 4)-bipartite graph G′,
we need to check if L(H) is a union of 3-cliques and 4-cliques such that each
vertex is a common vertex of a 3-clique and a 4-clique.

Reduction by Removing Unconfined Vertices

A vertex v in an instance G is called removable if α(G) = α(G−v). A sufficient
condition for a vertex to be removable has been studied in [16]. In this paper,
we only use a simple case of the condition. For a vertex v and its neighbor
u ∈ N(v), a vertex s ∈ V \ V [v] adjacent to u is called an out-neighbor of
u. A neighbor u ∈ N(v) is called an extending child of v if u has exactly one
out-neighbor su ∈ V \ N [v], where su is also called an extending grandchild of
v. Note that an extending grandchild su of v may be adjacent to some other
neighbor u′ ∈ N(v)\{u} of v. Let N∗(v) denote the set of all extending children
u ∈ N(v) of v, and Iv be the set of all extending grandchildren su (u ∈ N∗(v))
of v together with v itself. We call v unconfined if there is a neighbor u ∈ N(v)
which has no out-neighbor or Iv \ {v} is not an independent set (i.e., some two
vertices in Iv ∩ N2(v) are adjacent). It is known in [16] that any unconfined
vertex is removable.

Lemma 1. [16] For an unconfined vertex v in graph G, it holds that

α(G) = α(G −v).

A vertex u dominates another vertex v if N [u] ⊆ N [v], where v is called domi-
nated. We see that dominated vertices are unconfined vertices.

Reduction by Folding Twins

The set {v1, v2} of two nonadjacent degree-3 vertices is called a twin if N(v1) =
N(v2).

Lemma 2. [16] For a twin A = {v1, v2}, we have that

α(G) = α(G�) + 2,

where G� = G/N [A] if N(A) is an independent set and G� = G−N [A] otherwise.

Folding a twin A = {v1, v2} is to remove or contract N [A] in the above way.

Reduction by Folding Short Funnels

A degree-3 vertex v together with its neighbors N(v) = {a, b, c} is called a funnel
if N [v] \{a} induces a triangle for some a ∈ N(v), and the funnel is denoted
by a-v-{b, c}. Note that v dominates any vertex in N(a) ∩N(v) if N(a) ∩N(v)
is not empty. When we assume that there are no dominated vertices anymore,
then N(a) ∩N(v) = ∅.
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Folding a funnel a-v-{b, c} means that we add an edge between every non-
adjacent pair (x, y) of vertices x ∈ N(a) \{v} and y ∈ {b, c} and then remove
vertices a and v.

Let G† denote the graph after folding a funnel a-v-{b, c} in G. Then we have
the following lemma.

Lemma 3. [16] For any funnel a-v-{b, c} in graph G, it holds that

α(G) = 1 + α(G†).

We call a funnel a-v-{b, c} in a graph with minimum degree 3 a short funnel if
δ(a) = 3 (resp., δ(a) = 4) and between N(a) \{v} and {b, c} there is at least one
edge (resp., there are at least two edges meeting at the same vertex b or c). In
our algorithm, we will reduce short funnels only and leave some other funnels.

Definition 1. A graph is called a reduced graph if none of the above reduction
operations is applicable.

The algorithm in Figure 1 is a collection of all above reduction operations. When
the graph is not a reduced graph, we can use the the algorithm in Figure 1 to
reduce it and find a part of the solution.

Input: A graph G = (V,E) and the size s of the current partial solution
(initially s = 0).
Output: A reduced graph G′ = (V ′, E′) and the size s′ of a partial solution
S′ with N [S′] ∩ V ′ = ∅ in G.

1. If {Graph G has a component H that is a graph with at most ρ = 28
vertices or the line graph of a (3, 4)-bipartite graph}, return (G′, s′) :=
RG(G −V (H), s+ α(H)).

2. Elseif {There is an unconfined vertex v}, return (G′, s′) := RG(G−v, s).
3. Elseif {There is a twin A = {u, v}}, return (G′, s′) := RG(G�, s+1) for

G� = G−N [A] if N(v) is an independent set, and G� = G/N [A] otherwise.
4. Elseif {There is a short funnel}, return (G′, s′) := RG(G†, s+ 1).
5. Else return (G′, s′) := (G, s).

Fig. 1. The Algorithm RG(G, s)

4 Properties of Vertex-Cuts with Size at Most 2

For a disconnected graph G with a component H , we can solve instances H and
G − V (H) independently. Here we observe a similar property on graphs with
vertex-connectivity 1 and 2.

Let v be a vertex cut in a graph G, which gives a separation (V1, {v}, V2). Let
Gi = G[Vi], i = 1, 2, and V v

1 = V1 \N(v). The induced graph G[V v
1 ] is denoted

by Gv
1 .
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The following theorems provide a divide-and-conquer method for us to find a
maximum independent set in G.

Theorem 1. For subgraphs G1 and Gv
1 defined on a separation (V1, {v}, V2) in

a graph G, it holds
α(G) = α(G1) + α(G�),

where G� = G − V1 if α(G1) = α(Gv
1), and G� = G2 otherwise. A maximum

independent set in a graph G can be constructed from any maximum independent
sets to G1, G

v
1 and G�.

For a separation (V1, {u, v}, V2) of a graph G, let Gi = G[Vi] (i = 1, 2), V v
1 =

V1\N(v), V u
1 = V1\N(u) and V uv

1 = Vi\N({u, v}), i ∈ {1, 2}. The induced graphs
G[V v

1 ], G[V u
1 ] and G[V uv

1 ] are simply denoted by Gv
1 , G

u
1 and Guv

1 respectively.

Let G̃2 denote the graph obtained from G[V2∪{u, v}] by adding an edge uv if v
and u are not adjacent.

Theorem 2. For subgraphs G1, Gv
1, Gu

1 and Guv
1 defined on a separation

(V1, {u, v}, V2) in a graph G, it holds

α(G) = α(G1) + α(G�),

where

G�=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G[V2∪{u,v}] if α(Guv
1 )=α(G1),

G̃2 if α(Guv
1 )<α(Gu

1 )=α(Gv
1)=α(G1),

G[V2 + v] if α(Gu
1 )<α(Gv

1)= α(G1),
G[V2 + u] if α(Gv

1)<α(Gu
1 )= α(G1),

G/(V1∪{u, v}) if α(Guv
1 )+1 = α(G1) and α(Gv

1)<α(G1),
G2 otherwise (α(Guv

1 )+2 ≤ α(G1) and α(Gv
1)<α(G1)).

A maximum independent set in a graph G can be constructed from any maximum
independent sets to G1, G

v
1, G

u
1 , G

uv
1 and G�.

Note that the above divide-and-conquer method can be used to deal with degree-
1 and degree-2 vertices in the graph.

5 Branching Rules

We introduce our branching rules, which will only be applied on a graph that is
reduced and connected component of it is triconnected.

Branching on a Vertex

A simple branching rule is to branch on a single vertex v by considering two
cases: (i) there is a maximum independent set of G which does not contain v;
(ii) every maximum independent set of G contains v. In (ii), it is shown that Iv
is always contained in any maximum independent set of G [16]. Recall that Iv
is the set of all extending grandchildren of v together with v itself.
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Branching on a vertex v means creating two subinstances by excluding v from
the independent set or including Iv to the independent set. In the first branch we
will delete v from the instance whereas in the second branch we will delete N [Iv]
from the instance. Selecting vertices to branch on is important for efficiency of
our algorithms.

A vertex cut Z of size |Z| = 3 is a good vertex cut if there is a separation
(X1, Z,X2) such that

|X1| ≤ 24, δ(X1) ≥ 17 and X1 induces a connected subgraph,

and X1 is maximal under the above two conditions. A pair of nonadjacent ver-
tices u and v is called a good pair if one of u and v is a degree-5 vertex, and u
and v share at least three common neighbors. A funnel a-v-{b, c} is called a good
funnel if vertex a has a neighbor u such that (v, u) is a good pair. The vertices
on which we branch will be chosen as follows:

(i) the vertex is a vertex in a good vertex cut;
(ii) the vertex is a in a good funnel a-v-{b, c}; or
(iii) the vertex is a vertex of maximum degree d ≥ 5.

When we branch on the vertex a of a funnel a-v-{b, c} in (iii), we generate
instance by excluding a or by including Ia. In the first branch, after removing
a, vertex v becomes dominated, and we can include it in a solution. Therefore
we get the following branching rule [16].

Branching on a funnel a-v-{b, c} in a reduced instance G by either including v
or including Ia in the independent set. Hence we generate the two subinstances
by removing either N [v] or N [Ia] from G.

Branching on a Complete Bipartite Subgraph

Lemma 4. Let A and B be two disjoint vertex subsets in a graph G such that
every two vertices a ∈ A and b ∈ B are adjacent. Then either S ∩ A = ∅ or
S ∩B = ∅ holds for any independent set S in G.

Proof. If S ∩ A = ∅ then we are done. If S contains a vertex a ∈ A, then
S ∩N(a) (⊇ S ∩B) is empty.

For a good pair {u, v}, we have a bipartite graph between A = {u, v} and
B = N(u) ∩N(v).

Branching on a good pair {u, v} means branching by either excluding {u, v}
from the independent set or excluding N(u) ∩N(v) from the independent set.

6 The Algorithm and Results

6.1 Framework for Analysis

We apply the Measure and Conquer method [4] to analyze our algorithm. In
this method, we introduce a weight to each vertex in the graph according to



An Exact Algorithm for MIS in Degree-5 Graphs 79

the degree of the vertex, w : Z+ → R+ (where Z+ and R+ denote the sets of
nonnegative integers and nonnegative reals, respectively): we denote by wi the
weight w(v) of a vertex v of each degree i ≥ 0 and let Δwi = wi − wi−1 for
i ≥ 1. We will set vertex weight such that: Δw5 ≤ Δwi for i ≥ 3, vertices of
higher degree receive a larger weight (i.e., Δwi ≥ 0), the problem can be solved
in polynomial time when μ(G) ≤ 0, and the weight of each vertex in the initial
graph G is not greater than 1 (i.e., μ(G) ≤ n). Then we adopt μ(G) =

∑
iwini

as the measure of the graph G. To analyze our algorithm, we will construct a
recurrence related to the measure μ = μ(G) for each branch in our algorithm
and analyze a bound for the worst ones.

For each branch operation, we will generate two subinstances G1 and G2

by deleting some vertices from the graph. After deleting some vertices, we can
reduce the measure from two parts: the weight of the vertices being deleted and
partial weight of the vertices adjacent to the deleted vertices since their degree
will decrease. Let t(i) be a lower bound on the decrease of the measure in the
subinstance (i.e., μ(G) − μ(Gi) ≥ t(i)). Then we get the recurrence C(μ) ≤
C(μ − t(1)) + C(μ − t(2)). The unique positive real root of the function f(x) =
1 − x−t(1) − x−t(2) is called the branching factor of the above recurrence. Let
τ be the maximum branching factor among all branching factors in the search
tree. Then C(μ) = τw . Readers are referred to [6] for more details about the
analysis.

The most important and complicated case in our algorithm is to branch on a
vertex v of maximum degree. Let Δout(v) and Δin(v) to denote the decrease of
the measure of μ in the branches of excluding v and including Iv, respectively.
We get recurrence C(μ) = C(μ−Δout(v)) +C(μ−Δin(v)). We give more details
about lower bounds on Δout(v) and Δin(v). Let ki denote the number of degree-i

neighbors of v. Then d =
∑d

i=3 ki. For the first branch, we get

Δout(v) = wd +

d∑
i=3

kiΔwi.

In the second branch, we will delete N [Iv] from the graph. Let Δ(N [v]) denote
the decrease of weight of vertices in V (G) \ N [v] by removing N [Iv] from G
together with possibly weight decrease attained by reduction operations applied
to G−N [Iv]. Then we have

Δin(v) ≥ wd +

d∑
i=3

kiwi +Δ(N [v]).

We can branch on a vertex v of degree d with recurrence

C(μ) = C(μ−Δout(v)) + C(μ−Δin(v))

≤ C(μ−(wd +
∑d

i=3 kiΔwi) + C(μ−(wd +
∑d

i=3 kiwi +Δ(N [v]))).
(1)
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In our algorithm, we carefully select a vertex of maximum degree to branch
on so that the worst recurrence (1) is as good as possible. To do so, we need to
analyze lower bounds on Δ(N [v]) when the maximum degree of the graph is 5. If
no vertex in N2(v) is adjacent to two vertices in N1(v), then Δ(N [v]) ≥ fvΔw5,
since we assume that Δw5 ≤ Δwi for i ≥ 3. Otherwise, we have the following
lower bound based on our weight setting (the proof can be found in the full
version of this paper):

Δ(N [v]) ≥ fvΔw5 + gv(Δw4 −Δw5). (2)

When N∗(v) 
= ∅ (v has some extending children), the above bound may not be
good enough since fv may be small. For this case, N [Iv] will be removed from
the graph in the second branch and Δ(N [v]) can reach a desired bound.

6.2 The Algorithm

Our algorithm is simple in the sense that it consists of branching on three kinds
of vertices and branching on good pairs except for how to select vertices of
maximum degree 5 to branch on. A reduced degree-5 graph is a proper graph if
it has neither good vertex cuts nor good pairs and each connected component of
it has vertex connectivity at least 3. In fact, branching on a vertex v of maximum
degree 5 in a proper graph will be bottlenecks in the analysis for the running time
bound of our algorithms. We here identify degree-5 vertices v in proper graphs
branching on which would efficiently reduce the current instance in terms of the
degrees of neighbors of v. These vertices are called optimal vertices.

For a degree-5 vertex v in a proper graph, let k(v) = (k3, k4, k5), where ki is
the number of degree-i neighbors of v (i = 3, 4, 5).

The vertex v is called effective if one of the following (a)-(f) holds:

(a) (fv, gv) ≥ (14, 0), (12, 3) or (10, 5), for (k4, k5) = (0, 5);
(b) (fv, gv) ≥ (13, 0) or (11, 2), for (k4, k5) = (1, 4);
(c) (fv, gv) ≥ (12, 0) or (10, 2), for (k4, k5) = (2, 3);
(d) (fv, gv) ≥ (11, 0), for (k4, k5) = (3, 2);
(e) (fv, gv) ≥ (12, 0) or (10, 1), for (k4, k5) = (4, 1); and
(f) (fv, gv) ≥ (10, 0), for (k4, k5) = (5, 0).

Lemma 5. Let G be a proper graph with at least one degree-5 vertex. Assume
that N∗(u) = ∅ for all degree-5 vertices in G and that no degree-5 vertex is
adjacent to a degree-3 vertex. Then there exists an effective vertex in G.

A degree-5 vertex v in a proper graph is called optimal if either (1) k3 ≥ 1 or
(2) there is no degree-5 vertex adjacent to a degree-3 vertex, and v is effective
or it holds N∗(v) 
= ∅. Our algorithm for MIS-5 is described in Figure 2.
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Input: A graph G.
Output: The size of a maximum independent set in G.

1. If {Graph G has a vertex cut v with a separation (V1, {v}, V2) such that
δ≥3(V1) ≤ δ≥3(V2)}, return MIS5(G[V1]) + MIS5(G

�).
2. Elseif {Graph G has a vertex cut {u, v} with a separation (V1, {u, v}, V2)
such that δ≥3(V1) ≤ δ≥3(V2)}, return MIS5(G[V1]) + MIS5(G

�).
3. Else Let (G, s) := RG(G, 0).
4. If {G has a vertex of degree ≥ 6}, pick up a vertex v of maximum degree,
and return s+max{MIS5(G−v), |Iv|+MIS5(G−N [Iv ])}.

5. Elseif {G has a good vertex cut}, pick up a vertex v in a good vertex cut,
and return s+max{MIS5(G−v), |Iv|+MIS5(G−N [Iv ])}.

6. Elseif {G has a good funnel a-v-{b, c}, return s + max{1 + MIS5(G −
N [Ia]), 1 +MIS5(G−N [v])}.

7. Elseif{G has a good pair (u, v)}, return s + max{MIS5(G −
{u, v}),MIS5(G−N(u) ∩N(v))}.

8. Elseif {G has a degree-5 vertex}, pick up an optimal degree-5 vertex v,
and return s+max{MIS5(G−v), |Iv|+MIS5(G−N [Iv ])}.

9. Else {G is a degree-4 graph}, use the algorithm for MIS-4 in [17] to solve
the instance G and return s+ α(G).

Note: With a few modifications, the algorithm can deliver a maximum inde-
pendent set.

Fig. 2. Algorithm MIS5(G)

6.3 The Result

In our algorithm, we set vertex weight as follows

wi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i = 0, 1 and 2
0.5091 for i = 3
0.8243 for i = 4

1 for i = 5
1.5091 for i = 6
1.7482 for i = 7
1.9722 for i = 8

w8 + (i − 8)(w5−w4) for i ≥ 9.

(3)

Lemma 6. With the vertex weight setting (3), each recurrence generated by the
algorithm in Figure 2 has an amortized branching factor not greater than 1.1737.

The main idea of the proof is given in the next section. From Lemma 6 we know
that the size of the search tree generated by our algorithm is not greater than
1.1737μ, where μ is not greater than the number n of vertices in the initial graph
since it has maximum degree 5.

Theorem 3. A maximum independent set in a degree-5 graph of n vertices can
be found in O∗(1.1737n) time.
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7 Framework for the Proof of Lemma 6

To prove Lemma 6, we need to analyze each step of our algorithm and find out
the worst recurrences generated by them under the weight setting (3). A full
proof of the analytical lemma can be found in the full version of this paper [18].
Here we give some main lemmas used to prove it.

Under the vertex weight setting (3), we can verify that

Lemma 7. wi+wj ≥ wi+j−2 holds for all i, j ≥ 1, and wi+wj ≥ wi+j−2+Δw5

if i + j − 2 ≤ 5.

Based on Lemma 7, we can show that the measure never increases in RG(G, s).

Lemma 8. The measure μ of a graph G never increases in RG(G, s). Moreover
μ decreases by at least Δw5 after any step in RG(G, s) if the maximum degree
decreases by at least one after this step.

Next, we will analyze the recurrences created in each step of the algorithm
MIS5(G).

Lemma 9. The divide-and-conquer process in Steps 1 and 2 of MIS5(G) will
not generate a recurrence with branching factor greater than 1.1737.

Lemma 10. None of branching on a vertex of maximum degree ≥ 6 in Step 4,
branching on a vertex in a good vertex cut in Step 5, branching on a good funnel
in Step 6, and branching on a good pair in Step 7 of MIS5(G) will generate a
recurrence with branching factor greater than 1.1737.

After Step 7 of MIS5(G), the graph is a proper graph if it still has some vertices
of degree 5. We can prove that

Lemma 11. Let v be an optimal degree-5 vertex in a proper graph G. Then it
holds

Δ(N [v]) ≥ λ(k3, k4, k5),

where

λ(k3, k4, k5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

14Δw5 if (k3, k4, k5) = (0, 0, 5)
9Δw5+2Δw4 if (k3, k4, k5) = (0, 1, 4)
8Δw5+2Δw4 if (k3, k4, k5) = (0, 2, 3)
9Δw5+Δw4 if (k3, k4, k5) = (0, 4, 1)

11Δw5 if (k3, k4, k5) = (0, 3, 2)
10Δw5 if (k3, k4, k5) = (0, 5, 0)

2w3 + 6Δw5 if k3 ≥ 2 and N(v) \N∗(v) contains
no degree-3 neighbor of v

10Δw5 if k3 = 1 or N(v) \N∗(v) contains
a degree-3 neighbor of v.

Based on a refined analysis of (1) and Lemma 11, we can prove that
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Lemma 12. Branching on an optimal degree-5 vertex in Step 8 of MIS5(G)
will not generate a recurrence with branching factor greater than 1.1737 (with
amortization).

When the graph becomes a graph of degree ≤ 4, the algorithm will use the
O∗(1.1376n)-time algorithm for MIS-4 in [17] to solve it in Step 9. We can verify
that under (3), the step is also good enough to get the bound of 1.1737.
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7. Fürer, M.: A faster algorithm for finding maximum independent sets in sparse
graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 491–501. Springer, Heidelberg (2006)

8. Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem.
IEEE Transactions on Computers 35(9), 847–851 (1986)

9. Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple indepen-
dent set algorithm. In: Kannan, R., Kumar, K.N. (eds.) FSTTCS 2009, Dagstuhl,
Germany. LIPIcs, vol. 4, pp. 287–298 (2009)

10. Razgon, I.: Faster computation of maximum independent set and parameterized
vertex cover for graphs with maximum degree 3. J. of Discrete Algorithms 7(2),
191–212 (2009)

11. Robson, J.: Algorithms for maximum independent sets. J. of Algorithms 7(3),
425–440 (1986)

12. Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM J. on
Computing 6(3), 537–546 (1977)

13. West, D.: Introduction to Graph Theory. Prentice Hall (1996)
14. Xiao, M., Chen, J.E., Han, X.L.: Improvement on vertex cover and independent

set problems for low-degree graphs. Chinese J. of Computers 28(2), 153–160 (2005)
15. Xiao, M.: A simple and fast algorithm for maximum independent set in 3-degree

graphs. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942,
pp. 281–292. Springer, Heidelberg (2010)

16. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: A simple
maximum independent set algorithm in degree-3 graphs. Theoretical Computer
Science 469, 92–104 (2013)

17. Xiao, M., Nagamochi, H.: A refined algorithm for maximum independent set
in degree-4 graphs. Technical report 2013-002, Department of Applied Mathe-
matics and Physics, Graduate School of Informatics, Kyoto University (2013),
http://www.amp.i.kyoto-u.ac.jp/tecrep/abst/2013/2013-002.html

18. Xiao, M., Nagamochi, H.: An Exact Algorithm for Maximum Independent Set
in Degree-5 Graphs. Technical report 2013-003, Department of Applied Math-
ematics and Physics, Graduate School of Informatics, Kyoto University (2013),
http://www.amp.i.kyoto-u.ac.jp/tecrep/abst/2013/2013-003.html

http://www.amp.i.kyoto-u.ac.jp/tecrep/abst/2013/2013-002.html
http://www.amp.i.kyoto-u.ac.jp/tecrep/abst/2013/2013-003.html


FWLS: A Local Search for Graph Coloring

Wei Wu1, Chuan Luo1, and Kaile Su2,3

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronic Engineering and Computer Science,

Peking University, Beijing, China
wuwei eecs@pku.edu.cn, chuanluosaber@gmail.com

2 College of Mathematics Physics and Information Engineering,
Zhejiang Normal University, Jinhua, China

3 Institute for Integrated and Intelligent Systems,
Griffith University, Brisbane, Australia

kailepku@gmail.com

Abstract. Local search (LS) is a widely used, general approach for
solving hard combinatorial search problems, such as the graph coloring
problem (GCP). One main advantage of this method is that effective
heuristics for a problem may lead to improvements in solving other prob-
lems. Recently, it has been shown that an initial LS algorithm for the
Boolean satisfiability problem (SAT) called WalkSAT is extremely ef-
fective for random SAT instances. Thus, it is interesting to apply the
heuristics in WalkSAT to GCP. This paper proposes a random walk
based heuristic, which is inspired by WalkSAT but differs in the tie-
breaking mechanism. This new heuristic leads to a new LS algorithm for
GCP namely FWLS. The experiments on the DIMACS benchmark show
that FWLS finds optimal (or best known) solutions for most instances.
Also, when compared to other GCP algorithms, including a greedy one,
an LS one and a hybrid one, FWLS exhibits very competitive or better
performance.

1 Introduction

The graph coloring problem (GCP) is a prominent NP-hard problem [1]. Given an
undirected graph G = (V,E) with a set V of vertices and a set E of edges, the
task is to color each vertex of G in such a manner that there exist no two adjacent
vertices with the same color. GCP is to minimize the number of colors used, and
the minimum number of colors is called chromatic number χ of G, χ(G).

GCP has many practical applications such as frequency assignments, register
allocations, timetabling, satellite range scheduling as well as manufacturing [2–6].
Due to its significance in applications, many methods have been proposed to solve
GCP. The elaborated exact methods can find optimal colorings, but they are all
time-consuming and not applicable. Thus, heuristic and metaheuristic methods
have been developed to find optimal solutions on larger instances. Heuristic and
metaheuristic methods can be divided into three categories: greedy constructive
algorithms, local search (LS) algorithms and hybrid algorithms which combine

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 84–93, 2013.
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an LS method with an evolutionary algorithm. A greedy constructive algorithm
colors vertices successively following some rule used for choosing the next vertex
to be colored. Famous greedy algorithms include DSATUR [9] and RLF [29] pro-
posed by Brélaz and Leighton respectively in 1979. An LS algorithm starts from
a solution (proper or improper) of the given problem, and then iteratively moves
from the current solution to a neighboring one in the subsequent search steps to
find better solutions measured by an appropriate object function. The neighbor-
hood N(S) of a solution S is a set of solutions which are largely close to S and
can be easily obtained. An evolutionary algorithm is mainly built on population-
based algorithms such as genetic algorithms and ant algorithms, which simulate
biologic characteristics added to some strategies to diversify solutions such that
algorithms are able to escape from local optima. So far in the field of GCP, LS
algorithms and evolutionary algorithms are best studied [7, 8, 11, 12, 17–24, 28].
Additionally, one significant strategy called tabu, in which some neighbors would
be forbidden to visit in the next several moves, is also widely used in GCP since
Hertz and de Werra proposed Tabucol in 1987 [7], giving rise to many improved
algorithms [8, 21–24].

The satisfiability problem (SAT), another well-known NP-hard problem, is to
determine for a given propositional formula in conjunctive normal form (CNF)
with variables {x1, x2, ...xN} whether there is an assignment for the variables
such that all clauses are satisfied [1]. A well-known LS algorithm for SAT is the
WalkSAT algorithm, which only focuses on the variables to be flipped from the
unsatisfied clauses contributing to narrowing the flip, and then makes greedy or
random flips with a fixed probability, breaking ties at random [26]. S.Bounkong
et al. made use of a hybrid algorithm combining WalkSAT with GSAT to solve
graph-coloring-like problem, i.e., maximizing the number of colors at one edge
distance of any vertex in the random graphs [27]. In this paper, we propose Fo-
cused Walk based Local Search (FWLS), which is inspired by WalkSAT. FWLS
chooses an uncovered vertex greedily or randomly, breaking ties by heuristic in-
formation age instead of random, i.e., selecting the least recent uncolored vertex
in several equivalent ones [25]. Experiments on the graphs of DIMACS challenge
benchmark show that FWLS achieves competitive results compared with three
algorithms including a greedy one, an LS one and a hybrid one. From the exper-
imental results, our algorithm is able to find the known optimal solutions or the
current optimal ones which are obtained by some other algorithms for most of
graphs, and also to gain solutions largely close to the current optimal ones for
other graphs.

The paper is organized as follows. In section 2, we give some definitions and
notations. Section 3 describes the FWLS algorithm, and the experimental results
are reported and compared with some other algorithms in Section 4. Finally, we
summarize our work and give future directions in Section 5.

2 Preliminary

A graph G = (V,E) consists of a set of vertices V = {v1, v2, ..., vn}, and a set
of edges E ⊆ V × V . Given an integer k, the k-coloring problem is to find a
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partition of V into {C1, C2, ..., Ck}, called color classes, each of which stands for
a kind of color such that any two vertices in the same color class have no shared
edge. Formally, a mapping F : V (G)→ {C1, C2, ..., Ck} is called an assignment
F .

If there exists a partition with the size of k which meets the constraints
of GCP, i.e., all vertices in G can be mapped to a value of color class through
mapping F , we call it a proper k-coloring. Otherwise, this is an improper coloring
containing conflicts in which two adjacent vertices x and y belong in the same
color class, i.e., ∃x∃y ((x, y) ∈ E ∧ F (x) = F (y)), and the two vertices are called
conflicting vertices.

3 Focused Walk Based Local Search for Graph Coloring

GCP is a combinatorial optimization problem, but it can be solved from the point
view of constraint satisfaction by determining whether there exists a solution for
k-coloring problem [28]. If a proper k-coloring is found, the algorithm can be
restarted to solve the (k− 1)-coloring problem until no proper k-coloring can be
found. Therefore, the paper focuses on the k-coloring problem.

3.1 Basic Notation and Definitions

Definition 1. A partial k-coloring of graph G = (V,E) consists of k disjoint

color classes, C1, C2, ..., Ck, and a set Δ = V \
⋃k

i=1 Ci, called conflict set, where
the set composed of C1, C2, ..., Ck is a proper k-coloring for subgraph induced by
vertices from C1, C2, ..., Ck.

In the above definition, each vertex v ∈ V exactly belongs to one set of
C1, C2, ..., Ck, Δ. If v ∈ Ci, v is labeled color i. Also if v ∈ Δ, v has not been
colored temporarily. Thus, a proper k-coloring is proper if and only if Δ is ∅.
From the viewpoint of mapping, uncolored vertices are mapped to Δ. According
to the definition of proper k-coloring, the object function is to minimize the size
of Δ, and the optimum is 0.

Besides, we use a tuple <v, color, conflictNum> to indicate the number of
conflicts conflictNum between the uncolored vertex v and the color class Ccolor

if v is colored with color. Meanwhile, each uncolored vertex contains a variable
age related to its tuple, which records steps that have occurred since the vertex
entered Δ recently or its color in tuple was changed.

During the search procedure, FWLS always maintains a current partial k-
coloring. Each step to a neighboring solution is to choose one vertex v fromΔ and
put it into one color class Ci. As this action would cause conflicts, some vertices
in Ci may enter Δ which are adjacent to v, ensuring that the k color classes
are always proper. And the tuple <v, color, conflictNum> greedily records a
kind of color with the smallest number of conflicts except the color which the
vertex v owned recently. Evidently, FWLS prefers to color a certain vertex which
produces the smallest number of conflict vertices.
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There is a parameter noise p in FWLS used for selecting greedily or randomly
when no vertices with conflictNum = 0 [16, 14, 13, 10]. With the probability
p it chooses one vertex with the smallest number of conflicts from Δ greedily;
otherwise, it chooses one randomly.

3.2 The FWLS Algorithm

The core idea of FWLS is to find a partial k-coloring that can be extended to a
proper k-coloring through moving vertices from Δ to some color class Ci, and
eliminating conflicting vertices in Ci. At first, FWLS completes the initialization
for k color classes and Δ by a simple method (lines 3-4). We choose a vertex in
an ascending order by the serial number of vertex and put it into a Ci with the
smallest possible i such that the Ci is still proper. If no such Ci exists, the vertex
is placed into Δ. Then FWLS starts to initialize age to 0 in Δ and compute
the best value of tuple <v, color, conflictNum> for each vertex, during which
FWLS tries to endow all vertices in Δ with each color, calculates conflictNum
of vertices in corresponding to color and selects the color with the smallest
conflictNum.

After initialization, FWLS proceeds to extend the partial k-coloring by focus-
ing on Δ. Δ are divided into two categories according to whether there exist
vertices with conflictNum = 0 in it. If Δ has such vertices, FWLS selects one
of them to intensify the current optimum; otherwise, it indicates that FWLS is
trapped into a local optimum, and requires diversifying, for example, by pertur-
bations.

This is a crucial step to escape from local optima. When there exist no vertices
with conflictNum = 0 which decrease Δ obviously, this situation indicates that
FWLS gets stuck in local minima. In this case, FWLS introduces a parameter
noise p which determines how often non-greedy steps are taken into consideration
during LS. During the diversification stage, with probability p, FWLS chooses a
vertex from Δ at random, and in the remaining case it selects a vertex with the
smallest number of conflictNum as before, which makes the increment of the
size of Δ as least as possible (lines 9-15).

Note that when selecting a vertex with the minimum conflictNum, if there
are more than one vertices with the equal minimum conflictNum, FWLS breaks
ties as follows. A vertex owning larger age shows that it has been neglected for
long, so FWLS will select it to strengthen diversification. But in WalkSAT, it
insists on choosing randomly to break ties as before being trapped into a local
optimum.

After coloring a certain vertex, FWLS updates Δ accordingly. Then, it in-
creases age by 1 for the existing vertices whose colors in tuples are not still
changed and sets them to 0 for the added vertices and the existing vertices
owing the modified color in Δ (lines 16-18). When updating the existing ver-
tices, FWLS takes full advantage of tuple information in Δ: if a vertex stores
color in its tuple which is not given to the selected vertex, FWLS will compare
conflictNum produced by the two colors directly and select the less one; oth-
erwise, FWLS firstly modifies conflictNum in corresponding to this color, and
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then traverses the remaining color classes and chooses the smallest values from
them. Hence, FWLS repeats the steps of selecting and eliminating vertices until
it seeks out a proper k-coloring or reaches the step limit. If FWLS finds a proper
k-coloring, it outputs the solution; otherwise it declares Unknown.

Based on the above description, we outline the FWLS algorithm as Algorithm
1, and give further comments on the algorithm below.

Algorithm 1. FWLS

1 FWLS(G,maxStep)
Input: Graph G, maxSteps
Output: A proper k-coloring α of G or Unknown

2 begin
3 generate a proper partial k-coloring α;
4 compute < v, color, conflictNum > for each uncolored vertex in conflict set

Δ; initialize age as 0 for each uncolored vertex;
5 for step ← 1 to maxStep do
6 if α is a proper k-coloring then return α;
7 if there exist vertices with conflictNum = 0 in Δ then
8 select it, breaking ties by preferring the largest age;

9 else if with the fixed probability p then
10 select a vertex randomly in Δ,
11 eliminate vertices colliding with this added one and put them in Δ;

12 else
13 select a vertex with the largest conflictNum,
14 breaking ties by preferring the largest age,
15 eliminate vertices colliding with this added one and put them in Δ;

16 update Δ, compute the optimal tuples,
17 increase age by 1 for the unchanged tuples in Δ
18 and set age to 0 for the added vertices and changed tuples;

19 return Unknown;

FWLS keeps a balance between intensification and diversification. In each
step, the vertex to be colored is chosen in accordance with heuristic information
from the tuple <v, color, conflictNum>; otherwise, one vertex is selected ran-
domly. In addition, FWLS utilizes old-priority strategy to break ties when faced
with several equal-conflictNum vertices, which prefers the least recent uncolored
vertex. To obtain more diversification, FWLS also takes a random step when
trapping into local optima.

4 Experimental Results

In this section, we present intensive experimental results of FWLS algorithm on
the well-known DIMACS coloring benchmark given at the COLOR02 workshop1.

1 http://mat.gsia.cmu.edu/COLOR02/

http://mat.gsia.cmu.edu/COLOR02/
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The algorithm is implemented in C++ and statically compiled by g++ with the
‘-O2’ option on a machine with Intel Core i7 1.6GHz and 8GB RAM under Linux.
Further, we run a benchmark program (dfmax) together with a benchmark in-
stance (r500.5) in the COLOR02 workshop, and our machine reports a user time
of 7.32s on r500.5.

We test all graphs from DIMACS, and find that FWLS is able to get good
performance of most graphs, including series of “DSJC”, “flat”, “fpsol”, “inithx”,
“le”, “mugg”, “mulsol”, “myciel”, “qg.order”, “queen”, “wap”and “zeroin”, as
well as three independent instances such as “will199GPIA”, “school1 nsh”and
“school1”. For all instances, the parameter noise p is set to 0.5 for FWLS, and we
run FWLS 20 times on each instance, terminating upon either finding a proper
k-coloring or exceeding a given cutoff time which is set to 3800 seconds.

We compare FWLS with some other heuristic algorithms proposed by Daniel
et al. (DS), a greedy algorithm [9], Michael et al. (ES), an LS algorithm [11],
and Philippe et al. (AMA), a hybrid algorithm [12]. We list the best solutions
of these algorithms, the number of successful runs (‘#suc’) as well as average
time (‘avg time’) for each instance for FWLS in Table 1. Table 1 also shows the
number |V | of vertices, the known chromatic number χ, and the value k∗ which
is the current smallest k found by some algorithm. However, because the authors
of these three algorithms did not provide binary codes for their algorithms and
information on computing time for the benchmark instance, we cannot compare
time with these algorithms, and give only results of tests from their papers and
our experiments so that the reader can have a baseline for these algorithms.

Of the 76 test instances solved with FWLS, there are 45 instances with exact
χ for which FWLS is able to find the corresponding optima except graphs of
“flat1000 76 0”, “le450 15a”, “le450 15b”, “le450 25c”and “le450 25d”, and we
list the current optimal solution for other instances found by other algorithms.
One thing to be noted that FWLS finds the optima for “flat1000 28 0”using 28
colors, which is the fourth algorithm to solve this special graph [8, 30, 31].

Table 1. Comparison of four algorithms

Graph |V | χ, k∗ DS ES AMA FWLS #suc avg time(sec)
DSJC125.1 125 ?,5 6 6 5 5 19/20 0
DSJC125.5 125 ?,17 21 21 17 17 20/20 4.05
DSJC125.9 125 ?,44 50 48 44 45 7/20 0.05
DSJC250.1 250 ?,8 10 10 8 8 20/20 0.3
DSJC250.5 250 ?,28 38 36 28 29 19/20 3.21
DSJC250.9 250 ?,72 91 82 72 73 2/20 1
DSJC500.1 500 ?,12 16 15 12 13 20/20 0.1
DSJC500.5 500 ?,48 67 61 48 51 11/20 2116.27
DSJC500.9 500 ?,126 161 156 126 128 1/20 243
DSJC1000.1 1000 ?,20 26 26 20 21 1/20 1046
DSJC1000.5 1000 ?,83 114 111 84 92 14/20 2141.64
DSJC1000.9 1000 ?,222 297 289 224 227 1/20 1034
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Table 1. (continued)

Graph |V | χ, k∗ DS ES AMA FWLS #suc avg time(sec)
flat300 26 0 300 26,26 41 - 26 26 20/20 0.15
flat300 28 0 300 28,28 41 - 31 28 4/20 2627
flat1000 50 0 1000 50,50 112 - 50 50 20/20 3.65
flat1000 60 0 1000 60,60 113 - 60 60 20/20 11.25
flat1000 76 0 1000 76,82 114 - 84 90 1/20 1450
fpsol2.i.1 496 65,65 65 - 65 65 20/20 0
fpsol2.i.2 451 30,30 30 - 30 30 20/20 0
fpsol2.i.3 425 30,30 30 - 30 30 20/20 0
inithx.i.1 864 54,54 54 - 54 54 20/20 0
inithx.i.2 645 31,31 31 - 31 31 20/20 0
inithx.i.3 621 31,31 31 - 31 31 20/20 0
le450 5a 450 5,5 10 5 5 5 20/20 0.05
le450 5b 450 5,5 9 5 5 5 20/20 0.15
le450 5c 450 5,5 6 5 5 5 20/20 0
le450 5d 450 5,5 11 5 5 5 20/20 0
le450 15a 450 15,15 16 18 15 16 20/20 0.05
le450 15b 450 15,15 16 18 15 16 19/20 0.37
le450 15c 450 15,15 24 25 15 15 20/20 0.2
le450 15d 450 15,15 24 26 15 15 20/20 0.2
le450 25a 450 25,25 25 26 25 25 18/20 0.05
le450 25b 450 25,25 25 26 25 25 18/20 0
le450 25c 450 25,25 29 32 26 26 1/20 3615
le450 25d 450 25,25 28 31 26 26 4/20 3049.75
mugg88 1 88 4,4 4 - 4 4 20/20 0
mugg88 25 88 4,4 4 - 4 4 20/20 0
mugg100 1 100 4,4 4 - 4 4 20/20 0
mugg100 25 100 4,4 4 4 4 4 20/20 0
mulsol.i.1 49 49,49 49 - 49 49 20/20 0
mulsol.i.2 31 31,31 31 - 31 31 20/20 0
mulsol.i.3 31 31,31 31 - 31 31 20/20 0
mulsol.i.4 31 31,31 31 - 31 31 20/20 0
mulsol.i.5 31 31,31 31 - 31 31 20/20 0
myciel3 11 4,4 4 - 4 4 20/20 0
myciel4 23 5,5 5 - 5 5 20/20 0
myciel5 47 6,6 6 6 6 6 20/20 0
myciel6 95 7,7 7 7 7 7 20/20 0
myciel7 191 8,8 8 8 8 8 20/20 0

qg.order30 900 30,30 - - - 30 20/20 0
qg.order40 1600 40,40 - - - 40 20/20 0.1
qg.order60 3600 60,60 62 - - 60 20/20 0
qg.order100 10000 100,100 103 - 100 100 20/20 68
queen5 5 25 ?,5 5 - 5 5 20/20 0
queen6 6 36 ?,7 9 - 7 7 20/20 0
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Table 1. (continued)

Graph |V | χ, k∗ DS ES AMA FWLS #suc avg time(sec)
queen7 7 49 ?,7 10 - 7 7 20/20 0
queen8 8 64 ?,9 12 10 9 9 20/20 0.1
queen8 12 96 ?,12 13 13 12 12 20/20 0
queen9 9 81 ?,10 14 11 10 10 20/20 0

queen10 10 100 ?,11 13 13 11 11 19/20 0.21
queen11 11 121 ?,11 15 14 11 12 20/20 0.5
queen12 12 144 ?,12 15 15 13 13 20/20 2.8
queen13 13 169 ?,13 17 16 14 14 20/20 0.8
queen14 14 196 ?,14 18 17 15 15 20/20 699.9
queen15 15 225 ?,15 19 19 16 16 13/20 301.69
queen16 16 256 ?,16 21 19 17 18 20/20 0.05
school1 385 14,14 17 - 14 14 20/20 0

school1 nsh 352 ?,14 25 14 14 14 20/20 0
wap01a 2368 ?,? 46 - 45 43 4/20 810.75
wap02a 2464 ?,? 45 - 44 43 9/20 891.44
wap03a 4730 ?,? 54 - 53 46 1/20 266
wap04a 5231 ?,? 48 - 48 48 6/20 3.67

will199GPIA 701 ?,7 7 - 7 7 20/20 0
zeroin.i.1 211 49,49 49 - 49 49 20/20 0
zeroin.i.2 211 30,30 30 - 30 30 20/20 0
zeroin.i.3 206 30,30 30 - 30 30 20/20 0

FWLS gets either the optima or the current optimal solution, or outperform
the three algorithms for 56 instances, and they are highlighted in bold in Table
1. There exist some instances for which FWLS cannot seek out optima, but find
solutions extremely close to the corresponding optima or the current solution
within a second. And for the remaining instances, FWLS obtains worse solutions
than the optima or the current solutions.

From the viewpoint of instance type, FWLS can obtain significantly good per-
formance on series of “fpsol”, “inithx”, “mugg”, “mulsol”, “myciel”, “zeroin”and
“qg.order”as well as an instance “school1”for which our algorithm can find the
corresponding optima in one hundred percent accuracy within a second (avg
time is 0 in Table 1 because the machine runs quickly and cannot recognize
error). Additionally, FWLS is also able to have good effect on series of “flat”,
“le”, “queen”and “wap”plus an instance “school1 nsh”, and it finds the current
optimal solutions for most of them. Nevertheless, FWLS cannot be appropriate
for DSJC graphs, especially the large and dense instances. There exist relatively
large gaps between the current optimal solutions and ones found by FWLS, and
additionally, the success rate and run time are not good.
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Shown from this table, we can see that FWLS outperforms DS and ES, espe-
cially on DSJC graphs. As the number of nodes increases, the effect of FWLS
goes evidently. Although FWLS performs worse than AMA on DSJC graphs, it
performs best on flat300 28 0 and wap graphs.

5 Conclusion and Future Work

We propose a new LS algorithm named FWLS which resembles WalkSAT, but
differs in the tie-breaking mechanism. While WalkSAT breaks ties randomly,
FWLS does it by preferring the least recent uncolored vertex. Our algorithm
focuses on the uncolored vertices, aggregating them in a set called conflict set.
Each uncolored vertex contains age used to record experience of time in conflict
set, and a tuple <v, color, conflictNum> which greedily stores the current opti-
mal color and the number of corresponding conflicts between itself and vertices
with this optimal color. Our experiments show that FWLS obtains better results
than some other heuristic and metaheuristic algorithms, finding the known or
current optima for most of the instances.

For future work, some further experiments will be conducted to analyze the
differences of performance between FWLS and WalkSAT in depth. For proving
the importance of tie-breaking mechanism, we would like to test more mecha-
nisms on all graphs from DIMACS. On the other hand, we would also like to
improve FWLS by taking dynamic noise in accordance with the present situa-
tion of conflict set [13–16], and we will take an attempt to other methods such
as the Novelty families, which are evolved from WalkSAT [15].
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tional Natural Science Foundation of China (61073033, 61003056 and 60903054).
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Abstract. The paper investigates relationship between algebraic ex-
pressions and graphs. We consider a digraph called a square rhomboid
that is an example of non-series-parallel graphs. Our intention is to sim-
plify the expressions of square rhomboids and eventually find their short-
est representations. With that end in view, we describe the new algorithm
for generating square rhomboid expressions based on the decomposition
method.

1 Introduction

A graph G = (V,E) consists of a vertex set V and an edge set E, where
each edge corresponds to a pair (v, w) of vertices. A graph G′ = (V ′, E′) is
a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. A graph G is a homeo-
morph of G′ if G can be obtained by subdividing edges of G′ with new ver-
tices. We say that a graph G2 = (V,E′) is a square of a graph G = (V,E)
if E′ = {(u,w) : (u,w) ∈ E ∨ ((u, v) ∈ E ∧ (v, w) ∈ E) for some v ∈ V }. A two-
terminal directed acyclic graph (st-dag) has only one source and only one sink.

We consider a labeled graph which has labels attached to its edges. Each
path between the source and the sink (a sequential path) in an st-dag can be
presented by a product of all edge labels of the path. We define the sum of
edge label products corresponding to all possible sequential paths of an st-dag
G as the canonical expression of G. An algebraic expression is called an st-dag
expression (a factoring of an st-dag in [2]) if it is algebraically equivalent to the
canonical expression of an st-dag. An st-dag expression consists of literals (edge
labels), and the operators + (disjoint union) and · (concatenation, also denoted
by juxtaposition). An expression of an st-dag G will be hereafter denoted by
Ex(G).

We define the total number of literals in an algebraic expression as the com-
plexity of the algebraic expression. An equivalent expression with the minimum
complexity is called an optimal representation of the algebraic expression. We
consider expressions with a minimum (or, at least, a polynomial) complexity as
a key to generating efficient algorithms on distributed systems.

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 94–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. A series-parallel graph

A series-parallel graph is defined recursively so that a single edge is a series-
parallel graph and a graph obtained by a parallel or a series composition of
series-parallel graphs is series-parallel. As shown in [2] and [10], a series-parallel
graph expression has a representation in which each literal appears only once.
This representation is an optimal representation of the series-parallel graph ex-
pression. For example, the canonical expression of the series-parallel graph pre-
sented in Figure 1 is abd+ abe+ acd+ ace+ fe+ fd. Since it is a series-parallel
graph, the expression can be reduced to (a(b+ c) + f)(d+ e), where each literal
appears once.

A Fibonacci graph [7] has vertices {1, 2, 3, . . . , n} and edges {(v, v + 1) | v =
1, 2, . . . , n − 1} ∪ {(v, v + 2) | v = 1, 2, . . . , n− 2}. As shown in [4], an st-dag is
series-parallel if and only if it does not contain a subgraph which is a home-
omorph of the forbidden subgraph positioned between vertices 1 and 4 of the
Fibonacci graph illustrated in Figure 2. Thus a Fibonacci graph gives a generic
example of non-series-parallel graphs.

� � � � � � � � �

1 2 3 4 n-3 n-2 n-1 n
� � � � � � � �a1 a2 a3 an-3 an-2 an-1� � � � � � �

b1 b2 bn-3 bn-2

� � � � � �

Fig. 2. A Fibonacci graph

Mutual relations between graphs and expressions are discussed in [2], [5], [6],
[10], [11], [12], [13], [14], [15], [17], and other works. Specifically, [13], [14], and
[17] consider the correspondence between series-parallel graphs and read-once
functions. A Boolean function is defined as read-once if it may be computed by
some formula in which no variable occurs more than once (read-once formula).
On the other hand, a series-parallel graph expression can be reduced to the rep-
resentation in which each literal appears only once. Hence, such a representation
of a series-parallel graph expression can be considered as a read-once formula
(boolean operations are replaced by arithmetic ones).

An expression of a homeomorph of the forbidden subgraph belonging to any
non-series-parallel st-dag has no representation in which each literal appears
once. For example, consider the subgraph positioned between vertices 1 and 4 of
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the Fibonacci graph shown in Figure 2. Possible optimal representations of its
expression are a1 (a2a3 + b2) + b1a3 or (a1a2 + b1) a3 + a1b2. For this reason, an
expression of a non-series-parallel st-dag can not be represented as a read-once
formula. However, for arbitrary functions, which are not read-once, generating
the optimum factored form is NP-complete [18]. Some algorithms developed in
order to obtain good factored forms are described in [5], [6] and other works.
In [10] we presented an algorithm, which generates the expression of O

(
n2

)
complexity for an n-vertex Fibonacci graph.

There are many practical applications with planar graphs, i.e., the graphs
that can be drawn in the plane without any edges crossing. In this paper we
investigate a non-series-parallel st-dag called a square rhomboid (Figure 3). This
graph looks like a planar approximation of the square of a rhomboid, which is
a series composition of rhomb graphs. A square rhomboid consists of the same
vertices as the corresponding rhomboid. However, edges labeled by letters a, b,
and c (see Figure 3) are absent in a rhomboid. Geometrically, a square rhomboid
can be considered to be a ”gluing” of two Fibonacci graphs, i.e., it is the next
harder one in a sequence of increasingly non-series-parallel graphs.
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Fig. 3. A square rhomboid of size n

The set of vertices of an N -vertex square rhomboid consists of N+2
3 middle

(basic), N−1
3 upper, and N−1

3 lower vertices. Upper and lower vertices numbered
x will be denoted in formulae by x and x, respectively. The square rhomboid
(SR for brevity) including n basic vertices will be denoted by SR(n) and will
be called an SR of size n.

Our intention in this paper is to generate and to simplify the expressions of
square rhomboids. With that end in view, we present an algorithm based on a
decomposition method.

2 A One-Vertex Decomposition Method (1-VDM)

The method is based on revealing subgraphs in the initial graph. The resulting
expression is produced by a special composition of subexpressions describing
these subgraphs.

For a non-trivial SR subgraph with a source p and a sink q we choose any
decomposition vertex i (p < i < q) located in the basic group of a subgraph.
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Fig. 4. Decomposition of a square rhomboid of size 7 at vertex 4

We conditionally split each SR through its decomposition vertex (see the exam-
ple in Figure 4).

Two kinds of subgraphs are revealed in the graph in the course of decomposi-
tion. The first of them is an SR with a fewer number of vertices than the initial
SR. The second one is an SR supplemented by two additional edges at one of
four sides. Possible varieties of this st-dag (we call it a single-leaf square rhom-

boid and denote by ŜR) which are subgraphs revealed from an SR in Figure 4,

are illustrated in Figure 5(a, b, c, d). Let ŜR(n) (an ŜR of size n) denote an ŜR
including n basic vertices.

We denote by E(p, q) a subexpression related to an SR subgraph with a source
p and a sink q. We denote by E(p, q), E(p, q), E(p, q), E(p, q) subexpressions

related to ŜR subgraphs of Figure 5(a, b, c, d, respectively) with a source p and
a sink q, a source p and a sink q, a source p and a sink q, and a source p and a
sink q.
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Fig. 5. Varieties of a single-leaf square rhomboid of size 3

Any path from vertex 1 to vertex 7 in Figure 4 passes through decomposition
vertex 4 or through edge c3 or through edge a3. Therefore, E(p, q) is generated
by the following recursive procedure (decomposition procedure):
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1. case q = p : E(p, q)← 1

2. case q = p+ 1 : E(p, q)← bp + e2p−1e2p + d2p−1d2p
3. case q > p+ 1 : choice(p, q, i)

4. E(p, q)← E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q)+

E(p, i− 1)ai−1E(i, q)

The expression related to a one-vertex SR is defined formally as 1 (line 1). Line
2 describes the expression of SR(2) which is a trivial subgraph. The procedure
choice(p, q, i) in line 3 chooses an arbitrary number i on the interval (p, q)
so that p < i < q. This number is a number of a decomposition vertex in a
basic group of the SR subgraph positioned between vertices p and q. A current
subgraph is decomposed into six new subgraphs in line 4. Subgraphs described
by subexpressions E(p, i) and E(i, q) include all paths from vertex p to vertex
q passing through vertex i. Subgraphs described by subexpressions E(p, i− 1)
and E(i, q) include all paths from vertex p to vertex q passing via edge ci−1.
Subgraphs described by subexpressions E(p, i− 1) and E(i, q) include all paths
from vertex p to vertex q passing via edge ai−1.

E(1, n) is the expression of the initial SR of size n. Hence, the decomposi-
tion procedure is initially invoked by substituting 1 and n instead of p and q,
respectively.

We now consider the algorithm that generates the algebraic expression for a
square rhomboid using 1-VDM as its base.

3 A One-Vertex Decomposition Algorithm (1-VDA)

The algorithm is based on decomposition of the initial graph and all kinds of
subgraphs to new subgraphs.

We conjecture that the representation with the minimum complexity of
Ex(SR) derived by 1-VDM is generated when the decomposition vertex is a
middle vertex in the basic group of the SR. That is, the number i of the decom-
position vertex for a current SR subgraph which is positioned between vertices
p and q is chosen as q+p

2 (
⌈
q+p
2

⌉
or

⌊
q+p
2

⌋
). In other words, i is equal to q+p

2 for

odd q − p+ 1 and i equals q+p−1
2 or q+p+1

2 for even q − p+ 1.

An ŜR subgraph is decomposed through a decomposition vertex selected in its
basic group into six new subgraphs in the same way as an SR (see the examples
in Figure 6). The decomposition vertex is chosen so that the location of the split
is in the middle of the subgraph.

Three kinds of subgraphs are revealed in an ŜR in the course of decomposition.
The first and the second of them are an SR and an ŜR, respectively. The third
one is an SR supplemented by two additional pairs of edges (one pair is on the
left and another one is on the right). Possible varieties of this st-dag (we call

it a dipterous square rhomboid and denote it by
̂̂
SR) are illustrated in Figure

7(a, b, c, d). We define subgraphs illustrated in Figure 7(a, c) as trapezoidal
̂̂
SR
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Fig. 6. Decomposition of single-leaf square rhomboids by 1-VDA

graphs and subgraphs illustrated in Figure 7(b, d) as parallelogram
̂̂
SR graphs.

Let
̂̂
SR(n) (an

̂̂
SR of size n) denote an

̂̂
SR including n basic vertices.

We denote by E(p, q), E(p, q), E(p, q), E(p, q) subexpressions related to sub-
graphs of Figure 7(a, b, c, d, respectively) with a source p and a sink q, a source
p and a sink q, a source p and a sink q, and a source p and a sink q.
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Fig. 7. Varieties of a dipterous square rhomboid of size 2

An
̂̂
SR subgraph is decomposed into six new subgraphs in the same way as an

SR and an ŜR (see the examples in Figure 8). The number i of the decomposition

vertex in the basic group for a current
̂̂
SR subgraph which is positioned between

vertices p and q, is chosen as q+p+1
2 (

⌈
q+p+1

2

⌉
or

⌊
q+p+1

2

⌋
).
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Fig. 8. Decomposition of dipterous square rhomboids by 1-VDA
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In the course of decomposition, two kinds of subgraphs are revealed in an
̂̂
SR.

They are an ŜR and an
̂̂
SR. Therefore, no new kinds of subgraphs are formed

and subexpressions related to all subgraphs can be generated.
Hence, Ex(SR) is computed by the following recursive relations:

1. E(p, p) = 1
2. E(p, p) = e2p−1 3. E(p, p) = d2p−1

4. E(p, p+ 1) = e2p 5. E(p, p+ 1) = d2p
6. E(p, p+ 1) = cp + e2pe2p+1 7. E(p, p+ 1) = e2pd2p+1

8. E(p, p+ 1) = d2pe2p+1 9. E(p, p+ 1) = ap + d2pd2p+1

10. E(p, p+ 1) = bp + e2p−1e2p + d2p−1d2p
11. E(p, p+ 1) = (bp + d2p−1d2p)e2p+1 + e2p−1(cp + e2pe2p+1)
12. E(p, p+ 1) = (bp + e2p−1e2p)d2p+1 + d2p−1(ap + d2pd2p+1)
13. E(p, p+ 2) = (cp + e2pe2p+1)e2p+2 + e2p(bp+1 + d2p+1d2p+2)
14. E(p, p+ 2) = (ap + d2pd2p+1)d2p+2 + d2p(bp+1 + e2p+1e2p+2)

15. E(p, p+ 2) = e2p(bp+1 + d2p+1d2p+2)e2p+3+
(ap + d2pd2p+1)(ap+1 + d2p+2d2p+3)

16. E(p, p+ 2) = e2p(bp+1d2p+3 + d2p+1(ap+1 + d2p+2d2p+3))+
(cp + e2pe2p+1)e2p+2d2p+3

17. E(p, p+ 2) = d2p(bp+1e2p+3 + e2p+1(cp+1 + e2p+2e2p+3))+
(ap + d2pd2p+1)d2p+2e2p+3

18. E(p, p+ 2) = d2p(bp+1 + e2p+1e2p+2)d2p+3+
(cp + e2pe2p+1)(cp+1 + e2p+2e2p+3)

19. E(p, q) = E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q) + E(p, i− 1)ai−1E(i, q),
i =

⌈
q+p
2

⌉
(q > p+ 1)

20. E(p, q) = E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q) + E(p, i− 1)ai−1E(i, q),

i =
⌈
q+p
2

⌉
(q > p+ 1)

21. E(p, q) = E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q) + E(p, i− 1)ai−1E(i, q),
i =

⌈
q+p
2

⌉
(q > p+ 2)

22. E(p, q) = E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q) + E(p, i− 1)ai−1E(i, q),

i =
⌈
q+p
2

⌉
(q > p+ 2)

23. E(p, q) = E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q) + E(p, i− 1)ai−1E(i, q),
i = q+p+1

2 (q > p+ 2)

24. E(p, q) = E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q) + E(p, i− 1)ai−1E(i, q),

i = q+p+1
2 (q > p+ 2)

25. E(p, q) = E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q) + E(p, i− 1)ai−1E(i, q),

i = q+p+1
2 (q > p+ 2)

26. E(p, q) = E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q) + E(p, i− 1)ai−1E(i, q),

i = q+p+1
2 (q > p+ 2)

27. E(p, q) = E(p, i)E(i, q) + E(p, i− 1)ci−1E(i, q) + E(p, i− 1)ai−1E(i, q),
i = q+p

2 (q > p+ 1).
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Subgraphs of sizes 1 and 2 are trivial (their expressions are in lines 1 – 18).

Specifically, expressions of subgraphs ŜR(2) and
̂̂
SR(2) are presented in the

minimum factored form (lines 11 – 18).
For example, the expression of the square rhomboid of size 3 derived by 1-VDA

is

(b1 + e1e2 + d1d2)(b2 + e3e4 + d3d4) + e1c1e4 + d1a1d4.

It contains 16 literals.

Lemma 1. Complexities of expressions Ex

(
trapezoidal

̂̂
SR(n)

)
and

Ex

(
parallelogram

̂̂
SR(n)

)
derived by 1-VDA are equal for n > 2.

Proof. Expressions Ex

(
trapezoidal

̂̂
SR (n)

)
and Ex

(
parallelogram

̂̂
SR (n)

)
consist of the same components (see lines 23 – 26 of 1-VDA) for n > 2. They
are the literals ci−1 and ai−1 and the following six subexpressions:

Ex
(
ŜR

(⌈
n
2

⌉))
; Ex

(
ŜR

(⌊
n
2

⌋
+ 1

))
;

Ex

(
trapezoidal

̂̂
SR

(⌈
n
2

⌉
− 1

))
; Ex

(
trapezoidal

̂̂
SR

(⌊
n
2

⌋))
;

Ex

(
parallelogram

̂̂
SR

(⌈
n
2

⌉
− 1

))
; Ex

(
parallelogram

̂̂
SR

(⌊
n
2

⌋))
.

The subexpression of each kind appears once in Ex

(
trapezoidal

̂̂
SR

)
and

once in Ex

(
parallelogram

̂̂
SR

)
. Hence, the expression complexity for anŷ̂

SR (n) is equal to the sum of complexities of the subexpressions above increased

by two. For this reason, complexities of expressions Ex

(
trapezoidal

̂̂
SR

)
and

Ex

(
parallelogram

̂̂
SR

)
are equal for n > 2. ��

Proposition 1. The total number of literals T (n) in the expression Ex(SR(n))
derived by 1-VDA is defined recursively as follows:

1) T (1) = 0; 2) T̂ (1) = 1; 3)
̂̂
T pr(1) = 2; 4)

̂̂
T tr(1) = 3

5) T (2) = 5; 6)T̂ (2) = 8; 7)
̂̂
T pr(2) = 12; 8)

̂̂
T tr(2) = 11

9) T̂ (3) = 22; 10)
̂̂
T (3) = 28; 11) T̂ (4) = 47; 12)

̂̂
T (4) = 60

13) T̂ (5) = 79; 14)
̂̂
T (5) = 92; 15) T̂ (6) = 132; 16)

̂̂
T (6) = 50

17) T (n) = T
(⌈

n
2

⌉)
+ T

(⌊
n
2

⌋
+ 1

)
+ 2T̂

(⌈
n
2

⌉
− 1

)
+ 2T̂

(⌊
n
2

⌋)
+ 2 (n > 2)

18) T̂ (n) = T
(⌊

n
2

⌋
+ 1

)
+ T̂

(⌈
n
2

⌉)
+ 2T̂

(⌊
n
2

⌋)
+ 2

̂̂
T
(⌈

n
2

⌉
− 1

)
+ 2 (n > 6)

19)
̂̂
T (n) = T̂

(⌈
n
2

⌉)
+ T̂

(⌊
n
2

⌋
+ 1

)
+ 2

̂̂
T
(⌈

n
2

⌉
− 1

)
+ 2

̂̂
T
(⌊

n
2

⌋)
+ 2 (n > 6),
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where T̂ (n),
̂̂
T pr(n),

̂̂
T tr(n), and

̂̂
T (n) are the total numbers of literals in

Ex(ŜR(n)), Ex

(
parallelogram

̂̂
SR (n)

)
, Ex

(
trapezoidal

̂̂
SR (n)

)
, and

Ex

( ̂̂
SR (n)

)
, respectively.

Proof. Initial statements (1 – 8) follow directly from lines 1 – 18 of 1-VDA.
General statements (17 – 19) are based on the structure of expressions 19 – 27

of 1-VDA and on Lemma 1. The applying of 1-VDA to graphs ŜR(3),
̂̂
SR(3),

ŜR(4),
̂̂
SR(4), ŜR(5),

̂̂
SR(5), ŜR(6),

̂̂
SR(6) leads to the revealing, specifically,

of trapezoidal and parallelogram
̂̂
SR(1) and

̂̂
SR(2) subgraphs. For this reason,

complexities related to expressions of these graphs are computed exclusively by
applying the following formulae which are based on lines 19 – 26 of 1-VDA:

T̂ (3) = T (2) + T̂ (2) + 2T̂ (1) +
̂̂
Tpr(1) +

̂̂
Ttr(1) + 2

= 5 + 8 + 2 + 2 + 3 + 2 = 22̂̂
T (3) = 2T̂ (2) + 2

̂̂
Tpr(1) + 2

̂̂
Ttr(1) + 2 = 16 + 4 + 6 + 2 = 28

T̂ (4) = T (3) + 3T̂ (2) +
̂̂
Tpr(1) +

̂̂
Ttr(1) + 2 = 16 + 24 + 2 + 3 + 2 = 47̂̂

T (4) = T̂ (3) + T̂ (2) +
̂̂
Tpr(2) +

̂̂
Tpr(1) +

̂̂
Ttr(2) +

̂̂
Ttr(1) + 2

= 22 + 8 + 12 + 2 + 11 + 3 + 2 = 60

T̂ (5) = T (3) + T̂ (3) + 2T̂ (2) +
̂̂
Tpr(2) +

̂̂
Ttr(2) + 2

= 16 + 22 + 16 + 12 + 11 + 2 = 79̂̂
T (5) = 2T̂ (3) + 2

̂̂
Tpr(2) + 2

̂̂
Ttr(2) + 2 = 44 + 24 + 22 + 2 = 92

T̂ (6) = T (4) + 3T̂ (3) +
̂̂
Tpr(2) +

̂̂
Ttr(2) + 2 = 41 + 66 + 12 + 11 + 2 = 132̂̂

T (6) = T̂ (4) + T̂ (3) + 2
̂̂
T (3) +

̂̂
Tpr(2) +

̂̂
Ttr(2) + 2

= 47 + 22 + 56 + 12 + 11 + 2 = 150.

The obtained results are initial statements (9 – 16). ��

Hence, the expression Ex(SR(n)) derived by 1-VDA consists of six subexpres-
sions related to six revealed subgraphs of size n′ ≈ n

2 and two additional literals.
Each of these subexpressions is constructed in its turn from six subexpressions
related to six subgraphs of size n′′ ≈ n

4 and two additional literals, etc. Thus by
the master theorem, T (n) = O

(
nlog2 6

)
, i.e., 1-VDA provides the representation

of Ex(SR(n)) with a polynomial complexity.
It is of interest to obtain exact formulae describing complexity of the expres-

sion Ex(SR(n)) derived by 1-VDA. We attempt to do it for n that is a power
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of two, i.e., n = 2k for some positive integer k ≥ 2. Statements (17 – 19) of
Proposition 1 are presented for n = 2k (k ≥ 3) as⎧⎪⎨⎪⎩

T (n) = T
(
n
2 + 1

)
+ T

(
n
2

)
+ 2T̂

(
n
2

)
+ 2T̂

(
n
2 − 1

)
+ 2

T̂ (n) = T
(
n
2 + 1

)
+ 3T̂

(
n
2

)
+ 2

̂̂
T
(
n
2 − 1

)
+ 2̂̂

T (n) = T̂
(
n
2 + 1

)
+ T̂

(
n
2

)
+ 2

̂̂
T
(
n
2

)
+ 2

̂̂
T
(
n
2 − 1

)
+ 2 ,

(1)

respectively. After a number of transformations, the following explicit formulae
for simultaneous recurrences (1) are obtained by the method for linear recurrence
relations solving [16]:

T (n) =
154

135
nlog2 6 +

1

27
nlog2 3 − 2

5

T̂ (n) =
154

135
nlog2 6 +

19

27
nlog2 3 − 2

5̂̂
T (n) =

154

135
nlog2 6 +

58

27
nlog2 3 − 2

5
.

4 Comparison of 1-VDA with Other Algorithms

Another decomposition method (called 2-VDM) for generating algebraic expres-
sions of square rhomboids is presented in [11] and [12]. The method consists in
splitting a square rhomboid through two decomposition vertices one of which
belongs to the upper group and another one to the lower group. The following
algorithms based on this method are considered in [11] and [12]: full decomposi-
tion algorithm (FDA), combined decomposition algorithm (CDA), and improved
FDA (IFDA). The values of T (n) for these algorithms and for 1-VDA are pre-
sented in Table 1. One can see that 1-VDA is significantly more efficient than
FDA, CDA, and IFDA.

Table 1. Complexities for FDA, CDA, IFDA, and 1-VDA

n T (n), FDA T (n), CDA T (n), IFDA T (n), 1-VDA

4 47 43 43 41

5 110 102 100 66

6 173 161 157 119

7 252 236 228 172

8 331 311 299 247

9 520 488 470 322

10 709 665 641 439

20 4527 4283 4071 2675

30 11669 11113 10461 7597

40 27979 26575 25099 16169

50 48733 46429 43585 28741
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5 Conclusions and Future Work

The algorithms presented both in [10] and this paper generate expressions of
polynomial size for Fibonacci graphs and square rhomboids, respectively. These
algorithms are based on decomposition methods. The existence of a decomposi-
tion method for a graph G is a sufficient condition for the existence of an expres-
sion with polynomial complexity for G. The complexity depends, in particular,
on the number of revealed subgraphs in each recursive step of the decomposition
procedure.

A graph in which every subgraph has a vertex of degree at most k is called k-
inductive [8], for instance, trees, planar graphs, etc. Random scale-free networks
demonstrate important practical examples of these graphs [1]. The linkage of a
graph is the smallest value of k for which it is k-inductive [9]. As follows from
[3], a graph G is k-inductive if and only if the edges of G can be oriented to form
a directed acyclic graph with out-degree at most k. Thus underlying graphs of
Fibonacci graphs and square rhomboids are k-inductive graphs with linkages 2
and 3, respectively.

Our intent is to extend the presented decomposition technique to a class of
st-dags whose underlying graphs are k-inductive.
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Abstract. In this paper, we devise two algorithms for the problem of
testing q-monomials of degree k in any multivariate polynomial repre-
sented by a circuit, regardless of the primality of q. One is an O∗(2k)
time randomized algorithm. The other is an O∗(12.8k) time determinis-
tic algorithm for the same q-monomial testing problem but requiring the
polynomials to be represented by tree-like circuits. Several applications of
q-monomial testing are also given, including a deterministic O∗(12.8mk)
upper bound for the m-set k-packing problem.

Keywords: Group algebra, complexity, multivariate polynomials, mono-
mials, monomial testing randomized algorithms, derandomization.

1 Introduction

Recent research on testing multilinear monomials and q-monomials in multivari-
ate polynomials [13,17,7,8,10,6,9] requires that Zq be a field, which is true when
q ≥ 2 is prime. When q > 2 is not prime, Zq is no longer a field, hence the group
algebra based approaches in [13,17,10,9] become inapplicable. When q is not
prime, it remains open whether the problem of testing q-monomials in a multi-
variate polynomial can be solved in some compatible complexity, such as O∗(ck)
time for a constant c ≥ 2. Our work in [2] presents a randomized O∗(7.15k)
algorithm for testing q-monomials of degree k in a multivariate polynomial that
is represented by a tree-like circuit. This algorithm works for any fixed integer
q ≥ 2, regardless of q’s primality. Moreover, for prime q > 7, it provides us with
some substantial improvement on the time complexity of the previously known
algorithm [10,9] for testing q-monomials.

Randomized algebraic techniques have recently led to the once fastest ran-
domized algorithms of time O∗(2k) for the k-path problem and other problems
[13,17]. Another recent seminal example is the improved O(1.657n) time ran-
domized algorithm for the Hamiltonian path problem by Björklund [3]. This
algorithm provided a positive answer to the question of whether the Hamilto-
nian path problem can be solved in time O(cn) for some constant 1 < c < 2, a
challenging problem that had been open for half of a century. Björklund et al.
further extended the above randomized algorithm to the k-path testing problem
with O∗(1.657k) time complexity [4]. Very recently, those two algorithms were
simplified further by Abasi and Bshouty [1].

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 106–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This paper consists of three key contributions: The first is an O∗(2k) time
randomized algorithm that gives an affirmative answer to the q-monomial test-
ing problem for polynomials represented by circuits, regardless of the primality
of q ≥ 2. We generalize the circuit reconstruction and variable replacements
proposed in [2] to transform the q-monomial testing problem, for polynomials
represented by a circuit, into the multilinear monomial testing problem and
furthermore enabling the usage of the group algebraic approach originated by
Koutis [13] to help resolve the q-monomial testing problem. The second is an
O∗(12.8k) deterministic algorithm for testing q-monomials in multivariate poly-
nomials represented by tree-like circuits. Inspired by the work in [10,9], we devise
this deterministic algorithm by derandomizing the first randomized algorithm for
tree-like circuits with the help of the perfect hashing functions by Chen et al. [11]
and the deterministic polynomial identity testing algorithm by Raz and Shpilka
[16] for noncommunicative polynomials. The third is to exhibit several appli-
cations of q-monomial testing to designing algorithms for concrete problems.
Specifically, we show how q-monomial testing can be applied to the non-simple
k-path testing problem, the generalized m-set k-packing problem, and the gener-
alized P2-Packing problem. In particular, we design a deterministic algorithm for
solving the m-set k-packing problem in O∗(12.8mk), which is, to our best knowl-
edge, the best upper bound for deterministic algorithms to solve this problem.

2 Notations and Definitions

For variables x1, . . . , xn, for 1 ≤ i1 < · · · < ik ≤ n, π = xs1
i1
· · ·xst

it
is called

a monomial. The degree of π, denoted by deg(π), is
t∑

j=1

sj . π is multilinear, if

s1 = · · · = st = 1, i.e., π is linear in all its variables xi1 , . . . , xit . For any given
integer q ≥ 2, π is called a q-monomial if 1 ≤ s1, . . . , st ≤ q − 1. In particular, a
multilinear monomial is the same as a 2-monomial.

An arithmetic circuit, or circuit for short, is a directed acyclic graph consisting
of + gates with unbounded fan-ins, × gates with two fan-ins, and terminal nodes
that correspond to variables. The size, denoted by s(n), of a circuit with n
variables is the number of gates in that circuit. A circuit is considered a tree-like
circuit if the fan-out of every gate is at most one, i.e., the underlying directed
acyclic graph that excludes all the terminal nodes is a tree. In other words, in
a tree-like circuit, only the terminal nodes can have more than one fan-out (or
out-going edge).

Throughout this paper, the O∗(·) notation is used to suppress poly(n, k) fac-
tors in time complexity bounds.

By definition, any polynomial F (x1, . . . , xn) can be expressed as a sum of a
list of monomials, called the sum-product expansion. The degree of the polyno-
mial is the largest degree of its monomials in the expansion. With this expanded
expression, it is trivial to see whether F (x1, . . . , xn) has a multilinear monomial,
or a monomial with any given pattern. Unfortunately, such an expanded expres-
sion is essentially problematic and infeasible due to the fact that a polynomial



108 S. Chen

may often have exponentially many monomials in its sum-product expansion.
The challenge then is to test whether F (x1, . . . , xn) has a multilinear mono-
mial, or any other desired monomial, efficiently but without expanding it into
its sum-product representation.

For any integer k ≥ 1, we consider the group Zk
2 with the multiplication

· defined as follows. For k-dimensional column vectors x,y ∈ Zk
2 with x =

(x1, . . . , xk)
T and y = (y1, . . . , yk)

T , x · y = (x1 + y1, . . . , xk + yk)
T . v0 =

(0, . . . , 0)T is the zero element in the group. For any field F , the group algebra
F [Zk

2 ] is defined as follows. Every element u ∈ F [Zk
2 ] is a linear sum of the form

u =
∑

xi∈Zk
2 , ai∈F

aixi. (1)

For any element v =
∑

xi∈Zk
2 , bi∈F

bixi, We define

u+ v =
∑

ai, bi∈F , xi∈Zk
2

(ai + bi)xi, and

u · v =
∑

ai, bj∈F , and xi, yj∈Zk
2

(aibj)(xi · yj).

For any scalar c ∈ F ,

cu = c

⎛⎝ ∑
xi∈Zk

2 , ai∈F

aixi

⎞⎠ =
∑

xi∈Zk
2 , ai∈F

(cai)xi.

The zero element in the group algebra F [Zk
2 ] is 0 =

∑
v 0v, where 0 is the zero

element in F and v is any vector in Zk
2 . For example, 0 = 0v0 = 0v1+0v2+0v3,

for any vi ∈ Zk
2 , 1 ≤ i ≤ 3. The identity element in the group algebra F [Zk

2 ]
is 1 = 1v0 = v0, where 1 is the identity element in F . For any vector v =
(v1, . . . , vk)

T ∈ Zk
2 , for i ≥ 0, let (v)i = (iv1, . . . , ivk)

T . In particular, when the
field F is Z2 (or in general, of characteristic 2), in the group algebra F [Zk

2 ], for
any z ∈ Zk

2 we have (v)0 = (v)2 = v0, and z + z = 0.

3 A New Transformation

3.1 A New Circuit Reconstruction Method

In this section and the next, we shall extend the transformation methods de-
signed in [2] to general circuits. The circuit reconstruction and variable replace-
ment methods developed by us in [2] work for tree-like circuits only. In essence,
the methods are as follows: Replace each original variable x in the polynomial
by a + gate g; for each outgoing edge of x, duplicate a copy of g; for each g,
allow it to receive inputs from q − 1 many new y-variables; for each edge from
a y-variable to a duplicated gate g, replace it with a new × gate that receives
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inputs from the y-variable and a new z-variable that then feeds the output to g.
Additionally, the methods add a new × gate f ′ that multiplies the output of f
with a new z-variable for each × gate f in the original circuit.

For any given polynomial F (x1, x2, . . . , xn) represented by a circuit C of size
s(n), we first reconstruct the circuit C in three steps as follows:

Duplicating + Gates. Starting at the bottom layer of the circuit C, for each
+ gate g with outgoing edges f1, f2, . . . , f�, replace g with � copies g1, g2, . . . , g�
such that each gi has the same input as g, but the only outgoing edge of gi is
fi, 1 ≤ i ≤ �.

Duplicating Terminal Nodes. For each variable xi, if xi is the input to a
list of gates g1, g2, . . . , g�, then create � terminal nodes u1, u2, . . . , u� such that
each of them represents a copy of the variable xi and gj receives input from uj ,
1 ≤ j ≤ �.

Let C∗ denote the reconstructed circuit after the above two reconstruction
steps. Obviously, both circuits C and C∗ compute the same polynomial F .

Adding New × Gates and New Variables. Having completed the recon-
struction to obtain C∗, we then expand it to a new circuit C′ as follows. For every
edge ei in C∗ (including every edge between a gate and a terminal node) such
that ei conveys the output of ui to vi, add a new × gate gi that multiplies the
output of ui with a new variable zi and passes the outcome to vi.

Assume that a list of h new z-variables z1, z2, . . . , zh have been introduced
into the circuit C′. Let F ′(z1, z2, . . . , zh, x1, x2, . . . , xn) be the new polynomial
represented by C′.

Lemma 1. Let the t be the length of longest path from the root gate of C to
its terminal nodes. F (x1, x2, . . . , xn) has a monomial π of degree k in its sum-
product expansion if and only if there is a monomial απ in the sum-product
expansion of F ′(z1, z2, . . . , zh, x1, x2, . . . , xn) such that α is a multilinear mono-
mial of z-variables with degree ≤ tk + 1. Furthermore, if π occurs more than
once in the sum-product expansion of F ′, then every occurrence of π in F ′ has a
unique coefficient α; and any two different monomials of x-variables in F ′ will
have different coefficients that are multilinear products of z-variables.

3.2 Variable Replacements

Following Subsection 3.1, we continue to address how to further transform the
new polynomial F ′(z1, z2, . . . , zh, x1, x2, . . . , xn) computed by the circuit C′. The
method for this part of the transformation is similar to, but different from, the
method proposed by us in [2].

Variable Replacements: Here, we start with the new circuit C′ that com-
putes F ′(z1, z2, . . . , zh, x1, x2, . . . , xn). For each variable xi, we replace it with a
”weighted” linear sum of q − 1 new y-variables yi1, yi2, . . . , yi(q−1). The replace-
ments work as follows: For each variable xi, we first add q−1 new terminal nodes
that represent q−1 many y-variables yi1, yi2, . . . , yi(q−1). Then, for each terminal
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node uj representing xi in C′, we replace uj with a + gate. Later, for each new +
gate gj that is created for uj of xi, let gj receive input from yi1, yi2, . . . , yi(q−1).
That is, we add an edge from each of such y-variables to gj . Finally, for each
edge eij from yij to gj, replace eij by a new × gate that takes inputs from yij
and a new z-variable zij and sends the output to gj.

Let C′′ be the circuit resulted from the above transformation, and

G(z1, . . . , zh, y11, . . . , y1(q−1), . . . , yn1, . . . , yn(q−1))

be the polynomial computed by the circuit C′′.

Lemma 2. Let F (x1, x2, . . . , xn) be any given polynomial represented by a cir-
cuit C and t be the length of the longest path of C. For any fixed integer q ≥ 2, F
has a q-monomial of x-variables with degree k, then G has a unique multilinear
monomial απ such that π is a degree k multilinear monomial of y-variables and
α is a multilinear monomial of z-variables with degree ≤ k(t+1)+1. If F has no
q-monomials, then G has no multilinear monomials of y-variables, i.e., G has
no monomials of the format βφ such that β is a monomial of z-variables and φ
is a multilinear monomial of y-variables.

4 A Faster Randomized Algorithm

Consider any given polynomial F (x1, x2, . . . , xn) that is represented by a circuit
C of size s(n). Note that the length of the longest path from the root of C to any
terminal node is no more than s(n). Let d = log2(k(s(n) + 1) + 1) + 1 and F =
GF(2d) be a finite field of 2d many elements.We consider the group algebraF [Zk

2 ].

Algorithm RTM (Randomized Testing of q-Monomials):
1. As described in Subsections 3.1 and 3.2, reconstruct the circuit C to

obtain C∗ that computes the same polynomial F and then introduce
new z-variables to C∗ to obtain the new circuit C′ that computes
F ′(z1, z2, . . . , zh, x1, x2, . . . , xn). Finally, obtain a circuit C′′ by vari-
able replacements so that F ′ is transformed to

G(z1, . . . , zh, y11, . . . , y1(q−1), . . . , yn1, . . . , yn(q−1)).

2. Select uniform random vectors vij ∈ Zk
2 − {v0}, and replace the

variable yij with (vij + v0), 1 ≤ i ≤ n and 1 ≤ j ≤ q − 1.
3. Use C′′ to calculate

G′ = G(z1, . . . , zh, (v11 + v0), . . . , (v1(q−1) + v0), . . . ,

(vn1 + v0), . . . , (vn(q−1) + v0))

=

2k∑
j=1

fj(z1, . . . , zh) · vj , (2)

where each fj is a polynomial of degree ≤ k(s(n)+1)+1 (see Lemma
2) over the finite field F = GF(2d), and vj with 1 ≤ j ≤ 2k are the
2k distinct vectors in Zk

2 .
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4. Perform polynomial identity testing with the Schwartz-Zippel algo-
rithm [14] for every fj over F . Return ”yes” if one of those polyno-
mials is not identical to zero. Otherwise, return ”no”.

It should be pointed out that the actual implementation of Step 4 would be
running the Schwartz-Zippel algorithm concurrently for all fj , 1 ≤ j ≤ 2k,
utilizing the circuit C′′. If one of those polynomials is not identical to zero, then
the output of G′ as computed by circuit C′′ is not zero.

The group algebra technique established by Koutis [13] assures the following
two properties:

Lemma 3. ([13]) Replacing all the variables yij in G with group algebraic
elements vij + v0 will make all monomials απ in G′ to become zero, if π is
non-multilinear with respect to y-variables. Here, α is a product of z-variables.

Lemma 4. ([13]) Replacing all the variables yij in G with group algebraic
elements vij + v0 will make any monomial απ to become zero, if and only if the
vectors vij are linearly dependent in the vector space Zk

2 . Here, π is a multilinear
monomial of y-variables and α is a product of z-variables, Moreover, when π
becomes non-zero after the replacements, it will become the sum of all the vectors
in the linear space spanned by those vectors.

Theorem 1. Let q > 2 be any fixed integer and F (x1, x2, . . . , xn) be an n-
variate polynomial represented by a circuit C of size s(n). Then, the randomized
algorithm RTM can decide whether F has a q-monomial of degree k in its sum-
product expansion in time O∗(2ks6(n)).

Since we are often interested in circuits with polynomial sizes in n, the time
complexity of algorithm RTM is O∗(2k) for those circuits.

Proof. From the introduction of the new z-variables to the circuit C′, it is easy
to see that every monomial in F ′ has the format απ, where π is a product of
x-variables and α is a product of z-variables. Since only x-variables are replaced
by their respective ”weighted” linear sums of new y-variables as specified in
Subsection 3.2, monomials in G have the format βφ, where φ is a product of
y-variables and β is a product of z-variables.

Suppose that F has no q-monomials. By Lemma 2, G has no monomials βφ
such that φ is multilinear with respect to y-variables. Moreover, by Lemma 3,
replacing y-variables by group algebraic elements at Step 2 will make φ in every
monomial βφ in G to become zero. Hence, the group algebraic replacements will
make G to become zero and so the algorithm RTM will return ”no”.

Assume that F has a q-monomial of degree k. By Lemma 2, G has a monomial
βφ such that φ is a multilinear monomial of degree k with respect to y variables
and β is a multilinear monomial of degree ≤ k(s(n) + 1) + 1 with respect to
z-variables. It follows from a lemma in [5] (see also, [2]) , that a list of uniform
random vectors from Zk

2 will be linearly independent with probability at least
0.28. By Lemma 4, with probability at least 0.28, the multilinear monomial φ
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will not be annihilated by the group algebraic replacements at Step 2. Precisely,
with probability at least 0.28, βφ will become

λ(βφ) =

2k∑
i=1

βvi, (3)

where vi are distinct vectors in Zk
2 .

Let S be the set of all those multilinear monomials βφ that survive the group
algebraic replacements for y-variables in G. Then,

G′ = G(z1, . . . , zh, (v11 + v0), . . . , (v1(q−1) + v0), . . . ,

(vn1 + v0), . . . , (vn(q−1) + v0))

=
∑
βφ∈S

λ(βφ)

=
∑
βφ∈S

⎛⎝ 2k∑
i=1

βvi

⎞⎠
=

2k∑
j=1

⎛⎝ ∑
βφ∈S

β

⎞⎠ vj (4)

Let

fj(z1, . . . , zh) =
∑
βφ∈S

β.

By Lemmas 2 and 3, the degree of β is at most k(s(n) + 1) + 1. Hence, the
coefficient polynomial fj with respect to vj in G′ after the group algebraic
replacements has a degree ≤ k(s(n)+1)+1. Also, by Lemma 2, β is unique with
respect to every φ for each monomial βφ in G. Thus, the possibility of a ”zero-
sum” of coefficients from different surviving monomials is completely avoided
during the computation for fj . Therefore, conditioned on that S is not empty,
G′ must not be identical to zero, i.e., there exists at least one fj that is not
identical to zero. At Step 4, we use the randomized algorithm by Schwartz-
Zippel [14] to test whether fj is identical to zero. Since the degree of each
fj is at most k(s(n) + 1) + 1, it is known that this testing can be done with

probability at least 1− deg(fj)
|F| ≥ 1

2 in time polynomially in s(n) and log2 |F| =
log2(k(s(n)+1)+1)+1. Since S is not empty with probability at least 0.28, the
success probability of testing whether G has a degree k multilinear monomial of
y-variables is at least 0.28× 1

2 > 1
8 .

Finally, we address the issues of how to calculate G′ and the time needed to do
so. Naturally, every element in the group algebra F [Zk

2 ] can be represented by a

vector in Z2k

2 . Adding two elements in F [Zk
2 ] is equivalent to adding the two cor-

responding vectors in Z2k

2 , and the latter can be done in O(2k log2 |F|) time via
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component-wise sum. In addition, multiplying two elements in F [Zk
2 ] is equiv-

alent to multiplying the two corresponding vectors in Z2k

2 , and the latter can
be done in O(k2k+1 log2 |F|) with the help of a similar Fast Fourier Transform
style algorithm as in Williams [17]. By the circuit reconstruction and variable re-
placements in Subsections 3.1 and 3.2, the size of the circuit C′′ is at most s3(n).
Calculating G′ by the circuit C′′ consists of n ∗ s6(n) arithmetic operations of
either adding or multiplying two elements in F [Zk

2 ] based on the circuit C′′.
Hence, the total time needed is O(n∗s6(n)k2k+1 log2 |F|). At Step 4, we run the
Schwartz-Zippel algorithm on G′ to simultaneously test whether there is one fj
such that fj is not identical to zero. Recall that log2 |F| = log2(k(s(n)+1)+1)+1.
The total time for the entire algorithm is O∗(2ks6(n)).

5 A Deterministic Algorithm via Derandomization

Definition 1. (See, Chen et al. [11]) Let n and k be two integers such that
1 ≤ k ≤ n. Let A = {1, 2, . . . , n} and K = {1, 2, . . . , k}. A k-coloring of the set
A is a function from A to K. A collection F of k-colorings of A is a (n, k)-family
of perfect hashing functions if for any subset W of k elements in A, there is a
k-coloring h ∈ F that is injective from W to K, i.e., for any x, y ∈ W , h(x) and
h(y) are distinct elements in K.

Theorem 2. Let q ≥ 2 be fixed integer. Let F (x1, x2, . . . , xn) be an n-variate
polynomial of degree k represented by a tree-like circuit C of size s(n). There is a
deterministic O∗(12.8ks6(n)) time algorithm to test whether F has a q-monomial
of degree k in its sum-product expansion.

Proof. Let d = log2(k(s(n) + 1) + 1) + 1 and F = GF(2d) be a finite field
of 2d elements. The deterministic algorithm DTM for testing whether F has a
q-monomial of degree k is given as follows.

Algorithm DTM (Deterministic Testing of q-Monomials):

1. As in the Algorithm RTM, following circuit reconstruction and vari-
able replacements in Subsections 3.1 and 3.2, reconstruct the cir-
cuit C to obtain C∗ that computes the same polynomial F and then
introduce new z-variables to C∗ to obtain the new circuit C′ that
computes F ′(z1, z2, . . . , zh, x1, x2, . . . , xn). Finally, perform variable
replacements to obtain the circuit C′′ that transforms F ′ to

G(z1, . . . , zh, y11, . . . , y1(q−1), . . . , yn1, . . . , yn(q−1)).

2. Construct with the algorithm by Chen at el. [11] a ((q − 1)ns(n), k)-
family of perfect hashing functionsH of sizeO(6.4k log22((q−1)ns(n)))

3. Select k linearly independent vectors v1, . . . ,vk ∈ Zk
2 . (No random-

ization is needed at this step, either.)

4 For each perfect hashing function λ ∈ H do
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4.1. Let γ(i, j) be any given one-to-one mapping from {(i, j)|1 ≤ i ≤
n and 1 ≤ j ≤ q−1} to {1, 2, . . . , (q−1)n} to label variables yij .
Replace each variable yij in G with (vλ(γ(i,j)) + v0), 1 ≤ i ≤ n
and 1 ≤ j ≤ q − 1.

4.2. Use C′′ to calculate

G′ = G(z1, . . . , zh, (vλ(γ(1,1)) + v0), . . . , (vλ(γ(1,(q−1))) + v0),

. . . , (vλ(γ(n,1)) + v0), . . . , (vλ(γ(n,(q−1))) + v0))

=
2k∑
j=1

fj(z1, . . . , zh) · vj , (5)

where each fj is a polynomial of degree ≤ k(s(n) + 1) + 1 (see,
Lemma 2) over the finite field F = GF(2d), and vj with 1 ≤ j ≤
2k are the 2k distinct vectors in Zk

2 .
4.3. Perform polynomial identity testing with the Raz and Shpilka

algorithm [16] for every fj over F . Stop and return ”yes” if one
of them is not identical to zero.

5. If all perfect hashing functions λ ∈ H have been tried without return-
ing ”yes”, then stop and output ”no”.

The correctness of algorithm DTM is guaranteed by the nature of perfect hashing
and the correctness of algorithm RTM. We shall now focus on analyzing the time
complexity of the algorithm.

Note that q is a fixed constant. By Chen at el.[11], Step 2 can be done in
O(6.4kn log2((q − 1)n)) = O∗(6.4k) time. Step 3 can be easily done in O(k2)
time.

It follows from Lemma 3 that all those monomials that are not q-monomials
in F , and hence in F ′, will be annihilated when variables yij are replaced by
(vλ(t(i,j)) + v0) in G at Step 4.1.

Consider any given q-monomial π = xs1
i1
· · ·xst

it
of degree k in F with 1 ≤ sj ≤

q − 1 and k = deg(π), j = 1, . . . , t. By Lemma 2, there are monomials απ in F ′

such that α is a multilinear monomial of z-variables with degree≤ k(s(n)+1)+1,
and all such monomials are distinct. By Lemma 4, π (hence, απ) will survive
the replacements at Step 4.1. Let S be the set of all the surviving q-monomials
απ. Following the same analysis as in the proof of Theorem 1, we have

G′ = G(z1, . . . , zh, (vλ(γ(1,1)) + v0), . . . , (vλ(γ(1,(q−1))) + v0),

. . . , (vλ(γ(n,1)) + v0), . . . , (vλ(γ(n,(q−1))) + v0))

=

2k∑
j=1

⎛⎝ ∑
βφ∈S

β

⎞⎠ vj

=

2k∑
j=1

fj(z1, . . . , zh)vj


= 0
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since S is not empty. Here,

fj(z1, . . . , zh) =
∑
βφ∈S

β.

This means that, conditioned on that S is not empty, there is at least one fj that
is not identical to zero. Again, as in the analysis for algorithm RTM, the time
needed for calculating G′ is O∗(2ks6(n)) when the replacements are fixed for
x-variables and the subsequent algebraic replacements are given for y-variables.

We now consider imposing noncommunicativity on z-variables in C′′. This
can be done by imposing an order for z-variable inputs to any gates in C′′.
Technically, however, we shall allow values for z-variables to communicate with
those for y-variables. Finally, we use the algorithm by Raz and Shpilka [16] to
test whether fj(z1, . . . , zh) is identical to zero of not. This can be done in time
polynomially in s(n) and n, since with the imposed order for z-variables fj is a
non-communicative polynomial represented by a tree-like circuit.

Combining the above analysis, the total time of the algorithmDTM isO∗(6.4k×
2ks6(n)) = O∗(12.8ks6(n)).

When the circuit size s(n) is a polynomial in n, the time bound becomes
O∗(12.8k).

6 Applications

We list three applications of the q-monomial testing to concrete algorithm de-
signs. Here, we assume q ≥ 2 is a fixed integer. Notably, algorithm DTM can
help us to derive a deterministic algorithm for solving the m-set k-packing prob-
lem in O∗(12.8mk), which is, to our best knowledge, the best upper bound for
deterministic algorithms to solve this problem.

6.1 Allowing Overlapping in m-Set k-Packing

Let S be a collection of sets so that each member in S is a subset of an n-element
set X . Additional, members in S have the same size m ≥ 3. We may like to ask
whether there are k members in S such that those members are either pairwise
disjoint or at most q − 1 members may overlap. This problem with respect to q
is a generalized version of the m-Set k-packing problem.

We can view each element in X as a variable. Thus, a member in S is a
monomial of m variables. Let

F (S, k) =
( ∑

A∈S
f(A)

)k

,

where f(A) denotes the monomial derived from A. Then, the above generalized
problem m-set k-packing with respect to q is equivalent to ask whether F (S, k)
has a q-monomial of degree mk. Again, algorithm RTM solves this problem in
O∗(2mk) time. When q = 2, the O∗(2mk) bound was obtained in [13].
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Since F (S, k) can be represented by a tree-like circuit, we can choose q = 2
and apply algorithm DTM to test whether F (S, k) has multilinear monomial
(i.e., 2-monomial) of degree mk. Therefore, we have a deterministic algorithm
to solve the m-set k-packing problem in O∗(12.8mk) time. Although there are
many faster randomized algorithms for solving this problem, for deterministic
algorithms our O∗(12.8mk) upper bound significantly improves the best known
upper bound O∗(exp(O(mk))) by Fellow et al. [12]. The upper bound in [12] has
a large hidden constant in the exponent, e.g., in the case of r = 3, their upper
bound is O∗((12.7D)3m) for some D ≥ 10.4.

6.2 Testing Non-Simple k-Paths

Given any undirected graph G = (V,E) with |V | = n, we may like to know
whether there is a k-path in G such that the path may have loops but any
vertex in the path can appear at most q−1 times. It is easy to see that this non-
simple k-path problem with respect to q is a generalized version of the simple
k-path problem.

For each vertex vi ∈ V , define a polynomial Fk,i as follows:

F1,i = xi,

Fk+1,i = xi

⎛⎝ ∑
(vi,vj)∈E

Fk,j

⎞⎠ , k > 1.

We define a polynomial for G as

F (G, k) =

n∑
i=1

Fk,i.

Obviously, F (G, k) can be represented by an arithmetic circuit. It is easy to
see that the graph G has a non-simple k-path with respect to q, if and only if
F (G, k) has a q-monomial of degree k. Algorithm RTM can solve this problem
in O∗(2k) time. When q = 2, the O∗(2k) bound was obtained in [13,17].

6.3 A Generalized P2-Packing Problem

Given any undirected graph G = (V,E) with |V | = n and an integer k, we
can collect P2’s from G, i.e., simple paths of length 2 in G. The generalized
P2-packing problem with respect to q asks whether there is a collection of k
many P2’s such that either all those P2’s are pairwise disjoint, or at most q − 1
of them may share a common vertex. The generalized P2-packing problem with
respect to q can be easily transformed to a generalized 3-Set k-Packing problem
with respect to q. Thereby, an O∗(23k) time randomized solution is given by
algorithm RTM.
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Abstract. This paper proposes the optimal rescue path set problem in
an undirected graph G = (V,E), in which some vehicles have to go from
a source node s to a destination node t. However, during the traveling of
the vehicles, there might exist one edge blocked in the graph. The goal is
to find a minimum collection of paths for the vehicles, to guarantee the
fastest arrival of at least one vehicle no matter which edge is blocked.
We present an algorithm for the above optimal rescue path set problem,
and prove that the complexity of our algorithm is O(m+ n log n).

Keywords: shortest path, joint replacement path, optimal rescue path
set, multiple vehicles.

1 Introduction

Rescue is critical for themanagement of disasters, such as fire, traffic accidents and
so on. Obviously, the rescue vehicles should arrive at the disaster site as soon as
possible. However, the shortest path in the graphmay not ensure the fastest arrival
because of the uncertain traffic congestion caused by the disaster. Moreover, it is
hard to forecast when and where the congestion will occur under the emergency
situation. Due to this, there are abundant researches on the problem of how to
select a path or a path set to make the response as fast as possible.

One obvious solution is to find multiple paths for more than one vehicles.
The multiple paths will share the risk caused by the uncertain road blockage.
One example is the k shortest paths problem. Yen[1] showed how to compute
the k-simple shortest paths in weighted directed graphs. The running time of
their algorithms, when modern data structures are used, is O(k(mn+n2 logn)).
Eppstein [2] presented an O(m + n logn + k)-time algorithm for the directed
version of this problem, when the paths are not required to be simple. For the
restricted case of undirected graphs, Katoh et al. [3] presented an algorithm
with a running time of O(k(m + n log n)), when modern data structures are
used. Unfortunately, the algorithm of k shortest paths often provides very similar
paths between s and t, which means that the paths overlap in some segments.
If the overlapping edges are blocked, the multiple paths still can’t effectively
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decrease the response delay caused by uncertain blockage. Therefore, Akgun et
al. [4] presented the k dissimilar paths problem by defining certain dissimilar
criterion. Some variants of this problem are also studied [5,6].

The other solution is to find an alternative path for one vehicle. The related
research includes two aspects: the replacement path problem and the longest
detour path problem.

The replacement path is the shortest path between source s and destination
t when some edge ei is removed. Malik et al. [7] presented an O(m + n logn)-
time algorithm to find the most vital edge whose replacement path is longest.
An O(m · α(m,n))-time algorithm was given for the problem by Nardelli et al.
[8]. These results apply for undirected graphs only. Emek et al. [9] presented
a near-linear time algorithm (in O(n(log3 n) time) for computing replacement
paths in weighted planar directed graphs. Wulff-Nilsen [10] improved the result
to O(n(log n) time.

The longest detour path was introduced by Nardelli et al. [11]. The detour path
is defined as the shortest path from vi to t with removal of the edge e(vi, vj).
Nardelli et al. [11] redefined the vital edge of a shortest path as that with regards
to the longest detour path and gave an algorithm with the same time and space
complexity as Malik et al. does [7]. Nardelli et al. [8] also improved the result to
O(m·α(m,n)). Based on the concept of detour path, Xiao et al. [12] proposed the
concept of real time detour path which is introduced in Section 2. Furthermore,
the authors proposed the anti-risk path problem which aims to find a path P
with minimum risk, where the risk is the maximum of the lengths of path P and
the realtime detour paths with regards to edges on P .

The previous two solutions try to reduce the risk of blockage by choosing
more vehicles to share the risk or by finding a risk-averse route for one vehicle.
However, these solutions can not ensure the fastest response to the emergency
because the blocked edge is uncertain in advance.

We contribute to the current research by raising the question of how many
vehicles are necessary to make sure the fastest response when there is at most one
edge blocked and the blockage information is unavailable in advance. The path
set for these vehicles is called the optimal rescue path set. This path set contains
the fewest paths, but achieves the goal of fastest response, i.e. the vehicle arriving
first chooses a shortest path on the current graph excluding the blocked edge if
there is one. Furthermore, we give an algorithm Subtrees Connected to compute
the optimal rescue path set and prove its time complexity.

The rest of this paper is as follows. Section 2 lists a collection of assumptions
and defines some basic concepts, including the optimal rescue path set. Section 3
analyzes the properties of the optimal rescue path set, and introduces the concept
of joint replacement path as well the Least Overlap algorithm for it. In section
4, we design the Subtrees Connected algorithm to compute the optimal rescue
path set and also analyze the time complexity of the SC algorithm. Section 5
summarizes the main results of the paper.
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2 Preliminaries

We consider a 2-connected undirected graph G = (V,E) with |V | = n nodes
and |E| = m edges, where each edge e(i, j) = (vi, vj) ∈ E is associated with
a traverse time w(i, j). For two prescribed nodes s and t in V , which are the
source node and the destination node respectively, we use Ω(s, t) to denote the
set of all the simple paths (i.e., no node in the path is visited more than once)
from s to t. For any path P (s, t) from s to t, let dP (s, t) denote the length of
P (s, t). In addition, we use SPG(s, t) to denote a shortest path from s to t in
graph G. We first introduce some basic definitions.

Definition 1. Real time detour path [12]. When an edge e(i, j) on path P (s, t)
is blocked, let SPG−{e(i,j)}(vi, t) be a shortest path from vi to t on graph G −
{e(i, j)}, then the path P (e(i, j)) = P (s, vi) + SPG−{e(i,j)}(vi, t) is called a real
time detour path of P (s, t) with regards to e(i, j).

Definition 2. Replacement path [13]. When an edge e(i, j) on path P (s, t) is
blocked, any shortest path SPG−{e(i,j)}(s, t) in graph G − {e(i, j)} is called a
replacement path with regards to e(i, j).

Notice that for an edge e(i, j) on path P (s, t), there may exist multiple real time
detour paths (and multiple replacement paths) of P (s, t) with regards to e(i, j).
See Fig. 1 as an example of a replacement path and a real time detour path.

( , )e i j

iv jv
t

),( ivsP

),( tvP j
s

{ ( , )}( , )G e i j iSP v t

{ ( , )}( , )G e i jSP s t

Replacement path Real time detour path

Fig. 1. Replacement path and real time detour path

Given a 2-connected undirected graph G, and two specified nodes s and t in G
as the source node and the destination node, respectively. A collection C of paths
(each connects s and t) in G is called a rescue path set if: (1) at least one path in
C is a shortest path from s to t in G; (2) for every edge e(i, j) in G, either some
path P ∈ C is a shortest path from s to t in G − {e(i, j)}, or some path P ∈ C

satisfies that e(i, j) ∈ P and the real time detour path of P with regards to e(i, j)
is a shortest path from s to t inG−{e(i, j)}. An optimal rescue path set(denote
as C∗) is a rescue path set containing the minimum number of paths.

Our discussion is based on the following assumptions:
(1) There is at most one edge in G is blocked.
(2) There is one unique shortest path SPG(s, t) from s to t in G.

Note: Without loss of generality, let SPG(s, t) be s = v1, v2, · · · , vp = t and
Esp = {e(i, i+ 1) |i = 1, · · · , p− 1} be set of edges on SPG(s, t). Denote e(i, i+
1) ∈ Esp as ei for short. Define {ei |i = 1, · · · , j − 1, ei ∈ Esp } as Ēi,j .
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3 Properties of Optimal Rescue Path Set

According to the above definition of an optimal rescue path set, it has the fol-
lowing two properties:

(1) fastest response, i.e. it ensures the fastest arrival from s to t no matter
which edge in G (or none) is blocked;

(2) minimum cost, i.e. the minimized number of paths in the set (that is, the
number of vehicles required) to ensure property(1).

Under uniqueness assumption of the shortest path in G, and by the above
definitions of the replacement path and the real time detour path, it is easy to
see that a collection C of paths (each connects s and t) in G is a rescue path set
if: (1) SPG(s, t) ∈ C; (2) for every edge e(i, j) ∈ SPG(s, t), either C contains a
replacement path of SPG(s, t) with regards to e(i, j), or the length of the real
time detour path of SPG(s, t) with regards to e(i, j) is equal to the length of the
replacement path with regards to e(i, j).

Note that the uniqueness assumption is also used in the above second require-
ment, which implies that for an edge e(i, j) ∈ SPG(s, t), the length of the real
time detour path of SPG(s, t) with regards to e(i, j) cannot be larger than that
of another path P (where e(i, j) ∈ P ) with regards to e(i, j).

It is easy to prove that C = {SPG−{ei}(s, t) |i = 1, · · · , p− 1}∪{SPG(s, t)} is
a rescue path set. However, it may not be the one with minimum cost because
there are some redundant replacement paths. The redundancies come from the
following two aspects:

1) the replacement path and the corresponding realtime detour path are of the
same length. When some edge is blocked, the vehicle taking SPG(s, t) detours,
and its track is also the corresponding replacement path. Hence, this replacement
path is not necessary.

2) the joint replacement path. Several replacement paths respectively with re-
gards to different edges are of the same length, and these paths can be replaced by
a joint replacement path of these edges, as the the following subsection introduced.

3.1 Minimum Joint Replacement Path Set

In order to find an optimal rescue path set C∗, we introduce the definition of
joint replacement path in advance.

Definition 3. Joint Replacement Path. For any ei ∈ E
′

sp, where E
′

sp ⊆ Esp,
dSPG−E′

sp
(s, t)) = dSPG−{ei}(s, t) holds. SPG−E′

sp
(s, t) is called the joint re-

placement path of edges in E
′

sp.

Note: If there is only one edge in E
′

sp, the joint replacement path is actually
the replacement path.

The following is the property of the joint replacement path.

Lemma 1. ∀ei, ej ∈ Esp, if ei and ej have the joint replacement path, the path
includes none of the edges in {ex|i < x < j}.
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Proof. Assume that there is a joint replacement path of ei and ej in the graph
in Fig. 2 and the path contains an edge ex(i < x < j), SPG−{ei,ej}(s, t)
= P1 + ex + P2. We will derive a contradiction.

According to definition of joint replacement path, dSPG−{ei,ej}(s, t) =
dSPG−{ei}(s, t). Define P3 = P1 + SPG(vx, t) and P4 = ex + P2 be two as-
sistant paths. Because of the assumption 2), i.e. only one shortest paths on
the graph, it is holden that dSPG(vx, t) < dP4. Furthermore, we have dP3 <
dSPG−{ei,ej}(s, t)). It means that there exists a path P3 in G − {ei} is shorter
than the joint replacement path, which contradicts its definition. Therefore, the
assumption doesn’t hold. The joint replacement path of ei and ej includes none
of the edges in {ex|i < x < j}. The lemma follows. ��

ie je
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s t
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Fig. 2. Joint replacement path

After excluding the edges whose realtime detour paths are of the same length
with the corresponding replacement paths, Esp can be divided into different
subsets according to lengths of the replacement paths. Define Eed as a subset of
Esp. The replacement paths with regards to every edge in Eed are of the same
length, denote as D.

Note: To compute the optimal rescue path set C∗, for every Eed, we should
select minimum collection of joint replacement paths with regards to the edges
in Eed, in which there is at least one replacement path with regards to every
edge in Eed. Denote the minimum joint replacement path set with regards to
Eed as C∗D.

Definition 4. Maximal hunch path(MHP, for short). If SPG−Ēi,j
(s, t) is

SPG−Ēi,j
(s, t) = SPG(s, vi)+SPG−Ēi,j

(vi, vj)+SPG(vj , t), denote SPG−Ēi,j
(s, t)

as Pi,j. If dPi,j < dPi,j+1 and dPi,j < dPi−1,j, Pi,j is called a maximal hunch
path.

Suppose there are in total X MHPs of the length D, denote CD as the collection
of the X MHPs corresponding to Eed.

Note: To find C∗D with regards to Eed can be viewed as to find a minimum
subset of CD to ensure that for every edge in Eed there is at least one MHP
avoiding this edge.

Definition 5. Tight replaced edge set(TRES, for short). Define the set E+ =
Ēi,j ∩ Eed. Rename E+ as Exij ,yij , where xij = min

eg∈E+
{g} and yij = max

eg∈E+
{g}.

Exij ,yij is called the tight replaced edge set of Pi,j .
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Let ETR denote the set of TRESs Exij ,yij corresponding MHP Pi,j in CD.

Note: To find a minimum subset of CD can be viewed as to find minimum sub set
family Ē∗ of Eed from ETR satisfying the following condition: ∪

Exij,yij
∈Ē∗

Exij ,yij

= Eed.
In the following, we will design the Least Overlap algorithm to compute the

minimum sub set family Ē∗ of Eed.
Least Overlap (LO) Algorithm:
Step 1: Modify ETR to satisfy the condition: ∀Exij ,yij , Excd,ycd

∈ Ē, xij < xcd

and yij < ycd. Sort Exij ,yij ∈ ETR as the increasing order of xij(it is also the
increasing order of yij). Let Epr be an order-preserving map from Eed onto

Epr = {e′

g|g = 1, · · · , |Eed|}, E
′

TR be an order-preserving map from ETR onto

E
′

TR = {Exf ,yf
|f = 1, · · · , |ETR|}, where xf < xf+1 and yf < yf+1. If Exf ,yf

∈
E

′

TR is the map of Exij ,yij ∈ ETR, e
′

g, e
′

h ∈ Epr are the map of exij , eyij ∈ Eed

respectively, let xf = g and yf = h.

Step 2: E
∗
= {Ex1,y1}, a = x1, b = y1 + 1;

Step 3: If there exists Exi,yi satisfying the condition that a < xi ≤ b, let

xc = max
a<xi≤b

{xi}, E
∗
= E

∗ ∪ {Exc,yc}, a = xc, b = yc, go to Step 3; otherwise,

go to Step 4;
Step 4: Output E

∗
, stop.
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Fig. 3. Least Overlap Algorithm

Example: Let Eed = {e3, e5, e8, e9}, and ETR = {Ex15,y15 , Ex69,y69 , Ex26,y26 ,
Ex48,y48 , }, where Ex15,y15 = {e3, e5}(x15 = 3, y15 = 5), Ex69,y69 = {e8, e9}(x69 =
8, y69 = 9), Ex26,y26 = {e3, e5}(x26 = 3, y26 = 5), and Ex48,y48 = {e5, e8}(x48 =
5, y48 = 8).

In Step 1, since x15 = x26 and y15 = y26, ETR = ETR−Ex26,y26 . After sorting
Ē as the increasing order of xi,j , ETR = {Ex15,y15Ex48,y48 , Ex69,y69}. The map of

Eed is {e′

1, e
′

2, e
′

3, e
′

4}. The map of ETR is E
′

TR = {Ex1,y1 , Ex2,y2 , Ex3,y3}, where
x1 = 1, y1 = 2, x2 = 2, y2 = 3, x3 = 3, y3 = 4.

In step 2, E
∗
= {Ex1,y1}, a = x1 = 1, b = y1 + 1 = 3;

In Step 3, x2 < x3 ≤ b, xc = x3, a = x3, b = y3 + 1, E
∗
= {Ex1,y1 , Ex3,y3}.

Because no xi ≤ b, Stop.
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Hence, E
∗
= {Ex1,y1 , Ex3,y3} is the minimum sub set family of Eed, and the

{P1,5, P6,9} is minimum joint replacement path set with regards to Eed.
The validity of the LO algorithm is checked as follows.

Lemma 2. Least Overlap Algorithm computes the correct minimum subset fam-
ily E

∗
of Eed.

Proof. In Step1, ∀Exij ,yij , Excd,ycd
∈ ETR, if xij ≤ xcd and ycd ≤ yij , Pi,j is not

only the replacement path of Exij ,yij but also that of Excd,ycd
. Therefore, Pc,d

wouldn’t belong to the minimum joint replacement path set, E
∗
derived from

ETR − {Excd,ycd
} will be no worse than that derived from ETR.

Assume that the subset family ELO
∗
= E

∗
= {EXi,Yi |i = 1, · · · , n1} de-

rived by Step 2-4 of LO Algorithm is not the minimum one. We will derive a
contradiction.

Suppose that there exists a set Ec
∗
= {EXi,Yi

|i = 1, · · · , n2 < n1} satisfying⋃
EXi,Yi

∈Ec
∗
Exi,yi = Epr. BecauseEx1,y1 has to be chosen to cover e

′

1,Y1 = Y1 = y1.
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Fig. 4. Optimization of Least Overlap Algorithm

The inequation Yi ≤ Yj < Yj+1 < Yi+1 holds for at least a couple of Yi, Yi+1,
as Fig. 4.(a) and Fig. 4.(b) show. If there is no such couple, we have Yi+1 ≤ Yi+1

holds for i ≥ 1. Hence, |Ec
∗| ≥ n1, as Fig. 4.(c) shows, which contradicts to the

definition of Ec
∗
. Therefore, Yi ≤ Yj < Yj+1 < Yi+1 holds for at least a couple

of Yi, Yi+1.
In order to cover all the edges in Epr, we have Xi+1 ≤ Yi + 1. Because

Yi ≤ Yj < Yj+1 < Yi+1 holds, we have Xi+1 ≤ Yi +1 ≤ Yj +1. According to LO
algorithm, Yj+1 = max

xδ≤Yj+1
{yδ}. Because Xi+1 ≤ Yj + 1, we have Yj+1 ≥ Yi+1,

which contradicts to Yj+1 < Yi+1. Therefore, the assumption |Ec
∗| = n2 < n1

doesn’t hold. Hence, ELO
∗
is the minimum one to cover all the edges in Epr and

also the one to cover all the edges in Eed. ��
From above all, if we have all the MHPS of same length, we can get the C∗D. If
we have all the C∗D with regards to different length D, C∗ =

⋃
D

C∗D.
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4 Optimal Rescue Path Set

According to the analysis in the above sections, it needs four steps to get the
optimal rescue paths:

(1) compute the shortest path;
(2) compute all the MHPs;
(3) delete all the replacement paths which are of the same length of the

corresponding detour paths;
(4) compute the minimum joint replacement path set C∗D.
Based on the LO algorithm, we propose the Subtrees Connected Algorithm

to compute the optimal rescue paths following the above four steps.
Subtrees Connected (SC) Algorithm:
Step 1: Compute the shortest path tree Ts( rooted at s) and Tt(rooted at t) by

the Dijkstra algorithm [15]. As Fig. 5 shows, derive the distances from vi to s and
t, called u(i) and v(i), respectively. Cut Ts into p subtrees {Ts(i)|i = 1, · · · , p}
along the edges in Esp, where Ts(i) is the subtree connected to vi( see Fig.5 (a)).
Let Ni denote the set of nodes on Ts(i). Modify the tree Ts to be Breadth-first
type(BF type), i.e. ∀va ∈ Ni and vb ∈ Nj(i < j), u(b) > u(a) + w(a, b). Update
the Ts(i) and Ni.

Step 2: Initialization. C∗ = {SPG(s, t)}. Let De(va) = i denote the depth of
node va ∈ Ni. Let Ai(i = 1, · · · , p−1) denote the set of edges linking the nodes in

Ni and
p
∪

j=i+1
Nj , where va ∈ Ni, vb ∈

p
∪

j=i+1
Nj and the edges in Esp are excluded

from Ai. Let l(vi) = [l1(i), l2(i), l3(i)] = [∞, t, vi] denote the temporary label of
vi ∈ E and Mark(i) = [Dist(i), x(i), y(i)] = [∞, t, s] denote the permanent label
of vi ∈ Esp. Let h = 1.

Step 3: Compute all the replacement paths with regards to every edge in Esp.

Suppose there are gh edges in Ah, denote Ah as {e′

q |q = 1, · · · , gh }. Let q = 1,
Detour =∞

Step 4: For e
′

q = e(a, b), if l1(b) > u(a)+w(a, b)+v(b), l(vb) = [u(a)+w(a, b)+
v(b), va, vb]. If u(a) + w(a, b) + v(b) < Detour, Detour = u(a) + w(a, b) + v(b).

– If l1(b) < Dist(h) holds or l1(b) = Dist(h) and De(y(h)) < De(vb) hold,
Mark(h) = l(vb);

– If De(vb) > h + 1, if l1(b) < Dist(h + 1) holds or l1(b) = Dist(h + 1) and
De(y(h+ 1)) < De(vb) hold, Mark(h+ 1) = l(vb).

q = q + 1,

– if q ≤ gh, go to Step 4;
– if q > gh, h = h+ 1. If Dist(h) = Detour(the real-time detour path is also

the replacement path), then Mark(h) = [∞, va, vb]( it will be deleted in Step
5). If h < p, go to Step 3; if h = p, go to Step 5.

Step 5: Compute the minimum joint replacement path sets. Sort the per-
manent labels Mark(h) in increasing order of Dist(h). If Dist(h) = ∞, delete
Mark(h). Partition the Mark(h) with differentDist(h) values into different sets
Ma(a = 1, · · · , A).
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For each Ma(1 ≤ a ≤ A):
Step 5.1: Define the edge set Ea

ed = {e(h, h+1) |Mark(h) ∈Ma}. ∀Mark(h),

Mark(h
′
) ∈Ma, if Mark(h) = Mark(h′), let Ma = Ma−{Mark(h

′
)}. For each

Mark(h) ∈ Ma, when x(h) = vi and y(h) = vj , denote Ph = SPG(s, x(h)) +
e(x(h), y(h)) + SPG(y(h), t) as Pi,j , and construct the corresponding TRES
Ea

xij ,yij
. Let CD be {Ph|Mark(h) ∈Ma} and Ea

TR be {Ea
xij ,yij

|Mark(h) ∈Ma}.
Step 5.2: For Ea

TR, compute the minimum sub set E∗
a by LO algorithm. If

Ea
xij ,yij

∈ E∗
a , C

∗ = C∗ ∪ {Ph}, where Ph = Pi,j .
Step 6: Output C∗. Stop.

Lemma 3. The minimum joint replacement path set C∗D derived from the CD in
Step 5.1 is the same as that derived from all the MHPs corresponding to Ea

ed.

Proof. In Step 1, Ts is modified to be Breadth-first type, i.e. ∀va ∈ Ni and
vb ∈ Nj(i < j), u(b) > u(a) + w(a, b). For any Mark(h), no Mark

′
(h) =

[Dist
′
(h), x

′
(h), y

′
(h)] satisfies the following conditions: Dist

′
(h) = Dist(h),

De(x
′
(h)) < De(x(h)) and De(y(h)) = De(y

′
(h)), and the corresponding path

P
′

h passing node va( as Fig. 6 shows).
In Step 4, Mark(h) will be updated only when Dist(h) can be decreased

or when Dist(h) keeps the same while De(y(h)) increases. Therefore, for any
Mark(h), no Mark

′
(h) = [Dist

′
(h), x

′
(h), y

′
(h)] satisfies the following condi-

tions: Dist
′
(h) ≤ Dist(h), De(x

′
(h)) ≤ De(x(h)) and De(y(h)) ≤ De(y

′
(h)), as

P
′

1h and P
′

2h in Fig. 6. Hence, the path Ph is an MHP.

However, there may exist Mark
′
(h) = [Dist

′
(h), x

′
(h), y

′
(h)] satisfying the

following conditions:Dist
′
(h) = Dist(h),De(x

′
(h)) < De(x(h)) andDe(y

′
(h)) <

De(y(h)). Let i = De(x
′
(h)) j = De(x

′
(h)), if E− = Eed ∩ Ēi,j = φ, Ph avoids

no less edges in Eed than P
′

h does, and deleting P
′

h will not effect the C∗D, see

Fig .7(a); if E− 
= φ, P
′

h must be the replacement path of this edge and involved



The Optimal Rescue Path Set Problem 127

av
bv( , )e a b hP

hv 1hv

'
1hP

'
2hP

'
hP

Fig. 6. Maximal replaced edge set

in the corresponding CD, see Fig .7(b). Hence, the missed MHP P ′
h as Fig .7(a)

shows will not have any effect the minimum joint replacement path set.

hP

hv 1hv

'
hP

( ')x h ( )x h

hP

hv 1hv

'
h DP C

( ')x h ( )x h

E

(a) (b)

E

Fig. 7. The case when De(y(h)) decrease

Moreover, one MHP may be the replacement path with regards to several
edges, i.e. ∀Mark(i),Mark(j) ∈ Ma, Mark(i) = Mark(j). Hence, this opera-
tion does not miss any MHP.

From above all, the SC algorithm derive all the MHPs except these as Fig
.7(a) shows. Because these MHPs has no effect on the C∗D, it holds that the C∗D
derived from the CD computed in Step 5.1 is the same as that derived from all
the MHPs corresponding to Ea

ed. The lemma follows.
��

Theorem 1. Subtrees Connected Algorithm correctly computes the optimal res-
cue path set.

Proof. We prove the correction of the algorithm from the two properties of op-
timal rescue path set, i.e. shortest time and minimum paths.

Shortest time: to ensure the track of the first arrival is the shortest path on the
current network no matter which edge is blocked. Suppose the blocked edge is eb,

Case 1: No blockage or eb /∈ Esp. In this case, the vehicle that takes the
shortest path is the first arrival.

Case 2: eb ∈ Esp and SPG−{eb}(s, t) overlaps P (eb). The vehicle that takes
the shortest path will detour from the prefix node of eb, and so its track is also
the shortest path on the current network.

Case 3: eb ∈ Esp and SPG−{eb}(s, t) is different from P (eb). Mark(b) is sorted
in Step 5 and eb is included in some Ea

ed. In Step 5.1, there is at least one TRES
including eb. The LO algorithm also ensures that there is at least one set Ea

xi,yi

in E
∗
a covers eb. It means that there is at least one replacement path with regards

to eb in PNopt−com.
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Over all, there is at least one vehicle whose real track is the shortest path on
the current network. Hence, the shortest time can be ensured.

Minimum paths: In Step 5, the replacement paths of the same length of the
corresponding realtime detour paths are excluded from the path set. According
to Lemmas 2 and 3, we can get all the minimum joint replacement path sets
E∗

a(1 ≤ a ≤ A) by the LO algorithm. It means that the redundant replacement
paths are also excluded. Hence, there is no redundancy.

From above all, the SC algorithm can get the optimal rescue paths sets C∗. ��

Theorem 2. The time complexity of Subtrees Connected Algorithm is O(m +
n logn).

Proof. Step 1 uses the Dijkstra algorithm implemented with Fibonacci heaps
[14] to get the shortest path trees in O(m+n logn) time. It needs O(n) time to
compute the distances from s and t, O(n) time to partition all the nodes into
different sets, O(m) time to modify Ts to the Breadth-first type and to update
the Ni and Ts(i).

Step 2 needs O(m) time to initialize.
In Step 3, to get the replacement paths needs to update the Mark(h) at most

2gh times and to update the l(vi) at most gh times. In Step 3 and Step 4, there

are totally
p−1∑
h=1

3gh < 3m update operation. Hence, it needs O(m) time.

In Step 5, to sort theMark(i) needs O(n logn) time. ForMa, let na = |Ma|. In
Step 5.1, to define Ea

ed needs at most na time, to exclude the duplicate elements
in Ma needs at most 2na logna time, to construct all the MHPs needs at most
na time, and to construct the TRESs needs at most 4na logna time. In Step 5.2,
LO algorithm needs at most na logna + na time to compute the minimum sub
set family E∗

a and at most na time to output the corresponding MHPs.

For all the Ma(1 ≤ a ≤ A), there are totally O(
A∑

a=1
(4na + 7na logna)) =

O(n log n) times needed in Step 5.1-5.2.
Over all, the time complexity of SC algorithm is O(m + n logn). ��

5 Conclusion

In this paper, we try to minimize the number of rescue vehicles to guarantee the
fastest response to emergency even when some edge blockage might occur. We
first proposed the definition of joint replacement pathand optimal rescue path
set. SC algorithm is presented to compute the optimal rescue path set, and its
time complexity is proved to be O(m+ n logn).

The optimal rescue path set is a path set for multiple rescue vehicles, which can
realize the fastest response by dispatching the fewest rescue vehicles. Therefore,
it is helpful for improving the distribution of the limited rescue resources as well
as to minimize the emergency response time.

In this paper, we only consider the scenario that there is at most one edge is
blocked. The scenario with multiple blockages is more practical. This scenario is
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based on the definition of k most vital arcs, but even more complex than the k
most vital arcs problem. It is because that it needs to compute all the l(l ≤ k)
most vital arcs. However, the complexity of the k most vital arcs is still an open
problem (see Malik [7]). Therefore, it is worthy to prove the complexity of the
new scenario or study a more practical case in the future research. Furthermore,
our study is based on the assumption that there is only one shortest path on
graph G. The more general case with more than one shortest path in G is also
an interesting research direction.

Acknowledgments. The authors would like to acknowledge the financial sup-
port of Grants (No.71071123, 61221063.) from NSF of China and (No.IRT1173)
from PCSIRT of China.
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Abstract. Given a set of n points, each is painted by one of the k given
colors, we want to choose k points with distinct colors to form a color
spanning set. For each color spanning set, we can construct the convex
hull and the smallest axis-aligned enclosing rectangle, etc. Assume that
each point is chosen independently and identically from the subset of
points of the same color, we propose an O(n2 log n) time algorithm to
compute the expected area of convex hulls of the color spanning sets
and an O(n2 log n) time algorithm to compute the expected perimeter
of convex hulls of the color spanning sets. For the expected perimeter
(resp. area) of the smallest perimeter (resp. area) axis-aligned enclosing
rectangles of the color spanning sets, we present an O(n log n) (resp.
O(n2)) time algorithm. We also propose an approximation algorithm to
compute the expected diameter of the color spanning sets.

Keywords: Expected Value, Imprecise Data, Computational. Geome-
try.

1 Introduction

Most of the classic algorithms in computational geometry are based on the as-
sumption that the locations of input points are known exactly. But, in practice,
that is not always the case. We can, more often than not, only obtain the data
varying within some ranges. For example, the locations of a moving object have
some uncertain properties [3]. Moreover, location data obtained from physical
devices are inherently imprecise due to the measurement error, sampling error
and network latency [8, 9]. Location privacy protection is another issue which
may lead to imprecise data [2, 4, 7].

Each imprecise point p can be modelled by a continuous region φ or even
a set ψ of discrete points. That means p could be anywhere in φ or any one
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point of ψ but its exact location is not known. For a set of imprecise points P =
{p1, p2, ..., pn}, they can be modelled by a set Φ = {φ1, φ2, ..., φn} of continuous
regions or a set Ψ = {ψ1, ψ2, ..., ψn} of sets of discrete points.

In the database community, a similar framework has been researched under
a different name – which is called “uncertain data” and, within the framework,
each color is called an “object” (the different instances of a color correspond
to the different possible instances of the uncertain object). In [11–13,22, 24, 25],
there are obtained results that pertain to geometric problems in this framework.

The problem above is often referred to as the color-spanning problem, where
each imprecise point is modelled by a set of discrete points with each set of dis-
crete points painted by one distinct color. In general, the color spanning problem
is to select exactly one point from each color such that certain properties (e.g.
area, distance, perimeter and so on) of some geometric structures (e.g. convex
hulls, minimum spanning trees and so on) based on the selected points with
different colors are minimized or maximized. In the following descriptions, we
assume that there are n points with k colors for the sake of notation consistency.
Zhang et al. [10] proposed a brute force algorithm to address the minimum diam-
eter color-spanning set problem (MDCS). The running time is O(nk). Fleischer
and Xu [6] showed that the MDCS problem can be solved in polynomial time
for the L1 and L∞ metrics, while it is NP-hard for all other Lp metrics, even
in two dimensions. They also gave an efficient algorithm to compute a constant
factor approximation.

Abellanas et al. [1] showed that the Farthest Color Voronoi Diagram (FCVD)
is of complexity Θ(nk) if k ≤ n/2. Then they proposed algorithms to con-
struct FCVD, the smallest color-spanning circle based on FCVD, the smallest
color-spanning rectangle and the narrowest color-spanning strip of arbitrary ori-
entation. In [5], Das et al. proposed an algorithm for identifying the smallest
color-spanning corridor in O(n2 logn) time and an algorithm for identifying the
smallest color-spanning rectangle of arbitrary orientation with an O(n3 log k)
running time. In [20]. Ju et al. studied several other problems regarding color-
spanning sets, like diameter and minimum spanning tree, etc.

In this paper, instead of computing the maximum or minimum value of some
geometric properties, we study expected values of some geometric properties,
which has received much less attention in the algorithm community. However,
sometimes expected values are more meaningful than extreme values — as the
former can be used to estimate the future events. For example, in database
community, people studied a lot of problems on probabilistic databases [14] such
as histogram building [15], clustering [16] and indexing [17].

Regarding the geometric properties covered in this paper, it is NP-hard to
compute the largest or smallest (area or perimeter) convex hull of imprecise in-
put at general positions [18,20]. Hence computing the expected area or perimeter
of convex hull of imprecise input is a good choice in reality. The discrete version
of imprecise input are also called indecisive point sets in [19]. Jørgensen et al. [19]
studied computing distributions of geometric functions such as the radius of the
smallest enclosing ball and the diameter, and showed that the distribution of
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the radius of the smallest enclosing ball can be calculated exactly in polynomial
time, but computing the same distribution for the diameter is #P-hard. They
generalized the polynomial time algorithm to all LP-type problems, which does
not work for any property of the convex hull (e.g. area or perimeter) because it
does not have a constant combinatorial dimension. However, we show that the
expected perimeter or area of convex hull of indecisive point sets can be com-
puted in polynomial time in this paper. Kamousi et al. [23] studied the problem
of Stochastic Minimum Spanning Trees in Euclidean Spaces, and showed the
stochastic MST problem is #P-hard for any dimension larger or equal than
2 and proposed approximation algorithms. Paper [23] also mentions that the
expected lengths of some geometry structure (convex hull,Delaunay triangula-
tion,Gabriel graph or relative neighborhood graph etc) are not hard to compute,
but no details are given in that paper. Jørgensen et al. [19] also showed that the
LP-type framework can compute distribution of the smallest axis-aligned bound-
ing box, by perimeter, of indecisive point sets in O((nk)5) time, where n is the
total number of points and k is the total number of colors. The expected value of
the smallest axis-aligned bounding box can be computed after the distribution
is calculated in their LP-type framework, but the O((nk)5) running time is too
much. In this paper, we show that the expected value of perimeter (resp. area)
for the smallest axis-aligned bounding box can be computed in O(n log n) (resp.
O(n2)) time, significantly improving the previous bound. Since the problem of
expected diameter of indecisive points is difficult to solve [19], we give a 2/

√
3

approximation algorithm running in O((nk)4) time.
We formally define the five problems to be studied in section 2. The five algo-

rithms are given in respective sections. We give conclusions in the last section.

2 Problem Definition

Given a set ofn points, each point is paintedwith one of the k given colors, we want
to choose k points with distinct colors to form a color spanning set. For each color
spanning set we can construct convex hull and axis-aligned (enclosing) rectangle.
Suppose that each point is chosen independently and identically from the points
of the same color. Assume that there aremi points painted with the i-th color such
that n =

∑k
i=1 mi, then there are M =

∏k
i=1 mi possible ways to choose k color

spanning points. Note that M could be exponential in the worst case.
In this paper, we assume that the probability of appearance for each point in

color ci is equal, namely 1/mi, and we want to compute five expected values as
follows:

Problem 1. The expected value of perimeter for M convex hulls.

Problem 2. The expected value of area for M convex hulls.

Problem 3. The expected value of perimeter for M smallest perimeter axis-
aligned (enclosing) rectangles.
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Problem 4. The expected value of area for M smallest area axis-aligned (enclos-
ing) rectangles.

Problem 5. The expected value of diameter for M color spanning sets.

For a convex hull C, we use Per(C) and Area(C) to denote the perimeter and
area of C respectively. For an edge e, we use L(e) to represent its length. The
set of M convex hulls is denoted as SC = {C1, C2, ..., CM}. The probability for
constructing each Ci is P (Ci) =

1
M .

3 Algorithm for Problem 1

The expected value of perimeter for M convex hulls can be defined as follows:

Ecp =

M∑
i=1

(P (Ci) ∗ Per(Ci)).

If we use e ∈ Ci to represent an edge of Ci, then

Ecp =
1

M

∑
∀Ci∈SC

∑
∀e∈Ci

L(e)

=
1

M

∑
∀e∈Ci

∑
∀Ci∈SC

L(e).

Let P (e) = 1
M

∑
∀Ci∈SC

exist(e, Ci) be the probability of e being an edge of
convex hull, where the function exist(e, Ci) returns 1 if e is one of the edges of
Ci and it returns 0 otherwise. Then, we obtain

Ecp =
∑
∀e

P (e) ∗ L(e).

Let l(e) be the extended line of e. According to the property of convex hull, e is
an edge of convex hull iff all the points appear on one side of l(e) or on e. Let

m
upper(e)
i be the number of points of the i-th color on the upper side of l(e) or

on e. Let m
bottom(e)
i be the number of points of the i-th color on the bottom side

of l(e) or on e. Suppose that the two endpoints of e are painted with the j1-th
and j2-th colors respectively. Then

P (e) =
1

M
(

∏k
i=1 m

upper(e)
i

m
upper(e)
j1

×m
upper(e)
j2

+

∏k
i=1 m

bottom(e)
i

m
bottom(e)
j1

×m
bottom(e)
j2

) (1)

where the first (second) part in the parenthesis represents the number of possible
convex hulls with e as the bottommost (uppermost) edge.

We now present an algorithm running in O(n2 logn) time to compute Ecp. For
a point a, we can sort all other n− 1 points by the angles around a (see Fig. 1).
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a

Fig. 1. Illustration of computing Ecp

Then we draw a line horizontally through a and rotate it around a clockwise
until it hits a point b of a color different from a. Let e = ab. We can count
the number of points for different colors in the upper and bottom side of l(e).

Consequently, we can obtain m
upper(e)
i and m

bottom(e)
i to compute P (e), where

i = 1, ..., k. Note that m
upper(e)
j1

,m
upper(e)
j2

,m
bottom(e)
j1

,m
bottom(e)
j2

are in m
upper(e)
i

and m
bottom(e)
i . We continue to rotate l(e) clockwise until it hits another point

c with the j3-th color. Let e = ac. If j3 
= j1, then m
upper(e)
j3

(m
bottom(e)
j3

) are
increased or decreased by one depending on whether c enters or leaves upper
(bottom) side of l(e) respectively. All other mi’s (i 
= j3) do not change. Then

we can compute P (e). If j3 = j1, m
upper(e)
j3

and m
bottom(e)
j3

are updated as before
but we do not have to compute P (e). The process is stopped when the sweep
line rotates 180◦.

For the running time, the sorting step takes O(n logn) time for the fixed point

a. For e = ab,m
upper(e)
i , m

bottom(e)
i and P (e), where i = 1, ..., k, can be computed

in O(n) time. After that, each update only takes constant time, therefore the
whole sweeping process takes O(n) time. Since we have O(n) possible a’s, the
total running time is O(n2 logn).

Theorem 1. The expected value of perimeter for M convex hulls can be com-
puted in O(n2 logn) time.

4 Algorithm for Problem 2

The expected value of area for M convex hulls can be defined as follows:

Eca =
M∑
i=1

(P (Ci) ∗Area(Ci)).

We draw a horizontal line H below all the n points. For an edge e ∈ Ci, we define
Area(e) as the area of trapezoid formed by e, H and two vertical line segments
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projected from the two endpoints of e to H . Then

Area(Ci) =
∑

∀e∈upper hull of Ci

Area(e)−
∑

∀e∈lower hull of Ci

Area(e)

We know that e ∈ upper hull of Ci iff all points of Ci are below l(e) and
e ∈ lower hull of Ci iff all points are above l(e). Therefore

Eca =
∑
∀e

P (e) ∗Area(e),

where

P (e) =
1

M
(

∏k
i=1 m

bottom(e)
i

m
bottom(e)
j1

×m
bottom(e)
j2

−
∏k

i=1 m
upper(e)
i

m
upper(e)
j1

×m
upper(e)
j2

) (2)

This is different from equation 1, but the meanings of notations and the com-
puting process are the same as in problem 1.

Theorem 2. The expected value of area for M convex hulls can be computed in
O(n2 logn) time.

5 Algorithm for Problem 3

The expected value of perimeter forM smallest perimeter axis-aligned rectangles
can be defined as follows:

Erp =
1

M

∑
∀Ri∈SR

Per(Ri),

where SR = {R1, R2, ..., RM} is the set of M smallest perimeter axis-aligned
rectangles enclosing k points of different colors.

For the n input points, we can sort them according to the y-coordinates to
obtain the sorted sequence pv1, p

v
2, ..., p

v
n from top to bottom. Similarly we can

obtain the sorted sequence ph1 , p
h
2 , ..., p

h
n from left to right. We can draw vertical

and horizontal lines through all points. For point p, let x.p and y.p represent x
and y coordinates of p respectively.

Lemma 1. Each Ri either covers the whole horizontal interval [x.phi , x.p
h
i+1]

(1 ≤ i < n) or does not cover any part of it (except possibly x.phi or x.phi+1).
Similarly Ri either covers the whole vertical interval [y.pvi , y.p

v
i+1] (1 ≤ i < n)

or does not cover any part of it (except possibly y.pvi or y.pvi+1).

Proof. We only need to prove the former case since the proof of the latter case
is similar. We prove it by contradiction. Suppose some Ri only covers a part of
(x.phj , x.p

h
j+1), then we can move the left or right edge to x.phj or x.phj+1) to obtain

an axis-aligned rectangle enclosing original k points of a smaller perimeter. This
contradicts the fact of Ri being the smallest perimeter axis-aligned rectangle.

��
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Suppose that Ri covers the horizontal interval [x.p
h
a , x.p

h
b ] and the vertical inter-

val [y.pvc , y.p
v
d]. Then

Erp =
2

M

∑
∀Ri∈SR

((x.phb − x.pha) + (y.pvd − y.pvc)).

From Lemma 1, we know that for a horizontal interval [x.phi , x.p
h
i+1], it is covered

by Ri iff for k points of different colors enclosed by Ri, some of the k points are
to the left of x.phi and some of k points are to the right of x.phi+1. In other words,
[x.phi , x.p

h
i+1] is not covered by Ri iff all the k points are to the left of x.phi or

all k points are to the right of x.phi+1. Similar properties hold for [y.pvi , y.p
v
i+1].

Let P (hi) be the probability that the horizontal interval [x.phi , x.p
h
i+1] is covered

by some rectangle in SR and P (vi) be the probability that the vertical interval
[y.pvi , y.p

v
i+1] is covered by some rectangle in SR. Then

Erp =
2

M

n−1∑
i=1

(P (hi)× (x.phi+1 − x.phi ) + P (vi)× (y.pvi+1 − y.pvi ))

=
2

M

n−1∑
i=1

((1− P (hi))× (x.phi+1 − x.phi ) + (1− P (vi))× (y.pvi+1 − y.pvi )),

where P (hi) represents the probability that the horizontal interval [x.phi , x.p
h
i+1]

is not covered by some rectangle in SR and P (vi) represents the probability that
the vertical interval [y.pvi , y.p

v
i+1] is not covered by some rectangle in SR. Let

mleft
i,j be the number of points with the j-th color to the left of x.phi and mright

i,j

be the number of points with the j-th color to the right of x.phi . Let m
upper
i,j be

the number of points with the j-th color above y.pvi and mlower
i,j be the number

of points with the j-th color below y.pvi . Then

P (hi) =
1

M
(

k∏
j=1

mleft
i,j +

k∏
j=1

mright
i+1,j)

P (vi) =
1

M
(

k∏
j=1

mupper
i,j +

k∏
j=1

mlower
i+1,j )

To compute P (hi), we can scan the horizontal intervals from left to right. Ini-

tially, mleft
1,j and mright

2,j can be computed in O(n) time. Then each mleft
i,j and

mright
i+1,j can be updated in constant time. Thus all P (hi) (i = 1, ..., n) and Erp

can be computed in linear time. The whole algorithm still takes O(n log n) time
since we need to sort all the n points vertically and horizontally at the beginning.

Theorem 3. The expected value of perimeter for M smallest perimeter axis-
aligned rectangles can be computed in O(n log n) time.
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6 Algorithm for Problem 4

The expected value of area for M smallest area axis-aligned rectangles can be
defined as follows:

Era =
1

M

∑
∀Ri∈SR

Area(Ri),

where SR = R1, R2, ..., RM is the set of M smallest area axis-aligned rectangles
enclosing k points of different colors.

Again, we can draw n vertical lines and n horizontal lines through n points.
Those 2n lines form (n−1)2 (bounded) rectangles. Let rij represent the rectangle
with horizontal interval [x.phi , x.p

h
i+1] and vertical interval [y.pvj , y.p

v
j+1]. Then

Era =

n−1∑
i=1

n−1∑
j=1

(1− P (rij))×Area(rij),

where P (rij) is the probability that rij is not covered by some rectangle in SR.
Similarly to the proof of Lemma 1, we can obtain the following lemma:

Lemma 2. Each Ri either covers the whole rij or does not cover any part of it
(except possibly the corners).

From the above lemma, we know that rij is not covered by Ri iff for k points
of different colors enclosed by Ri, all k points are above y.pvj , or all k points

are below y.pvj+1, or all k points are to the left of x.phi , or all k points are

to the right of x.phi+1. For each rectangle rij , we draw four lines through four
edges of rij . Those four lines partition the plane into nine regions marked as
rNij , r

W
ij , r

E
ij , r

S
ij , r

NW
ij , rNE

ij , rSW
ij , rSE

ij and rij respectively (see Fig. 2). Let PNE
ij

be the probability that all k points are in rNE
ij , PSE

ij be the probability that

all k points are in rSE
ij , PNW

ij be the probability that all k points are in rNW
ij ,

PSW
ij be the probability that all k points are in rSW

ij , PN
ij be the probabil-

ity that all k points are in rNW
ij

⋃
rNij

⋃
rNE
ij , PS

ij be the probability that all k

points are in rSW
ij

⋃
rSij

⋃
rSE
ij , PW

ij be the probability that all k points are in

rSW
ij

⋃
rWij

⋃
rNW
ij , PE

ij be the probability that all k points are in rSE
ij

⋃
rEij

⋃
rNE
ij .

Then

P (rij) = 1− (PE
ij + PW

ij + PN
ij + PS

ij − PNE
ij − PSE

ij − PNW
ij − PSW

ij )

Let mN
ij,j′ be the number of points with the j′-th color in rNij . Similarly, we can

define mE
ij,j′ ,m

W
ij,j′ ,m

S
ij,j′ ,m

NE
ij,j′ ,m

NW
ij,j′ ,m

SE
ij,j′ ,m

SW
ij,j′ . Then

PE
ij =

1

M

k∏
j′=1

(mE
ij,j′ +mNE

ij,j′ +mSE
ij,j′ ),
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rij

rNij

rSij

rEijrWij

rNE
ij

rSE
ij

rSW
ij

rNW
ij

Fig. 2. Partition of the plane according four edges of rij

PW
ij =

1

M

k∏
j′=1

(mW
ij,j′ +mNW

ij,j′ +mSW
ij,j′ ),

PN
ij =

1

M

k∏
j′=1

(mN
ij,j′ +mNE

ij,j′ +mNW
ij,j′ ),

PS
ij =

1

M

k∏
j′=1

(mS
ij,j′ +mSE

ij,j′ +mSW
ij,j′ ),

PNE
ij =

1

M

k∏
j′=1

(mNE
ij,j′ ),

PNW
ij =

1

M

k∏
j′=1

(mNW
ij,j′ ),

PSE
ij =

1

M

k∏
j′=1

(mSE
ij,j′ ),

PSW
ij =

1

M

k∏
j′=1

(mSW
ij,j′ ).

We can scan the rectangle rij from left to right and then from top to bottom. Ini-
tially, mN

11,j′ ,m
E
11,j′ ,m

W
11,j′ ,m

S
11,j′ ,m

NE
11,j′ ,m

NW
11,j′ ,m

SE
11,j′ ,m

SW
11,j′ can be computed

in linear time. Each update on mN
ij,j′ , m

E
ij,j′ , m

W
ij,j′ , m

S
ij,j′ , m

NE
ij,j′ , m

NW
ij,j′ , m

SE
ij,j′ ,

mSW
ij,j′ can be done in constant time. All P (rij) (i, j = 1, ..., n) can be computed

in O(n2) time. Therefore Era can be solved in O(n2) time.

Theorem 4. The expected value of perimeter for M smallest area axis-aligned
rectangles can be computed in O(n2) time.
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7 Algorithm for Problem 5

The expected value of diameter for M color spanning sets can be defined as
follows:

ED =

M∑
i=1

(P (Si) ∗D(Si)),

where Si is a color spanning set, P (Si) =
1
M is the probability that Si is a color

spanning set, and D(Si) is the diameter of Si. Then we have

ED =
1

M

M∑
i=1

D(Si).

The exact expected value is not easy to compute as computing distribution for
the diameter is #P-hard [19].

Theorem 5. The expected value of diameter for M color spanning sets in the
plane can be 2/

√
3 approximated in polygonal time.

Proof. We use the diameter of the smallest enclosing ball of color spanning sets to
approximate the diameter of color spanning sets. The distribution of the radius
of the smallest enclosing ball can be calculated exactly in O((nk)4) time [19],
where n is the total number of points and k is the total number of sets (colors),
and there are at most O((nk)3) discrete values of the distribution. The diameter
of color spanning set can be 2/

√
3 approximated by the diameter of smallest

enclosing ball in the plane according to paper [6]. We sum the product of discrete
value and its responding probability of distribution, which takes O((nk)3) time.
And the theorem is proven. ��

8 Conclusions

We propose anO(n2 log n) time algorithm to compute the expected area (perime-
ter) of convex hulls of the color spanning sets. For the expected area (resp.
perimeter) of the smallest area (resp. perimeter) axis-aligned enclosing rectan-
gles of the color spanning sets, it can be computed in O(n2) (resp. O(n logn))
time. We also propose a simple approximation algorithm to compute the ex-
pected diameter of the color spanning sets. For the future work, it will be in-
teresting to see whether our technique can be applied to other expected value
such as expected distance of the closest pair of M color spanning sets and so on.
Those problems are also interesting in high dimensional space.
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Abstract. An independent dominating set in a graph is a subset of
vertices, such that no edge has both ends in the subset, and each vertex
either itself is in the subset or has a neighbor in the subset. In a convex
bipartite (circular convex bipartite, triad convex bipartite, respectively)
graph, there is a linear ordering (a circular ordering, a triad, respectively)
defined on one class of vertices, such that for every vertex in the other
class, the neighborhood of this vertex is an interval (a circular arc, a
subtree, respectively), where a triad is three paths with a common end.
The problem of finding a minimum independent dominating set, called
independent domination, is known NP-complete for bipartite graphs and
tractable for convex bipartite graphs. In this paper, we make polynomial
time reductions for independent domination from triad- and circular-
convex bipartite graphs to convex bipartite graphs.

Keywords: Independent domination, circular convex bipartite graph,
triad convex bipartite graph, polynomial time reduction.

1 Introduction

An independent dominating set in a graph is a subset of vertices, such that the
subset is an independent set, and every vertex in the graph either itself is in
the subset or has a neighbor in the subset. The problem of finding a minimum
independent dominating set, called independent domination, is NP-complete for
chordal bipartite graphs, but polynomial time solvable for convex bipartite graphs
[3]. In a convex bipartite graph [7,3,2], there is a linear ordering defined on one
class of vertices, such that for every vertex in another class, the neighborhood of
this vertex is an interval. In a chordal bipartite graph [6], every cycle of length
at least six has a chord, where a chord of a cycle on a graph is an edge between
two vertices of the cycle but the edge itself is not a part of the cycle.
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Beside convex bipartite graphs and chordal bipartite graphs, there are other
interesting bipartite graph classes, such as circular convex bipartite graphs [11]
and triad convex bipartite [10,9] graphs, etc, see Figure 1.

Fig. 1. Various bipartite graph classes and their inclusions

In a circular convex bipartite graph [11], there is a circular ordering defined on
one class of vertices, such that for every vertex in another class, the neighborhood
of this vertex is a circular arc. Circular convex bipartite graphs are natural
models for scheduling problems. For example, the available working hours of a
worker is usually a consecutive period of hours. A group of workers and their
available hours can be modeled by a circular convex bipartite graph [11]. For
a long time, complexity results for circular convex bipartite graphs are scarce.
Maximum matching and Hamiltonian cycle and path are known linear time
solvable for circular-convex bipartite graphs [11]. The complexity of independent
domination for circular-convex bipartite graphs is unknown before. In this paper,
we show that independent domination is polynomial time solvable for circular
convex bipartite graphs.

In a tree convex bipartite graph [8,9], there is a tree defined on one class of
vertices, such that for every vertex in another class, the neighborhood of this
vertex is a subtree. When the tree is a star (a triad, respectively), the graph
is called star convex bipartite [8,9] (triad convex bipartite [10,9], respectively),
where a triad is three pathes with a common end. It is known that independent
domination is NP-complete for star convex bipartite graphs, but tractable for
triad convex bipartite graphs in [14]. In this paper, we simplify the tractability
proof in [14].

Our main contributions are making two explicit reductions for independent
domination from circular- and triad-convex bipartite graphs respectively to con-
vex bipartite graphs, instead of running modified algorithms such as in [14]. In
fact, the second reduction can be viewed as a detailed proof for the correctness of
the algorithm in [14], easier to understand with a better modularity. Moreover,
our reductions are Cook reductions (i.e. polynomial time Turing reductions) [5],
which call the known polynomial time algorithms of independent domination for
convex bipartite graphs [3] many times, and also work for weighted circular- and
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triad-convex bipartite graphs, though the original algorithm in [3] only works
for unweighted bipartite graphs. Before our works, only Karp reduction (i.e.
polynomial many-one reduction) [5] from circular convex bipartite graphs to
circular-arc graphs is used [11]. Thus, our methods may be of use to show more
problems tractable for circular- and triad-convex bipartite graphs.

This paper is structured as follows. After introducing necessary definitions and
notations mainly from graph theory (Section 2), polynomial time reductions for
independent domination from circular-convex bipartite graphs (Section 3) and
triad-convex bipartite graphs (Section 4) to convex bipartite graphs are shown
respectively. Concluding remarks are at the last section (Section 5).

2 Preliminaries

A graph G = (V,E) consists of a vertex set V and an edge set E. Each edge e in E
is incident to two vertices, called its ends, and these two ends are called adjacent
to each other. For each vertex v, its neighborhood N(v) = {u|v is adjacent to u},
its closed neighborhood N [v] = N(v)∪ {v}. For a subset V ′ of vertices, N(V ′) =⋃

v∈V ′ N(v). A path in a graph is a sequence of different vertices vi1 , vi2 , . . . , vik ,
such that each two consecutive vertices are adjacent to each other. A cycle is a
path where vi1 and vik are also adjacent to each other. A graph is connected if
every two vertices are connected by a path. A tree is a connected graph without
any cycle. For a subset V ′ of vertices, the induced subgraph G[V ′] = (V ′, E′),
where V ′ ⊆ V and E′ = {e ∈ E|e has both ends in V ′}. An independent set is
a subset of vertices whose induced subgraph has no edge.

In a weighted graph G = (V,E,w), there is a function w defined on V , such
that each vertex v has a weight w(v). The weight of a vertex subset V ′ is w(V ′) =∑

v∈V ′ w(v). When w(v) = 1 for all vertices v, the graph is called unweighted.
In a finite graph, both V and E are finite sets. A simple graph has no loop and
no parallel edges, where a loop has the same one vertex as its ends, and two
parallel edges are incident to the same two ends. In a bipartite graph, denoted
by G = (A,B,E), the vertex set V is divided into two classes A and B, such
that each edge is incident to a vertex in A and a vertex in B respectively. In this
paper, we only consider finite simple bipartite graphs.

The cardinality of a set X , i.e. the number of elements in X , is denoted by |X |.
The difference of two setsX and Y is denoted byX\Y = {x | x ∈ X and x 
∈ Y }.
The empty set is denoted by ∅. An arbitrary ordering on a set is denoted by ≺.

Definition 1. ( Independent Dominating Set) In a graph G = (V,E), an inde-
pendent dominating set D is a subset of V , such that D is an independent set,
and for each vertex v in V , either v ∈ D or N(v) ∩D 
= ∅.

Definition 2. (Triad) A G = (V,E) is called a triad, if the vertex set V can
be partitioned into four parts, V1, V2, V3, {v0}, such that for i = 1, 2, 3, Vi ∪ {v0}
induces a path. The vertex v0 is called center.

Definition 3. (Circular Convex Bipartite Graphs [11]) A bipartite graph G =
(A,B,E) is called circular convex bipartite, if there is a circular ordering ≺
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defined on A = {a1, . . . , an}, a1 ≺ a2 ≺ · · · ≺ an ≺ a1, such that for each vertex
b in B, its neighborhood N(b) is a circular arc under this circular ordering, that
is, there are two (possibly equal) vertices ai and aj, where 1 ≤ i ≤ j ≤ n, such
that N(b) = {ai, ai+1, . . . , aj} or N(b) = {aj , aj+1, . . . , an, a1, . . . , ai}.

Definition 4. (Triad Convex Bipartite Graphs [8,9]) A bipartite graph G =
(A,B,E) is called triad convex bipartite, if these is a triad T = (A,F ) defined
on A, such that for each vertex b in B, its neighborhood N(b) is a subtree of T .

Remark 1. The adjacent matrices of circular convex (convex, respectively) bipar-
tite graphs have the so-called circular (consecutive, respectively) ones property,
which are recognizable in linear time [4]. Tree convex bipartite graphs are also
recognizable in linear time [1]. The associated circular orderings (trees, respec-
tively) are all constructible in linear time, thus can safely be assumed as part of
the inputs. Chordal bipartite graphs are recognizable in square time.

We refer to [5] for the notions of polynomial time, reductions, andNP-completeness.

3 Reduction from Circular-Convex Bipartite Graphs

In this section, we show that independent domination is polynomial time solvable
for circular-convex bipartite graphs, by a polynomial time reduction for this
problem from circular-convex bipartite graphs to convex bipartite graphs.

Theorem 1. For circular convex bipartite graphs G = (A,B,E) with a circular
ordering on A, independent domination is O

(
|A|(|A| + |B|)3

)
time solvable.

Proof. Without loss of generality, we assume that G contains no isolated vertex,
since isolated vertices are trivially in every independent dominating set.

Fig. 2. Removing vertices in N [a] from graph G results in graph Ga

First, for each vertex a in A, we define a graph Ga as follows, see Figure 2.

Ga = (Aa, Ba, Ea), where Aa = A \ {a}, Ba = B \N(a), and

Ea = {e ∈ E | e is not incident to any vertex in N [a]}.
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Lemma 1. For each a ∈ A, Ga is convex bipartite.

Proof. We prove by definition of convex bipartite graphs. After removing {a} ∪
N(a) and the incident edges from G, no vertex in Ba = B \N(a) is adjacent to
vertex a. Since G is circular convex bipartite, for each vertex in Ba, its neigh-
borhood is a circular arc contained in Aa = A \ {a}. Thus, we can restrict the
circular ordering on A to a linear ordering on Aa, such that for each vertex in
Ba, its neighborhood is an interval under this linear ordering. ��

Lemma 2. For each a ∈ A, if D is an independent dominating set of G con-
taining a, then D \ {a} is an independent dominating set of Ga.

Proof. We prove by definition of independent dominating sets. Since a ∈ D,
N(a) ∩ D = ∅. For each vertex a′ ∈ Aa, either a′ ∈ D or N(a′) ∩ D 
= ∅.
Since a 
∈ N [a′], either a′ ∈ D \ {a} or N(a′) ∩ (D \ {a}) 
= ∅. For each vertex
b′ ∈ Ba, either b

′ ∈ D or N(b′) ∩D 
= ∅. Since a 
∈ N [b′], either b′ ∈ D \ {a} or
N(b′) ∩ (D \ {a}) 
= ∅. ��

Lemma 3. For each a ∈ A, if D′ is an independent dominating set of Ga, then
D′ ∪ {a} is an independent dominating set of G.

Proof. We prove again by definition. Since Ga is resulted by removing N [a] from
G, a is not adjacent to any vertex in G′, D′ ∪ {a} is an independent set. Since
D′ is an independent dominating set of Ga and each vertex in N(a) is adjacent
to a, D′ ∪ {a} is an independent dominating set of G. ��

Next, we define a set S as follows.

S = {B} ∪ {Da ∪ {a} | a ∈ A and Da is a minimum independent

dominating set in Ga}.

Remark 2. For each a, Ga is unique, but for each Ga, Da may not be unique.
For our purpose, however, for each a, we only need one such Da in S, see proof
of Lemma 5 below.

Lemma 4. S contains a minimum independent dominating set of G.

Proof. Let D be a minimum independent dominating set of G. We consider the
following two cases.

Case 1: D ∩ A = ∅.
Since D is an independent dominating set, for each vertex b in B, either

b ∈ D or N(b) ∩D 
= ∅. Since D ∩A = ∅, G is bipartite and N(b) ⊆ A, we have
N(b) ∩D = ∅ and thus b ∈ D. So in Case 1 we have D = B and thus D ∈ S.
Case 2: D ∩ A 
= ∅.

Assume that a ∈ D ∩ A. For any minimum independent dominating set Da

of Ga, by Lemma 2, |Da| ≤ |D| − 1, and by Lemma 3, |D| ≤ |Da| + 1, thus
|D| = |Da| + 1 = |Da ∪ {a}|. By Lemma 3 and the minimality of D in G,
Da ∪ {a} is a minimum independent dominating set of G. ��
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Lemma 5. S is computable in O
(
|A|(|A| + |B|)3

)
time.

Proof. By Lemmm 1, for each a ∈ A,Ga is convex bipartite, thus we can compute
a minimum independent dominating set Da of Ga by the known O

(
(|A|+ |B|)3

)
time algorithm in [3]. As remarked in Remark 2, for each a, we only need one
such Da in S. Thus, by an enumeration of all |A| vertices a in A, we can compute
S in O

(
|A|(|A| + |B|)3

)
time. ��

Finally, by Lemmas 4 and 5, we can find a minimum independent dominating
set of G in O

(
|A|(|A| + |B|)3

)
time.

This finishes the proof of Theorem 1. ��

Remark 3. The above reduction also works for weighted independent domina-
tion. The only change is in replacing |D| = |Da| + 1 by w(D) = w(Da) + w(a)
in proof of Lemma 4. However, the known polynomial time algorithm in [3] only
works for unweighted independent domination.

4 Reduction from Triad-Convex Bipartite Graphs

In this section, we show that independent domination is polynomial time solv-
able for triad-convex bipartite graphs, by a polynomial time reduction for this
problem from triad-convex bipartite graphs to convex bipartite graphs. Due to
space limitation, we omit some details in this section.

Theorem 2. For triad convex bipartite graphs G = (A,B,E) with a triad T
defined on A, independent domination is O

(
|A|3(|A|+ |B|)3

)
time solvable.

Proof. Without loss of generality, we assume that G contains no isolated vertex,
since isolated vertices are trivially in every independent dominating set.

We assume that A is divided into four parts, A1, A2, A3, {a0}, such that for
i = 1, 2, 3, Ai ∪ {a0} induces a path of T . To be specific, we assume that Ai =

{ai,1, ai,2, . . . , ai,ni}, where
∑3

i=1 ni = |A| − 1 and a0ai,1ai,2 · · ·ai,ni are three
paths of T with a common end a0.

Fig. 3. Removing vertices in N [a0] from graph G results in three graphs G1,G2,G3
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Fig. 4. Removing vertices in
⋃3

i=1({ai} ∪N(ai)) from graph G results in four graphs
Ga1 ,Ga2 ,Ga3 and G(a1,a2,a3)

First, we define three graphs G1, G2, G3 as follows, see Figure 3.

Gi = (Ai, N(Ai) \N(a0), Ei), for i = 1, 2, 3, where

Ei = {e ∈ E | e is incident to a vertex in Ai

but not incident to a vertex in N(a0)},

For i = 1, 2, 3, for each vertex ai = ai,ji in Ai, we define four graphs Ga1 , Ga2 ,
Ga3 , G(a1,a2,a3) as follows, see Figure 4.

Gai = (Aai , Bai , Eai), where

Aai = {ai,ji+1, . . . , ai,ni}, Bai = N(Aai) \N(ai),

Eai = {e ∈ E | e is incident to a vertex in Bai}, and

G(a1,a2,a3) = (A(a1,a2,a3), B(a1,a2,a3), E(a1,a2,a3)), where

A(a1,a2,a3) = A \
3⋃

i=1

(Aai ∪ {ai}), B(a1,a2,a3) = B \
3⋃

i=1

(Bai ∪ {N(ai)}), and

E(a1,a2,a3) = {e ∈ E | e is incident to a vertex in B(a1,a2,a3)}.

We define graphs G(a1,a2,∗) as follows, G(∗,a2,a3), G(a1,∗,a3) are similar.

G(a1,a2,∗) = (A(a1,a2,∗), B(a1,a2,∗), E(a1,a2,∗)), where

A(a1,a2,∗) = A \
⋃

i∈{1,2}
(Aai ∪ {ai}), B(a1,a2,∗) = B \

⎛⎝N(ai)
⋃

i∈{1,2}
Bai

⎞⎠ , and

E(a1,a2,∗) = {e ∈ E | e is incident to a vertex in A(a1,a2,∗)

and a vertex in B(a1,a2,∗)}.

We define graphs G(a1,∗,∗) as follows, G(∗,a2,∗), G(∗,∗,a3) are similar.

G(a1,∗,∗) = (A(a1,∗,∗), B(a1,∗,∗), E(a1,∗,∗)), where
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A(a1,∗,∗) = A \ (Aa1 ∪ {a1}), B(a1,∗,∗) = B \ (N(a1) ∩Ba1), and

E(a1,∗,∗) = {e ∈ E | e is incident to a vertex in A(a1,∗,∗)

and a vertex in B(a1,∗,∗)}.

Definition 5. For i = 1, 2, 3 and for each ai ∈ Ai, a triple (a1, a2, a3) is called
good, if B(a1,a2,a3) is an independent dominating set of G(a1,a2,a3).

Similarly for (a1, a2, ∗), (a1, ∗, a3),(∗, a2, a3),(a1, ∗, ∗),(∗, a2, ∗),(∗, ∗, a3).

Remark 4. A triple (a1, a2, a3) is good, if and only if there is an independent
dominating set D of G, such that D contains {a1, a2, a3} and ai is the first
vertex of D on the path a0ai,1 · · ·ai,ni of the triad T for i = 1, 2, 3. Similarly
for (a1, a2, ∗), (a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗), (∗, a2, ∗), (∗, ∗, a3). A star ∗ on the
i-th place of a triple means that no vertex in {a0} ∪ Ai is in D for i = 1, 2, 3.

Lemma 6. For i = 1, 2, 3 and for each ai ∈ Ai, Gi and Gai are convex bipartite.

Proof. We prove by definition of convex bipartite graphs for Gai , the proof for
Gi is similar and thus omitted. After removing N(ai) and the incident edges
from G, no vertex in Bai = N(Aai) \N(ai) is adjacent to vertex ai. Since G is
triad convex bipartite, for each vertex in Bai , its neighborhood is a path of T
on Aai = {ai,ji+1, . . . , ai,jn}. Thus, we can define a linear ordering ≺i on Aai ,
ai,ji+1 ≺i · · · ≺i ai,jn , such that for each vertex in Bai , its neighborhood is an
interval under this linear ordering ≺i. ��

Lemma 7. For each triple (a1, a2, a3), if D is an independent dominating set of
G containing ai for i = 1, 2, 3, then D∩(Aai∪Bai) is an independent dominating
set of Gai for i = 1, 2, 3. Similarly for (a1, a2, ∗), (a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗),
(∗, a2, ∗), (∗, ∗, a3).

Proof. We prove by definition of independent dominating sets. Since ai ∈ D,
N(ai) ∩ D = ∅. For each vertex a′ ∈ Aai , either a′ ∈ D or N(a′) ∩ D 
= ∅.
Since ai 
∈ {a′} ∪ N(a′), either a′ ∈ D ∩ Aai or N(a′) ∩ (D ∩ Bai) 
= ∅. For
each vertex b′ ∈ Bai , either b′ ∈ D or N(b′) ∩ D 
= ∅. Since ai 
∈ {b′} ∪ N(b′),
either b′ ∈ D ∩Bai or N(b′) ∩ (D ∩Aai) 
= ∅. Similarly for (a1, a2, ∗), (a1, ∗, a3),
(∗, a2, a3), (a1, ∗, ∗), (∗, a2, ∗), (∗, ∗, a3). ��

Lemma 8. For each good triple (a1, a2, a3), if Dai is an independent dominating

set of Gai for i = 1, 2, 3, then B(a1,a2,a3) ∪
⋃3

i=1(Dai ∪ {ai}) is an independent
dominating set of G. Similarly for (a1, a2, ∗), (a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗),
(∗, a2, ∗), (∗, ∗, a3).

Proof. We prove by definition. Since for i = 1, 2, 3, Gai is resulted by removing
{ai} ∪ N(ai) from G, ai is not adjacent to any vertex in Gai and G(a1,a2,a3),

B(a1,a2,a3) ∪
⋃3

i=1(Dai ∪ {ai}) is an independent set. Since the triple (a1, a2, a3)
is good, Ba1,a2,a3 is an independent dominating set of G(a1,a2,a3). Since Dai is an
independent dominating set of Gai and each vertex in N(ai) is adjacent to ai,

B(a1,a2,a3) ∪
⋃3

i=1(Dai ∪ {ai}) is an independent dominating set of G. Similarly
for (a1, a2, ∗), (a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗), (∗, a2, ∗), (∗, ∗, a3). ��
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Next, we define a set S = {B, {a0} ∪D1 ∪D2 ∪D3} ∪ S1 ∪ S2 ∪ S3 as follows.

S1 = {B(a1,∗,∗) ∪Da1 ∪ {a1}, B(∗,a2,∗) ∪Da2 ∪ {a2}, B(∗,∗,a3) ∪Da3 ∪ {a3} |
ai ∈ Ai and Dai is a minimum independent dominating set in Gai

for i = 1, 2, 3},
S2 = {B(a1,a2,∗) ∪

⋃
i∈{1,2}

(Dai ∪ {ai}), B(∗,a2,a3) ∪
⋃

i∈{2,3}
(Dai ∪ {ai}),

B(a1,∗,a3) ∪
⋃

i∈{1,3}
(Dai ∪ {ai}) | ai ∈ Ai and Dai is a minimum

independent dominating set in Gai for i = 1, 2, 3},
S3 = {B(a1,a2,a3) ∪

⋃
i∈{1,2,3}

(Dai ∪ {ai}) | (a1, a2, a3) is good and Dai is a

minimum independent dominating set in Gai for i = 1, 2, 3},

where for i = 1, 2, 3, Di is a minimum dominating set of Gi and Gi is resulted
by removing N [a0] from G.

Remark 5. For each triple (a1, a2, a3), Gai is unique, but for each Gai , Dai may
not be unique. For our purpose, however, for each (a1, a2, a3), we only need one
triple (Da1 , Da2 , Da3) in S, see proof of Lemma 10 below. Similarly for (a1, a2, ∗),
(a1, ∗, a3), (∗, a2, a3), (a1, ∗, ∗), (∗, a2, ∗), (∗, ∗, a3).

Lemma 9. S contains a minimum independent dominating set of G.

Proof. Let D be a minimum independent dominating set of G. We consider the
following five cases.

Case 1: D ∩ A = ∅. In this case we have D = B, which is in S.
Case 2: a0 ∈ D. In this case, similar to the reasoning process in Case 5 below,

we have |D| = |{a0} ∪
⋃

i∈{1,2,3} Di|, thus {a0} ∪
⋃

i∈{1,2,3} Di is a minimum
independent dominating set of G, which is in S.

Case 3: D ∩ Ai 
= ∅ for some i ∈ {1, 2, 3} but D ∩ ({a0} ∪ Aj) = ∅ for j 
= i.
In this case, similar to Case 5 below, a minimum dominating set of G is in S1.

Case 4: D ∩ ({a0} ∪ Ai) = ∅ for some i ∈ {1, 2, 3} but D ∩ Aj 
= ∅ for j 
= i.
In this case, similar to Case 5 below, a minimum dominating set of G is in S2.

Case 5: D ∩ Ai 
= ∅ for i = 1, 2, 3. Assume that ai ∈ D ∩ Ai for i = 1, 2, 3
and the triple (a1, a2, a3) is good. For any minimum independent dominating

sets Dai of Gai for i = 1, 2, 3, by Lemma 7,
∑3

i=1 |Dai | ≤ |D| − |B(a1,a2,a3)| − 3,

and by Lemma 8, |D| ≤
∑3

i=1 |Dai |+ |B(a1,a2,a3)|+ 3, thus |D| =
∑3

i=1 |Dai |+
|B(a1,a2,a3)| + 3 = |B(a1,a2,a3) ∪

⋃3
i=1(Dai ∪ {ai})|. By Lemma 8 and the mini-

mality of D in G, B(a1,a2,a3) ∪
⋃

i∈{1,2,3}(Dai ∪{ai}) is a minimum independent
dominating set of G, which is in S3. ��

Lemma 10. S is computable in O
(
|A|3(|A|+ |B|)3

)
time.

Proof. By Lemmm 6, for i = 1, 2, 3 and for each ai ∈ Ai, Gai is convex bipartite,
thus we can compute a minimum independent dominating set Dai of Gai by the
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known O
(
(|A|+ |B|)3

)
time algorithm in [3]. As remarked in Remark 5, for each

good triple (a1, a2, a3), we only need one such triple (Da1 , Da2 , Da3) in S. Thus,
by an enumeration of all |A1||A2||A3| triples (a1, a2, a3), we can compute S3 in
O

(
|A|3(|A|+ |B|)3

)
time. Similarly for S1 and S2. ��

Finally, by Lemmas 9 and 10, we can find a minimum independent dominating
set of G in O

(
|A|3(|A|+ |B|)3

)
time.

This finishes the proof of Theorem 2. ��

Remark 6. The above reduction also works for weighted independent domina-
tion. The only changes are in replacing |D| =

∑3
i=1 |Dai | + |B(a1,a2,a3)| + 3 by

w(D) =
∑3

i=1(w(Dai ) +w(ai)) +w(B(a1,a2,a3)) and so on in proof of Lemma 9.

5 Concluding Remarks

We have shown that independent domination is polynomial time reducible from
circular- and triad-convex bipartite graphs to convex bipartite graphs. As in
[12], we make Cook reductions from circular convex bipartite graphs to convex
bipartite graphs. Our methods may be of use to show more problems tractable
for circular- and triad-convex bipartite graphs. It would be interesting to find
real applications of these results.

Recently, maximum non-crossing matching for convex bipartite graphs is stud-
ied [2]. Whether the results in [2] carry over for circular- and triad-convex bi-
partite graphs is still unknown.
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Abstract. Let G be a graph with a single source w, assigned a positive
integer called the supply. Every vertex other than w is a sink, assigned a
nonnegative integer called the demand. Every edge is assigned a positive
integer called the capacity. Then a spanning tree T of G is called a
spanning distribution tree if the capacity constraint holds when, for every
sink v, an amount of flow, equal to the demand of v, is sent from w to
v along the path in T between them. The spanning distribution tree
problem asks whether a given graph has a spanning distribution tree
or not. In the paper, we first observe that the problem is NP-complete
even for series-parallel graphs, and then give a pseudo-polynomial time
algorithm to solve the problem for a given series-parallel graph G.

Keywords: spanning distribution tree, series-parallel graph, flow, sup-
ply, demand, partial k-tree.

1 Introduction

Let G be a graph with a single source w, which is assigned a positive integer
sup(w), called the supply of w. One may assume without loss of generality that
every vertex v other than the source w is a sink and is assigned a nonnegative
integer dem(v), called the demand of v. Every edge e of G is assinged a positive
integer cap(e), called the capacity of e. Figure 1 illustrates such a graph, in which
the source w is drawn as a square, a sink is drawn as a circle, the integer in a
square or circle is a supply or demand, and the integer attached to an edge is
the capacity.

As in an ordinary flow network, the source w can send at most an amount
sup(w) of flow to sinks through edges in G, every sink v must receive an amount
dem(v) of flow from w, and hence sup(w) must be at least the sum D of all
demands in G. However, we wish to let the flow to v run along the path from w
to v in the same spanning tree T of G for every sink v; T is drawn by thick lines in
Fig. 1. Of course, the capacity constraint must be satisfied for every edge e of T :
the amount of flow through e should not exceed the capacity cap(e) of e. Regard
T as a tree rooted at the source w as illustrated in Fig. 1, then the amount of
flow through edge e = (u, u′) of T is equal to the sum of demands of u′ and its
all descendants if u is the parent of u′ in the rooted tree T . In Fig. 1, the integer

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 153–162, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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in parentheses attached to an edge e in T is the amount of flow through e. We
call such a spanning tree T a spanning distribution tree of G. The spanning
distribution tree problem asks whether there exists a spanning distribution tree
in a given graph G. The problem has some applications to the power supply
problem for power delivery networks [1, 5–8, 11, 14], the server-client problem
in computer networks [9], etc.
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Fig. 1. Series-parallel graph G and its spanning distribution tree

The spanning distribution tree problem looks like an ordinary network flow
problem with a single source and multiple sinks. However, in our case, the flow
to every sink v must be a single “path flow.” In this sense, our problem looks like
the “unsplittable flow problem”[2, 3, 10]. However, in our case, the flow paths
for all sinks must induce a spanning tree T of G.

A spanning distribution forest and the spanning distribution forest problem are
similarly defined for a graph G with two or more sources. There are linear-time
algorithms to solve the spanning distribution forest problem when G is a tree
without capacity [7] or with capacity [8]. Thus, it is desired to obtain an efficient
algorithm to solve the spanning distribution tree (or forest) problem for a larger
class of graphs, say series-parallel graphs. Many problems including the Steiner
tree problem can be solved in linear time for series-parallel graphs [13], although
there are a few problems, including the edge-disjoint paths problem [12], which
are NP-complete for series-parallel graphs.

In this paper, we first observe that the spanning distribution tree problem is
NP-complete even for series-parallel graphs. We then give a pseudo-polynomial
time algorithm for the problem on a series-parallel graph G. The computation
time is bounded by a polynomial in n and D, where n is the number of vertices
of G. The algorithm runs in linear time if D = O(1), and runs in polynomial
time if D is bounded by a polynomial in n. We finally remark on the spanning
distribution forest problem for series-parallel graphs and partial k-trees, that is,
graphs of bounded tree-width.
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(a) (b)

(c) (d)

Fig. 2. Illustration for the definition of series-parallel graphs

2 NP-Completeness

A series-parallel graph is defined recursively as follows:

1. A graph G of a single edge (s, t), depicted in Fig. 2(a), is a series-parallel
graph. The vertices s and t are called the terminals of G.

2. Let G1 be a series-parallel graph with terminals s1 and t1, and let G2 be a
series-parallel graph with terminals s2 and t2, as depicted in Fig. 2(b).
(a) A graph G obtained from G1 and G2 by identifying vertex t1 with s2,

as illustrated in Fig. 2(c), is a series-parallel graph, whose terminals are
s = s1 and t = t2. Such a connection is called a series connection.

(b) A graph G obtained from G1 and G2 by identifying vertex s1 with s2
and t1 with t2, as illustrated in Fig. 2(d), is a series-parallel graph, whose
terminals are s = s1 = s2 and t = t1 = t2. Such a connection is called a
parallel connection.

The graphs in Figs. 1 and 3 are series-parallel graphs.

Fig. 3. Series-parallel graph

One can observe that the spanning distribution tree problem is NP-complete
even for series-parallel graphs, as follows. Clearly the problem belongs to the
class of NP. Therefore, it suffices to show that the set partition problem, which is
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0 0

・

・

・

Fig. 4. Series-parallel graph constructed from an instance of a set partition problem

known NP-complete [4, p.47], can be reduced to our problem on a series-parallel
graph G in polynomial time. Given a set A of n positive integers d1, d2, · · · , dn,
the set partition problem asks whether A can be partitioned to two subsets A1

and A2 such that the sum of integers in A1 equals to the sum of integers in A2.
One may assume that

∑n
i=1 di is an even number. We construct a series-parallel

graph G as illustrated in Fig. 4. G has a single source w with supply
∑n

i=1 di,
two sinks s and t with demands 0, and n sinks, each with demand di, 1 ≤ i ≤ n.
The source w is joined to s and t by edges with capacities

∑n
i=1 di/2. Each sink

with demand di is joined to s and t by edges with capacities di. The resulting
graph G is a series-parallel graph. Clearly, set A has a desired partition if and
only if G has a spanning distribution tree. Thus we have the following theorem.

Theorem 1. The spanning distribution tree problem is NP-complete even for
series-parallel graphs.

Thus, the spanning distribution problem cannot be solved for series-parallel
graphs in polynomial time unless P=NP.

3 Pseudo-polynomial Algorithm

In this section we give a pseudo-polynomial time algorithm for the spanning
distribution tree problem on a series-parallel graph G.

3.1 Outline of Algorithm

A series-parallel graph G can be represented by a binary decomposition tree
TBD. Every node u of TBD corresponds to a subgraph Gu of G. If u is a leaf of
TBD, then Gu consists of a single edge. Every inner node u of TBD is labeled
by s or p, which represents a series or parallel connection. Let u1 and u2 be the
children of u in TBD, let G1 be the graph corresponding to u1, and let G2 be the
graph corresponding to u2. Then Gu is a series (or parallel) connection of G1

and G2 if u is labeled by s (or p). TBD can be obtained from G in linear time
[13].
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Fig. 5. Illustration of a spanning distribution tree in a series-parallel graph

Our algorithm is based on a dynamic programming approach with the aid of
TBD. Consider a spanning distribution tree T of a series-parallel graph G. T is
drawn by thick lines in Fig. 5. Let u and u′ be inner nodes of the binary de-
composition tree TBD of G, and let Gu and Gu′ be the subgraphs corresponding
to u and u′, respectively, as illustrated in Fig. 5. T induces forests Fu and Fu′

in Gu and Gu′ , respectively. In this example, the source w is contained in Gu,
and the forest Fu is a spanning distribution tree of Gu, while the forest Fu′ is
a spanning 2-tree of Gu′ , consisting of two vertex-disjoint trees. Our algorithm
finds these spanning trees and 2-trees from leafs to the root of TBD.

A spanning forest F of a graph G with exactly two sources w1 and w2 is called
a spanning distribution 2-tree if F consists of two vertex-disjoint trees T1 and
T2 and the following (a) and (b) hold for i = 1 and 2:

(a) wi is contained in Ti, and the supply sup(wi) of wi is at least the sum of
demands in Ti; and

(b) the amount of flow through every edge e in Ti does not exceed the capacity
cap(e) of e if, for each sink v in Ti, an amount dem(v) of flow is sent from
wi to v along the path in Ti between them.

Instead of finding these spanning trees and 2-trees in Gu, we actually compute
six functions fs,t, f

t
s, f

s
t , g

s
t , g

t
s and gs,t, which represent the existence of these

trees and 2-trees in Gu. If Gu contains the source w, then a spanning distribution
tree or 2-tree may be able to output some amount of flow from the terminals s
and t. Otherwise, a tree or 2-tree must be inputted some amount of flow from the
terminals. The variables x and y of the six functions represent the amount of flow
which can be outputted from G or must be inputted to Gu through terminals s
and t, respectively. The subscript s or t of functions f ’s and g’s represents the
output terminal of Gu, while the superscript s or t represents the input terminal.

3.2 Definitions of Functions

One may assume that the sum D of all demands in G does not exceed sup(w);
otherwise, there is no spanning distribution tree in G. Of course, the amount of
flow through an edge does not exceed D. Denote by ZD the set of all integer z
such that 0 ≤ z ≤ D. Thus, the variables x and y run over ZD. The range of
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the six functions is {0, 1}; “1” means that Gu has a spanning distribution tree
or 2-tree with some amount of input or output flow specified by x and y, while
“0” means that Gu does not have such a tree or 2-tree. The three functions fs,t,
f t
s and f s

t are defined only for a subgraph Gu containing the source w, while the
other three function gst , g

t
s and gs,t are defined only for a subgraph Gu which

does not contain w.
The six functions formally defined for x, y ∈ ZD, as follows.

(a) Graph Gu (b) Graph G′
u for fs,t

(c) Graph G′
u for f

t
s (d) Graph G′

u for f
s
t

Fig. 6. Illustration for fs,t, f
t
s and fs

t

(i) fs,t(Gu, x, y)
Gu contains w as illustrated in Fig. 6(a). Let s and t be the terminals of

Gu. Add to Gu virtual sinks s′ and t′, and let dem(s′) = x and dem(t′) = y.
Add to Gu virtual edges (s, s′) and (t, t′) with infinite capacities. Let G′

u be the
resulting graph. Then fs,t is defined as follows: fs,t(Gu, x, y) = 1 if G′

u has a
spanning distribution tree. Intuitively speaking, fs,t(Gu, x, y) = 1 means that
Gu has a spanning distribution tree which can output x and y units of flow from
terminals s and t, respectively. For the sake of convenience, we assume that
fs,t(Gu, x, y) = 0 for all integers x, y /∈ ZD. The same assumption applies to the
other five functions.

(ii) f t
s(Gu, x, y)

Add to Gu virtual sinks s′ with dem(s′) = x and a virtual source t′ with
sup(t′) = y, and add two virtual edges (s, s′) and (t, t′) with infinite capacities.
Let G′

u be the resulting graph with two sources w and t′. Then the function f t
s

is defined as follows: f t
s(Gu, x, y) = 1 if G′

u has a spanning distribution 2-tree
consisting of two trees T1 and T2 such that T1 contains w, s and s′ and T2

contains t′ and t. Intuitively speaking, f t
s(Gu, x, y) = 1 means that Gu has a

spanning distribution 2-tree which can output x units of flow from s if y units
is inputted from t.
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(iii) f s
t (Gu, x, y)

The function f s
t is similarly defined as f t

s although the roles of s and t are
interchanged, as illustrated in Fig. 6(d).

(a) Graph Gu (b) Graph G′
u for g

s
t

(c) Graph G′
u for g

t
s (d) Graph G′

u for g
s,t

Fig. 7. Illustration for gst , g
t
s, g

s,t

(iv) gst (Gu, x, y)
Gu does not contains the source w as illustrated in Fig. 7(a). Add to Gu a

source s′ with sup(s′) = x and a sink t′ with dem(t′) = y. Add to Gu two edges
(s, s′) and (t, t′) with infinite capacities. Let G′

u be the resulting graph. Then
gst (Gu, x, y) = 1 if G′

u has a spanning distribution tree.

(v) gts(Gu, x, y)
The function gts is similarly defined as gst although the roles of s and t are

interchanged, as illustrated in Fig. 7(c).

(vi) gs,t(Gu, x, y)
Add to Gu two sources s′ and t′ with sup(s′) = x and sup(t′) = y, and add to

Gu two edges (s, s′) and (t, t′) with infinite capacities. Let G′
u be the resulting

graph. Then gs,t(Gu, x, y) = 1 if G′
u has a spanning distribution 2-tree consisting

of two trees T1 and T2 such that T1 contains s′ and s and T2 contains t′ and t.

3.3 Algorithm

The terminal s or t of Gu may be the source w or a sink of positive demand.
However, we consider a virtual graph G∗

u in which both s and t are regarded
as sinks of zero demand, and compute the six functions for G∗

u in place of Gu.
Such a convention makes the description of our algorithm simple. One can easily
compute the functions for Gu from those for G∗

u.
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(a) How to decide the existence of a spanning distribution tree in G

Let r be the root of the decomposition tree TBD of a given series-parallel graph
G, then G = Gr. Suppose that the functions have been computed for G∗ = G∗

r .
When both of the terminals s and t of G are sinks, G has a spanning dis-
tribution tree if and only if fs,t(G

∗, dem(s), dem(t)) = 1. When either s or
t, say s, is the source w, G has a spanning distribution tree if and only if
gst (G

∗, sup(w), dem(t)) = 1.

(b) Computation at a leaf u of TBD

Let u be a leaf of TBD, then Gu consists of a single edge e = (s, t) as illustrated
in Fig. 2(a). G∗

u contains no source, and hence fs,t, f
t
s and f s

t are not defined for
G∗

u. Since dem(s)=dem(t)=0 in G∗
u, we can compute gst , g

t
s and gs,t for x, y ∈ ZD

as follows:

gst (G
∗
u, x, y) =

{
1 if y ≤ x and y ≤ cap(e);
0 otherwise;

gts(G
∗
u, x, y) =

{
1 if x ≤ y and x ≤ cap(e);
0 otherwise;

and

gs,t(G∗
u, x, y) = 1.

(c) Computation at an inner node u of TBD

Let u be an inner node of TBD, let u1 and u2 be the children of u, and let G1 and
G2 be the subgraphs of G corresponding to u1 and u2, respectively. Then G is
a series or parallel connection of G1 and G2 as illustrated in Figs. 2(c) and (d).
One can compute the fix functions of G from those of G1 and G2. The details
are omitted in this extended abstract.

3.4 Computation Time

The functions gst , gts and gs,t can be computed for a leaf u of TBD in time
O(|ZD|2) = O(D2) as in Subsection 3.3(b). Let n be the number of vertices in a
given series-parallel graph G. One may assume that G is a simple graph and has
no multiple edges. Then G contains at most 2n− 3 edges, and hence TBD has at
most 2n− 3 leaves. Thus, the computation at all the leaves takes time O(D2n).

If an inner node u of TBD corresponds to a series connection, then the six
functions can be computed in time O(D3). On the other hand, if u corresponds
to a parallel connection, then the six functions can be computed in time O(D4).
Since the binary tree TBD has at most 2n − 3 leaves, TBD has at most 2n − 4
inner nodes. Thus, the computation at all inner nodes takes time O(D4n).

As shown in Subsection 3.3(a), one can decide from fs,t, g
s
t and gts in time

O(1) whether G has a spanning distribution tree.
Thus we have the following theorem.
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Theorem 2. The spanning distribution tree problem can be solved in time O(D4n)
for series-parallel graphs.

4 Concluding Remarks

In the paper, we first formalized the spanning distribution tree problem, and
observed that the problem is NP-complete even for series-parallel graphs. We
then gave a pseudo-polynomial time algorithm to solve the problem for a series-
parallel graph G in time O(D4n), where n is number of vertices in G and D
is the sum of all demands in G. If D is bounded by a polynomial in n, then
the algorithm take polynomial time. If D is O(1), then it takes linear time. The
algorithm can be modified so that it actually finds a spanning distribution tree
whenever G has it.

The time complexity O(D4n) above can be improved to O(D2n). In place of
the functions f ’s and g’s of two variables x, y ∈ ZD with range {0,1}, consider
functions f ’s and g’s of a single variable x ∈ ZD with range ZD; for exam-
ple, define fs,t(Gu, x) = max {y ∈ ZD|fs,t(Gu, x, y) = 1}. Computing these new
functions f ’s and g’s, one can solve the spanning distribution tree problem on
series-parallel graphs in time O(D2n).

Extending our algorithm, one can solve a spanning distribution forest prob-
lem for a series-parallel graph containing two or more sources. Furthermore,
generalizing our algorithm, one can solve the spanning distribution tree or forest
problem for partial k-trees, that is, graphs of bounded tree-width.

If a given graph has no spanning distribution tree, then one wishes to find
the maximum distribution tree, that is, a distribution tree with the maximum
sum of demands. Such a maximum distribution tree problem is, of course, NP-
hard for series-parallel graphs. The maximum distribution forest problem is
similarly defined for graphs with two or more sources. Extending our algorithm,
one can find the maximum distribution forest in pseudo-polynomial time for
series-parallel graphs or partial k-trees. There are fully polynomial-time approx-
imation schemes (FPTASs) for the maximum distribution forest problem when
a given graph G is a tree without edge-capacity [7] or with edge-capacity [8],
and there is an FPTAS for the maximum distribution tree problem when G is a
series-parallel graph without edge-capacity [5]. Thus, it is desired to obtain an
FPTAS for the maximum distribution forest problem for series-parallel graphs
or partial k-trees with edge-capacity.

Acknowledgments. We thank Kouji Imagawa for his comment on the NP-
completeness proof. This research was partially supported by MEXT-Supported
Program for the Strategic Research Foundation at Private Universities.
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Abstract. In this paper we describe a cutting plane heuristic algo-
rithm for the Time Dependent Chinese Postman Problem. This algo-
rithm is based on the facial structure of the time dependent postman
polyhedron and on the simplex method. The facial structure investigated
here provides cutting planes that can be separated polynomially using a
maximum flow algorithm, and the simplex method exhibits the linear
programming relaxation solutions, based on which two upper bound
heuristics are designed. Computational results show that the cutting
planes can improve the lower bound of the formulation substantially,
and that the best upper bound obtained by the two stage heuristic is
always very close to the lower bound in most cases.

Keywords: Chinese Postman Problem, Time Dependent, Polyhedral
Theory, Cutting Plane, Heuristic Algorithm.

1 Introduction

Let D(V,A) be a connected digraph, where V is the set of vertices, A is the set
of arcs and with each arc (i, j) ∈ A is associated a time dependent travel time
Dij(ti) starting at time ti. Let v1 ∈ V be the origin vertex and t1 be the starting
time, the Time Dependent Chinese Postman Problem (TDCPP) aims to find a
tour starting at v1 and at time t1 and traversing each arc at least once such that
the total travel time is minimized.

TDCPP problem is a variant of the classical Chinese Postman Problem (CPP),
which is a well known problem in graph theory. As we know, the classical CPP
problems are of great practical importance to software testing optimization [1].
Similarly, the TDCPP problem presented here is motivated from test sequence
optimization based on hybrid automaton [2]. The hybrid automaton, where the
delay time of transition from state si to sj is a function Dij(ti) of the arrival
time ti at si, can be easily treated as a dynamic directed network D(V,A) with
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Dij(ti) as the time dependent travel time of arc (i, j) ∈ A. As each state si
corresponds to the vertex vi in V , and each transition from si to sj corresponds
to the arc (i, j) in A, the optimal test sequence checking all transitions on the
hybrid system can be equivalently cast as a minimal time TDCPP-tour that
traverses all the arcs in time dependent network D.

The TDCPP has been proved to be NP-hard, even if it verifies the Eulerian
and First In First Out (FIFO) property [3]. Nevertheless, small to medium-sized
instances verifying the FIFO property can be solved to proven optimality by the
branch and bound algorithm and dynamic programming algorithm proposed in
[3,4], both of which are based on the “arc - shortest path” alternative sequence.

However, at present, the most promising solution theory appears to be poly-
hedral theory, based on which the valid inequalities can be used as cutting planes
to strengthen a linear programming (LP) relaxation. In this paper, an integer
linear programming (ILP) formulation for the TDCPP that need not verify FIFO
property is proposed, and the associated polyhedral results are investigated, and
a cutting plane heuristic algorithm is developed. In this algorithm, a new family
of facet defining inequalities are used as cutting planes, and the maximum flow
algorithm is designed as the core process of cutting plane separation strategy.
Furthermore, two upper bound heuristics are also designed to terminate the cut-
ting plane procedure whenever the current LP solution is fractional and violates
no inequality. Computational results show that the lower bound obtained by
adding cutting planes improves substantially the LP relaxation bound of the
original formulation, and that the two stage heuristic always gets a better upper
bound which is very close to the value of the lower bound.

The rest of the paper is organized as follows. Section 2 introduces the ILP for-
mulation for TDCPP, and Some results on the TDCPP polyhedron are presented
in Section 3. Section 4 describes the cutting plane heuristic algorithm involving
the facet inducing inequality separation strategy and two upper bound heuristics.
Computational results and concluding remarks are made in the last section.

2 Problem Formulation

In this section we formulate the TDCPP problem as an integer programming
model which is motivated by the previous works of Wang and Wen [5]. They
focused on a variant of Chinese postman problem with time windows, namely,
time constrained Chinese postman problem (TCCPP), and pointed that the tra-
ditional CPP integer programming model which only provides a network struc-
ture but does not present how to travel such that the minimum travel time can
be obtained cannot incorporate time window constraints. Thus, Wang and Wen
introduced the “iteration” variables to trace such CPP-tour and formulate the
time windows explicitly into the traditional model. Indeed, the “iteration” is a
simple circuit in which each vertex (except the origin) cannot exist twice time,
and the main idea of Wang and Wen’s model is to formulate the CPP-tour as
a circuit sequence such that each vertex in an iteration associates with only
one starting time. From this point of view, Wang and Wen’s model is renamed
“circuit formulation” in this paper.
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Although Wang and Wen gave such a skillful formulation for the TCCPP, they
did not provide any polyhedral results to show how to improve the solution. This
paper focuses on the polyhedral results, and extends the circuit formulation to
the time dependent Chinese postman problem whenever the travel time is a
known step function Dij(ti) of the starting time ti at vertex vi. In this way, the
total period associated with each arc (i, j) ∈ A can be divided into several time
intervals. Once the time interval during which the postman starts traversing arc
(i, j) is known, the travel time of arc (i, j) is a known constant.

In order to introduce our circuit formulation, We first list the notations used
in the formulation as follows: n is the number of vertices including the origin; m
is the number of arcs in A; K is the maximal number of circuits in the TDCPP-
tour; H is the number of time intervals associated with each arc (i, j) ∈ A; B is
a large number; T h

ij is the upper bound of the hth interval associated with arc

(i, j) ∈ A (h = 1, · · · , H); Dh
ij is the travel time of arc (i, j) starting at vi during

the hth time interval. xk
ij equals to 1 if arc (i, j) is traversed in the kth circuit of

the TDCPP-tour, or 0, otherwise; δk,hij equals to 1 if arc (i, j) in the kth circuit

is traversed during the kth time interval, or 0, otherwise; tki = starting time of
some arc (i, j) traversed in the kth circuit of the TDCPP-tour. In particular, t11
equals the starting time t1, and tK+1

1 is the ending time of the TDCPP-tour.
With the above notations the TDCPP may be formulated as follows:

Min ∑
(i,j)∈A

K∑
k=1

H∑
h=1

Dh
ijδ

k,h
ij (1)

Subject to∑
(i,j)∈A

xk
ij =

∑
(j,i)∈A

xk
ji ∀i = 1, · · · , n; k = 1, · · · ,K (2)

K∑
k=1

xk
ij ≥ 1 ∀(i, j) ∈ A (3)

tkj − tki ≥ Dh
ijδ

k,h
ij ∀(i, j) ∈ A, j 
= 1; k = 1, · · · ,K;h = 1, · · · , H (4)

tk+1
1 − tki ≥ Dh

i1δ
k,h
i1 ∀(i, 1) ∈ A; k = 1, · · · ,K;h = 1, · · · , H (5)

H∑
h=1

δk,hij = xk
ij ∀(i, j) ∈ A; k = 1, · · · ,K (6)

tki +B(δk,hij − 1) ≤ T h
ij ∀(i, j) ∈ A; k = 1, · · · ,K;h = 1, · · · , H (7)

tki ≥ T h−1
ij δk,hij ∀(i, j) ∈ A; k = 1, · · · ,K;h = 1, · · · , H (8)

xk
ij = {0, 1} ∀(i, j) ∈ A; k = 1, 2, · · · ,K; (9)

δk,hij = {0, 1} ∀(i, j) ∈ A; k = 1, 2, · · · ,K;h = 1, · · · , H (10)

tki ≥ 0 ∀i = 1, 2, · · · , n; k = 1, 2, · · · ,K + 1; (11)

The objective function (1) minimizes the total travel time of the TDCPP-tour.
Constraint (2) ensures that all the vertices must be symmetric. Constraint (3)
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states that each arc must be passed at least once. Given arbitrary time interval
h, circuit index k and arc (i, j), Constraints (4) and (5) can calculate the travel
time of arc (i, j) when the TDCPP-tour traverses arc (i, j) in the kth circuit Ck

starting at vertex vi during time interval h. Constraint (6) ensures that if the
TDCPP-tour traverses arc (i, j) in the kth circuit, then it must depart from vi
within one time interval. If the departure time tki of vi belongs to the hth time
interval of (i, j), then it is necessary to check whether tki is in the range from the
lower bound T h−1

ij to the upper bound T h
ij , which are guaranteed in constraints

(7) and (8) respectively.

3 Results on TDCPP Polyhedron

In this section, we summarize some polyhedral results for the TDCPP, based on
which our cutting plane heuristic algorithm is developed.

According to the circuit formulation mentioned above, every TDCPP-tour
in D can be formulated as an array of K circuits. We can associate with this
circuit array an integer vector x = (x1, · · · , xk, · · · , xK), the kth of which is
also an integer vector denoted as xk = (xk

ij : (i, j) ∈ A) ∈ BA, where xk
ij

indicates whether arc (i, j) ∈ A is traversed in the kth circuit of the TDCPP-
tour (k = 1, · · · ,K). It is evident that the incidence vector x of each circuit
array satisfies Constraints (2) and (3) and, conversely, each feasible solution of
system (2) and (3) is the incidence vector of a circuit array. Therefore, we use
Constraints (2) and (3) which have a strong combinatorial structure to define
the polytope of circuit array (CA), and denote by X the set of the feasible
solutions for the CA polytope:

X = {x ∈ BA×K : x satisfies (2) and (3)}

This representation yields to the definition of PCA(D) as the convex hull of all
the feasible solutions in the CA polytope: PCA(D)=conv(X ). The polyhedral
results of PCA(D) are listed as follows.

3.1 Affinely Independent TDCPP-Tours in CA Polytope

The set of affinely independent TDCPP-tours in PCA(D) can be induced from
the arrays of the linearly independent circuits. Note that the maximal number
of the linearly independent circuits in the strong connected graphD ism−n+1 [7],
which can be treated as the value of of the maximal circuit numberK in the circuit
formulation. For convenience’s sake, we use m − n + 1 and K interchangeably,
and let the maximal linearly independent circuit group be C = {C1, · · · , CK}.
Denote by X ∗ the set of feasible solutions corresponding to the full array of K
linearly independent circuits in C : X ∗ ⊂ X . Without loss of generality, let the
circuit array be (CK , CK−1 · · · , C1), then the associated solution x in X ∗ can be
written as (xK

1 , xK−1
2 , · · · , x1

K), where xi
k expresses that the kth incidence vector

xk in solutionx associateswith the circuitCi ∈ C . It is evident that the cardinality
of X ∗ is K!. However, the number of affinely independent TDCPP-tours in X ∗

is much less, which will be given in the following theorem.
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Theorem 1. There are (K−1)2+1 affinely independent TDCPP-tours in X ∗.

Proof. When K = 1, there is only one circuit in D. It is easy to see that the
TDCPP-tour in D is unique, which by itself is affinely independent.

When K = l, assume that there are (l−1)2+1 affinely independent TDCPP-
tours in X ∗, the set of which is denoted as X ∗

l .
When K = l+ 1, we will construct l2 + 1 affinely independent TDCPP-tours

X ∗
l+1 as follows.
Firstly, construct (l − 1)2 + 1 TDCPP-tours, the set of which is denoted as

X l+1
l+1 , by appending Cl+1 to each TDCPP-tour x ∈ X ∗

l . It is evident that
these (l − 1)2 + 1 TDCPP-tours are affinely independent, since X ∗

l is affinely
independent.

Secondly, for each i = 1, · · · , l, denote by xi = (xj
1, · · · , xi

l) a TDCPP-
tour in X ∗

l with Ci as its lth circuit. Another l affinely independent TDCPP-
tours, the set of which is denoted as X l

l+1, can be obtained by transforming

each TDCPP-tour xi = (xj
1, · · · , xi

l) to a new TDCPP-tour with l + 1 circuits:

(xj
1, · · · , xl+1

l , xi
l+1) (i = 1, · · · , l). It is easy to see that the last circuit of the

ith TDCPP-tour in X l
l+1 is Ci. Therefore, the incidence matrix of X l

l+1 is non-
singular since these l circuits C1, · · · , Cl are linearly independent. Furthermore,
note that the lth circuit of each TDCPP-tour x ∈ X l

l+1 is Cl+1, then the in-

cidence matrix of X l+1
l+1 and X l

l+1 is also non-singular because of the linearly
independence of the l + 1 circuits C1, · · · , Cl+1.

Finally, we will find the last l − 1 affinely independent TDCPP-tours in
X ∗

l+1. To construct the ith TDCPP-tour, we transform a TDCPP-tour x =
(xp

1, · · · , xi
i, · · · , x

q
l ) in X ∗

l whose ith circuit is Ci to the corresponding TDCPP-

tour with l+ 1 circuits (xp
1, · · · , xl+1

i , · · · , xq
l , x

i
l+1) (i = 1, · · · , l − 1). Note that

each ith TDCPP-tour constructed above is marked by Cl+1 as its ith circuit,
it is evident that the incidence matrix of X ∗

l+1 is non-singular, and, hence, the
l2 + 1 TDCPP-tours in X ∗

l+1 are affinely independent.

3.2 Dimension of CA Polytope

Based on the affinely independent TDCPP-tours found in X ∗, the dimension of
PCA(D) is shown in the theorem below.

Theorem 2. Dim(PCA(D)) = (m−n+1)2, if and only if the minimum number
of circuits covering all the arcs is less than m− n+ 1.

Proof. Sufficiency. Firstly, determine the upper bound of Dim(PCA(D)). In the
(m − n + 1)m-dimensional solution space of PCA(D), each incidence vector of
TDCPP-tour x satisfies (m − n + 1)n equations in (2). It is easy to prove that
Rank(AE , bE) = (m− n+1)(n− 1), where (AE , bE) denotes the coefficient ma-
trix of equation set (2). Therefore, Dim(PCA(D)) ≤ (m − n + 1)2. Secondly,
determine the lower bound of Dim(PCA(D)). According to Theorem 1, we can
find a set of (m − n)2 + 1 affinely independent TDCPP-tours in X ∗, which is
denoted as X ∗

K . As the minimum number of circuits covering all the arcs is
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less than m − n + 1, there must exist a TDCPP-tour x ∈ X which contains
m − n circuits in D. Without loss of generality, let this TDCPP-tour be x =
(x1

1, x
2
2, · · · , xm−n

m−n), where xk
k expresses that the kth circuit of TDCPP-tour x is

Ck ∈ C . Then, otherm−n+1 affinely independent TDCPP-tours can be found in
X : XØ = {(x1

1, · · · , xm−n
m−n,Ø), (x1

1, · · · ,Ø, xm−n
m−n+1), · · · , (Ø, x1

1, · · · , xm−n
m−n+1)},

where Ø denotes the void circuit with no arc. Similarly, the last m−n affinely in-
dependent TDCPP-tours can be found in X : XC = {(x1

1, · · · , xm−n
m−n, x

1
m−n+1),

(x1
1, · · · , x1

m−n, x
m−n
m−n+1), · · · , (x1

1, x
1
2, · · · , xm−n

m−n+1)}. Note that the kth TDCPP-
tour in XØ is marked by Ø as its kth circuit (k = 1, · · · ,m − n + 1), and the
kth TDCPP-tour in XC contains a duplicate C1 as its kth circuit. It is evident
that the incidence matrix of X ∗

K , XØ and XC is non singular. Hence there are
(m− n+ 1)2 + 1 affinely independent TDCPP-tours in X .

Necessity. If the minimum number of circuits covering all the arcs of D is
equal to m− n+ 1, then X ∗ = X . According to Theorem 1, we can find only
(m − n)2 + 1 affinely independent TDCPP-tours in X , the number of which
does not reach (m − n + 1)2. Thus, if Dim(PCA(D)) = (m − n+ 1)2, then the
minimum number of circuits covering all the arcs of D is less than m− n+ 1.

3.3 Facet Defining Inequalities for the CA Polytope

A feasible solution x ∈ X for the CA polytope should satisfy the following
inequality if it corresponds to the optimal TDCPP-tour of TDCPP.
k-cut inequality: ∑

(i,j)∈ωk

xk
ij ≥ 1 k = 1, 2, ...,K; (12)

where ωk expresses the cut set of contracted graph Dk obtained by contracting
the arcs of circuits except Ck in C into a single vertex (The arc contracting
procedure is introduced in [7] for more details). Contracted graph Dk is divided
into two subgraphs by ωk, denoted as Dk

1 and Dk
2 , where D

k
1 contains the origin

vertex of Ck and has no strongly connected component.
Constraint (12) ensures that each non-empty circuit Ck in the TDCPP-tour

must have at least one arc which will not be traversed in other circuits, that is
to say, the arc set of Ck, denoted Ak, should satisfy Ak − ∪l �=kAl 
= ∅. In other
words, if there exists a circuit in the TDCPP-tour whose arcs are all traversed in
other circuits then we can get rid of this redundant circuit and obtain a better
TDCPP-tour with smaller total travel time. Thus, Constraints (12) can help us
to exclude a lot of non-optimal TDCPP-tours with redundant circuits.

Theorem 3. Constraint (12) induces a facet defining inequality of CA polytope
if and only if ωk is the minimal cut set in contracted graph Dk for arbitrary
k = 1, 2, ...,K.

Proof. Sufficiency. According to Theorem 1, (m − n)2 + 1 affinely independent
TDCPP-tours can be induced from the arrays of K linearly independent circuits
in C , the set of which is denoted as X ∗

K . Obviously, the kth circuit Ck of each
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TDCPP-tour in X ∗
K must satisfy Ak−∪l �=kAl 
= ∅, otherwise Ck could be repre-

sented by other circuits in C , which is contrary to the definition of linearly inde-
pendent circuit set C . Therefore, Ck satisfies |Ak ∩ ωk| = 1, which implies that
each tour in X ∗

K satisfies (12) as an equality. Moreover, as the minimal number
of circuits covering all the arcs is less than m−n+1, there must exist a TDCPP-
tour x ∈ X which containsm−n circuits inD. Without loss of generality, let this
TDCPP-tour be x = (x1

1, x
2
2, · · · , xm−n

m−n). Then, for an arbitrary k = 1, · · · ,K,
another 2(m − n) affinely independent TDCPP-tours can be found: X ′

Ø =

{(x1
1, · · · , xm−n

m−n,Ø), (x1
1, · · · , xk

k,Ø, xm−n
m−n+1), (x

1
1, · · · ,Ø, xk

k, x
m−n
m−n+1) · · · , (Ø, x1

1,

· · · , xm−n
m−n+1)} and X ′

C = {(x1
1, · · · , xm−n

m−n, x
1
m−n+1), (x

1
1, · · · , x1

m−n, x
m−n
m−n+1),

· · · , (x1
1, x

1
2, · · · , xm−n

m−n+1)}. It is easy to prove that the kth circuit of each
TDCPP-tour x in X ′

Ø and X ′
C must satisfy |Ak ∩ ωk| = 1 since ωk is the

minimal cut set in Dk. Thus, the TDCPP-tour x satisfies (12) as an equality by
direct substitution for an arbitrary k. Furthermore, the incidence matrix of X ∗

K ,
X ′

Ø and X ′
C is non-singular, and, hence, the (m− n+ 1)2 TDCPP-tours found

above are affinely independent.
Necessity. Assume that ωk is not minimal, that is to say, |Ak ∩ ωk| > 1 for

some circuit Ck, which implies the Constraint (12) could not be satisfied as an
equality for some TDCPP-tour whose kth circuit is Ck. Therefore, there are no
more than (m−n+1)2−1 affinely independent tours in X satisfying Constraint
(12) as an equality.

To check the effect of the facet defining inequalities (12), we have designed an
LP-based cutting plane algorithm that adds inequalities (12) as cutting planes.
Our computational experiments in Section 5 show that the inequalities (12) can
provide a better lower bound.Moreover, as our next theorem shows, inequalities
(12) possesses another nice property.

Theorem 4. The separation problem for the inequalities (12) can be solved in
polynomial time.

Proof. Given a (rational) vector x∗ ∈ QmK , the separation problem for inequal-
ities (12) is to determine whether x∗ satisfies inequalities (12). For each arc
(i, j) ∈ A and k = 1, · · · ,K, define the weight

wij =

{
B :

∑
r �=k x

r
ij ≥ 1

xk
ij : else

where B is a big number. Obviously, the arc will be associated with a weight
B if it has been traversed in any circuits except Ck of the TDCPP-tour, thus,
the contracted graph Dk(V k, Ak) mentioned in Section 3.3 can be obtained by
contracting each arc with weight B into a single vertex. In order to determine
the minimum cut ωk, we should construct a new graph D̄k(V̄ k, Āk) at first by
modifying Dk as follows. 1) introduce an extra vertex ν to Dk, and let V̄ k =
V k ∪ {ν}. 2) Denote by vs the origin vertex of Ck, and for every arc (i, s) of Dk

which points to the origin vs, attach vertex vi to the extra vertex ν, and delete
arc (i, s), that is to say, Āk = Ak ∪ {(i, ν)|(i, s) ∈ Ak} − {(i, s)|(i, s) ∈ Ak}.
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It is evident that each cut set ωsν that separates origin vs and extra vertex
ν in D̄k can be equivalently cast as a corresponding cut ωk in Dk, denoted as
ωsν ∼ ωk. Since for each k = 1, · · · ,K and any cut set ωsν , x

∗ satisfies inequality
(12):

∑
(i,j)∈ωk

xk
ij ≥ 1 ⇔

∑
(i,j)∈ωsν

wij ≥ 1 if ωsν ∼ ωk, one can see that the

separation problem for the k-cut inequalities (12) reduces to the problem of
determining a minimum cut set of D̄k with respect to the nonnegative weight
function w. Padberg and Rao (1982) have shown that the latter is polynomially
solvable. Hence the theorem is proved.

3.4 Further Strong Valid Inequalities for TDCPP

The timing constraint (7) involves a “big” number B and generally results in
weak LP relaxations. Thus two strong valid inequalities are also proposed here,
the form of which is listed as follows.

δk,hij +
∑

(j,l)∈A

∑
p∈Ah

ijl

δk,pjl ≤ 1 ∀(i, j) ∈ A; k = 1, · · · ,K;h = 1, · · · , H (13)

∑
(i,j)∈A

∑
h∈Bp

ijl

δk,hij + δk,pjl ≤ 1 ∀(j, l) ∈ A; k = 1, · · · ,K;h = 1, · · · , H (14)

where
Ah

ijl = {p |T
p
jl < T h−1

ij +Dh
ij or T p−1

jl > T h
ij +Dh

ij + DIFF}

Bp
ijl = {h |T

p
jl < T h−1

ij +Dh
ij or T p−1

jl > T h
ij +Dh

ij + DIFF}

and

DIFF = max{0, Dp−1
jl −Dp

jl}

Constraint (13) ensures that if the TDCPP-tour traverses arc (i, j) starting at vi
during time interval h, then for any successor arc (j, l) of (i, j), it is impossible
to be traversed during the time intervals in Ah

ijl which involves a term DIFF
introduced by Malandraki [6]. The inclusion of the term DIFF allows the travel
time step function on (vj , vl) to behave as if it was a piecewise linear continuous
function when the travel time in period p is less than that in the preceding
period p − 1, as discussed in [6]. With this technique, Constraint (14) which
is the following analog of Constraint (13) restricts the time intervals of all the
predecessors of each arc in the TDCPP-tour.

4 Description of the Cutting Plane Heuristic Algorithm

We now describe our algorithm below to solve TDCPP problem.
Step 1 (Initialization). Set P := {(x, δ, t) = ((xk

ij : (i, j) ∈ A; k = 1, · · · ,K),

(δk,hij : (i, j) ∈ A; k = 1, · · · ,K;h = 1, · · · , H), (tki : vi ∈ V ; k = 1, · · · ,K + 1))
|(x, δ, t) satisfies (2-8), (13) and (14)}.
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This step initializes the polyhedron P with the LP relaxation of the circuit
formulation. The number of constraints of the linear system describing P (not
counting the nonnegativity constraints) is (5mH+m+n)K+m. LPs of this type
can be solved in polynomial time theoretically (by using the ellipsoid method).

Step 2 (Solving the LP). Solve the linear program

Min ∑
(i,j)∈A

K∑
k=1

H∑
h=1

Dh
ijδ

k,h
ij

Subject to (x, δ, t) ∈P

Step 3 (Cutting plane separation). Find the k-cut inequalities (12) which are
violated by the optimal LP solution, say (x∗, δ∗, t∗), of step 2.

Such inequalities, if they exist, induce cutting planes which chop off (x∗, δ∗, t∗).
One can check in polynomial time whether the current LP optimal solution vi-
olates the k-cut inequalities (12) according to Theorem 4.

Step 4 (Adding cutting plane). If some inequalities in (12) violated by (x∗, δ∗, t∗)
are found, then add them to the linear system. Let P be the polyhedron deter-
mined by the resultant linear system and go to Step 2.

Step 5 (Constructing an approximate tour). When the current LP solution is
fractional and violates no inequality. Apply a heuristic that uses the fractional LP
solution to construct an approximate TDCPP-tour, calculate an upper bound
and stop. There are two upper bound heuristics used in this step: One Stage
Heuristic and Two Stage Heuristic.

One Stage Heuristic
Input: sub-vector x∗ of the current optimal LP solution.
Output: an approximate tour P = (C1, C2, · · · , CK).

1. Denote by Ak the associated arc set of the kth circuit Ck in TDCPP-tour
P , then set Ak = ∅ (k = 1, · · · ,K).

2. For each arc (i, j) ∈ A repeat the following step (a-c).

(a) For (i, j) ∈ A, randomly select a k by probability xk
ij/

∑K
k=1 x

k
ij .

(b) Determine whether arcs in Ak ∪ {(i, j)} can be contained in a single
circuit, if not, go to step (a).

(c) Insert arc (i, j) into arc set Ak.
3. When each arc in A is assigned to some circuit of the TDCPP-tour P , con-

struct each kth circuit Ck of P by connecting the arcs in Ak (k = 1, · · · ,K).
4. Traverse the TDCPP-tour P starting from origin v1 at time t1, and calculate

the total travel time of P .

Two stage Heuristic
Input: sub-vector (x∗, δ∗) of the current optimal LP solution.
Output: an approximate tour P .
Stage One: construct an unicursal graph DE .

1. Let D(V,A,w) be the weighted strongly connected network, and for each arc

(i, j) ∈ A, the associated weight wij ∈ w is calculated as
∑K

k=1 x
k
ij .
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2. Let I be the set of vertices vi for which the number of incoming arcs exceeds
the number of outgoing arcs by si and J , the set of vertices vj for which
the number of outgoing arcs exceeds the number of incoming arcs by dj .
Construct a capacity-cost network D′(V ′, A′, c′, w′) with source vs and sink
vt: V ′ = V ∪ {vs, vt}, A′ = A ∪ {(s, i)|vi ∈ I} ∪ {(j, t)|vj ∈ J}; for all
(i, j) ∈ A, let c′ij = +∞, w′

ij = wij ; for all vi ∈ I, let c′si = si, w
′
si = 0; for

all vj ∈ J , let c′jt = −dj , w′
jt = 0;

3. Use the minimum mean cycle canceling algorithm [8] to find a minimum cost
flow f = fij |(i, j) ∈ A′ from vs to vt in D′.

4. Replicate each arc (i, j) ∈ A fij times by introducing copies with the same
weight wij , and the unicursal graph DE is obtained.

Stage Two: determine an Eulerian cycle (the TDCPP-tour P ) on DE .

1. Set vi = v1, ti = t1.
2. Denote by N(i) the neighbors of vertex vi, and randomly select an arc (i, j) ∈

A as the next arc traversed in the TDCPP-tour P by probability

pij =

∑K
k=1 δ

k,h
ij∑

vj∈N(i)

∑K
k=1 δ

k,h
ij

∀vj ∈ N(i)

where T h−1
ij ≤ ti < T h

ij is satisfied for each δh,kij .
3. Traverse arc (i, j) starting from vertex vi at time ti, and erase arc (i, j).
4. Set vi = vj , ti = tj , and repeat step ii starting from the other extremity of

the deleted arc or stop and save the total travel time ti of P if all arcs have
been deleted.

5 Computational Results

This section summarizes the computational results obtained by the cutting plane
heuristic algorithm described above. This algorithm was coded in C++ using
the LINGO 8.0 library. The code ran on a PC with a Pentium processor at
2.2GHz with 1G RAM. Several randomly generated instances were used for our
computational study, and the generation procedure was described in [3].

The computational results obtained by the cutting plane heuristic algorithm
are summarized in table 1. The column headings are defined as follows: Inst.:
instance identifier; |V |: number of vertices of the original graph; |A|: number
of arcs of the original graph; H : number of time intervals associated with each
arc; Cuts: total number of k-cut inequalities; LP : the LP relaxation bound of
the original formulation including (13) and (14); LB: the lower bound obtained
by the cutting plane algorithm using the facet defining inequalities (12); UB1:
the upper bound obtained by the one stage heuristic; UB2: the upper bound
obtained by the two stage heuristic; G1: the relative gap between the best upper
bound UB = min(UB1, UB2) and LP (computed as ((UB − LP )/LP )× 100);
G2: the relative gap between the best upper bound UB and the lower bound
LB (computed as ((UB − LB)/LB)× 100).
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Table 1. Computational result of the test instances

Inst. |V | |A| H [−R,R] LP LB UB1 UB2 G1(%) G2(%)

A1-1 10 30 2 [-10,10] 991 1019 1147 1053 6.26 3.34
A1-2 15 45 2 [-10,10] 1484 1523 1645 1629 9.77 6.96
A1-3 20 40 2 [-10,10] 1330 1411 1530 1498 12.63 6.17
A1-4 25 50 2 [-10,10] 1553 1583 1889 1739 11.98 9.85

B1-1 10 30 3 [-10,10] 1027 1114 1176 1124 9.44 0.90
B1-2 15 45 3 [-10,10] 1530 1699 1901 1793 17.19 5.53
B1-3 20 40 3 [-10,10] 1565 1754 2055 1812 15.78 3.31
B1-4 25 50 3 [-10,10] 1434 1680 1894 1779 24.06 5.89

C1-1 10 30 4 [-10,10] 1052 1171 1337 1286 22.24 9.82
C1-2 15 45 4 [-10,10] 1575 1809 2113 1925 22.22 6.41
C1-3 20 40 4 [-10,10] 1519 1704 2028 1832 20.61 7.51
C1-4 25 50 4 [-10,10] 1527 1805 1980 1850 21.15 2.49

A2-1 10 30 2 [-20,20] 1923 1952 2702 2490 29.49 27.56
A2-2 15 45 2 [-20,20] 2889 2914 3608 3608 24.89 23.82
A2-3 20 40 2 [-20,20] 2577 2735 3299 3288 27.59 20.22
A2-4 25 50 2 [-20,20] 3253 3327 4113 4060 24.81 22.03

B2-1 10 30 3 [-20,20] 1741 1831 2580 2375 36.42 29.71
B2-2 15 45 3 [-20,20] 2618 2730 3577 3512 34.15 28.64
B2-3 20 40 3 [-20,20] 2143 2264 2938 2752 28.42 21.55
B2-4 25 50 3 [-20,20] 3100 3124 3880 3880 25.16 24.20

C2-1 10 30 4 [-20,20] 1869 1948 2755 2494 33.44 28.03
C2-2 15 45 4 [-20,20] 2791 3017 3940 3645 30.60 20.82
C2-3 20 40 4 [-20,20] 2433 2586 3488 3407 40.03 31.75
C2-4 25 50 4 [-20,20] 3092 3424 4101 4003 29.46 16.91

Results presented in table 1 indicate that the best upper bound UB obtained
by the cutting plane heuristic algorithm is always very close to the value of
lower bound LB. In our test problems, the average gap G2 is almost less than
15.14%. This performance can be explained to a large extent by the facet defining
inequalities (12).

Meanwhile, we also find that changes of fluctuation interval might affect the
gap G2. For these instances with fluctuation interval [-10,10], the relative gap
G2 attains 5.68% while it rises to 24.6% for those instances with fluctuation
interval [-20,20]. In addition, nearness of the approximate tours to lower bounds
also shows the efficiency of the two upper bound heuristics of Section 4. We
observe that the best upper bounds of all our instances are obtained by the two
stage upper bound heuristic. This empirically shows that the two stage heuristic
based on both x∗ and δ∗ is more effective than the one stage heuristic which is
only based on sub-vector x∗ of the LP relaxation solution, that is to say, the LP
relaxation solution plays an important role in the upper bound heuristic.

The lower bound LB obtained by adding cutting planes improves substantially
the LP relaxation bound LP of the original formulation for all instances. By
comparing columns G1 and G2, one can appreciate how much our cutting planes
have contributed to the relative gaps dramatically. As shown in Table 1, the
percentage difference G between gap G2 and G1 is 8.1% on average. Moreover,
G rises with increasing time interval and fluctuation interval. As shown in Table
1, G always exceeds 12% averagely for those instances with four time intervals,
while it is less than 3.43% for those instances with two time intervals. Moreover,
when the fluctuation interval rises from [-10,10] to [-20,20], the difference G
increases from 10.43% to 5.77% on average. The results indicate that the k-cut
inequalities (12) will play more important roles with more time intervals and
less fluctuations.
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6 Conclusion

We proposed a ILP formulation for the TDCPP problem, namely, circuit formu-
lation, and the associated partial polyhedral structure is investigated. Moreover,
we developed a cutting plane heuristic algorithm for solving the TDCPP prob-
lem based on the partial linear description of the polyhedron. The partial linear
description (together with cutting plane separation strategies) provides cutting
planes and hence generates better lower bound than the LP relaxation bound of
the original formulation. Computational results show that the lower bound ob-
tained by adding cutting planes improves the LP relaxation bound of the original
formulation for all instances. Two heuristic algorithms based on the relaxation
solutions, namely, one stage heuristic and two stage heuristic are designed to ob-
tain the upper bound. Computational results show that the two stage heuristic
always gets a better upper bound.
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Abstract. We examine the zero-visibility cops and robber graph search-
ing model, which differs from the classical cops & robber game in one
way: the robber is invisible. We show that this model is not monotonic.
We also provide bounds on both the zero-visibility copnumber and mono-
tonic zero-visibility copnumber in terms of the pathwidth.

1 Introduction

Using mobile agents to find and capture a mobile intruder is a well-studied graph
theory problem. Depending on the restrictions placed on the agents and the
intruder, the resulting pursuit can vary wildly. One common restriction placed
on both the agents and the intruder is a speed limit; in some versions of this
game, while the agents may only move along edges one at a time, the intruder
may move from any position on the graph to any other along a connected path
that does not contain any agents. In other versions, the agents may “jump” from
a vertex to any other vertex. In still other games, one or both of the agents and
the intruder have limited information about the other party’s position; that is,
one party or the other may only see the opposition if they are near one another,
or alternatively, may never see each other until they stumble upon each other at
the same vertex.

The cop and robber model was introduced independently by Winkler and
Nowakowski [14] and Quilliot [15]. In this model, a slow, visible intruder (the
robber) moves from vertex to adjacent vertex in a graph, while pursued by one
slow, visible agent (the cop), who also moves from vertex to adjacent vertex.
In these first papers, copwin graphs were characterised; that is, graphs where
exactly one cop was sufficient to capture. Many questions have grown out of
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these papers. Recently, a characterisation of the k-copwin graphs has been dis-
covered [3].

A variation of a less-studied version of this problem dates back to Tošić in
1985 [18]. This corresponds to the cop and robber model with one exception: the
robber is invisible. This zero-visibility cops and robber model may also be taken
as a particular instance of a k-visibility cops and robber problem, where both
cops and robber move as in the standard Winkler-Nowakowski-Quilliot model,
but the robber only becomes visible to the cops when he is at distance at most
k from some cop. In these models, the analog of copnumber can be defined in
different ways. Following [17] and [18], we define the zero-visibility copnumber
of a graph G to be the minimum number of cops needed to guarantee capture
of an invisible robber in a finite time. (Other authors [11] do not necessarily
include the restriction to finite time, which works well with their application of
the probabilistic method.)

The zero-visibility copnumber for paths, cycles, complete graphs and complete
bipartite graphs were characterised in [18], as were graphs that are zero-visibility
copwin. There are several constructions in [10] for graphs which require at most
2 cops to perform a zero-visibility search, but a characterisation remains open.
An algorithm for determining the zero-visibility copnumber of a tree was given
in [17,5], but the problem for general graphs is NP-complete [5]. Most recent
work on these topics has been on limited (but not zero) visibility [8,9], and on the
expected capture time of the robber in the zero or limited visibility case [1,9,11].

One topic that has been a mainstay of edge searching problems is monotonic-
ity. Basically, a search is monotonic if, once a region has been guaranteed to be
free of the robber, the cops may not move in such a way to allow the robber to
re-enter that region. It is well known that edge searching is monotonic [2,13],
but that connected edge searching is not [20,21]. In the original cops and rob-
ber game, it was hard to motivate a definition of monotonicity, as the robber
was visible. In the zero-visibility version this becomes a natural question again.
We will show that the zero-visibility copnumber is different from its monotonic
equivalent, and we will discuss bounds on both of these numbers based on the
pathwidth of the graph.

2 Zero-Visibility Cops and Robber

We consider a pursuit game on a graph we refer to as zero-visibility cops & robber.
The game is played on a simple connected graph G between two opponents,
referred to as the cop and the robber. The cop controls the movements of a
fixed number of cop pieces and the robber player controls the movement of a
single robber piece (we refer to both the players and their pieces as cops and
robber). The cop player begins by placing the cops on some collection of vertices
of G (more than one cop may occupy a vertex) and his opponent then places
the robber on a vertex, unknown to the cop. The players then alternate turns,
beginning with the cop; on each player’s turn, he may move one or more of his
pieces from its current vertex to an adjacent vertex (either player may leave
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any or even all of his pieces where they are). The game ends with a victory for
the cop player if, at any point, the robber piece and a cop piece occupy the
same vertex. The robber wins if this situation never occurs. It is important to
emphasise that, until he has won, the cop player has no information regarding
the robber’s position or moves – he cannot see the robber piece until it and a
cop occupy the same vertex. On the other hand, the cop may, due to his past
moves, gain some knowledge on the possible locations of the robber.

All graphs are assumed to be simple; any two vertices are joined by at most
one edge and there are no loops (edges from a vertex to itself). We introduce
the following terminology regarding this game.

For a graph G, VG and EG are the vertex and edge sets of G. We use the
symbol x ∼ y to represent the fact that x and y are distinct vertices joined by
the edge xy ∈ EG and the symbol x " y to represent that x ∼ y or x = y.
For each X ⊆ VG, the set N [X ] = {x ∈ V : ∃y ∈ X such that x " y} is the
closed neighbourhood of X . If X = {x} is a singleton, we use N [x] rather than
N [{x}] to represent the closed neighbourhood of x. For X ⊆ VG, the boundary
of X is the set of vertices adjacent to members of X but not contained in X :
δ(X) = {y /∈ X : ∃x ∈ X such that x ∼ y} = N [X ] \X .

We will make extensive use of the concept of a walk in a graph; however,
we give walks additional structure normally not present in their definition. We
define a walk in a graph to be a (possibly infinite) sequence of vertices α =
(α(0), α(1), . . .) such that for all t ≥ 0, α(t+1) " α(t). We use walks to describe
cops’ and robber’s movements; if a walk α corresponds to the positions of a single
piece within the game – the vertex α(0) is the starting position of the piece and
the vertex α(t) is the location of the piece after its controller has taken t turns.

A strategy on G for k cops is a finite set of walks L = {li}ki=1, all of the same
length T (possibly T = ∞). A strategy L corresponds to a potential sequence
of turns by the cop player; each walk li ∈ L corresponds to the moves of one of
the cop pieces. The order of a strategy is the number of cop pieces required to
execute it. If a strategy has length T <∞, we might imagine that the cop player
forfeits if he hasn’t won after T moves. We say that a strategy is successful if
it guarantees a win by the cop player – a successful strategy results in a win
for the cops regardless of the moves made by the robber. Evidently, a strategy
L = {li}ki=1 of length T is successful if and only if for every walk α of length T
in G, there are li ∈ L and t < T such that α(t) = li(t) or α(t) = li(t+ 1). (The
robber must be caught at some point, either by moving onto a cop or having a
cop move onto it.)

The zero-visibility copnumber of a connected graph G is the minimum order
c0 = c0(G) among successful strategies on G; it is the smallest number of cops
required to guarantee capture of the robber.

Typically, in pursuit games of this sort, only finite strategies are considered
successful – the robber must be caught in a bounded number of turns. How-
ever, the following theorem shows that if we allow infinite strategies in the zero-
visibility cops & robber game, any successful strategy (as defined above) will
succeed in a bounded amount of time, whether or not the strategy itself is finite.
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Theorem 1. Let G be a graph. Any infinite successful strategy on G may be
truncated to obtain a finite successful strategy.

In light of Theorem 1, we will only consider finite strategies. Moreover, we can
recast this game as a node-search style problem. Rather than imagine an oppo-
nent, we simply keep track of all possible vertices on which the robber piece might
be found, via the following construction: (1) Initially, every vertex is marked as
dirty; (2) a dirty vertex is cleaned if a cop piece occupies it; and (3) in between
each of the cop’s turns, every clean vertex that is unoccupied and adjacent to a
dirty vertex becomes dirty.

The dirty vertices are the set of all possible locations of the robber. We refer
to the step in between the cop’s turns where unoccupied vertices may become
dirty as recontamination.

Let G be a graph and let L be a strategy of length T . For each nonnegative
integer t ≤ T , let Lt be the set of vertices occupied by cops after t turns by the
cop player; let Rt be the set of vertices that are dirty immediately before the
cop’s t-th turn; and let St be the set of vertices that are dirty immediately after
the cop’s t-th turn.

In other words, at the beginning of a t-th turn, t ≥ 1, the cops occupy the
vertices in Lt−1 and Rt are the dirty vertices (possible locations of the robber).
Then, the cops move and Lt becomes the vertex set they occupy, and St becomes
the set of vertices that are dirty. After the following robber’s move Rt is the set
of dirty vertices.

We define, somewhat arbitrarily, R0 = V . For t ≥ 0, the relevant rules of the
game imply that St = Rt \ Lt, Rt+1 = N [St] \ Lt, and Lt+1 ⊆ N [Lt].

A strategy of finite length T is successful if and only if ST is empty.
In a pursuit game of this sort, a topic of general interest is that of the mono-

tonicity of strategies. Typically, a strategy is monotonic if recontamination never
occurs. In this case, such a strategy would have

R0 ⊇ S0 ⊇ R1 ⊇ S1 ⊇ . . . ⊇ RT ⊇ ST ,

where T is the length of the strategy.
However, consider the following possible activity of a single cop piece. Let xy

be an edge and suppose we are attempting to construct a strategy that cleans
the graph G. If a single cop moves back and forth between x and y (that is,
moves from one to the other every turn), the two vertices x and y are guarded
from the robber – if the robber moves onto either while this is occurring he will
be caught either immediately or on the next turn.

Considering this activity under the node-search model, although the vertices
x and y are possibly being recontaminated over and over, the contamination
can never “spread” through them, as they are cleaned before they can possibly
recontaminate any further vertices.

We will refer to the above activity as vibrating on the edge xy. Further, if E is
a set of edges, we say that a set of cops is vibrating on E if each is vibrating on a
member of E and every member of E is thus protected. We will also occasionally
refer to a set of cops vibrating on a set of vertices X ; this simply means that X
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is covered by some set of edges E and the cops are vibrating on E. Typically,
we want a set of cops to vibrate on a matching (a set of edges that do not share
any endpoints), in order to most efficiently utilise this tool.

We wish to take advantage of the above strategic element while still exploring
the topic of monotonicity. Thus, we define a strategy of length T to be weakly
monotonic if for all t ≤ T − 1, we have St+1 ⊆ St. In a weakly monotonic
strategy, every time a clean vertex is recontaminated, it is cleaned on the very
next move by the cop.

The monotonic zero-visibility copnumber of a connected graph G is the min-
imum order mc0 = mc0(G) among successful weakly monotonic strategies on
G; it is the smallest number of cops required to capture the robber utilising a
weakly monotonic strategy. We are exclusively interested in weakly monotonic
strategies as opposed to the stronger variant, and so we will simply use the term
monotonic, with the understanding that this means weakly monotonic as defined
above. Clearly, we have c0(G) ≤ mc0(G) for all graphs G.

A matching in a graph is a set of edges such that no two are incident (share
an endpoint). The matching number, ν(G), is the maximum size of a matching in
the graph G. It is well-known that a maximum matching, and thus the matching
number, can be found in polynomial time [6].

Theorem 2. Let G be a connected graph; then, mc0(G) ≤ ν(G)+1, with equality
if and only if G is a complete graph on an odd number of vertices.

A clique in a graph is a set of vertices that are all adjacent to each other. The
clique number of the graph G, denoted as ω(G), is the maximum of size of a
clique in G. A complete graph with n vertices, denoted as Kn, is a graph whose
clique number is n. Theorem 3 appears in [17,18].

Theorem 3. If G is a connected graph, then c0(G) ≥ 1
2ω(G). Moreover, c0(Kn) =

mc0(Kn) =
⌈
n
2

⌉
.

3 Pathwidth and the Zero-Visibility Copnumber

Let G be a graph with vertex set VG. A path decomposition of G is a finite
sequence B = (B1,B2, . . . ,Bn) of sets Bi ⊆ VG such that

1.
n⋃

i=1

Bi = VG;

2. if x ∼ y, then there is i ∈ {1, . . . , n} such that {x, y} ⊆ Bi; and
3. if 1 ≤ i < j < k ≤ n, then Bi ∩ Bk ⊆ Bj.

We refer to the sets Bi as bags. An alternate, but equivalent, formulation of
the third requirement is that for each vertex x, the bags that contain x form a
consecutive subsequence, (Bi,Bi+1, . . . ,Bj), for some i and j with 1 ≤ i ≤ j ≤ n.

Let G be a graph and let B = (Bi) be a path decomposition ofG. We define the
width of B to be one less than the maximum size of a bag,
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pw(B) = max {|Bi| − 1}, and the pathwidth of G to be the minimum width
of a path decomposition of G,

pw(G) = min{pw(B) : B is a path decomposition of G}.

The pathwidth of a graph has been introduced in [16].

Lemma 1. Let G be a connected graph with pw(G) ≤ |VG| − 2. Then, there is
a path decomposition B of G containing n ≥ 2 bags such that pw(B) = pw(G)
and, for each i = 1, . . . , n − 1, each of Bi \ Bi+1 , Bi+1 \ Bi and Bi ∩ Bi+1 is
nonempty.

The pathwidth of a graph can be characterised via a pursuit game on a graph.
Rather than describe the cop and robber dynamics of the game, we will simply
examine it as an exercise in cleaning a graph. In this game, the cops do not move
along the edges of the graph. Each cop has two moves available to it (although
at any point in time only one is possible): (1) if a cop is currently on a vertex
in the graph, it may be “lifted” off the graph; and (2) if a cop is currently not
in the graph, it may be “placed” on any vertex in the graph. On each of the
cop’s turns, each of his pieces may make only one move – moving a cop from
one vertex to another requires two turns. Initially, every edge is marked as dirty
(as opposed to the zero-visibility game, where the vertices are the objects being
cleaned). An edge is cleaned when both of its endpoints are occupied by a cop.
After each move by the cop player, a clean edge is recontaminated if there is a
path joining it to a dirty edge which contains no cops – in this game, the robber
moves arbitrarily fast.

This pursuit game is often referred to as node-searching; it can be shown that
pw(G) ≤ k if and only if there is a successful node-search strategy on G utilising
k + 1 cops [7,12].

We introduce this second pursuit game as it is utilised in the proof of Lemma 5;
the remainder of this work deals exclusively with the zero-visibility game previ-
ously defined.

We produce the following series of inequalities relating the zero-visibility cop-
number, the monotonic zero-visibility copnumber and the pathwidth of a graph.
In [19], a pursuit game referred to as strong mixed search is introduced. It is pos-
sible to prove the results in this section utilising the relationships shown therein
between strong mixed search and the pathwidth of a graph.

Theorem 4. Let G be a connected graph containing two or more vertices. Then,
c0(G) ≤ pw(G).

Theorem 5. Let G be a connected graph; then, mc0(G) ≤ 2pw(G) + 1.

Theorem 6. Let G be a connected graph; then, pw(G) ≤ 2mc0(G)− 1.

Corollary 1. Let G be a connected graph on two or more vertices. Then,

c0(G) ≤ pw(G) ≤ 2mc0(G) − 1 ≤ 4pw(G) + 1.
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In Section 4 we provide constructions that in particular prove that the bound in
Theorem 4 is tight and the bound in Theorem 5 is tight up to a small additive
constant. Moreover, we also use Theorem 3 to argue that the bound in Theorem 6
is tight as well. The formal analysis of these facts is postponed till Section 5.

4 Constructions

We present two constructions of graphs that elicit very interesting relationships
between their pathwidth and their zero-visibility copnumbers.

Let G be a graph; the distance between any two vertices x and y is the
minimum length of a path joining x and y and is denoted dG(x, y). So, if
dG(x, y) = k ≥ 1, then there is a path joining x and y of length k and there are
no shorter such paths. If there are no paths joining x and y, the convention is
that dG(x, y) =∞. If H is a subgraph of G, we have dH(x, y) ≥ dG(x, y) when-
ever x and y are both present in H . We say that H is an isometric subgraph
of G if dH(x, y) = dG(x, y) whenever x and y are both present in H . Lemma 2
appears in [17].

Lemma 2. Let G be a graph. If H is an isometric subgraph of G, then c0(H) ≤
c0(G).

Let G be a graph; we refer to an edge e = xy as a cut edge if the graph G \
e obtained by deleting e (without deleting either of the endpoints x or y) is
disconnected. Clearly, if e is a cut edge, then G\e has two connected components.
Not every graph contains cut edges.

Lemma 3. Let G be a graph that contains a cut edge e. If H is one of the
connected components of G \ e, then

c0(H) ≤ c0(G) and mc0(H) ≤ mc0(G).

Moreover, let L be a successful strategy on G. Then, at some point in the strategy
at least c0(H) cops are simultaneously present in H; if L is a monotonic strategy,
at some point at least mc0(H) cops are simultaneously present in H.

Corollary 2. Let G be a tree. If H is a subtree of G, then mc0(H) ≤ mc0(G).

Example 1. We produce an interesting example of a graph G with an isometric
subgraph H such that mc0(G) < mc0(H). This illustrates that Lemmas 2 and 3
and Corollary 2 are limited in how they might be extended.

The graph G in question (see Figure 1) contains a large number of vertices
with degree 2; to simplify the depiction, some of them are omitted. Specifically,
the two dashed lines are paths of length 8 – they each contain 7 internal degree-2
vertices which are not shown. The subgraph H is obtained by deleting the two
paths of length 8 (drawn with dashed lines) and all 7 of their internal vertices.

First, we claim that 2 cops can clean the entire graph in a monotonic fashion.
One of them is initially placed on y and stays idle during the entire strategy.
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Fig. 1. The subgraph obtained by deleting the two paths of length 8 has strictly higher
monotonic zero-visibility copnumber than the supergraph

The other cop is initially placed on x and moves around the remainder of the
graph ending on z and cleaning every other vertex. This cop moving around
the perimeter cleans the other three vertices adjacent to y – when it reaches a
degree-3 vertex it moves onto the neighbour of y and then back.

However, if we delete the two paths drawn as dashed lines, we cannot clean
the subgraph monotonically with only two cops – this can be shown in a manner
very similar to the proof of Lemma 4.

A rooted tree is a tree G where a single vertex has been marked as the root. In
a rooted tree with root r every vertex x 
= r has a unique parent. The parent
of x is identified in the following manner: every vertex x 
= r is joined to r by
a unique path – the parent of x is the sole neighbour of x in this path. If y is
the parent of x, then x is a child of y; we also use the similarly defined terms
grandparent and grandchild when discussing rooted trees.

Example 2. The following family of trees illustrates the distinction between the
pathwidth of a tree and its monotonic zero-visibility copnumber. Let Tk be ob-
tained by beginning with the full rooted binary tree of height k and subdividing
every edge exactly once. We draw the root of each Tk with a circle – see Figure 2
for the first three such trees. By Lemmas 4 and 5, we have

mc0(Tk) = k and pw(Tk) = c0(Tk) =

⌊
k

2

⌋
+ 1.

The recursive Algorithm 1 cleans Tk with a monotonic strategy (this can be
shown simply via induction) that utilises k + 1 cops and begins with every cop
placed on the root. However, this is not an optimal strategy – if k ≥ 1, there is
a successful monotonic strategy on Tk using k cops. We obtain this strategy by
using Algorithm 1 as follows. We first express Tk as two copies of Tk−1 joined
by a path of length 4:
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Algorithm 1. CLEAN(Tk)

Require: There are k + 1 cops on the root of the graph Tk.
if k = 0 then

return
end if
1. Let x be the root of Tk and let y and z be the two grandchildren of x. Let T y and
T z be the two copies of Tk−1 rooted at y and z, respectively.
2. In two moves, move k−1 of the cops from the root of Tk to y, leaving the remaining
cop on x.
3. CLEAN(T y).
4. Move all k − 1 cops from T y to z (each cop does not move any further into T z).
5. CLEAN(T z).
return

Tk =

◦
���
� ���

�

• •

Tk−1 Tk−1

We clean one copy of Tk−1 by using Algorithm 1 in such a way that one cop
remains on the root of this subtree during the entire strategy. All k cops then
move to the root of the other copy of Tk−1 and clean that subtree in a similar
fashion. Thus, mc0(Tk) ≤ k, if k ≥ 1. In Lemma 4, we show that this strategy
is, in fact, optimal.

T0 = ◦

T1 =

◦
�� 		

• •
• •

T2 =

◦
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�� 		

•
�� 		
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Fig. 2. The first three subdivided binary trees

Lemma 4. For k ≥ 1, mc0(Tk) = k.

Theorem 4 and Lemma 4 together imply that pw(Tk) ≤ 2k − 1. However, we in
fact have pw(Tk) =

⌊
k
2

⌋
+ 1.

Lemma 5. For k ≥ 1, pw(Tk) = c0(Tk) =
⌊
k
2

⌋
+ 1.

We produce a construction of graphs with c0 < pw and c0 < mc0 with the
unbounded ratios in both inequalities.
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A universal vertex in a graph G is a vertex adjacent to every other vertex.
Given a graph G, we form the graph G∗ by adding a universal vertex to G –
that is, a single new vertex is added together with edges joining this new vertex
and every other vertex already present in G.

A subdivision of a graph G is a graph H formed by replacing one or more
edges in G with paths of length greater than or equal to 2; a subdivision is
formed by dividing an edge into two or more new edges. If the vertices of G are
labeled and H is a subdivision of G, we preserve the labeling of the vertices,
adding new labels to the new vertices.

Lemma 6. If G is a tree containing two or more vertices, then there is a sub-
division H of G such that c0(H

∗) = 2.

5 Comparisons between the Zero-Visibility Copnumbers
and the Pathwidth of a Graph

We examine in detail the inequality presented in Corollary 1:

c0(G) ≤ pw(G) ≤ 2mc0(G) − 1 ≤ 4pw(G) + 1.

A caterpillar is a tree such that deleting all vertices of degree 1 results in a path
or an empty graph. The proof of Theorem 7 is a straightforward exercise and is
omitted.

Theorem 7. Let G be a graph. The following are equivalent:

1. We have c0(G) = 1, mc0(G) = 1 or pw(G) = 1.
2. We have c0(G) = mc0(G) = pw(G) = 1.
3. We have c0(G) = pw(G) = 2mc0(G)− 1.
4. The graph G is a caterpillar.

The class of graphs that minimizes the zero-visibility copnumbers is identical to
the class that minimises pathwidth. However, if c0(G) = 2, this gives us abso-
lutely no information concerning mc0(G) or pw(G), as we will see in Theorem 8.

Remark 1. The bound c0(G) ≤ pw(G) in Theorem 4 is the best possible.

The class of graphs {Tk}, described in the previous section, satisfy c0(Tk) =
pw(Tk) < mc0(Tk) (by Lemmas 4 and 5). Thus, the bound c0(G) ≤ pw(G) is
tight on an infinite family of graphs and we cannot sandwich mc0 between c0
and pw, in general.

Remark 2. The boundmc0(G) ≤ 2pw(G)+1 in Theorem 5 can only be improved
by a small constant, if it can be improved at all.

The subdivided binary trees Tk described in Example 2 have mc0(Tk) = k and
pw(Tk) =

⌊
k
2

⌋
+ 1. So,
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mc0(Tk) =

{
2pw(Tk)− 1 if k is odd, or
2pw(Tk)− 2 if k is even.

The coefficient of 2 cannot be reduced; only the additive constant can be changed,
possibly by reducing it by one or two. In a roundabout manner, this shows that
the result in [4] is close to optimal.

Remark 3. The bound pw(G) ≤ 2mc0(G)− 1 in Theorem 6 is the best possible.

The complete graph on an even number of vertices has

pw(K2m) = 2mc0(K2m)− 1 = 2m− 1.

As well, Theorem 8 shows that we cannot replace Theorem 6 with the stronger
statement “pw(G) ≤ 2c0(G) − 1”. In fact, pathwidth cannot be bounded above
by any function of the zero-visibility copnumber.

Theorem 8. For any positive integer k, there is a graph G with c0(G) = 2 and
pw(G) ≥ k.

6 Conclusion

There remains a considerable amount of further work concerning the zero-visibility
model to be accomplished. Characterisations of c0 and mc0 over well-known
families of graphs (such as trees, unicyclic graphs, planar graphs, series parallel
graphs, etc.) are of interest. An analysis of the algorithmic complexity of accom-
plishing a successful zero-visibility search would cement this model’s position in
the overall area of pursuit games and width parameters. It would be very interest-
ing to construct some sort of relationship between the value mc0(G)− c0(G) (or
possibly mc0(G)/c0(G)) and combinatoric or connective properties of the graph
– that is, to answer the question, given some known property of the graph, can
we bound the amount by which c0 and mc0 differ?

The fact that the monotonic zero-visibility copnumber can be bounded both
above and below by positive multiples of the pathwidth suggests that, in a sense,
node-search and the monotonic zero-visibility search are variations of the same
game – each number is an approximation of the other, suggesting that efficient
strategies in one game can usually be translated to efficient strategies in the other.

However, Theorem 8 shows that the zero-visibility copnumber can be entirely
unrelated to the pathwidth and the monotonic zero-visibility copnumber. The
general zero-visibility search can be carried out using methods that will not
work in a node-search – the zero-visibility search is genuinely distinct from other
pursuit games and informs us of different structural properties of a graph.
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Abstract. In this work we consider the Golumbic, Kaplan and Shamir
graph sandwich decision problem for property Π , where given two graphs
G1 = (V, E1) and G2 = (V, E2), the question is to know whether there
exists a graph G = (V, E) such that E1 ⊆ E ⊆ E2 and G satisfies prop-
erty Π . The main property Π we are interested in this paper is “being a
(k, �)-graph”. We say that a graph G = (V, E) is (k, �) if there is a parti-
tion of the vertex set of G into at most k independent sets and at most �
cliques. We prove that the strongly chordal-(2, �) graph sandwich
problem is NP-complete, for � ≥ 1, and that the chordal-(k, �) graph
sandwich problem is NP-complete, for k ≥ 2 , � ≥ 1. We also introduce
in this paper a new work proposal related to graph sandwich problems:
the graph sandwich problem with boundary conditions. Our goal
is to redefine well-known NP-complete graph sandwich problems by clev-
erly assigning properties to its input graphs so that the redefined prob-
lems are polynomially solvable. Let poly-color(k) denote an infinite
family of graphs G for which deciding whether G is k-colorable can be
done in O(p(n)) time, where p is a polynomial and n = |V (G)|. In order
to illustrate how boundary conditions can change the complexity status
of a graph sandwich problem, we present here a polynomial-time solution
for the (k, �)-graph sandwich problem for all k, �, when beforehand
we know that G1 belongs to poly-color(k) and G2 has a polynomial
number maximal of cliques.

Keywords: Graph Sandwich Problems, Boundary Conditions, (k, �)-
Graphs, Strongly Chordal-(2, �) Graphs, Strongly Chordal-(2, 1) Graphs,
Chordal-(2, 1) Graphs.

1 Introduction

In 1995, Golumbic, Kaplan and Shamir [12] introduced the sandwich problem:

graph sandwich problem for property Π (Π−sp)
Instance: G1 = (V, E1) and G2 = (V, E2), such that E1 ⊆ E2.
Question: Is there a graph G = (V, E) such that E1 ⊆ E ⊆ E2 and G satisfies
property Π?

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 187–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Observe that the graph G, if it exists, must be “sandwiched” between the
graphs G1 and G2 and must satisfy property Π . In order to avoid a trivial
problem, we assume that G1 and G2 do not satisfy property Π .

Given two graphs G1 = (V, E1) and G2 = (V, E2) with the same vertex set V
and E1 ⊆ E2, a graph G = (V, E) is called a sandwich graph for the pair G1, G2

if E1 ⊆ E ⊆ E2. Let E3 = E(G2) denote the set of forbidden edges. We call E1

the mandatory edge set, and E2 \E1 the optional edge set. Hence, any sandwich
graph G = (V, E) for the pair G1, G2 must contain all mandatory edges and no
forbidden edge.

The recognition problem for a class of graphs C is equivalent to the partic-
ular graph sandwich problem where E1 = E2, that is, the optional edge set is
empty. Graph sandwich problems have attracted much attention lately because
of many applications and by the fact that they naturally generalize recognition
problems [5–7, 11, 17]. Note that Π−sp is clearly at least as hard as the problem
of recognizing graphs with property Π , since given a polynomial-time algorithm
for Π−sp, it is possible to use this algorithm with E1 = E2 = E to recognize if
a graph G = (V, E) satisfies property Π . Thus, in such cases, we have problems
in P that cannot be easier when regarded as sandwich problems.

A graph G is (k, �) if V (G) can be partitioned into k independent sets and �
cliques (a (k, �)-partition). The main property Π we are interested in this paper
is “being a (k, �)-graph ”. The problem of recognizing if a graph G is (k, �) was
shown to be NP-complete if k ≥ 3 or � ≥ 3 and solvable in polynomial time
otherwise [1–3]. In [1, 3, 9], polynomial-time algorithms have been developed for
deciding if a graph admits a (2, 1) or a (2, 2)-partition.

Let � and k be two non-negative integers. We denote by (�+1)Kk+1 the graph
obtained from the disjoint union of (�+1) copies of Kk+1. Chordal-(k, �) graphs
have been well studied in the literature. Hell et al. [10, 13, 14] have analyzed
algorithmic and complexity aspects of chordal-(k, �) graphs, proving that the
recognition problems of chordal-(k, �) and strongly chordal-(k, �) graphs are in
P, using the following characterization:

Theorem 1. [13] A chordal graph G is (k, �) if and only if G does not contain
a (� + 1)Kk+1 as an induced subgraph.

In [12], Golumbic et al. have presented a diagram showing the complexity status
(at that time) of the sandwich problem for some subfamilies of perfect graphs.
We can notice that the majority of the studied problems are NP-complete. Since
then, many other problems, like (2, 1)-sp [4] and strongly chordal-sp [11],
have been proved to be NP-complete.

These two last problems have inspired us to question about the complexity
of the strongly chordal-(2, 1)-sp problem, since the recognition of strongly
chordal-(k, �) graphs can be done in polynomial time [10, 13, 14]. In this work we
prove that strongly chordal-(2, 1)-sp is NP-complete. Based on this result,
we prove that the strongly chordal-(2, �) graph sandwich problem is NP-
complete, for � ≥ 1, and that the chordal-(k, �) graph sandwich problem
is NP-complete, for k ≥ 2, � ≥ 1.
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Due to the difficulty of graph sandwich problems, we started thinking about
some properties that, when cleverly applied, could turn NP-complete sandwich
problems into polynomially solvable ones. In this paper we introduce this new
work proposal: we consider special properties for the input graphs of a graph
sandwich problem, and therefore define a generalized version of sandwich prob-
lems, called sandwich problem with boundary conditions. Note that, in
contrast to Golumbic et al.’s problem, what makes sense in this case is dealing
with difficult problems that, when treated with boundary conditions, cannot be
more difficult. We have considered a particular NP-complete sandwich problem:
the (k, �)-sandwich problem, for k + � > 2. We prove in this work that by
adding some boundary conditions we can turn it into a polynomially solvable
problem for all k, �.

2 The Strongly Chordal-(2, 1) Graph Sandwich Problem

A graph G = (V, E) is chordal if every cycle of length at least four contains a
chord, i.e, an edge between two nonconsecutive vertices. It is well known [15, 18]
that chordal graphs can be recognized in polynomial time. The chordal graph
sandwich problem was shown to be NP-complete in the fundamental sandwich
problem paper [12].

A sun is a chordal graph on 2n vertices (n ≥ 3) whose vertex set can be
partitioned into W = {w1, . . . , wn} and U = {u1 . . . , un} such that W is an
independent set and ui is adjacent to wj if and only if i = j or i = j + 1 (mod
n). Strongly chordal graphs were defined by Farber [8] as chordal graphs that do
not contain a sun. He also proved that strongly chordal graphs can be recognized
in polynomial time. The strongly chordal graph sandwich problem was
shown to be NP-complete in [11]. But what happens if we ask for a sandwich
graph G being strongly chordal graph and also a (2, 1)-graph? The problem can
be formulated as follows:

strongly chordal-(2, 1) graph sandwich problem
Instance: G1 = (V, E1) and G2 = (V, E2), such that E1 ⊆ E2.
Question: Is there a graph G = (V, E) such that E1 ⊆ E ⊆ E2 and G is a
strongly chordal-(2, 1) graph?

We prove that the strongly chordal-(2, 1) sandwich problem is NP-
complete by showing a reduction from the NP-complete problem strongly
triangulating a colored graph (STCG).

This decision problem is defined below.

strongly triangulating a colored graph (stcg)
Instance: Graph G = (V, E), proper vertex coloring c : V → Z.
Question: Does there exist a supergraph G′ = (V, E′) of G that is strongly
chordal and also properly colored by c?
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Theorem 2. The strongly chordal-(2, 1) graph sandwich problem is
NP-complete.

Proof. The problem is in NP, since given a graph G that is a solution of the
problem (a yes-certificate), we can check in polynomial time if it is a strongly
chordal graph [8] (in this case also chordal), a chordal-(2, 1) graph [16], a super-
graph of G1, and a subgraph of G2. In order to reduce stcg to the strongly
chordal-(2, 1) graph sandwich problem we will use the instance (V, E1, E2)
used to prove that the strongly chordal graph sandwich problem is NP-
complete (see [11]) and show that its vertex set can be partitioned into two
independent sets and one clique, i.e. G is a (2, 1)-graph. The details of this proof
can be found in the appendix.

Corollary 1. The chordal-(2,1) graph sandwich problem is NP-complete.

2.1 The Strongly Chordal-(k, �) Graph Sandwich Problem,
k ≥ 2, � ≥ 1

After solving the strongly chordal-(2, 1) graph sandwich problem, the
question about the complexity of the strongly chordal-(k, �) graph sand-
wich problem, for k ≥ 2, � ≥ 1, naturally arises. We have succeeded to prove
that the strongly chordal-(2, �) graph sandwich problem, for � ≥ 1, is
NP-complete. This problem is formulated as follows:

strongly chordal-(2, �) graph sandwich problem, � ≥ 1
Instance: G1 = (V, E1) and G2 = (V, E2), such that E1 ⊆ E2.
Question: Is there a graph G = (V, E) such that E1 ⊆ E ⊆ E2 and G is a
strongly chordal-(2, �) graph, � ≥ 1?

Lemma 1. Given k ≥ 2 and � ≥ 1, if strongly chordal-(k, �)-sp is NP-
complete, then strongly chordal-(k, � + 1)-sp is NP-complete.

Proof. We remark that the strongly chordal-(k, �) graph sandwich prob-
lem, k ≥ 2, � ≥ 1 is in NP, since we can check in polynomial time whether a
graph G is a sandwich for a pair (G1, G2) and whether it is strongly chordal-
(k, �) [10, 13, 14].

We consider the following special instance (G1′
, G2′

) of strongly chordal-
(k, � + 1)-sp obtained from (G1, G2), an instance of the NP-complete problem
strongly chordal-(k, �)-sp, such that there is a (k, �)-strongly chordal sand-
wich graph G for (G1, G2) if and only if there is a strongly chordal-(k, � + 1)
sandwich graph G′, k ≥ 2, � ≥ 1, for (G1′

, G2′
).

From (G1, G2) we define one additional clique K, such that |K| = k + 1. We
set V (G1′

) = V (G2′
) = V (G1)∪ V (K), E(G1′

) = E(G1)∪E(K), and E(G2′
) =

E(G2) ∪ E(K). This concludes the construction of the instance (G1′
, G2′

).
Suppose there is a strongly chordal-(k, �) sandwich graph G for (G1, G2).

Consider G′ formed by G plus the forced edges of (G1′
, G2′

). In order to prove
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that graph G′ is a strongly chordal graph we consider the strong elimination
sequence started by any sequence of the vertices of K, followed by a strong
elimination sequence of the strongly chordal graph G. In order to prove that
G′ is (k, � + 1), k ≥ 2, � ≥ 1, we consider a (k, �)-partition for G, and we set a
(k, � + 1)-partition for G′ formed by the k independent sets, the � cliques of G,
and K.

Suppose there is a strongly chordal-(k, �+1) sandwich graph G′ for (G1′
, G2′

),
k ≥ 2, � ≥ 1. Given G = G′−K, we will prove that G is a strongly chordal-(k, �)-
sandwich graph for (G1, G2). Suppose by contradiction that G is not a strongly
chordal-(k, �) graph. First, note that, since being a strongly chordal graph is
an hereditary property, G must be strongly chordal. Thus, if G is not strongly
chordal-(k, �) then it is because G is not a (k, �)-graph. It follows from Theorem 1
that G contains a (�+1)(Kk+1) as an induced subgraph. Since G′ is the disjoint
union of G and K, there is an induced subgraph (�+2)Kk+1 of G′ formed by K
and the induced subgraph (�+1)(Kk+1) of G. By Theorem 1, G′ is not strongly
chordal-(k, � + 1), a contradiction. Hence, G is a strongly chordal-(k, �) graph.

��������	
�����

Fig. 1. Example of a 3K5, the forbidden induced subgraph for chordal-(4, 2) graphs

��������	
�����

Fig. 2. Example of the instance when k = 2 and � = 1. Note that when G has two
isolated triangles, G′ will have three isolated triangles.

Theorem 3. The strongly chordal-(2, �) graph sandwich problem, for
� ≥ 1, is NP-complete.

Proof. The proof of Theorem 3 is done by induction using Theorem 2 and
Lemma 1.

We remark that the next two results are on chordal graphs.

Lemma 2. Given k ≥ 2 and � ≥ 1, if chordal-(k, �)-sp is NP-complete, then
chordal-(k + 1, �)-sp is NP-complete.
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Proof. Observe that the chordal-(k, �) graph sandwich problem, k ≥ 2,
� ≥ 1, is in NP, since we can check in polynomial time whether a graph G is a
sandwich for a pair (G1, G2) and whether it is chordal-(k, �) [13].

We consider the following special instance (G1′
, G2′

) of the problem chordal-
(k + 1, �)-sp obtained from (G1, G2), an instance of the NP-complete problem
chordal-(k, �)-sp, such that there is a (k, �)-chordal sandwich graph G for
(G1, G2) if and only if there is a (k + 1, �)-chordal sandwich graph G′, k ≥ 2,
� ≥ 1 for (G1′

, G2′
).

We denote by n1 and n2, respectively, the number of Kk+1’s of G1, and G2.
Let K1

k+1, K
2
k+1, · · · , Kn2

k+1 be the subgraphs of G2 isomorphic to Kk+1. For
each Ki

k+1 of G2 we define one additional vertex ui, such that V (Ki
k+1) ∪ {ui}

forms a clique Ki, i = 1, · · · , n2. We set V (G1′
) = V (G2′

) = V (G1)
⋃n2

i=1{ui},
E(G1′

) = E(G1)
⋃n1

i=1 E(Ki), and E(G2′
) = E(G2)

⋃n2
i=1 E(Ki). This concludes

the construction of the instance (G1′
, G2′

).
Suppose there is a chordal-(k, �) sandwich graph G for (G1, G2). Consider G′

formed by G plus the forced edges of (G1′
, G2′

). In order to prove that G′ is a
chordal graph we consider the perfect elimination sequence started by the sim-
plicial vertices ui, i = 1, · · · , n2, and followed by a perfect elimination sequence
of the chordal graph G. In order to prove that G′ is a (k + 1, �)-graph, k ≥ 2,
� ≥ 1, we consider a (k, �)-partition of G, and we define a (k + 1, �)-partition for
G′ formed by the k independents sets of G, the independent set

⋃n2
i=1{ui}, and

the � cliques of G.
Suppose there is a chordal-(k + 1, �) sandwich graph G′ for (G1′

, G2′
), k ≥ 2,

� ≥ 1. We consider G = G′−⋃n2
i=1{ui} and we will prove that G is a chordal-(k, �)-

sandwich graph for (G1, G2). Suppose by contradiction that G is not a chordal-
(k, �) graph. Note that, since being a chordal graph is an hereditary property, if
G is not chordal then G′ is not chordal either. It follows from Theorem 1 that G
contains a (� + 1)Kk+1 as an induced subgraph (see Figure 1). By construction
of G′, for each Ki

k+1 of G2 there is an additional vertex ui forming a Kk+2 in
G2′

(See Figure 3 for an example). Then, we have (� + 1) copies of Kk+2 in G′

which, by the characterization in [13], implies that G′ is not chordal-(k + 1, �).
Hence, G must be chordal-(k, �).

Fig. 3. Example of the addition of vertices ui when k = 2 and � = 1. Note that when
G has two isolated triangles, G′ will have two isolated K4’s.

Theorem 4. The chordal-(k, �) graph sandwich problem, for k ≥ 2 and
� ≥ 1, is NP-complete.

Proof. The proof of Theorem 4 is done by a 2-step mathematical induction on k
and � where the induction base follows from Corollary 1 and the inductive steps
follow from Lemma 1 and Lemma 2.
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3 Graph Sandwich Problems with Boundary Conditions

We have noticed that the majority of the known sandwich problems are NP-
complete. The work by Golumbic et al. [12] contains a diagram showing the
complexity status (at that time) of the sandwich problem for some subfamilies
of perfect graphs. Other papers are also worth mentioning [4, 11].

Due to the difficulty of graph sandwich problems, we started thinking about
some properties that, when cleverly applied, could turn NP-complete sandwich
problems into polynomially solvable ones. In this paper we propose another way
of dealing with sandwich problems: instead of choosing just the property Π , we
will choose boundary conditions, i.e, properties Πi assigned to the input graphs
Gi, i = 1, 2, in order to try polynomial-time solutions for such modified versions of
known NP-complete sandwich problems. We can formulate this version as follows:

graph sandwich problem for property Π with boundary conditions
Instance: G1 = (V, E1) satisfying Π1 and G2 = (V, E2) satisfying Π2, such that
E1 ⊆ E2.
Question: Is there a graph G = (V, E) such that E1 ⊆ E ⊆ E2 and G satisfies
the property Π?

We denote this problem by a triple (Π1, Π, Π2)-sp. When we do not require
that Gi satisfies a property Πi we denote Πi by ∗. Note that the graph sand-
wich problem with boundary conditions generalize the graph sandwich
problem.

In this section we focus on a particular graph class, the class of (k, �)-graphs [1],
related to partition problems [9]. The recognition problem for this class is NP-
complete for k, � ≥ 3 [1–3], and polynomially solvable otherwise. Consequently,
we know that the sandwich problem is trivially NP-complete for k, � ≥ 3. In [4],
the authors prove that the problem remains NP-complete for k + � ≥ 3.

3.1 (Poly-Color(k), (k, �), Polynomial Number of Maximal Cliques)-
sp

It is interesting to see how the status of a problem can change from NP-
complete to polynomially solvable when we assign to G1 or G2 some particu-
lar conditions. We will study the (k, �)-graph sandwich problem with some
strong conditions, that will allow a polynomial-time solution for some related
sandwich problems. We do not consider the case when G1 or G2 satisfies prop-
erty Π , since they are trivial and can be solved by setting G = G1 or G = G2.

Now we give some useful definitions that will be used in the rest of the text.
A graph is k-colorable if its vertices can be properly colored (i.e. adjacent

vertices do not receive the same color) with at most k colors.

Definition 1. For a fixed k, Poly-color(k) denotes an infinite family of graphs
G for which there exists a polynomial p such that deciding wheter G is k-colorable
can be done in time O(p(n)), where n = |V (G)|.
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Definition 2. polynomial number of maximal cliques, or simply pnmc,
denotes an infinite family of graphs G for which there exists a polynomial q
such that the number of maximal cliques of G is bounded by O(q(n)), where
n = |V (G)|.
As an example, the notation Poly-color(k) can be used to denote chordal
graphs. pnmc can also stand for chordal graphs, since the number of maximal
cliques of a chordal graph is at most n − 1. Our goal in this section is to prove
that the following general sandwich problem with boundary conditions is poly-
nomially solvable for all k, �:

(poly-color(k), (k, �), pnmc)-sp
Instance: A graph G1 = (V, E1) in Poly-color(k) and a graph G2 = (V, E2)
in pnmc such that E1 ⊆ E2.
Question: Does there exist a (k, �)-graph G = (V, E) such that E1 ⊆ E ⊆ E2 ?

Theorem 5. For fixed k, �, (poly-color(k), (k, �), pnmc)-sp is in P.

The proof of Theorem 5 is based on Algorithm 1.

Algorithm for (POLY-COLOR(k), (k,l), PNMC)-SP
Input: G^1 = (V,E^1) in POLY_COLOR(k);

G^2=(V, E^2) in PNMC;
Output: G=(V,E) a (k,l)-graph, if it exists;

Let C be the collection of maximal cliques of G^2 ;
For each subcollection {C_1, C_2, ... , C_l} of C do

Let C’ = V(C_1) U V(C_2) U ... U V(C_l)$;
If G^1 \ C’ is k-colorable then

Return {G=(V, E^1 U E(C^1) U ... U E(C_l))};
Return {there is no (k,l)-graph G such that E^1 <= E(G) <= E^2};

Algorithm 1 : solves (Poly-color(k), (k, �), pnmc)-sp, for all k, �

Proof. Assume that the number of maximal cliques of G2 is at least �, otherwise
the theorem is trivially true.

The proof is based on Algorithm 1. First, we show that it runs in polyno-
mial time. Since G2 has a polynomial number of maximal cliques, we can list
them in polynomial time by using, for instance, the algorithm in [19] (which
has polynomial delay). Next, since � is fixed, all possible subcollections with �
maximal cliques can also be listed in polynomial time. For each one of them,
we compute C′ and G1\C′ as shown in the algorithm. Note that G1\C′ is in
Poly-color(k), since it is an induced subgraph of G1. Therefore, we can test
if G1\C′ is k-colorable in polynomial time (recall that k is fixed as well).

Now, assume that Algorithm 1 returns a positive answer for the problem. Then
there exists a subcollection {C1, . . . , C�} with exactly � maximal cliques of G2

such that G1\C′, where C′ = ∪�
i=1V (Ci), is k-colorable. Then it is clear that the
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graph G = (V, E1∪E(C1)∪· · ·∪E(C�)) returned by the algorithm is a sandwich
graph and also a (k, �)-graph: a (k, �)-partition of G is formed by k stable sets of
G1\C′ plus the � cliques C1, C2\C1, C3\(C1∪C2), . . . , C�\(C1∪C2∪· · ·∪C�−1).
We remark that, according to the definition of a (k, �)-partition, some parts may
be empty.

Finally, assume that Algorithm 1 returns a negative answer for the problem.
Assume also by contradiction that there exists a (k, �)-sandwich graph G with
a (k, �)-partition formed by stable sets S1, . . . , Sk and cliques Q1, . . . , Qk. Since
G2 is a sandwich graph, every Qi is a (not necessarily maximal) clique of G2.
Let Q′

i be a maximal clique of G2 such that Qi ⊆ Q′
i, i = 1 . . . �. If Q′

i = Q′
j

for some i �= j, discard one of them, and repeat this process until no duplicates
exist. If less than � maximal cliques remain, complete the current subcollection
of maximal cliques so that it contains � distinct elements C1, C2, . . . , C� (recall
that the number of maximal cliques of G2 is assumed to be at least �). Then
it is clear that the algorithm considers the subcollection {C1, C2, . . . , C�}. Let
C′ = ∪�

i=1V (Ci). Since by construction C′ contains Q = ∪�
i=1V (Qi), it is clear

that G1\C′ is k-colorable, since it is a subgraph of the k-colorable subgraph
G\Q. This means that Algorithm 1 returns a positive answer, a contradiction.

We remark that Theorem 5 is a framework which allows us to establish several
corollaries as we state next.

Corollary 2. (chordal, (k, �)), chordal)-sp is solvable in polynomial time.

Corollary 3. (cograph, (k, �), bounded degree Δ)-sp is solvable in poly-
nomial time.

Corollary 4. (comparability, (k, �), triangle free)-sp is solvable in poly-
nomial time.

4 Conclusion

We have proved that the strongly chordal-(2, 1) graph sandwich prob-
lem is NP-complete. As a Corollary we have that the chordal-(2, 1) graph
sandwich problem is NP-complete as well. We also have succeeded to prove
that the following problems are NP-complete: strongly chordal-(2, �)-sp for
� ≥ 1 and chordal-(k, �)-sp for k ≥ 2, � ≥ 1. In Figure 4 we depict our con-
tribution to Golumbic, Kaplan and Shamir’s diagram [12] presenting the results
in this paper, and some additional results in the literature. We have also intro-
duced a new proposal while working with sandwich problems, assigning special
properties to the input graphs G1 and G2 in order to try polynomially solv-
able versions of some well-known NP-complete graph sandwich problems. We
call the general version sandwich problem with boundary conditions. As
an application of this strategy, we have presented the general problem (poly-
color(k), (k, �), pnmc)-sp that is polynomial solvable for all k, �, in contrast
with (k, �)-sp, k + � ≥ 3, which is NP-complete. Table 1 summarizes the results
presented in this paper and the corresponding results in the literature.
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Fig. 4. Complexity of some graph sandwich problems

Table 1. Complexity results and open problems for (Π1, (k, �),Π2)-sp, where proper-
ties Π1, Π2 are in {poly-color(k), pnmc,∗}

(Π1, (k, �), Π2) − SP

Π1\Π2 pnmc ∗
chordal �-free Δ bounded

chordal P P P ?
poly-color(k) cograph P P P ?

comparability P P P ?
P, if k + � ≤ 2;

∗ ? ? ? NP-c, otherwise [4]
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Abstract. The workflow satisfiability problem is concerned with determining
whether it is possible to find an allocation of authorized users to the steps in a
workflow in such a way that all constraints are satisfied. The problem is NP-hard
in general, but is known to be fixed-parameter tractable for certain classes of con-
straints. In this paper, we provide the first results that establish fixed-parameter
tractability of the satisfiability problem when the constraints are asymmetric. We
also establish a lower bound for the hardness of the workflow satisfiability prob-
lem.

1 Introduction

A business process is a collection of interrelated steps that are performed by users in
some (partially) predetermined sequence in order to achieve some objective. In many
situations, we wish to restrict the users that can perform certain steps. First, we may
wish to specify which users are authorized to perform particular steps. In addition, we
may wish, either because of the particular requirements of the business logic or because
of statutory requirements, to prevent certain combinations of users from performing
particular combinations of steps [5].

We model a workflow schema as a tuple (S,U,A,C), where S is the set of steps in
the workflow, U is the set of users, A ⊆ S × U is the authorization relation, and C
is a set of constraints. Each constraint has the form (ρ, s, s′), where ρ ⊆ U × U and
s, s′ ∈ S. A plan is a function π : S → U . We say π is valid (with respect to the
schema) if and only if (s, π(s)) ∈ A for all s, and for every constraint (ρ, s, s′) ∈ C,
(π(s), π(s′)) ∈ ρ. If a workflow schema has a valid plan then we say it is satisfiable.
Henceforth, we write L(s) ⊆ U to denote the set {u ∈ U : (s, u) ∈ A}; that is, L(s)
represents the set of users authorized to perform step s.

For a set, {ρ1, . . . , ρt}, of binary relations on U , an instance I of the workflow satis-
fiability problem WSP(ρ1, . . . , ρt) is given by a list L(s) for each s ∈ S and a set C of
constraints of the form (ρ, s, s′), where s, s′ ∈ S and ρ ∈ {ρ1, . . . , ρt}. If I has a valid
plan, it is called a YES-instance; otherwise, it is a NO-instance.
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Let (U,<) be the partially ordered set of users. The order relation models the relative
seniority of users, u < v indicating that v is senior to u.1 We write = to denote the bi-
nary relation {(u, u) : u ∈ U} and 
= to denote the relation (U ×U)\{(u, u) : u ∈ U}.

A brute-force approach to answering WSP gives rise to an algorithm that has running
time O(cnk), where c is the number of constraints2, n is the number of users and k is the
number of steps. Moreover, it is known that determining the satisfiability of a workflow
specification is NP-hard in general [14]. It has been shown that WSP(=, 
=) is fixed-
parameter tractable (FPT) [6,7,14]. It is also known that WSP(
=) is equivalent to a
problem studied by Fellows et al. [8].

In the full version of this paper [4], we establish that the Hasse diagram of (U,<)
has treewidth 3 for the Royal Holloway University of London management hierarchy.
This seems to be not exceptional in the following sense: it is unlikely that a member of
staff will have many line managers (quite often there is only one or two line managers).
Thus, it does not seem unreasonable to expect the Hasse diagram of the correspond-
ing partial order to have bounded treewidth and for the treewidth to be rather small.
Moreover, our Royal Holloway example indicates that construction of (near-)optimal
tree decompositions for such hierarchies may be not hard (see [4]).

In this paper we show that if the Hasse diagram of (U,<) has bounded treewidth then
WSP(=, 
=, <) is FPT. This result is based on the tree decomposition of the graph of
the seniority relation and the application of dynamic programming to a particular form
of tree decomposition. Moreover, we show that it is impossible to obtain an algorithm
for the general case of WSP with running time f(k)no( k

log k ) unless the Exponential
Time Hypothesis (ETH) [10] fails, where f is an arbitrary function.

In Section 2, we describe tree decompositions, define treewidth and establish some
elementary, preparatory results. Section 3 establishes fixed-parameter tractability of the
above-mentioned “treewidth bounded” case of the problem and the following section
establishes a lower bound for the complexity of the general problem (assuming ETH
holds). The lower bound is proved using a result of Marx [12]. We conclude the paper
with a summary of our contributions.

2 Preliminaries

Let (U,<) be a partially ordered set. The directed, acyclic graph H with vertex set U
such that x < y if and only if there is an arc xy in H is called the full graph of (U,<).
We write x � y if x < y and there does not exist z ∈ U such that x < z < y. The
directed, acyclic graph D with vertex set U such that x� y if and only if there is an arc
xy in D is called the Hasse diagram of (U,<); we may also refer to D as the reduced
graph. A mixed graph consists of a set of vertices together with a set of undirected
edges and a set of directed arcs.

1 Results for constraints of the form (<, s, s′) are of practical interest because there are many
business rules that require such constraints: the rule that an expenses claim must be authorized
by someone senior to the claimant is but one obvious example.

2 Here and in the rest of the paper, we assume a constraint can be checked in constant time.
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2.1 Constraint Graphs

We may represent the set of constraints in an instance I of WSP(=, 
=, <) with a mixed
graph as follows. First, we eliminate constraints of the form (=, s′, s′′). Specifically,
we construct a graph P with vertices S in which s′, s′′ ∈ S are adjacent if I has a
constraint (=, s′, s′′). Observe that the same user must necessarily be assigned to all
steps in a connected component Q of P . Thus, if there is a pair s′, s′′ ∈ Q such that I
has a constraint (
=, s′, s′′) or (<, s′, s′′), then clearly I is a NO-instance; thus we may
assume that there is no such pair for any connected component of P . For each connected
componentQ of P , replace all steps of Q in S by a “superstep” q. A user u is authorized
to perform q if u is authorized to perform all steps of Q. That is, L(q) =

⋂
s∈Q L(s).

The above procedure eliminates all constraints of the type (=, s′, s′′) for the reduced
set S of steps. All constraints of the types (
=, s′, s′′) and (<, s′, s′′) remain, but steps
s′ and s′′ are replaced by the corresponding supersteps. For simplicity of notation, we
will denote the new instance of the problem also by I.

Now we construct a mixed graph with vertex set S. For each constraint of the type
(
=, s′, s′′), add an edge between s′ and s′′. For each constraint of the type (<, s′, s′′),
add an arc from s′ and s′′. We will refer to the resulting graph as the constraint graph
(of I). We will say an edge or arc in a constraint graph is satisfied by a plan π if π
satisfies the corresponding constraint.

It is worth noting that WSP(
=) is rather closely related to LIST COLORING, where
users are “colors” and lists L(s) impose restrictions on the “colors” that can be assigned
to steps s. In fact, WSP(<, 
=) is an even more complex problem because it imposes a
structure on the set of colors that are available, meaning that the selection of a color for
s may preclude the use of many other colors for steps connected to s by an arc.

2.2 Tree Decompositions and Treewidth

Tree decompositions provide a means of representing an undirected or directed graph
using a tree. The treewidth of the Hasse diagram of (U,<) determines, in part, the
complexity of WSP(
=, <).

Definition 1. A tree decomposition of an undirected (directed) graph G = (V,E) is a
pair (T ,X ), where T = (VT , ET ) is a tree and X = {Bi : i ∈ VT } is a collection of
subsets of V called bags, such that:

1.
⋃

i∈VT
Bi = V ;

2. For every edge (arc) xy ∈ E, there exists i ∈ VT such that {x, y} ⊆ Bi;
3. For every x ∈ V , the set {i : x ∈ Bi} induces a connected subtree of T .

The width of (T ,X ) is maxi∈VT |Bi| − 1. The treewidth of a graph G is the minimum
width of all tree decompositions of G.

To distinguish between vertices of G and T , we call vertices of T nodes. We will often
speak of a bag B interchangeably with the node to which it corresponds in T . Thus, for
example, we might say two bags are neighbors if they correspond to nodes in T which
are neighbors. We define the descendants of a bag B as follows: every child of B is a
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descendant of B, and every child of a descendant of B is a descendant of B. We will
write B = B′ if B and B′ contain the same vertices, while still treating them as different
bags.

The problem of determining whether the treewidth of a graph G is at most r (when r
is part of input) is NP-complete [1]. Bodlaender [2] obtained an algorithm with running
time O(f(r)n) for deciding whether the treewidth of a graph G is at most r, where n
is the number of vertices in G and f is a function depending only on r. This algorithm
constructs the corresponding tree decomposition with O(n) nodes, if the answer is YES.
Unfortunately, f grows too fast to be of practical interest. However, there are several
polynomial-time approximation algorithms and heuristics for computing the treewidth
of a graph and the corresponding tree decomposition, see, e.g., [3].

We now describe a special type of tree decomposition that is widely used to con-
struct dynamic programming algorithms for solving problems on graphs. A nice tree
decomposition identifies one node as the root of T , and each node i ∈ VT is of one of
the following four types:

1. a join node B has two children B′ and B′′, with B = B′ = B′′;
2. a forget node B has one child B′, and there exists u ∈ B′ such that B = B′ \ {u};
3. an introduce node B has one child B′, and there exists u 
∈ B′ such that B =
B′ ∪ {u};

4. a leaf node B is a leaf of T .

The following useful lemma, concerning the construction of a nice tree decomposition
from a given tree decomposition, was proved by Kloks [11, Lemma 13.1.3].

Lemma 1. Given a tree decomposition with O(n) nodes of a graph G with n vertices,
we can construct, in time O(n), a nice tree decomposition of G of the same width and
with at most 4n nodes.

Lemma 2. Let D be a (directed) graph, (T ,X ) a tree decomposition of D, and let Y
be a set of vertices in D such that D[Y ] is connected. Then the set of bags containing
vertices in Y induces a connected subtree in T .

Proof. The proof is by induction on |Y |. The base case, |Y | = 1, follows from Defini-
tion 1. Let y ∈ Y such that D[Y \ {y}] is connected and suppose that the set of bags
containing vertices in Y \ {y} induces a connected subtree T ′ of T . Let z ∈ Y such
that yz is an edge of D. By Definition 1, y and z belong to the same bag B and observe
that B is in T ′. Thus, the subtree of T induced by the bags containing y and T ′ intersect
and so the set of bags containing vertices in Y induces a connected subtree in T . ��
For a digraph D and a pair of verices u 
= v in D, we say that a set X ⊆ V (D) \ {u, v}
separates u from v if D −X has no directed path from u to v.

Lemma 3. Let D be the reduced graph for (U,<). Let u, v be users and B a set of
users such that u 
= v and u, v /∈ B, and B separates u from v in D. Then u < v if and
only if there exists w ∈ B such that u < w and w < v.

Proof. By transitivity, if u < w < v then u < v. For the other direction, suppose
u < v. Then by the definition of D there must exist a directed path from u to v in D.
Since B separates u and v, this path must contain a user w in B. Therefore u < w and
w < v. ��



202 J. Crampton et al.

3 FPT Algorithm for Bounded Treewidth

In this section, we consider the special case of the problem when the reduced graph D
of (U,<) is of treewidth bounded by a constant r. Note that D may have much smaller
treewidth than the full graph H . For example, when < is a linear order on U , then H is
a tournament with treewidth |U | − 1, but D is a directed path with treewidth 1.

Theorem 1. Let I be an instance of WSP(=, 
=, <) and let D be the reduced graph of
(U,<). Given a tree decomposition of D of treewidth r and with O(n) nodes, we can
solve I in time O(nk4k(r + 2 + 3r+1)k), where k is the number of steps and n is the
number of users.

By Lemma 1, assume we have a nice tree decomposition (T ,X ) of D of width r and
with at most 4n nodes. Before proving the above result, we provide an informal insight
into our approach. We use dynamic programming techniques to compute solutions to
restricted instances of the original problem instance, and for each of these restricted
instances, we construct possible intermediate solutions for each bag in the nice tree
decomposition. Working from the leaves of the decomposition back to the root, we
extend intermediate solutions for child nodes to an intermediate solution for the parent
node. The existence of an intermediate solution for the root node, implies the existence
of a solution for the original problem instance (Lemma 4). Then, in Lemma 5, we
establish the complexity of computing an intermediate solution, thereby completing the
proof of Theorem 1. Roughly speaking, for every subset T of the set S of steps, each
bag B in the tree decomposition of D, and each step x in T , we keep track of which user
in B, if any, x is to be assigned to, and otherwise what relation the user assigned to x
should have to the users in B. Before proceeding further, we introduce some definitions
and notation.

Let us say that u > v if v < u, and u ∼ v if neither u < v nor v < u. Define the
relation of v to u, a function φ(v, u) from the set of all pairs of users to the set of three
symbols [<], [>], [∼], as follows:

φ(v, u) =

⎧⎪⎨⎪⎩
[<] if v < u

[>] if v > u

[∼] if v ∼ u.

For each bag B = {u1, u2, . . . , up} in X , and each user v /∈ B, define the relation of v
to B,R(v,B) to be the ordered tuple (φ(v, u1), . . . , φ(v, up)).

Definition 2. Given a workflow instance I with constraint graph G = (S,E), a bag
B in the nice tree decomposition of (U,<), a set of steps T and a function R : T →
B∪{[<], [>], [∼]}|B|, we say π : T → U is a (B, T, R)-plan if the following conditions
are satisfied:

1. π(x) ∈ L(x) for each x ∈ T ;
2. if there is an edge between x and y in G[T ], then π(x) 
= π(y);
3. if there is an arc from x to y in G[T ], then π(x) < π(y);
4. for each step x, π(x) is either a user in B or a user in a descendant of B;
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5. for any x ∈ T , u ∈ B, π(x) = u if and only if R(x) = u;
6. if R(x) /∈ B, thenR(π(x),B) = R(x).

R provides a partial allocation of users in B to steps in T ; where no user is allocated,
R identifies the relationships that must hold between the user that is subsequently allo-
cated to the task and those users in B. The existence of a (B, T, R)-plan means that we
can extend R to a full plan π by traversing the nice tree decomposition.

We may now define the function that is central to our dynamic programming ap-
proach. For every bag B in the tree decomposition of D, every subset T of S, and every
possible function R : T → B ∪ {[<], [>], [∼]}|B|, define F (B, T, R) = TRUE if there
exists a (B, T, R)-plan and FALSE otherwise.

Lemma 4. Let B0 be the root node in the nice tree decomposition of D. Then I is a
YES-instance if and only if there exists a function R : S → B0 ∪ {[<], [>], [∼]}|B0|

such that F (B0, S, R) = TRUE.

Proof. By the first three conditions on F (B0, S, R) being TRUE and the definition of
the constraint graph G, it is clear that if F (B0, S, R) = TRUE for some R then we
have a YES-instance. So now suppose I is a YES-instance, and let π : S → U be a
valid plan. Then for each x ∈ S, let R(x) = π(x) if π(x) ∈ B0, and otherwise, let
R(x) = R(π(x),B). Then observe that all the conditions on F (B0, S, R) being TRUE

are satisfied and therefore F (B0, V, R) = TRUE. ��

Lemma 5. We can compute F (B, T, R) for every bag B in X , every T ⊆ S, and every
R : T → B ∪ {[<], [>], [∼]}|B| in time O(nk4k(r + 2 + 3r+1)k).

Proof. We will start by constructing, in advance, a matrix L = [Ls,u]s∈S,u∈U such that
Ls,u = 1 if u ∈ L(s) and Ls,u = 0, otherwise. This will take time O(kn). Let B be
in X , T a subset of S, and R a function from T to B ∪ {[<], [>], [∼]}|B|. Recall that
every bag B is either a leaf node, a join node, a forget node or an introduce node. We
will consider the four possibilities separately.

B Is a Leaf Node. Since B has no descendants, F (B, T, R) = FALSE unless R(x) ∈ B
for every x ∈ T . So now we may assume R(x) ∈ B for all x. But then the only
possibility for a (B, T, R)-plan is one in which π(x) = R(x) for all x. Therefore we
may check, in time O(k2), whether this plan satisfies the (first three) conditions on
F (B, T, R) being TRUE. (Use matrix L to check that π(x) ∈ L(x) for all x ∈ T .) If it
does, F (B, T, R) = TRUE, otherwise F (B, T, R) = FALSE.

For the remaining cases, we may assume that F (B′, T, R) has been calculated for
every child of B′ of B and every possible T,R.

B Is a Forget Node. Let B′ = {u1, u2, . . . , up} be the child node of B and assume
without loss of generality that B = {u1, u2, . . . , up−1}. For i ∈ [p − 1], let Xi be the
set of steps in T with R(x) = ui.

Suppose that π is a (B, T, R)-plan. Then let R′ : T → B′∪{[<], [>], [∼]}|B′| be the
function such that R′(x) = π(x) if π(x) ∈ B′, and R′(x) = R(π(x),B′) if π(x) /∈ B′.
It is clear that F (B′, T, R′) = TRUE. Now we show some properties of R.
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Firstly, since π is a (B, T, R)-plan, it must be the case that π(x) = R(x) if R(x) ∈ B
and therefore R′(x) = R(x) if R(x) ∈ B. Secondly, since π is a (B, T, R)-plan and
up /∈ B, it must be the case that π(x) = up only if R(x) = R(up,B). Therefore
R′(x) = up only if R(x) = R(up,B). Finally, for x ∈ T with R′(x) /∈ B′, let R(x) =
(xu1 , xu2 , . . . , xup−1) and let R′(x) = (x′

u1
, x′

u2
, . . . , x′

up
). Since π is a (B, T, R)-plan

and a (B′, T, R′)-plan, we must have that xui = φ(π(x), ui) = x′
ui

for all i ∈ [p− 1].
That is R(x) and R′(x) are the same except that R′(x) has the extra co-ordinate x′

up
.

It follows that to obtain R′ from R, we merely need to guess which x with R(x) =
R(up,B) are assigned to up by R′, and for all other x, what the value of xup should be.

Therefore, in order to calculate F (B, T, R), we may do the following: Try every
possible way of partitioning T \(X1∪X2∪· · ·∪Xp−1) into four sets Xp, X<, X>, X∼,
subject to the constraint that x ∈ Xp only if R(x) = R(up,B). For each such partition,
construct a function R′ : T → B′ ∪ {[<], [>], [∼]}|B′| such that

1. R′(x) = R(x) if R(x) ∈ B.
2. R′(x) = up if x ∈ Xp.
3. For all other x, let R(x)=(xu1 , xu2 , . . . , xup−1). ThenR′(x)=(x′

u1
, x′

u2
, . . . , x′

up
),

where x′
ui

= xui for all i ∈ [p − 1], and x′
up

= [<] if x ∈ X<, x′
up

= [>] if
x ∈ X>, and x′

up
= [∼] if x ∈ X∼.

and check the value of F (B′, T, R′).
By the above argument, if F (B, T, R) = TRUE then it must be the case that

F (B′, T, R′)=TRUE for one of theR′ constructed in this way. Therefore if F (B′, T, R′)
= FALSE for all such R′, we know that F (B, T, R)
= FALSE. Otherwise, if F (B′, T, R′) = TRUE for some R′, let π be a (B′, T, R′)-
plan, and observe that by construction of R′ and Xp, π is a (B, T, R)-plan as well.
Therefore F (B, T, R) = TRUE.

Finally, observe that there are at most 4k possible values of R′ to check and each
R′ can be constructed in time O(k), and therefore we can calculate F (B, T, R) in time
O(k4k).

B Is an Introduce Node. Let B = {u1, u2, . . . , up}, let B′ be the child node of B
and assume without loss of generality that B′ = {u1, u2, . . . , up−1}. Let Xp ⊆ T
be the set of all x ∈ T with R(x) = up, and let T ′ = T \ Xp. Define a function
R′ : T ′ → B′ ∪ {[<], [>], [∼]}|B′| as follows:

1. R′(x) = R(x) if R(x) ∈ B′.
2. For all other x, let R(x) = (xu1 , xu2 , . . . , xup). Then set R′(x) =

(x′
u1
, x′

u2
, . . . , x′

up−1
), where x′

ui
= xui for all i ∈ [p− 1].

We will now give eight conditions which are necessary for F (B, T, R) = TRUE.
We will then show that these conditions collectively are sufficient for F (B, T, R) =
TRUE. Since each of these conditions can be checked in time O(k2), we will have that
F (B, T, R) can be calculated in time O(k2).

Condition 1: up ∈ L(x) for each x ∈ Xp. This condition is clearly necessary, as for
every (B, T, R)-plan π we have π(x) = up.
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Condition 2: Xp is an independent set in G. Since in any (B, T, R)-plan, all steps in
Xp must be assigned the same user, any arc or edge between steps in Xp will not be
satisfied.

Condition 3: If there exists x ∈ Xp, y /∈ Xp with an arc from y to x in G, then either
R(y) = ui for some ui ∈ B′ with ui < up, or R(y) = (yu1 , . . . , yup) with yup = [<].
For if not, then any (B, T, R)-plan will assign y to a user v such that v > up or v ∼ up,
and the arc yx will not be satisfied.

Condition 4: If there exists x ∈ Xp, y /∈ Xp with an arc from x to y in G, then either
R(y) = ui for some ui ∈ B′ with ui > up, or R(y) = (yu1 , . . . , yup) with up = [>].
The proof is similar to the proof of Condition 3.

Condition 5: If there exists y /∈ Xp such that R(y) = (yu1 , . . . , yup) with yup = [<],
then there must exist ui ∈ B′ with yui = [<] and ui < up. For suppose there is a
(B, T, R)-plan π, and let v = π(y). Note that v must be in a descendant of B but not in
B′. ThereforeB′ separates v from up in D, for any v in a descendant of B. (This follows
from Lemma 2 where Y is the vertices of a path between v and up). Then by Lemma 3,
as v < up there exists ui ∈ B′ with v < ui < up. Therefore yui = [<].

Condition 6: If there exists y /∈ Xp such that R(y) = (yu1 , . . . , yup) with yup = [>],
then there must exist ui ∈ B′ with yui = [>] and ui > up. The proof is similar to the
proof of Condition 5.

Condition 7: If there exists y /∈ Xp such that R(y) = (yu1 , . . . , yup) with yup = [∼],
then there is no ui ∈ B such that yui = [<] and ui < up, or yui = [>] and ui > up.
For suppose there is a (B, T, R)-plan π, and let v = π(y). Suppose for a contradiction
that there exists ui ∈ B such that yui = [>] and ui > up. (The case yui = [<] and
ui < up is handled similarly). Then v > ui and so by transitivity, v > up. But this is a
contradiction as yup = [∼].

Condition 8: F (B′, T ′, R′) = TRUE. For suppose π is a (B, T, R)-plan. Then ob-
serve that by construction of R′, π restricted to T ′ is a (B′, T ′, R′)-plan.

It now remains to show that if Conditions 1-8 hold then (B, T, R) = TRUE. Let π′

be a (B′, T ′, R′)-plan whose existence is guaranteed by Condition 8, and let π be the
extension of π′ to T in which π(x) = up for all x ∈ Xp = T \ T ′. Since π′ is a
(B′, T ′, R′)-plan, π(x) ∈ L(x) for all x ∈ T ′, and by Condition 1, π(x) ∈ L(x) for all
x ∈ Xp. For every x with R(x) ∈ B, we have that π(x) = R(x) by the fact that π′ is a
(B′, T ′, R′)-plan and R(x) = up for all x ∈ Xp.

Now consider x with R(x) /∈ B. Then let R(x) = (xu1 , xu2 , . . . , xup). By construc-
tion of R′ and the fact that π′ is a (B′, T ′, R′)-plan, φ(π(x), ui) = xui for i ∈ [p− 1].
Suppose xup = [<]. Then by Condition 5, there exists ui ∈ B′ with xui = [<] and
ui < up. Therefore π(x) < ui and so π(x) < up. Therefore φ(π(x), ui) = [<]. Sim-
ilarly, using Condition 6, if xup = [>] then φ(π(x),B) = [>]. If φ(π(x), ui) = [∼]
then by Condition 7 there is no ui ∈ B′ with π(x) > ui > up or π(x) < ui < up.
Then by Lemma 3, π(x) ∼ up and so φ(π(x), up) = [∼]. In each case we have that
φ(π(x), up) = xup and soR(π(x),B) = R(x).

It is clear that for each step x, π(x) is either in B or in a descendant of B. It remains
to show that the arcs and edges in G[T ] are satisfied by π.

As π′ is a (B′, T ′, R′)-plan, every arc and edge in G[T ′] is satisfied by π. By Con-
dition 2 there are no edges and arcs within G[Xp]. It remains to show that the arcs and
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edges between Xp and T ′ are satisfied by π. Consider an edge between x ∈ Xp and
y ∈ T ′. Since π(x) = up, and π(y) 
= up (since up does not appear in B′ or any descen-
dant of B′ by definition of a tree decomposition), this edge is satisfied. Now suppose
there is an arc from y ∈ T ′ to x ∈ Xp . By Condition 3, either π(y) = R(y) = ui with
ui < up, or yup = [<], in which case π(y) < up (as we have shown φ(π(y, up) = yup ).
In either case π(y) < π(x) and so the arc is satisfied. Similarly, if there is an arc from
x ∈ Xp to y ∈ S′, then by Condition 4 π(y) > π(x) and the arc is satisfied.

Thus π satisfies all the conditions of a (B, T, R)-plan and so F (B, T, R) = TRUE.

B Is a Join Node. Let B′,B′′ be the two child nodes of B, and recall that B′ and B′′

contain the same users as B. Let X be the set of all x ∈ T with R(x) ∈ B.
Let π be a (B, T, R)-plan. Then let X ′ be the set of all x ∈ T \X such that π(x) = v

for some v in a descendant ofB′, and let X ′′ be the set of all x ∈ T \X such that π(x) =
v for some v in a descendant of B′′. (Observe that X,X ′, X ′′ is a partition of T .) Let
T ′ = X ∪X ′ and let R′ be the function R restricted to T ′. Similarly let T ′′ = X ∪X ′′

and let R′′ be the function R restricted to T ′′. Then observe that F (B′, T ′, R′) = TRUE

and F (B′′, T ′′, R′′) = TRUE.
Now consider an arc from x ∈ X ′ to y ∈ X ′′. Then π(x) < π(y). Since B separates

π(x) from π(y) (by Lemma 2 with Y the set of vertices on a path between π(x) and
π(y)), there must exist ui ∈ B such that π(x) < ui < π(y). Therefore xui = [<] and
yui = [>]. Similarly, if there is an arc from y ∈ X ′′ to x ∈ X ′ then there exists ui ∈ B
with xui = [<] and yui = [>].

We therefore have that if F (B, T, R) = TRUE, then there exists a partition X ′, X ′′

of T \ X such that F (B′, T ′, R′) = TRUE and F (B′′, T ′′, R′′) = TRUE (where
T ′, T ′′, R′, R′′ are as previously defined) and for any arc from x ∈ X ′ to y ∈ X ′′,
there exists ui ∈ B with xui = [<] and yui = [>] (and similarly for arcs from y ∈ X ′′

to x ∈ X ′). We now show that the converse is true.
Suppose these conditions hold, and let π′ be a (B′, T ′, R′)-

plan and π′′ a (B′′, T ′′, R′′)-plan. Note that for all x ∈ X , π′(x) = R(x) = π′′(x). Let
π be the assignment on S made by combining π′ and π′′, i.e. π(x) = π′(x) = π′′(x)
for x ∈ X , π(x) = π′(x) for x ∈ X ′, and π(x) = π′′(x) for x ∈ X ′′.

Observe that by definition of π′ and π′′, Lx,π(x) = 1 for all x ∈ T , π(x) = R(x) if
R(x) ∈ B, and otherwise R(π(x),B) = R(x). Any edges and arcs in G[X ∪X ′] are
satisfied by π, by definition of π′, and any edges and arcs in G[X ∪X ′′] are satisfied by
π, by definition of π′′. It remains to consider the edges and arcs between X ′ and X ′′.
Since the tasks in X ′ and X ′′ are assigned to disjoint sets of users (by Lemma 2), any
edge between and X ′ and X ′′ is satisfied. If there is an arc from x ∈ X ′ to y ∈ X ′′,
then by our assumption there exists ui ∈ B with xui = [<] and yui = [>]. Therefore
π(x) < ui < π(y), and therefore π(x) < π(y), and so the arc is satisfied. A similar
argument applies when there is an arc from y ∈ X ′′ to x ∈ X ′.

Since there are at most 2|T | possible ways to partition T \ X into X ′ and X ′′, we
can calculate F (B, T, R) in O(2k) time.

The above bounds show that, provided all the values for descendants of B have been
computed, F (B, T, R) can be calculated in time O(k4k), for each possible B, T and R.
It remains to count the number of possible values of B, T and R. There are at most 4n
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values of B. Calculating F (B, T, R) for every T and R can be viewed as calculating F
for every function R∗ : S → B ∪ {[<], [>], [∼]}|B| ∪ {0}, T being defined as the set
of steps not mapped to 0. Finally, for each step x in S there are r + 2 + 3r+1 possible
values for R∗(x) and therefore (r + 2 + 3r+1)k possible values for R∗. Therefore the
total number of possible values of F (B, T, R) is O(n(r + 2 + 3r+1)k), and so every
value F (B, T, R) can be calculated in time O(nk4k(r + 2 + 3r+1)k). ��

4 Hardness

The main theorem of this section establishes a lower bound for the complexity of the
workflow satisfiability problem. In fact, we show that in general, the trivial O(nk) al-
gorithm is nearly optimal. Our result assumes the Exponential Time Hypothesis (ETH)
of Impagliazzo, Paturi, and Zane [10]: that is, we assume that there is no 2o(n)-time
algorithm for n-variable 3-SAT.

The degree of a vertex x in a digraph D is the number of arcs entering x and leaving
x. For a natural number �, we say that a digraph D is �-degenerate if each induced
subgraph of D has a vertex of degree at most �.

Theorem 2. WSP(=, 
=, <) cannot be solved in time f(k)no( k
log k ) unless ETH fails,

where f is an arbitrary function, k is the number of steps and n is the number of users.
This results holds even if the full graph of (U,<) is 2-degenerate.

In order to prove Theorem 2, we first consider the following problem and prove the
following lemma. In what follows, for a natural number m, [m] = {1, 2, . . . ,m}.

SUBTDAG ISOMORPHISM

Input: Transitive acyclic digraphs D = (VD, AD) and R = (VR, AR),
a subset WR = {w1, . . . , w|WR|} of VR, and disjoint subsets
WD,1, . . . ,WD,|WR| of VD.

Parameter: |VR|
Question: Is there an injection γ : VR → VD such that γ(wi) ∈ WD,i for each

i ∈ [|WR|], and for every (u, v) ∈ AR, (γ(u), γ(v)) ∈ AD?

Lemma 6. SUBTDAG ISOMORPHISM cannot be solved in time f(k)no( k
log k ) where f

is an arbitrary function, n is the number of vertices in D and k is the number of vertices
in R, unless ETH fails. This result holds even if D and R are 2-degenerate.

A proof of this lemma can be found in the full version [4] of this paper. The proof is
based on Corollary 6.3 in [12].

Proof of Theorem 2. The proof is by a reduction from the SUBTDAG ISOMORPHISM

problem. Let (D,R,WR,WD,1, . . . ,WD,|WR|) be an instance of SUBTDAG ISOMOR-
PHISM. We construct an instance of WSP(=, 
=, <) as follows. We define the set U of
users to be VD and the set S of steps to be VR. For every step wi ∈WR, L(wi) = WD,i,
and for every step s ∈ S \WR, L(s) = U .
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We define the relation < on U as follows. For every x, y ∈ U , x < y if and only
if x 
= y and there is a arc from x to y in D. For every arc (u, v) ∈ AR, we add
a constraint (<, u, v) and for every pair u, v of distinct non-adjacent vertices of R,
we add a constraint (
=, u, v). Let the instance of WSP(=, 
=, <) thus constructed be
I. We claim that (D,R,WR,WD,1, . . . ,WD,|WR|)is a YES instance of SUBTDAG
ISOMORPHISM iff I is a YES instance of WSP(=, 
=, <).

Suppose that (D,R,WR,WD,1, . . . ,WD,|WR|) is a YES-instance of SUBTDAG
ISOMORPHISM and let γ be a required injection for this instance. We define a plan
π as π(v) = γ(v) for every v ∈ S. It is easy to see that π is an valid plan for I.

Conversely, suppose that I is a YES-instance of WSP(=, 
=, <) and let π be a valid
plan for this instance. We define a function γ : VR → VD as follows. For every u ∈ VR,
we set γ(u) = π(u). It remains to verify that γ is a required injection for the instance
(D,R,WR,WD,1, . . . ,WD,|WR|). We first show that γ is an injection. Suppose this
were not the case and let u and v be two distinct vertices such that γ(u) = γ(v).
This implies that π(u) = π(v). But then this assignment satisfies neither the constraint
(
=, u, v) nor the constraint (<, u, v), which is a contradiction. Hence, we conclude that
γ is indeed an injection. Now, consider an arc (u, v) ∈ R. Since π is a valid plan,
π(u) < π(v), which implies that γ(u) < γ(v), which by definition is possible only if
(γ(u), γ(v)) ∈ AD. This completes the proof of correctness of the reduction.

It remains to apply Lemma 6 to complete the proof of the theorem. ��
It is well-known (see, e.g., [9]) that ETH is stronger than the widely believed complexity
hypothesis W[1] 
= FPT. Thus, we have the following:

Corollary 1. WSP(=, 
=, <) is not FPT unless W[1] = FPT. This results holds even
if the full graph of (U,<) is 2-degenerate.

This corollary proves that while the class of treewidth bounded graphs is sufficiently
special to imply an FPT algorithm, considering the more general class of graphs of
bounded degeneracy does not make the problem any easier.

5 Concluding Remarks

The main contribution of this paper is the development of the first FPT algorithm for
WSP(=, 
=, <), where< is a (transitive) relation on the set of users. Unlike WSP(=, 
=)
which is FPT in the general case, WSP(=, 
=, <) is not FPT unless W[1]=FPT, which
is highly unlikely. In fact, under a stronger hypothesis (ETH) we have shown that we
even cannot have an algorithm significantly faster than the trivial brute-force algorithm.
Thus, it is natural to identify special cases of WSP(=, 
=, <) that are in FPT and of
practical relevance. We have done this by restricting the reduced graph D of (U,<)
to lie in the class of graphs of bounded treewidth. We believe that this restriction on
treewidth holds for many user hierarchies that arise in practice. On the other hand, we
have also shown that the restriction of the reduced (or even full) graph to the class of
2-degenerate graphs does not reduce the complexity of the problem.

Unfortunately, it seems that our FPT algorithm is efficient in practice only for rather
small values of the number of steps k and the treewidth r of D (we may view k+ r as a
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combined parameter). However, it is quite often the case that the first FPT algorithm for
a parameterized problem is not efficient except for rather small values of the parameter,
but subsequent improvements bring about an FPT algorithm efficient for larger values of
the parameter [9,13]. We believe that a more efficient FPT algorithm for WSP(=, 
=, <)
may be possible.
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Abstract. The two-round discrete Voronoi game on a line consists of a
finite user set U (with |U | = n), placed along a line �, and two players
Player 1 (P1) and Player 2 (P2). We assume that the sorted order of users
in U along the line � is known, and P1 and P2 each has two facilities. P1
places one facility followed by which P2 places another facility and this
continues for two rounds. The payoff of P2 is defined as the cardinality of
the set of points in U which are closer to a facility owned by P2 than to
every facility owned by P1. The payoff of P1 is the number of users in U
minus the payoff of P2. The objective of both the players is to maximize
their respective payoffs. In this paper we show that, P2 always gets at
least n/2 users, i.e., P2 always wins the game and the bound is tight.
We also present efficient algorithms to find the optimal strategies of the
players in both the rounds.

1 Introduction

The Voronoi game is a variant of competitive facility location problem which
deals with the favorable placement of facilities by competing market players.
Facilities and users are generally modeled as points in the plane. The set of users
(demands) is either discrete, consisting of finitely many points, or continuous,
i.e., a region where every point is considered to be a user. We assume that
the facilities are equally equipped in all respects, and a user always avails the
service from its nearest facility. Given a set of facilities F , service zone of a
facility f ∈ F , U(f, F ) is the set of points in the user space that are closer to f
than any other facility in f ′ ∈ F . The term Voronoi Game was first introduced
by Ahn et al.[1]. They have considered the game where the users are distributed
in a unit length line segment � such that each point on the line segment � is
a user and two players, Player 1(P1) and Player 2(P2) will sequentially place
a set of k facilities F and S respectively in the line segment. Payoff of P1 is
defined as ∪f∈FU(f, F ∪ S). They showed that the second player always has a
winning strategy that guarantees a payoff of 1/2 + ε, with ε ≥ 0. However, the
first player can force ε to be arbitrarily small. When the user space is a subset
of R2, the problem reduces to maximizing the area of the Voronoi regions of

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 210–220, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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the set of facilities. Dehne et al. [10] addressed the problem of finding a new
point q amidst a set of n existing points F such that the Voronoi region of q is
maximized, and studied the case when the points in F , the set of facilities are in
convex position. For the same problem, Cheong et al. [8] gave a near-linear time
algorithm that locates the new optimal point approximately, when the points in
F are in general position. Cheong et al. [9], considered the case when the user
space is a square. They proved that for any placement W of the first player,
with |W | = m, there is a placement B of the second player |B| = m such that
the payoff of the second player is at least 1/2 + α, where α > 0 is an absolute
constant andm large enough. Fekete and Meijer [11] studied the two-dimensional
one-round game played on a rectangular demand region with aspect ratio ρ. A
variation of this problem, involving maximization of the area of Voronoi regions
of a set of points placed inside a circle, has been considered by Bhattacharya et
al. [5]. The Voronoi game when the demand region is a graph is considered in
the paper by Bandyapadhyay et al.[2].

In the discrete user case, the analogous problem is to place a set of new
facilities amidst a set of existing ones such that the number of users served by
the new facilities is maximized. The problem of placing only one new facility
has been addressed by Cabello et al. [7] and is referred to as the MaxCov
problem. The 2−MaxCov problem, which considers the problem of placing two
new facilities, has been studied by Bhattacharya and Nandy [6]. Teramoto et al.
[12] studied the same problem and considered following very restricted case: the
game arena is an arbitrary graph, the first player occupies just one vertex which
is predetermined, and the second player occupies m vertices in any way. They
proved that in this strongly restricted discrete Voronoi game it is NP-hard to
decide whether the second player has a winning strategy. They also proved that
for a given graph G and the number r of rounds determining whether the first
player has a winning strategy on G is PSPACE-complete.

Banik et al. [3] studied the one-round discrete Voronoi game on R, and gave
algorithms for obtaining optimal strategies of the two players. The problem
consists of a finite user set U ⊂ R, with |U | = n, and two players Player 1 (P1)
and Player 2 (P2) each having m = O(1) facilities. At first, P1 chooses a set
F1 ⊂ R of m facilities following which P2 chooses another set F2 ⊂ R of m
facilities, disjoint from F1. The payoff of P2 is defined as the cardinality of the
set of points in U which are closer to a facility owned by P2 than to every facility
owned by P1. The payoff of P1 is the number of users in U minus the payoff
of P2. The objective of both the players is to maximize their respective payoffs.
The authors showed that if the sorted order of the points in U along the line is
known, then the optimal strategy of P2, given any placement of facilities by P1,
can be computed in O(n) time. Also, for m ≥ 2 the optimal strategy of P1 can
be computed in O(nm−λm) time, where 0 < λm < 1, is a constant depending
only on m. Note that unlike the Voronoi game on a graph, the players can choose
their facilities anywhere on the real line. Moreover, as the distances between the
facilities and users are measured in the Euclidean metric, the geometric locations
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of the users in U on the real line is crucial in the discrete Voronoi game on R.
Discrete Voronoi game in polygonal domain has been studed in [4].

In this paper, we shall study the k-round discrete Voronoi game on a line. The
game consists of a set U of n users or demands on a line � and two players P1 and
P2. Both the players will place a set of k facilities on the line � sequentially, i.e.
initially P1 will place one facility followed by which P2 will place another facility
and this will continue for k rounds. At the end of the game, given the placement of
k facilities F and S by P1 and P2 respectively we define the payoff of P1,Q1(F, S)
to be equal to | ∪f∈F U(f, F ∪ S)|. Similarly we define payoff of P2, Q2(F, S) to
be equal to |U | −Q1(F, S). Any k round game will contain 2k many moves.

For example, When k = 2, the optimal placement at fourth move, given
f1, s1, f2 is the point which minimizes Q1({f1, f2}, {s1, x}) over all x ∈ �,
and optimal placement at third move given f1, s1 is a point which maximizes
minx∈�Q1({f1, y}, {s1, x}) over all y ∈ � and so on. Observe now when k = 1,
optimal placement of P1 is at the median of the set of users U . In this paper,
we have considered the first non-trivial case when k = 2.

2 Lower Bounds

Theorem 1. In the two-round discrete Voronoi game, P2 always gets at least
n/2 users, i.e, P2 always wins and this bound is tight. Furthermore, there exists a
strategy such that P1 always gets at least n/3 users irrespective of the placement
of P2.

f1 s1

k n/2− 1 n/2− k

(a)

f1 s1

k n/2− 1 n/2− k

f2 s2

(b)

Fig. 1. Placement by P2 in different situations to ensure payoff equals to n/2

Proof. We first show that there exists a placement strategy for P2 such that
Q2(F, S) ≥ �n2 � users irrespective of the placement of P1’s facilities. Observe
that for any placement f1 by P1 either |(−∞, f1] ∩ U | ≤ n/2 or |[f1,∞) ∩ U | ≤
n/2. Without loss of generality, we assume that, |(−∞, f1] ∩ U | = k ≤ n/2.
Observe that, there exists a placement s1 by P2 such that |(f1, s1)∩U | = n/2−1
and s1 coincides with an user (see Figure 1(a)). Now for any placement f2 by
P1 either f2 ∈ (−∞, f1) or f2 ∈ (f1, s1) or f2 ∈ (s1,∞).

Case1: If f2 ∈ (−∞, f1), then for optimal placement of s2, |(f1, s2) ∩ U | = 0.
Now, since k ≤ n/2, for this case Q2(F, S) ≥ n/2 (see Figure 1(b)).

Case 2: If f2 ∈ (f1, s1), then the optimal placement of s2 by P2, will be such
that |(s2, f1)∩U | = 0 resulting in the minimum payoff of (n−|[f1, f2]∩U |) ≥
n/2 (see Figure 7(a)).
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f1 s1

k n/2− 1 n/2− k

f2s2

(a)

f1 s1

k n/2− 1 n/2− k

f2s2

(b)

Fig. 2. Placement by P2 in different situations to ensure payoff equals to n/2

Case 3: If f2 ∈ (s1,∞), then the optimal placement of s2 by P2 will be such
that |(f1, s2) ∩ U | = 0. So, here Q2(F, S) ≥ n/2 (see Figure 7(b)).

So, P2 always get n/2 number of users. Now, our claim is, if the users in the set
U are uniformly distributed along line �, there exists a strategy by P1 for which
P2 cannot get more than n/2 users. P1 places f1 such that |(−∞, f1]∩U | = n/4.
Now if s1 places such that |[f1, s1]∩U | < n/2, f2 can place in (s1,∞) such that
|[f2,∞)∩U | = n/4. Then it can be checked that even for the optimal placement
of s2, P2 gets less than n/2 users. If |[f1, s1] ∩ U | > n/2, f2 places in (f1, s1)
such that |[f2,∞) ∩ U | = n/4. It can be verified that, in that case P2 gets less
than n/2 users. And for |[f1, s1] ∩ U | = n/2, for any placement of f2, if s2 is
placed optimally, P2 gets n/2 users. So, for all the cases, P2 cannot get more
than n/2 users.

Now we will prove the second part of the theorem. Note that if |(−∞, f1]∩U | =
n/3 and |(−∞, s1] ∩ U | 
= 2n/3 then f2 must place such that |(−∞, f2] ∩ U | =
2n/3. On the other hand if |(−∞, s1] ∩ U | = 2n/3, then f2 places such that
|(s1, f2) ∩ U | = 0, i.e., on the (2n/3 + 1)th user. Now, it can be easily observed
that f1 and f2 divides l in three intervals each of which has length of either n/3
or (n/3−1). P2 can take the users of at most two intervals by placing 2 facilities.
All the users of one of these 3 intervals will always belong to P1. So, following
this strategy P1 will always get at least n/3 users. �

3 Optimal Strategies of P1 and P2 While Placing Second
Facilities

In this section, given two placement of facilities f1 and s1 placed by P1 and P2 re-
spectively, we will provide an strategy to find the optimal placements by P1 and
P2 while placing their second facilities. Initially we will find an optimal placement
for P2 given the placement of facilities {f1, f2} by P1 and {s1} by P2. That is we
want to find an placement which maximizes Q2({f1, f2}, {s1, x}) over all place-
ment of facility x by P2. Next we will move dipper into the game and given two
placement of facilities f1 and s1 by P1 and P2 we will find a point which minimizes
maxx∈� Q2({f1, y}, {s1, x}) over all placement of facility y by P1.

Let us begin our discussion with some general results about discrete Voronoi
game in a line segment most of which we have borrowed from [3]. Any set of
facilities placed by two players divides � into a set of line segments. Placement
of a new facility in one of such intervals does not affect the users in the other
intervals. Now end point of each such intervals may be of three types, bounded
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by two facilities placed by the same player, bounded by two facilities placed by
different players or bounded by one facility. Observe that in later two types of
intervals by placing one facility any player can serve all the users in that interval.
For the other type of interval let us define a notation cov(x, y)(cover) which will
be useful throughout the paper.

Definition 1. For two facilities fa and fb, by P1 (resp. P2) such that there is
no facility in the interval [fa, fb], cov([fa, fb]) is the maximum number of users
that can be served by a single facility placed by P2 (resp. P1).

Next observation is a direct consequence of the paper [3].

Observation 1. Given the placement of facilities f1 and f2 such that s1 /∈
[f1, f2], maximum number of facilities that P2 can serve by placing one facility
in the interval [f1, f2] can be obtained in O(n) time.

Now we have the following lemma.

Lemma 1. The optimal strategy for placing s2 by P2 can be obtained in O(n)
time.

Proof. The optimal placement of s2 in the intervals (−∞, f1) and (f1, s1) or
(f2, s1) or (s1, f2) can be found in O(1) time. From Observation 1, the optimal
placement of s2 in the interval (f1, f2) or (f2, f1) can be obtained in O(n) time.
Hence the result follows. �

Next we will provide an algorithm to find the optimal placement by P1, while
placing the second facility given the placement of facilities f1 and s1 by P1 and
P2 respectively. But before that that consider the following definitions.

Definition 2. For some positive integer k and x ∈ �, gx(k) ∈ � is the maximum
point such that cov([x, gx(k)]) = k if such a point exists. We also define, hx(k)
to be minimum point such that cov([hx(k), x]) = k.

For each user ui ∈ U , consider the set of points

Di = {x : x = s1 ± 2|s1 − ui|}

Let D = ∪i≤i≤nDi. Now consider the following lemma.

Lemma 2. One of the optimal placements by P1 belongs to U ∪D while placing
the second facility.

Proof. For any interval [a, b] on � we will denote the users in the interval [a, b]
by U [a, b]. Observe that there may be two cases, either f1 < s1 or vice verse.
We will assume that f1 < s1 the other case can be dealt similarly. Let f2 be any
optimal placement by P1 which does not coincides with any point on U ∪ D.
Now f2 can belong to one of the three intervals, [−∞, f1], [f1, s1] or [s1,∞]. In
this paper we will only prove the case when f2 ∈ [f1, s1]. The other two cases
can be proved similarly. Let p < f2 be the point closest to f2 in the set of points
U ∪D. Now observe for the placement of facility f2 payoff of P1 is equals to

{|U [−∞, f2]+U [f2, (f2 + s1)/2|}−{max(|U [−∞, f1]|, cov(f1, f2), |U [f2, (f2 + s1)/2]|)}
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f1 s1f2
p (f2 + s1)/2

(p + s1)/2

Fig. 3. Illustration of Lemma 2

Observe now cov(f1, f2) < cov(f1, p) and U [f2, (f2 + s1)/2 = U [p, (p + s1)/2
because [(f2+s1)/2, (p+s1)/2] does not contain any user as p < f2 be the point
closest to f2 in the set of points U ∪D. therefore payoff of P1 when places second
facility at f2 is less than equals to the payoff of P1 when places second facility
at p. Hence the result holds.

Observe that cardinality of U ∪D is O(n). Hence by checking each point we can
find out the optimal placement by P1 while placing the first facility. Hence we
have the following theorem.

Theorem 2. The optimal strategy of P1 while placing the first facility can be
found in O(n2) time.

4 Optimal Strategy of P2 While Placing the First Facility

In this section we will provide a strategy to find an optimal placement by P2
while placing the first facility, that is, given a placement of facility f1 by P1, we
want to find a point which maximizes miny∈�maxx∈�Q2({f1, y}, {z, x}) over all
point z ∈ �.

Now P2 can place its first facility either in (−∞, f1) or (f1,∞). Here, we
provide an algorithm where P2 is restricted to place its first facility, s1 in the
interval (f1,∞). Other case can be dealt similarly. Given f1, for any point s1 ∈ �
let us define

f1 s1

ψ1 ψ2 ψ3

Fig. 4. Domain of three functions ψ1, ψ2 and ψ3

ψ(s1) = min
f2∈�

max
s2∈�

Q2({f1, f2}, {s1, s2})

Given f1 and s1 P1 can place it’s second facility in one of the three intervals
[−∞, f1], [f1, s1] or [s1,∞]. Given two placement of facilities {x, z} by P1 and
{y} by P2 denote maxp∈� Q2({x, y}, {z, p} by Q(x, y, z). Hence we have,

ψ(s1) = min [( min
f2∈[−∞,f1]

Q(f1, s1, f2)), ( min
f2∈[f1,s1]

Q(f1, s1, f2)), ( min
f2∈[s1,∞]

Q(f1, s1, f2))]
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Now we can write,

ψ(s1) = min(ψ1(s1), ψ2(s1), ψ3(s1))

where ψ1(s1) = minf2∈[−∞,f1] Q(f1, s1, f2)), ψ2(z) = minf2∈[f1,s1] Q(f1, s1, f2)
and ψ3(z) = minf2∈[s1,∞]Q(f1, s1, f2)).

In other words ψ1(s1), ψ2(s1) and ψ3(s1) denotes, when first facility of P2,
s1 moves along the line � how the payoff of P2 changes when P1 is restricted
to place it’s second facility at intervals [−∞, f1], [f1, s1] and [s1,∞] respectively.
Observe that ψ, ψ1, ψ2 and ψ3 can take n+ 1 many discrete values, {0, 1 . . . n}.
Hence there are a certain set of points in � in which each of ψ1, ψ2, ψ3 jumps
from one value to another. By calculating the payoff at each such point we can
find out the optimal placement of first facility by P2. We call such points as
event points.

�f1

Z

ψ1

ψ3

ψ2

Fig. 5. ψ1, ψ2, ψ3

Lemma 3. There are O(n) number of event points in ψ1 which can be computed
in O(n) time.

Proof. The set of points where ψ1(s1) changes can be defined by the set A2∪B2,
where

A2 = {a|a = f1 + 2|u− f1|, u ∈ [f1,∞) ∩ U}
B2 = {u|u ∈ (f1,∞) ∩ U}

The points of set A2 are the points where if s1 is placed, (f1 + s1)/2 is on a
user. So, at this position of s1, |[f1, (f1 + s1)/2]∩U | changes, i.e., ψ1(s1) = n−
(|[s1,∞]∩U |+max(δ, |[f1, (f1+s1)/2)∩U |]) changes, where δ = max(|[−∞, f2]∩
U |, cov([f2, f1])). The points of B2 are the points where s1 is on a user. So,
|[s1,∞)∩U | changes and thus ψ1(s1) also changes. It is easy to observe that the
points of set A2 and B2 can be found in O(n) time. �

Lemma 4. There are O(n2) number of event points in ψ2 which can be computed
in O(n2) time.
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Proof. We know that, if gf1(α) < s1 the set of points which can be considered as
candidates for optimal placement of f2 can be expressed as [From Lemma 3.4.]:

C = {x|x = gf1(i) ∧ x ≤ s1, i ≥ α}

Now for f2 ∈ C, when |[(f2 + s1)/2, s1] ∩U | changes, i.e. when (f2 + s1)/2 ∈ U ,
ψ2 changes. So, the set of points at which ψ2 changes, i.e. the set of event points,
can be expressed as:

A1 = {a|a = u+ |u− x|, x ∈ C, u ∈ [x, s1] ∩ U}

Now, the points in set C can be found in O(n2) time. There are O(n) points in
C. It is easy to observe that, for each point in C, there are O(n) points in set
A1, which can be computed in O(n) time. So, all the points in set A1 can be
found in O(n2) time. If gf1(α) > s1, it can be easily observed the set of users
U is the set of event points. So, all the event points can be computed in O(n2)
time. �

Lemma 5. There are O(n2) number of event points in ψ3 which can be computed
in O(n2) time.

Proof. Say, for some placement of s1 at a point x ∈ (f1,∞) when f2 ∈ (s1,∞),
y > x is the minimum point such that ψ3(y) 
= ψ3(x). Then, either (f1+y)/2 ∈ U
or (y + f2)/2 ∈ U . We also know that for the optimal placement of f2, f2 ∈ U .
So, the set of positions of s1, where ψ3 changes can be defined by A3∪B3 where,
A3 = {a|a = f1+2|u−f1|, u ∈ [f1,∞)∩U} and B3 = {b|b = ui−|uj−ui|, ui, uj ∈
[f1,∞) ∩ U, ui < uj∀i, j < n} The points in set A3 are the points where if s1
is placed, (f1 + s1)/2 is on a user. We know from Lemma 3.5., f2 ∈ U when
f2 ∈ (s1,∞). The set B3 represents the set of points where if s1 is placed, for
a placement of f2 on user, (s1 + f2)/2 is on user. The points of set A3 can be
found in O(n) time and the points of set B3 can be found in O(n2) time. �

Theorem 3. The optimal placement of the first facility of P2, s1 can be found
in O(n2) time.

Proof. We know from Lemma 3, Lemma 4 and Lemma 5 we know that the event
points in ψ1, ψ2, ψ3 can be found in O(n), O(n2) and O(n2) time respectively.
Each of ψ1, ψ2, ψ3 either increases or decreases by unit amount at their event
points. So, the values of ψ1, ψ2 and ψ3 at the event points can also be found in
O(n), O(n2) and O(n2) time respectively by a linear scan of the event points.
Having the sorted order of the event points of ψ1, ψ2, ψ3 and knowing the values
of ψ1, ψ2, ψ3 at those points, the upper envelope, the minimum of the upper
envelope of ψ1, ψ2, ψ3 and the payoff of P1 at that point can be found in O(n2)
time. �

5 Optimal Strategy of P1 While Placing the First Facility

The optimal placement of the first facility by P1 should minimize the maximum
payoff of P2 considering s1, s2 and f2 will be placed at optimal position in the
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next rounds. f1, s1, f2, s2 can permute on real line � in 24 ways. For each of
these cases, for any placement of first facility of P1, x ∈ � we define a function
ηi(x) (∀i, 1 ≤ i ≤ 24) to be the minimum number of users that P1 can occupy
for permutation i. Now observe that the maxima of the lower envelope of the
functions ηi, ∀i, 1 ≤ i ≤ 24, corresponds to an optimal placement of f1 .

We observe that ηi(1 ≤ i ≤ 24) can take at most n+1 many discrete values(0
to n). Hence there are a certain set of points in � in which each of ηi jumps from
one value to another. We call these points event points. Observe that, there
exists an optimal placement of f1 by P1 coincides with one of the event points.
In this section we will prove that the number of event points are polynomial
in the input size and we can find out the set of all event points in polynomial
time. Finally we will show that by computing the payoff of P1 at each event
point, we can find out an optimal placement of f1 by P1 in polynomial time.
The set of arrangements for which s1 ∈ (f1,∞) is symmetrically opposite to the
set of permutations for which s1 ∈ (−∞, f1). Hence, it is enough to show that
the functions corresponding to the permutations for which s1 ∈ (f1,∞) contain
polynomial many event points. The other case follows from symmetry.

In this paper, we will find out the set of event points, assuming that P2 will
place its first facility in the interval (f1,∞). The set of event points when P2
is restricted to place its first facility in the interval (−∞, f1) can be computed
similarly.

Lemma 6. If f2 is restricted to place in (−∞, f1) and s1 ∈ (f1,∞), there exists
an optimal placement of s1 which coincides with a user.

Proof. We assume, there exists an optimal placement x of s1 in (f1,∞) such that
x /∈ U and x ∈ (ui, uj) where ui, uj ∈ U and there is no user in (ui, uj). Now if s1
places at ui instead of x, number of users in (s1,∞) reamins same, (f1 + s1)/2
moves left, number of users in [(f1 + s1)/2, s1] may increase, which may lead
to f2 placing in (f1, s1). In that case, |[(f1 + x)/2, x] ∩ U | < max(|[f2, f1] ∩
U |, |(−∞, f2]∩U |) < |[(f1 + ui)/2, ui]∩U |. But, it is to observe that even when
s1 is placed at x the users in [(f1 + ui)/2, (f1 + x)/2] were acquired by P1, so
number of user P2 occupies when placed at ui is not less than the number of
userss it occupies when placed at x. So, s1 is placed on one of the users. �

Theorem 4. There exists an optimal placement f ′
1 by P1 such that f ′

1 ∈ Γ
where Γ = {a|a = ui ± 2|uj − uk|∀ui, uj, uk ∈ U, j 
= k ∨ a ∈ U}.

Proof. Considering s1 ∈ (f1,∞), there are 12 ways to arrange f1, s1, f2, s2 on
�. We will find out the set of event points for each of these 12 cases separately.
Among these 12 cases, there are 2 cases which never occur. It can be easily
observed that s2 never places in (s1,∞). So there is no need to consider the
cases f1 < f2 < s1 < s2 and f2 < f1 < s1 < s2. Among the other cases we will
present 3 cases, and omit the details of other cases for space restriction.

Case 1: f2 < s2 < f1 < s1
It is to observe that in this case payoff of P1 changes when either of cov([f2, f1])
and |[f1, (f1 + s1)/2]∩U | changes. We can observe that when (f1 + s1)/2 is
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f1 s1f2

s2

Fig. 6. f2 < s2 < f1 < s1 (Case 1)

on a user, |[f1, (f1 + s1)/2] ∩ U | changes. Also s1 is on a user from Lemma
5.1. So, the positions of f1 for which |[f1, (f1 + s1)/2] ∩ U | changes can be
expressed by the following set:

A1 = {a|a = uk − 2|uj − uk|, uj, uk ∈ U, uj < uk}

Also we know that for each possible value of cov([f2, f1]), there is an interval
[uk, ul], uk, ul ∈ U such that there are cov([f2, f1]) users in the interval
[uk, ul]. Also, f2 is on a user from Lemma 3.2.. So, considering each possible
of placement of f2 on user and all pair of users uk, ul, we get the set of event
points that can be expressed as:

A2 = {b|b = uk + 2|ui − uj |, uk, ui, uj ∈ U, i 
= j 
= k, 1 ≤ i, j, k ≤ n}

We can observe that A1 ∪ A2 ⊂ Γ .
Case 2: f1 < s1 < f2 < s2

From Lemma 3.5., f2 is placed on a user. Now, it is to observe that irrespec-
tive of the interval where s2 places in, there is an interval [ui, uj] ( where
ui, uj ∈ U∩[f1, f2]) such that all the users in the interval [ui, uj ] are captured
by s1. So, if we consider all possible ui, uj pairs and all possible placements
of f2, we have a a set of breakpoints that can be expressed as

A3 = {b|b = uk − 2|ui − uj |, uk, ui, uj ∈ U, i 
= j 
= k, 1 ≤ i, j, k ≤ n}

It is evident that A3 ⊂ Γ .

f1

s1

f2

s2

(a)

s1f1

f2

s2

(b)

Fig. 7. (a)Case 2 (b)Case 3

Case 3: f1 < s2 < f2 < s1
Now for some placement of s2 ∈ [f1, f2], s2 occupies the users of an interval
[ui, uj ] for some ui, uj ∈ U where |f1 − f2| = 2|ui− uj |. We imagine that an
interval [f1, f2] of length 2|ui−uj| is moving left to right along �. When f2 is
on uj, [ui, uj ] becomes a subinterval of [f1, f2] for the first time and thus the
payoff of P1 changes. Again as the interval [f1, f2] moves, when f2 crosses
any user, payoff of P1 changes again. Now, when f1 is on uj the interval
[ui, uj ] is no longer a subinterval of [f1, f2] and the number of users s2 can
occupy from the interval [f1, f2] changes. Now, if we consider all such user
pairs ui, uj, we get the set of breakpoints which can be expressed as:

A4 = U ∪ {b|b = uk − 2|ui − uj |, uk, ui, uj ∈ U, ui < uj , i �= j �= k, 1 ≤ i, j, k ≤ n}
Clearly, A4 ⊂ Γ .
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Clearly, for the above cases, one of the event points in Γ is an optimal placement
of f1. For the remaining other cases also, it can be shown that one of the event
points in Γ is an optimal placement of f1. �

The points of the set Γ can be found in O(n3) time. For each event point in Γ ,
optimal strategy of s1 and the corresponding payoff of P1, considering f2 and
s2 will place optimally in the next round can be computed in O(n2) time by
Theorem 5.1. So, maxima of lower envelope of ηi ∀i such that 1 ≤ i ≤ 24 can be
found in O(n5) time, which corresponds to an optimal placement of f1. So we
can conclude the following theorem:

Theorem 5. The optimal placement of the first facility of P1, f1 can be found
in O(n5) time.
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Inverse Maximum Flow Problems

under the Combining Norms
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Abstract. Given a network N(V, A, c) and a feasible flow x0, an in-
verse maximum flow problem is to modify the capacity vector as little
as possible to make x0 form a maximum flow of the network. The mod-
ification can be measured by different norms. In this paper, we consider
the inverse maximum flow problems under the combining norms, i.e.,
the modification cost is fixed in a given interval, and is depended on the
modification out of the given interval. For both sum-type and bottleneck-
type cases, we present their respective combinatorial algorithms that all
run in strongly polynomial times.

Keywords: Maximum flow, Inverse problem, Combining norms, Strongly
polynomial algorithm.

1 Introduction

Let N(V,A, c) be a connected and directed network, where V = {1, 2, . . . , n} is
the node set, A is the arc set (|A| = m) and c is the capacity vector for arcs.
Each component cij of c is called the capacity of arc (i, j). There are two special
nodes in V : the source node s and the sink node t. An (s, t)-flow or simply flow
is a function f : A→ R|A| satisfying the capacity constraints

0 ≤ fij ≤ cij for each (i, j) ∈ A,

and the flow conservation constraints

∑
j

fij −
∑
j

fji =

⎧⎨⎩v(f), i = s,
−v(f), i = t,
0, other i,

where v(f) is the value of flow f from s to t. The maximum flow problem is
to find a flow with the maximum flow value. It is a classical network optimiza-
tion problem that has many applications. It is well known that maximum flow
problem can be solved in strongly polynomial time.

� This research is supported by the National Natural Science Foundation of China
(Grant No. 11001232), Fujian Provincial Natural Science Foundation of China
(Grant No. 2012J01021) and Fundamental Research Funds for the Central Uni-
versities (Grant No. 2010121004).

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 221–230, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



222 L. Liu

Conversely, an inverse maximum flow problem is to modify the arc capacity
vector as little as possible such that a given flow can form a maximum flow.
Without loss of generality, an inverse maximum flow problem can be stated as
follows:

minC(d − c)
s.t. Flow f0 is a maximum flow of N(V,A, d).

(1)

Where f0 is a given feasible flow in the network N(V,A, c), and C(d − c) is a
(weighted) deviation of vector d from vector c, or the cost of changing c into d.
[9] showed that the inverse maximum flow problem under l1 norm is strongly
polynomial time solvable, where the modification cost is measured by l1 norm.
For the inverse maximum flow problems under the weighted Hamming distance,
[7] presented strongly polynomial algorithms for both sum-type and bottleneck-
type cases. In this paper, we consider the inverse maximum flow problem under
the combining norms, in which we measure the modification cost by the combin-
ing norms, i.e., the modification cost is fixed in a given interval, and is depended
on the modification out of the given interval. We focus on two models.

Let each arc (i, j) have an associated capacity modification cost such that: if
the new capacity dij is in a given interval [pij , qij ], i.e., pij ≤ dij 
= cij ≤ qij ,
then the modification cost is fixed, say as wij . Otherwise, the modification cost is
linearly depended on the modification, i.e., if dij < pij , then the modification cost
is wij+kij ·(pij−dij), if dij > qij , then the modification cost is wij+kij ·(dij−qij).
Let f0 be a given feasible flow in the network N(V,A, c). Then for the inverse
maximum flow problem under the sum-type combining norms, we look for an
arc capacity vector d such that

(a) f0 is a maximum flow of network N(V,A, d);
(b) for each (i, j) ∈ A, −lij ≤ dij−cij ≤ uij , where lij , uij ≥ 0 are respectively

given bounds for decreasing and increasing capacity cij ;
(c) the total modification cost for changing capacities of all arcs, i.e.,∑

(i,j)∈A

{wijH(cij , dij) + kij · max{pij − dij , 0, dij − qij}}, is minimized, where

H(cij , dij) is the Hamming distance between cij and dij , i.e., H(cij , dij) = 0 if
cij = dij and 1 otherwise.

For the inverse maximum flow problem under the bottleneck-type combining
norms, we look for an arc capacity vector d such that, under the constraints (a)
and (b),

(c′) the maximummodification cost among all arcs, i.e., max
(i,j)∈A

{wijH(cij , dij)+

kij ·max{pij − dij , 0, dij − qij}}, is minimized.
In general, in an inverse combinatorial optimization problem, a feasible solu-

tion is given which is not optimal under the current parameter values, and it is
required to modify some parameters with minimum modification cost such that
the given feasible solution becomes an optimal solution. A lot of such problems
have been well studied when the modification cost is measured by (weighted)
l1, l2, l∞ norms and Hamming distance. Some examples are the inverse shortest
path problem [2] [11], the inverse minimum spanning tree problem [10] [3] [5],
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the inverse minimum cut problem [9] [6] and so on. For more detail, readers may
refer to the survey paper [4] and papers cited therein.

The problems considered in our paper has so far not been treated in litera-
ture, but seems to have some potential applications in real world. For example,
in practice, we often wish to reduce the traveling time (or increase the runoff)
through a road by widening the road. At the beginning of the project, we should
make some design for the project and buy some mechanical equipment. Those
costs are fixed for the project. As the project progresses, the new costs are depend
on the modification. Another example, with the development of the computer
network, users’ demand on the network changes persistently. More kinds of in-
formation transmitted and higher quality of services (Qos) provided are greatly
required. To meet those requirements, we need to modify the exist network. At
the beginning, we should buy some high-performance server, which can be seen
as fixed cost. And during modify the network, the new costs may depend on the
modification. So it is meaningful to consider the inverse optimization problems
under the combining norms.

The remainder of the paper is organized as follows. Section 2 considers the
inverse maximum flow problem under the sum-type combining norms. Sections 3
considers the inverse maximum flow problem under the bottleneck-type combin-
ing norms. We show that all these problems can be solved by strongly polynomial
algorithms. Some final remarks are made in Section 4.

2 Inverse Maximum Flow Problem under the Sum-Type
Combining Norms

Let X and X = V \X be a partition of all vertices such that s ∈ X and t ∈ X .
An s− t cut, denoted by {X,X}, is the set of arcs with one endpoint in X and
another endpoint in X. We further use (X,X) to express the set of forward arcs
from a vertex in X to a vertex in X and use (X,X) to express the set of all
backward arcs in the s− t cut. As we know the capacity of the s− t cut {X,X},
denoted by C({X,X}), is the sum of the capacities of all forward arcs:

C({X,X}) =
∑

(i,j)∈(X,X)

cij .

The following result is well known.

Lemma 1. [1] A feasible flow f of the network N(V,A, c) is the maximum flow
if and only if the value of flow f equals the capacity of an s − t cut {X,X} of
the network, i.e., there exists an s− t cut {X,X} such that

v(f) = C({X,X}).

In such case it must be true that

fij = cij , if (i, j) ∈ (X,X),

fji = 0, if (j, i) ∈ (X,X).
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The general inverse maximum flow problem under the sum-type combining
norms can be formulated as follows.

min
∑

(i,j)∈A

{wijH(cij , dij) + kij ·max{pij − dij , 0, dij − qij}}

s.t. Flow f0 is a maximum flow of N(V,A, d);
−lij ≤ dij − cij ≤ uij , for each (i, j) ∈ A.

(2)

Note that in order to make the above problem and other inverse problems dis-
cussed in this paper well-posed, we always assume that there exists no directed
t − s path over which every arc (k, l) has a positive flow f0

kl. In fact if this as-
sumption does not hold, then no matter how to adjust the capacity vector c,
in every s − t cut {X,X}, there would be a backward arc (j, i) ∈ (X,X) with
f0
ji > 0, and by Lemma 1, it is impossible to let f0 become a maximum flow.

Lemma 2. If problem (2) has a feasible solution, then there exists an optimal
solution d∗ such that d∗ij ≤ cij for all (i, j) ∈ A.

Proof. Let d∗ be an optimal solution of problem (2), then f0 is the maximum flow
of the networkN(V,A, d∗). From Lemma 1, we know that there is a minimum s−t
cut {X,X} of network N(V,A, d∗) such that for each forward arc (i, j) ∈ (X,X),
f0
ij = d∗ij . Now if there exists an arc (x, y) ∈ A with d∗xy > cxy, then of course

(x, y) /∈ (X,X), for otherwise we would have f0
xy > cxy which violates the

feasibility of f0. Define d as

dij =

{
cij , if (i, j) = (x, y),
d∗ij , otherwise.

Because (x, y) /∈ (X,X), in this s − t cut {X,X}, the capacity of d and the
value of flow f0 are still equal, which means that in the network N(V,A, d),
{X,X} is still a minimum s − t cut and f0 is still a maximum flow. From
−lij ≤ d∗ij − cij ≤ uij for each (i, j) ∈ A and the definition of d, we know that

−lij ≤ dij − cij ≤ uij for each (i, j) ∈ A. So d is a feasible solution of problem
(2). However, we have∑

(i,j)∈A

{wijH(cij , d
∗
ij) + kij ·max{pij − d∗ij , 0, d

∗
ij − qij}}

−
∑

(i,j)∈A

{wijH(cij , dij) + kij ·max{pij − dij , 0, dij − qij}}

= wxy + kxy ·max{0, d∗xy − qxy} ≥ 0.
If wxy + kxy · max{0, d∗xy − qxy} > 0, then d∗ cannot be an optimal solution

of problem (2), a contradiction. Otherwise, d is another optimal solution of
problem (2), but it satisfies dxy = cxy. Hence, by repeating the above argument,
we can conclude that there exists an optimal solution d∗ of problem (2) such
that d∗ij ≤ cij for all (i, j) ∈ A, i.e., d∗ ≤ c. �
According to Lemma 2, no arc needs to increase its capacity in order to make
f0 form a maximum flow. Hence, the second group of constraints in problem (2)
(and also in other inverse problems discussed in this paper) can be changed to

−lij ≤ dij − cij ≤ 0, for each (i, j) ∈ A.
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That is to say, all bounds uij for increasing capacities are immaterial. So in this
paper, without loss of generality, we only need to introduce lij , and assume they
are all nonnegative and finite.

For the network N(V,A, c) and the flow f0, we can construct its residual
network N

′
(V,A(c), c

′
) by the following algorithm which is introduced in [1].

Algorithm 1
Step 1. The node set is still V .
Step 2. If (i, j) ∈ A and f0

ij < cij , then (i, j) ∈ A(c) and c
′

ij = cij − f0
ij .

Step 3. If (i, j) ∈ A and f0
ij > 0, then (j, i) ∈ A(c) and c

′

ji = f0
ij .

We denote the arc set created by Steps 2 and 3 as A(c)1 and A(c)2, respec-
tively.

And hence we have the following lemma.

Lemma 3. Flow f0 is a maximum flow of the network N(V,A, c) if and only if
its residual network N

′
(V,A(c), c

′
) has a maximum flow with value 0.

In the following, for each arc set Γ we define ws(Γ ) =
∑

(i,j)∈Γ

wij , w
b(Γ ) =

max
(i,j)∈Γ

wij and use similar notation for other vector (here letters s and b stand

for ‘sum’ and ‘bottleneck’, respectively).
Due to Lemma 2, problem (2) can be formulated as follows:

min
∑

(i,j)∈A

{wijH(cij , dij) + kij ·max{pij − dij , 0}}

s.t. Flow f0 is a maximum flow of N(V,A, d);
−lij ≤ dij − cij ≤ 0, for each (i, j) ∈ A.

(3)

Lemma 4. If problem (3) is feasible, then there exists an optimal solution d∗

such that if d∗ij 
= cij , then d∗ij = f0
ij and hence −lij ≤ f0

ij − cij .

Proof. If problem (3) is feasible, it must have an optimal solution. We first show
that there exists an optimal solution d∗ of problem (3) such that

d∗ij = f0
ij , if d∗ij 
= cij . (4)

In fact if we have an optimal solution d which does not satisfy (4), i.e., if there
exists an arc (x, y) ∈ A such that f0

xy < dxy < cxy, and we can define d∗ as

d∗ij =

{
cij , if (i, j) = (x, y),
dij , otherwise,

and by an argument similar to the proof of Lemma 2, we can prove that d∗ is
again an optimal solution of (3), but now d∗xy = cxy and hence the arc (x, y) no
longer violates the requirement (4). In other words the number of arcs violating
the requirement is reduced by 1. By repeating the process if necessary, finally
we obtain an optimal solution d∗ of problem (3) that meets (4).

Next, we show that the optimal solution d∗ of problem (3) satisfies

−lij ≤ f0
ij − cij , if d∗ij 
= cij .
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In fact, if there are some arcs (i, j) satisfy −lij > f0
ij − cij , i.e., f

0
ij < cij − lij .

Then, no matter how to adjust the capacity cij , we have d
∗
ij ≥ cij− lij > f0

ij due
to the second constraint of the problem (3). But the above analysis shows that
if d∗ij 
= cij then d∗ij = f0

ij , hence we need do nothing for those arcs. The lemma
follows. �

Before going to present an algorithm to solve the problem (3) in strongly poly-
nomial time, let us first explain the main motivations of the algorithm:

1. If the given flow f0 is a maximum flow of the network N(V,A, c), then we
have nothing to do. Otherwise, we have v(f∗) > 0 due to the Lemma 3, where
the f∗ is a maximum flow of the residual network N ′(V,A(c), c′) respect to
N(V,A, c) and f0. Hence, we must to modify the capacity of the network
N(V,A, c) as little as possible such that the corresponding residual network
N ′(V,A(c), c′) has a maximum flow with value 0.

2. Denote M = {(i, j) ∈ A | − lij ≤ f0
ij − cij < 0}. Then we have nothing to

do for the arcs (i, j) ∈ A \M due to Lemma 4. And if we modify an arc
(i, j) ∈M , we set d∗ij = f0

ij , hence the associate modification cost of the arc

(i, j) is wij = wij + kij ·max{pij − f0
ij , 0}.

3. If we investigate the effects of changing the capacities of arcs in the ini-
tial network N(V,A, c) onto the residual network N ′(V,A(c), c′), we observe
that an existing arc can be deleted form N ′(V,A(c), c′) since we decreas the
capacity cij to f0

ij for the arcs in M .

Combining the above analysis, we have the following result.

Theorem 1. The problem (3) is equivalent to the following problem.

minws(X,X)

s.t. (X,X) ⊆ A(c)1;

{X,X} is an s− t cut of N
′
(V,A(c), c

′
);

cij − lij ≤ f0
ij , for each (i, j) ∈ (X,X).

(5)

Therefore, finding an optimal solution of problem (3) is equivalent to finding
an optimal solution of problem (5). To solve problem (5) in strongly polynomial
time, we further modify the residual networkN

′
(V,A(c), c

′
) toN

′′
(V,A(c), c

′′
) in

the following way: the node set and the arc set are unchanged; and the capacity
of each arc is set as

c
′′

ij =

{
wij , if (i, j) ∈ A(c)1 and cij − lij ≤ f0

ij ,

(n
2

4 + 1)L, otherwise,
(6)

where L is an upper bound for all wij .

Theorem 2. Let {X∗, X∗} be a minimum s−t cut of the network N ′′
(V,A(c), c

′′
)

with a capacity c
′′s(X∗, X∗).

(1) If c
′′s(X∗, X∗) ≤ n2

4 L, then (X∗, X∗) must be the optimal solution of
problem (5).

(2) If c
′′s(X∗, X∗) > n2

4 L, then problem (5) has no feasible solution.
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Proof. (1) First, if c
′′s(X∗, X∗) ≤ n2

4 L, then c
′′

ij = wij for all (i, j) ∈ (X∗, X∗),

i.e., for each (i, j) ∈ (X∗, X∗), (i, j) ∈ A(c)1 and cij − lij ≤ f0
ij . Second, as

N
′
(V,A(c), c

′
) and N

′′
(V,A(c), c

′′
) have the same node set and arc set, (X∗, X∗)

is also an s−t cut ofN
′
(V,A(c), c

′
). So, (X∗, X∗) is a feasible solution of problem

(5).
Moreover, it is easy to see that {X∗, X∗} is an optimal solution of problem

(5). If not, suppose there exists an s− t cut {X,X} which is feasible to problem
(5), and ws(X,X) < ws(X∗, X∗). Then from (6), we have

c
′′s(X,X) =

∑
(i,j)∈(X,X)

c
′′

ij = ws(X,X)

< ws(X∗, X∗) =
∑

(i,j)∈(X∗,X∗)

c
′′

ij = c
′′s(X∗, X∗),

which contradicts the fact that {X∗, X∗} is a minimum s−t cut ofN ′′
(V,A(c), c

′′
).

(2) Suppose that c
′′s(X∗, X∗) > n2

4 L but problem (5) has a feasible solution

{X,X}. From (6), we know that c
′′

ij = wij ≤ L for all (i, j) ∈ (X,X). It im-

plies that the capacity of {X,X} satisfies c
′′s(X,X) ≤ n2

4 L (as the cardinality

|(X,X)| ≤ n2

4 ), which contradicts the fact that {X∗, X∗} is the minimum s− t

cut of the network N
′′
(V,A(c), c

′′
). �

Now we are ready to give a full description of an algorithm to solve problem (3).
Algorithm 2
Step 1 For the network N(V,A, c) and the given flow f0, construct its resid-

ual network N
′
(V,A(c), c

′
), and then modify it to N

′′
(V,A(c), c

′′
) according to

formula (6).
Step 2 Find a minimum s− t cut {X∗, X∗} of the network N

′′
(V,A(c), c

′′
).

If the capacity of the minimum cut satisfies c
′′s(X∗, X∗) > n2

4 L, then problem
(3) has no feasible solution, stop. Otherwise, go to Step 3.

Step 3 Output an optimal solution d∗ of problem (3) as

d∗ij =

{
f0
ij , if (i, j) ∈ (X∗, X∗),
cij , otherwise,

and the associated optimal value ws(X∗, X∗).
It is clear that Step 1 takes O(m) time. Step 2 to find a minimum s − t

cut {X∗, X∗} of the network N
′′
(V,A(c), c

′′
) takes O(n3) time [1]. Hence, Algo-

rithm 2 runs in O(m + n3) = O(n3) time in the worst-case, and it is a strongly
polynomial algorithm.

3 Inverse Maximum Flow Problem under the
Bottleneck-Type Combining Norms

The problem considered in this section is the inverse maximum flow problem
under the bottleneck-type combining norms which can be formulated as follows:
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min max
(i,j)∈A

{wijH(cij , dij) + kij ·max{pij − dij , 0}}

s.t. Flow f0 is a maximum flow of N(V,A, d);
−lij ≤ dij − cij ≤ 0, for each (i, j) ∈ A.

(7)

Note that problems (3) and (7) have the same feasible region, hence by a similar
argument as in Lemma 2 we can obtain the following result.

Lemma 5. If problem (7) is feasible, then there exists an optimal solution d∗

such that if d∗ij 
= cij , then d∗ij = f0
ij and hence cij − lij ≤ f0

ij.

By an argument similar to the Section 2, we have the following result.

Theorem 3. The problem (7) is equivalent to the following problem.

minwb(X,X)
s.t. (X,X) ⊆ A(c)1;

{X,X} is an s− t cut of N
′
(V,A(c), c

′
);

cij − lij ≤ f0
ij , for each (i, j) ∈ (X,X),

(8)

where N
′
(V,A(c), c

′
) is the residual network corresponding to N(V,A, c) and f0,

wij = wij + kij ·max{pij − f0
ij , 0}.

According to the above theorem, it suffices to find an optimal solution of problem
(8). To solve problem (8) in strongly polynomial time, we again modify the
residual network N

′
(V,A(c), c

′
) to N

′′
(V,A(c), τ) by defining τ as follows:

τij =

{
wij , if (i, j) ∈ A(c)1 and cij − lij ≤ f0

ij ,
2L, otherwise,

(9)

where L bears the same meaning as in Section 2. Similar to Theorem 2, we can
prove the following result.

Theorem 4. If {X∗, X∗} is an s − t cut of N
′′
(V,A(c), τ) with the minimum

bottleneck capacity, i.e.,

τb(X∗, X∗) = min{τb(X,X) | {X,X} is an s− t cut of N
′′
(V,A(c), τ)}, (10)

then we have:
(1). If τb(X∗, X∗) ≤ L, then {X∗, X∗} must be an optimal solution of problem

(8).
(2). If τb(X∗, X∗) > L, then problem (8) has no feasible solution.

So far we have transformed problem (7) into the problem (8). Now we are
ready to give a full description of an algorithm to solve problem (7).

Algorithm 3
Step 1 For the network N(V,A, c) and the given flow f0, construct its resid-

ual network N
′
(V,A(c), c

′
), and then modify it to N

′′
(V,A(c), τ) according to

formula (9).
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Step 2 Find an s − t cut {X∗, X∗} of the network N
′′
(V,A(c), τ) with the

minimum bottleneck capacity. If τb(X∗, X∗) > L, then problem (7) has no fea-
sible solution, stop. Otherwise, go to Step 3.

Step 3 Output an optimal solution d∗ of problem (7) as

d∗ij =

{
f0
ij , if (i, j) ∈ (X∗, X∗),
cij , otherwise,

and the associated optimal value wb(X∗, X∗).
It is clear that Step 1 takes O(m) time. Step 2 to find an s− t cut {X∗, X∗} of

the network N
′′
(V,A(c), τ) with the minimum bottleneck capacity takes O(m+

n logn) time [8]. Hence, Algorithm 3 runs in O(m + n logn) time in the worst-
case, and it is a strongly polynomial algorithm.

4 Concluding Remarks

In this paper we studied the inverse maximum flow problem under the combining
norms. For sum-type and bottleneck-type objective functions, we transformed
them into minimum-sum and minimum-bottleneck s − t cut problems, respec-
tively, and hence presented strongly polynomial algorithms to solve them.

As a future research topic, it will be meaningful to consider other inverse
combinational optimization problems under combining norms. Studying com-
putational complexity results and proposing optimal/approximation algorithms
are promising.

Acknowledgments. The author wish to thank the anonymous referees for their
helpful comments.
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Niterói, RJ, Brazil

2 Estadual Univ. of Rio de Janeiro, Inst. of Computation, Rio de Janeiro-RJ, Brazil
mart@dcc.ic.uff.br, luerbio@cos.ufrj.br

Abstract. In this paper we introduce a number of problems regarding
edge-color modifications in edge-colored graphs and digraphs. Consider a
property π, a c-edge-colored graph Gc (resp., digraph Dc) not satisfying
π, and an edge-recoloring cost matrix R = [rij ]c×c where rij ≥ 0 denotes
the cost of changing color i of edge e to color j. Basically, in this kind
of problem the idea is to change the colors of one or more edges of Gc

(resp., oriented edges in Dc) in order to construct a new c′-edge-colored
Gc′

new with c′ ≤ c (resp., Dc′
new) such that the total edge-recoloring cost is

minimized and property π is satisfied. Here, we are especially concerned
with properly edge-colored and monochromatic paths, trails and cycles
in graphs and digraphs.

Keywords: Edge-colored graphs, properly edge-colored paths, trails and
cycles, edge-recoloring cost.

1 Introduction, Notation and Terminology

In the last few years a great number of applications have been modelled as
problems in edge-colored graphs and digraphs with important applications in
molecular biology [11,12], large communication networks [5], social sciences [4],
resolution of strategic conflicts [13], among others.

Given a graph G = (V,E), a walk ρ from s to t in G (called s-t walk) is
a sequence ρ = (v0, e0, v1, e1, . . . , ek, vk+1) where v0 = s, vk+1 = t and ei =
vivi+1 ∈ E for i = 0, . . . , k. A trail from s to t in G (called s-t trail) is a walk
ρ from s to t where ei 
= ej for i 
= j. Analogously, a path from s to t is a
trail where vi 
= vj for 0 ≤ i < j ≤ k and 1 ≤ i < j ≤ k + 1. If ρ is a path
(resp., trail) with v0 = vk+1 then ρ defines a cycle (resp., closed trail). We define
V (ρ) = (v0, v1, . . . , vk+1) and E(ρ) = (e0, e1, . . . , ek). The length of a path, trail
or walk is the number of its edges.

Let Ic = {1, 2, . . . , c} be a set of given colors, with c ≥ 2. Here, Gc denotes a
simple graph whose edges are colored by colors of Ic and with no parallel edges
linking the same pair of vertices. The vertex and edge sets of Gc are denoted

� This work was partially supported by FAPERJ (Projects E-26/110.552/2010 and
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c© Springer-Verlag Berlin Heidelberg 2013



232 C.A. Martinhon and L. Faria

by V (Gc) and E(Gc), respectively, where |V (Gc)| = n and |E(Gc)| = m. For a
given color i, Ei(Gc) denotes the set of edges of Gc colored by i. The degree of
x in Gc is dGc(x) =

∑
i∈Ic

|N i
Gc(x)| or just d(x) when no confusion arises. An

edge (resp., arc or oriented edge) between two vertices x and y is denoted by
xy (resp., xy), its color by c(xy) (resp., c(xy)) and its weight by w(xy) (resp.,
w(xy)), if any.

In this work, we consider a c-edge-colored graph Gc (resp., digraph Dc), a
property π and an edge recoloring matrix R = [rij ]c×c where rij ≥ 0 denotes the
cost of changing color i of edge e ∈ Ei(Gc) to color j. If property π does not hold
inGc (resp.,Dc), we consider the problem of changing one or more colors of edges
in Gc (resp., Dc) such that property π is satisfied and the total edge-recoloring
cost is minimized. In this kind of problem, colors can be associated to different
communications links, frequencies or channels and must be changed whenever
some desired structure with a given color pattern is no longer verified. The
objective is to construct or re-establish a particular structure (possible denied
by an attacker) with the minimum edge-recoloring cost. Obviously, according
to the situation, the objective can also be destroy some existing unwanted (or
malicious) structures in the graph.

Here, we are specially concerned with properly edge-colored (or just pec for
short) and monochromatic structures such as paths, trails and cycles. A subgraph
ofGc containing at least two edges is said to be a pec subgraph if any two adjacent
edges differ in color. A pec path (resp., pec trail) is a path (resp., trail) such that
any two successive edges have different colors. Given two vertices s, t ∈ V (Gc),
we call pec s-t path (resp., pec s-t trail) a path (resp., trail) that begins at
s and finishes at t. In addition, observe that edges in a pec trail need not to
form a pec subgraph since we can have adjacent but not successive edges with
the same color. A pec path or trail in Gc is said to be closed if its endpoints
coincide and its first and last edges differ in color. In the oriented case, we
denote properly arc-colored paths and trails, respectively, by pac paths and pac
trails for short. A monochromatic structure in Gc contains all its edges colored
with the same color. Finally, we say that matrix R above satisfies the recoloring
triangle inequality, if and only if, for all colors i, j, k of Ic, we have rij ≤ rik+rkj ,
meaning that color i of edge e can be changed at most one time. Unless specified
otherwise matrix R is always symmetric.

In Section 2, we deal with the determination of monochromatic paths, perfect
matching and spanning trees with the minimum edge-recoloring cost. In Section
3 we consider pec paths (resp., pac trails) in edge-colored graphs (resp., arc-
colored digraphs). Finally, in Section 4, we consider the problem of destroying
undesirable structures such as pec cycles and pec closed trails in Gc. Related
problems are also proposed.

2 Construction of Monochromatic Structures in Gc

Given Gc with c ≥ 2 and an edge-recoloring matrix R, we deal with the problem
of determining the minimum edge-recoloring cost necessary to construct a new
graph Gc′

new (for c′ ≤ c) containing some particular monochromatic structures
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such as s-t paths, perfect matchings and spanning trees. We show that all these
problems can be trivially solved in polynomial time by converting them into
classical algorithms for paths, perfect matchings and spanning trees (see [1]). We
conclude the section with the problem of finding the minimum edge-recoloring
cost necessary to determine two edge-disjoint monochromatic s-t paths with
different colors.

Theorem 1. The problem of finding the minimum edge-recoloring cost of
monochromatic s-t paths, perfect matchings and spanning trees can be solved
in polynomial time.

Proof: Here we only deal with the monochromatic s-t path problem, the other
cases are analogous. Consider Gc with c ≥ 2, s, t ∈ V (Gc) and an edge-recoloring
matrix R as above. Basically, the idea is to construct a sequence of weighted non-
colored graphs G′

k for k = 1, . . . , |Ic| and compute a shortest path between s and
t (respectively, minimum perfect matching and minimum spanning tree). To do
that, we perform the following steps:

(i) Set Cost(Gc′

new)← +∞; {the value of the minimum edge-recoloring cost in
Gc′

new}
(ii) For each color k = 1, .., |Ic| do

• (ii.1) Construct G′
k with V (G′

k) = V (Gc) and non-colored E(G′
k) = {e :

e ∈ E(Gc)};
• (ii.2) For each i ∈ Ic assign non-negative weights we ← rik for all edges
e ∈ Ei(Gc);

• (ii.3) Compute a shortest s-t path in G′
k, say Pk, with cost Cost(Pk);

• (ii.4) If Cost(Pk) < Cost(Gc′

new) then set k′ ← k and Cost(Gc′

new) ←
Cost(Pk);

(iii) To construct Gc′

new containing a monochromatic s-t path, change the colors
of all edges (other than k′) to color k′ in the shortest s-t path Pk′ in Gc;

(iv) Return Gc′

new with the monochromatic s-t path Pk′ and cost Cost(Gc′

new).

Note that since |Ic| ≤ |E(Gc)| = m, the procedure above is obviously polynomial
with total complexity time equal to O(m.n2), where O(n2) is the complexity of
the shortest s-t path problem. �

Corollary 1. Give L ≤ m, the problem of finding the minimum edge-recoloring
cost of a monochromatic s-t path of length at most L can be solved in polynomial
time.

Proof: To prove our result we deal with the Shortest Restricted Path problem,
or srp problem for short. In the srp problem we are given a digraph D = (V,E)
with specified vertices s′, t′ ∈ V , a positive integer L′ > 0, weights wij ∈ Z+ and
lengths �ij ∈ Z+ associated to each arc ij ∈ A. The objetive is to determine
the minimum shortest path (with respect to w) between s′ and t′ with length
at most L′. The srp problem is NP-hard (see [6]), however it can be solved in
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polynomial time whenever all weights or lengths are polynomially bounded. In
Hassin [10], the author describe a dynamic programming procedure for the srp
problem with pseudo-polynomial complexity O(|E|.L′).

To prove that, it suffices to constructGk in the procedure of Theorem1 above for
k = 1, .., |Ic| and set �ij = 1 for every edge ij of E(Gk). Then, we substitute Step
(ii.3) by the dynamic programming procedure detailed in [10] for the srp problem.
Since L′ = L ≤ m, this dynamic programming procedure is obviously polynomial.
�

Now, we prove that the determination of the minimum edge-recoloring cost to
obtain 2 edge-disjoint monochromatic s-t paths with different colors is NP-hard.
The authors in [8] prove that determine whether an arbitrary Gc contains two
vertex-disjointmonochromatic s-t paths with different colors isNP-complete (they
do not consider edge-recoloring costs). Nevertheless, note that determining two
edge-disjoint monochromatic s-t paths can be trivially solved in polynomial time.
As a consequence, we can establish the following result (in the decision version)
combining edge-recoloring costs and monochromatic edge-disjoint s-t paths:

Theorem 2. Consider Gc with c ≥ 2, an edge-recoloring matrix R of order c,
two vertices s, t ∈ V (Gc) and an integer W ≥ 0. Then, the problem of deter-
mining 2 edge-disjoint monochromatic s-t paths with different colors and edge-
recoloring cost less or equal than W is NP-complete.

3 Construction of PEC Paths, Trails and Cycles

3.1 The Non-Oriented Case

As discussed in [2], givenGc and s, t ∈ V (Gc), the problem of determining whether
or not Gc contains a pec path between s and t can be solved in polynomial time.
Thus, if Gc contains no pec s-t paths we can establish the following result:

Theorem 3. The problem of determining the minimum edge-recoloring cost
necessary to construct a pec s-t path can be solved in polynomial time.

The following problem was left open:

Problem 1: ConsiderGc, s, t ∈ V (Gc), an edge-recoloring matrix R and positive
constant L ≤ m. What is the complexity of determining the minimum edge-
recoloring cost necessary to construct a pec s-t path of length at most L?

3.2 The Oriented Case

Now, consider a digraph Dc with vertices s, t ∈ V (Dc) and an arc-recoloring
matrix R of order c ≥ 2. In Gourvès et. al. [9], the authors show that maximize
the number of pac s-t trails in Dc can be done in polynomial time. Surprisingly,
they prove that the determination of one pac s-t path is NP-complete even for
planar arc-colored digraphs containing no pac circuits. Thus, if Dc contains no
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s-t trails, we consider the problem of determining the minimum arc-recoloring
cost necessary to construct Dc′

new (with c′ ≤ c) containing a directed pac s-t
trail. Formally:

Theorem 4. The problem of finding the minimum arc-recoloring cost necessary
to construct a pac s-t trail can be solved in polynomial time.

Proof: Initially, w.l.o.g. suppose that vertices s and t, respectively, contains no
outgoing and incoming arcs in Dc. Basically, the idea is to construct an weighted
non-colored digraph D such that the solution of the minimum cost flow problem
over D indicates the best arc-color modifications to construct Dc′

new containing
a directed pac s-t trail with the minimum arc-recoloring cost.

To do that, we define gadgets Dx for each x ∈ W = V (Dc) \ {s, t} with the
following vertex- and arc-sets:

V (Dx) =

(⋃
i∈Ic

{xi, x
′
i}
)

and A(Dx) =
⋃

{i∈Ic}

⋃
{j∈Ic}

{xix
′
j}. (1)

Now, we define weights and capacities of the arcs xix
′
j ∈ A(Dx) as in the sequel.

We set w(xix
′
j) = +∞ for i = j, and set w(xix

′
j) = 0 for i 
= j. All capacities

of the arcs in A(Dx) are settled to 1. In addition, we change vertices s and t of
Dc, respectively, by s′ and t′ in the digraph D.

To conclude our construction ofD, for each arc xy ∈ A(W ) with color c(xy) =
i, we introduce |Ic| arcs x′

jyj in D for j ∈ Ic and set w(x′
jyj) = rij (the cost

of changing color i to color j). Note that, if i = j then w(x′
jyj) = 0. Finally,

for every arc sx (resp., yt) of Dc with color c(sx) = i (resp., c(yt) = i) we
introduce arcs s′xj (resp., y′

jt
′) and set w(s′xj) = rij (resp., w(y′

jt
′) = rij) for

every j ∈ Ic. The capacities of all remaining arcs of D are settled to 1. See the
example of Figures 1.(a) and 1.(b).

If a sequence ρ denotes a solution of the minimum cost flow problem overD, we
can easily determine all arc-color modifications with the minimum arc-recoloring
cost necessary to construct Dc

new. To see that, for every arc x′
ixj ∈ A(ρ) of D

with w(x′
ixj) = rij > 0, we change the color of the associated arc xy of Dc

from i to j (since i 
= j), otherwise, the color of xy remains the same. Finally,
note that sequence ρ∗ obtained in this way defines a pac s-t trail in Dc

new. To
see that, note at every gadget Gx of D, we have w(xix

′
i) = +∞ for i ∈ Ic. Then,

the solution ρ of D contains no arcs xix
′
i avoiding the presence of consecutive

arcs colored alike in the associated ρ∗ of Dc
new. �

Corollary 2. Given L > 0, the problem of finding the minimum arc-recoloring
cost necessary to construct a pac s-t trail of length at most L ≤ m can be solved
in polynomial time.

Proof: To prove that, it suffices to construct digraphD as above and set �xy = 1
for each arc xy of A(D). Then, we apply the dynamic programming procedure
as described in Hassin [10] to find a shortest s-t path in D with total length at
most L′ = 2L− 1. �
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Fig. 1. In (a), we have an arc-color digraph Dc with 3 colors containing no pac s-
t trails. In (b), after solving the minimum cost flow problem over D, suppose that
we send one unit of flow along the path ρ = (s′, x3, x

′
1, y1, y

′
2, z2, z

′
1, x1, x

′
3, t

′) with
cost(ρ) = w(z′

1x1) = r21 > 0 (denoted in bold). Thus, after changing the color of
arc zx from green (color 2) to color red (color 1) in Dc we obtain a new arc-colored
digraph Dc

new and 2 pac s-t trails ρ∗1 = (s, x, y, z, x, t) and ρ∗2 = (s, z, x, t), with the
minimum arc-color edge-recoloring cost equal to r21 > 0.

4 Destruction of pec Cycles and pec Closed Trails in Gc

The authors in Yeo [15] and Abouelaoualim et. al. [2] present a polynomial time
characterization to determine, respectively, c-edge-colored graphs containing no
pec cycles and pec closed trails. Hence, a polynomial time algorithm can be
constructed to guarantee the existence of pec cycles (resp., closed trails) in
Gc, if any. Several interesting problems can be solved in polynomial time when
restricted to these particular classes of graphs. For instance, as discussed in [2], if
Gc contains no pec cycles (resp., closed trails) and s, t ∈ V (Gc), the problem of
finding a longest pec s-t path (resp., s-t trail) in Gc can be solved in polynomial
time. Further, as proved in Gourvès et. al. [8], if Ψ is a subset of V (Gc) \ {s, t}
the problem of finding a pec s-t path (resp., s-t trail) visiting all vertices of
Ψ can be solved in polynomial time, provided that one exists (this problem is
NP-complete over general c-edge-colored graphs).

Therefore, pec cycles or pec closed trails can be viewed as undesirable struc-
tures and a related question is to determine the minimum edge-recoloring cost
necessary to destroy them. Unfortunately, this problem is NP-hard. Formally,
we have the following associated decision problem:
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Theorem 5. Consider Gc with c ≥ 2, an asymmetric edge-recoloring matrix R
and an integer W ∈ Z+. Then, the problem of finding a new c-edge-colored graph
Gc

new containing no pec cycles (resp., closed trails) and edge-recoloring cost less
or equal than W is NP-complete.

Proof: This problem obviously belong toNP. Given a subset of edges and colors
to be modified in Gc, we can polynomially verify, through the Yeo’s algorithm
(resp., bridge’s algorithm), if the resulting new edge-colored graphGc

new contains
no pec cycles (resp., closed trails).

To construct our reduction we deal with the e3sat problem. An instance
B = Λm

k=1Ck in the Conjunctive Normal Form - cnf of the e3sat consists of
a set of n variables X = {x1, . . . , xn} and m clauses C = {C1, . . . , Cm} with
exactly three literals per clause [6]. In addition, for � ∈ {1, 2, 3}, we say that xi

is the �-th variable of Ck, if and only if, xi and exactly �− 1 other variables xi′

with i′ < i appear in Ck. Thus, given B we show how to polynomially determine
a 2-edge-colored graph Gc, a matrix S of order 2 and an integer k ≥ 0 such that
the edge-recoloring cost necessary to construct Gc

new with no pec cycles is less
or equal than W = n, whenever B is satisfiable for some truth assignment of B.
The destruction of pec closed trails is analogous and will be considered later.

Our construction proceed is as follows. For each variable xi of X we introduce
4 vertices u1

i , u
2
i , v

1
i , v

2
i with edges u1

iu
2
i and v1i v

2
i colored red, and edges u1

i v
1
i and

u2
i v

2
i colored blue. Let us denote by Gi, this gadget associated to xi. Both red

edges u1
iu

2
i and v1i v

2
i of Gi, will be associated to literals xi and x̄i, respectively.

Now, for each clause Ck and pair of variables xi, xj of Ck occurring, respectively,
in the �-th and h-th positions of Ck with h ≡ (�mod 3) + 1 for � = 1, 2, 3, we
introduce a blue edge ek(�, h) in the following manner:

(i) if literal xi appears in the �-th position of Ck we connect vertex u2
i with

vertex u1
j (if literal xj appears in the h-th position of Ck) or v1j (if literal x̄j

appears in the h-th position of Ck).
(ii) if literal x̄i appears in the �-th position of Ck we connect vertex v2i with

vertex u1
j (if literal xj appears in the h-th position of Ck) or v1j (if literal x̄j

appears in the h-th position of Ck).
We repeat this construction for each k = 1, ..,m. After that, multiple pairs of

blue edges connecting the same pair of vertices, if any, will be substituted by one
single edge, colored blue in Gc. Now, if we assume that red is the color 1, and
blue is the color 2 in Ic, to construct the edge-recoloring cost matrix R = [rij ]2×2

we set rij = 0 for i = j, r12 = 1 and r21 = n+ 1. Finally, we set W = |X | = n.
A complete example of our construction is presented in Figure 2. Note that each
pec cycle in Gc containing red edges of any combination of three gadgets will
be associated to a clause Ck of C for some k ∈ {1, ..,m}. Further, if all of these
pec cycles are destroyed (by changing the color of some of its red edges) all the
remaining pec cycles will be destroyed (see Figure 2).

Therefore, if we have a satisfiable truth assignment for B, we can construct a
new c-edge-colored graph Gc

new containing no pec cycles and such that the total
edge-recoloring cost is no greater than n. To do that, for each index i ∈ {1, .., n},
we change the color of edge u1

iu
2
i (resp., v1i v

2
i ) from red to blue, whenever literal
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Fig. 2. The destruction of pec cycles is NP-complete. In the example, clauses C1 =
(x1 ∨x2 ∨ x̄3), C2 = (x̄1 ∨x2 ∨ x̄3) and C3 = (x̄1 ∨ x̄2 ∨x4) are associated, respectively,
with pec cycles C1 = (u1

1, u
2
1, u

1
2, u

2
2, v

1
3 , v

2
3 , u

1
1), C2 = (v11 , v

2
1 , u

1
2, u

2
2, u

1
3, u

2
3, v

1
1) and

C3 = (v11 , v
2
1 , v

1
2 , v

2
2 , u

1
4, u

2
4, v

1
1), all of them containing red edges of 3 different gadgets.

xi is true (resp., false) in the assignment. Note that if xi is true (resp., false)
for i = 1, .., n, all pec cycles of Gc containing edges u1

iu
2
i (resp., v1i v

2
i ) will be

destroyed in Gc
new. In addition, since n edge colors are modified from color 1

to color 2 with r12 = 1, the total color edge-recoloring cost will be equal to
n. Reciprocally, if all pec cycles of Gc are destroyed with an edge recoloring
cost not exceeding n, we can easily obtain a satisfiable truth assignment for B.
Initially, note that since r2,1 = n+1, only the color of red edges must be changed.
Further, exactly one red edge of each gadget Gi must be modified, otherwise,
after n modifications we should have at least one non-destroyed pec cycle in
Gc

new associated to Gi for some i ∈ {1, .., n}. Therefore, if the color of red edge
u1
iu

2
i (resp., v1i v

2
i ) is modified, we set literal xi = true (resp., xi = false) in the

assignment. Note that, each time a pec cycle associated to a clause Cj of B is
destroyed, at least one variable of Cj will be true in the assignment. Thus, if
all pec cycles are destroyed we have a satisfiable truth assignment for B, which
concludes this part of the proof.

Finally, to guarantee the destruction of pec closed trails in Gc it suffices
to substitute each blue edge ek(�, h) = xy for k, �, h as above; by a sequence
of vertices x,w1, w2, w3, y with edges xw1, w2w3, w1y colored blue and edges
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w1w2, w3w1 colored red. Note that this transformation is not applied over the
blue edges of gadgets Gi for i = 1, .., n. Therefore, using the same arguments as
above we prove that the pec closed trail case is also NP-complete. �

The authors in [2], show how to polynomially determine, if an arbitrary Gc

contains no pec cycles and almost pec cycles through a vertex x (we say that a
cycle is an almost pec cycle through vertex x if the first and last edges incident
to x have the same color). To illustrate the importance of this class of graphs,
they consider the problem of maximizing the number of vertex disjoint pec paths
between s and t. They prove that this problem can be solved in polynomial time
if Gc contains no pec cycles and almost pec cycles through s or t. However,
it becomes NP-hard for c-edge-colored graphs containing no pec cycles (note
that almost pec cycles through s or t are allowed in this case). Further results
regarding s-t paths restricted to this particular class of graphs can be found in
[2]. Unfortunately, we have the following result consequence of Theorem 5 above:

Corollary 3. Consider Gc with c ≥ 2, an asymmetric matrix R of order c,
an integer W ∈ Z+ and a vertex x ∈ V (Gc). Then, the problem of finding a
new c-edge-colored graph Gc

new with no (almost) pec cycles through x and edge-
recoloring cost less or equal than W is NP-Complete.

Proof: To prove that we add a new vertex xk and change the blue edges ek(3, 1)
for k = 1, ..,m (connecting the last and first gadgets of clause k). In other words,
all edges ek(3, 1) are substituted by 2 blue edges incident at xk. Now, after
contracting all vertices xk by a new vertex x̄ our proof follows as in Theorem 5.

�
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Abstract. In this paper, we consider a fundamental traffic grooming
problem in optical line-system: the number of total links with lengths
and the max number of wavelengths (capacity) of each fiber are given,
also a set of demands (jobs) and their routes are fixed so that the load of
each link is known, the problem is to construct a set of fiber intervals so
that the total fiber length is minimized (called Fiber Lengths Minimiza-
tion problem or FLM for abbreviation). It is known that FLM problem is
NP-complete in general. In this paper, we propose a 2-approximation al-
gorithm, Longest Link interval First (LLF), which is better than existing
best known bound.

Keywords: Traffic Grooming, Fiber Lengths Minimization problem,
Minimizing Total Fiber Length, Longest Link interval First (LLF).

1 Introduction

In optical network design, decomposing the network into a set of optical line
systems is one way of avoiding the expensive O-E-O (optical to electrical to op-
tical) conversion [13]. In this way, system becomes transparent, only demands
between different linesystems need O-E-O conversion; also routing is not neces-
sary in this case since wavelength assignment problem can be solved separately
in each linesystem. All-optical networks have been extensively studied in recent
years, especially for the core networks. A logical path formed by a signal trav-
eling from its source to its destination using a unique wavelength is termed a
lightpath. If the nodes have no conversion capability, then the requirement that
the same wavelength must be used on all the links along the selected route is
known as the wavelength continuity constraint and makes networking signifi-
cantly different from conventional circuit switched networks. Our work assumes
that the nodes are not capable of wavelength conversion.

The network usually supports traffic that is at rates that are lower than the
full wavelength capacity, and therefore the network operator has to be able to put
together (groom) low-capacity connections into the high capacity lightpaths. The
network operator often has to groom low-capacity demands into high capacity
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fibers to save cost (energy and equipment costs etc.). This can be viewed as
assigning colors to the lightpaths so that at most g of them can share the same
fiber, where g ≥ 1 is the capacity of a single fiber. This grooming problem is one
of very important issues in optimizing costs for optical networks.With MOADMs
(mesh optical add/drop multiplexer), there is polynomial time solution for this
problem [13].

Without MOADMs, the linesystem can be treated as a collection of fibers
each of which occupies an interval of the line, the problem is called packing
intervals in intervals, which is NP-complete (see a proof given in [13]; in this
case, each demand must be assigned not only a wavelength but also a fiber
which covers the intended interval; deploying fiber satisfying all demands but
minimizing total length (MinLength) of fibers is NP-hard when total number of
wavelength (μ) is larger than 1. In this paper, the case without MOADMs and
wavelength conversion is considered. The book [3] provides many research results
about scheduling algorithms that may be applied in job allocations. The paper
[13] discusses wavelength assignment and generalized interval graph coloring and
provides NP-complete proof for the problem. [8] reviews recent research into
the energy-efficiency in optical networks. [7] summarizes recent technologies for
reducing the power consumption of optical access networks. [9] [5] discusses the
regenerator placement and routing in translucent optical networks. [4] provides
approximating solution for traffic grooming with respect to ADMs and OADMs.
[2] provides a (logM) and (logμ) -approximation algorithms for minimizing total
number of fibers where M is the number of links in this system. [6] proposes
a general 4-approximation algorithm for minimizing total number of OADMs.
[10] discusses the online version of this scheduling problem. In this paper, 2-
approximation algorithm is proposed.

2 Problem Formulation

The problem can be formally stated as follows: an optical line-system has n links
e1, e2, . . . , en, with link ei carrying fibers and each fiber can carry g wavelengths,
the length of link ei is Li. Represent a demand by [i, j] for i ≤ j if it requires links
ei, . . . , ej; the set of demands (jobs) will be denoted by D. The load li = l(ei)
on link ei is the minimum number of fibers required to carry all the demands on
link ei, where di is the number of demands on link ei. Consider demands D are
given, together with link lengths, the objective is to construct a set F of fiber
intervals of minimum total length which can satisfy D, it is called Fiber Lengths
Minimization problem (FLM problem for abbreviation).

Theorem 1. The lower bound for FLM problem is the sum of the minimum
number of fibers used on each link multiplies the length of each link.

Proof: For a given set of jobs J and demands D, we can find the minimum
number of fibers needed for each link, denoted as li, l2, . . . , lk,

li = l(ei) = $
di
g
% (1)
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for total k links under consideration, where li is the minimum number of fibers
needed for link ei. Then ideally, the min length of all fibers is the sum of (the
minimum number of fibers used in each link) multiplies (the length of each link
(denoted as Li)), i. e. :

MinLength(OPT ) =

n∑
i

liLi (2)

Example 1: As shown in Fig.1. , there are four requests j1 to j4 and three

Fig. 1. An example of MinLength problem

links e1, e2, e3. j1, j2 and j3 pass through link e1, e2 and e3; j4 passes through
link e2. Each fiber has wavelengths (capacity) g = 3. Therefore, the lower bound
of total number of fibers needed on link e1 to e3 is 1, 2, 1 respectively; and the
total length of all fibers is (L1+2L2+L3 = l1L1+ l2L2+ l3L3), i. e., the sum of
(the minimum number of fibers used in each link) multiplies (the length of each
link (denoted as Li)).

Observation 1: The lower bound for FLM problem is to allocate exactly $dg %
number of fibers to each link, where di is the fiber length on link i.

Remark 1: The lower bound is not easy to achieve. One way to achieve this
is to apply First Fit Decreasing (FFD) algorithm in [6] to sort all requests in
non-increasing order of their spans, and allocate the subset of longest span jobs
first. By sorting all requests in non-increasing order of their spans and allocate
the subset of longest span jobs first, the long span jobs will not be distributed to
too many other fibers, so that the total fiber length may be minimized. However,
FFD may not work well in some cases. It is shown that FFD has approximation
ratio 4 in the worst case [6].

In the following, we consider that the nodes have no wavelength conversion
capability. The paper [6] showed that it is NP-hard to approximate our problem
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already in special case where all jobs have the same span and can be allocated
on one fixed link, by a simple reduction from the subset sum problem. To see
the hardness of the FLM problem, THEOREM 2 is given as follows:

Theorem 2. FLM problem is NP-complete problem in general case.

We sketch a simpler proof than [10] as follows:
Proof: In the following, we show that the well-known NP-complete problem, K-
PARTITION problem can be reducing to FLM problem in polynomial time. K-
PARTITION problem is well-known NP-complete (see [3] and reference therein):
for a given arrangement S of positive numbers and an integerK. Partition S into
K ranges so as to sums of all the ranges are close to each other. K-PARTITION
problem can be reduced to our FLM problem as follows. For a set of jobs J , each
has capacity demand and span constraints (set as positive numbers), partitioning
J by their capacities into K ranges, is the same to allocate K ranges of jobs with
capacity constraint g (i.e. the sum of each range is at most g). On the other hand,
if there is a solution to K-PARTITION for a given set of intervals, there exists
a schedule for the given set of numbers. Since K-PARTITION is NP-hard in the
strong sense, our problem is also NP-hard. In this way, we have found that that
our FLM problem is NP-complete problem.

Definition 1. Approximation ratio: an offline deterministic algorithm is said
to be C-approximation for the objective if it obtains results in a polynomial time
at most C times that of an optimal solution.

Since the general FLM problem is NP-complete, in the following, we propose an
efficient approximation algorithm.

3 The Approximation Algorithm: Longest Link Interval
First

In this section, a 2-approximation algorithm called Longest Link interval First
(LLF) is introduced. The LLF algorithm is described in Algorithm 3.1. The LLF
algorithm allocates the requests from the longest link interval to the shortest
interval. Each job is scheduled to the first fiber which can fit. This algorithm has
computational complexity O(N max(M, logN)) where N is the number of jobs
and M is the number of fibers needed on any link. Because The LLF algorithm
firstly sorts all jobs (requests) in non-decreasing order of their start points (line
1), this takes O(NlogN) time. The load of each link is represented by min
number of fibers needed (line 2-4). Then the algorithm finds a fiber for a request
needs O(M) steps where M is the min number of fibers need on any link (line
5-12), N jobs altogether need O(MN) steps. Therefore, the entire algorithm
takes O(N max(M, logN)) time where normally N > M .

Example 2:As shown in Fig. 1 where each fiber can carry max g=3 wavelengths.
Without loss of generality, assuming that link length L2 > L1 = L3. According
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Input: A job (demand) instance J = {j1, j2, . . . , jn}, and the max capacity g of
a fiber (g is the grooming papameter)

Output: The allocated jobs and total length of all fibers
1 Sort all jobs in non-decreasing order of their start-points (si for job i), such that

s1 ≤ s2... ≤ sn, set f=1 forall the links under consideration do
2 represent load of link ei by the min number of fibers needed, denoted as li

(take integral value by ceiling function).
3 end
4 forall the jobs under consideration do
5 Find the longest continuous link interval with same load first, denoted as

[z1, z2]; If two link interval have same length, consider larger load first
forall the jobs ended or started in [z1, z2] do

6 always consider the longest job when other parameters are the same;
7 allocate to the first fiber which can fit, use a new fiber and set f=f+1 if

needed
8 end
9 remove allocated jobs, update load of each link

10 end
11 Count load of all links and total length of all fibers.

Algorithm 3.1: Longest Load First Algorithm

to LLF algorithm, j4 is allocated firstly to the first fiber on link e2 since the
longest link interval is on it, j2 and j3 are also allocated to the first fiber on link
e2 since j1, j2 and j3 have the same start-point and length. j1 is then allocated
to another fiber on link e2 since g=3 on any fiber. Notice that j1, j2 and j3 can
be allocated in any order in this case.

Theorem 3. The approximation ratio of our proposed Longest link interval
First(LLF) algorithm for FLM problem has an upper bound 2.

Proof : We provide a proof by induction. Consider there are n requests and a
fiber can carry g wavelengths.

1. Since one fiber can host at most g requests, let firstly consider n=g + 1,
we have LLF (J) ≤ 2OPT in this case. The adversary is that these g + 1
jobs have different start-points, end-points, shorter jobs are contained by the
longer ones, and are sorted in non-decreasing order of their start-points as
shown in Fig. 3(b) where f is set as 2 in this case. The total fiber length of
optimal solution is dominated by the length of the longest job with span T1,
(g+1)-th job with span Tg+1 (assuming it is the shortest span length but has
link length longer that other links). LLF treats most-load links first when
two load spans have same length, its total fiber length is dominated by the
2-nd longest job with span T2, and the longest job with span T1 (one job left
for a single fiber). Therefore we have:

LLF (J)

OPT (J)
=

T1 + T2

T1 + Tg+1
=

1 + T2

T1

1 +
Tg+1

T1

(3)
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Equ. (3) will have upper bound 2 when T1=T2 and other span lengths are
negligible comparing to T1; for other cases, LLF(J) equals to OPT(J).

2. Assuming that LLF (J) ≤ 2 OPT (J) holds for n=k under clique, one-sided
clique, container and other cases. And there are total f fibers used. Let us de-
note the optimal solution and LLF solution as OPTk and LLFk respectively,
we have:

LLFk ≤ 2OPTk (4)

3. Next, we consider n=k+1. For this case, there are following situations after
sorting all k + 1 jobs in increasing order of their start-points:

(a) The total number of fibers needed is still f , i.e., the (k + 1)-th job can
be allocated to one of f existing fibers. There are following two sub con-
ditions:
i). The (k+1)-th job can be allocated to one of f existing fibers and the
total fiber length of all fibers will not change, i.e., LLFk=LLFk+1 and
OPTk = OPTk+1. In this case, obviously, LLFk+1 ≤ 2OPTk+1 holds.
ii). Assuming that the allocation of (k + 1)-th job will increase the to-
tal fiber length of LLF and OPT by lk+1 for the upper bound. i. e.,
LLFk+1=LLFk + lk+1, OPTk+1=OPTk+lk+1, and lk+1 ≤ len(jk+1).
(As for other scenarios, such as the (k+1)-th job only increases the total
fiber length of LLF (i.e., (k+1)-th job is contained by some longer jobs)
or only increases the total fiber length of OPT, one can easily check that
LLFk+1 ≤ 2OPTk+1 holds). We then have:

LLFk + tk+1 ≤ 2OPTk + tk+1 ≤ 2OPTk + 2tk+1 ≤ 2OPTk+1

(5)

(b) The total number of fibers needed will increase by 1, i.e., (f+1) fibers are
needed. This means that the (k+1)-th job intersects with all existing jobs
and cannot be hosted by any existing fiber. We consider the following
three typical hard sub-conditions (other scenarios are trivial and easy to
show so that we omitted the proofs for them) :
i). One-sided clique: in this case, all job intervals form a one-sided clique,
either started or ended at the same node as shown in Fig.2, assuming link
e1 has longest length. In this case, optimal solution is to allocate longest
group of jobs to a fiber, the second longest group of jobs to another fiber,
and so on. The total fiber length of optimal solution is dominated by the
span length of the longest job with span T1, (fg + 1)-th job with span
Tfg+1 (the shortest one). Let us denote total length of other fibers as
TO in optimal solution. LLF treats most-load links first when two load
span have same lengths, its total fiber length is dominated by the 2-nd
longest job with span T2, and the longest job with span T1 (one job left
for a single fiber), denote total length of other fibers as TH . therefore:

LLFk+1

OPTk+1
=

T1 + T2 + TH

T1 + Tg+1 + TO
=

1 + T2+TH

T1

1 +
Tg+1+TO

T1

(6)
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Equ. (6) will have upper bound 2 when T1=T2 and other span lengths are
negligible comparing to T1; for other cases, LLFk+1 equals to OPTk+1.

Fig. 2. One-sided clique case for LLF algorithm

ii). Clique case: Let us consider all jobs started and ended at different
time as shown in Fig. 3 (a). The adversary is that two or more jobs with
longest spans are spreading left and right across the point where all job
intervals intersect, assuming the center link ex (the cross point for all
jobs) has longest length. Optimal solution will allocate others to one or
more fiber and allocate jg+1 to a separate fiber with total fiber length of
(Tg+1+Tg+TO); LLF algorithm will allocate jg+1 and jg to one fiber, so
on and the shortest one left for a single fiber, let set it as j1. therefore:

LLFk+1

OPTk+1
=

Tg+1 + Tg + TH + T1

Tg + Tg+1 + TO
=

1 + TH+T1

Tg+Tg+1

1 + TO

Tg+Tg+1

(7)

Equ. (7) will have upper bound 2 when T1+TH=Tg+Tg+1 and other span
lengths are negligible comparing to Tg + Tg+1; for other cases, LLFk+1

equals to OPTk+1. A similar 2-approximation algorithm by consider span
distance is also provided in [6] for this case.

iii). The container case: The adversary is shown in Fig. 3 (b), i.e., shorter
interval jobs are contained in longer interval jobs and assuming link
ex is longer than other links, this is one of the worst cases for LLF
algorithm. Let us set these (k+1) jobs have lengths T1, T2, ..., Tk, Tk+1

in non-increasing order. The (k+1)-th job is the longest jobs for LLF, so
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Fig. 3. Clique and Container Case for LLF algorithm

that LLFk+1=(Tk+1 +LLFk−1) + T1=Tk+1 +LLFk. As for the optimal
solution, one can allocates the longest job first, so OPTk+1=OPTk +
Tk+1. Therefore LLFk+1=LLFk + Tk+1 ≤ 2OPTk + Tk+1 ≤ 2OPTk +
2Tk+1=2OPTk+1, this means LLFk+1 ≤ 2OPTk+1.

By combining the above analyses, we have proved Theorem 3.

4 Conclusion

In this paper, an efficient traffic-grooming algorithm, LLF, for minimizing to-
tal fiber length is proposed. Both theoretical lower bound and approximation
are discussed. The proposed algorithm can help network designer to save the
deployment cost, management cost and energy etc. We are still looking for near-
optimal solution for this problem. There are a few more open research issues
for the problem: including finding better near-optimal solution and providing
theoretical proofs for the approximation algorithms; extending to other net-
work topologies, like in [1][2][6]; considering stochastic demands such as in [11]
[12]; and considering other optimization objectives. With the above-mentioned
extensions and other related issues, it is possible to develop comprehensive cost-
efficient methods for traffic grooming in optical networks.
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Abstract. How to evacuate from affected area when an emergency oc-
curs? How to escape efficiently from the affected area when the evacuees
are divided into multiple groups with complete information sharing with
each other? This paper studies the evacuation strategies of this problem
from a convex region in the plane, and analyzes this problem in two
scenarios: general plane and plane in grid network. In these two scenar-
ios, we design evacuation strategies and analyze the evacuate ratio of
strategies, respectively. In some cases, we show that the given strategies
are optimal. Furthermore, we analyze the performance of strategies by
comparing them in different situations.

Keywords: Evacuation strategy, Groups evacuation, Grid network.

1 Introduction

In recent years, emergencies happen frequently, such as a fire in urban city,
traffic accidents. Due to this, evacuation problems get more and more concern.
Especially, people concern about how to evacuate efficiently from affected area in
the event of emergency? The affected area could be regarded as a convex region,
boundary information of the area is usually unavailable to affected people. The
evacuees in the area may be divided into several groups to escape.

Previous research related to evacuation mainly focus on two problems: search-
ing problem and evacuation problem. A number of papers in searching problem
address the strategy in a plane or a graph of different variations. Deng[1] gave
a competitive algorithm in the problem of learning an unknown environment.
Burgard[2] considered the problem of exploring an unknown environment by a
team of robots which is similar to multiple groups that we will consider in this
paper. Fleischer[3] discussed searching a goal in an unknown environment from
unknown position in different graphs. Batta[4] studied the problem of how to
select optimal path when transporting dangerous goods. Panaite[5] designed an
exploration algorithm which uses a robot to construct a complete map under un-
known environment. Papadimitriou[6] made use of worst-case analysis to study
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the shortest path problem on the graph. Searching problems are generally stud-
ied in the plane or on a graph. The goals of these problems are to search the
boundary in a plane and to find all the edges or vertexes in a graph. However, in
evacuation scenario, evacuees only need to get out of the region from an affected
point in it. There is no need to explore the whole plane or graph.

Another attractive research area is the evacuation problem. Chen[7] used
methods of system simulation to compare the evacuation efficiency of three dif-
ferent networks, which include the grid network we would also consider in this
paper. Hamacher[8] described the difference between macroscopic and micro-
scopic evacuation models and illustrated value of practical application of evac-
uation study which is equally applicable in our research. Lu[9] and Shekhar[10]
studied the shortest path algorithm of evacuation with consideration of capacity
constraints and the increasing number of people in time and space. These stud-
ies mainly focus on details of evacuation such as flow and other constraints to
analyze the strategy under complete information without considering the actual
situation, in which some information in evacuation may be unavailable.

Combining the two problems above, this paper considers evacuees only need
to get to any point in the boundary of convex region in evacuation scenario.
What’s more, the evacuees don’t know the boundary information of the region.

Such searching problems in unknown environment generally estimated by the
performance ratio in the past, see for example the survey by Berman[11]. The
performance of a search strategy is usually measured by competitive ratio, which
is the ratio of search length and the shortest path length in an unknown envi-
ronment. Thus, Fleischer[3] further present a similar ratio in the fixed graph,
which is called search ratio. As mentioned above, we consider the evacuate ratio
in this paper with the cost of strategy as time spent instead of path lengths [2].
In reality, the fast the evacuees run, the more safety. The time is more reliable
to describe performance of evacuation than path length. The different between
them is that time spent considers the situation of staying at a point for a while.
It is a pity that this different don’t show up in this paper, but this is important
for strategies design in future.The time spent we studied is period from begin-
ning of the evacuation to the moment all the evacuees are successfully evacuated
from the region.

As we known, path length from one point to another is the shortest length
which is traversed along the path in the graph between them. The shortest path
in this paper is the path from starting point to the point whose path length is the
shortest from point to any point on the boundary of affected region. Furthermore,
the goal of this paper is to minimize the evacuate ratio which is quotient of time
spent in the strategy over the time spent in the shortest path.

The structure of this paper is as follows. Section 2 describes the groups evacu-
ation problem, and gives some assumptions. Section 3 analyzes the lower bound
of this problem. Section 4 studies the evacuation problems of multiple groups
in general plane. Section 5 analyzes evacuation problems when the evacuees
are in one group, two groups and four groups in grid network, respectively.
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Section 6 shows the performance of the strategies by comparing them in differ-
ent situations. Section 7 concludes main results of the paper.

2 Preliminary

Suppose the affected area is a convex polygon M in a plane. Evacuees at point O
in M have no knowledge of the boundary and the location in M . The goal of the
evacuees is to evacuate from M as soon as possible. The evacuation strategies are
proposed on two scenarios: general plane and plane with grid network. Multiple
groups of evacuees can communicate with each other during the evacuation. The
evacuees in different groups can share on-time information all the time. The evac-
uees successfully evacuate from convex region if they have reached the boundary
of M . The evacuation time is the cost of strategy which is period from begin-
ning of evacuation to the moment all the evacuees successfully evacuate from the
convex region. The goal is to minimize the evacuate ratio of the strategy, which
is the ratio of evacuation time in the strategy without boundary information
to that by optimal with boundary information. The basic assumptions of this
paper are as follows:

1. The evacuees don’t know the boundary information of M , which includes
the boundary e = {e1, e2, · · · , ej} and their location in the M .

2. The evacuees move at unit speed from point O in the M to boundary of
M . In grid network, the point O is a node in M .

3. When we study in grid network, assume the network consists of several grid
units with edge length of 1. Evacuees travel along the edges of network and can
not stay on the edge but the node of the network.

3 Lower Bound

In this section, we try to analyze the lower bound of the groups evacuation
problem in the plane without the boundary information. Suppose the number of
groups is k and multiple groups have full communication with each other.

Theorem 1. In general plane, when boundary information is unknown, the
evacuate ratio of any groups strategy for k groups is no less than 3.

[!b]
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O

M

Possible routes of the strategy The shortest path

2
OPT

r d

A

OPTd

P
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OPTd

M

a) The proof in a plane without any graph b) The proof in the grid network

Fig. 1. The proof of lower bound
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Proof. Without loss of generality, suppose OA is the shortest path from point
O to the boundary of M with intersection point A. The length of OA is dOPT

and the corresponding evacuation time is tOPT .
For any k groups of strategy with full communication among them, let di

denote the distance the group i has traversed from the point O. If the maximum
distance satisfies dmax = max{d1, d2, · · · , dk} < dOPT , they cannot reach the
boundary of M . There exists a situation in which one of the groups has reached
a point P first, where the path length from the point O to P is equal to dOPT .
Thus, we can construct a convex region as shown in Fig.1 a) above to make the
point A in the shortest path opposite to the point P . And the path length from
the point P to any point on the boundary of M is no less than 2dOPT . In the
meantime, when the shortest path has been reached by an group, the length
from the point O to A is at least dOPT . Therefore, the cost of strategy without
information is at least 3 times as the shortest path. The Theorem follows. ��
For the scenario in grid network, we analyze the lower bound with similar as-
sumptions as that in general plane for four groups and get the corollary as follows.

Corollary 1. For any strategy without boundary information in grid network,
the evacuate ratio of four groups is no less than 3.

Proof. Similarly as the theorem 1, we can construct M as shown in Fig.1 b).
Therefore, the evacuate ratio of four groups in grid network is no less than 3. ��

4 Scenario 1: General Plane

For the situation of general plane, evacuees are divided into k(k ≥ 3) groups.
Multiple groups of evacuees can completely share information with each other.
We design an evacuation strategy as follows (as shown in Fig.2):

Equally Divided Exploration Strategy (EDES)
Step1: Divide the evacuees on O into k groups, i.e. {G1, G2, · · · , Gk}.
Step2: Make k radials {r1, r2, · · · , rk} from point O, as shown in Fig.2. For ri

to ri+1, the angle between them is 2π
k . The k groups of evacuees escape along k

radials at time t = 0, respectively.
Step3: At time t = ti, Gi is the first arrival at a boundary of M . Other

evacuation groups that do not arrive at any boundary of M come back to the
starting point O and walk along the path of Gi until they get out of M .

Definition 1. Let Ce denote a circle with radius R′ in M . Let the circle Cf

with radius R = maxR′ be the largest inner circle of M . Fix the Cf ’s center in
point O, the circle obtained is called O-center circle of M , denote as Cg with
radius r.

Theorem 2. In general plane, the evacuate ratio of EDES with k(k ≥ 3) groups
is no more than 3

cos(π/k) .
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Proof. According to the definition of circle Cg, we know convex region M has
at least one intersection point with Cg. Without loss of generality, suppose P
is one of the intersection points between ri and ri+1. As shown in Fig.3, tan-
gent line intersects Cg, ri and ri+1 at points P , H and Q, respectively. Ob-
viously, path length di of any group Gi is no more than min{OQ,OH}, and
di ≤ maxmin{OQ,OH} = dOPT

cos(π/k) , tEDES ≤ 3ti = 3di ≤ 3dOPT

cos(π/k) . Hence, the

evacuate ratio of EDES is c = tEDES

tOPT
≤ 3

cos(π/k) .

The Theorem follows. ��
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The performance of EDES becomes more effective when k increasing. Thus,
lim

k→+∞
[3/cos(π/k)] = 3, this strategy is close to be optimal when groups is nu-

merous. We can conclude that the number of groups which evacuees are divided
into should be as many as possible.

5 Scenario 2: Plane with Grid Network

Most urban cities have the structure of road network like a grid one as shown
in Fig.4, just as Zhang[12] described. In this section, we study the evacuation
strategy in a plane with grid network.

Fig. 1. Part of the traffic network of Barcelona, Spain and Xi’an, Shannxi, China
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For the sake of simplicity, with point O as origin to establish a rectangular
coordinate system coincides with grid network. The shortest distance from in-
tersections of coordinate axis and M to point O is a. Assume P (x, y) denote
coordinates of a point in grid network.

5.1 Analysis of Strategy with Boundary Information

In this part, we consider the evacuation problem with complete information. The
goal of this problem is to find the shortest path. The cost of strategy is still the
time spent of the strategy.

Definition 2. For any points P (x1, y1) and P (x2, y2) in gird network, L =
|x1 − x2|+ |y1 − y2| is called evacuation path length.

Strategy with boundary information: all the evacuees walk along the short-
est path OA from point O until they have reached region boundary.

Theorem 3. The strategy with boundary information is optimal, and corre-
sponding optimal evacuation time is tOPT = $a%.
Proof. Make a square AEFG as shown in Fig.5. The function expressions of four
edges of AEFG respectively are: x+ y = a, x− y = a, −x+ y = a, −x− y = a.
Hence, in closed region AEFG, path length from point O to any point inside
of the closed region AEFG satisfies Lin

AEFG ≤ a, yet the path length from O to
any point outside of AEFG satisfies Lout

AEFG > a.
From the definition of OA, the square AEFG has to intersect with M at point

A. It can be easily obtained that other points on boundary of M are not inside
of AEFG from the properties of convex. Therefore, for any point P (x, y) on
boundary of M , min

P (x,y)∈e

{
LO,P (x,y)

}
= LO,A = a. Because of the assumptions

in this paper, we obtain tOPT = $LO,A% = $a%.
The Theorem follows. ��

O

A

E

F

G

Fig. 5.The proof of Theorem 3

M

O
x

y

Fig. 6.The ORS when l = 1

5.2 Analysis of Strategies without Boundary Information

In reality, there are several different situations when emergency occurs. One is
that all the evacuees converge to a same path to evacuate from affected area. The
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other is that the evacuees are divided into several groups, and choose different
routes to escape from affected area with complete information sharing among
them. According to actual situation, we study three situations including the
evacuees as one group, two groups and four groups, respectively.

5.2.1 Case 1: One Group
When disaster occurs, evacuees take a same path to escape from convex region.
In this situation, we design a kind of One-group Reposition Strategy (as shown
in Fig.6). The strategy description and analysis are as follows. In the strategy,
l denotes the length of step unit, which can be any positive integer chosen by
evacuees.

One-Group Reposition Strategy (ORS)
Step1: t = 0, l, i, j ∈ N∗ and l > 0, q = 1, i = 1, j = 0. G1 is located at

point O. Let D = {D1, D2, D3, D4} = {+−→y ,+−→x ,−−→y ,−−→x } denotes directions
in network.

Step2: G1 walk towards Dq with length of i · l. If they reach the boundary of
M , stop; Otherwise, j = j + 1, retrace back to point O. If q < 4, q = q + 1;if
q = 4, let q = 1.

Step3: If j < 3, go to Step2; if j = 3, let i = i+ 1, j = 0, go to Step 2.

Lemma 1. In grid network, $a% <
√
2R+ 1.

Proof. According to Theorem 3, square AEFG is included in convex region.
From definition of Cg, we obtain Cg intersects M at least one point S. Make
the tangle line of Cg through the point S, say tls. If the tls intersects with
axes at only one point, it satisfies r = min{a, b, c, d} = a. If tls intersects with
axes at two points, we say S1, S2. From property of convex, we obtain a ≤
min{OS1, OS2} ≤

√
2r. Hence, for any point of intersection satisfies it in the

same way. Thus $a% < a+ 1 ≤
√
2r + 1 ≤

√
2R + 1.

The Lemma follows. ��

Theorem 4. The evacuate ratio of ORS is less than 3
√
2R+1
l + 6l− 2.

Proof. Without loss of generality, let $a% = (n − 1) · l + $b% where $b% , n ∈ N∗
and 1 ≤ $b% ≤ l. For any (n− 1) · l < $a% ≤ n · l, evacuation time of this strategy

is tORS ∈ [$a%+3l ·n2−3l ·n, $a%+3l ·n2+3l ·n], thus c = tORS

tOPT
≤ 3l·n2+3l·n+�a�

�a� .

Due to $a% = (n− 1) · l + $b%, the evacuate ratio of ORS is 3l·n2+4l·n−(l−�b�)
l·n−(l−�b�) .

For any n, l, $a% , $b% ∈ N∗, we can obtain c = 3n2·l+4n·l−3(l−�b�)
n·l−(l−�b�) . Assume

c = f($b%), df(�b�)
d�b� = −3n2·l−3n·l

[(n·l−l)+�b�]2 < 0.Therefore, the minimum value of evacuate

ratio c about $b% is f($b%)min = 3 �a�
l + 4 when $b% = l. The maximum value

is f($b%)max = 3n+ 7 + 3 · 2l−n−2
n·l−l+1 when $b% = 1. Furthermore, we obtain that

f($b%)max < 3 �a�
l +7+3 · 2l−n−2

n·l−l+1 ≤ 3 �a�
l +7+3(2l−3) = 3 �a�

l +6l−2. According

to Lemma 1, there is c ≤ 3 �a�
l + 6l − 2 < 3

√
2R+1
l + 6l− 2.
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The Theorem follows. ��
Particularly, evacuate ratio is less than 3

√
2R+ 7 when l = 1.

5.2.2 Case 2: Two Groups
In reality, evacuees may be divided into two groups to escape. The two groups
can share information with each other by real-time communication device, such
as cell phone. In this situation, we design a Two-group Reposition Strategy (as
shown in Fig.7), whose description and analysis are as follows. In the strategy, l
denotes the length of step unit, it can be any positive integer chosen by evacuees.

Two-Group Reposition Strategy (TRS)
Step1: t = 0, i = 1, j = 0, evacuees are divided into two groups G1 and G2 at

point O. Let D = {D0, D1} = {+−→x (+−→y ),−−→x (−−→y )}.
Step2: G1(G2) walks toward Dj with length of i · l. If they reach the boundary

of M , skip to Step 3. Otherwise, retrace back to point O, i = i+1, j = (−j)+1.
Step3: If G1(G2) has reached the boundary of M , G1(G2) retrace back to

point O and according to final direction of G1(G2) to region boundary.

Theorem 5. The evacuate ratio of TRS is less than
√
2R+1
l + l + 3.

Proof. According to TRS, we divide it into two stages: The first stage, two
groups of evacuees are both in convex region; and the second stage, at least one
group is out of the convex region.

Similarly, for any (n − 1) · l < $a% ≤ n · l where n ∈ N∗, evacuation time
of TRS is tTRS1 ∈ [$a% + l · n2 − l · n, l · (n + 1)2 − l − (l · n − $a%)] in first
stage and tTRS2 ∈ [0, 2 $a%] in second stage. Thus there is c = tTRS1+tTRS2

tOPT
≤

l·(n+1)2−l−(l·n−�a�)+2�a�
�a� . Due to $a% = (n − 1) · l + $b%, the evacuate ratio of

TRS is n2·l+4n·l−3(l−�b�)
n·l−(l−�b�) . Similar with Theorem 3, for any n, l, $a% , $b% ∈ N∗,

the evacuate ratio of TRS is less than
√
2R+1
l + l+ 3.

The Theorem follows. ��
Particular, evacuate ratio is less than

√
2R+ 5 when l = 1.

5.2.3 Case 3: Four Groups
In this part, we analyze the evacuation of four groups with complete information
sharing with each other. When evacuees form four groups in grid network, we
still use equally divided exploration strategy of the general network according to
four directions of path in grid network (as shown in Fig.8). Based on assumptions
of grid network, we reduce the evacuate ratio to 3.

Theorem 6. In grid network, the evacuate ratio of EDES with four groups is
3.

Proof. According to the strategy, four groups of evacuees escape along the four
directions of grid network. Therefore, evacuation path of the first arrival at the
boundary of convex region is the same as the shortest path. When t = ti, sup-
pose that evacuee G1 reaches the boundary of convex region first. According to
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Fig. 7.The TRS when l = 1
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Fig. 8.The EDES of four groups

Theorem 3, evacuation time of G1 is $a%. Therefore, evacuation time of all the

evacuees is 3 $a%. Thus, the evacuate ratio of this strategy is c = 3�a�
�a� = 3.

The Theorem follows. ��
The evacuate ratio of EDES of four groups in grid network matches the lower
bound according to Corollary 1. Thus, the EDES is optimal.

6 Comparison

In this section, we analyze the performance of strategies given in this paper by
comparing them in different situations.

6.1 Comparison of Different Scenarios

To analyze the evacuation problem in this paper, we consider two scenarios: in
general plane and in grid network respectively, as shown in Table 1.

Table 1. The evacuate ratio of different group numbers in different scenarios

k = 3 k = 4 k = 5 k = 6

General plane 6 3
√
2 ≈ 4.24 3

cos(π/5) ≈ 3.71 2
√
3 ≈ 3.46

Grid network - 3 3 3

Through horizontal and longitudinal comparison, we can conclude several
properties from the table. First, the performance of strategy in general plane
becomes more and more efficient with the number of groups increasing, which
implies that communication among different groups is helpful. When the number
of groups in grid network is more than four, the evacuate ratio of strategy is 3,
which implies the evacuate ratio in four groups already matches the lower bound,
and increasing the number of groups is not helpful. Secondly, the performance
of strategy in grid network is better than that in general plane. In gird network,
evacuees have more information about network feature. With the structure of
network being known by evacuees, it makes them more easily to find the shortest
path because the number of paths is constrained by structure of network.
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6.2 Comparison of Different Cases

We compare the evacuate ratio among different cases in grid network, as shown

in Table 2. From analysis in section 5 above, it is indicated that the �a�
l makes

sense to the performance of strategies, which denotes degrees of their prediction
over step length. The evacuees in emergency tend to predict optimal solution
$a%. When the evacuees evacuate from affected area, they will choose a specific
l as step length in their prediction of the optimal solution.

Table 2. The evacuate ratio in different cases

l = 1 $a%/l is unknown $a%/l = 1 $a%/l = 2 $a%/l = 3

One group 3
√
2R+ 7 7 10 13

Two groups
√
2R + 5 5 6 7

Four groups 3 3 3 3

Through the comparison of strategies in different situations as shown above,

it can be concluded that evacuees are wiser when �a�
l = 1. That is, if their

prediction is equal to the step length they choose, the performance of strategies
is better than other. It is also clear that the performance of strategies is improved
by the number of groups increasing. Due to this, we can conclude that the
performance of strategy is better with more information. This information may
come from not only the communication with other groups of evacuees but also
the prediction of the optimal solution.

7 Conclusion

In this paper, we studies the evacuation problem from a convex region in the
plane during emergency situation in case that boundary information is unavail-
able. We prove the lower bound of this problem is 3 and analyses this problem in
two scenarios. In general plane, we design EDES strategy of multiple groups and
prove the evacuate ratio of the strategy is 3

cos(π/k) which is closed to lower bound

when the number of groups is numerous. In grid network, we analyze evacua-
tion problems in different situations. Under the situations of one group and two
groups, we design reposition strategies and analyze evacuate ratio of strategy
respectively. Under four groups of evacuees, we prove that EDES in grid net-
work is optimal. Moreover, we compare performance of different situations and
indicate information is helpful.

Two extensions of this paper can be considered in future. One is the evacuation
situation which different evacuees are located in different points in the convex
region. The other consideration is the evacuation strategy with the information
of affected area partially known.
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of the Signed Domination Problem�
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Abstract. A function f : V → {−1,+1} defined on the vertex set
of a graph G = (V,E) is a signed dominating function if the sum of its
function values over the closed neighborhood of every vertex is positive. A
signed dominating set of a graph G (with respect to a signed dominating
function f) is the set of vertices in G that are assigned value +1 by f . The
minimum signed dominating set problem has important applications in
the study of social networks. In this paper, we present a general technique
that can be used to obtain kernels for the signed dominating set problem
on various graphs. Our kernelization results also lead to strong and tight
lower bounds on the size of minimum signed dominating sets and signed
domination numbers for many graph classes.

1 Introduction

Let G = (V,E) be a graph. For each vertex v ∈ V , let N(v) be the set of all
neighbors of v, and let N [v] = N(v) ∪ {v}. A function f : V → {0, 1} is a
dominating function if

∑
w∈N [v] f(w) ≥ 1 for every vertex v in G. The famous

dominating set problem can be defined in terms of dominating functions. A
dominating set for the graph G (associated with a dominating function f) is the
set of vertices in G that are assigned value 1 by the function f . The dominating
set problem has been extensively studied in the literature (see, for example, [11]).

A variation of the dominating set problem is the signed dominating set prob-
lem. A function f : V → {−1,+1} is a signed dominating function for a graph
G = (V,E) if

∑
w∈N [v] f(w) ≥ 1 for every vertex v in G. A signed dominating

set for the graph G (associated with a signed dominating function f) is the set
of vertices in G that are assigned value +1 by the function f . The weight w(f) of
a signed dominating function f for a graph G is defined to be

∑
v∈V f(v). The

signed domination number γs(G) of the graph G is defined to be the minimum
w(f) over all dominating functions f for G.

There is a variety of applications for signed dominating sets. Assigning values
−1 or +1 to the vertices of a graph can be modeled as networks of positive and
negative electrical charges, networks of positive and negative spins of electrons,

� Supported by the National Natural Science Foundation of China under Grant
(61232001, 61103033, 61173051).
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and networks of people or organizations in which global decisions must be made
(e.g. yes-no, agree-disagree, like-dislike, etc.). In such a context, for example,
the minimum number of vertices assigned value +1 by a signed dominating
function represents the minimum number of people whose positive votes can
dominate all local groups (represented by vertex neighborhoods in the graph),
even though the entire network may have many negative voters. Hence this
variation of domination studies situations in which, in spite of the presence of
negative vertices, the neighborhoods of all vertices are required to maintain a
positive sum.

The concept of signed domination in graphs was introduced by Dunbar et
al. [6]. In particular, the complexity of computing the minimum weight of signed
dominating functions for a graph has been studied by many researchers
[6,23,9,14,22,16]. The decision version of the problem of computing the signed
domination number γs of a graph is NP-complete, even when the graph is re-
stricted to chordal graph or bipartite graph [10]. For a fixed k, the problem of
determining if a graph has a signed dominating function of weight at most k is
also NP-complete [10]. A linear-time algorithm for finding a signed dominating
function of the minimum weight in an arbitrary tree was presented by Hattingh
et al. [10]. Much research on signed domination has been focused on deriving
better upper and lower bounds on the signed domination number γs of graphs.
Dunbar et al. [6] investigated the properties of the signed domination number
and established lower bounds for γs: for r-regular n-vertex graphs, when r is
even, γs ≥ n/(r + 1). Henning and Slater [13] pointed out that γs ≥ 2n/(r + 1)
when r is odd. Upper bounds were given by Henning [12] and Favaron [7]: when
r is odd, γs ≤ n(r+1)2/(r2 +4r− 1), and when r is even, γs ≤ n(r+1)/(r+3).
Haynes[11] put forward that for any graph ifΔ ≤ 3, γs ≥ n/3, andΔ ≤ 5, γs ≥ 0,
where Δ is the maximum vertex degree of the graph. Zhang et al.[22] proposed
that for any graph G = (V,E), n = |V | and m = |E|, then γs ≥ n− 2m/3. More
recently, Fernau and Rodriguez-Velazquez [8] studied the relationship between
graph signed dominations and other related graph parameters.

Traditional method of computing the signed domination number γs is so com-
plicated since it needs a lot of energy to analyze the vertex degree and the edge
relationship between the vertices assigned value +1 and −1 by signed dominating
function(see [7,23,21]). Specifically, only the lower bounds of γs on general graphs,
r-regular graphs andΔ ≤ 5 graphs are known before our work. Moreover, the cor-
responding lower bounds are usually not sharp. Chen et al.[21] give a complicated
proof to get the lower bound of the signed domination number on graphswith min-
imum degree δ ≥ 2 and maximum degreeΔ. For grids, one of the most challenging
problems concerning the domination numbers of Cartesian products of graphs is
the proof of the Vizing Conjecture[18], namely γ(G×H) ≥ γ(G) · γ(H). Partial
works have been made towards finding the domination numbers of some particu-
lar Cartesian product of graphs. For example, the domination number has been
bounded both above and below for square grids, [15]. In short, no result has been
known for the lower bounds of γs on planar graphs, d-partite graphs, bipartite
graphs and Cartesian products of graphs so far.
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In this paper, we develop a framework for systematically deriving kernels
for signed dominating set problem on general and other special graphs. Our
technique applies to a series of graphs. Kernels of those graphs yield the signed
domination number γs quickly and easily. Furthermore, the lower bounds of γs
we derived are tight.

(Parameterized) Signed Dominating Set. Given a graph G and a
positive integer k, determine if there exists a signed dominating set of
at most k vertices in G.

We will study the complexity of the Signed Dominating Set problem and
present a number of kernelization results for the problem. We first study the
Signed Dominating Set problem and show that the problem is NP-complete
even restricted to bipartite graphs, bounded-degree graphs, planar graphs, grids
and many other graph classes. Then we give kernelization results for the Signed
Dominating Set problem on the following graph classes: general graphs, planar
graphs, grid graphs, d-partite graphs, bipartite graphs, bounded-degree graphs
and r-regular graphs. Our kernelization results also lead to strong tight lower
bounds, on the size of minimum signed dominating sets for these graph classes.
These results also imply strong lower bounds on the signed domination number
γs of these graph classes.

Our results are summarized in Fig. 1.

Graph Class Kernel Signed Domination Number

general graphs (k2 + k)/2
√
8n+ 1− n− 1

d-partite graphs d−1
2d

k2 + k 2d
d−1

(
√

1 + 2(d−1)
d

n− 1)− n

bipartite graphs �k/2� · �k/2� + k 4(
√
n+ 1− 1) − n

bounded-degree graphs (�Δ/2� + 2)k/2 2−�Δ/2	
2+�Δ/2	n

planar graphs 4k − 6 (6− n)/2

r-regular graphs (r + 1)k/(�r/2� + 1) 2
r/2�−r+1
r+1

n

grid graphs 5k/3 + 4 (n− 24)/5

Fig. 1. Summary of our results for Signed Dominating Set (where Δ denotes the
maximum vertex degree of the graph)

2 Preliminaries

For a set S, we will denote by |S| the cardinality of S. Let G = (V,E) be a
graph. We will denote by V (G) and E(G) the vertex set and the edge set of the
graph G, respectively. For a vertex v in G, the sets N(v) and N [v] will be called
the open neighborhood and the closed neighborhood of v, respectively. The degree
of the vertex v, degG(v), is equal to |N(v)|. A graph is a planar graph if it can
be embedded in the plane without edge crossing. A graph G = (V,E) is called
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d-partite if V admits a partition into d classes such that every edge has its ends
in different classes: vertices in the same partition class must not be adjacent. A
graph is a bipartite graph if d = 2. A triangle-free graph is a graph containing
no cycles of length three. A graph in which every vertex has the same degree
is called a regular graph. If every vertex has degree r then we say the graph is
r-regular graph. A graph class is of bounded-degree if there is a constant c such
that every graph in the class have their vertex degree bounded by c. For any
two graphs G and H , the Cartesian product G×H is the graph with vertex set
V (G)×V (H) and with edge set E(G×H) such that (u1, v1), (u2, v2) ∈ E(G×H),
whenever v1 = v2 and u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H). The numbers
0, 1, 2, ..., n− 1 always denote the vertices of the path Pn or the cycle Cn. The
graph Pm × Pn is called grid graph, and the graph Pm × Cn can be termed as
cylindrical grid graph as shown in Fig. 2.

3 The Complexity of Signed Dominating Set

It has been known that the problem of determining if a given graph G has
a signed dominating function of weight k is NP-complete [10]. It is easy to see
that given the size of a minimum signed dominating set of a graph, we can easily
compute the signed domination number for the graph. Therefore, we derive from
[10] immediately that the minimum signed dominating set problem is NP-hard.
On the other hand, the size of a minimum signed dominating set and the value
of the signed domination number can differ very significantly. We first study
the relationship between the weight of dominating functions and the size of
dominating sets for a graph.

Lemma 1. Let G be a graph of n vertices such that G has a signed dominating
function f of weight k. Then the integers n and k have the same parity.

Proof. Suppose that the signed dominating function f assigns h of the n vertices
in G with value +1 and assigns the remaining n−h vertices in G with value −1.
Then we have the equation:

h− (n− h) = k,

which shows that n+ k = 2h is an even number. As a consequence, the integers
n and k must have the same parity. ��

Using Lemma 1, we can immediately derive the following result.

Lemma 2. A graph G of n vertices has a signed dominating function f of weight
k if and only if it has a signed dominating set of $(n−1)/2%+�(k+1)/2� vertices.

Proof. By Lemma 1, we can divide the proof into two cases: either both n and
k are even numbers or both n and k are odd numbers.

Suppose that both n and k are even numbers. Let f1 be a signed dominating
function of weight k for the graph G. Let h be the number of vertices in G that
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Fig. 2. Two different looks of the cylindrical grid graph P5 × C5

are assigned value +1 by f1. Then the number of vertices in G that are assigned
value −1 by f1 is equal to n−h. Since the weight of f1 is k, we get h−(n−h) = k,
which gives (note that both n and k are even):

h = (n+ k)/2 = n/2 + k/2 = $(n− 1)/2%+ �(k + 1)/2�.

Therefore, the graph G has a signed dominating set of $(n− 1)/2%+ �(k+1)/2�
vertices. On the other hand, if the graph G has a signed dominating set of
$(n− 1)/2%+ �(k+1)/2� = n/2+ k/2 vertices, then G has a signed dominating
function f2 that assigns value +1 to n/2 + k/2 vertices and assigns value −1
to n− (n/2 + k/2) = n/2− k/2 vertices. The weight of this signed dominating
function f2 is then equal to (n/2 + k/2)− (n/2− k/2) = k.

Now consider the case when both n and k are odd numbers. Let f3 be a signed
dominating function of weight k for the graph G. Suppose that f3 assigns value
+1 to h vertices and value −1 to n− h vertices. We get h− (n− h) = k, which
gives (note that both n and k are odd):

h = (n+ k)/2 = (n− 1)/2 + (k + 1)/2 = $(n− 1)/2%+ �(k + 1)/2�,

i.e., the graph G has a signed dominating set of $(n − 1)/2% + �(k + 1)/2�
vertices. On the other hand, if the graph G has a signed dominating set of
$(n− 1)/2%+ �(k + 1)/2� = (n− 1)/2 + (k + 1)/2 = (n+ k)/2 vertices, then G
has a signed dominating function f4 that assigns value +1 to (n+ k)/2 vertices
and assigns value −1 to n− (n+ k)/2 = (n − k)/2 vertices. The weight of this
signed dominating function f4 is then equal to (n+ k)/2− (n− k)/2 = k.

This completes the proof of the lemma. ��

Combining Lemma 2 with the results in [10], we get immediately that the prob-
lem of determining if a given graph has a signed dominating set of size k is
NP-complete.

Next we show that Signed Dominating Set problem is NP-complete for
grid graphs.
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Lemma 3. [17] A planar graph G with maximum degree 4 can be embedded
in the plane using O(|V |) area in such a way that its vertices are at integer
coordinates and its edges are drawn so that they are made up of line segments of
the form x = i or y = j, for integers i and j.

Theorem 1. The Signed Dominating Set problem is NP-complete even for
any subgraphs of the grid graph Pj × Pl, j ≥ l ≥ 3.

Proof. Deciding a signed dominating function of weight less than k on planar
graph of maximum degree 3 is known to be NP-complete[4]. Using Lemma 2, we
conclude that Planar Signed Dominating Set Problem of maximum degree
3 is NP-complete. The reduction is from Planar Signed Dominating Set
of maximum degree 3. We transform a planar graph G = (V,E) of maximum
degree 3 into grid graph G′ such that G has a signed dominating set D with
|D| ≤ k if and only if G′ has a signed dominating set D′ with |D′| ≤ k′.

By Lemma 3 we can embed G in the plane with line segments parallel to the
x− or y− axis. It is an easy matter ensure that each line segment has integer
length, and that the total line length for the line representing an edge (u, v) is
of the form 2kuv + 1 for some integer kuv. A grid graph G′ is induced by this
drawing, containing exactly those integer points lying on a line in the drawing.
The construction of G′ can clearly be accomplished in polynomial time. It is easy
to verify that there exists a signed dominating setD inG with |D| ≤ k if and only
if there exists a signed dominating set D′ in G′ with |D′| ≤ k +

∑
uv∈E(G) kuv.

��

4 Kernelizations of Signed Dominating Set

In this section, we consider kernelization algorithms for the Signed Dominat-
ing Set problem on various graph classes. We introduce a systematic method
that allows us to derive strong lower bounds on the size of a minimum signed
dominating set of a graph for many graph classes, and to develop kerneliza-
tion algorithms that produce small kernels for the Signed Dominating Set
problem on these graph classes.

In the entire discussion of this section, we will always assume that our graphs
are simple graphs. Thus, multiple edges and self-loops are not allowed in a graph.

We start with the following simple observations.

Lemma 4. Let (G, k) be an instance of Signed Dominating Set. If the graph
G has a vertex of degree at least 2k, then (G, k) is a no-instance.

Proof. If a vertex v has degree at least 2k, then for a set D of vertices in G
to satisfy the signed dominating condition

∑
w∈N [v] fD(w) ≥ 1, the subset N [v]

must have at least k + 1 vertices w with fD(w) = +1. Thus, there cannot be a
subset of at most k vertices in G that makes a signed dominating set. ��

Lemma 5. Suppose that a graph G has a signed dominating set D. Then every
vertex v that is not in D has at least two neighbors in D.
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Proof. Let fD be the signed dominating function corresponding to the signed
dominating set D. Let v be a vertex of G that is not in D. If v has less than two
neighbors in the set D, then the signed dominating relation

∑
w∈N [v] fD(w) ≥ 1

cannot be satisfied. Thus, the vertex v must have at least two neighbors in the
set D. ��

The following lemma is critical for our development of the kernelization algo-
rithms for the Signed Dominating Set problem. The lemma is based on a
technique that is a modification of the technique recently introduced in [19].

Lemma 6. Let D be a signed dominating set of a simple graph G, and let G[D]
be the subgraph induced by the set D. Then the number of vertices in the graph G
is bounded by |E(G[D])|+ |D|, where E(G[D]) is the set of edges in the induced
subgraph G[D].

Proof. Let G = (V,E) and let fD be the signed dominating function correspond-
ing to the signed dominating set D. Let J be the set of vertices w in G with
fD(w) = −1, i.e., J = V \D. For a vertex v ∈ D, we will denote by degG[D](v)
the degree of the vertex v in the induced subgraph G[D]. By Lemma 5, each
vertex w in J has at least two neighbors in the set D.

If a vertex v in D has h neighbors in J , then the vertex v must have at least h
neighbors inD in order to satisfy the signed dominating relation

∑
u∈N [v] fD(u) ≥

1. That is, degG[D](v) ≥ h.
Let Dh be the subset ofD such that each vertex in Dh has exactly h neighbors

in J (note that if Dh 
= ∅ then h ≤ |D|−1). Now we count the number of vertices
in J in terms of the neighborhood of vertices in D, and we will get the following
relations (note that each vertex in J has at least two neighbors in D):

|J | ≤ 1

2

|D|−1∑
h=0

h · |Dh| ≤
1

2

|D|−1∑
h=0

∑
v∈Dh

degG[D](v) =
1

2

∑
v∈D

degG[D](v) = |E(G[D])|.

Therefore, the total number |V | of vertices in the graph G satisfies

|V | = |J |+ |D| ≤ |E(G[D])| + |D|.

This completes the proof of the lemma. ��

Lemma 6 allows us to derive strong lower bounds on the size of a minimum signed
dominating set and develop kernelization algorithms for the Signed Dominat-
ing Set problem on a number of graph classes.

4.1 Kernel for General Graphs

We start with the Signed Dominating Set problem on general graphs.

Theorem 2. The Signed Dominating Set problem on general graphs admits
a kernel of at most (k2 + k)/2 vertices.
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Proof. The kernelization algorithm on an instance (G, k) of Signed Dominat-
ing Set on general graphs runs as follows:

1. if (G has a vertex of degree at least 2k) or (G contains more than (k2+k)/2
vertices)

2. then return a no-instance (G′, k′), where G′ is a star with 4 leaves and
k′ = 3;

3. else return (G′, k′) = (G, k).

Because of the conditions enforced in step 1, in the instance (G′, k′) = (G, k)
returned by step 3 of the algorithm, the graph G′ contains at most ((k′)2+k′)/2
vertices.

Now consider step 2 of the algorithm. By Lemmas 4, if the graph G has a
vertex of degree at least 2k, then (G, k) must be a no-instance. If G has a signed
dominating set D with h ≤ k vertices, then the induced subgraph G[D] has
at most h(h − 1)/2 edges (note that G is a simple graph), i.e., |E(G[D])| ≤
h(h− 1)/2. By Lemma 6, the graph G has at most

|E(G[D])| + |D| ≤ h(h− 1)/2 + h = h(h+ 1)/2 ≤ (k2 + k)/2

vertices. Therefore, if G has more than (k2 + k)/2 vertices, then (G, k) must be
a no-instance. Note that the instance (G′, k′) returned in step 2 is a no-instance
in which the graph G′ contains 5 vertices and 5 ≤ ((k′)2 + k′)/2 = 6.

Thus, in the instance (G′, k′) returned by the algorithm, the graph G′ has at
most ((k′)2+k′)/2 vertices, and is a yes-instance of Signed Dominating Set if
and only if the original instance (G, k) is a yes-instance of Signed Dominating
Set. ��

Corollary 1. Let G be a simple graph of n vertices. Then a signed dominating
set for G contains at least (

√
8n+ 1− 1)/2 vertices.

Proof. Let D be a signed dominating set for G with |D| = k. By Lemma 6,
n ≤ (k2 + k)/2. Solving this inequality, we get k ≥ (

√
8n+ 1− 1)/2. ��

The lower bound given in Corollary 1 is tight. This can be seen from the following
example. Start from a complete graphKh of h vertices, h ≥ 4. For each pair (u, v)
of vertices in Kh, add a new degree-2 vertex wuv whose two neighbors are u and
v. Let the resulting graph be G. The graph G has n = h(h−1)/2+h = h(h+1)/2
vertices. It is easy to verify that the h vertices in the original Kh make a signed
dominating set for the graph G, and h = (

√
8n+ 1− 1)/2.

4.2 Kernel for Planar Graphs

Now we consider the Signed Dominating Set problem on planar graphs.

Lemma 7. Let G be a planar graph that has a signed dominating set D with k
vertices. Then G has at most 4k − 6 vertices.
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Proof. By Lemma 6, the graph G has at most |E(G[D])|+ |D| vertices. Since G
is a planar graph, the induced subgraph G[D] is also a planar graph. By a well-
known relationship between the number of vertices and the number of edges in
a planar graph [20], we have |E(G[D])| ≤ 3|V (G[D])| − 6 = 3|D| − 6. Replacing
|D| with k, we get immediately that the graph G has at most 4k−6 vertices. ��

The following theorem now follows directly from Lemma 7.

Theorem 3. The Signed Dominating Set problem on planar graphs admits
a kernel of at most 4k − 6 vertices.

Corollary 2. Let G be a planar graph of n vertices. Then a signed dominating
set of G contains at least (n+ 6)/4 vertices.

The lower bound given in Corollary 2 is tight. To see this, we start with a
triangulated planar embedding of a graph H of h vertices (H has exactly 3h− 6
edges). Then for each edge (u, v) in H add a new degree-2 vertex wuv whose two
neighbors are u and v. The resulting graph G is a planar graph with n = 4h− 6
vertices, and the h = (n + 6)/4 vertices in the original graph H make a signed
dominating set for the graph G.

4.3 Kernel for d-Partite Graphs

Lemma 8. Let G be a d-partite graph that has a signed dominating set D with
k vertices. Then G has at most d−1

2d k2 + k vertices.

4.4 Kernel for Bounded-Degree Graphs

Lemma 9. Let G be a graph in which the maximum vertex degree is Δ. Suppose
that the graph G has a signed dominating set D with k vertices. Then the graph
G has at most (�Δ/2�+ 2)k/2 vertices.

4.5 Kernel for r-Regular Graphs

Lemma 10. Let G be an r-regular graph in which each vertex with degree exactly
r. Suppose that the graph G has a signed dominating set D with k vertices. Then
the graph G has at most {

2r+2
r+2 k r is even
2r+2
r+3 k r is odd

vertices. That is G has at most r+1
�r/2�+1k vertices.

4.6 Kernel for Grid Graphs

Lemma 11. Let Pj ×Pl be a grid graph with j ≥ 3 and l ≥ 3. Suppose that the
grid Pj × Pl has a signed dominating set D with k vertices. Then the graph G
has at most 5k/3 + 4 vertices.
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5 Conclusion

In this paper, we study the Signed Dominating Set problem from the param-
eterized perspective. We proved the NP-completeness for the problem on various
graph classes, developed kernelization results for the problem on various graph
classes. Our kernelization results also lead to strong lower bounds, most of them
are tight, on the size of minimum signed dominating set for these graph classes.
Since the size θs(G) of a minimum signed dominating set for a graph G of n
vertices and the signed domination number γs(G) of the graph G are related by
the equality γs(G) = 2θs(G) − n, our strong lower bounds on θs also lead to
strong lower bounds on γs. We list these results as follows:

– The signed domination number γs(G) of a general graph G of n vertices is
at least

√
8n+ 1− n− 1, and this bound is tight.

– The signed domination number γs(G) of a planar graph G of n vertices is at
least (6− n)/2, and this bound is tight.

– The signed domination number γs(G) of a graph G of n vertices in which
the maximum vertex degree is Δ is at least (4−Δ)n/(Δ+ 4)(Δ is even) or
(5−Δ)n/(Δ+ 3)(Δ is odd) and this bound is tight.

– The signed domination number γs(G) of a bipartite graph G of n vertices is
at least 4(

√
n+ 5/4− 1) − n, 4(

√
n+ 1 − 1)− n or 4(

√
n+ 2 − 1)− n and

this bound is tight upper to a constant.
– The signed domination number γs(G) of an r-regular graph G of n vertices

is at least n/(r + 1)(r is even) or 2n/(r + 1)(r is odd), and this bound is
tight.

– The signed domination number γs(G) of a d-partite graph G of n vertices is

at least 2d
d−1(

√
1 + 2(d−1)

d n− 1)− n.

– The signed domination number γs(G) of a grid graph G of n vertices is at
least (n− 24)/5.

The Signed Dominating Set problem seems quite different from the regular
Dominating Set problem. For example, the Dominating Set problem on
general graphs is W [2]-hard [5] while the Signed Dominating Set problem on
general graphs has a quadratic kernel (Theorem 2), which implies immediately
that the problem is fixed-parameter tractable. Moreover, the kernel of 4k − 6
vertices for Signed Dominating Set on planar graphs (Theorem 3) seems
relatively easier, compared to the highly nontrivial algorithms for developing
linear kernels for Dominating Set on planar graphs [1,3].
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Abstract. A set of edges in a graph G is independent if no two elements
are contained in a clique of G. The edge-independent set problem asks
for the maximal cardinality of independent sets of edges. We show that
the edge-clique graphs of cocktail parties have unbounded rankwidth.
There is an elegant formula that solves the edge-independent set prob-
lem for graphs of rankwidth one, which are exactly distance-hereditary
graphs, and related classes of graphs. We present a PTAS for the edge-
independent set problem on planar graphs and show that the problem
is polynomial for planar graphs without triangle separators. The set of
edges of a bipartite graph is edge-independent. We show that the edge-
independent set problem remains NP-complete for graphs in which every
neighborhood is bipartite, i.e., the graphs without odd wheels.

1 Introduction

A set of edges in a graph G is independent if no two elements are contained in a
clique of G. The edge-independent set problem asks for the maximal cardinality
of independent sets of edges, which is called the edge-independence number and
denoted by α′(G).

Definition 1. The edge-clique graph Ke(G) of a graph G has the edges of G as
its vertices and two vertices of Ke(G) are adjacent when the corresponding edges
in G are contained in a clique.

The edge-independent sets of a graph G are the independent sets of the edge-
clique graph of G, so we write α′(G) = α(Ke(G)), where α(H) denotes the
cardinality of the maximum independent set of a graph H . There is a character-
ization of edge-clique graphs presented in [8], but the problem whether there is
any polynomial-time recognition algorithm for edge-clique graphs remains open.
Some results of edge-clique graphs can be found in [1, 7–9, 23, 32–34].

The edge-independence number is a lowerbound for the edge-clique cover. An
edge-clique cover of G is a family of complete subgraphs such that each edge of
G is in at least one member of the family. The edge-clique cover problem asks
for the minimal number of such a family, which is called the edge-clique cover
number and denoted by θe(G).
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The Exponential Time Hypothesis asserts that any fixed-parameter algorithm
for edge-clique cover problem must have a double exponential dependence on the
parameter [12]. It is no surprise that the problem is difficult. Mathematicians
have been trying to find orthogonal Latin squares for ages. The complete multi-
partite graph Km

n with m partite sets of size n has an edge-clique cover with n2

cliques if and only if there exists a collection of at least m− 2 orthogonal Latin
squares of order n [31]. The existence of 3 orthogonal Latin squares of order 10
is still wide open.

If the edge-clique graph of a graph G is perfect then the edge-independence
number and edge-clique cover number coincide and they can be computed in
polynomial time. Unfortunately, this happens rarely. For the cocktail party
graphs, i.e., Km

2 , an independent set of edges contains only four elements, while
the edge-clique cover is asymptotically log2 m. A formula is known for the edge-
clique cover of cocktail parties [18]. For Km

n with n > 2 the situation is highly
unclear [12, 29].

We show that for cographs, which generalize cocktail parties, there exists a
beautiful, elegant formula which enables us to compute the edge-independence
number in linear time. In fact, the same formula holds for graphs of rankwidth
one, i.e., distance-hereditary graphs.

Bipartite graphs are perfect, and the edge set of a bipartite graph is indepen-
dent. An edge-clique cover for a bipartite graph is simply the set of edges, since
no two edges are in a clique. We show that the edge-independence number is
already NP-complete for graphs in which every neighborhood is bipartite, i.e.,
the graphs without odd wheels.

For general graphs, one of the major open problems is whether the edge-
independence number can be computed in single exponential time, by which
we mean O∗(2O(n)) time, where n is the number of vertices in the graph. Our
investigations indicate that the edge-independent set problem is ‘much easier’
than the edge-clique cover problem, however, we think that it is unlikely that
there is a single exponential algorithm that solves it.

We organized this paper as follows. In Section 2 we show that edge-clique
graphs of cocktail parties have unbounded rankwidth. Thus we emphasize the
huge difference in complexity between the two problems for one of the easiest
classes of graphs. In Section 3 we present our formula for the edge-independence
numbers of cographs, distance-hereditary graphs and P4-sparse graphs. Edge-
clique cover is NP-complete for planar graphs.1 In Section 4 we show that there
is a polynomial-time approximation scheme (PTAS) for edge-independent set
problem on planar graphs. In Subsection 4.1 we show that there is an efficient al-
gorithm that computes the edge-independence number for planar graphs without
triangle separator. In Section 5 we show that the edge-independent set problem
remains NP-complete when every neighborhood is bipartite. We end the paper
with some concluding remarks.

1 Surprisingly, the problem to decide whether the edges of a planar graphs can be
partitioned into triangles is polynomial [16].
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2 Rankwidth of Edge-Clique Graphs of Cocktail Parties

In this section we show that the computation of edge-clique cover number θe(G)
is probably much harder than the edge-independence number α′(G). For graphs
of bounded rankwidth the edge-clique cover is polynomial-time computable [15].

Gyárfás [19] showed an interesting lowerbound in the following theorem. Here,
two vertices x and y are equivalent if they are adjacent and have the same closed
neighborhood.

Theorem 1. If a graph G has n vertices and contains neither isolated nor equiv-
alent vertices then θe(G) ≥ log2(n+ 1).

Notice that Gyárfás theorem implies that the edge-clique cover problem is fixed-
parameter tractable.

Definition 2. The cocktail party graph cp(n) is the complement of a matching
with 2n vertices.

A cocktail party graph has no equivalent vertices. Thus, by Theorem 1,

θe(cp(n)) ≥ log2(2n+ 1).

For the cocktail party graph an exact formula for θe(cp(n)) appears in [18]. In
that paper Gregory and Pullman (see also [17, 24]) prove that

lim
n→∞

θe(cp(n))

log2(n)
= 1.

For a graph G we denote the vertex-clique cover number of G by κ(G). Notice
that, for a graph G,

θe(G) = κ(Ke(G)).

Albertson and Collins mention the following result (due to Shearer) [1] for the
graphs Kr

e (cp(n)), defined recursively by Kr
e (cp(n)) = Ke(K

r−1
e (cp(n))).

α(Kr
e (cp(n))) ≤ 3 · (2r)!

Thus, for r = 1, α(Ke(cp(n))) ≤ 6. However, the following is easily checked (for
a proof see Lemma 3).

Lemma 1. For n ≥ 2
α(Ke(cp(n))) = 4.

Definition 3. A class of graphs G is χ-bounded if there exists a function f such
that for every graph G ∈ G,

χ(G) ≤ f(ω(G)),

where χ(G) is the chromatic number of G and ω(G) is the clique number of G.
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Dvořák and Král prove that the class of graphs with rankwidth at most k is
χ-bounded [13].

The following theorem illustrates that edge-clique graphs of cocktail parties
have a ‘hard structure.’

Theorem 2. The class of edge-clique graphs of cocktail parties has unbounded
rankwidth.

Proof. It is easy to see that the rankwidth of any graph is at most one more
than the rankwidth of its complement [30]. Assume that there is a constant k
such that the rankwidth of Ke(G) is at most k whenever G is a cocktail party
graph. Let

K = { Ke(G) | G " cp(n), n ∈ N }.

Then the rankwidth of graphs in K is uniformly bounded by k+1. By the result
of Dvořák and Král, there exists a function f such that

log2(2n+ 1) ≤ θe(G) = κ(Ke(G)) ≤ f(α(Ke(G))) = f(4)

for every cocktail party graph G. This is a contradiction. ��

3 Algorithms for Distance-Hereditary Graphs and
Related Graph Classes

First, we show that the edge-independent set problem is NP-complete for general
graphs.

Lemma 2. The computation of α′(G) for arbitrary graphs G is NP-complete.

Proof. Let G be an arbitrary graph. Construct a graph H as follows. At every
edge in G add two simplicial vertices, both adjacent to the two end vertices of
the edge. Add one extra vertex x adjacent to all vertices of G. Let H be the
graph constructed in this way.

Notice that a maximum set of independent edges does not contain any edge of
G since it would be better to replace such an edge by two edges incident with the
two simplicial vertices at this edge. Also notice that a set of independent edges
incident with x corresponds with an independent set of vertices in G. Hence

α′(H) = 2m+ α(G),

where m is the number of edges of G. ��

Remark 1. To show that edge-independent set problem is W [1]-complete we
would need a parameter-preserving reduction.



276 T. Kloks, C.-H. Liu, and S.-H. Poon

3.1 Cographs

A cograph is a graph without induced P4, which is a path with four vertices. It
is well-known that a graph is a cograph if and only if every induced subgraph
with at least two vertices is either a join or a union of two smaller cographs. It
follows that a cograph G has a decomposition tree (T, f) where T is a rooted
binary tree and f is a bijection from the vertices of G to the leaves of T . Each
internal node of T , including the root, is labeled as ⊗ or ⊕. The ⊗-node joins
the two subgraphs mapped to the left and right subtree. The ⊕ unions the two
subgraphs. When G is a cograph then a decomposition tree as described above
can be obtained in linear time [11].

The neighborhood of a vertex x, which is denoted by N(x), is the set of
vertices that are adjacent to x. For a vertex x, let d′(x) be the independence
number of the subgraph of G induced by N(x), that is,

d′(x) = α(G[N(x)]). (1)

Lemma 3. Let G be a cograph. Then

α′(G) = max {
∑
x∈W

d′(x) |W is an independent set in G }. (2)

Proof. Cographs are characterized by the fact that every induced subgraph has a
twin. Let x be a false twin of a vertex y in G. Let A be a maximum independent
set of edges in G. Let A(x) and A(y) be the sets of edges in A that are incident
with x and y, respectively. Assume that |A(x)| ≥ |A(y)|. Let Ω(x) be the set of
end vertices in N(x) of edges in A(x). Then we may replace the set A(y) with
the set

{ {y, z} | z ∈ Ω(x) }.
The cardinality of the new set is at least as large as |A|. Notice that, for any
maximal independent set Q in G, either {x, y} ⊆ Q or {x, y} ∩ Q = ∅. By
induction on the number of vertices in G, Equation (2) is valid.

Let x be a true twin of a vertex y in G. Let A be a maximum independent set
of edges in G and let A(x) and A(y) be the sets of edges in A that are incident
with x and y, respectively. If {x, y} ∈ A then A(x) = A(y) = {{x, y}}.

Now assume that {x, y} /∈ A. End vertices in N(x) of edges in A(x) and A(y)
are not adjacent nor do they coincide. Replace A(x) with

{ {x, z} | {x, z} ∈ A(x) or {y, z} ∈ A(y) }

and set A(y) = ∅. Then the new set of edges is independent and has the same
cardinality as A.

Let Q be an independent set in G. At most one of x and y is in Q. By induction
on the number of vertices in G, the validity of Equation (2) is easily checked. ��

We show that Equation (2) for a cograph can be computed in linear time in
terms of the number of edges of the graph in the following theorem, whose proof
is omitted due to lack of space.
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Theorem 3. When G is a cograph then α′(G) satisfies Equation (2). This value
can be computed in O(n2) time.

Remark 2. For any graph G whose edge-clique graph is perfect the intersection
number of G equals the fractional intersection number of G [23, Theorem 4.1].
It is easy to see that for cographs G, Ke(G) is not necessarily perfect. For
example, when G is the join of P3 and C4, then Ke(G) contains a C5 as an
induced subgraph.2

3.2 Distance-Hereditary Graphs

A graph G is distance-hereditary if the distance between any two nonadjacent
vertices, in any connected induced subgraph of G, is the same as their distance in
the G [21]. Distance-hereditary graphs is a superclass of cographs. Bandelt and
Mulder obtained the following characterization of distance-hereditary graphs.

Lemma 4 ([5]). A graph is distance-hereditary if and only if every induced
subgraph has an isolated vertex, a pendant vertex or a twin.

The papers [5] and [21] also contain characterizations of distance-hereditary
graphs in terms of forbidden induced subgraphs. We then show that Equation (2)
for a distance-hereditary graph can be computed in polynomial time.

Theorem 4. Let G be distance-hereditary. Then α′(G) satisfies Equation (2).
This value can be computed in polynomial time.

Proof. The characterization of distance-hereditary graphs follows from lemma 4.
Consider an isolated vertex x in G. Then A is a maximum independent set of

edges in G if and only if A is a maximum independent set of edges in the graph
G− x. By induction, Equation (2) is valid for G.

Let x be a pendant vertex and let y be the unique neighbor of x in G. Since
{x, y} is not in any triangle, the edge {x, y} is in any maximal independent set
of edges in G. Therefore,

α′(G) = 1 + α′(G− x).

Let Q be an independent set which maximizes Equation (2) for G− x. If y ∈ Q
then d′(y) goes up by one when adding the vertex x. If y /∈ Q, then Q ∪ {x} is
an independent set in G and d′(x) = 1.

By Lemma 3, Equation (2) is valid for true twins and false twins. Finally, this
proves the theorem. ��

2 Let P3 = {1, 2, 3} and C4 = {4, 5, 6, 7}. Then Ke(G) contains an induced C5 =
{{1, 2}, {3, 4}, {3, 7}, {4, 5}, {6, 7}}.
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3.3 P4-Sparse Graphs

A graph is P4-sparse if no set of five vertices induces more than one P4 [22].
P4-sparse graphs generalize the class of cographs and Jamison and Olariu char-
acterize P4-sparse graphs using spiders. Similar result for the class of P4-sparse
graphs is shown in Theorem 5. We omit its proof due to lack of space.

Theorem 5. When G is P4-sparse then α′(G) satisfies Equation (2). Further-
more, there exists a polynomial-time algorithm to compute a maximum indepen-
dent set of edges in G.

4 Algorithms for Planar Graphs

First, we use Baker’s technique [4] to obtain a PTAS for a maximum independent
set of edges in planar graphs in Theorem 6. We omit its proof due to lack of
space. We leave open the question whether the edge-independent set problem
for planar graphs is NP-complete.

Theorem 6. There exists a polynomial-time approximation scheme for a max-
imum independent set of edges in planar graphs.

4.1 Planar Graphs without Triangle Separator

Next, we show that the edge-independent set problem for a special class of planar
graphs can be solved in polynomial time. A triangle separator (of a connected
graph) is a triangle the removal of which disconnects the graph. We compute
α′(G) for planar graphs G without triangle separator in the following theorem.

Theorem 7. There exists an O(n3/2) algorithm that computes a maximum in-
dependent set of edges in planar graphs without triangle separator.

Proof. Let G be an embedding of a planar graph without triangle separator. We
may assume that G 
" K4. In all the faces that have length more than three
add a new vertex and make it adjacent to all vertices in the face. Let G′ be this
graph. Give the edges of G a weight 1 and give the new edges a weight 0.

Let H be the dual of G′. In H the weight of an edge is the weight of the
edge in G′ that it crosses. We claim that a solution is obtained by computing a
maximum weight matching in H [14].

Let Md be a matching in H . We may assume that Md contains no edge of
weight 0. Then every edge of Md crosses an edge of G. We claim that this is an
independent set M of edges in G. Since Md is a matching no two triangular faces
of G′ incident with different edges of Md coincide. Assume that two edges of M
lie in a triangle T of G. Then T cannot be a face of G′ since Md is a matching.
But then T is a separator which contradicts our assumption.

Let M be an independent set of edges in G and let Md be the corresponding
edges of H . Since M is an independent set of edges no two edges of M lie in a
triangle. Assume that Md is not a matching, and let f be a common face of G′

of two edges in Md. Then f is contained in a face of G which is not a triangle.
But then the edges of M are the same. ��
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5 NP-Completeness for Graphs without Odd Wheels

A wheelWn is a graph consisting of a cycle Cn and one additional vertex adjacent
to all vertices in the cycle. The universal vertex of Wn is called the hub. It is
unique unless Wn = K4. The edges incident with the hub are called the spokes
of the wheel. The cycle is called the rim of the wheel. A wheel is odd if the
number of vertices in the cycle is odd.

Lakshmanan, Bujtás and Tuza investigate the class of graphs without odd
wheels in [26]. They prove that Tuza’s conjecture is true for this class of graphs
(see also [20]). Notice that a graph G has no odd wheel if and only if every neigh-
borhood in G induces a bipartite graph. It follows that ω(G) ≤ 3. Obviously,
the class of graphs without odd wheels is closed under taking subgraphs.

Notice that, when G has no odd wheel then every neighborhood in Ke(G) is
either empty or a matching. Furthermore, it is easy to see that Ke(G) contains
no diamond (every edge is in exactly one triangle), no C5 and no odd antihole.

For graphs G without odd wheels Ke(G) coincides with the anti-Gallai graphs
introduced by Le [28], since ω(G) ≤ 3. For general anti-Gallai graphs the com-
putation of the clique number and chromatic number are NP-complete.

Let us mention that the recognition of anti-Gallai graphs is NP-complete.
Even when each edge in G is in exactly one triangle, the problem to decide if
G is an anti-Gallai graph is NP-complete [3, Corollary 5.2]. The recognition of
edge-clique graphs of graphs without odd wheels is, as far as we know, open.
Let us also mention that the edge-clique graphs of graphs without odd wheels
are clique graphs [7]. The recognition of clique graphs of general graphs is NP-
complete [2]. We show below that the edge-independent set problem for graphs
without odd wheels in NP-complete.

Theorem 8. The computation of α′(G) is NP-complete for graphs G without
odd wheels.

Proof. It is clear that the problem is in NP. Then we reduce 3-SAT to the vertex
cover problem in edge-clique graphs of graphs without odd wheels.
Let H " cp(3), i.e., the line graph of K4. See Fig. 1(A). Let S be a 3-sun as
depicted in Fig. 1(B). The graph H is obtained from S by adding three edges
between pairs of vertices of degree two in S.3 Call the three vertices of degree
four in S, the ‘inner triangle’ of H and call the remaining three vertices of H
the ‘outer triangle.’

Notice that H has 3 maximum independent sets of edges. Each maximum
independent set of edges is an induced C4 consisting of one edge from the in-
ner triangle, one edge from the outer triangle, and two edges between the two
triangles. The three independent sets partition the edges of H .

The six edges of H between the inner and outer triangle form a 6-cycle in
Ke(H). Let F denote this set of edges in H .

3 In [27, Theorem 14] the authors prove that every maximal clique in Ke(G) contains
a simplicial vertex if and only if G does not contain, as an induced subgraph, K4

nor a 3-sun with 0, 1, 2 or 3 edges connecting the vertices of degree two.



280 T. Kloks, C.-H. Liu, and S.-H. Poon

(B) S (C) Ke(H)(A) H

1 2 3

4 5

6

{1,3}

{1,6} {3,6}

{1,2} {2,3}

{4,6}

{1,4}

{4,5}

{2,4} {2,5}
{3,5}

{5,6}

Fig. 1. This figure shows H , S and Ke(H). In H , vertices
2, 4, 5 induce the inner triangle and the remaining three
vertices induce the outer triangle. The three colors for the
edges of H indicate the partition of three maximum inde-
pendent sets of edges.

p

q

p′

q′

x̄ x

v1

v2

v3

Fig. 2. A link gad-
get between a vari-
able gadget and a
clause gadget

For each clause (xi ∨ xj ∨ xk) take one copy of H . Take an independent set
of three edges contained in F and label these with xi, xj and xk.
For each variable x take a triangle. Label one edge of the triangle with the literal
x and one other edge of the triangle with its negation x̄. Then add a simplicial
vertex to the unlabeled edge of the triangle.

Construct links between variable gadgets and clause gadgets as follows. Let
(xi ∨ xj ∨ xk) be a clause. There are four steps. First add a 2-chain pv1q from
an endpoint p of the edge labeled xi in the variable gadget to one endpoint q
of the edge xi in the clause gadget. See Fig. 2. Similarly, add a 3-chain p′v2v3q

′

between the other two endpoints, where p′ is in the variable gadget and q′ is in
the clause gadget. Then add four edges pv2, v2v1, v1v3 and v3q to let the rectangle
pqq′p′ become a triangle strip with five triangles. Finally, add a simplicial vertex
to each of the edges in the 2-chain and the 3-chain. We construct links for the
other two literals in the clause in the same manner.

Let G be the graph constructed in this manner. Consider the triangles T which
are the edge-clique graphs of the triangles in G containing the newly-added
simplicial vertices. Notice that simplicial vertices of a graph may be removed
without changing the complexity of the vertex cover problem and so the vertices
of T can be removed without changing the complexity. Let K be the graph
obtained from Ke(G) by removing the vertices of T .

Let L be the number of variables, let M be the number of clauses in the 3-SAT
formula. Assume that there is a satisfying assignment. Then choose the vertices
in K corresponding to literals that are true in the vertex cover. The variable
gadgets need L vertices and the links need 6M vertices in the vertex cover. Since
this assignment is satisfying, we need at most 8M vertices to cover the remaining
edges in the clause structures, since the outgoing edge from each literal which is
true is covered. Thus there is a vertex cover of Ke(G) with L+ 14M vertices.

Assume that Ke(G) has a vertex cover with L + 14M vertices. At least L
vertices in K are covering the edges in the variable gadgets and at least 6M
vertices in K are covering the edges in the links. The other 8M vertices of K are



On Edge-Independent Sets 281

covering the edges in the clause gadgets. Take the literals of the variable gadgets
that are in the vertex cover as an assignment for the formula. Each clause gadget
must have one literal vertex of which the outgoing edge is covered. Therefore,
the assignment is satisfying.

This proves the theorem. ��

6 Concluding Remarks

Cygan et al [12] show that, under the assumption of the exponential time hy-
pothesis, there is no polynomial-time algorithm which reduces the parameterized
problem (θe(G), k) to a kernel of size bounded by 2o(k). In their proof the authors
make use of the fact that θe(cp(2

�)) is a “hard instance for the edge clique cover
problem, at least from the point of view of the currently known algorithms.”
(Quotation from [12].) Note that, in contrast, the parameterized edge-clique
partition problem can be reduced to a kernel with at most k2 vertices [29]. (Mu-
juni and Rosamond also mention that the edge-clique cover problem probably
has no polynomial kernel.) These observations lead us to investigate edge-clique
graphs of cocktail parties in Section 2.

Let Km
n denote the complete multi-partite graph with m partite sets each

having n vertices. Obviously, Km
n is a cograph with n ·m vertices.

Theorem 9 ([31]). Assume that

3 ≤ m ≤ n+ 1.

Then θe(K
m
n ) = n2 if and only if there exists a collection of at least m − 2

pairwise orthogonal Latin squares of order n.

Notice that, if there exists an edge-clique cover ofKm
n with n2 cliques, then these

cliques are mutually edge-disjoint. Finding the maximal number of mutually
orthogonal Latin squares of order n is a renowned open problem. The problem
has a wide field of applications, eg in combinatorics, designs of experiments,
group theory and quantum informatics.

Unless n is a prime power, the maximal number of MOLS is known for only
a few orders. We briefly mention a few results. Let f(n) denote the maximal
number of MOLS of order n. The well-known ‘Euler-spoiler’ shows that f(n) = 1
only for n = 2 and n = 6. Also, f(n) ≤ n− 1 for all n > 1, and Chowla, Erdös
and Straus [10] show that

lim
n→∞

f(n) =∞.

Define

nr = max { n | f(n) < r }.

A lowerbound for the speed at which f(n) grows was obtained by Wilson, who
showed that nr < r17 when r is sufficiently large [35]. Better bounds for nr, for
some specific values of r, were obtained by various authors (see eg [6]).
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See eg [25] for some recent computational attempts to find orthogonal Latin
squares. The problem seems extremely hard, both from a combinatorial and from
a computational point of view [24]. Despite many efforts, the existence of three
pairwise orthogonal Latin squares of order 10 is, as far as we know, still unclear.

Finally, the observations mentioned above lead us to conjecture that the edge-
clique cover problem is NP-complete for cographs.
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Abstract. We consider the complexity for computing the approximate
sum a1+a2+ · · ·+an of a sorted list of numbers a1 ≤ a2 ≤ · · · ≤ an. We
show an algorithm that computes an (1 + ε)-approximation for the sum
of a sorted list of nonnegative numbers in an O( 1

ε
min(log n, log(xmax

xmin
))·

(log 1
ε
+ log log n)) time, where xmax and xmin are the largest and the

least positive elements of the input list, respectively. We prove a lower
bound Ω(min(log n, log(xmax

xmin
)) time for every O(1)-approximation algo-

rithm for the sum of a sorted list of nonnegative elements. We also show
that there is no sublinear time approximation algorithm for the sum of
a sorted list that contains at least one negative number.

1 Introduction

Computing the sum of a list of numbers is a classical problem that is often
found inside the high school textbooks. There is a famous story about Karl
Friedrich Gauss who computed 1+2+ · · ·+100 via rearranging these terms into
(1 + 100) + (2 + 99) + ... + (50 + 51) = 50× 101, when he was seven years old,
attending elementary school. Such a method is considered an efficient algorithm
for computing a class of lists of increasing numbers. Computing the sum of a
list of elements has many applications, and is ubiquitous in software design. In
the classical mathematics, many functions can be approximated by the sum of
simple functions via Taylor expansion. This kind of approximation theories is in
the core area of mathematical analysis. In this article we consider if there is an
efficient way to compute the sum of a general list of nonnegative numbers with
nondecreasing order.

Let ε be a real number at least 0. Real number s is an (1 + ε)-approximation

for the sum problem a1, a2, · · · , an if
∑n

i=1 ai

1+ε ≤ s ≤ (1+ ε)
∑n

i=1 ai. Approximate
sum problem was studied in the randomized computation model. Every O(1)-
approximation algorithm with uniform random sampling requires Ω(n) time in
the worst case if the list of numbers in [0, 1] is not sorted. Using O( 1

ε2 log
1
δ ) ran-

dom samples, one can compute the (1+ε)-approximation for the mean, or decide
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if it is at most δ for a list numbers in [0, 1] [9]. Canetti, Even, and Goldreich [3]
showed that the sample size is tight. Motwani, Panigrahy, and Xu [14] showed
an O(

√
n) time approximation scheme for computing the sum of n nonnegative

elements. There is a long history of research for the accuracy of summation of
floating point numbers (for examples, see [10, 2, 1, 4–6, 8, 11–13, 15, 16]). The
efforts were mainly spent on finding algorithms with small rounding errors.

We investigate the complexity for computing the approximate sum of a sorted
list. When we have a large number of data items and need to compute the sum,
an efficient approximation algorithm becomes important. Har-Peled developed
an coreset approach for a more general problem. The method used in his paper
implies an O( log n

ε ) time approximation algorithm for the approximate sum of
sorted nonnegative numbers [7]. The coreset is a subset of numbers selected from
a sorted input list, and their positions only depends on the size n of the list,
and independent of the numbers. The coreset of a list of n sorted nonnegative
numbers has a size Ω(log n). This requires the algorithm time to be also Ω(log n)
under all cases.

We show an algorithm that gives an (1 + ε)-approximation for the sum of
a list of sorted nonnegative elements in O(1ε min(logn, log(xmax

xmin
)) · (log 1

ε +
log logn)) time, where xmax and xmin are the largest and the least positive
elements of the input list, respectively. This algorithm has an incomparable
complexity with Har-Peled’s algorithm. Our algorithm is of sub-logarithm com-

plexity when xmax

xmin
≤ n

1

(log log n)1+a for any fixed a > 0. The algorithm is based
on a different method, which is a quadratic region search algorithm, from the
coreset construction used in [7].

We also prove a lower bound Ω(min(logn, log(xmax

xmin
)) for this problem. We

first derive an O(log logn) time approximation algorithm that finds an approx-
imate region of the list for holding the items of size at least a threshold b. Our
approximate sum algorithm is derived with it as a submodule. We also show
an Ω(log logn) lower bound for approximate region algorithms for the sum of a
sorted list with only nonnegative elements.

In Section 2, we present an algorithm that computes (1 + ε)-approximation
for the sum of a sorted list of nonnegative numbers In Section 3, we present

lower bounds related to the sum of sorted list. In Section ?? , we show the
experimental results for the implementation of our algorithm in Section 2.

2 Algorithm for Approximate Sum of Sorted List

In this section, we show a deterministic algorithm for the sorted elements. We
first show an approximation to find an approximate region of a sorted list with
elements of size at least threshold b.

A crucial part of our approximate algorithm for the sum of sorted list is to find
an approximate region with elements of size at least a threshold b. We develop a
method that is much faster than binary search and it takes O(log 1

δ + log logn)
time to find the approximate region. We first apply the square function to expand
the region and use the square root function to narrow down to a region that only
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has (1 + δ) factor difference with the exact region. The parameter δ determines
the accuracy of approximation.

Definition 1. For i ≤ j, let |[i, j]| be the number of integers in the interval [i, j].

If both i and j are integers with i ≤ j, we have |[i, j]| = j − i+ 1.

Definition 2. A list X of n numbers is represented by an array X [1, n], which
has n numbers X [1], X [2], · · · , X [n]. For integers i ≤ j, let X [i, j] be the sublist
that contains elements X [i], X [i+1], · · · , X [j]. For an interval R = [i, j], denote
X [R] to be X [i, j].

Definition 3. For a sorted list X [1, n] with nonnegative elements by nonde-
creasing order and a threshold b, the b-region is an interval [n′, n] such that
X [n′, n] are the numbers at least b in X [1, n]. An (1 + δ)-approximation for the

b-region is a region R = [s, n] such that at least |R|
1+δ numbers in X [s, n] are at

least b, and [s, n] contains all every position j with X [j] ≥ b.

2.1 Approximate Region

The approximation algorithm for finding an approximate b-region to contain the
elements at least a threshold b has two loops. The first loop searches the region
by increasing the parameterm via the square function. When the region is larger
than the exact region, the second loop is entered. It converges to the approximate
region with a factor that goes down by a square root each cycle. Using the
combination of the square and square root functions makes our algorithm much
faster than the binary search.

In order to simplify the description of the algorithm Approximate-Region(.),
we assume X [i] = −∞ for every i ≤ 0. It can save the space for the boundary
checking when accessing the list X . The description of the algorithm is mainly
based on the consideration for its proof of correctness. For a real number a,
denote �a� to be the largest integer at most a, and $a% to be the least integer at
least a.

Algorithm Approximate-Region(X, b, δ, n)
Input: X [1, n] is a sorted list of n numbers by nondecreasing order; n is the

size of X [1, n]; b is a threshold in (0,+∞); and δ is a parameter in (0,+∞).

1. if (X [n] < b), return ∅;
2. if (X [n− 1] < b), return [n, n];
3. if (X [1] ≥ b), return [1, n];
4. let m := 2;
5. while (X [n−m2 + 1] ≥ b) {
6. let m := m2;
7. };
8. let i := 1;
9. let m1 := m;
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10. let r1 := m;
11. while (mi ≥ 1 + δ) {
12. let mi+1 :=

√
mi;

13. if (X [n− �mi+1ri�+ 1] ≥ b), then let ri+1 := mi+1ri;
14. else ri+1 := ri;
15. let i := i+ 1;
16. };
17. return [n− �miri�+ 1, n];

End of Algorithm

Lemma 1. Let δ be a parameter in (0, 1). Given an element b, and a list A of
sorted n elements, Algorithm Approximate-Region(.) finds an (1+δ)-approximate
b-region in O((log 1

δ ) + (log logn)) time.

Proof. After the first phase (lines 1 to 7) of the algorithm, we obtain number m
such that

X [n−m+ 1] ≥ b, and (1)

X [n−m2 + 1] < b. (2)

As we already assume X [i] = −∞ for every i ≤ 0, there is no boundary problem
for assessing the input list. The variable m is an integer in the first phase. Thus,
the boundary point for the region with numbers at least the threshold b is in

[n−m2+1, n−m+1]. The variable m can be expressed as 22
k

for some integer
k ≥ 0 after executing k cycles in the first phase. Thus, the first phase takes
O(log logn) time because m is increased to m2 at each cycle of the first while

loop, and 22
k ≥ n for k ≥ log log n.

In the second phase (lines 8 to 17) of the algorithm, we can prove that X [n−
�ri� + 1] ≥ b and X [n − �miri� + 1] < b at the end of every cycle (right after
executing the statement at line 15) of the second loop (lines 11 to 16). Thus,
the boundary point for the region with elements at the threshold b is in [n −
�miri� + 1, n− �ri�+ 1]. The variable mi is not an integer after mi < 2 in the
algorithm. It can be verified via a simple induction. It is true before entering the
second loop (lines 11 to 16) by inequalities (1) and (2). Assume that at the end
of cycle i,

X [n− �ri�+ 1] ≥ b; and (3)

X [n− �miri�+ 1] < b. (4)

Let us consider cycle i+ 1 at the second loop. Let mi+1 =
√
mi.

1. Case 1:X [n−�mi+1ri�+1] ≥ b. Let ri+1 = mi+1ri according to line 13 in the
algorithm. Then X [n−�ri+1�+1] = X [n−�mi+1ri�+1] ≥ b. By inequality
(4) in the hypothesis, X [n− �mi+1ri+1�+ 1] = X [n−

⌊√
mi
√
miri

⌋
+ 1] =

X [n− �miri�+ 1] < b.
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2. Case 2: X [n − �mi+1ri� + 1] < b. Let ri+1 = ri according to line 14 the
algorithm. We haveX [n−�ri+1�+1] = X [n−�ri�+1] ≥ b by inequality (3) in
the hypothesis. By inequality (4) in the hypothesis, X [n−�mi+1ri+1�+1] =
X [n− �mi+1ri�+ 1] < b by the condition of this case.

Therefore, X [n− �ri+1� + 1] ≥ b and X [n− �mi+1ri+1� + 1] < b at the end of
cycle i+ 1 of the second while loop.

Every number in X [n − ri + 1, n], which has ri entries, is at least b, and
X [n−miri + 1, n] has miri entries and mi ≤ 1 + δ at the end of the algorithm.
Thus, the interval [n − miri + 1, n] returned by the algorithm is an (1 + δ)-
approximation for the b-region.

It takes O(log logn) steps for converting m to be at most 2, and additional
log 1

δ steps to make m to be at most 1 + δ. When mi < 1 + δ, we stop the loop,
and output an (1+δ)-approximation. This step takes at most O(log 1

δ +log logn)
time since mi is assigned to

√
mi at each cycle of the second loop. This proves

Lemma 1.

After the first loop of the algorithm Approximate-Region(.), the number m is

always of the format 22
k

for some integer k. In the second loop of the algorithm

Approximate-Region(.), the number m is always of the format 22
k

when m is

at least 2. Computing its square root is to convert 22
k

to 22
k−1

, where k is an
integer. Since (1+ 1

2i ) · (1+
1
2i ) > (1+ 1

2i−1 ), we have that (1+
1
2i ) is larger than

the square root of (1 + 1
2i−1 ). We may let variable mi go down by following the

sequence {(1 + 1
2i )}∞i=1 after mi ≤ 2. In other words, let g(.) be an approximate

square root function such that g(1 + 1
2i ) = 1 + 1

2i+1 for computing the square
root after m ≤ 2 in the algorithm. It has the property g(m) · g(m) ≥ m. The
assignment mi+1 =

√
mi can be replaced by mi+1 = g(mi) in the algorithm. It

can simplify the algorithm by removing the computation of square root while
the computational complexity is of the same order.

2.2 Approximate Sum

We present an algorithm to compute the approximate sum of a list of sorted
nonnegative elements. It calls the module for the approximate region, which is
described in Section 2.1.

The algorithm for the approximate sum of a sorted list X of n nonnegative
numbers generates a series of disjoint intervals R1 = [r1, r

′
1], · · · , Rt = [rt, r

′
t],

and a series of thresholds b1, · · · , bt such that each Ri is an (1 + δ)-approximate
bi-region in X [1, r′i], r

′
1 = n, r′i+1 = ri − 1, and bi+1 ≤ bi

1+δ , where δ = 3ε
4

and 1 + ε is the accuracy for approximation. The sum of numbers in X [Ri] is
approximated by |Ri|bi. As the list b1 > b2 > · · · > bt decreases exponentially,
we can show that t = O(1ε logn). The approximate sum for the input list is∑t

i=1 |Ri|bi. We give a formal description of the algorithm and its proof below.
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Algorithm Approximate-Sum(X, ε, n)
Input: X [1, n] is a sorted list of nonnegative numbers (by nondecreasing order)

and n is the size of X [1, n], and ε is a parameter in (0, 1) for the accuracy of
approximation.

1. if (X(n) = 0), return 0;
2. let δ := 3ε

4 ;
3. let r′1 := n;
4. let s := 0;
5. let i := 1;

6. let b1 := X[n]
1+δ ;

7. while (bi ≥ δX[n]
3n ) {

8. let Ri :=Approximate-Region(X, bi, δ, r
′
i);

9. let r′i+1 := ri − 1 for Ri = [ri, r
′
i];

10. let bi+1 :=
X[r′i+1]

1+δ ;
11. let si := |[ri, r′i]| · bi;
12. let s := s+ si;
13. let i := i+ 1;
14. };
15. return s;

End of Algorithm

Theorem 1. Let ε be a positive parameter. Then there is an
O(1ε min(logn, log(xmax

xmin
)) · (log 1

ε + log logn)) time algorithm to compute
(1 + ε)-approximation for the sum of sorted list of nonnegative numbers, where
xmax and xmin are the largest and the least positive elements of the input list,
respectively.

Proof. Assume that there are t cycles executed in the while loop of the algorithm
Approximate-Sum(.). Let regions R1, R2, · · · , Rt be generated. In the first cycle
of the loop, the algorithm finds a region R1 = [r1, n] of the elements of size

at least X[n]
1+δ . In the second cycle of the loop, the algorithm finds region R2 =

[r2, r1 − 1] for the elements of size at least X[r1−1]
1+δ . In the i-th cycle of the loop,

it finds a region Ri = [ri, ri−1 − 1] of elements of size at least X[ri−1−1]
1+δ . By the

algorithm, we have

j ∈ R1 ∪R2 ∪ · · · ∪Rt for every j with X [j] ≥ δX [n]

3n
. (5)

Since each Ri is an (1 + δ)-approximation of X[ri−1−1]
1+δ -region in X [1, ri−1 − 1],

X [Ri] contains at least
|Ri|
1+δ entries of size at least X[ri−1−1]

1+δ in X [1, ri−1− 1], Ri

also contains every entry of size at least X[ri−1−1]
1+δ in X [1, ri−1 − 1]. Thus,

si
1 + δ

=
|Ri|
1 + δ

· X [ri−1 − 1]

1 + δ
≤

∑
j∈Ri

X [j] ≤ |Ri|X [ri−1 − 1] = (1 + δ)si.
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Thus,
si

1 + δ
≤

∑
j∈Ri

X [j] ≤ (1 + δ)si.

We have

1

1 + δ

∑
j∈Ri

X [j] ≤ si ≤ (1 + δ)
∑
j∈Ri

X [j]. (6)

Thus, si is an (1 + δ)-approximation for
∑

j∈Ri
X [j]. We also have∑

X[i]< δX[n]
3n

X [i] < δX[n]
3 since X [1, n] has only n numbers in total. Therefore,

we have the following inequalities:

∑
X[i]≥ δX[n]

3n

X [i] =

n∑
i=1

X [i]−
∑

X[i]< δX[n]
3n

X [i] (7)

≥
n∑

i=1

X [i]− δ

3

n∑
i=1

X [i] (8)

= (1− δ

3
)

n∑
i=1

X [i]. (9)

We have the inequalities:

s =

t∑
i=1

si (10)

≥ 1

1 + δ

∑
X[i]≥ δX[n]

3n

X [i] (by inequality (6))) (11)

≥
(1− δ

3 )

1 + δ

n∑
i=1

X [i] (by inequality (9)) (12)

=
1

1+δ
1− δ

3

n∑
i=1

X [i] (13)

=
1

1 +
4δ
3

1− δ
3

n∑
i=1

X [i] (14)

≥ 1

1 + 4δ
3

n∑
i=1

X [i] (15)

=
1

1 + ε

n∑
i=1

X [i]. (16)

As R1, R2, · · · are disjoint each other, we also have the following inequalities:

s =

t∑
i=1

si (17)
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≤
t∑

i=1

(1 + δ)
∑
j∈Ri

X [j] (by inequality (6)) (18)

≤ (1 + δ)
n∑

j=1

X [j] (19)

≤ (1 + ε)

n∑
j=1

X [j]. (20)

Therefore, the output s returned by the algorithm is an (1+ε)-approximation for
the sum

∑n
i=1 X [i]. By Lemma 1, each cycle in the while loop of the algorithm

takes O((log 1
δ +log log n)) time for generating Ri. For the descending chain r′1 >

r′2 > · · · > r′t with X [r′i] ≤
X[r′i+1]

1+δ and bi = X [r′i] ≥
δX[n]
3n for each i, we have that

the number of cycles t is at most O(1δ logn). This is because X [r′t] ≤ xmax

(1+δ)t ≤
δX[n]
3n for some t = O(1δ logn). Similarly, the number of cycles t is at most

O(1δ log(
xmax

xmin
)) because X [r′t] ≤ xmax

(1+δ)t ≤ xmin for some t = O(1δ log(
xmax

xmin
)).

Therefore, there are most t = O(1δ min(log n, log xmax

xmin
)) cycles in the while

loop of the algorithm. Therefore, the total time isO(1δ min(logn, log(xmax

xmin
))(log 1

δ+

log logn)) = O(1ε min(logn, log(xmax

xmin
))(log 1

ε + log logn)). This proves Theo-
rem 1.

3 Lower Bounds

In this section, we show several lower bounds about approximation for the sum
of sorted list. The Ω(min(logn, log(xmax

xmin
)) lower bound is based on the general

computation model for the sum problem. The lower bound Ω(log logn)) for
finding an approximate b-region shows that upper bound is optimal if using the
method developed in Section 2. We also show that there is no sublinear time
algorithm if the input list contains one negative element.

3.1 Lower Bound for Computing Approximate Sum

In this section, we show a lower bound for the general computation model, which
almost matches the upper bound of our algorithm. This indicates the algorithm
in Section 2 can be improved by at most O(log logn) factor.

The lower bound is proved by a contradiction method. In the proof of the
lower bound, two lists L1 and L2 are constructed. For an algorithm with o(log n)
queries, the two lists will have the same answers to all queries. Thus, the ap-
proximation outputs for the two inputs L1 and L2 are the same. We let the gap
of the sums from the two lists be large enough to make them impossible to share
the same constant factor approximation.

Theorem 2. For every positive constant d > 1, every d-approximation algo-
rithm for the sum of a sorted list of nonnegative numbers needs at least
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Ω(min(logn, log xmax

xmin
)) (adaptive) queries to the list, where γ is an arbitrary

small constant in (0, 1), where xmax and xmin are the largest and the least pos-
itive elements of the input list, respectively..

3.2 Lower Bound for Computing Approximate Region

We give an Ω(log logn) lower bound for the deterministic approximation scheme
for a b-region in a sorted input list of nonnegative numbers. The method is that
if there is an algorithm with o(log log n) queries, two sorted lists L1 and L2 of 0, 1
numbers are constructed. They reply the same answer the each the query from
the algorithm, but their sums have large difference. This lower bound shows
that it is impossible to use the method of Section 2, which iteratively finds
approximate regions via a top down approach, to get a better upper bound for
the approximate sum problem.

Definition 4. For a sorted list X [1, n] with 0, 1 numbers by nondecreasing order,
an d-approximate 1-region is a region R = [s, n], which contains the last position

n of X [1, n], such that at least |R|
d numbers in X [s, n] are 1, and X [s, n] contains

all the positions j with X [j] = 1, where |R| is the number of integers i in R.

Theorem 3. For any parameter d > 1, every deterministic algorithm must
make at least log logn − log log(d + 1) adaptive queries to a sorted input list
for the d-approximate 1-region problem.

Corollary 1. For any constant ε ∈ (0, 1), every deterministic O(1)-
approximation algorithm for 1-region problem must make at least (1− ε) log logn
adaptive queries.

3.3 Lower Bound for Sorted List with Negative Elements

We derive a theorem that shows there is not any factor approximation sublinear
time algorithm for the sum of a list of elements that contains both positive and
negative elements.

Theorem 4. Let ε be an arbitrary positive constant. There is no algorithm that
makes at most n− 1 queries to give (1 + ε)-approximation for the sum of a list
of n sorted elements that contains at least one negative element.

Proof. Consider a list of element −m(m+ 1), 2, · · · , 2m. This list contains n =
m+ 1 elements. If there is an algorithm that gives (1 + ε)-approximation, then
there is an element, say 2k, that is not queried by the algorithm.

We construct another list that is identical to the last list except 2k being
replaced by 2k + 1.

The sum of the first list is zero, but the sum of the second list is 1. The
algorithm gives the same result as the element 2k in the first list and the element
2k+1 in the second list are not queried (all the other queries are the of the same
answers). This brings a contradiction.

Similarly, in the case that −m(m+ 1) is not queried, we can bring a contra-
diction after replacing it with −m(m+ 1) + 1.
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4 Conclusions and Open Problems

We studied the approximate sum in a sorted list with nonnegative elements.
For a fixed ε, there is a log logn factor gap between the upper bound of our
algorithm, and our lower bound. An interesting problem of further research is to
close this gap. Another interesting problem is the computational complexity of
approximate sum in the randomized computational model, which is not discussed
in this paper.

Acknowledgments. The author would like to thank Cynthia Fu for her proof-
reading and comments for an earlier version of this paper, and anonymous ref-
erees for providing comments to improve the presentation of this paper.
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Abstract. Hypertree width is a similar notion to treewidth, also with
many equivalent characterizations and many applications. If the hyper-
tree widths of constraint graphs of instances of Constraint Satisfaction
Problems (CSPs) are bounded by a constant, the relevant constraint sat-
isfaction problems are tractable. In this paper, we show that with high
probability, hypertree width is large on sparse random k-uniform hy-
pergraphs. Our results provide further theoretical evidence on hardness
of some random constraint satisfaction problems, called Model RB and
Model RD, around the satisfiability phase transition points.

Keywords: Constraint Satisfaction, Random Hypergraph, Hypertree
Width, Model RB and Model RD, Phase Transition.

1 Introduction

Constraint Satisfaction Problems (CSPs) can represent many important NP-
hard problems in Artificial Intelligence research. In the last two decades, there
are two lines of research on CSPs, both are fruitful. The first one is about
structural decompositions; the second one is about random CSPs.

A CSP instance is called acyclic if its constraint hypergraph is acyclic [24].
Checking the satisfiability of acyclic CSPs is tractable [24]. Many CSP instances
arising in practice are not acyclic, but are in some sense close to acyclic ones.
Structural decomposition methods are proposed to measure the difference be-
tween acyclic hypergraphs and the others. That is, the smaller the parameter
of the structural decomposition is, the more similar the hypergraph is to an
acyclic one. The most prominent decomposition methods include: tree clustering
[20, 10, 6], hinge decomposition [17, 18, 22], cycle cutset and cycle hypercutset
[5, 15], hinge-tree clustering [15], query decomposition [3], and (generalized) hy-
pertree decomposition [16, 13, 1]. For structural decompositions of CSPs, the

� Corresponding authors. Partially supported by National 973 Program of China
(Grant No. 2010CB328103).

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 294–302, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Large Hypertree Width for Sparse Random Hypergraphs 295

main results say that CSPs with constraint hypergraphs of bounded structural
width are tractable. In particular, all known structural decomposition based
solvers run in time ||I||O(w), where ||I|| is the input size and w is a structural
width, such as the size of the minimum loop-cutset, hinge width, treewidth, query
width, hypertree width, etc. A plethora of structural decomposition methods
have been developed and compared with each other, see e.g. [14].

On the other hand, the start point of random CSPs is to identify hard in-
stances to serve as benchmarks, such as random instances around the satisfia-
bility threshold of random CSPs [2, 4, 7–9, 23, 25, 27–29]. The main results say
that there is an easy-hard-easy transition around the satisfiability threshold of
random CSPs, and the hardest instances are around the satisfiability thresholds.

However, a rigorous link between phase transition and hardness of random
instances is hard to establish. At the moment, we still do not know whether
there exist polynomial solvers at the satisfiability thresholds. But we can show
some theoretical evidence on hardness of random instances for some specific
solvers that cannot solve the CSPs efficiently.

The most popular structural width is treewidth [20]. Kloks showed a large
treewidth on classical Erdős-Rényi random graphs G(n, p) when c = np > 2.36.
After that, a lot of results related to large treewidth and smaller c have been
proposed. Now it’s clear that when c > 1 is a constant, treewidth is large with
high probability [21]. It is also known that treewidth is equal to n − o(n) if
and only if c is unbounded [26]. To investigate the tractability of random CSPs
and Bayesian networks, Gao initiated the study of treewidth in various kinds of
random (hyper)graphs [10–12].

To show the hardness of random CSPs, solvers based on different structural
decompositions have been considered. It is known that hinge width on sparse k-
uniform random hypergraphs is large, which implies that solvers based on hinge
decomposition cannot solve the relevant CSPs efficiently [22], and [19] shows
that the size of minimum loop-cutset is large, which also gives some theoretical
evidence on the hardness of random CSPs.

(Generalized) hypertree decomposition is almost the most general of such
decomposition methods leading to large tractable classes of CSPs [14]. It is
also one of the most powerful decomposition methods for CSPs in practice. In
addition, Hypertree decomposition plays a similar role for hypergraphs as tree
decomposition for graphs. Up to a constant factor, hypertree width is the same as
a number of other hypergraph invariants such as bramble number, branch width,
linkedness, and the minimum number of cops required to win Seymour and
Thomas’s robber and cops game [1]. Compared with other parameters, hypertree
width has many advantages [13, 14], such as there is a polynomial algorithm for
checking whether the hypertree width of the given hypergraph is at most k,
where k is a constant [13], and hypertree width is smaller than treewidth and
hinge width on arbitrary hypergraphs, so it leads to a larger tractable class of
CSP instances [14].
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As far as we know, hypertree width on random hypergraphs is unknown. In
this paper we show that hypertree width is large with high probability for sparse
random k-uniform hypergraphs, where k is a constant. By the comparison results
of different structural decomposition methods [14], we can conclude that the large
hypertree width will mean that almost all structural parameters are large, that is
why the random CSPs are so difficult to solve by using structural decomposition
solvers.

This paper is structured as follows. After introducing necessary definitions and
notations (Section 2), lower bounds on hypertree width for random hypergraphs
are shown (Section 3). Finally are some concluding remarks (Section 4).

2 Preliminaries

In this section, we give necessary definitions and notations.

Definition 1. (Constraint Satisfaction Problems) A constraint satisfaction
problem (CSP) instance is a triple (V ,D, C), where

– V = {v1, . . . , vn} is a set of n variables;
– D is a finite set of values called domain, whose size |D| can be either fixed

or increasing with n;
– C is a set of constraints, and each constraint Ci is a pair (Si, Ri), where

• Si is a k-tuple of variables, called constraint scope;
• Ri is a subset of Dk, called constraint relation.

A constraint Ci = (Si, Ri) is satisfied if the k-tuple of values assigned to variables
in Si is contained in Ri. A solution to a CSP instance is an assignment of values
to all the variables that satisfies all constraints.

Definition 2. (Model RB and Model RD [27]) Model RB is a random CSP
model defined as:

– given n variables each with domain {1, 2, ..., d}, where d = nα and α > 0 is
constant;

– select with repetition m = rn lnn random constraints, for each constraint
select without repetition k of n variables, where k ≥ 2 is an integer constant;

– select uniformly at random without repetition (1 − p)dk compatible assign-
ments for each constraint, where 0 < p < 1 is constant.

If in the last step above, each assignment (out of the total dk assignments) for
the k variables is selected with probability 1−p as compatible independently, then
it is called Model RD.

In the following, let H = (V, E) be a hypergraph, consisting of a set V of vertices,
and a set E of subsets of V . We call the element in E as hyperedges. The constraint
hypergraph of a CSP instance is a hypergraph with variables as vertices and
constraint scopes as hyperedges. The constraint hypergraphs of random CSPs
are random hypergraphs.



Large Hypertree Width for Sparse Random Hypergraphs 297

Definition 3. (Random Hypergraphs G(n, p, k) [22]) We use G(n, p, k) to de-
note the probability space of k-uniform random hypergraphs, in which on n ver-
tices, each k-element subset of vertices is selected with probability p independently
at random as a hyperedge, and k is a fixed positive integer. When the total num-
ber of hyperedges is O(n) or O(n lnn), these hypergraphs are called sparse.

Definition 4. (Treewidth [20, 10, 1]) A tree decomposition of a hypergraph
H is a pair (T, χ), where T = (N,F ) is a tree and χ is a labeling function
which associates to each vertex p ∈ N a set χ(p) ⊆ V , we call these sets as
bags. The following conditions should also be satisfied. For each e ∈ E, there
is a bag χ(p) such that e ⊆ χ(p), and for each v ∈ V , the set {p ∈ N | v ∈
χ(p)} induces a connected subtree in T . The width of the decomposition (T, χ) is
maxp∈N (|χ(p)|−1), and the treewidth of H, denoted by tw(H), is the minimum
of the widths of all tree decompositions of H, that is

tw(H) = min
(T,χ)

max
p∈N

(|χ(p)| − 1).

The primal graph [14] of a hypergraph H = (V, E), denoted by G(H) = (V,E),
is the graph whose edge set is E = {(v1, v2) | v1, v2 ∈ V , and there exists h ∈ E ,
such that v1, v2 ∈ h}, i.e. each hyperedge forms a clique. Since a graph is also
a hypergraph, we also denote the treewidth of a graph G as tw(G). Since every
clique must appear in at least one bag in a tree decomposition, the treewidth
tw(H) of a hypergraph H is equal to the treewidth tw(G(H)) of its primal graph
G(H), i.e. tw(H) = tw(G(H)).

A hypertree for a hypergraph H = (V, E) [16] is a triple (T, χ, λ), where
T = (N,F ) is a rooted tree directed from root to the leaves, and χ and λ are
labeling functions which associate to each vertex p ∈ N two sets χ(p) ⊆ V and
λ(p) ⊆ E . If T ′ = (N ′, F ′) is a subtree of T , we define χ(T ′) =

⋃
v∈N ′ χ(v). In

addition, for any p ∈ N , Tp denotes the subtree of T rooted at p, that is, the
induced subtree of T whose vertex set is the set of all vertices reachable from p.

Definition 5. (Hypertree Width [13, 24, 1]) A generalized hypertree decompo-
sition of a hypergraph H is a hypertree HT = (T, χ, λ), where (T, χ) is a tree
decomposition of G(H) and for every p ∈ V (T ), we have χ(p) ⊆

⋃
λ(p). The

width of the hypertree HT is maxp∈V (T ) |λ(p)|. The generalized hypertree width
of H, denoted by ghw(H), is the minimum of the widths of all the generalized
hypertree decompositions of H, that is

ghw(H) = min
(T,χ,λ)

max
p∈V (T )

|λ(p)|.

A hypertree decomposition of a hypergraph H [16] is a generalized hypertree
decomposition HT = (T, χ, λ) which satisfies the following special condition:

(
⋃

λ(p)) ∩ χ(Tp) ⊆ χ(p) for all p ∈ V (T ).

The hypertree width of H, denoted by hw(H), is the minimum of the widths of
all hypertree decompositions of H.
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Actually, there is a relation between tw(H), ghw(H), and hw(H), see [1],

ghw(H) ≤ hw(H) ≤ tw(H) + 1.

For the k-uniform hypergraph G(n, p, k), since one hyperedge can cover at most
k vertices, we have

tw(G(n, p, k)) + 1

k
≤ ghw(G(n, p, k)).

In the next section, we will give a lower bound on hw(G(n, p, k)) by giving a
lower bound on tw(G(n, p, k)).

Denote by Pr(E) the probability of an event E , EX or E(X) the expectation
of a random variable X , B(n, p) the binomial distribution. An event E occurs
with high probability (whp), if limn→∞ Pr(E) = 1. Both f ' g and f = o(g)
mean limn→∞

f
g = 0. A useful inequality is 1− x < e−x for x > 0.

3 Lower Bound on Hypertree Width for Random
Hypergraphs

We now calculate treewidth on G(n, p, k).

Lemma 1. [20] Let G = (V,E) be a graph with at least k + 1 vertices and
tw(G) ≤ k. Then there exists a set S of k+1 vertices such that every component
of G[V \S] has at most (n− k)/2 vertices.

Lemma 2. Let G = (V,E) be a graph with at least k+1 vertices and tw(G) ≤ k.
Then there exists a set S of k + 1 vertices and three disjoint sets A,B,C, such
that A ∪ B ∪ C = V \S, and there is no edge between A,B,C, and each of the
three sets has at most (n− k)/2 vertices.

Proof. Assume that G[V \S] has t components X1, · · · , Xt. By Lemma 1,

|Xi| ≤ (n− k)/2 for i = 1, · · · , t.

If t = 3, X1, X2, X3 satisfy the condition, so A = X1, B = X2, C = X3. If n ≥ 4,
without loss of generality, let Xt−1 and Xt be the two smallest components. Let
X ′

t−1 = Xt ∪Xt−1. Since |Xt−1|+ |Xt| ≤ n − |S| − |X1| − |X2|, |Xt−1| ≤ |X1|,
|Xt| ≤ |X2|, we get 2(|Xt−1| + |Xt|) ≤ n − |S|, i.e. |X ′

t−1| ≤ (n − k)/2. So we
get t − 1 disjoint sets, X1, . . . , Xt−2, X

′
t−1, each of them has at most (n − k)/2

vertices and there is no edge between them. Repeat the above steps t− 3 times,
we can get the three sets X1, X2 and X ′

3, and A = X1, B = X2, C = X ′
3. ��

Lemma 3. Let G ∈ G(n, p = c
nk−1 , k), G = (V,E), |V | = n, 0 < t < 1. Let

f(t) = k!
(1− t)(1− ln(1− t) + ln 3) + ε

1 + tk − (1 + t)k/2k−1
,

where ε > 0 is a constant. If c > f(t), then tw(G) ≥ tn with high probability.
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Proof. Let P = (S,A,B,C) is a partition of V , where |S| = tn, and A,B,C
has at most 1

2 (n − tn − 1) vertices. Let P denote the set of all the partitions
satisfying the above conditions. We call a partition P as a S−separator if there
is no hyperedge between A,B,C. For any partition P ∈ P , define a random
variable as follows:

Ip =

{
1, P is a S-separator
0, otherwise

Since every edge which is not between A,B,C is contained in A ∪ S,B ∪ S or
C ∪ S, according to the inclusion-exclusion principle, the number of such edges
is (

|A|+ |S|
k

)
+

(
|B|+ |S|

k

)
+

(
|C|+ |S|

k

)
− 2

(
|S|
k

)
So, the number m′ of potential edges between A,B,C is(

n

k

)
−

[(
|A|+ |S|

k

)
+

(
|B|+ |S|

k

)
+

(
|C|+ |S|

k

)
− 2

(
|S|
k

)]
.

Now, we give a lower bound on m′. Define a function

h(x, y) =

(
x

k

)
+

(
y

k

)
,

and suppose that x + y = u is a constant. Then, we can find that h(x, y) will
increase if we increase the gap between x and y. So, let |S| = s,(

|A|+ |S|
k

)
+

(
|B|+ |S|

k

)
+

(
|C|+ |S|

k

)
− 2

(
|S|
k

)
<

( |V |−|S|
2 + |S|

k

)
+

( |V |−|S|
2 + |S|

k

)
+

(
|S|
k

)
− 2

(
|S|
k

)
= 2

(n+s
2

k

)
−

(
s

k

)
.

So the number of potential edges between A,B,C is at least(
n

k

)
− 2

(n+s
2

k

)
+

(
s

k

)
.

When n is sufficiently large, we have(
n

k

)
≥

nk −
(
k
2

)
nk−1

k!
,

(
s

k

)
≥

sk −
(
k
2

)
sk−1

k!
,

(n+s
2

k

)
≤

(n+s
2 )k

k!
.

Putting them all together and substituting s = tn, we have(
n

k

)
− 2

(n+s
2

k

)
+

(
s

k

)
≥

(
nk −

(
k

2

)
nk−1 − 2

(
n+ s

2

)k

+ sk −
(
k

2

)
sk−1

)
/k!

=

((
1 + tk

)
nk −

(
k

2

)(
1 + tk−1

)
nk−1 − 1

2k−1
(1 + t)knk

)
/k!.
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So, E(Ip) = (1− p)m
′ ≤ e−pm′

< e−
c
k! (n(1+tk− 1

2k−1 (1+t)k)−(k2)(1+tk−1)).
Let I =

∑
P∈P IP . Then I = 0 means every partition in P is not a S −

separator, that is, tw(G) ≥ tn. By the linearity of expectation and the union
bound, the expectation of I is

E(I) =
∑

P∈P E(IP ) <
(
n
tn

)
3n−tnE(IP ) < ( en

(1−t)n )
(1−t)n3n−tnE(IP )

= e−n( c
k! (1+tk− 1

2k−1 (1+t)k)−(1+ln 3−ln(1−t))(1−t))+ c
k! (

k
2)(1+tk−1).

If c > f(t),

Pr(I > 0) ≤ E(I) < e−εn+ c
k! (

k
2)(1+tk−1) = o(1).

So, tw(G) ≥ tn whp. ��
Corollary 1. For the special case G(n, p, 2), which is the classical Erdös −
Rényi random graph model G(n, p), if c > 4(1−ln(1−t)+ln 3)+ε

1−t , then tw(G) ≥ tn
whp.

Proof. We only need to substitute k = 2 to the Lemma 3. Note that this is an
asymptotically better result than that in [26]. ��
From Lemma 3, we can get two theorems as follows.

Theorem 4. Let G ∈ G(n, p = c
nk−1 , k), G = (V,E), |V | = n,0 < t < 1, let

f(t) = k!
(1− t)(1 − ln(1− t) + ln 3) + ε

1 + tk − (1 + t)k/2k−1

where ε > 0 is a constant, if c > f(t), then hw(G) ≥ ghw(G) ≥ tn+1
k whp.

Proof. By Lemma 3, and the fact that generalized hypertree width is based on
treewidth and only use hyperedges to cover the bags of the tree decomposition.
Since each hyperedge covers at most k vertices, so ghw(G) ≥ tn+1

k . Note that
hypertree decomposition is a special generalized hypertree decomposition, we
have hw(G) ≥ ghw(G). ��
Note actually the edges couldn’t cover the vertices so efficiently, but in the
complete graph, which has the most edges in the k-uniform hypergraph, it indeed
can achieve this lower bound. Since the hypertree width is not a monotone
variable, so it’s an open problem to find the gap between the lower bound and
hypertree width.

Theorem 5. Let G ∈ G(n, p = r lnn
nk−1 , k), G = (V,E), |V | = n, r is a constant.

Then hw(G) = n−o(n)
k whp.

Proof. For any constant t < 1, r lnn > f(t), which implies the above result. ��
By Theorem 5, the random instances of Model RB and Model RD around the
satisfiability thresholds rcf = − α

ln(1−p) [27] has a large hypertree width. There-

fore, a large hypertree width around the satisfiability threshold can provide some
theoretical evidence for hardness of Model RB and Model RD besides the known
theoretical hardness evidences based on their exponential resolution complexity
[28], large loop cueset [19], large hinge width [22], and large treewidth [26].
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4 Conclusion and Open Problems

In the above section, we show a linear hypertree width in sparse random k-
uniform hypergraphs. When the number of hyperedges is super linear, we can
get a linear hypertree width which almost depends only on k, which implies the
hypertree decomposition based solvers can’t solve the random CSPs, such as
Model RB and Model RD around their thresholds efficiently. When the number
of hyperedges is linear to the vertices, the linear hypertree width depends on k
and the number of edges. So it is an open problem to find the exact point when
the hypertree width becomes O(n). Since the hypertree width of the complete
k-uniform hypergraph which has the most edges is n/k, whether there is some
graph with a larger hypertree width is also unknown.

Acknowledgments. We thank Professor Kaile Su for his encouragement and
support to this work. We also thank the unknown reviewers of FAW-AAIM 2013
for helpful comments.
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On Perfect Absorbants in De Bruijn Digraphs
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Abstract. An absorbant of a digraph D is a set S ⊆ V(D) such that, for every
v ∈ V(D)\S, there exists an arc (v,u) with u ∈ S. We denote the cardinality of
a minimum absorbant by γa(D). An absorbant S is called a perfect absorbant if
no vertex of S has an out-neighbor in S and no two vertices in S have a common
in-neighbor.

In this paper, we are concerned with the perfect absorbant problem in gener-
alized De Bruijn digraphs. We prove that some classes of generalized De Bruijn
graphs have perfect absorbants. We also answer some questions asked by Shan
et al. in [10], i.e., we affirm that γa(GB(8k−4,4k−3)) = 3 and γa(GB(6k,2k−
1)) = 4 for k� 2.

Keywords: Domination, Absorbant, Upper bound, Generalized De Bruijn di-
graphs.

1 Introduction

Let D= (V ,A) denote a digraph in which V and A are the sets of vertices and arcs. The
in-neighborhood and out-neighborhood of a vertex v ∈ V , denoted by I(v) and O(v)
respectively, are the sets

I(v) = { u | (u,v) ∈A } and O(v) = { u | (v,u) ∈A }.

We allow self-loops, i.e. arcs of the form (u,u) for some u ∈ V . The closed in-
neighborhood and closed out-neighborhood of v are defined as

I[v] = I(v)∪ {v} and O[v] =O(v)∪ {v}.

A dominating set in a digraph D= (V ,A) is a set S⊆ V such that, for every v ∈ V \S,
there exists an arc (u,v) ∈ A with u ∈ S. The domination number of D, which we
denote by γ(D), is defined as the minimal cardinality of a dominating set of D.
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An absorbant of a digraph D = (V ,A) is a set S⊆ V such that, for every v ∈ V \S,
there exists an arc (v,u) ∈ A with u ∈ S. The absorbant number of D, denoted by
γa(D), is defined as the minimum cardinality of an absorbant of D. A dominating set
(respectively, absorbant) S in D is perfect if O(u)∩O(v) = ∅ (respectively, if I(u)∩
I(v) = ∅) for any two distinct vertices u,v ∈ S and there is no arc in the subdigraph
induced by S.

Generalized De Bruijn digraphs were introduced by Imase and Itoh [5, 6] and, inde-
pendently, also by Reddy, Pradhan, and Kuhl [9]. The generalized De Bruijn digraph
GB(n,d) has vertex set V(GB(n,d)) = { 0, 1, 2, . . . , n−1 } and arc set

A(GB(n,d)) = { (x,y) | y≡ dx+ i (mod n) 0 � i < d }. (1)

Note that if n= dm, then GB(n,d) is the well-known De Bruijn digraph B(d,m).
De Bruijn digraphs have good logical network topologies, comparable to hypercubes,

that make them suitable for interconnection networks [1, 3–5, 9]. The connectivity and
diameter of GB(n,d) were investigated in [2, 5, 7, 9]. In [2], Du and Hwang prove that
the number of self-loops in GB(n,d) is equal to g · �dg �, where g= gcd(n,d−1). They
also show that GB(n,d) is Hamiltonian if gcd(n,d) > 1. In [8], Kikuchi and Shibata
show that

⌈
n

d+1

⌉
� γ(GB(n,d)) �

⌈n
d

⌉
,

and Shan, Cheng, and Kang show that the same bounds hold for γa(GB(n,d)) in [10].
We are interested in perfect absorbants and perfect dominating sets of generalized

De Bruijn graphs. This paper is organized as follows. In Section 2 we review some
preliminaries of perfect absorbants in generalized De Bruijn digraphs. In Section 3 we
classify generalized De Bruijn digraphs into four classes and show that there exist per-
fect absorbants for the digraphs in two of those classes. We conclude in Section 5.

2 Preliminaries

When the digraph D is clear from the context we write V and A instead of V(D) and
A(D). A generalized De Bruijn digraph GB(n,d) can have a perfect absorbant only if
d > 1 and n= c(d+1) for some integer c. Henceforth, we assume that the parameters
n and d satisfy this condition.

The following two theorems give lower and upper bounds for dominating sets and
absorbants in GB(n,d), respectively.

Theorem 1 ([8]). $ n
d+1%� γ(GB(n,d))� $nd %.

Theorem 2 ([10]). $ n
d+1%� γa(GB(n,d)) � $nd %.
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Via a standard counting argument it follows from the definitions that, if there exists a
perfect dominating set or a perfect absorbant in GB(n,d), then

γ(GB(n,d)) = γa(GB(n,d)) = c=
n

d+1

By definition, an absorbant S is perfect if and only if the following three properties
hold:

(i) For any two distinct vertices u,v ∈ S, I(u)∩ I(v) =∅.
(ii) For any two distinct vertices u,v ∈ S, u /∈ I(v) and v /∈ I(u).

(iii) For each vertex v ∈ S, v /∈ I(v).

Note that Property (i) ensures that the in-neighborhoods of any two distinct vertices in
S are disjoint while Properties (ii) and (iii) ensure that there is no arc or self-loop in the
subdigraph induced by S.

For a vertex u ∈ O(v) with u ≡ dv+ j (mod n) and 0 � j < d, we call u the
(unique) jth out-neighbor of v and we denote it by Oj(v).

The following lemma can be used to determine if x ∈ I(x) in GB(n,d).

Lemma 1. For a vertex x in GB(n,d),

x ∈ I(x) if and only if 0 �−(d−1)x (mod n)� d−1.

Proof. By Equation (1),

x ∈ I(x) if and only if x= dx+ i+pn for some 0 � i < d and integer p.

This implies that x ∈ I(x) if and only if −(d−1)x≡ i (mod n).
If we use mod as an operator we obtain, since i ∈ {0,1, ...,d−1},

x ∈ I(x) if and only if 0 �−(d−1)x (mod n)� d−1.

This completes the proof. ��

Let L0(n,d) = {x|x=O0(x),x ∈ V} and Ld−1(n,d) = {x|x=Od−1(x),x ∈ V}. When
there is no possible ambiguity we use L0 and Ld−1 instead of L0(n,d) and Ld−1(n,d).

Lemma 2. If n = c(d+1), then |L0(n,d)| = |Ld−1(n,d)| = gcd(2c,d−1).

Proof. We only prove that |L0(n,d)| = gcd(2c,d− 1). The other case is similar. By
Lemma 1, x = O0(x) if and only if 0 ≡ (d− 1)x (mod n). Thus |L0| is equal to the
number of x for 0 � x � n−1 such that (d−1)x = yn for integer y � 0. The above

equation can be simplified as x= yn
d−1 =

yc(d+1)
d−1 = cy+ 2cy

d−1 . Let g= gcd(2c,d−1),

2c = z1g and d− 1 = z2g. Thus x = cy+ 2cy
d−1 = cy+ gz1y

gz2
= cy+ z1y

z2
. Since the

term z1y
z2

must be a nonnegative integer, y is a multiple of z2. When y = z2g, it can

be derived that x = cy+ z1y
z2

= cz2g+ z1g = c(d− 1)+ 2c = n > n− 1. Therefore,

the possible values of y satisfying the equation x = cy+ z1y
z2

such that 0 � x � n− 1
are 0,z2,2z2, . . ., (g− 1)z2. This further implies that |L0| = g = gcd(2c,d− 1). This
completes the proof. ��
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Let L0 = {x0,x1, . . . ,xm−1} and Ld−1 = {y0,y1, . . . ,ym−1}, where xi < xi+1 and yi <

yi+1 for 0 � i < m− 1. Obviously, x0 = 0 and ym−1 = n− 1. The vertices in V can
be partitioned into V0, . . . ,Vm−1, where

Vi = { xi, xi+1, . . . , yi } i ∈ { 0, . . . , m−1 }. (2)

Example 1. Consider the case where n = 16 and d = 3 (see Figure 1). Then O(1) =
{3,4,5}. We have O0(1) = 3, O1(1) = 4 and O2(1) = 5. Notice that O0(0) = 0 and
O0(8) = 8 and so L0(16,3) = {0,8}. Similarly, Ld−1(16,3) = L2(16,3) = {7,15}. This
results in the partition {V0,V1} of V , where V0 = {0,1, . . . ,7} and V1 = {8,9, . . . ,15}.

Fig. 1. A d-set in GB(16,3)

Lemma 3. Let L0(n,d) and Ld−1(n,d) be defined as above. Let also Vi be defined as
above, for 0 � i�m−1. If d−1 is a multiple of m, then

O0(ui)−ui ≡ uyp−i−Od−1(uyp−i) (mod n) and

Od−1(ui)−ui ≡ uyp−i−O0(uyp−i) (mod n)

where ui is the ith element in Vp for 0 � p�m−1.

Proof. We prove this lemma for the case where p = 0. The other cases are similar.
When p= 0, ui = i. Then

O0(ui)−ui = di− i= (d−1)i

and

uyp−i−Od−1(uyp−i) = (y0 − i)− (d(y0 − i)+d−1)

= (d−1)(−y0 + i−1)

= (d−1)(−
n

m
+ i)

= −
(d−1)n

m
+(d−1)i≡ (d−1)i (mod n)

since m divides d−1. Here we use that yp = (p+1) n
m −1.

A similar argument shows that Od−1(ui) −ui ≡ uyp−i −O0(uyp−i) (mod n).
This completes the proof. ��
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Lemma 4. Let L0, Ld−1 and Vi for 0 � i�m−1 be as above. Assume that d−1 is a
multiple of m. Let 0 � p,q�m−1 and let ui and vi be the ith element of Vp and Vq.
Then

(1) O0(ui)−ui ≡O0(vi)−vi (mod n), and
(2) ui−Od−1(ui)≡ vi−Od−1(vi) (mod n).

Proof. It suffices to show that O0(i) − i ≡ O0(vi) − vi (mod n), i.e., p = 0. Via a
similar argument as in Lemma 3 we derive

O0(i)− i= di− i and O0(vi)−vi =
(d−1)pn

m
+di− i.

Thus
O0(ui)−ui ≡O0(vi)−vi (mod n).

Similarly, ui−Od−1(ui)≡ vi−Od−1(vi) (mod n). This completes the proof. ��

Definition 1. Let c= n
d+1 . A subset S= {s1,s2, . . . ,sc} of V with si < si+1 for 1 � i�

c−1 is a d-set if the following two conditions hold.

(1) si+1 − si � d for 1 � i� c−1 and s1 − sc (mod n)� d, and
(2) for every si ∈ S, 1 � i� c, there exists an sj ∈ S such that

either O0(si)≡ sj+1 (mod n) or Od−1(si)≡ sj−1 (mod n).

Definition 2. A d-set S = {s1,s2, . . . ,sc} is called a one-to-one d-set, abbreviated as
od-set, if, for every si ∈ S, there exists a unique sj ∈ S such that

O0(si)≡ sj+1 (mod n).

We use the function σ to denote the mapping from i to j, i.e., σ(i) = j. Thus if S is an
od-set, then O0(si) = sσ(i)+1 and σ is a one-to-one function. For simplicity we also
write σ(x1,x2, . . . ,xc) = (y1,y2, . . . ,yc) if σ(xi) = yi for 1 � i� c.

Example 2. See Figure 1. We have c = n
d+1 = 16

4 = 4. A d-set in GB(16,3) is S =
{1,6,9,14}. It is easily to check that Condition (1) holds for S = {1,6,9,14}. To verify
Condition (2), notice that

Od−1(s1) =O2(1)≡ d+2 (mod n)≡ 5 (mod 16) = 6−1 = s2 −1.

Similarly,O0(s2) = s1+1,Od−1(s3)= s4−1, and O0(s4) = s3+1. That is, σ(1,2,3,4)
= (2,1,4,3).

To illustrate an od-set, we use GB(9,2) and S = {1,4,7} = {s1,s2,s3} as an exam-
ple (see Figure 2). Clearly, Condition (1) holds for S. Notice that O0(1) = 2 = s1 +
1,O0(s2) =O0(4) = 8 = s3 +1, and O0(s3) = 5 = s2 +1. That is, σ(1,2,3) = (1,3,2).
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Fig. 2. An od-set in GB(9,2)

Lemma 5. If there exists a d-set S in GB(n,d), then S is a perfect absorbant.

Proof. Let S = {s1,s2, . . . ,sc} be a d-set of GB(n,d), where c = n
d+1 . We show that S

satisfies the Properties (i)-(iii) on Page 305 that define a perfect absorbant.
Let v be a vertex in I(si) for some 1 � i � c, i.e., si ∈ O(v). Since O(v) has the

circular consecutive property, and |O(v)|= d, and since si+1 −si � d this implies that
v /∈ I(sj) for j 
= i and therefore Property (i) holds.

By Condition (2) of a d-set, if O0(si) = sj+1 or Od−1(si) = sj−1, then si /∈ I(si)
and si /∈ sj for any j 
= i. Thus Properties (ii) and (iii) hold. This proves that S is a
perfect absorbant. This completes the proof. ��
Lemma 6. If there exists an od-set S in GB(n,d), then S is also a perfect dominating
set.

Proof. By definition of od-sets, O(si)∩O(sj) =∅. Furthermore,

|S∪
⋃
si∈S

O(si)| = c(d+1).

Thus S is a perfect dominating set. ��
Corollary 1. If S= {s1,s2, . . . ,sc} is an od-set in GB(n,d), then

si+1 − si ≡ d+1 (mod n)

for 1 � i� c, where the indices are taken modulo c, that is, sc+1 = s1.

Theorem 3. A set S is at the same time a perfect dominating set and a perfect ab-
sorbant of GB(n,d) if and only if S is an od-set.

Proof. By Lemma 6, if S is an od-set then S is perfectly dominating as well as perfectly
absorbant.

We prove the converse by means of contradiction. Let S= {s1,s2, . . . ,sc} be a perfect
dominating set and a perfect absorbant. Assume that S is not an od-set. Since S is a
perfect dominating set, O(si)∩O(sj) = ∅ for i 
= j. If si+1 − si = d+ 1, then S is a
perfect absorbant.

Assume that there exists an sr, 1 � r � c, such that sr+1 − sr (mod n) � d (with
indices modulo c). For simplicity, assume that 1 � r � c− 1. The other case, that is,
r= c, can be handled similarly. By the consecutive property of O(si), if x ∈O(si) and
sr < x < sr+1, then either sr or sr+1 is also in O(si). This implies that there exists
at least one arc in the induced sub-digraph of S, a contradiction. This completes the
proof. ��
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3 Perfect Absorbants of GB(n,d)

To investigate the perfect absorbant of GB(n,d), we classify GB(n,d) into the fol-
lowing four classes. As usual, we let c = n

d+1 and we assume that c > 1 is a positive
integer.

(1) d = 2c(k−1)+2j, for k� 1 and 0 � j� c−1.
(2) d = 2c(k−1)+2j+1 for c even, k� 1, and 1 � j� c−1.
(3) d = 2c(k−1)+2j+1 for c odd, k� 1, and 1 � j� c−1.
(4) d = 2c(k−1)+1 for k > 1.

In this section, we shall show that there exists a d-set for any digraph in class (1) and a
subclass in class (2). Moreover, we show that there exists an od-set for some digraphs
in class (1). We leave it as an open problem to decide if there exist perfect absorbants
in class (3). In Section 4 we show that there are no perfect absorbants in class (4) and
in GB(6k,2k−1).

Lemma 7. Assume

c� 2 and d= 2c(k−1)+2j > 1 for k� 1 and 0 � j� c−1.

Then GB(n,d) has a perfect absorbant.

Proof. Let S= {s1,s2, . . . ,sc} be the set in which

si =
n(i−1)

c
+

d

2
(3)

for 1 � i� c (see Figure 3 for an illustration). We show that S is a d-set of GB(n,d) in
which d= 2c(k−1)+2j > 1 and c� 2 for 0 � j� c−1 and k� 1.

Clearly,

si+1 − si =
ni

c
+

d

2
−(

n(i−1)
c

+
d

2
) =

n

c
= d+1 for 1 � i� c−1.

Notice also that

s1 − sc =−
n(c−1)

c
=−n+(d+1)≡ d+1 (mod n).

It remains to show that Condition (2) in Definition 1 is satisfied.
Let

σ(i) = (2i−1) · j (mod c). (4)

We derive O0(si) = sσ(i)+1 as follows.
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O0(si) = d · si

= d · (n(i−1)
c

+
d

2
) (by Equation (3))

=
2(c(k−1)+ j)n(i−1)

c
+

d2

2
(since d = 2c(k−1)+2j)

≡ 2jn(i−1)
c

+ j(d+1)−
d

2
(mod n)

(since
d(d+1)

2
= (c(k−1)+ j)(d+1)≡ j(d+1) (mod n))

≡ 2ijn− jn−n

c
−

jn−n

c
+ j(d+1)−

d

2
(mod n)

≡ 2ijn− jn−n

c
−(j−1)(d+1)+ j(d+1)−

d

2
(mod n)

≡ n((2i−1)j−1)
c

+
d

2
+1 (mod n)

≡ s(2i−1)j+1 (mod n) (by Equation (3))

= sσ(i)+1. (by Equation (4))

Therefore, S is a d-set. By Lemma 5, S is a perfect absorbant of GB(n,d) and γa(GB

(n,d)) = c. This completes the proof. ��

Example 3. In Figure 3 we have n = 12, c = 4 and d = 2. In the equation d = 2 =
2c(k−1)+2j we can take k = j = 1. Equation (4) yields σ(i) = (2i−1)j (mod c) =
(2i−1) (mod 4) which gives σ(1,2,3,4) = (1,3,1,3). Thus

(a) O0(s1) = sσ(1)+1 = s1 +1 = 2,
(b) O0(s2) = sσ(2)+1 = s3 +1 = 8,
(c) O0(s3) = sσ(3)+1 = s1 +1 = 2, and
(d) O0(s4) = sσ(4)+1 = s3 +1 = 8.

By Definition 1, S= {s1,s2,s3,s4} is a d-set (but not an od-set).

Fig. 3. A d-set in GB(12,2)

Lemma 8. Assume that c � 3 is an odd integer and d = 2c(k−1)+2j for k � 1 and
1 � j < c. If c and j are relatively prime, then GB(n,d) has a perfect absorbant which
is also a perfect dominating set.
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Proof. Let S= {s1,s2, . . . ,sc} be the set of vertices with

si =
n(i−1)

c
+

d

2

for 1 � i � c (see Figure 2 for an illustration). We shall show that S is an od-set of
GB(n,d).

By Lemma 7, S is a d-set. By Equation (4), we need to show that σ(i) = (2i− 1)j
(mod c) is a one-to-one function. We claim that

σ(i)−σ(�)≡ 2(i− �) · j≡ 0 (mod c) implies i = �.

Assume that σ(i) −σ(�) ≡ 0 (mod c). Since c and 2j are relatively prime, i− � has
to be divided exactly by c. Since |i− �| < c, c does not divide i− � unless i = �. This
completes the proof. ��

Example 4. In Figure 2, c= 3, d= 2, k= 1 and j= 1. Notice that d= 2c(k−1)+2j=
2. Define the map σ(i) = (2i− 1)j (mod c). Then σ is the permutation σ(1,2,3) =
(1,3,2). Indeed,

(i) O0(s1) = sσ(1)+1 = s1 +1 = 2,
(ii) O0(s2) = sσ(2)+1 = s3 +1 = 8, and

(iii) O0(s3) = sσ(3)+1 = s2 +1 = 5.

Lemma 9. Assume that c ∈N, c� 2 and c even. Let j be an odd integer with 1 � j < c,
k� 2 and d = 2c(k−1)+2j+1. Then GB(n,d) has a perfect absorbant.

Proof. Let S= {s1,s2, . . . ,sc} be the set of vertices of GB(n,d) with

si = (d+1)i−
d+1

2
−(i (mod 2)) (5)

for 1 � i� c (see Figure 1 for an illustration).
Define

σ(i) = (2j+1) · i− d−1
2

≡ (2j+1) · i− j (mod c). (6)

To prove that S is a perfect absorbant of GB(n,d), we shall show that

(a) Od−1(si) = sσ(i)−1 when i is odd, and
(b) O0(si) = sσ(i)+1 when i is even.

Notice that σ(i) is even if and only if i and j are the same parity, that is, both even or
both odd.
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First assume that i is odd. So, in that case, σ(i) is even. Then we have

Od−1(si) = d · si+d−1

= d · ((d+1)i−
d+1

2
−1)+d−1 (by Equation (5))

= (2c(k−1)+2j+1)(d+1)i−
d(d+1)

2
−1

≡ (2j+1)(d+1)i−
(d+1)(d−1)

2
−

d+1
2

−1 (mod n)

= (d+1)((2j+1)i−
d−1

2
)−

d+1
2

−1

= (d+1)σ(i)−
d+1

2
−1 (by Equation (6))

= sσ(i)−1. (by Equation (5))

By using a similar argument, we can derive O0(si) = sσ(i)+ 1 when i is even. This
completes the proof. ��

Example 5. In Figure 1, since c = 4 and d = 3, this results in k = 1 and j = 1 in the
equation d= 2c(k−1)+2j+1= 3. By the mapping function σ(i) = (2j+1)i− d−1

2 ,
σ(1,2,3,4) = (2,1,4,3). Thus

(1) Od−1(s1) =O2(s1) = sσ(1)−1 = s2 −1 = 5,
(2) O0(s2) = sσ(2)+1 = s1 +1 = 2,
(3) O2(s3) = sσ(3)−1 = s4 −1 = 13, and
(4) O0(s4) = sσ(4)+1 = s3 +1 = 10.

For the case where c and j are even integers with 2 � j < c−2 in d= 2c(k−1)+2j+1,
there exist perfect absorbants for some digraphs in class (2), e.g., GB(24,5) in which
{2,8,15,21} is a perfect absorbant. However, there also exist some digraphs in class (2)
which have no perfect absorbants, e.g., GB(36,5). We leave it as an open problem to
find the subclass of class (2) in which all digraphs have perfect absorbants.

4 GB(n,d) with d = 2c(k−1)+1

Definition 3. A vertex x /∈ I(x) is called Type I imperfect if c+1�O0(x)−x (mod n)
� d−1 or c+1 � x−Od−1(x) (mod n)� d−1.

Definition 4. A vertex x is called a far-neighbor if O0(x)−x (mod n)�d−1 and x−
Od−1(x) (mod n) � d− 1. A vertex x is called a near-neighbor if 0 < O0(x) − x

(mod n)� c or 0 < x−Od−1(x) (mod n)� c.

For a far-neighbor x, let F(x) = {x−d+ 1,x−d+ 2, . . .,x+d− 1}∪O(x), where the
numbers are taken modulo n. Hereafter, all numbers of vertices are modulo n unless
stated otherwise. Consider a partition {F1,F2} of V \F(x) into two sets



On Perfect Absorbants in De Bruijn Digraphs 313

(a) F1(x) = {x+d,x+d+1, . . .,O0(x)−1}, and
(b) F2(x) = {Od−1(x)+1,Od−1(x)+2, . . . ,x−d}.

Definition 5. A far-neighbor x is called Type II imperfect if there do not exist c1 and
c2 with c1 + c2 +1 = c such that, for all i ∈ {1,2}, (ci−1)d+1 � |Fi(x)|.

For a near-neighbor x let U(x) = {x−d+1,x−d+2, . . .,x+d−1}∪O(x). Let Û(x) =
V \U(x). Then

(1) Û(x) = {Od−1(x)+1,Od−1(x)+2, . . . ,x−d} if 0 <O0(x)−x (mod n)� c, and
(2) Û(x) = {x+d,x+d+1, . . .,O0(x)−1} if 0 < x−Od−1(x) (mod n)� c.

Definition 6. A near-neighbor x is called Type III imperfect if the following condition
is not satisfied.

(c−2)d+1 � |V \U(x)| (7)

Notice that all Type I, II, and III imperfect vertices are not in any perfect absorbant.

Theorem 4. Let GB(n,d) be the generalized De Bruijn graph with n = c(d+1) and
d= 2c(k−1)+1. If c� 1 and k� 2, then γa(GB(n,d)) = c+1.

Proof. Every nonself-loop vertex is either Type I, II, or III imperfect. This proves the
theorem. ��

Theorem 5. Let k� 2. Then γa(GB(6k,2k−1)) = 4.

Proof. All vertices x in V with x /∈ I(x) are Type I imperfect except the vertices in H=
{3k−2,3k−1,6k−3,6k−2}∪ {12k−5,12k−4,15k−6,15k−5} when n= 18k−6
and d = 6k− 3. However, any two vertices u and v in the same set, i.e., {3k− 2,3k−
1,6k−3,6k−2} or {12k−5,12k−4,15k−6,15k−5} results in I(u)∩ I(v) 
=∅. This
completes the proof. ��

5 Concluding Remarks

In this paper, we investigate the perfect absorbant problem in generalized De Bruijn
digraphs. We have shown that there exist perfect absorbants for class (1) and a subclass
of class (2). Furthermore, we also show that a digraph in a subclass of class (1) has
γ(GB(n,d)) = γa(GB(n,d)) = c. We also show that there does not exist any perfect
absorbant in the digraphs in class (4). For digraphs in class (3), we only show that there
does not exist any perfect absorbant when c = 3. Note that GB(8k− 4,4k− 3) is in
class (4). Thus, by Theorems 2 and 4, γa(GB(8k− 4,4k− 3)) = 3. By Theorem 5,
γa(GB(6k,2k− 1)) = 4. This affirms the two conjectures in [10]. Some special sub-
classes of class (3) also have no perfect absorbant, e.g., c = d. As a future study, we
have the following conjectures:

1. There is a perfect absorbant in GB(c(d+1),d) if and only if c is a multiple of |L0|.
2. There exists a perfect absorbant which is also a perfect dominating set if and only

if d = 2c(k−1)+2j, for 1 � j < c, and odd c� 3 is relatively prime to j.
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Abstract. The Multi-Multiway Cut problem proposed by Avidor and
Langberg[2] is a natural generalization of Multicut and Multiway Cut
problems. That is, given a simple graphG and c sets of vertices S1, · · · , Sc,
the problem asks for a minimum set of edges whose removal discon-
nects every pair of vertices in Si for all 1 ≤ i ≤ c. In [13], the authors
asked whether the problem is polynomial time solvable for fixed c on
trees. In this paper, we give both a logical approach and a dynamic pro-
gramming approach to the Multi-Multiway Cut problem on graphs of
bounded branch width, which is exactly the class of graphs with bounded
treewidth. In fact, for fixed c and branch width k, we show that the Multi-
Multiway Cut problem can be solved in linear time, thus affirmatively
answer the question in [13].

1 Introduction

The Multi-Multiway Cut problem is defined as follows[2]:

Multi-Multiway Cut(G)
Input: A simple graph G = (V, E) ∈ G and c sets of vertices

S1, S2, . . . , Sc.
Problem: Find a set of edges C ⊆ E with minimum cardinality whose

removal disconnects every pair of vertices in each set Si

The well-studied Multiway Cut problem is a special case of
Multi-Multiway Cut when c = 1 and Multicut problem is a special
case of Multi-Multiway Cut when every Si contains exactly two vertices.
Multiway Cut is NP-hard on general graphs [7] and Multicut is NP-hard
even on trees (by a simple reduction from vertex cover to stars). Based on
these two hardness results, [13] asked whether Multi-Multiway Cut is
polynomial-time solvable on trees when c is a constant.

In this paper, we show that when G is the class of graphs of branch width at
most k, Multi-Multiway Cut(G) can be solved in O(k2k+2 · 22kc · |G|). The
notion of branch width is equivalent to treewidth up to constant, which roughly
measures how similar a graph is to a tree. We will present two algorithms.
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The first one is using logical approach based on Courcelle’s theorem, i.e., we will
give a monadic second order formula characterizingMulti-Multiway Cut and
Courcelle’s theorem directly implies a linear algorithm for fixed c and k. How-
ever, the canonical algorithm behind Courcelle’s theorem contains huge hidden
constant and thus it is impractical. Our second algorithm is based on dynamic
programming and can be viewed as a subtle way of applying Courcelle’s theorem
to specific problem, thus it is more efficient.

Related Work. The Multicut problem is known to be APX-hard for c ≥ 3
[7]. An O(log c)-approximation algorithm based on the well-known region grow-
ing rounding technique was presented in [8]. From the parameterized complexity
point of view, various parameters have been studied like solution size [4], cardi-
nality k and solution size [14] [17], or treewidth of the input structure [9],[15].

The Multiway Cut problem is also known to be APX-hard for � ≥ 3 [7],
where � = |S1|. A (3/2 − 1/�)-approximation algorithm was presented in [5].
Later Karger et al. [12] improved the approximation ratio to (1.3438− εm). In

terms of exact algorithms, [17] gave an algorithm in O(2(
�−2
�−1k)�T (n,m)) time,

where k is the solution size, T (n,m) = O(min(n2/3,m1/2)m), n is the number
of vertices and m is the number of edges in graph.

For Multi-Multiway Cut problem, Avidor and Langberg [2] presented an
O(log k)-approximation algorithm using the idea of region growing. [18] studied
some variant of Multi-Multiway Cut on trees including the prize-collecting
version.

In [13], Liu and Zhang gave a fixed-parameter tractable algorithm for
Multi-Multiway Cut on trees in which the parameter is the size of solution
and c is constant. They left the question whether the problem is polynomially
solvable as an open problem. We answer this question affirmatively in this pa-
per, as our result holds for graphs of bounded branchwidth (certainly for trees).
Independently, Kanj et al. showed that Multi-Multiway Cut on trees is poly-
nomially solvable for a constant c [11]. Their result only holds for trees but the
running time is better than ours.

Our Result.We present two linear algorithms forMulti-Multiway Cut with
constant c and k, where k is the branch width of input graph. Our algorithms can
be further extended to graphs with weight on edges and directed graph whose
underlying undirected graph is of bounded branch width.

Organization of the Paper. In Section 2, we introduce some necessary back-
ground and notations. In Section 3, we use Courcelle’s Theorem to give an algo-
rithm for Multi-Multiway Cut on graphs of bounded branch width. Next, in
Section 4, we present the dynamic programming algorithm and finally conclude
the paper in Secion 5.
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2 Preliminaries

N denote the set of natural numbers. For a set S, the set of all k-element subsets
of S is [S]k. The power set of S is denoted by P(S) = {X |X ⊆ S}. |S| is the
cardinality of S.

2.1 Graph

A graph is a pair G = (V,E), where V is a finite set of vertices and E ⊆ V 2. The
size of G is |G| = |V |+ |E|. An edge {u, v} is also written as uv. We also denote
the edges set and vertices set of G as E(G) and V (G). A graph with labels is
G = (V,E, L1, L2, · · · , Ll), where each Li ⊆ V is a label set. The union of two
graph G and H is G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)).

2.2 Branch Decomposition

Definition 1 (Branch Decomposition). Given a graph G = (V,E), a branch
decomposition is a pair (T, β), such that

1 T is a binary tree with |E| leaves and every inner node of T has two children.
2 β is a mapping from V (T ) to P(E) satisfying the following conditions:
2.1 For each leaf v ∈ V (T ), there exists e ∈ E(G) with β(v) = {e}, and there

are no v, u ∈ V (T ), v 
= u such that β(v) = β(u).
2.2 For every inner node v ∈ V (T ) with children vl, vr, β(v) = β(vl)∪β(vr);

Definition 2 (Boundary). Given a graph G = (V,E), for every set F ⊆ E,
the boundary ∂F = {v | v is incident to edges in F and E \ F}.

Definition 3 (Width of a Branch Decomposition). Given a branch decom-
position (T, β) of G = (V,E), the width of this decomposition is max{|∂β(v)| |
v ∈ V (T )}.

The branch width bw(G) of G is defined as the minimum width of all branch
decompositions (T, β) for G.

Proposition 1. [3] For any fixed k, there is a linear time algorithm that checks
if a graph has branch width k and, if so, outputs a branch decomposition of
minimum width.

Branch width is related to another well-known graph parameter, treewidth. In-
deed, they are equivalent up to constant. Let tw(G) be the treewidth of graph
G, then

Proposition 2. [16] bw(G) ≤ tw(G) + 1 ≤ max{ 32 · bw(G), 2}.

Definition 4. Given a branch decomposition (T, β) of G = (V,E), for any t ∈
V (T ), let Vt = {v | ∃u ∈ V (G), vu ∈ β(t)}, the subgraph Gt is

Gt = (Vt, β(t))

.
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Fig. 1. A graph with a branch decomposition of width 3

2.3 Logic

We use FO and MSO to denote First Order Logic and Monadic Second Order
Logic respectively. The difference between these two logic is that FO only allows
quantification over individual variables while MSO allows quantification over set
variables. Furthermore, MSO can be extended to MSO2. In this paper, MSO2 is
the logic that allows quantification over subset of edges in graph.

3 Logical Approach

We consider aMulti-Multiway Cut instance (G,S1, · · · , Sc) whereG = (V,E)
is a simple graph of branch width k. Many NP-hard problems on graphs have ef-
ficient solutions when the input graphs have bounded treewidth by the following
theorem:

Theorem 1 (Courcelle’s Theorem, Optimization Version). [6,1] Given
an MSO formula φ(U), there is an algorithm A satisfies that for any labeled graph
G = (V,E, L1, · · · , Ll) of treewidth k, A computes the set U ⊆ V with minimum
cardinality, such that G � φ(U), with running time bounded by f(k, |φ(U)|)|G|
for some computable function f .

By Proposition 2, the branch width of a graph is equivalent to its treewidth up to
some constant. Therefore Theorem 1 holds for graph with bounded branch width.
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Furthermore, the optimization version of Courcelle’s Theorem for MSO can be
extend to MSO2 formula by turning the original graph G into a labeled graph
I(G) = (VI , EI , LV , LE), where VI = V (G) ∪ E(G), LV = V (G), LE = E(G)
and EI = {{v, e} | v ∈ e}. Any MSO2 formula about the original graph G can
be translated into an MSO formula about I(G). Since the graph I(G) is also of
bounded branch width, we have an optimization version of Courcelle’s theorem
for MSO2. Readers can refer [10] for more detail.

Thus it is sufficient to write down an MSO2 formula capturing
Multi-Multiway Cut. We begin with a MSO2 formula saying two vertices
x, y are connected without edges in C:

conn(x, y, C) = ∀X [X(x) ∧ (∀u∀vX(u) ∧E(u, v) ∧ ¬C(u, v)→ X(v))→ X(y)]

The Multi-Multiway Cut problem can be captured by an MSO2 formula

mmcut(C) =
c∧

i=1

∀x∀y(Si(x) ∧ Si(y)→ ¬conn(x, y, C))

Therefore for all C ⊆ E(G), G � mmcut(C) ⇔ C is a multi-multiway cut of
(G,S1, · · · , Sc), thus we can solve Multi-Multiway Cut on bounded branch
width graph via Courcelle’s Theorem in time f(k, c) · |G| for some computable
function f .

4 Dynamic Programming Approach

Let (G,S1, . . . , Sc) be an instance of Multi-Multiway Cut and (T, β) be a
branch decomposition of G of width k. It is convenient to view each i ∈ [c] as
a color, i.e., v ∈ Si means v is assigned color i. Note that a vertex v may be
assigned with multiple colors (or no color) since we do not require Si ∩ Sj = ∅

for i 
= j. We use col(v) to denote the set of colors v assigned. Thus a multi-
multiway cut is an edge set whose removal disconnects all pairs of vertices with
common color.

In fact, we will compute a table C(t, Z) for every t ∈ V (T ) and Z. Here
Z = {(Xi, Yi) | i ∈ I} for some index set I. {Xi | i ∈ I} is a partition of ∂β(t)
and each Yi is a set of colors. We say a set of edges C ⊆ β(t) is consistent with
Z if and only if

(1) C is a multi-multiway cut of Gt.
(2) Let H = (Vt, β(t) \ C), i.e., the subgraph of Gt after removing C. Let {Pi |

i ∈ I} be the family of connected components in H such that Pi∩∂β(t) 
= ∅

for all i ∈ I. Then Xi = Pi ∩ ∂β(t) and Yi =
⋃

v∈Pi
col(v) for all i ∈ I.

It is easy to see that, for every multi-multiway cut C of Gt, there is only one
consistent Z. Intuitively, Z encodes colors exposed to external when removing
C from Gt.



320 X. Deng, B. Lin, and C. Zhang

The value of C(t, Z) is a minimum edge set C ⊆ β(t) that is consistent with
Z, if there are more than one C consistent with Z with minimum cardinality,
then C(t, Z) is arbitrary one of them. If no such C exists, then the value of
C(t, Z) is “Impossible”. Indeed, then minimum multi-multiway cut of G is the
one in {C(r, Z) | all possible Z} with minimum cardinality, where r is the root
of T .

In the following, we will show how to compute C(t, Z) recursively.

4.1 Computing C(t, Z)

If t is a leaf in T , the computation of C(t, Z) is easy, otherwise let t� and tr be
its two children in T . C(t, Z) is computed from some C(t�, Z�) and C(tr, Zr).
We will use the following algorithm as a subroutine:

Merge Two Cuts

Input: (C�, Z�) and (Cr, Zr), where Z�(resp. Zr) is consistent with
C�(resp. Cr)

Output: If C� ∪ Cr is a multi-multiway cut of Gt, compute the set Z

consistent with C�∪Cr on Gt, otherwise return “Not Mergeable”

1 Let Z� = {(Xi, Yi) | i ∈ I}, Zr = {(Xj , Yj) | j ∈ J} where I and J are two index
sets.

2 Construct a bipartite graph B = (I, J, E), for every i ∈ I and j ∈ J , ij ∈ E if
and only if Xi ∩ Xj �= ∅.

3 Let {Ps | s ∈ S} be family of connected components in B where S is an index
set.

4 For every s ∈ S and p, q ∈ Ps, if Yp ∩ Yq �=
S

v∈Xp∩Xq
col(v), return “Not

Mergeable”.
5 For s ∈ S:

5.1 Let Xs =
“S

p∈Ps
Xp

”
∩ β(t)

5.2 Let Ys =
“S

p∈Ps
Yp

”

6 return Z = {(Xs, Ys) | s ∈ S and Xs �= ∅}.

Algorithm 1: Merge Two Cuts

Step 4 in Algorithm 1 checks whether there are two vertices sharing some
common color being connected after merging. If it is the case, the algorithm
outputs “Not Mergeable”, which means C� ∪ Cr is not a multi-multiway cut of
G. The size of bipartite graph B is O(k2) and all other operations are linear to
the size of B, so this algorithm is in O(k2).

Fig 2 shows an example where Xu1 ∩ Xv1 = {1}, Xu3 ∩ Xv2 = {2} and
Xu3 ∩Xv4 = {3}; with the corresponding color sets Yu1 = {white, black}, Yu3 =
{white, black, gray}, Yv1 = {black, gray} and Yv2 = {white, black, gray}. Apply-
ing Algorithm 1 to this example, in the Step 4 of Algorithm 1, we can find u3, v2
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in the same component of the bipartite graph, and Yu3 ∩ Yv2 = {gray, white},
while

⋃
v∈Xu3∩Xv2

col(v) = {gray}. The algorithm will return “Not Mergeable”,

since there are two vertices with the common color white being connected after
merging.

Fig. 2. Merge Two Pairs

To ease the presentation, we define a binary operation ⊕:

Definition 5. Z� ⊕ Zr = Z if and only if Algorithm 1 output Z on inputs Z�

and Zr.

Compute C(t, Z)

Input: (G, S1, · · · , Sc) along with a branch decomposition (T, β) of
width k

Output: Compute the table C(t, Z)

1 If t is a leaf in T . Let uv be the unique edge in β(t). There are two cases:
(1.1) Z = {(X1, Y1)} where X1 = {u, v}. In this case C(t, Z) = ∅ if col(u) ∩

col(v) = ∅ and Y1 = col(u) ∪ col(v). Otherwise, C(t, Z) =“Impossible”;
(1.2) Z = {(X1, Y1), (X2, Y2)} where X1 = {u} and X2 = {v}. In

this case C(t, Z) = {uv} if Y1 = col(u), Y2 = col(v). Otherwise,
C(t, Z) =“Impossible”.

2 If t is not a leaf in T , let t� and tr be its two children.

C(t, Z) = arg min
|C|

{C | C = C(t�, Z�) ∪ C(tr, Zr) and Z = Z� ⊕ Zr}

Algorithm 2: Compute C(t, Z)

We can now compute C(t, Z) as follows: C(t, Z) is the minimum edge set C ⊆
β(t) such that C = C(t�, Z�)∪C(tr, Zr) for some Z�, Zr satisfying Z�⊕Zr = Z.
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We enumerate all such Z� and Zr to compute C(t, Z). Note that if one side of
the union is “Impossible”, then the result is also “Impossible”. In summary, we
use Algorithm 2 to compute C(t, Z).

Putting all together, we have:

Theorem 2. Given a Multi-Multiway Cut instance (G,S1, · · · , Sc) along
with a branch decomposition (T, β) of width k, the minimum multi-multiway cut
can be computed in time O(k2k+2 · 22kc · |G|).

Proof. First note that, for a fixed k, the number of distinct Z is at most kk2ck.
This is because

(1) |β(t)| ≤ k and the number of partitions of a k-size set is upper bounded by
kk, and

(2) There are at most 2c distinct sets of colors and each Yi is one of them.

In Algorithm 2, C(t, Z) is computed in a bottom-up style: once we know all
C(t�, Z�) and C(tr , Zr), we can enumerate all of them to compute the corre-
sponding C(t, Z). We need to deal with at most (kk2ck)2 pairs of Z� and Zr and
for each pair, we use Algorithm 1 to compute their merging results, and then
take the minimum C(t, Z) for each Z. After computing the table C(t, Z), we
choose the cut in {C(r, Z) | all possible Z} with minimum cardinality as the
final answer, where r is the root of T . In all, we use O(k2k+2 ·22kc · |G|) time. ��

4.2 Proof of the Correctness

The correctness of Algorithm 1

Lemma 1. If C� is a multi-multiway cut consistent with Z� on Gt� , Cr is a
multi-multiway cut consistent with Zr on Gtr and Z�⊕Zr = Z, then C := C�∪Cr

is a multi-multiway cut consistent with Z on Gt.

Proof. Assume Z = {(Xk, Yk) | k ∈ K} for index set K.
First, we need to show that if Z�⊕Zr = Z, then C is a multi-multiway cut of

Gt. That is, there are no two vertices with common color connected in Gt after
removing C. Let Pt = {Ps | s ∈ S} be the family of connected components in
Gt after removing C, P� = {Pi | i ∈ I} (resp. Pr = {Pj | j ∈ J}) be the set of
connected components in Gt� (resp. Gtr ) after removing C� (resp. Cr). It follows
from the definition of branch decomposition that

Ps =
⋃
i∈I′

Pi ∪
⋃
j∈J′

Pj

for some index sets I ′ ⊆ I and J ′ ⊆ J .
Thus if Ps contains two vertices with common color, Step 4 of Algorithm 1

will return “Not Mergeable”, but this is impossible since Z� ⊕ Zr = Z means
Algorithm 1 outputs Z on inputs Z�, Zr.
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It remains to verify {Xk | k ∈ K} is exactly {Ps ∩ ∂β(t) | s ∈ S and Ps ∩
∂β(t) 
= ∅} and Yk is the set of colors appeared in the component containing
Xk.

Let Ps be a component in Pt such that Ps ∩ ∂β(t) 
= ∅. It follows from the
definition of branch decomposition that

Ps =
⋃
i∈I′

Pi ∪
⋃
j∈J′

Pj

for some index sets I ′ ⊆ I and J ′ ⊆ J .
Then I ′ ∪ J ′ is a connected component in the bipartite graph B constructed

in Step 2. The corresponding Xk :=
(⋃

s∈I′∪J′ Xs

)
∩ β(t). It is easy to verify

that the correspondence is a bijection between two sets.
The consistency of {Yk | k ∈ K} follows from Step 5.2 of Algorithm 1 and

consistency of {Xk | k ∈ K} directly. ��

Now we prove the correctness of the Algorithm 2.

Lemma 2. C(t, Z) computed in Algorithm 2 is the minimum cut that consistent
with Z on Gt.

Proof. We apply induction on the branch decomposition tree.
If t is leaf, the correctness is obvious. Otherwise, t has two children t� and tr in

T . Suppose C is the minimum cut that consistent with Z on Gt, Let C� = C∩β(t�)
and Cr = C∩β(tr). There is only one Z� (resp. Zr) that C� (resp. Zr) is consistent
with. Since C = C� ∪Cr, we have Zr ⊕ Z� = Z by the Algorithm 1.

Let C′
� = C(t�, Z�), we have |C′

�| ≤ |C�| by the induction; similarly let C′
r =

C(tr, Zr), we have |C′
r| ≤ |Cr|. Thus C′

� ∪ C′
r is a cut consistent with Z� ⊕ Zr.

On the other hand, C� ∪ Cr is also a cut consistent with Z� ⊕ Zr. We have
|C′

� ∪ C′
r| ≤ |C� ∪ Cr| = |C| ≤ |C′

� ∪ C′
r|. According to our algorithm, C(t, Z)

is a cut of minimum cardinality over all C(t�, Z�) ∪ C(tr, Zr) for Z� ⊕ Zr = Z,
therefore |C(t, Z)| = |C|. ��

5 Conclusion

In this paper, we presented two linear algorithms for Multi-Multiway Cut
problem with constant number of terminal sets on graphs of bounded branch
width. The logical approach is straightforward and very easy to design, however,
it relies on a canonical algorithm and thus not practical. Our second approach is
somehow a refinement of the canonical algorithm to specific problem, the more
subtle design of subproblem gains much efficiency.
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Abstract. This paper studies bi-criteria scheduling problems on m par-
allel machines with machine unavailable intervals. The goal is to minimize
the total completion time subject to the constraint that the makespan
is at most a constant T . We study two different unavailability models.
In the first model, each machine has a single unavailable interval which
starts from time 0. In the second model, each machine can have multiple
unavailable intervals, but at any time, there is at most one machine un-
available. For each model, we show that there is an optimal polynomial
time algorithm.

1 Introduction

Multi-criteria scheduling and scheduling subject to machine availability con-
straints have been two very active areas in manufacturing and operations man-
agement research over the last couple of decades. However, most research in these
two areas has been conducted independently from one another. The only work
that concerns both bi-criteria scheduling and scheduling with limited machine
availability simultaneously is done by the authors in paper [6]. The paper [6] con-
siders preemptively scheduling the jobs on two machines to minimize the total
completion time and makespan at the same time with one as primary criterion
and the other as secondary criterion.

In this paper, we continue our research to m, m > 2, parallel machines with
unavailability constraint. We focus on preemptive schedules. A job can be pre-
empted by another job or interrupted by machine unavailable intervals and re-
sumed later on any available machine. We are concerned with the makespan and
total completion time. The research in this paper is motivated not only by the
lack of research results in this area, but also by its important applications in re-
ality. The makespan and total completion time are two objectives of considerable
interest. Minimizing makespan can ensure a good balance of the load among the
machines and minimizing the total completion time can minimize the inventory
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M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 325–338, 2013.
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holding costs. It is quite common that the manufacturers wish to minimize both
objectives.

On the other hand, each machine may have some unavailable periods during
which it can not process any jobs. We study two different machine unavailability
models: (1) Each machine has only one unavailable period which starts at time
zero, that is, machine Mi (1 ≤ i ≤ m) is available in interval [ri,∞), where
ri ≥ 0. We say in this case that each machine has a release time; (2) Each
machine may have multiple unavailable periods, but there is at most one machine
unavailable at any time. In reality, the first machine unavailability model may
occur due to the unfinished jobs in the previous scheduling horizon and the
second machine model exists in many scenarios since the preventive maintenance
or periodical repair is usually done on a rotation basis instead of maintaining or
repairing several machines simultaneously.

Formally speaking, there are n jobs that need to be scheduled on m machines,
denoted by J = {J1, J2, · · · , Jn}. Each job Jj has a processing time pj. Without
loss of generality, the processing times of jobs are assumed to be integer. Let S
be a feasible schedule of these jobs, the completion time of job Jj in schedule S
is denoted by Cj(S). If S is clear from the context, we will use Cj for short. The
makespan of S is Cmax(S) = max{Cj(S)}, and the total completion time of S
is

∑
Cj(S). We will use C∗

max to denote the minimum makespan. The goal is to
schedule the set of jobs on m parallel machines so as to minimize

∑
Ci subject to

the machine unavailability constraint and the condition that Cmax ≤ T , where
T ≥ C∗

max. To denote our problems, we extend the 3-field notation α | β | γ
introduced by Graham et al. [3]. For the model that each machine has a release
time, our problem is denoted by Pm, ri | r − a, prmt |

∑
Cj/Cmax < T . For the

model that there is at most one machine unavailable at any time, our problem
is denoted by Pm−1,1 | r − a, prmt |

∑
Cj/Cmax < T .

Literature Review. So far there is only one research paper that considers mul-
ticriteria scheduling with limited machine availability constraint [6]. In the pa-
per, Huo and Zhao give optimal polynomial algorithms for three problems: (1)
P1,1 | r − a, prmt |

∑
Cj/Cmax; (2) P1,1 | r − a, prmt | Cmax/

∑
Cj ; and (3)

P2 | r− a, prmt | Cmax/
∑

Cj in which both machines are unavailable during an
interval [t, t+ x) and at most one machine is unavailable at any other time.

In the following we will review the relevant results in the area of bi-criteria
scheduling and in the area of scheduling with limited machine availability, respec-
tively. We will survey the results concerning with makespan and total completion
time only. For more details about multicriteria scheduling, see [2], [1], [14], [5]
and the references therein. For details about scheduling with limited machine
availability, see the surveys [10], [13] and [12].

Research on multicriteria scheduling problems on parallel machines has not
been dealt with adequately in the literature. Gupta et al. ([4]) proposes an
exponential algorithm to solve optimally the bi-criteria problem of minimizing
the weighted sum of makespan and mean flow time on two identical parallel
machines. When preemption is allowed, P | prmt | Cmax/

∑
Cj and P | prmt |
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Cj/Cmax are polynomially solved by Leung and Young in [7], and Leung and

Pinedo in [8], respectively.
With limited machine availability, when there are multiple machines, if pre-

emption is not allowed, most problems are NP-hard. When preemption is allowed
and the machines have limited availability constraint, the makespan problem is
shown to be solvable in P by Liu and Sanlaville ([11]); additionally if the number
of available machines does not go down by 2 within a period of pmax (which is
the largest processing time of the jobs), Leung and Pinedo([9]) solved the total
completion time minimization problem using PSPT (preemptive PSPT, i.e., at
any time, when a machine becomes available for processing jobs, the job with
the minimum remaining time gets scheduled.) rule.

When each machine has a release time, that is, machine Mi is only available
in interval [ri,∞), where ri ≥ 0, it is easy to show that SPT (shortest process-
ing time first) rule minimizes

∑
Cj and one can modify the McNaughton rule

(McNaughton (1959)) to minimizes the makespan.

New Contributions. In this paper, we study two problems: Pm, ri | r− a, prmt |∑
Cj/Cmax < T and Pm−1,1 | r − a, prmt |

∑
Cj/Cmax < T . We show both

problems are in P by developing optimal algorithms. Note that a special case of
our second problem is m = 2, which has been solved polynomially by the authors
in [6]. While it is natural to conjecture the problem is still in P when m > 2,
it turns out that the optimal algorithm itself and the proof of its optimality are
much more complicated.

Organization. Our paper is organized as follows. In Section 2, we give some
preliminary results. In Section 3, we study Pm, ri | r−a, prmt |

∑
Cj/Cmax < T .

In Section 4, we study Pm−1,1 | r − a, prmt |
∑

Cj/Cmax < T . In Section 5, we
draw the conclusion.

2 Preliminaries

As we mentioned before, SPT rule gives an optimal schedule for the total com-
pletion time when each machine has only a single unavailble interval starting
from time 0. In general, however, SPT is not optimal when machines have ar-
bitrary unavailable intervals. till, one can follow similar arguments from [6] and
[9] to show that if there is at most one machine unavailable at any time, PSPT
rule gives an optimal schedule.

Lemma 1. For m machines, m ≥ 2, such that at any time at most one machine
is unavailable, PSPT generates an optimal schedule for

∑
Cj.

When the machines have arbitrary unavailable intervals, for the bi-criteria ob-
jective,

∑
Cj/Cmax ≤ T , one can show that the jobs completes in SPT order,

see the following lemma.
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Lemma 2. For m machines with arbitrary unavailability constraints, m ≥ 2,
there is an optimal schedule for the objective

∑
Cj/Cmax ≤ T , such that if

pi < pj, then Ci ≤ Cj.

Throughout this paper, we assume jobs J1, J2, . . . , Jn are indexed in nonde-
creasing order of their processing times, i.e., p1 ≤ p2 ≤ . . . ≤ pn.

3 Pm, rj | r − a, prmt | ∑Cj/Cmax ≤ T

In this section, we will develop an optimal algorithm for Pm, rj | prmt |∑
Cj/Cmax ≤ T . Here we consider C∗

max ≤ T ≤ C′
max where C∗

max is the
optimal makespan of problem Pm, rj | r − a, prmt | Cmax which can be solved
by Liu and Sanlaville ([11]) and C′

max is the makespan of the schedule pro-
duced by PSPT rule. Apparently, if T < C∗

max, no feasible schedule exists and
if T > C′

max, we can simply apply PSPT rule to the problem.
Let S be an empty schedule initially. The basic idea of our algorithm is to

iteratively add jobs Jj , 1 ≤ j ≤ n, in SPT order to S , subject to the condition
that all the remaining jobs can finish by T . We can show that in order to check
whether the remaining jobs can finish by T , it is sufficient to check whether the
last m − 1 jobs (or all the remaining jobs Jj+1, · · · , Jn if n − j < m − 1) can
finish by T . The specific procedure is described below.

Let n′ be the number of jobs we are going to schedule as early as possible
subject to the condition that the last m−1 jobs can finish by T . Initially, n′ = n,
and n′ may be updated during the procedure. For each job Jj , (1 ≤ j ≤ n′),
when we add it to S, we try to schedule it on the machine with the earliest
idle time. For convenience, we use fi and ai to denote the earliest idle time and
the total idle time on machine Mi respectively. Initially, we have fi = ri and
ai = T − ri, and after jobs are scheduled onto Mi, fi will be updated to be the
completion time of the last job scheduled on machine Mi and ai will be updated
as ai = T − fi. Without loss of generality, we assume that the machines are
numbered such that f1 ≤ f2 · · · ≤ fm. So job Jj will be scheduled on machine
M1.

In order to make sure that the last m − 1 jobs (or all the remaining jobs if
n− j < m− 1) can finish by T , we first check if Jn can complete on M2 by T ,
then check if Jn−1 can complete on M3 by T , and so on, in this order. During
this process, we decide if a job Jk, n−m+2 ≤ k ≤ n, needs to preempt Jj , and if
so, at what time and how much. Specifically, for each job Jk, n ≥ k ≥ n−m+2
(or n ≥ k ≥ j + 1 if n − j < m − 1), we first check if pk ≤ ai, i = n − k + 2.
If so, it means that machine Mi has enough idle time to schedule Jk, and we
say that this machine has a surplus σi = ai − pk; otherwise, only part of the
job with length ai can be scheduled on machine Mi, we say that the job has a
deficit δk = pk − ai. When a job Jk has deficit, we check if its deficit can be
distributed to the machines with surplus. We check the machines in the order
of Mi−1, Mi−2,· · · , M2. If a machine Ml(i − 1 ≥ l ≥ 2) has surplus σl and the
surplus is more than the deficit, i.e. σl ≥ δk, we update σl = σl − δk, δk = 0
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and we continue to schedule the next job Jk−1 on machine Mi+1; otherwise, we
update δk = δk − σl and σl = 0, and we continue to check the next machine
with surplus. If after we consider all the machines Ml(i − 1 ≥ l ≥ 2), we still
have δk > 0, then this is the amount that job Jk has to be scheduled on M1. We
try to schedule this part of Jk on M1 as late as possible. So we first backward
schedule Jk to the idle interval starting from fi if there is any. If there is still
part of Jk not scheduled, we schedule the remaining part of the job Jk to those
intervals where Jj is scheduled but Jk is not, reschedule the replaced part of job
Jj to the idle time on M1 as early as possible, and set n′ = k − 1.

We repeat this procedure until all the last m − 1 jobs (or all the remaining
jobs if n − j < m − 1) are checked. We update the processing times of these
m− 1 jobs by reducing the part scheduled before the completion time of job Jj ,
fix the schedule of Jj and the jobs scheduled before Jj on machine M1, remove
the jobs that are scheduled after Jj on M1. If Jj finishes at time T , or j = n′,
we stop the procedure and go to next step; otherwise, we schedule next job Jj+1

in a similar way.
If the procedure is stopped, we must have either Cj = T or all the jobs

Jj(1 ≤ j ≤ n′) have been scheduled. If there are still jobs unscheduled, that is,
n′ < n, we schedule all the remaining jobs Jn, · · · , Jn′+1 one by one, in this order,
on machine M2, · · · , Mn−n′+1 respectively. We schedule job Jk, n ≥ k ≥ n′ + 1
backwards from time T on machine Mi, i = n−k+2. If it cannot be completely
scheduled on machine Mi, we schedule the unfinished part of job Jk backward
during the idle intervals on machines Mi−1, Mi−2,· · · , M2, in this order. In case
there is an overlap of Jk on Ml(i−1 ≥ l ≥ 2) with part of Jk on other machines,
we swap the overlapped Jk on Ml with the job Jn−(l−2) on Ml. The formal
algorithm is presented in the following.

Algorithm1
Input: ri for i = 1, · · · , m;

pj for j = 1, · · · , n, and p1 ≤ p2 ≤ · · · ≤ pn.
Output: a schedule S

1. Let S be an empty schedule.
2. Let fi = ri for all machine Mi, i = 1, · · · , m.
3. Let Jj be the next job in SPT order, initialize j = 1
4. n′ = n
5. While j ≤ n′

(a) Renumber the machines so that f1 ≤ f2 · · · ≤ fm.
(b) Let ai = T − fi for i = 1, · · · , m.
(c) Schedule Jj on machine M1, update f1, a1.
(d) Let k = n and i = 2
(e) While k ≥ j + 1 and i ≤ m

if ai ≥ pk
σi = ai − pk, δk = 0

else
• σi = 0, δk = pk − ai
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l = i− 1
while δk > 0 and l ≥ 2

if σl > δk, then σl = σl − δk and δk = 0
else δk = δk − σl and σl = 0
l = l − 1

if δk > 0 starting from fi backward, schedule the remaining part
of Jk to the idle time interval

machine M1 and update δk
if we still have δk > 0 continue backward schedule the remaining
part of Jk to the intervals where Jj is scheduled, and reschedule
this part of Jj to the idle time interval M1 as early as possible.

Update f1, a1.
set n′ = k − 1

i = i+ 1, k = k − 1
(f) Update the processing times of jobs Jn, . . . , Jn−m+2 (or Jj+1 if n− j <

m−1) by reducing the part of these jobs scheduled before the completion
time of job Jj on machine M1

(g) Remove the jobs scheduled after Jj on M1

(h) If the completion time of job Jj is T , set n′ = j
(i) j = j + 1

6. k = n and i = 2
7. While k > n

backward schedule Jk on Mi from T as much as possible.
if ai ≥ pk , then σi = ai − pk, δk = 0
else σi = 0, δk = pk − ai
l = i− 1
while δk > 0 and l ≥ 2

if σl > 0
backward schedule Jk on Ml starting from the last idle time of

length
min(σl, δk). If some part of Jk on Ml overlaps with part of Jk

that is
already scheduled on some other machines, swap this part of Jk

on Ml

with same length of the job on Ml, Jn−(l−2), from those intervals
where

Jk is not scheduled
if σl > δk, then σl = σl − δk and δk = 0
else δk = δk − σl and σl = 0

l = l − 1
8. Return S
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We use an example to explain Algorithm1. There are 4 machines with release
time 0, 3, 3, 10, respectively. We need to schedule 5 jobs before time T = 12. The
processing times of J1, . . . , J5 are 5, 6, 7, 7, 7, respectively. After we schedule
J1 on M1 during [0, 5), we check if J5, J4, and J3 can finish before 12 on M2,
M3 and M4, respectively. Since p5 = 7 < a2 = 9, we have δ5 = 0, and σ2 = 2.
Similarly, δ4 = 0, and σ3 = 2. For J3, initially δ3 = 5. We reduce the deficit by
utilizing the surpluses σ3, σ2. Now, δ3 = 1 and we backward schedule it on M1

during the interval [9, 10). After this process, we know that given the current
schedule of J1, all the remaining jobs can finish by 12. So we fix the schedule
before the completion time of J1, and remove the schedule of the remaining jobs
from the schedule, see Figure 1 (1). Next reorder the machines, we schedule J2
on M1 (the original M2) during interval [3, 9) , and do the check in a similar way.
This time, however, σ2 = 2 and σ3 = 0. For J3, initially δ3 = 5. After utilizing σ2

and the interval [9, 10) on M1, J3 has to preempt J2 during the interval [7, 9) and
so J2 is delayed and finished at 12. By the algorithm, we update the processing
time of job J3 by reducing the part scheduled before J2 and stop Step 5. Then
we schedule J5, J4 and J3 according to Step 7. See Figure 1 (2) for the final
schedule.

J1 

0 1 2 3 4 5 6 7 8 9 10 11 12 

(1) 

J2 J3 J2 

J3 J5 

J1 J4 

J3 

(2) 

0 1 2 3 4 5 6 7 8 9 10 11 12 

M1 

M2 

M3 

M4 

M1 

M2 

M3 

M4 

Fig. 1. Illustration of Algorithm 1

Lemma 3. The order pn ≥ pn−1 ≥ · · · ≥ pn−m+2 ≥ pn−m+1 ≥ · · · ≥ p1 is
always maintained even if pk is updated for some n ≥ k ≥ n −m + 2 in some
iteration in the algorithms.

Proof. We show the Lemma is true after each time we schedule a job Jj . We first
show that the relative order of the lengths of the last (m−1) jobs is maintained.
Let Jk+1 and Jk be two of the last (m − 1) jobs. According to the algorithm,
after Jj is scheduled on M1, we check if job Jk+1 can complete by T on machine
Mi−1 and if job Jk can complete by T on machine Mi, where i = n− k + 2.

If pk+1 is unchanged in Step 5, we must have pk+1 ≥ pk. Otherwise, part of
Jk+1 is scheduled before the completion time of job Jj on machine M1. Let
p′k+1 be the new length of job Jk+1 after it is updated. We know p′k+1 ≥
ai−1. Furthermore, there is no surplus on any machine Mi−1, · · · , M2, and
no idle time before fi−1. If job Jk can be fully scheduled on machine Mi, we
have pk ≤ ai ≤ ai−1 ≤ p′k+1. Otherwise, part of job Jk will be scheduled
on machine M1 backward from time fi. Let p′k be the new length of job Jk
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after it is updated. Since there is no idle time before fi−1 on M1, p
′
k is at most

T − fi−1 = ai−1 at the end of Step 5. Thus p′k ≤ ai−1 ≤ p′k+1 and the order is
maintained.

Now we show that pn−m+1 < pn−m+2. If pn−m+2 is not updated in Step 5,
then pn−m+2 ≥ pn−m+1 ≥ · · · ≥ p1. Otherwise, let p′n−m+2 be the new length of
job Jn−m+2. We must have p′n−m+2 ≥ am and there is no idle time before fm on
M1. Furthermore, σl = 0, for all l, 2 ≤ l ≤ m. In this case, all the remaining jobs
have to be and can be scheduled on the first machine, which means we must have
am ≥ a1 ≥ pn−m+1. Thus p′n−m+2 ≥ am ≥ a1 ≥ pn−m+1. Since the processing
time is unchanged for p1, p2, . . ., pn−m+1. The relative order of the (remaining)
processing time is maintained.

We have the following two Lemmas about Algorithm1. Due to space limit, we
omit the proofs.

Lemma 4. Algorithm1 schedules the first n′ jobs as soon as possible as long as
the last m − 1 jobs can finish before T and can be implemented in polynomial
time.

Lemma 5. Algorithm1 finds a feasible schedule S of the n jobs.

Theorem 1. Algorithm1 returns an optimal schedule S for Pm, rj | r−a, prmt |∑
Cj/Cmax ≤ T in polynomial time.

Proof. We prove that S is optimal by showing there exists an optimal schedule
that schedules the first n′ jobs as early as possible subject to the last m− 1 jobs
can finish by T . Assume there is an optimal schedule S∗ that does not schedule
the jobs as early as possible. Let Ji be the first job in S∗ that is not scheduled
as early as possible and let t1 be the first time that Ji is not scheduled in S∗

but scheduled in S. That is, all the jobs with index less than i are scheduled in
S∗ exactly the same as in S and job Ji is scheduled in S∗ exactly the same as
S before time t1. We will prove that we can always convert S∗ such that job Ji
can be scheduled at t1 without increasing the total completion time of jobs in
S∗.

Consider all the jobs Jj(j > i) scheduled at t1 in S∗. By Lemma 1, we have
Cj(S

∗) ≥ Ci(S
∗). If there exists a time t′ and a job Jj such that Jj is scheduled

at t1 but not at t′ and Ji is scheduled at t′, we can exchange Jj at t1 with Ji at
t′. The completion times of Ji and Jj are not increased and the completion times
of other jobs are unchanged, so the total completion time is not increased.So in
the following, we assume t′ does not exist in S∗; i.e. in S∗, at any time after t1,
if Ji is scheduled, then Jj must also be scheduled.

For the convenience, we define (Ji1 (ti1), Ji2(ti2 ), · · · , Jip(tip)) to be a “ se-
quence” of a schedule, if we can reschedule Jik , from tik to tik+1

for 1 ≤ k ≤ p−1
without increasing the total completion time of the schedule. And a sequence
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(Ji1(ti1 ), Ji2(ti2), · · · , Jip(tip)) is an “exchange sequence” of a schedule if we can
reschedule Jik , from tik to tik+1

(or ti1 if k = p) without increasing the total
completion time of the schedule. It is easy to see for this to be true, we must
have Jik , 1 ≤ k ≤ p, is scheduled at tik , but not at tik+1

(or ti1 if k = p).
Depending on the completion time of the jobs scheduled at t1 in S∗. we have

the following two cases. We will show that in each case, there is an exchange
sequence in S∗ so that we can reschedule Ji at t1 in S∗.

Case1: There exists a job Jj at t1, j > i, Cj 
= T .
Note that neither Ji nor Jj is scheduled at Cj in S∗, and both Ji and
Jj are scheduled at Ci− 1 in S∗. Since the number of available machines
at Cj is not less than that at Ci − 1, there must exist a job Jl (l > i)
(or idle time/dummy job) which is scheduled at Cj but not scheduled at
Ci − 1.
We can convert S∗ based on the exchange sequence (Jj(t1), Jl(Cj), Ji(Ci−
1)). In this way, Ci is decreased by at least 1, Cj is increased by 1 and
Cl is not increased, all other jobs have same completion time as before,
and the total completion time is not increased.

Case2: For all jobs Jj at t1 such that j > i, we have Cj = T .
Since Ji is scheduled at t1 in S but not in S∗ and the number of avail-
able machines at t1 is fixed, there must exists a job Jj scheduled at t1
in S∗ but not in S at time t1. By induction, all the jobs Jj , j < i, have
exactly the same schedule in S and S∗. So we must have j > i. Thus
there must exist a time t2 such that Jj is not scheduled at t2 in S∗ but
is scheduled at t2 in S. In return, there must exist a job Jk, which is
scheduled at t2 in S∗ but not in S. Note that Jk cannot be a dummy
job representing a machine idle at t2. Otherwise, we can follow the se-
quence (Jj(t1), Jk(t2)) to move job Jj out of t1 and move Ji to t1. The
obtained schedule has smaller total completion time which is a contradic-
tion. Also, k cannot be smaller than i because by induction hypothesis,
the schedule of these jobs are exactly the same in S and S∗. So we must
have k ≥ i. We can repeat the procedure and stop when we find a job
Jp such that Cp < T . Since the number of jobs and the makespan of the
schedule is finite, we must be able to stop at some point. In this way, we
get a sequence (Jj(t1), Jk(t2), · · · , Jp(tp)). If p = i, then we can follow
the exchange sequence (Jj(t1), Jk(t2), · · · , Ji(ti)) to convert S∗ so that
Ji is scheduled at t1 in S∗. Otherwise, if there exists a time ti that Ji
is scheduled but Jp is not scheduled, then we can have the exchange se-
quence (Jj(t1), Jk(t2), · · · , Jp(tp), Ji(ti)) to convert S∗. If there does not
exist such time ti, that is, at time Ci − 1, both Ji and Jp are scheduled,
since at time Cp, both Ji and Jp are not scheduled, there must exist a
job Jl(l > i) which is scheduled at Cp but not at Ci − 1. We can fol-
low the exchange sequence (Jj(t1), Jk(t2), · · · , Jp(tp), Jl(Cp), Ji(Ci − 1))
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Fig. 2. Illustration of Theorem 1: Case2

to convert S∗ so that Ji is scheduled at t1 in S∗, see Figure 2. In sum-
mary, we can always reschedule S∗ so that Ji is scheduled at t1 without
increasing the total completion time.

By repeating the above process, we can always convert S∗ so that the schedule
of the first n′ jobs in S∗ is exactly the same as that in S.

Note that the last n− n′ jobs complete exactly at T in S. And we can show
that given the schedule of the first n′ jobs exactly the same as in S, the remaining
jobs have to complete at T in any schedule. This means that S must be optimal.

4 Pm−1,1 | r − a, prmt | ∑Cj/Cmax ≤ T

In this section, we study the problem Pm−1,1 | r − a, prmt |
∑

Cj/Cmax ≤ T ,
where C∗

max ≤ T < C′
max. We give an optimal polynomial time algorithm for

this problem based on Algorithm1.
We use fi to denote the completion time of the last job scheduled on machine

Mi at the beginning of each iteration in our algorithm, and we assume that the
machines are numbered so that f1 ≤ f2 . . . ≤ fm. Since preemption is allowed,
for any unavailable interval between fi and fi+1(1 ≤ i ≤ m− 1), we can always
assume that this unavailable period is on machine Mi; and for any unavailable
interval after fm, we can always assume that this interval is on machine Mm. It
is easy to see that, at any time instant, if machine Mi+1 is available, then Mi

is also available. This assumption is just for ease of algorithm description and
our proof. If job Jj is scheduled at certain time on a machine which is actually
unavailable in S by our algorithm, we can always find a machine to schedule
the job at the same time without rearranging the real unavailable intervals since
preemptive is allowed.
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Algorithm2

1. Let S be an empty schedule.
2. Let fi = 0 for all machine Mi, i = 1, . . ., m.
3. n′ = n
4. Let Jj be the next job in SPT order, initialize j = 1
5. While j ≤ n′

(a) Renumber the machines that still have idle time so that f1 ≤ f2 · · · ≤ fm.
(b) Rearrange the unavailable intervals, so that all the unavailable intervals

between fi and fi+1 are on machine Mi and all the unavailable intervals
after fm are on machine Mm.

(c) Update ai to be the total available time between fi and T on machine
Mi, i = 1, . . ., m.

(d) Schedule Jj on machine M1,update f1, a1.
(e) Let k = n and i = 2
(f) While k ≥ j + 1 and i ≤ m

if i = m rearrange the unavailable intervals [s, t] where s ≥ f1, from
Mm to M1 update a1, and am.
if ai ≥ pk

σi = ai − pk, δk = 0
else
• σi = 0, δk = pk − ai,
l = i− 1
while δk > 0 and l ≥ 2

if σl > δk, σl = σl − δk, δk = 0
else δk = δk − σl, σl = 0
l = l − 1

if δk > 0 starting from T backward, schedue the remaining part
of Jk to the idle itervals [s, t) (if there is any) on M1 such that
either (1) s > fi and [s, t) is an unavailable interval on machine
Mi or (2) t ≤ fi.

update δk
if δk > 0 continue to backward schedule the remaining part of
Jk starting from fi to the intervals where Jj is scheduled, and
reschedule this part of Jj to the idle time interval M1 as early
as possible

update f1, a1
n’ = k-1

i = i+ 1, k = k − 1
(g) Update the processing times of jobs Jn, . . . , Jn−m+2 (or Jj+1 if n− j <

m−1) by reducing the part of these jobs scheduled before the completion
time of job Jj on machine M1

(h) Remove the jobs scheduled after Jj on M1

(i) If the completion time of job Jj is T set n′ = j
(j) j = j + 1
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6. k = n and i = 2
7. While k ≥ j

backward schedule Jk on Mi from T as much as possible.
if ai ≥ pk , then σi = ai − pk, δk = 0
else σi = 0, δk = pk − ai
l = i− 1
while δk > 0 and l ≥ 2

if σl > 0 backward schedule Jk on Ml starting from the last idle time
of length min(σl, δk). If some part of Jk on Ml overlaps with part of Jk
that is already scheduled on some other machines, swap this part of Jk
on Ml with same length of the job on Ml, Jn−(l−2), from those intervals
where Jk is not scheduled

if σl > δk, then σl = σl − δk and δk = 0
else δk = δk − σl and σl = 0

l = l − 1
8. Return S

We use an example to explain Algorithm2. There are 4 machines such that
M1 is unavailable during [0, 3), M3 is unavailable during [4, 7), M4 is unavailable
during [8, 12). See Figure 3 (0). We need to schedule 5 jobs before time T = 12.
The processing times of J1, . . . , J5 are 5, 6, 7, 10, 10, respectively. We first rear-
range the unavailable intervals and renumber the machines so that all unavailable
intervals are on the last machine M4. Then we schedule J1 on M1 during [0, 5),
we check if J5, J4, and J3 can finish before 12. Since p5 = 10 < a2 = 12, we
have σ2 = 2, and δ5 = 0. Similarly, σ3 = 2, and δ4 = 0, see Figure 3 (1). For J3,
we first move the unavailable interval after time 5 to M1. Then we get σ4 = 1
δ3 = 0. So we fix the schedule of J1, reorder the machines, see Figure 4 (3).
Then we schedule J2 on the new M1 during interval [0, 6) , and do the check
in a similar way. This time, however, J4 has to utilize the surplus on M2 (see
Figure 4 (4)), and J3 has to preempt J2 and so J2 is delayed. By the algorithm,
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Fig. 3. Illustration of Algorithm 2
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Fig. 4. Illustration of Algorithm 2

we update the processing time of J3 and set n′ = 2 and stop Step (e). Then,
we schedule job 5, 4, 3 in this order based on Step 7. The final schedule is given
Figure 4 (5).

Use similar argument, we can show the following.

Theorem 2. Algorithm2 returns an optimal schedule S for Pm−1,1 | r−a, prmt |∑
Cj/Cmax ≤ T .

5 Conclusion

In this paper, we study two bi-criteria scheduling problems subject to the
machine unavailability constraint. Our first problem, Pm, ri | r − a, prmt |∑

Cj/Cmax ≤ T , concerns the case that each machine has a release time af-
ter which the machine is always available. We show that an optimal schedule
can be obtained in polynomial time. The second problem, Pm−1,1 | r− a, prmt |∑

Cj/Cmax ≤ T , assumes that each machine can have multiple unavailable in-
tervals, but at any time there is at most one machine unavailable. We also design
an optimal algorithm for this problem by modifying the first algorithm. Both
algorithms and the proofs are quite involved and subtle.
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Abstract. As an analogous concept of nowhere-zero flows for directed
and bi-directed graphs, we consider zero-sum flows for undirected graphs
in this article. For an undirected graph G, a zero-sum k-flow is an as-
signment of non-zero integers whose absolute values less than k to the
edges, such that the sum of the values of all edges incident with each
vertex is zero. Furthermore we generalize the notion via considering a
combinatorial optimization problem, which is to calculate the zero-sum
minimum flow number of a graph G, namely, the least integer k for
which G may admit a zero-sum k-flow. The Zero-Sum 6-Flow Con-
jecture was raised by Akbari et al. in 2009: If a graph with a zero-sum
flow, it admits a zero-sum 6-flow. It turns out that this conjecture was
proved to be equivalent to the classical Bouchet 6-flow conjecture for bi-
directed flows. In this paper, we study zero-sum minimum flow numbers
of graphs induced from plane tiling by regular hexagons in an arbitrary
way, namely, the hexagonal grid graphs. In particular we are able
to verify the Zero-Sum 6-Flow Conjecture for the class of hexagonal
grid graphs by determining the zero-sum flow number of any non-trivial
hexagonal grid graph is 3 or 4. We further use the concept of dual graphs
to specify classes of infinite families of hexagonal grid graphs with min-
imum flow numbers 3 and 4 respectively. Further open problems are
included.

Keywords: zero-sum flow, zero-sum minimum flow number, hexagonal
grid, square grid, triangular grid.

1 Background and Motivation

Throughout this paper, all terminologies and notations on graph theory can be
referred to the textbook by D. West[10]. Let G be a directed graph. A nowhere-
zero flow on G is an assignment of non-zero integers to each edge such that for
every vertex the Kirchhoff current law holds, that is, the sum of the values of
incoming edges is equal to the sum of the values of outgoing edges. A nowhere-
zero k-flow is a nowhere-zero flow using edge labels with maximum absolute
value k − 1 . Note that for a directed graph, admitting nowhere-zero flows is

� The corresponding author with e-mail address wang@go.thu.edu.tw and the research
is partially supported by the National Science Council of Taiwan under project NSC-
101-2115-M-029-001.

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 339–349, 2013.
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independent of the choice of the orientation, therefore one may consider such
concept over the underlying undirected graph. A celebrated conjecture of Tutte
in 1954 says that every bridgeless graph has a nowhere-zero 5-flow. F. Jaeger
showed in 1979 that every bridgeless graph has a nowhere-zero 8-flow[5], and P.
Seymour proved that every bridgeless graph has a nowhere-zero-6-flow[6] in 1981.
However the original Tutte’s conjecture remains open. There is a more general
concept of a nowhere-zero flow that uses bidirected edges instead of directed
ones, first systematically developed by Bouchet[4] in 1983. Bouchet raised the
conjecture that every bidirected graph with a nowhere-zero integer flow has a
nowhere-zero 6-flow, which is still unsettled.

Recently another analogous nowhere-zero flow concept has been studied, as a
special case of bi-directed one, over the undirected graphs by S. Akbari et al.[1,2]
in 2009 and 2010, which is defined as follows:

Definition 1. For an undirected graph G, a zero-sum flow is an assignment
of non-zero integers to the edges such that the sum of the values of all edges
incident with each vertex is zero. A zero-sum k-flow is a zero-sum flow whose
values are integers with absolute value less than k.

S. Akbari et al. raised a conjecture (called Zero-Sum 6-Flow Conjecture)
for zero-sum flows similar to the Tutte’s 5-flow Conjecture for nowhere-zero
flows as follows: If G is a graph with a zero-sum flow, then G admits a zero-
sum 6-flow. It was proved in 2010 by Akbari et al. [1] that the above Zero-
Sum 6-Flow Conjecture is equivalent to the Bouchet’s 6-Flow Conjecture for
bidirected graphs, and the existence of zero-sum 7-flows for regular graphs were
also obtained. Based upon the results, they raised another weaker conjecture for
regular graphs: If G is a r-regular graph with r ≥ 3, then G admits a zero-sum
5-flow.

In literature a more general concept minimum flow number, which is de-
fined as the least integer k for which a graph may admit a k-flow, has been
studied for both directed graphs and bidirected graphs. We extend the concept
in 2011 to the undirected graphs and call it the zero-sum minimum flow number
[9]:

Definition 2. Let G be a undirected graph. The zero-sum minimum flow
number F (G) is defined as the least number of k for which G may admit a
zero-sum k-flow. F (G) =∞ if no such k exists.

In particular we obtain a characterization of graphs with flow number 2, and
also a characterization of 3-regular graphs with flow number 3 among other
results[8]. Note that the related result were presented in the FAW 2012 conference
by the first author in Beijing. We introduce the basic properties and previous
results of the zero-sum minimum flow numbers in later section. On the other
hand, it is well known that grids are extremely useful in all areas of computer
science. One of the main usage, for example, is as the discrete approximation
to a continuous domain or surface. Numerous algorithms in computer graphics,
numerical analysis, computational geometry, robotics and other fields are based
on grid computations.
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It is known that there are only three possible types of regular tessellations,
which are tilings made up of squares, equilateral triangles, and hexagons. We
consider and study the minimum flow numbers of graphs induced from plane
tiling by regular polygons in an arbitrary way. Formally, a square grid, or a
square grid graph is induced by an arbitrary finite subset of the infinite integer
lattice grid Z × Z. The vertices of a square grid are the lattice points, and the
edges connect the points which are at unit distance from each other. The infinite
grid Z×Zmay be viewed as the set of vertices of a regular tiling of the plane with
unit squares. Another type is with equilateral triangles, which defines an infinite
triangular grid in a similar way. A triangular grid graph is a graph induced
by an arbitrary finite subset of the infinite triangular grid. One more type of
plane tiling is with regular hexagons which defines an infinite hexagonal grid,
and the graph induced by an arbitrary finite subset of the infinite hexagonal grid
is called a hexagonal grid graph. (See Figure 1) A hexagonal grid graph is
also named a honeycomb graph in literature. We pay attention to hexagonal
grid graphs in this article.

Fig. 1. Example of a Hexagonal Grid Graph

Note that Akbari. et al. showed that in [2] if Zero-Sum 6-Flow Conjecture
is true for (2, 3)-graphs (in which every vertex is of degree 2 or 3), then it is true
for any graph. Henceforth the study can be reduced to (2, 3)-graphs. It is clear
non-trivial hexagonal grid graphs are a special class of (2, 3)-graphs. Therefore
in this paper we focus the study over the zero-sum flow numbers for hexagonal
grid graphs. In particular we are able to verify the Zero-Sum 6-Flow Conjecture
for the class of hexagonal grid graphs by determining the zero-sum flow number
of any non-trivial hexagonal grid graph is 3 or 4. We further use the concept of
dual graphs to specify classes of infinite families of hexagonal grid graphs with
minimum flow numbers 3 and 4 respectively.
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2 Preliminaries of Zero-Sum Minimum Flow Numbers

In 2011 [9] we generalize the notion zero-sum flows by considering a combinatorial
optimization problem, which is to find the zero-sum minimum flow number
of a graph G, namely the least number of k for which G may admit a zero-
sum k-flow. Obviously the zero-sum minimum flow numbers provide with more
detailed information regarding zero-sum flows. For example, we may restate
the previously mentioned Zero-Sum Conjecture as follow: Suppose a undirected
graph G has a zero-sum flow, then F (G) ≤ 6. We showed in [8] some general
properties of small minimum flow numbers, so that the calculation of zero-sum
minimum flow numbers becomes easier and efficient. In particular we obtained
the following pretty useful technical lemma for the characterization of graphs
with minimum flow number 2 which is used frequently in this paper, and we
provide with a proof for completeness here:

Lemma 1. (T.-M. Wang and S.-W. Hu, [8]) A graph G has zero-sum min-
imum flow number F (G) = 2 if and only if G is Eulerian with even size (even
number of edges) in each component.

Proof. Without loss of generality, we may assume G is connected. We start
showing the necessary part. Since a graph G has flow index F (G) = 2 meaning
it admits a zero-sum 2-flow, thus the edge function f(e) ∈ {1,−1}. For each ver-
tex v ∈ V (G), the number of incident edges labeled 1 must equal to the number
of incident edges labeled -1. Note that both numbers are equal to 1

2deg(v), there-
fore deg(v) must be even, and G is Eulerian. On the other hand, the number of
all 1-edges (or (-1)-edges) in G is 1

2

∑
v∈V (G)(

1
2deg(v)) = 1

2 |E(G)| which is an

integer, so |E(G)| are even. Conversely, to show the sufficiency we label the edges
in an Euler tour of G by 1 and -1 alternatively. Then every vertex is incident
with the same number of 1-edges and (-1)-edges, including the starting(ending)
vertex, since the number of edges is even. Therefore it is a zero-sum 2-flow in G.�

In [8] we also calculate the zero-sum flow numbers of regular graphs, which is
closely related to the zero-sum 5-flow conjecture for regular graphs. Recently
it is known that the zero-sum 5-flow conjecture for regular graphs was nearly
completely resolved by S. Akbari and other authors [3], except the case for 5-
regular graphs. We study the zero-sum flows more recently and obtain certain
results toward to these conjectures. Among other results we show that in [8]
that every bridgeless 5-regular graph G admits a 5-flow, which strengthens the
zero-sum 5-flow conjecture for regular graphs.

In next section we calculate the zero-sum minimum flow numbers for various
types of graphs induced from the plane tiling by hexagons.

3 Zero-Sum Flow Numbers of Hexagonal Grid Graphs

It is well known for the notion of the dual graph D(G) of a plane graph G for
a fixed plane drawing representation of G embedded in a sphere or the plane.
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Note that generally the dual graph of a hexagonal grid is (a partial subgraph
of) a triangular grid. See for example Figure 2.

Fig. 2. A Hexagonal Grid Graph with its Dual Graph

Now we set up fundamental symbols for the trivial regular hexagon labeled
±1 and ±2 over the edges as in Figure 3. The symbol I stands for the trivial
regular hexagon edge-labeled 1 and -1 consecutively with zero-sums. −I and
±2I stand for the ones with zero-sums using labels of I multiplied by -1 and ±2
respectively. Note that in figures below, the weight of the overlapping edge for
any two neighboring fundamental symbols are summed up from both patterns.

1

11

2

2 2

2

2

21 1

1

1-1-

1-

1-

1- 1-

2-2-

2-

2-

2- 2-
-- 2I I I 2I

Fig. 3. Fundamental Hexagons with Zero-Sum 2-Flows and 3-Flows

Note that also the zero-sum minimum flow number of the trivial regular
hexagon is 2. The following gives the optimal upper bound for the minimum
flow number of any finite non-trivial hexagonal grid graph:

Theorem 1. The infinite hexagonal grid graph H̃ admits a zero-sum 3-flow and
F (H̃) = 3. Moreover let H be any finite non-trivial hexagonal grid graph. Then
F (H) = 3 or 4.

Proof. Note that one obtains a zero-sum flow of the whole figure while patching
together sub-figures with zero-sums in an arbitrary way of union. See Figure 4
and note that the weight of the overlapping edge for any two neighboring funda-
mental symbols are summed up from both patterns. Therefore one has a zero-sum
3-flow for the infinite hexagonal grid graph H̃ using the fundamental figures ±I.
On the other hand, it is impossible for H̃ to admit a 2-flow due to the existence
of odd degree vertices. Thus F (H̃) = 3.
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Fig. 4. A 3-Flow of the Infinite Hexagonal Grid H̃

As for any finite non-trivial hexagonal grid graph, we obtain the bounds for
the flow numbers via the labeling of the infinite hexagonal grid. It is not hard
to check as in Figure 5 one has a zero-sum 4-flow for the infinite hexagonal
grid graph H̃, using the fundamental figures ±I and ±2I. Note that again the
weight of the overlapping edge for any two neighboring fundamental symbols are
summed up from both patterns.

Note that then any finite non-trivial hexagonal grid graph H may be treated
a piece of finite sub-figure cut from the infinite hexagonal grid H̃ . Therefore, H
admits a zero-sum 4-flow using exactly the same edge labels induced from those
of H̃ (see Figure 6). Thus by Lemma 1 the minimum flow numbers are 3 or 4
except that the trivial regular hexagon has flow number 2 as indicated in I. �

We also determine various classes of infinite families of hexagonal grid graphs
with flow numbers 3 and 4 respectively. First we start with classes of flow
numbers 3:

Theorem 2. Let G be a non-trivial hexagonal grid graph with the dual graph
D(G) to be bipartite. Then F (G) = 3.

Proof.
Note that if the dual graph D(G) is bipartite, it is 2-colorable. Then using

±I as two colors to put over the vertices of the dual graph. We see G admits
a 3-flow with edge labeling this way and again by Lemma 1 the zero-sum flow
number is 3. �
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Fig. 5. A 4-Flow of the Infinite Hexagonal Grid H̃

Therefore we may easily have the following examples of flow numbers 3 since
their dual graphs are trees, thus bipartite:

Theorem 3. Let G be a non-trivial hexagonal grid graph with the dual graph
D(G) consisting of multiple W6 copies, for which one W6 shares at most one
edge with another copy of W6. (see Figure 8) Then F (G) = 3.

Proof
Note that if the dual graph D(G) consists of W6 copies for which one sharing
at most one edge with another, one may fix it into a hexagonal grid graph by
dropping the central vertex of each copy of W6 (see Figure 8 for an example
to reduce the dual graph). It is clear that the resulting reduced dual graph is
bipartite. Hence by Theorem 2 we see F (G) = 3. �

The following are examples of classes of infinitely many hexagonal grids with
flow number 4:

Theorem 4. Let G be a hexagonal grid graph with the dual graph D(G) which
contains a triangle with one degree 2 vertex (see Figure 9). Then F (G) = 4.

Proof
Assume G admits a zero-sum 3-flow, which allows only labels ±1,±2. See
Figure 10 without loss of generality may assume a = 1 or 2. In both cases
through detailed calculation one will reach contradictions for c and d, for either
c+ d = 0 or c+ d = ±3. Therefore F (G) = 4. �



346 T.-M. Wang and G.-H. Zhang

II
-I

2I

I
-2I

I

-I

-I
-

I

2I

-2I

I

-I

-I

2I

I

-2I

-I

-2I

I

-I

1-

1-

1-

1-

1-

1-

1-
1-

1 1
2-
2

2-

1
3-

2
1

3-
1

12

12

2-
2

3-

2

1
1

1
1

2-

3-

2

2

1

2 2

2
2-2-

1

3-
2

3-
1

2

2
3-

1
3-

1

2-
1

1

2

1-
1-

1

1-

1-
1-
1

1
1-

2

1-

1

1 1

1-

1-

2-
2

3-

2

2

2

3-

1
2

3-
1

3-
1

3-

2
1

-2I

I

-I

-I

-2I

-2I

I

-I

-2I

I

-I
-2I

I
-2I

I

-I

-I

-2I

I

-I
I

-I

I

-2I

-I

I

-2I

I

-I

-I

I

2I

-I

I

-I

-2I

-2I

I

-2I

I

-I

-2I

I

-2I

-I

-2I

I

-I

Fig. 6. A 4-Flow of Arbitrary Finite Hexagonal Grid Induced from H̃

Fig. 7. Examples of Hexagonal Grids with Flow Number 3

Theorem 5. Let G be a hexagonal grid graph with the dual graph D(G). Suppose
that D(G) contains a kite with one degree 4 vertex or an antenna triangle with
one degree 3 vertex (as in the Figure 11). Then F (G) = 4.

Proof. Assume G admits a zero-sum 3-flow. The common figure of a hexagonal
grid graph containing a kite or an antenna triangle as its dual graph can be seen
in the Figure 12. Then without loss of generality we may assume a = 1 or 2. In
both cases through detailed calculation one will reach contradiction for g and h,
for either g + h = 0 or g + h = ±3. Therefore F (G) = 4. �

As corollary one may determine the flow numbers of regular hexagonal cluster
grids Hn, which are the graphs in Figure 13. Note that Hn contains diagrams in
Figure 12 for each n ≥ 3. Thus by the Theorem 5 we have:

Corollary 1. The minimum flow number of the regular hexagonal cluster grid
Hn of n layers are as follows:

F (Hn) =

⎧⎨⎩2, n = 1.
3, n = 2.
4, n ≥ 3.
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Fig. 8. Example of Hexagonal Grid with Dual Graph Multiple W6 Copies

Fig. 9. Dual graph D(G) contains a triangle with one degree 2 vertex

-

-

Fig. 10. Example of G whose dual contains a triangle with one degree 2 vertex

Fig. 11. Dual graph D(G) contains a Kite or an Antenna Triangle
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-

Fig. 12. Hexagonal Grid with Kite or Antenna Triangle as its Dual Graph

Fig. 13. Hexagonal Cluster H2,H3,H4,H5

4 Concluding Remark and Open Problem

In this paper we are able to determine that the zero-sum flow number of any non-
trivial hexagonal grid graph is 3 or 4. We further find classes of infinite families of
hexagonal grid graphs with minimum flow numbers 3 and 4 respectively. We also
calculate as corollaries the zero-sum minimum flow numbers of infinite families
of regular hexagonal grids.

However while one may calculate the zero-sum flow numbers of above classes
of hexagonal grids, it is interesting to characterize completely the classes of
non-trivial hexagonal graphs with zero-sum flow numbers 3 and 4 respectively.
The zero-sum flow numbers of square grid graphs are not hard to calculate,
while the complete characterizations of triangular grid graphs with various flow
numbers and their optimal bounds are relatively nice open problems worth to
work on.

Acknowledgement. The authors wish to express their sincere thanks to the
referees for their detailed comments and suggestions.
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Abstract. We suggest a user-oriented approach to combinatorial data
anonymization. A data matrix is called k-anonymous if every row appears
at least k times—the goal of the NP-hard k-Anonymity problem then
is to make a given matrix k-anonymous by suppressing (blanking out)
as few entries as possible. We describe an enhanced k-anonymization
problem called Pattern-Guided k-Anonymity where the users can
express the differing importance of various data features. We show that
Pattern-Guided k-Anonymity remains NP-hard. We provide a fixed-
parameter tractability result based on a data-driven parameterization
and, based on this, develop an exact ILP-based solution method as well
as a simple but very effective greedy heuristic. Experiments on several
real-world datasets show that our heuristic easily matches up to the
established “Mondrian” algorithm for k-Anonymity in terms of quality
of the anonymization and outperforms it in terms of running time.

1 Introduction

Making a matrix k-anonymous, that is, each row has to occur at least k times,
is a classic model for (combinatorial) data privacy [12, 21].1 The idea behind
is that each row of the matrix represents an individual and the k-fold appear-
ance of the corresponding row avoids that the person or object behind can be
identified. To reach this goal, clearly some information loss has to be accepted,
that is, some entries of the matrix have to be suppressed (blanked out); in this
way, information about certain attributes (represented by the columns of the ma-
trix) is lost. Thus, the natural goal is to minimize this loss of information when
transforming an arbitrary data matrix into a k-anonymous one. The correspond-
ing optimization problem k-Anonymity is NP-hard (even in special cases) and
hard to approximate [1, 2, 3, 7, 20]. Nevertheless, it played a significant role in
many applications, mostly relying on heuristic approaches for making a matrix
k-anonymous [6, 13, 21].
� Supported by the DFG, research project PAWS, NI 369/10.
1 We omit considerations on the recently very popular model of “differential privacy” [8]

which has a more statistical than a combinatorial flavor. It is well-known that there
are certain weaknesses of the k-anonymity concept when the anonymized data is used
multiple times [5, 12]. Here, we focus on k-anonymity which due to its simplicity and
good interpretability continues to be of interest in current applications.

M. Fellows, X. Tan, and B. Zhu (Eds.): FAW-AAIM 2013, LNCS 7924, pp. 350–361, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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It was observed that care has to be taken concerning the “usefulness” (also
in terms of expressiveness) of the anonymized data [18, 22]. Indeed, depending
on the application that has to work on the k-anonymized data, certain entry
suppressions may “hurt” less than others. E.g., considering medical data records,
the information about eye color may be less informative than information about
the blood pressure. Hence, it would be useful for the later user of the anonymized
data to specify information that may help doing the anonymization process in a
more sophisticated way. Thus, in recent work [4] we proposed a “pattern-guided”
approach to data anonymization, in a way allowing the user to specify which com-
binations of attributes are less harmful to suppress than others. More specifically,
the approach allows “pattern vectors” which may be considered as blueprints for
the structure of anonymized rows—each row has to be matched with exactly one
of the pattern vectors. The correspondingly proposed optimization problem [4],
however, has the clear weakness that each pattern vector can only be used once,
disallowing that there are different incarnations of the very same anonymization
pattern. We have no justification why this should be so and we see no reason
to justify this constraint from the viewpoint of data privacy. This leads us to
proposing a modified model whose usefulness for practical data anonymization
tasks is supported by experiments on real-world data.

Altogether, with our new model we can improve both on k-Anonymity by
letting the data user influence the anonymization process as well as on the pre-
vious model [4] by allowing the full flexibility for the data user to influence the
anonymization process.

Formal Introduction of the New Model. A row type is a maximal set of identi-
cal rows of a matrix. Matrices are made k-anonymous by suppressing some of
their entries. Formally, suppressing an entry M [i, j] of an n×m-matrix M over
alphabet Σ with 1 ≤ i ≤ n and 1 ≤ j ≤ m means to simply replace M [i, j] ∈ Σ
by the new symbol “�”, ending up with a matrix over the alphabet Σ ∪ {�}.

Our central enhancement of the k-Anonymity model lies in the user-specific
pattern mask guiding the anonymization process: Every row in the k-anonymous
output matrix has to conform to one of the given pattern vectors. A row r in
a matrix M ∈ {Σ, �}n×m matches a pattern vector v ∈ {�, �}m if and only if
∀1 ≤ i ≤ m : r[i] = � ⇐⇒ v[i] = �, that is, r and v have �-symbols at the
same positions. With these definitions we can now formally define our central
computational problem. The decisive difference to our previous model [4] is that
in our new model two non-identical output rows can match the same pattern
vector.

Pattern-Guided k-Anonymity
Input: A matrix M ∈ Σn×m, a pattern mask P ∈ {�, �}p×m, and two

positive integers k and s.
Question: Can one suppress at most s elements of M in order to get a

k-anonymous matrix M ′ such that each row type of M ′ can be
matched to one pattern vector of P?



352 R. Bredereck, A. Nichterlein, and R. Niedermeier

Our Results. We show that Pattern-Guided k-Anonymity is NP-complete,
even if the input matrix only consists of three columns, there are only two pat-
tern vectors, and k = 3. Motivated by this computational intractability result,
we develop an exact algorithm that solves Pattern-Guided k-Anonymity in
O(2tpt6p5m + nm) time for an n ×m input matrix M , p pattern vectors, and
the number of different rows in M being t. In other words, this shows that
Pattern-Guided k-Anonymity is fixed-parameter tractable for the combined
parameter (t, p) and actually can be solved in linear time if t and p take con-
stant values. This result paves the way to a formulation of Pattern-Guided
k-Anonymity as an integer linear program for exactly solving moderate-size in-
stances of Pattern-Guided k-Anonymity. Furthermore, our fixed-parameter
tractability result also leads to a simple and efficient greedy heuristic whose prac-
tical competitiveness is underlined by a set of experiments with real-world data,
also favorably comparing with the Mondrian algorithm for k-Anonymity [15].

Due to the lack of space, several details and experimental evaluations are
deferred to a full version.

2 Complexity and Algorithms

Natural parameters occurring in the problem definition of Pattern-Guided k-
Anonymity are the number n of rows, the number m of columns, the alphabet
size |Σ|, the number p of pattern vectors, the degree of anonymity k, and the
cost bound s. In general, the number of rows will arguably be large and, thus,
also the cost bound s tends to be large. However, analyzing the adult dataset [10]
prepared as described by Machanavajjhala et al. [19], it turns out that some of
the other mentioned parameters are small: The dataset has m = 9 columns and
the alphabet size is 73. Furthermore, it is natural to assume that also the number
of pattern vectors is not that large. Indeed, compared to the n = 32, 561 rows
even the number of all possible pattern vectors 29 = 512 is smaller. Finally there
are applications where k, the degree of anonymity, is small [9]. Summarizing, we
can state that fixed-parameter tractability with respect to the parameters |Σ|,
m, or p could be of practical relevance. Unfortunately, by reducing from the
3-Set Cover we can show that Pattern-Guided k-Anonymity is NP-hard
in very restricted cases.

Theorem 1. Pattern-Guided k-Anonymity is NP-complete even for two
pattern vectors, three columns, and k = 3.

Proof. We reduce from the NP-hard 3-Set Cover [14]: Given a set family F =
{S1, . . . , Sα} with |Si| = 3 over a universe U = {u1, . . . , uβ} and a positive
integer h, the task is to decide whether there is a subfamily F ′ ⊆ F of size
at most h such that

⋃
S∈F ′S = U . In the reduction we need unique entries

in the constructed input matrix M . For ease of notation we introduce the (-
symbol with an unusual semantics. Each occurrence of a (-symbol stands for a
different unique symbol in the alphabet Σ. One could informally state this as
“( 
= (”. We now describe the construction. Let (F , U, h) be the 3-Set Cover
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instance. We construct an equivalent instance (M,P, k, s) of Pattern-Guided
k-Anonymity as follows: Initialize M and P as empty matrices. Then, for each
element ui ∈ U add the row (ui,(,() twice to the input matrix M . For each
set Si ∈ F with Si = {ua, ub, uc} add to M the three rows (ua, Si, Si), (ub, Si, Si),
and (uc, Si, Si). Finally set k = 3, s = 4|U |+3|F|+3h and add to P the pattern
vectors (�, �, �) and (�, �, �).

We show the correctness of the above construction by proving that (F , U, h)
is a yes-instance of 3-Set Cover if and only if (M,P, 3, s) is a yes-instance of
Pattern-Guided k-Anonymity.

“⇒:” If (F , U, h) is a yes-instance of 3-Set Cover, then there exists a set
cover F ′ of size at most h. We suppress the following elements in M : First,
suppress all(-entries in M . This gives 4|U | suppressions. Then, for each Si ∈ F ′

suppress all Si-entries in M . This gives at most 6|F ′| suppressions. Finally, for
each Sj /∈ F ′ suppress the first column of all rows containing the entry Sj . This
are 3(|F| − |F ′|) suppressions. Let M ′ denote the matrix with the suppressed
elements. Note that M ′ contains 4|U | + 3|F| + 3|F ′| ≤ s suppressed entries.
Furthermore, in each row in M ′ either the first element is suppressed or the last
two elements. Hence, each row of M ′ matches to one of the two pattern vectors
of P . Finally, observe that M ′ is 3-anonymous: The three rows corresponding to
the set Sj /∈ F ′ are identical: the first column is suppressed and the next two
columns contain the symbol Sj . Since F ′ is a set cover, there exists for each
element uj a set Si ∈ F ′ such that uj ∈ Si. Thus, by construction, the two rows
corresponding to the element uj and the row (uj , Si, Si) in M coincide in M ′:
The first column contains the entry uj and the other two columns are suppressed.
Finally, for each row (ui, Sj , Sj) in M that corresponds to a set Sj ∈ F ′ the row
in M ′ coincides with the two rows corresponding to the element ui: Again, the
first column contains the entry ui and the other two columns are suppressed.

“⇐:” If (M,P, 3, s) is a yes-instance of Pattern-Guided k-Anonymity,
then there is a 3-anonymous matrix M ′ that is obtained from M by suppressing
at most s elements and each row of M ′ matches to one of the two pattern
vectors in P . Since M and so M ′ contain 2|U | + 3|F| rows, M ′ contains at
most s = 4|U | + 3|F| + 3h suppressions and each pattern vector contains a �-
symbol, there are at most 2|U |+3h rows in M ′ containing two suppressions and
at least 3|F| − 3h rows containing one suppression. Furthermore, since the 2|U |
rows in M corresponding to the elements of U contain the unique symbol ( in
the last two columns, in M these rows are suppressed in the last two columns.
Thus, at most 3h rows corresponding to sets of F have two suppressions in M ′.
Observe that for each set Si ∈ F the entries in the last two columns of the
corresponding rows are Si. There is no other occurrence of this entry in M . Hence,
the at least 3|F| − 3h rows in M ′ with one suppression correspond to |F| − h
sets in F . Thus, the at most 3h rows in M ′ that correspond to sets of F and
contain two suppressions correspond to at most h sets of F . Denote these h
sets by F ′. We now show that F ′ is a set cover for the 3-Set Cover instance.
Assume by contradiction that F ′ is no set cover and, hence, there is a set u ∈
U \ (

⋃
S∈F ′ S). But since M ′ is 3-anonymous, there has to be a row r in M ′ that
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corresponds to some set Si such that this row coincides with the two rows ru1
and ru2 corresponding to u. Since all rows in M ′ corresponding to elements of U
contain two suppressions in the last two columns, the row r also contains two
suppressions in the last two columns. Thus, Si ∈ F ′. Furthermore, r has to
coincide with ru1 and ru2 in the first column, that is, r contains as entry in the
first column the symbol u. Hence, u ∈ Si, a contradiction. ��

Contrasting Theorem 1, we will show fixed-parameter tractability with respect to
the combined parameter (|Σ|,m). To this end, we additionally use as parameter
the number t of different input rows. Indeed, we show fixed-parameter tractabil-
ity with respect to the combined parameter (t, p). This implies fixed-parameter
tractability with respect to the combined parameter (|Σ|,m) as |Σ|m ≥ t and |Σ|m ≥
2m ≥ p. This results from an adaption of combinatorial algorithms from previous
work [4, 5].

Theorem 2. Pattern-Guided k-Anonymity can be solved in O(2tp · t6p5 ·
m + nm) time where p is the number of pattern vectors and t is the number of
different rows in the input matrix M .

ILP Formulation. Next, we describe an integer linear program (ILP) formu-
lation for Pattern-Guided k-Anonymity employing ideas behind the fixed-
parameter algorithm of Theorem 2. To this end, we need the following notation.
We distinguish between the input row types of the input matrix M and the
output row types of the output matrix M ′. Note that in the beginning we can
compute the input row types of M in O(nm) time using a trie [11], but the output
row types are unknown. By the definition of Pattern-Guided k-Anonymity,
each output row type R′ has to match a pattern vector v ∈ P . We call R′ an
instance of v.

More specifically, our ILP contains the integer variables xi,j denoting the
number of rows from type i being assigned into an output row type compatible
with pattern vector j. The binary variable uj,l is 0 if instance l of pattern vector j
is used in the solution, that is, there is at least one row mapped to it, otherwise
it may be set to 1. Furthermore, ni denotes the number of rows of type i, ωj

denotes the costs of pattern vector j, and k is the required degree of anonymity.
Let p̂i ≤ t denote the number of instances of pattern vector i and let c(i, j, l)
be 1 if mapping row i to pattern vector j produces pattern vector instance l,
otherwise c(i, j, l) = 0. With this notation we can state our ILP formulation:

min

t∑
i=1

p∑
j=1

x(i, j) · ωj (1)

t∑
i=1

c(i, j, l) · xi,j ≤ (1 − uj,l) · n 1≤j≤p
1≤l≤p̂j

(2)
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t∑
i=1

c(i, j, l) · xi,j + k · uj,l ≥ k 1≤j≤p
1≤l≤p̂j

(3)

p∑
j=1

xi,j = ni 1 ≤ i ≤ t. (4)

The goal function (1) ensures that the solution has a minimum number of sup-
pressions. Constraint (2) ensures that the variables uj,l are consistently set with
the variables xi,j , that is, if there is some positive variable xi,j indicating that
the instance l of pattern vector j is used, then uj,l = 0. Constraint (3) ensures
that every pattern vector instance that is used by the solution contains at least k
rows. Constraint (4) ensures that the solution uses as many rows from each row
type as available.

We remark that, as Theorem 2, our ILP formulation also yields fixed-parameter
tractability with respect to the combined parameter (t, p). This is due to a fa-
mous result of Lenstra [16] and the fact that the number of variables in the
ILP is bounded by O(tp). Theorem 2, however, provides a direct combinato-
rial algorithm with better worst-case running time bounds. Nevertheless, in the
experimental section we decided to use the ILP formulation and not the combina-
torial algorithm based on the experience that there are very strong (commercial)
ILP solvers that in practice typically perform much better than the worst-case
analysis predicts.

Greedy Heuristic. We now provide a greedy heuristic based on the ideas of the
fixed-parameter algorithm of Theorem 2. The fixed-parameter algorithm basi-
cally does exhaustive search on the assignment of rows to pattern vectors. More
precisely, for each row type R and each pattern vector v it tries both possibilities
of whether rows of R are assigned to v or not. In contrast, our greedy heuristic
will just pick for each input row type R the “cheapest” pattern vector v and then
assigns all compatible rows of M to v. This is realized as follows: We consider all
pattern vectors one after the other ordered by increasing number of �-symbols.
This ensures that we start with the “cheapest” pattern vector. Then we assign
as many rows as possible of M to v: We just consider every instance R′ of v and
if there are more than k rows in M that are compatible with R′, then we assign
all compatible rows to R′. Once a row is assigned, it will not be reassigned to
any other output row type and, hence, the row will be deleted from M . Overall
this gives a running time of O(pnm). See Algorithm 1 for the pseudo-code of
the greedy heuristic. If at some point of time there are less than k remaining
rows in M , then these rows will be fully suppressed. Note that this slightly devi-
ates from our formal definition of Pattern-Guided k-Anonymity. However,
since fully suppressed rows do not reveal any data, this potential violation of the
k-anonymity requirement does not matter.

Our greedy heuristic clearly does not always provide optimal solutions. Our
experiments indicate, however, that it is very fast and that it typically provides
solutions close to the optimum and outperforms the Mondrian algorithm [15] in
most datasets we tested. While this demonstrates the practicality of Algorithm 1,
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Algorithm 1..Greedy Heuristic (M,P, k)
1: Sort pattern vectors P by cost (increasing order)
2: for each v ∈ P do
3: Compute all instances of v
4: for each instance R′ of v do
5: if ≥ k rows are compatible with R′ then
6: Assign all compatible rows of M to R′

7: Delete the assigned rows from M .

the following result shows that from the viewpoint of polynomial-time approxi-
mation algorithmics it is weak in the worst case.

Theorem 3. Algorithm 1 for Pattern-Guided k-Anonymity runs in O(pnm)
time and provides a factor m-approximation. This approximation bound is asymp-
totically tight for Algorithm 1.

Proof. Since the running time is already discussed above, it remains to show
the approximation factor. Let sheur be the number of suppressions in a solution
provided by Algorithm 1 and sopt be the number of suppressions in an optimal
solution. We show that for every instance it holds that sheur ≤ m ·sopt. Let M be
a matrix and M ′

heur be the suppressed matrix produced by Algorithm 1 and M ′
opt

be the suppressed matrix corresponding to an optimal solution. First, observe
that if any row of M occurs more than k times, then this row does not contain
any suppressed entry in M ′

heur. Hence, for any row in M ′
opt not containing any

suppressed entry it follows that the corresponding row in M ′
heur also does not

contain any suppression. Clearly, each row in M ′
heur has at most m entries sup-

pressed. Thus, each row in M ′
heur has at most m times more suppressed entries

than the corresponding row in M ′
opt.

To show that this upper bound is asymptotically tight, consider the following
instance. Set k = m and let M be as follows: The matrix M contains k times
the row with the symbol 1 in every entry. Furthermore, for each i ∈ {1, . . . ,m}
there are k − 1 rows in M such that all but the ith entry contains the symbol 1.
In the ith entry each of the k − 1 rows contains a uniquely occurring symbol.
Finally, the pattern mask simply contains all 2m possible rows/vectors over the
alphabet {�, �}. Algorithm 1 will suppress nothing in the k all-1 rows and will
suppress every entry of the remaining rows. This gives sheur = (k − 1) ·m2 =
(m− 1) ·m2 suppressions. However, an optimal solution suppresses in each row
exactly one entry: The rows containing in all but the ith entry the symbol 1 are
suppressed in the ith entry. Furthermore, to ensure the anonymity requirement,
in the submatrix with the k rows containing the symbol 1 in every entry the
diagonal is suppressed. Thus, the number of suppressions is equal to the number
of rows, that is, sopt = k + (k − 1)m = m2. Hence, sheur = (m− 1)sopt. ��
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3 Implementation and Experiments

In this section we present the results of our experimental evaluation of the heuris-
tic and the ILP formulation presented in Section 2. We used four datasets for
our experimental evaluations; these were taken from the UCI machine learning
repository [10]. In this extended abstract we only discuss two of them.
Adult2: This was extracted from a dataset of the US Census Bureau Data
Extraction System. It consists of 32,561 records over 15 attributes. Since the
entries in one attribute are unique for roughly half of the records, we removed this
attribute from the dataset. Following Machanavajjhala et al. [19], we prepared
also this dataset with nine attributes and call this variant Adult-2.
CMC3: This dataset is a subset of the 1987 National Indonesia Contraceptive
Prevalence Survey. It contains 1,473 records over 10 attributes.

All our experiments are performed on an Intel Xeon E5-1620 3.6GHz machine
with64GBmemoryunder theDebianGNU/Linux6.0 operating system.Theheuris-
tic is implemented in Haskell. The ILP implementation is using ILOG CPLEX by
its C++API. Both implementations are licensed under GPL Version 3. The source
code is available from http://akt.tu-berlin.de/menue/software/.

We tested our greedy heuristic in two types of experiments. In the first type we
“misused” our greedy heuristic to solve the classical k-Anonymity problem by
specifying all possible pattern vectors since we wanted to compare the practical
relevance of our greedy heuristic with an existing implementation. We decided
to compare with an implementation of the well-known Mondrian [15] algorithm4

since we could not find a more recent implementation of a k-Anonymity algo-
rithm which is freely available. In the second type of experiments, we analyze
the distance of the results provided by our greedy heuristic from an optimal
solution (with a minimum number of suppressed entries). The optimal solution
is provided by the ILP implementation.

Obvious criteria for the evaluation of the experiments are the number of sup-
pressions and the running time. Furthermore, we use the average size havg and
the maximum size hmax of the output row types as already done by Li et al. [17]
and Machanavajjhala et al. [19], as well as the number #h of output row types.
The perhaps most difficult to describe measurement we use is the “usefulness”
introduced by Loukides and Shao [18]. Roughly speaking, the usefulness is the
average tuple diversity of all output row types. Usefulness values lie between
zero and the number m of columns. Except for #h, small values indicate better
solutions.

Heuristic vs. Mondrian

For each dataset, we computed k-anonymous datasets with our greedy heuristic
and Mondrian for k ∈ {2, 3, . . ., 10, 25, 50, 75, 100}. The running time behavior

2 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/
3 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/cmc/
4 http://cs.utdallas.edu/dspl/cgi-bin/toolbox/index.php?go=home

http://akt.tu-berlin.de/menue/software/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/cmc/
http://cs.utdallas.edu/dspl/cgi-bin/toolbox/index.php?go=home
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Table 1. Heuristic vs. Mondrian: Results for the Adult dataset. The usefulness is
denoted by u, the running time in seconds by r, #h denotes the number of output row
types, havg denotes the average size of the output row types, and hmax denotes the
maximum size of the output row types.

Greedy Heuristic

k u r #h havg hmax

2 2.062 5.5 14589 2.232 16
3 2.290 13.2 9208 3.536 18
4 2.470 19.538 6670 4.882 25
5 2.615 24.9 5199 6.263 31
6 2.738 29.663 4315 7.546 42
7 2.851 34.126 3669 8.875 53
8 2.942 37.629 3193 10.198 53
9 3.026 41.216 2832 11.498 52
10 3.106 44.8 2559 12.724 56
25 3.840 79.281 1046 31.129 161
50 4.462 117.0 537 60.635 317
75 4.873 144.536 354 91.980 317
100 5.151 163.582 274 118.836 317

Mondrian

k u r #h havg hmax

2 3.505 2789.4 11136 2.709 61
3 3.782 1803.5 7306 4.128 61
4 4.007 1337.860 5432 5.553 61
5 4.191 1062.0 4325 6.974 61
6 4.362 885.939 3597 8.385 61
7 4.498 754.652 3053 9.879 61
8 4.622 659.184 2663 11.326 61
9 4.766 588.347 2368 12.737 69
10 4.875 535.9 2145 14.062 69
25 6.009 229.248 850 35.485 90
50 6.729 127.4 430 70.144 135
75 7.339 93.621 287 105.094 242
100 7.805 76.005 209 144.316 242

of the tested algorithms is somewhat unexpected. Whereas Mondrian gets faster
with increasing k, our greedy heuristic gets faster with decreasing k. The reason
why the greedy heuristic is faster for small values of k is that usually the cheap
pattern vectors are used and, hence, the number of remaining input rows de-
creases soon. On the contrary, when k is large, the cheap pattern vectors cannot
be used and, hence, the greedy heuristic tests many pattern vectors before it ac-
tually starts with removing rows from the input matrix. Thus, for larger values
of k the greedy heuristic comes closer to its worst-case running time of O(pnm)
with p = 2m.

Adult and Adult-2. Our greedy heuristic anonymized the Adult dataset in less
than three minutes for all tested values of k. For k = 3 and k = 4 Mondrian took
more than half an hour to anonymize the dataset. However, in contrast to all
other values of k, Mondrian was slightly faster for k = 75 and k = 100. Except
for hmax with k ≥ 25 all quality measures indicate that our heuristic produces
better solutions. The usefulness value of the Mondrian solutions is between 1.5
and 1.7 times the usefulness value of the heuristic for all tested k—this indicates
significantly better quality of the results of our heuristic. See Table 1 for details
and Figure 1 for an illustration.

The solutions for Adult-2 behave similarly to those for Adult. Our greedy
heuristic with a maximum running time of five seconds is significantly faster than
Mondrian with a maximum running time of 20 minutes (at least 10 times faster
for all tested k). However, the usefulness is quite similar for both algorithms.
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Fig. 1. Comparing running time and usefulness for the Adult dataset

Mondrian beats the heuristic by less than 1% for k = 50; the heuristic is slightly
better for each other tested k.

CMC. For the CMC dataset, both algorithms were very fast in computing k-
anonymous datasets for every tested k. Mondrian took at most 10 seconds and
our greedy heuristic took at most 1.2 seconds and was always faster than Mon-
drian. As for the solution quality, the heuristic can compete with Mondrian. The
usefulness of the heuristic results is always slightly better, the Mondrian results
have always at least 20% less output row types, and the average output row
type size of the heuristic results is always smaller. Only for k = 5, 6, 7, and 8,
the Mondrian results have a lower maximum size of the output row types.

Conclusions for Classical k-Anonymity. We showed that our greedy heuristic
is very efficient even for real-world datasets with more than 30,000 records and
with k ≤ 100. Especially for smaller degrees of anonymity k ≤ 10, Mondrian is at
least ten times slower. Altogether, our heuristic outperforms Mondrian in terms
of quality of the solution. Hence, we demonstrated that even for the very special
case of specifying all possible pattern vectors, our heuristic already produces
useful solutions that can at least compete with Mondrian’s solutions.

Heuristic vs. Exact Solution

In three scenarios with real-world datasets, we showed that our greedy heuristic
performs well in terms of solution quality compared with the optimal solution
produced by the ILP implementation. The results of the heuristic are typically
within 15% away from the optimal solution to the optimum and in fact for many
cases they were optimal, although our heuristic is much more efficient than the
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exact algorithm (the ILP was, on average, more than 1000 times slower). The
heuristic results tend to get closer to the optimal number of suppressions with
increasing degree of anonymity k.

4 Conclusion

We introduced a promising approach to combinatorial data anonymization by
enhancing the basic k-Anonymity problem with user-provided “suppression pat-
terns.” It seems feasible to extend our model with weights on the attributes, thus
making user influence on the anonymization process even more specific. A natu-
ral next step is to extend our model by replacing k-Anonymity by more refined
data privacy concepts.

On the experimental side, several issues remain to be attacked. For instance,
we use integer linear programming in a fairly straightforward way almost with-
out any tuning tricks (e.g., using the heuristic solution or “standard heuristics”
for speeding up integer linear program solving). It also remains to perform tests
comparing our heuristic algorithm against methods other than Mondrian (unfor-
tunately, for the others no source code seems freely available).

Acknowledgements. We thank Thomas Köhler and Kolja Stahl for their great
support in doing implementations and experiments.
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