
A Semantics-Aware I/O Interface

for High Performance Computing

Michael Kuhn

University of Hamburg
michael.kuhn@informatik.uni-hamburg.de

Abstract. File systems as well as I/O libraries offer interfaces which can
be used to interact with them, albeit on different levels of abstraction.
While an interface’s syntax simply describes the available operations, its
semantics determine how these operations behave and which assumptions
developers can make about them. There are several different interface
standards in existence, some of them dating back decades and having
been designed for local file systems. Examples are the POSIX standard
for file system interfaces and the MPI-I/O standard for MPI-based I/O.

Most file systems implement a POSIX-compliant interface to improve
portability. While the syntactical part of the interface is usually not
modified in any way, the semantics are often relaxed to reach maximum
performance. However, this can lead to subtly different behavior on dif-
ferent file systems, which in turn can cause application misbehavior that
is hard to track down.

On the other hand, providing only fixed semantics also makes it very
hard to achieve optimal performance for different use cases. An additional
problem is the fact that the underlying file system does not have any
information about the semantics offered in higher levels of the I/O stack.
While currently available interfaces do not allow application developers
to influence the I/O semantics, applications could benefit greatly from
the possibility of being able to adapt the I/O semantics at runtime.

The work we present in this paper includes the design of our semantics-
aware I/O interface and a prototypical file system developed to support
the interface’s features. Using the proposed I/O interface, application
developers can specify their applications’ I/O behavior by providing se-
mantical information. The general goal is an interface where developers
can specify what operations should do and how they should behave –
leaving the actual realization and possible optimizations to the under-
lying file system. Due to the unique requirements of the proposed I/O
interface, the file system prototype is designed from scratch. However, it
uses suitable existing technologies to keep the implementation overhead
low.

The new I/O interface and file system prototype are evaluated using
parallel metadata benchmarks. Using a single metadata server, they de-
liver a sustained performance of up to 50,000 lookup and 20,000 create
operations per second, which is comparable to – and in some cases, better
than – other well-established parallel distributed file systems.

Keywords: Distributed File Systems, I/O Interfaces, I/O Semantics.

J.M. Kunkel, T. Ludwig, and H.W. Meuer (Eds.): ISC 2013, LNCS 7905, pp. 408–421, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Semantics-Aware I/O Interface for High Performance Computing 409

1 Introduction

High performance computing is an increasingly important tool for scientific com-
puting. It is used to conduct large-scale computations and simulations of complex
systems from basically all branches of the natural and technical sciences, such as
meteorology, climatology, particle physics, biology, medicine and computational
fluid dynamics. These computations and simulations are usually realized in the
form of parallel applications. They use threads, message passing or a combination
of both to distribute and speed up the computational work across a supercom-
puter. Additionally, high performance computing is invaluable in analyzing the
large amounts of data produced by such applications.

An important aspect is high performance I/O, because storing and retrieving
such large amounts of data can greatly affect the overall performance of these
applications. A common access pattern produced by these applications involves
many parallel processes, each performing non-overlapping access to a shared file.

File systems provide an abstraction layer between the applications and the
actual storage hardware, such that application developers do not have to worry
about the organizational layout or technology of the underlying storage hard-
ware. Distributed file systems usually stripe data across several storage devices
to improve both storage capacity as well as throughput. Parallel file systems
allow multiple clients to access the same data simultaneously. Consequently,
most file systems used in high performance computing are parallel distributed
file systems. Two of the most widely-used file systems today are Lustre [3] and
GPFS [17].

Parallel distributed file systems provide one or more I/O interfaces which can
be used to access data within the file system. Additional interfaces are available
in the form of libraries. Popular choices include POSIX, MPI-I/O, NetCDF
and HDF5. Almost all the I/O interfaces found in high performance computing
today offer simple byte- or element-oriented access to data and thus do not have
any a priori information about what kind of accesses the applications perform.
Even though there are some notable exceptions such as ADIOS or NetCDF,
even the more advanced I/O interfaces do not offer support to specify additional
semantical information about the applications’ behavior and requirements. Due
to this lack of knowledge about application behavior, optimizations are often
based on heuristic assumptions which may or may not reflect the actual behavior.

While the I/O interface defines which I/O operations are available, the I/O
semantics describe and define the behavior of these operations. Usually each
I/O interface is accompanied by a set of I/O semantics, tailored to this specific
interface. The POSIX I/O semantics are probably the most widely-used seman-
tics, even in high performance computing. However, due to being designed for
traditional local file systems, they impose unnecessary restrictions on today’s
parallel distributed file systems. One of these restrictions are the very strict con-
sistency requirements which can lead to performance bottlenecks in distributed
environments.

Performing I/O efficiently is becoming an increasingly important problem.
While CPU speed and HDD capacity continue to increase by roughly a factor



410 M. Kuhn

of 1,000 every 10 years [26,25], the speed of HDDs grows much slower: Early
HDDs in 1989 delivered about 0,5MB/s, while current HDDs manage around
150MB/s [24]. This corresponds to a 300-fold increase of throughput over the
last (almost) 25 years. Even newer technologies such as SSDs only offer through-
puts of around 600MB/s, resulting in a total speedup of 1,200. For comparison,
over the same period of time, the computational power increased by a factor of
1,000,000.

There are several ways to compensate for this fact: Increasing the efficiency of
I/O, using novel storage technologies or simply buying more storage hardware.
The JULEA project aims to increase the efficiency of I/O by providing a new
semantics-aware I/O interface which should allow applications to make the most
of the available storage hardware. It allows specifying the semantics of I/O op-
erations at runtime and supports batch operations to increase performance. The
overall goal is to allow the application developer to specify the desired behavior
and leave the actual realization to the I/O system.

This paper is structured as follows: The current state of the art with regards
to I/O interfaces and semantics is presented in Section 2. In Section 3, the design
of our new semantics-aware I/O interface is elaborated. A preliminary evaluation
is given in Section 4. Our design is then compared with other related work in
Section 5, followed by a conclusion and some ideas for future work in Section 6.

2 State of the Art

Currently, I/O systems have a strongly layered concept. One major problem with
this approach is the fact that the lower layers do not have any information about
the upper ones. Due to this, each layer has to perform its own optimizations to
be able to use the I/O system’s full potential. An example of such an I/O stack
can be seen in Figure 1a. The different interfaces such as ADIOS, MPI-I/O and
POSIX will be explained below. While the upper layers usually provide more
comfort and abstraction, the performance yield might be lower. Therefore, the
lower, more difficult-to-use layers are often used directly to harness the I/O
system’s full potential.

An additional problem is the fact that it is currently not possible to hand
semantical information down through the I/O stack. To ease the development
of codes in need of high performance I/O it would be very beneficial to provide
easy-to-use interfaces that still provide adequate performance.

2.1 I/O Interfaces

Each I/O interface is usually accompanied by its own set of I/O semantics, which
are tailored specifically to this interface. A description of the most common I/O
interfaces and their corresponding semantics follows.

The POSIX I/O interface has been originally designed for use in local file
systems. Its first formal specification dates back to 1988, when it was included in
POSIX.1. Asynchronous/synchronous I/O was added in POSIX.1b from 1993.



A Semantics-Aware I/O Interface for High Performance Computing 411

����������		�
���

�

�����

�������

��������

�����
��	
���
�
�

���

��
�����
����

����

(a) Strongly-layered traditional I/O system

����������		�
���

�

��
�����
����

���	�

�������	�
��
�

�
��

����������		�
���

�

����������		�
���

��
���

(b) JULEA I/O layers

Fig. 1. Comparison of traditional and JULEA I/O stacks

This interface is very widely used, even in parallel distributed file systems, and
thus provides excellent portability.

The original interface did not offer ways to specify semantical information
about the accesses or the data. A feature added in POSIX.1-2001 is called
posix fadvise() and allows announcing the pattern which will be used to
access the data. However, this does not change the semantics of any fol-
lowing I/O operations. It typically used to increase the readahead window
(POSIX FADV SEQUENTIAL), disable readahead (POSIX FADV RANDOM), or to pop-
ulate (POSIX FADV WILLNEED) and free (POSIX FADV DONTNEED) the cache.

The MPI-I/O interface was introduced in the MPI-2.0 standard in 1997 [11]
and offers support for parallel I/O. It provides an I/O middleware which ab-
stracts from the actual underlying file system – the popular ROMIO implemen-
tation uses the so-called ADIO layer which includes support and optimizations
for POSIX, NFS, OrangeFS and many others. The MPI-I/O interface uses the
existing MPI infrastructure of MPI datatypes to access data within files.

The actual interface looks very much like the POSIX interface using file han-
dles to access files. MPI-I/O offers support for different file access modes, which
can be specified at file-open time. The MPI standard specifies several access
modes [12]. However, the only to access modes which can be considered seman-
tical information are MPI MODE UNIQUE OPEN and MPI MODE SEQUENTIAL as these
give information about how the file is going to be accessed.

ADIOS [10] provides a high-level I/O interface that abstracts from the usual
byte- or element-oriented access as found in POSIX or MPI-I/O. It outsources
the actual I/O configuration into an external XML file which can be used to
describe which data structures should be accessed and to automatically generate
C or Fortran code. Due to this automatically generated code, the application
developer does not need to directly interact with the underlying I/O middleware
or file system.



412 M. Kuhn

There are a number of other I/O interfaces like SIONlib [5], NetCDF [15] and
HDF5 [21] which focus on solving performance problems or offering additional
features such as annotated data storage. As they also do not offer semantical
information to be specified, they are only mentioned briefly here.

2.2 I/O Semantics

In the following, the most common I/O semantics are presented and potential
shortcomings are highlighted.

POSIX I/O features very strict consistency requirements. For example, write
operations have to be atomic and have to be visible to other clients immediately
after the system call returns. While this might be relatively easy to support
in local file systems, it can pose a serious bottleneck in parallel distributed file
systems, because it effectively prohibits client-side caching from being used and
requires additional locking. The semantics can only be changed in a very limited
fashion. For example, the strictatime, relatime and noatime options change
the file system’s behavior regarding the last access timestamp, which can have
an impact on performance. Additional options for async and sync are also avail-
able. However, all of these options can only be specified on a per-mount basis
and have to be fixed at mount time – that is, they can not be modified by users
under normal circumstances.

The NFS protocol provides close-to-open cache consistency by default, which
implies that changes performed by a client are only written back to the server
when the client closes the modified file. However, NFS offers limited support
for changing this behavior: By mounting NFS using the cto or nocto options
close-to-open cache coherence semantics can be switched on or off respectively.
Additionally, the async and sync options can be used to modify the behavior of
write operations: While async causes writes to only be propagated to the server
when necessary1, sync will cause system calls to only return when the data has
been flushed to the server. Additional mount options are available to modify the
caching behavior of attributes and directory entries. However, as in the POSIX
case, these options can only be specified at mount time by the administrator.

MPI-I/O’s consistency requirements are less strict than those defined by
POSIX [19,4]. By default, MPI-I/O guarantees that non-overlapping write op-
erations will be handled correctly and that changes are immediately visible only
to the writing process itself. Other processes first have to synchronize their view
of the file to see the changes. For use-cases requiring stricter consistency seman-
tics, MPI-I/O offers the so-called atomic mode. The atomic mode specifies that
changes will be visible to all process within the same communicator instantly.
This can be difficult to achieve, because MPI-I/O allows non-contiguous oper-
ations and parallel distributed file systems can stripe single write operations
over multiple servers [16,8]. However, apart from the configurable atomic mode,
MPI-I/O does not offer any other means of changing the semantics. MPI-I/O

1 Possible reasons include memory pressure and (un)locking, synchronizing or closing
a file.



A Semantics-Aware I/O Interface for High Performance Computing 413

implementations are free to offer so-called hints, which are mainly used to con-
trol things like buffer sizes and participating processes. However, because hints
are optional, different implementations are free to ignore them [20].

3 Design

As previously shown, the interfaces and semantics currently used for distributed
file systems are suboptimal because they are either not well-adapted for the
requirements and demands found in high performance computing today or do
not allow fine-grained semantical information to be specified [14,18,22]. In this
paper, we demonstrate a new I/O interface as well as a file system prototype
called JULEA. It has been implemented from scratch to be suited specifically
for the requirements found in high performance computing.

3.1 Layers

The intended general architecture of the JULEA I/O stack is illustrated in Fig-
ure 1b and features less layers than the traditional one in Figure 1a. This allows
concentrating all optimizations into a single layer, reducing the implementation
and runtime overhead. An important design goal is to remove the duplication
of functionality found in the traditional I/O stack. For example, path lookup
should only be performed on the uppermost layer. This can be achieved by elim-
inating the underlying POSIX file systems and using a suitable object store,
which allows objects to be accessed directly using a unique ID. JULEA sup-
ports multiple storage backends such as existing POSIX file systems as well as
object stores. This allows JULEA to always use the best-suited backend while
maintaining compatibility with a wide range of software environments. For the
metadata part, we decided to use an existing NoSQL database system called
MongoDB [1]. The only remaining deficiency is MongoDB’s dependency on an
underlying POSIX file system, which we are currently investigating.

3.2 File System Namespace

Traditional file systems allow deeply-nested directory structures. To avoid the
overhead caused by this, only a restricted, relatively flat hierarchical namespace
is supported. While our approach might be unsuited for a general purpose file
system, we explicitly focus on specific use-cases that are commonly found in high
performance computing.

It is divided into stores, collections, and items. Each store can contain multiple
collections which in turn can contain multiple items. Additionally, items feature
a very reduced set of metadata. For example, unimportant information like the
time of the last access has been omitted. The goal of these changes is to minimize
the overhead during normal file system operation. For example, in traditional
POSIX file systems, each component of the potentially deeply-nested path has
to be checked for each access. This requires reading its associated metadata,



414 M. Kuhn

checking permissions, etc., which usually happens sequentially. Additionally, in
distributed file systems these operations can be very costly if many (relatively
small) network messages are involved.

3.3 Interface

The interface has been designed from scratch to offer simplicity of use while still
meeting the requirements of high performance and semantics-awareness. Two
major features are the ability to specify semantical information and to batch
operations.

It is possible to specify additional information equivalent to the coarse-grained
statement “this is a checkpoint” or the more fine-grained “this operation re-
quires strict consistency semantics”. This allows the file system to tune oper-
ations for specific applications by itself. Additionally, it is possible to emulate
well-established semantics as well as mixing different semantics within one ap-
plication.

All accesses to the file systems are done via so-called batches. Each batch can
consist of multiple operations. For example, multiple items can be created or
different offsets within an item can be accessed in one batch. It is also possible
to combine different kinds of operations within one batch. For example, one
batch might create a collection and several items within it, and write data to
each one. Because the file system has knowledge about all operations within one
batch, more elaborate optimizations can be performed. The advantages of this
approach will be evaluated in Section 4.

The pseudo code found in Listing 1.1 shows an example of how the interface
generally works. A new batch using the POSIX semantics (line 1) as well as
a store, collection and item are created (lines 2–4). Afterwards, the collection
is added to the store (line 6) and the item is added to the collection (line 7).
Additionally, some data is written to the item (line 8). Finally, the batch is
executed (line 10) which in turn executes all three operations with the given
semantics.

Listing 1.1. JULEA pseudo code

1 batch = new Batch(POSIX_SEMANTICS );

2 store = new Store("test");

3 collection = new Collection ("test");

4 item = new Item("test");

5
6 batch.add(store.add(collection ));

7 batch.add(collection .add(item));

8 batch.add(item.write (...));

9
10 batch.execute ();



A Semantics-Aware I/O Interface for High Performance Computing 415

3.4 Semantics

The JULEA interface allows many aspects of the semantics of file system op-
erations to be changed at runtime on a per-batch basis. Several key areas of
the semantics have been identified as important to provide opportunities for
optimizations. Support for atomicity, concurrency, consistency, persistency and
safety has already been designed, while possible data manipulation and security
aspects are still in the planning stage.

Other ideas include prompting the file system to store multiple copies of file
data and metadata, and to compress or encrypt it on-the-fly. The security policy
could be changed depending on the file system environment, enabling or disabling
more strict permission checks.

Detailed information about the different semantics together with possible con-
figurations is given in the following list.

– Atomicity: The atomicity semantics can be used to specify whether accesses
should be atomic, that is, whether it is possible for clients to see intermediate
states of operations. For example, a single write operation spanning two
servers might have already reached one of them but not the other. If atomic
accesses are enabled, other clients will be unable to see this inconsistent
state.

– Concurrency: The concurrency semantics can be used to specify whether
concurrent accesses will take place and, if so, how they will look like. This
can be used to enable or disable locking as needed.

– Consistency: The consistency semantics can be used to specify if and when
clients will see modifications performed by other clients. This can be used
to enable client-side read caching whenever possible.

– Persistency: The persistency semantics can be used to specify if and when
data must be written to persistent storage. This can be used to enable client-
side write caching whenever possible. For example, temporary data can be
cached more aggressively and does not necessarily need to be written to
persistent storage at all. This can be especially advantageous when different
levels of storage such as node-local SSDs are available.

– Safety: The safety semantics can be used to specify how safely data should
be handled. For example, this can be used to disable waiting for the server’s
acknowledgment when sending unimportant data. On the other hand, it can
be used to make sure that important data will survive a system failure by
flushing it to the storage devices immediately.

– Templates: Semantics templates can be used to provide templates for spe-
cific use-cases. For example, it can be used to to mimic the current POSIX
semantics as closely as possible, and to tune the semantics for application
input or output, which can be handled differently.

3.5 Architecture

JULEA provides a user-space library which can be linked to applications, al-
lowing them to use the JULEA I/O interface. Additionally, a user-space dae-
mon handles storing the file data on the I/O servers. The library communicates



416 M. Kuhn

with both the JULEA daemons and the MongoDB servers running on the data
and metadata servers, respectively. By providing all functionality in user-space,
JULEA is largely independent of the used operating system and kernel, and can
be easily ported to new software environments.

Operations within one batch are aggregated and sent to the appropriate dae-
mons in as few messages as possible to decrease network overhead. There are
also plans to reorder and merge operations, which can help to further increase
efficiency. The semantics specified for each batch are used to internally modify
the behavior of I/O operations. While most of this semantical information is only
needed by the client, it can also be transferred to the daemons when necessary.

For example, the safety semantics are always sent to the daemons, which
can use this information to avoid sending back unneeded replies to the clients.
The atomicity and concurrency semantics can be used to decide whether lock-
ing is necessary. Traditional interfaces do not have access to such information
and therefore have to make pessimistic assumptions, which might force them to
always handle the worst-case scenario. Since application developers know the ac-
cess patterns of their applications, they can easily specify such information. This
can be very beneficial, because lockless access to shared files can improve per-
formance dramatically. The additional semantical information can also be used
to reduce locking overhead on the metadata servers by making sure that specific
metadata such as the file size and modification time are only stored explicitly
for non-parallel workloads. Since highly parallel workloads would cause meta-
data update storms, such information is better computed on-the-fly whenever it
is needed in these cases.

4 Evaluation

Our prototype was built to provide a reference implementation of our new I/O
interface. It has built-in support for tracing client and server activities in var-
ious formats such as OTF [7] and HDTrace [13]. This can be used to visualize
the inner workings and can be very helpful when debugging errors or searching
for performance issues. To evaluate the benefits of our implementation we have
extended the fileop benchmark – which is part of IOzone [27] – to support MPI
and to also use the native interfaces of OrangeFS and JULEA. Only the most in-
teresting metadata-heavy operations (mkdir, rmdir, create, stat and delete)
were benchmarked. All results are averaged over at least five runs.

Figure 2 shows results for Lustre, OrangeFS and JULEA2. fileop was config-
ured to run with a varying number of MPI processes on 1–5 nodes with up to
12 processes per node, each process working in its own directory/collection. Or-
angeFS and JULEA were tested using their native interfaces, while the POSIX
interface was used for Lustre. All file systems were configured to provide one
data and metadata server, and used their default configuration – apart from Or-
angeFS, where TroveSyncMeta was set to no to disable synchronous metadata
operations. OrangeFS and JULEA were run on dual-socket machines with two

2 Note the logarithmic y-axis and different scaling for each of the subfigures.



A Semantics-Aware I/O Interface for High Performance Computing 417

1,000

10,000

100,000

1 2 6 12 24 36 48 60

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Number of processes

(a) Lustre

10

100

1,000

10,000

100,000

1 2 6 12 24 36 48 60

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Number of processes

(b) OrangeFS

1,000

10,000

100,000

1,000,000

10,000,000

1 2 6 12 24 36 48 60

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Number of processes

(c) JULEA

1,000

10,000

100,000

1 2 6 12 24 36 48 60

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Number of processes

(d) JULEA (Batch)

mkdir rmdir create stat delete

Fig. 2. Comparison of Lustre, OrangeFS and JULEA metadata performance

Intel Xeon X5650 processors and 12GB of main memory each. Due to different
operating system requirements, Lustre was run on single-socket machines with
one Intel Xeon E31275 processor and 16GB of main memory each. The evalua-
tion was carried out using the ldiskfs backend for Lustre, an underlying ext4

file system for OrangeFS and JULEA, and MongoDB 2.2.2 for JULEA. All data
was stored on 7,200RPM HDDs.

The results for Luste are shown in Figure 2a. It is interesting to note that
the performance of all operations except for stat does not improve if more
than 1 or 2 client processes per node are used. For these operations, there is
practically no performance difference for the configurations using 1–12 processes.
However, performance does increase when processes are distributed across more
client nodes. Using 60 client processes, the mkdir and rmdir operations reach a
maximum of around 4,000 and 5,000 operations per second, while the create and
delete operations reach approximately 9,500 and 7,500 operations per second.
stat scales well up to 36–48 client processes, where the curve begins to flatten,
reaching a maximum of roughly 48,000 operations per second.



418 M. Kuhn

Figure 2b shows the results for OrangeFS. The mkdir, rmdir, create and
delete operations deliver 20–30 operations per second when using a single client
process. Increasing the number of processes does not significantly improve the
results, resulting in a maximum performance of 75–100 operations per second
when using 60 client processes. The stat operation performs significantly better
with 750 operations per second when using a single client process. It also scales
well up to 12 processes, where the curve flattens, reaching a maximum of 13,000
operations per second when using 24–60 processes.

The results for JULEA using individual operations is shown in Figure 2c.
The mkdir and create operations deliver 2,000 and 2,500 operations per second
using only a single client process. They scale well up to 12 and 24 processes
respectively, where they reach their maximum performance of 9,000 and 25,000
operations per second. Increasing the number of processes further causes the
performance to drop to around 50%. The stat operation starts out with 3,500
operations per second, reaches its maximum of 50,000 operations per second
when using 24 processes and stays at this level when further increasing the
number of processes. The rmdir and delete operations show suspiciously high
performance of up to 3,400,000 operations per second, which might be caused by
the MongoDB query returning before the actual remove operation has finished.
However, this initial assumption still has to be investigated.

Figure 2d shows the results for JULEA using batches to aggregate opera-
tions. The mkdir operation provides only slightly better performance than in
the previous case, peaking at 10,000 operations per second. However, fewer client
processes are required to reach maximum performance, with only two processes
needed to obtain 9,000 operations per second. The create operation performs
significantly better, starting at 18,500 operations per second and reaching a
maximum of 75,000 operations per second with 24 client processes. While per-
formance drops to 20–25% when using 36 processes and more, it is still faster
by a factor of 2 when compared to using individual operations. status behaves
exactly the same as in the previous case. The rmdir and delete operations now
deliver more realistic performance numbers. However, both operations reach a
maximum with 6 client processes, dropping steadily after that. As already noted,
both operations still have to be investigated more closely. Especially the delete
operation’s steep drop from 6–24 processes warrants a closer examination.

Overall, JULEA provides metadata performance comparable to other estab-
lished parallel distributed file systems. More investigation and tweaking of the
MongoDB configuration will be required to eliminate the performance drop-
off with larger amounts of client processes. We are currently also working on
supporting sharded configurations of MongoDB which we expect to increase
performance even further.

5 Related Work

MosaStore [2] is a versatile storage system which is configurable at applica-
tion deployment time and thus allows application-specific optimizations. This



A Semantics-Aware I/O Interface for High Performance Computing 419

approach is similar to the JULEA approach, however, MosaStore provides a
storage system bound to specific applications instead of a globally shared one.
Additionally, the storage system can not be reconfigured at runtime and keeps
the traditional POSIX I/O interface.

The authors present a configurable security approach in [6] which allows using
scavenged storage systems consisting of unused workstation hardware in trusted,
partially trusted and untrusted environments in a secure way. While JULEA does
not use scavenged storage hardware, the cited work shows that configurable se-
curity can be achieved with relatively low overhead. This could also be supported
in JULEA to cater to different security requirements.

A new file system approach is presented in [9] that eliminates the current
need for many small accesses to get the metadata of all path components during
path lookup. By using the hashed file path to directly look up the related data
and metadata, this can be reduced to only require one read operation per file
access. While this can significantly increase small file performance, renaming
of parent directories causes all child hashes to change which might lead to a
lot of computational overhead. The JULEA interface does not use hashed path
lookups for this reason, but implements a relatively flat namespace to reduce
lookup overhead.

CAPFS [23] introduces a new content-addressable file store that allows users
to define data consistency semantics at runtime. While providing a client-side
plug-in API allows users to implement their own consistency policies, CAPFS is
limited to tuning the consistency of file data and keeps the traditional POSIX
interface. Additionally, the consistency semantics can only be changed on a per-
file basis.

6 Conclusions and Future Work

In this paper, we have presented the design and implementation of our novel
semantics-aware I/O interface and prototypical file system. It provides an inter-
face and semantics suited for high performance computing, and aims to reduce
redundant functionalities currently found within the I/O stack. Unlike similar
approaches, JULEA allows fine-grained specification of the I/O semantics re-
quired by the application on a per-operation basis. By merely specifying the
I/O requirements and leaving the realization and potential optimizations to the
underlying file system, the I/O system can be tailored better to the actual hard-
ware, improving efficiency. Additional features like the batching of operations
allow further optimizations and provide potential for experimenting with other
novel ideas regarding the handling of I/O.

One such idea, which fits naturally into the concept of batches, but is more
oriented towards programming efficiency, is to implement transaction support.
This would allow the application developer to specify how errors should be han-
dled. For example, the file system could be told to automatically revert to the
previous state in case of an error, making error handling and subsequent cleanup
tremendously more easy.



420 M. Kuhn

Additional evaluations focusing on other aspects of the file system such as data
performance and the influence of different semantics on a number of use-cases
have already been planned and will follow soon. Early benchmarks suggest that
shared file access can especially benefit from being able to specify semantical
information about the access patterns. In some cases, the strict atomicity and
consistency requirements enforced by the traditional POSIX semantics can cause
performance drops of a factor of 100 and more. To evaluate the potential benefits
with realistic use-cases we also plan to port an existing numerical application to
the JULEA I/O interface in the future.

References

1. 10gen, Inc.: MongoDB (2012), http://www.mongodb.org/ (last accessed: February
2013)

2. Al-Kiswany, S., Gharaibeh, A., Ripeanu, M.: The Case for a Versatile Storage
System. SIGOPS Oper. Syst. Rev. (January 2010)

3. Cluster File Systems, Inc.: Lustre: A Scalable, High-Performance File System
(November 2002), http://www.cse.buffalo.edu/faculty/tkosar/cse710/
papers/lustre-whitepaper.pdf (last accessed: February 2013)

4. Corbett, P., Feitelson, D., Fineberg, S., Hsu, Y., Nitzberg, B., Prost, J.P., Snir,
M., Traversat, B., Wong, P.: Overview of the MPI-IO Parallel I/O Interface.
In: IPPS 1995 Workshop on Input/Output in Parallel and Distributed Systems
(April 1995)

5. Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel I/O to task-local files.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC 2009 (2009)

6. Gharaibeh, A., Al-Kiswany, S., Ripeanu, M.: Configurable security for scavenged
storage systems. In: Proceedings of the 4th ACM International Workshop on Stor-
age Security and Survivability, Storage (2008)

7. Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the Open
Trace Format (OTF). In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 526–533. Springer, Heidelberg
(2006), http://dx.doi.org/10.1007/11758525_71

8. Latham, R., Ross, R., Thakur, R.: Implementing MPI-IO Atomic Mode and Shared
File Pointers Using MPI One-Sided Communication. Int. J. High Perform. Comput.
Appl. (May 2007)

9. Lensing, P., Meister, D., Brinkmann, A.: hashFS: Applying Hashing to Optimize
File Systems for Small File Reads. In: Proceedings of the 2010 International Work-
shop on Storage Network Architecture and Parallel I/Os, SNAPI 2010 (2010)

10. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and
integration for scientific codes through the adaptable IO system (ADIOS). In:
Proceedings of the 6th International Workshop on Challenges of Large Applications
in Distributed Environments, CLADE 2008 (June 2008)

11. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard.
Version 3.0 (September 2012), http://www.mpi-forum.org/docs/mpi-3.0/
mpi30-report.pdf (last accessed: February 2013)

12. Message Passing Interface Forum: Opening a File (February 2013),
http://www.mpi-forum.org/docs/mpi22-report/node265.htm

(last accessed: February 2013)

http://www.mongodb.org/
http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
http://dx.doi.org/10.1007/11758525_71
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi22-report/node265.htm


A Semantics-Aware I/O Interface for High Performance Computing 421

13. Minartz, T., Molka, D., Kunkel, J., Knobloch, M., Kuhn, M., Ludwig, T.: Tool
Environments to Measure Power Consumption and Computational Performance,
ch. 31. Chapman and Hall/CRC Press Taylor and Francis Group (2012)

14. Patil, S., Gibson, G.A., Ganger, G.R., Lopez, J., Polte, M., Tantisiroj, W., Xiao,
L.: In search of an API for scalable file systems: Under the table or above it? In:
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, HotCloud
2009 (2009)

15. Rew, R., Davis, G.: Data Management: NetCDF: an Interface for Scientific Data
Access. IEEE Comput. Graph. Appl. (July 1990)

16. Ross, R., Latham, R., Gropp, W., Thakur, R., Toonen, B.: Implementing MPI-IO
atomic mode without file system support. In: Proceedings of the Fifth IEEE Inter-
national Symposium on Cluster Computing and the Grid, CCGRID 2005 (2005)

17. Schmuck, F., Haskin, R.: GPFS: A Shared-Disk File System for Large Comput-
ing Clusters. In: Proceedings of the 1st USENIX Conference on File and Storage
Technologies, FAST 2002 (2002)

18. Sehrish, S.: Improving Performance and Programmer Productivity for I/O-
Intensive High Performance Computing Applications. Phd thesis, School of Electri-
cal Engineering and Computer Science in the College of Engineering and Computer
Science at the University of Central Florida (2010)

19. Sterling, T., Lusk, E., Gropp, W. (eds.): Beowulf Cluster Computing with Linux,
2nd edn. MIT Press (2003)

20. Thakur, R., Ross, R., Lusk, E., Gropp, W., Latham, R.: Users Guide for ROMIO:
A High-Performance, Portable MPI-IO Implementation (April 2010),
http://www.mcs.anl.gov/research/projects/romio/doc/users-guide.pdf

(last accessed: February 2013)
21. The HDF Group: Hierarchical data format version 5 (2000-2010),

http://www.hdfgroup.org/HDF5 (last accessed: February 2013)
22. Vilayannur, M., Lang, S., Ross, R., Klundt, R., Ward, L.: Extending the POSIX

I/O Interface: A Parallel File System Perspective. Tech. Rep. ANL/MCS-TM-302
(October 2008)

23. Vilayannur, M., Nath, P., Sivasubramaniam, A.: Providing Tunable Consistency for
a Parallel File Store. In: Proceedings of the 4th Conference on USENIX Conference
on File and Storage Technologies, FAST 2005, vol. 4 (2005)

24. Wikipedia: Festplattenlaufwerk – Geschwindigkeit (February 2013),
http://de.wikipedia.org/wiki/Festplattenlaufwerk#Geschwindigkeit

(last accessed: February 2013)
25. Wikipedia: Mark Kryder – Kryder’s Law (February 2013),

http://en.wikipedia.org/wiki/Mark_Kryder#Kryder.27s_Law

(last accessed: February 2013)
26. Wikipedia: TOP500 (February 2013), http://en.wikipedia.org/wiki/TOP500

(last accessed: February 2013)
27. Norcott, W.D., Capps, D.: IOzone Filesystem Benchmark (2006),

http://www.iozone.org/ (last accessed: February 2013)

http://www.mcs.anl.gov/research/projects/romio/doc/users-guide.pdf
http://www.hdfgroup.org/HDF5
http://de.wikipedia.org/wiki/Festplattenlaufwerk#Geschwindigkeit
http://en.wikipedia.org/wiki/Mark_Kryder#Kryder.27s_Law
http://en.wikipedia.org/wiki/TOP500
http://www.iozone.org/

	A Semantics-Aware I/O Interface for High Performance Computing
	1 Introduction

	2 State of the Art
	2.1 I/O Interfaces
	2.2 I/O Semantics

	3 Design

	3.1 Layers

	3.2 File System 
Namespace
	3.3 Interface

	3.4 Semantics

	3.5 Architecture


	4 Evaluation

	5 Related Work

	6 Conclusions and 
Future Work
	References





