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Abstract. While the amount of data used by today’s high-performance
computing (HPC) codes is huge, HPC users have not broadly adopted
data compression techniques, apparently because of a fear that compres-
sion will either unacceptably degrade data quality or that compression
will be too slow to be worth the effort. In this paper, we examine the
effects of three lossy compression methods (GRIB2 encoding, GRIB2
using JPEG2000 and LZMA, and the commercial Samplify APAX al-
gorithm) on decompressed data quality, compression ratio, and process-
ing time. A careful evaluation of selected lossy and lossless compression
methods is conducted, assessing their influence on data quality, storage
requirements and performance. The differences between input and de-
coded datasets are described and compared for the GRIB2 and APAX
compression methods. Performance is measured using the compressed
file sizes and the time spent on compression and decompression. Test
data consists both of 9 synthetic data exposing compression behavior
and 123 climate variables output from a climate model. The benefits of
lossy compression for HPC systems are described and are related to our
findings on data quality.
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1 Introduction

Climate science is a notorius producer of big data. More than 100 climate
variables are typically used in modern climate models, a number that cannot
meaningfully be reduced, and the simulated time spans are often decades. Data
presented in scientific publications must be archived for at least ten years. Con-
sequently, large climate computing facilities like the German Climate Computing
Center make significant investments in storage systems. Despite the amount of
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climate data to be stored and transfered, climate scientists have been reluctant
to use data compression to reduce dataset volumes. It seems the scientists have
vague fears that lossless compression would be too slow to be worthwhile and
that lossy compression would unacceptably reduce the quality of the data.

In our previous paper [4], we showed that the slowest lossless compression
algorithms actually achieve the best compression. In this paper we measure the
effects of two lossy compression algorithms on climate variable quality while also
considering lossy compression’s benefits in reducing HPC system bottlenecks.

This paper is structured as follows: First, related work and the lossy compres-
sion algorithms used are described. We then discuss signal quality requirements
of climate scientists and describe the different synthetic and climate variables
that are used to evaluate lossy compression. We summarize the metrics to quan-
tify differences in precision. Then our test setup is described. After summarizing
our findings, we use two distinct approaches to analyze the results. First, the pro-
cessing speeds of the competing algorithms is characterized. Second, approaches
to obtaining acceptable climate variable quality are described. Finally, future
research directions are considered.

2 Related Work

Lossless compression can be profitably used if the costs for compression and
decompression are less than the costs of bandwidth and storage. For example,
lossless-compressed tarballs are regularly used for source code exchange, and the
SLDC [3] algorithm increases both tape drive bandwidth and capacity. However,
lossless compression algorithms developed for ASCII text do not compress binary
datasets, such as most HPC datasets, very well. In contrast, a small number
of targeted algorithms have been developed to compress floating-point HPC
data. Current research into compression of scientific data generally takes one of
two approaches: Either the performance of available algorithms is evaluated on
specific scientific datasets as Woodring et al. [11] have done when they applied
JPEG2000 compression to climate data, or new lossy algorithms are developed
that have specific features and/or perform well for specific kinds of data.

An example for such new lossy algorithms is isabela, invented by Lakshmi-
narasimhan et al. [6], [7]. Another example is the recent sengcom algorithm [9],
which has strong similarities to the GRIB2/JPEG2000 compression described
below. Some algorithms take the multidimensionality of scientific datasets into
account, such as the work by Lindstrom and Isenburg [8]. Iverson et al. [5] are ex-
ploiting data locality on unstructured grids, especially for geo-sciences. Our own
last endeavor at lossless scientific data compression [4] handled diverse multidi-
mensional datasets. MAFISC uses the standard lossless compression algorithm
LZMA as a compression back-end after the MAFISC front-end transforms the
data in a reversible way.

2.1 Lossy Compression in GRIB2

GRIB2 [2] is a format defined by the World Meteorological Organization that
is based on self-describing messages using standardized values to identify basic
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properties of the data. Examples for such properties are grid types, intended
meaning of the data, and data encoding formats.

As a file format standard, the GRIB2 format itself does not specify how the
data is encoded, only how the encoded data should be interpreted. This leaves
a number of decisions to the authors of programs producing GRIB2 data.

GRIB data formats are based on fixed point (integer) representation that
includes a conversion from the floating point representation that causes a loss
of precision. The quantization parameters are selected by the encoding software
according to a user choice and are kept in the header of the encoded data. In
most cases, the user specifies how many bits of precision should be retained. The
encoding software then scans the input data for its value range and adjusts the
quantization accordingly. In this way, the user controls both signal quality and
file size, resulting in lossy compression.

As provided in current implementations, GRIB2 quantization is time-adaptive
since it is performed for each timeslice and elevation level seperately. The result-
ing quantization error places a tight upper bound on the maximum error. Finally,
the quantized GRIB2 integer result can be further compressed by JPEG2000 [1]
in its lossless mode.

2.2 APAX

Figure 1 presents a block diagram of the Samplify APplication AXceleration
(APAX) Encoder. The APAX algorithm encodes sequential blocks of input data
elements with user-selected block size between 64 and 16,384. The signal monitor
tracks the input dataset’s center frequency. The attenuator multiplies each input
sample by a floating-point value that, in fixed-rate mode, varies from block to
block under the control of an adaptive control loop that converges to the user’s
target compression ratio. The redundancy remover generates derivatives of the
attenuated data series and determines which of the derivatives encodes using
the fewest bits. The bit packer encodes groups of 4 successive samples using a
joint exponent encoder (JEE). JEE exploits the fact that block floating-point
exponents are highly correlated. Additional APAX details are described in [10].

The APAX encoder uses a software tool called the APAX profiler that pro-
vides information about the compressibility of input datasets, and recommends

Fig. 1. APAX block diagram
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a compression setting that delivers high-quality decompressed samples. Figure 2
illustrates the APAX profiler output on climate variable ustrl. The upper left
window displays the rate-distortion graph for the input signal being profiled.
The profiler suggests a Recommended Operating Point (ROP) where the cor-
relation between the original data x and the APAX-decoded data y is 0.99999
(“five nines”). The upper right window displays metrics comparing input x(i),
decoded output y(i), and residual or difference d(i) = x(i)− y(i). The lower left
window compares the input spectrum to the residual spectrum and quantifies the
spectral margin at the ROP. The lower right window histograms the residuals
and calculates the 2 · σ (95.5%) signal-to-residual margin.

2.3 Comparing GRIB2 and APAX Control

We notice that GRIB2 and APAX are controlled in fundamentally different ways.
GRIB2 users must choose the quantization level N, and whether or when to use
JPEG2000. GRIB2 parameter choices directly affect the quality of decoded cli-
mate variables and the speed with which they are encoded and decoded. The
APAX Profiler visually displays the rate-distortion curve on the climate variable
being profiled and recommends a compression ratio, helping users in their deci-
sion process. Once the user has chosen the compression ratio, that setting is again
accessed as APAX encodes that climate variable. The Profiler’s default ROP en-
sures consistent signal quality while allowing sophisticated users to modify the
ROP and to visualize and measure the new ROP’s effect on signal quality.

3 Quantifying the Uncertainty

3.1 Scientific Requirements

To determine appropriate climate data signal quality requirements, one must
understand that climate data will be used in two ways:

– The data is analyzed or visualized for evaluating long-term effects, such as
variations in average, variance, frequency, or locality of events.

– Data may also be used to drive another model (or to keep checkpoints).

In the first case, good quality data will not introduce any significant statistical
variation. No new effects should be created that were not present in the original
data, and no previously visible effects should vanish. To be safe, the maximum
error (worst-case scenario) should be monitored in addition to its standard de-
viation to check whether the error is still guaranteed to be below the required
threshold. The second case cannot be evaluated as easily, because climate sys-
tems are inherently chaotic. A small change in the input data may either vanish
completely or can lead to a completely different state a year later. It is impos-
sible to consistently predict whether an error in the input data caused by lossy
compression would cause different simulation effects than a random error would
not have caused.
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Fig. 2. APAX profiler window

In both cases, errors should not be locally correlated because such correlated
errors can give rise to false positives (much in the way that overcompressed JPEG
images exhibit block edges that were not present in the original image). When
decompressed data drives a climate simulation, locally correlated errors are much
more likely to drive the simulation into a state that would not have been reached
with uncorrelated errors. In the case of checkpoints, lossy compression is usually
not an option, since their goal is to allow a precise restart after a crash. Thus
our signal quality metrics will measure both average and worst-case differences
between the input and the decompressed datasets, as the compression ratio is
varied over a range from 24/32 (75%) to 8/32 (25%).

3.2 Approach

Description of Test Cases. We have tested the the GRIB2 and APAX
compressors using 9 synthetic datasets and with 123 climate output variables
generated from the ECHAM climate model from the Max-Planck-Institute for
Meteorology. The synthetic files are as follows:

bandlim lowpass 1D, lowpass filtered random data.
bandlim narrow 1D, bandpass filtered random data.
random 3D random data, flat distribution in the intervall [-1,1].
random offset 3D random data with an offset of 1 added.
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random correlated 3D random data with 90% correlation to the mean of the
three previously generated neighbours.

fractal 3D hierarchically generated data with fractal dimensionality. 2D slices
resemble a mountaneous height field.

integrated 3D random data, integrated twice in all directions. Very smooth.

sines orthogonal 3D cube with one sine per axis in superposition.

sines random 3D cube with 100 sines of random direction and frequency in
superposition.

All the 3D test cases were generated with 257×257×257 grid points, producing
NetCDF files with 68MB of data. The climate model output consisted of 123
different variables, covering one month at a sample frequency of six hours (124
timesteps). The longitude/latitude grid covers the entire earth with 192 × 96
grid cells and 47 height levels. Some variables are expressed as 2080 spectral
coefficients. The entire climate dataset contained 4.4GB of data.

Description of Error Metrics. Let us consider the characteristics of the
residual signals r(i) generated by GRIB2 and APAX encoding. Since lossy com-
pression always generates non-zero residuals r(i), we should first describe the
preferred characteristics of residuals. First, the magnitude of r(i) should be as
small as possible, in both a relative sense (minimize r(i)/x(i)) and also in an ab-
solute, peak error sense (minimize r(i)). Second, residuals should be zero-mean,
i.e. E[r] = 0.0. Third, residuals should be spectrally white, i.e. the residual’s
power spectral density psd(r) should be flat from DC to Nyquist (half the sam-
pling rate). Fourth, residuals should be uncorrelated with the signal from which
they are generated. Point three and four are generally not met by lossy com-
pression algorithms, including APAX and GRIB2. Both GRIB2 and APAX nor-
malize floating-point input values and then quantize them to integers, so both
algorithms generate residuals with similar characteristics. However, the residual
characteristics are not identical, since APAX can change the quantization from
block to block.

In the order in which climate dataset values are stored in memory, the stan-
dard deviation of residuals, std(r), provides a direct metric of signal quality.
When the residuals are spectrally white, std(r) is proportional to psd(r). We
calculated the signal-to-residual ratio (SRR), in bits, as given in Equation 1.
Since compression users are concerned both with average and worst-case signal
quality, we also measured the largest residual magnitude max(abs(r)), and com-
pare it to the range of input values, max(x)–min(x), calculating our peak error
metric, in bits, as given in Equation 2.

SRR = log2

(
std(x)

std(r)

)
(1)

PrecisionBits = log2

(
max(x) −min(x)

2 ·max(abs(r))

)
(2)
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In cases where a particular climate variable contains so little numerical variation
that the decoded signal is identical to the original signal, it is possible to have an
“infinite” SRR. These cases are especially likely at lower compression ratios such
as N = 24 (75%). In such cases, the residual samples are all zero and both SRR
and PrecisionBits are infinite. To avoid calculations using such infinite values,
we limit the maximum SRR and PrecisionBits to 50 bits.

4 Evaluation

4.1 Speed

Test Setup. Compression and decompression performance tests were run on
GRIB2 and APAX using a 48-core Magny-Cours node with 128GiB of memory
and 1.9GHz clock frequency. Since the objective was to measure the performance
of the algorithms and not the performance of the disks, all input files were first
copied to a RAM-disk. The compression/decompression was then performed
with both the input and the output file on the RAM-disk and measured using
the time utility. The measured GRIB2 times are the sum of the system and
user times reported by time. Timing measurements were automated using a
shell script for all measurements. APAX performance was measured using in-
process timers measuring only the compression from memory buffer to memory
buffer, while the GRIB2 measurements encompas the entire process, including
startup times, filesystem calls and library overhead. Thus, the timings are not
comparable between GRIB2 and APAX.

Results. Figure 3 compares the performance of the different algorithms. Each
point quantifies the performance of one algorithm on one file. Each algorithm
is represented using a colored, shaped icon. The x-axis represents compression
throughput (sec/GB), while the y-axis represents compression factor.

It is interesting to see that the external LZMA compression of GRIB2 files
tends to be faster than the builtin JPEG2000 compression, which performs as
slow as MAFISC in many cases. MAFISC exhibits the slowest processing times
on some files. Figure 3 illustrates a roughly linear correlation between the com-
pressability of a file and the time it takes to be encoded by GRIB2. Generally, we
see a strong correlation between compressability and speed, the only exception
to this is APAX, its speed solely depends on data characteristics and, to a minor
degree, target compression ratio. Unfortunately, this is not visible in the graph-
ics. Only the LZMA utility may take considerably more time on some files than
for other files with similar compressability, with the LZMA based MAFISC com-
pression this shows even more clearly. APAX throughput is about 152MB/sec
(6.58 sec/GB) for compression and 209MB/sec (4.79 sec/GB) for decompres-
sion, measured from memory buffer to memory buffer, all other measurements
include filesystem access to a Ramdisk as well. These averages are calculated
from total uncompressed size and total processing time.
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Fig. 3. Comparison of algorithm throughput (sec/GB) vs. achieved compression.
Note that the measurement conditions for APAX were not the same as for the other
methods.

It is clear that APAX and GRIB2 are the fastest algorithms in the field. GRIB2
and APAX have comparable compression and decompression throughput, and
even though GRIB2 performs fewer calculations, APAX appears to be the faster
of the two.

4.2 Compression

Apart from the compression time, the plot in Figure 3 also reveals the compres-
sion ratio of the files. It is clear that a lot of the redundancy of the data remains
in the GRIB2 encoded files. This is demonstrated by strong additional lossless
compression that can be achieved using JPEG2000 or LZMA. As shown in Fig-
ure 3, the additional lossless compression benefits from JPEG2000 and LZMA
are achieved at the expense of slower processing speed. Both JPEG2000 and
LZMA add between 100 and 500 s/GB to the GRIB2 encoding time for N = 16,
in most cases, however, LZMA takes less time than JPEG2000 compression.

Figure 4 compares the compression ratio of GRIB2/JPEG2000,
GRIB2/LZMA and GRIB2/JPEG2000/LZMA The files were sorted ac-
cording to their GRIB2/LZMA compression, the GRIB2 quality was set to 22
bits, but the results for other sizes are comparable. Figure 4 is interesting for a
number of reasons:
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– Neither JPEG2000 nor LZMA can be said to be better than the other, each
significantly outperforms the other on a large number of files.

– Whether JPEG2000 or LZMA provides more compression is strongly corre-
lated with the LZMA compressability.

– Even though the JPEG2000 output is next to incompressible for most files,
in some cases, LZMA applied on GRIB2/JPEG2000 output still has a very
strong effect. These are data sets, where a number of timeslices/height levels
are identical or differ only by an offset and a factor. In these cases, the
JPEG2000 output is identical because its input is identical. LZMA finds
these repeated regions in the file and achieves additional compression.

Fig. 4. Compression factor of lossless algorithms on GRIB2 data for 22 bits

4.3 Errors

In this analysis we compare the loss in precision of compressed values between
APAX and GRIB for 8 bits (4 : 1) and 24 bits (1.33 : 1) precision. Since LZMA,
MAFISC and JPEG2000 are lossless, these algorithms do not alter the quality
of the compressed data.

Figure 5a illustrates the SRR average signal quality metric for each of the 132
datasets. Larger SRR values indicate better decompressed signal quality. Visu-
ally, Figure 5a demonstrates that APAX SRR values generally exceed GRIB2
SRR values, with a few exceptions. Figure 5b illustrates the PrecisionBits peak
error metric, measured under the same conditions as Figure 5a’s SRR metric.
Larger PrecisionBits values indicate better decompressed signal quality. Visu-
ally, Figure 5b demonstrates that APAX PrecisionBits values generally exceed
GRIB2 values, with a few exceptions.
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(a) Signal-to-Residual Ratios

(b) PrecisionBits

Fig. 5. Comparison of GRIB and APAX at N=8 and N=24

Table 1 compares the resulting signal quality on 10 climate files, when com-
paring GRIB2 quantization at 22 bits followed by JPEG2000 encoding of the
GRIB2 output, to APAX at the equivalent compression ratio. For instance, while
GRIB2 compression of the climate variable alcov achieves a compression ratio
of 68.75% (22/32), JPEG2000 further compresses the 22-bit GRIB2 values to a
compression ratio of 64%. APAX was directed to achieve the same compression
ratio (64%) as GRIB2/JPEG2000, and the quality of both results was compared.
Unfortunately APAX could not be instructed to operate at a compression ratio
of less than 2.9% on the alsom file, so the following considerations do not take
this file into account.
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Table 1. GRIB2/JPEG2000 and APAX Signal Quality Metrics at the same compres-
sion ratios. N=22 for GRIB2/JPEG2000 files.

SRR PrecisionBits
file rel. size APAX GRIB2/JPEG 2000 APAX GRIB2/JPEG2000

trads 65.4% 20.7 20.8 20.3 21.1
aclcov 64% 23.2 22.1 21.0 21.0
trafl 56.5% 20.8 21.4 20.4 22.0

trflwac 53.2% 21.5 20.9 20.2 21.8
soflwac 35.8% 21.0 22.0 18.7 22.0
wsmx 29.3% 23.7 21.6 21.8 21.8
ahfllac 28% 21.7 19.0 21.1 21.7
vdisgw 22.9% 24.6 19.6 22.9 21.9
srad0d 22.6% 13.5 21.6 12.2 21.3
alsom 2.9%/1.9% lossless 22.8 lossless 21.5

Looking at the SRR metric, each of the two compression methods achieves
lower errors for some files than the other. This changes, however, if the maximal
error is taken into account, which is used for the PrecisionBits metric. With
this metric, APAX only has an advantage over GRIB2/JPEG2000 on one of
nine files, for the rest it achieves at most the same precision level. This one file,
however, is a file on which GRIB2/LZMA results in output only half as big as
the GRIB2/JPEG2000 result.

In addition to comparing GRIB2 and APAX signal quality at the same com-
pression ratio, we also examined compression ratio at comparable SRR quality
levels. Using APAX’s fixed quality mode, APAX compression ratios vary from
dataset to dataset, because APAX encodes the most compressible derivative
from among three alternatives, for each input block. With a fixed quality of
SRR=14 bits, APAX averaged 1.6x more compression than GRIB2 with N=16
(wich yields SRR values around 15 bits). For certain files, GRIB2 compression
is improved by as much as 60:1 by JPEG2000 post-processing, and by as much
as 3000:1 by LZMA post-processing.

5 Analysis of the Differences

APAX appears to be the fastest algorithm. GRIB2 can be fast as well, but how
fast it actually is depends heavily on its precision parameter: N = 8, 16 or 24
bits yields much better performance than any other setting for obvious reasons.
Even though GRIB2 is the simpler algorithm, APAX appears to be faster; we
believe that this is due to the fact that GRIB2 has to scan the input data twice
(once to compute the data range and once to do the conversion) while APAX is
a single pass algorithm, which leads to better cache usage. The GRIB2 encoder
available from the Max-Planck-Institute for Meteorology is said to be a much
more optimized encoder than the WMO GRIB2 encoder we used in this paper,
but time did not allow us to verify these claims.
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Comparing these two fast algorithms at the same compression level without
LZMA or JPEG2000 post-processing, we find that APAX signal quality ex-
ceeded GRIB2 signal quality for more than 85% of all variables in our dataset.
At N = 24 / 16 / 8, APAX SRR signal quality averages 7 / 11 / 8 bits better
than GRIB2, respectively. In some cases, however, GRIB2 generates better SRR
and PrecisionBits metrics than APAX on the least compressible datasets that
exhibit very few repeated values, including the datasets random, random offset,
sines orthogonal, lsp, st and az0w. Since APAX needs more control bits than
GRIB2 to describe what the encoder has done, these bits are consequently not
available to encode the data itself, and which provide no benefit when all alter-
natives are equally bad. So, even if GRIB2 were as fast or faster than APAX, in
this speed class APAX is the better encoding for most climate variables due to
its supperior compression or data quality.

If execution speed is not as much of a concern, the GRIB2/JPEG2000 and
GRIB2/LZMA combinations come into play. While neither can outperform the
other on the majority of variables, both profit from the tight error guarantees of
the GRIB2 format, indicated by their better PrecisionBits results compared to
APAX, and for most variables one combination clearly outperforms the other.
So, while it is clear, that one of these combinations should be used when good
compression is more important than speed, the decision which of the two to use
should be made on a per variable basis.

6 Compression Use Cases and Benefits for HPC

The most easily obtained benefit from lossy compression of climate datasets
is a significant reduction in disk file size and a corresponding increase in disk
bandwidth. Compared to lossless compression, both GRIB2 and APAX lossy
compression can achieve significantly higher compression ratios with acceptable
quality, as described in Section 4. Both GRIB2 and APAX are fast enough
to saturate typical filesystems, in HPC settings with high throughput parallel
filesystems, several cores might be neccessary, though. For archiving applications
where processing speed is not critical, the combination of GRIB2 and JPEG2000
provides slightly better signal quality than APAX and is thus the preferred
solution.

As climate simulation resolution improves, and as HPC core counts continue
to increase, lossy compression could also be used to reduce other system bot-
tlenecks, including PCIe, Infiniband and Ethernet links for data exchange, and
DDR memory bottlenecks that store increasingly large climate datasets. In these
cases, compression performance (sec/GB) becomes critical. Bus and networks
speeds can reach 56Gbps (FDR Infiniband), while sustained HPC server DDR3
memory throughput now achieves 5GB/sec. If lossy compression could be used,
simulations could complete faster as if they were using faster network and mem-
ory. As HPC core counts have increased, overall core utilization has decreased
(sometimes to below 20% of peak MIPS), so significant CPU cycles could be used
for compressing and decompressing datasets in DDR memory. This, of course,
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would require a very tight coupling between the simulation code and the com-
pression/decompression code.

Climate scientists will have to trade off where such in situ compression would
add the most benefits while maintaining climate simulation results. Due to the
statistical nature of climate research, input and output datasets could proba-
bly be lossy compressed. For intermediate climate simulation results, climate
scientists will want to carefully monitor the numerical stability and consistency
of results as they evaluate compression’s artifacts. Most intermediate results
will likely require lossless handling. However, even lossless compression schemes
might accelerate simulations if they are fast and applied to the more compressible
variables.

7 Summary and Future Work

We have compared GRIB2 (with and without optional JPEG2000 and LZMA
post-processors) and the APAX lossy compression algorithms on synthetic and
climate datasets. At equivalent compression ratios, APAX signal quality exceeds
GRIB2 signal quality for most climate variables. On some climate datasets,
GRIB2 compression ratios are improved by 60x (JPEG2000) to 3800x (LZMA).
GRIB2 and APAX processing speeds are comparable to each other, and both are
at least 10x faster, and often 100x faster, than when GRIB2 includes JPEG2000
or LZMA post-processing. In the future, we plan to investigate how much APAX
compression would be improved by JPEG2000 and LZMA post-processing. We
also plan to involve climate scientists in quantifying the acceleration in “time
to results” that the fast GRIB2 and APAX algorithms could provide and ana-
lyze the required precision, by increasing HPC memory and disk capacity and
bandwidth.
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